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Abstract—The Positivity Problem for linear recurrence se-
quences over a ring R of real algebraic numbers is to determine,
given an LRS (un)n∈N over R, whether un ≥ 0 for all n. It
is known to be Turing-equivalent to the following reachability
problem: given a linear dynamical system (M, s) ∈ Rd×d × Rd

and a halfspace H ⊆ Rd, determine whether the orbit (Mns)n∈N
ever enters H . The more general model-checking problem for
LDS is to determine, given (M, s) and an ω-regular property φ
over semialgebraic predicates T1, . . . , Tℓ ⊆ Rd, whether the orbit
of (M, s) satisfies φ.

In this paper, we establish the following:
1) The Positivity Problem for LRS over real algebraic num-

bers reduces to the Positivity Problem for LRS over the
integers; and

2) The model-checking problem for LDS with diagonalisable
M is decidable subject to a Positivity oracle for simple
LRS over the integers.

In other words, the full semialgebraic model-checking problem
for diagonalisable linear dynamical systems is no harder than the
Positivity Problem for simple integer linear recurrence sequences.
This is in sharp contrast with the situation for arbitrary (not
necessarily diagonalisable) LDS and arbitrary (not necessarily
simple) integer LRS, for which no such correspondence is
expected to hold.

Index Terms—Linear recurrence sequences, Positivity Prob-
lem, linear dynamical systems, model checking.

I. INTRODUCTION

Dynamical systems are a fundamental modelling paradigm
in many branches of science, and have been the subject of
extensive research for many decades. A real-algebraic discrete
linear dynamical system (LDS) in ambient space Rd is given
by a square d × d matrix M with entries in R ∩ Q, together
with a starting point s ∈ (R∩Q)d. The orbit of (M, s) is the
infinite trajectory (s,Ms,M2s, . . . ).

One of the most natural and fundamental computational
questions concerning linear dynamical systems is the Point-to-
Point Reachability Problem, also known as the Kannan-Lipton
Orbit Problem: given a d-dimensional LDS (M, s) together
with a point target t ∈ (R ∩ Q)d, does the orbit of the LDS
ever hit the target? The decidability of this question was settled
affirmatively in the 1980s in the seminal work of Kannan and
Lipton [1], [2].

Interestingly, one of Kannan and Lipton’s motivations was
to propose a line of attack to the well-known Skolem Problem,

which had itself been famously open since the 1930s (and
remains so to this day). Phrased in the language of linear
dynamical systems, the Skolem Problem asks whether it is
decidable, given (M, s) as above, together with a (d − 1)-
dimensional subspace T of Rd, to determine if the orbit
of (M, s) ever hits T . Kannan and Lipton suggested that,
in ambient space Rd of arbitrary dimension, the problem
of hitting a low-dimensional subspace might be decidable.
Indeed, this was eventually substantiated by Chonev et al. for
linear subspaces of dimension at most 3 [3], [4].

If one replaces the linear-subspace target T by a full-
dimensional halfspace target H ⊆ Rd, one obtains a com-
putational question equivalent to the well-known Positivity
Problem for linear recurrence sequences, also famously open
to this day, and to which we shall return shortly.

Subsequent research focussed on the decidability of hitting
targets of increasing complexity, such as polytopes [5]–[7] and
semialgebraic sets [8], [9]. In recent years, motivated in part by
verification questions for stochastic systems and linear while
loops, researchers have begun investigating more sophisticated
decision problems for linear dynamical systems, such as model
checking. In this setting, let us assume we are given a finite
partition T = {T1, . . . , Tℓ} of Rd. Given a d-dimensional LDS
(M, s), the characteristic word of the orbit of (M, s) relative
to partition T is the infinite word α ∈ T ω such that, for each
n ∈ N, the n-th element of the orbit of (M, s) lies in α(n):
Mns ∈ α(n). A specification over T is a (possibly infinite)
collection of infinite words φ ⊆ T ω , and we say that the LDS
(M, s) satisfies the specification φ if the characteristic word
of its orbit belongs to the specification: α ∈ φ.

The elements of the partition T are known as predicates.
Instances of the model-checking problem are characterised
by: (i) the class of dynamical systems under consideration,
(ii) the kinds of predicates allowed, and (iii) the formalism
used to describe the specification. For example, the paper [10]
studies LTL model checking of low-dimensional linear dy-
namical systems with semialgebraic predicates,1 whereas [11]
focusses on semialgebraic model checking for diagonalisable
linear dynamical systems in arbitrary dimension against prefix-

1Semialgebraic predicates correspond to Boolean combinations of polyno-
mial equalities and inequalities.979-8-3503-3587-3/23/$31.00 ©2023 IEEE
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independent MSO properties.2 The paper [12], on the other
hand, investigates semialgebraic MSO model checking of lin-
ear dynamical systems in which the dimensions of predicates
obey particular constraints. Other relevant papers include [13],
[14]; we refer the reader to [15] for a recent survey of the state
of the art on model checking for linear dynamical systems.

It is worth recalling once more that, in general, the
model-checking problem for linear dynamical systems is not
known to be decidable, since longstanding open reachability
questions, such as the Skolem and Positivity Problems, can
straightforwardly be phrased as model-checking queries (with
either polytopic or semialgebraic predicates). This in turn leads
to the following natural question: What could be achieved
assuming the existence of Skolem or Positivity oracles? Or,
in other words: Exactly how powerful are such oracles?

The question is not entirely academic; aside from sheer
intellectual curiosity, recent work has established, for example,
that Skolem oracles for simple linear recurrence sequences
could be designed, assuming certain classical conjectures
in number theory [16].3 In turn, this enabled the authors
of [16] to show that full algebraic MSO model checking4 of
diagonalisable linear dynamical systems is decidable, subject
to the same number-theoretic assumptions, and to exhibit a
corresponding decision procedure for this task.

Linear recurrence sequences (LRS), such as the Fibonacci
numbers, are properly introduced and defined in the next
section; the present brief discussion will therefore remain
relatively informal. For the purposes of this paper, we wish
to consider classes of LRS defined over both real algebraic
numbers and integers; and distinguish between simple LRS
(whose characteristic polynomials have no repeated roots) and
arbitrary ones. The Skolem Problem for an LRS (un)n∈N asks
whether it has a zero term, i.e., whether there exists n ∈ N
such that un = 0, whereas the Positivity Problem asks whether
all terms of the sequence are non-negative. As mentioned ear-
lier, whether the Skolem or Positivity Problems are decidable
are longstanding open questions [17]–[28]; this remains so
even when restricting to simple LRS. It is folklore that the
Skolem Problem is ‘easier’ than the Positivity Problem: the
former reduces to the latter, and the same again holds when
restricting to simple LRS. It is also known that the Skolem
Problem over real-algebraic LRS reduces to its counterpart
over integer sequences, and likewise when restricting to simple
LRS [16]. Finally, the paper [26] shows, by way of hardness,
that establishing decidability for the Positivity Problem over
integer LRS would necessarily entail major breakthroughs in
analytic number theory, more precisely in the field of Dio-
phantine approximation of transcendental numbers. The same

2Monadic Second-Order Logic (MSO) is a highly expressive specification
formalism that subsumes the vast majority of temporal logics employed in the
field of automated verification, such as Linear Temporal Logic (LTL). “Prefix
independence” is a quality of properties that are asymptotic in nature.

3In fact, such oracles have been implemented as algorithms and can be
experimented with; see https://skolem.mpi-sws.org/.

4Algebraic model checking refers to the setting in which predicates corre-
spond to arbitrary Boolean combinations of algebraic sets, i.e., sets defined
by polynomial equalities.

is however not known (or believed) to hold when restricting
to simple LRS. We shall return to these matters in Section VI.

We are now in a position to state the major contributions
of this paper. We establish the following:

1) The Positivity Problem for LRS over real algebraic
numbers is Turing-equivalent to the Positivity Problem
for LRS over the integers; and likewise when restricting
to simple LRS.

2) The semialgebraic MSO model-checking problem for
real-algebraic diagonalisable LDS is decidable subject
to a Positivity oracle for simple LRS over the integers.

In other words, the full semialgebraic MSO model-checking
problem for diagonalisable linear dynamical systems is no
harder than the Positivity Problem for simple integer linear
recurrence sequences. As we argue in Section VI, this appears
to be in sharp contrast with the situation for non-diagonalisable
LDS (and non-simple LRS), for which the existence of a
Positivity oracle does not seem to have a bearing on the
solvability of various basic instances of LDS model checking.

II. PRELIMINARIES

A. Linear recurrence sequences

A linear recurrence sequence (LRS) of order d > 0 over a
ring R ⊆ Q is given by a recurrence relation

un+d = a1un+d−1 + . . .+ adun

and initial values u0, . . . , ud−1 ∈ R, where ai ∈ R for
1 ≤ i ≤ d. We give the most important properties of LRS
and refer the reader to the book [23] by Everest et al. for
a comprehensive introduction. The characteristic polynomial
p ∈ R[x] of such a sequence is p(x) = xd −

∑d
i=1 aix

d−i.
Each LRS that is not identically zero has a unique solution
(up to reordering of summands) in the exponential polynomial
form given by

un =

m∑
k=1

pk(n)Λ
n
k (1)

where each Λi is a root of the characteristic polynomial of
(un)n∈N, Λi ̸= Λj for i ̸= j, and for all k, Λk ̸= 0 and
pk ∈ Q[z] is not identically zero. The value Λi is called a
dominant root of (un)n∈N if |Λi| ≥ |Λj | for all j, and the
spectral radius ρ of (un)n∈N is equal to |Λi| for a dominant
root Λi.

An LRS given by Equation (1) is
• simple (or diagonalisable) if pk(n) is constant for all k,
• non-degenerate if Λi/Λj is not a root of unity for i ̸= j.
• positive if un ∈ R≥0 for all n ∈ N, and
• ultimately positive if un ∈ R≥0 for sufficiently large n.

If (un)n∈N is degenerate, then there exists a computable
integer L such the subsequences (unL+r)n∈N for 0 ≤ r < L
are all non-degenerate.

The Skolem-Mahler-Lech theorem states that the set Z of
zeroes of a non-degenerate LRS is finite. Unfortunately, all
known proofs of the theorem are non-constructive. In fact, the
problem of computing Z is equivalent to the Skolem Problem.
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A consequence of the Cayley-Hamilton theorem is that

un = c⊤Mns (2)

where c ∈ Rd, M ∈ Rd×d and s ∈ Rd, defines an LRS
over R. The characteristic polynomial of (un)n∈N is exactly
det(xI − M), which is the characteristic polynomial of M .
Conversely, every LRS (un)n∈N over R can be written in
the form of Equation (2). The matrix M is then called the
companion matrix of the sequence.

Let un =
∑m

k=1 pk(n)Λ
n
k define a real-valued LRS, i.e.

un = un for all n ∈ N. Then un =
∑m

k=1 pk(n) Λk
n

. By
the uniqueness of the exponential polynomial representation,
it follows that for each k there exists k′ such that Λk′ = Λk

and pk′(n) = pk(n). That is, the summands of the exponential
polynomial solution of a real-valued LRS are closed under
complex conjugation.

B. Algebraic numbers

A complex number α is algebraic if it is a root of a
polynomial with rational coefficients. For such α there exists
a unique irreducible polynomial p(x) =

∑d
i=0 aix

d−i ∈ Q[x]
of the smallest degree, called the minimal polynomial of α,
such that a0 = 1 and p(α) = 0. The degree deg(α) of α is
equal to d. The polynomial p has d distinct roots α1, . . . , αd

called the Galois conjugates of α. Let b ∈ N be such that
bai ∈ Z for all 1 ≤ i ≤ d and gcd(ba0, . . . , bad) = 1. The
height of α is defined as H(α) := max0≤i≤d |bai|.

The set of all algebraic numbers, denoted Q, forms a field.
An algebraic integer is an algebraic number whose minimal
polynomial has integer coefficients. Algebraic integers form a
ring, denoted O. Each algebraic number α can be written in
the form β/m, where β ∈ O and m ∈ Z.

By a number field we mean an algebraic extension K =
Q(α1, . . . , αm) ⊂ Q of Q, where α1, . . . , αm are algebraic
numbers. We write [K : Q] for the degree of the field extension
K/Q, which is equal to the dimension of K as a vector space
over Q. For a number field K, D := [K : Q] is always finite,
and there exist exactly D embeddings σ1, . . . , σD : K ↪→ C.
A number α ∈ K is rational if and only if it is fixed by
every σi. Hence an LRS given by Equation (1) is rational
if and only if the summands are closed under taking Galois
conjugates: for every 1 ≤ k ≤ m and 1 ≤ i ≤ D, there exists
1 ≤ ki ≤ m such that pki

(n) = σi(pk(n)) and Λki
= σi(Λk).

We denote by T the set {z ∈ C : |z| = 1}. When talking
about a semialgebraic subset of Cd, we identify C with R2

(and hence Cd with R2d) in the standard way.

III. A LOWER BOUND ON THE GROWTH RATE OF LRS

In this section we describe a lower bound on the magnitude
of the terms of an LRS over algebraic numbers (Theorem 2),
originally due to Everest, van der Poorten, Shparlinski and
Ward. This result, alongside the Skolem-Mahler-Lech theorem,
is one of the cornerstones of the theory of linear recurrence
sequences. For example, a weaker version of Theorem 2 is
the most crucial ingredient in the proof of [29] that Ultimate
Positivity is decidable for diagonalisable LRS over R∩Q. The

statement of Theorem 2 appears in [23]5, but to the best of our
knowledge, no written proof has been published. We give a
proof based on Theorem 1 of Evertse on the sums of S-units.6

We begin by introducing the necessary mathematical con-
cepts. An absolute value on a field K is a function | · | : K →
R≥0 that satisfies the following properties:

1) |α| = 0 if and only if α = 0;
2) |αβ| = |α||β| for all α, β ∈ K;
3) |α|+ |β| ≥ |α+ β| for all α, β ∈ K.

An absolute value is called non-archimedean if, in addition,
|α + β| ≥ max{|α|, |β|} for all α, β ∈ K. For example, on
K = Q, we have the usual (archimedean) absolute value (de-
noted by |·| or |·|∞) as well as the p-adic absolute value |·|p for
each prime p ∈ N, defined as |a/b|p = (1/p)ordp(a)−ordp(b).
Here ordp(x) is equal to the largest k ∈ N such that pk

divides x. See [30] for a detailed discussion of absolute values
on Q. Two absolute values | · |1 and | · |2 are considered
equivalent if there exists real r > 0 such that |x|1 = |x|r2
for all x ∈ K. By Ostrowski’s theorem, every non-trivial
absolute value on Q (i.e. an absolute value that is not equal
to 1 everywhere on Q \ {0}) is equivalent to either | · |∞ or
| · |p for a prime p. Finally, the product rule for absolute values
on Q reads ∏

p∈P
|α|p = 1 (3)

where α ̸= 0 and P = {p ∈ N : p is prime} ∪ {∞}.
To prove Theorem 2, we will need to generalise the notions

above to arbitrary number fields. We refer the reader to the
lecture notes on algebraic number theory by James Milne [31]
for a detailed introduction to absolute values on number fields.

Let K be a number field and OK = O ∩ K be the ring
of its algebraic integers. By the Kummer-Dedekind theorem
[32, Theorem 16], each non-zero ideal of OK has a unique
factorisation (up to reordering of factors) in prime ideals. Let
N(p) denote the norm of the ideal p, defined as the cardinality
of the finite field OK/p. Denote by (α) the ideal generated
by an algebraic integer α in OK. Given a prime ideal p and
α ∈ OK with the prime factorisation (α) = pk1

1 · · · pkm
m , we

define the normalised p-adic absolute value of α as

|α|p =

{
(1/N(p))ki if p = pi,
1 otherwise.

We can extend | · |p to the whole of K by setting |α|p =
|β|p/|m|p where β ∈ OK and m ∈ Z are such that α = β/m.

The definition above provides all the possible non-
archimedean absolute values on K up to equivalence. We next
describe the archimedean absolute values. Let D := [K : Q]
and denote by σ1, . . . , σD all the distinct embeddings of K

5Unfortunately, the version of the bound stated in the book is slightly
inaccurate, as it does not hold for LRS of spectral radius at most 1.

6We would like to thank Jan-Hendrik Evertse for the very helpful personal
communication.
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into C. For each such embedding σ, we define the normalised
absolute value

|α|σ =

{
|σ(α)| if σ(K) ⊆ R,
|σ(α)|2 otherwise.

We are now ready to give the generalisation of Equation (3) to
an arbitrary number field K. A place on K is an equivalence
class of absolute values on K. For each prime ideal p, we
denote the corresponding place by vp and refer to the places
obtained in this way as finite. For each embedding σ, we define
a place vσ and refer to the resulting places as infinite. For a
place v, let

| · |v =

{
| · |p if v = vp,
| · |σ if v = vσ .

Denote the set of all places of K by P , and the set of all
infinite places by P∞. The product rule reads∏

v∈P
|α|v = 1

for all α ̸= 0.
We are now in a position to state the aforementioned

theorem of Evertse. For a vector x = (x1, . . . , xm) ∈ Km,
define

||x|| = max
1≤k≤m
1≤j≤D

|σj(xk)|.

Theorem 1 (Theorem 2, Evertse, [33]). Let S ⊂ P be a finite
set of places on a number field K enclosing P∞, T ⊆ S be
non-empty, and x = (x1, . . . , xm) ∈ Km. Suppose for every
non-empty I ⊆ {1, . . . ,m}, Σk∈Ixk ̸= 0. For every ϵ > 0
there exists C > 0, depending only on K, S, T, ϵ and m, such
that(

m∏
k=1

∏
v∈S

|xk|v

)∏
v∈T

|x1 + . . .+ xk|v

≥ C

(∏
v∈T

max
1≤k≤m

|xk|v

)
||x||−ϵ.

We apply this theorem to obtain the following main result
of this section.

Theorem 2. Let un =
∑m

k=1 pk(n)λ
n
k be a non-degenerate

LRS with ρ = |λ1| ≥ · · · ≥ |λm| > 0 and pk ∈ Q[z], pk ̸= 0
for all k. For every 0 < r < ρ, there exists N ∈ N such that

|un| > rn

for all n > N .

Proof. We first argue that it suffices to prove the theo-
rem assuming λ1, . . . , λm, as well as all the coefficients
of p1, . . . , pm, are algebraic integers. Since each algebraic
number can be written as a ratio of an algebraic integer and
a rational integer, there exist non-zero A,B ∈ N such that for
all k, Bλk and the coefficients of the polynomial A · pk are
algebraic integers. Consider vn = ABnun, and suppose for
each 0 < µ < Bρ, there exists Nµ such that for all n > Nµ,

|vn| > µn. Given 0 < r < ρ, choose µ ∈ (Br,Bρ) and
observe that µ/B > r. Let N be sufficiently large that for all
n > N , (µ/B)n > Arn. Then for all n > max{N,Nµ},

|un| = |vn|/(ABn) ≥ µn

ABn
≥ rn.

We now prove the theorem under the assumption above.
Let K be a non-real number field containing λ1, . . . , λm, as
well as the coefficients of p1, . . . , pm, and D = [K : Q].
Let P denote the set of all places of K and P∞ denote
the set of all infinite places. Choose S to be the smallest
set enclosing P∞ and containing vp for every prime ideal p
that appears in the prime factorisation of (λk) for some k.
Observe that |λn

k |v = 1 for all v /∈ S by the choice of S,
and, because pk(n) is an algebraic integer, |pk(n)|v ≤ 1 for
all v /∈ P∞. Choose T = {vσ} where σ(α) = α is the
identity map. Because K ̸⊆ R, |z|vσ = |z|2 for all z ∈ K.
Let ||un|| = ||(p1(n)λn

1 , . . . , pm(n)λn
m)|| and observe that

||un|| ≥ max1≤k≤m |pk(n)λn
k |.

To show the existence of the desired N for a given r, let
N1 ∈ N and c ∈ Q be such that for all n > N1, no (non-
empty) sub-sum of

∑m
k=1 pk(n)λ

n
k is zero and |pk(n)| > c for

all k. To see that such N1 exists, observe that every such sub-
sum is itself a non-degenerate LRS, and invoke the Skolem-
Mahler-Lech theorem. Further observe that for n > N1,
||un|| ≥ cρn. Next, let ϵ > 0 be such that ρ1−ϵ/2 > r.
Applying Theorem 1 with S, T, ϵ as described above to the
sum

∑m
k=1 pk(n)λ

n
k , let C be such that(

n∏
k=1

∏
v∈S

|pk(n)λn
k |v

)
|un|2 ≥ C max

1≤k≤m
|pk(n)λn

k |2||un||−ϵ

for all n > N1. Observe that
n∏

k=1

∏
v∈S

|pk(n)λn
k |v =

n∏
k=1

∏
v∈S

|λn
k |v︸ ︷︷ ︸

an

·
n∏

k=1

∏
v∈S

|pk(n)|v︸ ︷︷ ︸
bn

.

Since
∏

v∈P |λn
k |v = 1 by the product rule and |λn

k |v = 1
for all v /∈ S as discussed above, an = 1 for all n. Since
|pk(n)|v ≤ 1 for every finite place v,∏

v∈S

|pk(n)|v ≤
∏

v∈P∞

|pk(n)|v

=

D∏
j=1

|σj(pk(n))|2

≤ H(pk(n))
2D

for all 1 ≤ k ≤ m and n ∈ N. Since the height H(pk(n)) is
at most polynomial in n (see, for example, [34, Chapter 3.2]),
there exists a polynomial q such that bn < q(n). Combining
all of the inequalities above we obtain

q(n)|un|2 ≥ C(cρn)2(cρn)−ϵ = C(cρn)2−ϵ

for n > N1. By taking square roots,

|un| ≥

√
C

q(n)
c1−ϵ/2ρ(1−ϵ/2)n.
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Recalling that ρ1−ϵ/2 > r, it remains to choose N > N1 such
that

√
C/q(n)c1−ϵ/2ρ(1−ϵ/2)n > rn for all n > N .

The constant C in the statement of Theorem 1 and hence
the value N above are non-constructive. Nevertheless, such N
can be effectively computed using a Positivity oracle, which
can be taken to be for integer LRS by the results of Section IV.

Theorem 3. Let un and ρ be as in the statement of Theorem 2.
Given a Positivity oracle for real algebraic LRS, for every
0 < r < ρ we can effectively compute N such that |un| > rn

for all n > N .

Proof. Let µ ∈ (r, ρ) ∩ Q and consider the sequence vn =
|un|2−µ2n. Since |un|2 = unun, the sequence (vn)n∈N is an
LRS over R ∩ Q. Applying Theorem 2 to (|un|2)n∈N, there
exists N such that |un|2 > µ2n for all n ≥ N and hence
the sequence v

(N)
n = (vn+N )n∈N is positive. Such N can

be computed by repeatedly invoking the Positivity oracle on
suffixes of vn. It remains to observe that positivity of v(N)

implies that |un| > |rn| for all n > N .

IV. FROM ALGEBRAIC TO RATIONAL POSITIVITY

In this section, we will show that a Positivity oracle for
rational LRS is sufficient to decide the Positivity Problem for
real algebraic LRS. As a rational LRS can be transformed into
an integer LRS by a simple scaling that preserves the sign of
un, it follows that a Positivity oracle for integer LRS is equally
powerful.

Theorem 4. Given a Positivity oracle for LRS over Q, the
Positivity Problem is decidable for LRS over R ∩ Q. Moreover,
if the input LRS is simple then a Positivity oracle for simple
rational LRS suffices.

To sketch an outline of the proof of this theorem, let
(un)n∈N be a real algebraic LRS. We construct three new
LRS (vn)n∈N, (v+n )n∈N and (v−n )n∈N. Here, (vn)n∈N is real
algebraic and positive if and only if un is positive, and
(v+n )n∈N and (v−n )n∈N are rational LRS such that (i) |vn−v+n |
and |vn − v−n | grow much slower than vn itself, and (ii) vn
is “squeezed” between v−n and v+n . That is, for sufficiently
large n (for which a threshold is effectively computable),
v−n ≤ vn ≤ v+n . As the terms of vn grow according to
Theorem 2, we can conclude that understanding positivity of
suffixes of (v+n )n∈N and (v−n )n∈N is sufficient to understand
positivity of (vn)n∈N and therefore, (un)n∈N.

To prove this theorem, two technical lemmas are required.
The first shows that the powers of an algebraic number form
a Q-linear combination of rational LRS.

Lemma 5. Let λ be an algebraic integer with the minimal
polynomial p(x) =

∑d
i=0 aix

d−i, where a0 = 1. One can
construct simple rational LRS u

(0)
n , . . . , u

(d−1)
n such that for

all n ≥ 0,

λn =

d−1∑
i=0

λiu(i)
n .

Proof. Let L = (1, λ, . . . , λd−1) ∈ Qd
. For c ∈ Z[λ] with

c(λ) = cd−1λ
d−1 + · · ·+ c0, we have c(λ) = L⊤Mc, where

c = (c0, . . . , cd−1) ∈ Zd and

M =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
...

...
. . .

...
...

0 0 · · · 1 −ad−1

 .

is the companion matrix of p. Let ei denote ith standard unit
vector. If λk = c0 + · · ·+ cd−1λ

d−1, then

λk+1 = −cd−1a0 + (c0 − cd−1a1)λ

+ · · ·+ (cd−2 − cd−1ad−1)λ
d−1,

and hence by induction it can be shown that the d co-
efficients of 1, . . . , λd−1 in the expression for λn are ex-
actly eT1 M

ne1, . . . , e
T
d M

ne1, respectively. For 1 ≤ i ≤ d,
(u

(i)
n )n∈N := (eTi M

ne1)n∈N is a rational LRS that is simple,
as M has no repeated eigenvalues: the eigenvalues of M are
exactly the roots of p, which is a minimal polynomial with d
distinct roots.

The second technical lemma shows that every algebraic
number can be approached exponentially fast by the quotient
of two rational LRS.

Lemma 6. Let α be a real algebraic number and 0 < r < 1.
One can construct simple, ultimately positive rational LRS
(cn)n∈N and (dn)n∈N, as well as b ∈ Q>0 and N ∈ N,
such that (dn)n∈N has exactly one dominant root, and for
all n ≥ N , ∣∣∣∣α− cn

dn

∣∣∣∣ < b · rn.

Proof. If α ∈ Q, choosing cn = α, dn = 1, and b = 1 suffices.
Hence assume α is irrational and let α1, . . . , αk denote the
Galois conjugates of α with α1 = α.

First, we will find p, q ∈ Z and s ∈ {−1, 1} such that,
writing f(x) = s

x−p/q , f(α) ∈ R>0 and f(α) > |f(αi)| for
i = 2, . . . , k.

Let d = min(|α−α2|, . . . , |α−αk|) and 0 < ϵ < d/2. As Q
is dense in R, there exists effectively computable p

q ∈ Q such
that |α− p

q | < ϵ. Let f1(x) = x− p
q . Then, for i = 2, . . . , k,

|f1(αi)| =
∣∣∣∣αi −

p

q

∣∣∣∣ ≥ |αi − α1|+
∣∣∣∣α1 −

p

q

∣∣∣∣ ≥ d− ϵ > ϵ,

which is larger than f(α). Thus, f1(α) is closer to the origin
than f1(αi), but f1(α) ̸= 0 as α is irrational.

Let s = sgn(α − p/q) and f(x) = s
f1(x)

. For all i =

2, . . . , k, |f(α)| > |f(αi)|, and by the choice of s, f(α) > 0.
Therefore, f has the desired properties stated above.

Define the LRS (cn)n∈N and (dn)n∈N as follows:

cn =

k∑
i=1

αif(αi)
n and dn =

k∑
i=1

f(αi)
n.

As both cn and dn are closed under Galois automorphisms
and f(x) ∈ Q(x), we have that (cn)n∈N and (dn)n∈N are
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simple rational linear recurrence sequences. It is easily seen
that (dn)n∈N is ultimately strictly positive and has exactly one
dominant root.

Let b1 =
∑k

i=2 |α − αi|, r1 = maxki=2 |f(αi)|. Then r1 <
f(α), and we can compute N as the smallest integer n such
that (k− 1)

(
f(α)
r1

)n
> 2. Recall that for x ≥ 2, 1/(x− 1) ≤

2/x. Therefore, for all n ≥ N ,∣∣∣∣α− cn
dn

∣∣∣∣ =
∣∣∣∣∣
∑k

i=1(α1 − αi)f(αi)
n∑k

i=1 f(αi)n

∣∣∣∣∣
=

∣∣∣∣∣
∑k

i=2(α− αi)f(αi)
n

f(α)n +
∑k

i=2 f(αi)n

∣∣∣∣∣
≤
∣∣∣∣ b1r

n
1

f(α)n − (k − 1)rn1

∣∣∣∣
= b1(k − 1)

∣∣∣∣∣∣ 1

(k − 1)
(

f(α)
r1

)n
− 1

∣∣∣∣∣∣
≤ b1(k − 1)

∣∣∣∣ 2

k − 1

(
r1

f(α)

)n∣∣∣∣ = 2b1

(
r1

f(α)

)n

.

It remains to choose for b a rational number larger than 2b1,
and let ℓ ≥ 1 be a number such that rℓ1 < r. Then, choosing
the LRS (cℓn)n∈N and (dℓn)n∈N gives that∣∣∣∣α− cℓn

dℓn

∣∣∣∣ < b · rn.

and so the premise is satisfied.

Proof of Theorem 4. Let (un)n∈N be an LRS over R ∩ Q
with the exponential polynomial solution

∑m
k=1 pk(n)Λ

n
i . By

considering non-degenerate subsequences if necessary, without
loss of generality, we can assume that (un)n∈N is non-
degenerate. Moreover, as in the proof of Theorem 2, by scaling
the LRS if necessary we can assume that Λk is an algebraic
integer for all k. By the discussion in Section II-A, for each i
there exists j such that Λj = Λi and pj(n) = pi(n). Therefore,
we can rewrite un as

un =
∑
k∈R

nσ(k)γkΛ
n
k +

∑
k′∈C

nσ(k′)(γk′Λn
k′ + γk′ Λk′

n
)

where Λk, γk ∈ R for k ∈ R. Next, for k′ ∈ C, applying
Lemma 5, to u

(k)
n = Λn

k for k ∈ R, we obtain that
un =

∑d−1
i=0 Λi

kv
(i)
n for simple rational LRS v

(0)
n , . . . , v

(d−1)
n

where d is the degree of Λk. Next, observe that Λk′ and
Λk′ have the same minimal polynomial. Hence applying
Lemma 5, we obtain that for each k′ there exist simple
rational LRS v

(0)
n , . . . , v

(d−1)
n for some d > 0 such that

Λn
k′ =

∑d−1
i=0 Λi

k′v
(i)
n and Λk′

n
=
∑d−1

i=0 Λk′
i
v
(i)
n . Hence we

have

γk′Λn
k + γk′ Λn

k =

d−1∑
i=0

(γk′Λi
k′ + γk′ Λk′

i
)v(i)n .

Therefore, we can write

un =

ℓ∑
k=1

nℓkβku
(k)
n

for some ℓ, ℓk ≥ 0, βk ∈ Q, and simple rational LRS
(u

(k)
n )n∈N.
Let R denote the spectral radius of (un)n∈N and let r ∈ Q

satisfy 0 < r < min(1, 1/R). Then, for each 1 ≤ k ≤ ℓ,
invoke Lemma 6 with α = βk and r to obtain rational LRS
(c

(k)
n )n∈N and (d

(k)
n )n∈N, the rational numbers bk ≥ 0, and the

threshold Nk. As (d(k)n )n∈N is an ultimately positive LRS with
one dominant root, we can compute a Mk such that d(k)n > 0
for all n ≥ Mk. Let r̃ ∈ Q satisfy r < r̃ < 1 and

r̃n ≥ 2

(
ℓ∑

k=1

bk|u(k)
n |nℓkrn

)
for all n ≥ N ′, where N ′ is effectively computable.
Note that 1/r is bigger than any eigenvalue of any
(u

(k)
n )n∈N, which is R, so r̃ indeed exists. Define N =

max(N1, . . . , Nℓ,M1, . . . ,Mℓ, N
′), Dn = d

(1)
n · · · d(ℓ)n , and

vn = Dn

ℓ∑
k=1

nℓkβku
(k)
n ,

v+n = Dn

(
1

2
r̃n +

ℓ∑
k=1

c
(k)
n

d
(k)
n

nℓku(k)
n

)
,

v−n = Dn

(
−1

2
r̃n +

ℓ∑
k=1

c
(k)
n

d
(k)
n

nℓku(k)
n

)
.

Then, by construction, for all n ≥ N ,

|v+n − vn| ≤ |Dn|

(
1

2
r̃n +

ℓ∑
k=1

nℓk

∣∣∣∣βk − cn
dn

∣∣∣∣ |u(k)
n |

)

≤ |Dn|

(
1

2
r̃n +

ℓ∑
k=1

nℓkrnbk|u(k)
n |

)

≤ |Dn|
(
1

2
r̃n +

1

2
r̃n
)

= |Dn|r̃n

can grow exponentially, but this exponent is strictly smaller
than the spectral radius of (vn)n∈N. Moreover, it can be seen
that v−n ≤ vn ≤ v+n holds for all n ≥ N and v+n and v−n are
rational LRS as the class of LRS is closed under addition and
pointwise multiplication. As each d

(k)
n is strictly positive for

n ≥ N , so is Dn. Hence vn > 0 if and only if un > 0.
Therefore, by Theorem 2, there exists N ′′ ≥ N such that

for all n ≥ N ′′, |vn|, |v+n |, |v−n | ≥ |Dn|r̃n. It follows that,
for all n ≥ N ′′, the signs of vn, v+n and v−n are identical. In
particular, vn is ultimately positive if and only if both v+n and
v−n are ultimately positive.

As such, we can decide positivity for vn using the Positivity
oracle on v′n. If there is a 0 ≤ n ≤ N such that un < 0,
conclude that vn is not positive. Else, apply the Positivity
oracle on (v+n+N )n∈N and (v−n+N )n∈N. If both sequences
are positive, then (vn)n∈N and thus (un)n∈N is positive.
Otherwise, enumerate v+n and v−n until a negative term is
found in one of them, say at index n′, and check whether
vn′ < 0. If so, (vn)n∈N, and thus also (un)n∈N, is not positive.
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Finally, repeat this process with Positivity oracles starting from
n = n′ + 1.

This process will terminate because if (v+n )n∈N and
(v−n )n∈N are both ultimately positive, then they have only
finitely many negative values and therefore Positivity oracles
will be applied only finitely often. Otherwise, (v+n )n∈N and
(v−n )n∈N are both not ultimately positive. Hence a value n
exists such that v+n < 0 and, as vn ≤ v+n , (vn)n∈N is
not positive. This proves the first claim in the statement of
Theorem 4.

To prove the second claim, note that if (un)n∈N is simple,
(v+n )n∈N and (v−n )n∈N are also simple. Hence our reduction
only involves Positivity oracles for simple rational LRS.

V. THE MODEL-CHECKING PROBLEM

Recall that the semialgebraic MSO model-checking problem
is to determine, given a real algebraic LDS (M, s), a semial-
gebraic partition T = {T1, . . . , Tℓ} of the ambient space, and
an MSO specification φ, whether the orbit of (M, s) satisfies
φ. We assume that φ is given as a deterministic (e.g. Rabin
or Mueller) automaton A. Hence the problem is to decide
whether the characteristic word α ∈ T ω of the orbit of (M, s)
relative to T , defined by α(n) = Ti ⇔ Mns ∈ Ti, is accepted
by A. In this section we show that the semialgebraic MSO
model-checking problem for diagonalisable LDS is decidable
subject to a Positivity oracle for simple LRS, which by the
previous section can be taken to be for integer sequences.
Our main tools are toric words and their effective almost-
periodicity.

Recall that we denote by T the set {z ∈ C : |z| = 1}. We
say that S ⊆ Cd is semialgebraic if the set

{(x1, y1, . . . , xd, yd): (x1 + y1i, . . . , xd + ydi) ∈ S}

is a semialgebraic subset of R2d. Let Σ = {x1, . . . , xℓ} be a
finite alphabet. An infinite word α ∈ Σω is toric if there exists
a tuple (d,Γ, O1, . . . , Oℓ) such that

• Γ = (γ1, . . . , γd) ∈ (Q ∩ T)d,
• O1, . . . , Oℓ are open semialgebraic subsets of Td,
• Γn ∈ ∪ℓ

i=1Oi for all n ∈ N, where Γk = (γk
1 , . . . , γ

k
d )

for k ∈ Z, and
• for all n ∈ N and i, α(n) = xi if and only if Γn ∈ Oi.

We say that α is generated by Γ.
An infinite word α ∈ Σω is effectively almost-periodic if for

every finite word u ∈ Σ∗, there exists a computable window
size wu such that either u does not appear in α(wu,∞), or
it appears in every contiguous subword of α of length at
least wu. Such α is strongly effectively almost-periodic if, in
addition, every finite word u either occurs infinitely often,
or does not occur in α. The MSO theory of the structure
⟨N;≤, f⟩, where f : N → Σ is defined by f(n) = α(n)
for an effectively almost-periodic word α ∈ Σω , is known to
be decidable by the work of Semënov [35]. We will be using
the following equivalent result from [36] by Muchnik et al.

Theorem 7. Given a deterministic automaton A over an
alphabet Σ, and an effectively almost-periodic word α ∈ Σω ,
it is decidable whether A accepts α.

In [36], the authors introduce a family of words similar to
toric words (generated by Γ ∈ eiQ as opposed to by Γ ∈ T)
and show their effective almost-periodicity. The same approach
can be used to prove the following.

Theorem 8. Toric words are strongly effectively almost-
periodic.

Proof. Let α be a toric word given by (d,Γ, O1, . . . , Oℓ),
Γ = (γ1, . . . , γd), and let u ∈ Σ∗ be a finite word. Define
Γkz = (γk

1 z1, . . . , γ
k
dzd) for k ∈ Z and z = (z1, . . . , zd) ∈ Td,

and let ΓX = {Γz : z ∈ X} for X ⊆ Cd. Observe that u
occurs at the position n of α if and only if

|u|−1∧
k=0

α(n+ k) = u(k) ⇔
|u|−1∧
k=0

Γn+k ∈ Oik

⇔
|u|−1∧
k=0

Γn ∈ Γ−kOik

⇔ Γn ∈
|u|−1⋂
k=0

Γ−kOik

where Oik is the open set corresponding to the letter u(k) of u
at the position 0 ≤ k ≤ |u| − 1. Let Ou =

⋂|u|−1
k=0 Γ−kOik .

If Ou is empty, then u does not occur in α. Suppose Ou is
non-empty. We will show that u must occur infinitely often
in α and in every contiguous subword of length wu that is
effectively computable.

Let TΓ ⊆ Td denote the topological closure of (Γn)n∈N. By
Kronecker’s theorem in Diophantine approximation, for any
N ∈ N the sequence (Γn+N )n∈N is dense in TΓ. Moreover,
TΓ is semialgebraic and can be determined effectively; see
Corollary 6 in [27] for a proof. Let f(z) = Γ−1z. To
compute wu we will first show that

⋃
k∈N fk(Ou) is an open

cover of TΓ. To see this, let z ∈ TΓ. We need to determine
k ∈ N such that z ∈ fk(Ou), i.e. Γkz ∈ Ou. Choose
a point y ∈ Ou, and let ϵ be such that for all x ∈ TΓ,
|x − y| < 2ϵ ⇒ x ∈ Ou. By the aforementioned density,
there exist n1, n2 ∈ N such that n1 < n2, |Γn1 − z| < ϵ and
|Γn2−y| < ϵ. Since the map x 7→ Γx is an isometry, it follows
that Γn2−n1z ∈ Ou.

By compactness of TΓ, there exists K such that⋃K
k=0 f

k(Ou) ⊇ TΓ. Such K can be effectively computed
by trial-and-error. It follows that in every interval [a, b] ⊂ N
of length at least K + 1, there exists n such that Γn ∈ Ou.
Since u occurs at position n in α if and only if Γn ∈ Ou,
it follows that u occurs in every contiguous subword of α of
size at least wu = K + |u|.

In [36], the authors show that the interleaving (i.e. the
merge) of almost-periodic words need not be almost-periodic.
We show that the more special class of toric words does, in
fact, have such a closure property.

Theorem 9. Let α0, . . . , αL−1 be toric words. Their merge α,
defined by α(qL + r) = αr(q) for 0 ≤ r < L and q > 0, is
toric.
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Proof. Suppose αr is given by (dr,Γ
(r), O

(r)
1 , . . . , O

(r)
ℓ ). By

taking d =
∑L−1

r=0 dr and artificially enlarging each Γ(r)

into an element of Td if necessary, we can assume that
d0 = . . . = dL−1 = d and Γ(0) = . . . = Γ(L−1) = Γ̃
for some d > 0 and Γ̃ = (γ1, . . . , γd). Our approach is to
“slow down” Γ̃ by a factor of L and add a “mod L counter”.
Let γ = ei2π/L, γ′

j = eLog(γj)/L for 1 ≤ j ≤ d, where
Log denotes the principal branch of the complex logarithm,
Γ0 = (γ′

1, . . . , γ
′
d) and Γ = (γ, γ′

1, . . . , γ
′
d). Observe that γ

is a root of unity of order L. Let B0, . . . , BL−1 ⊂ C be
disjoint open balls centred around γ0, . . . , γL−1, respectively.
We define

Oi =
⋃

0≤r<L

Br × Γr
0 O

(r)
i

for 1 ≤ i ≤ ℓ. Let n = qL + b with q > 0 and 0 ≤ b < L,
and observe that for all 1 ≤ i ≤ ℓ,

Γn ∈ Oi ⇔ ∃r : γn ∈ Br ∧ Γn
0 ∈ Γr

0O
(r)
i

⇔ r = b ∧ ΓqL
0 ∈ O

(r)
i

⇔ Γ̃n ∈ O
(b)
i

⇔ αb(n) = xi

⇔ α(n) = xi

where xi denotes the letter corresponding to Oi. It follows
that α is the toric word given by (d,Γ, O1, . . . , Oℓ).

In Theorem 11 we will prove that the characteristic word
of a diagonalisable LDS has a toric (and hence effectively
almost-periodic) suffix that can be effectively determined using
a Positivity oracle for simple LRS. Let sign : R → {>,=, <}
denote the usual sign function on real numbers.

Lemma 10. Let λ1, . . . , λd ∈ Q, K = Q(λ1, . . . , λd), D =
[K : Q], L = (4D2)! and Γ = (γ1, . . . , γd) where γi =
λi/|λi|.

(a) Let un = p((λL
1 )

n, . . . , (λL
d )

n), where p ∈ Q[z].
If (un)n∈N is not identically zero, then it is non-
degenerate.

(b) Let un be a diagonalisable, non-degenerate LRS over
K ∩ R that is not identically zero. There exist N that
can be effectively computed using a Positivity oracle for
simple LRS, and open semialgebraic sets O>, O< ⊆ Td

such that for all n > N , un ̸= 0 and signun = ∆ ⇔
Γn ∈ O∆ for ∆ ∈ {>,<}.

Proof. To prove (a), let
∑m

i=1 ci(Λ
L
i )

n be the exponential
polynomial representation of un with Λi ∈ K and ci ∈ Q.
Suppose (Λi/Λj)

L is a root of unity. Then Λi/Λj must also
be a root of unity. It is well-known that the degree of the kth
primitive root of unity is exactly Φ(k), where Φ is the Euler’s
totient function. Since Φ(k) ≥

√
k/2, it follows that the order

of Λi/Λj as a root of unity is at most 4D2. But this implies
that (Λi/Λj)

L = 1, which, by the definition of an exponential
polynomial representation (see Section II), implies that i = j.

To prove (b), let
∑m

i=1 ciΛ
n
i be an exponential polynomial

representation of un, ρ = max1≤i≤m |Λi|, D = {i : |Λi| = ρ}
and R = {i : |Λi| < ρ}. Write

un =
∑
i∈D

ciΛ
n
i︸ ︷︷ ︸

dn

+
∑
j∈R

cjΛ
n
j︸ ︷︷ ︸

rn

.

Let µ < ρ be such that |Λj | < µ for all j ∈ R. For sufficiently
large n, |rn| < µn. Applying Theorem 3, there exists N ,
computable using a Positivity oracle for simple LRS, such
that for all n > N , |dn| > µn > |rn| and hence un ̸= 0.

By the discussion in Section II-A, for each i ∈ R there
exists i′ ̸= i such that σ(ci) = ci′ and σ(Λi) = Λi′ . Since
|σ(Λi)| = ρ for i ∈ D, the summands of dn are also closed
under conjugation and dn is real-valued. Therefore, for n > N ,
signun = sign dn ∈ {>,<}.

Finally, we express sign dn in terms of Γn. Consider
vn = un/ρ

n, and for i ∈ D, write Λi/ρ
n = fi(γ1, . . . , γd)

for a monomial fi, observing that Λi/ρ
n belongs to the

multiplicative group generated by γ1, . . . , γd. We can then
define

O∆ = {z ∈ T :
∑
i∈D

cifi(z) ∆ 0}

for ∆ ∈ {>,<}.

We are now ready to prove that the characteristic word of a
diagonalisable system relative to a semialgebraic partition has
a toric suffix. In the sequel, by δ(N,∞) we mean the word
σ(N)σ(N +1) . . . where σ is an an infinite word and N ∈ N.

Theorem 11. Let (M, s) ∈ (R ∩ Q)d×d × (R ∩ Q)d be a
diagonalisable LDS, T = {T1, . . . , Tℓ} be a semialgebraic
partition of Rd, and α ∈ T ω denote the characteristic word
of the orbit of (M, s) relative to T . There exist N , effectively
computable using a Positivity oracle for simple LRS, and
Γ, O1, . . . , Oℓ that can be determined effectively, such that
β = α(N,∞) is the toric word given by (d,Γ, O1, . . . , Oℓ).

Proof. Let λ1, . . . , λd denote the eigenvalues of M , K =
Q(λ1, . . . , λd), D = [K : Q], L = (4D2)! and Γ =
(γ1, . . . , γd) where γi = λi/|λi|. For 0 ≤ r < L and n ≥ 0,
define αr ∈ T ω by

αr(n) = α(nL+ r).

Observe that α is the merge of α0, . . . , αL−1. We first prove
the following intermediate results.

(*) For each 0 ≤ r < L and Tk ∈ T , there exists Nr,k

(computable using a Positivity oracle for simple LRS)
and an open semialgebraic set Or,k such that for all
n > Nr,k, αr(n) ∈ Tk ⇔ Γn ∈ Or,k.

(**) There exists N1 computable using a Positivity oracle for
simple LRS such that the suffix βr = αr(N1,∞) is toric
for every 0 ≤ r < L.

To prove (∗), let∨
i∈I

∧
j∈J

pi,j(x1, . . . , xd) ∆i,j 0
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be a formula in disjunctive normal form defining Tk, where
w.l.o.g. we can assume ∆i,j ∈ {≥, >}. We have that
αr(n) = Tk if and only if∨

i∈I

∧
j∈J

pi,j(M
nL+rs) ∆i,j 0.

Let u(i,j)
n = pi,j(M

nL+rs). Writing

MnL+rs = P−1 diag(λnL
1 , . . . , λnL

d )PMrs

where P ∈ Qd×d
is an invertible change-of-basis matrix,

observe that u
(i,j)
n = qi,j(λ

nL
1 , . . . , λnL

d ) for a polynomial
qi,j ∈ Q[z1, . . . , zd]. If (u

(i,j)
n )n∈N is identically zero, then

the condition pi,j(M
nL+rs)∆i,j 0 either holds for all n ∈ N,

or does not hold for all n ∈ N. Such conditions can be
replaced by true or false. Hence we can assume that no
sequence (u

(i,j)
n )n∈N is identically zero. By Lemma 10 (a),

every (u
(i,j)
n )n∈N is non-degenerate. Applying Lemma 10 (b),

let Ni,j and Oi,j be such that for n > Ni,j ,

• u
(i,j)
n ̸= 0, and

• u
(i,j)
n > 0 if and only if Γn ∈ Oi,j .

Note that each Ni,j can be effectively determined using a Pos-
itivity oracle for simple LRS. Let Nr,k = max(i,j)∈I×J Ni,j

and
Or,k =

⋃
i∈I

⋂
j∈J

Oi,j .

For n > Nr,k, it holds that αr(n) = Tk if and only if
Γn ∈ Or,k.

To prove (∗∗), let Nr,k and Or,k be as in (∗) and define
N1 = 1 + max {Nr,k : 0 ≤ r < L ∧ 1 ≤ k ≤ ℓ}. Consider
βr = αr(N1,∞). For n ∈ N and 1 ≤ k ≤ ℓ,

βr(n) = Tk ⇔ αr(n+N1) ∈ Tk

⇔ Γn+N1 ∈ Or,k

⇔ Γn ∈ Γ−N1Or,k.

Hence βr is the toric word given by

(d,Γ,Γ−N1Or,1, . . . ,Γ
−N1Or,ℓ).

We are now ready to prove Theorem 11. Let N = N1L,
and consider β = α(N,∞). The word β is the merge of
β0, . . . , βL−1 where βr = αr(N1,∞). Applying Theorem 9
to β0, . . . , βL−1, we obtain that their merge β is toric.

Note that all the semialgebraic sets above that are used in
defining a toric word are fully effective in the sense that we
can write down their definition (for example, as a disjunction
of conjunction of polynomial inequalities) without needing a
Positivity oracle. The oracle is only required for computing
Nr,k for 0 ≤ r < L and 1 ≤ k ≤ ℓ.

The decidability result for diagonalisable systems subject to
existence of a Positivity oracle follows immediately.

Theorem 12. Let (M, s) ∈ (R ∩ Q)d×d × (R ∩ Q)d be a
diagonalisable LDS, T be a semialgebraic partition of Rd,
and A be a deterministic automaton. Subject to existence of

a Positivity oracle for simple integer LRS, it is decidable
whether A accepts the characteristic word α ∈ T ω of the
orbit of (M, s) with respect to T .

Proof. Let N be as in the statement of Theorem 11, which
can be computed using a Positivity oracle for simple LRS,
and q be the state of A after reading the first N letters of α.
The suffix β = α(N,∞) is toric (given by (d,Γ, O1, . . . , Oℓ)
that can be determined fully effectively) and hence effectively
almost-periodic by Theorem 8. Let B denote the deterministic
automaton that has q as the start state and is identical to A
otherwise. Observe that A accepts α if and only if B accepts
β, which can be decided by Theorem 7.

VI. CONCLUDING REMARKS

In this final section, let us briefly comment on what are per-
haps the two most natural and pressing questions arising from
our work: (i) can our main model-checking result, Theorem 12,
be extended to arbitrary (i.e., not necessarily diagonalisable)
LDS, assuming a Positivity oracle for arbitrary (not necessarily
simple) LRS? And (ii) are there any foreseeable prospects of
actually designing Positivity oracles for simple integer LRS,
subject perhaps to some number-theoretic conjectures?

Let us begin by pointing out a major obstacle to extending
our current proof techniques to non-diagonalisable LDS. As
observed in [11, Sec. 4], in contrast to their diagonalisable
siblings, non-diagonalisable LDS can unfortunately give rise
to characteristic words that fail to be almost-periodic. This in
turn dooms our entire present approach, which is predicated
on the pivotal results of Muchnik et al. [36].

A second substantial difficulty arises by considering the
Ultimate Positivity Problem for LRS: an LRS (un)n∈N is
ultimately positive if it harbours at most finitely many negative
terms, i.e., there is some threshold T ∈ N such that, for all
n ≥ T , un ≥ 0. The Ultimate Positivity Problem for LRS
is easily seen to be equivalent to the model-checking problem
which asks, for a given LDS (M, s) and full-dimensional half-
space H , whether the orbit of (M, s) is eventually forever
trapped in H . It is interesting to note that, whilst Ultimate
Positivity is decidable for all simple LRS [29], not only
is it not known to be decidable for arbitrary (non-simple)
LRS, but in fact one can show that the existence of an
Ultimate Positivity oracle for arbitrary LRS would entail
major breakthroughs in Diophantine approximation: the ability
to approximate arbitrarily closely the Lagrange constant (or
homogeneous Diophantine approximation constant) L∞(t) for
a countable class of transcendental numbers t consisting of
ratios of logarithms of complex algebraic numbers; such a task
is considered by experts to be vastly beyond the capabilities
of contemporary number theory. We refer the reader to [26,
Sec. 5] for details.

Now the authors of [26] also show that, should a Positivity
oracle for arbitrary LRS exist, one could approximate arbi-
trarily closely the homogeneous Diophantine approximation
type L(t) for the same class of transcendental numbers t.
Nevertheless, essentially the only known relationships between
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these quantities are that, for all transcendentals t, 0 ≤ L(t) ≤
L∞(t) ≤ 1/3, and also L(t) = 0 iff L∞(t) = 0. It is
moreover widely believed by number theorists that, for the
class of transcendental numbers at hand, L(t) = 0 (although
this likely can never be established, even with a Positivity
oracle, since the latter only provides us with approximation
capabilities). In other words, the ability to approximate L(t)
to arbitrary precision does not appear to yield any visible
benefits as regards approximating L∞(t), and a fortiori as
regards deciding Ultimate Positivity for arbitrary LRS.

One might of course argue that there could be other,
currently unforeseen, ways in which to make use of a Positivity
oracle to establish Ultimate Positivity. But frontal attempts do
not seem to lead anywhere. We therefore continue to hold
that Ultimate Positivity of arbitrary LRS remains a formidably
difficult computational problem, even with the help of a
Positivity oracle.

We also conjecture that the following algorithmic problem
remains intractably difficult, even assuming a Positivity oracle:
given two LRS (un)n∈N and (vn)n∈N, is there some n ∈ N
such that both un < 0 and vn < 0? We speculate that one
can in fact construct an infinite hierarchy of such problems,
where determining the existence of an index for which a
(k + 1)-fold combination of LRS simultaneously take on
negative values remains difficult, even assuming the existence
of an oracle for the k-fold version of the problem. It is
moreover easily checked that each problem in this hierarchy
can straightforwardly be encoded as an LDS model-checking
query.

Turning to (ii), it is conceivable, on the other hand, that
Positivity oracles for simple LRS might eventually be achiev-
able. One immediate avenue towards this goal would be to
obtain an effective version of the Subspace Theorem. Even
though, in the present state of knowledge, this too appears to
be a daunting number-theoretic task, several mathematicians
in recent years have attempted to make progress on that front.
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