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Preface

The International Symposium on Mathematical Foundations of Computer Science (MFCS
conference series) is a well-established venue for presenting research results in theoretical
computer science. The broad scope of the conference encourages interactions between
researchers who might not meet at more specialized venues. The first MFCS conference was
organized in 1972 in Jabłonna (near Warsaw, Poland), and the conference has traditionally
moved between the Czech Republic, Slovakia, and Poland. Since 2013, the conference has
traveled around Europe. In 2022, MFCS celebrates its 50th anniversary in Vienna, Austria,
on August 22–26.

We have an exciting program which includes 5 invited and 78 contributed talks. The
invited speakers are Fedor V. Fomin (University of Bergen), Monika Henzinger (University
of Vienna), Thomas Henzinger (IST Austria), Marta Kwiatkowska (University of Oxford),
and Vijay Vazirani (University of California) on topics that reflect the broad scope of the
conference. The latter invited talk is shared with the co-located 6th Workshop on Matching
Under Preferences (MATCH-UP 2022).

The program committee of MFCS 2022 selected 78 papers out of 221 submissions, with
the authors of the submitted papers representing over 35 countries. We want to express
our deep gratitude to all the members of the program committee and reviewers for their
extensive reports and discussions on the submissions’ merits.

MFCS proceedings have been published in the Dagstuhl/LIPIcs series since 2016. We
want to thank Michael Wagner and the LIPIcs team for their kind help and support. We
also thank Doris Brazda and Jan Dreier and our team of student volunteers for helping with
the local organization of the conference.
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Abstract
We discuss recent algorithmic extensions of two classic results of extremal combinatorics about long
paths in graphs. First, the theorem of Dirac from 1952 asserts that a 2-connected graph G with the
minimum vertex degree d > 1, is either Hamiltonian or contains a cycle of length at least 2d. Second,
the theorem of Erdős-Gallai from 1959, states that a graph G with the average vertex degree D > 1,
contains a cycle of length at least D. The proofs of these theorems are constructive, they provide
polynomial-time algorithms constructing cycles of lengths 2d and D. We extend these algorithmic
results by showing that each of the problems, to decide whether a 2-connected graph contains a
cycle of length at least 2d + k or of a cycle of length at least D + k, is fixed-parameter tractable
parameterized by k.
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1 Introduction

The two fundamental theories from graph theory guarantee the existence of long cycles in
dense graphs. The first theorem is Dirac’s theorem from 1952.

▶ Theorem 1 (Dirac [2, Theorem 4]). Every n-vertex 2-connected undirected graph G with
minimum vertex degree δ(G) ≥ 2, contains a cycle with at least min{2δ(G), n} vertices.

The second theorem from 1959 is due to Erdős and Gallai [3].

▶ Theorem 2 (Erdős and Gallai [3]). Every undirected graph with n vertices and more than
1
2 (n − 1)ℓ edges (ℓ ≥ 2) contains a cycle of length at least ℓ + 1.
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The proofs of both theorems are constructive, in the sense that they provide polynomial-
time algorithms constructing cycles of lengths min{2δ(G), n} and ℓ + 1. This brings us
to a natural and “innocent” question: is it possible to extend the algorithms provided by
Theorems 1 and 2 by a “tiny” bit? For example, for an integer k ≥ 1, is there a polynomial
time algorithm comuting a cycle of length at least 2δ(G) + k? Or, is it possible to identify
in polynomial time whether a graph with 1

2 (n − 1)ℓ edges contains a cycle of length at least
ℓ + k?

The methods developed in the extremal Hamiltonian graph theory do not answer such
questions. The combinatorial bounds in Theorems 1 and 2 are known to be sharp; that is,
there exist graphs that have no cycles of length at least min{2δ(G) + 1, n} or ℓ + 2. Since
the extremal graph theory studies the existence of a cycle under certain conditions, such
type of questions are beyond its applicability. On the other hand, the existing methods of
parameterized complexity, see e.g. [1], do not seem to be much of use here either. Such
algorithms compute a cycle of length at least k in time 2O(k) · nO(1), which in our case is
2O(δ(G)) · nO(1). Hence when δ(G) is, for example, at least n1/100, these algorithms do not
run in polynomial time.

We answer both questions affirmatively and in a much more general way. Our first
theorem, this theorem appears in [4], implies that in polynomial time one can decide whether
G contains a cycle of length at least 2δ(G − B) + k for B ⊆ V (G) and k ≥ 0 as long as
k + |B| ∈ O(log n). (We denote by G − B the induced subgraph of G obtained by removing
vertices of B.) To state our result more precisely, we define the following problem.

Input: Graph G with vertex set B ⊆ V (G) and integer k ≥ 0.
Task: Decide whether G contains a cycle of length at least min{2δ(G −

B), |V (G)| − |B|} + k.

Long Dirac Cycle parameterized by k + |B|

In the definition of Long Dirac Cycle we use the minimum of two values for the
following reason. The question whether an n-vertex graph G contains a cycle of length at
least 2δ(G − B) + k is meaningful only for δ(G − B) ≤ n/2. Indeed, for δ(G − B) > n/2,
G does not contain a cycle of length at least 2δ(G − B) + k > n. However, even when
δ(G − B) > n/2, deciding whether G is Hamiltonian, is still very intriguing. By taking the
minimum of the two values, we capture both interesting situations.

▶ Theorem 3. On an n-vertex 2-connected graph G, Long Dirac Cycle is solvable in
time 2O(k+|B|) · nO(1).

In other words, Long Dirac Cycle is fixed-parameter tractable parameterized by
k + |B| and the dependence on the parameters is single-exponential. This dependence is
asymptotically optimal up to the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi,
and Zane [6]. Solving Long Dirac Cycle in time 2o(k) · nO(1) even with B = ∅ yields
recognizing in time 2o(n) whether a graph is Hamiltonian. A subexponential algorithm
deciding Hamiltonicity would fail ETH. We show that solving Long Dirac Cycle in time
2o(|B|) · nO(1) even for k = 1 would contradict ETH as well. It is also NP-complete to decide
whether a 2-connected graph G has a cycle of length at least (2 + ε)δ(G) for any ε > 0.

The 2-connectivity requirement in the statement of the theorem is important – without it
Long Dirac Cycle is already NP-complete for k = |B| = 0. Indeed, for an n-vertex graph
G construct a graph H by attaching to each vertex of G a clique of size n/2. Then H has a
cycle of length at least 2δ(H) ≥ n if and only if G is Hamiltonian.
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Our second theorem, that appears in [5], provides an algorithmic extension of the Erdős-
Gallai theorem: A fixed-parameter tractable (FPT) algorithm with parameter k, that decides
whether the circumference (the length of the longest cycle) of a graph is at least ℓ + k. To
state our result formally, we need a few definitions. For an undirected graph G with n vertices
and m edges, we define ℓEG(G) = 2m

n−1 . Then by the Erdős-Gallai theorem, G always has a
cycle of length at least ℓEG(G) if ℓEG(G) > 2. The parameter ℓEG(G) is closely related to
the average degree of G, ad(G) = 2m

n . It is easy to see that for every graph G with at least
two vertices, ℓEG(G) − 1 ≤ ad(G) < ℓEG(G).

The maximum average degree mad(G) is the maximum value of ad(H) taken over all
induced subgraphs H of G. Note that ad(G) ≤ mad(G) and mad(G)−ad(G) may be arbitrary
large. By Theorem 2, we have that if ad(G) ≥ 2, then G has a cycle of length at least ad(G)
and, furthermore, if mad(G) ≥ 2, then there is a cycle of length at least mad(G). Based on
this guarantee, we define the following problem.

Input: A graph G on n vertices and an integer k ≥ 0.
Task: Decide whether G contains a cycle of length at least mad(G) + k.

Longest Cycle Above MAD

Our main result is that this problem is FPT parameterized by k. More precisely, we show
the following.

▶ Theorem 4. Longest Cycle Above MAD can be solved in time 2O(k) · nO(1) on
2-connected graphs.

While Theorems 1 and 2 concern decision problems, their proofs may be adapted to
produce desired cycles, if they exist. We underline this because the standard construction of
a long cycle that for every e ∈ E(G) invokes the decision algorithm on G − e, does not work
in our case, as edge deletions decrease the average degree of a graph.

We also briefly discuss the ideas behind the proofs of both theorems that are based on
an interplay between extremal combinatorics and parameterized algorithms. We develop a
new graph decomposition that we call Dirac decomposition and then show how to use this
decomposition algorithmically. Dirac decomposition is defined for a cycle C in a 2-connected
graph G. Let C be a cycle of length less than 2δ(G) + k. Informally, the components of
Dirac decomposition are connected components in G − V (C). Since G is 2-connected, we
can reach C by a path starting in such a component in G. One of the essential properties of
Dirac decomposition is a limited number of vertices in V (C) that have neighbors outside of
C. In fact, we can choose two short paths P1 and P2 in C (and short means that their total
length is of order k) such that all connections between connected components of G − V (C)
and C go through V (P1) ∪ V (P2). The second important property is that each connected
component of G − (V (P1) ∪ V (P2)) is connected with Pi in G in a very restricted way: The
maximum matching size between its vertex set and the vertex set of Pi is at most one. Dirac
decomposition appears to be very useful for algorithmic purposes. For a cycle C, given a
Dirac decomposition for C, in time 2O(k) · nO(1) we either solve the problem or succeed in
enlarging C.

To apply Dirac decomposition, we also design a polynomial time that (except some
“extremal” cases) we can either (a) enlarge the cycle C, or (b) compute a vertex cover of G

of size at most δ(G) + 2k, or (c) compute a Dirac decomposition. In cases (a) and (c), we
can proceed iteratively. For the case (b) we need another algorithm that solves the problem
in time 2O(k) · nO(1).
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1 Extended Abstract

In the past the main goal when designing data structures was to achieve optimal time per
operation and optimal space. However, in recent years new applications have lead to new
requirements for data structures, such as differential privacy or fairness.

In this talk I will limit myself to the first topic, namely differential privacy. Since its
invention in 2006 by Dwork, McSherry, Nissim, and Smith [3] differentially private algorithms
and (static) data structures have been designed for many combinatorial problems (see e.g. [5]
for a book on the topic). However, very little work has been done for dynamic data structures.
A dynamic data structure is a data structure that supports not only query operations to
the stored data, but also update operations, such as insertions and/or deletions. In the
differentially privacy research community such data structures are frequently called data
structures in the continual release (or continual observation) model.

The problem of binary counting the number of 1s in a binary sequence is equivalent
to a dynamic data structure that supports the AppendBit operation and that outputs the
number of 1s in the current sequence after each AppendBit operation. This problem has
been well-studied in the differentially private setting [4, 1, 8, 2, 7], including a version that
outputs a weighted average of the bits in the sequence so far [7]. Another extension of this
problem leads to the MaxSum and the SumSelect problem: Assume the input is a sequence
of d-dimensional binary vectors such that the t-th vector is denoted by bt. The goal of the
SumSelect problem is to output the value of the coordinate i such that i = argmaxi

∑
t bt[i],

the goal of MaxSum is to output maxi

∑
t bt[i]. These problems were studied in the continual

release model in [9]: Differentially private partially dynamic graph algorithms were also
analyzed in the continual release setting [10, 6].

We will describe the algorithm of [7] in detail and explain why it is superior to the
previous solutions for binary counting under continual observation.
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Abstract
A graph game is a two-player zero-sum game in which the players move a token throughout a graph
to produce an infinite path, which determines the winner or payoff of the game. In bidding games,
both players have budgets, and in each turn, we hold an “auction” (bidding) to determine which
player moves the token. In this survey, we consider several bidding mechanisms and their effect on
the properties of the game. Specifically, bidding games, and in particular bidding games of infinite
duration, have an intriguing equivalence with random-turn games in which in each turn, the player
who moves is chosen randomly. We summarize how minor changes in the bidding mechanism lead to
unexpected differences in the equivalence with random-turn games.
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1 Introduction

Games on graphs are a central class of games in formal verification [2] and have deep
connections to foundations of logic [17]. They have numerous applications including reactive
synthesis [16], verification [10], and reasoning about multi-agent systems [1]. Theoretically,
graph games give rise to interesting and challenging problems. For example, solving parity
games is a rare problem that is in NP and coNP [11], not known to be in P, and for which a
quasi-polynomial algorithm was only recently discovered [8].

A graph game proceeds as follows. We place a token on one of the vertices of a graph
and allow the players to move it to produce an infinite path that determines the winner or
payoff of the game. Several modes of moving the token have been studied [2], and the most
popular is turn-based graph games in which the players alternate turns in moving the token.
We study the bidding mode of moving [13, 12]: players have budgets and in each turn, an
“auction” (bidding) determines which player moves the token. Bidding games are a class of
concurrent graph games [1]. They combine graph games with auctions, a central topic of
research in algorithmic game theory (e.g., [14]).
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Objectives. We stress that bidding is the mode of moving the token and it is orthogonal to
the players’ objectives. We consider the qualitative objectives reachability and parity, and
the quantitative objective mean-payoff.

2 Bidding Mechanisms

In all the bidding mechanisms that we consider, in each turn, both players simultaneously
submit bids that do not exceed their available budget, and the higher bidder “wins” the
bidding and moves the token. The bidding mechanisms differ in two orthogonal properties:
1. Who pays: in first-price bidding only the higher bidder pays; in all-pay bidding both

players pay their bids.
2. Where are the bids paid: in Richman bidding (named after David Richman), bids are

paid to the opponent; in poorman bidding bids are paid to the “bank”, thus the budget is
lost.

▶ Remark 1. A well-known auction mechanism is second-price bidding in which the highest
bidder pays the second highest bid. We point out that bidding games under first- and
second-price bidding coincide, since the players in second-price bidding can follow the same
optimal strategies they use in first-price bidding to guarantee the same values.

The central quantity in bidding games regards the ratio between the two players’ budget,
formally defined as follows.

▶ Definition 2 (Budget ratio). Assuming Player i’s budget is Bi, for i ∈ {0, 1}, then Player 1’s
ratio is B1/(B1 + B2).

Random-turn games. A random-turn game [15] is similar to a bidding game only that
instead of bidding for moving, in each turn, we decide which player moves according to a
(possibly biased) coin toss. For a bidding game G and p ∈ [0, 1], we denote by RT(G, p) the
random-turn game that is obtained from G using a coin with bias p. Formally, random-turn
games are a subclass of stochastic games [9]. To obtain a random-turn game from G, we
proceed as follows. For every vertex v in G, we add two vertices vMax and vMin owned by the
respective players. To simulate the coin toss at v, we add probabilistic edges from v to vMax
with probability p and to vMin with probability 1 − p. To simulate the choice of the player
who wins the bidding, we add edges from both vMax and vMin to every u that is a neighbor
of v in G. The objective of RT(G, p) coincides with the objective of G.

3 Qualitative bidding games

The main question considered in qualitative bidding games regards the threshold budgets,
which intuitively represent a necessary and sufficient initial budget ratio that suffices for
winning the game. Formally,

▶ Definition 3 (Threshold ratio). Consider a qualitative bidding game G and a vertex v in G.
The threshold ratio in v, denoted Th(v), is such that:

If Player 1’s initial ratio is strictly greater than Th(v), he has a winning strategy from v.
If Player 1’s initial ratio is strictly less than Th(v), Player 2 has a winning strategy
from v.
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3.1 Reachability first-price bidding games
The focus in [13, 12] was on first-price reachability bidding games. An intriguing equivalence
between reachability games with first-price Richman bidding with random-turn games, and,
interestingly, only for this bidding mechanism. We formally state the result below and
illustrate it in Fig. 1.

▶ Theorem 4 ([13, 12]). Consider a reachability bidding game with target states t1 and t2.
Threshold ratios exist. Moreover, Th(t1) = 0 and Th(t2) = 1, and for any other vertex v, let
v− and v+ be the neighbors of v such that Th(v−) ≤ Th(v′) ≤ Th(v+), for every neighbor v′

of v. Then:
Richman bidding: Th(v) = 1

2 (Th(v+) + Th(v−)) and Th(v) coincides with the value of the
vertex v in the random-turn game RT(G, 0.5).
Poorman bidding: Th(v) = Th(v+)

1−Th(v−)+Th(v+) .

v0 v1 t1t2

Richman 1 2/3 1/3 0

poorman 1
√

5−1

2

3−
√

5

2
0

v0 v1 t1t2

0 1/3 2/3 1

1

2

1

2

1

2

1

2

Figure 1 Left: A reachability bidding game G with threshold ratios, under first-price Richman
and poorman bidding.
Right: The (simplified) unbiased random-turn game RT(G, 0.5) is a Markov chain. The value of a
vertex is the probability of reaching t1. Note that under Richman bidding, for every vertex v, we
have Th(G, v) = 1 − val

(
RT(G, 0.5), v

)
. Moreover, under poorman bidding, ratios are irrational thus

such an equivalence is unlikely to exist.

3.2 Reachability all-pay bidding games
In [6], reachability games under all-pay bidding are shown to be technically much more
challenging than under first-price bidding. Some positive results are shown; namely, an
approximation algorithm based on discretization in games played on DAGs and results on the
threshold for surely winning. Most results, however, are negative and fundamental problems,
including proving that the value of the game always exists, remain open.

▶ Theorem 5 ([6]). Optimal strategies in reachability all-pay poorman bidding are sometimes
mixed and draw bids from infinite-support distributions.

3.3 Parity bidding games
We state a key property of parity bidding games played on strongly-connected graphs.

▶ Theorem 6 ([4, 5, 7]). Consider a parity game G played on a strongly-connected graph in
which the highest parity index is odd. Under first-price Richman and poorman bidding, the
threshold ratios are 0 in all the vertices; namely, Player 1 can win with any positive initial
budget. Under all-pay Richman and poorman bidding, with any positive initial ratio, Player 1
has a mixed strategy that guarantees satisfying the parity objective with probability 1.

For first-price bidding games, Theorem 6 gives rise to the following simple reduction from
parity to reachability bidding games. Given a parity game G, first reason about the bottom
strongly-connected components and classify them into those that are “winning” for Player 1

MFCS 2022
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and those that are “winning” for Player 2. Then, construct a reachability bidding game
in which each player’s goal is to force the game to a winning bottom strongly-connected
component. A similar reduction applies to all-pay bidding, however reachability games under
those bidding mechanisms are not yet understood.

4 Mean-Payoff Bidding Games

In this section we consider mean-payoff games played on strongly-connected graphs. We
show intricate equivalences between mean-payoff bidding games and random-turn games.

1 0

vMax vMin

1 0

vMax vMin

p 1− p

1− p

p

Richman poorman
First-price RT(G, 1

2 ) [4] RT(G, r) [5]
All-pay Pure Mixed Pure Mixed

[7] RT(G, 0) RT(G, 1
2 ) RT(G, 2r−1

r
) RT(G, 3r−1

r
)

Figure 2 Left: On top, the mean-payoff bidding game G▷◁. The payoff of a player in G▷◁ is the
long-run ratio of the biddings won. On bottom, for p ∈ [0, 1], the (simplified) random-turn game
RT(G▷◁, p) is a weighted Markov chain. The expected payoff in RT(G▷◁, p) is p; we expect that a
random walk stays ratio p of the time in vMax.
Right: The equivalence relates the optimal payoff in a strongly-connected mean-payoff game with
the expected payoff in a random-turn game, where for all-pay poorman bidding we omit the cases of
r ≤ 0.5.

Mean-payoff value. Each play of a mean-payoff game has a payoff, which is Player 1’s
(Max) reward and Player 2’s (Min) cost. We illustrate the definition of the mean-payoff
objective. Consider the game G▷◁ that is depicted in the top left of Fig. 2. It models the
following setting. Max and Min represent two advertisers. In each day, an auctioneer holds
an auction to determine which ad shows that day. Max’s goal is to maximize the payoff,
which coincides with the number of days that his ad appears in a very long time (say, a
year). Alternatively, the payoff in G▷◁ can be seen as the ratio of the biddings that Max
wins in the long run. Formally, the payoff of an infinite sequence of weights w1, w2, . . . is
lim infn→∞

1
n

∑
1≤i≤n wi.

▶ Definition 7 (Mean-payoff value in bidding games). Consider a strongly-connected mean-
payoff bidding game G and a budget ratio r ∈ (0, 1). The mean-payoff value of G w.r.t. r,
denoted MP(G, r), is c ∈ R if independent of the initial vertex,

when Max’s initial ratio exceeds r, he has a strategy that guarantees a payoff of c − ε, for
every ε > 0, and
Max cannot do better: with a ratio that exceeds 1 − r, Min can guarantee a payoff of at
most c + ε, for every ε > 0.

Similarly, we use asMP to denote the almost-sure value, which is defined as the payoff
that Max can guarantee with a mixed strategy with probability 1.

Consider a strongly-connected mean-payoff game G and p ∈ [0, 1]. Recall that RT(G, p)
denotes the random-turn game that is constructed from G in which in each turn, Max moves
the token with probability p. We denote by MP(RT(G, p)) the mean-payoff value of RT(G, p),
which is defined as the expected payoff when both players play optimally, and it is well-known
to exist in stochastic games.
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▶ Theorem 8. Consider a strongly-connected mean-payoff game G and a ratio r ∈ (0, 1).
First-price Richman bidding [4]: For all r ∈ (0, 1), we have MP(G, r) = MP

(
RT(G, 0.5)

)
.

First-price poorman bidding [5]: MP(G, r) = MP
(
RT(G, r)

)
.

All-pay Richman bidding [7]:
Under pure strategies, MP(G, r) = MP

(
RT(G, 0)

)
.

Under mixed strategies, asMP(G, r) = MP
(
RT(G, 0.5)

)
.

All-pay poorman bidding [7]:
Under pure strategies, if r > 0.5, then MP(G, r) = MP

(
RT(G, 2r−1

r )
)
, and if r ≤ 0.5,

then MP(G, r) = MP
(
RT(G, 0)

)
.

Under mixed strategies, if r > 0.5, then MP(G, r) = MP
(
RT(G, 3r−1

r )
)
, and if r ≤ 0.5,

then MP(G, r) = MP
(
RT(G, 1−r

r )
)
.

In the following example, we illustrate the results stated in Theorem 8 on G▷◁ that is
depicted in Fig. 2.

▶ Example 9. First, let p ∈ (0, 1). The mean-payoff value of RT(G▷◁, p) is p since intuitively,
a random walk is expected to stay portion p in vertex vMax.

We start with first-price bidding. Here, optimal strategies are pure (deterministic). Under
Richman bidding, the initial ratio does not matter and the optimal payoff is 0.5, matching
the mean-payoff value of RT(G▷◁, 0.5). That is, for every ε > 0, Max can guarantee a payoff
of at least 0.5 and he cannot do better even when his ratio is 1 − ε.

The equivalence for mean-payoff Richman-bidding games can be seen as an extension
of the equivalence of reachability Richman-bidding games. Since no equivalence is known
for reachability poorman-bidding games, we find the equivalence for mean-payoff poorman-
bidding particularly surprising. The optimal payoff Max can guarantee with a ratio of
r ∈ (0, 1) in G▷◁ is r. For example, when the initial budgets are ⟨3, 1⟩, Max’s ratio is 3

4 , and
he can guarantee a payoff arbitrarily close to 3

4 (in a similar manner to Richman bidding
above). This means that in the long-run, Max can win 3 times more biddings than Min.
Thus, given the option to choose between first-price Richman and poorman bidding, Max
prefers using first-price poorman bidding when his budget exceeds Min’s budget.

We turn to illustrate the results for all-pay bidding. Again, since reachability all-pay
bidding games are technically involved, we find the equivalences in mean-payoff games to be
particularly good news. First, under all-pay Richman, pure (deterministic) strategies are
“useless”. Using mixed strategies, first-price and all-pay coincide. Specifically, using a pure
strategy, Max cannot guarantee a payoff greater than 0 in G▷◁, and he has a mixed strategy
that guarantees an almost-sure payoff of 0.5. Thus, given a choice between all-pay and
first-price Richman, Max would not have a preference between the two bidding mechanisms.

Surprisingly, the properties of all-pay poorman bidding are quite different. First, in
contrast to all-pay Richman bidding, pure strategies are “useful” under all-pay poorman when
r > 1

2 . For example, when r = 3
4 , Max can guarantee a payoff of 2

3 with a pure strategy. Not
too far from 3

4 , the optimal payoff under first-price poorman bidding. Second, when allowing
mixed strategies, given the choice between all-pay and first-price poorman bidding, when
r > 1

2 , Max prefers all-pay poorman! With a ratio of r = 3
4 , Max has a mixed strategy that

can guarantee an almost-sure payoff of 5
6 ; higher than the optimal payoff under first-price

poorman.
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Abstract
Game-theoretic concepts have been extensively studied in economics to provide insight into competit-
ive behaviour and strategic decision making. As computing systems increasingly involve concurrently
acting autonomous agents, game-theoretic approaches are becoming widespread in computer science
as a faithful modelling abstraction. These techniques can be used to reason about the competitive
or collaborative behaviour of multiple rational agents with distinct goals or objectives. This paper
provides an overview of recent advances in developing a modelling, verification and strategy syn-
thesis framework for concurrent stochastic games implemented in the probabilistic model checker
PRISM-games. This is based on a temporal logic that supports finite- and infinite-horizon temporal
properties in both a zero-sum and nonzero-sum setting, the latter using Nash and correlated equilibria
with respect to two optimality criteria, social welfare and social fairness. We summarise the key
concepts, logics and algorithms and the currently available tool support. Future challenges and
recent progress in adapting the framework and algorithmic solutions to continuous environments
and neural networks are also outlined.
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1 Introduction

Game-theoretic techniques have long been a source of fundamental insights into strategic
decision making for multi-agent systems. They have been widely studied in areas such as
economics [27], control [43] and robotics [36]. Concurrent stochastic multi-player games
(CSGs), in particular, provide a natural framework for modelling a set of interactive, rational
agents operating concurrently within an uncertain or stochastic environment. They can be
viewed as a collection of players (agents) with strategies for determining their actions based
on the execution so far, and where the resulting evolution of the system is probabilistic.
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Game-theoretic analysis is versatile, in that it can support both zero-sum and nonzero-
sum (equilibria) analysis. Zero-sum properties focus on scenarios in which one player (or
a coalition of players) aims to optimise some objective, while the remaining players form
a coalition with the directly opposing goal. On the other hand, nonzero-sum (equilibria)
properties correspond to situations where two or more players (or coalitions of players) in a
CSG have distinct objectives to be maximised or minimised. In nonzero-sum properties the
goals of the players (or coalitions) are not necessarily directly opposing, and therefore it may
be beneficial for players to collaborate. Competitive scenarios occur in many applications,
e.g., attackers and defenders in the context of computer security. Similarly, collaborative
behaviour can be essential, e.g., to effectively control a multi-robot system, or for users to
send data efficiently through a shared medium in a communication protocol.

Probabilistic model checking is a powerful approach to the formal analysis of systems
with stochastic behaviour. It relies on the construction and analysis of a probabilistic model,
guided by a formal specification of its desired behaviour in temporal logic. It is of particular
benefit in the context of models, such as stochastic games, which combine nondeterministic
and probabilistic behaviour. This is because the interplay between these aspects of the model
can be subtle and lead to unexpected results if not carefully modelled and analysed. This is
exacerbated when the system comprises multiple agents with differing objectives.

Until recently, practical applications of probabilistic model checking based on stochastic
games had focused primarily on turn-based models [15], in which simultaneous decision
making by agents is forbidden. Alternatively, model checking of non-stochastic games has
been extensively studied, and tool support developed [5, 39]. CSGs provide a more powerful
and realistic modelling formalism, but also bring considerable challenges, in terms of the
higher computational complexity or undecidability for some key problems.

There has nonetheless been significant amounts of work on tackling verification problems
for CSGs. A number of algorithms have been proposed for solving CSGs against formally
specified zero-sum properties, e.g. [17, 18, 11]. In the case of nonzero-sum properties,
[14, 25] study the existence of and the complexity of finding equilibria for stochastic games.
Complexity results for finding equilibria are also considered in [9] and [23] for quantitative
reachability properties and temporal logic properties, respectively. Other work concerns
finding equilibria for discounted properties; we mention [49], which formulates a learning-
based algorithm, and [40], which presents iterative algorithms. However these advances are
mostly lacking in implementations, tool support or case studies. Tools exist for solving turn-
based stochastic games [13, 16] and non-stochastic concurrent games [16, 8, 10, 55, 24, 45],
with the latter class including support for computing equilibria.

At the same time, there is an increasing trend to incorporate data-driven decision making,
which necessitates the incorporation on of machine learning components within autonomous
systems, which are built largely using conventional, symbolic methods. Examples of such
neuro-symbolic systems are self-driving cars whose vision function is provided via a neural
network image classifier, or an aircraft controller whose collision avoidance system uses a
neural network for decision support. Design automation support for such systems is lacking,
yet automatic computation of equilibria aids in ensuring stable solutions.

This paper provides an overview of recent advances in developing a modelling, verification
and strategy synthesis framework for concurrent stochastic games, as implemented in the
PRISM-games probabilistic model checker [33]. The framework uses a temporal logic that
supports a wide range of finite- and infinite-horizon properties, relating to the probability
of an event’s occurrence or the expected amount of reward or cost accumulated. The logic
allows specification of both zero-sum and nonzero-sum properties, with the latter expressed
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using either Nash equilibria or correlated equilibria. For both types of equilibria, strategies
are synthesised in which it is not beneficial for any player to unilaterally alter their chosen
actions, but correlated equilibria also allow players to coordinate through public signals.
Since several, varied such equilibria may exist, we also support distinct optimality criteria
to select between them; we consider social welfare, which maximises the sum of the players
utilities, and social fairness, which minimises the difference between the utilities.

We summarise the key concepts, logics and algorithms that underlie this framework and
discuss the tool support provided by PRISM-games, including an illustrative case study
of formally modelling and analysing a multi-agent communication protocols using CSGs.
Future challenges and recent progress in extending the framework and algorithmic solutions
to modelling of neuro-symbolic CSGs are also outlined. In contrast to the majority of prior
research, the focus of this strand of work is on software tool development, applications and
case studies.

2 Normal form games

We introduce the main concepts used in this paper by means of simple one-shot games known
as normal form games (NFGs), where players make their choices at the same time. We
consider both zero-sum NFGs and nonzero-sum NFGs, then define equilibria concepts for
these games and summarise existing algorithms for equilibria computation.

We first require the following notation. Let Dist(X) denote the set of probability
distributions over set X. For any vector v ∈ Rn, we use v(i) to refer to the ith entry of the
vector. For any tuple x = (x1, . . . , xn) ∈ Xn, element x′ ∈ X and i ⩽ n, we define the tuples
x−i

def= (x1, . . . , xi−1, xi+1, . . . , xn) and x−i[x′] def= (x1, . . . , xi−1, x
′, xi+1, . . . , xn).

▶ Definition 1 (Normal form game). A (finite, n-player) normal form game (NFG) is a tuple
N = (N,A, u) where:

N = {1, . . . , n} is a finite set of players;
A = A1× · · · ×An and Ai is a finite set of actions available to player i ∈ N ;
u = (u1, . . . , un) and ui : A → R is a utility function for player i ∈ N .

In a normal form game N, the players choose actions simultaneously, with player i ∈ N

choosing an action from the set Ai and, assuming that each player i ∈ N selects action
ai, player j receives the utility uj(a1, . . . , an). The objective of each player is to maximise
their utility and their choices are governed by strategies, which we now define. We will also
distinguish strategy profiles, which comprise a strategy for each player, and correlated profiles,
which correspond to choices of the players when they are allowed to coordinate through a
(probabilistic) public signal.

▶ Definition 2 (Strategies, profiles and correlated profiles). For an NFG N:
a strategy σi for player i in an NFG N is a probability distribution over the set of actions
Ai and we let Σi

N denote the set of all strategies for player i;
a strategy profile (or profile) σ = (σ1, . . . , σn) is a tuple of strategies for each player;
a correlated profile is a tuple (τ, ς) comprising τ ∈ Dist(D1× · · · ×Dn), where Di is a
finite set of signals for player i, and ς = (ς1, . . . , ςn), where ςi : Di → Ai is a function
from the signals of player i to the actions of player i.

For a correlated profile (τ, ς) of N, the public signal τ is a joint distribution over signals Di

for each player i such that, if player i receives the signal di ∈ Di, then it chooses action
ςi(di). We can consider any correlated profile (τ, ς) as a joint strategy, i.e., a distribution
over A1× · · · ×An where:

(τ, ς)(a1, . . . , an) =
∑

{τ(d1, . . . , dn) | di ∈ Di ∧ ς(di) = ai for all i ∈ N} .
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Conversely, any joint strategy τ ∈ Dist(A1× · · · ×An) of N can be considered as a correlated
profile (τ, ς), where Di = Ai and ςi is the identity function for i ∈ N . Any profile σ of an
NFG N can be mapped to an equivalent correlated profile (in which τ is the joint distribution
σ1× · · · ×σn and ςi is the identity function). On the other hand, there are correlated profiles
with no equivalent strategy profile.

Under profile σ or correlated profile (τ, ς) the expected utilities of player i are:

ui(σ) def=
∑

(a1,...,an)∈A ui(a1, . . . , an) ·
( ∏n

j=1 σj(aj)
)

ui(τ, ς)
def=

∑
(d1,...,dn)∈D τ(d1, . . . , dn) · ui(ς1(d1), . . . , ςn(dn)) .

▶ Example 3. Consider the two-player NFG with available action sets Ai = {headsi, tailsi}
for 1 ⩽ i ⩽ 2 and a correlated profile corresponding to the joint distribution τ ∈ Dist(A1×A2),
where τ(heads1, heads2) = τ(tails1, tails2) = 0.5. Under this correlated profile, the players
share a fair coin and choose their action based on the outcome of the coin toss. There is no
equivalent strategy profile.

2.1 Zero-sum NFGs
A zero-sum NFG is a two-player NFG N such that u1(α)+u2(α) = 0 for all α ∈ A, meaning
that the objectives of the players are directly opposing. Such an NFG is often called a
matrix game, as it can be represented by a single matrix Z ∈ Ql×m, where A1 = {a1, . . . , al},
A2 = {b1, . . . , bm} and zij = u1(ai, bj) = −u2(ai, bj).

We next introduce the notion of the value of a zero-sum NFG and recall classical results
about the existence of optimal strategies.

▶ Theorem 4 (Minimax theorem [56, 57]). For any zero-sum NFG N = (N,A, u) and
corresponding matrix game Z, there exists v⋆ ∈ Q, called the value of the game and denoted
val(Z), such that:

there is a strategy σ⋆
1 for player 1, called an optimal strategy of player 1, such that under

this strategy the player’s expected utility is at least v⋆ regardless of the strategy of player
2, i.e., infσ2∈Σ2

N
u1(σ⋆

1 , σ2) ⩾ v⋆;
there is a strategy σ⋆

2 for player 2, called an optimal strategy of player 2, such that under
this strategy the player’s expected utility is at least −v⋆ regardless of the strategy of player
1, i.e., infσ1∈Σ1

N
u2(σ1, σ

⋆
2) ⩾ −v⋆.

The value of a matrix game Z ∈ Ql×m can be found by solving a linear programming (LP)
problem [56, 57].

▶ Example 5. Table 1 shows a classic example of a two-player zero-sum game known as
matching pennies. Columns α and ui represent the collective choice (profile) and player i’s
utility, respectively. In this example, each player has a coin for which they may choose the
value to be heads or tails, i.e., Ai = {headsi, tailsi}. If the coins match, player 1 wins the
round, which is indicated by being awarded a utility of 1, while player 2 receives utility −1.
If the coins do not match, then the players’ utilities are negated.

Table 1 Matching pennies game in normal form.

α u1(α) u2(α)
(heads1, heads2) 1 −1
(heads1, tails2) −1 1

α u1(α) u2(α)
(tails1, heads2) −1 1
(tails1, tails2) 1 −1
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The value for the corresponding matrix game is the solution to the following LP problem:
Maximise v subject to:

x1 − x2 ⩾ v, x2 − x1 ⩾ v, x1 + x2 = 1

which yields the value v⋆ = 0 with optimal strategy σ⋆
1 = ( 1

2 ,
1
2 ) for player 1 (the optimal

strategy for player 2 is the same).

2.2 Nonzero-sum NFGs
The requirement for players to have directly opposing objectives is often too limiting, and it is
necessary to allow distinct objectives, which cannot be modelled in a zero-sum fashion. These
scenarios can be captured using the notion of equilibria, defined by a separate, independent
objective for each agent. We now define the concepts of Nash equilibrium [57] and correlated
equilibrium [6] for NFGs, which ensure stability against deviations by individual agents,
improving the overall game outcomes. Since many equilibria may exist, we also introduce
optimality criteria for these equilibria: social welfare, which is standard [46], and social
fairness, which was first defined in [35].

Before giving the formal definitions, we first extend our notation as follows: for any
profile σ and strategy σ⋆

i , the strategy tuple σ−i corresponds to σ with the strategy of player
i removed and σ−i[σ⋆

i ] to the profile σ after replacing player i’s strategy with σ⋆
i .

▶ Definition 6 (Best response). For any nonzero-sum NFG N and profile σ or correlated
profile (τ, ς) of N, the best response moves for player i to σ−i and (τ, ς−i) are, respectively:

a strategy σ⋆
i for player i such that ui(σ−i[σ⋆

i ]) ⩾ ui(σ−i[σi]) for all σi ∈ Σi
N;

a function ς⋆
i : Di → Ai for player i such that ui(τ, ς−i[ς⋆

i ]) ⩾ ui(τ, ς−i[ςi]) for all functions
ςi : Di → Ai.

▶ Definition 7 (NE and CE). For any nonzero-sum NFG N, a strategy profile σ⋆ is a Nash
equilibrium (NE) and a correlated profile (τ, ς⋆) of N is a correlated equilibrium (CE) if:

σ⋆
i is a best response to σ⋆

−i for all i ∈ N ;
ς⋆
i is a best response to (τ, ς⋆

−i) for all i ∈ N ;
respectively.

Any NE of N is also a CE, while there exist CEs that cannot be represented by a strategy
profile, and therefore are not NEs. For each class of equilibria, NE and CE, we introduce
two optimality criteria, the first maximising social welfare (SW), defined as the sum of the
utilities, and the second maximising social fairness (SF), which minimises the difference
between the players’ utilities. Other variants of fairness have been considered for NEs, such
as in [38], where the authors seek to maximise the lowest utility among the players.

▶ Definition 8 (SW and SF). An equilibrium σ⋆ is a social welfare (SW) equilibrium if the
sum of the utilities of the players under σ⋆ is maximal over all equilibria, while σ⋆ is a social
fair (SF) equilibrium if the difference between the player’s utilities under σ⋆ is minimised
over all equilibria.

We can also define the dual concept of social cost (SC) equilibria [34], where players try
to minimise, rather than maximise, their expected utilities by considering equilibria of the
game N− = (N,A,−u) in which the utilities of N are negated. We remark that SC equilibria
strategies are not a subset of classically defined NE or CE strategies of N.
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c1

c2

c3

α u1(α) u2(α) u3(α)
(pro1, pro2, pro3) −1000 −1000 −100
(pro1, pro2, yld3) −1000 −100 −5
(pro1, yld2, pro3) 5 −5 5
(pro1, yld2, yld3) 5 −5 −5
(yld1, pro2, pro3) −5 −1000 −100
(yld1, pro2, yld3) −5 5 −5
(yld1, yld2, pro3) −5 −5 5
(yld1, yld2, yld3) −10 −10 −10

Figure 1 Example from [35]: Cars at an intersection and the corresponding NFG.

▶ Example 9. Consider the scenario from [35], based on an example from [50], where three
cars meet at an intersection and want to proceed as indicated by the arrows in Figure 1.
Each car can either proceed or yield. If two cars with intersecting paths proceed, then there
is an accident. If an accident occurs, the car having the right of way, i.e., the other car is
to its left, has a utility of −100 and the car that should yield has a utility of −1000. If a
car proceeds without causing an accident, then its utility is 5 and the cars that yield have
a utility of −5. If all cars yield, then, since this delays all cars, all have utility −10. The
3-player NFG is given in Figure 1. The different optimal equilibria of the NFG are:

the SWNE and SWCE are the same: for c2 to yield and c1 and c3 to proceed, with the
expected utilities of the players (5,−5, 5);
the SFNE is for c1 to yield with probability 1, c2 to yield with probability 0.863636
and c3 to yield with probability 0.985148, with the expected utilities of the players
(−9.254050,−9.925742,−9.318182);
the SFCE gives a joint distribution where the probability of c2 yielding and of c1 and c3
yielding are both 0.5 with the expected utilities of the players (0, 0, 0).

Modifying u2 such that u2(pro1, pro2, pro3) = −4.5 to, e.g., represent a reckless driver, the
SWNE becomes for c1 and c3 to yield and c2 to proceed with the expected utilities of the
players (−5, 5,−5), while the SWCE is still for c2 to yield and c1 and c3 to proceed. The
SFNE and SFCE also do not change.

Algorithms for computing equilibria in NFGs. Finding NEs in two-player NFGs is in
the class of linear complementarity problems (LCPs). Established algorithms include the
Lemke-Howson algorithm [37], which is based on the method of labelled polytopes [46],
support enumeration [48] and regret minimisation [52]. In [34] a method for NE computation
is developed, which reduces the problem to SMT via labelled polytopes [46] by considering
the regions of the strategy profile space. This method iteratively reduces the search space
of profiles as positive probability assignments are found and added as constraints on the
profiles. This approach can also be used for finding both an SWNE and SFNE by computing
all NEs and then selecting an optimal one.

In the case of NFGs with more than two players, the computation of NEs is more
complex since, for a given support (i.e., a sub-region of the strategy profile space which fixes
the set of actions chosen with nonzero probability by each player), finding NEs cannot be
reduced to an LP problem. A method for such NFGs is presented in [32], based on support
enumeration [48], which exhaustively examines all supports one at a time, checking whether
that sub-region contains NEs. For each support, finding an SWNE can be reduced to a
nonlinear programming problem [32]. This nonlinear programming problem can be modified
to find an SFNE in each support [35].
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In the case of CEs, the approach introduced in [35] is to first find a joint strategy for the
players, i.e., a distribution over the action tuples, which can then be mapped to a correlated
profile. For SWCEs, [35] reduces the computation to solving a LP problem which has |A|
variables, one for each action tuple, and

∑
i∈N (|Ai|2 − |Ai|) + |A| + 1 constraints. For SFCEs,

on the other hand, the method of [35] involves solving an optimisation problem with an
additional has |N | + 2 variables and 3 · |N | constraints compared to the LP problem for
finding SWCEs.

3 Concurrent Stochastic Games

This section introduces concurrent stochastic games (CSGs) [54], in which players repeatedly
make simultaneous choices over actions and the action choices cause a probabilistic update
of the game state. CSGs thus provide a natural framework for modelling a set of interactive,
rational agents operating concurrently within an uncertain or probabilistic environment.
Compared to normal form games, they are classified as multi-stage, which is more conveni-
ent for specifying repeated or sequential interactions among agents. The introduction of
stochasticity facilitates modelling of a wide range of important phenomena, for example
uncertain behaviour due to noisy sensors or unreliable hardware in a multi-robot system, or
the use of randomisation for coordination in a distributed security or networking protocol.

▶ Definition 10 (Concurrent stochastic game). A concurrent stochastic multi-player game
(CSG) is a tuple G = (N,S, s̄, A,∆, δ) where:

N = {1, . . . , n} is a finite set of players;
S is a finite set of states and s̄ ∈ S is an initial state;
A = (A1 ∪ {⊥})× · · · ×(An ∪ {⊥}) where Ai is a finite set of actions available to player
i ∈ N and ⊥ is an idle action disjoint from the set ∪n

i=1Ai;
∆: S → 2∪n

i=1Ai is an action assignment function;
δ : S×A → Dist(S) is a probabilistic transition function.

Given a CSG G, the set of actions available to player i ∈ N in state s ∈ S is given by
Ai(s)

def= ∆(s) ∩ Ai. The CSG G starts in the initial state s̄ and, if G is in the game state
s, then each player i ∈ N selects an action from its available actions in state s if this set is
non-empty, and from {⊥} otherwise. Next, supposing each player i ∈ N chooses action ai,
the game state is updated according to the distribution δ(s, (a1, . . . , an)). We allow sets of
players C ⊆ N to form coalitions, and will consider the induced CSG, called the coalition
game, with coalitions as players.

A path π of a CSG G is a sequence π = s0
α0−→ s1

α1−→ · · · , where si ∈ S, αi ∈ A and
δ(si, αi)(si+1) > 0 for all i ⩾ 0. We denote by FPathsG,s and IPathsG,s the sets of finite and
infinite paths starting in state s of G, respectively, and drop the subscript s when considering
all finite and infinite paths of G. As for NFGs, we can define strategies of G that resolve the
choices of the players. Here, a strategy for player i is a function σi : FPathsG → Dist(Ai∪{⊥})
mapping finite paths to distributions over available actions, such that, if σi(π)(ai)>0, then
ai ∈ Ai(last(π)) where last(π) is the final state of π. Furthermore, we can define strategy
profiles, correlated profiles and joint strategies analogously to Section 2.

A labelled CSG is a tuple (G,AP,L), where G is a CSG, as in Definition 10, AP is a
set of atomic propositions and L : S → 2AP is a labelling function, specifying which atomic
propositions are true in each state. We also associate CSGs with reward structures, which
annotate states and transitions with real values. More precisely a reward structure is a pair
r=(rA, rS) consisting of an action reward function rA : S×A → R and state reward function
rS : S → R. We use atomic propositions and rewards as the building blocks to specify players’
utilities in a CSG, which will be described in Section 4.
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Formally, the utility function or objective of player i in a CSG is given by a random
variable Xi : IPathsG → R over infinite paths. For a profile σ and state s, using standard
techniques [31], we can construct a probability measure Probσ

G,s over the paths that start
in state s corresponding to σ, denoted IPathsσ

G,s, and define the expected value Eσ
G,s(Xi) of

player i’s utility from s under σ. Similarly, we can also define such a probability measure
and expected value given a correlated profile or joint strategy of G.

3.1 Zero-sum CSGs
Similarly to NFGs (see Section 2.1), zero-sum CSGs are two-player games that have a single
utility function X for player 1, with the utility function of player 2 given by −X, and both
players aiming to maximise the expected value of their utility. Equivalently, we can suppose
that player 1 tries to maximise the expected value of X, while player 2 tries to minimise
it. As for NFGs (see Theorem 4), a CSG has a value with respect to X if it is determined,
i.e., if the maximum value that player 1 can ensure equals the minimum value that player
2 can ensure when starting from any state of the CSG. Since the CSGs we discuss in this
paper are finite-state and finitely-branching, it follows that they are determined for all of the
objectives that we consider [44].

Given a multi-player CSG and objective X, we can divide the players into two coalitions,
C ⊆ N and N\C, and then construct a two-player zero-sum coalition game, in which each
coalition acts as a single player, with one coalition trying to maximise the value of X and
the other trying to minimise that value.

3.2 Nonzero-sum CSGs
We define nonzero-sum CSGs similarly to NFGs: we assume that there is a distinct and
independent objective Xi for each player i (or coalitions of players). We can then define NE
and CE for CSGs (see Definition 7), as well as the restricted classes of SW and SF equilibria,
similarly to those for NFGs (see Definition 8). Following [34, 32], we focus on subgame-perfect
equilibria [47], which are equilibria in every state of G. Furthermore, because we include
infinite-horizon objectives, where the existence of NE is an open problem [7], we will in some
cases use ε-NE, which do exist for any ε > 0 for all the infinite-horizon objectives we consider.

▶ Definition 11 (Subgame-perfect ε-NE). For CSG G and ε > 0, a strategy profile σ⋆ is
a subgame-perfect ε-Nash equilibrium for objectives ⟨Xi⟩i∈N if and only if Eσ⋆

G,s(Xi) ⩾

supσi∈Σi
Eσ⋆

−i[σi]
G,s (Xi) − ε for all i ∈ N and s ∈ S.

▶ Example 12. As an example scenario that can be modelled as a CSG, consider a number
of users trying to send packets using the slotted ALOHA protocol studied in [32, 34, 35]. If
there is a collision or if sending a packet fails, a user waits for some number of slots before
resending, with the wait set according to an exponential backoff scheme.

If we model this scenario as a CSG then, when a player has a packet to send, the actions
available to the player correspond to either sending their packet or waiting to send the packet
at some future time step. In the case when one coalition of players has an objective related
to sending their packets efficiently, e.g., minimising the expected time to send their packets,
and the remaining players form a second coalition and have the dual objective, we can model
this scenario as a zero-sum CSG. In such a zero-sum CSG, the optimal strategy for the first
coalition is to try and choose times to send that avoid collisions, while the second coalition
will do the opposite and instead try and cause collisions. On the other hand, when there are
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more coalitions and each coalition’s goal corresponds to sending their own packets efficiently,
we can model this as a nonzero-sum CSG. Here we would be looking for equilibria, i.e.,
profiles such that no coalition could improve its objective by changing its strategy, which are
also optimal, e.g., the sum of the expected times is minimal or the difference between the
expected time to send for each coalition is minimal.

4 Property specifications and model checking for CSGs

Probabilistic model checking is a technique for systematically constructing a stochastic model
and analysing it against a quantitative property formally specified in temporal logic. This
approach can be used either to verify that a specification is always satisfied or to perform
strategy synthesis, i.e., to construct a witness to the satisfaction of a property. In the context
of CSGs, the latter means synthesising strategies for one or more players (or coalitions) such
that the resulting behaviour of the game satisfies the specification.

To specify properties of labelled CSGs, we use the property specification language of the
PRISM-games model checker [33], which is based on the logic PCTL (probabilistic compu-
tation tree logic) [26], extended with operators to specify expected reward properties [21]
and the coalition operator ⟨⟨C⟩⟩ from alternating temporal logic (ATL) [4]. The variant
of this logic that just considers zero-sum formulae is referred to as rPATL (probabilistic
alternating-time temporal logic with rewards) in [15], but here we use a further extended
version that also supports nonzero-sum properties, using the notion of equilibria [34, 35].

▶ Definition 13 (PRISM-games logic [34, 35]). The syntax of the PRISM-games logic is given
by the grammar:

ϕ := true | a | ¬ϕ | ϕ ∧ ϕ | ⟨⟨C⟩⟩P∼q[ψ ] | ⟨⟨C⟩⟩Rr
∼x[ ρ ] | ⟨⟨C⟩⟩(⋆1, ⋆2)opt∼x(θ)

ψ := Xϕ | ϕ U⩽k ϕ | ϕ U ϕ

ρ := I=k | C⩽k | F ϕ

θ := P[ψ ]+· · ·+P[ψ ] | Rr[ ρ ]+· · ·+Rr[ ρ ]

where a is an atomic proposition, C = C1: · · · :Cm, C and C1, . . . , Cm are coalitions of players
such that C ′ = N\C, Ci ∩ Cj = ∅ for all 1 ⩽ i ̸= j ⩽ m, (⋆1, ⋆2) ∈ {ne,ce}×{sw, sf},
opt ∈ {min,max}, ∼ ∈ {<,⩽,⩾, >}, q ∈ Q∩ [0, 1], x ∈ Q, r is a reward structure and k ∈ N.

The syntax distinguishes between state (ϕ), path (ψ) and reward (ρ) formulae. State formulae
are evaluated over states of a CSG, while path and reward formulae are both evaluated over
paths. Sums of formulae (θ) are used to specify multiple objectives for equilibria.

We omit the formal semantics, which can be found in [34, 35]. Path and reward formulae
are used to express the utilities of the players, i.e., random variables over paths. For path
formulae, we allow next (Xϕ), bounded until (ϕ U⩽k ϕ) and unbounded until (ϕ U ϕ). We
also allow the usual equivalences such as F ϕ ≡ true U ϕ (i.e., probabilistic reachability)
and F⩽k ϕ ≡ true U⩽k ϕ (i.e., bounded probabilistic reachability). The random variable
corresponding to the path formula ψ returns 1 for paths that satisfy ψ and zero otherwise.
For reward formulae, we allow instantaneous (state) reward at the kth step (instantaneous
reward I=k), reward accumulated over k steps (bounded cumulative reward C⩽k), and reward
accumulated until a formula ϕ is satisfied (expected reachability F ϕ). The random variable
corresponding to the reward formula ρ returns for a path the reward corresponding to ρ.
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4.1 Zero-sum formulae
A state satisfies a formula ⟨⟨C⟩⟩P∼q[ψ ] if the coalition of players C ⊆ N can ensure that
the probability of the path formula ψ being satisfied is ∼q, regardless of the actions of the
other players (N\C) in the game. A state satisfies a formula ⟨⟨C⟩⟩Rr

∼x[ ρ ] if the players in
C can ensure that the expected value of the reward formula ρ for reward structure r is ∼x,
whatever the other players do.

The model checking algorithms presented in [34] involve graph-based analysis followed
by backward induction [53, 57] for exact computation of finite-horizon properties and value
iteration [51, 12] for approximate computation of infinite-horizon properties. During both
backward induction and value iteration for each state, at each iteration, an LP problem of
size |A| must be solved (corresponding to finding the value of a zero-sum one-shot game),
which has complexity PTIME [30].

Strategy synthesis for the formulae ⟨⟨C⟩⟩P∼q[ψ ] and ⟨⟨C⟩⟩Rr
∼x[ ρ ] corresponds to finding

optimal strategies for the players in coalition C when their objective, respectively, is max-
imising the probability of satisfying the formula ψ and maximising the expected value of
the reward formula with respect to the reward structure r. All strategies synthesised are
randomised and can be found during model checking by extracting not just the value of the
zero-sum one-shot game solved in each state, but also an optimal (randomised) strategy. For
infinite-horizon objectives, the synthesised strategies are memoryless, while for finite-horizon
objectives, the synthesised strategies are finite-memory, with a separate distribution required
for each state and each time step.

4.2 Nonzero-sum formulae
Nonzero-sum formulae allow us to reason about equilibria, for either of the types (NE
or CE) and optimality criteria (SW or SF) considered here. A probabilistic formula
⟨⟨C1:· · ·:Cm⟩⟩(⋆1, ⋆2)max∼x(P[ψ1 ]+· · ·+P[ψm ]) is true in a state if, when the players form
the coalitions C1, . . . , Cm, there is a subgame-perfect equilibrium of type ⋆1 meeting the
optimality criterion ⋆2 for which the sum of the values of the objectives P[ψ1 ], . . . , P[ψm ]
for the coalitions C1, . . . , Cm satisfies ∼x. The objective of coalition Ci is to maximise the
probability of satisfying a path formula ψi.

For a reward formula ⟨⟨C1:· · ·:Cm⟩⟩(⋆1, ⋆2)max∼x(Rr1 [ ρ1 ]+· · ·+Rrm [ ρm ]) the meaning is
similar; however, here the objective of coalition Ci refers to a reward formula ρi with respect
to reward structure ri. Formulae of the form ⟨⟨C1:· · ·:Cm⟩⟩(⋆1, ⋆2)min∼x(θ) correspond to the
dual notion of cost equilibria, which are also supported. We also allow numerical queries of the
form ⟨⟨C1:· · ·:Cm⟩⟩(⋆1, ⋆2)opt=?(θ), which return the sum of the subgame-perfect equilibrium’s
values of of type ⋆1 meeting the optimality criterion ⋆2.

Model checking algorithms, presented in [34, 32, 35], involve solving an m-player coalition
game GC , where C = {C1, . . . , Cm} and the choices of each player i in GC correspond to
the choices of the players in coalition Ci in G. If all the objectives in θ are finite-horizon,
then backward induction [53, 57] can be applied to compute (precise) optimal equilibria
values. On the other hand, if all the objectives are infinite-horizon, value iteration [12] can
be used to approximate optimal equilibria values. When there is a combination of finite- and
infinite-horizon objectives, the game under study is modified in a standard manner to make
all objectives infinite-horizon.

Both backward induction and value iteration over the CSG GC work by iteratively
computing new values for each state s of GC . The values for each state, in each iteration,
are found by computing optimal equilibria values, with respect to the criterion ⋆2 and
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equilibrium type ⋆1, of an NFG N whose utility function is derived from the outgoing
transition probabilities from s in the CSG and the values computed for successor states of s
in the previous iteration.

We can synthesise a strategy profile representing the appropriate type of equilibrium for
the CSG by combining the optimal strategies for the equilibria generated in each individual
state during solution. As for zero-sum formulae, randomisation is required and memory
is needed both to keep track of both the step bound of finite-horizon objectives and the
satisfaction of each player’s objective.

▶ Example 14. We now return to the scenario from Example 12, where a number users
are attempting to send packets using the slotted ALOHA protocol. The zero-sum formulae
⟨⟨usr1, . . . , usrk⟩⟩Rtime

min=?[ F sent1...k ] and ⟨⟨usr1, . . . , usrk⟩⟩Pmax=?[ F sent1...k ∧ t ⩽ D ] repres-
ent the case where the first k users form a coalition and try to minimise the expected time
to send their packets or maximise the probability they send their packets within a deadline
D ∈ N, respectively, while the remaining users form a second coalition and try and achieve
the opposite objective, i.e., maximise the expected time or minimise the probability.

On the other hand, in the nonzero-sum case, if we suppose there are m users and the object-
ive of each user is to minimise the expected time to send their packet, this can be expressed by
the nonzero-sum formula ⟨⟨usr1: · · · :usrm⟩⟩(⋆1, ⋆2)min=?(Rtime[ F sent1 ]+· · ·+Rtime[ F sentm ]).

5 Tool support and case studies

Tool support for the modelling and automated verification of CSGs has been implemented in
PRISM-games [33], which is available from [61]. A variety of case studies have been modelled
and analysed as CSGs with the tool, using both zero-sum and nonzero-sum properties. These
include: a robot coordination problem [34]; futures market investors [34, 35]; medium access
control [32, 34]; power control [34, 35]; a public good game [32, 35] and secret sharing [32].
The results for these case studies demonstrate: the advantages of using CSGs for modelling
(for example, with respect to simpler turn-based games); that using nonzero-sum properties
can yield gains for the players (or coalitions); and that the use of correlated equilibria and
social fairness results may be advantageous compared to Nash equilibria and social welfare.
We give a brief description of the functionality and implementation of PRISM-games and
then present a representative case study: the slotted ALOHA protocol.

5.1 PRISM-games

PRISM-games [33] is an extension of the PRISM model checker, which provides support
for a variety of stochastic game models, including turn-based and concurrent multi-player
stochastic games, and (turn-based) timed probabilistic games.

These are all described in the PRISM-games modelling language, a stochastic extension
of the Reactive Modules formalism [3]. The language facilitates the specification of systems
comprising multiple components, referred to as modules, that operate in parallel, both
asynchronously and synchronously through action labels. Each module has a number of
finite-valued variables and a state of the system specifies the values of the variables of all
modules. The behaviour of each module is defined by probabilistic guarded commands,
where the guard is a predicate over the variables of the modules and the command specifies
a probabilistic update of the module’s variables. In a CSG model, each player constitutes a
set of modules, and these therefore execute concurrently.
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Figure 2 Results from a CSG model of the ALOHA protocol: one user maximising the probability
of sending their packet before a deadline D (left); and minimising the expected time to send the
packet, assuming a message transmission failure probability q (right).

PRISM-games provides a graphical user interface for designing and simulating stochastic
games models, but its core functionality is to exhaustively construct a game and perform
verification and strategy synthesis against a logical specification. For CSGs, the PRISM-
games logic described in Definition 13 is supported, and the resulting strategies can be
exported, simulated or further verified.

The implementation of CSG model checking is built within PRISM’s “explicit” engine,
which is based on sparse matrices and implemented in Java. Computing values (and optimal
strategies) for zero-sum NFGs, needed for zero-sum formulae, is performed using the LPSolve
library [41] via linear programming. The computation of SWNE or SFNE for nonzero-
sum NFG, required for nonzero-sum formulae, depends on the number of players. For
two players [34], labelled polytopes are used to characterise and find NE values through a
reduction to SMT in both Z3 [19] and Yices [20]. If there are more than two players, the
implementation [32] is based on support enumeration and uses a combination of the SMT
solver Z3 [19] and the nonlinear optimisation suite Ipopt [58]. In the case of SWCE for
nonzero-sum NFGs, as the problem reduces to an LP problem [35], either Gurobi [22] or the
SMT solver Z3 [19] is used. Finally, for SFCE, since the problem does not reduce directly to
an LP problem, only Z3 can be used.

5.2 The ALOHA case study
We now return to the slotted ALOHA protocol discussed in Examples 12 and 14 to illustrate
the benefits of game-theoretic analysis with CSGs. For further details of this case study, as
well as several others, see [61]. Recall that, in the slotted ALOHA protocol, a number of
users are attempting to send packets on a shared medium. We assume that, in any time
slot, if a single user tries to send a packet then there is a probability (q) that the packet is
sent and, as more users try and send, then the probability of success decreases. If sending a
packet fails, the user waits for a number of slots before resending, defined according to an
exponential backoff scheme. More precisely, each user maintains a backoff counter, which
it increases each time there is a failure (up to bmax) and, if the counter equals k, randomly
chooses the slots to wait from {0, 1, . . . , 2k−1}.

Zero-sum properties. We first consider the zero-sum properties ⟨⟨usr1⟩⟩Pmax=?[ F⩽Dsent1 ]
and ⟨⟨usr1⟩⟩Rtime

min=?[ F sent1 ] from Example 14, which correspond to the first user trying to
maximise the probability that their packet is sent before a deadline and trying to minimise
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Figure 3 Results from CSG equilibria synthesis on the ALOHA protocol, maximising the
probabilities of sending packets by deadline D for two coalitions (user 1, and users 2 and 3):
probability sums (left) and individual probabilities (right).

the expected time to send their packet, respectively. The results for the first property when
q = 0.9 as the deadline D varies, and for the second property as the probability q varies,
are presented in Figure 2 for different values of bmax. We see that the probability decreases
and the expected time decreases as bmax increases; this is because, as bmax increases, the
additional time the first user can spend in backoff outweighs the gains in reducing the chance
of avoiding further collisions. By performing strategy synthesis we see that it is optimal
for the first user to initially randomly decide as to when to send their packet in order to
avoid collisions with the coalition of the second and third user. However, this changes to a
deterministic strategy of just sending its packet when the other users have sent their packets
or the deadline is getting close, and therefore waiting will mean the deadline is missed.

Benefits of equilibria. We next highlight the analysis from [34], which demonstrates the
advantages of cooperation through nonzero-sum properties when using Nash equilibria (NE)
and the social welfare (SW) optimality criterion, as opposed to adopting a strategy that
assumes antagonistic behaviour. The first non-zero sum property we consider corresponds
to the case when each user is trying to maximise the probability of sending their packet
before a deadline D, with users 2 and 3 forming a coalition, represented by the formula
⟨⟨usr1:usr2,usr3⟩⟩(ne, sw)max=?(P[ F (sent1 ∧ t⩽D) ] + P[ F (sent2 ∧ sent3 ∧ t⩽D) ]).

Figure 3 presents total values (the sum of the probabilities for user 1 and the coalition
of user 2 and 3) as D varies (left) and individual values as q varies (right). By performing
strategy synthesis, the analysis found that the collaboration is dependent on both D and q.
In particular, if the users have more time there is a greater chance for the users to collaborate
by sending in different slots, whereas, when q is large, it is unlikely users need to repeatedly
send, so again can send in different slots. As Figure 3 (right) demonstrates, since the coalition
has more packets to send, their probabilities are lower.

Equilibria types and optimality criteria. Finally, we report on the experiments of [35], which
investigate the benefits of using different types of equilibria, i.e., correlated (CE) over Nash
equilibria, and optimality criteria, i.e., social fairness (SF) over social welfare (SW). The
experiments varied the number of users and considered the case when the objective of each
individual user is to minimise the expected time to send their packet, which is represented by
the nonzero-sum formula ⟨⟨usr1: · · · :usrm⟩⟩(⋆1, ⋆2)min=?(Rtime[ F sent1 ]+· · ·+Rtime[ F sentm ]).
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Figure 4 Results from different types of equilibria (correlated vs. Nash) and optimality criteria
(social fairness vs. social welfare) for minimising the expected times for users to send packets in the
ALOHA protocol., for varying numbers of users.

Synthesising optimal strategies for this specification, it was found that the cases for
SWNE and SWCE coincide (although SWCE returns a joint strategy for the users, this joint
strategy can be separated to form a strategy profile). This profile required one user to try
and send first, and then for the remaining users to take turns to try and send afterwards. If
a user fails to send, then they enter backoff and allow all remaining users to try and send
before trying to send again. The reason for this is that there is no gain in a user trying to
send at the same time as another user, as this will increase the probability of a collision and
thus their packets not being sent, and therefore the users having to spend time in backoff.

For SFNE, which has only been implemented for the two-player case, the two users
followed identical strategies, which involve randomly deciding whether to wait or transmit,
unless they are the only user that has not transmitted, and then they always try to send
when not in backoff. In the case of SFCE, users employed a shared probabilistic signal to
coordinate which user sends next. Initially, this was a uniform choice over the users, but as
time progresses the signal favoured the users with lower backoff counters as these users had
fewer opportunities to send their packet previously.

Figure 4 plots the optimal values for the users, where SWi corresponds to the optimal
values (expected times to send their packets) for user i for both SWNE and SWCE for the
cases of two, three and four users. We see that the optimal values for the different users
under SFNE and SFCE coincide, while under SWNE and SWCE they are different for each
user (with the user sending first having the lowest and the user sending last the highest).
Comparing the sum of the SWNE (and SWCE) values and that of the SFCE values, we see
a small decrease in the sum of less than 2% of the total, whereas for SFNE there is a greater
difference as the users cannot coordinate, and hence try and send at the same time.

6 Recent Developments: Neuro-symbolic CSGs

The recent encouraging advances of AI, and particularly deep learning, have resulted in
computing architectures that integrate components that are synthesized from data (e.g.,
implemented as neural networks) with conventional, symbolic modules (e.g., controllers).
Design automation support for such neuro-symbolic systems is, however, lacking. To this
end, we have developed the model of neuro-symbolic concurrent stochastic games (NS-
CSGs) [60, 59], which is targeted at AI-based autonomous systems, e.g., autonomous driving
or aircraft controllers. NS-CSGs are a variant of (continuous-space) CSGs, in which each
player is a neuro-symbolic agent and the agents act concurrently in a shared, continuous-state
environment. As for the players of CSGs, each agent has a finite set of available actions and
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agents choose their actions simultaneously; however, in NS-CSGs the action choices cause
the agents’ local states to be updated probabilistically and the agents are endowed with a
perception mechanism implemented as a neural network, through which they can observe the
local states of the other agents and that of the environment and encode these observations as
locally stored percepts. The global states of NS-CSGs comprise the state of the environment
together with the local state and percept of each agent, and are therefore infinite-state, in
contrast to the CSGs discussed in the rest of this paper.

▶ Definition 15 (Neuro-symbolic concurrent stochastic game [60, 59]). A neuro-symbolic
concurrent stochastic multi-player game (NS-CSG) NSC comprises players (Agi)i∈N , for
N = {1, . . . , n}, and an environment E where:

Agi = (Si, Ai,∆i, obsi, δi) for i ∈ N, E = (SE , δE)

and we have:
Si = Loci × Per i is a set of states for Agi, where Loci ⊆ Rbi and Per i ⊆ Rdi are finite
sets of local states and percepts, respectively;
SE ⊆ Re is a closed infinite set of environment states;
Ai is a nonempty finite set of actions for Agi and A := (A1 ∪ {⊥}) × · · · × (An ∪ {⊥}) is
the set of joint actions, where ⊥ is an idle action disjoint from ∪n

i=1Ai;
∆i : Si → 2Ai is an available action function, defining the actions Agi can take in each
state;
obsi : (Loc1 × · · · × Locn × SE) → Per i is a perception function for Agi, mapping the
local states of all agents and the environment to a percept of the agent, implemented via
a neural network (NN) classifier;
δi : Si × A → P(Loci) is a partial probabilistic transition function for Agi determining
the distribution over the agent’s local states given its current state and joint action;
δE : SE ×A → SE is a partial deterministic environment transition function determining
the environment’s next state given its current state and joint action.

A (global) state for an NS-CSG NSC comprises a state si = (loci, per i) for each agent
Agi (a pair of a local state and percept) and an environment state sE . If an NS-CSG is
in a state s = (s1, . . . , sn, sE), then each Agi simultaneously chooses one of the actions
available in its state si (if no action is available, i.e., ∆i(si) = ∅, it picks the idle action ⊥)
yielding a joint action α = (a1, . . . , an) ∈ A. Next, each Agi updates its local state to
loc′

i ∈ Loci, according to its probabilistic local transition function δi, applied to its current
state (loci, per i) and the joint action α. The environment updates its state to s′

E ∈ SE

according to its local deterministic transition function δE , based on its state sE and on α.
Finally, each agent, based on its new local state loc′

i, observes the new local states of the
other agents and environment through its perception function obsi to generate a new percept
per ′

i = obsi(loc′
1, . . . , loc′

n, s
′
E). Thus, the game reaches the state s′ = (s′

1, . . . , s
′
n, s

′
E), where

s′
i = (loc′

i, per ′
i) for i ∈ N . We assume that each perception function obsi is implemented

via an NN fi : Rb+e → P(Per i) yielding a normalised score over different percept values,
where b =

∑n
i=1 bi; however, it can be any function including other types of machine learning

models. A rule is then applied that selects the percept value with the maximum score.
Formally, the semantics of an NS-CSG NSC is given by an infinite-state CSG [[NSC]] over

the product of the states of the agents and environment, which assumes a particular structure
of the transition function that distinguishes between agent and environment states and uses
the NN-based perception function to define which states have the same characteristics.
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Figure 5 Geometry with trust levels and advisories for the agents of the VCAS[2] case study.

▶ Definition 16 (Semantics of an NS-CSG). Given an NS-CSG NSC consisting of n players
and an environment, the semantics of NSC is [[NSC]] = (N,S,A,∆, δ) where:

S = S1 × · · · × Sn × SE is the set of (global) states, which contain both discrete and
continuous elements;
A = (A1 ∪ {⊥}) × · · · × (An ∪ {⊥});
∆(s1, . . . , sn, sE) = ∪n

i=1∆i(si);
δ : (S × ((A1 ∪ {⊥}) × · · · × (An ∪ {⊥}))) → P(S) is the partial probabilistic transition
function, where for states s = (s1, . . . , sn, sE), s′ = (s′

1, . . . , s
′
n, s

′
E) ∈ S and joint action

α = (a1, . . . , an) ∈ A, if ai ∈ ∆i(si) when ∆i(si) ̸= ∅ and ai = ⊥ otherwise, then
δ(s, α) is defined and if s′

i = (loc′
i, per ′

i), per ′
i = obsi(loc′

1, . . . , loc′
n, s

′
E) for all i ∈ N and

s′
E = δE(sE , α), then

δ(s, α)(s′) =
(∏n

i=1δi(si, α)(loc′
i)

)
and otherwise δ(s, α)(s′) = 0.

To illustrate NS-CSGs, we present the VerticalCAS Collision Avoidance Scenario (VCAS[2])
[28, 29], modelled in [59], which is a variant of the one studied in [2], where the agents’ trust
level is modelled probabilistically to account for possible uncertainty.

▶ Example 17. The geometry of the VCAS[2] case study is shown in Figure 5. There are
two aircraft (ownship and intruder), constituting the agents of the NS-CSG, both equipped
with an NN-controlled collision avoidance system called VCAS. At each time unit (i.e., every
second), VCAS issues an advisory (ad ∈ {1, . . . , 9}) from which, together with the current
trust level (tr ∈ {1, . . . , 4}) from the previous advisory, the pilot needs to make a decision
about the rate of acceleration, aimed at avoiding a near mid-air collision (NMAC) [1].

The input to the VCAS system is the tuple (h, ḣown, ḣint , t) ∈ R4 including the relative
altitude h of the aircraft, the climb rate ḣown of ownship, the climb rate ḣint of intruder, and
the time t until loss of horizontal separation between the aircraft. VCAS is implemented
via nine feed-forward NNs F = {fi : R4 → R9 | 1 ⩽ i ⩽ 9}, each of which corresponds to an
advisory and outputs the scores of the nine possible advisories. Each advisory will provide a
set of accelerations for the agent to select from and the trust level increases probabilistically
if the current advisory is compliant with the executed accelerations, and decreases otherwise.
We formulate the NS-CSG with agents Agi for i ∈ {own, int} as follows:

the set of states for Agi is given by Si = {1, . . . , 4} × {1, . . . , 9}, where the agent state
si = (tr i, adi) ∈ Si has local state (trust level) tr i and percept (advisory) adi;
the set of environment states is given by SE = R4, where sE = (h, ḣown, ḣint , t) ∈ SE

represents the relative altitude, the climb rate of the ownship, the climb rate of the
intruder, and the time until loss of their horizontal separation;
the set of actions of Agi is given by Ai = {0,±3.0,±7.33,±9.33,±9.7,±11.7} representing
the acceleration options of Agi;
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Table 2 Actions available for the agents of VCAS[2] for each advisory [2].

Label Advisory Description Vertical Range Actions
(adi) (Min, Max) ft/min ft/s2

1 COC Clear of Conflict (−∞, +∞) −3, +3
2 DNC Do Not Climb (−∞, 0] −9.33, −7.33
3 DND Do Not Descend [0, +∞) 7.33, +9.33
4 DES1500 Descend at least 1500 ft/min (−∞, −1500] −9.33, −7.33
5 CL1500 Climb at least 1500 ft/min [+1500, +∞) +7.33, +9.33
6 SDES1500 Strengthen Descend to at least 1500 ft/min (−∞, −1500] −11.7, −9.7
7 SCL1500 Strengthen Climb to at least 1500 ft/min [+1500, +∞) +9.7, +11.7
8 SDES2500 Strengthen Descend to at least 2500 ft/min (−∞, −2500] −11.7, −9.7
9 SCL2500 Strengthen Climb to at least 2500 ft/min [+2500, +∞) +9.7, +11.7

the available action function ∆i : Per i → Ai of Agi is independent of the local state of
the agent and returns the set consisting two non-zero acceleration actions from Table 2
for a given percept and the zero acceleration action;
the perception function obsi : Per i × SE → {1, . . . , 9} of Agi is independent of the local
state of the agent and is given by the feed forward NNs F of VCAS;
the local transition function δi of Agi updates the agent’s trust level probabilistically
according to its current trust level, its current advisory and its executed action;
the environment transition function δE is given by δE((h, ḣown, ḣint , t), (ḧown, ḧint)) =
(h′, ḣ′

own, ḣ
′
int , t

′) where for time step ∆t = 1:
h′ = h− ∆t(ḣown − ḣint) − 0.5∆t2(ḧown − ḧint);
ḣ′

own = ḣown + ḧown∆t;
ḣ′

int = ḣint + ḧint∆t;
t′ = t− ∆t.

6.1 Zero-sum NS-CSGs
In view of the uncountable state spaces, [60] presents an approach for zero-sum discounted
infinite-horizon cumulative rewards under the assumption of full state observability for
NS-CSGs, which exploits Borel state space decomposition and identifies model restrictions to
ensure determinacy, and therefore existence of a value that corresponds to a unique fixed point.
Value iteration and policy iteration algorithms to compute values and synthesise optimal
strategies are also derived based on formulating piecewise linear or constant representations
of the value functions and strategies for NS-CSGs.

6.2 Nonzero-sum NS-CSGs
In the case of nonzero-sum NS-CSGs, [59] studies the undiscounted, finite-horizon equilibria
synthesis problem. The use of finite-horizon objectives simplifies the analysis (note that
the existence of infinite-horizon NE for CSGs is an open problem [7], and the verification
of non-probabilistic infinite-horizon reachability properties for neuro-symbolic games is
undecidable [2]). Both NE and CE using the SW optimality criteria are considered. The
algorithms, based on backward induction and non-linear programming, compute globally
optimal equilibria which, from a fixed initial state, are optimal over the chosen time horizon,
in contrast to the local optimality of equilibria for finite-state CSGs [34, 35].
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equilibria
zero-sum

Figure 6 Relative altitude h of the two aircraft at time instants k for equilibria and zero-sum
strategies for the VCAS[2] case study.

▶ Example 18. The NS-CSG model of the VCAS[2] system described in Example 17 is
studied in [59], comparing equilibria strategies to the zero-sum strategies analysed in [2].
Figure 6 plots the relative altitude h of the two aircraft for equilibria and zero-sum strategies
when maximising this value for a given time instant k, plotted for several different initial
values of h. It can be seen that, with respect to the safety criterion established in [28, 2], i.e.,
avoiding an NMAC when two aircraft are separated by less than 100 ft vertically (dotted
line) and 500 ft horizontally, equilibria strategies allow the two aircraft to reach a safe
configuration within a shorter horizon, which would be missed through a zero-sum analysis.

The analysis of [59] also considers a reward structure that incorporates both the trust
level and fuel consumption. Figure 7 shows the resulting equilibria strategies when both
safety and trust are prioritised, using two different time horizons. When t = 3 initially
(left), it is optimal to follow the advisories and the trust levels trown and trint of the two
aircraft never decrease from their initial values of 4. However, when t = 3 initially (right),
the optimal strategy shows a deviation from the advisory, denoted by action aown = 0, in
state s2, resulting in trown dropping to 3 in s3 with probability 0.9.

The experiments from [59], summarised above, and from [60] are developed using prototype
tools that build upon parts of PRISM-games, but full tool support for NS-CSGs

7 Conclusions and Future Challenges

This paper has provided an overview of modelling, verification and strategy synthesis
techniques that have been developed and implemented for concurrent stochastic games in
the PRISM-games model checker. Through case studies, we have demonstrated the uses
and advantages of zero-sum and equilibria-based reasoning in strategic decision making,
highlighting Nash and correlated equlilibria in conjunction with two optimality criteria, social
welfare and social fairness. We have also discussed recent trends in autonomous systems
towards neural-symbolic architectures, and summarised the first steps towards developing a
modelling framework to support the development of such AI-based systems. Despite some
progress, many problems remain open in this area, in particular, the development of (efficient)
approximate algorithms for (undiscounted infinite-horizon) temporal logic specifications
where the underlying problem is undecidable even in the finite-state case [42].
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Figure 7 Optimal strategies for the VCAS[2] case study over two different time horizons, using
initial t values of 3 (left) and 4 (right).
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Abstract
The purpose of this paper is to give a “textbook quality” proof of the optimal algorithm, called
Ranking, for the online bipartite matching problem (OBM) and to highlight its role in matching-
based market design. In particular, we discuss a generalization of OBM, called the adwords problem,
which has had a significant impact in the ad auctions marketplace.
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1 Introduction

The online bipartite matching problem1 (OBM) occupies a central place not only in online
algorithms but also in matching-based market design, see details in Sections 1.1 and 1.2.
The purpose of this paper is to give a “textbook quality” proof2 of the optimal algorithm,
called Ranking, for this problem and to highlight its role in matching-based market design.
In particular, we discuss a generalization of OBM, called the adwords problem, which has
had a significant impact in the ad auctions marketplace, see Section 1.2.

Ranking achieves a competitive ratio of
(
1− 1

e

)
[17]. Its analysis, given in [17], was

considered “difficult” and it also had an error. Over the years, several researchers contributed
valuable ideas to simplifying its proof, see Section 1.1 for details. The proof given in this
paper is based on these ideas. Additionally, we highlight a key property used in the proof,
called the No-Surpassing Property and simplify further its proof. This property turns out to
be the bottleneck to a substantial generalization which was attempted in [21], as described
below.

The adwords problem, which is called General in this paper, is a generalization of
OBM. It involves matching keyword queries, as they arrive online, to advertisers; the latter
have daily budget limits and they make bids for the queries. The overall goal is to maximize
the total revenue. This problem is notoriously difficult and has remained largely unsolved;
see Section 1.1 for marginal progress made recently. Its special case, when bids are small
compared to budgets, called Small, captures a key computational issue that arises in the
context of ad auctions, for instance in Google’s AdWords marketplace. An optimal algorithm
for Small, achieving a competitive ratio of

(
1− 1

e

)
, was first given in [19]; for the impact of

this result in the marketplace, see Section 1.2.
In Open Problem Number 20 in [18], Mehta asks for a budget-oblivious online algorithm

for Small. Such an algorithm does not know the daily budgets of advertisers; however, in a
run of the algorithm, it knows when the budget of an advertiser is exhausted. However, its
revenue is still compared to the optimal revenue generated by an offline algorithm with full

1 For formal statements of problems discussed in this paper, see Section 2.
2 e.g., the proof given in the chapter [8] of the upcoming edited book on matching-based market design.
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knowledge of the budget. Its importance lies in its use in autobidding platforms [1, 6], which
manage the ad campaigns of large advertisers; they dynamically adjust bids and budgets
over multiple search engines to improve performance. The greedy algorithm, which matches
an arriving query to the advertiser making the highest bid, is clearly budget-oblivious; its
competitive ratio is 0.5. An improved algorithm, having a competitive ratio of 0.522, was
recently obtained by Udwani [20], using the idea of an LP-free analysis, which involves
writing appropriate linear inequalities to compare the online algorithm with the offline
optimal algorithm.

Motivated by the recent simplification of the proof of (OBM), [21] attempted to extend
Ranking all the way to Small. This attempt represents a more basic approach to Small
than the one used in [19] (see Section 1.1) and the hope was that it would yield an algorithm
with better properties, e.g., budget-obliviousness. [21] managed to extend Ranking to an
intermediate problem, called Single-Valued, thereby giving an optimal, budget-oblivious
algorithm; see Section 1.1 for competing results for this problem. Under Single-Valued,
each advertiser can make bids of one value only, although the value may be different for
different advertisers.

The analysis of Single-Valued given in [21] involved new ideas from two domains,
namely probability theory and combinatorics, with the former playing a dominant role and
the latter yielding a proof of the No-Surpassing Property for Single-Valued. Equipped
with these new ideas, [21] next attempted an extension from Ranking to Small. Although
the more difficult, probabilistic part, of the argument did extend, a counter-example was
found to the combinatorial part, showing that the No-Surpassing Property does not hold for
Small.

1.1 Related Works
We start by stating simplifications to the proof of OBM. At first, [11, 4], got the ball rolling,
setting the stage for the substantial simplification given in [7], using a randomized primal-dual
approach. [7] introduced the idea of splitting the contribution of each matched edge into
primal and dual contributions and lower-bounding each part separately. Their method for
defining prices pj of goods, using randomization, was used by subsequent papers, including
this one3.

Interestingly enough, the next simplification involved removing the scaffolding of LP-
duality and casting the proof in purely probabilistic terms4, using notions from economics
to split the contribution of each matched edge into the contributions of the buyer and the
seller. This elegant analysis was given by [9]. A further simplification to the proof of the
No-Surpassing Property for OBM is given in the current paper.

An important generalization of OBM is online b-matching. This problem is a special
case of General in which the budget of each advertiser is $b and the bids are 0/1. [16] gave
a simple optimal online algorithm, called BALANCE, for this problem. BALANCE awards
the next query to the interested bidder who has been matched least number of times so far.
[16] showed that as b tends to infinity, the competitive ratio of BALANCE tends to

(
1− 1

e

)
.

Observe that b-matching is a special case of Small, if b is large. Indeed, the first online
algorithm [19] for Small was obtained by extending BALANCE as follows: [19] first gave a
simpler proof of the competitive ratio of BALANCE using the notion of a factor-revealing

3 For a succinct proof of optimality of the underlying function, ex−1, see Section 2.1.1 in [12].
4 Even though there is no overt use of LP-duality in the proof of [9], it is unclear if this proof could have

been obtained directly, without going the LP-duality-route.
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LP [15]. Then they gave the notion of a tradeoff-revealing LP, which yielded an algorithm
achieving a competitive ratio of

(
1− 1

e

)
. [19] also proved that this is optimal for b-matching,

and hence Small, by proving that no randomized algorithm can achieve a better ratio for
online b-matching; previously, [16] had shown a similar result for deterministic algorithms.

The algorithm of [19] is simple and operates as follows. The effective bid of each bidder
j for a query is its bid multiplied by (1 − eLj/Bj ), where Bj and Lj are the total budget
and the leftover budget of bidder j, respectively; the query is matched to the bidder whose
effective bid is highest. As a result, the algorithm of [19] needs to know the total budget of
each bidder. Following [19], a second optimal online algorithm for Small was given in [5],
using a primal-dual approach.

Another relevant generalization of OBM is online vertex weighted matching, in which
the offline vertices have weights and the objective is to maximize the weight of the matched
vertices. [2] extended Ranking to obtain an optimal online algorithm for this problem.
Clearly, Single-Valued is intermediate between General and online vertex weighted
matching. [2] gave an optimal online algorithm for Single-Valued by reducing it to online
vertex weighted matching. This involved creating kj copies of each advertiser j. As a result,
their algorithm needs to use

∑
j∈A kj random numbers, where A is the set of advertisers.

We note that independent of [21], Albers and Schubert [3] had also obtained an optimal,
budget-oblivious algorithm for Single-Valued; however, their technique was different and
involved formulating a configuration LP and conducting a primal-dual analysis. Another
advantage of the algorithms of [3] and [21], in contrast to [2], was that they need to use only
|A| random numbers.

For General, the greedy algorithm, which matches each query to the highest bidder,
achieves a competitive ratio of 1/2. Until recently, that was the best possible. In [13] a
marginally improved algorithm, with a ratio of 0.5016, was given. It is important to point
out that this 60-page paper was a tour-de-force, drawing on a diverse collection of ideas – a
testament to the difficulty of this problem.

In the decade following the conference version (FOCS 2005) of [19], search engine
companies generously invested in research on models derived from OBM and adwords. Their
motivation was two-fold: the substantial impact of [19] and the emergence of a rich collection
of digital ad tools. It will be impossible to do justice to this substantial body of work,
involving both algorithmic and game-theoretic ideas; for a start, see the surveys [18, 12].

1.2 Significance and Practical Impact
Google’s AdWords marketplace generates multi-billion dollar revenues annually and the
current annual worldwide spending on digital advertising is almost half a trillion dollars.
These revenues of Google and other Internet services companies enable them to offer crucial
services, such as search, email, videos, news, apps, maps etc. for free – services that have
virtually transformed our lives.

We note that Small is the most relevant case of adwords for the search ads marketplace
e.g., see [6]. A remarkable feature of Google, and other search engines, is the speed with
which they are able to show search results, often in milliseconds. In order to show ads at the
same speed, together with search results, the solution for Small needed to be minimalistic
in its use of computing power, memory and communication.

The online algorithm of [19] satisfied these criteria and therefore had a substantial impact
in this marketplace. Furthermore, the idea underlying their algorithm was extracted into a
simple heuristic, called bid scaling, which uses even less computation and is widely used by
search engine companies today. As mentioned above, our Conditional Algorithm for Small
is even more elementary and is budget-oblivious.
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It will be useful to view the AdWords marketplace in the context of a bigger revolution,
namely the advent of the Internet and mobile computing, and the consequent resurgence of
the area of matching-based market design. The birth of this area goes back to the seminal
1962 paper of Gale and Shapley on stable matching [10]. Over the decades, this area became
known for its highly successful applications, having economic as well as sociological impact.
These included matching medical interns to hospitals, students to schools in large cities, and
kidney exchange.

The resurgence led to a host of highly innovative and impactful applications. Besides the
AdWords marketplace, which matches queries to advertisers, these include Uber, matching
drivers to riders; Upwork, matching employers to workers; and Tinder, matching people to
each other, see [14] for more details.

A successful launch of such markets calls for economic and game-theoretic insights,
together with algorithmic ideas. The Gale-Shapley deferred acceptance algorithm and its
follow-up works provided the algorithmic backbone for the “first life” of matching-based
market design. The algorithm Ranking has become the paradigm-setting algorithmic idea in
the “second life” of this area. Interestingly enough, this result was obtained in the pre-Internet
days, over thirty years ago.

2 Preliminaries

Online Bipartite Matching. (OBM): Let B be a set of n buyers and S a set of n goods. A
bipartite graph G = (B, S, E) is specified on vertex sets B and S, and edge set E, where for
i ∈ B, j ∈ S, (i, j) ∈ E if and only if buyer i likes good j. G is assumed to have a perfect
matching and therefore each buyer can be given a unique good she likes. Graph G is revealed
in the following manner. The n goods are known up-front. On the other hand, the buyers
arrive one at a time, and when buyer i arrives, the edges incident at i are revealed.

We are required to design an online algorithm A in the following sense. At the moment a
buyer i arrives, the algorithm needs to match i to one of its unmatched neighbors, if any; if
all of i’s neighbors are matched, i remains unmatched. The difficulty is that the algorithm
does not “know” the edges incident at buyers which will arrive in the future and yet the size
of the matching produced by the algorithm will be compared to the best off-line matching;
the latter of course is a perfect matching. The formal measure for the algorithm is defined in
Section 2.1.

General Adwords Problem (General): Let A be a set of m advertisers, also called bidders,
and Q be a set of n queries. A bipartite graph G = (Q, A, E) is specified on vertex sets Q and
A, and edge set E, where for i ∈ Q and j ∈ A, (i, j) ∈ E if and only if bidder j is interested
in query i. Each query i needs to be matched5 to at most one bidder who is interested in
it. For each edge (i, j), bidder j knows his bid for i, denoted by bid(i, j) ∈ Z+. Each bidder
also has a budget Bj ∈ Z+ which satisfies Bj ≥ bid(i, j), for each edge (i, j) incident at j.

Graph G is revealed in the following manner. The m bidders are known up-front and
the queries arrive one at a time. When query i arrives, the edges incident at i are revealed,
together with the bids associated with these edges. If i gets matched to j, then the matched
edge (i, j) is assigned a weight of bid(i, j). The constraint on j is that the total weight of
matched edges incident at it be at most Bj . The objective is to maximize the total weight of
all matched edges at all bidders.

5 Clearly, this is not a matching in the usual sense, since a bidder may be matched to several queries.
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Adwords under Single-Valued Bidders (Single-Valued): Single-Valued is a special
case of General in which each bidder j will make bids of a single value, bj ∈ Z+, for the
queries he is interested in. If i accepts j’s bid, then i will be matched to j and the weight of
this matched edge will be bj . Corresponding to each bidder j, we are also given kj ∈ Z+, the
maximum number of times j can be matched to queries. The objective is to maximize the
total weight of matched edges. Observe that the matching M found in G is a b-matching
with the b-value of each query i being 1 and of advertiser j being kj .

Adwords under Small Bids (Small): Small is a special case of General in which for
each bidder j, each bid of j is small compared to its budget. Formally, we will capture this
condition by imposing the following constraint. For a valid instance I of Small, define

µ(I) = max
j∈A

{max(i,j)∈E {bid(i, j)− 1}
Bj

}
.

Then we require that

lim
n(I)→∞

µ(I) = 0,

where n(I) denotes the number of queries in instance I.

2.1 The competitive ratio of online algorithms
We will define the notion of competitive ratio of a randomized online algorithm in the context
of OBM.

▶ Definition 1. Let G = (B, S, E) be a bipartite graph as specified above. The competitive
ratio of a randomized algorithm A for OBM is defined to be:

c(A) = min
G=(B,S,E)

min
ρ(B)

E[A(G, ρ(B))]
n

,

where E[A(G, ρ(B))] is the expected size of matching produced by A; the expectation is over
the random bits used by A. We may assume that the worst case graph and the order of
arrival of buyers, given by ρ(B), are chosen by an adversary who knows the algorithm. It is
important to note that the algorithm is provided random bits after the adversary makes its
choices.

▶ Remark 2. For each problem studied in this paper, we will assume that the offline matching
is complete. It is easy to extend the arguments, without changing the competitive ratio, in
case the offline matching is not complete. As an example, this is done for OBM in Remark 14.

3 Ranking and its Analysis

Algorithm 1 presents an optimal algorithm for OBM. Note that this algorithm picks a random
permutation of goods only once. Its competitive ratio is (1− 1

e ), as shown in Theorem 13.
Furthermore, as shown in [17], it is an optimal online bipartite matching algorithm: no
randomized algorithm can do better, up to an o(1) term.

We will analyze Algorithm 2 which is equivalent to Algorithm 1 and operates as follows.
Before the execution of Step (1), the adversary determines the order in which buyers will
arrive, say ρ(B). In Step (1), each good j is assigned a price pj = ewj−1, where wj , called
the rank of j, is picked at random from [0, 1]; observe that pj ∈ [ 1

e , 1]. In Step (2), buyers

MFCS 2022
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Algorithm 1 Ranking.

1. Initialization: Pick a random permutation, π, of the goods in S.

2. Online buyer arrival: When a buyer, say i, arrives, match her to the first
unmatched good she likes in the order π; if none, leave i unmatched.

Output the matching, M , found.

will arrive in the order ρ(B), picked by the adversary, and will be matched to the cheapest
available good. With probability 1 all n prices are distinct and sorting the goods by increasing
prices results in a random permutation. Furthermore, since Algorithm 2 uses this sorted
order only and is oblivious of the actual prices, it is equivalent to Algorithm 1. As we will
see, the random variables representing actual prices are crucially important as well – in the
analysis. We remark that for the generalizations of OBM studied in this paper, the prices
are used not only in the analysis, but also by the algorithms.

3.1 Analysis of Ranking

We will use an economic setting for analyzing Algorithm 2 as follows. Each buyer i has
unit-demand and 0/1 valuations over the goods she likes, i.e., she accrues unit utility from
each good she likes, and she wishes to get at most one of them. The latter set is precisely
the set of neighbors of i in G. If on arrival of i there are several of these which are still
unmatched, i will pick one having the smallest price 6. Therefore the buyers will maximize
their utility as defined below.

For analyzing this algorithm, we will define two sets of random variables, ui for i ∈ B

and rj , for j ∈ S. These will be called utility of buyer i and revenue of good j, respectively.
Each run of Ranking defines these random variables as follows. If Ranking matches buyer
i to good j, then define ui = 1 − pj and rj = pj , where pj is the price of good j in this
run of Ranking. Clearly, pj is also a random variable, which is defined by Step (1) of the
algorithm. If i remains unmatched, define ui = 0, and if j remains unmatched, define rj = 0.
Observe that for each good j, pj ∈ [ 1

e , 1] and for each buyer i, ui ∈ [0, 1− 1
e ]. Let M be the

matching produced by Ranking and let random variable |M | denote its size.
Lemma 3 pulls apart the contribution of each matched edge (i, j) into ui and rj . Next, we

established in Lemma 11 that for each edge (i, j) in the graph, the total expected contribution
of ui and rj is at least 1− 1

e . Then, linearity of expectation allows us to reassemble the 2n

terms in the right hand side of Lemma 3 so they are aligned with a perfect matching in G,
and this yields Theorem 13.

▶ Lemma 3.

E[|M |] =
n∑
i

E [ui] +
n∑
j

E[rj ].

6 As stated above, with probability 1 there are no ties.
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Algorithm 2 Ranking: Economic Viewpoint.

1. Initialization: ∀j ∈ S: Pick wj independently and uniformly from [0, 1].
Set price pj ← ewj−1.

2. Online buyer arrival: When a buyer, say i, arrives, match her to the cheapest
unmatched good she likes; if none, leave i unmatched.

Output the matching, M , found.

Proof. By definition of the random variables,

E[|M |] = E

 n∑
i=1

ui +
n∑

j=1
rj

 =
n∑
i

E [ui] +
n∑
j

E[rj ],

where the first equality follows from the fact that if (i, j) ∈ M then ui + rj = 1 and the
second follows from linearity of expectation. ◀

While running Algorithm 2, assume that the adversary has picked the order of arrival of
buyers, say ρ(B), and Step (1) has been executed. We next define several ways of executing
Step (2). Let R denote the run of Step (2) on the entire graph G. Corresponding to each
good j, let Gj denote graph G with vertex j removed. Define Rj to be the run of Step (2)
on graph Gj .

Lemma 4 and Corollary 5 establish a relationship between the sets of available goods for
a buyer i in the two runs R and Rj ; the latter is crucially used in the proof of Lemma 9.
For ease of notation in proving these two facts, let us renumber the buyers so their order
of arrival under ρ(B) is 1, 2, . . . n. Let T (i) and Tj(i) denote the sets of unmatched goods
at the time of arrival of buyer i (i.e., just before the buyer i gets matched) in the graphs
G and Gj , in runs R and Rj , respectively. Similarly, let S(i) and Sj(i) denote the set of
unmatched goods that buyer i is incident to in G and Gj , in runs R and Rj , respectively.

We have assumed that Step (1) of Algorithm 2 has already been executed and a price pk

has been assigned to each good k. With probability 1, the prices are all distinct. Let F1 and
F2 be subsets of S containing goods k such that pk < pj and pk > pj , respectively.

▶ Lemma 4. For each i, 1 ≤ i ≤ n, the following hold:
1. (Tj(i) ∩ F1) = (T (i) ∩ F1).
2. (Tj(i) ∩ F2) ⊆ (T (i) ∩ F2).

Proof. Clearly, in both runs, R and Rj , any buyer having an available good in F1 will match
to the most profitable one of these, without even considering the rest of the goods. Since
j /∈ F1, the two runs behave in an identical manner on the set F1, thereby proving the first
statement.

The proof of the second statement is by induction on i. The base case is trivially true
since j /∈ F2. Assume that the statement is true for i = k and let us prove it for i = k + 1.
By the first statement, we need to consider only the case that there are no available goods for
the kth buyer in F1 in the runs R and Rj . Assume that in run Rj , this buyer gets matched
to good l; if she remains unmatched, we will take l to be null. Clearly, l is the most profitable
good she is incident to in Tj(k). Therefore, the most profitable good she is incident to in run
R is the best of l, the most profitable good in T (k)− Tj(k), and j, in case it is available. In
each of these cases, the induction step holds. ◀
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In the corollary below, the first two statements follow from Lemma 4 and the third
statement follows from the first two.

▶ Corollary 5. For each i, 1 ≤ i ≤ n, the following hold:
1. (Sj(i) ∩ F1) = (S(i) ∩ F1).
2. (Sj(i) ∩ F2) ⊆ (S(i) ∩ F2).
3. Sj(i) ⊆ S(i).

Next we define a new random variable, ue, for each edge e = (i, j) ∈ E. This is called the
threshold for edge e and is given in Definition 6. It is critically used in the proofs of Lemmas
9 and 11.

▶ Definition 6. Let e = (i, j) ∈ E be an arbitrary edge in G. Define random variable, ue,
called the threshold for edge e, to be the utility of buyer i in run Rj . Clearly, ue ∈ [0, 1− 1

e ].

▶ Property 7 (No-Surpassing for OBM). Let pj be such that the bid of j, namely 1− pj, is
better than the best bid that buyer i gets in run Rj . Then, in run R, no bid to i will surpass
1− pj.

▶ Lemma 8. The No-Surpassing Property holds for OBM.

Proof. Suppose the bid of j, namely 1 − pj , is better than the best bid that buyer i gets
in run Rj . If so, i gets no bid from F1 in Rj ; observe that they are all higher than 1− pj .
Now, by the first part of Corollary 5, i gets no bid from F1 in run R as well, i.e., in run R,
no bid to i will surpass 1− pj . ◀

▶ Lemma 9. Corresponding to each edge (i, j) ∈ E, the following hold.
1. ui ≥ ue, where ui and ue are the utilities of buyer i in runs R and Rj, respectively.
2. Let z ∈ [0, 1− 1

e ]. Conditioned on ue = z, if pj < 1− z, then j will definitely be matched
in run R.

Proof.
1). By the third statement of Corollary 5, i has more options in run R as compared to run
Rj , and therefore ui ≥ ue.

2). In run R, if j is already matched when i arrives, there is nothing to prove. Next assume
that j is not matched when i arrives. The crux of the matter is that by Lemma 8, the
No-Surpassing Property holds. Therefore, in run R, i will not have any option that is
better than j and will therefore get matched to j. Since 1 − pj > z, Sj(i) ∩ F1 = ∅.
Therefore by the first statement of Corollary 5, S(i) ∩ F1 = ∅. Since i will get no bid
better than j in R, the no-surpassing property indeed holds and i must get matched
to j. ◀

▶ Remark 10. The random variable ue is called threshold because of the second statement of
Lemma 9. It defines a value such that whenever pj is smaller than this value, j is definitely
matched in run R.

The intuitive reason for the next, and most crucial, lemma is the following. The smaller
ue is, the larger is the range of values for pj , namely [0, 1 − ue), over which (i, j) will be
matched and j will accrue revenue of pj . Integrating pj over this range, and adding E[ui] to
it, gives the desired bound. Crucial to this argument is the fact that pj is independent of
ue. This follows from the fact that ue is determined by run Rj on graph Gj , which does not
contain vertex j.
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▶ Lemma 11. Corresponding to each edge (i, j) ∈ E,

E[ui + rj ] ≥ 1− 1
e

.

Proof. By the first part of Lemma 9, E[ui] ≥ E[ue].
Next, we will lower bound E[rj ]. Let z ∈ [0, 1 − 1

e ] and let us condition on the event
ue = z. The critical observation is that ue is determined by the run Rj . This is conducted
on graph Gj , which does not contain vertex j. Therefore ue is independent of pj .

By the second part of Lemma 9, rj = pj whenever pj < 1 − z. We will ignore the
contribution to E[rj ] when pj ≥ 1− z. Let w be s.t. ew−1 = 1− z.

Now pj is obtained by picking x uniformly at random from the interval [0, 1] and outputting
ex−1. In particular, when x ∈ [0, w), pj < 1− z. If so, by the second part of Lemma 9, j is
matched and revenue is accrued in rj , see Figure 2. Therefore,

E[rj | ue = z] ≥
∫ w

0
ex−1 dx = ew−1 − 1

e
= 1− 1

e
− z.

Let fue
(z) be the probability density function of ue; clearly, fue

(z) = 0 for z /∈ [0, 1− 1
e ].

Therefore,

E[rj ] = E[E[rj | ue]] =
∫ 1−1/e

z=0
E[rj | ue = z] · fue(z)dz

≥
∫ 1−1/e

z=0

(
1− 1

e
− z

)
· fue(z)dz = 1− 1

e
− E[ue],

where the first equality follows from the law of total expectation and the inequality follows
from fact that we have ignored the contribution to E[rj | ue] when pj ≥ 1− z. Hence we get

E[ui + rj ] = E[ui] + E[rj ] ≥ 1− 1
e

. ◀

▶ Remark 12. Observe that Lemma 11 is not a statement about i and j getting matched
to each other, but about the utility accrued by i and the revenue accrued by j by being
matched to various goods and buyers, respectively, over the randomization executed in Step
(1) of Algorithm 2.

▶ Theorem 13. The competitive ratio of Ranking is at least 1− 1
e .

Proof. Let P denote a perfect matching in G. The expected size of matching produced by
Ranking is

E [|M |] =
n∑
i

E [ui] +
n∑
j

E[rj ] =
∑

(i,j)∈P

E[ui + rj ] ≥ n

(
1− 1

e

)
,

where the first equality uses Lemma 3, the second follows from linearity of expectation and
the inequality follows from Lemma 11 and the fact that |P | = n. The theorem follows. ◀

▶ Remark 14. In case G does not have a perfect matching, let P denote a maximum matching
in G, of size k, say. Then summing E [ui] and E[rj ] over the the vertices i and j matched by
P , we get that the expected size of matching produced by Ranking is at least k

(
1− 1

e

)
.
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Figure 2 The shaded area is a lower bound on E[rj | ue = z].

References
1 Gagan Aggarwal, Ashwinkumar Badanidiyuru, and Aranyak Mehta. Autobidding with

constraints. In International Conference on Web and Internet Economics, pages 17–30.
Springer, 2019.

2 Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online vertex-weighted
bipartite matching and single-bid budgeted allocations. In Proceedings of the twenty-second
annual ACM-SIAM symposium on Discrete Algorithms, pages 1253–1264, 2011.

3 Susanne Albers and Sebastian Schubert. Optimal algorithms for online b-matching with
variable vertex capacities. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2021). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2021.

4 Benjamin Birnbaum and Claire Mathieu. On-line bipartite matching made simple. ACM
Sigact News, 39(1):80–87, 2008.

5 Niv Buchbinder, Kamal Jain, and Joseph Seffi Naor. Online primal-dual algorithms for
maximizing ad-auctions revenue. In European Symposium on Algorithms, pages 253–264, 2007.

6 Nikhil Devanur and Aranyak Mehta. Online matching in advertisement auctions. In Federico
Echenique, Nicole Immorlica, and Vijay V. Vazirani, editors, Online and Matching-Based
Market Design. Cambridge University Press, 2022. [To appear] https://www.ics.uci.edu/
~vazirani/AdAuctions.pdf.

7 Nikhil R Devanur, Kamal Jain, and Robert D Kleinberg. Randomized primal-dual analysis of
ranking for online bipartite matching. In Proceedings of the twenty-fourth annual ACM-SIAM
symposium on Discrete algorithms, pages 101–107. SIAM, 2013.

8 Federico Echenique, Nicole Immorlica, and Vijay V. Vazirani. One-sided matching markets. In
Federico Echenique, Nicole Immorlica, and Vijay V. Vazirani, editors, Online and Matching-
Based Market Design. Cambridge University Press, 2022. [To appear] https://www.ics.uci.
edu/~vazirani/Chapter2.pdf.

9 Alon Eden, Michal Feldman, Amos Fiat, and Kineret Segal. An economic-based analysis of
ranking for online bipartite matching. In SIAM Symposium on Simplicity in Algorithms, 2021.

10 David Gale and Lloyd S Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962.

https://www.ics.uci.edu/~vazirani/AdAuctions.pdf
https://www.ics.uci.edu/~vazirani/AdAuctions.pdf
https://www.ics.uci.edu/~vazirani/Chapter2.pdf
https://www.ics.uci.edu/~vazirani/Chapter2.pdf


V. V. Vazirani 5:11

11 Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with
applications to adwords. In SODA, volume 8, pages 982–991, 2008.

12 Zhiyi Huang and Thorben Trobst. Online matching. In Federico Echenique, Nicole Immor-
lica, and Vijay V. Vazirani, editors, Online and Matching-Based Market Design. Cambridge
University Press, 2022. [To appear] https://www.ics.uci.edu/~vazirani/Ch4.pdf.

13 Zhiyi Huang, Qiankun Zhang, and Yuhao Zhang. Adwords in a panorama. In 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science (FOCS), pages 1416–1426. IEEE,
2020.

14 Simons Institute. Online and matching-based market design, 2019. URL: https://simons.
berkeley.edu/programs/market2019.

15 Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V Vazirani.
Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP. Journal
of the ACM (JACM), 50(6):795–824, 2003.

16 Bala Kalyanasundaram and Kirk R Pruhs. An optimal deterministic algorithm for online
b-matching. Theoretical Computer Science, 233(1-2):319–325, 2000.

17 Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An optimal algorithm for on-line
bipartite matching. In Proceedings of the twenty-second annual ACM symposium on Theory
of computing, pages 352–358, 1990.

18 Aranyak Mehta. Online matching and ad allocation, volume 8(4). Now Publishers, Inc., 2013.
19 Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and generalized

online matching. Journal of the ACM (JACM), 54(5), 2007.
20 Rajan Udwani. Adwords with unknown budgets. arXiv preprint, 2021. arXiv:2110.00504.
21 Vijay V Vazirani. Online bipartite matching and adwords. arXiv preprint, 2021. arXiv:

2107.10777.

MFCS 2022

https://www.ics.uci.edu/~vazirani/Ch4.pdf
https://simons.berkeley.edu/programs/market2019
https://simons.berkeley.edu/programs/market2019
http://arxiv.org/abs/2110.00504
http://arxiv.org/abs/2107.10777
http://arxiv.org/abs/2107.10777




Parameterized Complexity of Non-Separating and
Non-Disconnecting Paths and Sets
Ankit Abhinav #

National Institute of Science, Education and Research, An OCC of Homi Bhabha National Institute,
Bhubaneswar, Odisha, India

Susobhan Bandopadhyay #

National Institute of Science, Education and Research, An OCC of Homi Bhabha National Institute,
Bhubaneswar, Odisha, India

Aritra Banik #

National Institute of Science, Education and Research, An OCC of Homi Bhabha National Institute,
Bhubaneswar, Odisha, India

Yasuaki Kobayashi #

Kyoto University, Kyoto, Japan

Shunsuke Nagano #

Kyoto University, Kyoto, Japan

Yota Otachi # Ñ

Nagoya University, Nagoya, Japan

Saket Saurabh #

The Institute of Mathematical Sciences, HBNI, Chennai, India

Abstract
For a connected graph G = (V, E) and s, t ∈ V , a non-separating s-t path is a path P between
s and t such that the set of vertices of P does not separate G, that is, G − V (P ) is connected.
An s-t path P is non-disconnecting if G − E(P ) is connected. The problems of finding shortest
non-separating and non-disconnecting paths are both known to be NP-hard. In this paper, we
consider the problems from the viewpoint of parameterized complexity. We show that the problem
of finding a non-separating s-t path of length at most k is W[1]-hard parameterized by k, while
the non-disconnecting counterpart is fixed-parameter tractable (FPT) parameterized by k. We also
consider the shortest non-separating path problem on several classes of graphs and show that this
problem is NP-hard even on bipartite graphs, split graphs, and planar graphs. As for positive results,
the shortest non-separating path problem is FPT parameterized by k on planar graphs and on unit
disk graphs (where no s, t is given). Further, we give a polynomial-time algorithm on chordal graphs
if k is the distance of the shortest path between s and t.
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Lovász’s path removal conjecture states the following claim: There is a function f : N → N
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6:2 On Non-Separating and Non-Disconnecting Paths and Sets

some special cases have been resolved [4, 15, 17, 23]. Tutte [23] proved that f(1) = 3, that
is, every triconnected graph satisfies that for every pair of vertices, there is a path between
them whose removal results a connected graph. Kawarabayashi et al. [15] proved a weaker
version of this conjecture: There is a function f : N → N such that for every f(k)-connected
graph G and every pair of vertices u and v, G has an induced path P between u and v such
that G − E(P ) is k-connected.

As a practical application, let us consider a network represented by an undirected graph
G, and we would like to build a private channel between a specific pair of nodes s and t. For
some security reasons, the path used in this channel should be dedicated to the pair s and t,
and hence all other connections do not use all nodes and/or edges on this path while keeping
their connections. In graph-theoretic terms, the vertices (resp. edges) of the path between s

and t does not form a separator (resp. a cut) of G. Tutte’s result [23] indicates that such
a path always exists in triconnected graphs, but may not exist in biconnected graphs. In
addition to this connectivity constraint, the path between s and t is preferred to be short
due to the cost of building a private channel. Motivated by such a natural application, the
following two problems are studied.

▶ Definition 1. Given a connected graph G, s, t ∈ V (G), and an integer k, Shortest
Non-Separating Path asks whether there is a path P between s and t in G such that the
length of P is at most k and G − V (P ) is connected. When s and t are not part of the input,
and we want to find a path P of length k, such that G − V (P ) is connected, then we call
the problem Terminal Independent Shortest Non-Separating Path (TI-Shortest
Non-Separating Path).

▶ Definition 2. Given a connected graph G, s, t ∈ V (G), and an integer k, Shortest
Non-Disconnecting Path asks whether there is a path P between s and t in G such that
the length of P is at most k and G − E(P ) is connected.

Given, the Shortest Non-Separating Path problem, a natural question arises about
the complexity of the problem, when in the problem we replace the demand of P being a
path with P being a connected set. Given a connected graph G, and an integer k, Smallest
Non-Separating Set asks whether there is a vertex subset X of size k in G such that
G[X] is connected and G − X is connected. Similarly, an edge counterpart can be defined as
Smallest Non-Disconnecting Set. An edge set X is said to be connected if the graph
G′ = (V (X), X) is connected. We say that a path P is non-separating (in G) if G − V (P ) is
connected and is non-disconnecting (in G) if G − E(P ) is connected. Similarly, we define the
notion of non-separating set and non-disconnecting set.

1.1 Our Results and Methods
We investigate the parameterized complexity of above problems and obtain following results.

1. Shortest Non-Separating Path and Smallest Non-Separating Set are W[1]-
hard. These are obtained by parameterized reductions from Multicolored Clique
and Clique, respectively.

2. Shortest Non-Disconnecting Path and Smallest Non-Disconnecting Set are
FPT parameterized by k. These algorithms are based on matroid based tools used in
parameterized complexity [11]. In particular, given a graph G, there is a well-known
matroid, defined by ground set being E(G) and the family of independent sets being a
subsets of Y of E(G), such that G − Y is connected. These are called cographic matroid.
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A crucial observation for the FPT algorithms for Shortest Non-Disconnecting Path
and Smallest Non-Disconnecting Set is that the set of edges in a non-disconnecting
path or non-disconnecting set can be seen as an independent set of a cographic matroid.
By applying the representative family of matroids [11], we show that Shortest Non-
Disconnecting Path and Smallest Non-Disconnecting Set can be solved in
2ωk|V |O(1) time, where ω is the exponent of the matrix multiplication. We also show
that Shortest Non-Disconnecting Path is OR-compositional, that is, there is no
polynomial kernel unless coNP ⊆ NP/poly.

3. To cope with the intractability of Shortest Non-Separating Path, we consider
the problem on planar graphs and unit disk graphs and show that Shortest Non-
Separating Path is FPT parameterized by k on planar graphs and TI-Shortest
Non-Separating Path is FPT parameterized by k on unit disk graphs. The result on
planar graphs can be generalized to wider classes of graphs which have the diameter-
treewidth property [9], which are precisely apex-minor-free graphs (includes, planar and
graphs of bounded genus). For, Smallest Non-Separating Set we show that it
does not have polynomial kernel even on planar graphs. We also consider Shortest
Non-Separating Path on several classes of graphs. We can observe that the complexity
of Shortest Non-Separating Path is closely related to that of Hamiltonian Cycle
(or Hamiltonian Path with specified end vertices). This observation readily proves
the NP-completeness of Shortest Non-Separating Path on bipartite graphs, split
graphs, and planar graphs. For chordal graphs, we devise a polynomial-time algorithm
for Shortest Non-Separating Path for the case where k is the shortest path distance
between s and t.

Proofs of results for Shortest Non-Separating Path and Smallest Non-Separating
Set are similar and the proofs of results for Shortest Non-Disconnecting Path and
Smallest Non-Disconnecting Set are similar, in this version of the paper we only focus
on Shortest Non-Separating Path and Shortest Non-Disconnecting Path.

Related work. The shortest path problem in graphs is one of the most fundamental
combinatorial optimization problems, which is studied under various settings. Indeed, our
problems Shortest Non-Separating Path and Shortest Non-Disconnecting Path
can be seen as variants of this problem. From the computational complexity viewpoint,
Shortest Non-Separating Path is known to be NP-hard and its optimization version
cannot be approximated with factor |V |1−ε in polynomial time for ε > 0 unless P = NP [24].
Shortest Non-Disconnecting Path is shown to be NP-hard on general graphs and
polynomial-time solvable on chordal graphs [19].

2 Preliminaries

We use standard terminologies and known results in matroid theory and parameterized
complexity theory, which are briefly discussed in this section. See [6, 21] for details.

Graphs. Let G be a graph. The vertex set and edge set of G are denoted by V (G)
and E(G), respectively. For v ∈ V (G), the open neighborhood of v in G is denoted by
NG(v) (i.e., NG(v) = {u ∈ V (G) : {u, v} ∈ E(G)}) and the closed neighborhood of v

in G is denoted by NG[v] (i.e., NG[v] = NG(v) ∪ {v}). We extend this notation to sets:
NG(X) =

⋃
v∈X NG(v) \ X and NG[X] = NG(X) ∪ X for X ⊆ V (G). For u, v ∈ V (G), we

denote by distG(u, v) the length of a shortest path between u and v in G, where the length
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of a path is defined as the number of edges in it. We may omit the subscript of G from these
notations when no confusion arises. For X ⊆ V (G), we write G[X] to denote the subgraph
of G induced by X. For notational convenience, we may use G − X instead of G[V (G) \ X].
For F ⊆ E, we also use G − F to represent the subgraph of G consisting all vertices of G

and all edges in E \ F . For vertices u and v, a path between u and v is called a u-v path. A
vertex is called a pendant if its degree is exactly 1.

Matroids and representative sets. Let E be a finite set. If I ⊆ 2E satisfies the following
axioms, the pair M = (E, I) is called a matroid: (1) ∅ ∈ I; (2) Y ∈ I implies X ∈ I for
X ⊆ Y ; and (3) for X, Y ∈ I with |X| < |Y |, there is e ∈ Y \ X such that X ∪ {e} ∈ I.
Each set in I is called an independent set of M. From the third axiom of matroids, it is
easy to observe that every (inclusion-wise) maximal independent set of M have the same
cardinality. The rank of M is the maximum cardinality of an independent set of M. A
matroid M = (E, I) of rank n is linear (or representable) over a field F if there is a matrix
M ∈ Fn×|E| whose columns are indexed by E such that X ∈ I if and only if the set of
columns indexed by X is linearly independent in M .

Let G = (V, E) be a graph. A cographic matroid of G is a matroid M(G) = (E, I)
such that F ⊆ E is an independent set of M(G) if and only if G − F is connected. Every
cographic matroid is linear and its representation can be computed in polynomial time [21].
Our algorithmic result for Shortest Non-Disconnected Path is based on representative
families due to [11].

▶ Definition 3. Let M = (E, I) be a matroid and let F ⊆ I be a family of independent sets
of M. For an integer q ≥ 0, we say that F̂ ⊆ F is q-representative for F if the following
condition holds: For every Y ⊆ E of size at most q, if there is X ∈ F with X ∩ Y = ∅ such
that X ∪ Y ∈ I, then there is X̂ ∈ F̂ with X̂ ∩ Y = ∅ such that X̂ ∪ Y ∈ I.

▶ Theorem 4 ([11, 18]). Given a linear matroid M = (E, I) of rank n that is represented
as a matrix M ∈ Fn×|E| for some field F, a family F ⊆ I of independent sets of size p, and
an integer q with p + q ≤ n, there is a deterministic algorithm computing a q-representative
family F̂ ⊆ F of size np

(
p+q

p

)
with

O

(
|F| ·

((
p + q

p

)
p3n2 +

(
p + q

q

)ω−1
· (pn)ω−1

))
+ (n + |E|)O(1)

field operations, where ω < 2.373 is the exponent of the matrix multiplication.

Parameterized complexity. A parameterized problem is a language L ⊆ Σ∗ × N, where
Σ is a finite alphabet. A kernelization for L is a polynomial-time algorithm that given an
instance (I, k) ∈ Σ∗ × N, computes an “equivalent” instance (I ′, k′) ∈ Σ∗ × N such that (1)
(I, k) ∈ L if and only if (I ′, k′) ∈ L and (2) |I ′| + k′ ≤ g(k) for some computable function g.
We call (I ′, k′) a kernel. If the function g is a polynomial, then the kernelization algorithm is
called a polynomial kernelization and its output (I ′, k′) is called a polynomial kernel. An
OR-composition is an algorithm that given p instances (I1, k), . . . (Ip, k) ∈ Σ∗ × N of L,
computes an instance (I ′, k′) ∈ Σ∗ ×N in time (

∑
1≤i≤p |Ii|+k)O(1) such that (1) (I ′, k′) ∈ L

if and only if (Ii, k) ∈ L for some 1 ≤ i ≤ p and (2) k′ = kO(1). For a parameterized problem
L, its unparameterized problem is a language L′ = {x#1k : (x, k) ∈ L}, where # /∈ Σ is a
blank symbol and 1 ∈ Σ is an arbitrary symbol.
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▶ Theorem 5 ([3]). If a parameterized problem L admits an OR-composition and its unpa-
rameterized version is NP-complete, then L does not have a polynomial kernelization unless
coNP ⊆ NP/poly.

3 Shortest Non-Separating Path

We discuss our complexity and algorithmic results for Shortest Non-Separating Path.

3.1 Hardness on graph classes

We obverse that, in most cases, Shortest Non-Separating Path is NP-hard on classes
of graphs for which Hamiltonian Path (with distinguished end vertices) is NP-hard. Let
G = (V, E) be a graph and s, t ∈ V be distinct vertices of G. We add a pendant vertex p

adjacent to s and denote the resulting graph by G′. Then, we have the following observation.

▶ Observation 6. For every non-separating path P between s and t in G′, V (G)\V (P ) = {p}.

Suppose that for a class C of graphs,
the problem of deciding whether given graph G ∈ C has a Hamiltonian path between
specified vertices s and t in G is NP-hard and
G ∈ C implies G′ ∈ C.

By Observation 6, G′ has a non-separating s-t path if and only if G has a Hamiltonian path
between s and t. This implies that the problem of finding a non-separating path between
specified vertices is NP-hard on class C.

▶ Theorem 7. The problem of deciding if an input graph has a non-separating s-t path is
NP-complete even on planar graphs, bipartite graphs, and split graphs.

The classes of planar graphs and bipartite graphs are closed under the operation of adding
a pendant. Recall that a graph G is a split graph if the vertex set V (G) can be partitioned
into a clique C and an independent set I. Thus, for the class of split graphs, we need the
assumption that the pendant added is adjacent to a vertex in C.

As the problem trivially belongs to NP, it suffices to show that Hamiltonian Path
(with distinguished end vertices) is NP-hard on these classes of graphs1. For split graphs,
it is known that Hamiltonian Path is NP-hard even if the distinguished end vertices are
contained in the clique C [20]. Let G be a graph and let v ∈ V (G). We add a vertex v′

that is adjacent to every vertex in NG(v), that is, v and v′ are (false) twins. The resulting
graph is denoted by G′. It is easy to verify that G has a Hamiltonian cycle if and only if
G′ has a Hamiltonian path between v and v′. The class of bipartite graphs is closed under
this operation, that is, G′ is bipartite. For planar graphs, G′ may not be planar in general.
However, Hamiltonian Cycle is NP-complete even if the input graph is planar and has
a vertex of degree 2 [14]. We apply the above operation to this degree-2 vertex, and the
resulting graph G′ is still planar. As the problem of finding a Hamiltonian cycle is NP-hard
even on bipartite graphs [20] and planar graphs [14], Theorem 7 follows.

1 These results for bipartite graphs and planar graphs seem to be folklore but we were not able to find
particular references.
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V1 V2 V3

s t

v∗

v

u

w

G H

Figure 1 The left figure depicts an instance G of Multicolored Clique and the right figure
depicts the graph H constructed from G. Some vertices and edges in H are not drawn in this figure
for visibility. The edges of a clique C and the corresponding non-separating s-t path P are drawn as
thick lines.

3.2 W[1]-hardness
Next, we show that Shortest Non-Separating Path is W[1]-hard parameterized by k.
The proof is done by giving a reduction from Multicolored Clique, which is known
to be W[1]-complete [10]. In Multicolored Clique, we are given a graph G with a
partition {V1, V2, . . . , Vk} of V (G) and asked to determine whether G has a clique C such
that |Vi ∩ C| = 1 for each 1 ≤ i ≤ k.

From an instance (G, {V1, . . . , Vk}) of Multicolored Clique, we construct an instance
of Shortest Non-Separating Path as follows. Without loss of generality, we assume
that G contains more than k vertices. We add two vertices s and t, make s adjacent to all
v ∈ V1 and make t adjacent to all v ∈ Vk. For any pair of u ∈ Vi and v ∈ Vj with |i − j| ≥ 2,
we do the following. If {u, v} ∈ E, then we remove it. Otherwise, we add a path Pu,v of
length 2 and a pendant vertex that is adjacent to the internal vertex w of Pu,v. Finally,
we add a vertex v∗, add an edge between v∗ and each original vertex v ∈ V (G), and add a
pendant vertex p adjacent to v∗. The constructed graph is denoted by H. See Figure 1 for
an illustration of the graph H.

▶ Lemma 8. There is a clique C in G such that |C ∩ Vi| = 1 for all 1 ≤ i ≤ k if and only if
there is a non-separating s-t path of length at most k + 1 in H.

Proof. Suppose first that G has a clique C with C ∩ Vi = {vi} for all 1 ≤ i ≤ k. Then,
P = ⟨s, v1, v2, . . . , vk, t⟩ is an s-t path of length k + 1 in H. To see the connectivity of
H − V (P ), it suffices to show that every vertex is reachable from v∗ in H − V (P ). By the
construction of H, each vertex in V (G) \ V (P ) is adjacent to v∗ in H − V (P ). Each vertex
z in V (H) \ (V (G) ∪ {v∗, p}) is either the internal vertex w of Pu,v for some u, v ∈ V (G) or
the pendant vertex adjacent to w. In both cases, at least one of u and v is not contained in
P as V (P ) \ {s, t} is a clique in G, implying that z is reachable to v∗.

Conversely, suppose that H has a non-separating s-t path P of length at most k + 1 in
H. By the assumption that G has more than k vertices, there is a vertex of G that does
not belong to P . Observe that P does not contain any internal vertex w of some Pu,v as
otherwise the pendant vertex adjacent to w becomes an isolated vertex by deleting V (P ),
which implies H − V (P ) has at least two connected components. Similarly, P does not
contain v∗. These facts imply that the internal vertices of P belong to V (G), and we have
|V (P ) ∩ Vi| = 1 for all 1 ≤ i ≤ k. Let C = V (P ) \ {s, t}. We claim that C is a clique in G.
Suppose otherwise. There is a pair of vertices u, v ∈ C that are not adjacent in G. This
implies that H contains the path Pu,v. However, as P contains both u and v, the internal
vertex of Pu,v together with its pendant vertex forms a component in H − V (P ), yielding a
contradiction that P is a non-separating path in H. ◀
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Thus, we have the following theorem.

▶ Theorem 9. Shortest Non-Separating Path is W[1]-hard parameterized by k.

3.3 Graphs with the diameter-treewidth property
By Theorem 9, Shortest Non-Separating Path is unlikely to be fixed-parameter tractable
on general graphs. To overcome this intractability, we focus on sparse graph classes. We
first note that the algorithmic meta-theorems for FO Model Checking [12, 13] do not
seem to be applicable to Shortest Non-Separating Path as we need to care about the
connectivity of graphs. However, the property that vertex set X forms a non-separating s-t
path can be expressed as:

conn(V \ X) ∧ hampath(X, s, t),

where conn(Y ) and hampath(Y, s, t) are formulas in MSO2 such that conn(Y ) (resp.
hampath(Y, s, t)) is true if and only of the subgraph induced by Y is connected and (resp.
the subgraph induced by Y has a Hamiltonian path between s and t). We omit the details
of these formulas, which can be found in [6] for example2. By Courcelle’s theorem [5] and its
extension due to Arnborg et al. [1], we can compute a shortest non-separating s-t path in
O(f(tw(G))n) time, where n is the number of vertices and tw(G) is the treewidth3 of G. As
there is an O(tw(G)tw(G)3

n)-time algorithm for computing the treewidth of an input graph
G [2], we have the following theorem.

▶ Theorem 10. Shortest Non-Separating Path is fixed-parameter tractable parameter-
ized by the treewidth of input graphs.

A class C of graphs is minor-closed if every minor of a graph G ∈ C also belongs to C.
We say that C has the diameter-treewidth property if there is a function f : N → N such
that for every G ∈ C, the treewidth of G is upper bounded by f(diam(G)), where diam(G)
is the diameter of G. It is well known that every planar graph G has treewidth at most
3 ·diam(G)+1 [22]4, which implies that the class of planar graphs has the diameter-treewidth
property. This can be generalized to more wider classes of graphs. A graph is called an apex
graph if it has a vertex such that removing it makes the graph planar.

▶ Theorem 11 ([7, 9]). Let C be a minor-closed class of graphs. Then, C has the diameter-
treewidth property if and only if it excludes some apex graph.

For C ⊆ V (G) that induces a connected subgraph G[C], we denote by GC the graph
obtained from G by contracting G[C] into a single vertex vC and making vC adjacent to all
the vertices in N(C). Since G[C] is connected, vertex vC is well-defined.

▶ Lemma 12. Let C ⊆ V (G) be a vertex subset such that G[C] is connected. Let P be
an s-t path in G with V (P ) ∩ C = ∅. Then, P is non-separating in G if and only if it is
non-separating in GC .

2 In [6], they give an MSO2 sentence hamiltonicity expressing the property of having a Hamiltonian
cycle, which can be easily transformed into a formula expressing hampath(X, s, t).

3 We do not give the definition of treewidth and (the optimization version of) Courcelle’s theorem. We
refer to [6] for details.

4 More precisely, the treewidth of a planar graph is upper bounded by 3r + 1, where r is the radius of the
graph.

MFCS 2022



6:8 On Non-Separating and Non-Disconnecting Paths and Sets

Proof. Suppose first that P is non-separating in G. Let u, v ∈ V (G) \ V (P ) be arbitrary.
As P is non-separating, there is a u-v path P ′ in G − V (P ). Let u′ be the vertex of GC such
that u′ = u if u /∈ C and u′ = vC if u ∈ C. Let v′ be the vertex defined analogously. We
show that there is a u′-v′ path in GC − V (P ) as well. If P ′ does not contain any vertex in
C, then it is also a u′-v′ path in GC , and hence we are done. Suppose otherwise. Let x and
y be the vertices in V (P ′) ∩ C that are closest to u and v, respectively. Note that x and y

can be the end vertices of P ′, that is, C may contain u and v. Let Pu,x and (resp. Py,v) be
the subpath of P ′ between u and x (resp. y and v). Then, the sequence of vertices obtained
by concatenating Pu,x after Py,v − {y} and replacing exactly one occurrence of a vertex in
C with vC forms a path between u′ and v′. Since we choose u, v arbitrarily, there is a path
between any pair of vertices in GC − V (P ) as well. Hence, P is non-separating in GC .

Conversely, suppose that P is non-separating in GC . For u, v ∈ V (GC) \ V (P ), there is a
path P ′ in GC − V (P ). Suppose that neither u = vC nor v = vC . Then, we can construct a
u-v path in G − V (P ) as follows. If vC /∈ V (P ′), P ′ is also a path in G − V (P ) and hence we
are done. Otherwise, vC ∈ V (P ′). Let Pu and Pv be the subpaths in P ′ − {vC} containing
u and v, respectively. From Pu and Pv, we have a u-v path in G by connecting them with
an arbitrary path in G[C] between the end vertices other than u and v. Note that such a
bridging path in G[C] always exists since G[C] is connected. Moreover, as V (P ′) ∩ C = ∅ and
V (P ) ∩ C = ∅, this is also a u-v path in G − V (P ). Suppose otherwise that either u = vC or
v = vC , say u = vC . In this case, we can construct a path between every vertex w in C and
v by concatenating P ′ and an arbitrary path in G[C] between w and the end vertex of the
subpath P ′ − {vC} other than v. Therefore, P is non-separating in G. ◀

Now, we are ready to state the main result of this subsection.

▶ Theorem 13. Let C be a graph class excluding a fixed apex graph H as a minor. Then,
Shortest Non-Separating Path on C is fixed-parameter tractable parameterized by k.

Proof. Let G ∈ C. We first compute B = {v ∈ V (G) : dist(s, v) ≤ k}. This can be done in
linear time. If t /∈ B, then the instance (G, s, t, k) is trivially infeasible. Suppose otherwise
that t ∈ B. Let C be a component in G − B. By definition, every non-separating s-t path P

of length at most k does not contain any vertex of C. Let G′ be the graph obtained from G

by contracting all edges in E(G − B). For each component C in G − B, we denote by vC the
vertex of G′ corresponding to C (i.e., vC is the vertex obtained by contracting all edges in
C). Then, we have diam(G′) ≤ 2k + 2 as diam(G[B]) ≤ k and every vertex in V (G′) \ B is
adjacent to a vertex in B. By Lemma 12, G has a non-separating s-t path of length at most
k if and only if so does G′. Since C is minor-closed, we have G′ ∈ C and hence the treewidth
of G′ is upper bounded by f(2k + 2) for some function f . By Theorem 10, we can check
whether G′ has a non-separating s-t path of length at most k in O(g(k)|V (G′)|) time. ◀

Theorem 10 does not give precise dependence on tw(G) in the running time of the
algorithm. In fact, given a tree decomposition of G of width tw(G) we can design an
algorithm for Shortest Non-Separating Path running in time 2O(tw(G))nO(1), using
matroid based tools [11]. Further, there exists a factor-2 approximation for tw(G) running
in time 2O(tw(G))n [16]. Combined with this we get the following result.

▶ Theorem 14. There exists an algorithm for Shortest Non-Separating Path running
in time 2O(tw(G))nO(1).

The proof of this result is based on the standard dynamic programming over graphs of
bounded treewidth together with representative sets and will appear in the final version of
the paper. Applying the result of Theorem 14 in Theorem 13, we get the following results.
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▶ Theorem 15. Let C be a graph class excluding a fixed apex graph H as a minor. Then,
Shortest Non-Separating Path on C admits an algorithm with running time 2O(k)nO(1).

3.4 TI-Shortest Non-Separating Path on Unit Disk Graphs
Given n unit disks in the plane, a unit disk graph G consists of n vertices, corresponding
to each disk, and there is an edge between two vertices if and only if the corresponding
unit disks intersect. For our problem, we are given a unit disk graph G = (V, E) and its
representation (D, C). Let V = {v1, v2, · · · , vn} and for each vi, Di be the corresponding
disk centered at ci. Here D = {Di| 1 ≤ i ≤ n} and C = {ci| 1 ≤ i ≤ n}.

▶ Reduction Rule 1. If G has more than two connected components then return NO.

▶ Lemma 16. Reduction Rule 1 is safe and can be implemented in polynomial time.

Let us assume that the graph has exactly two connected components. Observe that the
given instance is a YES instance if and only if at least one of the two components contains
exactly k vertices. Otherwise, the instance is a NO instance. The number of components in
the given graph and the number of vertices in each component can be checked in polynomial
time. Thus now onward we assume that G is connected. Let us consider a ( 1

2 × 1
2 ) square

grid on the plane. Let VS be the set of centers of the disks that are contained inside a grid
cell S; more formally, VS = {vi| ci ∈ S}. We also define N(V ′, S) as the set of vertices in
the cell S that are neighbors of vertices in V ′. For any cell S in the grid, next, we prove that
if S contains at least k + 24 centers then the given instance is a YES instance.

▶ Reduction Rule 2. If there exists a cell S with at least k + 24 centers, return YES.

▶ Lemma 17. Reduction Rule 2 is safe and can be implemented in polynomial time.

From now onwards we assume that each cell has at most k + 23 centers.

▶ Theorem 18. TI-Shortest Non-Separating Path can be solved in time 2O(k log k)nO(1)

on unit disk graphs.

Proof. We guess the first vertex of the path, say vi. Let Y be the set of vertices in the circle
drawn centering ci with radius k. Observe that the vertices of the solution path P must be a
subset of Y . There are at most O(k2) cells inside the circle drawn centering ci with radius k.
By Reduction Rule 2, no cell contains more than k + 23 vertices. Thus Y contains at most
O(k3) vertices. Now all we need to do is to guess a subset X of size k as potential vertices of
the path P and test that indeed it forms a path and G − X is connected. All this can be
done in

(
O(k3)

k

)
× k! × nO(1) = 2O(k log k)nO(1) time, concluding the proof. ◀

3.5 Chordal graphs with k = dist(s, t)
In Section 3.1, we have seen that Shortest Non-Separating Path is NP-complete even on
split graphs (and thus on more general chordal graphs as well). To overcome this intractability,
we restrict ourselves to finding a non-separating s-t path of length dist(s, t) on chordal graphs.

A graph G is chordal if it has no cycles of length at least 4 as an induced subgraph. In
the following, we fix a connected chordal graph G.

▶ Lemma 19. Let S ⊆ V (G) be a vertex set such that G[S] is connected. For u, v ∈ S, every
induced u-v path P in G satisfies that V (P ) ⊆ N [S].
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For u, v ∈ V (G), a set of vertices S ⊆ V (G) \ {u, v} is called a u-v separator of G if there
is no u-v path in G−S. An inclusion-wise minimal u-v separator of G is called a minimal u-v
separator. A minimal separator of G is a minimal u-v separator for some u, v ∈ G. Dirac’s
well-know characterization [8] of chordal graphs states that a graph is chordal if and only if
every minimal separator induces a clique.

▶ Lemma 20. Let s, t ∈ V (G) be such that {s, t} /∈ E(G). If v ∈ V (G) \ {s, t} is an internal
vertex of a shortest s-t path P , then N [v] \ {s, t} is an s-t separator of G.

Proof. Let d = dist(s, t). For 0 ≤ i ≤ d, let

Di = {v ∈ V (G) : dist(s, v) = i ∧ dist(v, t) = d − i}

and V (P ) ∩ Di = {ui}. Observe that each Di is a clique: if i ∈ {0, d}, then it is a singleton;
otherwise, it is a minimal s-t separator of the chordal graph G[

⋃
0≤j≤d Dj ], meaning that

Di is a clique. From this observation, we have Di ⊆ N [ui] \ {s, t} for 0 < i < d. Let j

(0 < j < d) be the index such that v = uj .
Suppose to the contrary that there is an induced s-t path Q such that V (Q) ∩ (N [uj ] \

{s, t}) = ∅. By Lemma 19, V (Q) ⊆ N [V (P )] =
⋃

0≤i≤d N [ui] holds. Since Q starts in
N [u0] and ends in N [ud], there are indices i and k with 0 ≤ i < j < k ≤ d such that Q

consecutively visits a vertex vi ∈ N [ui] and then a vertex vk ∈ N [uk] in this order. Since
dist(ui, uk) = k − i ≥ 2 and {vi, vk} ∈ E, at least one of vi ̸= ui and vk ≠ uk holds. By
symmetry, we assume that vi ̸= ui.

If vk = uk, then vi ∈ N(ui) ∩ N(uk). In this case, we have i = j − 1 and k = j + 1 since
otherwise P admits a shortcut using the subpath ⟨ui, vi, uk⟩. This implies that dist(s, vi) ≤
dist(s, ui)+1 = i+1 = j and dist(vi, t) ≤ 1+dist(vk, t) = 1+dist(uk, t) = 1+(d−k) = d−j.
Since dist(s, vi) + dist(vi, t) ≥ d, we have dist(s, vi) = j and dist(vi, t) = d − j. This implies
that vi ∈ Dj ⊆ N [uj ] \ {s, t}, a contradiction.

Next we consider the case vk ̸= uk. Recall that we also have vi ̸= ui as an assumption.
In this case, we have k − i ≤ 3 as ⟨ui, vi, vk, uk⟩ is not a shortcut for P . Assume first
that k − i = 3. By symmetry, we may assume that i = j − 1 and k = j + 2. Since
dist(s, vi) ≤ dist(s, ui) + 1 = j and dist(vi, t) ≤ 2 + dist(uk, t) ≤ 2 + (d − k) = d − j, we have
vi ∈ Dj ⊆ N [uj ] \ {s, t}, a contradiction. Next assume that k − i = 2. That is, i = j − 1 and
k = j + 1. Since vi, vk /∈ N [uj ] \ {s, t} and P is shortest, the vertices vi, ui, uj , uk, vk are
distinct and form a cycle of length 5. Observe that vi /∈ {s, t} since otherwise ⟨vi = s, vk, uk⟩
or ⟨ui, vi = t⟩ is a shortcut. Similarly, vk /∈ {s, t}. Hence, vi, vk /∈ N [uj ]. Therefore, the
possible chords for the cycle ⟨vi, ui, uj , uk, vk⟩ are {ui, vk} and {uk, vi}. In any combination
of them, the graph has an induced cycle of length at least 4. ◀

Let d and Di be defined as in the proof of Lemma 20, and let D =
⋃

0≤i≤d Di. Recall
that each Di is a clique. Observe that if |Di| = 1 for all 0 ≤ i ≤ d, then G contains a
unique shortest s-t path, and thus the problem is trivial. Otherwise, we define ℓ to be the
minimum index such that |Dℓ| > 1 and r to be the maximum index such that |Dr| > 1.
Since |D0| = |Dd| = 1, we have 0 < ℓ ≤ r < d.

Our algorithm works as follows.
1. If G contains a unique shortest s-t path P , then test if P is non-separating.
2. Otherwise, find a shortest s-t path P satisfying the following conditions.

a. V (P ) does not contain a minimal a-b separator for all a ∈ Dℓ and b ∈ V \ D.
b. V (P ) does not contain a minimal a-b separator for all a ∈ Dℓ and b ∈ Dr.
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▶ Lemma 21. The algorithm is correct.

▶ Lemma 22. The algorithm has a polynomial-time implementation.

We do not optimize the running time of the above algorithm, and a straightforward
implementation runs in time O(n2m), where n = |V (G)| and m = |E(G)|, which might be
improved with some data structure.

▶ Theorem 23. There is a polynomial-time algorithm for Shortest Non-Separating
Path on chordal graphs, given that k is equal to the shortest path distance between s and t.

4 Shortest Non-Disconnecting Path

The goal of this section is to establish the fixed-parameter tractability and a conditional
lower bound on polynomial kernelizations for Shortest Non-Disconnecting Path.

4.1 Fixed-parameter tractability
▶ Theorem 24. Shortest Non-Disconnecting Path can be solved in time 2ωknO(1),
where ω is the matrix multiplication exponent and n is the number of vertices of G.

To prove this theorem, we give a dynamic programming algorithm with the aid of
representative families of cographic matroids. Let (G, s, t, k) be an instance of Shortest
Non-Disconnecting Path. For 0 ≤ i ≤ k and v ∈ V (G), we define dp(i, v) as the family
of all sets of edges F satisfying the following two conditions: (1) F is the set of edges of
an s-v path of length i and (2) G − F is connected. An edge set F is legitimate if F forms
a path and G − F is connected. For a family of edge sets F and an edge e, we define
F ⋊⋉ e := {F ∪ {e} : F ∈ F} and leg(F) as the subfamily of F consisting of all legitimate
F ∈ F . The following simple recurrence correctly computes dp(i, v).

dp(i, v) =



{∅} i = 0 and s = v (3)
∅ i = 0 and s ̸= v (4)

leg

 ⋃
u∈N(v)

(dp(i − 1, u) ⋊⋉ {u, v})

 i > 0 . (5)

A straightforward induction proves that dp(i, t) ̸= ∅ if and only if G has a non-disconnecting
s-t path of length exactly i and hence it suffices to check whether dp(i, t) ̸= ∅ for 0 ≤ i ≤ k.
However, the running time to evaluate this recurrence is nO(k). To reduce the running time
of this algorithm, we apply Theorem 4 to each dp(i, v). Now, instead of (5), we define

dp(i, v) = repk−i

leg

 ⋃
u∈N(v)

(dp(i − 1, u) ⋊⋉ {u, v})

 , (3’)

where repk−i(F) is a (k − i)-representative family of F for the cographic matroid M =
(E(G), I) defined on G. In the following, we abuse the notation of dp to denote the families
of legitimate sets that are computed by the recurrence composed of (3), (4), and (3’).

▶ Lemma 25. The recurrence composed of (3), (4), and (3’) is correct, that is, G has a
non-disconnecting s-t path of length at most k if and only if

⋃
0≤i≤k dp(i, t) ̸= ∅.

MFCS 2022
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Proof. It suffices to show that dp(k′, t) ̸= ∅ if G has a non-disconnecting s-t path P of length
k′ ≤ k. Let P = (v0 = s, v1, . . . , vk′ = t) be a non-disconnecting path in G. We assume that
G has no non-disconnecting s-t path of length strictly smaller than k′. For 0 ≤ i ≤ k′, we let
Pi = (vi, vi+1, . . . , vk′). In the following, we prove, by induction on i, a slightly stronger claim
that there is a legitimate set F ∈ dp(i, vi) such that F ∪ E(Pi) forms a non-disconnecting s-t
path in G for all 0 ≤ i ≤ k′. As dp(0, s) = {∅} and P0 = P itself is a non-disconnecting path,
we are done for i = 0. Suppose that i > 0. By the induction hypothesis, there is a legitimate
F ∈ dp(i−1, vi−1) such that F ∪E(Pi−1) forms a non-disconnecting s-t path in G. Note that
F ∩ E(Pi−1) = ∅ as otherwise G has a non-disconnecting s-t path of length smaller than k′.
Let F = leg(

⋃
u∈N(vi)(dp(i − 1) ⋊⋉ {u, vi})). Since F ∪ E(Pi−1) is legitimate, F ∪ {{vi−1, vi}}

is also legitimate, implying that F is nonempty. Let F̂ = repk−i(F) be (k − i)-representative
for F , X = F ∪ {{vi−1, vi}}, and let Y = E(Pi). As |Y | ≤ k − i, X ∩ Y = ∅, and X ∪ Y ∈ I,
F̂ contains an edge set X̂ with X̂ ∩Y = ∅ and X̂ ∪Y ∈ I, implying that there is X̂ ∈ dp(i, vi)
such that X̂ ∪ E(Pi) forms a non-disconnecting s-t path in G. ◀

▶ Lemma 26. The recurrence can be evaluated in time 2ωknO(1) ⊂ 5.18knO(1), where
ω < 2.373 is the exponent of the matrix multiplication.

Proof. By Theorem 4, dp(i, v) contains at most 2kkn sets for 0 ≤ i ≤ k and v ∈ V (G) and
can be computed in time 2ωknO(1). ◀

Thus, Theorem 24 follows.

4.2 Kernel lower bound
It is well known that a parameterized problem is fixed-parameter tractable if and only if it
admits a kernel (see [6], for example). By Theorem 24, Shortest Non-Disconnecting
Path admits a kernel. A next natural step next is to explore the existence of polynomial kernel
for Shortest Non-Disconnecting Path. However, the following theorem conditionally
rules out the possibility of polynomial kernelization. We first show the following lemma.

▶ Lemma 27. Let H be a connected graph. Suppose that H has a cut vertex v. Let C be a
component in H − {v} and let F ⊆ E(H[C ∪ {v}]). Then, H − F is connected if and only if
H[C ∪ {v}] − F is connected.

Proof. If H − F is connected, then all the vertices in C ∪ {v} are reachable from v in H − F

without passing through any vertex in V (H) \ ({C} ∪ {v}). Thus, such vertices are reachable
from v in H[C ∪ {v}] − F . Conversely, suppose H[C ∪ {v}] − F is connected. Then, every
vertex in C is reachable from v in H − F . Moreover, as F does not contain any edge outside
H[C ∪ {v}], every other vertex is reachable from v in H − F as well. ◀

▶ Theorem 28. Unless coNP ⊆ NP/poly, Shortest Non-Disconnecting Path does not
admit a polynomial kernelization (with respect to parameter k).

Proof. We give an OR-composition for Shortest Non-Disconnecting Path. Let
(G1, s1, t1, k), . . . , (Gp, sp, tp, k) be p instances of Shortest Non-Disconnecting Path.

We assume that for 1 ≤ i ≤ p, ti is not a cut vertex in Gi. To justify this assumption,
suppose that ti is a cut vertex in Gi. Let C be the component in Gi − {ti} that contains
si. By Lemma 27, for any si-ti path, it is non-disconnecting in Gi if and only if so is in
Gi[C ∪ {ti}]. Thus, by replacing Gi with Gi[C], we can assume that ti is not a cut vertex
in Gi.
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Figure 2 An illustration of the graph G obtained from q = 4 instances.

From the disjoint union of G1, . . . , Gp, we construct a single instance (G, s, t, k′) as follows.
We first add a vertex s and an edge between s and si for each 1 ≤ i ≤ p. Then, we identify
all ti’s into a single vertex t. See Figure 2 for an illustration.

In the following, we may not distinguish t from ti. Now, we claim that (G, s, t, k + 1) is a
yes-instance if and only if (Gi, si, ti, k) is a yes-instance for some i.

Consider an arbitrary s-t path in G. Observe that all edges in the path except for the
one incident to s are contained in a single subgraph Gi for some 1 ≤ i ≤ p as {s, t} separates
V (Gi)\{ti} from V (Gj)\{tj} for j ̸= i. Moreover, the path P forms P = (s, si, v1, . . . , vq, t),
meaning that the subpath P ′ = (s1, v1, . . . , vq, ti) is an si-ti path in Gi. This conversion is
reversible: for any si-ti path P ′ in Gi, the path obtained from P ′ by attaching s adjacent to
si is an s-t path in G. Thus, it suffices to show that for F ⊆ E(Gi), F ∪ {{s, si}} is a cut of
G if and only if F is a cut of Gi. Since t is a cut vertex in G − {{s, si}}, by Lemma 27, the
claim holds. ◀

We obtain the following result for the Smallest Non-Separating Set problem.

▶ Theorem 29. Unless coNP ⊆ NP/poly, Smallest Non-Separating Set does not admit
a polynomial kernelization (with respect to parameter k) on planar graphs.

Proof. We give an OR-composition for Smallest Non-Separating Set. Given t planar
graphs G1, G2, · · · , Gt where each Gi contains ni many vertices. We construct a new planar
graph G′ as follows. We create k + 2 many copies for each planar graph Gi. For each
planar graph G and a vertex v ∈ V (G) there exists a planar embedding with v on the
outer-face. Fix an arbitrary set of k + 2 distinct vertices in Gi, say v1, v2, · · · , vk+2. Then,
we obtain embeddings for G1

i , G2
i , · · · , Gk+2

i such that v1
i , v2

i , · · · , vk+2
i are on the outer-face,

respectively. Now add an edge between vℓ
i and vℓ+1

i for all 1 ≤ ℓ ≤ k + 1. Also, add an edge
between vk+2

i and v1
i+1 for all 1 ≤ i ≤ t − 1. That is these planar graphs are chained into a

path. It is easy to see that the resulting instance G′ is planar.

▷ Claim 30. G′ is a YES instance if and only if at least one of the Gi is a YES instance.

Proof. We prove the forward direction first. Assume that in G′, there exists a connected set
X of size k in G′ such that G′ − X is connected. Notice, deleting any vertex vj

i from Gj
i

where j ∈ [k + 1] makes the graph G′ disconnected. Thus X can not contain any vertex vj
i

from Gj
i where j ∈ [k + 1]. Hence, we can assume that X ∩ {vj

i } = ∅ in Gj for 1 ≤ j ≤ k + 2,
i.e X is contained completely inside any one of Gj

i without containing any vertex at the
outer face that shares edges with other copies of Gi. Therefore, X is of size k inside Gj

i and
Gj

i − X is connected. Hence, Gi is a YES instance.

MFCS 2022



6:14 On Non-Separating and Non-Disconnecting Paths and Sets

Now, we prove the reverse direction. Assume that there is a graph, Gi in which there
exists a connected set X of size k such that Gi − X is connected. Without loss of generality,
assume X = {v1, v2, · · · , vk}. Since Gi contains X, all the copies of Gi in G′ also contain X.
Now, we show that there exists a copy of Gi, say Gp

i in G′, that does not contain any vertex
of X on the outer face which shares edges with other copies of Gi. As |X| = k, observe that
there can be at most k many different copies of Gi in G′ which has a vertex of X on the
outer faces which shares edges with the other copies. Hence, by pigeon hole principle, there
exists at least a copy of Gi in G′ which has no vertex on the outer face that shares edges
with other copies. Thus, deleting X from that copy will not disconnect any Ga

i or Gb
j in the

graph G′. Therefore, G′ is also a YES instance. ◁

This concludes the proof. ◀
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Abstract
Hybrid logic is a widely-studied extension of basic modal logic, which corresponds to the bounded
fragment of first-order logic. We study it from two novel perspectives: (1) We apply the recently
introduced paradigm of comonadic semantics, which provides a new set of tools drawing on ideas
from categorical semantics which can be applied to finite model theory, descriptive complexity and
combinatorics. (2) We give a novel semantic characterization of hybrid logic in terms of invariance
under disjoint extensions, a minimal form of locality. A notable feature of this result is that we give
a uniform proof, valid for both the finite and infinite cases.
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1 Introduction

Hybrid logic (see e.g. [8, 7]) has been widely studied as an expressive extension of basic modal
logic. It is semantically natural, e.g. in the analysis of temporal reasoning [10], and since it
allows an internalisation of relational semantics, it has a very well-behaved proof theory [11],
without needing to resort to explicit labelling of proofs or tableaux. The corresponding
fragment of first-order logic under modal translation is the bounded fragment, in which
quantification is relativized to atomic formulas from the relational vocabulary. This fragment
is important in set theory [19], and has been studied in general proof- and model-theoretic
terms in [16, 15].

In the present paper we study hybrid logic with inverse modalities, which we shall refer
to as hybrid temporal logic, from two novel perspectives:

Firstly, we apply the recently introduced paradigm of comonadic semantics [1, 5], which
gives a uniform description of a wide range of logic fragments indexed by resource
parameters. These fragments play a key role in finite model theory and descriptive
complexity. Examples include the Ehrenfeucht-Fraïssé comonads Ek, which capture
the quantifier-rank fragments; the pebbling comonads Pk, which capture the finite
variable fragments; and the modal comonads Mk, which capture the modal fragments of
bounded modal depth. In each case, the comonads induce a number of resource-indexed
equivalences on structures, which can be shown to capture the equivalences induced by
the corresponding logic fragments. Moreover, the coalgebras for these comonads can be
shown to characterise important combinatorial invariants of structures. For example, in
the case of Pk, the corresponding invariant is tree-width [5, 1].
The common structure exhibited by this wide range of examples has been axiomatised in
a very general setting in terms of arboreal categories [4]. This provides a new set of tools
drawing on ideas from categorical semantics which can be applied to finite model theory,
descriptive complexity and combinatorics. Early examples of the use of these ideas can
be found in [25, 13, 2, 14], and further results are emerging rapidly, see e.g. [22, 12].
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7:2 Comonadic semantics for hybrid logic

In the present paper, we extend the program of comonadic semantics to hybrid logic. The
comonad which captures hybrid logic is a natural restriction of a pointed version of the
Ehrenfeucht-Fraïssé comonad previously introduced in [5]. This comonadic analysis nicely
reveals, in a clear and conceptual way, the way in which hybrid logic sits between basic
modal logic and first-order logic. We characterise the coalgebras for this comonad as tree
covers of a relational structure with additional locality constraints. This enables a uniform
treatment of logical equivalences, bisimulation games, and combinatorial parameters,
within the axiomatic framework recently given in [4].
Secondly, we give a novel semantic characterization of the version of hybrid logic we study,
in terms of invariance under disjoint extensions (and various equivalent formulations).
This is a minimal form of locality relative to a given base-point, and shows that hybrid
logic is the maximal fragment of first-order logic retaining a local character. A notable
feature of this result is that we give a uniform proof, valid for both the finite and infinite
cases. In particular, we make no use of the compactness theorem, and instead use
game-theoretic constructions, specifically a result we call the Workspace Lemma.
Apart from the interest of the results pertaining to hybrid logic in themselves, we see our
work here as fitting into and refining a larger picture, of an emerging landscape in which
the tractability of various logic fragments is mirrored in the structural properties of the
corresponding comonads. In particular, hybrid logic is undecidable, but still retains a
local character. A salient property which the modal and guarded fragments have, and
hybrid logic lacks, is the bisimilar companion property. This property plays a key role
in the uniform proofs of the van Benthem-Rosen Theorem for these fragments [24, 3].
We mitigate the failure of this property for hybrid logic by the use of game-theoretic
arguments. All of this will be explained in detail in Section 6.

After some preliminaries in Section 2, we shall introduce the hybrid comonad in Section 3,
and study the coalgebras for this comonad in Section 4. In Section 5, we characterize
the equivalence on structures induced by hybrid logic in terms of spans of open pathwise
embeddings for this comonad, following the pattern established in [5] and axiomatised in [4].
Then we develop the results on the semantic characterisation of hybrid logic in Section 6.

2 Preliminaries

We shall need a few notions on posets. Given x, y ∈ P for a poset (P,≤), we write x↑y
if x and y are comparable in the order, i.e. x ≤ y or y ≤ x. We will use finite sequences
extensively; these are partially ordered by prefix, with notation s ⊑ t indicating that list s is
a prefix of list t.

A relational vocabulary σ is a set of relation symbols R, each with a specified positive
integer arity. A σ-structure A is given by a set A, the universe of the structure, and for
each R in σ with arity n, a relation RA ⊆ An. A homomorphism h : A→ B is a function
h : A → B such that, for each relation symbol R of arity n in σ, for all a1, . . . , an in A:
RA(a1, . . . , an) ⇒ RB(h(a1), . . . , h(an)). We write Struct(σ) for the category of σ-structures
and homomorphisms.

Since evaluation in modal logics is relative to a given world, we shall also use the pointed
category Struct⋆(σ). Objects are pairs (A, a), where A is a σ-structure, and a ∈ A. Morphisms
h : (A, a)→ (B, b) are homomorphisms h : A→ B such that h(a) = b.

A modal vocabulary has only relation symbols of arity ≤ 2: a set of unary predicate
symbols P , which will correspond to modal propositional atoms; and a binary relation symbol
E, which we think of as a transition relation (more traditionally referred to as an accessibility
relation).
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2.1 Hybrid Temporal Logic
The main system we shall study is Hybrid Temporal Logic (HTL). HTL formulas are built
from propositional atoms p and world variables x, with the following syntax:

φ ::= p | x | ¬φ | φ ∧ φ′ | φ ∨ φ′ | □φ | ♢φ | □−φ | ♢−φ | ↓x. φ | @xφ.

We use a redundant syntax to make it more convenient to discuss fragments. The new features
compared with basic modal logic, augmented with backwards modalities as is standard in
temporal logic, are the world variables, which can be bound with ↓, and used to force
evaluation at a given world with @. Hybrid formulae are graded by their hybrid modal
depth. This is the usual notion of modal depth, with the adjustment that sub-formulae of
the form ♢x or ♢−x , for some world variable x, are deemed to have zero depth.

The semantics of hybrid temporal logic is given by translation into first-order logic with
equality over a unary modal vocabulary, with a unary predicate P for each proposition atom
p, and a single transition relation E. World variables are treated as ordinary first-order
variables. The translation is parameterised on a variable, corresponding to the world at
which the formula is to be evaluated. We write ψ[x/y] for the result of substituting x for the
free occurrences of y in ψ.

STx(p) = P (x)
STx(x′) = x = x′

STx(¬φ) = ¬ STx(φ)
STx(φ ∧ φ′) = STx(φ) ∧ STx(φ′)
STx(φ ∨ φ′) = STx(φ) ∨ STx(φ′)

STx(□φ) = ∀y.[E(x, y)→ STy(φ)]
STx(♢φ) = ∃y.[E(x, y) ∧ STy(φ)]

STx(□−φ) = ∀y.[E(y, x)→ STy(φ)]
STx(♢−φ) = ∃y.[E(y, x) ∧ STy(φ)]

STx(↓x′.φ) = STx(φ)[x/x′]
STx(@x′φ) = STx(φ)[x′/x]

The obvious stipulations about renaming bound variables to avoid variable capture apply.
The target of this translation is the bounded fragment of first-order logic with equality, with

quantifiers restricted to those of the form ∃y.[E(x, y)∧φ], ∀y.[E(x, y)→ φ], ∃y.[E(y, x)∧φ],
∀y.[E(y, x) → φ], with x ̸= y. Hybrid temporal logic is in fact equiexpressive with this
fragment [7].

Note that STx(♢y) is logically equivalent to E(x, y), and similarly STx(♢−y) is logically
equivalent to E(y, x) . Thus these formulas test for the presence of a transition between
worlds which have already been reached, justifying our assignment of modal depth 0.

3 The hybrid comonad

We shall now introduce the hybrid comonad on Struct⋆(σ) for modal vocabularies σ, motiv-
ating it as combining features of the Ehrenfeucht-Fraïssé and modal comonads from [5].

1. We recall firstly the Ehrenfeucht-Fraïssé comonad Ek on Struct(σ) for an arbitrary
vocabulary σ. Given a structure A, the universe of EkA is the set of non-empty sequences
of elements of A of length ≤ k. We think of these sequences as plays in the Ehrenfeucht-
Fraïssé game on A. We define the map εA : EkA → A which sends a sequence to
its last element, which we think of as the current move or focus of the play. For a
relation R of arity n, we define REkA(s1, . . . , sn) to hold iff si↑sj for all 1 ≤ i, j ≤ n, and
RA(εA(s1), . . . , εA(sn)). Explicitly, for unary predicates P , PEkA(s) iff PA(εA(s)), and
for a binary relation R, REkA(s, t) iff s↑t and RA(εA(s), εA(t)). Thus the relations hold
along plays as one extends another, but not between different (i.e. incomparable) plays.
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7:4 Comonadic semantics for hybrid logic

2. This construction lifts to the pointed category Struct⋆(σ). We define the universe of
Ek(A, a) to comprise the non-empty sequences of length ≤ k + 1 which start with a.
The distinguished element is ⟨a⟩. The relations are lifted in exactly the same way as
previously.

3. The modal comonad Mk over a modal vocabulary with unary predicates P corresponding
to propositional atoms, and a single transition relation E, restricts the sequences in
Ek(A, a) to those of the form ⟨a0, . . . aj⟩, a0 = a, such that for all i with 0 ≤ i < j,
EA(ai, ai+1). Thus we can only extend a sequence with an element which the previous
element “sees”. Moreover, the transition relation E is lifted in a correspondingly local
fashion, so that a sequence is only related to its immediate extensions: EMk(A,a)(s, t) iff
t = s⟨a′⟩ and EA(εA(s), εA(t)). This is the familiar unravelling construction for modal
structures [9].

4. The hybrid comonad Hk is again defined on the pointed category Struct⋆(σ). Hk(A, a)
has as universe the subset of Ek(A, a) of those sequences ⟨a0, a1, . . . , al⟩ such that a0 = a,
and for all j with 0 < j ≤ l, for some i, 0 ≤ i < j, EA(ai, aj) or EA(aj , ai) . Thus we
relax the locality condition of Mk to the condition that a sequence can only be extended
with an element if it is related to some element which has been played previously. The
σ-relations on Hk(A, a) are defined exactly as for Ek(A, a), and the distinguished element
is ⟨a⟩, so Hk(A, a) is the induced substructure of Ek(A, a) given by this restriction of the
universe. In this sense, Hk is closer to Ek than to Mk.

To complete the specification of Hk, we define the coKleisli extension: given a morphism
h : Hk(A, a)→ (B, b), we define h∗ : Hk(A, a)→ Hk(B, b) by

h∗(⟨a, a1, . . . , ai⟩) = ⟨h(⟨a⟩), h(⟨a, a1⟩), . . . , h(⟨a, a1, . . . , ai⟩)⟩.

We can verify that for each structure A, εA : HkA→ A is a morphism; that for each morphism
h : Hk(A, a) → (B, b), h∗ : Hk(A, a) → Hk(B, b) is a morphism; and that the following
equations are satisfied, for all morphisms h : Hk(A, a)→ (B, b), g : Hk(B, b)→ (C, c):

εA ◦ h∗ = h, ε∗
A = idHkA, (g ◦ h∗)∗ = g∗ ◦ h∗,

This establishes the following result.

▶ Proposition 1. The triple (Hk, ε, (·)∗) is a comonad in Kleisli form [21].

It is then standard [21] that Hk extends to a functor by Hkf = (f ◦ ϵ)∗; that ε is a natural
transformation; and that if we define the comultiplication δ : Hk ⇒ H2

k by δA = id∗
HkA

, then
(Hk, ε, δ) is a comonad.

3.1 I-morphisms and equality
Like the Ehrenfeucht-Fraïssé comonad Ek, and unlike the modal comonad Mk, equality
is important for Hk, as we might expect from its appearance in the translation of hybrid
temporal logic into first-order logic. We shall follow the procedure introduced in [5, Section
4] to ensure that equality is properly handled in Ek.

The issue is that elements of A may be repeated in the plays in Hk(A, a). In particular,
this happens when there are cycles in the graph (A,EA) which are reachable from a. We wish
to view coKleisli morphisms f : Hk(A, a) → (B, b) as winning strategies for Duplicator in
the one-sided (or existential) Spoiler-Duplicator game from (A, a) to (B, b), in which Spoiler
plays in A and Duplicator in B [18]. In order to fulfil the partial homomorphism winning
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condition, f must map repeated occurrences of an element a′ ∈ A in a play s in Hk(A, a) to
the same element of B. The same issue will recur when we deal with back-and-forth games
in section 5. We seek a systematic means of enforcing this requirement.

Given a relational vocabulary σ, we produce a new one σ+ = σ ∪ {I}, where I is a binary
relation symbol not in σ. If we interpret I(A,a) and I(B,b) as the identity relations on A

and B, then, following the general prescription for relation lifting in Ek(A, a), and hence
also in Hk(A, a) as an induced substructure of Ek(A, a), we have I(HkA,a)(s, t) iff s↑t and
εA(s) = εA(t). Thus a σ-morphism f : (HkA, a)→ (B, b) satisfies the required condition iff
it is a σ+-morphism.

As it stands, this is an ad hoc condition: it relies on a special interpretation of the I-
relation. We want our objects to live in Struct⋆(σ), but our morphisms to live in Struct⋆(σ+).
To accomplish this, we use a simple special case of the notion of relative comonad [6]. We
can take advantage of the fact that Ek, and hence Hk as a sub-comonad of Ek, is defined
uniformly in the vocabulary. Given a vocabulary σ, there is a full and faithful embedding
J : Struct⋆(σ) → Struct⋆(σ+) such that IJ(A,a) is the identity on A. Moreover, we have a
comonad EI

k, which is the Ek construction applied to Struct⋆(σ+). Note that this treats I
like any other binary relation in the vocabulary.

We correspondingly obtain HI
k(A, a) as the substructure of EI

k(A, a) induced by restricting
the universe to that of Hk(A, a). It is important to note that only the transition relation E

is used to restrict the universe.
We use this data to obtain the J-relative comonad H+

k = HI
k◦J on Struct⋆(σ). The objects

of the coKleisli category for this relative comonad are those of Struct⋆(σ). CoKleisli morphisms
have the form HI

kJ(A, a)→ J(B, b). The counit and coextension are the restrictions of those
for HI

k to the image of J .

3.2 CoKleisli maps, existential games, and the existential positive
fragment

The standard k-round existential Ehrenfeucht-Fraïssé game from A to B [18, 5] is defined as
follows. In each round i, Spoiler moves by choosing an element ai from A, and Duplicator
responds by choosing an element bi from B. The winning condition for Duplicator is that
the correspondence ai 7→ bi is a partial homomorphism from A to B.

The k-round existential hybrid game from (A, a) to (B, b) is defined in exactly the same
way, with two additional provisos:

At round 0, Spoiler must play a0 = a, and Duplicator must respond with b0 = b.
At round j > 0, Spoiler must play a move aj such that, for some i < j, EA(ai, aj)
or EA(aj , ai).

▶ Proposition 2. There is a bijective correspondence between
Winning strategies for Duplicator in the k-round existential hybrid game from (A, a) to
(B, b)
CoKleisli morphisms h : H+

k (A, a)→ J(B, b).
The existential positive fragment HTL♢ of hybrid temporal logic is defined by omitting

negation and both □ and □− from the syntax for hybrid logic given in section 2.1. HTL♢
k is

the fragment of HTL♢ comprising formulas of hybrid modal depth ≤ k.
This fragment induces a preorder on pointed structures. Define (A, a) ⇛HTL

k (B, b) as:

∀φ ∈ HTL♢
k . [(A, a) |= φ ⇒ (B, b) |= φ].

Here by (A, a) |= φ we mean (A, a) |= ψ(x), where ψ(x) = STx(φ).
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7:6 Comonadic semantics for hybrid logic

The following is a variation on standard results (see e.g. [9, 5]).

▶ Proposition 3. There is a winning strategy for Duplicator in the k-round existential hybrid
game from (A, a) to (B, b) iff (A, a) ⇛HTL

k (B, b).

We define another preorder on pointed structures: (A, a)→H
k (B, b) iff there is a coKleisli

morphism h : H+
k (A, a) → J(B, b). The following is then an immediate consequence of

Propositions 2 and 3.

▶ Theorem 4. Let σ be a finite modal vocabulary. For all (A, a), (B, b) in Struct⋆(σ):

(A, a) ⇛HTL
k (B, b) ⇐⇒ (A, a)→H

k (B, b).

4 Coalgebras

We now study coalgebras for the hybrid comonad. These will yield a natural combinatorial
invariant associated with hybrid logic, and also provide a basis for the semantic characteriz-
ation of the equivalence on structures induced by hybrid logic, which will be given in the
following section.

A coalgebra for a comonad (G, ε, δ) is a morphism α : A→ GA such that εA ◦ α = idA

and δA ◦ α = G(α) ◦ α. Given G-coalgebras α : A → GA and β : B → GB, a coalgebra
morphism from α to β is a morphism h : A→ B such that β ◦ h = G(h) ◦ α. This gives a
category of coalgebras and coalgebra morphisms, denoted by EM(G), the Eilenberg-Moore
category of G.

We will now analyze EM(Hk), the category of coalgebras for the hybrid comonad on a
unimodal vocabulary σ. This will lead to a natural combinatorial parameter associated with
hybrid temporal logic, which is a refinement of tree-depth [23]. It will also provide a basis for
a comonadic characterisation of bisimulation and the equivalence on structures induced by
the full hybrid temporal logic, as we will see in the next section.

We will need a few more notions on posets. A chain in a poset (P,≤) is a subset C ⊆ P
such that, for all x, y ∈ C, x↑y. A forest is a poset (F,≤) such that, for all x ∈ F , the set
of predecessors ↓(x) := {y ∈ F | y ≤ x} is a finite chain. The height ht(F ) of a forest F is
supC |C|, where C ranges over chains in F . Note that the height is either finite or ω. A tree
is a forest with a least element (the root). We write the covering relation for a poset as ≺;
thus x ≺ y iff x ≤ y, x ̸= y, and for all z, x ≤ z ≤ y implies z = x or z = y. Morphisms of
trees are monotone maps preserving the root and the covering relation.

Given a σ-structure A, the Gaifman graph G(A) is (A,⌢), where a ⌢ a′ (a is adjacent
to a′) if they are distinct elements of A which both occur in a tuple of some relation RA, R
in σ.

A tree cover of a pointed σ-structure (A, a) is a tree order (A,≤) on A with least element
a, and such that if a ⌢ a′, then a↑a′. Thus adjacent elements in the Gaifman graph must
appear in the same branch of the tree. The tree cover is generated if for all a′ ∈ A with
a′ ̸= a, for some a′′ ∈ A, a′′ < a′ and a′ ⌢ a′′. Tree covers of a pointed structure are neither
unique, nor guaranteed to exist.

▶ Theorem 5. For any pointed σ-structure (A, a), and k > 0, there is a bijective correspond-
ence between:

Hk-coalgebras α : (A, a)→ Hk(A, a).
Generated tree covers of (A, a) of height ≤ k + 1.
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We define the generated tree depth of (A, a) to be the minimum height of any generated
tree cover of (A, a). This can be seen as a refinement of the standard notion of tree depth [23].

We define the hybrid coalgebra number of (A, a) to be the least k such that there is an
Hk-coalgebra α : (A, a)→ Hk(A, a). If there is no coalgebra for any k, the hybrid coalgebra
number is ω. The following is an immediate consequence of Theorem 5.

▶ Theorem 6. The generated tree depth of a structure (A, a) coincides with its hybrid
coalgebra number.

We define a category Tree(σ) with objects (A, a,≤), where (A, a) is a pointed σ-structure,
and ≤ is a generated tree cover of (A, a). Morphisms h : (A, a,≤)→ (B, b,≤′) are morphisms
of pointed σ-structures which are also tree morphisms. That is, they preserve the covering
relation ≺ in the tree order, and the root element. For each k > 0, there is a full subcategory
Tree(σ)k determined by those objects whose covers have height ≤ k.

▶ Theorem 7. For each k > 0, Tree(σ)k is isomorphic to EM(Hk).

There is an evident forgetful functor Uk : Tree(σ)k → Struct⋆(σ) which sends (A, a,≤)
to (A, a). The following is now an immediate consequence of Theorem 7.

▶ Theorem 8. For each k > 0, Uk has a right adjoint Rk : Struct⋆(σ)→ Tree(σ)k given by
Rk(A, a) = (Hk(A, a),⊑). The comonad induced by this adjunction is Hk. The adjunction is
comonadic.

5 Paths, open maps, and back-and-forth equivalence

The coalgebra category EM(Hk) has a richer structure than Struct⋆(σ), articulated as
Tree(σ)k by Theorem 7. In fact, Tree(σ)k is an arboreal category as defined in [4]. The
axiomatic structure of an arboreal category allows us to define notions of bisimulation
and games on this category, which can then be transferred to Struct⋆(σ) via the adjunction
Uk ⊣ Rk, following the general pattern laid out in [5]. This leads to a semantic characterisation
of the equivalence on structures induced by hybrid logic.

To accommodate I-morphisms, as discussed in section 3.1, we work with the J-relative
version of this adjunction, using R+

k = RI
kJ , where RI

k is the instance of the adjunction for
Struct⋆(σ+).

5.1 Embeddings, paths and pathwise embeddings

A morphism e in Tree(σ)k is an embedding if Uk(e) is an embedding of relational structures.
We write e : T ↣ U to indicate that e is an embedding.

A path in Tree(σ)k is an object P such that the associated tree cover is a finite linear
order, so it comprises a single branch; moreover, IP is the identity relation. We say that
e : P ↣ T is a path embedding if P is a path. A morphism f : T → U in Tree(σ)k is a
pathwise embedding if for any path embedding e : P ↣ T , f ◦ e is a path embedding.

5.2 Open maps

A morphism f : T → U in Tree(σ)k is open if, whenever we have a commuting diagram such
as 1, where P and Q are paths, there is an embedding Q↣ T such that 2 commutes.
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P Q

T U
f

(1)
P Q

T U
f

(2)

This is often referred to as the path-lifting property. If we think of f as witnessing a simulation
of T by U , path-lifting means that if we extend a given behaviour in U (expressed by extending
the path P to Q), then we can find a matching behaviour in T to “cover” this extension.
Thus it expresses an abstract form of the notion of “p-morphism” from modal logic [9], or of
functional bisimulation.

5.3 Bisimulation
We can now define the back-and-forth equivalence (A, a) ↔H

k (B, b) between structures
in Struct⋆(σ). This holds if there is a span of open pathwise embeddings in Tree(σ)k

R+
k (A, a)← T → R+

k (B, b). Note that we are using the arboreal category Tree(σ)k to define
an equivalence on the “extensional category” Struct⋆(σ).

5.4 Games
We shall now define a back-and-forth game Gk((A, a), (B, b)) played between (A, a) and (B, b),
using the comonad Hk. Positions of the game are pairs (s, t) ∈ Hk(A, a) × Hk(B, b). The
initial position is (⟨a⟩, ⟨b⟩).

We define a relation W((A, a), (B, b)) on positions as follows. A pair (s, t) is in
W((A, a), (B, b)) iff for some path P , path embeddings e1 : P ↣ Hk(A, a) and e2 : P ↣
Hk(B, b), and p ∈ P , s = e1(p) and t = e2(p). The intention is that W((A, a), (B, b)) picks
out the winning positions for Duplicator.

At the start of each round of the game, the position is specified by (s, t) ∈ Hk(A, a)×
Hk(B, b). The round proceeds as follows. Either Spoiler chooses some s′ ≻ s, and Duplicator
must respond with t′ ≻ t, resulting in a new position (s′, t′); or Spoiler chooses some t′′ ≻ t
and Duplicator must respond with s′′ ≻ s, resulting in (s′′, t′′). Duplicator wins the round if
they are able to respond, and the new position is in W((A, a), (B, b)).

5.5 Results
▶ Theorem 9. Given (A, a), (B, b) in Struct⋆(σ), then (A, a)↔H

k (B, b) iff Duplicator has a
winning strategy for Gk((A, a), (B, b)).

Proof. The proof is a minor variation of that for [5, Theorem 10.1], the corresponding result
for Ek. Alternatively, this is an instance of the very general [4, Theorem 6.9]. ◀

The standard k-round Ehrenfeucht-Fraïssé game between A and B [20] is defined as
follows. In each round i, Spoiler moves by either

choosing an ai ∈ A, to which Duplicator responds by choosing a bi ∈ B; or
choosing a bi ∈ B, to which Duplicator responds by choosing an ai ∈ A.

The winning condition for Duplicator is that the correspondence ai 7→ bi is a partial
isomorphism from A to B.

The k-round back-and-forth hybrid game between (A, a) and (B, b) is defined in exactly
the same way, with two additional provisos:
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At round 0, Spoiler must either play a0 = a, to which Duplicator must respond with
b0 = b; or b0 = b, to which Duplicator must respond with a0 = a

At round j > 0, if Spoiler plays a move aj ∈ A then, for some i < j, EA(ai, aj) or
EA(aj , ai); while if Spoiler plays a move bj ∈ B then, for some i < j, EB(bi, bj) or
EB(bj , bi).

The partial isomorphism winning condition ensures that Duplicator is subject to the same
constraints.

We write HTLk for the set of hybrid formulas of modal depth k. We define an equivalence
relation on pointed structures (A, a) ≡HTL

k (B, b) as ∀φ ∈ HTLk. [(A, a) |= φ⇐⇒ (B, b) |= φ].

▶ Theorem 10. Let σ be a finite unimodal vocabulary. For all (A, a), (B, b) in Struct⋆(σ),
the following are equivalent:
1. (A, a)↔H

k (B, b).
2. Duplicator has a winning strategy for the k-round back-and-forth hybrid game between

(A, a) and (B, b).
3. (A, a) ≡HTL

k (B, b).

6 Semantic characterization of hybrid temporal logic

We shall now prove a semantic characterisation of hybrid temporal logic in terms of invariance
under disjoint extensions. A related result is already known [16, 7], however there are several
novel features in our account:

The previous results are for general (possibly infinite) structures, using tools from infinite
model theory. We will give a uniform proof, which applies both to general structures, and
to the finite case, which, as for the van Benthem-Rosen characterisation of basic modal
logic in terms of bisimulation invariance [27, 26], is an independent result.
Our proof follows similar lines to the uniform proof by Otto of the van Benthem-Rosen
Theorem [24]. In particular, we use constructive arguments based on model comparison
games, rather than model-theoretic constructions involving compactness. However, a key
property used in his proof no longer holds for the hybrid fragment, so the argument has
to take a different path.
We also identify a key combinatorial lemma, implicit in [24], which we call the Workspace
Lemma.
One of the equivalent conditions in our characterization, invariance under disjoint ex-
tensions, appears to be new in this context. We can regard invariance under disjoint
extensions as a minimal form of locality relative to a given basepoint. Thus this charac-
terization shows that hybrid temporal logic defines the maximal fragment of first-order
logic which retains a local character in this sense.

6.1 Comonadic aspects
Comonadic semantics have now been given for a number of important fragments of first-order
logic: the quantifier rank fragments, the finite variable fragments, the modal fragment,
and guarded fragments. In the landscape emerging from these constructions, some salient
properties have come to the fore. These are properties which a comonad, arising from an
arboreal cover in the sense of [4], may or may not have:

The comonad may be idempotent, meaning that the comultiplication is a natural iso-
morphism. Idempotent comonads correspond to coreflective subcategories, which form the
Eilenberg-Moore categories of these comonads. The modal comonads Mk are idempotent.
The corresponding coreflective subcategories are of those modal structures which are
tree-models to depth k [5].
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The comonad C may satisfy the following property: for each structure A, CA ↔C A,
where ↔C is the back-and-forth equivalence associated with C. We shall call this the
bisimilar companion property. Note that an idempotent comonad, such as Mk, will
automatically have this property. The guarded comonads Gk from [2] are not idempotent,
but have the bisimilar companion property, which is thus strictly weaker.
Finally, the comonads Ek and Pk have neither of the above properties. Unlike the modal
and guarded fragments, the quantifier rank and finite variable fragments cover the whole
of first-order logic, so we call these comonads expressive.

Thus we have a strict hierarchy of comonads in the arboreal categories framework:

idempotent ⇒ bisimilar companions ⇒ arboreal.

This hierarchy is correlated with tractability: the modal and guarded fragments are decidable,
and have the tree-model property [28, 17], while the expressive fragments do not. We can
regard these observations as a small first step towards using structural properties of comonadic
semantics to classify logic fragments and their expressive power. In [3], idempotence is used
to give simple, general proofs of homomorphism preservation theorems for counting quantifier
fragments, with an application to graded modal logic; while the bisimilar companion property
is used to give a general, uniform Otto-style proof of van Benthem-Rosen theorems.

As we have already remarked, the hybrid comonads are closer to the Ehrenfeucht-Fraïssé
comonads Ek than to the modal comonads Mk. Indeed, the Hk comonads are neither
idempotent, nor have the bisimilar companion property. On the tractability side, they are
not decidable [7]. At the same time, they are not fully expressive for first-order logic, thus
refining the above hierarchy.

Otto’s proof of the van Benthem-Rosen theorem in [24] uses the bisimilar companion
property. This is made explicit in the account given in [3]. Because Hk does not have this
property, we shall use a different comonad in our invariance proof for the hybrid fragment.

Given a structure A, we can define a metric on A valued in the extended natural numbers
N ∪ {∞}, given by the path distance in the Gaifman graph G(A) [20]. We set d(a, b) =∞ if
there is no path between a and b. We write A[a; k] for the closed ball, centred on a, also
referred to as the k-neighbourhood of a. Given (A, a), we define Sk(A, a) to be (A[a; k], a),
where A[a; k] is the substructure of A induced by A[a; k]. This defines a comonad on
Struct⋆(σ). The counit is the inclusion map, while coextension is the identity operation
on morphisms, h∗ = h. The fact that h is a σ-homomorphism implies that paths are
preserved, so this is well defined. It is easily verified that Sk is an idempotent comonad.
The corresponding coreflective subcategory of Struct⋆(σ) is the full subcategory of structures
which are k-reachable from the initial elements. We can also define an idempotent comonad
S, where S(A, a) :=

⋃
k∈N Sk(A, a).

We can use this comonad to state the invariance property of interest. We say that a first-
order formula φ(x) is invariant under generated substructures if for all (A, a) in Struct⋆(σ):
(A, a) |= φ ⇐⇒ S(A, a) |= φ. It is invariant under k-generated substructures if for all
(A, a) in Struct⋆(σ): (A, a) |= φ ⇐⇒ Sk(A, a) |= φ. We use the standard disjoint union of
structures, A + B. This is the coproduct in Struct(σ). We say that a sentence φ is invariant
under disjoint extensions if for all (A, a), B: (A, a) |= φ ⇐⇒ (A + B, a) |= φ.

We can now state our main result.

▶ Theorem 11 (Characterisation Theorem). For any first-order formula φ(x) with quantifier
rank q, the following are equivalent:
1. φ is invariant under generated substructures.
2. φ is invariant under q2q-generated substructures.
3. φ is invariant under disjoint extensions.
4. φ is equivalent to a sentence ψ of hybrid temporal logic with modal depth ≤ q2q.
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Note that this theorem has two versions, depending on the ambient category C relative to
which equivalence is defined: ∀(A, a) ∈ C. (A, a) |= φ ⇐⇒ (A, a) |= ψ. The first version, for
general models, takes C = Struct⋆(σ). The second, for finite models, takes C = Structf

⋆(σ),
the full subcategory of finite structures. Neither of these two versions implies the other.
Following Otto [24], we aim to give a uniform proof, valid for both versions.

6.2 Proof of the Characterisation Theorem
Firstly, since any sentence can only use a finite vocabulary, we can assume without loss of
generality in what follows that σ is finite. This implies that up to logical equivalence, the
fragment HTLk is finite.

Given a formula φ, we write Mod(φ) := {(A, a) | (A, a) |= φ}. We shall use the following
variation of a standard result.

▶ Lemma 12 (Definability Lemma). For each k > 0 and structure (A, a), there is a sentence
θ

(k)
(A,⃗a) ∈ HTLk such that, for all (B, b), (A, a) ≡HTL

k (B, b⃗) ⇐⇒ (B, b) |= θ
(k)
(A,⃗a).

This says that [(A, a)]≡HTL
k

= Mod(θ(k)
(A,⃗a)). Since ≡HTL

k has finite index, this implies that if
Mod(φ) is saturated under ≡HTL

k , φ is equivalent to a finite disjunction
∨n

i=1 θ
(k)
(Ai ,⃗ai), and

hence to a formula in HTLk.

The Workspace Lemma
A key step in the argument is a general result we call the Workspace Lemma. A special case
of this is implicit in [24]. Note that ≡q is elementary equivalence up to quantifier rank q.

▶ Lemma 13 (Workspace Lemma). Given (A, a) and q > 0, there is a structure B such that
(A + B, a) ≡q (A[a; k] + B, a), where k = 2q. Moreover, |B| ≤ 2q|A|. Hence if A is finite, so
is B.

The intuition for the workspace lemma is that the structure B, the workspace, contains
enough disjoint copies of A and A[a; k] that Spoiler cannot tell the composite structures
apart in q rounds of the Ehrenfeucht-Fraïssé game. The idea of Duplicator’s strategy is
that if Spoiler plays a move that is close to a previous position, in terms of distance in the
Gaifman graph, Duplicator responds in the corresponding component of the other structure.
If on the other hand Spoiler chooses a position that is “far away” from previously chosen
positions, Duplicator responds in a fresh component of the appropriate type. The number of
copies of both structures in the workspace, and the distances involved, are chosen so that
everything is kept sufficiently far apart that Spoiler cannot see the difference between A + B

and A[a; k] + B. The formal argument is a delicate induction, which can be carried out at
the level of generality of metric spaces.

We shall also require a few additional lemmas in our proof of the characterisation theorem.
The following is immediate from the definitions.

▶ Proposition 14. For each structure (A, a) in Struct⋆(σ), we have SkS(A, a) = Sk(A, a).

The following lemma allows us to restrict our attention to generated substructures when
considering HTL equivalence.

▶ Lemma 15. For all k,m > 0, if (A, a) ≡HTL
m (B, b) then Sk(A, a) ≡HTL

m Sk(B, b).

MFCS 2022
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We also need the following result to strengthen HTL equivalence to first-order equivalence.
We do so by lifting a Duplicator strategy for the hybrid game to one for the Ehrenfeucht-
Fraïssé game, at the expense of some logical resources needed to traverse the structures
step-by-step in the hybrid game.

▶ Lemma 16. For all k, q > 0, if Sk(A, a) ≡HTL
kq Sk(B, b) then Sk(A, a) ≡q Sk(B, b).

Proof of the characterisation theorem
Proof of Theorem 11.

(2) ⇒ (1). Assume that φ is Sk-invariant. Using Proposition 14, (A, a) |= φ iff Sk(A, a) |= φ

iff SkS(A, a) |= φ iff S(A, a) |= φ.

(1) ⇒ (3). This follows immediately from the fact that S(A + B, a) = S(A, a).

(3) ⇒ (4). Suppose that φ is invariant under disjoint extensions (abbreviated as IDE). Let
k = 2q. We shall use Lemma 12. Suppose that (i) (A, a) |= φ, and (ii) (A, a) ≡HTL

kq (B, b).
We must show that (B, b) |= φ. Applying the Workspace Lemma twice, let C, D be such
that (iii) (A + C, a) ≡q (A[a; k] + C, a) and (iv) (B + D, b) ≡q (B[b; k] + D, b). From (ii),
applying lemmas 15 and 16, we have (v) Sk(A, a) ≡q Sk(B, b). Now

(A, a) |= φ ⇒ (A + C, a) |= φ IDE
⇒ (A[a; k] + C, a) |= φ (iii)
⇒ Sk(A, a) |= φ IDE
⇒ Sk(B, b) |= φ (v)
⇒ (B[b; k] + D, b) |= φ IDE
⇒ (B + D, b) |= φ (iv)
⇒ (B, b) |= φ IDE

(4) ⇒ (2). We must show that if ψ is a formula in HTLk, then it is invariant under
k-generated substructures. This follows by a straightforward induction on syntax. ◀

▶ Question 1. In his proof of the van Benthem-Rosen Theorem, Otto establishes an exponen-
tial succinctness gap between first-order logic and basic modal logic. A bisimulation-invariant
first order formula of quantifier rank q has a modal equivalent of modal depth ≤ 2q. He shows
that this is optimal. In our case, we have a gap of q2q. Is this optimal for hybrid temporal
logic?

7 Further Directions

Everything which has been done for hybrid temporal logic in the present paper can be
extended to the bounded fragment of first-order logic. This generalises the hybrid comonad,
allowing both arbitrary relational vocabularies and constant symbols. Allowing for constants
c1, . . . , cm involves working with the m-pointed category Structm(σ). This has objects (A, a⃗),
where a⃗ = ⟨a1, . . . , am⟩ ∈ Am. Morphisms h : (A, a⃗) → (B, b⃗) must preserve these tuples.
The intention is that ai = cAi . Note that Struct⋆(σ) = Struct1(σ). The comonad constructions
can be adapted smoothly to this setting, and the corresponding results go through without
any problems.
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Another variation is to consider hybrid logic without the backwards modalities □−,
♢−. The semantic significance of this is that directed rather than undirected reachability
becomes the salient notion. The comonadic constructions can be adapted to this setting
straightforwardly, but the semantic characterization results cannot be transferred directly.
We leave the resolution of this issue to future work.
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Abstract
The computational complexity of pairwise energy minimisation of N points in real space is a long-
standing open problem. The idea of the potential intractability of the problem was supported by a
lack of progress in finding efficient algorithms, even when restricted the integer grid approximation.
In this paper we provide a firm answer to the problem on Zd by showing that for a large class of
pairwise energy functions the problem of periodic energy minimisation is NP-hard if the size of
the period (known as a unit cell) is fixed, and is undecidable otherwise. We do so by introducing
an abstraction of pairwise average energy minimisation as a mathematical problem, which covers
many existing models. The most influential aspects of this work are showing for the first time:
1) undecidability of average pairwise energy minimisation in general 2) computational hardness for
the most natural model with periodic boundary conditions, and 3) novel reductions for a large class
of generic pairwise energy functions covering many physical abstractions at once. In particular, we
develop a new tool of overlapping digital rhombuses to incorporate the properties of the physical
force fields, and we connect it with classical tiling problems. Moreover, we illustrate the power of
such reductions by incorporating more physical properties such as charge neutrality, and we show an
inapproximability result for the extreme case of the 1D average energy minimisation problem.
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1 Introduction

Periodic structures and models with periodic boundary conditions appear both in nature
and in mathematical interpretations of physical phenomena: spin systems in Ising models [8],
Buckingham–Coulomb inter-atomic potential modelling crystal structures [32], Lennard-Jones
potential in inter-molecular interaction [13]. Periodic boundary conditions are often used
either to define, or to approximate, a large or infinite system from a small partition, known
as a unit cell. The series of repeating unit cells in every dimension forms a periodic structure.
A unit cell can be defined as a mapping from the points within a contiguous subspace of a
lattice to a finite set of “colours”, an abstraction that may be used to represent anything
from ions to spin states. The main advantage of this model is that the periodic structure
allows the properties of the effectively infinite global structure to be determined from the
finite unit cell. This advantage has led to these structures attracting a great deal of attention
in mathematics, physics, biology, chemistry and computer science [1, 12, 17, 18, 19, 20].
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From the perspective of the physical sciences, one of the most fundamental properties is
the potential energy of the structure, representing the sum of pairwise attractions between
ions (or spins) within the unit cell. Usually, the energy landscape is a highly non-convex
function with many local minima and saddle points. The fundamental optimisation problem,
associated with predicting various physical phenomena in both periodic structures and a
single unit cell, is known as the cluster problem [34]:

“In which way can N points be occupied (in real space) so as to minimise the sum of
their interactions?”

A lack of progress with the design of efficient algorithms for solving this fundamental
optimisation problem led to various hypotheses about its intractability, which has not been
formally addressed due to a large number of variants and complexity of practical details
regarding the problem. However, very recently the first NP-hard result was shown for closely
related removal problem: Given a cluster of N points, can a subset of them be removed to
minimise the total energy of pairwise Buckingham–Coulomb interaction [3].

This paper builds upon these previous results, showing that hardness results apply even
under the more realistic periodic boundary conditions. In the context of crystal structure
prediction, this refers to the periodic structure of the crystal, meaning that the global
structure of the crystal is represented by a repeating period. Previous work [3, 11] has
focused on the interaction within the unit cell, while ignoring this periodic conditions.

In this paper, we propose a more universal approach and analyse the computational
complexity of the original cluster problem for a large class of pairwise energy minimisation
functions under more realistic periodic boundary conditions. We introduce an abstract class
of r-distance Common Minimum Value functions (CMV(r)), which capture typical properties
of classical force-fields of pairwise interaction (attraction, repulsion) and incorporates the
variable depth r of such interaction. Then we show that the cluster problem is NP-hard
if the size of the unit cell is fixed and that it is undecidable otherwise for any function in
the class CMV(r) defined on two or three dimensional grids (Z2 or Z3). Moreover, we show
that particular known classical energy-interaction functions fit to this class and inherit the
results on the computational complexity. In the case of 1D grids, we design a parameterised
polynomial-time algorithm to solve the fixed period pairwise energy minimisation problem.
Finally, we show that under the extra physical constraint of charge-neutrality (the total sum
of charges/weights associated with points in the unit cell is zero) the problem still remains
undecidable for 2 and 3 dimensions, and in dimension one it cannot be approximated within
any constant factor unless P = NP .

Crystal Structure Prediction and Computational Complexity. Predicting crystal structures
by computational methods without experimental input is the Holy Grail of crystallography
and material science; it has remained a noted open problem for over 30 years [24]. In general,
Crystal Structure Prediction (csp) asks to identify the periodic crystal structure from a
given set of ions – electromagnetically charged atoms – that minimise its potential energy
based on some model of interaction.

A crystal is a structure defined by a repeating period called a unit cell. Informally, the
unit cell can be thought of as a three dimensional box containing ions, see Figure 1. Each ion
belongs to a class called a species, determining the properties of the ion. The unit cell acts
as a periodic mapping from some set of ion species to the space R3, or in the discrete setting
to a grid such as the integer grid Z3. In a discrete space, the unit cell can be represented
as a necklace or bracelet [4, 2]. In the most general formulations of csp the size and shape
of the unit cell are unconstrained, however bounding the size and the shape is a common
restriction for many cases of csp [12].
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Crystal structure prediction can be thought of as the problem of finding the “best”
configuration of ions within a three-dimensional box, but it is also important for dimension
one and two, see [12]. The quality of a configuration is determined by the average pairwise
interaction between each ion in the structure. The pairwise interaction in turn is determined
by an energy function, taking as input the distance between ions and a set of parameters
based on the ion species. A positive interaction between ions corresponds to a force pushing
the ions apart, while a negative interaction indicates a force of attraction. The goal of csp is
to find a stable structure, indicated by having the minimal average pairwise interaction [23].

Input

Specie 1

Specie 2

Specie 3

Crystal Unit Cell

Figure 1 Left: A high level example of csp. The input is a set of 3 species of ions (green, yellow,
and blue), where each pair has an interaction computed by a given function determined by the
distance and species. This set of species is transformed into a crystal structure (middle) defined
by a unit cell (right). Right: Example of a Sodium Chloride crystal with the ionic structure. The
middle and right pictures are shared under the creative commons licence.

Despite countless heuristics attempts such as quasi-random sampling [27, 29], basin hoping
[6, 15, 16], simulated annealing [26, 30], swarm optimisation [9, 33], and genetic algorithms
[14, 22, 25] the computational complexity of the csp problem has not been investigated [10].
The recent interdisciplinary initiative to combine chemical knowledge with state of the
art computer science techniques has lead to the first formalisation of csp as a theoretical
computer science problem [3, 6].

Our Contributions. This work introduces the average pairwise energy minimisation problem
on Zd as a generalisation of the physically motivated models and approximation of real space
using the integer grid Zd. This problem can be seen as a variant on the well studied class of
tiling problems [5, 7]. Rather than the “hard” constraints of a tiling problem, where tiles can
only be placed adjacent to each other if they fulfil a set of strict conditions, our model uses
“soft” constraints, giving an energy value to the interaction between each pair of vertices in
the grid based on distance and the colour of the vertices.

Our main result is showing the average pairwise energy minimisation problem on Zd to be
NP-hard when the size of the unit cell is fixed and is undecidable otherwise. This strengthens
the argument that csp is intractable for a fixed-size unit cell and undecidable in general.

Our proof of both intractability and undecidability come by way of a series of reductions
starting with the periodic tiling problem. This series of reductions is designed to enable us to
more easily encode the concept of orientation into the pairwise interaction constraints that
the average pairwise energy minimisation problem on Zd uses. In the periodic tiling problem
it is necessary for all tiles to have a shared orientation in order for the undecidability results
to hold, however our physically motivated models determine interaction only by the colour
of the vertices, and the distance between them. To encode this property we introduce two
problems: the k-unique radius tiling problem (defined in Section 3.1), and the r-discretised
rhombus all-distinct periodic complete assignment problem (defined in Section 3.2). Figure 2
provides a sketch of this process. We strengthen our results by showing that they hold under
the further constraint of charge neutrality, an abstraction of the physical constraint that the
periods of these structures must have an equal number of positive and negative charges.

MFCS 2022
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Tiling Problem
k-unique radius
tiling problem

r-discretised rhombus
assignment problem

The average pairwise energy

minimisation problem on Z2

Figure 2 High level overview our series of reductions starting with the tiling problem.

2 Preliminaries

Informally, the average pairwise energy minimisation problem on Zd can be thought of as
the problem of determining a way of colouring the infinite grid Zd with a finite period, while
minimising the average pairwise interaction energy. The pairwise interaction energy between
each pair of points on Zd is determined by the colours of the points, and the distance between
them. The period of a colouring is called the unit cell, which may equivalently be thought of
as a mapping from the set of colours to the grid.

▶ Definition 1 (Unit cell). A unit cell U of size n⃗ = (n1, n2, . . . , nd) ∈ Nd is a periodic
mapping from the integer grid Zd to some set of colours C, defined by a colouring on the
d dimensional grid n1 × n2 × . . . × nd. Given a vector y⃗ ∈ Zd, U(y⃗) returns the colour at
position (y1 mod n1, y2 mod n2, . . . , yd mod nd) on the grid defining U .

The number of vertices in a unit cell U of size n⃗ is denoted by |U |, i.e. |U | = n1 · n2 · . . . · nd.
Similarly x⃗ ∈ U is used to denote that x⃗ is a position in the finite grid defining U . Where it is
clear from context, given any vector x⃗ ∈ Zd the colour of the vertex at position x⃗ in the grid Zd

coloured by U is denoted U(x⃗), giving U(x⃗) = U((x1 mod n1, x2 mod n2, . . . , xd mod nd)).
The goal of these colourings is to minimise the average pairwise energy per vertex of the

coloured grid. The energy between two vertices represents the force between them, with a
negative energy indicating attraction and a positive energy indicating repulsion. The pairwise
energy between a pair of vertices in the grid is determined by a pairwise energy function.

This work considers parametric pairwise energy functions f of the form f(θ(ci,cj), r) where
ci, cj ∈ C are a pair of colours, r ∈ R is a euclidean distance and θ(ci,cj) ∈ Rp is a vector
of p parameters determined by the colours ci and cj . Further, this work assumes that the
vector of parameters θ(ci,cj) are predefined for every pair of colours ci, cj ∈ C. Each function
returns a scalar real value, i.e. f :

(
θ(ci,cj) ∈ Rp, r ∈ R

)
7→ R.

▶ Definition 2 (Average pairwise energy per vertex). Given a unit cell U of size n⃗ colouring
the grid Zd, the average pairwise energy per vertex is given by:

AE(U) = 1
|U |

∑
x⃗∈U

∑
y⃗∈Zd

f(θ(U(x⃗),U(y⃗)), D(x⃗, y⃗))

where f is the pairwise energy function, D(x⃗, y⃗) denotes the euclidean distance between x⃗

and y⃗, and θ(ci,cj) ∈ Rp is a vector of p parameters.

In this paper we assume that each energy function has a cut off distance, allowing the
average pairwise energy per vertex to be compute efficiently. One further constraint that
we introduce is that of charge neutrality. In this setting, every colour is associated with a
integer charge. Given a unit cell U , the charge of x⃗ ∈ U is denoted Q(U(x⃗)). Note that
the charge of any two points assigned the same colour are equal, i.e. if U(x⃗) = U(y⃗) then
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Figure 3 An overview of CMV(r). The energy and distance between each point is labelled as a
pair (a, b) where a represents the energy and b represents the distance.

Q(U(x⃗)) = Q(U(y⃗)) for any pair of vectors x⃗, y⃗ ∈ U . A unit cell U is charge neutral if and
only if

∑
x⃗∈U Q(U(x⃗)) = 0. In general we assume that the charge neutrality constraint can

be ignored, effectively assuming that the charge is 0 for every colour.

2.1 The r-Distance Common Minimal Value Class
In this paper we restrict our energy functions to the class of r-distance common minimal value
functions, denoted CMV(r), introduced in this section. This class of functions focuses on the
interactions between vertices within a distance of r of each other, for some distance r ∈ R.
In order to simplify reasoning on the set CMV(r), it is assumed that given any distance
d > r the value of f(θ(ci,cj), d) = 0 for every pair of colours ci, cj ∈ C. Let R(r) = {(i, j) ∈
Z2 |

√
i2 + j2 ≤ r, (i, j) ̸= (0, 0)} be the set of vertices on the integer grid Z2 within a

distance of at most r of the central point (0, 0). Further, let d(r) = {
√

i2 + j2 | (i, j) ∈ R(r)}
be the set of possible distances between the central vertex and any vertex in R(r). As
an example, R(2) = {(2, 0), (1, 1), (1, 0), (1, −1), (0, 2), (0, 1), (0, −1), (0, −2), (−1, 1), (−1, 0),
(−1, −1), (−2, 0)} and d(r) = {1,

√
2, 2}. The goal of this class is to be able to “fix” the

optimal distance between pair of colours as either being some distance in d(r), or as being
outside of R(r) – in effect penalising two colours at a distance of r or less. To this end this
work uses the idea of a common minimal value. Informally, the common minimal value can
be thought of as some negative value M such that the smallest possible interaction between
any pair of vertices is M . Further, the functions in this work restrict M to appear at most
once in the set of possible distance between each colour, meaning that given some pair of
colours ci and cj , there exists at most one distance d ∈ d(r) such that f(θ(ci,cj), d) = M .
The following definition formalises the r-distance common minimal value class.

▶ Definition 3 (Common Minimal Value Functions (CMV(r))). Let θ(ci,cj) ∈ Rp denote the
vector of parameters assigned to some pair of colours ci, cj ∈ C. The function f(θ(ci,cj), d):
Rp+1 → R belongs to the class of common minimal value functions CMV(r) for r ∈ R
if there exists a common minimum value M ∈ R for which the following hold:
1. For any two points at a distance d > r and any pair of colours ci,cj ∈ C the value of

f(θ(ci,cj), d) = 0; [Cut-off property].
2. For any two colours ci,cj ∈ C it is possible to determine a vector θ(ci,cj) such that

the energy between any pairs of points at any distance d ∈ d(r) is f(θ(ci,cj), d) > M ;
[Separation property].

3. For any two colours ci,cj ∈ C and any distance d ∈ d(r) it is possible to determine a vector
ϕ(ci,cj) such that the energy between any pair of points at distance d is f(ϕ(ci,cj), d) =
M and the energy between any pair of points at any distance d′ ∈ d(r), d′ ̸= d is
f(ϕ(ci,cj), d′) > M ; [Optimal pairwise distance property].
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An overview of these properties is given in Figure 3. These properties are used to encode the
tiling problem into the average pairwise energy minimisation problem on Zd. The cut-off
property (Property 1) ensures that there is no interaction between vertices over a certain
cut off distance, allowing these interactions to be safely ignored. The separation property
(Property 2) ensures that there exists a vector of parameters such that the corresponding
colours must be placed further than r apart, or suffer a small energy penalty by having an
interaction greater than M . Finally the optimal pairwise distance property (Property 3)
ensures that there exists a vector of parameters such that the interaction of the corresponding
colours is minimised at M at exactly one distance. The goal of these conditions is to be able
to force a structure on the colouring based on the relative distances between colours. This
allows the structure of the tiling problem to be utilised in the setting of the average pairwise
energy minimisation problem on Zd.

2.2 The Pairwise Energy Minimisation Problem
This section introduces our central problem, the average pairwise energy minimisation
problem on Zd. In this paper we consider two versions of this problem, depending on the
constraints placed on the unit cell. In the most general case, the only constraint is that the
average energy of the unit cell is below some bound g. In this paper, we limit the energy
functions to the class CMV(r). The unit cell may be constrained by having the size given as
part of the input. All values are given in binary as input to our problems.

▶ Problem 1. The average pairwise energy minimisation problem on Zd.

Input: A goal energy g ∈ Q, a set of colours C, a number of dimensions d ∈ Z an energy
function f ∈ CMV and a set of |C|2 parameters θ(ci,cj ) ∈ Rp.

Question: Does there exist a unit cell U of size n1 × n2 × . . . × nd for some ni ∈ N+ where
AE(U) ≤ g.

When the size of the unit cell is given as an input in the form of a vector of length d

of the form (n1, n2, . . . , nd), we refer to the problem as the average pairwise energy
minimisation problem on Zd with a fixed period. Here, fixed period refers to the size
of the period being fixed as part of the input, in this case restricting the period to be of size
n1 × n2 × . . . × nd for the given n1, n2, . . . , nd.

3 Undecidability for Unconstrained Period Size

We first look at the unbounded setting, where the size of the unit cell is not taken as part of
the input. The main claim in this section is that Problem 1 is undecidable for any function in
CMV(r) for r ≥ 2. This section is split into three parts. First, we provide some background
on the tiling problem that is used as the basis for this reduction. Second, we provide an
auxiliary problem derived from the tiling problem to act as an intermediary step in proving
the undecidablity of the average pairwise energy minimisation problem on Zd. Finally we
prove the undecidablity of the average pairwise energy minimisation problem on Zd.

3.1 The Tiling Problem
In the tiling problem, we are given a set of tiles, square plates with a fixed orientation where
each edge is coloured from some set of colours C. The goal of a tiling problem is to completely
cover the plane with tiles such that every pair of adjacent tiles is coloured the same along
the shared edge. In this section, we introduce the further constraint that no two copies of
the same tile may be within a distance of k or less of each other.
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Before discussing the new variations of the tiling problem, let us first present some
notation. The edges of the tiles are labelled East,West,North and South such that the
East edge is opposite the West edge, and the South edge is opposite the North edge. More
precisely, given two tiles, v at position (x1, y1) and u at position (x2, y2) respectively such
that |x1 − x2| ≤ 1 and |y1 − y2| ≤ 1, we say that:

x1 < x2 x1 = x2 x1 > x2

y1 < y2 v is North-West of u v is North of u v is North-East of u

y1 = y2 v is West of u v is u v is East of u

y1 > y2 v is South-West of u v is South of u v is South-East of u

A tile t is represented by the four edges composing it. For notation let te be the colour of the
tile t along edge e. A tile t can be represented as t = {tEast, tSouth, tW est, tNorth}. A Tile
Set is a set of tiles with the edges coloured from some set of colours C. It is assumed the the
tile set contains an infinite number of copies of each tile, allowing the complete plane to be
covered with these tiles. The goal of the Tiling problem is to assemble copies of the tiles
from a given tile set on an infinite plane ruled into squares of the size of one tile such that:
1. No tile is rotated or reflected.
2. A tile must be placed exactly over one square of the ruled integer plane.
3. The colour of adjacent edges must match.
4. Every square must be covered by one tile.
This problem is solvable for a given tile set if and only if such an assembly exists. An
assembly is periodic if there exists some finite region of the plane that may be repeated so
as to solve the tiling problem. The Periodic Tiling Problem asks if there is such a periodic
assembly. Both the tiling problem and the periodic tiling problem are classical undecidable
problems [5, 7]. Connections between this problem and chemistry are well established [28].

In this paper, we introduce the k-unique radius variant of the tiling problem to act as an
intermediate problem between the general tiling problem and the average pairwise energy
minimisation problem on Z2. The k-unique radius tiling problem is needed to help encode
the notion of orientation into the average pairwise energy minimisation problem on Z2. In
the tiling problem, it is integral that each tile is placed under the same orientation. This
means that given two adjacent tiles, they must either touch West edge to East edge, or North
edge to South edge. As our setting uses only the colours and distance between vertices to
determine the pairwise energy, the concept of orientation is difficult to encode. Informally a
tiling has a k-unique radius if and only if no two copies of a given tile are within a distance
of at most k of each other. Let T be a tiling of Z2 such that T (i, j) returns the tile at
position (i, j). The tiling T has a k-unique radius if and only if for every (i, j), (x, y) ∈ Z2,
where D((i, j), (x, y)) ≤ k the tile T (i, j) is distinct from T (x, y), i.e. T (i, j) ̸= T (x, y) where
D((i, j), (x, y)) returns the distance between (i, j) and (x, y).

▶ Problem 2. The periodic tiling problem with a k-unique radius.

Input: A set of tiles, T , and integer k

Question: Does there exist a periodic tiling of Z2 made from T such that given any tile t at
position (x, y) there exists no other copy of t within a distance of k from (x, y)?

▶ Proposition 4. The periodic k-unique radius tiling problem is undecidable for any k ∈ N.

Proof Sketch. The undecidability of the periodic k-unique radius tiling problem follows from
the undecidability of the periodic domino problem [7]. The high level idea is to create a set
of k2 copies of each tile, labelled with (x, y) ∈ [k]. A set of additional colours are constructed
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such that given two tiles t(x,y) and s(a,b), t(x,y) can be placed adjacent to s(a,b) if and only
if the original tiles t and s can be placed adjacently, and (a, b) is adjacent to (x, y) on the
k × k toroidal grid. In one direction, any valid tiling with the original set of tiles can be
transformed into a valid tiling for the new set by choosing an arbitrary origin point, and
replacing the tile t at position (x, y) with the tile t(x mod k,y mod k). In the other direction,
any tiling using the new tiles can be transformed into a tiling of the original tiles by simply
replacing each tile t(x,y) with the tile t from the original set. ◀

▶ Problem 3. The fixed period k-unique tiling problem.

Input: A set of tiles, T , integer k, and pair of lengths n1, n2.
Question: Does there exist a periodic tiling of the plane of size n1 × n2 over T where every

tile within a distance of k for every other tile is distinct.

▶ Proposition 5. The fixed period k-unique tiling problem is NP-hard.

Proof. Following the same arguments as in Proposition 4, the fixed period tiling problem can
be reduced to the fixed period k-unique tiling problem. As the fixed period tiling problem is
known to be NP-hard [5, 7, 21], the fixed period k-unique tiling problem is NP-hard. ◀

3.2 Tiling with Overlapping Digitised Rhombuses
This section covers the problem of completely covering the integer grid Z2 using overlapping
digitised rhombuses. Informally, a digitised rhombus with radius r can be thought of as a set
of mono-chromatically coloured tiles organised as a rhombus from some set of colours C.

▶ Definition 6 (Digitised rhombus). A digitised rhombus of radius r is the mapping from
the grid {(x, y) ∈ Z2 | |x| + |y| ≤ r} to a set of colours C.

Given a rhombus R and position (i, j) ∈ {(x, y) ∈ Z2 | |x| + |y| ≤ r}, Ri,j is used to denote
the colour mapped by R to position (i, j), i.e. the colour of the tile at position (i, j) in
the rhombus. A rhombus is distinctly coloured if Ri,j ̸= Rl,m for every pair of positions
(i, j), (l, m) ∈ {(x, y) ∈ Z2 | |x| + |y| ≤ r} where (i, j) ̸= (l, m).

We use a set of rhombuses R analogously to the set of tiles T used in tiling problems. Given
the integer grid Z2, the assignment of a rhombus R to the position (x, y) ∈ Z2 is equivalent to
colouring every vertex within a radius of r of (x, y) using R. For the remainder of this section,
we focus on the Manhattan distance, defined as D((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|.
Given a rhombus R assigned to position (x, y) ∈ Z2, the position (x′, y′) at a distance of no
more than r from (x, y) is coloured Rx′−x,y′−y.

The focus in this work is on overlapping rhombuses. Given a pair of digitised rhombuses
of radius r ∈ N, R and S at positions (x1, y1) and (x2, y2), R overlaps S if the Manhattan
distance between R and S is no more than 2r. The overlap between R and S are the set
of positions that are assigned colours by both R and S. This corresponds to the set of
positions {(a, b) ∈ Z2 | D((a, b), (x1, y1)) ≤ r and D((a, b), (x2, y2)) ≤ r}. Informally, R and
S properly overlap when centred at (x1, y1) and (x2, y2) if every position in the overlap is
assigned the same colour by both R and S. See Figure 4 for an example.

▶ Definition 7 (Overlapping rhombuses). Let R and S be a pair of r-radius digitised rhombuses
centred on positions (x1, y1) and (x2, y2) respectively. Rhombuses R and S properly
overlap if and only if for every position (i, j) ∈ {(a, b) ∈ Z2 | D((a, b), (x1, y1)) ≤ r

and D((a, b), (x2, y2)) ≤ r} it holds that Ri−x1,j−y1 = Si−x2,j−y2 .
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R S R S
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X

X

X

X X

Figure 4 An example outlining how two rhombuses R and S may properly overlap (left) and
when not (right). Note that X is used to denote a conflict between the two overlapping rhombuses.

Note that any two rhombuses at a distance greater than 2 ·r from each other properly overlap
following Definition 7 as the set {(a, b) ∈ Z2 | D((a, b), (x1, y1)) ≤ r and D((a, b), (x2, y2)) ≤
r} is empty. An assignment of rhombuses R to the integer grid Z2 equates to a complete
colouring of Z2 using the rhombuses in R as the colours. An assignment is valid if and only
if a rhombus is centred on every vertex in Z2 and every pair of rhombuses properly overlap.

▶ Definition 8 (Rhombus assignment). An assignment A of rhombuses from the set R
to Z2 is a mapping from Z2 to R such that A : (x, y) ∈ Z2 7→ R for every x, y ∈ Z. Let
A(x, y) : Z2 7→ R return the rhombus assigned to position (x, y) ∈ Z2. An assignment A is
valid if and only if ∀(x1, y1), (x2, y2) ∈ Z2, the rhombus A(x1, y1) properly overlaps A(x2, y2).

▶ Definition 9 (Periodic assignment). An assignment A from Z2 to R is periodic if there
exists a tuple (a, b) ∈ Z2 such that A(x, y) = A(x mod a, y mod b) for every tuple (x, y) ∈ Z2.

▶ Problem 4. The r-discretised rhombus all-distinct periodic complete assignment problem.

Input: A set R of r-radius digitised rhombuses
Question: Does there exist a valid periodic assignment of R to Z2?

▶ Theorem 10. The r-discretised rhombus all-distinct periodic complete assignment problem
is undecidable for any r ≥ 1.

Proof Sketch. This theorem is proven by transforming a set of tiles into a set of rhombuses.
The set of rhombuses is constructed by taking the set of unique tilings on the grid {(x, y) ∈
Z2 | x2 + y2 ≤ 1}, and creating a rhombus corresponding to each tiling. Each tile is
represented in this model by a unique colour. ◀

The same construction as in Theorem 10 are used to derive an NP-completeness result for
the fixed period r-discretised rhombus all-distinct periodic complete assignment problem.
Observe that for a set of q rhombuses, and fixed period n1 × n2, there are qn1·n2 possible
coverings, therefore a brute force algorithm can solve this problem in O(qn1·n2)-time, and
therefore the problem belongs to NP. For hardness, Proposition 5 is used to establish the
hardness of the fixed-period k-unique radius tiling problem, and by extension the hardness
of the fixed period r-discretised rhombus all-distinct periodic complete assignment problem.

▶ Corollary 11. The fixed period r-discretised rhombus all-distinct periodic complete
assignment problem is NP-complete for any r ≥ 1.

3.3 Pairwise Energy Minimisation Problem on Z2 and Z3

With the undecidability of the r-discretised rhombus all-distinct periodic complete assignment
problem established, the next step is to show how to reduce the r-discretised rhombus all-
distinct periodic complete assignment problem to the average pairwise energy minimisation
problem on Zd. In this section, the pairwise energy function is assumed to be a member of
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the 2-distance common minimal value class, CMV(2). At a high level the reduction from the
r-discretised rhombus all-distinct periodic complete assignment problem is done by encoding
each rhombus as a colour, then tuning the parameters of the pairwise energy function so
that a valid colouring of the grid corresponds to a valid assignment of rhombuses.

The main challenge of this encoding is due to the definition of CMV(2). Namely, for any
energy function in CMV(2) the pairwise energy between vertices is determined solely by the
distance between vertices, colour of each vertex, and some given vector of parameters. This
means that given two adjacent vertices vi and vj , coloured ci and cj respectively, the energy
between vi and vj is the same irrespective of the relative direction of each tile.

To simplify our reduction, we introduce some additional notation. Given two vertices
vi at position (x1, y1) and vj at position (x2, y2), vi is said to be directly adjacent to vj

if |x1 − x2| + |y1 − y2| = 1. Similarly vi is diagonally adjacent to vj if |x1 − x2| = 1 and
|y1 − y2| = 1. Finally, vi is peripherally adjacent if either |x1 − x2| = 2 and y1 = y2, or
x1 = x2 and |y1 − y2| = 2. Further, in Proposition 12 we assume M to be the common
minimal value for all functions in CMV(r).

▶ Proposition 12. Let R be a set of distinctly coloured rhombuses and let C(R) be a set of
|R| colours such that for every rhombus r ∈ R, there exists some colour Cr ∈ C(R). For
any pairwise energy function f ∈ CMV(2), and pair of rhombuses i, j ∈ R there exists some
vector of parameters θ(ci,cj) such that f(θ(ci,cj), r) satisfies:
1. If i and j properly overlap when i is centred at some position directly adjacent to j then

f(θ(ci,cj), 1) = M , and f(θ(ci,cj), r) > M for any r > 1.
2. If i and j properly overlap when i is centred at some position diagonally adjacent to j

then f(θ(ci,cj),
√

2) = M , and f(θ(ci,cj), r) > M for either r = 1 or r = 2.
3. If i and j properly overlap when i is centred at some position peripherally adjacent to j

then f(θ(ci,cj), 2) = M , and f(θ(ci,cj), r) > M for r < 2.
4. Otherwise f(θ(ci,cj), r) > M for any distance r.

Proof. Recall that all functions in CMV(2) must have some vector of parameters θ(ci,cj ,d) ∈
Rp for every d ∈ {1,

√
2, 2} such that f(θ(ci,cj ,d), d) = M , and for every other distance

distance d′ ∈ d(r) where d′ ̸= d the value of the energy function f(θ(ci,cj ,d), d′) > M by the
optimal pairwise distance property (Property 3) of Definition 3. Therefore Conditions 1, 2,
and 3 in the statement can be satisfied by choosing the appropriate vector of parameters for
the distances of 1,

√
2 and 2 respectively. Further, by the separation property (Property 2)

there exists some vector of parameters θ(ci,cj) ∈ Rp such that for every distance d ∈ d(r) the
energy f(θ(ci,cj), d) > M , satisfying Condition 4 above. ◀

Setting the parameter vectors so as to satisfy the conditions given in Proposition 12, Lemma 13
shows that a valid assignment of R to Z2 can be used to construct a valid colouring of Z2

using C(R). Lemma 14 shows that given such a colouring of Z2 using C(R), there must exist
a valid assignment from Z2 to R.

▶ Lemma 13. Let A be a valid assignment of the set of distinctly coloured 2-radius rhombuses
R to Z2 with a period of n1 × n2. Given such an assignment there exists a periodic colouring
of Z2 using the set of colours C(R) with an average energy per vertex of 12 · M .

Proof Sketch. Observe that following Proposition 12 the interaction between any pair of
colours within a distance of 2 is M . As A is a valid assignment of Rhombuses, the interaction
between each point within a distance of at most 2 is M , giving an average energy of 12·M . ◀
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▶ Lemma 14. Let U be a unit cell of size n1 × n2 colouring Z2 with the colour set C(R)
such that the average energy per vertex is 12 · M . Given such a unit cell there exists a valid
assignment of the set of distinctly coloured 2-radius rhombuses R to Z2.

Proof Sketch. The key observation behind this lemma is that given some vertex v at position
(x, y) coloured with c ∈ C(R), there are exactly 4 colours c1, c2, c3, c4 ∈ C(R) that can be
used to colour the vertices directly adjacent to v. Further, for the colour c1 there exists
exactly 1 colour that can be at a distance of 2 from a vertex coloured c1 and a distance of 1
from a vertex coloured c. Therefore the local neighbourhood of each vertex must be coloured
in such a way that the corresponding rhombuses correspond to a correct assignment. By
extension, a valid colouring for the graph with an average energy per vertex of 12 · M must
correspond to a correct assignment of rhombuses to the plane Z2. ◀

▶ Theorem 15. The average pairwise energy minimisation problem on Zd is undecidable for
any function in the 2-distance common minimal value class, and d ∈ {2, 3}.

Proof. From Lemmas 13 and 14, there exists a valid colouring of Z2 with an average energy
per vertex of 12M of C(R) if and only if there exists a valid assignment of R to Z2. As the
r-discretised rhombus all-distinct periodic complete assignment problem is undecidable, the
average pairwise energy minimisation problem on Z2 is undecidable.

To show the undecidability in 3D, consider the 3D tiling problem, where each tile is a 3D
block with each face coloured. This problem is shown to be undecidable by reduction from the
tiling problem. Let each block have a top and bottom face, along with the North, West, South

and East faces. Given a set of tiles T a block b is constructed for each tile t ∈ T such that
the colour of North, West, South and East faces of b match the corresponding colours of t,
and the top and bottom faces of b are coloured with some universal colour c. See Figure 5
for an example. Observe that each plane of any valid tiling of these blocks on Z3 corresponds
to a valid tiling of T . As in the 2D setting, this problem can be restricted with the k-unique
radius property. Similarly, k-unique radius tilings with 3D blocks can be converted into an
all-distinct discretised rhombohedron in the same manner as the 2D case.

Figure 5 The transformation from a tile (left) to a 3 dimensional block (middle) and to an
unfolded representation (right). The top and bottom faces are coloured with the same new colour.

An average pairwise energy minimisation problem on Zd instance is constructed from
these rhombohedrons in the same manner as in the 2D case. Note that an all discretised
rhombohedron containing all points within a distance of 2 has 33 blocks. In this case, the
average energy per vertex is 32 ·M if and only if there exists a valid tiling of Z3 of the original
set of blocks. In one direction, if there exists such a tiling then the corresponding unit cell
has an average energy per vertex of 32 · M . In the other direction, the same arguments as in
the 2D case may be applied to show that any colouring with an average energy per vertex of
32 · M corresponds to a valid tiling. ◀

Observe that the number of possible solution to the average pairwise energy minimisation
problem on Z2 with a fixed period is at most qn1·n2 , where q is the number of tiles and
(n1, n2) the size of the unit cell. Therefore, this problem is in NP. In the other direction the
same arguments from Theorem 15 alongside Corollary 11 show the problem to be NP-hard.
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▶ Corollary 16. The fixed period average pairwise energy minimisation problem on Zd is
NP-complete for any function in the 2-distance common minimal value class, and d ∈ {2, 3}.

4 Physically motivated pairwise energy functions

In this section, we apply the results from our abstract model to the problem of crystal
structure prediction. In order to do so, we claim that the the Buckingham-Coulomb [32]
and Ising [8] energy functions belong to CMV(2). The main results in this section, focus
on charge neutrality in the context of the Buckingham-Coulomb potential, showing that
the average pairwise energy minimisation problem on Zd remains undecidable even with
this restriction, and that the average pairwise energy minimisation problem on Zd with a
fixed period becomes hard to approximate within any positive factor in the 1D case. These
results are strengthened in Section 4.2 by providing a parameterised algorithm for the average
pairwise energy minimisation problem on Z.

First, we outline the properties used by the Buckingham-Coulomb and 2-radius n-vector
Ising energy functions to show that they belong to the class CMV(2).

The Buckingham-Coulomb Potential. The Buckingham-Coulomb energy between a pair
of vertices coloured i and j at a distance of ri,j is given by the equation BC(i, j, ri,k) =

Ai,j

eBi,j ·ri,j
− Ci,j

r6
i,j

+ qi·qj

ri,j
where Ai,j , Bi,j and Ci,j are a set of force field parameters, determined

by the colours, qi is the charge of colour i, and qj is the charge of colour j. Here, we assume
that rather than the integer grid, the Buckingham-Coulomb potential is performed on the
set of points {(10 · x1, 10 · x2, . . . , 10 · xd) | (x1, x2, . . . , xd) ∈ Zd}. In order to show that
The Buckingham-Coulomb potential belongs to the class CMV(2), it is necessary to show
that there exists a vector of parameters for each distance d ∈ [10,

√
200, 20] such that (1)

BC(i, j, d) = M , (2) BC(i, j, d′) > M for every d′ ∈ [10,
√

200, 20] where d′ ̸= d and (3)
there exists a vector of parameters such that BC(i, j, d′) > M for every d′ ∈ [10,

√
200, 20].

Here M = −1 and the cutoff distance is set to 2. Conditions (1) and (2) are satisfied by
using the faster convergence of the term Ai,j

eBi,j ·ri,j
to 0 than the term Ci,j

r6
i,j

. Condition (3) can
be satisfied by setting Ai,j to a sufficiently large value, while setting Ci,j to 0.

The 2-Radius n-Vector Ising Model. The second energy function we look at is a
generalisation of the n-vector Ising model [31]. In the n-vector Ising model, each colour c ∈ C
corresponds to a unit vector c⃗. Given a pair of adjacent vertices v and u, coloured cv and cu

respectively, the energy between v and u is given by the dot product of the vectors, c⃗v · c⃗u.
In the 2-radius n-vector Ising model, each colour corresponds to a triple of n-length unit
vectors. For notation, let c[i] be the ith vector in the triple corresponding to colour c. Given
a pair of vertices v and u, coloured cv and cu respectively, the energy between v and u is
given by cv[i] · cu[i] where i is 1 if v and u are at a distance of 1, 2 if v and u are at a distance
of

√
2 or 3 if v and u are at a distance of 2. The value of each vector is chosen such that the

product of any pair of vertices at distance d is either M , where M is some minimum value,
or 0.

▷ Claim 17. The Buckingham-Coulomb potential and 2-radius n-vector Ising model
belong to CMV(2).

4.1 Charge Neutrality
In this section we focus on charge neutrality constraint. Recall that the charge of each colour,
denoted Q(c) is an integer value, and that a unit cell is charge neutral if

∑
x⃗∈U Q(U(x⃗)) = 0.
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▶ Corollary 18. The Charge-Neutral average pairwise energy minimisation problem on Zd

with non-zero charges is undecidable for the Buckingham-Coulomb Potential for d ∈ {2, 3}.

Theorem 19 compliments the proof of NP-hardness from Corollary 16 by showing that the
charge-neutral fixed period pairwise energy minimisation problem is NP hard both to solve
and to approximate within any constant factor for the Buckingham-Coulomb potential in 1D.

▶ Theorem 19. The charge-neutral fixed period pairwise energy minimisation problem in 1D
for the Buckingham-Coulomb potential can not be approximated within any constant factor
in polynomial time unless P = NP .

Proof Sketch. This theorem is proven via a reduction from the k-independent set problem.
The high level idea is to construct a colour for each vertex in the input graph with a positive
charge of +1, and a single negative ion of charge −k. The energy function is determined
such that the interaction between any two colours representing adjacent vertices in the input
graph is arbitrarily high, while the pairwise interaction between the positive and negative
ions set to −1. This ensures that a valid solution to the charge-neutral fixed period pairwise
energy minimisation problem can only be found if there exists an independent set. ◀

4.2 A Parameterised Algorithm for the 1D Setting
In this section we compliment the hardness results by providing a parameterised algorithm
for solving the average pairwise energy minimisation problem on Zd in 1D. Our algorithm
provides solution in O(n3 · q3·d) where n is the size of the unit cell, q is the number colours,
and d is the cut off distance.

Construction. Given an instance of the fixed period pairwise energy minimisation problem
for the 1D grid with length n, and set of colours C, a graph G is constructed. Let V(d, C) =
{(x1, x2, . . . , xd+1) | x1, x2, . . . , xd+1 ∈ C}. For notation given l ∈ V(d, C), li is used to
denote the colour of the ith position of l, i.e. given l = (1, 2, 1, 2), l2 = 2 while l3 = 1.
For every i ∈ [n] and l ∈ V(d, C) the vertex vi,l is constructed and added to the set V of
vertices. Given a pair vertices vi,l, vj,k ∈ V , the edge vi,l, vj,k is added to the set of edges E

if and only if i + 1 = j and l2, l3, . . . , ld+1 = k1, k2, . . . , kd. The weight of (vi,l, vj,k), denoted
w(vi,l, vj,k), equals to

∑d
i=1 f(i, θ(k1,ki+1)). This means that each edge (vi,l, vj,k) corresponds

to the pairwise interaction energy between k1 and each subsequent vertex in k. In order to
account for the energy from the first vector, an additional set of qd+1 vertices labelled vl

for every l ∈ V(d, C). The vertex vl has only a single edge connecting it to v1,l, weighted as
before. Hence by constructing a path of length n starting at some vertex vl and ending at
the vertex vn,l the weight of the path with correspond to the total pairwise energy of the
corresponding unit cell. Thus by finding such a path with minimum energy the solution
to the fixed period pairwise energy minimisation problem may be found. Using the above
construction, the solution to the fixed period pairwise energy minimisation problem instance
is found by determining the shortest path from each vertex of the form vl to the vertex vn,l

for every l ∈ V(d, C). Note that this graph can be constructed in O(((n + 1) · qd+1)2) time for
any energy function that can be computed in constant time, by simply constructing the full
set of (n + 1) · qd+1 vertices (corresponding to each position in the grid and list of d colours),
and computing the energy between them using the energy function.

▶ Theorem 20. There exists an algorithm to solve the fixed period pairwise energy
minimisation problem in O(n3 · q3·(d+1)) time for any function in CMV(d).

MFCS 2022



8:14 The Complexity of Periodic Energy Minimisation

Proof. Using the construction above, the solution to the corresponding fixed period pairwise
energy minimisation problem instance can be found by using an efficient algorithm for
solving the all pairs shortest path problem. Note the graph can be constructed in O(((n +
1) · qd+1)2) ≈ O(n2 · q2(d+1)) time, assuming that the energy function can be evaluated in
constant time. Using the Floyd–Warshall algorithm, the paths may be found in O(|V |3)
time. Note that the number of vertices equals (n + 1) · qd+1 giving a total complexity of
O

(
(n + 1)3 · q3·(d+1)) ≈ O

(
n3 · q3·(d+1)). ◀
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Abstract
We consider a weighted counting problem on matchings, denoted PrMatchingpGq, on an arbitrary
fixed graph family G. The input consists of a graph G P G and of rational probabilities of existence
on every edge of G, assuming independence. The output is the probability of obtaining a matching
of G in the resulting distribution, i.e., a set of edges that are pairwise disjoint. It is known that,
if G has bounded treewidth, then PrMatchingpGq can be solved in polynomial time. In this paper we
show that, under some assumptions, bounded treewidth in fact characterizes the tractable graph
families for this problem. More precisely, we show intractability for all graph families G satisfying
the following treewidth-constructibility requirement: given an integer k in unary, we can construct in
polynomial time a graph G P G with treewidth at least k. Our hardness result is then the following:
for any treewidth-constructible graph family G, the problem PrMatchingpGq is intractable. This
generalizes known hardness results for weighted matching counting under some restrictions that do
not bound treewidth, e.g., being planar, 3-regular, or bipartite; it also answers a question left open
in [1]. We also obtain a similar lower bound for the weighted counting of edge covers.
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1 Introduction

Many complexity results on computational problems rely on a study of fundamental graph
patterns such as independent sets, vertex covers, edge covers, matchings, cliques, etc. In
this paper we specifically study counting problems for such patterns, and for the most part
focus on counting the matchings: given an input graph G, we wish to count how many edge
subsets of G are a matching, i.e., each vertex has at most one incident edge.

Our goal is to address an apparent gap between the existing intractability and tractability
results for counting matchings and similar patterns. On the one hand, counting the matchings
is known to be #P-hard, and hardness is known even when the input graph is restricted
in certain ways, e.g., being planar, being 3-regular, or being bipartite [18, 14, 27, 26]. On
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the other hand, some restrictions can make the problem tractable, e.g., imposing that the
input graphs have bounded treewidth [5, 1], because matchings can be described in monadic
second-order logic. But this does not settle the complexity of the problem; could there be
other restrictions on graphs that makes it tractable to count matchings or other patterns?

This paper answers this question in the negative, for a weighted version of counting
problems: we show that, at least for matchings and edge covers, and under a technical
assumption on the graph family, the weighted counting problem is intractable if we do not
bound the treewidth of the input graphs. Thus, treewidth is the right parameter to ensure
tractability. Our weighted counting problems are of the following form: we fix a graph
family G (e.g., 3-regular graphs, graphs of treewidth ď 2), we are given as input a graph G

of G along with an independent probability of existence for each edge, and the goal is to
compute the probability in this distribution of the subsets of edges of G which have a certain
property, e.g., they are a matching, they are an edge cover. Note that the class G restricts the
shape of the graphs, but the edge probabilities are arbitrary – and indeed there are known
tractability results when we restrict the graphs and probabilities to be symmetric [6]. Our
paper shows the hardness of these problems when G is not of bounded treewidth; the specific
technical assumption on G is that one can effectively construct graphs of G having arbitrarily
high treewidth, i.e., the treewidth-constructible requirement from [1] (cf. Definition 2.2):

▶ Result 1. Let G be an arbitrary family of graphs which is treewidth-constructible. Then
the problem, given a graph G “ pV,Eq of G and rational probability values πpeq for every
edge of G, of computing the probability of a matching in G under π, is #P-hard under ZPP
reductions.

We obtain an analogous result for edge covers. Thus, as bounded-treewidth makes the
problems tractable, our results imply that treewidth characterizes the tractable graph families
for these problems – for weighted counting, and assuming treewidth-constructibility. We leave
open the complexity of unweighted counting, and of weighted counting on graph families that
have unbounded treewidth but satisfy weaker requirements than treewidth-constructibility,
e.g., being strongly unbounded poly-logarithmically [16, 13].

The paper is devoted to showing Result 1. Because of the page limit, the full proofs are
deferred to the full version [4]. At a high level, we use the standard technique of reducing
from the #P-hard problem of counting matchings on a 3-regular planar graph G [26], using
the randomized polynomial-time grid minor extraction result of [10] as in [1]. However,
the big technical challenge is to reduce the counting of matchings of G to the problem of
computing the probability of a matching on the arbitrary subdivision G1 of G that we extract.
For this, we use the classical interpolation method, where we design a linear equation system
relating the matchings to the result of polynomially many oracle calls on G1, with different
probability assignments; and we argue that the matrix is invertible. After the preliminaries
(Section 2), we present this proof, first in the case where G1 is a 6-subdivision of G (Section 3),
and then when it is a n-subdivision, i.e., when all edges are subdivided to the same length n

(Section 4). These special cases already pose some difficulties, most of which are solved by
adapting techniques by Dalvi and Suciu [12]; e.g., to show invertibility, we study the Jacobian
determinant of the mapping associating edge probabilities to the probability of matchings
on paths with fixed endpoints, and we borrow a technique from [12] to effectively construct
suitable rational edge probabilities.

The main novelties of this work are in Section 5, where we extend the proof to the
general case: G1 is a subdivision of G, and different edges of G may be subdivided in G1 to
different lengths. To obtain the equation system, we show that we can assign probabilities on
short paths so that they “behave” like long paths. Proving this stand-alone emulation result
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(Proposition 5.2) was the main technical obstacle; the proof is by solving a system of equations
involving the Fibonacci sequence. It also introduces further complications, e.g., dealing
with numerical error (because the resulting probabilities are irrational), and distinguishing
even-length and odd-length subdivisions. After concluding the proof of Result 1 in Section 5,
we adapt it in Section 6 to edge covers.

Related work. Our work follows a line of results that show the intractability of some
problems on any “sufficiently constructible” unbounded-treewidth graph family. Kreutzer
and Tazari [16] (see also [13]) show that there are formulas in an expressive formalism (MSO2)
that are intractable to check on any subgraph-closed unbounded treewidth graph family that
is closed under taking subgraphs and satisfies a requirement of being strongly unbounded
poly-logarithmically. This was extended in [1] to the weighted counting problem, this time for
a query in first-order logic, with a different hardness notion (#P-hardness under randomized
reductions), and under the stronger requirement of treewidth-constructibility. Our focus here
is to show that the hardness of weighted counting already holds for natural and well-studied
graph properties, e.g., “being a matching”; this was left as an open problem in [1].

For such weak patterns, lower bounds were shown in [1] and [3] on the size of tractable
representations: for any graph G of bounded degree having treewidth k, any so-called
d-SDNNF circuit representing the matchings (or edge covers) of G must have exponential
size in k. However, this does not imply that the problems are intractable, as some tractable
counting algorithms do not work via such circuit representations (e.g., the one in [12]). Thus,
our hardness result does not follow from this size bound, but rather complements it.

The necessity of bounded treewidth has also been studied for graphical models [9] and
Bayesian networks [17]. Specifically, [17] shows the intractability of inference in a Bayesian
network as a function of the treewidth (but without otherwise restricting the class of
network), and [9] restricts the shape of the graphical model but allows arbitrary “potential
functions” (whereas we assume independence across edges). There are also necessity results
on treewidth for the problem of counting the homomorphisms between two structures in the
CSP context [11]; but this has no clear relationship to our problems, where we do (weighted)
counting of the substructures that have a certain form (e.g., are matchings).

Note that, unlike our problem of weighted counting of matchings, the problem of finding
a matching of maximal weight in a weighted graph is tractable on arbitrary graphs, using
Edmond’s blossom algorithm [21].

2 Preliminaries

We write N` for Nzt0u, and for n P N` we write rns the set t0, . . . , n´ 1u. We write R the
real numbers and Q the rational numbers. Recall that decimal fractions are rational numbers
that can be written as a fraction a{10k of an integer a and a power of ten 10k.

Reductions and complexity classes. Recall that #P is the class of counting problems
that count the number of accepting paths of a nondeterministic polynomial-time Turing
machine. A problem P1 is #P-hard if every problem P2 of #P reduces to P1 in polynomial
time; following Valiant [19, 20], we use here the notion of Turing reductions, i.e., P2 can
be solved in polynomial time with an oracle for P1. We specifically study what we call
#P-hardness under zero-error probabilistic polynomial-time (ZPP) reductions. To define
these, we define a randomized algorithm as an algorithm that has access to an additional
random tape. We say that a decision problem is in ZPP if there is a randomized algorithm

MFCS 2022
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that (always) runs in polynomial time on the input instance, and returns the correct answer
on the instance (i.e., accepting or rejecting) with some constant probability, and otherwise
returns a special failure value. The probabilities are taken over the draws of the contents of
the random tape. The exact value of the acceptance probability is not important, because we
can make it exponentially small by simply repeating the algorithm polynomially many times.
Going beyond decision problems, a ZPP algorithm is a randomized algorithm that runs
in polynomial time but may return a special failure value with some constant probability.
A ZPP (Turing) reduction from a problem P1 to a problem P2 is then a ZPP algorithm
having access to an oracle for P2 that takes an instance of problem P1, runs in polynomial
time, returns the correct output (for P1) with some constant probability, and returns the
special failure value otherwise. Again, the failure probability can be made arbitrarily small
by invoking the reduction multiple times. A problem P2 is then said to be #P-hard under
ZPP reductions if any #P-hard problem P1 has a ZPP reduction to it. We will implicitly rely
on the fact that we can show #P-hardness under ZPP reductions by reducing in ZPP from
any problem which is #P-hard (under Turing reductions); see the full version [4] for details.

Graphs and problem studied. A finite undirected graph G “ pV,Eq consists of a finite
set V of vertices (or nodes) and of a set E of edges of the form tx, yu for x, y P V with x ‰ y.
A graph family F is a (possibly infinite) set of graphs. For v P V , we write EGpvq for the set
of edges that are incident to v. Recall that a matching of G is a set of edges M Ď E that do
not share any vertices, i.e., for every e, e1 PM with e ‰ e1 we have eXe1 “ H; or equivalently,
we have |tEGpvq XMu| ď 1 for all v P V . For a graph family F , we write #MatchingpFq the
problem of counting the matchings for graphs in F : the input is a graph G P F , and the
output is the number of matchings of G, written #MatchingpGq.

We study a weighted version of #Matching, defined on probabilistic graphs. A probabilistic
graph is a pair pG, πq where G “ pV,Eq is a graph and π : E Ñ r0, 1s maps every edge e of H
to a probability value πpeq. The probabilistic graph pG, πq defines a probability distribution
on the set of subsets E1 of E, where each edge e P E is in E1 with probability πpeq, assuming
independence across edges. Formally, the probability of each subset E1 is:

Pr
G,π

pE1q :“
ź

ePE1

πpeq ˆ
ź

ePEzE1

p1 ´ πpeqq.

Given a probabilistic graph pG, πq, the probability of a matching in G under pi, denoted
PrmatchingpG, πq, is the probability of obtaining a matching in the distribution. Formally:

Pr
matching

pG, πq :“
ÿ

matching M of G

Pr
G,π

pMq. (1)

In particular, if π maps every edge to the probability 1{2, then we have PrmatchingpG, πq “

#MatchingpGq{2|E|. For a graph family F , we will study the problem PrMatchingpFq

of computing the probability of a matching: the input is a probabilistic graph pG, πq

where G P F and π is an arbitrary function with rational probability values, and the output
is PrmatchingpG, πq. Note that F only specifies the graph G and not the probabilities π, in
particular π can give probability 0 to edges, which amounts to removing them.

Treewidth and topological minors. Treewidth is a parameter mapping any graph G to a
number twpGq intuitively describing how far G is from being a tree. We omit the formal
definition of treewidth (see [25]), as we only rely on the following extraction result: given
any planar graph H of maximum degree 3, and a graph G of sufficiently high treewidth, it is
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possible (in randomized polynomial time) to find H as a topological minor of G. We now
define this.

The degree of a node v in H “ pVH , EHq is simply |EGpvq|. We say that H is 3-regular
if every vertex has degree 3, and call H planar if it can be drawn on the plane without
edge crossings, in the usual sense [24]. Given H and η : EH Ñ N`, the η-subdivision of H,
written SubpH, ηq, is the graph obtained from H by replacing every edge e “ tx, yu by a
path of length ηpeq, whose end vertices are identified with x and y, all intermediate vertices
being fresh across all edges. We abuse notation and write SubpH, iq for i P N` to mean
SubpH, ηiq for ηi the constant-i function. Note that SubpH, 1q “ H. A subgraph of a
graph G “ pVG, EGq is a graph pV 1

G, E
1
Gq where E1

G Ď EG and V 1
G Ď VG such that e Ď V 1

G for
each edge e P E1

G. The graph H “ pVH , EHq is a topological minor of the graph G “ pVG, EGq

if there is a function η : EH Ñ N` such that there is an isomorphism f from the subdivision
SubpH, ηq “ pV 1

H , E
1
Hq to some subgraph G1 “ pV 1

G, E
1
Gq of G, i.e., a bijection f : V 1

H Ñ V 1
G

such that for every x, y P V 1
H we have tx, yu P E1

H if and only if tfpxq, fpyqu P E1
G.

We can now state the extraction result that we use, which follows from the work of
Chekuri and Chuzhoy [10]:

▶ Theorem 2.1 (Direct consequence of [10], see, e.g., [1], Lemma 4.4). There exists c P N
and a ZPP algorithm1 that, given as input a planar graph H “ pVH , EHq of maximum
degree 3 and another graph G with twpGq ě |VH |c, computes a subgraph G1 of G, a function
η : VH Ñ N`, and an isomorphism from SubpH, ηq to G1 (witnessing that H is a topological
minor of G).

Our intractability result will apply to graph families where large treewidth graphs can be
efficiently found, which we formalize as treewidth-constructibility like in [1]:

▶ Definition 2.2. A graph family F is treewidth-constructible if there is a polynomial-time
algorithm that, given an integer k written in unary2, outputs a graph G P F with twpGq ě k.

Kronecker products and Vandermonde matrices. To simplify notation, we will work with
matrices indexed with arbitrary finite sets (not necessarily ordered). Given two finite sets I, J
of same cardinality, we write RI, J (resp., QI, J) the set of matrices with real values (resp.,
rational values) whose rows are indexed by I and columns by J . When A P RI, J and
pi, jq P IˆJ , we write ai,j the corresponding entry. We recall that the inverse of an invertible
matrix M with entries in Q also has entries in Q and can be computed in polynomial time
in the encoding size of M .

Given two matrices A P RI, J and B P RK, L, the Kronecker product of A and B, denoted
A b B, is the matrix C P RIˆK, JˆL defined by cpi,kq,pj,lq :“ ai,j ˆ bk,l for pi, j, k, lq P

I ˆ J ˆ K ˆ L. Recall that A b B is invertible if and only if both A and B are. For
n P N` and pp0, . . . , pn´1q P Rn, we denote by Vpp0, . . . , pn´1q the Vandermonde matrix with
coefficients pp0, . . . , pn´1q, i.e., the matrix in Rrns,rns whose pi, jq-th entry is pj

i . Recall that
this matrix is invertible if and only if the p0, . . . , pn´1 are pairwise distinct.

1 The randomized algorithm from [10] is indeed a ZPP algorithm because the output that it returns
(namely, a prospective embedding of a grid as a topological minor of the input graph) can be verified in
(deterministic) polynomial time. Hence, we can always detect when the algorithm has failed, and then
return the special failure value.

2 Note that the existence of such an algorithm for k written in unary would be implied by the same claim
but with k given in binary. In other words, the existence of an algorithm for k given in unary is a
weaker requirement. This is simply because, given an integer in unary, we can convert it in PTIME to
an integer in binary.
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3 Proof When Every Subdivision Has Length 6

Towards showing our main result (Result 1), we first show in this section a much simpler
result: counting the matchings of a graph G reduces to counting the probability of a matching
on the graph where each edge is subdivided into a path of length 6. We use similar techniques
to previous work, in particular Greenhill [14] and Dalvi and Suciu [12], but present them in
detail because we will adapt them in the rest of the paper. Formally, in this section, we show:

▶ Proposition 3.1. For any graph family F , the problem #MatchingpFq reduces in polynomial
time to PrMatchingpGq where G “ tSubpH, 6q | H P Fu.

Let H “ pV,Eq be a graph in F for which we wish to count the number of matchings, with
m :“ |E|. Let us start by fixing for the remainder of this section an arbitrary orientation ÝÑ

H

of H obtained by choosing some orientation of the edges, i.e., ÝÑH “ pV,
ÝÑ
E q is a directed graph

where for every edge tx, yu P E we add exactly one of px, yq or py, xq in ÝÑ
E . The high-level

idea of the reduction is then the following. First, using ÝÑ
H , we define some sets Sτ , based on

4-tuples τ P rm` 1s4, such that the number of matchings of H can be computed from the
cardinalities |Sτ |. Second, we argue that these cardinalities can be connected to the results
of oracle calls for the PrMatching problem by a system of linear equations. Third, we argue
that the matrix of this system can be made invertible. We now detail these three steps.

Step 1: Defining the sets Sτ and linking them to matchings. We define a selection
function of the graph H as a function µ that maps each vertex x P V to at most one incident
edge, i.e., to a subset of EHpxq of size at most one. We will partition the set of selection
functions by counting the number of edges of each type that each selection function has,
as defined next. Given a selection function µ, consider each edge e “ px, yq of ÝÑ

H . The
edge e can have one of four types: letting b be 1 if µpxq selects e (i.e., µpxq “ ttx, yuu) and 0
otherwise (i.e., tx, yu R µpxq), and letting b1 be 1 if µpyq selects e and 0 otherwise, we say
that e has type bb1 with respect to (w.r.t.) µ. We now define the sets Sτ as follows.

▶ Definition 3.2. For a 4-tuple τ P rm` 1s4, indexed in binary, let Sτ Ď S be the set of the
selection functions µ such that, for all b, b1 P t0, 1u, precisely τbb1 edges have type bb1 w.r.t. µ.

Observe that Sτ is empty unless τ00 ` τ01 ` τ10 ` τ11 “ m. We can then easily connect the
cardinalities |Sτ | to the number of matchings of H as follows (see the full version [4]):

▶ Fact 3.3. We have that #MatchingpHq “
ř

τPrm`1s4

τ01“τ10“0
|Sτ |.

Step 2: Recovering the |Sτ | from oracle calls. We now explain how to use the oracle for
PrMatchingpGq to compute in polynomial time all the values |Sτ |, allowing us to conclude
via Fact 3.3. We will invoke the oracle on pm ` 1q4 probabilistic graphs, denoted H6pκq

for κ P rm` 1s4, as defined next. To this end, let us consider pm` 1q4 4-tuples of probability
values, written ρκ “ pρκ,00, ρκ,01, ρκ,10, ρκ,11q P r0, 1s4 for κ P rm ` 1s4; the precise choice
of these values will be explained in Step 3. For κ P rm ` 1s4, we then define H6pκq to be
the probabilistic graph pH6, πκq where H6 :“ SubpH, 6q is the 6-subdivision of H and the
probabilities πκ are defined as follows. For every directed edge px, yq of ÝÑH , the subdivision H6
contains an (undirected) path between x and y, and we define πκ on this path as follows:

x
1{2—— v1

ρκ,00—— v2
ρκ,01—— v3

ρκ,10—— v4
ρκ,11—— v5

1{2—— y
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We now introduce some notation for the probability of matchings in paths of length 4.
We write Π4pρκq the probability of having a matching in the 4-edge path with successive
probabilities ρκ,00, ρκ,01, ρκ,10, ρκ,11. The value can be explicitly computed as a polynomial
in the values ρκ,bb1 , e.g., using Equation (1). Accordingly, we will also use Π4 as a polynomial
with real variables, i.e., Π4pχq for a 4-tuple χ of real values (which may not be in r0, 1s). We
also define variants of these definitions that account for the two surrounding edges, i.e., those
with probability 1{2: for b, b1 P t0, 1u, write Πbb1

4 pρκq to denote the probability of having
a matching in the same 4-edge path but when adding an edge incident to the first vertex
with probability 1 if b “ 1, and adding an edge incident to the last vertex with probability 1
if b1 “ 1. Equivalently, Πbb1

4 pρκq is the probability of obtaining a matching where we further
require if b “ 1 that the edge with probability ρκ,00 is not taken, and if b1 “ 1 that the edge
with probability ρκ,11 is not taken. The values Πbb1

4 pρκq are also explicitly computable as
polynomials, and again we also see Πbb1

4 as a polynomial with real variables. To simplify
notation, for b, b1 P t0, 1u and κ P rm` 1s4 let us write Λκ,bb1 :“ Πbb1

4 pρκq.
We then show that the probability of a matching in the subdivided graph H6 can be

obtained by first summing over the possible edge type cardinalities τ , and then regrouping the
edges of the same type by noticing that the matchings corresponding to the selection functions
in the set Sτ all have the same probability. Namely, we show (see the full version [4]):

▶ Fact 3.4. For each κ P rm` 1s4, we have:

22m ˆ Pr
matching

pH6pκqq “
ÿ

τPrm`1s4

|Sτ | ˆ pΛκ,00q
τ00 ˆ pΛκ,01q

τ01 ˆ pΛκ,10q
τ10 ˆ pΛκ,11q

τ11 .

Now, let us write cκ :“ PrmatchingpH6pκqq the value returned by the oracle call on H6pκq,
and let C be the vector of these oracle answers. Let S be the vector |Sτ | of the values that
we wish to compute. Both these vectors are indexed by rm` 1s4. Observe that the equation
above defines a system of linear equations V S “ C with V P Rrm`1s4,rm`1s4 defined by

vκ,τ :“ 2´2m ˆ pΛκ,00q
τ00 ˆ pΛκ,01q

τ01 ˆ pΛκ,10q
τ10 ˆ pΛκ,11q

τ11 .

Therefore, if we can choose 4-tuples of probability values ρκ that make V invertible, we
would be able to recover all |Sτ | values from the oracle answers C, from which we could
compute the number of matchings of H using Fact 3.3. This is what we do next.

Step 3: Making V invertible. We now explain how to choose in polynomial time pm` 1q4

4-tuples ρκ of rational probability values, for κ P rm ` 1s4, such that V is invertible. To
this end, consider the matrix U defined like V except that each 4-tuple ρκ is replaced by a
4-tuple of variables χκ “ pχκ,00, χκ,01, χκ,10, χκ,11q. Each cell mκ,τ of U is then a polynomial
Pτ in the 4 variables χκ,bb1 for b, b1 P t0, 1u; in particular, note that the polynomial only
depends on the column τ , whereas the variables χκ,bb1 only depend on the row κ. We can
then find suitable values ρκ using a technique introduced by Dalvi and Suciu [12] (see the
full version [4]):

▶ Proposition 3.5 (From Proposition 8.44 of [12]). Fix k P N, let pxiqiPI be k-tuples of real
variables indexed by a finite set I, let pPjqjPJ be polynomials in k variables indexed by a
finite set J , and consider the matrix M indexed by I ˆ J such that mi,j “ Pjpxiq for all
pi, jq P I ˆ J . Assume that detpM q is not the null polynomial. There is an algorithm that
runs in polynomial time in M and finds |I| k-tuples of decimal fractions paiqiPI with values
in r0, 1s such that the matrix obtained by substituting each xi by ai in M is invertible.
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9:8 Weighted Counting of Matchings in Unbounded-Treewidth Graph Families

If detpU q is not the null polynomial, we can invoke this result with k “ 4 and I “ J “

rm` 1s4 on the matrix U , which gives us in polynomial time the desired rational probability
values ρκ (namely, the ai from the proposition) and concludes the proof of Proposition 3.1.

Hence, the only remaining point is to argue that detpU q is not the null polynomial (in
the χκ). To this end, let us study the mapping ξ : R4 Ñ R4, defined as follows, with χ

denoting a 4-tuple of real variables: ξpχq :“
`

Π00
4 pχq, Π01

4 pχq, Π10
4 pχq, Π11

4 pχq
˘

. For a 4-tuple
of reals ρ, we call the mapping ξ invertible around point ρ if there is ϵ ą 0 such that the
ϵ-neighborhood around ξpρq, i.e., the set tα P R4 | |αbb1 ´ ξpρqbb1 | ď ϵ for each b, b1 P t0, 1uu,
is included in the image of ξ. We conclude by showing two claims:

▶ Fact 3.6. The mapping ξ is invertible around some point.

Proof. By the inverse function theorem [23], if the Jacobian determinant of ξ at a point is
not null, then ξ is invertible around that point. Recall that the Jacobian determinant of ξ is
the determinant of the Jacobian matrix of ξ, which is the 4 ˆ 4 matrix Jξ whose entry at
cell ppb1, b2q, pb

1
1, b

1
2qq is BΛχ,b1b2

Bχb11b12
. We explicitly compute detpJq with the help of SageMath,

showing that it is not the null polynomial (see the full version [4]). ◀

▶ Fact 3.7. If ξ is invertible around some point ρ, then detpU q is not the null polynomial.

Proof. The invertibility of ξ around ρ implies that there exist, for each b, b1 P t0, 1u, a
set of m ` 1 distinct values Ψbb1 :“ tψbb1,0, . . . , ψbb1,m´1u such that the Cartesian product
Ψ :“

Ś

b,b1Pt0,1u Ψbb1 is included in the ϵ-neighborhood of ξpρq. Let us index the pm ` 1q4

4-tuples of Ψ as ψκ for κ P rm ` 1s4, i.e., ψκ “ pψ00,κ00 , ψ01,κ01 , ψ10,κ10 , ψ11,κ11q. Using
invertibility, let ακ be a preimage of each ψκ, i.e., ξpακq “ ψκ for all κ P rm` 1s4. But then
observe that, for this choice of χκ (i.e., substituting the χκ by the ακ), each cell uκ,τ of the
matrix U becomes:

uκ,τ “ 2´2m ˆ pψ00,κ00q
τ00 ˆ pψ01,κ01q

τ01 ˆ pψ10,κ10q
τ10 ˆ pψ11,κ11q

τ11 .

Thus, U is the Kronecker product of four Vandermonde matrices Ubb1 for b, b1 P t0, 1u,
where Ubb1 is Vpψbb1,0, . . . , ψbb1,m´1q. As the Ψbb1 consist of pairwise distinct values, these
Vandermonde matrices are invertible, and their Kronecker product U also is. ◀

4 Proof When All Subdivisions Have the Same Length ě 7

We now prove a variant of Proposition 3.1 where all edges of the initial graph are subdivided
the same number of times (at least 7). Given a graph H and integer K ą 0, we write GK to
mean SubpH,Kq. In this section we show:

▶ Proposition 4.1. Fix an integer K ě 7. Then, for any graph family F , the problem
#MatchingpFq reduces in polynomial time to PrMatchingpGq, where G “ tHK | H P Fu.

To prove this, we follow the same strategy as for Proposition 3.1. The first step – the
definition of the Sτ – is strictly identical; for m the number of edges of H, we fix again
an orientation ÝÑ

H of H, and denote Sτ for τ P rm ` 1s4 the pm ` 1q4 sets of selection
functions defined from ÝÑ

H as in Definition 3.2. In particular, Fact 3.3 still holds. Now, we will
again construct pm` 1q4 probabilistic graphs, denoted HKpκq for κ P rm` 1s4, such that,
letting cκ :“ PrmatchingpHKpκqq, the |Sτ | and the cκ form a linear system of equations V S “

C. We will then again use the Jacobian technique to argue that the determinant of this
matrix is not the null polynomial, and complete the proof using Proposition 3.5 to compute
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in polynomial time rational values that make V have rational entries and be invertible. The
difference with Section 3 is in the construction of the probabilistic graphs HKpκq, and in the
Jacobian determinant. Before we start, we need to extend the notation from Section 3.

Probabilistic path graphs. For n P N` we denote by Pn the path of length n, i.e., Pn “

ptv0, . . . , vnu, Eq where E “ ttvi, vi`1u | 0 ď i ď n´ 1u. For ρ P r0, 1sn, we let Pnpρq be the
probabilistic graph where each edge tvi, vi`1u of Pn has probability ρi. We write Πnpρq the
probability of a matching in Pnpρq. For b, b1 P t0, 1u, we write Πbb1

n pρq to denote Πn`2pb, ρ, b
1q,

i.e., the probability of a matching in Pnpρq where we add an edge to the left if b “ 1 and
add an edge to the right if b1 “ 1. In particular Π00

n pρq “ Πnpρq. We call the quadruple of
values Πbb1

n pρq for b, b1 P t0, 1u the behavior of the path Pnpρq. Each Πbb1

n pρq is a polynomial
in the probabilities ρ, and thus we also see Πbb1

n as a polynomial with real variables as in
Section 3. We will use the following two lemmas. The first one expresses the behavior of the
concatenation of two paths as a function of the behavior of each path (see the full version [4]):

▶ Lemma 4.2. Let n, n1 P N` and ρ P r0, 1sn, ρ1 P r0, 1sn1 be tuples of probability values.
Then, for every b, b1 P t0, 1u, we have:

Πbb1

n`n1pρ, ρ1q “ pΠb0
n pρq ˆ Π1b1

n1 pρ1qq ` pΠb1
n pρq ˆ Π0b1

n1 pρ1qq ´ pΠb1
n pρq ˆ Π1b1

n1 pρ1qq.

The second lemma expresses the values Πbb1

n p1{2, . . . , 1{2q in terms of the Fibonacci
sequence. Recall that this is the integer sequence defined by f0 :“ 0, f1 :“ 1, and fn :“
fn´1 ` fn´2 for all n P N`, and that this sequence satisfies Cassini’s identity [22], which
says that f2

n “ fn`1fn´1 ` p´1qn`1 for every n P N`. We have (see the full version [4]):

▶ Lemma 4.3. For all n P N`, b, b1 P t0, 1u, we have Πbb1

n p1{2, . . . , 1{2q “ fn`2´b´b1

2n .

Proving Proposition 4.1. Let us now build the graphs HKpκq. As before, consider pm` 1q4

4-tuples of probability values ρκ “ pρκ,00, ρκ,01, ρκ,10, ρκ,11q for κ P rm`1s4, to be chosen later.
Each graph HKpκq has HK as its underlying graph, and for every directed edge px, yq P

ÝÑ
H ,

we set the probabilities on the corresponding undirected path in HK as follows:

x
1{2—— v1

ρκ,00—— v2
ρκ,01—— v3

ρκ,10—— v4
ρκ,11—— v5

1{2—— v6
1{2—— ¨ ¨ ¨

1{2—— vK´1
1{2—— y

Note that this is like in Section 3, but giving probability 1{2 to the N :“ K ´ 6 extra edges
on the path. For b, b1 P t0, 1u we write again Λκ,bb1 :“ Πbb1

4 pρκq the behavior of the 4-path
with probabilities ρκ, and we define the behavior Υκ,bb1 :“ Πbb1

K´2pρκ, 1{2, . . . , 1{2q of the path
depicted above without the first and last edges. Note that with Lemma 4.2 and Lemma 4.3,
we can then express the Υκ,bb1 as a function of the Λκ,bb1 and of the Fibonacci numbers:

▶ Fact 4.4. We have Υκ,bb1 “ 2´N ˆ pΛκ,b0 ˆ fN`1´b1 ` Λκ,b1 ˆ fN´b1q for b, b1 P t0, 1u.

Studying the graphs HKpκq, by the same reasoning as for Fact 3.4, we can easily show:

22mˆ Pr
matching

pHKpκqq “
ÿ

τPrm`1s4

|Sτ |ˆpΥκ,00q
τ00 ˆpΥκ,01q

τ01 ˆpΥκ,10q
τ10 ˆpΥκ,11q

τ11 . (2)

This is again a system of linear equations V S “ C with V P Rrm`1s4,rm`1s4 , where
vκ,τ :“ 2´2m ˆ pΥκ,00q

τ00 ˆ pΥκ,01q
τ01 ˆ pΥκ,10q

τ10 ˆ pΥκ,11q
τ11 . To show that we can com-

pute in polynomial time 4-tuples of rational probability values ρκ for κ P rm`1s4 that make V

have rational entries and be invertible, we reason as in Section 3. Specifically, we study the Ja-
cobian determinant of the mapping ξN : χ ÞÑ

`

Π00
K´2pχ, 1{2, . . . , 1{2q, Π01

K´2pχ, 1{2, . . . , 1{2q,
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Π10
K´2pχ, 1{2, . . . , 1{2q, Π11

K´2pχ, 1{2, . . . , 1{2q
˘

, where χ is a 4-tuple of real variables. We
show that this determinant is not the null polynomial. To do this, starting from the Ja-
cobian Jξ of Section 3, using Fact 4.4 and Cassini’s identity, and using the fact that the
determinant is multilinear and alternating, we obtain (see the full version [4]):

▶ Fact 4.5. We have: detpJξN
q “ 2´4N ˆ detpJξq .

Hence, detpJξN
q is not the null polynomial and, as in Section 3, we can use Proposition 3.5

to complete the proof of Proposition 4.1 (see the full version [4]).

5 Proof for Arbitrary Subdivisions

In this section we finally prove our main result (Result 1), which we re-state here:

▶ Theorem 5.1. Let G be an arbitrary family of graphs which is treewidth-constructible.
Then PrMatchingpGq is #P-hard under ZPP reductions.

We will reduce from the problem of counting matchings in 3-regular planar graphs of, which
is #P-hard3 by [26]. Our reduction will be similar to that of Section 4, with the major issue
that the various edges of the input graph can now be subdivided to different lengths.

The proof consists of five steps. In step 1, we show a general result allowing us to assign
probabilities to a path of length 4 so as to “emulate” the behavior of any long path of
even length. We then revisit the proof of the previous section. Step 2 extracts the input
graph H from the treewidth-constructible family. Step 3 relates the number of matchings
of H to cardinalities similar to those of the previous section, but taking the parities of the
subdivisions into account. Step 4 then explains how to conclude using emulation. Last, step 5
works around the issue that the probabilities of Step 1 could be irrational, by explaining how
we can conclude with sufficiently precise approximations. We now detail these steps.

Step 1: Emulating long even paths. We start by presenting the main technical tool,
namely, how to emulate long paths of even length by paths of length 4.

▶ Proposition 5.2 (Emulation result). There exist closed-form expressions, denoted ppiq, qpiq,
rpiq, spiq, such that for every even integer i ě 4 the following hold:
(A) the expressions evaluate to well-defined probability values, i.e., we have

0 ď ppiq, qpiq, rpiq, spiq ď 1; and
(B) the path of length 4 with probabilities ppiq, qpiq, rpiq, spiq behaves like a path of length i with

probabilities 1{2, i.e., Πbb1

4 pppiq, qpiq, rpiq, spiqq “ Πbb1

i p1{2, . . . , 1{2q for all b, b1 P t0, 1u.
Further, each of these expressions is of the form P˘

?
Q

R where P,Q,R are polynomials in the
Fibonacci numbers fi´1 and fi´2 and in 2´i, with rational coefficients.

Proof sketch. The result is simple to state, but we did not find an elegant way to show
it. Our proof consists of four steps: (i) rewriting condition (B) into a simpler equivalent
system of equations (using Lemma 4.3), (ii) proving that any solution of that system must
be in p0, 1q4, (iii) exhibiting closed-form expressions that satisfy the system, found with the
help of SageMath; and (iv) verifying that these expressions are well-defined. See the full
version [4]. ◀

3 Note that, in holographic literature, graphs may be multigraphs (i.e., can have multiple edges between
two nodes) – see [15]. However, inspecting the proof of [26], we see that the graphs are in fact simple.
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▶ Remark 5.3. As Πbb1

i p1{2, . . . , 1{2q is symmetric, one would expect the closed-form expres-
sions to satisfy ppiq “ spiq and qpiq “ rpiq. However, surprisingly, numerical evaluation
(already for i “ 6) shows that our solution does not have this property.
▶ Remark 5.4. It is necessary to require that i is even, as otherwise Proposition 5.2 demonstra-
bly does not hold. In fact, we can prove that, more generally, the behavior of a probabilistic
path inherently depends on the parity of its length (see the full version [4]). This is why we
will distinguish even-length and odd-length subdivisions in the sequel.

Step 2: Choosing the graph in G. Let H “ pV,Eq be the input to the reduction, i.e., the 3-
regular planar graph for which we want to compute #MatchingpHq, and let m :“ |E|. We
first build the graph H10 “ SubpH, 10q, writing H10 “ pV10, E10q and we compute k :“ |V10|

c

where c is the constant from Theorem 2.1. Notice that H10 is a planar graph of maximum
degree 3, and that the size of k in unary is polynomial in (the encoding size of) H . Intuitively,
this initial subdivision in 10 will ensure that we have enough room for our probabilistic
gadgets. Now, we use the treewidth-constructibility of G to build in polynomial time a
graph G “ pVG, EGq P G such that twpGq ě k, and using Theorem 2.1 we compute in
ZPP a subgraph G1 of G with a subdivision η10 : E10 Ñ N` of H10 and an isomorphism
from SubpH10, η10q to G1. This gives us a subdivision η : E Ñ N` of H and an isomorphism f

from SubpH, ηq to G1, with the initial subdivision ensuring that ηpeq ě 10 for each e P E.

Step 3: Defining the new sets Sτ,τ 1 and linking them to matchings. As before, fix an
orientation ÝÑ

H of H. We call an edge e of H even if ηpeq is even, and odd otherwise. For
τ, τ 1 P rm` 1s4, both indexed in binary, we define Sτ,τ 1 to be the set of selection functions µ
of H such that, for b, b1 P t0, 1u, precisely τbb1 even edges e of H have type bb1 w.r.t. µ, and
precisely τ 1bb1 odd edges e of H have type bb1 w.r.t. µ. Then, as in Section 3, we have:

#MatchingpHq “
ÿ

τ,τ 1
Prm`1s4

τ01“τ10“τ 1
01“τ 1

10“0

|Sτ,τ 1 |. (3)

Step 4: Describing the probabilistic graphs and obtaining the system. To complete the
definition of the reduction, let us build the pm` 1q8 probabilistic graphs on which we want
to invoke the oracle, denoted Gpκ, κ1q for κ, κ1 P rm` 1s4. Let K :“ max ePE

ηpeq is even
pηpeqq and

K 1 :“ max ePE
ηpeq is odd

pηpeqq and N :“ K´6 and N 1 :“ K 1´6. The underlying graph of Gpκ, κ1q

is G, every edge e P EG that is not in G1 is assigned probability zero, and we explain next
what is the probability associated to the edges that are in G1. Consider 2ˆpm` 1q4 4-tuples
of probability values ρκ “ pρκ,00, ρκ,01, ρκ,10, ρκ,11q and ρ1κ “ pρ1κ1,00, ρ

1
κ1,01, ρ

1
κ1,10, ρ

1
κ1,11q for

κ, κ1 P rm`1s4, to be chosen later. For every directed edge px, yq P ÝÑ
H , let γ :“ ηptx, yuq be the

length to which it is subdivided in G1. Letting fpxq, v1, . . . , vγ´1, fpyq be the corresponding
path in G1, we set the probabilities of the γ edges along that path as follows:

If γ is even (illustrated in Figure 1):
1{2, ρκ,00, ρκ,01, ρκ,10, ρκ,11 for the first 5 edges,
ppN ´ γ ` 10q, qpN ´ γ ` 10q, rpN ´ γ ` 10q, spN ´ γ ` 10q for the next four edges,
1{2 for the remaining γ ´ 9 edges.

If γ is odd:
1{2, ρ1κ1,00, ρ

1
κ1,01, ρ

1
κ1,10, ρ

1
κ1,11 for the first 5 edges,

ppN 1 ´ γ ` 10q, qpN 1 ´ γ ` 10q, rpN 1 ´ γ ` 10q, spN 1 ´ γ ` 10q for the next four edges,
1{2 for the remaining γ ´ 9 edges.
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fpxq fpyq1
2 ρκ,00 ρκ,01 ρκ,10 ρκ,11 ppiq qpiq rpiq spiq 1

2
1
2 on all edges

γ ´ 10 edges

1
2 ρκ,00 ρκ,01 ρκ,10 ρκ,11

1
2

1
2 on all edges

N edges

Figure 1 The upper path depicts how we set the probabilities along a path fpxq, v1, . . . , vγ´1, fpyq

corresponding to an edge px, yq P
ÝÑ
H such that γ :“ ηptx, yuq is even. We write i :“ N ´ γ ` 10. By

Lemma 4.2 and Proposition 5.2, this path has exactly the same behavior as the lower path.

We know that N ´ γ ` 10 (resp., N 1 ´ γ ` 10) is an even integer when γ is even (resp.,
when γ is odd); and it is ě 4 by definition of K (resp., of K 1). Thus, using Proposition 5.2
and then Lemma 4.2, we know that the path that we defined behaves exactly like the
path PKp1{2, ρκ,00, ρκ,01, ρκ,10, ρκ,11, 1{2, . . . , 1{2q if γ is even, and exactly like the path
PK1p1{2, ρ1κ1,00, ρ

1
κ1,01, ρ

1
κ1,10, ρ

1
κ1,11, 1{2, . . . , 1{2q if γ is odd (see again Figure 1).

We have now managed to ensure that all paths for even edges (resp., for odd edges)
behave as if they had been subdivided to length K (resp., to length K 1). We continue the
proof as in the previous section, except that we distinguish odd and even edges. Specifically,
for b, b1 P t0, 1u, we write as in the previous section Υκ,bb1 :“ Πbb1

K´2pρκ, 1{2, . . . , 1{2q and
Υ1

κ1,bb1 :“ Πbb1

K1´2pρ
1
κ1 , 1{2, . . . , 1{2q. Using the same reasoning as for Equation 2, we obtain:

22m ˆ Pr
matching

pGpκ, κ1qq “
ÿ

τ,τ 1Prm`1s4

|Sτ,τ 1 | ˆ pΥκ,00q
τ00 ˆ pΥκ,01q

τ01 ˆ pΥκ,10q
τ10 ˆ pΥκ,11q

τ11

ˆ pΥ1
κ1,00q

τ 1
00 ˆ pΥ1

κ1,01q
τ 1

01 ˆ pΥ1
κ1,10q

τ 1
10 ˆ pΥ1

κ1,11q
τ 1

11 , (4)

i.e., we obtain a system of linear equations ΓS “ C with S the vector of the desired
values |Sτ,τ 1 |, with C the vector of the oracle answers PrmatchingpGpκ, κ

1qq, and with Γ P

Rrm`1s8,rm`1s8 , whose entries are given according to the above equation. But notice that we
have Γ “ V b V 1, with vκ,τ :“ 2´m ˆ pΥκ,00q

τ00 ˆ pΥκ,01q
τ01 ˆ pΥκ,10q

τ10 ˆ pΥκ,11q
τ11 and

v1κ1,τ 1 :“ 2´m ˆ pΥ1
κ1,00q

τ 1
00 ˆ pΥ1

κ1,01q
τ 1

01 ˆ pΥ1
κ1,10q

τ 1
10 ˆ pΥ1

κ1,11q
τ 1

11 . Since V and V 1 share
no variables and are identical up to renaming variables, to argue that there exist 4-tuples of
probabilistic values ρκ and ρ1κ1 for κ, κ1 P rm ` 1s4 that make Γ invertible, it is enough to
know that the Jacobian determinant of the mapping ξN is not identically null, as we showed
in the previous section (Fact 4.5). Thus, we can again use Proposition 3.5 to compute in
polynomial time 2ˆ pm` 1q4 4-tuples of rational probability values ρκ and ρ1κ1 such that the
matrices V and V 1, hence Γ, are invertible (see the full version [4]). By Equation 4, Γ has
rational entries, and its inverse Γ´1 also does and is computable in polynomial time.

Step 5: Using decimal fractions approximations. The last issue is that we cannot really
obtain C via oracle calls, because the graphs Gpκ, κ1q may have irrational edge probabilities,
namely, the ppiq, qpiq, rpiq, spiq. We now argue that we can still recover the C, so that we
can compute S “ Γ´1C and conclude. To do this, we first observe that C is in fact a
vector of decimal fractions, as the graphs Gpκ, κ1q emulate a graph where the probabilities
are decimal fractions; further, we can bound the number of decimal places of its values to
rmˆpmaxpN,N 1q`10qsˆz, with z the maximal number of decimal places of a decimal fraction
in ρκ, ρ

1
κ Second, we show how to compute decimal fraction approximations yppiq,yqpiq,yrpiq,yspiq
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of the ppiq, qpiq, rpiq, spiq, in polynomial time in the desired number of places, using the form
that they have according to Proposition 5.2. Third, we argue that when invoking the oracles
on the graphs where we replace ppiq, qpiq, rpiq, spiq by yppiq,yqpiq,yrpiq,yspiq, then the error on
the answer is bounded as a function of that of the approximations, so that we can recover C

exactly if the approximations were sufficiently precise. See the full version [4] for detailed
proofs.

6 Result for Edge Covers

Having shown Result 1, we now explain how to adapt its proof to obtain our analogous
results for edge covers. We only sketch the argument, and refer to the full version [4] for
more details. Recall that an edge cover of a graph G “ pV,Eq is a set of edges S Ď E such
that V “

Ť

ePS e. Given a probabilistic graph pG, πq, we define PredgeCoverpG, πq to be the
sum of the probabilities of all edge covers in the probability distribution induced by π, and
define PrEdgeCoverpFq for a graph family F to be the corresponding computational problem.
We first note that, in this context, the strict analogue of Result 1 does not hold. Indeed,
take some treewidth-constructible graph family G, and consider the graph family G1 obtained
from G as follows: for every graph G P G, we add to G1 the graph that is obtained from G

by attaching a dangling edge with a fresh vertex to every node of G. The family G1 is still
treewidth-constructible, but PrEdgeCoverpG1q is now tractable as it is easy to see that the
edge covers of a graph in G1 are precisely the edge subsets where all dangling edges are kept.

To avoid this, let us assume that G is closed under taking subgraphs, i.e., if G P G and G1

is a subgraph of G, then G1 P G. We then have:

▶ Theorem 6.1. Let G be an arbitrary family of graphs which is treewidth-constructible and
closed under taking subgraphs. Then PrEdgeCoverpGq is #P-hard under ZPP reductions.

This is proved like Result 1, with the following modifications. We reduce from counting
edge covers (instead of matchings) on 3-regular planar graphs: this is hard by [8], even on
simple graphs [2, Appendix D]. We now define a selection function µ to map each vertex x P V

to at least one incident edge, and we define the types and the sets Sτ,τ 1 as before, via an
arbitrary orientation of the graph H. We obtain the number of edge covers of H from the
quantities |Sτ,τ 1 | exactly as in Equation 3. We redefine Πbb1

n pρq to be the probability of
an edge cover in a path of length n with probabilities ρ on the edges and with endpoint
constraints given by b, b1 as before. Lemma 4.3 then becomes Πbb1

n p1{2, . . . , 1{2q “ fn`b`b1

2n ,
i.e., the role of b, b1 is “reversed”. Analogous versions of Lemma 4.2 and of Proposition 5.2
still hold, so the relevant Jacobian determinants are still non-identically null. We take
the graph G P G again via the topological minor extraction result, but this time directly
extracting SubpH, ηq P G as G is subgraph-closed. The rest of the proof is identical.

We point out that the situation is different for perfect matchings. Indeed, using a weighted
variant of the FKT algorithm [7, Chapter 4], the weighted counting of perfect matchings is
polynomial-time over the class of planar graphs, which is treewidth-constructible.

We conclude by leaving open two directions for future work. The first one would be to
obtain the same kind of lower bounds when the probabilities annotate the nodes instead of the
edges, that is, studying the corresponding weighted counting problems for, e.g., independent
sets, vertex covers, or cliques. We believe that the corresponding result should hold and do
not expect any surprises. The second question would be to show our hardness results in the
unweighted case, e.g., unweighted counting of matchings, assuming that the graph family is
subgraph-closed. This appears to be much more challenging, as our current proof crucially
relies on the ability to use arbitrary probability values.

MFCS 2022
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Abstract
In an upward-planar L-drawing of a directed acyclic graph (DAG) each edge e is represented as a
polyline composed of a vertical segment with its lowest endpoint at the tail of e and of a horizontal
segment ending at the head of e. Distinct edges may overlap, but not cross. Recently, upward-planar
L-drawings have been studied for st-graphs, i.e., planar DAGs with a single source s and a single
sink t containing an edge directed from s to t. It is known that a plane st-graph, i.e., an embedded
st-graph in which the edge (s, t) is incident to the outer face, admits an upward-planar L-drawing if
and only if it admits a bitonic st-ordering, which can be tested in linear time.

We study upward-planar L-drawings of DAGs that are not necessarily st-graphs. On the
combinatorial side, we show that a plane DAG admits an upward-planar L-drawing if and only if it
is a subgraph of a plane st-graph admitting a bitonic st-ordering. This allows us to show that not
every tree with a fixed bimodal embedding admits an upward-planar L-drawing. Moreover, we prove
that any acyclic cactus with a single source (or a single sink) admits an upward-planar L-drawing,
which respects a given outerplanar embedding if there are no transitive edges. On the algorithmic
side, we consider DAGs with a single source (or a single sink). We give linear-time testing algorithms
for these DAGs in two cases: (i) when the drawing must respect a prescribed embedding and (ii)
when no restriction is given on the embedding, but the DAG is biconnected and series-parallel.
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1 Introduction

In order to visualize hierarchies, directed acyclic graphs (DAGs) are often drawn in such
such a way that the geometric representation of the edges reflects their direction. To this
aim upward drawings have been introduced, i.e., drawings in which edges are monotonically
increasing curves in the y-direction. Sugiyama et al. [21] provided a general framework for
drawing DAGs upward. To support readability, it is desirable to avoid edge crossings [20, 23].
However, not every planar DAG admits an upward-planar drawing, i.e., an upward drawing
in which no two edges intersect except in common endpoints. A necessary condition is
that the corresponding embedding is bimodal, i.e., all incoming edges are consecutive in the
cyclic sequence of edges around any vertex. Di Battista and Tamassia [12] showed that a
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Figure 1 (a) A single-source series-parallel DAG G. (b) A planar L-drawing of G. (c) An
upward-planar L-drawing of G without the edge {S, t}.

DAG is upward-planar if and only if it is a subgraph of a planar st-graph, i.e., a planar
DAG with a single source and a single sink that are connected by an edge. Based on this
characterization, it can be decided in near-linear time whether a DAG admits an upward-
planar drawing respecting a given planar embedding [5, 8]. However, it is NP-complete
to decide whether a DAG admits an upward-planar drawing when no fixed embedding is
given [16]. For special cases, upward-planarity testing in the variable embedding setting can
be performed in polynomial time: e.g. if the DAG has only one source [6, 9, 19], or if the
underlying undirected graph is series-parallel [14]. Furthermore, parameterized algorithms
for upward-planarity testing exist with respect to the number of sources or the treewidth of
the input DAG [11].

Every upward-planar DAG admits a straight-line upward-planar drawing [12], however
such a drawing may require exponential area [13]. Gronemann introduced bitonic st-orderings
for DAGs [17]. A plane st-graph that admits a bitonic st-ordering also admits an upward-
planar drawing in quadratic area. It can be tested in linear time whether a plane st-graph
admits a bitonic st-ordering [17], and whether a planar st-graph admits a planar embedding
that allows for a bitonic st-ordering [1, 10]. By subdividing some transitive edges once, every
plane st-graph can be extended such that it admits a bitonic st-ordering. Moreover, the
minimum number of edges that have to be subdivided can be determined in linear time,
both, in the variable [1] and the fixed embedding setting [17].

In an L-drawing of a directed graph [4] each edge e is represented as a polyline composed
of a vertical segment incident to the tail of e and a horizontal segment incident to the head
of e. In a planar L-drawing, distinct edges may overlap, but not cross. See Fig. 1b for
an example. The problem of testing for the existence of a planar L-drawing of a directed
graph is NP-complete [10]. On the other hand, every upward-planar DAG admits a planar
L-drawing [3]. A planar L-drawing is upward if the lowest end vertex of the vertical segment
of an edge e is the tail of e (see Fig. 1c). A planar st-graph admits an upward-planar
L-drawing if and only it admits a bitonic st-ordering [10].

Our Contribution. We characterize in Theorem 2 the plane DAGs admitting an upward-
planar L-drawing as the subgraphs of plane st-graphs admitting a bitonic st-ordering. We
first apply this characterization to prove that there are trees with a fixed bimodal embedding
that do not admit an upward-planar L-drawing (Theorem 3). Moreover, the characterization
allows to test in linear time whether any DAG with a single source or a single sink admits
an upward-planar L-drawing preserving a given embedding (Theorem 5).
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We further show that every single-source acyclic cactus admits an upward-planar L-
drawing by directly computing the x- and y-coordinates as post- and pre-order numbers,
respectively, in a DFS-traversal (Theorem 4). The respective result holds for single-sink
acyclic cacti. Finally, we use a dynamic-programming approach combined with a matching
algorithm for regular expressions to decide in linear time whether a DAG with a single source
or a single sink has an embedding admitting an upward-planar L-drawing if it is biconnected
and series-parallel (Theorem 7). Observe that a plane st-graph does not necessarily admit
an upward-planar L-drawing if the respective graph with reversed edges does. This justifies
studying single-source and -sink graphs independently. Full details for proofs of statements
marked with (⋆) can be found in the full version of the paper [2].

2 Preliminaries

For standard graph theoretic notations and definitions we refer the reader to [22].

Digraphs. A directed graph (digraph) G = (V, E) is a pair consisting of a finite set V of
vertices and a set E of edges containing ordered pairs of distinct vertices. A vertex of a
digraph is a source if it is only incident to outgoing edges and a sink if it is only incident to
incoming edges. A walk is a sequence of vertices such that any two consecutive vertices in the
sequence are adjacent. A path is a walk with distinct vertices. In this work we assume that
all graphs are connected, i.e., that there is always a path between any two vertices. A cycle
is a walk with distinct vertices except for the first and the last vertex which must be equal.
A directed path (directed cycle) is a path (cycle) where for any vertex v and its successor u in
the path (cycle) there is an edge directed from u to v. In the following, we only consider
acyclic digraphs (DAGs), i.e., digraphs that do not contain directed cycles. A DAG is a tree
if it is connected and contains no cycles. It is a cactus if it is connected and each edge is
contained in at most one cycle.

Drawings. In a drawing (node-link diagram) of a digraph vertices are drawn as points in
the plane and edges are drawn as simple curves between their end vertices. A drawing of
a DAG is planar if no two edges intersect except in common endpoints. A planar drawing
splits the plane into connected regions – called faces. A planar embedding of a DAG is the
counter-clockwise cyclic order of the edges around each vertex according to a planar drawing.
A plane DAG is a DAG with a fixed planar embedding and a fixed unbounded face.

The rotation of an orthogonal polygonal chain, possibly with overlapping edges, is defined
as follows: We start with rotation zero. If the curve bends to the left, i.e., if there is a
convex angle to the left of the curve, then we add π/2 to the rotation. If the curve bends
to the right, i.e., if there is a concave angle to the left of the curve, then we subtract π/2
from the rotation. Moreover, if the curve has a 2π angle to the left, we handle this as two
concave angles and if there is a 0 angle to the left, we handle this as two convex angles. The
rotation of a simple polygon – with possible overlaps of consecutive edges – traversed in
counterclockwise direction is 2π.

Single-source series-parallel DAGs. Series-parallel digraphs are digraphs with two distin-
guished vertices, called poles, and can be defined recursively as follows: A single edge is a
series-parallel digraph. Given k series-parallel digraphs G1, . . . , Gk (components), with poles
vi, ui, i = 1, . . . , k, a series-parallel digraph G with poles v and u can be obtained in two
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Figure 2 a) A bimodal single-source series-parallel DAG that is not upward-planar b) with its
decomposition-tree. c) A single-source series-parallel DAG with an embedding that is not upward-
planar. However, the DAG with a different embedding is upward-planar.

ways: by merging v1, . . . , vk and u1, . . . , uk, respectively, into the new poles v and u (parallel
composition), or by merging the vertices ui and vi+1, i = 1, . . . , k − 1, and setting u = u1
and v = vk (series composition). The recursive construction of a series-parallel digraph is
represented in a decomposition-tree T . We refer to the vertices of T as nodes. The leaves
(vertices of degree one) of the decomposition-tree are labeled Q and represent the edges. The
other nodes (inner nodes) are labeled P for parallel composition or S for series composition.
No two adjacent nodes of T have the same label. Fig. 2b shows the decomposition-tree of
the graph in Fig. 2a. Let µ be a node of T . We denote by T (µ) the subtree rooted at µ and
by G(µ) the subgraph of G corresponding to T (µ), i.e., the subgraph of G formed by the
edges corresponding to the leaves of T (µ). The vertices of G(µ) that are different from its
poles are called internal. Given an arbitrary biconnected digraph G, it can be determined in
linear time whether it is series-parallel, and a decomposition-tree of G can be computed also
in linear time [18]. Moreover, rooting a decomposition-tree of a biconnected series-parallel
digraph G at an arbitrary inner node yields again a decomposition-tree of G.

In the following, we assume that G is a series-parallel DAG with a single source (sink) s.
If G has more than one edge, we root the decomposition-tree T at the inner node incident to
the Q-node corresponding to an edge incident to s. This implies that for any node µ of T no
internal vertex of G(µ) can be a source (sink) of G(µ) and at least one of the poles of G(µ)
is a source (sink) of G(µ).

It follows from [6] that every single-source series-parallel DAG is upward-planar if each
vertex is incident to at most one incoming or at most one outgoing edge. However, even in
that case, not every bimodal embedding is already upward-planar, see Fig. 2c. Moreover,
not every single-source series-parallel DAG is upward-planar, even if it admits a bimodal
embedding, see Fig. 2a. The reason for that is a P-node µ with two children µ1 and µ2 such
that a pole N of G(µ) is incident to an incoming edge in G − G(µ), and to both incoming
and outgoing edges in both, G(µ1) and G(µ2). Bimodal single-source series-parallel DAGs
without this property are always upward-planar [2].

Given an upward-planar drawing of G with distinct y-coordinates for the vertices, we
call the pole of G(µ) with lower y-coordinate the South pole of G(µ) and the other pole
the North pole of G(µ). Observe that the South (North) pole of G is the unique source
(sink) s. If µ is a P -node with children µ1, . . . , µℓ, then the South pole of G(µi), i = 1, . . . , ℓ

is the South pole of G(µ). Finally, if µ is an S-node with children µ1, . . . , µℓ, then observe
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Figure 3 (a) Forbidden configuration for bitonic st-orderings. (b+c) Single-source series-parallel
plane DAG that does not admit an upward-planar L-drawing since it contains a valley, in case (c) in
any upward-planar embedding.

that at most one among the components G(µi), i = 1, . . . , ℓ can have more than one source
(sink) – otherwise G would have more than one source (sink). The South (North) pole of all
other components is their unique source (sink).

Bitonic st-ordering. A planar st-graph is a planar DAG with a single source s, a single
sink t, and an edge (s, t). An st-ordering of a planar st-graph is an enumeration π of the
vertices with distinct integers, such that π(u) < π(v) for every edge (u, v). A plane st-graph
is a planar st-graph with a planar embedding in which the edge (s, t) is incident to the outer
face. Every plane st-graph admits an upward-planar drawing [12].

For each vertex v of a plane st-graph, we consider the ordered list S(v) = ⟨v1, v2, . . . , vk⟩
of the successors of v as they appear from left to right in an upward-planar drawing. An
st-ordering of a plane st-graph is bitonic, if there is a vertex vh in S(v) = ⟨v1, v2, . . . , vk⟩
such that π(vi) < π(vi+1), i = 1, . . . , h − 1, and π(vi) > π(vi+1), i = h, . . . , k − 1. We say
that the successor list S(v) = ⟨v1, v2, . . . , vk⟩ of a vertex v contains a valley if there are
1 < i ≤ j < k such that there are both, a directed vi-vi−1-path and a directed vj-vj+1-path
in G. See Fig. 3. Gronemann [17] characterized the plane st-graphs that admit a bitonic
st-ordering as follows.

▶ Theorem 1 ([17]). A plane st-graph admits a bitonic st-ordering if and only if the successor
list of no vertex contains a valley.

3 Upward-Planar L-Drawings – A Characterization

A plane st-graph admits an upward-planar L-drawing if and only it admits a bitonic st-
ordering [10]. We extend this result to general plane DAGs and discuss some consequences.

▶ Theorem 2. A plane DAG admits an upward-planar L-drawing if and only if it can be
augmented to a plane st-graph that admits an upward-planar L-drawing, i.e., a plane st-graph
that admits a bitonic st-ordering.

Proof. Let G be a plane DAG. Clearly, if an augmentation of G admits an upward-planar
L-drawing, then so does G. Let now an upward-planar drawing of G be given. Add a directed
triangle with a new source s, a new sink t, and a new vertex x enclosing the drawing of G.
As long as there is a vertex v of G that is not incident to an incoming or outgoing edge,
shoot a ray from v to the top or the right, respectively, until it hits another edge and follow
the segment to the incident vertex – recall that one end of any segment is a vertex and one
end is a bend. The orientation of the added edge is implied by the L-drawing. The result is
an upward-planar L-drawing of a digraph with the single source s and the single sink t. ◀
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(c) Family of trees.

Figure 4 DAGs that do not admit an upward-planar L-drawing even though they do not contain
a valley. Dashed edges indicate augmentations and are not part of the DAG.

Observe that every series-parallel st-graph admits a bitonic st-ordering [1, 10] and, thus,
an upward-planar L-drawing. This is no longer true for upward-planar series-parallel DAGs
with several sources or several sinks. Figs. 3b and 3c show examples of two single-source
upward-planar series-parallel DAGs that contain a valley. There are even upward-planar
series-parallel DAGs with a single source or a single sink that do not admit an upward-planar
L-drawing, even though the successor list of no vertex contains a valley.

Consider the DAG G in Fig. 4a (without the dashed edge). G has a unique upward-planar
embedding. Since no vertex has more than two successors there cannot be a valley. Assume
G admits a planar L-drawing. By Theorem 2 there should be an extension of G to a
plane st-graph G′ that admits a bitonic st-ordering. But the internal source w can only be
eliminated by adding the edge (v, w). Thus w is a successor of v in G′. Hence, the successor
list of v in G′ contains a valley. By Theorem 1, G′ is not bitonic, a contradiction.

Now consider the DAG G in Fig. 4b (without the dashed edge). G has two symmetric
upward-planar embeddings: with the curved edge to the right or the left of the remainder of
the DAG. We may assume that the curved edge is to the right. But then an augmentation to a
plane st-graph G′ must contain the dashed edge, which completes a valley at the single source
and its three rightmost outgoing edges. By Theorem 1, G′ is not bitonic, a contradiction.

A planar L-drawing is upward-leftward [10] if all edges are upward and point to the left.

▶ Theorem 3 (Trees). Every directed tree admits an upward-leftward planar L-drawing, but
not every tree with a fixed bimodal embedding admits an upward-planar L-drawing.

Proof. If the embedding is not fixed, we can construct an upward-planar L-drawing of the
input tree by removing one leaf v and its incident edge e, drawing the smaller directed tree
inductively, and inserting the removed leaf into this upward-leftward planar L-drawing. To
this end let u be the unique neighbor of v. We embed e as the first incoming or outgoing
edge of u, respectively, in counterclockwise direction, and draw v slightly to the right and
below u, if e is an incoming edge of u, or slightly to the left and above u, if e is an outgoing
edge of v. This guarantees that the resulting L-drawing is upward-leftward and planar.

When the embedding is fixed, we consider a family of plane trees Tk, k ≥ 1, proposed
by Frati [15, Fig. 4a], that have 2k vertices and require an exponential area Ω(2k/2) in any
embedding-preserving straight-line upward-planar drawing; see Fig. 4c. We claim that, for
sufficiently large k, the tree Tk does not admit an upward-planar L-drawing. Suppose, for
a contradiction, that it admits one. By Theorem 2, we can augment this drawing to an
upward-planar L-drawing of a plane st-graph G with n = 2k + 3 vertices. This implies
that G admits a bitonic st-ordering [10]. Hence, G (and thus Tk) admits a straight-line
upward-planar drawing in quadratic area (2n − 2) × (n − 1) [17], a contradiction. ◀
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Figure 5 (a) Single-source acyclic cactus. The dashed edges are the last edges on a left path cycles.
(b) A new sink t and the dashed edges augment a plane single-source DAG to a plane st-graph.

4 Single-Source or -Sink DAGs with Fixed Embedding

In the fixed embedding scenario, we first prove that every single-source or -sink acyclic cactus
with no transitive edge admits an upward-planar L-drawing and then give a linear-time
algorithm to test whether a single-source or -sink DAG admits an upward-planar L-drawing.

▶ Theorem 4 (Plane Single-Source or Single-Sink Cacti). Every acyclic cactus G with a single
source or single sink admits an upward-leftward outerplanar L-drawing. Moreover, if there
are no transitive edges (e.g., if G is a tree) then such a drawing can be constructed so to
maintain a given outerplanar embedding.

Proof. We first consider the case that G has a single source s. Observe that then each
biconnected component C of G (which is either an edge or a cycle) has a single source, namely
the cut-vertex of G that separates it from the part of the DAG containing s. This implies
that C also has a single sink (although G may have multiple sinks, belonging to different
biconnected components). In particular, if C is a cycle, it consists of a left path Pℓ and a
right path Pr between its single source and single sink. By flipping the cycle C – maintaining
outerplanarity – we can ensure that Pℓ contains more than one edge. Note that this flipping
is only performed if there are transitive edges. Consider the tree T that results from G by
removing the last edge of every left path.

We perform a depth-first search on T starting from s where the edges around a vertex
are traversed in clockwise order. We enumerate each vertex twice, once when we first meet it
(DFS-number or preorder number) and once when we finally backtrack from it (postorder
number). To also obtain that each edge points to the left, backtracking has to be altered
from the usual DFS: Before backtracking on a left path Pℓ of a cycle C, we directly jump to
the single source sC of C and continue the DFS from there, following the right path Pr of C.
Only once we have backtracked from the single sink tC of C, we give each vertex on Pℓ,
excluding sC , a postorder number and then we continue backtracking on Pr. See Fig. 5a.

Let the y-coordinate of a vertex be its preorder number and let the x-coordinate be its
thus constructed postorder number. Since each vertex has a larger preorder- and a lower
postorder-number than its parent, the drawing is upward-leftward. In [2] we prove that
it is also planar and preserves the embedding, which was updated only in the presence of
transitive edges.
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Now consider the case that G has a single sink. Flip the embedding, i.e., reverse the linear
order of the incoming (outgoing) edges around each vertex. Reverse the orientation of the
edges, construct the drawing of the resulting single-source DAG, rotate it by 90 degrees in
counter-clockwise direction, and mirror it horizontally. This yields the desired drawing. ◀

General DAGs. Two consecutive incident edges of a vertex form an angle. A large angle in
an upward-planar straight-line drawing is an angle greater than π between two consecutive
edges incident to a source or a sink, respectively. An upward-planar embedding of an upward-
planar DAG is a planar embedding with the assignment of large angles according to a
straight-line upward-planar drawing. For single-source or single-sink DAGs, respectively, a
planar embedding and a fixed outer face already determine an upward-planar embedding [6].

An angle is a source-switch or a sink-switch, respectively, if the two edges are both
outgoing or both incoming edges of the common end vertex. Observe that the number A(f)
of source-switches in a face f equals the number of sink-switches in f . Bertolazzi et al. [5]
proved that in biconnected upward-planar DAGs, the number L(f) of large angles in a
face f is A(f) − 1, if f is an inner face, and A(f) + 1, otherwise, and mentioned in the
conclusion that this result could be extended to simply connected graphs. An explicit proof
for single-source or -sink DAGs can be found in [2].

▶ Theorem 5. Given an upward-plane single-source or single-sink DAG, it can be tested in
linear time whether it admits an upward-planar L-drawing.

In the following, we prove the theorem for a DAG G with a single source s; the single-sink
case is discussed in [2]. In an upward-planar straight-line drawing of G, the only large angle
at a source-switch is the angle at s in the outer face. Thus, in the outer face all angles at
sink-switches are large and in an inner face f all but one angle at sink-switches are large.
For an inner face f , let top(f) be the sink-switch of f without large angle. See Fig. 5b.

▶ Lemma 6. Let G be a single source upward-planar DAG with a fixed upward-planar
embedding, let f be an inner face, and let v be a sink with a large angle in f . Every plane
st-graph extending G contains a directed v-top(f)-path.

Proof. Consider a planar st-graph extending G. In this graph there must be an outgoing
edge e of v towards the interior of f . Let w be the head of e. Follow a path from w on the
boundary of f upward until a sink-switch v′ is met. If this sink-switch is top(f), we are
done. Otherwise continue recursively by considering an outgoing edge e′ of v′ toward the
interior of f . Eventually this process terminates when top(f ) is reached. ◀

Proof of Theorem 5, single-source case. Let G be an upward-planar single-source DAG
with a fixed upward-planar embedding. Let G′ be the DAG that results from G by adding
in each inner face f edges from all sinks with a large angle in f to top(f) and by adding a
new sink t together with edges from all sink-switches on the outer face. We will show that G

admits an upward-planar L-drawing if and only if G′ does. This implies the statement, since
testing whether G′ admits a bitonic st-ordering can be performed in linear time [17].

Clearly, if G′ ⊇ G admits an upward-planar L-drawing, then so does G. In order to prove
the other direction, suppose that G has an upward-planar L-drawing. In order to prove that
G′ admits an upward-planar L-drawing, we show that it is a planar st-graph that admits a
bitonic st-ordering [10]. To show this, we argue that G′ is acyclic, has a single source and a
single sink, and the successor list of no vertex contains a valley by Theorem 1.
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Figure 6 The different types of a path between the poles. (a,b) South types; (c-h) North types.

Namely, the edges to the new sink t cannot be contained in any directed cycle. Furthermore,
by Theorem 2, there is an augmentation G′′ of G such that (a) G′′ is a planar st-graph and
such that (b) G′′ admits an upward-planar L-drawing. By Lemma 6, the edges added into
inner faces of G either belong to G′′ or are transitive edges in G′′. Thus, G′ is acyclic.

Since G′ does not have more sources than G, there is only one source in G′. Each sink has
a large angle in some face. Thus, in G′ each vertex other than t has at least one outgoing edge.
Therefore, G′ is a planar st-graph.

Assume now that there is a face f with a sink w such that the edge (w,top(f)) would
be part of a valley at a vertex v in G′, i.e., assume there are successors vi−1, vi, vj , vj+1 of v

from left to right (with possibly vi = vj) such that there is both, a directed vi-vi−1-path
and a directed vj-vj+1-path. Since the out-degree of w in G′ is one, it follows that w ≠ v.
Thus, (w,top(f)) could only be part of the vi-vi−1-path or the vj-vj+1-path. But then, by
Lemma 6, there would be such a path in any augmentation of G to a planar st-graph. Finally,
the edges incident to t cannot be involved in any valley, since all the tails have out-degree 1.
Thus, G′ contains no valleys. ◀

5 Single-Source or -Sink Series-Parallel DAGs with Variable Embedding

The goal of this section is to prove the following theorem.

▶ Theorem 7. It can be tested in linear time whether a DAG with a single source or a single
sink admits an upward-planar L-drawing if it is biconnected and series-parallel.

In the following we assume that G is a biconnected series-parallel DAG.

Single Source. We follow a dynamic-programming approach inspired by Binucci et al. [7]
and Chaplick et al. [11]. We define feasible types that combinatorially describe the “shapes”
attainable in an upward-planar L-drawing of each component. We show that these types
are sufficient to determine the possible types of a graph obtained with a parallel or series
composition, and show how to compute them efficiently. The types depend on the choice of
the South pole as the bottommost pole (if it is not uniquely determined by the structure of the
graph, e.g., if one of them is the unique source), and on the type of the leftmost S-N -path PL

and the rightmost S-N -path PR between the South-pole S and the North-pole N . Observe
that PL and PR do not have to be directed paths.

More precisely, the type of an S-N -path P is defined as follows: There are two South-types
depending on the edge incident to S: L (outgoing edge bending to the left; Fig. 6a) and
R (outgoing edge bending to the right; Fig. 6b). For the last edge incident to the North
pole N we have in addition the types for the incoming edges: W (incoming edge entering
from the left – West; Fig. 6e) and E (incoming edge entering from the right – East; Fig. 6f).
For the types R and L we further distinguish whether P passes to the left of N (Rcc/Lcc;
Figs. 6c and 6d) or to the right of N (Rc/Lc; Figs. 6g and 6h): Let h be the horizontal line
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Figure 7 (a–c) Illustrations for types of a component. (d) A parallel composition of eight compon-
ents of the following types: ⟨(Rcc, L), (W, L)⟩, ⟨(W, L), (W, L)⟩, ⟨(W, L), (W, L)⟩, ⟨(W, L), (E, L)⟩,
⟨(E, L), (E, L)⟩ single edge, ⟨(E, R), (E, R)⟩ not left-free at N , ⟨(Rc, R), (Rc, R)⟩. The result is of
type ⟨(Rcc, L), (Rc, R)⟩.

through N . We say that P passes to the left (right) of N if the last edge of P (from S to N)
that intersects h does so to the left (right) of N . Thus, there are six North-types for a path
between the poles: Rcc, Lcc, W, E, Rc, Lc. The superscripts c and cc stand for clockwise and
counter-clockwise, respectively, to denote the rotation of a path that passes to the left (right)
of N , when walking from N to S. This is justified in the next lemma and depicted e.g., in
Fig. 7a, where the right S-N -path has type Lc, since (walking from N to S) it first bends to
the left and then passes to the right of N by rotating clockwise.

▶ Lemma 8 (⋆). Let G be a series-parallel DAG with no internal sources. Let an upward-
planar L-drawing of G be given where the poles S and N are incident to the outer face and S is
below N . Let P be a not necessarily directed S-N -path. Let P ′ be the polygonal chain obtained
from P by adding a vertical segment pointing from N downward. The rotation of P ′ is

π if the type of P at N is in {E, Lc, Rc}.
−π if the type of P at N is in {Lcc, Rcc, W}.

We say that the type of a path between the poles is (X, x), if X is the North-type and x

is the South-type of the path, e.g., the type of a path that bends right at the South-pole,
passes to the right of the North-pole and ends in an edge that leaves the North-pole bending
to the left is (Lc, R), see PR in Fig. 7a. For two North-types X and Y , we say X < Y if X

is before Y in the ordering [RccLccWERcLc]. The South-types are ordered L < R. For two
types (X, x) and (Y, y) we say that (X, x) ≤ (Y, y) if X ≤ Y and x ≤ y, and (X, x) < (Y, y)
if (X, x) ≤ (Y, y) and X < Y or x < y.

The type of a component is determined by eight entries, whether the component is a
single edge or not, the choice of the bottommost pole (South pole), the type of PL, the
type of PR, and additionally four free-flags: For each pole, two flags left-free and right-free
indicating whether the bend on PL and PR, respectively, on the edge incident to the pole is
free on the left or the right, respectively: More precisely, let P be an S-N -path and let e be
an edge of P incident to a pole X. We say that e is free on the right (left) at X if e bends
to the right (left) – walking from S to N – or if the bend on e is not contained in an edge
not incident to X. See Figs. 7b and 7c. We denote a type by ⟨(X, x), (Y, y)⟩ where (X, x) is
the type of PL and (Y, y) is the type of PR without explicitly mentioning the flags or the
choice of the South pole. Observe that Y < Lc if X = Rcc and ⟨(X, x), (Y, y)⟩ is the type
of a component. Fig. 7d illustrates how components of different types can be composed in
parallel.

▶ Lemma 9 (Parallel Composition (⋆)). A component C of type ⟨(X, x), (Y, y)⟩ with the given
four free-flags can be obtained as a parallel composition of components C1, . . . , Cℓ of type
⟨(X1, x1), (Y1, y1)⟩ , . . . , ⟨(Xℓ, xℓ), (Yℓ, yℓ)⟩ from left to right at the South pole if and only if
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X1 = X, Yℓ = Y , x1 = x, yℓ = y,
C is left(right)-free at the North- and South-pole, respectively, if and only if C1 (Cℓ) is,
Yi ≤ Xi and

Ci is right-free if Yi = Xi+1 ∈ {Rcc, E, Rc}
Ci+1 is left-free if Yi = Xi+1 ∈ {Lcc, W, Lc}
Ci is right-free or Ci+1 is left-free if Yi ∈ {Lcc, Lc} and Xi+1 ∈ {Rcc, Rc} or vice
versa.
yi = xi+1 = L and Ci is right-free, or
yi = xi+1 = R and Ci+1 is left-free, or
yi = L and xi+1 = R and Ci is right-free or Ci+1 is left-free.

and single edges are the first among the components with a boundary path of type (W, R)
and the last among the components with a boundary path of type (E, L).

Sketch of Proof. Since the necessity of the conditions is evident, we shortly sketch how to
prove sufficiency. By construction, we ensure that the angle between two incoming edges is 0
or π and the angle between an incoming and an outgoing edge is π/2 or 3π/2. It remains to
show the following three conditions [10]: (i) The sum of the angles at a vertex is 2π, (ii) the
rotation at any inner face is 2π, (iii) and the bend-or-end property is fulfilled, i.e., there is
an assignment that assigns each edge to one of its end vertices with the following property.
Let e1 and e2 be two incident edges that are consecutive in the cyclic order and attached to
the same side of the common end vertex v. Let f be the face/angle between e1 and e2. Then
at least one among e1 and e2 is assigned to v and its bend leaves a concave angle in f . ◀

Lemma 9 yields a strict order of the possible types from left to right that can be composed
in parallel. Moreover, let σ be a sequence of types of components from left to right that can
be composed in parallel and let τ be a type in σ. Then Lemma 9 implies that τ appears
exactly once in σ or the leftmost path and the rightmost path have both the same type in τ

and all four free-flags are positive. In that case the type τ might occur arbitrarily many times
and all appearances are consecutive. Thus, σ can be expressed as a simple regular expression
on an alphabet T , i.e., a sequence ρ of elements in T ∪ {⋆} such that ⋆ does not occur as the
first symbol of ρ and there are no two consecutive ⋆ in ρ. A sequence s of elements in T is
represented by a simple regular expression ρ if it can be obtained from ρ by either removing
the symbol preceding a ⋆ or by repeating it arbitrarily many times.

Observe that the elements in the simple regular expression ρ representing σ are distinct,
thus, the length of ρ is linear in the number of types, i.e., constant. In particular, to obtain
a linear-time algorithm to enumerate the attainable types of a series-parallel DAG obtained
via a parallel composition, it suffices to establish the following algorithmic lemma.

▶ Lemma 10 (Simple Regular Expression Matching (⋆)). Let T be a constant-size alphabet (set
of types), and ρ be a constant-length simple regular expression over T . For a collection C of
items where each C ∈ C has a set T (C) ⊆ T , one can test in O(|C|) time, if there is a selection
of a type from each T (C), C ∈ C that can be ordered to obtain a sequence represented by ρ.

▶ Corollary 11. The types of a parallel composition can be computed in time linear in the
number of its children.

In order to understand how the type of a series composition is determined from the types
of the children, let us first have a look at an easy example: Assume that G1 and G2 consist
both of a single edge e1 and e2, respectively, and that the type of both is (W, R). Assume
further that G is obtained by merging the North poles N1 and N2 of G1 and G2, respectively.

MFCS 2022
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(a) G1 has type Lcc, G2 type L.
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(b) G1 has type Lcc, G2 type R at S2.

Figure 8 Different free-flags in the case that the North pole is merged with the South pole.

There are two ways how this can be done, namely e1 can be attached to N1 = N2 before e2
or after it in the counterclockwise order starting from Rcc and ending at Lc. In the first
case the North type of G is Rcc, in the second case it is Rc. Moreover, in the first case G is
left-free but not right-free at the North-pole, while in the second case it is right-free but not
left-free at the South-pole. See Figs. 7b and 7c.

▶ Lemma 12 (Series Composition). Let G1 and G2 be two series-parallel DAGs with no
internal source that admit an upward-planar L-drawing of a certain type ⟨(X1, x1), (Y1, y1)⟩
and ⟨(X2, x2), (Y2, y2)⟩, respectively, with the poles on the outer face. Let G be the DAG
obtained by a series combination of G1 and G2 such that the common pole of G1 and G2 is
not a source in both, G1 and G2. Then the possible types of G in an upward-planar L-drawing
maintaining the types of G1 and G2 can be determined in constant time.

Proof. Let Si and Ni, respectively, be the South and North pole of Gi, i = 1, 2. We may
assume that S1 is the South pole of G and, thus, N1 is the common pole of G1 and G2.

First suppose that N1 = S2, i.e., that N2 is the North pole of G. It follows that N1 cannot
be a source of G1. Then G admits an upward-planar L-drawing if and only if x2 = L and
X1 ̸= Rcc or y2 = R and Y1 ̸= Lc, and the respective free-conditions are fulfilled at N1 = S2.
The South-type of G is the South type of G1. The North-type of G is the North-type of G2
except for the free-flags, which might have to be updated if the next-to-last edge on the
leftmost or rightmost path, respectively, is already contained in G1 and is an outgoing edge
of N1. This might yield different North-types concerning the flags. See Fig. 8.

Now suppose that N1 = N2. Then G admits an upward-planar L-drawing if and only if G1
can be embedded before G2, i.e., Y1 ≤ X2 and X1 < Y2, and not (X1 = Rcc and Y2 = Lc) or
G2 can be embedded before G1, i.e., Y2 ≤ X1 and X2 < Y1, and not (X2 = Rcc and Y1 = Lc)
and the respective free-conditions are fulfilled at N1 = N2. If X1 = Y1 = X2 = Y2 ∈ {E, W }
then both conditions are fulfilled which might give rise to two upward-planar L-drawings
with distinct labels by adding G2 before or after G1 at the common pole. The free-flags
might have to be updated if the second edge on the leftmost or rightmost path, respectively,
is already contained in G2 or if the next-to-last edge on the leftmost or rightmost path,
respectively, is already contained in G1 and the type of G1 at N1 equals the respective type
of G2 at N2. Except for the flags, the South-type of G is the South type of G1 and the North
type of G2 yields the North type of G except for the specifications c or cc: First observe that
both, the leftmost path and the rightmost path, either have both type c or both type cc.
Otherwise, G1 would be contained in an inner face of G2. The North type of both paths is
indexed c if G2 is embedded before G1. Otherwise, the North type is indexed cc. Regarding
the time complexity, observe that our computation of the set of possible types of G does not
depend on the size of G1 and G2, but only on the number of types in their admissible sets.
Since these sets have constant size and the above conditions on the types of G1 and G2 can
be tested in constant time, we thus output the desired set in constant time. ◀
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▶ Lemma 13. The types of a series composition can be computed in time linear in the
number of its children.

Proof. Let C1, . . . , Cℓ be the components of a series component C and let T (Ci), i = 1, . . . , ℓ

be the set of possible types of Ci. For k = 1, . . . , ℓ, we inductively compute the set Ti of
possible types of the series combination Ck of C1, . . . , Ck, where T1 = T (C1). To compute Tk

for some k = 2, . . . , ℓ, we combine all possible combinations of a type in Tk−1 and a type in
T (Ck) and, applying Lemma 12, we check in constant time which types (if any) they would
yield for Ck. Since the number types is constant each step can be done in constant time. ◀

Single Sink. For the case that G has a single sink, the algorithmic principles are the same as
in the single-source case. The main difference is the type of an N -S-path P in a component C,
where S and N are the South- and North-pole of C. The North pole of a component is
always a sink and the North-type of P is W or E in this order from left to right. The
South-type is one among Ec, W c, L, R, Ecc, W cc in this order from left to right (according to
the outgoing edges at N), depending on whether the last edge of P (traversed from N to S)
is an incoming edge entering from the left (W) or the right (E), or an outgoing edge bending
to the left (L) or the right (R), and whether the last edge of P leaving the half-space above
the horizontal line through S does so to the right of S (cc) or the left of S (c).

The type consists again of the choice of the topmost pole (North pole), the type of
the leftmost N -S-path, the type of the rightmost N -S-path, the four free-flags – which
are defined the same way as in the single source case – and the information whether the
component is a single edge or not.

6 Conclusion and Future Work

We have shown how to decide in linear time whether a plane single-source or -sink DAG
admits an upward-planar L-drawing. A natural extension of this work would be to consider
plane DAGs with multiple sinks and sources, the complexity of which is open. In the variable
embedding setting, we have presented a linear-time testing algorithm for single-source or
-sink series-parallel DAGs. Some next directions are to consider general single-source or -sink
DAGs or general series-parallel DAGs. We remark that the complexity of testing for the
existence of upward-planar L-drawings in general also remains open.
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Abstract
Motivated by cognitive experiments providing evidence that large crossing-angles do not impair the
readability of a graph drawing, RAC (Right Angle Crossing) drawings were introduced to address
the problem of producing readable representations of non-planar graphs by supporting the optimal
case in which all crossings form 90◦ angles.

In this work, we make progress on the problem of finding RAC drawings of graphs of low degree.
In this context, a long-standing open question asks whether all degree-3 graphs admit straight-line
RAC drawings. This question has been positively answered for the Hamiltonian degree-3 graphs.
We improve on this result by extending to the class of 3-edge-colorable degree-3 graphs. When
each edge is allowed to have one bend, we prove that degree-4 graphs admit such RAC drawings, a
result which was previously known only for degree-3 graphs. Finally, we show that 7-edge-colorable
degree-7 graphs admit RAC drawings with two bends per edge. This improves over the previous
result on degree-6 graphs.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Graph algorithms

Keywords and phrases Graph Drawing, RAC graphs, Straight-line and bent drawings

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.11

Related Version Full Version: https://arxiv.org/abs/2206.14909

1 Introduction

In the literature, there is a wealth of approaches to draw planar graphs. Early results date
back to Fáry’s theorem [22], which guarantees the existence of a planar straight-line drawing
for every planar graph; see also [9, 30, 31, 33, 34]. Over the years, several breakthrough
results have been proposed, e.g., de Fraysseix, Pach and Pollack [11] in the late 80’s devised
a linear-time algorithm [10] that additionally guarantees the obtained drawings to be on an
integer grid of quadratic size (thus making high-precision arithmetics of previous approaches
unnecessary). Planar graph drawings have also been extensively studied in the presence of
bends. Here, a fundamental result is by Tamassia [32] in the context of orthogonal graph
drawings, i.e., drawings in which edges are axis-aligned polylines. In his seminal paper,
Tamassia suggested an approach, called topology-shape-metrics, to minimize the number of
bends of degree-4 plane graphs using flows. For a complete introduction, see [12].

When the input graph is non-planar, however, the available approaches that yield
aesthetically pleasing drawings are significantly fewer. The main obstacle here is that the
presence of edge-crossings negatively affects the drawing’s quality [28] and, on the other hand,
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their minimization turns out to be a computationally difficult problem [23]. In an attempt to
overcome these issues, a decade ago, Huang et al. [26] made a crucial observation that gave
rise to a new line of research (currently recognized under the term “beyond planarity” [25]):
edge crossings do not negatively affect the quality of the drawing too much (and hence the
human’s ability to read and interpret it), if the angles formed at the crossing points are large.
Thus, the focus moved naturally to non-planar graphs and their properties, when different
restrictions on the type of edge-crossings are imposed; see [19] for an overview.

Among the many different classes of graphs studied as part of this emerging line of
research, one of the most studied ones is the class of right-angle-crossing graphs (or RAC
graphs, for short); see [14] for a survey. These graphs were introduced by Didimo, Eades
and Liotta [15, 17] back in 2009 as those admitting straight-line drawings in which the
angles formed at the crossings are all 90◦. Most notably, these graphs are optimal in terms
of the crossing angles, which makes them more readable according to the observation by
Huang et al. [26]; moreover, RAC drawings form a natural generalization of orthogonal graph
drawings [32], as any crossing between two axis-aligned polylines trivially yields 90◦ angles.

In the same work [15, 17], Didimo, Eades and Liotta proved that every n-vertex RAC
graph is sparse, as it can contain at most 4n − 10 edges, while in a follow-up work [16] they
observed that not all degree-4 graphs are RAC. This gives rise to the following question which
has also been independently posed in several subsequent works (see e.g., [3], [18, Problem 6],
[14, Problem 9.5], [19, Problem 8]) and arguably forms the most intriguing open problem in
the area, as it remains unanswered since more than one decade.

▶ Question 1. Does every graph with degree at most 3 admit a straight-line RAC drawing?

The most relevant result that is known stems from the related problem of simultaneously
embedding two or more graphs on the Euclidean plane, such that the crossings between
different graphs form 90◦ angles. In this setting, Argyriou et al. [4] showed that a cycle and
a matching always admit such an embedding, which implies that every Hamiltonian degree-3
graph is RAC.

Finally, note that recognizing RAC graphs is hard in the existential theory of the reals [29],
which also implies that RAC drawings may require double-exponential area, in contrast to
the quadratic area requirement for planar graphs [11].

RAC graphs have also been studied by relaxing the requirement that the edges are
straight-line segments, giving rise to the class of k-bend RAC graphs (see, e.g, [1, 6, 7, 8, 13]),
i.e., those admitting drawings with at most k bends per edge and crossings at 90◦ angles.
It is known that every degree-3 graph is 1-bend RAC and every degree-6 graph is 2-bend
RAC [3]. While the flexibility guaranteed by the presence of one or two bends on each edge
is not enough to obtain a RAC drawing for every graph (in fact, 1- and 2-bend RAC graphs
with n vertices have at most 5.5n − O(1) and 72n − O(1) edges, respectively [1, 6]), it is
known that every graph is 3-bend RAC [13] and fits on a grid of cubic size [21].

Our contribution. We provide several improvements to the state of the art concerning RAC
graphs with low degree. In particular, we make an important step towards answering Ques-
tion 1 by proving that 3-edge-colorable degree-3 graphs are RAC (Theorem 3). This result
applies to Hamiltonian 3-regular graphs, to bipartite 3-regular graphs and, with some minor
modifications to our approach, to all Hamiltonian degree-3 graphs, thus extending the result
in [4]. As a further step towards answering Question 1, we prove that bridgeless 3-regular
graphs with oddness at most 2 are RAC (Theorem 8). If their oddness is k, we provide an
algorithm to construct a 1-bend RAC drawing where at most k edges have a bend(Theorem 9).
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We then focus on RAC drawings with one or two bends per edge. Namely, we prove that
all degree-4 graphs admit 1-bend RAC drawings and all 7-edge-colorable degree-7 graphs
admit 2-bend RAC drawings (Theorems 10 and 12), which form non-trivial improvements
over the state of the art, as the existence of such drawings was previously known only for
degree-3 and degree-6 graphs [3]. Due to space constraints, proofs of statements marked
with (∗) can be found in [2].

2 Preliminaries

Let G = (V, E) be a graph. W.l.o.g. we assume that G is connected, as otherwise we
apply our drawing algorithms to each component of G separately. G is called degree-k if the
maximum degree of G is k. G is called k-regular if the degree of each vertex of G is exactly
k. A 2-factor of an undirected graph G = (V, E) is a spanning subgraph of G consisting of
vertex disjoint cycles. Let F be a 2-factor of G and let ≺ be a total order of the vertices such
that the vertices of each cycle C ∈ F appear consecutive in ≺ according to some traversal of
C. In other words, every two vertices that are adjacent in C are consecutive in ≺ except for
two particular vertices, which are the first and the last vertices of C in ≺. We call the edge
between these two vertices the closing edge of C. By definition, ≺ also induces a total order
of the cycles of F . Let {u, v} be an edge in E \ F and let C and C ′ be the cycles of F that
contain u and v, respectively. If C = C ′, then {u, v} is a chord of C. Otherwise, C ̸= C ′. If
u ≺ v, {u, v} is called a forward edge of u and a backward edge of v. The following theorem
provides a tool to partition the edges of a bounded degree graph into 2-factors [27].

▶ Theorem 2 (Eades, Symvonis, Whitesides [20]). Let G = (V, E) be an n-vertex undirected
graph of degree ∆ and let d = ⌈∆/2⌉. Then, there exists a directed multi-graph G′ = (V, E′)
with the following properties:
1. each vertex of G′ has indegree d and outdegree d;
2. G is a subgraph of the underlying undirected graph of G′; and
3. the edges of G′ can be partitioned into d edge-disjoint directed 2-factors.

Furthermore, the directed graph G′ and the d 2-factors can be computed in O(∆2n) time.

Let Γ be a polyline drawing of G such that the vertices and edge-bends lie on grid points.
The area of Γ is determined by the smallest enclosing rectangle. Let {u, v} be an edge in Γ.
We say that {u, v} is using an orthogonal port at u if the edge-segment su of {u, v} that is
incident to u is either horizontal or vertical; otherwise it is using an oblique port at u. We
denote the orthogonal ports at u by N , E, S and W , if su is above, to the right, below or to
the left of u, respectively. If no edge is using a specific orthogonal port, we say that this port
is free.

3 RAC drawings of 3-edge-colorable degree-3 graphs

In this section, we prove that 3-edge-colorable degree-3 graphs admit RAC drawings of
quadratic area, which can be computed in linear time assuming that the edge coloring is
given (testing the existence of such a coloring is NP-complete even for 3-regular graphs [24]).

▶ Theorem 3. Given a 3-edge-colorable degree-3 graph G with n vertices and a 3-edge-coloring
of G, it is possible to compute in O(n) time a RAC drawing of G with O(n2) area.

We assume w.l.o.g. that G does not contain degree-1 vertices, as otherwise we can replace
each such vertex with a 3-cycle while maintaining the 3-edge-colorability of the graph and
without asymptotically increasing the size of the graph. Since G is 3-edge-colorable, it can be
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(a) G

c5

c4

c1

c3

c2

(b) c1, . . . , c5

c1 c4 c5

c2 c3

(c) H

Figure 1 (a) A non-planar, non-Hamiltonian, 3-edge-colorable degree-3 example graph G. The
matching M1 is drawn with blue dashed lines, M2 with red solid lines and M3 with green dotted
lines. (b) The components c1, c2 and c3 of the subgraph Hy induced by M1 ∪ M2 (shaded in blue)
and the components c4 and c5 of Hx induced by M2 ∪ M3 (shaded in green). (c) The auxiliary graph
H in which the components of Hy and Hx sharing at least one vertex are connected by an edge. In
this example, the BFS traversal of the components of H is c1, c2, c3, c4, c5.

decomposed into three matchings M1, M2 and M3. In the produced RAC drawing, the edges
in M1 will be drawn horizontal, those in M3 vertical, while those in M2 will be crossing-free,
not maintaining a particular slope. Let Hy and Hx be two subgraphs of G induced by
M1 ∪ M2 and M2 ∪ M3, respectively. Since every vertex of G has at least two incident edges,
which belong to different matchings, each of Hy and Hx spans all vertices of G. Further, any
connected component in Hy or Hx is either a path or an even-length cycle, as both Hy and
Hx are degree-2 graphs alternating between edges of different matchings.

We define an auxiliary bipartite graph H, whose first (second) part has a vertex for each
connected component in Hy (Hx), and there is an edge between two vertices if and only if
the corresponding components share at least one vertex; see Fig. 1.

▶ Property 4. The auxiliary graph H is connected.

Proof. Suppose for a contradiction that H is not connected. Let vc and vc′ be two vertices of
H that are in different connected components of H. By definition of H, vc and vc′ correspond
to connected components c and c′, respectively, of Hy or Hx. W.l.o.g. assume that c belongs
to Hy. Let u0 and uk be two vertices of G that belong to c and c′, respectively. Since G is
connected, there is a path P = (u0, u1, u2, . . . uk) between u0 and uk in G, such that no two
consecutive edges in P belong to the same matching. Let (ui, ui+1) be the first edge of P

from u0 to uk that belongs to M3, which exists since c ≠ c′. By construction, this implies
that ui belongs to c and to another component c∗ of Hx. By definition of H, vc and vc∗ are
connected in H, where vc∗ is the corresponding vertex of c∗ in H. Repeating this argument
until uk is reached yields a path in H from vc to vc′ , a contradiction. ◀

We now define two total orders ≺y and ≺x of the vertices of G, which will then be used
to assign their y- and x-coordinates, respectively, in the final RAC drawing of G. Since we
seek to draw the edges of M1 (M3) horizontal (vertical), we require that the endvertices of
any edge in M1 (M3) are consecutive in ≺y (≺x, respectively). Moreover, for the edges of
M2, we guarantee some properties that will allow us to draw them without crossings.

To construct ≺y and ≺x, we process the components of Hy and Hx according to a certain
BFS traversal of H and for each visited component of Hy (Hx), we append all its vertices to
≺y (≺x) in a certain order.

To select the first vertex of the BFS traversal of H, we consider a vertex u of G belonging
to two components c and c′ of Hy and Hx, respectively, such that u is the endpoint of c if c

is a path; if c is a cycle, we do not impose any constraints on the choice of u. We refer to
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vertex u as the origin vertex of G. Also, let vc and vc′ be the vertices of H corresponding to
c and c′, respectively. By definition of H, vc and vc′ are adjacent in H. We start our BFS
traversal of H at vc and then we move to vc′ in the second step (note that this choice is not
needed for the definition of ≺y and ≺x, but it guarantees a structural property that will be
useful later). From this point on, we continue the BFS traversal to the remaining vertices of
H without further restrictions. In the following, we describe how to process the components
of Hy and Hx in order to guarantee an important property (see Property 5)

Let c be the component of Hy or Hx corresponding to the currently visited vertex in the
traversal of H. Since H is bipartite, no other component of Hy (Hx) shares a vertex with c,
if c belongs to Hy (Hx). Hence, no vertex of c already appears in ≺y (≺x).

If c is a path, then we append the vertices of c to ≺y or ≺x in the natural order defined
by a walk from one of its endvertices to the other. Note that if c is the first component in
the BFS traversal of H, one of these endvertices is by definition the origin vertex of G, which
we choose to start the walk. Hence, in the following we focus on the case that c is a cycle. In
this case, the vertices of c will also be appended to ≺y or ≺x in the natural order defined by
some specific walk of c, such that the so-called closing edge connecting the first and the last
vertex of c in this order belongs to M2. Note that an edge might be closing in both orders
≺y and ≺x.

Suppose first that c ∈ Hy. If c is the first component in the BFS traversal of H, then we
append the vertices of c to ≺y in the order that they appear in the cyclic walk of c starting
from the origin vertex of G and following the edge of M1 incident to it. Otherwise, let v be
the first vertex of c in ≺x, which is well defined since there is at least one vertex of c that is
part of ≺x, namely, the one that is shared with its parent. We append the vertices of c to
≺y in the order that they appear in the cyclic walk of c starting from v and following the
edge of M1 incident to v. Hence, v is the first vertex of c in both ≺y and ≺x. In both cases,
it follows that the closing edge of c belongs to M2.

Suppose now that c ∈ Hx, which implies that c is not the first component in the BFS
traversal of H. Let v be the first vertex of c in ≺y, which is again well defined since there is
at least one vertex of c that is part of ≺y. We append the vertices of c to ≺x in the inverse
order that they appear in the cyclic walk of c starting from v and following the edge (v, w)
of M3 incident to v (or equivalently, in the order they appear in the cyclic walk of c starting
from the neighbor of v different from w and ending at v). Hence, v is the first vertex of c in
≺y and the last vertex of c in ≺x. Also in this case, the closing edge of c belongs to M2. See
Fig. 2 for an illustration. Note that the closing edge of a component c is contained inside
the parent component of c is the BFS traversal. Moreover, by construction, the following
property holds.

▶ Property 5. The endvertices of any edge in M1 (M3) are consecutive in ≺y (≺x). The
endvertices of any edge in M2 are consecutive in ≺y (≺x) unless this edge is a closing edge
in a component of Hy (of Hx).

Computing the vertex coordinates. We use ≺y and ≺x to specify the y- and the x-
coordinates of the vertices, respectively. To do so, we iterate through ≺y and set the
y-coordinate of its first vertex to 1. Let v be the next vertex in the iteration and let u be its
predecessor in ≺y. Assume that the y-coordinate of u is i. If (u, v) ∈ M1, we set the same
y-coordinate i to v. Otherwise, either u and v belong to two different components of Hy or
(u, v) ∈ M2 and we set the y-coordinate i + 1 to v. Similarly, we iterate through ≺x and set
the x-coordinate of its first vertex to 1. Let v be the next vertex in the iteration and let
u be its predecessor in ≺x. Assume that the x-coordinate of u is i. If (u, v) ∈ M3, we set
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Figure 2 The total orders (a) ≺y for Hy that consists of the blue and red edges, and (b) ≺x for
Hx that consists of the green and red edges. The final drawing of G is shown in (c).

the x-coordinate of v to i. Otherwise, either u and v belong to two different components of
Hx or (u, v) ∈ M2 and we set the x-coordinate i + 1 to v. Hence, no two vertices share the
same x- and y-coordinates. We next show that the computed vertex coordinates induce a
straight-line RAC drawing Γ of G with the possible exception of the edge of M2 incident to
the origin vertex of G, since this edge would be a closing edge for both c and c′ and hence
by Property 5 its endpoints would be consecutive in neither ≺y nor ≺x. If this edge exists,
we denote it by e∗, while the graph G \ e∗ and its drawing in Γ are denoted by G∗ and Γ∗,
respectively.

▶ Lemma 6. Let e be an edge of G∗. Then, e is drawn horizontally in Γ∗ if e ∈ M1; vertically
in Γ∗ if e ∈ M3 and crossing-free in Γ∗ if e ∈ M2.

Proof. If e ∈ M1 or e ∈ M3, the statement follows from Property 5 and the computed vertex
coordinates. Hence, let e = (u, v) be an edge of M2 and let cy ∈ Hy and cx ∈ Hx be the two
components of H containing e. Suppose to the contrary that there is an edge e′ = (u′, v′)
crossing e. If e′ ∈ M1, then both u′ and v′ belong to the same component c′

y ∈ Hy. If c′
y ̸= cy,

then e′ cannot cross e as the vertices of cy and c′
y span different intervals of y-coordinates,

hence e′ belongs to cy. Similarly, if e′ ∈ M3, then e′ belongs to cx. Finally, if e′ ∈ M2, then u′

and v′ belong to the same component in both Hy and Hx; thus e′ belongs to both cy and cx.

1. Edge e is a closing edge for neither cy nor cx: The vertices u and v are consecutive in
both ≺y and ≺x by Property 5. Hence, both their x- and y-coordinate differ by exactly
one by construction. Since all vertices have integer coordinates, no horizontal or vertical
edge is crossing e, hence e′ ∈ M2. Observe that since the y- (the x-) coordinate of the
vertices in cy (in cx) are non-decreasing along the walk defining its order in ≺y (in ≺x),
no crossing between e and e′ can occur if e′ is not a closing edge of cy or cx, which will
be covered in the next cases (by swapping the roles of e and e′).

2. Edge e is a closing edge for cy but not for cx: Note that cy is not the first component in
the BFS traversal, since the closing edge of this component is e∗. Further, u and v are
consecutive in ≺x, but not in ≺y. We assume that u directly precedes v in ≺x, which
implies that u is the first vertex of cy in ≺y, while v is the last. It follows that their
x-coordinates differ by exactly one, hence e′ cannot belong to M3. If e′ belongs to M1,
then one of u′ or v′, say u′, has x-coordinate smaller or equal to the one of u. Since u

and v are consecutive in ≺x, we have necessarily that u′ precedes u in ≺x, which is a
contradiction to the choice of u since both u′ and v′ belong to cy. In fact, u was chosen
as the starting point of the walk, when considering cy, as the first vertex of cy in ≺x,
hence e′ ∈ M2. Since both endpoints of e′ belong to both cy and cx, then one of u′ or v′,
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say u′, has x-coordinate smaller or equal to the one of u. Since u and v are consecutive
in ≺x, we have necessarily that u′ ≺x u, which is a contradiction to the choice of u since
both u′ and v′ belong to cy.

3. Edge e is a closing edge for cx but not for cy: This case is analogous to the previous one.
4. Edge e is a closing edge for both cy and cx: Observe that neither cy nor cx is the first

component in the BFS traversal of H, since e∗ is the closing edge of this component,
which is not part of G∗. Recall that by definition, the vertices vcy

and vcx
corresponding

to cy and cx in H are adjacent. Assume that cy is visited before cx in the BFS traversal;
the other case is symmetric. By our construction rule, when considering cy, we started
the walk from the vertex u that is the first vertex of cy in ≺x, which means u also belongs
to a component c′

x of Hx. Since cy is a cycle, u is incident to an edge in M2, which then
also belongs to c′

x. Clearly, the edge of M2 incident to u is the closing edge of cy and
contained in c′

x, which implies that the edge does not belong to cx, hence this case does
not occur in G∗. ◀

By the last case of Lemma 6, it follows that if the edge e∗ exists, then it is the only
closing edge of two components, which is summarized in the following corollary.

▶ Corollary 7. There is at most one edge in M2 that is a closing edge for two components.

We now describe how to add the edge e∗ to Γ∗ if such an edge exists to obtain the final
drawing Γ. Let u and v be the endvertices of e∗ with u being the origin vertex of G. By
construction, u and v are in the first two components c and c′ of the BFS traversal of H.
Since u is the first vertex in ≺y, its y-coordinate is 1, i.e., u is the bottommost vertex of
Γ∗. Also, since u is the first vertex of c′ in ≺y, it is incident to the closing edge of c′ and
c by definition, in particular, this edge is e∗. Note that this implies that the x-coordinate
of v is 1, so v is the leftmost vertex of Γ∗ and the first vertex in ≺x. This ensures that v

can be moved to the left and u to the bottom in order to draw the edge e∗ crossing-free. In
particular, moving v by n units to the left and u by n units to the bottom we can guarantee
that e∗ does not intersect the first quadrant R2

+, while by construction any other edge (not
incident to u or v) lies in R2

+. Since e∗ is the only edge of M2 incident to u and v, it remains
to consider the edges of M1 and M3 incident to u or v. Observe that the edge of M1 incident
to v remains horizontal, while the edge of M3 incident to u remains vertical. Finally, the
edge of M1 incident to u is crossing free in Γ∗, since there is no vertex below it, hence it
remains crossing-free after moving u to the bottom. Similarly, the edge of M3 incident to v

is crossing free in Γ∗, since there is not vertex to the left of it, hence it remains crossing-free
after moving v to the left. Together with Lemma 6 we obtain that Γ is a RAC drawing of G.
We complete the proof of Theorem 3 by discussing the time complexity and the required
area. We construct the components of Hy and Hx based on the given edges-coloring using
BFS in O(n) time. To define ≺y and ≺x, we choose the origin vertex u and the components
c and c′ for the start of the BFS of H in linear time. We then traverse every edge of G at
most twice. Hence, this step takes O(n) time in total. Assigning the vertex coordinates, by
first iterating through ≺y and ≺x and then possibly moving the end-vertices of e∗, clearly
takes O(n) time again, hence the drawing can be computed in linear time.

For the area, we observe that the initial x- and y-coordinates for all the vertices range
between 1 and n. Since we possibly move the origin vertex u and its M2 neighbor v by n

units each, the drawing area is at most 2n × 2n.
We conclude this section by mentioning two results that form generalizations of our

approach of Theorem 3. In this regard, we need the notion of oddness of a bridgeless 3-
regular graph, which is defined as the minimum number of odd cycles in any possible 2-factor
of it. Theorem 8 is limited to oddness-2, while Theorem 9 provides an upper bound on the
number of edges requiring one bend that is linear in the oddness; their proofs are in [2].
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▶ Theorem 8. (*) Every bridgeless 3-regular graph with oddness 2 admits a RAC drawing
in quadratic area which can be computed in subquadratic time.

▶ Theorem 9. (*) Every bridgeless 3-regular graph with oddness k ≥ 2 admits a 1-bend
RAC drawing in quadratic area where at most k edges require one bend.

4 1-Bend RAC Drawings of Degree-4 graphs

In this section, we focus on degree-4 graphs and show that they admit 1-bend RAC drawings.

▶ Theorem 10. Given a degree-4 graph G with n vertices, it is possible to compute in O(n)
time a 1-bend RAC drawing of G with O(n2) area.

Proof. By Theorem 2, we augment G into a directed 4-regular multigraph G′ with edge
disjoint 2-factors F1 and F2. Let Gs be the graph obtained from G′ as follows. For each
vertex u of G′ with incident edges (a1, u), (u, b1) ∈ F1 and (a2, u), (u, b2) ∈ F2, we add two
vertices us and ut to Gs that are incident to the following five edges: us is incident to the
two incoming edges of u, namely, (a1, us) and (a2, us), while ut is incident to (ut, b1) and
(ut, b2). Finally, we add the edge (us, ut) to Gs, which we call split-edge.

By construction, Gs is 3-regular and 3-edge colorable, since each vertex of it is incident to
one edge of F1, one edge of F2 and one split-edge. By applying the algorithm of Theorem 3
to Gs, we obtain a RAC drawing Γs of Gs, such that the matching M2 in the algorithm is
the one consisting of all the split-edges. To obtain a 1-bend drawing for G′, it remains to
merge the vertices us and ut for every vertex u in G′. We place u at the position of us in
Γs. We draw each outgoing edge (u, x) of u as a polyline with a bend placed close to the
position of ut in Γs (the specific position will be discussed later), which implies that the two
segments are close to the edges (us, ut) and (ut, x) in Γs, respectively. This guarantees that
any edge has exactly one bend, as any edge is outgoing for exactly one of its endvertices.

We next discuss how we place the bends for the outgoing edges of u. Since each split-edge
belongs to M2, it is drawn in Γs either as the diagonal of a 1 × 1 grid box or as a closing
edge. Also, since the outgoing edges of u are in M1 and M3, they are drawn as horizontal
and vertical line-segments.

Assume first that the split-edge of u is the diagonal of a 1 × 1 grid box; see Fig. 3a. If the
outgoing edge (ut, x) belongs to M1, then we place the bend of (u, x) either half a unit to the
right of ut if x is to the right of ut in Γs, or half a unit to its left otherwise. Symmetrically,
if (ut, x) belongs to M3, we place the bend half a unit either above or below ut.

Assume now that the split-edge of u is a closing edge in exactly one of Hy or Hx, say
w.l.o.g. of a cycle c in Hx, i.e., it spans the whole x-interval of c. By construction, the
outgoing edge of (ut, x) that belongs to M3 is a vertical line-segment attached above u, as
either ut or us are the first vertex of c in ≺y; in the latter case, ut is the second vertex of c

in ≺y by construction. If the edge (ut, x) belongs to M3, we place the bend exactly at the
computed position of ut. If (ut, x) belongs to M1, we place it either half a unit to the right
of ut if x is to the right of ut in Γs, or half a unit to its left otherwise; see Fig. 3b.

Assume last that the split-edge of u is the closing edge e for a Hy and a Hx cycle,
which is unique by Corollary 7. As discussed for the analogous case in Section 3 (see
the discussion following Corollary 7), one of us and ut, say w.l.o.g. us, is the leftmost,
while the other ut is the bottommost vertex in Γs. For the placement of the bends,
we slightly deviate from our approach above. Let (ut, x) and (ut, y) be the two edges
of M1 and M3 incident to ut in Gs. Then, it is not difficult to find two grid points
bx and by sufficiently below the positions of x and y in Γs, such that (u, x) and (u, y)
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us

ut

u

(a)
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Figure 3 Illustration on how to place the bends in the proof of Theorem 10. To merge the vertices
us and ut of a vertex u in G′, u is placed at the position of us. The bends of the outgoing edges at
u are placed close to the position of ut in the drawing depending on their orientation.

drawn by bending at bx and by do not cross. Since no two bends overlap, no new cross-
ings are introduced and the slopes of the segments involved in crossings are not modified,
the obtained drawing Γ′ is a 1-bend RAC drawing for G′ (and thus for G).

Regarding the time complexity, we observe that we can apply Theorem 2 and the split-
operation in O(n) time. The split operation immediately yields a valid 3-coloring of the
edges, hence we can apply the algorithm of Theorem 3 to obtain Γs in O(n) time. Finally,
contracting the edges can clearly be done in O(n) time, as it requires a constant number of
operations per edge. For the area, we observe that in order to place the bends, we have to
introduce new grid-points, but we at most double the number of points in any dimension,
hence we still maintain the asymptotic quadratic area guaranteed by Theorem 3. ◀

The following theorem, whose proof is in [2], provides an alternative construction which
additionally guarantees a linear number of edges drawn as straight-line segments.

▶ Theorem 11. (*) Given a degree-4 graph G with n vertices and m edges, it is possible to
compute in O(n) time a 1-bend RAC drawing of G with O(n2) area where at least m

8 edges
are drawn as straight-line segments.

5 RAC drawings of 7-edge-colorable degree-7 graphs

We prove that 7-edge-colorable degree-7 graphs admit 2-bend RAC drawings by proving the
following slightly stronger statement.

▶ Theorem 12. Given a degree-7 graph G decomposed into a degree-6 graph H and a
matching M , it is possible to compute in O(n) time a 2-bend RAC drawing of G with O(n2)
area.

Since H is a degree-6 graph, it admits a decomposition into three disjoint (directed)
2-factors F1, F2 and F3 after applying Theorem 2 and (possibly) augmenting H to a 6-regular
(multi)-graph. To distinguish between directed and undirected edges, we write {u, v} to
denote an undirected edge between u and v, while (u, v) denotes a directed edge from u

to v. In the following, we will define two total orders ≺x and ≺y, which will define the x-
and y-coordinates of the vertices of G, respectively. We define ≺y such that the vertices
of each cycle in F1 will be consecutive in ≺y. Initially, for any cycle of F1, the specific
internal order of its vertices in ≺y is specified by one of the two traversals of it; however, we
note here that this choice may be refined later in order to guarantee an additional property
(described in Lemma 13). The definition of ≺x is more involved and will also be discussed
later. Theorem 2 guarantees that the edges of F2 (F3) are oriented such that any vertex has
at most one incoming and one outgoing edge in F2 (F3). Once ≺y and ≺x are computed,
each vertex u of G will be mapped to point (8i, 8j) of the Euclidean plane provided that u is
the i-th vertex in ≺x and the j-th vertex in ≺y. Each vertex u is associated with a closed
box B(u) centered at u of size 8 × 8. We aim at computing a drawing of G in which
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(a) (b)

Figure 4 Edge routing in the 8 × 8 box B(u) of a vertex u (a). Red dashed (blue dotted) ports
are reserved for horizontal (vertical) type-2 edges. A 2-bend RAC drawing of K8 is shown in (b). In
this drawing, red dashed edges are horizontal type-2, while the blue dotted one is vertical type-2.

(i) no two boxes overlap, and
(ii) the edges are drawn with two bends each so that only the edge-segments that are

incident to u are contained in the interior of B(u), while all the other edge-segments
are either vertical or horizontal.

This guarantees that the resulting drawing is 2-bend RAC; see Fig. 4b.
In the final drawing, all edges will be drawn with exactly three segments, out of which

either one or two are oblique, i.e., they are neither horizontal nor vertical. It follows from (ii)
that the bend point between an oblique segment and a vertical (horizontal) segment lies on
a horizontal (vertical) side of the box containing the oblique segment. During the algorithm,
we will classify the edges as type-1 or type-2. Type-1 edges will be drawn with one oblique
segment, while type-2 edges with two oblique segments. In particular, for a type-1 edge
(u, v), we further have that the oblique segment is incident to v, which implies that (u, v)
occupies an orthogonal port at u. On the other hand, a type-2 edge (u, v) requires that
B(u) and B(v) are aligned in y (in x), i.e., there exists a horizontal (vertical) line that is
partially contained in both B(u) and B(v), in order to draw the middle segment of (u, v)
horizontally (vertically). By construction, this is equivalent to having u and v consecutive in
≺y (≺x). These alignments guarantee that if we partition the edges of F1 into F̄1 and F̂1
containing the closing and non-closing ones, respectively, then it is possible to draw F̂1 as a
horizontal type-2 edge (independent of the x-coordinate of its endvertices), as its endvertices
are consecutive in ≺y by construction. Thus, we can put our focus on edges in F̄1 ∪ F2 ∪ F3 ,
which we initially classify as type-1 edges (by orienting each edge (u, v) of F̄1 from u to v if
u ≺y v). We refine ≺y using the concept of critical vertices. Namely, for a vertex u of G,
the direct successors of u in F̄1 ∪ F2 ∪ F3 are the critical vertices of u, which are denoted by
c(u). Based on the relative position of u to its critical vertices in ≺y, we label u as (α, β), if
α vertices t1, . . . , tα of c(u) are after u in ≺y and β vertices b1, . . . , bβ before. We refer to
t1, . . . , tα (b1, . . . , bβ) as the upper (lower) critical neighbors of u. An edge connecting u to
an upper (lower) critical neighbor is called upper critical (lower critical, respectively). More
general, the upper and lower critical edges of u are its critical edges.

Note that 2 ≤ α + β ≤ 3 as any vertex has exactly one outgoing edge in F2 and
F3 and at most one in F̄1, that is, the number of upper and lower critical neighbors of
vertex u ranges between 2 and 3. It follows that the label of each vertex of H is in
{(0, 2), (1, 1), (2, 0), (1, 2), (2, 1), (3, 0)}; refer to these labels as the feasible labels of the vertex.
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Observe that a (3, 0)-, (2, 1)- or (1, 2)-label implies that the vertex is incident to a closing
edge of F1 (hence, each cycle in F1 has at most one such vertex, which is its first one in ≺y).
This step will complete the definition of ≺y.

▶ Lemma 13. (*) For each cycle c of F1, there is an internal ordering of its vertices followed
by a possible reorientation of one edge in F2 ∪ F3, such that in the resulting ≺y

(a) every vertex of c has a feasible label,
(b) no vertex of c has label (3, 0), and
(c) if there exists a (1, 2)-labeled vertex in c, then its (only) upper critical neighbor belongs

to c.

Now that ≺y is completely defined, we orient any edge (u, v) ∈ M from u to v if and only
if u ≺y v. In this case, we further add v as a critical vertex of u. This implies that some
vertices can have one more critical upper neighbor, which then gives rise to the new following
labels, which we call tags for distinguishing: {[3, 1], [3, 0], [2, 2], [2, 1], [2, 0], [1, 2], [1, 1], [0, 2]}.
In this context, Lemma 13 guarantees the following property.

▶ Property 14. Any cycle c of F1 has at most one vertex with tag [α, β] such that α + β = 4.

Next, we compute the final drawing satisfying Properties (i) and (ii) by performing two
iterations over the vertices of G in reverse ≺y order. In the first, we specify the final position
of each vertex of G in ≺x and classify its incident edges while maintaining the following
Invariant 15. In the second one, we exploit the computed ≺x to draw all edges of G.

▶ Invariant 15. The endvertices of each vertical type-2 edge are consecutive in ≺x. Further,
any vertex is incident to at most one vertical type-2 edge.

The second part of Invariant 15 implies that the vertical type-2 edges form a set of
independent edges. In this regard, we say that a vertex u is a partner of a vertex v in G if
and only if u and v are connected with an edge in this set.

In the first iteration, we assume that we have processed the first i vertices vn, . . . , vn−i+1
of G in reverse ≺y order and we have added these vertices to ≺x together with a classification
of their incident edges satisfying Invariant 15. We determine the position of vn−i in ≺x based
on the ≺x position of its upper critical neighbors. The incident edges of vn−i are classified
based on a case analysis on its tag [α, β]. Recall that unless otherwise specified, every edge
is a type-1 edge.

1. The tag of vn−i is [3, 1] or [3, 0]: Let a, b and c be the upper critical neighbors of vn−i,
which implies that they were processed before vn−i by the algorithm and are already
part of ≺x. W.l.o.g. assume that a ≺x b ≺x c. By Invariant 15, vertex b is the partner of
at most one already processed vertex b′, which is consecutive with b in ≺x. If b′ exists
and b′ ≺x b, then we add vn−i immediately after b in ≺x. Symmetrically, if b′ exists
and b ≺x b′, then we add vn−i immediately before b in ≺x. Otherwise, we add vn−i

immediately before b in ≺x. This guarantees that vn−i is placed between a and c in ≺x

and that Invariant 15 is satisfied, since none of the upper critical edges incident to vn−i

was classified as a type-2 edge.
2. The tag of vn−i is [2, 1] ,[2, 0], [1, 2], [1, 1] or [0, 2]: By appending vn−i to ≺x, we maintain

Invariant 15, since none of the upper critical edges incident to vn−i was classified as
type-2.

3. The tag of vn−i is [2, 2]: Let a and b be the upper critical neighbors of vn−i, which implies
that they were processed before vn−i by the algorithm and are already part of ≺x. W.l.o.g.
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assume that (vn−i, a) ∈ M . We classify the edge (vn−i, b) as a vertical type-2 edge and
we add vn−i immediately before b in ≺x. To show that Invariant 15 is maintained by this
operation it is sufficient to show that b was not incident to a vertical type-2 edge before.
Suppose for a contradiction that there is a vertex b′ in {vn, . . . , vn−i+1}, such that (b, b′)
or (b′, b) is a type-2 edge. As seen in the previous cases, this implies that b or b′ has tag
[2, 2], respectively. Since in the [2, 2] case the edge classified as type-2 is the one not in
M and since any vertex that has tag [2, 2] has label (1, 2), by Lemma 13 it follows that
vertical type-2 edges are chords of a cycle. Hence, b or b′ would lie in the same cycle as
vn−i, which is a contradiction to Property 14, thus Invariant 15 holds.

Orders ≺x and ≺y define the placement of the vertices. By iterating over the vertices, we
describe how to draw the edges to complete the drawing such that Properties (i) and (ii) are
satisfied. We distinguish cases based on the tag of the current vertex vi.

1. The tag of vi is [3, 1] or [3, 0]: Let {a, b, c} be the upper critical neighbors of vi. The
construction of ≺x ensures that not all of {a, b, c} precede or follow vi in ≺x, w.l.o.g. we
can assume that a ≺x b, vi ≺x c. Then, we assign the W -port at vi to (vi, a), the N -port
at vi to (vi, b) and the E-port at vi to (vi, c). If vi has a lower critical neighbor, we assign
the S-port at vi for the edge connecting vi to it.

2. The tag of vi is [2, 1] or [2, 0]: Let {a, b} be the upper critical neighbors of vi. We assign
the N -port at vi to (vi, a). Note that vi was appended to ≺x during its construction. If
b ≺x vi, we assign the W -port at vi to (vi, b). Otherwise, we assign the E-port at vi to
(vi, b). The S-port is assigned to the lower critical edge of vi, if present.

3. The tag of vi is [1, 2] or [0, 2]: This case is symmetric to the one above by exchanging the
roles of upper and lower critical neighbors and N - and S-ports.

4. The tag of vi is [1, 1]: Let a be the upper critical neighbor and b the lower critical neighbor
of vi. Then we assign the N -port to the edge (vi, a) and the S-port to (vi, b).

5. The tag of vi is [2, 2]: Let {a, b} and {c, d} be the upper and lower critical neighbors of vi.
W.l.o.g. let (vi, a) ∈ M . By Invariant 15 and construction, the edge (vi, b) is a type-2
edge. The N - and S-ports at vi are assigned to the edges (vi, a) and (vi, c). If d ≺x vi,
we assign the W -port at vi to (vi, d). Otherwise, we assign the E-port at vi to (vi, d).

We describe how to place the bends of the edges on each side of the box B(u) of an
arbitrary vertex u based on the type of the edge that is incident to u, refer to Fig. 4a. We
focus on the bottom side of B(u). Let (xu, yu) be the position of u that is defined by ≺x

and ≺y. Recall that the box B(u) has size 8 × 8. Let e = {u, v} be an edge incident to u. If
e is a horizontal type-2 edge, then we place its bend at (xu − 3, yu − 4), if v ≺x u, otherwise
we have u ≺x v and we place the bend at (xu + 3, yu − 4). If e is a type-1 edge that uses the
S-port of u, then segment of e incident to u passes through point (xu, yu − 4). If e is a type-1
edge oriented from v to u such that v ≺y u and e uses either the W -port or the E-port of
v, then we place the bend at (xu + i, yu − 4) with i ∈ {−2, −1, 1, 2}. Since any vertex has
at most four incoming type-1 edges after applying Lemma 13, we can place the bends so
that no two overlap. No other edge crosses the bottom side of B(u). The description for the
other sides can be obtained by rotating this scheme; for the left and the right side the type-2
edges are the vertical ones.

We now describe how to draw each edge e = (u, v) of G based on the relative position
of u and v in ≺x and ≺y and the type of e. Refer to Fig. 4b. Suppose first that e is a
type-2 edge. If e is a horizontal type-2 edge, then u and v are consecutive in ≺y and B(u)
and B(v) are aligned in y-coordinate, in particular, there is a horizontal line that contains
the top side of one box and the bottom side of the other, hence it passes through the two
assigned bend-points, which implies that the middle segment is horizontal. Similarly, if e is a
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vertical type-2 edge, then u and v are consecutive in ≺x by Invariant 15. Hence, the assigned
points for the bends define a vertical middle segment. Suppose now that e is a type-1 edge.
The case analysis for the second iteration over the vertices guarantees that for any relative
position of v to u, we assigned an appropriate orthogonal port at u which allows to find a
point on the first segment, such that the orthogonal middle-segment of the edge e (that is
perpendicular to the first) can reach the assigned bend point on the boundary of B(v).

We argue that the constructed drawing is indeed 2-bend RAC as follows. By construction,
every edge consists of three segments and no bend overlaps with an edge or with another
bend. Each vertical (horizontal) line either crosses only one box or contains the side of
exactly two boxes, whose corresponding vertices are consecutive in ≺x (≺y). This implies
that if a vertical (horizontal) segment of an edge shares a point with the interior of a box,
then this box correspond to one of its endvertices. Further, any oblique segment is fully
contained inside the box of its endvertex, hence crossings can only happen between a vertical
and a horizontal segment which implies that the drawing is RAC.

To complete the proof of Theorem 12, we discuss the time complexity and the required
area. We apply Theorem 2 to G \ M to obtain F1, F2, F3 in O(n) time. Computing the
labels clearly takes O(n) time. For each cycle of F1, the ordering of its internal vertices in
Lemma 13 can be done in time linear in the size of the cycle by computing for each vertex
the number of forward and backward edges, and of chords. Computing the tags takes O(n)
time. In each of the following two iterations, we perform a constant number of operations
per vertex. Hence we can conclude that the drawing can be computed in O(n) time. For
the area, we can observe that the size of the grid defined by the boxes is 8n × 8n and by
construction, any vertex and any bend point is placed on a point on the grid.

▶ Corollary 16. Given a 7-edge-colorable degree-7 graph with n vertices and a 7-edge-coloring
of it, it is possible to compute in O(n) time a 2-bend RAC drawing of it with O(n2) area.

6 Conclusions and Open Problems

We significantly extended the previous work on RAC drawings for low-degree graphs in all
reasonable settings derived by restricting the number of bends per edge to 0, 1, and 2. The
following open problems are naturally raised by our work.

Are all 4-edge-colorable degree-3 graphs RAC (refer to Question 1)?
Are all degree-5 graphs 1-bend RAC? What about degree-6 graphs?
Is it possible to extend Theorem 12 to all (i.e., not 7-edge-colorable) degree-7 graphs or
even to (subclasses of) graphs of higher degree, e.g. Hamiltonian degree-8 graphs?
While recognizing graphs that admit a (straight-line) RAC drawing is NP-hard [5], the
complexity of the recognition problem in the 1- and 2-bend setting is still unknown.
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1 Introduction

The rotor routing, or rotor walk model, has been studied under different names: eulerian
walkers [17, 16] and patrolling algorithm [19]. It shares many properties with a more algebraic
focused model: abelian sandpiles [4, 15]. We can cite [12] and [15] as general introductions
to this cellular automaton.

Let us explain briefly how a rotor walk works. Consider a directed graph and for each
vertex v, if v has k outgoing arcs, number these arcs from 1 to k. Then, we place a pebble
on a starting vertex and proceed to the walk. On the initial vertex, the pebble moves to
the next vertex according to arc 1. It does the same on the second vertex and so on. But
the second time that a vertex is reached, the pebble will move according to arc 2, and so on
until arc k has been used, and then we start again with arc 1.

In this work, we fix a set of vertices that we call sinks and stop the walking process when
a sink is reached. The problem of determining, for a starting configuration (numbering) of
arcs and an initial vertex, which sink will be reached first is the ARRIVAL problem. It
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is defined in [8] together with a proof that the problem belongs to the complexity class
NP ∩ co-NP, but it is not known to be in P. It has then been shown in [10] that the problem
is in the smaller complexity class UP ∩ co-UP, and a subexponential algorithm has been
proposed in [11], based on computing a Tarski fixed point. This algorithm is even polynomial
if the graph is almost acyclic (in a certain sense). A direct application of the rotor-routing
automaton is that several structural properties of Markov chains can be approximated or
bounded by rotor walks see [6, 7, 9]. It seems natural to extend these results to one and
two player variants and define rotor analogs for Markov decision processes and stochastic
games [18]. It is proved in [18] that deciding if a player can ensure some value is NP-complete
for the one-player version and PSPACE-complete for the two-player version.

Contributions and Organization of the Paper

We define the class of tree-like multigraphs, and prove that while the number of steps needed
to complete a rotor walk can still be exponential, the tree-like structure helps to efficiently
solve ARRIVAL in linear time. We also extend our results to one-player and two-player
variants. It is to be noted that tree-like multigraphs are not almost acyclic in the sense
of [11], thus their algorithm does not run in polynomial time in our case.

In Section 2, we first give some standard definitions for multigraphs and proceed to define
rotor walks in this context, together with different rotor-routing notions (exit pattern, cycle
pushing, etc.). Next, in Section 3, we define tree-like multigraphs and our main tool to
study ARRIVAL on these graphs, namely the return flow. Then, in Section 4, we sketch a
polynomial algorithm that solves ARRIVAL and finally we show that this algorithm can be
used to efficiently solve both the one and two player case.

The following table summarizes our results (bold), i.e. time complexity of computing the
sink (or the optimal sink, for one-player and two-player) reached by a particle starting on a
particular vertex in a graph G = (V, A). Results on simple tree-like multigraphs depicted here
and quickly presented in this paper are detailed in our extended version [1]. The first column
states the complexity of the natural algorithm to solve these problems, namely simulating
the rotor walk.

Rotor Walk 0 player 1 player 2 players

General digraph exponential NP ∩ coNP NP-complete PSPACE-complete
Tree-like multigraph exponential O(|A|)† O(|A|) O(|A|)

Simple Tree-like multigraph O(|V |2) O(|V |)† O(|V |)† O(|V |)†

The † indicates the cases where we can solve the problem for all vertices of the graph at
the same time with this complexity. Note that all proofs that do not appear directly in the
document are detailed in our extended version [1].

2 Basic Definitions

2.1 Directed Multigraphs
In this paper, unless stated otherwise, we always consider a directed multigraph G =
(V, A, h, t) where V is a finite set of vertices, A is a finite set of arcs, and h (for head) and t

(for tail) are two maps from A to V defining incidence between arcs and vertices. For sake of
clarity, we only consider graphs without arcs of the form h(a) = t(a) (i.e. loops). All our
complexity results would remain true if we authorized them. Note that multigraphs can have
multiple arcs with the same head and tail. Let u ∈ V be a vertex, we denote by A+(u) (resp.
A−(u)) the subset of arcs a ∈ A with tail u (resp. with head u).
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Let Γ+(u) (resp. Γ−(u)) be the subset of vertices v ∈ V such that there is an arc a ∈ A
with h(a) = v and t(a) = u (resp.h(a) = u and t(a) = v). A graph such that for all u ∈ V we
have |A+(u)| = |Γ+(u)| is called simple. A vertex u for which |Γ+(u) ∪ Γ−(u)| = 1 is called
a leaf.

2.2 Rotor Routing Mechanics
Rotor Graphs
Let G = (V, A, h, t) be a multigraph.

▶ Definition 1 (Rotor Order). We define a rotor order at u ∈ V as an operator denoted by
θu such that:

θu : A+(u) → A+(u)
for all a ∈ A+(u), the orbit {a, θu(a), θ2

u(a), ..., θ
|A+(u)|−1
u (a)} of arc a under θu is equal

to A+(u), where θk
u(a) is the composition of θu applied to arc a exactly k times.

Observe that each arc of A+(u) appears exactly once in any orbit of θu. Now, we will
integrate the operator θu to our graph structure as follows.

▶ Definition 2 (Rotor Graph). A rotor graph G is a (multi)graph G together with:
a partition V = V0 ∪ S0 of vertices, where S0 ≠ ∅ is a particular set of vertices called
sinks, and V0 is the rest of the vertices;
a rotor order θu at each u ∈ V0.

In this document, unless stated otherwise, all the graphs we consider are rotor graphs
with G = (V0, S0, A, h, t, θ).

▶ Definition 3 (Rotor Configuration). A rotor configuration (or simply configuration) of
a rotor graph G is a mapping ρ from V0 to A such that ρ(u) ∈ A+(u) for all u ∈ V0. We
denote by C(G) the set of all rotor configurations on the rotor graph G.

What will be called a particle in the remaining of this paper is a pebble which will move
from one vertex to another; hence the position of the particle is characterized by a single
vertex. This movement, called rotor walk, follows specific rules that we detail after.

▶ Definition 4 (Rotor-particle configuration). A rotor-particle configuration is a couple (ρ, u)
where ρ is a rotor configuration and u ∈ V denotes the position of a particle.

Rotor Walk
▶ Definition 5. Let us define two mappings on C(G) × V0 :

turn, with values in C(G), is defined by turn(ρ, u) = ρ′ where ρ′ is equal to ρ except at
u where ρ′(u) = θu(ρ(u)).
move, with values in V , is defined by move(ρ, u) = h(ρ(u)).

By composing those mappings, we are now ready to define the routing of a particle which
is a single step of a rotor walk.

▶ Definition 6 (Routing of a Particle). The routing of a particle (illustrated in Figure 1)
from a rotor-particle configuration (ρ, u) is a mapping: routing : C(G) × V0 −→ C(G) × V

defined by routing(ρ, u) = (ρ′, v), with ρ′ = turn(ρ, u) and v = move(ρ, u). This can be
viewed as the particle first travelling through ρ(u) and then ρ(u) is replaced by θu(ρ(u)).
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(a) Let ρ be the rotor configuration depicted by
the red arcs in dashes.
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(b) The red rotor configuration in dashes
is obtained by processing the operation:
routing(ρ, u2).

Figure 1 A rotor-routing where the particle is depicted by a train and starts on u2. The
sink-vertices are s1 and s2. The red arcs in dashes represent the current rotor configuration. The
rotor orders on the different vertices are anticlockwise, i.e. they are: θu0 :(u0,u2),(u0,u1); θu1 :
(u1,u0),(u1,u2),(u1,s1); θu2 : (u2,u1),(u2,u0),(u2,s2). These orders are also depicted by the numbers
around each vertex.

▶ Remark 7. Our routing rule (move, then turn) is slightly different than the one defined
in [17] which is mostly used in the literature (turn, then move) but is more convenient to
study ARRIVAL. The two rules are equivalent up to applying turn mapping on all vertices.

A rotor-routing is in fact a single step of a rotor walk.

▶ Definition 8 (Rotor Walk). A rotor walk is a (finite or infinite) sequence of rotor-particle
configurations (ρi, ui)i≥0, which is recursively defined by (ρi+1, ui+1) = routing(ρi, ui) as
long as ui ∈ V0.

One can check that the sequence of vertices in the rotor walk starting from the rotor-
particle configuration depicted on Figure 1(b) until a sink is reached is u1, u0, u2, u0, u1, u2, s2.

Routing to Sinks
Now that we have defined our version of rotor-walk, we proceed to the corresponding version
of the problem ARRIVAL similar to the one stated in [8].

▶ Definition 9 (Maximal Rotor Walk). A maximal rotor walk is a rotor walk such that in the
case where it is finite, the last vertex must be a sink vertex s ∈ S0 = V \ V0.

▶ Definition 10 (Stopping Rotor Graph). If, for any vertex u ∈ V , there exists a directed
path from u to a sink s ∈ S0, the graph is said to be stopping.

The next lemma is a classical result on rotor walks (cf Lemma 16 in [12]).

▶ Lemma 11 (Finite number of steps). If G is stopping then any rotor walk in G is finite.

The main objective of our work is to study the sink that will be reached by a maximal
rotor walk from a rotor-particle configuration, if the rotor walk is finite.

▶ Definition 12 (Exit Sink). Let u ∈ V , let ρ be a configuration, if the maximal rotor walk
starting from (ρ, u) is finite in G, then the sink reached by such a rotor walk is denoted by
SG(ρ, u) and called exit sink of u for the rotor configuration ρ in G.

▶ Definition 13 (Exit Pattern). For a rotor configuration ρ on a stopping rotor graph G, the
exit pattern is the mapping that associates to each vertex u ∈ V , its exit sink SG(ρ, u).
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un un−1 . . . u2 u1 u0 s

Figure 2 Family of path-like multigraphs where maximal routing can take an exponential number
of steps in the number of vertices, here equal to n + 2. The interior vertices (u0 to un−1) have two
arcs going left and one going right. Routing a particle from u0 to sink s with the initial configuration
ρ drawn with red arcs in dashes takes a non-polynomial time considering the anticlockwise rotor
ordering on each vertex, depicted by the curved arc in red. One can check that the number of times
a particle starting from u0 will travel from ui to ui+1 before reaching s is 2i+1.

2.3 ARRIVAL and Complexity Issues
With our notations, ARRIVAL (see [8]) can be expressed as the following decision problem:

In a stopping rotor graph G,
given (ρ, u) and s ∈ S0

does SG(ρ, u) = s ?

This problem belongs to NP ∩ co-NP for simple graphs as shown in [8], but there is
still no polynomial algorithm known to solve it. The case of eulerian simple graphs can be
solved in time O(|V + A|3), since a finite maximal rotor walk from (ρ, v) ends in at most
O(|V + A|3) routings (see [19]).

In the case of multigraphs, ARRIVAL still belongs to NP ∩ co-NP, since the polynomial
certificate used for simple graphs in [8] remains valid. Our goal in this paper is to solve the
problem in polynomial time for a particular class of multigraphs. Despite that, even for a
path multigraph, the routing can be exponential, as shown on Figure 2.

2.4 Cycle Pushing
In order to speed-up the rotor walk process, a simple tool to avoid computing every step of
the walk is the use of cycle pushing. We keep the terminology of cycle pushing used in [12] –
even if what is called a cycle in this terminology is usually called a directed cycle or circuit
in graph theory.

▶ Definition 14 (Cycle Pushing). Let ρ be a rotor configuration on G containing a dir-
ected cycle C = (u1, u2, u3, ..., uk). We call cycle push the operation on ρ that leads to a
configuration ρ′ such that:

for all ui ∈ C, ρ′(ui) = θui(ρ(ui));
∀u ∈ V0 \ C, ρ′(u) = ρ(u)

i.e. we process a turn on all ui ∈ C.

Note that a cycle push on a cycle C can also be computed by putting a particle on a
vertex u of C and routing the particle until it comes back to u for the first time. Hence,
cycle pushing is in a sense a shortcut on the rotor walk process, so in a manner similar to
Lemma 11 it follows that in a stopping rotor graph, any sequence of cycle pushes is finite.
This is a well known result in rotor walk studies (see [15]). It implies that, by processing
a long enough sequence of successive cycle pushes, the resulting configuration contains no
directed cycles. Such a sequence of cycle pushes is called maximal.

The two following results can be found in [12].
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(a) Red Rotor Configuration ρ
in dashes with rotor order on
each vertex described by increas-
ing numbers.
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(b) The red configuration
in dashes is obtained from
a Cycle Push on the cycle
{(u0,u2),(u2,u1),(u1,u0)}.

u0

u1

u2

s1

s2

1

0

1

0 2

0

1
2

(c) Destination Forest (depicted
by red arcs in dashes) computed
by two successive cycle pushes
on ρ.

Figure 3 Computation of the Destination Forest by successive cycle pushing.

▶ Lemma 15 (Exit Pattern conservation for Cycle Push). If G is a stopping rotor graph,
for any rotor configuration ρ and configuration ρ′ obtained from ρ by a cycle push, the exit
pattern for ρ and ρ′ is the same.

▶ Lemma 16 (Commutativity of Cycle Push). In a stopping rotor graph, any maximal
sequence of cycle pushes starting from a given rotor configuration ρ leads to the same acyclic
configuration ρ′ (ρ′ does not contain a cycle).

▶ Definition 17 (Destination Forest). We call the configuration obtained by a maximal cycle
push sequence on ρ the Destination Forest of ρ, denoted by D(ρ).

The destination forest has a simple interpretation in terms of rotor walks: start a rotor
walk by putting a particle on any vertex of a stopping graph G; consider a vertex u ∈ V0; if
the particle ever reaches u, it will leave u by arc D(ρ)(u) on the last time it enters u.

In an acyclic configuration like D(ρ), finding the exit pattern is simple, precisely:

▶ Lemma 18 (Path to a sink). If there is a directed path between u ∈ V and s ∈ S0 in ρ

then SG(ρ, u) = s. It follows that from D(ρ) one can compute the exit pattern of ρ in time
complexity O(|A|).

This gives us a new approach, since computing the exit pattern of a configuration ρ

can be done by computing its Destination Forest D(ρ). Note that by doing this we are
solving a problem harder than ARRIVAL because we compute the exit sink of all vertices
simultaneously.
▶ Remark 19. The strategy consisting in pushing cycles until the Destination Forest is reached
can take an exponential number of steps. This is the case in the example drawn in Figure 2.

3 Tree-Like Multigraphs: Return Flow Definition

3.1 Tree-Like Multigraphs
To a directed multigraph G = (V, A, h, t) we associate:

A simple directed graph Ĝ = (V, Â) such that, for u, v ∈ V there is an arc from u to v in
Ĝ if there is at least one arc a ∈ A with t(a) = u and h(a) = v. Please note that even if
there are multiple arcs a that satisfy this property, there is only one arc with tail u and
head v in Â. As it is unique, an arc from u to v in Â will simply be denoted by (u, v).
A simple undirected graph G = (V, E) such that, for u, v ∈ V there is an edge between u

and v in G if and only if there is at least one arc a ∈ A such that t(a) = u and h(a) = v

or h(a) = u and t(a) = v.
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▶ Definition 20 (Tree-Like Rotor Multigraph and Tree-Like Multigraph). A rotor multigraph
G = (V0, S0, A, h, t, θ) is tree-like if G is a tree and its set of leaves contains S0. In that case,
we say that G = (V, A, h, t) is a tree-like multigraph.

Without loss of generality, in order to avoid some complexity in the notation and proofs,
we will only study stopping tree-like rotor multigraphs.

▶ Definition 21 (Sink Component). A sink component is a strongly connected component in
G that does not contain a sink vertex and such that there is no arc leaving the component.

Note that all sink components can be computed in linear time.

▶ Lemma 22 (Lemma 36 in [1]). Consider a configuration ρ on a (not necessarily stopping)
tree-like rotor multigraph G = (V0, S0, A, h, t, θ). Consider a configuration ρ′ on the stopping
tree-like rotor multigraph G′ = (V ′

0 , S′
0, A′, h, t, θ) where G′ is obtained from G by replacing

each sink component by a unique sink, and where ρ′(u) = ρ(u) for each u ∈ V ′
0 . For any

u ∈ V , finding the exit sink of u (if any) or the sink component reached by u in G for the
configuration ρ can be directly determined by solving ARRIVAL for the configuration ρ′ in G′.

Note that, after replacing sink components by sinks, the multigraph G′ may no longer
be a tree-like multigraph but a forest-like multigraph. However we can split the study of
ARRIVAL in each tree-like component of this forest since a particle cannot travel between
those trees in a rotor walk.

3.2 Return Flows
Let us consider the simple example depicted on Figure 4 to motivate the introduction of
(u, v)-subtrees and return flows, which is our main tool. In this figure, consider the routing
of a particle starting at u:

the particle moves from u to v1, and stays for a while in the subtree T1 – where it either
reaches a sink or comes back to u. Suppose it comes back to u. Then:
the particle moves from u to v3, and either reaches a sink in T3 or comes back to u.
Suppose it comes back to u once again;
the rotor walk goes on, in T3, then in T2, T1, T1, T3, . . .

until finally the particle ends in a sink in one of the subtrees, say T2.
Now consider only the relative movement that the particle had in T2: it went from u into T2
and back to u a number of times, before it ended in a sink. If we were to replace T1 and T3
by single arc leading back automatically to u, the relative movement in T2 would have been
exactly the same. The return flow will be a quantity that counts exactly the ability of each
subtree to bounce back the particle to u. During the process described above, every time the
particle enters a subtree and comes back to u, we can think of it as consuming a single unit
of return flow in this subtree. The first time that a particle enters a subtree that has exactly
one unit of return flow left, then the particle must end in a sink of that subtree.

▶ Definition 23 ((u, v)-subtree). Let (u, v) ∈ Â. The (u, v)-subtree T(u,v) is a sub(multi)graph
of G:

whose vertices are all the vertices of the connected component of Ḡ \ {u} that contains v,
together with u;
whose arcs are all the arcs of G that link the vertices above, excepted in u where we
remove all arcs of A+(u) but a single arc a with head v. Such an arc a always exists
because (u, v) ∈ Â;
whose rotor orders are unchanged except at u where θu(a) = a.

MFCS 2022
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T1
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Figure 4 We sketch a stopping tree-like rotor multigraph as follows: a vertex u, its neighbours
v1, v2, v3 (that might be sinks), respectively belonging to T1, T2, T3, the three connected components
of Ḡ \ {u}. In particular, we have Â+(u) = {(u, v1); (u, v2); (u, v3)}. We consider the rotor
configuration in red on u and θu is the anticlockwise order on the arcs of A+(u).

Such a subtree is a (not necessarily stopping) tree-like rotor multigraph. A rotor configuration
ρ in G can be thought of as a rotor configuration ρ′ in T(u,v) by defining that ρ′(u) = a and
ρ′(w) = ρ(w) for all w ∈ T(u,v).

We define a notion of flow for a particular starting vertex.

▶ Definition 24 (Flow of (u, v)). We define the flow on arc (u, v) ∈ Â for configuration
ρ, denoted by Fρ(u, v), the number of times (possibly infinite) that an arc with tail u and
head v is visited during the maximal rotor walk of a particle starting from the rotor-particle
configuration (ρ, u). We denote by Fρ(u) the flow vector of (u, v) for every v ∈ Γ+(u).

▶ Definition 25 (Return flow). The return flow of arc (u, v) ∈ Â for configuration ρ, denoted
by rρ(u, v), is the flow on (u, v) in the (u, v)-subtree T(u,v).

By definition of return flow, if u ∈ S0, then rρ(u, v) = 0, and if v ∈ S0, or if (v, u) /∈ Â
then rρ(u, v) = 1. Remark also that, even if the tree-like multigraph is stopping, it is not
necessarily the case of any (u, v)-subtree: this is for instance the case of a leaf v which is not
a sink such that (u, v) ∈ Â. Finiteness of the return flow characterizes the subtrees that are
stopping as stated in Lemma 26.

▶ Lemma 26 (Lemma 40 in [1]). Given a stopping tree-like multigraph G and an arc (u, v) ∈ Â,
the (u, v)-subtree T(u,v) is stopping if and only if for any rotor configuration on G, the return
flow of (u, v) is finite.

We give a bound on the maximal value of the return flow in a multigraph as it will be
used to express our complexity results later.

▶ Lemma 27 (Return flow bound, Lemma 41 in [1]). Return flows can be written in at most
O(|A|) bits.

Return flows and flows are linked by the following result:

▶ Lemma 28 (Lemma 42 in [1]). Given a stopping tree-like rotor multigraph G, consider
u ∈ V0 and suppose that h(D(ρ)(u)) = v. Then:

Fρ(u, v) = rρ(u, v) ;
for all w ∈ Γ+(u) \ {v}, Fρ(u, w) < rρ(u, w);
for all w ∈ Γ+(u) ∩ Γ−(u) \ {v}, rρ(w, u) = Fρ(u, w) + 1.
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Figure 5 Examples of return flows in a simple graph. The rotor configuration is depicted by red
arcs in dashes, with S0 = {s0, s1}, and θui is the anticlockwise order on every vertex. We write
the return flow of all arcs of Â next to their corresponding arc in A. As a tutorial example, we
detail the computation of rρ(u1, u0) and rρ(u0, u1). In the (u1, u0)-subtree, the particle will visit
the following sequence of vertices u1, u0, u2, u0, u1, u0, u4, u0, u2, s1, where it crosses (u1, u0) twice,
thus rρ(u1, u0) = 2. For the (u0, u1)-subtree, the sequence of vertices visited by the particle is
u0, u1, u0, u1, u3, u1, u0, u1, u3, s0 hence rρ(u0, u1) = 3.

Thus, to compute D(ρ)(u), we need to compute the flow of all arcs (u, w) with w ∈ Γ+(u)
and compare it to rρ(u, w). Theorem 29 gives the time complexity of such operation where
c(a, b) is the time complexity to divide an integer a by an integer b.

▶ Theorem 29 (Theorem 43 in [1]). For any vertex u ∈ V0, given the return flows of all arcs
(u, v) ∈ Â with v ∈ Γ+(u), one can compute D(ρ)(u) and the flow on each arc (u, v) in time
O(|Γ+(u)| · c(rmax, |A+(u)|)) with rmax being the maximum (finite) value of rρ(u, v) for all
v ∈ Γ+(u).

But in the case of simple graphs, we can improve this computation (see Lemma 30).

▶ Lemma 30 (Lemma 61 in [1]). If the graph is simple, D(ρ)(u) is the first arc with respect
to order θu, starting at ρ(u), among all arcs of A+(u) with minimal return flow. The flow
on all arcs (u, v) ∈ Â can be computed in time O(|Γ+(u)|).

4 ARRIVAL for Tree-Like Multigraphs

In this section we show that, for a given configuration ρ, we can compute the Destination
Forest D(ρ) in time complexity O(|A| · c(rmax, |A|)), hence solve the ARRIVAL problem for
every vertex at the same time. To achieve this, we recursively compute return flows for all
arcs in Â and then use these flows to compute the destination forest.

▶ Theorem 31 (Complete Destination Algorithm, Theorem 47 in [1]). The configuration D(ρ)
can be computed in time O(|A|) for a stopping tree-like rotor multigraph in a model where
arithmetic operations can be made in constant time, or alternatively in O(|A| · c(rmax, |A|))
on a Turing Machine.

Sketch of the Proof. Consider an arbitrary vertex x. We proceed with a Breadth-First
Search (BFS) to compute an order such that all necessary return flows are already computed
when we use Theorem 29. The algorithm is split into two phases:
1. Computation of the return flows of arcs directed from x towards leaves, starting from the

arcs closest to the leaves and recursively coming back to x, using Theorem 29.
2. Computation of the return flows of all remaining arcs, starting from the arcs closest to x

and recursively coming back to the leaves. We use Theorem 29 only twice for each vertex
u to compute the return flows of all arcs (u, v) with (u, v) being directed from the leaves
towards x.

MFCS 2022
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All in all, we use Theorem 29 three times for each vertex, hence the time complexity is
O(

∑
u∈V (|Â+(u)| · c(rmax, |A|))) which amounts to O(|A| · c(rmax, |A|)). ◀

We showed in Lemma 27 that return flows could be written in at most O(|A|) bits which
gives an upper bound for c(rmax, |A|) of k|A| log(|A|) for some constant k > 0. It is proved
in [14] that the multiplication of two n bits integers can be done in time O(n log(n)) and as
the complexity of the division is equivalent to the complexity of multiplication (see [5]), the
bound follows. Thus the complexity of our algorithm is O(|A|2 log(|A|)) in this context.

Simple Graph

In the case of simple graphs, this algorithm has a better complexity as we can use Lemma 30
instead of Theorem 29. Nevertheless, the algorithm remains the same and the complexity
sums up to O(|A|) which is also O(|V |) as the graph is simple (details can be found in
Theorem 63 in [1]).

5 One and Two player Variants

Problem ARRIVAL can be seen as a zero-player game where the winning condition is that
the particle reaches a particular sink (or set of sinks). The one and two players variants of
ARRIVAL (i.e. deterministic analogs of Markov decision processes and Stochastic games) we
address in this section are inspired from [18], but differ by the choice of the set of strategies
(see the discussion hereafter).

We specifically consider a game with a single player that controls a subset of vertices
VMAX of V0. Given a rotor configuration on the rest of the vertices of V0, a starting vertex
and a set of targets among the sinks, his goal is to wisely choose the initial rotor configuration
of the vertices he controls (his strategy) such that the particle reaches one of the targets.

Our definition of the way a player controls his vertices is somewhat different from the one
in the seminal paper [18], where a strategy consists in choosing an outgoing-arc each time
the particle is on a vertex controlled by the player. In this sense the set of strategies that we
allow (which seems to us a very natural extension of the zero player case) is a finite subset
of the version from [18] and could seem easier, but the latter can in fact be solved by some
slight modifications of our algorithm. Moreover, the proof of NP-completeness from [18] is
still valid in our case, despite the fact that we reduce the number of available strategies.

▶ Definition 32 (Partial Configuration). Let V ′ be a subset of V0, a partial rotor configuration
on V ′ is a mapping ρ′ from V ′ to A such that ρ′(u) ∈ A+(u) for all u ∈ V ′.

Given the disjoint sets of vertices Vr, VMAX and S0, a one-player rotor game (resp.
one-player tree-like rotor game) is defined by (Vr, VMAX , S0, A, h, t, θ, val, ρ) where:

(V0, S0, A, h, t, θ) is a rotor graph (resp. tree-like rotor graph) with V0 = Vr ∪ VMAX ;
val is a map from S0 to {0, 1} defining the target sinks (sinks of value 1);
ρ is a partial configuration on Vr, i.e. on the vertices not controlled by the player.

The tree-like rotor game is stopping if and only if the induced rotor graph (V0, S0, A, h, t, θ)
is stopping. The player is called MAX , and a strategy for MAX is a partial rotor configur-
ation on VMAX . We denote by ΣMAX the finite set of strategies for this player.

Consider a partial rotor configuration ρ on Vr together with strategy σ and denote by
(ρ, σ) the rotor configuration where we apply the partial configuration ρ or σ depending on
whether the vertex is in Vr or VMAX . The value of the game for strategy σ and starting
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Figure 6 Simple graph where the optimal strategy depends on the starting vertex u0, with
VMAX = {g}, with u, v ∈ V0 and with all other vertices being sinks. As in previous examples,
the starting configuration is depicted by red arcs in dashes, and the rotor order on all vertices is
an anticlockwise order on their outgoing arcs. In the case u0 = v, the only optimal strategy is
σ(g) = (g, v) and the game has value 1. In the case u0 = u, the only optimal strategy is σ(g) = (g, u)
and the game has value 1.

vertex u0 is denoted by valσ(u0) and is equal to val(s) where s is the sink reached by a
maximal rotor walk from the rotor particle configuration ((ρ, σ), u0) if any, and 0 otherwise.
As in the zero-player framework, up to computing strongly connected components that do
not contain sinks and replacing each of them with a sink of value 0, we can suppose that the
tree-like rotor game is stopping. In the following, all rotor games we consider are tree-like
and stopping unless stated otherwise.

When u0 is fixed, the maximal value of valσ(u0) over strategies σ ∈ ΣMAX is called the
optimal value of the game with starting vertex u0 and is denoted by val∗(u0). Any strategy
σ ∈ ΣMAX such that valσ(u0) = val∗(u0) is called an optimal strategy for the game starting
in u0. Observe that optimal strategies may depend on the choice of u0 (see Figure 6).

The one-player ARRIVAL problem consists in computing the optimal value of a given
starting vertex in a one-player rotor game.

Recall that in the tree-like rotor graph, T(u,v) denotes the (u, v)-subtree. We extend this
notation to denote the one-player, not necessarily stopping, game played on the (u, v)-subtree
where we restrict VMAX and Vr to the subtree. For this game, we only consider the case
where the starting vertex is u.

▶ Definition 33 (Value under strategy). Let (u, v) be an arc of Â. For a strategy σ on the
(u, v)-subtree, we denote by valσ(u, v) (resp. val∗(u, v)) the value of the game under strategy
σ (resp. under an optimal strategy) in T(u,v). This is called the value (resp. the optimal
value) of arc (u, v) for strategy σ.

▶ Definition 34 (Optimal return flow r∗). Let (u, v) be an arc of Â. If val∗(u, v) = 0, then
r∗(u, v) is defined as the maximum of rσ(u, v) over all strategies σ on T(u,v), otherwise it is
the minimum of rσ∗(u, v) among optimal strategies σ∗ on T(u,v).

Lemma 35 connects the value valσ(u) with the value of the last outgoing arc of vertex u

while processing a maximal rotor walk from the rotor-particle configuration ((ρ, σ), u).

▶ Lemma 35. Let a be an arc of A+(u) such that D(ρ, σ)(u) = a with h(a) = v. We have
valσ(u) = valσ(u, v).

To recursively compute an optimal strategy, we need a stronger notion of optimality,
namely a subtree optimal strategy.

▶ Definition 36 (Subtree optimal strategy). A strategy σ∗ is subtree optimal at u0 if it
is optimal at u0 and, moreover, valσ∗(u, v) = val∗(u, v) and rσ∗(u, v) = r∗(u, v) for every
(u, v)-subtree such that (u, v) is directed from u0 towards the leaves.
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Instead of recursively computing only the return flow as in the zero-player game, we now
propagate both the optimal value and the optimal return flow to construct a subtree optimal
strategy (details in the proof of Theorem 54 in [1]) and give an equivalent of Theorem 31 for
the one-player game.

▶ Theorem 37 (Computation of val∗(u0), Theorem 54 in [1]). The optimal value val∗(u0) can
be computed in the same time complexity as the computation of D(ρ) in the zero-player game
(see Theorem 31).

Some remarks are in order here. (i) The algorithm used to compute val∗(u0) (Algorithm 3
in [1]) provides the optimal value of u0 as well as a subtree optimal strategy at u0 for every
decisional vertex. A tutorial example is given in [1] (Figure 11). (ii) This algorithm can
also be adapted to compute optimal values for games with more general type of strategies,
particularly those in [18]. (iii) In the case of a simple graph, one can compute val∗(u0)
for every vertex u0 with the same time complexity as in Theorem 37 as detailed in our
extended version [1]. (iv) If we consider a game with integer values on the sinks, one can use
a dichotomic process to solve it in log(|S|) steps where a step consists in solving a binary
game.

Two-player Game

In the two-player game, each player controls the initial configuration on disjoint sets of
vertices, and the second player wants to minimize the value of the game. In a general graph,
there may not exist an equilibrium in pure strategies (see Figure 7 where we define a game
equivalent to matching pennies). However, in the case of tree-like rotor multigraphs, we can
show that there always is an equilibrium in pure strategies and compute it (see [1]). As in
the one-player case, if we consider integer values, we can simply proceed using a dichotomy
technique.

Conclusion and Future Work

Concerning ARRIVAL, one remaining fundamental question is to determine whether there
exists a polynomial algorithm to solve the zero-player game. Similarly, problems such as
simple stochastic games, parity games and mean-payoff games are also in NP ∩ co-NP,
and there are no polynomial algorithm known to solve them (see [13]). For those different
problems, considering subclasses of graphs where we can find polynomial algorithms is a
fruitful approach (see [2] and [3]). This paper is a first step in this direction.

Thus, we would like to study more general classes of graphs. To begin with, even graphs
that are well-studied in terms of the sandpile group such that ladders or grids remain now an
open problem for ARRIVAL. The problem of finding the destination of multiple particles at
the same time is also an important open problem in nearly all cases – we solve it for the
(simple) path graph in our extended version (see [1]).

Now that the Tree-like multigraph case is settled, it seems natural to try and extend these
results to classes of graphs with bounded width (e.g. treewidth, pathwidth, etc.). However,
this extension is not direct and requires further work. If we were to replace a single node
by a bag of nodes, defining an analog of the rotor ordering, the routine and return flows is
much more complicated since a particle can enter and leave the bag in different ways. We
need to compute and store all the exit arcs for all entering arcs in the bag for every rotor
configuration, and combine these informations for neighbouring bags in order to find locally
the destination forest. We intend to finish this work in a near future.
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Figure 7 This example is a simple undirected graph where each edge is replaced by two arcs.
We have VMAX = {Max}, VMIN = {Min} and V0 = {c, d, e, f} and S0 is the rest of the vertices
with their value written inside them. The particle starts on the vertex Max. In this game, the
only optimal strategy for MAX when the strategy for MIN is the arc (Min, x) with x ∈ {c, d} is
(Max, x). On the other hand the only optimal strategy for MIN when the strategy for MAX is
the arc (Max, c) (resp. (Max, d)) is (Min, d) (resp. (Min, c)). The situation is like the classical
matching pennies game where one player tries to match the strategy of the opponent whereas
the other player has the opposite objective. It is known that such game does not admit a Nash
equilibrium in pure strategies.
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Abstract
The Distance Realization problem is defined as follows. Given an n × n matrix D of nonnegative
integers, interpreted as inter-vertex distances, find an n-vertex weighted or unweighted graph G

realizing D, i.e., whose inter-vertex distances satisfy distG(i, j) = Di,j for every 1 ≤ i < j ≤ n,
or decide that no such realizing graph exists. The problem was studied for general weighted and
unweighted graphs, as well as for cases where the realizing graph is restricted to a specific family of
graphs (e.g., trees or bipartite graphs). An extension of Distance Realization that was studied in
the past is where each entry in the matrix D may contain a range of consecutive permissible values.
We refer to this extension as Range Distance Realization (or Range-DR). Restricting each
range to at most k values yields the problem k-Range Distance Realization (or k-Range-DR).
The current paper introduces a new extension of Distance Realization, in which each entry Di,j

of the matrix may contain an arbitrary set of acceptable values for the distance between i and j,
for every 1 ≤ i < j ≤ n. We refer to this extension as Set Distance Realization (Set-DR),
and to the restricted problem where each entry may contain at most k values as k-Set Distance
Realization (or k-Set-DR).

We first show that 2-Range-DR is NP-hard for unweighted graphs (implying the same for
2-Set-DR). Next we prove that 2-Set-DR is NP-hard for unweighted and weighted trees. We then
explore Set-DR where the realization is restricted to the families of stars, paths, or cycles. For
the weighted case, our positive results are that for each of these families there exists a polynomial
time algorithm for 2-Set-DR. On the hardness side, we prove that 6-Set-DR is NP-hard for stars
and 5-Set-DR is NP-hard for paths and cycles. For the unweighted case, our results are the same,
except for the case of unweighted stars, for which k-Set-DR is polynomially solvable for any k.
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1 Introduction

Background. Network realization problems are fundamental graph-algorithmic questions
in which one is asked to construct a network conforming to some predefined requirements.
Given a specification (or information profile) that consists of constraints on some network
parameters, such as the vertex degrees, distances, or connectivity, one is required to construct
a network conforming to the given specification, i.e., satisfying the requirements, or to
determine that no such network exists. The motivation for network realization problems
stems from both “exploratory” contexts where one attempts to reconstruct an existing
network of unknown structure based on the outcomes of experimental measurements, and
engineering contexts related to network design.
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In the Distance Realization problem, the given profile is an n × n matrix D such
that each entry Di,j ∈ N ∪ {∞}, for 1 ≤ i < j ≤ n, and Di,i = {0}, for every 1 ≤ i ≤ n. We
view Di,j as specifying the required distance between the vertices i and j in the network. A
graph G = (V, E) is a realization of D if distG(i, j) = Di,j , for every 1 ≤ i < j ≤ n, where
distG(i, j) denotes the distance between i and j in G. Generally, we may be interested in
two types of realizing graphs. In unweighted Distance Realization it is assumed that
each edge of the realizing graph is of length 1. In weighted Distance Realization the
edges of the realizing graph may have any positive integral lengths.

Observe that an unweighted realizing graph is fully determined by D: the edge (i, j)
exists in the graph if and only if Di,j = 1. It follows that there is only one graph GD that
may serve as a candidate realizing graph. This was observed by Hakimi and Yau [12], who
provided a characterization for distance realization by unweighted graphs, implying also a
polynomial-time algorithm for unweighted Distance Realization. Notice also that in the
case where the realization is required to be a specific graph H, one can solve unweighted
Distance Realization by deciding whether H and GD are isomorphic. This Graph
Isomorphism problem is computationally easy when H belongs to certain graph types, such
as stars, paths, and cycles, and therefore the problem of distance realization by such graphs
can be solved in polynomial time.

Hakimi and Yau [12] also studied weighted Distance Realization. They proved that the
necessary and sufficient condition for the realizability of a given martix D is that D is a metric.
Furthermore, they gave a polynomial-time algorithm that computes a realization for any
given metric distance matrix. More specifically, their algorithm constructs a minimum-edge
realizing graph whose edges are necessary in every realization of D.

Patrinos and Hakimi [14] considered the case where weights can be negative. They
showed that any symmetric matrix (with zero diagonal) is a distance matrix of some graph G.
They gave necessary and sufficient conditions for realizing such a matrix by a tree, and they
showed that if a tree realization exists it is unique. Distance Realization in weighted trees
was considered in [2], which presented a characterization for realizability. For unweighted
trees, there is a straightforward realization algorithm, based on the algorithm of [12] for
general unweighted graphs, and on the fact that the realization, if exists, is unique. Distance
realization restricted to bipartite graphs was studied in [4], where it was observed that it is
sufficient to check the unique realization in the unweighted case or the minimal realization in
the weighted case.

A natural extension of Distance Realization is when each entry in the distance matrix
may contain a range of consecutive values instead of a single value. Range specifications
may arise, for example, when D reflects the properties of an unknown network, and its
values are obtained by imprecise measurements, or alternatively, when D represents a design
specification for a planned network in a setting where distance constraints are not rigid and
allow some flexibility. Formally, we are given two values D−

i,j and D+
i,j for every i, j and the

realizing G must satisfy D−
i,j ≤ distG(i, j) ≤ D+

i,j . We refer to this extended version of the
problem as Range Distance Realization (or Range-DR).

Tamura et al. [18] obtained necessary and sufficient conditions for the realizability of
a range distance matrix by weighted graphs, generalizing the result of [12] from precise to
range specifications. A polynomial-time algorithm for weighted Range-DR was given in [15].
The unweighted version of Range-DR was shown to be NP-hard in [4], where it was also
shown that if the realizing graph is required to be a tree, then both the unweighted and
weighted versions of Range-DR are NP-hard.
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Realization with Distance Sets. In this paper we introduce a novel extension of Range
Distance Realization, called Set Distance Realization (Set-DR). Instead of a range,
we assume that each entry Di,j in the distance matrix specifies a set of acceptable values
for the distance between i and j, for every 1 ≤ i < j ≤ n. More formally, consider an n × n

matrix D, such that each entry Di,j ⊆ N ∪ {∞}, for 1 ≤ i < j ≤ n, is a non-empty set, and
Di,i = {0}, for every 1 ≤ i ≤ n. We view Di,j as specifying a list of acceptable values of the
distance between i and j, where i and j are vertices in some network. A graph G = (V, E) is
a realization of the D if distG(i, j) ∈ Di,j , for every 1 ≤ i < j ≤ n.

One of the main questions studied in this paper involves the effect of limiting the number
of values in each entry of the matrix D. This question is equally interesting for Set-DR
and Range-DR. Given an integer k, we say that the matrix D is a k-set distance matrix
if |Di,j | ≤ k for every 1 ≤ i < j ≤ n. A distance matrix D is a k-range distance matrix, if
Di,j is a range that contains at most k consecutive values for every 1 ≤ i < j ≤ n. A 1-set
distance profile is called precise. Restricting the Set Distance Realization problem to
k-set distance matrices yields the problem k-Set Distance Realization (or k-Set-DR).
Similarly, restricting the Range Distance Realization problem to k-range distance
matrices yields the problem k-Range Distance Realization (or k-Range-DR).

Henceforth, we assume that entry Di,j in a 2-set distance matrix D consists of two
integers, Di,j =

{
d0

i,j , d1
i,j

}
, which need not be distinct.

Our Results. In this paper we study the computational complexity of k-Set-DR and
k-Range-DR, as a function of k, in various graph families.

Inspecting the proof given in [4] for the hardness results for Range-DR by trees and
unweighted graphs reveals that 3-Range-DR is already NP-hard over these graph families,
implying that 3-Set-DR is NP-hard as well. We modify the reductions from [4] to show that
already 2-Range-DR is NP-hard for general unweighted graphs, where precise realization is
known to be polynomial [12]. For general weighted graphs, it is known that Range-DR is
computationally easy [15]. We note that the algorithm from [15] does not work for Set-DR,
since it relies on the continuity of the given ranges. In fact, Set-DR for general weighted
graphs remains an open problem. We show that both unweighted 2-Set-DR and weighted
2-Set-DR are NP-hard for trees. Thus, we obtain a dichotomy between 2-set distance
realization and precise realization for trees, since precise realization is known to be solvable
in polynomial time [12, 2].

Next, we show that 2-Set-DR is polynomial time solvable for stars, paths, and cycles.
Our realization algorithms are based on a reduction to the 2-SAT problem (satisfiability of a
2-CNF formula), which can be solved in linear time [10]. The idea is to use one vertex i0
as a point of reference for all other vertices. Thus, a Boolean variable bj is associated with
each vertex j and determines which of the two values of Di0,j should be used. The 2-CNF
formula is constructed according to the rest of the entries of D. Applying this approach for
stars is rather straightforward, but it becomes more complicated for paths, and especially for
cycles. In addition, we prove that there exists a polynomial time algorithm for k-Set-DR
on unweighted stars, for any k. For weighted stars, we present a polynomial time realization
algorithm for Range-DR when the range values are polynomially bounded. This algorithm
is based on a reduction to the feasibility problem of linear integer programs with at most
two variables per constraint, which can be solved efficiently [5].

On the hardness side, we show that Set-DR is NP-hard for weighted stars already with
6-set distance profiles. We obtain slightly tighter results for paths and cycles, for which
both unweighted Set-DR and weighted Set-DR are already NP-hard already with 5-set
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Table 1 Results for realization with unweighted graphs.

Graph family Range-DR Set-DR
General 2-Range-DR is NP-hard (Thm 1) 2-Set-DR is NP-hard (Thm 1)

1-Range-DR is polynomial [12] 1-Set-DR is polynomial [12]
Tree 3-Range-DR is NP-hard [4] 2-Set-DR is NP-hard (Thm 2)

1-Range-DR is polynomial [12] 1-Set-DR is polynomial [12]
Star Range-DR is polynomial (Thm 4) Set-DR is polynomial (Thm 4)
Path 2-Range-DR is polynomial (Thm 8) 2-Set-DR is polynomial (Thm 8)

Range-DR is NP-hard (Thm 9) 5-Set-DR is NP-hard (Thm 10)
Cycle 2-Range-DR is polynomial (Thm 12) 2-Set-DR is polynomial (Thm 12)

Range-DR is NP-hard (Thm 14) 5-Set-DR is NP-hard (Thm 15)

Table 2 Results for realization with weighted graphs.

Graph family Range-DR Set-DR
General Range-DR is polynomial [15] Open problem

Tree 3-Range-DR is NP-hard [4] 2-Set-DR is NP-hard (Thm 2)
1-Range-DR is polynomial [2] 1-Set-DR is polynomial [2]

Star Range-DR is polynomial1(Thm 6) 2-Set-DR is polynomial (Thm 3)
6-Set-DR is NP-hard (Thm 5)

Path 2-Range-DR is polynomial (Thm 7) 2-Set-DR is polynomial (Thm 7)
Range-DR is NP-hard (Thm 9) 5-Set-DR is NP-hard (Thm 10)

Cycle 2-Range-DR is polynomial (Thm 13) 2-Set-DR is polynomial (Thm 13)
Range-DR is NP-hard (Thm 14) 5-Set-DR is NP-hard (Thm 15)

distance profiles. Our hardness results are based on reductions from the 3-colorability
problem. However, the reductions are not similar. Specifically, in the case of weighted stars,
the possible colors of a vertex are encoded in the distance matrix by possible edge weights,
while in the case of weighted and unweighted paths, the colors are encoded by vertices and
their location on the path. The hardness result for 5-Set-DR on the cycle is obtained by a
reduction from 5-Set-DR on the path.

Tables 1 and 2 summarize our results.

Related Work. An optimization variant of Distance Realization problem was introduced
in [12]. In this problem, a distance matrix D is given over a set S of n vertices, and the
goal is to find a graph G including S, with possibly auxiliary vertices, that realizes the
given distance matrix for S. Necessary and sufficient conditions are given for a matrix to
be realizable by a weighted or an unweighted graph. It is shown in [9] that an optimal
realization can have at most n4 vertices, and therefore, there is a finite (but exponential) time
algorithm to find an optimal realization. In [1] it is shown that finding optimal realizations
of distance matrices with integral entries is NP-complete, and evidence to the difficulties in
approximating the optimal realization is provided in [6]. Over the years, various heuristics
for optimal realizations were considered [13, 16, 17, 19]. Since optimal realization seems hard
even to approximate, special cases and other variations have been studied [6, 11].

1 This result requires that the entries of D are polynomially bounded.
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Special attention has been given to the optimal distance realization problem where the
realizing graph is a tree. In [12], a procedure is given for finding a tree realization of D if
exists. It is also shown therein that a tree realization, if exists, is unique and is the optimum
realization of D. Necessary and sufficient conditions for a distance matrix to be realizable by
a tree were given in several papers [3, 8, 17]. Finally, an O(n2) time algorithm for optimal
tree-realization is described in [7].

2 Realizations by Trees and Unweighted Graphs

In this section we consider unweighted realizations in general graphs and both unweighted
and weighted realizations in trees.

2.1 Realizations by Unweighted Graphs

For general graphs, recall that the range realization problem in weighted graphs and the
precise realization problem in unweighted graphs both have a polynomial time algorithm.
We provide an NP-hardness result for Range-DR by unweighted graphs, even for 2-range
distance profiles.

▶ Theorem 1. 2-Range-DR is NP-hard in unweighted graphs.

Proof. We prove the theorem using a reduction from the 3-coloring problem.
Consider an instance G of the 3-coloring problem. We construct a 2-range distance

matrix D for n + 3 vertices, i.e., for the vertex set {u1, . . . , un+3}. Intuitively, we think of
the first n vertices, Vorig = {u1, . . . , un}, as representing the original vertices of the given
graph G, and of additional 3 vertices of D, Vcol = {un+1, un+2, un+3}, as representing the
three colors. Let

Di,j =


{1} i = n + 1, . . . , n + 3, j = n + 1, . . . , n + 3,

{1, 2} i = 1, . . . , n, j = n + 1, . . . , n + 3,

{2, 3} 1 ≤ i < j ≤ n, (vi, vj) ̸∈ E(G),
{3} 1 ≤ i < j ≤ n, (vi, vj) ∈ E(G).

We now prove that the input G is 3-colorable if and only if D is realizable by an unweighted
graph. (See Figure 1 for an illustration.)

Suppose G is 3-colorable. Let χ : V (G) 7→ {1, . . . , 3} be the coloring function. For the
matrix D defined from G, construct a realizing graph G as follows. Start with a triangle
containing the color vertices un+1, un+2, un+3. Connect each original vertex ui to the color
vertex un+χ(i). It is easy to verify that G realizes D (see Figure 1b for an example).

Suppose there exists an unweighted graph G which realizes the matrix D. Consider two
original vertices ui and uj . Since 1 ̸∈ Di,j , it follows that ui and uj are not connected by
an edge. Therefore, every original vertex ui must be connected to at least one of the color
vertices. Define a coloring function for G as follows. For every original vertex ui, let n + c be
some color vertex connected to ui, and let χ(vi) = c. Since 1, 2 ̸∈ Di,j , if two vertices vi and
vj are connected by an edge in G, then their distance in G must be at least 3. This ensures
that none of the color vertices are connected to both ui and uj (as this would make their
distance 2). It follows that if (vi, vj) ∈ E(G), then vi and vj are assigned different colors. ◀
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v1

v3

v2

(a) A 3-colorable graph.

u4

u3

u2

u1
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un+3

un+2

un+1

Vcol

(b) A realization of D.

Figure 1 An example of the reduction in the proofs of Theorem 1 for n = 4. White, gray, and
black correspond to nodes n + 1, n + 2, and n + 3, respectively.

2.2 Tree Realizations

Next, we show that distance realization in unweighted or weighted trees is hard even for
2-set distance profiles. The reduction we use is almost identical to a reduction from [4] that
(implicitly) shows hardness for 3-range distance profiles. The proof is ommited for lack of
space.

▶ Theorem 2. 2-Set-DR is NP-hard for both unweighted trees and weighted trees.

3 Star Realizations

In this section we study Set-DR in stars. We show that there exists a polynomial time
algorithm that solves weighted 2-Set-DR in stars. On the other hand, we show that 5-Set-
DR on weighted stars is NP-hard. Furthermore, we present a polynomial time algorithm
that solves k-Range-DR on weighted stars, for any k, provided that matrix entries are
polynomially bounded.

To put these results in context, it may be useful to observe that the unweighted case in
stars is easier: unweighted k-Set-DR in stars can be solved in polynomial time for any k.

3.1 2-Set-DR on Stars is Easy

We show that the 2-Set-DR problem in stars can be solved efficiently.

▶ Theorem 3. There exists a polynomial time algorithm for 2-Set-DR on stars.

Proof. Assume that i is the center of the star. It follows that the weight of any edge (i, j),
for j ≠ i can be either d0

i,j or d1
i,j . Define a Boolean variable xj , where xj = false, if the

weight of the edge (i, j) is d0
i,j , and xj = true, if the weight of the edge (i, j) is d1

i,j . The
rest of the entries of D are used to create a 2-CNF formula that is satisfiable if and only if
there exists a star realization of D in which i is the center.

Consider two vertices j, k ̸= i. Since there are two possible weights for the edges (i, j)
and (i, k), it follows that there are four possible distances from j to k:
1. d0

i,j + d0
i,k,

2. d0
i,j + d1

i,k,
3. d1

i,j + d0
i,k, and

4. d1
i,j + d1

i,k.
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For each one of the above four options, check whether it equals d0
j,k or d1

j,k. This induces
a truth table on the variable xj and xk that can be represented by at most two 2-CNF
clauses.2 Doing this for all pairs of vertices creates a 2-CNF formula that contains at most
O(n2) clauses by concatenating all the above mentioned clauses.

Suppose that there exists a star realization P of D with i as a center. This induces an
assignment to the variables Boolean variables that satisfies the 2-CNF formula. On the other
hand, assume that the 2-CNF formula that is obtained by assuming that i is the center is
satisfiable. A satisfying assignment induces a star, which complies with the profile.

Since there are n candidates for the center vertex, we need to run the above process n

times. It follows that the total running time of the algorithm is O(n3). ◀

We remark that the running time for unweighted case can be improved to O(n2).

▶ Theorem 4. There exists a polynomial time algorithm for k-Set-DR on unweighted stars,
for any k.

Proof. Since all distances in an unweighted star are either 1 or 2, one may assume that
Di,j ⊆ {1, 2}, for every i ̸= j. The theorem follows due to Theorem 3. ◀

3.2 6-Set-DR on Weighted Stars is Hard
We show that the star realization problem is NP-hard even on 6-set distance profiles.

▶ Theorem 5. 6-Set-DR is NP-hard in weighted stars.

Proof. We prove the lemma using a reduction from the 3-coloring problem.
Consider a graph G, where V (G) = {v1, . . . , vn}. We construct a distance matrix D on

n + 3 vertices, denoted by {u1, . . . , un+3}. Informally, the distance matrix is defined to force
un+1 to be the center of the star while un+2 and un+3 must be two of the leaves whose
distance from the center is 1. The rest of the vertices, u1, . . . , un that are associated with
the n vertices v1, . . . , vn of G, are leaves whose distance from the center is either 1, 2, or 4.
The idea is that distance 2c is associated with the color c (0, 1, or 2). Finally, the distances
between these n leaves is defined to guarantee that the two endpoints of any edge of G are
associated with different colors, if a realization exists. More formally, the 6-set distance
matrix D is defined as follows for any two indices 1 ≤ k < ℓ ≤ n + 3:

Dk,ℓ =



{3, 5, 6} k, ℓ ≤ n, (vk, vℓ) ∈ E(G),
{2, 3, 4, 5, 6, 8} k, ℓ ≤ n, (vk, vℓ) ̸∈ E(G),
{1, 2, 4} k ≤ n, ℓ = n + 1,

{2, 3, 5} k ≤ n, ℓ = n + 2, n + 3,

{1} k = n + 1, ℓ = n + 2, n + 3,

{2} k = n + 2, ℓ = n + 3 .

We show that G is 3-colorable if and only if D is realizable by weighted star.

2 For example, let Di,j = {2, 3}, Di,k = {3, 4}, and Dj,k = {5, 7}. There are two possible weight
assignments: either w(i, j) = d0

i,j and w(i, k) = d0
i,k or w(i, j) = d1

i,j and w(i, k) = d1
i,k This can be

represented by the clause (¬xj ∨ ¬xk) ∧ (xj ∨ xk).
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(a) A 3-colorable graph.
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(b) A realization of D.

Figure 2 An example of the reduction in the proof of Theorem 5 for n = 4. White, gray, and
black correspond to the weights of the edges of the star. Edges without a label are of weight 1.

Assume that G is 3-colorable and χ : V 7→ {0, 1, 2} is a 3-coloring of G. We describe a
star realization S. First, let un+1 be the center of the star. Vertices un+2 and un+3 are leaves
such that w(un+1, wn+2) = w(un+1, wn+2) = 1. Next, for every i ∈ {1, . . . , n}, if χ(vi) = c,
then w(un+1, ui) = 2χ(vi). It is straightforward to verify that S realizes D. In particular, we
observe that the first requirement of D is satisfied, since χ is a 3-coloring.

For the other direction, suppose that S is a star realization of D. First, notice that
the above distance matrix makes sure that un+2, un+1, un+3 form a path with two edges of
weight 1. Hence, un+1 must be the center of the star. We define a coloring χ of V (G) according
to the weights of the edges to the center: χ(vi) = log2 w(un+1, ui). χ is a proper 3-coloring,
since the first requirement of D ensures that w(un+1, ui) ̸= w(un+1, uj) if (vi, vj) ∈ E. This
is because 2 = 1 + 1, 4 = 2 + 2, and 8 = 4 + 4 are not members of {3, 5, 6} which are the
possible distances between ui and uj . (See Figure 2.) ◀

3.3 Range-DR on Weighted Stars

In [4] it was shown that there exists a polynomial time algorithm that solves the Range-DR
problem on a given fixed weighted tree, assuming that non-integral edges weights are allowed.
Let D be a range distance matrix, where Dij =

{
D−

ij , . . . , D+
ij

}
. Also, let T = (V, ET ) be

a known tree, and let Pk,ℓ = (k = i0, i1, . . . , itk,ℓ
= ℓ) be the unique path from vertex k to

vertex ℓ in T . For each edge (i, j) ∈ ET , let wi,j be the variable that denotes the weight of
this edge. Consider the following linear program:

j=tk,ℓ−1∑
j=0

wij ,ij+1 ≥ D−
k,ℓ ∀Pk,ℓ

j=tk,ℓ−1∑
j=0

wij ,ij+1 ≤ D+
k,ℓ ∀Pk,ℓ

The algorithm from [4] finds a realization by obtaining a feasible solution to the above
program.

As mentioned above this approach may obtain a realization with non-integral edge weights
and distances. Moreover, it may be the case that there exists a realization with non-integral
edge weights, while a realization with integral edge lengths does not exist. For example,
consider the following distance matrix:
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D =


{0} {3} {3} {1, 2}
{3} {0} {3} {1, 2}
{3} {3} {0} {1, 2}

{1, 2} {1, 2} {1, 2} {0}


D admits no star realization with integral weights, but if one allows edge lengths and distances
of 1.5, then a realization exists (where vertex v4 is the center, and all edge weights are 1.5).

We show that the realization problem with integral edge weights is solvable on stars,
assuming that the entries of D are polynomially bounded.

▶ Theorem 6. Assume that the entries of D are polynomially bounded. Then there exists a
polynomial time algorithm for Range-DR on weighted stars.

Proof. Fix the center of the star, and consider the above LP. Since all paths are of length
one or two, the resulting integer linear program contains at most two variables per inequality.
Since we require integral weights, we add the following integrality constraints: wi ∈ N,
for every i. The feasibility problem of integer programs with at most two variables per
constraint is solvable in O(mU), where m is the number of constraints and U is the range of
the variables [5]. In this case U = maxi,j(Dij). ◀

Notice that the above mentioned NP-hardness for 6-Set-DR applies to profiles in which
each entry is composed of at most 6 constants, which means that it is polynomially bounded.

4 Path Realizations

In this section we study the realization of distance profiles by paths. We first show that if
each entry of the distance matrix consists of at most two different values then a realization
by a path (if exists) can be found by a polynomial time algorithm. On the other hand, we
show that Set-DR on paths is NP-hard, even on 5-set distance profiles. Both results hold
both for weighted and unweighted paths.

4.1 Algorithm for 2-Set-DR on Paths
A path P realizes the 2-set distance profile D if either distP (i, j) = d1

i,j or distP (i, j) = d2
i,j

holds for every i and j.
We show that 2-Set-DR on weighted paths can be solved by a reduction to 2-CNF

satisfiability, which can be solved in O(m) time [10], where m is the number of clauses.

▶ Theorem 7. There exists a polynomial time algorithm for 2-Set-DR on weighted paths.

Proof. Assume that the weighted path is embedded on the real line where the vertices are
located at integers and the distance between any two vertices is their distance on the line.
Furthermore, assume that the leftmost vertex is vertex i and it is located at 0.

Any realization of D in which i is the left-most node, implies that vertex j ̸= i is located
either at d0

i,j or at d1
i,j . Define a Boolean variable xj , where xj = false represents that j is

located at d0
i,j and xj = true represents that j is located at d1

i,j . The rest of the entries of
D will create a 2-CNF formula that is satisfiable if and only if there exists a realization of D

on the path in which i is the left-most vertex.
Consider the possible placements of two vertices j, k ̸= i. Since each one of them has two

possible placements, it follows that there are four possible placements of j and k:
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1. j at d0
i,j and k at d0

i,k,
2. j at d0

i,j and k at d1
i,k,

3. j at d1
i,j and k at d0

i,k, and
4. j at d1

i,j and k at d1
i,k.

For each one of the above four options, check whether it complies with d0
j,k or with d1

j,k.
This induces a truth table on the variable xj and xk that can be represented by at most two
2-CNF clauses. Doing this for all pairs of vertices creates a 2-CNF formula that contains at
most O(n2) clauses by concatenating all the above mentioned clauses.

If there exists a path realization P of the profile, then embed it on the real line such
that the left-most vertex i of P is located at 0. Then, consider the formula that we get
by assuming that i is the left-most vertex of P , and assign values to the Boolean variables
according to the distances from i. Since P realizes the profile, the 2-CNF formula must be
satisfied. On the other hand, assume that the 2-CNF formula that is obtained by assuming
that i is placed on 0 is satisfiable. A satisfying assignment induces a placement of the vertices
on the real line, and this implies a realization of the profile.

Since there are n candidates for the left-most vertex we need to run the above process n

times. It follows that the total running time of the algorithm is O(n3). ◀

The same proof works for the unweighted case. One only need to notice that in this case
all the distances are integers in the range {1, . . . , n − 1} and therefore the placement of the
vertices is a bijection from {1, . . . , n} to {0, . . . , n − 1}.

▶ Theorem 8. There exists a polynomial time algorithm for 2-Set-DR on unweighted paths.

4.2 Hardness Result
Range-DR in weighted paths was shown to be NP-hard in [4] using a reduction from
the Linear Arrangement problem. This result also applies to unweighted paths. It is
important to note that the reduction constructs a matrix with unlimited ranges.

We start the section with an alternative and simpler proof that also requires unlimited
ranges.

▶ Theorem 9. Range-DR is NP-hard in both weighted and unweighted paths.

Proof. We prove the theorem using a reduction from Hamiltonian Path. Given a graph
G, construct the following distance matrix:

Di,j =
{

{1, . . . , n − 1} (vi, vj) ∈ E(G) ,

{2, . . . , n − 1} (vi, vj) ̸∈ E(G) .

If G has a Hamiltonian path, then this path induces a realization of D. On the other hand,
a realization of D corresponds to a Hamiltonian path in G. ◀

Next we show that the Set-DR problem on paths is NP-hard even on 5-set distance
profiles.

▶ Theorem 10. 5-Set-DR is NP-hard in unweighted and weighted paths.

Proof. We prove the lemma using a reduction from the 3-coloring problem.
Consider a graph G, where V (G) = {v1, . . . , vn}. We construct a distance matrix D

on 3n + 2 vertices, denoted {u0, . . . , u3n+1}. Intuitively, the vertices u3i−2, u3i−1 and u3i

represent vertex vi in the original graph, and the location of u3i−2 encoded the color of vi.
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The vertices u0 and u3n+1 are the end-points of the path, and they serve as preference points.
More formally, for every x, we define x̄ ≜ ⌈x/3⌉. The matrix is defined as follows for any
two indices 0 ≤ k < ℓ ≤ 3n + 1:

Dk,ℓ =



{3n + 1} k = 0, ℓ = 3n + 1,{
3ℓ̄ − 2, 3ℓ̄ − 1, 3ℓ̄

}
k = 0, ℓ̄ ∈ {1, . . . , n} ,{

3n − 3k̄ + 1, 3n − 3k̄ + 2, 3n − 3k̄ + 3
}

k̄ ∈ {1, . . . , n} , ℓ = 3n + 1,

{1, 2} k̄ = ℓ̄,{
3(ℓ̄ − k̄) + ∆ : ∆ ∈ {−2, −1, 0, 1, 2}

}
k̄ < ℓ̄,

k mod 3 ̸= 1 or ℓ mod 3 ̸= 1
or (vk̄, vℓ̄) ̸∈ E(G),{

3(ℓ̄ − k̄) + ∆ : ∆ ∈ {−2, −1, 1, 2}
}

k̄ < ℓ̄,

k, ℓ mod 3 = 1, (vk̄, vℓ̄) ∈ E(G) .

Observe that D is a 5-set distance matrix. Also, notice that only the last requirement is not
a range, and it consists of a union of two ranges of size 2.

We show that G is 3-colorable if and only if D is realizable using an unweighted path.
Assume that G is 3-colorable and χ : V 7→ {0, 1, 2} is a 3-coloring of G. We describe a

path realization as a placement of the vertices on integral points from 0 to 3n + 1. First,
u0 is placed on 0 and u3n+1 is placed on 3n + 1. Next, for every i ∈ {1, . . . , n}, if χ(vi) = c,
then u3i−2 is placed at location 3i − 2 + c. The vertices u3i−1 and u3i are placed at the
two remaining free locations from {3i − 2, 3i − 1, 3i}. It is straightforward to verify that P

realizes D. We observe that the last requirement of D is satisfied, since χ is a 3-coloring.
See example in Figure 3.

Now suppose that P is a path realization of D. First, notice that the above distance
matrix makes sure that the distance between u0 and u3n+1 must be 3n + 1. Moreover, all the
other distances are strictly less than 3n + 1. Hence, if a path realization exists, then we may
assume without loss of generality that u0 is placed on 0 and u3n+1 is placed on 3n + 1. In the
weighted case, it follows that all other vertices are located at {1, . . . , 3n}, which means that
all edges are of unit length. Since the distances between u3i−2, u3i−1 and u3i are 1 or 2, for
every i ∈ {1, . . . , n}, these three nodes are forced to appear as a sub-path of P consisting of
two edges. Moreover, the required distances from u0 and u3n+1 forces u3i−2, u3i−1 and u3i

to be assigned to the three consecutive positions 3i − 2, 3i − 1, 3i on the path. We define a
coloring χ according to the positions of {u3i−2 : i ∈ {1, . . . , n}}. More specifically, χ(vi) = c

if u3i−2 is located at 3i − 2 + c. χ is a 3-coloring, since the last requirement of D ensures
that χ(vi) ̸= χ(vj) if (vi, vj) ∈ E. ◀

The above proof implies an even stronger result, that we will need in the sequel for the
hardness of 5-Set-DR in cycles.

▶ Theorem 11. 5-Set-DR is NP-hard in unweighted and weighted paths, even when the
required end-points of the path are given in the input.

5 Cycle Realizations

As was the case with the path, we first show that for 2-set distance profiles a realization by
a cycle, if exists, can be found with a polynomial time algorithm. On the other hand, we
show that the Set-DR problem on cycles is NP-hard even on 5-set distance profiles, by a
reduction from the path realization problem.
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(b) A realization of D.

Figure 3 An example of the reduction in the proof of Theorem 10. White, gray, and black are
colors 0, 1, and 2, respectively. The location of full nodes correspond to the chosen colors.

5.1 Realization of 2-set distance Profiles by Cycles
A cycle C realizes the 2-set distance profile D if either distC(i, j) = d1

i,j or distC(i, j) = d2
i,j

holds for every i and j.
The proofs of theorems 12 and 13 are omitted due to the page restriction.

▶ Theorem 12. There exists a polynomial time algorithm for 2-Set-DR on unweighted
cycles.

▶ Theorem 13. There exists a polynomial time algorithm for 2-Set-DR on weighted cycles.

5.2 Hardness Result
We start the section with a hardness proof that requires unlimited ranges.

▶ Theorem 14. Range-DR is NP-hard in both weighted and unweighted cycles.

Proof. We prove the theorem using a reduction from Hamiltonian Cycle. Given a graph
G, construct the following distance matrix:

Di,j =
{{

1, . . . ,
⌊

n
2

⌋}
(vi, vj) ∈ E(G) ,{

2, . . . ,
⌊

n
2

⌋}
(vi, vj) ̸∈ E(G) .

If G has a Hamiltonian cycle, then this cycle induces a realization of D. On the other hand,
a realization of D corresponds to a Hamiltonian cycle in G. ◀

Next we show that Set-DR on cycles is NP-hard even on 5-set distance profiles using
reductions from the problem on paths, where the required end-points of the paths are given
in the input.

▶ Theorem 15. 5-Set-DR is NP-hard in unweighted and weighted cycles.

Proof. We use a reduction from the Set-DR in unweighted paths, where D is a 5-set distance
matrix and the required end-points of the path are given in the input, which was shown to
be NP-hard in Theorem 11.

Intuitively, we add 3n vertices n + 1, . . . , 4n, unit weight edges between i and i + 1, for
i ∈ {n, . . . , 4n − 1}, and the unit weight edge (4n, 1). Formally, given a matrix D ∈ Nn×n

we construct a matrix D′ ∈ N4n×4n as follows:

D′
k,ℓ =


Dk,ℓ 1 ≤ k, ℓ ≤ n,

min {(ℓ − k), (4n − ℓ + k)} n < k < ℓ ≤ 4n,

{min {(ℓ − δ − 1), (4n + 1 − ℓ + δ)} : δ ∈ Dk,1} 1 ≤ k ≤ n, n < ℓ ≤ 4n,

Note that we assume without loss of generality that δ ∈ Dk,1 if and only if n − 1 − δ ∈ Dk,n.
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un
u1

u4n

u2nu3n

Figure 4 Depiction of the reduction in the proof of Theorem 15, from path realization to cycle
realization. The thick line between u1 and un corresponds to the location of the original vertices.

Suppose that D is realizable. In this case, D′ is realizable by using a cycle of total length
4n, where the vertices u1, . . . , un are placed at positions 1, .., n as they are placed in the path
realization. Vertex ui, for i > n is placed at i. (See Figure 4.)

On the other hand, assume that D′ is realizable, and assume that u1 and un are placed
at locations 1 and n on the cycle. It follows that ui is located at i, for every i > n. In this
case, D can be realized by the arc from 1 to n. ◀

6 Summary and Open Problems

This paper introduces the parametric Set Distance Realization (Set-DR) problem,
which is an extension of the Range Distance Realization (Range-DR) problem. We
study the computational complexity of k-Set-DR and k-Range-DR, as a function of k, in
various graph families.

Several questions remain open, including the following.
Range-DR in weighted general graphs can be solved in polynomial time, but the status
of Set-DR is currently unclear.
For trees, 3-Range-DR and 2-Set-DR are NP-hard, but the status of the 2-Range-DR
problem remains unsettled.
For stars, the hardness of the k-Set-DR problem is unsettled for k = 3, 4, 5.
For paths and cycles the k-Set-DR problem is unsettled for k = 3, 4.
The status of Range-DR for paths and cycles is an open problem.
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Abstract
We consider the problem of characterizing degree sequences that can be realized by a bipartite
graph. If a partition of the sequence into the two sides of the bipartite graph is given as part of
the input, then a complete characterization has been established over 60 years ago. However, the
general question, in which a partition and a realizing graph need to be determined, is still open. We
investigate the role of an important class of special partitions, called High-Low partitions, which
separate the degrees of a sequence into two groups, the high degrees and the low degrees. We
show that when the High-Low partition exists and satisfies some natural properties, analysing the
High-Low partition resolves the bigraphic realization problem. For sequences that are known to be
not realizable by a bipartite graph or that are undecided, we provide approximate realizations based
on the High-Low partition.
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1 Introduction

1.1 Background and Motivation
Graphic degree sequences are among the most well-researched objects in the domain of
graph realizations, studied extensively for over 60 years. A sequence d = (d1, . . . , dn) of
non-negative integers is said to be a graphic degree sequence if there exists an n-vertex simple
graph G such that deg(G) = d, where deg(G) denotes the sequence of vertex degrees of
G. The graphic degree realization (GDR) problem requires, given a sequence d, to decide
whether d is graphic, and if so, to construct a graph G realizing it. Erdös and Gallai [18]
gave a complete characterization for graphic degree sequences. However, their method does
not provide a realizing graph. Havel and Hakimi [21, 24] gave an algorithm that, given a
sequence d, generates a realizing graph, or proves that the sequence is not graphic, in time
O(

∑
i di) which is optimal.

In this paper we consider the natural variant of the graphic degree realization problem,
referred to as the bigraphic degree realization (BDR) problem, where the realizing graph is
required to be bipartite. A sequence admitting a bipartite realizing graph is called a bigraphic
degree sequence. This problem was mentioned in [33] as an open problem over 40 years ago,
but we are unaware of any attempt to solve it.
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The literature does contain, however, a sizeable amount of research on the simpler variant,
hereafter referred to as the given partition version of the bigraphic degree realization problem,
BDRP , where the partition of d is given as part of the input. More explicitly, the input
consists of a partition, namely, two sequences a = (a1, . . . , ap) and b = (b1, . . . , bq), and
the question is to decide whether there exists a bipartite graph G = (A, B, E) such that
|A| = p, |B| = q, and the sequences of degrees of the vertices of A and B are equal to a and
b, respectively. We refer to such a pair (a, b) as a bigraphic degree partition.

Interestingly, the history of bigraphic degree partitions is as ancient as that of graphic de-
gree sequences. In 1957, Gale and Ryser [19, 35] gave a well-known complete characterization,
known as the Gale-Ryser conditions, for a pair of sequences (a, b) to be a bigraphic degree
partition. These conditions imply also a polynomial time decision algorithm for BDRP (by
applying a variant of the Havel-Hakimi construction procedure).

Given the Gale-Ryser characterization, the fact that the well-known PARTITION problem
is pseudo-polynomial (cf. [9, 16]) would appear to suggest a plausible approach for attacking
the (plain) bigraphic degree realization problem BDR, by searching for a bigraphic degree
partition for the given sequence d. This approach makes sense because d1 < n is a necessary
condition for a sequence d to be graphic (or bigraphic), and for such d, finding one of the
partitions (if one exists) is achievable in polynomial time. However, this approach encounters
several immediate obstacles. First, it is possible that some partitions of d are bigraphic
while other partitions are not1. Second, there may be exponentially many different partitions
for a given sequence2. Other approaches may be attempted, based on the special structure
required by a bigraphic degree partition. So far, however, the bigraphic degree realization
remains unresolved: There is no characterization for the class of bigraphic degree sequences,
and it is unknown whether the BDR problem is NP -complete.

Towards attacking the bigraphic degree realization problem we study a specific and
significant type of partitions that separate the degrees of a sequence by their size, i.e., into
two blocks, a block of high degrees and a block of low ones. We refer to such partitions as
High-Low partitions. These partitions represent an extreme approach, striving to maximize
the difference between the degrees on the two sides of the partition. (An opposite extreme
approach would be to try to make the two sides as similar as possible; we study the role
of such partitions, referred to as equal partitions, in [8].) High-Low partitions are thus
interesting in their own right, and can also be viewed as bipartite counterparts of other
partition types considered in the literature, such as core-periphery partitions, which commonly
occur in social networks, see [3, 4, 5, 11, 34, 46].

1.2 Our Contribution
Our key observation concerning the role of High-Low partitions is that there are special
instances where deciding the realizability of the High-Low partition resolves also the BDR
problem, i.e., decides whether the given sequence is bigraphic or not (and if so, provides
an exact realization). Moreover, when the BDR problem is decided in the negative or is
unsolved, we are able to generate approximate realizations for the given sequence based on
its High-Low partition.

1 Consider the sequence (6, 6, 4, 4, 2, 2, 2, 2, 2, 2) which has three partitions: (i.) (6, 6, 4)(4, 2, 2, 2, 2, 2, 2),
(ii.) (6, 4, 2, 2, 2)(6, 4, 2, 2, 2), and (iii.) (6, 6, 2, 2)(4, 4, 2, 2, 2, 2). However, only the last partition is
bigraphic.

2 Consider the sequence d = (n, n, n − 1, n − 1, . . . , 2, 2, 1, 1) of length 2n, for n divisible by 4. Split d into
subsequences Bj = (x, x, x+1, x+1, x+2, x+2, x+3, x+3), for x = 4(j −1)+1, noting that each Bj has
three partitions: (i.) (x, x+1, x+2, x+3)(x, x+1, x+2, x+3), (ii.) (x, x, x+3, x+3)(x+1, x+1, x+2, x+2),
and (iii.) (x + 1, x + 1, x + 2, x + 2)(x, x, x + 3, x + 3). This yields 3n/4 different partitions for d.
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Apart from being easier to generate, approximate realizations are desirable for several
other reasons. In many applications it is required to design a network given some partial
specifications, and returning that there is no suitable network (even provably) is not satis-
factory. Additionally, specifications often rely on imprecise data making exact realizations
unattractive. Bar-Noy et al. [6] survey different applications and types of approximate
network realizations. Our approximate realizations are either

(i) bipartite multigraphs (namely, graphs that allow parallel edges) with low maximum
multiplicity of parallel edges or

(ii) super-realizations which are bipartite (plain) graphs where a subset of the vertices
adheres to the given degree sequence and with a small number of additional vertices
and edges.

The High-Low partition of a non-increasing sequence d = (d1, . . . , dn) has the form
H = (d1, . . . , dk) and L = (dk+1, . . . , dn) for some k. The partition (H, L) is balanced if∑k

i=1 di =
∑n

i=k+1 di. Clearly, a bigraphic degree partition is necessarily balanced.

Well-behaved High-Low Partition. It turns out that for High-Low partitions, the first
Gale-Ryser conditions are of paramount significance. These conditions stipulate that the
largest degree on each side must not exceed the number of vertices on the other side (or
formally, d1 ≤ n− k and dk+1 ≤ k). We refer to a balanced High-Low partition (H, L) that
satisfies the first Gale-Ryser conditions as a well-behaved High-Low partition.

Being well-behaved does not, in itself, ensure that the partition is bigraphic3. It does,
however, enable us to resolve the BDR problem: as we show in Section 3 that the BDR
problem is solvable for a non-increasing sequence d that admits a well-behaved High-Low
partition (H, L). Specifically, when d admits a well-behaved High-Low partition (H, L), it
suffices to test the entire collection of Gale-Ryser conditions on (H, L). If all the conditions
are met, then (H, L) is a bigraphic degree partition, hence d is a bigraphic degree sequence.
If, on the other hand, one or more of the Gale-Ryser conditions is violated for (H, L), then
every partition of d must violate one Gale-Ryser condition and d has no bigraphic degree
partition. It follows that d itself is not a bigraphic degree sequence. On the positive side, we
show in Section 4 that even in case a well-behaved High-Low partition fails to be bigraphic,
it is still what we call 2-bigraphic, namely, it has a realizing bipartite multigraph whose
maximum edge multiplicity is 2.

Multigraph Realizations. Next, we look at sequences that have a balanced High-Low
partition that is not well-behaved, i.e., the first Gale-Ryser conditions are violated. Based
on the High-Low partition we provide approximate realizations by bipartite multigraphs
(without loops) measuring their quality by the maximum multiplicity of edges. We consider
this notion for general graphs and bipartite graphs. Let r, t be positive integers. A sequence
d of non-negative integers is said to be r-graphic if there exists a multigraph G such that
deg(G) = d and the maximum multiplicity of an edge in G is at most r. Similarly, a partition
(a, b) is t-bigraphic if there exists a bipartite multigraph G(A, B, E) such that the maximum
multiplicity of an edge in G is at most t and the sequences of degrees of the vertices of A

and B are equal to a and b, respectively.

3 Consider the sequence ((6m)m, (2m)5m+1, 12m) (superscripts denote multiplicities of degrees) which has
a well-behaved High-Low partition H = ((6m)m, (2m)m+1), L = ((2m)4m, 12m), but it is not bigraphic.

MFCS 2022



14:4 On High-Low Partitions and Bipartite Realizations of Degree Sequences

In Section 4, we show that the balanced High-Low partition (H, L) of an r-graphic
sequence is t-bigraphic where t = max{t(d), 2r} and t(d) is a parameter indicating the extent
to which (H, L) violates the first Gale-Ryser conditions.

Super-Graph Realizations. In Section 5, we deal with sequences where the High-Low
partition is not balanced, and study the High-Low near-partition obtained by taking H =
{d1, . . . , dk} and L = {dk+1, . . . , dn} for the smallest k such that

∑k
i=1 di ≥

∑n
i=k+1 di. For

sequences where (H, L) satisfies the first Gale-Ryser conditions (called quasi-well-behaved),
we come close to resolving its realizability status: Either we provide a bipartite super-
realization, i.e., a bipartite graph G where deg(G) = d′, and d is a subsequence of d′ such
that |d′| − |d| ≤ 2(dk − 1) or we decide that d is not bigraphic.

Finally, in Section 6 we show how to combine the results on the two different types of
(single-criterion) approximate realizations to yield bi-criterion approximate realizations, i.e.,
realizations by bipartite super-multigraphs.

1.3 Related Work
Next to characterizing graphic degree sequences, several related questions were considered:
Given a degree sequence, find all the (non-isomorphic) graphs that realize it, count all
its (non-isomorphic) realizing graphs, and uniformly sample a random realization. These
questions are well-studied, cf. [13, 18, 21, 24, 26, 37, 39, 40, 44, 45], and have important
applications in network design, randomized algorithms, social networks [10, 15, 17, 29] and
chemical networks [38]. Miller [30] recapitulates reduced criteria for a sequence to be graphic.
For surveys on graphic sequences, see [41, 42, 43].

Extensive literature exists on finding realizations having certain properties. A degree
sequence is potentially P -graphic if it has a realization with property P where P is some graph
theoretic property. Rao [33] surveys results (see references therein) on several properties
including k-edge/k-vertex connected, hamiltonian and tournament. Characterizing potentially
bipartite sequences, i.e., the BDR problem, is mentioned as an open problem.

Additional results include a characterization for trees (cf. [20]). The existing results on
planar graphs are restricted to k-sequences, in which the difference between max di and
min di is at most k, for k = 0, 1, 2 [1, 36]. Degree sequences of split graphs (see [23]),
threshold graphs (see [22]), matrogenic graphs (see [28]) and difference graphs (see [22]) are
fully characterized. Moreover, Degree sequences of chordal, interval, and perfect graphs were
studied in [12].

Realizations by multigraphs were considered by Owens and Trent [32] showing how to
realize degree sequences with minimum total number of parallel edges or loops (see [31, 27]
for improved algorithms). Interestingly, computing a realization with maximum total number
of parallel edges is known to be NP -hard, see [25].

2 Preliminaries and Definitions

Let G = (V, E) be a multigraph without loops. Denote by EG(v, w) the multiset of edges con-
necting v, w ∈ V . The maximum multiplicity of G is MaxMult(G) = max(v,w)∈E(|EG(v, w)|).

2.1 Degree Sequences of Graphs and Multigraphs
Let d = (d1, d2, . . . , dn) be a sequence of nonnegative integers in nonincreasing order. The
volume of d is

∑
d =

∑n
i=1 di. We call a sequence with even volume a degree sequence.

We present the characterization of Erdös and Gallai [18] for graphic degree sequences.
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▶ Theorem 1 (Erdös-Gallai [18]). A degree sequence d = (d1, d2, . . . , dn) is graphic if and
only if, for ℓ = 1, . . . , n,

ℓ∑
i=1

di ≤ ℓ(ℓ− 1) +
n∑

i=ℓ+1
min{ℓ, di}. (1)

We refer to Equation (1) as the ℓ-th Erdös-Gallai inequality EGℓ. The Erdös-Gallai charac-
terization allows us to check if a sequence is graphic or not in polynomial time.

A degree sequence d is r-graphic, for a positive integer r, if there is a multigraph G

such that deg(G) = d and MaxMult(G) ≤ r. The Erdös-Gallai inequalities were extended to
characterize r-graphic sequences.

▶ Theorem 2 (Chungphaisan [14]). Let r be a positive integer. The degree sequence d =
(d1, d2, . . . , dn) is r-graphic if and only if, for ℓ = 1, . . . , n,

ℓ∑
i=1

di ≤ rℓ(ℓ− 1) +
n∑

i=ℓ+1
min{rℓ, di}, (2)

Note that, for a given sequence d, the minimum r such that d is r-graphic can be determined
in polynomial time.

2.2 Degree Sequences of Bipartite Graphs and Multigraphs

Let d be a degree sequence for which
∑

d = 2m for some integer m. A block of d is a
subsequence a such that

∑
a = m. Define B(d) := {a ⊂ d |

∑
a = m} as the set of all blocks

of sequence d. For each a ∈ B(d) there is a disjoint b ∈ B(d) that completes it to form a
partition of d (so that merging them in sorted order yields d). We call such a pair a, b ∈ B(d)
a (balanced) partition of d since

∑
a =

∑
b. Denote the set of all degree partitions of d by

BP(d) = {{a, b} | a, b ∈ B(d), d \ a = b}.
The Gale-Ryser theorem characterizes bigraphic degree partitions.

▶ Theorem 3 (Gale-Ryser [19, 35]). Let d be a degree sequence and partition (a, b) ∈ BP(d)
where a = (a1, a2, . . . , ap) and b = (b1, b2, . . . , bq). The partition (a, b) is bigraphic if and
only if

ℓ∑
i=1

ai ≤
q∑

i=1
min{ℓ, bi}, (3)

for ℓ = 1, . . . , p.

We refer to Equation (3) as the ℓ-th Gale-Ryser inequality GRL
ℓ on the left. By symmetry,

the partition (a, b) is bigraphic if and only if
∑ℓ

i=1 bi ≤
∑p

i=1 min{ℓ, ai}, for ℓ = 1, . . . , q. We
refer to this equation as the ℓ-th Gale-Ryser inequality GRR

ℓ on the right.
Let t be a positive integer. A degree sequence d is t-bigraphic if d has a partition (a, b) ∈

BP(d) such that there is a bipartite multigraph G = (A, B, E) such that MaxMult(G) ≤ t,
|A| = |a|, |B| = |b|, and the sequences of degrees of the vertices of A and B are equal to
a and b, respectively. We also say that partition (a, b) is t-bigraphic. Miller [30] cites the
following result of Berge characterizing t-bigraphic partitions.

MFCS 2022
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▶ Theorem 4 (Berge [30]). Consider a positive integer t, a degree sequence d and a partition
(a, b) ∈ BP(d) where a = (a1, . . . , ap) and b = (b1, . . . , bq). The partition (a, b) is t-bigraphic
if and only if

ℓ∑
i=1

ai ≤
q∑

i=1
min{ℓt, bi}, (4)

for ℓ = 1, . . . , p.

2.3 Ferrers Diagrams, Conjugate Sequences and Majorization
Ferrers diagrams (cf. [2]) are instrumental in illustrating integer sequences and partitions
graphically (see Figure 1).

Figure 1 The Ferrers diagram of the partition a = (4, 2, 2, 2) and b = (3, 3, 3, 1).

Conjugate sequences provide us with a convenient alternative way to represent the Gale-
Ryser conditions. The prefix-sum of a sequence d up to index i is

∑
(d[i]) =

∑i
j=1 dj . Let the

sequences a, b have the same length, i.e., p = q. (If two sequences are not of the same length,
the shorter sequence can be padded with 0’s.) Given a degree sequence d, its conjugate
sequence d̃ = (d̃1, d̃2, . . . , d̃d1) is defined by d̃k = |{i | di ≥ k}|.

The duality between
∑

a[i] and
∑

b̃[i] is captured graphically in the Ferrers diagram: ai

is the i-th row on the left, and b̃i is the i-th column on the right. Consequently,
∑

a[i] is the
sum of the first i rows on the left, whereas

∑
b̃[i] is the sum of the first i columns on the

right. (In the figure, the green ovals capture
∑

a[2] and
∑

b̃[2].)
Majorization is a partial order on degree sequences: a majorizes b (b ⊴ a) if and only if∑
(b[i]) ≤

∑
(a[i]) for every i ∈ [1, q].

Observe that if a⊵ b, then b̃⊵ ã. The Gale-Ryser theorem can now be reformulated using
majorization and conjugates, noting that

∑q
i=1 min{ℓ, bi} =

∑ℓ
i=1 b̃i.

▶ Theorem 5 (Gale-Ryser [19, 35], conjugate representation). Let d be a degree sequence and
(a, b) ∈ BP(d). The partition (a, b) is bigraphic if and only if a ⊴ b̃.

Furthermore, a graphic description of the ℓ-th Gale-Ryser condition on the left is that the
sum of the first ℓ rows on the left Ferrers diagram (representing a), must be no greater than
the sum of the first ℓ columns on the right Ferrers diagram (representing b). (The sequence
is bigraphic if and only if these conditions hold for every ℓ ≤ p.) As the sequences a and
b (or equivalently their Ferrers diagrams) can switch sides, it is clear that the Gale-Ryser
conditions are symmetric, i.e., a ⊴ b̃ if and only if b ⊴ ã.

3 Well-Behaved High-Low Partitions

In this section, we study sequences that have a well-behaved High-Low partition. Let
d = (d1, . . . , dn) be a degree sequence with a High-Low partition HL(d) = (H, L) where
H = (d1, . . . , dk) and L = (dk+1, . . . , dn), for some positive integer k < n. We assume that
d1 ≤ n− k and that dk+1 ≤ k, i.e., (H, L) is well-behaved.
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In the following, we suppose that (H, L) is not bigraphic implying that at least one
Gale-Ryser condition on H and L, respectively, is not satisfied. Let x be the index of the
first violated Gale-Ryser condition on L, i.e., such that

∑
(L[i]) ≤

∑
(H̃[i]), for i < x, and∑

(L[x]) >
∑

(H̃[x]). (5)

▶ Observation 6. For a well-behaved HL(d) = (H, L), dk < x.

Proof. For i ≤ dk, we have that
∑

(H̃[i]) = i · k, and
∑

(L[i]) ≤ i · dk+1 (see Figure 2).
Since (H, L) is well-behaved, dk+1 ≤ k, and it follows that

∑
(L[i]) ≤

∑
(H̃[i]), hence the

ith Gale-Ryser condition on L holds, for i ≤ dk. Consequently, x > dk. ◀

i

k

dk

H

i

dk+1

L

Figure 2
∑

H̃[i] vs.
∑

L[i].

▶ Observation 7. For a well-behaved HL(d) = (H, L), x > k.

Proof. If dk ≥ k, then the claim follows from Observation 6. Now suppose dk < k. We need
to show that

∑
(H̃[j]) ≥

∑
(L[j]) for every dk < j ≤ k. This follows because∑

(H̃[j]) ≥
∑

(H̃[dk]) = k · dk ≥ k · dk+1 ≥
∑

(L[k]) ≥
∑

(L[j]). ◀

Our main goal is to prove the following result.

▶ Theorem 8. Consider a degree sequence d with a well-behaved High-Low partition HL(d) =
(H, L). If (H, L) is not bigraphic, then d is not bigraphic (i.e., no partition of d is bigraphic).

First, we prove a weaker statement. For some other partition (A, B) ∈ BP(d), define

Hm = H \A, Lm = L \B, Hs = H ∩A, and Ls = L ∩B.

Moreover, we denote h = |Hm| and ℓ = |Lm|. Hence, the partition (A, B) can be viewed as
obtained from (H, L) by moving a subset Hm from the left to the right, and a subset Lm

from the right to the left. The subsets Hs and Ls stay on their respective sides. Note that,
keeping A and B sorted in nonincreasing order, the elements of Hm appear at the beginning
of B and the elements of Lm appear at the end of A. Figure 3 illustrates this transformation.

For an index i and an ordered set of integers S, denote the first i elements of S by S[i].
Moreover, we use

∑
(S) =

∑
z∈S z to denote the sum of elements in S. In line with our

previous definition,
∑

(S[i]) is the prefix-sum of S up to index i.

▶ Definition 9. Call the partition (A, B) benign if Lm contains at most h of the top x

elements of L, i.e., |L[x] ∩ Lm| ≤ h or equivalently |L[x] \ Lm| ≥ x− h.

▶ Lemma 10. Consider a degree sequence d with well-behaved High-Low partition HL(d) =
(H, L). If (H, L) is not bigraphic, then no benign partition of d is bigraphic.

MFCS 2022



14:8 On High-Low Partitions and Bipartite Realizations of Degree Sequences

Figure 3 Illustration of the transformation from (H, L) to (A, B). Partition (A, B) is benign
since L[x] ∩ Lm is empty.

Proof. Let d and HL(d) = (H, L) be as in the lemma, and let (A, B) be some benign
partition of d. To show the lemma, we show that

∑
(B[x]) >

∑
(Ã[x]) holds, i.e., the

partition (A, B) violates GRR
x . First, verify that∑

(B[x]) =
∑

(Hm) +
∑

(Ls[x− h]),

and that∑
(Ã[x]) =

∑
(Lm) +

∑
(H̃s[x]) (6)

since x > dk+1 by Observation 6. We need to show that
∑

(Ls[x− h]) >
∑

(H̃s[x]) since∑
(Hm) =

∑
(Lm). By Equation (5), it follows that∑

(L[x])−
∑

(Ls[x− h]) +
∑

(Ls[x− h]) >
∑

(H̃[x]) =
∑

(H̃s[x]) +
∑

(H̃m[x]).

To finish the proof, we argue that
∑

(H̃m[x]) ≥
∑

(L[x])−
∑

(Ls[x− h]). Since (A, B) is
benign, Ls[x− h] contains at least x− h rows of L[x], or equivalently L[x] \ Ls[x− h] are at
most h rows of L. It follows that∑

(L[x])−
∑

(Ls[x− h]) ≤ h · dk ≤
∑

(H̃m[x])

where the last inequality holds due to Observation 6. ◀

Using the symmetry of the Gale-Ryser conditions we prove the following corollary. We
introduce another notation, s = |L[x] ∩ Lm|.

▶ Corollary 11. Consider a degree sequence d with well-behaved High-Low partition HL(d) =
(H, L). If (H, L) is not bigraphic, then no partition of d where x− s ≤ k − h is bigraphic.

Proof. The result is obtained from switching the definitions of the moving and staying parts.
Partition (B, A) can be viewed as obtained from (H, L) by moving Hs from H to L and Ls

from L to H. Note that |Hs| = k − h and |Ls ∩ L[x]| = x− s. The condition x− s ≤ k − h

implies that (B, A) is benign, and the corollary follows with Lemma 10. ◀

Another benign case is when the largest element of Hm or Hs is smaller or equal to x.
Denote λ = min {max {Hm} , max {Hs}}.

▶ Lemma 12. Consider a degree sequence d with well-behaved High-Low partition HL(d) =
(H, L). If (H, L) is not bigraphic, then no partition of d where λ ≤ x is bigraphic.
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Proof. Consider d and (H, L) as in the lemma. First, we verify the claim for λ = max {Hm}.
To that end, let (A, B) be a partition of d such that max {Hm} ≤ x. To prove the claim, we
show that

∑
(B[x]) >

∑
(Ã[x]) holds. With Equations (5) and (6) it follows that∑

(L[x]) >
∑

(H̃[x]) =
∑

(H̃s[x]) +
∑

(H̃m[x]) (⋆)=
∑

(H̃s[x]) +
∑

(Hm) =
∑

(Ã[x]),

where (⋆) holds since max {Hm} ≤ x. Because (H, L) is a High-Low partition, B majorizes
L and, in particular,

∑
(B[x]) ≥

∑
(L[x]) >

∑
(Ã[x]) holds.

With the arguments used to prove Corollary 11, the claim also holds in case λ = max {Hs},
and the lemma follows. ◀

Now we are ready to prove Theorem 8.

Proof of Theorem 8. Consider d and HL(d) = (H, L) as in the lemma, and let (A, B) be
some partition of d. Towards a contradiction suppose that (A, B) is bigraphic. It follows that
(a)

∑
(B[x]) ≤

∑
(Ã[x]),

(b)
∑

(A[x]) ≤
∑

(B̃[x]),
(c) λ ≤

∑
(B[1]) ≤

∑
(Ã[1]) = k − h + ℓ,

(d) λ ≤
∑

(A[1]) ≤
∑

(B̃[1]) = n− k + h− ℓ,
(e) x < λ,
(f) s > h, and
(g) s < x− k + h.

Equations (a), (b), (c), (d) are Gale-Ryser conditions (see Theorem 3), and the upper
bounds on λ hold by definition. As (A, B) is bigraphic, Equation (e) is implied by Lemma 12.
Moreover, Equations (f) and (g) are implied by Lemma 10 and Corollary 11, respectively.

Recall that Equation (5) reads∑
(L[x]) >

∑
(H̃[x]) =

∑
(H̃s[x]) +

∑
(H̃m[x]).

Note that (d) and (e) imply x < λ ≤ n− k + h− ℓ = |B| (i.e., B[x] is a proper subset of B).
With Equation (a) we have that∑

(H̃s[x]) +
∑

(Lm) =
∑

(Ã[x]) ≥
∑

(B[x]) =
∑

(Ls[x− h]) +
∑

(Hm).

Since
∑

(Lm) =
∑

(Hm) we get a lower bound on
∑

(H̃s[x]):∑
(H̃s[x]) ≥

∑
(Ls[x− h]). (7)

Note that (c) and (e) imply x < λ ≤ k − h + ℓ = |A| (i.e., A[x] is a proper subset of A).
Since k − h < x and dk+1 < x, it follows from Observations 6 and 7 that∑

(Ls) +
∑

(H̃m[x]) =
∑

(B̃[x]) ≥
∑

(A[x]) =
∑

(Hs) +
∑

(Lm[x− k + h]).

Since
∑

(Ls) =
∑

(Hs) we get a lower bound on
∑

(H̃m[x]):∑
(H̃m[x]) ≥

∑
(Lm[x− k + h]). (8)

Equation (5) together with Equations (7) and (8) yields∑
(L[x]) >

∑
(Ls[x− h]) +

∑
(Lm[x− k + h]).

Observe that Ls[x− h] contains L[x] \ Lm as s > h. Since s < x − k + h, Lm[x− k + h]
contains L[x]∩Lm. It follows that

∑
(Ls[x− h])∪

∑
(Lm[x− k + h]) contains L[x], and so∑

(Ls[x− h]) +
∑

(Lm[x− k + h]) ≥
∑

(L[x])

holds contradicting the previous equation. Consequently, (A, B) cannot be bigraphic. ◀
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Theorem 8 implies that the bigraphic realizability status can be fully resolved for a degree
sequence with a well-behaved High-Low partition.

▶ Theorem 13. Let d be a degree sequence with a well-behaved High-Low partition. It can
be decided in polynomial time whether d is bigraphic or not. If d happens to be bigraphic, a
bipartite graph realizing d can be computed in polynomial time.

Proof. Let d be as in the theorem. Computing the High-Low partition HL(d) = (H, L) is
straight forward. Using the Gale-Ryser theorem (Theorem 3), we decide if (H, L) is bigraphic
or not, and due to Theorem 8 if d is bigraphic or not. If (H, L) is bigraphic, a bipartite
graph realizing d can be computed by applying the Havel-Hakimi algorithm to one side of
the partition (see [7] for details). All steps are performed in polynomial time. ◀

4 Realizations by Bipartite Multigraphs

Our goal is to provide realizations based on multigraphs without loops where the maximum
multiplicity of parallel edges is used to measure their quality. We examine degree sequences
that have a balanced High-Low partition but are not necessarily bigraphic. Let r be a
positive integer. In the following, we consider an r-graphic degree sequence d with High-Low
partition HL(d) = (H, L) where H = (d1, . . . , dk) and L = (dk+1, . . . , dn), for some integer
k ∈ [1, n− 1]. We do not assume that d is well-behaved, and quantify the violation of the
first Gale-Ryser conditions with the following definitions. Let

tH(d) =
⌈

d1

n− k

⌉
and tL(d) =

⌈
dk+1

k

⌉
,

and define t(d) = max{tH(d), tL(d)}. (Note that sequence d has a well-behaved High-Low
partition if t(d) = 1.) First, we observe that tH(d) is bounded for r-graphic sequences.

▶ Lemma 14. Let d be an r-graphic degree sequence with High-Low partition HL(d) = (H, L).
Then, tH(d) ≤ 2r.

Proof. Let d be as in the lemma with H = (d1, . . . , dk) and L = (dk+1, . . . , dn). Since (H, L)
is a High-Low partition, we have that k ≤ n− k. Moreover, d1 ≤ r(n− 1) as d is r-graphic.
It follows that

tH(d) =
⌈

d1

n− k

⌉
≤

⌈
r(n− 1)

n− k

⌉
≤

⌈
r(k + n− k)

n− k

⌉
≤ 2r. ◀

The main result of this section is the next theorem. Its proof is omitted in the conference
version of the paper.

▶ Theorem 15. Let d be an r-graphic degree sequence with High-Low partition HL(d) = (H, L)
and let t = max{t(d), 2r}. Then, (H, L) is t-bigraphic.

We remark that the conclusion of Theorem 15 does not hold if the degree sequence d is not
r-graphic. To see this, consider the non-graphic sequence d = ((9m)m−1, 6m+1, (3m)3m−1, 11)
for some positive integer m. (We use superscripts to denote the multiplicities of degrees.)
Verify that d has a High-Low partition (H, L) where H = ((9m)m−1, 6m + 1) and L =
((3m)3m−1, 11). We have tH(d) = tL(d) = 3, but the conditions of Theorem 4 for 3-
bigraphic degree sequences are violated. Specifically, the condition for index m− 1 requires
9m(m− 1) ≤ (3m− 1) · 3 · (m− 1) + 1, which is false.

We complement Theorem 15 by providing an existential lower bound.
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▶ Lemma 16. There are degree sequences d with High-Low partition HL(d) such that t(d) > 1,
and d is not t′-bigraphic for any t′ < t(d).

Proof. Let t be a positive integer, and let p be some prime number. Set x ≥ t(p+1) such that
p is not a prime factor of x, and consider the sequence d = (xp+2, px). Verify that sequence
d has a High-Low partition HL(d) = (H, L) with blocks H = (xp+1) and L = (x, px). By
the choice of x and p, d does not have other partitions. We have that t(d) = tL(d) ≥ t. It
follows that d is not t′-bigraphic for any t′ ≤ t. ◀

For graphic degree sequences, we get the following result.

▶ Corollary 17. Let d be a graphic degree sequence with High-Low partition HL(d) = (H, L)
and t = t(d).

(i) If t = 1, then (H, L) is 2-bigraphic.
(ii) If t > 1, then (H, L) is t-bigraphic.

If there is a well-behaved High-Low partition, Theorem 8 implies the following result.

▶ Corollary 18. Let d be a graphic degree sequence with well-behaved High-Low partition
HL(d) = (H, L). Then, either

(i) (H, L) is bigraphic, or
(ii) d is not bigraphic and (H, L) is 2-bigraphic.

Combinatorial Bounds. In the last part of this section, we show bounds on tL(d) and tH(d)
in case the degree sequence d is r-graphic or bigraphic. The proofs of the following two
theorems are omitted in the conference version of the paper.

We start with r-graphic degree sequences. Lemma 14 provides a bound on tH(d). The
next theorem establishes a bound on tL(d).

▶ Theorem 19. Let d be an r-graphic sequence with High-Low partition HL(d) = (H, L).
Then,

tL(d) ≤
⌈

r(k+1)
2

⌉
.

We note that the bound of Theorem 19 is tight and that for graphic sequences, tL(d) <

tH(d) as well as tH(d) < tL(d) can occur. To see this, consider the following two examples.
(1) The graphic sequence d = (6, 3, 3, 3, 3, 3, 3) has exactly one (High-Low) partition (H, L)

with blocks H = (6, 3, 3) and L = (3, 3, 3, 3). Verify that tL(d) = 2 and tH(d) = 1.
(2) The degree sequence d′ = (( k(k+1)

2 )k+1, 1
k(k+1)

2 (k−1)), for a positive integer k, is graphic
(to see this, observe that

∑
d′ is even, and that the (k + 1)th-EG inequality holds; for

such a block sequence this is sufficient, see, e.g., [30]). The (k + 1)th-EG inequality
reads (k(k + 1)/2) · (k + 1) ≤ k(k + 1) + (k(k + 1)/2) · (k − 1), which trivially holds.
Moreover, HL(d′) = (H ′, L′) where H ′ = (( k(k+1)

2 )k) and L′ = (( k(k+1)
2 ), 1

k(k+1)
2 (k−1)).

Hence, |H ′| = k and dk+1 = k(k+1)
2 .

The next result improves the bounds on tL(d) and tH(d) for bigraphic degree sequences.

▶ Theorem 20. Let d be a bigraphic sequence with High-Low partition HL(d). Then,

tH(d) ≤ 1, and tL(d) ≤
⌈

k+2+1/k
4

⌉
.
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5 Realizations by Bipartite Super-Graphs

We next focus on the situation when the given sequence does not admit a balanced High-Low
partition (with

∑
H =

∑
L). In this case, we consider the High-Low near-partition (HLnP)

(H, L) of d, obtained by taking H = {d1, . . . , dk} and L = {dk+1, . . . , dn} for the smallest k

such that
∑

H ≥
∑

L (i.e.,
∑

H − dk <
∑

L + dk).
Define the imbalance gap of the sequence d to be IG(d) =

∑
H −

∑
L. Rearranging the

above two inequalities, we get the following.

▶ Observation 21. 0 ≤ IG(d) < 2dk.

In the remainder of this section we assume that IG(d) > 0. We refer to such sequences d as
High-Low-imbalanced. We call the High-Low near-partition (H, L) quasi-well-behaved if it
satisfies the first Gale-Ryser condition on both sides.

The main result of this section is that when the given sequence d is High-Low-imbalanced
but enjoys a quasi-well-behaved High-Low near-partition, it is possible to come close to
resolving its realizability status, in the sense that there is a poly-time algorithm that either
decides that d is not bigraphic, or constructs a bipartite super-realization for d with a small
number of new vertices and edges. We use the operator ◦ to merge two sequences.

▶ Definition 22. A bipartite (n′, m′) super-realization of an n-integer sequence d, for n′ > n

and m′ >
∑

d, is a bipartite graph G(A, B, E) such that |A ∪B| = n + n′, |E| =
∑

d + m′,
and deg(A ∪B) = d ◦ d′ for some sequence d′ of n′ integers.

Our algorithm hinges on the idea of completing a High-Low near-partition of a given
imbalanced sequence d into a (balanced) High-Low partition of a larger sequence in a suitable
way. Consider a family D of quasi-well-behaved n-integer nonincreasing sequences. A
mapping φ : D 7→ D′ is said to be a valid completion mapping for D if for every d ∈ D such
that HLnP (d) = (H, L) and k = |H|, the generated n′-integer sequence d′ = φ(d) satisfies
the following properties.
(P1) (H, L ◦ d′) is a well-behaved High-Low partition of d ◦ d′.
(P2) If d is bigraphic then d ◦ d′ is bigraphic as well.
The generated sequence d′ = φ(d) is referred to as the valid completion of d.

We now describe a generic Algorithm A(d, d′) that, given a High-Low-imbalanced n-
integer nonincreasing sequence d with IG(d) = t and a valid completion d′ of p integers for
d, generates a bipartite (p, t) super-realization for d. The algorithm operates as follows.

1. Construct the High-Low near-partition HLnP (d) = (H, L) for the given sequence d.
2. Let t← IG(d) =

∑
H −

∑
L.

3. Set L′ ← L ◦ d′ (sorted in nonincreasing order).
4. Test all Gale-Ryser conditions on (H, L′).
5. If (H, L′) is bigraphic, then construct and return a realizing bipartite graph G′ for it.
6. Otherwise (* (H, L′) is not bigraphic *) return “d is not bigraphic”.

▶ Lemma 23. Consider a sequence d and let d′ be a valid completion for d. If Algorithm
A(d, d′) returns a graph G′ (Step 5), then it is a bipartite (p, t) super-realization for d. If the
algorithm returns a negative response (Step 6), then d is indeed not bigraphic.

Proof. The first claim follows immediately by the definition of p and t and the fact that G′

is a bipartite realization of (H, L′).
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To prove the second claim, suppose (H, L′) is non-bigraphic. As d′ is a valid completion
of d, property (P1) implies that (H, L′) is a well-behaved High-Low partition of d ◦ d′. It
follows from Theorem 8 that d ◦ d′ is also non-bigraphic. This, in turn, implies by property
(P2) that d is not bigraphic. ◀

▶ Lemma 24. Consider a quasi-well-behaved n-integer nonincreasing sequence d with t =
IG(d). The sequence d′ = (1t) is a valid completion for d.

Proof. To see that (P1) holds, observe that
(1) (H, L ◦ d′) is a High-Low partition of d ◦ d′ because the elements of d′ are no greater

than the elements of H.
(2) it is balanced because

∑
H =

∑
(L ◦ d′) by the choice of t.

(3) it satisfies the first Gale-Ryser condition on the left since (H, L) is quasi-well-behaved,
so d1 ≤ n− k ≤ n + t− k.

(4) it satisfies the first Gale-Ryser condition on the right since dk+1 satisfies dk+1 ≤ k by
the fact that (H, L) is quasi-well-behaved, and d′

1 = 1 ≤ k, so max(L ◦ d′) ≤ k.
To see that (P2) holds, suppose d is bigraphic, and let G be a bipartite graph realizing it.
Noting that IG(d) must be even (as it is the difference of two integers whose sum is even), let
M be a matching consisting of t/2 edges. Then G∪M is a bipartite realization of d ◦ d′. ◀

We conclude the following.

▶ Theorem 25. Consider a quasi-well-behaved n-integer nonincreasing sequence d and let
d′ = (1IG(d)). Then Algorithm A(d, d′), in poly-time, either yields a bipartite (IG(d), IG(d))
super-realization for d or decides that d is not bigraphic.

Our goal is to find a poly-time algorithm that constructs a bipartite super-realization for
d with less new vertices. We continue this analysis in the journal version of the paper.

6 Realizations by Super-Multigraphs

We consider super-multigraph realizations based on the High-Low near-partition. Together,
Theorems 15 and 25 imply the following.

▶ Corollary 26. Let d be an r-graphic sequence, d′ = d ◦ 1IG(d), and t = max{2r, t(d′)}.
Then, there is a t-bipartite (IG(d), IG(d)) super-realization for d.

If d is quasi-well-behaved and graphic, we apply Corollary 18 yielding the following.

▶ Corollary 27. Consider a quasi-well-behaved and graphic sequence d and let d′ = (1IG(d)).
Either d is undecided and Algorithm A(d, d′) yields in poly-time a bipartite (IG(d), IG(d))
super-realization for d, or d is not bigraphic and has a 2-bipartite (IG(d), IG(d)) super-
realization.
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1 Introduction

An ongoing research in computational logic has lead to discovery of new decidable fragments
of first-order logics (FO) that extend modal and description logics. The main ideas that were
proposed in the past involve: restricting the number of variables [8], relativised quantifica-
tion [1, 26], restricted use of negation [24], relativised negation [3], one-dimensionality and
uniformity [11], separateness [25] and ordered quantification [12, 22]. To compare aforemen-
tioned logics, the authors of [1, Section 4.7] proposed a list of desirable meta-properties of
logic, which can serve as a yardstick to measure how “nice” a given logic is. We expect a
logic L to
(A) be decidable and have the Finite Model Property (FMP),
(B) satisfy the Craig Interpolation Property (CIP), i.e. for any L-formulae φ,ψ such that

φ |= ψ there should be an L-formulae χ, called an interpolant, that uses only symbols
appearing in the common vocabulary of φ and ψ, so that φ |= χ |= ψ holds,
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(C) and to satisfy the analog of Łoś-Tarski Preservation Theorem (ŁTPT), i.e. any L-formula
φ preserved under substructures should be equivalent to some universal L-formula.

It turned out that FO2 and GF, example logics based on restricted number of variables and
relativised quantification, are not “nice” as they do not enjoy CIP [17, Examples 1–2]. In
contrast, UNFO and GNFO, the logics based on relativised negation, fulfil the properties
(A)–(C), consult: [24, 2, 6]. For one-dimensionality, separateness and ordered quantification
we have partial results only.

In this paper we take a closer look at logics enjoying ordered quantification, which have
been receiving increasing attention recently [20, 4, 15]. Their syntax can be informally
explained as follows. We first require that all variables appearing in formulae are additionally
indexed by the quantifier depth and then impose a certain restriction on such numbers in
variable sequences in atoms. Assuming that α(x) is in the scope of the n-th quantifier (but
not the (n+1)-th), in the fluted fragment Lsuf of Quine [22] (resp. in the ordered fragment
Lpre by Herzig [12]1) the tuple x is required to be a suffix (resp. a prefix) of the sequence
x1, x2, . . . , xn. The forward fragment Linf [4] is more liberal and allows infixes in place of
suffixes or prefixes. An example formula φ ∈ (Lsuf ∩ Linf) \ Lpre is given below:
1. No student admires every professor.

∀x1 (student(x1) → ¬∀x2 (professor(x2) → admires(x1, x2)))

2. No lecturer introduces any professor to every student.

∀x1 lecturer(x1) → ¬∃x2 [professor(x2) ∧ ∀x3 (student(x3) → introduce(x1, x2, x3))]

Next, we provide a few coexamples, i.e. formulae that, as stated, do not belong to any of
Linf , Lpre, Lsuf . The blue colour indicates a mismatch in the variable ordering.
1. The relation isPartOf is transitive.

∀x1 ∀x2 ∀x3 isPartOf(x1, x2) ∧ isPartOf(x2, x3) → isPartOf(x1, x3)

2. A narcissist is a person who loves himself.

∀x1 narcissist(x1) → person(x1) ∧ loves(x1, x1)

3. The binary relation hasChild is the inverse of the hasParent relation.

∀x1 ∀x2 hasParent(x1, x2) ↔ hasParent(x2, x1)

All of Linf , Lsuf , Lpre are decidable and have the Finite Model Property. Their satisfiability
problem is, respectively, Tower-complete for Linf and Lsuf , and PSpace-complete for Lpre.
Somehow unexpectedly, the Tower-completeness of Lsuf was established only recently by
Pratt-Hartmann et al. [20], after pointing out a mistake in the proof of the exponential-size
model of Lsuf by Purdy [21] and disproving Purdy’s claim of NExpTime-completeness of Lsuf .
The model theory of Linf , Lsuf , and Lpre is, however, poorly understood. The only results that
we are aware of are Purdy’s claims that Lsuf has CIP [21, Thm. 14] and ŁTPT [21, Corr. 17].
But in the light of previously discovered errors, one should treat Purdy’s paper with caution.

1 Strictly speaking, the syntax of Lpre is slightly more liberal than the original syntax of the ordered
fragment as defined by Herzig, since the syntax of Lpre allows requantifying variables.
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1.1 Our results
This paper kick-starts a project of understanding the model theory of ordered logics, by
which we mean the logics Lpre, Lsuf , and Linf as well as their intersections with the guarded
fragment GF [1], focusing on the problems mentioned in the introduction.

In Section 3, we design a suitable notion of bisimulations and compare the relative
expressive power of ordered logics. Our proofs employ standard model-theoretic constructions
like the Compactness Theorem and ω-saturated structures. Next, we investigate CIP
in Section 4, which is the main technical contribution of the paper. First, we focus on
interpolation for the fluted and the forward fragments. We show that, surprisingly, Linf and
Lsuf do not enjoy CIP, refuting yet another claim from the infamous work of Purdy [21,
Thm. 14]. Fortunately, other members of the family of ordered logics enjoy CIP, as shown in
Sections 4.2–4.3. We stress here that standard techniques for proving CIP, e.g. those based
on zig-zag products [19, 14, 2, 16], do not seem to work in our case.2 This forces us to take
a different route: we construct models explicitly by specifying types of tuples.

We believe that our proof methods, which are based on novel and intricate model-theoretic
constructions, are very general. In particular, we believe that our CIP proof for guarded
ordered logics can serve as a useful meta-technique (or even a heuristic) for (dis)proving CIP
for fragments of GF. For instance, the proof can be adopted to fragments with CIP, deriving
existing results (e.g. for the 2-variable GF [14] or the uniform one-dimensional GF [16]) and
its failure gives hints why a certain fragment may not have CIP (e.g. in the case of full GF).

2 Preliminaries

Henceforth, we employ standard terminology from (finite and classical) model theory [18, 13].
All the logics considered here will be fragments of the first-order logic (FO) over purely-
relational equality-free vocabularies, under the usual syntax and semantics.

We fix a countably infinite set of variables {xi | i ∈ N} and throughout this paper all
the formulas use only variables from this set. With sig(φ) we denote the set of relational
symbols appearing in φ. We use ar(R) to denote the arity of R. For a logic L and a signature
σ we use L[σ] in place of {φ ∈ L | sig(φ) ⊆ σ}. The k-variable fragment of L (i.e. employing
only the variables x1, x2, . . . , xk) is denoted Lk. We write φ(x) to indicate that all free
variables from φ are members of x. If x contains precisely the free variables of φ, then we
will emphasise this separately. Given a structure A and B ⊆ A, we will use A ↾ B to denote
the substructure of A that B induces.

Tuples and subsequences. An n-tuple is a tuple with n elements. The 0-tuple is denoted
with ϵ. We use xi...j to denote the (j−i+1)-tuple xi, xi+1, . . . , xj . We say that xi...j is an
infix of a tuple xk...l if k ≤ i ≤ j ≤ l holds. If, in addition, k = i (resp. j = l) we say that
xi...j is a prefix (resp. suffix) of xk...l. We use the word affix as a place-holder for the words
prefix, suf fix or inf ix. For a set S, we write x ⊏− S iff xi ∈ S for all indices 1 ≤ i ≤ |x |, where
|x | denotes the length of x . A tuple a ⊏− A is σ-live in A if |a| ≤ 1 or a ∈ RA for some R ∈ σ.

Logics. We next introduce the logics Laffix ∈ {Lpre, Lsuf , Linf}. We start from Lsuf , which for
technical reasons we need to define separately from Lpre and Linf . For every n ∈ N, we define
the set Lsuf(n) as follows:

2 For logics that are closed under negation on the level of formulas, zig-zag constructions seem to work
only if the logics are one-dimensional and uniform, see [16] for more details. None of our logics are
one-dimensional nor uniform.
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an atom α(x) is in Lsuf(n) if x is a suffix of x1...n,
Lsuf(n) is closed under Boolean connectives ∧,∨,¬,→,
if φ is in Lsuf(n+1) then ∃xn+1 φ and ∀xn+1 φ are in Lsuf(n).

We put Lsuf := Lsuf(0), which is exclusively composed of sentences.
To define the fragments L ∈ {Lpre, Linf}, for every n ∈ N we define the set of L(n) as follows:

an atom α(x) is in Lpre(n) if x is a prefix of x1...n and in Linf(n) if x is an infix of x1...n.
if φ ∈ L(n1) and ψ ∈ L(n2), then for all n ≥ max{n1, n2} we have that ¬φ, (φ ∨ ψ), (φ ∧
ψ), (φ → ψ) are in L(n).
if φ is in L(n+1) then ∃xn+1 φ and ∀xn+1 φ are in L(n).

We set L := L(0), which is exclusively composed of sentences. We stress that in contrast to Lsuf ,
the logics L ∈ {Lpre, Linf} allow us to requantify variables. We recommend the reader to employ
the above definition to show that ∀x1∀x2∀x3(R(x1x2x3) → (A(x1) ∧ ∃x2∃x3S(x1x2x3))) ∈ Linf .

Notice that if φ(x) ∈ Laffix(n), where x lists all the free variables of φ in order (with
respect to their indices), then x is an affix of the tuple x1...n. The logics Lpre, Lsuf , and Linf
were studied under the names of ordered [12], fluted [22], and forward [4] fragments. The
guarded counterparts Gaffix of Laffix, are defined as the intersection of Laffix and the guarded
fragment GF [1], i.e. by imposing that blocks of quantifiers are relativised by atoms (recalled
below). Abusing notation, we speak about all these logics collectively as ordered logics.
For reader’s convenience we recall that GF is the smallest fragment of FO such that:

Every atomic formula is in GF;
GF is closed under boolean connectives ∧,∨,¬,→;
If φ(x , y) is in GF and α(x , y) is an atom containing all free variables of φ then both
∀y (α(x , y) → φ(x , y)) and ∃y (α(x , y) ∧ φ(x , y)) are in GF;
If φ(x) has only a single free-variable x , then ∀x φ and ∃x φ are in GF.

The atoms α, appearing in the 3rd item of the above definition is called a guard.
For a finite signature σ and n ∈ N, a (σ, n)-affix-type is a conjunction of atoms with n

free variables x1...n, in which for every R ∈ σ and every affix x l...k of x1...n, of length ar(R),
exactly one of R(x l...k), ¬R(x l...k) appears as a conjunct. For a σ-structure A and a tuple
a ⊏− A with tpLaffix[σ]

A (a) we denote the unique (σ, |a|)-affix-type realised by a in A.

2.1 Model Checking
Before jumping into the main part of the paper, we would like to point out some results on
the combined complexity of model checking problems of ordered logics, since these seem to be
missing from the literature. In what follows we will employ the matrix encoding of structure,
that is a standard encoding in finite model theory [18, p. 88]. Given a {R1, . . . ,Rm}-
structure A with a linearly-ordered domain A, by its matrix encoding we mean a binary string
menc(A) := 0n1menc(R1) . . .menc(Rm), where menc(Ri) is a binary sequence of length
|A|ar(Ri), in which the j-th bit is 1 iff the j-th tuple in the lexicographic ordering of |A|ar(Ri)

belongs to RA
i .

The following theorem collects our complexity results. We have not tried to optimise the
upper bounds for Gpre and Lpre: it is quite possible that they can be improved further.

▶ Theorem 1. Under the matrix encoding of structures, the combined complexity of the
model-checking problem for a logic L is
1. decidable in PTime for Gpre and Lpre,
2. PTime-complete for L ∈ {Gsuf ,Ginf , Lsuf}, and
3. PSpace-complete for L = Linf .
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Proof. The upper bound for Gpre follows from the second item while the upper bound for Lpre
is proved in [5, App. A.1]. For the second item, the lower bound follows for all of the logics
from the fact that they embed standard modal logic, for which the combined complexity is
PTime-complete [10, Cor. 3.1.7]. For Gsuf and Ginf matching upper bounds follow from the
fact that the combined complexity of the guarded fragment is PTime-complete, while for Lsuf
the matching upper bound is proved in [5, App. A.1]. Finally, for the third item, the upper
bound follows from the fact that the combined complexity of FO is PSpace-complete [7],
while the matching lower bound follows from the fact that Linf contains monadic FO, for
which the combined complexity of model-checking is PSpace-complete [18, p. 99]. ◀

The matrix encoding is not the only natural way of encoding models. Another option
would be to use the list/database encoding of models, where one essentially encodes relations
by listing the tuples that they contain, as opposed to describing their adjacency matrices.
It is easy to see that, if there is no bound on the arities of the relation symbols, then the
list encoding of a model can be exponentially more succinct than its matrix encoding. Our
proofs for the upper bounds of Lpre and Lsuf are heavily dependent on the fact that we are
using the matrix encoding of models, and hence it is conceivable that the complexities are
higher if we are using list encoding.3 We leave the related investigations as a very interesting
future research direction.

3 Expressive power

We study the relative expressive power of ordered logics with a suitable notion of bisimulations.

▶ Definition 2. A non-empty set Z ⊆
⋃
n<ω(An × Bn) is a Laffix[σ]-bisimulation between

pointed structures A, a and B, b, where |a| = |b|, if and only if (a, b) ∈ Z and for all (c, d) ∈ Z
the following conditions hold:
(atomic harmony) tpLaffix[σ]

A (c) = tpLaffix[σ]
B (d).

(forth) For a (possibly empty) affix ci...j of c and e ∈ A there is f ∈ B s.t. (ci...je, di...j f) ∈ Z.
(back) For a (possibly empty) affix di...j of d and f ∈ B there is e ∈ A s.t. (ci...jd, di...j f) ∈ Z.

For Gaffix, we replace the conditions (forth), (back) by their guarded counterparts:
(gforth) For a (possibly empty) affix ci...j of c and a σ-live tuple e in A such that ci...j =

e1...j−i+1 there is a σ-live tuple f with di...j = f1...j−i+1 and (e, f) ∈ Z,
(gback) For a (possibly empty) affix di...j of d and a σ-live tuple f in B such that di...j =

f1...j−i+1 there is a σ-live tuple e with ci...j = e1...j−i+1 and (e, f) ∈ Z,

For a logic L and a finite signature σ, we write A ≡L[σ] B if A and B satisfy the same
L[σ]-sentences, and we write A ∼L[σ] B if there is an L[σ]-bisimulation between A and B. If
|a| = |b|, we use A, a ≡L[σ] B, b to denote that for every (possibly empty) affix ai...j of a and
φ(xi...j) ∈ L[σ], where xi...j is an affix of (x1, . . . , xn), we have that A |= φ(ai...j) if and only
if B |= φ(bi...j). For the next lemma consult [5, App. B.1]

▶ Lemma 3. Let L ∈ {Laffix,Gaffix}. Then A, a ∼L[σ] B, b implies A, a ≡L[σ] B, b. The
converse holds over ω-saturated A and B.

3 They can not decrease, because a list encoding of a model can always be constructed efficiently from its
matrix encoding.
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A logic L2 is at least as expressive as a logic L1 (written L1 ⪯ L2) if for all φ ∈ L1 there is
a ψ ∈ L2 such that φ ≡ ψ. We write L1 ≈ L2 iff L1 ⪯ L2 and L2 ⪯ L1. In case L1 ̸⪯ L2 and
L2 ̸⪯ L1 we call L1 and L2 incomparable. Lastly, L1 ≺ L2 denotes that L2 is strictly more
expressive than L1, i.e. L1 ⪯ L2 and L1 ̸≈ L2. Note that, by definition, all the considered
fragments L satisfy L ⪯ Linf and L ≺ FO (every such L is decidable). Moreover, Gaffix ≺ Laffix
is a consequence of ∀x1∀x2R(x1, x2) not being GF[{R}]-definable (which is well-known and
follows from the fact that GF has the tree-model property). Our results are as follows:

▶ Theorem 4. (a) Lpre ≺ Lsuf≈Linf ≺ FO, (b) Gaffix ≺ Laffix for all affixes, (c) Gsuf ≺ Ginf , (d)
Gpre ≺ Ginf , and (e) otherwise the logics are incomparable.

Proof. Full proofs are in [5, App. B.2]. The relationships between different logics
with separating examples (omitting trivial examples due to guardedness) are depicted
below. With φpre we denote the formula ∀x1x2x3 R(x1x2x3) → S(x1x2), while φsuf denotes
∀x1x2x3 R(x1x2x3) → T(x2x3). Solid (resp. dashed) arrows from L1 to L2 denote that L1 ≺ L2
holds (resp. that the logics are incomparable).

Lsuf ≈ Linf

Lpre Gpre

Ginf Gsuf

φsuf

φpre φ
su

f
/
φ

pr
e

φpreφ
su

f φsuf

The equi-expressivity of Linf and Lsuf is an easy observation: we turn each maximally nested
subformulae into DNF and push the atoms violating the definition of Laffix outside. ◀

Knowing the relative expressive power of our logics, we would like to characterise them as
bisimulation-invariant fragments of FO, as was done with other decidable logics, see e.g. [9].
Given a formula φ(x) ∈ L, we say that it is ∼L-invariant iff for all A, a ∼sig(φ)

L B, b we have
A |= φ(a) ⇔ B |= φ(b). L is ∼L-invariant iff all its formulae are ∼L-invariant. We will next
show that Laffix (resp. Gaffix) are exactly the ∼Laffix - (resp. ∼Gaffix -) invariant fragments of FO.
This confirms that our notion of bisimulation is the right one.

▶ Theorem 5. Let L ∈ {Laffix,Gaffix} and let φ(x) be a ∼L-invariant FO formula. Then there
exists a formula ψ(x) in L which is equivalent with φ(x).

Proof. We follow standard proof methods, see e.g. [2, Thm. 3.2]. Suppose φ(x1, . . . , xn) ∈ FO
is ∼L-invariant, where x = (x1, . . . , xn) enumerates precisely the set of free variables of φ.
The case when φ is unsatisfiable φ is trivial, thus assume otherwise. Consider the set
Γ := {χ(xi...j) ∈ L | φ(x) |= χ(xi...j)}. Clearly φ(x) |= Γ. Since FO is compact, it suffices
to show that Γ |= φ(x). Let A be a structure and a ∈ An so that A |= χ(ai...j), for
every χ(xi...j) ∈ Γ. Next, consider the set Σ := {χ(xi...j) ∈ L | A |= χ(ai...j)}. Again, by
compactness of FO we can show that Σ ∪ {φ} is consistent. Take a structure B and b ∈ Bn

so that B |= φ(b) and B |= χ(bi...j), for every χ(xi...j) ∈ Σ. Observe that by construction
A, a ≡L B, b. Replacing A and B with their ω-saturated elementary extensions Â and B̂, we
know by Lemma 3 that Â, a ∼L B̂, b. Chasing the resulting diagram we get A |= φ(a). ◀

4 Craig Interpolation

Recall that the Craig Interpolation Property (CIP) for a logic L states that if φ(x) |= ψ(x)
holds (with φ and ψ having the same free variables), then there is a χ(x) ∈ L[sig(φ) ∩ sig(ψ)]
(an L-interpolant) such that φ(x) |= χ(x) and χ(x) |= ψ(x) hold. We always assume that
both φ and ψ are satisfiable, otherwise we can take ⊥ as a trivial interpolant.
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To reason about interpolants we employ the notion of joint consistency [23]. We say that
L-formulae φ(x1...n) and ψ(x1...n) (having exactly x1...n free) are jointly-L[τ ]-consistent (or
just jointly consistent in case τ := sig(φ) ∩ sig(ψ) and L are known from the context), if there
are structures A |= φ(a) and B |= ψ(b) such that A, a ∼L[τ ] B, b. The next lemma is classic
and links joint consistency and interpolation: see [5, App. C.1].

▶ Lemma 6. Let L ⊆ FO, and let φ(x), ψ(x) ∈ L with τ := sig(φ) ∩ sig(ψ). Then φ(x) and
¬ψ(x) are jointly consistent iff there is no L[τ ]-interpolant for φ(x) |= ψ(x).

We simplify the reasoning about ordered logics by employing suitable normal forms. We
say that a formula φ(x) from4 Lpre (resp. from Gaffix) is in normal form if it has the shape:
(NForm-Lpre) H(x) ∧

∧s
i=1 ∀x1...ℓi

(αi → ∃xℓi+1βi) ∧
∧t
j=1 ∀x1...ℓj

(αj → ∀xℓj+1βj),
(NForm-Gaffix) H(x) ∧

∧s
i=1 ∀x1...ℓi(Ri(x1...ℓi) → ∃xℓi+1...ℓi+ki(Si(x1...ℓi+ki) ∧

ψi(x1...ℓi+ki
))) ∧

∧t
j=1 ∀x1...ℓj

(Rj(x1...ℓj
)→ψj(x1...ℓj

)→∀xℓj+1...ℓ′
j
(Tj(x1...ℓ′

j
) →

ψ′
j(x1...ℓ′

j
))),

where αi, αj , βi and βj are quantifier-free Lpre-formulae, Ri,Rj , Tj and H are relational
symbols, and ψi, ψj and ψ′

j are Gaffix-formulae. The symbol H is called the head of φ(x).
We will often speak about existential/universal requirements of a formula, meaning the
appropriate subformulae with the maximal quantifier prefix ∀∗∃∗ and ∀∗. In aforementioned
normal forms we implicitly allow various parameters to be zero, e.g. in subformulae of the
form ∀x1...ℓi

(αi → ∃xℓi+1βi) we allow ℓi = 0, and we agree that the result is ∃xℓi+1βi.
The following lemma can be shown using standard renaming techniques, in complete

analogy to [4, 15], with a minor (but technically tedious) modification in the case of Gsuf ,
see [5, App. C.2].

▶ Lemma 7. Let L ∈ {Lpre,Gaffix}, and take φ(x), ψ(x) ∈ L. Suppose that there are models A

and B such that A |= φ(a), B |= ψ(b) and A, a ∼L[τ ] B, b, where τ = sig(φ) ∩ sig(ψ). Then
there exist formulae φ′(x), ψ′(x) ∈ L in normal form and extensions A′ and B′ of A and B

respectively, such that (i) φ′(x) and ψ′(x) have the same head H, (ii) sig(φ′)∩sig(ψ′) = τ∪{H},
(iii) φ′(x) |= φ(x) and ψ′(x) |= ψ(x), and (iii) (A′, a) ∼L[τ∪{H}] (B′, b) holds.

The following lemma is a useful tool when dealing with interpolation, allowing us to switch
our attention to a certain satisfiability problem. Its proof is routine, consult [5, App. C.3].

▶ Lemma 8. Let L ∈ {Lpre,Gaffix}. If for any jointly-consistent L-formulae φ(x), ψ(x) in
normal forms from Lemma 7 with the same head, there is U |= φ(x) ∧ ψ(x), then L has CIP.

4.1 Disproving CIP in Linf and Lsuf

We start our investigation of CIP for Laffix and Gaffix by further discrediting the infamous work
of Purdy [21]. We prove, in stark contrast to [21, Thm. 14], that Lsuf does not have CIP.

▶ Theorem 9. Linf and Lsuf do not have CIP. More specifically, there are L2
suf-sentences φ,ψ

with φ |= ψ but without any Linf [sig(φ) ∩ sig(ψ)]-interpolant.

Proof. Consider the following L3
inf -sentences φ and ψ, presented respectively below:

∀x1...3[(R(x1, x2) ∧ R(x2, x3)) → (P1(x1) ∧ P2(x3))] ∧ ∀x1∀x2[(P1(x1) ∧ P2(x2)) → R(x1, x2)]
∃x1...3[R(x1, x2) ∧ R(x2, x3) ∧ Q1(x1) ∧ Q2(x3)] ∧ ∀x1∀x2[(Q1(x1) ∧ Q2(x2)) → ¬R(x1, x2)],

4 To avoid notational glitter we will be a bit careless when dealing with formulae with free-variables.
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with A |= φ iff (RA ◦RA) ⊆ PA
1 ×PA

2 and PA
1 ×PA

2 ⊆ RA, and B |= ψ iff QB
1 ×QB

2 ⊆ B2 \RB

and there are (a,b), (b, c) ∈ RB with a ∈ QB
1 and c ∈ QB

2 . Observe that φ |= ¬ψ, since
φ entails transitivity of R, while ψ entails that this is not the case. But φ and ψ are
jointly-Linf [{R}]-consistent (it suffices to take A and B depicted below, cf. [5, App. C.5].

A :=
a b c

R R

R R
B :=

1 2 3R R

R

P1 P1 P1, P2 Q1 Q2

Hence, by Lemma 6 there is no Linf [{R}]-interpolant for φ |= ¬ψ. By slightly obfuscating
φ and ψ (i.e. by shifting quantifiers and introducing a unary symbol to get rid of the third
variable) we can make our counterexample formulae to be in L2

suf ; consult [5, App. C.6]. ◀

We left open the question whether Lsuf and Linf have the Projective Beth Definability Property
(PBDP). We conjuncture that the answer is no, but we haven’t found a suitable example yet.

4.2 Restoring CIP in Lpre

Even though Lsuf and Linf fail to have CIP, it turns out that Lpre still has it. To prove
interpolation for Lpre, we are going to construct a model for two jointly consistent Lpre
formulae φ(x) and ψ(x). However, rather than modifying existing amalgamation-based
arguments used, for instance, in [19, 14, 2], we will construct our model explicitly by
specifying prefix-types for tuples. We feel that our approach, which is more direct in nature
than other arguments found in the literature, could potentially be useful also in other
contexts.

Take φ(x) and ψ(x) in normal form (NForm-Lpre) satisfying the premise of Lemma 8.
Hence, there are structures A and B and tuples a ∈ Ak and b ∈ Bk such that that A |=
φ(a),B |= ψ(b) and (A, a) ∼Lpre[σ] (B, b), where σ := sig(φ) ∩ sig(ψ). Let τ := sig(φ) ∪ sig(ψ).

We will define a sequence of τ -structures U1 ≤ . . . ≤ UM := U, where M = max{ar(R) |
R ∈ τ}, satisfying the following inductive assumptions: (i) Ui = N, (ii) the interpretation of
symbols from τ of arity > i is empty, and (iii) for any i-tuple c in Ui there are i-tuples d in A

and e in B so that (A, d) ∼Lpre[σ] (B, e) and tpLpre[τ ]
Ui

(c) = tpLpre[sig(φ)]
A (d) ∪ tpLpre[sig(ψ)]

B (e) hold.
The last condition guarantees that no tuple c of Ui violates the universal requirements of φ
and ψ, since otherwise the corresponding tuple would violate them, contradicting modelhood
of A or B.5

For the inductive base, take U1 with domain N and empty interpretation of symbols
from τ . Our goal is to realise each (sig(φ), 1)-prefix-type, which is realised in A and B,
in U1 in a careful way, suggested by the inductive assumption. Let t be a (sig(φ), 1)-prefix
type realised in A and let c ∈ A be some element witnessing it. Since (A, a) ∼Lpre[σ] (B, b)
holds, there exists an element d of B so that tpLpre[σ]

A (c) = tpLpre[σ]
B (d). Now we will assign

the (τ, 1)-prefix-type tpLpre[sig(φ)]
A (c) ∪ tpLpre[sig(ψ)]

B (d) to some element e of U1, for which we
have not yet assigned a (τ, 1)-prefix-type. For the remaining elements of U1, having no
(τ, 1)-prefix-type assigned, we assign any of the previously realised types.

5 We note that this claim no longer holds if Lpre is replaced by either Lsuf or Laffix, which is why the
forthcoming construction does not work for these logics.
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Suppose then that Uk is defined. To define Uk+1, we will start by providing witnesses for
the existential requirements of φ and ψ; since the two cases are rather analogous, we will
restrict our attention to the former case. Consider an existential requirement φ∃

i of φ(x)
and let e ∈ Ukk be a k-tuple so that U |= αi(e). By construction, there exists a tuple a ∈ Ak

witnessing tpLpre[sig(φ)]
Uk

(e) = tpLpre[sig(φ)]
A (a). Since A |= φ∃

i , there exists an element c ∈ A so
that A |= βi(a, c). Due to (A, a) ∼Lpre[σ] (B, b), we know that there exists an element d ∈ B

satisfying tpLpre[σ]
A (a, c) = tpLpre[σ]

B (b, d). Now we pick an element f ∈ U for which we have not
yet assigned a (τ, k+1)-prefix-type for the tuple (e, f) (recall that the domain of our model is
N, so such an element always exists). We assign the following (τ, k+1)-prefix-type to the tuple
(e, f): tpLpre[sig(φ)]

A ((a, c)) ∪ tpLpre[sig(ψ)]
B ((b,d)). Note that the assigned (τ, k+1)-prefix-type is

consistent with the (τ, k)-prefix-type that we assigned to e. Having assigned witnesses to
relevant existential requirements of φ(x) and ψ(x), there are still (k+1)-tuples of elements
of U for which we have not yet assigned a (τ, k+1)-prefix-type. For those tuples we will
assign any (τ, k+1)-prefix-type that we have already assigned to some other (k+1)-tuple of
elements of Uk+1. This completes the construction of Uk+1.

By construction, it is clear that there exists a tuple e of elements of U so that e ∈ HU; in
particular, U |= φ(e) ∧ ψ(e) holds. Thus, by Lemma 8 we conclude:

▶ Theorem 10. Lpre enjoys the Craig Interpolation Property.

4.3 Restoring CIP in guarded logics
Finally we turn our attention to the logics Gaffix and present the main contribution of the
paper. It will be convenient to employ suitable tree-like models. Intuitively, HATs [4] are
just trees in which relations connect elements but only in a level-by-level ascending order;
see Figure 1. HAHs are collections of HATs.

▶ Definition 11. A structure T is a higher-arity tree (HAT) if its domain is a prefix-closed
subset of sequences from N∗ and for all relation symbols R we have that (d1, . . . , dk) = d ∈ RT

implies that for each index i < k there exists a number ni such that di+1 = di ·ni, where di ·ni
means that the element ni is appended to the sequence di. A structure H is a higher-arity
hedge (HAH) if H becomes a HAT if extended by a single element ε.

0 T

00 01

000 010

R R

S S

ε

S

1

10

100 101

R

S R

R

2

S

3

Figure 1 An example HAT T. All relations go down lvl-by-lvl. The red area means (ε, 0, 00) ∈ TT.

By a subtree of a HAT T rooted at an element d we mean a substructure of T with the
domain composed of all elements of the form dw for a possibly empty word w. Note that
such a subtree is also a HAT after an obvious renaming.
We are going to employ the following lemma, stating that for our purposes we can focus on
tree-like models only. Its proof relies on the suitable notion of unravelling, see [5, App. C.4].
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▶ Lemma 12. Let a logic L be any of Gaffix, φ,ψ be L-formulae and σ := sig(φ) ∩ sig(ψ)
containing the predicate H. Assume that models A |= φ(a),B |= ψ(b) are given such
that a ∈ HA, b ∈ HB and (A, a) ∼Gaffix[σ] (B, b) hold. Then there are HAH models TA |=
φ(c),TB |= ψ(d) satisfying c ∈ HTA , d ∈ HTB and (TA, c) ∼Gaffix[σ] (TB, d).

Take φ(x), ψ(x) in form (NForm-Gaffix) with the same head, satisfying the premise
of Lemma 8. We have structures A and B and tuples a ∈ Ak and b ∈ Bk so that A |=
φ(a),B |= ψ(b) and (A, a) ∼Gaffix[σ] (B, b), where σ := sig(φ)∩ sig(ψ) and τ := sig(φ)∪ sig(ψ).
Using Lemma 12 we can assume that A and B are τ -HAHs. As done before, we aim at
constructing a τ -structure being a model of both φ and ψ. To do this, we will construct a
growing sequence of τ -HAHs U0 := A ≤ U1 ≤ . . . ≤ Un ≤ . . ., whose limit U will be a model
of φ ∧ ψ. For simplicity, let us employ the following naming scheme. A tuple d from Un
(d ⊏− Un) is called (a) n-fresh if d ⊏− Un−1 and n-aged otherwise, (b) maximal if its not an
affix of any different σ-live tuple.

A high-level idea of the construction of the sequence Ui, obfuscated by many challenging
technical details, is as follows. Starting from A we inductively “complete” types of all σ-live
tuples to become proper τ -live tuples. This will help, if done carefully and in a bisimilarity-
preserving way, the structure Ui to fulfil the universal constraints of φ and ψ, but may
introduce tuples without witnesses for the existential constraints. Hence, after each “comple-
tion” phase, we will “repair” the obtained structure by “copying” some substructures of A and
B and “gluing” them on existing witness-lacking tuples (providing the required witnesses).

During the construction we will make sure that for every n-aged sig(φ)-live (resp. sig(ψ)-
live) k-tuple in U, there exists a k-tuple in A (resp. in B) having equal (sig(φ), k)-affix-type
(resp. (sig(ψ), k)-affix-type). This will be controlled by means of partial witness functions
witA : Un → A,witB : Un → B, intuitively pinpointing from where a tuple in U originated
from. To make the construction work, the witness function will fulfil several technical criteria,
that are listed below. Conditions (a) and (b) speak about the compatibility of types between
a tuple and its witness tuple; this guarantees that no tuple from Un violate the universal
requirements of φ and ψ. Conditions (c)–(d) guarantees the satisfaction of the existential
requirements of φ and ψ (condition (c) takes care of “local” requirements while (d) handles
the “global” ones). Formally, for every n-aged c from Un we have that:
(a) If c is σ-live then both d := witA(c) and e := witB(c) are defined, (A, d) ∼Gaffix[σ]

(B, e) holds and tpGaffix[τ ]
Un

(c) is equal to tpGaffix[sig(φ)]
A (d) ∪ tpGaffix[sig(ψ)]

B (e).
(b) If c is not σ-live but is sig(φ)-live (resp. sig(ψ)-live), then d := witA(c) (resp. d := witB(c))

is defined, and tpGaffix[sig(φ)]
Un

(c) is equal to tpGaffix[sig(φ)]
A (d) (resp. tpGaffix[sig(ψ)]

B (d)).
(c) if c is sig(φ)-live (resp. sig(ψ)-live), then for every existential requirement λ :=

Ri(x1...ℓi) → ∃xℓi...ℓi+ki(Si(x1...ℓi+ki) ∧ θi(x1...ℓi+ki)) from φ (resp. from ψ) with c
satisfying the premise of λ, there is a tuple d in Un so that cd satisfies the conclusion of
λ.

(d) For every sig(φ)-live (resp. sig(ψ)-live) tuple d from A (resp. from B) there is a tuple e
in U1 such that tpGaffix[sig(φ)]

Un
(e) = tpGaffix[sig(φ)]

A (d) (resp. tpGaffix[sig(φ)]
Un

(e) = tpGaffix[sig(ψ)]
B (d)).

While the following property is not necessary to guarantee that the limit U is a model of
φ ∧ ψ, it plays an important technical role in the construction:
(e) If d is an n-fresh σ-live tuple such that either witA(d) or witB(d) is undefined, then for

every prefix d1...k of d that is contained in Un−1, meaning that d1...k ⊏− Un−1, there
exists an n-aged σ-live tuple c which contains d1...k as its affix.

Using conditions (a)–(d) it follows that U |= φ ∧ ψ, allowing us to conclude (by Lemma 8):

▶ Theorem 13. Ginf ,Gsuf and Gpre enjoy the Craig Interpolation Property.
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We will now move on to the construction of U, described below. We start from the crucial,
aforementioned notions of completions and repairs. Intuitively the completion just “completes
a type of a tuple” in a bisimulation-preserving way, taking all symbols of τ into account.
Repair simply “plugs in” certain subtrees from A or B into U, providing missing witnesses.

▶ Definition 14 (completion). Let (T, d) be a pointed τ -HAH, where d is σ-live with witA,witB
defined. The d-completion of T is obtained from T by redefining interpretation of symbols
from τ in a min. way so that tpGaffix[τ ]

T (d) equals tpGaffix[sig(φ)]
A (witA(d)) ∪ tpGaffix[sig(ψ)]

B (witB(d)).

▶ Definition 15 (repair). Let (T, c) be a pointed τ -HAH with only d := witA(c) defined, where
c is σ-live in T. Suppose also that there is a tuple e in B such that (A, d) ∼Gaffix[σ] (B, e)
holds. The (B, e)-repair of c is a τ -HAH T′ obtained from T in the following five steps:
1. Let B0 be the subtree of B rooted at the first element of e.
2. Take T′ to be the union of T and B0 without e.
3. T′ will contain T as a substructure.
4. By identifying c with e, we interpret the relation symbols for tuples of elements of T′ ↾ B0

in such a way that the resulting substructure of T′ is isomorphic with B0.
5. We set witB on freshly added elements to be the identity on B0.

The substructure T′ ↾ (B0 ∪ c) is called a c-component of T′. T′ becomes a HAH after a
routine renaming. We define (A, d)-repair of c analogously.

Un BwitB

witB

id

Un B

Figure 2 An example structure Un before and after we performed a “B”-repair.

We proceed with the base of induction, setting first U0 to be A. It will be four-fold.

Base case: Step I. We set up witA and witB functions. For witA we will simply take the
identity function. To define witB, we intuitively proceed by traversing U0 from top to bottom.
More precisely, let LA

0 denote the set of all maximal σ-live tuples in U0. Letting <lex denote
the lexicographic ordering of N∗, we construct a well-founded linear ordering ≺· on LA

0 as
follows: c ≺· d iff there is an i ≤ min{|c|, |d|} such that ci <lex di and cj = dj for every
j <lex i (note that if there is no such i, then the tuples are equal due to maximality). One
can show that c ≺· d implies that (♡): if c and d share some elements, then there exists i, j
and k such that ci...j = d1...k and none of the elements dℓ, for ℓ > k, occur in c. To prove
this, one needs to simply show that if dk occurs in c, then (d1, . . . , dk) is an affix of c (the
proof goes via careful inspection of the definition of HAHs, cf. [5, App. C.7]).
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We define witB inductively w.r.t ≺·. Consider a maximal σ-live tuple d and suppose that
we have defined witB for all the σ-live tuples c ≺· d. There are two cases to consider.

There exists a tuple c ≺· d sharing at least one element with d. By (♡), for every such
tuple c there are i, j and k so that ci...j = d1...k and none of the elements dℓ, for ℓ > k,
occur in c. Let c be the tuple for which the corresponding value k is the largest. Since c
is σ-live, by induction hypothesis there exists some e ⊏− B such that (A, c) ∼Gaffix[σ] (B, e)
holds. Thus there exists some f ⊏− B such that fi...j = ei...j and (A, d) ∼Gaffix[σ] (B, f). We
now extend witB in such a way that witB(d) = f.
Otherwise c and d do not share any elements. Since d is σ-live and (A, a) ∼Gaffix[σ] (B, b),
there exists some e ⊏− B such that (A, d) ∼Gaffix[σ] (B, e). We then simply extend witB in
such a way that witB(d) = e.
The resulting mapping witB. This finishes Step I.

Base case: Step II. We next complete types of all fresh (= all in this case) σ-live tuples
of U0. Take any maximal σ-live tuple d from U0 and perform the d-completion of U0. It is
easy to see that this process is conflict-free in the following sense: there is no tuple c and
R ∈ sig(ψ) so that we end up specifying both c ∈ RU0 and c ̸∈ RU0 . First, if two maximal
σ-live tuples d and e have affixes di...j and ek...ℓ such that di...j = ek...ℓ, then we know that
witB(di...j) = witB(ek...ℓ), and thus there are no conflicts in the “intersections” of σ-live
tuples. Second, by construction tpGaffix[σ]

A (d) = tpGaffix[σ]
B (witB(d)) holds for all maximal σ-live

tuple d, and hence the σ-infix-types that we assigned to σ-live tuples are indeed types, i.e.
they are consistent. Thus our process is conflict-free.

Note that our structure satisfies now conditions (a) and (b).

Base case: Step III. We finish the base case by providing witnesses for fresh sig(ψ)-tuples
via repairs. Recall that LA

0 denotes the set of all maximal σ-live tuples in UA
0 . For each

d ∈ LA
0 we perform the (B,witB(d))-repair of d; the resulting structure will be taken to be U1.

Note that now every sig(ψ)-live tuple in U1 has its witnesses for the existential requirements,
but there may be new sig(φ)-live tuples without them. Moreover, witB is defined for all
freshly added elements, but witA is not. Furthermore, we note that U1 now satisfies condition
(e), since all the 1-fresh live tuples for which witA is not defined are present in the subtrees
that we attached to U0 during the repair, which is done only at (maximal) σ-live tuples.

Base case: Step IV. It could be the case that the structure U1 produced in the previous
step violates (d), due to the lack of realisation of a certain type from B. Thus, as an extra
precaution, unique to the base case, we add a disjoint copy of B to U1 and define witB for it
to be the identity. Note that now (d) will be satisfied in any extension of U1.

Inductive step. The inductive step is analogous to Steps I-III from the base case, hence we
keep its description short. Assume that Un is defined and that in the previous step of the
construction we employed B-repairs (the case of A-repairs is symmetric). Given a component
C that was created during such a repair, we let LC

n denote the set of all maximal n-fresh
σ-live tuples in C. Since C is essentially a HAT (up to renaming), we can again define a
well-founded linear order ≺· on LC

n in the same way as we did in the base case for LA
0 . As in

the base case, we then define missing values of witA for elements of C inductively w.r.t ≺·.
Observe that some of the tuples in LC

n might contain a proper prefix of elements of Un−1.
In the case of Gsuf these tuples do not cause any problems to us, because suffix-types do
not impose any constraints on proper prefixes. In the cases of Gpre and Ginf we handle these
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tuples by using the fact that Un satisfies condition (e) as follows. Let d ∈ LC
n be such a

tuple and let k be the largest index so that d1...k ⊏− Un−1. Using condition (e), we know
that there exists a σ-live n-aged tuple c so that ci...j = d1...k, for some i and j. Employing
condition (a), we know that e := witA(c), f := witB(c) and h := witB(d) are defined and
that (A, e) ∼Gaffix[σ] (B, f). Thus there exists a σ-live tuple g ⊏− A such that fi...j = gi...j and
(A, g) ∼Gaffix[σ] (B, h). We now extend witA in such a way that witA(d) = g.

The above procedure is repeated for all components C that were introduced during the
previous repair. Having defined witA for all the elements, we perform a completion that
works for exactly the same reasons as described before. Finally, letting Ln denote the set
of all maximal n-fresh σ-live tuples, we perform repair of every tuple in Ln, which results
in a model that we select as Un+1. We stress that every sig(φ)-live tuple in Un+1 has its
witnesses for the existential requirements, but there can now be new sig(ψ)-live tuples without
them. We also emphasise that witA is defined for all the new elements but witB might not
be. This concludes the inductive step and hence, also the construction of U and the proof
of Theorem 13.

▶ Remark 16. The presented model construction is quite generic. Indeed, the only part of
the construction which is really specific to Gaffix is the first step of the construction, namely
the part where we define inductively the values of witness functions. We expect that the
presented technique can be easily adapted to other logics, especially to other fragments of the
guarded fragments. For instance, we believe that our technique can be adjusted, e.g. to the
case of the two-variable GF from [14] as well as to the uniform one-dimensional GF from [16].

5 Conclusions

In this paper kick-started a project of understanding the model theory of the family of
guarded and unguarded ordered logics. We first investigated the relative expressive power of
ordered logics by means of suitable bisimulations. Afterwards, we proceed with the Craig
Interpolation Property (CIP) showing that (i) the fluted and the forward fragments do not
enjoy CIP, (ii) while the other logics that we consider enjoy it. The fact that the fluted
fragment does not posses CIP was quite unexpected in the light of already existing claims
for the contrary [21, Thm. 14]. For the other logics we proposed a novel model-theoretic
“complete-and-repair” method of creating a model out of two bisimilar forest-like structures.

There are several interesting future work directions.
1. One example is to investigate the Łoś-Tarski Preservation Theorem as well as other

preservation theorems. While we think that we already have a working construction for
guarded ordered logics, the status of ŁTPT holding for Lpre, Lsuf , and Linf is not clear.6

2. Another work direction is to take a look at on effective interpolation, similarly to what has
been proposed in [6] as well as on the interpolant existence problem for Linf and Lsuf , as
done in [17]. Preliminary results were obtained. It is also interesting whether the guarded
ordered logics enjoy stronger versions of interpolations, e.g. Lyndon’s interpolation or
Otto’s interpolation. We are quite optimistic about it.

3. What is the complexity of the model checking problem for ordered logics, if we use list
encoding to encode our structures?

6 Purdy provides a “proof” in [21] that Lsuf has ŁTPT. However, his “proof” is sketchy and lacks sufficient
mathematical arguments required to verify its correctness. In the light of our discovery of yet another
false claim from [21], we believe that it is safe to assume that ŁTPT for Lsuf is open.
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We are also actively working on the finitary versions of van Benthem theorem for the
forward guarded fragment as well as the Lindström-style characterisation theorems. This is
an ongoing work of Benno Fünfstück, a master student at TU Dresden, under the supervision
of B. Bednarczyk.
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Abstract
We obtain complete characterizations of the Unique Bipartite Perfect Matching function, and of
its Boolean dual, using multilinear polynomials over the reals. Building on previous results [2, 3],
we show that, surprisingly, the dual description is sparse and has low ℓ1-norm – only exponential
in Θ(n log n), and this result extends even to other families of matching-related functions. Our
approach relies on the Möbius numbers in the matching-covered lattice, and a key ingredient in our
proof is Möbius’ inversion formula.

These polynomial representations yield complexity-theoretic results. For instance, we show
that unique bipartite matching is evasive for classical decision trees, and nearly evasive even for
generalized query models. We also obtain a tight Θ(n log n) bound on the log-rank of the associated
two-party communication task.
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1 Introduction

A perfect matching in a graph is a subset of edges spanning the graph, no two of which
are incident to the same vertex. In this paper we consider the decision problem of unique
bipartite matching: the input is a balanced bipartite graph over 2n vertices, and the goal is
to determine whether the graph contains a unique perfect matching. This problem can be
naturally cast as a Boolean function.

▶ Definition. The unique bipartite perfect matching function UBPMn : {0, 1}n2 → {0, 1} is

UBPMn(x1,1, . . . , xn,n) =
{

1
{

(i, j) : xi,j = 1
}

has a unique perfect matching
0 otherwise.

The complexity of UBPMn is closely related to that of BPMn – the problem in which we
drop the uniqueness condition and simply ask whether a bipartite graph contains a perfect
matching. Both BPMn and UBPMn are known to lie in P, due to a classical result by
Edmonds [9]. However, despite their close connection, not all known algorithmic results
extend from one problem to another. For instance, UBPMn was shown by Kozen, Vazirani
and Vazirani to be in NC [19] (see also [14]), and no such result is known for BPMn. Lovász
showed that BPMn is in RNC [21], and the current best-known deterministic parallel
algorithm is due to Fenner, Gurjar and Thierauf [10], placing the problem in Quasi-NC.
Determining the membership of bipartite perfect matching in NC remains one of the main
open problems in parallelizability.

Our main results in this paper are the complete characterizations of both UBPMn and its
dual function, by means of polynomials. These characterizations leverage a deep connection
to the polynomial representations of BPMn, obtained in [3, 2], and it is our hope that they
can be used to further our understanding of the connection between the two. To present
our results we require some notation. We say that a bipartite graph is matching-covered if
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16:2 Algebraic Representations of Unique Bipartite Perfect Matching

every edge of the graph participates in some perfect matching. For a graph G we denote its
cyclomatic number, a topological quantity, by χ(G) = e(G) − v(G) + c(G). The set of all
perfect matchings of G is denoted PM(G), and the cardinality of this set is denoted per(G)
(the permanent of G). Under these notations, our first theorem is the following closed-form
description of the unique real multilinear polynomial representing UBPMn.

▶ Theorem 1 (The Unique Bipartite Perfect Matching Polynomial).

UBPMn(x1,1, . . . , xn,n) =
∑

G⊆Kn,n

cG

∏
(i,j)∈E(G)

xi,j

where

cG =
{

(−1)χ(G) per(G) G is matching-covered
0 otherwise.

The polynomial appearing in Theorem 1 bears a striking resemblance to the representation
of BPMn, the only difference being the multiplicative per(G) appearing in each term of
UBPMn. This is a direct result of the connection between the two functions and the matching-
covered lattice, hereafter Ln, which is formed by all matching-covered graphs of order 2n,
ordered with respect to the subgraph relation. Billera and Sarangarajan [5] proved that Ln is
isomorphic to the face lattice of the Birkhoff Polytope Bn. Consequently, this combinatorial
lattice is Eulerian, and its Möbius function is particularly well-behaved – a fact which we rely
on indirectly throughout this paper. In [3], it was shown that BPMn is intimately related
to the matching-covered lattice: every such graph corresponds to a monomial, and their
coefficients are given by Möbius numbers. Our proof of Theorem 1 extends this connection
by leveraging Möbius Inversion Formula, and in fact allows us to derive the polynomial
representation for any indicator function over Ln (including, for instance, BPMn), while also
simplifying somewhat parts of the original proof.

Theorem 1 yields information-theoretic lower bounds. For example, UBPMn has full
total degree and is thus evasive, i.e., any decision tree computing it must have full depth, n2.
Unlike its analogue BPMn, which is a monotone bipartite graph property and thus known to
be evasive [17], the unique perfect matching function is not monotone, and for such functions
evasiveness is not guaranteed (see e.g. [23]). We also obtain lower bounds against generalized
families of decision trees, whose internal nodes are labeled by arbitrary parity functions
(XOR-DT), or conjunctions (AND-DT), over subsets of the inputs bits.

▶ Corollary. For classical, parity, and conjunction trees, the following lower bounds hold:

D(UBPMn) = n2, DXOR(UBPMn) ≥
(

1
2 − o(1)

)
n2 and DAND(UBPMn) ≥ (log3 2)n2 − o(1).

In the second part of this paper we consider the Boolean dual function UBPM⋆
n, which

is obtained by flipping all the input and output bits (or formally, UBPM⋆
n(x1,1, . . . , xn,n) =

1 − UBPMn(1 − x1,1, . . . , 1 − xn,n)). By construction, this is the indicator over all bipartite
graphs whose complement does not contain a unique perfect matching. Our second result is
a complete characterization of UBPM⋆

n as a real multilinear polynomial. This description
relies heavily on the that of BPM⋆

n – which is the dual of the bipartite perfect matching
function BPMn. The polynomial representation of the latter dual was obtained in a series of
papers [3, 2], and is omitted here for brevity.
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▶ Theorem 2 (The Dual Polynomial of Unique Bipartite Perfect Matching).

UBPM⋆
n(x1,1, . . . , xn,n) =

∑
G⊆Kn,n

c⋆
G

∏
(i,j)∈E(G)

xi,j

where

c⋆
G = per(G) · a⋆

G +
∑

M /∈PM(G)

(−1)|E(M)\E(G)| · a⋆
G∪M

and a⋆
G denotes the coefficient of G in BPM⋆

n.

Theorem 2 expresses the coefficient of every graph G as an alternating sum over coefficients
of BPM⋆

n, corresponding exactly to those graphs formed by adjoining a single perfect matching
to G. This suffices in order to inherit the main structural result of [2] regarding BPM⋆

n: the
ℓ1-norm of UBPM⋆

n, i.e., the norm of the coefficient vector of the representing polynomial, is
very small – only exponential in Θ(n log n), and this is tight.

▶ Corollary. The dual polynomial is sparse and its coefficients are small. Explicitly,

log ∥UBPM⋆
n∥1 = Θ(n log n).

The low norm of the dual yields algorithmic results for the unique-bipartite-matching
problem, and for related matching problems. For instance, through the approximation
scheme of [2, 29], it allows one to obtain a low-degree polynomial approximation of the unique
bipartite matching function over the hypercube (i.e., “approximate degree”), which holds
even for exponentially small error. The same ℓ1-norm bound also directly extends to the
spectral norm of UBPMn,1 which is a well-studied quantity in analysis of Boolean functions.

Finally, we consider the two-party deterministic communication complexity of unique
bipartite matching. The input is a graph G ⊆ Kn,n, whose edges are distributed among two
parties according to any arbitrary and fixed partition. The sparse polynomial representation
of UBPM⋆

n allows us to deduce that the log-rank of the communication matrix, for any
of the above communication tasks, is bounded by only O(n log n), and we prove that this
is tight.2 We remark that, while we show that unique matching has low log-rank, not
much is known regarding its deterministic communication complexity. For the monotone
variant BPMn, known algorithms (e.g. [15]) can be translated into protocols using only
Õ(n3/2) bits [25]. However, it is currently not known how to convert algorithms for UBPMn
(such as [11, 12]), into protocols using even O(n2−ε) bits, for any ε > 0. Determining the
deterministic communication complexity of UBPMn is thus left as an open problem.

2 Preliminaries and Notation

2.1 Boolean Functions and Polynomials
Every Boolean function f : {0, 1}n → {0, 1} can be uniquely represented by a multilinear
polynomial p ∈ R [x1, . . . , xn] (see e.g. [27]), where f and p agree on all Boolean inputs
{0, 1}n. The family of subsets corresponding to monomials in this polynomial representation

1 The spectra of any function and its dual are identical up to sign, and the {0, 1}-polynomial ℓ1-norm is
always trivially at least as large as the {±1}-representation (“Fourier”) ℓ1-norm.

2 In fact, our results hold even for a certain ∧-lifted and dualised version of this problem.

MFCS 2022



16:4 Algebraic Representations of Unique Bipartite Perfect Matching

(i.e., whose coefficient does not vanish) is denoted by mon(f). The cardinality of mon(f)
is known as the sparsity of f , and the maximal cardinality of any S ∈ mon(f) is known as
the total degree of f , hereafter deg(f). The ℓ1-norm of f is the norm of its representing
polynomial’s coefficient vector, namely:

∥f∥1
def=

∥∥(aS)S⊆[n]
∥∥

1 , where f is {0, 1}-represented by p(x1, . . . , xn) =
∑

S⊆[n]

aS

∏
i∈S

xi.

Given a Boolean function f : {0, 1}n → {0, 1}, it is often useful to consider the transform-
ation in which we invert all the input and output bits. This process produces a new Boolean
function f⋆, known as the Boolean dual.

▶ Definition 3. Let f : {0, 1}n → {0, 1} be a Boolean function. The Boolean dual of f is
the function f⋆ : {0, 1}n → {0, 1} where the symbols 0 are 1 are interchanged. Formally,

∀x ∈ {0, 1}n : f⋆(x1, . . . , xn) = 1 − f(1 − x1, . . . , 1 − xn).

The polynomial representations of a Boolean function f and its dual f⋆ can differ
substantially (for example ANDn

⋆ = ORn, and while the former is represented by a single
monomial, the latter consists of 2n − 1 monomials). However, since f and f⋆ are obtained
by affine transformations of one another, they share many properties. For example, their
Fourier spectra are identical [27], up to sign. Moreover, they have the same approximate
degree [2] for any error ε, and the ranks of their associated communication matrices (see
proceeding subsections) are identical up to an additive constant (of 1).

2.2 Graphs
We use the standard notation for quantities relating to graphs. In particular, the sets of
vertices, edges and connected components of a graph are denoted by V (G), E(G) and C(G),
and their cardinalities are denoted v(G), e(G) and c(G), respectively. A less common measure
appearing in this paper is the cyclomatic number χ(G), a topological quantity.

▶ Definition 4. Let G be a graph. The cyclomatic number of G is defined by:

χ(G) = e(G) − v(G) + c(G).

A matching in a graph G ⊆ Kn,n is a collection of edges sharing no vertices, and said
matchings are called perfect if they contain exactly n edges (i.e., every vertex in the graph is
incident to precisely one edge in the matching). The set of all perfect matchings denoted
by PM(G). For any graph G ⊆ Kn,n, we define the permanent per(G) and the determinant
det(G) as the application of these two functions to the biadjacency matrix of G, noting that
per(G) counts the number of perfect matchings in G.

Perfect matchings and the graphs formed by unions thereof play a central role in this paper.
A graph G ⊆ Kn,n is called matching-covered if and only if every edge of G participates in
some perfect matching. Matching-covered graphs have interesting combinatorial properties.
For example, this is precisely the family of all graphs admitting a bipartite ear decomposition
(similar to the ear decomposition of 2-edge-connected graphs). This family had previously
appeared extensively in the literature, and in particular had been studied at length by Lovász
and Plummer [28], and by Hetyei [13]. Hereafter, we denote the set of all such graphs by

MCn =
{

G ⊆ Kn,n : G is matching-covered
}

.
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All graphs in this paper are balanced bipartite graphs, over the fixed vertex set of the
complete bipartite graph Kn,n. Consequently, we use the notation G ⊆ H to indicate
inclusion over the edges, and similarly G ∪ H is the graph whose edges are E(G) ∪ E(H).
Lastly, many of the Boolean functions appearing in this paper are defined over subgraphs of
Kn,n, where every input bit is associated with a single edge. For such functions, the notation
f(G), where G ⊆ Kn,n, corresponds to this mapping.

2.3 Communication Complexity
In this paper we consider the two-party deterministic communication model. For a compre-
hensive textbook on the topic, we refer the reader to [20]. The deterministic commu-
nication complexity of f , hereafter DCC(f), is the least number of bits communicated
by a protocol computing f , on the worst-case input. Any (unpartitioned) Boolean function
f : {0, 1}n → {0, 1} naturally gives rise to a family of associated two-party communication
tasks: one corresponding to each possible partition of the input bits between the two parties.
The deterministic communication complexity of a Boolean function is then defined
as follows.

▶ Definition 5. The deterministic communication complexity of f : {0, 1}n → {0, 1} is
defined

DCC(f) def= max
S⊔S̄=[n]

DCC (
fS(x, y)

)
where DCC (

fS(x, y)
)

is the deterministic communication complexity of the two-party Boolean
function fS(x, y) : {0, 1}|S| × {0, 1}|S̄| → {0, 1}, representing f under the partition S ⊔ S̄.

For any two-party Boolean function, let us also define the following two useful objects.

▶ Definition 6. Let f : {0, 1}m × {0, 1}n → {0, 1}. The communication matrix of f is

Mf ∈ R{0,1}m×{0,1}n

, where ∀(x, y) ∈ {0, 1}m × {0, 1}n : Mf (x, y) = f(x, y).

▶ Definition 7. Let f : {0, 1}m × {0, 1}n → {0, 1} be a two-party function. We say that
S ⊆ {0, 1}m × {0, 1}n is a fooling set for f if and only if:

S ⊆ f−1(1), and ∀(x1, y1) ̸= (x2, y2) ∈ S : {(x1, y2), (x2, y1)} ∩ f−1(0) ̸= ∅.

The log of the rank of Mf over the reals (sometimes referred to as the “log-rank of f”)
is intimately related to the communication complexity of f . A classical theorem due to
Mehlhorn and Schmidt [24] states that DCC(f) ≥ log2 rank Mf , and these two quantities are
famously conjectured to be polynomially related [22]. As for the fooling set, it is well known
that DCC(f) ≥ log2 fs(f) for any two-party function f [20], where fs(f) is the maximum size
of a fooling set. This bound was extended by Dietzfelbinger, Hromkovič and Schnitger [8],
who showed that in fact log fs(f) ≤ 2 log rank f + 2.

2.4 Posets, Lattices and Möbius Functions
Partially ordered sets (hereafter, posets) are defined by a tuple P = (P, ≤), where P is the
element set, and ≤ is the order relation (which is reflexive, antisymmetric and transitive). For
any two elements x, y ∈ P , the notation [x, y] def= {z ∈ P : x ≤ z ≤ y} denotes the interval
from x to y. A combinatorial lattice is a poset satisfying two additional conditions: every two
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16:6 Algebraic Representations of Unique Bipartite Perfect Matching

elements have a least upper bound (a “join”), and a greatest lower bound (a “meet”). The
face lattice of a polytope is a combinatorial lattice whose elements correspond to the faces
of a polytope, ordered by the subset relation. Such a lattice is bounded – it has a unique
bottom element (the empty face 0̂), and a unique top element (the polytope itself), and it is
also graded, meaning that the length of all maximal chains between any two elements x, y

are identical (in other words, the elements can be ranked).
Partially ordered sets come equipped with an important function known as the Möbius

function. The Möbius function of a poset is the inverse, with respect to convolution, of
its zeta function ζ(x, y) = 1{x < y}. For information on incidence algebra and the Möbius
function, we refer the reader to [30].

▶ Definition 8 (Möbius Function for Posets). Let P = (P, ≤) be a finite poset. The Möbius
function µP : P × P → R of P is defined

∀x ∈ P : µP(x, x) = 1, ∀x, y ∈ P, y < x : µP(y, x) = −
∑

y≤z<x

µP(y, z).

The Möbius Inversion Formula allows one to relate two functions defined on a poset P,
where one function is a downwards closed sum of another, by means of the Möbius function.
This can be seen as a generalization of its number-theoretic analogue (as indeed the Möbius
function of number theory arises in this manner from the divisibility poset).

▶ Theorem 9 (Möbius Inversion Formula, see [30]). Let P = (P, ≤) be a finite poset and let
f, h : P → F be two functions, where F is a field. Then:

∀x ∈ P : h(x) =
∑
y≤x

f(y) ⇐⇒ ∀x ∈ P : f(x) =
∑
y≤x

h(y)µP(y, x).

3 The Unique Perfect Matching Polynomial

Our main object of study is the unique bipartite matching function.

▶ Definition 10. The Unique Bipartite Perfect Matching function is defined

UBPMn(x1,1, . . . , xn,n) =
{

1
{

(i, j) : xi,j = 1
}

⊆ Kn,n has a unique P.M.
0 otherwise.

The unique multilinear representation of UBPMn is characterized in the following Theorem.

▶ Theorem 1. The unique polynomial UBPMn : {0, 1}n2 → {0, 1} is given by

UBPMn (x1,1, . . . , xn,n) =
∑

G∈MCn

(−1)χ(G) per(G)
∏

(i,j)∈E(G)

xi,j .

Proof. The proof is centered around the combinatorial lattice of matching-covered graphs,

Ln =
(
MCn ∪{0̂}, ⊆

)
, where 0̂ is the graph with 2n isolated vertices

where the order relation for this lattice is containment over the edge set, i.e., G ⊇ H ⇐⇒
E(G) ⊇ E(H). Let us consider the following two functions f : Ln → {0, 1} and h : Ln → Z on
the lattice, which are the restrictions of UBPMn and of the Permanent function, respectively:

∀G ∈ (MCn ∪{0̂}) : f(G) = UBPMn(G) =
{

1 G ∈ PM(Kn,n)
0 otherwise

h(G) = per(G) = #Perfect Matchings in G.
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These two functions are intimately related. Indeed, for any element G of the lattice, one
can compute h(G) by taking the sum f(H) over all H in the downwards closed interval
[0̂, G]. Therefore, by an application of Möbius’ Inversion Formula (Theorem 9) to the
matching-covered lattice, we obtain:

∀G ∈ Ln : h(G) =
∑

G⊇H∈Ln

f(H) ⇐⇒ ∀G ∈ Ln : f(G) =
∑

G⊇H∈Ln

µ(H, G)h(H)

where µ : Ln → Z is the Möbius function of the lattice Ln. A well known result due to
Billera and Sarangarajan [5] states that Ln is isomorphic to the face lattice of the Birkhoff
Polytope Bn, which is the convex hull of all n × n permutation matrices. Consequently, Ln

is an Eulerian lattice – and its Möbius function µ is can be directly computed (see e.g. [30]),
as follows:

∀G, H ∈ Ln, H ⊆ G : µ(H, G) = (−1)rank(G)−rank(H)

where rank(x) denotes the maximal length of a chain from 0̂ to x (equivalently, rank(x) =
dim(fx) + 1, where fx is the face of Bn corresponding to the lattice element x). In [3] it was
shown that the rank of every graph G in the matching-covered lattice is exactly χ(G) + 1,
where χ(G) = e(G) −v(G) + c(G) is the cyclomatic number, a topological quantity. Recalling
our prior application of Möbius inversion, we obtain the following set of identities (note that
the bottom element can be omitted, as per(0̂) is zero):

∀G ∈ Ln : (−1)χ(G)
∑

G⊇H∈MCn

(−1)χ(H) per(H) =
{

1 G ∈ PM(Kn,n)
0 otherwise.

To conclude the proof, let us consider the following real multilinear polynomial, wherein we
assign weight (−1)χG per(G) to every matching-covered graph:

p(x1,1, . . . , xn,n) =
∑

G∈MCn

(−1)χ(G) per(G)
∏

(i,j)∈E(G)

xi,j .

Let G ⊆ Kn,n and observe that, by construction:

p(G) =
∑

H∈MCn

(−1)χ(H) per(H) · 1
{

E(H) ⊆ E(G)
}

=
∑

G⊇H∈MCn

(−1)χ(H) per(H).

It remains to show that p “agrees” with UBPMn on all inputs. It is not hard to see that
it suffices to show this claim only for matching-covered graphs, since given any G ⊆ Kn,n

which is not matching-covered, one may consider the graph G′ formed by the union of all
perfect matching in G (in other words, the maximal matching-covered graph contained in
G). By construction, we have p(G′) = p(G), and by definition, UBPMn(G) = UBPMn(G′) –
thus, hereafter we consider only inputs G ∈ MCn. First, let us check the two trivial cases;
the empty graph, and a single matching:

p(0̂) = 0, and p(M) = (−1)χ(M) = (−1)n−2n+n = 1 ∀M ∈ PM(Kn,n).

Finally, for any matching-covered graph G containing more than a single matching, i.e.
G ∈ MCn such that G /∈ PM(Kn,n), it holds that:

p(G) =
∑

G⊇H∈MCn

(−1)χ(H) per(H) = 0

where the last equality follows from the identities obtained through Möbius’ Inversion Formula.
Thus, p(x1,1, . . . , xn,n) agrees with UBPMn everywhere, and is its unique representation. ◀
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3.1 Indicators on the Matching-Covered Lattice
We remark that the proof of Theorem 1 readily extends, through the same analysis using
Möbius inversion, to any arbitrary indicator function over the matching-covered lattice. For
any set S ⊆ MCn, let IS : {0, 1}n2 → {0, 1} be the Boolean function

∀G ⊆ Kn,n : IS(G) = 1

H ∈ S where H =
⋃

M∈PM(G)

M

 .

Then, the multilinear polynomial representing IS is given by

IS(x1,1, . . . , xn,n) =
∑

G∈MCn

(−1)χ(G)
∑

H∈[0̂,G]∩S

(−1)χ(H)+1

 ∏
(i,j)∈E(G)

xi,j .

3.2 Evasiveness and Generalized Decision Trees
The characterization of UBPMn as a multilinear polynomial can be used to derive several
complexity-theoretic corollaries. Firstly, this polynomial has full total degree over R and
thus (see e.g. [6]):

▶ Corollary 11. UBPMn is evasive, i.e., any decision computing it has full depth, n2.

Let us remark that, contrary to its counterpart BPMn which is a monotone bipartite graph
property and thus known to be evasive [31], the unique matching function is not monotone
and for such functions evasiveness is not guaranteed (see [23] for one such example). Theorem
1 can be also used to derive strong bounds (near evasiveness) versus larger classes of decision
trees, for example trees whose internal nodes are labeled by arbitrary conjunctions of the
input bits (hereafter AND-DT), and by arbitrary parity functions (XOR-DT). It is known
[3] that the depth of any AND-DT computing a Boolean function f is at least log3 | mon(f)|.
Applying this to UBPMn and recalling that asymptotically almost all balanced bipartite
graphs are matching-covered ([3]), we have:

▶ Corollary 12. Any AND-DT computing UBPMn has depth at least (log3 2) · n2 − on(1).

As for parity decision trees, it is well known that the depth of any such tree is bounded by
the total degree of its unique representing polynomial, over F2 (see [27, 3]). Noting that
per(G) ≡ det(G) (mod 2), we may write the F2-polynomial representation of UBPMn as
follows

UBPMn (x1,1, . . . , xn,n) =
∑

G∈MCn
det(G)≡1 (mod 2)

∏
(i,j)∈E(G)

xi,j .

Clearly this polynomial does not have full degree for any n > 1, as per(Kn,n) is n! ≡ 0
(mod 2)3. Nevertheless, we claim that its F2-degree is at most a constant factor away from
full. Observe that its monomials constitute precisely of all graphs that are both matching-
covered, and whose biadjacency matrices are invertible over F2, i.e., are elements of the
group GLn(F2). However, asymptotically almost all graphs are matching-covered, and by a
standard counting argument, the order of GLn(F2) satisfies

3 It is well known ([27]) that for any function f : {0, 1}n → {0, 1}, deg2(f) = n ⇐⇒ |f−1(1)| ≡ 1
(mod 2). Therefore we obtain that the number of graphs G ⊆ Kn,n containing a unique perfect matching
is even, for any n > 1.
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Pr
A∼Mn(F2)

[A ∈ GLn(F2)] =
( 1

2 ; 1
2
)

∞ ± on(1)

where
( 1

2 ; 1
2
)

∞ ≈ 0.28878 is a Pochhammer symbol. Thus by a standard Chernoff argument,
there exists a matching-covered graph with odd determinant and at least 1

2 n2 − on(1) edges.

▶ Corollary 13. DXOR(UBPMn) ≥ deg2(UBPMn) ≥
( 1

2 − on(1)
)

n2

4 The Dual Polynomial

In this section we consider the Boolean dual function (Definition 3) of UBPMn.

▶ Definition 14. The function UBPM⋆
n : {0, 1}n2 → {0, 1} is defined

UBPM⋆
n(x1,1, . . . , xn,n) =

{
1

{
(i, j) : xi,j = 0

}
⊆ Kn,n does not have a unique P.M.

0 otherwise.

In what follows, we provide a full characterization of polynomial representing UBPM⋆
n.

This description relies heavily on the that of another dual function – BPM⋆
n – which is

the dual of the bipartite perfect matching function BPMn (which is defined identically to
UBPMn, but without the uniqueness condition). The polynomial representation of BPM⋆

n
was obtained in a series of papers [3, 2]. Its monomials correspond to a family of graphs called
“totally ordered graphs”, and their coefficients are can be computed through a normal-form
block decomposition of the aforementioned graphs. The full details are presented in [2], and
are omitted here for brevity. In what follows, it suffices for us to denote

BPM⋆
n(x1,1, . . . , xn,n) =

∑
G⊆Kn,n

a⋆
G

∏
(i,j)∈E(G)

xi,j .

Under this notation, our characterization of UBPM⋆
n is the following.

▶ Theorem 2. The unique polynomial representation of UBPM⋆
n : {0, 1}n2 → {0, 1} is

UBPM⋆
n(x1,1, . . . , xn,n) =

∑
G⊆Kn,n

c⋆
G

∏
(i,j)∈E(G)

xi,j

where for every G ⊆ Kn,n we have:

c⋆
G = per(G) · a⋆

G +
∑

M /∈PM(G)

(−1)|E(M)\E(G)| · a⋆
G∪M .

Proof. The polynomial representing UBPM⋆
n can be expressed using UBPMn, via duality:

UBPM⋆
n(x1,1, . . . , xn,n) = 1 − UBPMn(1 − x1,1, . . . , 1 − xn,n).

Substituting the characterization of Theorem 1 and expanding, we deduce that the coefficient
of every graph G ⊆ Kn,n in UBPMn is:

c⋆
G = (−1)e(G)+1

∑
G⊆H∈MCn

(−1)χ(H) per(H).

Writing per(H) =
∑

M∈PM(Kn,n) 1{M ⊆ H} and exchanging order of summation,

c⋆
G = (−1)e(G)+1

∑
M∈PM(Kn,n)

∑
G⊆H∈MCn

(−1)χ(H)
1{M ⊆ H}.
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There are two possible cases in the above summation over all perfect matchings; either the
matching is present in G, or it is not. Clearly every matching-covered graph containing G also
contains any matching of G, so in the former case we get a contribution of (−1)e(G)+1 per(G) ·∑

G⊆H∈MCn
(−1)χ(H). As for the latter case, observe that for every M /∈ PM(G), the set

of matching-covered graphs containing G and M is exactly all matching-covered graphs
containing G ∪ M . Finally, we recall [3] that the coefficient of any graph G ⊆ Kn,n in BPM⋆

n
is given by:

a⋆
G = (−1)e(G)+1

∑
G⊆H∈MCn

(−1)χ(H).

Putting the two together and simplifying, we obtain:

c⋆
G = per(G) · a⋆

G +
∑

M /∈PM(G)

(−1)|E(M)\E(G)| · a⋆
G∪M . ◀

4.1 Corollary: The ℓ1-norm of UBPM⋆
n

One immediately corollary of Theorem 2 is the following fact: the multilinear polynomial
representing UBPM⋆

n has very low ℓ1-norm – i.e., it has few monomials, and the coefficient
of every such monomial is not too large. A similar bound had previous been attained for
BPM⋆

n in [2], which we heavily rely on for our proof.

▶ Corollary 15. The ℓ1-norm of UBPM⋆
n is bounded only by log2 ∥UBPM⋆

n∥1 = Θ(n log n).

Proof. For the upper bound, we rely heavily on Theorem 2 and on the ℓ1-norm of BPM⋆
n

obtained in [2]. In the latter, it was shown that every coefficient in BPM⋆
n has magnitude at

most 22n, and thus using the characterization of Theorem 2, the coefficient of any graph G

satisfies

log2 |c⋆
G| ≤ log2

(
per(G) · 22n + (n! − per(G)) · 22n

)
≤ n log2 n + n log2 (4/e) + Θ(log n).

It remains to bound the sparsity of UBPM⋆
n. To this end, consider the graphs whose

coefficients do not vanish in BPM⋆
n, and let us take a “ball” around every such graph

G ∈ mon(BPM⋆
n), as follows:

B(G) =
{

H ⊆ Kn,n : ∃M ∈ PM(Kn,n) such that E(H) ∪ E(M) = E(G)
}

.

From Theorem 1 it follows that for every graph G, the coefficient c⋆
G does not vanish only

if either G ∈ mon(BPM⋆
n) or there exists some H ∈ mon(BPM⋆

n) such that G ∈ B(H).
However, each of the aforementioned balls is relatively small (in fact, can be bounded by
|B(G)| ≤ 2n · n!), thus by the union bound:

| mon(UBPM⋆
n)| ≤ | mon(BPM⋆

n)| (1 + 2n · n!) = 2Θ(n log n)

where the last equality follows from the bound log2 | mon(BPM⋆
n)| ≤ 2n log2 n + O(n),

obtained in [3]. This concludes the proof of the upper bound. The lower bound now follows
directly from Theorem 1, as it suffices to observe that the coefficient of the complete bipartite
graph is ± per(Kn,n) = ±(n!). ◀
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5 The Communication Rank of Unique Bipartite Matching

5.1 Rank and Polynomial Representation
The log-rank of a Boolean function is very closely related to its representation as a multilinear
polynomial. This relationship is made very evident in the case of certain “lifted” functions:
given a Boolean function f : {0, 1}n → {0, 1}, one can define the following pair of functions
f∧, f⊕ : {0, 1}n × {0, 1}n → {0, 1}, where

∀x, y ∈ {0, 1}n : f∧(x, y) = f(x ∧ y), and f⊕(x, y) = f(x ⊕ y).

It is well known [18, 4] that the rank of the communication matrices Mf∧ and Mf⊕ is exactly
characterized by the sparsity (i.e., number of monomials) of the polynomials representing f

in the {0, 1}-basis and the {±1}-basis (the Fourier basis), respectively. In other words,

rank(Mf∧) = #{monomials in {0, 1}-polynomial representing f}
rank(Mf⊕) = #{monomials in {−1, 1}-polynomial representing f}.

The polynomial representation of a Boolean function f over the {0, 1}-basis, or that of its
dual f⋆, can also be used to derive communication rank upper bounds for non-lifted functions.
The following lemma gives such a bound for the communication task of f , under any input
partition.

▶ Lemma 16. Let f : {0, 1}n → {0, 1}. Then, for every partition S ⊔ S̄ = [n] we have:

rank(MfS⊔S̄ ) ≤ min
{

|mon(f)| , |mon(f⋆)| + 1
}

.

Proof. Let S ⊔ S̄ = [n] be some input partition, and let M and M ′ be the communication
matrices of f and f⋆ under this partition, respectively. By definition of Boolean duality,
we have M = J − MπM ′Mσ where J = 1 ⊗ 1 is the all-ones matrix, and Mπ, Mσ are the
permutation matrices for

∀x ⊆ S : π(x) = S \ x, ∀y ⊆ S̄ : σ(y) = S̄ \ y

therefore | rank(M) − rank(M ′)| ≤ 1, and it suffices to bound the rank of M ′. However,
we now observe that the polynomial representing f naturally induces a | mon(f)|-rank
decomposition of M (and likewise f⋆ for M ′), as per [26], by considering the following sum
of rank-1 matrices:

∀T ∈ mon(f), add the rank-1 matrix aT · (1X ⊗ 1Y )

where aT is the coefficient of T in f , and

X =
{

x : (T ∩ S) ⊆ x ⊆ S
}

, Y =
{

y :
(
T ∩ S̄

)
⊆ y ⊆ S̄

}
. ◀

5.2 The Rank of Unique Bipartite Matching
The log-rank of the unique bipartite matching function, ranging over all input partitions, is
exactly characterized in the following Theorem.

▶ Theorem 17. The log-rank of unique bipartite perfect matching is

max
E⊔Ē=E(Kn,n)

log rank(MUBPME⊔Ē
n

) = Θ(n log n)

where UBPME⊔Ē
n is the two-party function whose input is partitioned according to E ⊔ Ē.
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Proof. To obtain the lower bound, we must first fix a particular input partition. Assume
without loss of generality that n = 2m and let us partition the left and right vertices into two
sets, L = A ⊔ B, R = C ⊔ D, where A = {a1, . . . , am}, B = {b1, . . . , bm}, C = {c1, . . . , cm}
and D = {d1, . . . , dm}. Hereafter we consider the input partition wherein Alice receives all
the edges incident to the left vertices A and Bob receives all the edges incident to the left
vertices B. To prove our lower bound, we shall construct a fooling set (Definition 7). Let us
introduce some notation: for every permutation π ∈ Sm and two sets X, Y ∈ {A, B, C, D},
the notation π(X, Y ) refers to the matching from X to Y using the permutation π. Formally,

∀X, Y ∈ {A, B, C, D} : ∀π ∈ Sm : π(X, Y ) def=
{

{xi, yπ(i)} : i ∈ [m]}
}

.

Under this notation, we claim that

S =
{ (

id(A, C) ⊔ π(A, D), id(B, D) ⊔
{

{bπ(i), cj} : 1 ≤ i < j ≤ m
})

: π ∈ Sm

}
is a fooling set for UBPMKA,R⊔KB,R

n , where id ∈ Sm is the identity element.

Figure 1 A graph G in the fooling set S, for m = 4 and π = (2413).

{x ⊔ y : (x, y) ∈ S} ⊆ UBPM−1
n (1): Let π ∈ Sm and consider G ⊆ Kn,n where:

E(G) = id(A, C) ⊔ π(A, D) ⊔ id(B, D) ⊔
{

{bπ(i), cj}
}

i<j
.

Clearly G has the identity perfect matching, whereby A is matched to C and B to D. Let us
denote this matching by M . To show that M is unique, it suffices to show that there exists
no M -alternating cycle in G. By construction, the vertices in any such cycle must alternate
between C − A − D − B (since the only edges joining A ↔ C and B ↔ D are those in the
matching M). Thus, for any i ∈ [m], an M -alternating path starting with ci must be of the
form:

ci ∼ ai ∼ dπ(i) ∼ bπ(i) ∼ cj ∼ . . .

where j > i. However, observe that bπ(m) is not adjacent to any vertex in C, so any such
path will eventually (after at most m passes through B) terminate at bπ(m), without looping
back to ci. Therefore there exists no M -alternating cycle, and M is indeed unique.

∀(x1, y1), (x2, y2) ∈ S : (x1 ⊔ y2) ∈ UBPMn
−1(0): Let π, σ ∈ Sm where π ̸= σ, and let G be

the graph:

E(G) = id(A, C) ⊔ π(A, D) ⊔ id(B, D) ⊔
{

{bσ(i), cj}
}

i<j
.
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Once again, clearly G has the identity matching M , whereby A is matched to C and B to
D. To show that M is not unique, it suffices to exhibit an alternating cycle. Recall that
σ ̸= π and therefore σ−1 ◦ π ≠ id, and in particular, there exists some i ∈ [m] such that
σ−1(π(i)) < i. By construction, the following M -alternating cycle is present in G:

ci ∼ ai ∼ dπ(i) ∼ bπ(i) = bσ(σ−1(π(i))) ∼ ci.

Therefore, S is a fooling set for UBPMn under the aforementioned input partition. To
conclude the lower bound, we recall the following Theorem, due to Dietzfelbinger, Hromkovič
and Schnitger [8]:

▶ Theorem 18 ([8]). ∀f : {0, 1}m × {0, 1}n → {0, 1} we have log2 fs(f) ≤
2 (log2 rank Mf + 1).

Therefore, we have:

log2 rank
(

M
UBPM

KA,R⊔KB,R
n

)
≥ 1

2 log2 |S| − 1 = 1
4 n log2 n − Θ(n)

concluding the lower bound. As for the upper bound, it follows directly from Lemma 16,
and from the characterization of Theorem 2 (see Corollary 15). ◀
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A The Approximate Degree of UBPMn

The ε-approximate degree d̃egϵ (f), of a Boolean function f : {0, 1}n → {0, 1} is the least
degree of a real multilinear polynomial approximating f pointwise over {0, 1}n, with error at
most ε. Formally,

▶ Definition 19. Let f : {0, 1}n → {0, 1} and let 0 < ε < 1
2 . The ε-approximate degree of f ,

d̃egϵ (f), is the least degree of a real multilinear polynomial p ∈ R[x1, . . . , xn] such that:

∀x ∈ {0, 1}n : |f(x) − p(x)| ≤ ε.

If ε = 1/3, then we omit the subscript in the above notation, and instead write d̃eg (f).
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Approximate degree is a well-studied complexity measure. For a comprehensive survey
on the topic, we refer the reader to [7]. With regards to Theorem 2, we make the following
observation: every Boolean function whose polynomial representation, or that of its dual, have
low ℓ1-norm – can be efficiently approximated in the ℓ∞-norm by a low-degree polynomial.
Firstly, it is not hard to see that for any Boolean function f : {0, 1}n → {0, 1} and any ε > 0,
the ε-approximate degree of f is identical to that of its dual f⋆. This follows since f⋆ can be
obtained through an affine transformation of f , which cannot increase the degree, and the
same transformation can similarly be applied to any approximating polynomial of f (and
the converse follows since (f⋆)⋆ = f). The second component of the approximation scheme
is the following lemma.

▶ Lemma 20 ([2], similar to [29]). Let f : {0, 1}n → {0, 1} be a Boolean function, and let
p ∈ R[x1, . . . , xn] be its representing polynomial, where ∥p∥1 ∈ [3, 2n]. Then:

∀ ∥p∥−1
1 ≤ ε ≤ 1

3 : d̃egϵ (f) = O

(√
n log ∥p∥1

)
.

The proof of Lemma 20 follows from the following simple approximation scheme: replace
every monomial (of sufficiently large degree) with a polynomial that approximates it pointwise,
to some sufficiently small error (depending only on the ℓ1-norm of the representing polynomial).
The full details of this scheme appeared previously in [2, 29]. Combining Lemma 20 with the
ℓ1-bound of Corollary 15, we obtain:

▶ Corollary 21. For any n > 1, and 2−n log n ≤ ε ≤ 1
3 , we have:

d̃egϵ (UBPMn) = O(n3/2
√

log n).

B Families of Matching Functions having Low Dual ℓ1-Norm

The main algorithmic result in this paper is the low ℓ1-norm of the dual function of UBPMn,
from which we deduce upper bounds, for instance on the communication rank and the
approximate degree. In [2], a similar bound had been obtained for the dual of the perfect
matching function, BPMn. These norm bounds and their corollaries extend to a wide range
of matching-related functions, some of which are detailed below.

Functions Obtained by Restrictions

Consider any two Boolean functions f and g, such that g is obtained by a restriction of f

(i.e., by fixing some of the inputs bits of f). As restrictions cannot increase the norm, it
clearly holds that ∥g∥1 ≤ ∥f∥1 and ∥g⋆∥1 ≤ ∥f⋆∥1. Several intrinsically interesting matching-
functions can be cast in this way. One notable example is the bipartite k-matching function,
which is the indicator over all graphs G ⊆ Kn,n containing a matching of size k.

BMn,k(x1,1, . . . , xn,n) =
{

1
{

(i, j) : xi,j = 1
}

⊆ Kn,n has a k-matching
0 otherwise.

This function is obtained by a restriction of BPM2n−k, as follows. Label the vertices of
K2n−k,2n−k by

L = A ⊔ V, where A = {a1, . . . , an}, V = {v1, . . . , vn−k}
R = B ⊔ U, where B = {b1, . . . , bn}, U = {u1, . . . , un−k}.

MFCS 2022
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Given any input G ⊆ Kn,n to BMn,k, the edges of G are encoded via the edges joining A and
B, and moreover we fix two additional bicliques KA,U , KV,B . The resulting graph contains a
bipartite perfect matching if and only if G contains a k-matching, and thus

▶ Corollary. For every 0 < k ≤ n, we have log
∥∥BM⋆

n,k
∥∥

1 = O(n log n).

This norm bound is tight whenever k = αn, for any constant 0 < α < 1, as are (up to
log-factors) the bounds on the approximate degree and on the log-rank.

▶ Corollary. Let α ∈ (0, 1) be a constant. Then for every n > 1 and 2−n log n ≤ ε ≤ 1
3 , we

have:

log
∥∥BM⋆

n,αn

∥∥
1 = Θ(n log n), d̃egϵ (BMn,αn) = Θ̃(n3/2), and log rank (BMn,αn) = Θ̃(n).

The aforementioned approximate degree lower bound follows using the method of Spectral
Sensitivity – a complexity measure due to Aaronson, Ben-David, Kothari, Rao and Tal [1],
based on Huang’s proof of the sensitivity conjecture [16]. [1] proved that the approximate
degree of any total function f is bounded below by the spectral radius of its sensitivity graph
(i.e., the f -cut of the hypercube). As this graph is bipartite, its spectrum is symmetric, and
it therefore suffices (by Cauchy interlacing) to obtain a lower bound on the spectral radius of
any vertex induced subgraph of the sensitivity graph [2].

For BMn,k this construction is straightforward – consider the induced graph whose left
vertices are all (k − 1)-matchings, and right vertices are all k-matchings. This produces a
biregular subgraph of the sensitivity graphs of BMn,k, with left degrees (n − k + 1)2 and
right degrees k. As it is well known that the spectral radius of a biregular graph is

√
dLdR

(where dL and dR are the left and right degrees, respectively), this concludes the bound on
the spectral sensitivity of BMn,k, and by extension, its approximate degree4. This lower
bound on d̃eg (BMn,k) now implies the ℓ1-norm lower bound, through Lemma 20.

As for the log-rank lower bound, it follows by a simple fooling set argument, under the
same input partition used in Theorem 17. Let L = A ⊔ B be the left vertices corresponding
to the input partition, where |A| = |B| = n/2, and let A′ and B′ be the first k/2 vertices of A

and B, respectively. Let C be the first k = αn right vertices. Then, under the notation of
Theorem 17,

S =
{ (

id(A′, S), id(B′, S̄)
)

: S ⊆ C, S̄ = C \ S, |S| = |S̄| = k
2

}
is a fooling set for BMn,αn, where the indices of S and S̄ correspond to a fixed ordering
on C. Any pair (x, y) contains a k-matching, but for any mismatching pair belonging to
sets S1 ̸= S2 ⊆ C, we have that S1 ∩ S2 ≠ ∅ and thus the maximum matching is of size
|S1 ∪ S2| < k. By construction, this fooling set is of size

log2 |S| = log2

(
k

k/2

)
= k − o(1)

and the log-rank bound now follows from Theorem 18.5

4 We remark that the same construction also trivially extends to UBMn,k; the unique k-matching function.
5 For the unique bipartite k-matching function UBMn,k one can obtain a slightly stronger log-rank bound

by repeating the construction of Theorem 17 with k-matchings rather than perfect matchings, and by
adding n − k isolated vertices. This yields a log-rank bound of log2 (k/2!) = Θ(k log k).
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Formulas over Low-Norm Functions

Given any two nontrivial Boolean functions f and g, the norms of their conjunction, disjunc-
tion, and negation are at-most multiplicative in their respective norms, and the same holds
for their duals. Therefore, the dual of any short De Morgan formula whose atoms are Boolean
functions of low dual ℓ1-norm, will similarly inherit the low-norm property. Several matching
functions can be represented in this way, and thus have low dual norm. For example

MaxMatchn,k(x1,1, . . . , xn,n) =

{
1 The maximum matching of

{
(i, j) : xi,j = 1

}
is of size k

0 otherwise

can be constructed as MaxMatchn,k = BMn,k ∧¬ BMn,k+1.
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while also simplifying the proof.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory; Mathematics
of computing → Extremal graph theory

Keywords and phrases fixed-point, zero-sum cycle, Ramsey theory, fair allocation, EFX

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.17

Related Version Full Version: https://arxiv.org/abs/2201.08753

Funding Benjamin Aram Berendsohn: Research supported by DFG grant KO 6140/1-1.
Simona Boyadzhiyska: Research supported by the Deutsche Forschungsgemeinschaft (DFG) Graduier-
tenkolleg “Facets of Complexity” (GRK 2434).
László Kozma: Research supported by DFG grant KO 6140/1-1.
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Let
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simply labeling, ℓ of

↔
Kn is an assignment of a function ℓe : [d] → [d] to each edge e of
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17:2 Fixed-Point Cycles and Approximate EFX Allocations

Let C be a simple cycle of
↔
Kn with edges e1, . . . , ek (appearing in this order), where

each edge ei is labeled with a function fi, for i ∈ [k]. We say that C is a fixed-point cycle if
the function f = f1 ◦ f2 ◦ · · · ◦ fk = fk(fk−1(· · · f1(x) · · · )) has a fixed point, i.e., f(x) = x

for some x ∈ [d]. Observe that cyclically permuting the edges along C does not affect the
existence of a fixed point.

Let Rf (d) be the largest value n such that a d-labeling of
↔
Kn with no fixed-point cycle

exists. Although not obvious a priori, the finiteness of Rf (d) for all d can be seen through
a simple reduction to Ramsey’s theorem. In light of the known exponential bounds on
multicolor Ramsey numbers [13, 20, 23], the bound obtained in this way is doubly exponential
in d (see [12] for details).

A lower bound of Rf (d) ≥ d can be obtained through the following construction (found
independently by various authors in different contexts). Say V (

↔
Kd) = [d], and label all

edges (i, j) such that i < j with the function x 7→ x and all other edges with the function
x 7→ x + 1 (mod d). The avoidance of fixed-point cycles follows from the observation that
every cycle contains at least one and at most d − 1 edges of the form (i, j) with i > j.

The question of determining Rf (d) was recently raised by Chaudhury, Garg, Mehlhorn,
Mehta, and Misra [12] in a slightly different, but equivalent form they call the rainbow cycle
problem. They proved the upper bound Rf (d) ≤ d4 + d.

The motivation in [12] for introducing this problem comes from an application to discrete
fair division. In particular, through an elegant and surprising connection, they showed that
polynomial upper bounds on Rf (d) yield nontrivial guarantees for the quality of allocations
in a certain natural setting with a strong fairness condition.

EFX allocations

In economics and computational social choice theory, the discrete fair division problem asks
to distribute a set of m indivisible goods among n agents in a fair way. The problem has a
long history (see for example [22]) and different notions of fairness have been extensively
studied, leading to a rich set of algorithmic and hardness results (e.g., see [8] or [9] and the
references therein for an overview and precise definitions).

As simple examples show, complete envy-freeness cannot, in general, be achieved. One
of the most compelling relaxations of this notion is envy-freeness up to any good (EFX).
Informally, EFX means that no agent should prefer the goods received by any other agent
to their own, if an arbitrary single good is removed from the other’s set. The existence
of EFX allocations is considered one of the central open questions of contemporary social
choice theory (e.g., see [6, 9, 10, 12, 19]), and thus, various relaxations of it have been
proposed. In particular, it is desirable to show that an EFX allocation exists (and can be
efficiently computed) when (i) a certain global number t of goods are left unallocated, and
(ii) envy-freeness is required to hold when every agent scales the values of others’ goods by a
factor of 1 − ε for some 0 ≤ ε < 1. Such an allocation is called (1 − ε)-EFX with t unallocated
goods. It is desirable to minimize both t and ε, with the original EFX question requiring
t = ε = 0.

Very recently, Chaudhury, Garg, Mehlhorn, Mehta, and Misra [12] introduced a corres-
pondence between approximate EFX allocations and the fixed-point cycle problem described
above (in their terminology, the rainbow cycle problem). Suppressing constant factors, the
connection can be summarized as follows.
▶ Theorem 1 (Theorem 4 in [12]). For all ε ∈ (0, 1/2], if Rf (d) ∈ O(dc) for some c ≥ 1,
then there exists a (1 − ε)-EFX allocation with O((n/ε)

c
1+c ) unallocated goods, where n is

the number of agents.
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Moreover, if the upper bound on Rf (d) is constructive (i.e., a fixed-point cycle can be
found in time polynomial in the number n of vertices whenever n exceeds the given bound
on Rf (d)), then the claimed allocation can also be found in polynomial time. The result of
Rf (d) ≤ d4 + d from [12] is constructive; together with Theorem 1 it thus implies an efficient
algorithm for computing an approximate EFX allocation with O((n/ε)0.8) unallocated goods,
the first guarantee of this kind with a sublinear (in n) number of unallocated goods.

Rainbow cycles

As remarked in [12], the question of determining Rf (d) is in itself a natural question of
extremal graph theory, independently of its application to EFX allocations.

Chaudhury, Garg, Mehlhorn, Mehta, and Misra formulated the problem in a slightly
different, but essentially equivalent, way as follows. Given an n-partite digraph with each
part having at most d vertices, a rainbow cycle is a cycle that visits each part at most once.
The task is to determine the largest n = n(d) for which such a digraph can avoid rainbow
cycles, with the requirement that each vertex in part i has an incoming edge from at least
one vertex in part j, for all distinct i, j ∈ [n].

Note that we may assume that there is an extremal example containing exactly d vertices
in each part. Indeed, if

→
G is an extremal example and some part has fewer than d vertices,

let v be any vertex from that part; then add the necessary number of new vertices, making
them all “clones” of v, that is, every new vertex has the same in- and out-neighborhood as v.
Then the newly obtained digraph has a rainbow cycle if and only if

→
G does. Further, we may

assume that each vertex v of
→
G has exactly one incoming edge from every part other than its

own. With these observations, the equivalence between the rainbow cycle problem and the
fixed-point cycle problem is evident: we can view the bipartite digraph containing the edges
from a part Vi to another part Vj as the mapping given by y 7→ x, where (x, y) ∈ E(Vi, Vj).

Our main result improves the upper bound of Chaudhury, Garg, Mehlhorn, Mehta, and
Misra.

▶ Theorem 2. For all d > 0 we have Rf (d) ≤ d2+o(1).

Similarly to the previous result, our bound is constructive. Combining Theorem 2 with
Theorem 1 thus yields the following result about EFX allocations.

▶ Corollary 3. For all ε ∈ (0, 1/2], there exists an efficient (1 − ε)-EFX allocation with
O((n/ε)0.67) unallocated goods.

Zero-sum problems in extremal combinatorics

The problem of determining Rf (d) can be cast as a generalization of some classical zero-sum
problems in extremal combinatorics (this is somewhat less apparent in the original multi-
partite formulation of the problem). Zero-sum problems have received substantial attention
and form a well-defined subfield of combinatorics, with an algebraic flavour. Perhaps the
earliest result in this area is the Erdős-Ginzburg-Ziv theorem [14] which states that every
collection of 2m − 1 integers contains m integers whose sum modulo m is zero (see [3] for
multiple proofs and extensions). Zero-sum problems in graphs typically ask, given an edge- or
vertex-weighted graph, whether a certain substructure exists with zero total weight (modulo
some fixed integer). Well-studied cases include complete graphs, cycles, stars, and trees (e.g.,
see [2, 5, 7, 11, 15, 21] for surveys and representative results).

More recently, for a given positive integer d, Alon and Krivelevich [4] asked for the
maximum integer n such that the edges of the complete bidirected graph

↔
Kn can be labeled

with integers so that there is no zero-sum cycle modulo d. In the following, we denote

MFCS 2022



17:4 Fixed-Point Cycles and Approximate EFX Allocations

this quantity by n = Ri(d). Alon and Krivelevich showed through an elegant probabilistic
argument that Ri(d) ∈ O(d log d), with an improvement to Ri(d) ∈ O(d) when d is prime.
The application considered in [4] is finding cycles of length divisible by d in minors of complete
graphs. It is easy to see this question as a special case of our fixed-point cycle problem:
simply replace every edge-label k by the function x 7→ x + k (mod d). Zero-sum cycles in the
original labeling are then in bijection with fixed-point cycles in our new labeling, and thus
Ri(d) ≤ Rf (d).

Recently, Mészáros and Steiner [17] improved the result of Alon and Krivelevich, showing
Ri(d) ≤ 8d − 1, with further improvements for prime d. In fact, Mészáros and Steiner
generalized the result, allowing the labels to come from an arbitrary commutative group of
order d. The proof of the main result in [17] can be seen as an extension of an incremental
construction of [4], combined with an intricate inductive argument that makes use of group-
theoretic results.

We improve these results and show an upper bound of Ri(d) ≤ 2d − 2 through somewhat
similar, but arguably simpler arguments. Our result extends to arbitrary groups (not
necessarily commutative). In fact, we prove the result in the more general setting of fixed-
point cycles, when the edge-labels are restricted to permutations of [d]. The permutation
case subsumes the integer case, since the functions x 7→ x + k (mod d) in the above
reduction are permutations. Denoting the corresponding quantity by Rp(d), we thus have
Ri(d) ≤ Rp(d) ≤ Rf (d), and (omitting the easy case Ri(1) = Rp(1) = Rf (1) = 1), prove the
following.

▶ Theorem 4. For all d ≥ 2, we have Rp(d) ≤ 2d − 2.

By the above discussion, Theorem 4 implies that Ri(d) ≤ 2d − 2. In fact, the following
more general result holds.

▶ Corollary 5. Let ℓ be a labeling of
↔
K2d−1 with elements of a (not necessarily abelian) group

(G, ·) of order d. Then there is a cycle whose labels multiply to the identity 1 ∈ G.

To our knowledge, the question of permutation labels has not been considered before. We
see it as a natural problem of intermediate generality; it facilitates a simple proof for the
integer case, allowing to sidestep the group-theoretic tools used in previous proofs.

In the case of permutation labels, it is natural to ask whether we can guarantee, instead
of a fixed-point cycle, the existence of an identity-cycle. Indeed, Corollary 5 implies, as a
very special case, that if n ≥ 2d! − 1 and the edges of

↔
Kn are labeled with permutations

of [d], then there is a cycle whose labels compose to 1d. The bound of 2d! − 1 may appear
rather loose, and one may wonder if a condition similar to that of Theorem 4, or at least one
with polynomial dependence on d, would be sufficient. The following lower bound rules out
this possibility.

▶ Lemma 6. There exists a fixed d0 > 0 such that for all d ≥ d0 and some n ≥ e
√

d ln d, there
is a labeling of

↔
Kn with permutations of [d] such that there is no cycle whose labels compose

to 1d.

Open questions

Closing the gap between the lower and upper bounds remains an interesting challenge for all
three considered quantities (Rf (d), Rp(d), and Ri(d)). The lower bound construction with
d vertices discussed earlier can be adapted to all three settings, and it remains a plausible
conjecture that Ri(d) = Rp(d) = Rf (d) = d. This is easily verified [12] for d ≤ 3 in the case
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of Rf (d) (and hence for Rp(d)), and was verified via SAT-solvers [17] for d ≤ 6 in the case of
Ri(d). Showing Rf (d) ∈ O(d) would yield, via Theorem 1, an approximate EFX allocation
with O(

√
n/ε) unallocated goods.

A further natural question is whether other classical zero-sum results from extremal
combinatorics can be extended to the fixed-point setting.

Organization of the paper

In § 2 we introduce some useful terminology. In § 3 we prove Theorem 4, Corollary 5, and
Lemma 6 and in § 4 we prove Theorem 2.

Independent work

Independently and concurrently to our work, Akrami, Chaudhury, Garg, Mehlhorn, and
Mehta [1] also obtained the upper bound Rp(d) ≤ 2d − 2, and an improved upper bound
Rf (d) ∈ O(d2).

2 Preliminaries

Let
↔
Kn be given together with a labeling ℓ that assigns functions [d] → [d] to the edges. By

path or cycle we always mean a simple path or cycle, and for a path P , we denote by V (P )
its set of vertices. All edges in this paper are directed, and an edge (u, v) is alternatively
denoted by u → v.

When we say that the edge u → v maps x to y, we mean that the function ℓuv assigned
to u → v maps x to y. Similarly, a path (or cycle) u1 → · · · → uk maps x to y if, given the
label fi on ui → ui+1 for each i ∈ [k − 1], we have (f1 ◦ · · · ◦ fk−1)(x) = y. For consistency,
a path with only one vertex is said to map every value to itself.

We write v:i for a pair of a vertex v ∈ V (
↔
Kn) and a value i ∈ [d]. By u:x ℓ→ v:y (or

simply u:x → v:y when the labeling ℓ is clear from the context) we denote the fact that the
edge u → v maps x to y.

Let W = (v1:i1, v2:i2, . . . , vk:ik) be a sequence of vertex-value pairs with vj :ij → vj+1:ij+1
for each j ∈ [k − 1]. We call W a valued walk in (

↔
Kn, ℓ). If v1 = vk, then W is a valued

circuit. If all vertices in W are distinct, then W is a valued path. A valued circuit in which
all vertices but the last are distinct is a valued cycle.

Finally, let u, v, w ∈ V (
↔
Kn) and x, y ∈ [d]. We say that w routes u:x to v:y if u:x →

w:z → v:y for some z ∈ [d].

3 Permutation labels

In this section we prove our main result for permutation labels.

▶ Theorem 4. For all d ≥ 2, we have Rp(d) ≤ 2d − 2.

First, we introduce a useful tool, generalizing a technique used in [4, 17] to the fixed-point
cycle setting.

Let ℓ be a labeling of
↔
Kn that assigns to every edge e a permutation ℓe : [d] → [d].

Consider an edge u → v of
↔
Kn with label ℓuv. Let (gi)i and (hi)i denote the labels of the

incoming and outgoing edges at v, respectively. A shifting at u → v changes the labeling ℓ

by replacing each gi by gi ◦ ℓuv
−1 and each hi by ℓuv ◦ hi. In particular, the label of u → v

becomes the identity permutation 1d. Let ℓ′ be the resulting labeling. Observe that mappings
along cycles remain unchanged, in particular (

↔
Kn, ℓ′) has a fixed-point cycle if and only if

(
↔
Kn, ℓ) does.

MFCS 2022



17:6 Fixed-Point Cycles and Approximate EFX Allocations

u1 u2 u3 ui−1 ui

v1 v2 vi−1

1d 1d 1d

1d 1d 1df1 f2 fi−1

· · ·

W
1d

1d

1d

Figure 1 Illustration of the proof of Theorem 4.

Proof of Theorem 4. We start with the case d = 2. Suppose there is a permutation 2-
labeling ℓ of

↔
K3 without a fixed-point cycle. The two possible labels are 12 and the function

1̄2 that maps 1 7→ 2 and 2 7→ 1. For each pair of vertices u, v the labels ℓuv and ℓvu must be
distinct, otherwise we have a fixed-point cycle u → v → u. This means that the number of
edges labeled 1̄2 in ℓ is precisely 3. Now consider two directed 3-cycles in

↔
K3 that form a

partition of the edges. One of these cycles has to contain an even number of edges labeled
1̄2. Clearly, that cycle maps each value to itself, a contradiction. Thus, Rp(2) ≤ 2.

Consider now the case d ≥ 3; let n ≥ 2d − 1, and let ℓ be an arbitrary permutation
d-labeling of

↔
Kn. We show that a fixed-point cycle exists.

We construct a “chain” consisting of vertices u1, . . . , uj and v1, . . . , vj−1 (for some j ≤ d)
and transform the labeling so that each edge of the form ui → ui+1 or ui → vi is labeled 1d.
By step i we mean either the edge ui → ui+1 or the path ui → vi → ui+1. Let Si ⊆ [d] denote
the set of possible values to which 1 can be mapped along some path that concatenates steps
1, . . . , i − 1. Observe that if Si = [d] then we are done, since ui → u1 maps some x ∈ [d] to 1,
and adding this edge to the path from u1 to ui that maps 1 to x yields a fixed-point cycle.

We construct the chain step-by-step (see Figure 1), ensuring that |Si| ≥ i for all i. If we
reach |Si| = d, then we are done, having used at most 2d − 1 vertices.

Pick vertex u1 ∈ V (
↔
Kn) arbitrarily. The condition is then trivially satisfied.

Assume now that we have identified vertices u1, . . . , ui and v1, . . . , vi−1 of the chain. Let
W ⊆ V (

↔
Kn) denote the set of vertices not used yet, and shift at all edges ui → u for u ∈ W .

Observe that no label along the chain is affected. Now consider all edges between vertices in
W . There are two possible cases.

Case 1: If some edge v → u (for u, v ∈ W ) maps some element x ∈ Si to some element
y /∈ Si, then extend the chain with ui+1 = u and vi = v. The set of reachable values
becomes Si+1 ⊇ Si ∪ {y}, establishing the claim for the next step.

Case 2: All edges within W map Si to Si, and consequently [d] \ Si to [d] \ Si. Since the
chain has used up 2i − 1 ≤ 2|Si| − 1 vertices, the digraph induced by W has at least
2d − 1 − (2|Si| − 1) ≥ 2 |[d] \ Si| vertices. If i ≤ d − 2, then |[d] \ Si| ≥ 2, and we can
argue inductively that the digraph induced by W has a fixed-point cycle. If i = d − 1,
then |[d] \ Si| = 1 and |W | ≥ 2, so we trivially have a fixed-point cycle. ◀

We next show the extension of the result to the case of labels from an arbitrary (not
necessarily abelian) group.

▶ Corollary 5. Let ℓ be a labeling of
↔
K2d−1 with elements of a (not necessarily abelian) group

(G, ·) of order d. Then there is a cycle whose labels multiply to the identity 1 ∈ G.

Proof. Let ℓ be a labeling that assigns elements of the group (G, ·) of order d to edges of
↔
K2d−1. Construct a labeling ℓ′ of

↔
K2d−1, assigning the function x 7→ x · k to every edge with

label k in ℓ. By Theorem 4, ℓ′ has a fixed-point cycle. Suppose its labels are f1, . . . , ft, where
fi(x) = x · ki for all i ∈ [t]. Then (f1 ◦ · · · ◦ ft)(x) = x for some x ∈ G, which implies that
k1 · · · · · kt = 1 ∈ G. ◀
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Finally, we prove that to guarantee a cycle whose labels compose to the identity permuta-
tion, we need a super-polynomial number of vertices.

▶ Lemma 6. There exists a fixed d0 > 0 such that for all d ≥ d0 and some n ≥ e
√

d ln d, there
is a labeling of

↔
Kn with permutations of [d] such that there is no cycle whose labels compose

to 1d.

Proof. For given d > 0, let n = n(d) denote the maximum order of a permutation of [d],
that is, n is the largest integer for which there exists a permutation π : [d] → [d] such that
πn = 1d but πk ̸= 1d for all 1 ≤ k < n. The function n(d) is Landau’s function, and it is
well known [16, 18] that n(d) = e(1+o(1))

√
d ln d. (One can obtain high-order permutations by

combining cycles of different prime lengths.)
The construction is now similar to the one used earlier. Let π : [d] → [d] be a permutation

of order n, let V (
↔
Kn) = [n], and label all edges (i, j) such that i < j with 1d and all other

edges with π. Since every cycle contains at least one and at most n − 1 edges of the form
(i, j) with i > j, composing the labels along a cycle cannot yield 1d. ◀

4 General function labels

Before proving our main theorem, we first present a weaker result, in order to introduce
some techniques that will be used later. The result already improves the bound from [12],
while using a similar argument.

▶ Lemma 7. For all d > 0 we have Rf (d) ≤ d3 − d2 + d.

Proof. Suppose that n ≥ d3 − d2 + d + 1, and let ℓ be an arbitrary d-labeling of
↔
Kn. We

show that a fixed-point cycle exists. For that, we proceed algorithmically.
Partition V (

↔
Kn) arbitrarily into two parts V = {v1, . . . , vd} and U = {u1, . . . , ud3−d2+1},

and consider all vertices of U initially unmarked.
In the preprocessing phase, for each triplet (i, x, y) ∈ [d − 1] × [d]2 in turn, check whether

there exists an unmarked vertex u ∈ U that routes vi:x to vi+1:y. If yes, then mark u, and
say that u is responsible for the triplet (i, x, y).

Observe that as we mark at most (d − 1)d2 vertices of U , we have at least one unmarked
vertex remaining in U after the preprocessing phase. Let c ∈ U be such a vertex. Consider
now the walk that alternates between visiting c and visiting the vertices of V in order, giving
rise to the valued walk W = (c:c0, v1:x1, c:c1, v2:x2, . . . , vd:xd, c:cd), where xi, ci ∈ [d] for all
i ∈ [d] and c0 = 1. Since |{c0, . . . , cd}| ≤ d, there must be some i, j such that 0 ≤ i < j ≤ d

and ci = cj , yielding the valued fixed-point circuit C = (c:ci, vi+1:xi+1, . . . , vj :xj , c:cj).
It remains to transform C into a cycle. For all k such that i < k < j replace the subpath

vk → c → vk+1 in C by vk → c′ → vk+1, where c′ ∈ U is the unique marked vertex that
is responsible for the triplet (k, xk, xk+1). Such a vertex must exist in U , for otherwise c

itself would have been chosen as responsible for this triplet in the preprocessing phase. We
have removed all occurrences of c in C but the first and last, and we have not changed the
mappings of values; thus we obtain a fixed-point cycle. An efficient algorithm for finding this
cycle is implicit in the proof. ◀

Next, we introduce a transformation that will be useful in the main proof.

MFCS 2022



17:8 Fixed-Point Cycles and Approximate EFX Allocations

Compression

Given a d-labeling ℓ of
↔
Kn, define the imageset of a vertex v as im(v) = {y | u:x ℓ→

v:y, for some u, x}. In words, im(v) is the subset of values in [d] that can be mapped to by
edges to v.

We say that v is k-compressed if |im(v)| ≤ k. Observe that all vertices are trivially d-
compressed, and the existence of a 1-compressed vertex would immediately yield a fixed-point
cycle. Indeed, if v is 1-compressed, then the cycle v → u → v maps the unique element in
im(v) to itself for any u ∈ V (

↔
Kn).

We now describe the compression operation, illustrated in Figure 2. Let w be a k-
compressed vertex for some k ≥ 2 and w′ ∈ V (

↔
Kn) \ {w}. Suppose there exist two paths P1

and P2 from w to w′, together with two distinct values i1, i2 ∈ im(w) and j ∈ [d] such that
P1 maps i1 to j and P2 maps i2 to j. Note that the sets of interior vertices of P1 and P2 do
not need to be disjoint and that either of the paths may consist of a single edge.

Define the function f : [d] → [d] as follows: let f(i2) = j; for all x ∈ im(w) \ {i2}, let
f(x) = y, where P1 maps x to y; for all x ∈ [d] \ im(w), choose f(x) arbitrarily. Now, delete
all vertices of P1 and P2, and add a new vertex w⋆ with edges to and from all remaining
vertices. For all v ∈ V (

↔
Kn) \ (V (P1) ∪ V (P2)), if the edge v → w had the label g, then the

edge v → w⋆ gets the label g ◦ f , and if an edge w′ → u had the label h, then the edge
w⋆ → u gets the label h. The labels of edges not involving w⋆ remain unchanged.

We refer to this operation as compressing P1 and P2 to w⋆. Suppose we are left with
n′ vertices and observe that n − n′ ≤ |V (P1)| + |V (P2)| − 3, since P1 and P2 have common
endpoints. Let ℓ′ denote the resulting labeling of

↔
Kn′ . We prove two crucial properties.

▶ Lemma 8. Suppose that P1 and P2 (with starting vertex w) are compressed to w⋆ in the
way described above, resulting in a labeling ℓ′ of

↔
Kn′ .

(i) If w is k-compressed in (
↔
Kn, ℓ), then w⋆ is (k − 1)-compressed in (

↔
Kn′ , ℓ′).

(ii) If (
↔
Kn′ , ℓ′) has a fixed-point cycle, then (

↔
Kn, ℓ) has a fixed-point cycle.

Proof.
(i) Let S ⊆ [d] denote the set of values to which values in im(w) \ {i2} are mapped

by P1. Clearly |S| ≤ |im(w)| − 1 ≤ k − 1. Since P2 maps i2 to j and j ∈ S by
construction (as P1 maps i1 to j), every edge v → w⋆ maps all values in [d] to S and
thus |im(w⋆)| ≤ |im(w)| − 1.

(ii) If a fixed-point cycle in (
↔
Kn′ , ℓ′) avoids w⋆, then it also exists in (

↔
Kn, ℓ). Otherwise,

suppose a cycle in (
↔
Kn′ , ℓ′) contains the segment v:x → w⋆:y → u:z. Then, in (

↔
Kn, ℓ),

the edge v → w maps x to some value in im(w) that is mapped by P1 or P2 to w′:y,
and w′ → u maps y to z. Replacing w⋆ by P1 or P2 thus gives a fixed-point cycle in
(

↔
Kn, ℓ). Given a fixed-point cycle in (

↔
Kn′ , ℓ′), a fixed-point cycle in (

↔
Kn, ℓ) can be

reconstructed (i.e., the compression can be undone) efficiently, with minor bookkeeping.

In the remainder of the section we prove our main theorem.

▶ Theorem 2. For all d > 0 we have Rf (d) ≤ d2+o(1).

The high-level strategy is similar to the one used in the proof of Lemma 7. The main
difference is that, instead of trying to build a cycle using a sequence of d designated vertices
(v1, . . . , vd) and a well-chosen center-vertex (c), we pick a sequence of far fewer designated
vertices, and use the structure imposed upon them by a special compressed vertex. We may
fail to find a fixed-point cycle (or even a circuit) with any candidate center. In that case,
however, we make progress by compressing the special vertex further. After repeating the
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P1

P2

w w′

w?

g1 ◦ f

g2 ◦ f

g3 ◦ f

v1

v2

v3

h1

u1

h2 u2

h3

u3

|im(w)| = k

|im(w?)| ≤ k − 1

maps i2 to j

maps i1 to j

g1

g2

g3

v1

v2

v3

h1

u1

h2 u2

h3

u3

Figure 2 Compressing P1 and P2 to w⋆.

process sufficiently many times, we will have created a large number of highly compressed
vertices. The mappings between these vertices are sufficiently restricted that we can find
a fixed-point cycle in the digraph induced by them, through a recursive application of the
same procedure.

The following lemma describes the key win-win step of the procedure: we either find a
fixed-point cycle, or identify two paths that allow the compression of a vertex.

▶ Lemma 9. Let k ≥ 2, n ≥ 4d⌈ d
k ⌉2 + 2⌈ d

k ⌉ + 2, and w ∈ V (
↔
Kn) be a k-compressed vertex.

Then either (
↔
Kn, ℓ) has a fixed-point cycle, or there exist a vertex u ∈ V (

↔
Kn) \ {w}, values

i1, i2 ∈ im(w) with i1 ̸= i2 and x ∈ [d], and two paths on at most 4⌈ d
k ⌉ + 2 vertices each from

w:i1 and w:i2 to u:x.

Proof. Let q = 2⌈ d
k ⌉ + 1 and arbitrarily fix a q-subset V ⊆ V (

↔
Kn) \ {w}. Write V =

{v1, v2, . . . , vq} and U = V (
↔
Kn) \ (V ∪ {w}). Notice that |U | ≥ 4d⌈ d

k ⌉2.
Call a vertex c ∈ U valid for (i, x, y), where i ∈ [q − 1] and x, y ∈ [d], if c routes vi:x to

vi+1:y and there are at least q − 1 vertices in U that route vi:x to vi+1:y (including c). Let
kc denote the number of triples (i, x, y) for which c is not valid. Double-counting yields∑

c∈U

kc ≤ (q − 1) · d2 · (q − 2) < 4d2
⌈

d

k

⌉2
.

Thus, by the pigeonhole principle, there exists a c ∈ U with kc <
4d2⌈ d

k ⌉2

|U | ≤ d. Fix
such a c.

Recall that |im(w)| = k and assume without loss of generality that im(w) = [k]. For each
i ∈ [k], we construct a (valued) walk Wi that starts with v1:ℓwv1(i) and visits v2, . . . , vq in
that order, possibly taking a detour through c at every step.

Fix i ∈ [k]. We describe the construction of Wi by iteratively constructing prefixes W j
i

that start with v1 and end with vj . First, let W 1
i = v1:x1, where x1 = ℓwv1(i).

For 1 < j ≤ q, suppose that W j−1
i ends with vj−1:xj−1, and consider the values yj , xj

reached in the valued path vj−1:xj−1 → c:yj → vj :xj . If c is valid for (j − 1, xj−1, xj), then
let W j

i = W j−1
i → c:yj → vj :xj . Otherwise, let W j

i = W j−1
i → vj :x′

j for the appropriate x′
j .

Finally, let Wi = W q
i . Note that Wi contains at most 2q − 1 vertices (including up to q − 1

occurrences of c).

MFCS 2022
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Observe that in the process of constructing W1, . . . , Wk, we make (q − 1) · k ≥ 2d steps
in total, where each step either adds c to the current walk, or finds that c is not valid for
some triple (j − 1, xj−1, xj).

We claim that some vertex-value pair occurs at least twice in all the valued walks
W1, W2, . . . , Wk. Suppose not. Then, in particular, c occurs at most d times. Moreover, the
triples (j − 1, xj−1, xj) for which c is not valid that we encounter in the construction of the
walks must be pairwise distinct (if (j − 1, xj−1, xj) occurs twice in this way, then two distinct
paths must contain vj−1:xj−1). This means that we encounter such triples at most kc times
in total. The total number of steps is then at most d + kc < 2d, contradicting our earlier
observation. This proves the claim.

First, consider the case where some v:x occurs in two different walks Wi1 , Wi2 . Define W ′
i1

and W ′
i2

by removing all vertices after v from Wi1 and Wi2 , respectively. We turn W ′
i1

and
W ′

i2
into (simple) paths as follows. Suppose c occurs more than once in W ′

i1
. Suppose W ′

i1

contains the segment vi:xi → c:yi → vi+1:xi+1. If this is not the first occurrence of c, then we
simply replace c by some vertex c′ ∈ U \ {c} that routes vi:xi to vi+1:xi+1 and has not been
used in this way before. Note that we do this at most q − 2 times (once for each occurrence
of c in W ′

i1
except for the first one), and there are at least q − 2 such vertices in U \ {c} by

construction, so the operation is well-defined. We proceed the same way for W ′
i2

(recall that
the paths needed for the compression operation need not be internally disjoint). Call the
resulting (simple) paths W ′′

i1
and W ′′

i2
, respectively. Then w:i1 → W ′′

i1
and w:i2 → W ′′

i2
are

the desired paths of at most 2q ≤ 4⌈ d
k ⌉ + 2 vertices, and we are done.

Second, suppose that some v:x occurs twice in a single walk W = Wi. Then v = c, since
each vi occurs only once in W . We now find a sub-walk of W that has a fixed point. Remove
all vertices before the first occurrence of c:x and all vertices after the second occurrence of
c:x, and call the resulting valued walk W ′. Clearly, W ′ is a fixed-point walk and contains at
most q − 1 occurrences of c (counting both start and end individually). Then, similarly as
in the first case, transform W ′ into a simple cycle by replacing all occurrences of c, except
at the start/end, by suitable vertices (at most q − 3 of them) in U \ {c}. The result is a
fixed-point cycle. ◀

We prove Theorem 2 via the following recurrence.

▶ Lemma 10. For all d ≥ 29, we have Rf (d) < 5d2 + 9d log2 d · (Rf (⌊
√

d⌋) + 1).

Proof. Set n = 5d2 + 9d log2 d · (Rf (⌊
√

d⌋) + 1) and consider an arbitrary labeling ℓ of
↔
Kn.

We show that (
↔
Kn, ℓ) contains a fixed-point cycle. We again proceed algorithmically. Our

strategy is to perform transformations on
↔
Kn and ℓ, such as to compress vertices using

Lemma 9. We say that a ⌊
√

d⌋-compressed vertex is fully compressed.
We first observe that if we have more than Rf (⌊

√
d⌋) fully compressed vertices, then

we are done. Indeed, consider the subdigraph induced by the set F of vertices that are
fully compressed. For all u, v ∈ F , restrict each function ℓuv to an arbitrary subset of [d] of
size ⌊

√
d⌋ containing im(u). Applying an arbitrary bijection from each such set to [⌊

√
d⌋],

transform the restricted labeling into a valid ⌊
√

d⌋-labeling on the subdigraph induced by F

without creating new fixed-point cycles. Then, if |F | > Rf (⌊
√

d⌋), we can recursively find a
fixed-point cycle in the induced subdigraph, from which we can recover a fixed-point cycle
in (

↔
Kn, ℓ).
Now we explain how we obtain the required number of fully compressed vertices. Let

T be an arbitrary set of Rf (⌊
√

d⌋) + 1 vertices which are to be compressed and let S be
the remaining set of vertices of

↔
Kn. At each step, let w ∈ T be any vertex that is not

fully compressed; say w is k-compressed. Apply Lemma 9 to w and the subdigraph induced
by {w} ∪ S. If we find a fixed-point cycle, then we are immediately done by Lemma 8.
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Otherwise, we find two paths P1 and P2 starting at w that we can compress into a single
(k − 1)-compressed vertex w⋆. Now set T = T \ {w} ∪ {w⋆} and S = S \ (V (P1) ∪ V (P2)).
Note that the size of S reduces by at most 8⌈ d

k ⌉ + 1 ≤ 8 d
k + 9.

We need to ensure that we always have enough vertices to apply Lemma 9. First we
count the number of vertices that get removed from S throughout the process. Note that,
for each k such that ⌊

√
d⌋ + 1 ≤ k ≤ d, we transform a k-compressed vertex of T into a

(k − 1)-compressed vertex of T at most Rf (⌊
√

d⌋) + 1 times, and every time we perform such
an operation, we remove at most 8 d

k + 9 vertices from S. Thus, the number of vertices we
remove throughout the process is at most

(Rf (⌊
√

d⌋) + 1)
d∑

k=⌊
√

d⌋+1

(
8d

k
+ 9

)
≤ (Rf (⌊

√
d⌋) + 1) (8d log2 d + 9d − 1)

≤ (Rf (⌊
√

d⌋) + 1)(9d log2 d − 1),

where the first inequality uses the fact that
∑d

k=1 1/k ≤ log2 d, and the second inequality
uses our assumption log2 d ≥ 9.

Also accounting for the Rf (⌊
√

d⌋) + 1 vertices in T , it follows that the final set S has at
least 5d2 remaining vertices, which is enough to ensure that we can apply Lemma 9. Indeed,
the number of additional vertices needed to apply Lemma 9 is

4d
⌈d

k

⌉2
+ 2

⌈d

k

⌉
+ 1 ≤ 4d(

√
d + 1)2 + 2(

√
d + 1) + 1

≤ 5d2,

since we always have k ≥ ⌊
√

d⌋ + 1 ≥
√

d, and d ≥ 16. Thus, the process terminates
successfully, leaving us with the set T of Rf (⌊

√
d⌋) + 1 fully compressed vertices, using which

we find a fixed-point cycle, as discussed above. ◀

Finally, we show that the above recurrence solves to Rf (d) ∈ O(d2 · 2(log2 log2 d)2), thus
implying Theorem 2.

▶ Lemma 11. For all d ≥ 4, we have Rf (d) ≤ 16 · d2 · 2(log2 log2 d)2 .

Proof. If d < 220, the claim follows by Lemma 7, since 16 · d2 · 2(log2 log2 d)2 ≥ d3 − d2 + d for
all d < 220. Assume therefore that d ≥ 220. Denoting C = 16 we have:

Rf (d) ≤ 5d2 + 9d log2 d · (Rf (⌊
√

d⌋) + 1) (from Lemma 10)

≤ 5d2 + 9d log2 d ·
(

C · (⌊
√

d⌋)2 · 2(log2 log2 ⌊
√

d⌋)2
+ 1

)
(by induction)

≤ 5d2 + 9d log2 d ·
(

C · d · 2(log2 log2
√

d)2
+ 1

)
(using ⌊

√
d⌋ ≤

√
d)

≤ 6d2 + 9C · d2 log2 d · 2(log2 log2
√

d)2
(using 9 log2 d ≤ d, for d ≥ 52)

≤ 10C · d2 log2 d · 2(log2 log2
√

d)2
(using d ≥ 26)

= 10C · d2 log2 d · 2((log2 log2 d)−1)2

= 10C · d2 · 2((log2 log2 d)−1)2+log2 log2 d

= C · d2 · 2(log2 log2 d)2
·
(
10 · 21−log2 log2 d

)
= C · d2 · 2(log2 log2 d)2

· (20/ log2 d)

≤ C · d2 · 2(log2 log2 d)2
. (using d ≥ 220)

This concludes the proof. ◀

MFCS 2022
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Note that the constant factor 16 in Lemma 11 can be significantly reduced through a
more careful optimization, but we have avoided this, preferring a simpler presentation.
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Abstract
We show that any product-depth ∆ algebraic circuit for the Iterated Matrix Multiplication Polynomial

IMMn,d (when d = O(log n/ log log n)) must be of size at least n
Ω
(

d1/(φ2)∆)
where φ = 1.618 . . . is

the golden ratio. This improves the recent breakthrough result of Limaye, Srinivasan and Tavenas

(FOCS’21) who showed a super polynomial lower bound of the form n
Ω
(

d1/4∆)
for constant-depth

circuits.
One crucial idea of the (LST21) result was to use set-multilinear polynomials where each of the

sets in the underlying partition of the variables could be of different sizes. By picking the set sizes
more carefully (depending on the depth we are working with), we first show that any product-depth

∆ set-multilinear circuit for IMMn,d (when d = O(log n)) needs size at least n
Ω
(

d1/φ∆)
. This

improves the n
Ω
(

d1/2∆)
lower bound of (LST21). We then use their Hardness Escalation technique

to lift this to general circuits.
We also show that our lower bound cannot be improved significantly using these same techniques.

For the specific two set sizes used in (LST21), they showed that their lower bound cannot be
improved. We show that for any do(1) set sizes (out of maximum possible d), the scope for improving
our lower bound is minuscule: there exists a set-multilinear circuit that has product-depth ∆ and
size almost matching our lower bound such that the value of the measure used to prove the lower
bound is maximum for this circuit. This results in a barrier to further improvement using the same
measure.
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1 Introduction

An Arithmetic Circuit is a natural model to compute multivariate polynomials over a field F.
It is a layered directed acyclic graph with leaves labelled by variables x1, . . . , xn or elements
from F. The internal nodes are alternating layers of either addition (+) or multiplication (×)
gates. The circuit computes a polynomial in F[x1, . . . , xn] in the natural way: the + gates
compute arbitrary F-linear combination of their inputs and the × gates compute the product.
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18:2 Improved Lower Bound, and Proof Barrier, for Constant Depth Algebraic Circuits

Some associated complexity measures are of particular importance. The size of the circuit is
the total number of nodes (edges) in the graph. The depth of the circuit is the number of
layers in the circuit. By product-depth, we mean the number of layers of multiplication gates
(depth is roughly twice the product-depth). Arithmetic Formulas are a subclass of circuits
whose underlying graph is a tree. For general survey of the field of Algebraic Complexity
Theory, see [3, 30, 21].

Valiant [34], in a very influential work defined the classes VP and VNP which can be
considered the arithmetic analogues of P and NP. Much like in the Boolean world, the
question of whether VP and VNP are the same is one of the central open problems of algebraic
complexity theory. Though the best known lower bounds for general arithmetic circuits [2]
(Ω(n log n)) and formulas [10] (Ω(n2)) fall far short of the super polynomial lower bounds
that we hope to prove, there have been many super polynomial lower bounds known for
various restricted classes [22, 23, 24]. See [4, 26] for excellent surveys of lower bounds.

One of the most interesting restrictions is that of bounding the depth of circuits and
formulas. When the depth is a constant, circuits and formulas are equivalent up to polynomial
blow up in their size and hence we use them interchangeably in this paper. Unlike the
Boolean world though, a very curious phenomenon of depth reduction occurs in arithmetic
circuits [35, 1, 16, 31, 8] which essentially says that depth 3 and depth 4 circuits are almost
as powerful as general ones. Formally, any degree d polynomial f that has a size s circuit can
also be computed by a depth 4 homogeneous circuit or a depth 3 (possibly non homogeneous)
circuit of size sO(

√
d). Hence proving an nω(

√
d) lower bound on these special circuits is

enough to separate VP from VNP. The extreme importance of bounded depth circuits
has led to a large body of work proving lower bounds for these models and their variants
[28, 29, 25, 11, 7, 13, 17, 6, 18, 14, 12, 15, 9].

The LST breakthrough. Recently in a remarkable work, Limaye, Srinivasan and Tavenas
[20] proved the first superpolynomial lower bound for general constant depth circuits. More
precisely, they showed that the Iterated Matrix Multiplication polynomial IMMn,d (where
d = o(log n)) has no product-depth ∆ circuits of size ndexp(−O(∆)) . The polynomial IMMn,d

is defined on N = dn2 variables. The variables are partitioned into d sets X1, . . . , Xd of n2

variables each (viewed as n × n matrices). The polynomial is defined as the (1, 1)-th entry of
the matrix product X1X2 · · · Xd. All monomials of the polynomial are of the same degree
and so IMMn,d is homogeneous. As the the individual degree of any variable is at most 1, it
is also multilinear. Moreover, every monomial has exactly one variable from each of the sets
X1, . . . , Xd. Hence the polynomial is also set-multilinear. For any ∆ ≤ log d, IMMn,d has
a set-multilinear circuit of product-depth ∆ and size nO(d1/∆). There are no significantly
better upper bounds known even if we allow general circuits. It makes sense to conjecture
that this upper bound is tight (see [5] for limitations to improvement in special cases).

The lower bound of [20] proceeds by first transforming size s, product-depth ∆, general
algebraic circuits computing a set-multilinear polynomial of degree d to set-multilinear
algebraic circuits of product-depth 2∆ and size poly(s)dO(d) (which is not huge if d is small).
Hence lower bounds on bounded depth set-multilinear circuits translate to bounded depth
general circuit lower bounds albeit with some loss. Finally, considering set-multilinear circuits
with variables partitioned into sets of different sizes and crucially using this discrepancy of
set sizes helps in obtaining strong set-multilinear lower bounds.

Our Results. In this work, we improve the lower bound for IMM against constant depth
circuits. We also exhibit barriers to improving the bound further using these techniques,
which is of importance as this is the only known approach to achieve super polynomial lower
bounds for general low depth circuits.
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For the rest of this paper, let µ(∆) = 1/(F (∆) − 1) where F (n) = Θ(φn) is the n-th
Fibonacci number (starting with F (0) = 1, F (1) = 2) and φ = (1 +

√
5)/2 = 1.618 . . . is the

golden ratio.

▶ Theorem 1 (General circuit lower bound). Fix a field F of characteristic 0 or characteristic
> d. Let N, d, ∆ be such that d = o(log N/ log log N). Then, any product-depth ∆ circuit
computing IMMn,d on N = dn2 variables must have size at least NΩ(dµ(2∆)/∆).

▶ Remark. Theorem 1 improves on the lower bound of N
Ω
(

d1/(22∆−1)/∆
)

of [20] since
F (2∆) = Θ(φ2∆) ≪ 22∆.

To prove Theorem 1, we use the hardness escalation given by (Lemma 6) which allows
for a way to convert general circuits to set-multilinear ones without too much size blow up,
provided the degree is small. The actual lower bound is proved on set-multilinear circuits.

▶ Theorem 2 (Set-multilinear circuit lower bound). Let d ≤ (log n)/4. Any product-depth ∆
set-multilinear circuit computing IMMn,d must have size at least nΩ(dµ(∆)/∆).

▶ Remark. This is an improvement over the n
Ω
(

d1/(2∆−1)/∆
)

bound of [20, Lemma 15]. Also,
the result holds over any field F. The restriction on the characteristic in Theorem 1 comes
from the conversion to set-multilinear circuits. The difference between µ(2∆) in Theorem 1
and µ(∆) in Theorem 2 is also due to the doubling of product-depth during this conversion.

In a recent work [32], Limaye, Srinivasan and Tavenas proved a product-depth ∆ set-
multilinear formula lower bound of (log n)Ω(∆d1/∆) for IMMn,d. There is no restriction of
degree, but in the small degree regime, the bound is much weaker than [20] and cannot be
used for escalation. Improving on it, Kush and Saraf [19] showed a lower bound of nΩ(n1/∆/∆)

for the size of product-depth ∆ set-multilinear formulas computing an n2-variate, degree n

polynomial in VNP from the family of Nisan-Wigderson design-based polynomials. Unlike
both [32] and [19], we are interested in the low degree regime where set-multilinear lower
bounds can be lifted, and our bounds will be for IMM (a polynomial in VP), making these
works incomparable to ours. We now prove Theorem 1 à la [20, Corollary 4]:

Proof of Theorem 1. From Lemma 6 and Theorem 2, for a circuit of product-depth ∆
and size s computing IMMn,d we get that dO(d)poly(s) ≥ NΩ(dµ(2∆)/2∆). Since d =
O(log N/ log log N), it follows that dO(d) = NO(1). Therefore, poly(s) ≥ NΩ(dµ(2∆)/2∆)/dO(d)

≥ NΩ(dµ(2∆)/4∆) implying the required lower bound on s and thus, also Theorem 1. ◀

▶ Remark. Theorem 1 also holds when d = o(log N) and ∆ ≤ 1/4 logϕ log d. This is because
the above bound on ∆ implies that dµ(2∆)/∆ ≥ dΩ(1/φ2∆)/∆ ≥ dΩ(1/

√
log d)/ log log d ≥ log d.

Using this inequality together with the assumption d = o(log N), we get dO(d) = 2O(d log d) ≤
2o(log N ·dµ(2∆)/∆) = No(dµ(2∆)/∆) whence we can proceed similarly to the proof of Theorem 1.

The hard polynomial for which we prove set-multilinear lower bound is actually a word
polynomial (Definition 4) which is a set-multilinear restriction of IMM (Lemma 5). Hence
the lower bound gets translated to IMMn,d. These word polynomials are set-multilinear with
respect to (X1, . . . , Xd) where each of the Xis could potentially be of different sizes.

For the two specific set sizes considered in [20], they also exhibit polynomials that match
their lower bound. It still leaves open the question whether we can improve the lower bound
if we choose some other set sizes. In Theorem 2, by choosing two set sizes that are distinctly
different from the ones in [20], we show that it is indeed possible to improve their lower
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bound. It might then seem plausible, that using many more set sizes could improve the
lower bound further. We show that this is false for most cases. Suppose there are γ different
set sizes among the Xis. We show that there are set-multilinear polynomials which can be
computed by product-depth ∆ circuits having size roughly comparable to the size lower
bound of Theorem 2, provided γ is not too large. Formally,

▶ Theorem 3 (Barrier). Let s1, . . . , sγ be positive integers. Fix sets X1, . . . , Xd where for
all i, |Xi| ∈ {s1, . . . , sγ}. For any fixed positive integer ∆, there exist polynomials P∆ and
Q∆ that are set-multilinear with respect to X1, . . . , Xd such that P∆ can be computed by
product-depth ∆ circuits of size nO(∆γdµ(∆)) and Q∆ can be computed by product-depth ∆
circuits of size nO(∆dµ(∆−1)+γ). Moreover, both P∆ and Q∆ maximise the measure used to
prove lower bounds.

▶ Remark. The two different polynomials with slightly different sizes will imply barriers to
improving the lower bound in different regimes of γ. Suppose ∆ is small (say ∆ = O(1)).
When γ = O(1), the size of P∆ matches our lower bound, essentially implying its tightness.
When γ is do(1), the size of Q∆ is only slightly larger than the lower bound (note µ(∆ − 1)
vs µ(∆)). Hence even using multiple set sizes, the scope for improvement is tiny.

In an almost parallel work [33], Limaye, Srinivasan and Tavenas show similar barrier
results. They simplify the proof framework of [20] and give a characterization of the lower
bounds that can be proved via this technique using a combinatorial property which they
term Tree Bias. Their result works for any d set sizes but the upper bound they obtain is
weaker. More precisely, for any partition (X1, . . . , Xd) of the input variables they exhibit a
set-multilinear polynomial that can be computed by product-depth ∆ set-multilinear circuits
of size nd1/∆Ω(log ∆)

while simultaneously maximising the measure. These barrier results
(Theorem 3 and results of [33]) suggest that new measures might be necessary to improve
the lower bounds.

2 Preliminaries

For any positive integer n, we denote by F (n) the n-th Fibonacci number with F (0) = 1,
F (1) = 2 and F (n) = F (n − 1) + F (n − 2). The nearest integer to any real number r is
denoted by ⌊r⌉. We follow the notation of [20] as much as possible for better readability.

We consider words that are tuples (w1, . . . , wd) of length d where 2|wi| are integers. These
words define the actual set sizes of the set-multilinear polynomials we will be working with.
Given a word w, let X(w) denote the tuple of sets of variables (X1(w), . . . , Xd(w)) where
the size of each Xi(w) is 2|wi|. We denote the space of set-multilinear polynomials over X(w)
by Fsm[X(w)].

For a word w and any subset S ⊆ [d], the sum of elements of w indexed by S is denoted
by wS =

∑
i∈S wi. If for all t ≤ d, |w[t]| ≤ b, then we call w b-unbiased. Denote by w|S the

sub-word indexed by S. The positive and negative indices of w are denoted Pw = {i | wi ≥ 0}
and Nw = {i | wi < 0} respectively with the corresponding collections {Xi(w)}i∈Pw

and
{Xi(w)}i∈Nw

being the positive and negative variable sets. We denote by MP
w (resp. MN

w )
the set of all set-multilinear monomials over the positive (resp. negative) variable sets.

The partial derivative matrix Mw(f) has rows indexed by MP
w and columns by MN

w .
The entry corresponding to row m+ ∈ MP

w and m− ∈ MN
w is the coefficient of the monomial

m+m− in f . The complexity measure we use is the relative rank, same as [20]:

relrkw(f) := rank(Mw(f))√
|MP

w | · |MN
w |

= rank(Mw(f))

2
1
2

∑
i∈[d]

|wi|
≤ 1 .
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The following properties of relrkw will be useful (see [20] for the proofs).
1. (Imbalance) For any f ∈ Fsm[X(w)], relrkw(f) ≤ 2−|w[d]|/2.
2. (Sub-additivity) For any f, g ∈ Fsm[X(w)], relrkw(f + g) ≤ relrkw(f) + relrkw(g).
3. (Multiplicativity) Suppose f = f1f2 · · · ft where fi ∈ Fsm[X(w|Si

)] and (S1, . . . , St) is a
partition of [d]. Then, relrkw(f) = relrkw(f1f2 · · · ft) =

∏
i∈[t] relrkw|Si

(fi).

We now define the hard polynomials we prove lower bounds for. For any monomial
m ∈ Fsm[X(w)], let m+ ∈ MP

w and m− ∈ MN
w be its “positive” and “negative” parts. As

|Xi| = 2|wi|, the variables of Xi can be indexed using boolean strings of length |wi|. This
gives a way to associate a boolean string with any monomial. Let σ(m+) and σ(m−) be the
strings associated with m+ and m− respectively. We write σ(m+) ∼ σ(m−) if one is a prefix
of the other.

▶ Definition 4 ([20, Word polynomials]). Let w be any word. The polynomial Pw is defined
as the sum of all monomials m ∈ Fsm[X(w)] such that σ(m+) ∼ σ(m−).

The matrices Mw(Pw) have full rank (equal to either the number of rows or columns,
whichever is smaller) and hence relrkw(Pw) = 2−|w[d]|/2. We also note (without proof) that
these polynomials can be obtained as set-multilinear restrictions of IMMn,d.

▶ Lemma 5 ([20, Lemma 8]). Let w be any b-unbiased word. If there is a set-multilinear
circuit computing IMM2b,d of size s and product-depth ∆, then there is also a set-multilinear
circuit of size s and product-depth ∆ computing the polynomial Pw ∈ Fsm[X(w)]. Moreover,
relrkw(Pw) ≥ 2−b/2.

We also state the set-multilinearization lemma alluded to before.

▶ Lemma 6 ([20, Proposition 9]). Let s, N, d, ∆ be growing parameters with s ≥ Nd. If C is a
circuit of size at most s and product-depth at most ∆ computing a set-multilinear polynomial
P over the sets of variables (X1, . . . , Xd) (with |Xi| ≤ N), then there is a set-multilinear
circuit C̃ of size dO(d)poly(s) and product-depth at most 2∆ computing P .

3 Proof outline

From the discussion in Section 1 and Lemmas 5 and 6, in order to prove general circuit
lower bounds, it suffices to prove that there is a high rank word polynomial that needs large
set-multilinear formulas. For a word (and hence set sizes) of our choice, we show that relrkw

is small for set-multilinear formulas of a certain size.
Let k be an integer close to log2 n. In [20], the authors choose the positive entries of

the word w to be an integer close to k/
√

2 and the negative entries to be −k. Evidently,
these entries are independent of the product-depth ∆. In this paper, we take the positive
entries to be (1 − p/q)k and the negative entries to be −k where p and q are suitable integers
dependent on ∆. This depth-dependent construction of the word enables us to improve the
lower bound. We demonstrate the high level proof strategy of the lower bound for the case
of product-depth 3.

Proof overview of Theorem 2 for ∆ = 3. Define G(i) = 1/µ(i) = F (i) − 1 for all i and
let λ = ⌊d1/G(3)⌋. Consider a set-multilinear forumula C of product-depth 3 and let v be a
gate in it. Suppose that the subformula C(v) rooted at v has product-depth δ ≤ 3, size s and
degree ≥ λG(δ)/2. We will prove that relrkw(C(v)) ≤ s2−kλ/48 by induction on δ. This will
give us the desired upper bound of the form s2−kλ/48 = sn−Ω(dµ(3)) on the relative rank of
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the whole formula when v is taken to be the output gate. Write C(v) = C1 + · · · + Ct where
each Ci is a subformula of size si rooted at a product gate. Because of the subadditivity of
relrkw, it suffices to show that relrkw(Ci) ≤ si2−kλ/48 for all i.

Base case. If δ = 1, then Ci is a product of linear forms. Thus, it has rank 1 and hence
low relative rank.

Induction step. δ ∈ {2, 3}. Write Ci = Ci,1 . . . Ci,ti
where each Ci,j is a subformula of

product-depth δ − 1. If any Ci,j has degree ≥ λG(δ−1)/2, then by induction hypothesis, the
relative rank of Ci,j and hence Ci will have the desired upper bound and we are done.

Otherwise each Ci,j has degree Dij < λG(δ−1)/2. As the formula is set-multilinear, there
is a collection of variable-sets (Xl)l∈Sj with respect to which Ci,j is set-multilinear. For
j ∈ [ti], let aij be the number of positive indices in Sj i.e. the number of positive sets in the
collection (Xl)l∈Sj . Then the number of negative indices is (Dij − aij).

We consider two cases: if aij ≤ Dij/3, then wSj
≤ (Dij/3) · (1 − p/q)k + (2Dij/3) · (−k)

≤ −Dijk/3. Otherwise aij > Dij/3 and if we can prove that |wSj
| ≥ aijk/(4λG(δ)−1), then

in both of the above cases, we would have |wSj | ≥ Dijk/(12λG(δ)−1). By the multiplicativity

and imbalance property of relrkw, it would follow that relrkw(Ci) ≤ 2
∑ti

j=1
− 1

2 |wSj
| ≤ 2−kλ/48

and we would be done. Thus, we now only have to show that |wSj | ≥ aijk/(4λG(δ)−1). We
have

|wSj
| = |aij(1 − p/q) − (Dij − aij)| k .

Notice that |wSj
|/k is the distance of aijp/q from some integer, so it must be at least the

minimum of {aijp/q} and 1 − {aijp/q} where {.} denotes the fractional part. The number
aijp/q being rational, has a fractional part ζ = (aijp mod q)/q and hence it comes down to
solving the following system of inequalities:

min (ζ, 1 − ζ) ≥ aij/(4λG(δ)−1) for δ ∈ {2, 3} when aij ≤ Dij < λG(δ−1)/2 .

Assign p = λ, q = λ2 + 1. The δ = 2 case is clearly satisfied as (aijλ mod (λ2 + 1)) = aijλ

when 0 ≤ aij ≤ λ/2.
Consider the case of δ = 3 and aij < λ2/2. Write aij = y1λ + y0 for integers

y1 = ⌊aij/λ⌋ < λ/2 and y0 ≤ λ − 1. Thus, aijλ ≡ −y1 + y0λ mod (λ2 + 1). Through

some case analysis, one can show that min
(

|y0λ − y1|, λ2 + 1 − |y0λ − y1|
)

≥ y1 which

immediately implies the inequality for the δ = 3 case as y1 = ⌊aij/λ⌋ ≥ aij/(2λ).
We can attempt to extend this proof technique to product-depth 4 as follows:

We would similarly want to express aij as aij = y2λ2+y1λ+y0 for integers y2 = ⌊aij/λ2⌋, y0 ≤
λ − 1 and y1 ≤ λ − 1. Ideally, we would want that for some q ≈ λ4,

pλ2 ≡ 1 mod q, pλ ≡ −λ2 mod q and p ≡ λ3 mod q

so that aijp ≡ y2 − y1λ2 + y0λ3 mod q and then we can carry out a similar analysis as in the
∆ = 3 case. But this is not possible since multiplying the second congruence equation by λ

gives pλ2 ≡ −λ3 mod q, which contradicts the first congruence equation. So we decide to
express aij as aij = y2b2 +y1b1 +y0b0 where b2, b1, b0 are close to λ2, λ, 1 respectively, instead
of being precisely equal to these powers of λ. Then we choose c2 ≈ 1, c1 ≈ −λ2, c0 ≈ λ3 and
we assign values to p and q such that

pb2 ≡ c2 mod q, pb1 ≡ c1 mod q and pb0 ≡ c0 mod q.
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It is easy to verify that all these conditions are satisfied if we define

b0 = 1, b1 = λ, b2 = b1(λ − 1) + b0; c2 = 1, c1 = −λ2, c0 = c2 − c1(λ − 1);
p = c0 and q = pb1 − c1.

This inspired our construction of the sequences {bm} and {cm} for general product-depth ∆.

Proof overview of Theorem 3. As mentioned before, we would like to find a family of
polynomials for which our lower bound is tight. All the same, we want to maintain high
relative rank of these polynomials. If we are able to achieve this and find the appropriate
small sized formulas for the said polynomials, we will have that the lower bound cannot be
improved using the relative rank measure.

The polynomial P we define will be a close variant of the word polynomials from before.
This will ensure that the partial derivative matrix has the maximum possible rank for a
matrix of its dimension. From the Imbalance property, the relative rank we obtain is 2−|w[d]|/2

where we have ensured that w[d] is small. We want to construct the formula F for P such
that it has a nice inductive structure. That is, we want the polynomials computed by the
subformulas of F to also have high relative rank. This will help us construct a formula from
its sub formulas while maintaining high relative rank.

Suppose a subformula F ′ of F is set multilinear with respect to a subtuple T of the sets
of variables X(w). Let these sets in T be indexed by a set ST ⊆ [d]. As we would like high
relative rank of F ′, the Imbalance property again suggests that |wST | be small. And we
desire this of every subformula, their subformulas, and so on. So roughly, we want a way to
partition our intial index set [d] into some number of index sets S1, . . . , Sr such that each
|wSi

| is small. Suppose we are then able to create subformulas of rank 2−|wSi
|/2. It turns out

that we will have to add roughly 2
∑

i
|wSi

| many of them to get a polynomial of high relative
rank. So to control the size of the formula, we would like

∑
i |wSi | to be small as well.

In their Depth Hierarchy section, [20] use Dirichlet’s approximation principle [27] to pick
these nice index sets {Si}. Their procedure only works for the particular two variable-set
sizes they choose. We extend this to any two set sizes in Claim 13. Interestingly, we do not
use Dirichlet to pick the index sets but rather to obtain a lower bound on the size of the
sets that we do eventually pick. We think of picking sets as an investment process: when we
pick a set S, we buy the |S| elements in it for a cost of |wS |. Hence the cost per element is
|wS |/|S|. At each product-depth, we are only allowed to pick sets of size under a certain
threshold and we pick the ones with the lowest cost per element. It turns out that this lowest
cost decreases exponentially as the depth increases and helps us build a small formula. The
decrease is captured by the Fibonacci numbers and is the reason why they emerge in our
lower bound and upper bound.

Making these ideas precise requires extensive notation and we postpone further discussion
to Section 5.

4 The lower bound: Proof of Theorem 2

In this section we prove the set-multilinear lower bound of Theorem 2.
Fix the product-depth ∆ for which we want to prove the lower bound. Define G(i) :=

F (i) − 1 for all i and λ = ⌊d1/G(∆)⌋. We can assume that λ ≥ 3 because otherwise dµ(∆) < 3
and in that case, the lower bound is trivial. The lower bound we aim to prove is nΩ(d1/G(∆)).
We first define the sequences {bm} and {cm} mentioned in the proof overview:

Let rm := λG(m+1)−G(m) − 1 for 0 ≤ m ≤ ∆ − 2.
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Define

b0 := 1, b1 := λ and bm := bm−2 + rm−1bm−1 for 2 ≤ m ≤ ∆ − 2 .

Define

c∆−2 := (−1)∆−2, c∆−3 := (−1)∆−3λG(∆−1)−G(∆−2) and
cm := (−1)m(|cm+2| + rm+1|cm+1|) for ∆ − 4 ≥ m ≥ 0 .

Note that the sign parity of cm is (−1)m for all m.
Thus, cm−2 = (−1)m−2(|cm| + rm−1|cm−1|) = cm − rm−1cm−1 which implies

cm = cm−2 + rm−1cm−1 for 2 ≤ m ≤ ∆ − 2 .

It can be shown (see the full version for the proof) that each bm is close to λG(m) and
each |cm| is close to λG(∆−1)−G(m+1):

λG(m)

2 ≤ bm ≤ λG(m) and λG(∆−1)−G(m+1)

2 ≤ |cm| ≤ λG(∆−1)−G(m+1) for all m. (1)

Define

p := c0 and q := pb1 − c1 = c0(r0 + 1) − c1 .

By defining the integers p and q this way, we have ensured that pb0 ≡ c0 mod q and
pb1 ≡ c1 mod q. Hence from the relations bm = bm−2+rm−1bm−1 and cm = cm−2+rm−1cm−1,
it inductively follows that

pbm ≡ cm mod q for 0 ≤ m ≤ ∆ − 2 . (2)

Constructing the word. Define α = 1 − p/q. As p

q
≤ c0

c0(r0 + 1) = 1/λ, we have α ≥ 1/2.

Since q = c0λ − c1, it implies that

q ≤ |c0|λ + |c1| ≤ 2λG(∆−1) ≤ d < ⌊log2 n⌋/2

where the second inequality follows from the upper bound on each |cm| in (1). Therefore,
there exists a multiple of q in the interval

[
⌊log2 n⌋

2 , ⌊log2 n⌋
]
. Let k be this multiple of q.

Then αk is an integer. We can construct a word w over the alphabet {αk, −k} such that w

is k-unbiased. This can be done using induction: if |w[i]| ≤ 0, set wi+1 = αk, otherwise set
wi+1 = −k.

With these definitions in place, we are ready to prove Theorem 2. Assume the following
lemma:

▶ Lemma 7. Let δ ≤ ∆ be an integer and α, k be as defined above. Let w be any word of
length d over the alphabet {αk, −k}. Then any set-multilinear formula C of product-depth δ,
degree D ≥ λG(δ)/8 and size at most s satisfies

relrkw(C) ≤ s2−kλ/256.
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Proof of Theorem 2. By lemma 5, there exists a set-multilinear projection Pw of IMM2k,d

such that relrkw(Pw) ≥ 2−k. If there is a set-multilinear circuit of size s and product-depth
∆ computing IMMn,d, then we can expand it to a set-multilinear formula of size at most
s2∆ which computes the same polynomial. Hence we will also have a set-multilinear formula
of size at most s2∆ computing Pw. As d ≥ λG(∆)/8, taking the particular case of δ = ∆ in
Lemma 7, we obtain relrkw(Pw) ≤ s2∆2−kλ/256. This gives the desired lower bound

s2∆ ≥ 2−k2kλ/256 ≥
(n

4

) d1/G(∆)
512

/n = nΩ(dµ(∆)). ◀

Proof of Lemma 7. We proceed by induction on δ. We can write C = C1 + · · · + Ct where
each Ci is a subformula of size si rooted at a product gate. Because of the subadditivity of
relrkw, it suffices to show that

relrkw(Ci) ≤ si2−kλ/256 for all i.

Base case. C has product-depth δ = 1 and degree D ≥ λ/8.
Then Ci is a product of linear forms. If L is linear form on some variable set X(wj), then
relrkw(L) ≤ 2−|wj |/2 ≤ 2−k/4. Therefore by the multiplicativity of relrkw,

relrkw(Ci) ≤ 2−kD/4 ≤ 2−kλ/32 .

Induction hypothesis. Assume that the lemma is true for all product-depths ≤ δ − 1.

Induction step. Let C be a formula of product-depth δ and degree D ≥ λG(δ)/8.
We can write Ci = Ci,1 . . . Ci,ti

where each Ci,j is a subformula of product-depth δ − 1.
If Ci has a factor, say Ci,1, of degree ≥ λG(δ−1)/8, then by induction hypothesis,

relrkw(Ci) ≤ relrkw(Ci,1) ≤ si2−kλ/256 .

Otherwise every factor of Ci has degree < λG(δ−1)/8. Let Ci = Ci,1 . . . Ci,ti where each
Ci,j has degree Dij < λG(δ−1)/8. If Ci is set-multilinear with respect to (Xl)l∈S , then let
(S1, . . . , Sti) be the partition of S such that each Ci,j is set-multilinear with respect to
(Xl)l∈Sj

.
For j ∈ [ti], let aij be the number of positive indices in Sj . We have two cases: If aij ≤ Dij/2,
then

wSj ≤ Dij

2 · αk + Dij

2 · (−k) = −Dijp

2q
k ≤ −Dijk

4λ

where the last inequality follows from p
q ≥ c0

2c0(r0+1) = 1
2λ . The other case is aij > Dij/2. If

we can prove that |wSj
| ≥ aijk/(8λG(δ)−1), then in both of the above cases, we would have

|wSj
| ≥ Dijk/(16λG(δ)−1). By the multiplicativity and imbalance property of relrkw and the

assumption D ≥ λG(δ)/8, it would follow that

relrkw(Ci) ≤
∏ti

j=1
2− 1

2 |wSj
| ≤ 2−

∑ti

j=1
Dijk/(32λG(δ)−1) = 2−Dk/(32λG(δ)−1) ≤ 2−kλ/256

and we would be done. Thus, we now only have to show that |wSj
| ≥ aijk/(8λG(δ)−1).

|wSj
| = |aij · αk + (Dij − aij) · (−k)| =

∣∣∣∣aij
p

q
− (2aij − Dij)

∣∣∣∣ k as α = 1 − p/q

≥
∣∣∣∣aijp

q
−
⌊

aijp

q

⌉∣∣∣∣ k where ⌊.⌉ denotes the nearest integer.
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The fractional part of aijp

q
is aijp mod q

q
. Hence in order to prove that |wSj | ≥

aijk/(8λG(δ)−1), it is enough to verify that the following inequality is satisfied:

min
(

aijp mod q

q
, 1 − aijp mod q

q

)
≥ aij

8λG(δ)−1 (3)

Showing that the p, q we defined satisfy the inequality (3). We will first find what we
call the base (b0, . . . , b∆−2) representation of the number aij . For 0 ≤ m ≤ ∆ − 2, inductively

define ym to be the integer quotient when
(

aij −
∆−2∑

m′=m+1
bm′ym′

)
is divided by bm. Then we

can express aij as aij =
∆−2∑
m=0

bmym. Since bm ≥ λG(m)/2 for all m and aij ≤ Dij < λG(δ−1)/8,

we have the following bounds on the values of ym:

ym = 0 for m ≥ δ − 1, (4)

yδ−2 =
⌊

aij

bδ−2

⌋
<

λG(δ−1)

8
λG(δ−2)

2
≤ λG(δ−1)−G(δ−2) − 1

2 = rδ−2

2 , (5)

ym ≤
⌊

bm+1 − 1
bm

⌋
= rm for m < δ − 2 . (6)

By (2), aijp ≡
∆−2∑
m=0

cmym mod q. Therefore,

min
(

aijp mod q

q
, 1 − aijp mod q

q

)
= min

(∣∣∣∣∣
∆−2∑
m=0

cmym

∣∣∣∣∣ /q, 1 −

∣∣∣∣∣
∆−2∑
m=0

cmym

∣∣∣∣∣ /q

)
(7)

if
∣∣∣∑∆−2

m=0 cmym

∣∣∣ /q ≤ 1, which is true by the following claim (see the full version for the
proof):

▷ Claim 8. If 0 ≤ ym ≤ rm for all m, then
∣∣∣∣∆−2∑
m=0

cmym

∣∣∣∣ < q − c0.

Now let f be the highest index such that yf ≥ 1 (by (4), f ≤ δ − 2) and e be the smallest
index such that ye ≥ 1. Then

∣∣∣∑∆−2
m=0 cmym

∣∣∣ =
∣∣∣∑f

m=e cmym

∣∣∣. We need two more claims
whose proofs can be found in the full version.

▷ Claim 9. Let ym be non-negative integers such that ye ≥ 1. Then
∣∣∣∑f

m=e cmym

∣∣∣ ≥

min
(

|cf yf |, |cf−1| − |cf yf |
)

.

▷ Claim 10. Let {ym}δ−2
m=0 be a sequence of non-negative integers. Let f ≤ δ − 2 be the

highest index such that yf ≥ 1. If yδ−2 = ⌊ aij

bδ−2
⌋ ≤ rδ−2/2 and 0 ≤ ym ≤ rm for all m ≤ δ−2,

then min
(

|cf yf |, |cf−1| − |cf yf |
)

≥ |cδ−2aij/(2bδ−2)|.

If δ = 2, then f = 0 by (4). Thus q −
∣∣∣∑f

m=e cmym

∣∣∣ > c0r0 − |c0y0| > c0r0/2 > |cf yf |
where the last two inequalities follow from (5).
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Otherwise δ > 2. By Claim 8, q −
∣∣∣∑f

m=e cmym

∣∣∣ > c0. From the definition of the sequence
{cm}, we have c0 ≥ |cf rf | ≥ |cf yf | when f > 0. But when f = 0, it follows that yδ−2 = 0
implying aij < bδ−2. This further implies c0 ≥ |cδ−2| ≥ |cδ−2aij/bδ−2|.

From the analysis of the two cases above and by Claims 9 and 10, we get that

min
( ∣∣∣∣∣

f∑
m=e

cmym

∣∣∣∣∣ , q −

∣∣∣∣∣
f∑

m=e

cmym

∣∣∣∣∣
)

/q ≥
∣∣∣∣cδ−2aij

2bδ−2q

∣∣∣∣ .
The bounds on each bm and |cm| given in (1) imply the following:

|cδ−2| ≥ λG(∆−1)−G(δ−1)/2, bδ−2 ≤ λG(δ−2), q ≤ |c0|λ + |c1| ≤ 2λG(∆−1) .

Hence min
( ∣∣∣∑f

m=e cmym

∣∣∣ /q, 1 −
∣∣∣∑f

m=e cmym

∣∣∣ /q

)
≥ aij

8λG(δ−1)+G(δ−2) = aij

8λG(δ)−1

which together with (7) implies (3). ◀

5 Limitations on improving the bounds: Proof of Theorem 3

We will show here that the techniques of [20] cannot hope to prove much stronger lower
bounds. We do this by constructing polynomials for which the lower bound we proved earlier
is tight. We begin by showing this in the case of two different set sizes. We can normalize
with respect to the bigger set size to assume that the weights are −k and αk (α ∈ [0, 1])
without loss of generality. Clearly, k ≤ log n.

▶ Lemma 11. Let n, d, ∆ be such that d ≤ n. For any α ∈ [0, 1] let w ∈ {−k, αk}d be a word.
There is a polynomial P∆ ∈ Fsm[X(w)] which is computable by a set-multilinear formula of
product-depth at most ∆, size at most nO(∆dµ(∆)) and has the maximum possible relative
rank.

▶ Remark. We can replace αk with ⌊αk⌋ and assume that the weights in w are integers. It
can be shown that this will not change the arguments in any significant way (see Claim 21
in the full version).

We will need the extensive notation from [20]. We restate it here.

Notation.
As in Section 2 and from the remark above, we assume |X(wi)| = 2|wi| and that the
variables are indexed by binary strings {0, 1}|wi|.
Given any subset S ⊆ [d], we denote by S+ = {i ∈ S | wi > 0} the positive indices of S

and similarly by S−, the negative indices.
We let K =

∑
i∈[d] |wi|, k+ =

∑
i∈S+

|wi| and k− =
∑

i∈S−
|wi|. We say S is P-heavy if

k+ ≥ k− and N -heavy otherwise.
Setting I = [K], we partition the set I = I1 ∪ · · · ∪ Id where Ij is an interval of length
|wj | that starts at

∑
i<j |wj | + 1. Given a T ⊆ [d], we let I(T ) =

⋃
j∈T Ij .

Let m = m+m− ∈ MS
w be any monomial. The boolean string σ(m+) associated with

the positive monomial (as defined in Section 2) can be thought of as a labelling of the
elements of I(S+) in the natural way - σ(m+) : I(S+) → {0, 1}. Similarly for σ(m−).

Given a set S, we define a sequence of polynomials that we will later show to have small
size set multilinear formulas but large rank.
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Fix J+ ⊆ I(S+) and J− ⊆ I(S−) such that |J+| = |J−| = min{k+, k−}. Let π be a
bijection from J+ to J−. Such a tuple (S, J+, J−, π) is called valid. Fix a valid (S, J+, J−, π).

A string τ ∈ {0, 1}|k+−k−| defines a map I(S+) \ J+ → {0, 1} if S is P-heavy and a map
I(S−) \ J− → {0, 1} if S is N -heavy.

The polynomial P(S,J+,J−,π,τ) is the sum of all monomials m such that
1. σ(m+)(j) = σ(m−)(π(j)) for all j ∈ J+, and
2. σ(m+)(j) = τ(j) for all j ∈ I(S+) \ J+ if S is P-heavy or σ(m−)(j) = τ(j) for all

j ∈ I(S−) \ J− if S is N -heavy.

As observed in [20], these polynomials have maximum possible relative rank and other
properties that help in building formulas for them inductively (precise statements in the full
version).

To proceed, we introduce a few notions that help make the ideas in the proof overview
above precise. Fix ∆ as in Lemma 11. We define the fractional cost fc. Set fc(0) = 1 and

fc(δ) := min
q<dµ(∆)/fc(δ−1)

|qα − ⌊qα⌉|/q for 1 ≤ δ ≤ ∆ − 1.

The quantity |qα−⌊qα⌉| is the distance to the nearest integer from qα. For 1 ≤ δ ≤ ∆−1,
we denote by pδ the (least) value of q for which the above expression attains the minimum.
We also denote by nδ := ⌊pδα⌉ the nearest integer to pδα. Finally, we set p∆ := |Pw| (total
number of positive sets) and n∆ := |Nw| (total number of negative sets).

We state (without proof) a few properties of the terms defined above and point the reader
to the full version for details.

(C1) (Exponential decline) The fractional cost falls exponentially with depth i.e., fc(δ) ≤
1/(dµ(∆))F (δ+1)−2 for 1 ≤ δ ≤ ∆ − 1. This exponential decline causes fc(∆ − 1) to be
very small: fc(∆ − 1) ≤ 2dµ(∆)/p∆.

(C2) (Monotonicity) Let ∆′ ≤ ∆ − 1 be the smallest integer for which fc(∆′) ≤ 2dµ(∆)/p∆
holds (such a ∆′ exists from the second part of (C1)). Redefine p∆′+1 := p∆ and
n∆′+1 := n∆. We have that pδ−1 ≤ pδ and nδ−1 ≤ nδ for all δ ≤ ∆′ + 1.

With the notation in place, we can now state the following central claim that constructs the
polynomial needed for Lemma 11:

▷ Claim 12. Let ∆, ∆′ be as fixed above and S ⊆ [d] be such that |wS | ≤ k. Then, there
exist J+, J−, π such that (S, J+, J−, π) is valid and for any integer δ ≤ ∆′ + 1 and for all
τ ∈ {0, 1}|k+−k−|, the polynomial P(S,J+,J−,π,τ) can be computed by a set-multilinear formula
of product-depth δ and size at most |S|δ25kδdµ(∆) .

We finish the proof of Lemma 11 assuming the above claim:

Proof of Lemma 11. As w[d] ≤ k, applying Claim 12 to S = [d] and δ = ∆′ + 1, gives
a polynomial P∆′+1 ∈ Fsm[X(w)] with relrkw(P∆′+1) = 2−|w[d]|/2. The polynomial P∆′+1
is computable by a set-multilinear formula of product-depth at most ∆ of size at most
d∆210k∆dµ(∆) ≤ nO(∆dµ(∆)), since ∆′ + 1 ≤ ∆ by definition. ◀

The following claim is the main technical result that helps in proving Claim 12. It is in
the same spirit as [20, Claim 28], but we show the existence of a better partition with a more
careful analysis. Our analysis holds for any α ∈ [0, 1].

▷ Claim 13. Fix δ ≤ ∆′ + 1. Let S ⊆ [d] with |wS | ≤ k such that |S+| ≤ pδ and |S−| ≤ nδ.
Then there exists a partition of S as S1 ∪ S2 ∪ . . . Sr where the following conditions hold:
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1. |Si,+| ≤ pδ−1 and |Si,−| ≤ nδ−1

2.
∑r

i=1 |wSi
| ≤ 5kdµ(∆)

3. |wSi | ≤ k for all i ∈ [r]

Proof of Claim 13. As long as possible, pick sets Si with |Si,+| = pδ−1 positive indices and
|Si,−| = nδ−1 negative indices. For all such sets picked, we have

|wSi | =
∣∣∣∑

j∈Si

wj

∣∣∣ = k · |pδ−1α − nδ−1| = k · |pδ−1α − nδ−1| ≤ k . (8)

Suppose the sets chosen after the procedure are S1, . . . , Sm, where m =
min

{⌊
|S+|
pδ−1

⌋
,
⌊

|S−|
nδ−1

⌋}
and we are left with the set S′. Since we cannot pick the sets

any more, we must have that |S′
+| < pδ−1 or |S′

−| < nδ−1 (or both). We analyze one case,
others being analogous.

Say m =
⌊

|S+|
pδ−1

⌋
(i.e. |S′

+| < pδ−1). Also suppose |S′
−| > nδ−1. We pick a set Sm+1 with

|S′
+| positive indices and p ≤ (|S−| − m · nδ−1) negative indices such that

|wSm+1 | = k
∣∣α|S′

+| − p
∣∣ = k |α(|S+| − m · pδ−1) − p| ≤ k. (9)

Note that we can always choose α|S′
+| − 1 ≤ p ≤ α|S′

+| + 1 to satisfy the desired constraints.
This follows from observing that |pδ−1α−nδ−1| ≤ 1 which gives pδ−1α−1 ≤ nδ−1 ≤ pδ−1α+1.
Now use the fact that |S′

−| > nδ−1.
The remaining set T = S′ \ Sm+1 has only negative values which we split into singletons

Sm+2, . . . , Sr (there are (|S−| − mnδ−1 − p) of these sets). As these are singletons, for
m + 2 ≤ j ≤ r we trivially have |wSj | ≤ k.

We also note that since (|S−| − m · nδ−1 − p) is positive, it is equal to |m · nδ−1 + p − |S−||,
which can be rewritten as |(α|S+| − |S−|) − (m(pδ−1α − nδ−1)) − (α(|S+| − m · pδ−1) − p)|.
Using the triangle inequality, we can upper bound this quantity by the sum of |α|S+| − |S−||,
|m(pδ−1α − nδ−1)| and |α(|S+| − mpδ−1) − p|. The first term is less than 1 since |wS | ≤ k

and the last term is less than 1 from (9). Putting it all together, we have

(|S−| − m · nδ−1 − p) ≤ |m(pδ−1α − nδ−1)| + 2. (10)

Finally,

r∑
i=1

|wSi
| =

m∑
i=1

|wSi
| + |wSm+1 | +

r∑
i=m+2

|wSi
|

≤ km|pδ−1α − nδ−1| + k + k(|S−| − m · nδ−1 − p)
≤ km|pδ−1α − nδ−1| + k + k |m(pδ−1α − nδ−1)| + 2k (using (10))

≤ k

(
2
⌊

|S+|
pδ−1

⌋
|pδ−1α − nδ−1| + 3

)
≤ k

(
2|S+| |pδ−1α − nδ−1|

pδ−1
+ 3
)

≤ k (2pδ · fc(δ − 1) + 3) (By definition of fc)

≤ 5kdµ(∆)

where the last inequality is true because fc(δ − 1) ≤ 2dµ(∆)/pδ holds for δ ≤ ∆′ by the
definition of fc and pδ; it also holds for δ = ∆′ + 1 by the definition of ∆′. ◁

Armed with all this, the proof of Claim 12 becomes quite similar to the proof of Claim
27 in [20] (we refer the reader to the full version for details).
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Handling more than two weights. To handle the case when there are multiple weights, we
partition the index set [d] into sets {Si} such that the sub-word indexed by each Si contains
at most two distinct weights (details in the full version). We can assume without loss of
generality that all entries of w are integers as before.

▶ Lemma 14. Let w ∈ {α1, . . . , αγ}d (|αi| ≤ k for all i) be a word with γ ≤ d different
weights and |w[d]| ≤ k. Then, the index set [d] can be partitioned as S1 ∪ . . . ∪ Sη with η ≤ 6γ

such that for all i ∈ [η], the sub-word w|Si
has at most two distinct weights and |wSi

| ≤ k.

We can now use Claim 12 to construct polynomials with small set-multilinear formula
size but large rank, even when the number of distinct set sizes is not two.

▷ Claim 15. Let S ⊆ [d] and let w ∈ {α1, . . . , αγ}d (|αi| ≤ k for all i) be a word with γ ≤ d dif-
ferent weights and |wS | ≤ k. Then, there exist (J+, J−, π), (J ′

+, J ′
−, π′) such that (S, J+, J−, π)

and (S, J ′
+, J ′

−, π′) are valid. For any fixed integer ∆ and for all τ ∈ {0, 1}|k+−k−|, the poly-
nomial P(S,J+,J−,π,τ) can be computed by a set-multilinear formula of product-depth ∆ and
size at most |S|∆230kγ∆dµ(∆) while the polynomial P(S,J ′

+,J ′
−,π′,τ) can be computed by a

set-multilinear formula of product-depth ∆ and size at most |S|∆25k∆dµ(∆−1)+6γk.

The proof of Claim 15 is quite similar to that of Claim 12 and we prove it in the full
version. Assuming the claim, we can finally prove Theorem 3:

Proof of Theorem 3. As w[d] ≤ k, applying Claim 15 to S = [d], gives polynomials P∆, Q∆ ∈
Fsm[X(w)] with relative rank relrkw(P∆) = relrkw(Q∆) = 2−|w[d]|/2 (using the fact that this
class of polynomials has maximum possible relative rank).

The polynomial P∆ has product-depth ∆ set-multilinear formula of size at most

d∆230kγ∆dµ(∆)
≤ nO(γ∆dµ(∆)).

The polynomial Q∆ has product-depth ∆ set-multilinear formula of size at most

d∆25k∆dµ(∆−1)+6γk ≤ nO(∆dµ(∆−1)+γ). ◀
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Abstract
A Conflict-Free Open Neighborhood coloring, abbreviated CFON∗ coloring, of a graph G = (V, E)
using k colors is an assignment of colors from a set of k colors to a subset of vertices of V (G) such
that every vertex sees some color exactly once in its open neighborhood. The minimum k for which
G has a CFON∗ coloring using k colors is called the CFON∗ chromatic number of G, denoted by
χ∗

ON (G). The analogous notion for closed neighborhood is called CFCN∗ coloring and the analogous
parameter is denoted by χ∗

CN (G). The problem of deciding whether a given graph admits a CFON∗

(or CFCN∗) coloring that uses k colors is NP-complete. Below, we describe briefly the main results
of this paper.

For k ≥ 3, we show that if G is a K1,k-free graph then χ∗
ON (G)= O(k2 log ∆), where ∆ denotes

the maximum degree of G. Dębski and Przybyło in [J. Graph Theory, 2021] had shown that if
G is a line graph, then χ∗

CN (G)= O(log ∆). As an open question, they had asked if their result
could be extended to claw-free (K1,3-free) graphs, which are a superclass of line graphs. Since it
is known that the CFCN∗ chromatic number of a graph is at most twice its CFON∗ chromatic
number, our result positively answers the open question posed by Dębski and Przybyło.

We show that if the minimum degree of any vertex in G is Ω( ∆
logϵ ∆ ) for some ϵ ≥ 0, then

χ∗
ON (G)= O(log1+ϵ ∆). This is a generalization of the result given by Dębski and Przybyło in

the same paper where they showed that if the minimum degree of any vertex in G is Ω(∆), then
χ∗

ON (G)= O(log ∆).

We give a polynomial time algorithm to compute χ∗
ON (G) for interval graphs G. This answers

in positive the open question posed by Reddy [Theoretical Comp. Science, 2018] to determine
whether the CFON∗ chromatic number can be computed in polynomial time on interval graphs.

We explore biconvex graphs, a subclass of bipartite graphs and give a polynomial time algorithm
to compute their CFON∗ chromatic number. This is interesting as Abel et al. [SIDMA, 2018]
had shown that it is NP-complete to decide whether a planar bipartite graph G has χ∗

ON (G) = k

where k ∈ {1, 2, 3}.
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19:2 Conflict-Free Coloring on Claw-Free Graphs and Interval Graphs

1 Introduction

A Conflict-Free Open Neighborhood coloring, abbreviated CFON∗ coloring, of a graph
G = (V, E) using k colors is an assignment of colors from a set of k colors to a subset of
vertices of V (G) such that every vertex sees some color exactly once in its open neighborhood.
The minimum k for which G has a CFON∗ coloring using k colors is called the CFON∗

chromatic number of G, denoted by χ∗
ON (G).1 The analogous notion for closed neighborhood

is called CFCN∗ coloring and the analogous parameter is denoted by χ∗
CN (G). It is known

(see for instance, Equation 1.3 from [26]) that if G has no isolated vertices, then χ∗
CN (G) is

at most twice χ∗
ON (G). Given a graph G and integer k > 0, the CFON∗ coloring problem is

the problem of determining if χ∗
ON (G) ≤ k. The CFON∗ variant is considered to be harder

than the CFCN∗ variant, see for instance, remarks in [22,26].
The notion of conflict-free coloring was introduced by Even, Lotker, Ron and Smorodinsky

in 2004, motivated by the frequency assignment problem in wireless communication [14].
The conflict-free coloring problem on graphs was introduced and first studied by Cheilaris [8]
and Pach and Tardos [26]. Conflict-free coloring has found applications in the area of sensor
networks [17, 25] and coding theory [23]. Since its introduction, the problem has been
extensively studied, see for instance [1, 3, 5, 6, 8, 18, 19, 26, 28]. The decision version of the
CFON∗ coloring problem and many of its variants are known to be NP-complete [1,18]. In [18],
Gargano and Rescigno showed that the optimization version of the CFON∗ coloring problem
is hard to approximate within a factor of n1/2−ϵ, unless P = NP. Fekete and Keldenich [15]
and Hoffmann et al. [21] studied a conflict-free variant of the chromatic Art Gallery Problem,
which is about guarding a simple polygon P using a finite set of colored point guards such
that each point p ∈ P sees at least one guard whose color is distinct from all the other guards
visible from p.

The conflict-free coloring problem has been studied on several graph classes like planar
graphs, split graphs, geometric intersection graphs like interval graphs, unit disk intersection
graphs and unit square intersection graphs, graphs of bounded degree, block graphs, etc.
[1, 4, 6, 9, 16, 22, 26, 27]. The problem has been studied from parameterized complexity
perspective. The problem is fixed-parameter tractable when parameterized by tree-width,
neighborhood diversity, distance to cluster, or the combined parameters clique-width and
the number of colors [2, 4, 6, 18,27].

1.1 Our Contribution and Discussion
Below, we discuss the main results of this paper.

The complete bipartite graph K1,3 is known as a claw. If a graph does not contain a
claw as an induced subgraph, then it is called a claw-free graph. The claw number of a graph
G is the largest integer k such that G contains an induced K1,k. Dębski and Przybyło [10]
showed that if G is a line graph with maximum degree ∆, then χ∗

CN (G)= O(log ∆). This
bound is tight up to constants. Line graphs are a subclass of claw-free graphs. In [10], it
was asked whether the above result can be extended to claw-free graphs. We do this by

1 It is also known by the name “partial conflict-free chromatic number” as only a subset of vertices are
assigned colors. The “(full) conflict-free chromatic number” of a graph, which requires assigning colors
to all the vertices, is at most one more than its partial conflict-free chromatic number. We use the
notations χ∗

ON (G) and χ∗
CN (G) to be consistent with our other papers on related topics. In our other

papers, we use χON (G) and χCN (G) to refer to the versions of the problem that require all the vertices
to be assigned a color.
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proving a more general result. We show that if G is K1,k-free with maximum degree ∆, then
χ∗

ON (G)= O(k2 log ∆). Since χ∗
CN (G) ≤ 2χ∗

ON (G), we have χ∗
CN (G)= O(k2 log ∆) as well.

This result is presented in Section 3.2.
What is the maximum number of colors required to CFON∗ color a graph whose maximum

degree is ∆? It can be seen that the graph obtained by subdividing every edge of a complete
graph requires ∆ + 1 colors. It is known that for a graph G with maximum degree ∆,
χ∗

ON (G) is at most ∆ + 1 [26]. Pach and Tardos [26] showed that if the minimum degree
of any vertex in G is Ω(log ∆), then χ∗

ON (G)= O(log2 ∆). In this direction, Dębski and
Przybyło [10] showed that if the minimum degree of any vertex in G is Ω(∆), then the
previous upper bound can be improved to show χ∗

ON (G)= O(log ∆). We extend the proof
idea of [10] to generalize their result. We show that if the minimum degree of any vertex
in G is Ω( ∆

logϵ ∆ ) for some ϵ ≥ 0, then χ∗
ON (G)= O(log1+ϵ ∆). This result is presented in

Section 3.3. A natural open question we have here is, can we get a stronger upper bound for
the CFON∗ chromatic number of a graph with minimum degree ω(1)? When the minimum
degree is o(log ∆), the only upper bound known is O(∆) mentioned above due to [26]. In this
situation our first result does give a better (than O(∆)) upper bound for CFON∗ chromatic
number, if the claw number of the graph under consideration is o

(√
∆

log ∆

)
.

For an interval graph G, it has been shown that [4, 27] χ∗
ON (G) ≤ 3. It was shown

in [4] that there exists an interval graph that requires 3 colors, making the above bound
tight. It was asked in [27] if there is a polynomial time algorithm that given an interval
graph G, computes χ∗

ON (G). We answer this in the affirmative and give polynomial time
characterization algorithms for interval graphs G that decide if χ∗

ON (G) ∈ {1, 2, 3}. These
results are presented in Section 4.

For a bipartite graph G, it is easy to see that χ∗
CN (G) ≤ 2. On the contrary, there

exist bipartite graphs G, for which χ∗
ON (G) = Θ(

√
n). It is NP-complete [1] to decide if a

planar bipartite graph is CFON∗ colorable using k colors, where k ∈ {1, 2, 3}. We study the
problem on some subclasses of bipartite graphs that include chain graphs, biconvex bipartite
graphs, and bipartite permutation graphs. We show that three colors are sufficient to CFON∗

color a biconvex bipartite graph and give characterization algorithms to decide the CFON∗

chromatic number. The results are presented in Section 5.

2 Preliminaries

Throughout the paper, we consider simple undirected graphs. We denote the vertex set and
the edge set of a graph G = (V, E), by V (G) and E(G). For standard graph notations, we
refer to the graph theory book by R. Diestel [11]. For a vertex v ∈ G, its open neighborhood,
denoted by NG(v), is the set of neighbors of v in G. The closed neighborhood of v, denoted
by NG[v], is NG(v) ∪ {v}. We use log to denote the logarithm to the base 2, and ln to
denote the natural logarithm. Proofs of the results marked with (⋆) are omitted due to space
constraints.

3 Improved bounds for χ∗
ON (G) for graphs with bounded claw number

The graph K1,k is the complete bipartite graph on k + 1 vertices with one vertex in one part
and the remaining k vertices in the other part.

▶ Definition 1 (Claw number). The claw number of a graph G is the smallest k such that G

is K1,k+1-free. In other words, it is the largest k such that G contains an induced K1,k.

MFCS 2022



19:4 Conflict-Free Coloring on Claw-Free Graphs and Interval Graphs

The complete bipartite graph K1,3 is called a claw. A graph is called a claw-free graph if it
does not contain a claw as an induced subgraph.

In this section, we prove two results: (i) an improved bound for χ∗
ON (G) in terms of the

claw number and maximum degree of G, and (ii) an improved bound for χ∗
ON (G) for graphs

with high minimum degree. We begin by stating a couple of results from probability theory
which will be useful.

▶ Lemma 2 (The Local Lemma, [13]). Let A1, . . . , An be events in an arbitrary probability
space. Suppose that each event Ai is mutually independent of a set of all the other events Aj

but at most d, and that Pr[Ai] ≤ p for all i ∈ [n]. If 4pd ≤ 1, then Pr[∩n
i=1Ai] > 0.

▶ Theorem 3 (Chernoff Bound, Corollary 4.6 in [24]). Let X1, . . . , Xn be independent Poisson
trials such that Pr[Xi] = pi. Let X =

∑n
i=1 Xi and µ = E[X]. For 0 < δ < 1, Pr[|X − µ| ≥

δµ] ≤ 2e−µδ2/3.

3.1 Auxiliary lemmas

In this subsection, we state some auxiliary lemmas on conflict-free chromatic number of
graphs and hypergraphs having certain structural characteristics that will be used to prove
the main theorems in Sections 3.2 and 3.3. Before we begin, let us define the conflict-free
chromatic number of a hypergraph.

▶ Definition 4. Given a hypergraph H = (V, E), a coloring c : V → [r] is a conflict-free
coloring of H if for every hyperedge E ∈ E , there is a vertex in E that receives a color under
c that is distinct from the colors received by all the other vertices in E. The minimum r such
that c : V → [r] is a conflict-free coloring of H is called the conflict-free chromatic number
of H. This is denoted by χCF (H).

The following theorem on conflict-free coloring of hypergraphs is from [26]. The degree of a
vertex in a hypergraph is the number of hyperedges it is part of.

▶ Theorem 5 (Theorem 1.1(b) in [26]). Let H be a hypergraph and let ∆ be the maximum
degree of any vertex in H. Then, χCF (H) ≤ ∆ + 1.

We prove an upper bound for the conflict-free chromatic number of a “near uniform hyper-
graph” in Lemma 6 below.

▶ Lemma 6. Let H = (V, E) be a hypergraph where (i) every hyperedge intersects with at
most Γ other hyperedges, and (ii) for every hyperedge E ∈ E, r ≤ |E| ≤ ℓr, where ℓ ≥ 1
is some integer and r ≥ 2 log(4Γ). Then, χCF (H) ≤ eℓr, where e is the base of natural
logarithm.

Proof. For each vertex in V , assign a color that is chosen independently and uniformly at
random from a set of eℓr colors. We will first show that the probability of this coloring being
bad for an edge is small, and then use Local Lemma to show the existence of conflict-free
coloring for H using at most eℓr colors.

Consider a hyperedge E ∈ E with m := |E|. By assumption, we have r ≤ m ≤ ℓr. Let
AE denote the bad event that E is colored with ≤ |E|/2 colors. Note that if AE does not
occur, then E is colored with > |E|/2 colors, hence there is at least one color that appears
exactly once in E.
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Pr[AE ] ≤
(

eℓr

m/2

) (
m/2
eℓr

)m

≤
(

e2ℓr

m/2

)m/2 (
m/2
eℓr

)m

(since
(

n

k

)
≤

(en

k

)k

)

= (m/2)m/2

(ℓr)m/2 =
( m

2ℓr

)m/2

≤ (1/2)m/2 ≤ 1
4Γ .

Here the penultimate inequality follows since m ≤ ℓr, and the last inequality follows since
m ≥ 2 log(4Γ).

We apply the Local Lemma (Lemma 2) on the events AE for all hyperedges E ∈ E .
Since each hyperedge intersects with at most Γ other hyperedges, and 4 · 1

4Γ · Γ ≤ 1, we get
Pr[∩E∈E(AE)] > 0. That is, there is a conflict free coloring of H that uses at most eℓr colors.
This completes the proof of the lemma. ◀

Lemmas 7 and 8 prove upper bounds for χ∗
ON (G) when G satisfies certain degree restric-

tions.

▶ Lemma 7. Let G be a graph with (i) V (G) = X ⊎ Y , X, Y ̸= ∅, (ii) every vertex in G has
at most dX neighbors in X, (iii) every vertex in Y has at least one neighbor in X, and (iv)
every vertex in X has at most dY neighbors in Y . Then, there is a coloring of vertices of X

with dXdY + dX − dY + 1 colors such that every vertex in Y sees some color exactly once
among its neighbors in X.

Proof. For each vertex y ∈ Y , we arbitrarily choose one of its neighbors in X. Let us call
this neighbor f(y). For each y ∈ Y , contract the edges {y, f(y)} to obtain a resulting graph
GX . Note that the vertex set of GX is V (GX) = X. The maximum degree of a vertex in the
new graph GX is at most (dX − 1)dY + dX . Thus, we can do a proper coloring (such that no
pair of adjacent vertices receive the same color) of GX using dXdY + dX − dY + 1 colors. We
note that this coloring of the vertices of X satisfies our requirement: in the original graph G,
for each y ∈ Y , the neighbor f(y) is colored distinctly from all the other neighbors of y in
X. ◀

▶ Lemma 8. Let G be a graph with (i) V (G) = X ⊎ Y , X, Y ̸= ∅, (ii) every vertex in Y has
at most tX neighbors in X, and (iii) every vertex in X has at least one neighbor in Y . Then,
there is a coloring of the vertices of Y using at most (tX + 1) colors such that every vertex in
X sees some color exactly once among its neighbors in Y .

Proof. For every vertex v ∈ X, let NY
G (v) denote the set NG(v) ∩ Y , i.e., the neighbors of

v in Y in the graph G. Since every vertex in X has at least one neighbor in Y , we have,
|NY

G (v)| ≥ 1. We construct a hypergraph H = (V, E) from G as described below. We have (i)
V = Y , and (ii) E = {NY

G (v) : v ∈ X}. Since every vertex in Y has at most tX neighbors
in X in the graph G, the maximum degree of a vertex in the hypergraph H (that is, the
maximum number of hyperedges a vertex in H is part of) is at most tX . From Theorem 5,
we have χCF (H) ≤ tX + 1. Observe that in this coloring of the vertices of Y using at most
(tX + 1) colors, every vertex in X sees some color exactly once among its neighbors in Y . ◀

MFCS 2022



19:6 Conflict-Free Coloring on Claw-Free Graphs and Interval Graphs

The following lemma, which will be used in the proof of Theorem 12, shows that given
a graph with high minimum degree there exists a subset of vertices that, for every vertex,
intersects its neighborhood at a small number of vertices.

▶ Lemma 9. Let ∆ denote the maximum degree of a graph G. It is given that every vertex in
G has degree at least c∆

logϵ ∆ for some ϵ ≥ 0 and c is a constant. Then, there exists A ⊆ V (G)
such that for every vertex v ∈ V (G),

75 log(2∆) < |NG(v) ∩ A| <
125
c

log1+ϵ(2∆).

Proof. We construct a random subset A of V (G) as described below. Each v ∈ V (G) is
independently chosen into A with probability 100 log1+ϵ(2∆)

c∆ . For a vertex v ∈ V (G), let Xv

be a random variable that denotes |NG(v) ∩ A|. Then, µv := E[Xv] = 100 log1+ϵ(2∆)
c∆ dG(v) ≥

100 log(2∆). Since dG(v) ≤ ∆, we also have µv ≤ 100 log1+ϵ(2∆)
c . Let Bv denote the event

that |Xv − µv| ≥ µv

4 . Applying Theorem 3 with δ = 1/4, we get Pr[Bv] = Pr[|Xv − µv| ≥
µv

4 ] ≤ 2e− µv
48 ≤ 2e− 100 log(2∆)

48 = 2e− 100 ln(2∆)
48 ln 2 < 2

(2∆)3 . The event Bv is mutually independent
of all but those events Bu where NG(u) ∩ NG(v) ̸= ∅. Hence, every event Bv is mutually
independent of all but at most ∆2 other events. Applying Lemma 2 with p = Pr[Bv] ≤ 2

(2∆)3

and d = ∆2, we have 4 · 2
(2∆)3 · ∆2 ≤ 1. Thus, there is a non-zero probability that none of

the events Bv occur. In other words, for every v, it is possible to have 3
4 µv < Xv < 5

4 µv.
Using the upper and lower bounds of µv we computed above, we can say that there exists an
A such that, for every v, 75 log(2∆) < |NG(v) ∩ A| < 125

c log1+ϵ(2∆). ◀

3.2 Graphs with bounded claw number
▶ Theorem 10. Let G be a K1,k-free graph with maximum degree ∆ having no isolated
vertices. Then, χ∗

ON (G)= O(k2 log ∆).

Proof. Consider a proper coloring (such that no pair of adjacent vertices receive the same
color) of G, h : V (G) → [∆ + 1], using ∆ + 1 colors. Let C1, C2, . . . , C∆+1 be the color classes
given by this coloring G. That is, V (G) = C1 ⊎ C2 ⊎ · · · ⊎ C∆+1 is the partitioning of the
vertex set of G given by the coloring, where each Ci is an independent set. We may assume
that the coloring h satisfies the following property: for every 1 < i ≤ ∆ + 1, every vertex v

in Ci has at least one neighbor in every Cj , where 1 ≤ j < i (otherwise, we can move v to a
color class Cj , j < i, in which it has no neighbors without compromising on the “properness”
of the coloring). Since G is K1,k-free, we have the following observation.

▶ Observation 11. For every i ∈ [∆ + 1], a vertex in G has at most k − 1 neighbors in Ci.

Let r = 2 log(4∆2). We partition the vertex set of G into three parts, namely V1, V2, and
V3 as described below. We have V1 := C1. If ∆ > r, then V2 := C2 ⊎ C3 ⊎ · · · ⊎ Cr+1 and
V3 := Cr+2 ⊎ Cr+3 ⊎ · · · ⊎ C∆+1. Otherwise, V2 := C2 ⊎ C3 ⊎ · · · ⊎ C∆+1 and V3 := ∅.

The rest of the proof is about constructing a coloring f : V (G) → N × N that is a
CFON∗ coloring of G. Let N1 = {1, 2, . . . , r1}, N2 = {r1 + 1, r1 + 2, . . . , r1 + r2}, and
N3 = {r1 + r2 + 1, r1 + r2 + 2, . . . , r1 + r2 + r3}, where |N1| = r1 = (k − 1)(k − 2)r + k,
|N2| = r2 = e(k − 1)r, and |N3| = r3 = k. We define three colorings f1, f2, and f3 below.

We begin by describing the coloring f1 : V1 → N1. Let G[V1 ∪ V2] be the subgraph of
G induced on V1 ∪ V2. From Observation 11, every vertex in G[V1 ∪ V2] has at most k − 1
neighbors in V1 = C1. Every vertex in V2 has at least one neighbor in V1 due to the property
of our coloring h. From Observation 11, we can also say that every vertex in V1 has at most
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r(k − 1) neighbors in V2. Applying Lemma 7 on G[V1 ∪ V2] with X = V1, Y = V2, dX = k − 1
and dY = r(k − 1), we can say that there is a coloring f1 : V1 → N1 of the vertices of V1 with
(k − 1)(k − 2)r + k colors such that every vertex in V2 sees some color exactly once among
its neighbors in V1.

We now describe the coloring f2 : V2 → N2. If V3 = ∅, then, ∀v ∈ V2, f2(v) = r1 + 1.
Suppose V3 ̸= ∅. For a vertex v in G, let NV2

G (v) denote the set of neighbors of v in V2 in the
graph G. We construct a hypergraph H2 = (V2, E2) as follows. We have E2 = {NV2

G (v) : v ∈
V3}. Consider an arbitrary hyperedge E ∈ E2. In the graph G, since every vertex in V3 has at
least one neighbor in every color class Ci, 2 ≤ i ≤ r + 1, |E| ≥ r. Using Observation 11, we
can say that |E| ≤ (k − 1)r. As |NV2

G (v)| ≤ NG(v) ≤ ∆, ∀v ∈ V (G), we have |E| ≤ ∆. This
also implies that E intersects with at most ∆2 other hyperedges in E2. Applying Lemma
6 with ℓ = (k − 1) and Γ = ∆2, we have χCF (H2) ≤ e(k − 1)r. Thus, there is a coloring
f2 : V2 → N2 of the vertices V2 such that every vertex in V3 sees some color exactly once
among its neighbors in V2.

Finally, we describe the coloring f3 : V2 ∪ V3 → N3. From Observation 11, every vertex
in V2 ∪ V3 has at most k − 1 neighbors in V1 = C1. Since there are no isolated vertices in G,
every vertex in V1 has at least one neighbor in V2 ∪ V3. Applying Lemma 8 with X = V1,
Y = V2 ∪ V3, and tX = k − 1, we get a coloring f3 : V2 ∪ V3 → N3 of the vertices of V2 ∪ V3
using at most k colors such that every vertex in V1 sees some color exactly once among its
neighbors in V2 ∪ V3.

We are now ready to define the coloring f .

f(v) =


(1, f1(v)), if v ∈ V1

(f2(v), f3(v)), if v ∈ V2

(1, f3(v)), if v ∈ V3.

We now argue that f is indeed a CFON∗ coloring of G. Consider a vertex v ∈ V (G). If v ∈ V3,
v sees some color exactly once among its neighbors in V2 under the coloring f2. Let u be that
neighbor of v in V2 and f2(u) be that color that appears exactly once in the neighborhood
of v in V2. Since the codomains of f1, f2, and f3 are pairwise disjoint sets, v does not see
the same color among its neighbors in V1 or in V2. Further, since f(u) = (f2(u), f3(u)), the
final coloring f only refines the color classes of V2 given by f2. Thus, the color (f2(u), f3(u))
appears exactly once among the neighbors of v in G. The cases when v ∈ V1 and v ∈ V2 also
follow using similar arguments.

The coloring f uses at most |N1| + |N2||N3| + |N3| = (k − 1)(k − 2)r + k + e(k − 1)kr + k

colors. Since r = O(log ∆), this implies that χON
CF (G) = O(k2 log ∆). ◀

3.3 Graphs with high minimum degree
When a graph G has high minimum degree, the following theorem gives improved upper
bounds for χ∗

ON (G) in terms of its maximum degree.

▶ Theorem 12. Let G be a graph with maximum degree ∆. It is given that every vertex in G

has degree at least c∆
logϵ ∆ for some ϵ ≥ 0 and c is a constant. Then, χ∗

ON (G)= O(log1+ϵ ∆).

Proof. Apply Lemma 9 to find an A ⊆ V (G) such that for every v ∈ V (G), 75 log(2∆) <

|NG(v) ∩ A| < 125
c log1+ϵ(2∆). Construct a hypergraph H = (A, E) where E = {NG(v) ∩

A : v ∈ V (G)}. Every E ∈ E satisfies 2 log(4∆2) < 75 log(2∆) < |E| < 125
c log1+ϵ(2∆). Ap-

plying Lemma 6 with r = 75 log(2∆) and ℓ = 5
3c logϵ(2∆), we get χCF (H) ≤ 340

c log1+ϵ(2∆).
It is easy to see that this conflict-free coloring of H is indeed a CFON∗ coloring for G. ◀
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4 Interval graphs

In this section, we show that the problem of determining the CFON∗ chromatic number
of a given interval graph is polynomial time solvable. It was shown in [4, 27] that, for an
interval graph G, χ∗

ON (G) ≤ 3 and that there exists an interval graph that requires three
colors. The complexity of the problem on interval graphs was posed as an open question in
the above papers. We show that CFON∗ coloring is polynomial time solvable. That is, given
an interval graph G, in polynomial time we decide whether χ∗

ON (G) is 1, 2 or 3. We state it
formally below.

▶ Theorem 13. Given an interval graph G, there is a polynomial time algorithm that
determines χ∗

ON (G).

▶ Remark 14 (Notation). In the introduction, we defined CFON∗ coloring to be an assignment
of colors to a subset of the vertices. For the sake of convenience, we will use the color 0 to
denote uncolored vertices. That is, we will use an assignment f : V (G) → {0, 1, 2}, to denote
a coloring that assigns the colors 1 and 2 to some vertices. The vertices that are assigned
0 by f are the “uncolored” vertices. The “color” 0 cannot serve as a unique color in the
neighborhood of any vertex.

▶ Definition 15 (Interval Graphs). A graph G = (V, E) is called an interval graph if there
exists a set of intervals on the real line such that the following holds: (i) there is a bijection
between the intervals and the vertices and (ii) there exists an edge between two vertices if
and only if the corresponding intervals intersect.

The main ingredient of the algorithm is the use of multi-chain ordering property on interval
graphs. Before defining the multi-chain ordering property, we look at some prerequisites.

▶ Definition 16 (Chain Graph [12]). A bipartite graph G = (A, B) is a chain graph if and
only if for any two vertices u, v ∈ A, either N(u) ⊆ N(v) or N(v) ⊆ N(u). If G is a chain
graph, it follows that for any two vertices u, v ∈ B, either N(u) ⊆ N(v) or N(v) ⊆ N(u).

As a consequence, we can order the vertices in B in the decreasing order of the degrees.
We can break ties arbitrarily. If b1 ∈ B appears before b2 ∈ B in the ordering, then it follows
that N(b2) ⊆ N(b1).

▶ Definition 17 (Multi-chain Ordering [7, 12]). Given a connected graph G = (V, E), we
arbitrarily choose a vertex as v0 ∈ V (G) and construct distance layers L0, L1, . . . , Lp from
v0. The layer Li, where i ∈ [p], represents the set of vertices that are at a distance i from v0.
Note that p here denotes the largest integer such that Lp is non-empty.

We say that these layers form a multi-chain ordering of G if for every two consecutive
layers Li and Li+1, where i ∈ {0, 1, . . . , p − 1}, we have that the vertices in Li and Li+1, and
the edges connecting these layers form a chain graph.

▶ Theorem 18 (Theorem 2.5 of [12]). All connected interval graphs admit multi-chain
orderings.

We give a characterization of interval graphs that require one color and two colors in
polynomial time in Theorem 21 and Theorem 23 respectively. Given an interval graph G, the
algorithms decide if G is CFON∗ colorable using one color or two colors. If G is not CFON∗

colorable using one color or two colors, we conclude that G is CFON∗ colorable using three
colors (since it is known that for an interval graph G, χ∗

ON (G) ≤ 3). One of the key ideas
used in Theorem 23 (to decide if G can be CFON∗ colored using two nonzero colors) is sort
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of a bootstrapping idea. After narrowing down the possibilities, we need to test if a given
subgraph can be colored using the colors {0, 1} so as to obtain a CFON∗ coloring. To solve
this, we use Theorem 21.

Before we proceed to the main theorems of this section, we observe the following on a
graph G that admits multi-chain ordering.

▶ Observation 19. If G admits a multi-chain ordering, then every distance layer Li, for
0 ≤ i < p contains a vertex v such that N(v) ⊇ Li+1.

Proof. Consider a multi-chain ordering of G, starting with an arbitrary vertex. For any
two consecutive distance layers Li and Li+1, it can be seen that each vertex in Li+1 has a
neighbor in Li. This, together with the fact that Li and Li+1 form a chain graph, imply that
there is a vertex v ∈ Li such that N(v) ⊇ Li+1. ◀

▶ Observation 20. In any CFON∗ coloring of G that uses one color, at most one vertex in
each Li is assigned the color 1.

Proof. Consider a layer Li of the graph. As per Observation 19, there is a v ∈ Li such that
N(v) ⊇ Li+1. If two vertices in Li+1 are colored 1, then the vertex v ∈ Li does not have a
uniquely colored neighbor. Hence in all the layers L1, L2, . . . up to the last layer Lp, we have
that at most one vertex is assigned the color 1. Since L0 has only one vertex, the statement
is trivially true for L0. ◀

▶ Theorem 21. Given an interval graph G = (V, E), we can decide in O(n5) time if
χ∗

ON (G) = 1.

Proof. Let L0, L1, . . . , Lp be the distance layers of G constructed from an arbitrarily chosen
vertex v0, satisfying the multi-chain ordering. If there is a CFON∗ coloring that uses 1 color,
then from Observation 20, at most one vertex in each layer is assigned the color 1. There
are two possibilities for a layer Li: either it has no vertices colored 1, or it has exactly one
vertex that is colored 1. In the former case, there is a unique coloring for Li when none of
the vertices in Li are assigned the color 1. In the latter case, we have |Li| many colorings
(for Li) where each coloring has exactly one vertex with color 1 (and the rest are assigned 0).
In total, we have at most |Li| + 1 colorings for each Li. We call all such colorings valid.

The task is to find if there is a sequence of colorings assigned to each layer of G such that
we have a CFON∗ coloring. Notice that the vertices in Li can possibly have neighbors in
the layers Li−1, Li, and Li+1. The question of deciding whether the vertices in Li have a
uniquely colored neighbor entirely depends on the colorings assigned to these three layers.
We say that colorings assigned to three consective layers are good if the vertices in the central
layer have uniquely colored neighbors. We use a dynamic programming based approach to
verify the existence of a CFON∗ coloring for G.

We now construct a layered companion hypergraph G = (V ′, E) with vertices in p + 1
layers. Each layer Ti of G corresponds to the layer Li of G where i ∈ [p] ∪ {0}. Each vertex
in layer Ti of G corresponds to a valid coloring of vertices in Li of G. Hence the number of
vertices in each layer Ti of G is equal to |Li| + 1. We now explain how the hyperedges E of G
are determined.

For 1 ≤ i ≤ p − 1, the vertices x ∈ Ti−1, y ∈ Ti, z ∈ Ti+1 form a hyperedge {x, y, z} if the
corresponding colorings, when assigned to Li−1, Li and Li+1 respectively, ensures that every
vertex in Li has a uniquely colored neighbor. We also have hyperedges {y, z}, where y ∈ T0
and z ∈ T1 are colorings such that when y and z are assigned to L0 and L1 respectively, the
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vertex in L0 sees a uniquely colored neighbor. Similarly, we have hyperedges {x, y}, where
x ∈ Tp−1 and z ∈ Tp are colorings such that when x and y are assigned to Lp−1 and Lp

respectively, all the vertices in Lp see a uniquely colored neighbor.
Since the number of valid colorings is |Li| + 1 for the layer Li, the total number of valid

colorings across all layers is at most 2n. The total number of potential hyperedges to check
is at most O(n3). Once we fix valid colorings xi−1, xi, xi+1 for Li−1, Li, Li+1 respectively,
we can check in O(|Li| · n) ≤ O(n2) time if {xi−1, xi, xi+1} ∈ E . Hence we need O(n5) time
to construct G.

To obtain a CFON∗ coloring for G, we need to construct a sequence of colorings x0 ∈ T0,
x1 ∈ T1, . . ., xp ∈ Tp such that {x0, x1} ∈ E , {xi−1, xi, xi+1} ∈ E for all 1 ≤ i ≤ p − 1, and
finally {xp−1, xp} ∈ E . For this, we use Lemma 22, stated and proved below. Since each
|Ti| = |Li| + 1 ≤ n + 1, and number of layers is at most n, this takes at most O(n4) time.
The construction of G takes O(n5) time and dominates the running time. ◀

▶ Lemma 22. Suppose there is a layered hypergraph G = (V ′, E) with layers T0, T1, T2, . . . , Tp,
where |Ti| ≤ α, for 0 ≤ i ≤ p and p ≤ β. Suppose further that all the hyperedges in E contain
one vertex each from three consecutive layers, or contain one vertex each from T0 and
T1, or contain one vertex each from Tp−1 and Tp. We can determine if there exists a
sequence x0 ∈ T0, x1 ∈ T1, . . ., xp ∈ Tp such that {x0, x1} ∈ E, {xi−1, xi, xi+1} ∈ E for all
1 ≤ i ≤ p − 1, and finally {xp−1, xp} ∈ E in O(α3β) time.

Proof. We start with the vertices in T0. For each vertex x1 ∈ T1, we store a list of predecessors
x0 such that {x0, x1} ∈ E . For 1 ≤ i ≤ p − 1, we do the following at each vertex xi ∈ Ti.
We look at the list of predecessors stored. If xi−1 is a listed predecessor of xi, then we
search for all the hyperedges {xi−1, xi, z}, where z ∈ Ti+1. If we find such a hyperedge
{xi−1, xi, xi+1} ∈ E , then we store xi as a predecessor in the list at xi+1. Finally, for each
xp ∈ Tp, we check if there is a listed predecessor z ∈ Tp−1 of xp such that {z, xp} ∈ E . If
there is any such xp ∈ Tp for which this holds, then there exists a sequence as desired in the
statement of the lemma.

Note that the general step involves going through a list of size at most α at each vertex
xi. For each listed predecessor xi−1, there are potentially at most α hyperedges of the form
{xi−1, xi, z} to check, where z ∈ Ti+1. We need to do this for all the vertices (at most α of
them) of Ti. This gives a time complexity of O(α3) at the i-th layer. Since there are β layers,
the total running time is O(α3β). ◀

We now proceed to the next result that decides in polynomial time whether χON (G) = 2.

▶ Theorem 23 (⋆). Given an interval graph G, we can decide in O(n20) time if χON (G) = 2.

Sketch of Proof. The idea of this proof is similar to the proof of Theorem 21. For a layer
|Li|, we had |Li| + 1 colorings to consider in Theorem 21. Unlike in Theorem 21, we have
more colorings to consider since the vertices can get the colors {0, 1, 2}. We have the following
types of colorings in each layer Li:

Type 1: All the vertices in Li are assigned the color 0. There is only one coloring of Li of
this type.

Type 2: Exactly one vertex is assigned the color 1 or 2 while the rest are assigned the color
0. The number of colorings is 2|Li|.

Type 3: Both the colors 1 and 2 appear exactly once and the rest are assigned the color 0.
The number of colorings is |Li|(|Li| − 1) ≤ |Li|2.
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Type 4: One of the colors 1 or 2 appears at least twice while the other color appears exactly
once. The remaining vertices are assigned the color 0.

Type 5: One of the colors 1 or 2 appears at least twice and all the other vertices are assigned
the color 0.

Due to space constraints, the full proof is omitted. We describe a proof sketch highlighting
the key ideas in the proof below.

The above 5 types are exhaustive. We cannot have a “Type 6” coloring in Li+1 where
there are at least two vertices with color 1 and at least two vertices with color 2. This is
because Observation 19 implies the existence of a vertex v ∈ Li such that N(v) ⊇ Li+1.
This implies that v does not have a uniquely colored neighbor for such a coloring of Li+1.
The number of colorings of Types 1, 2, 3 are polynomial in |Li| while the number of
colorings of Types 4 and 5 are exponential in |Li|. Since we cannot consider an exponential
number of colorings, we consider a polynomial subset of Type 4 and Type 5 colorings
which are representatives of all possible Type 4 and Type 5 colorings.
Given a Type 4 or Type 5 coloring, the key point is that it is enough to fix the colors of
a few vertices that we will refer to as “left-important” and “right-important” vertices.
This allows us to restrict the focus onto a reduced number of representative colorings.
Because of the flexibility offered by the representative colorings, there are some cases
where we have to explore further in order to decide if the graph is CFON∗ colorable using
colors from {0, 1, 2}. This reduces to the problem of testing whether a given subgraph
is CFON∗ colorable using colors from {0, 1}. We use Theorem 21 (with some minor
changes) to accomplish this. This is the last, but critical step that we need to complete
the proof. ◀

Using Theorems 21 and 23, we can now infer Theorem 13.
▶ Remark 24. Recently, the work of Gonzalez and Mann [20] (done simultaneously and inde-
pendently from ours) on mim-width showed that the CFON∗ coloring problem is polynomial-
time solvable on graph classes for which a branch decomposition of constant mim-width can
be computed in polynomial time. This includes the class of interval graphs. We note that
our work gives a more explicit algorithm without having to go through the machinery of
mim-width. We also note that the mim-width algorithm, as presented in [20], requires a
running time in excess of Ω(n300). Hence our algorithm is better in this regard as well.

5 Subclasses of Bipartite Graphs

It is known that there exist bipartite graphs G for which χ∗
ON (G) = Θ(

√
n), where n is

the number of vertices of G. Abel et al. [1] showed that it is NP-complete to decide if k

colors are sufficient to CFON∗ color a planar bipartite graph even when k ∈ {1, 2, 3}. This
implies that CFON∗ coloring is NP-hard on bipartite graphs as well. In this section, we
study CFON∗ coloring on some subclasses of bipartite graphs namely biconvex graphs and
bipartite permutation graphs. We show that CFON∗ coloring is polynomial time solvable on
these classes.

We first define biconvex graphs, followed Lemma 26 by a bound on the CFON* chromatic
number. The proof of Lemma 26 is omitted.

▶ Definition 25 (Biconvex Graph). We say that an ordering σ of X in a bipartite graph
B = (X, Y, E) satisfies the adjacency property if for every vertex y ∈ Y , the neighborhood
N(y) is a set of vertices that are consecutive in the ordering σ of X. A bipartite graph
(X, Y, E) is biconvex if there are orderings of X (with respect to Y ) and Y (with respect to
X) that fulfill the adjacency property.
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▶ Lemma 26 (⋆). If G is a biconvex graph, then χ∗
ON (G) ≤ 3.

▶ Theorem 27. The problem of determining the CFON∗ chromatic number of a given
biconvex graph is solvable in polynomial time.

Proof. Given a biconvex graph G, we show that χ∗
ON (G) ≤ 3. We use the fact that every

induced subgraph of a biconvex graph admits multi-chain ordering [7, 12]. Let G = (V, E)
be a biconvex graph and let V0, V1, . . . , Vq be a partition of vertices V (G) respecting the
multi-chain ordering conditions. Similar to interval graphs, we now characterize graphs that
require one color and two colors. Note that the algorithms in Theorems 21 and 23 work for
biconvex graphs too as the proof is based on the multi-chain ordering property and biconvex
bipartite graphs admit multi-chain ordering property. In fact, the proof is a bit simpler
because of the fact that each Vi is an independent set and we do not need to take care of the
edges within a part Vi, as in the case of interval graphs. ◀

The class of bipartite permutation graphs [7] are a subclass of biconvex, and also admit
multi-chain ordering property. Hence it follows from Theorem 27 that the problem is
polynomial time solvable on bipartite permutation graphs.

▶ Corollary 28. The problem of determining the CFON∗ chromatic number of a given
bipartite permutation graph is solvable in polynomial time.

6 Conclusion

In this paper, we study CFON∗ coloring on claw-free graphs, interval graphs and biconvex
graphs.

We first show that if G is a K1,k-free graph with maximum degree ∆, then χ∗
ON (G) =

O(k2 log ∆). We then show that if the minimum degree of G is Ω( ∆
logϵ ∆ ) for some ϵ ≥ 0,

then χ∗
ON (G) = O(log1+ϵ ∆). The tightness of these bounds is a natural open question.

We show that CFON∗ coloring is polynomial time solvable on interval graphs and biconvex
graphs, critically using the fact that they admit multi-chain ordering property. Using a
similar approach, it can be shown that the full coloring variant of the problem (i.e., CFON
coloring) is polynomial time solvable on these graph classes. It is known that CFON∗ coloring
is NP-hard on planar bipartite graphs and there exist bipartite graphs on n vertices that
requires Θ(

√
n) colors. It may be of interest to study the problem on other subclasses of

bipartite graphs, such as convex bipartite graphs, chordal bipartite graphs and tree-convex
bipartite graphs.
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1 Introduction

1.1 The Skolem Problem
A (rational) linear recurrence sequence (LRS) u = ⟨un⟩∞

n=0 is a sequence of rational numbers
satisfying the equation

un+d = c1un+d−1 + · · · + cd−1un+1 + cdun (1)

for all n ∈ N, where the coefficients c1, . . . , cd are rational numbers and cd ̸= 0. We say that
the above recurrence has order d. We moreover say that an LRS is simple if the characteristic
polynomial of its minimal-order recurrence has simple roots.

The celebrated theorem of Skolem, Mahler, and Lech (see [15]) describes the structure of
the set {n ∈ N : un = 0} of zero terms of an LRS as follows:

▶ Theorem 1. Given a linear recurrence sequence u = ⟨un⟩∞
n=0, the set of zero terms is a

union of finitely many arithmetic progressions, together with a finite set.

The statement of Theorem 1 can be refined by considering the notion of non-degeneracy of
an LRS. An LRS is non-degenerate if in its minimal recurrence the quotient of no two distinct
roots of the characteristic polynomial is a root of unity. A given LRS can be effectively
decomposed as an interleaving of finitely many non-degenerate sequences, some of which may
be identically zero. The core of the Skolem-Mahler-Lech Theorem is the fact that a non-zero
non-degenerate linear recurrence sequence has finitely many zero terms. Unfortunately, all
known proofs of this last assertion are ineffective: it is not known how to compute the finite
set of zeros of a given non-degenerate linear recurrence sequence. It is readily seen that the
existence of a procedure to do so is equivalent to the existence of a procedure to decide
whether an arbitrary given LRS has a zero term. The problem of deciding whether an LRS
has a zero term is variously known as the Skolem Problem or the Skolem-Pisot Problem.

Decidability of the Skolem Problem is known only for certain special cases, based on the
relative order of the absolute values of the characteristic roots. Say that a characteristic root
λ is dominant if its absolute value is maximal among all the characteristic roots. Decidability
is known in case there are at most 3 dominant characteristic roots, and also for recurrences
of order at most 4 [26, 34]. However for LRS of order 5 it is not currently known how to
decide the Skolem Problem.

The Skolem Problem, along with closely related questions such as the Positivity Problem,
is intimately connected to various fundamental topics in program analysis and automated
verification, such as the termination and model checking of simple while loops [3, 18, 27] or
the algorithmic analysis of stochastic systems [1, 2, 5, 13, 28]. It also appears in a variety of
other contexts, such as formal power series [29, 33] and control theory [9, 16]. The Skolem
Problem is often used as a reference to establish hardness of other open decision problems; in
addition to some of the previously cited papers, the articles [4, 14], for example, specifically
invoke hardness of the Skolem Problem for simple LRS of order 5. Thus far, the only known
complexity bound for the Skolem Problem is NP-hardness [10].

1.2 The Skolem Conjecture and the Bi-Skolem Problem
The notion of linear recurrence equally well makes sense for a bi-infinite sequence u =
⟨un⟩∞

n=−∞ of rational numbers: one defines u to be a linear recurrent bi-sequence (LRBS)
if it satisfies the recurrence (1) for all n ∈ Z. Note that every LRS u extends uniquely to
an LRBS satisfying the same recurrence (one obtains such an extension by “running the
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recurrence backwards”). The notions of simplicity and non-degeneracy carry over in the
obvious way to LRBS. We remark also that the Skolem-Mahler-Lech Theorem remains valid
for LRBS – a non-degenerate LRBS has finitely many zeros. The analog of the Skolem
Problem for LRBS is the Bi-Skolem Problem, which asks, for a given LRBS u = ⟨un⟩∞

n=−∞,
whether there exists n ∈ Z with un = 0.

A major motivation to consider the Bi-Skolem Problem is the existence of the Exponential
Local-Global Principle, a conjecture introduced by Thoralf Skolem in 1937 [32]. To formulate
the conjecture we first make some observations about the value set of an LRBS. Given a
non-zero integer b, let Z[ 1

b ] be the subring of Q obtained by adjoining 1
b to Z. We note

that every rational LRBS takes values in Z[ 1
b ] for some b. Indeed, if u = ⟨un⟩∞

n=−∞ satisfies
recurrence (1) and Z[ 1

b ] contains the coefficients c1, . . . , cd, the reciprocal c−1
d of the last

coefficient, and the initial terms u0, . . . , ud−1, then by running the recurrence forwards and
backwards from the initial terms we see that un ∈ Z[ 1

b ] for all n ∈ Z.

▶ Skolem Conjecture. Let u be a simple rational LRBS taking values in the ring Z[ 1
b ] for

some integer b. Then u has no zero iff, for some integer m ≥ 2 with gcd(b, m) = 1, we have
that un ̸≡ 0 mod m for all n ∈ Z.

In other words, the Skolem Conjecture asserts that if a simple LRBS fails to have a zero,
then this is witnessed modulo m for some m. The truth of this conjecture immediately entails
the existence of an algorithm to solve the Bi-Skolem Problem for simple LRBS: simply search
in parallel either for a zero of the LRBS, or for a number m substantiating the absence of
zeros. If the Skolem Conjecture holds, then the search must necessarily eventually terminate.

There exists a substantial body of literature on the Skolem Conjecture, including proofs
of a variety of special cases. In particular, the Skolem Conjecture has been shown to hold
for simple LRBS of order 2 [6], and for certain families of LRBS of order 3 [30, 31]. In a
different but related vein, Bertók and Hajdu have shown that, in some sense, the Skolem
Conjecture is valid in “almost all” instances [7, 8].

1.3 Main Results
It is immediate that the Bi-Skolem Problem reduces to the Skolem Problem: an LRBS
⟨un⟩∞

n=−∞ has a zero term if and only if at least one of the one-way infinite sequences ⟨un⟩∞
n=0

and ⟨u−n⟩∞
n=0, both of which are LRS, has a zero term. However it is open whether there is a

reduction in the other direction (equivalently, it is open whether an oracle for the Bi-Skolem
Problem can be used to determine all the zeros of a non-degenerate LRBS). Indeed, an
oracle for the Bi-Skolem Problem would appear to be of little utility in deciding the Skolem
Problem for an LRS whose bi-completion happens to harbour a zero at a negative index. It
is likewise not known (in spite of the similar nomenclature) whether the truth of the Skolem
Conjecture implies decidability of the Skolem Problem.

Our first main result is as follows:

▶ Theorem 2. The Skolem Problem reduces to the Bi-Skolem Problem subject to the weak
p-adic Schanuel Conjecture.

Schanuel’s Conjecture [21, Pages 30-31] is a unifying conjecture in transcendental number
theory that plays a key role in the study of the exponential function over both the real and
complex numbers. In particular, a celebrated paper of Macintyre and Wilkie [23] obtains
decidability of the first-order theory of the structure (R; <, · , +, exp) assuming Schanuel’s
Conjecture over R. A p-adic version of the Schanuel Conjecture, referring to the exponential
function on the ring Zp of p-adic integers, was formulated in [12]. This conjecture was shown
in [24] to imply decidability of the first-order theory of the structure (Zp; <, · , +, exp).

MFCS 2022
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Since the reduction in Theorem 2 specialises to simple LRBS we obtain:

▶ Theorem 3. The Skolem Problem for simple LRS is decidable subject to the weak p-adic
Schanuel Conjecture and the Skolem Conjecture.

The proof of Theorem 3 gives an algorithm that computes the set of zeros of a non-degenerate
simple LRBS. The algorithm moreover produces an unconditional certificate that its output
is correct, i.e., that all zeros have been found. This certificate consists of a partition of the
input LRBS into finitely many subsequences such that each subsequence contains at most
one zero. For a subsequence with no zero, the algorithm finds an integer m such that the
subsequence is non-zero modulo m; for a subsequence with a zero, the algorithm provides a
prime p such that p divides the non-zero terms a well-described (upper-bounded) number of
times. The conjectural aspect of Theorem 3 solely concerns the proof that the algorithm
terminates on all input sequences.

We have implemented our algorithm within the Skolem tool,1 which enumerates the set
of zeros of a given non-degenerate simple LRS, and produces an independent (conjecture-free)
certificate that all zeros have been found. Preliminary experiments, which we present in
Section 5, point to the practical applicability of our algorithm.

1.4 Related Work
The decidability of the Skolem Problem is generally considered to have been open since the
early 1930s, as the p-adic techniques underpinning the Skolem-Mahler-Lech Theorem were
well understood already at the time not to be effective. As noted earlier, a breakthrough
establishing decidability at order 4 occurred in the mid-1980s [26, 34], making key use of
Baker’s Theorem on linear forms in logarithms of algebraic numbers. Very recently, we
have shown that the Skolem Problem is decidable at order 5 assuming only the Skolem
Conjecture; and in the same paper we also obtained unconditional decidability for reversible
LRS2 of order 7 or less [22]. A minor contribution of the present paper is to improve on the
former result by establishing a Turing reduction from the Skolem Problem at order 5 to the
Bi-Skolem Problem for simple LRBS of order 5; this is the content of Theorem 12.

2 Technical Background

2.1 Computation in Number Fields
A number field K is a finite-degree extension of Q. For computational purposes, such a field
can be represented in the form Q[X]/(g(X)), where g(X) is the minimal polynomial of a
primitive element of K. With such a representation it is straightforward to do arithmetic
in K, including solving systems of linear equations with coefficients in K. Moreover, given
a polynomial f(X) ∈ Q[X], one can compute a representation in the above form of the
splitting field K of f over Q, together with representations of the roots of f as elements of
K [20].

In addition to basic arithmetic and linear algebra in K, we wish to determine whether
some given elements λ1, . . . , λs ∈ K are multiplicatively independent and, if not, to exhibit
a1, . . . , as ∈ Z such that λa1

1 · · · λas
s = 1. For this we can use the following result, which shows

that if such a multiplicative relation exists then there exists one in which the exponents
a1, . . . , as have absolute value at most B for some bound B computable from the height of
the λi and the degree of the number field K.

1 Skolem can be experimented with online at https://skolem.mpi-sws.org/.
2 An integer LRS is reversible if its completion as an LRBS only takes on integer values.

https://skolem.mpi-sws.org/
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▶ Theorem 4 (Masser [25]). Let K be a number field of degree D over Q. For s ≥ 1 let
λ1, . . . , λs be non-zero elements of K having absolute logarithmic Weil height at most h over
Q. Then the group of multiplicative relations

L = {(k1, . . . , ks) ∈ Zs : λk1
1 · · · λks

s = 1} (2)

is generated (as an additive subgroup of Zs) by a collection of vectors all of whose entries

have absolute value at most (csh)s−1Ds−1 (log(D + 2))3s−3

(log log(D + 2))3s−4 , for some absolute constant c.

2.2 p-adic Numbers
Let p be a prime. Define the p-adic valuation vp : Q → Z ∪ {∞} by vp(0) = ∞ and
vp

(
pν · a

b

)
= ν for all a, b ∈ Z \ {0} such that gcd(ab, p) = 1. In other words, vp(x) gives

the exponent of p as a divisor of x ∈ Q. The map vp determines an absolute value | · |p on
Q, where |x|p := p−vp(x) (with the convention that |0|p = p−∞ = 0). Due to the fact that
vp(a + b) ≥ min(vp(a), vp(b)), we have the strong triangle equality: |a + b|p ≤ max(|a|p, |b|p)
for all a, b ∈ Q. In other words, | · |p is a non-Archimedean absolute value. The field
Qp of p-adic numbers is the completion of Q with respect to | · |p. The absolute value
| · |p extends to a non-Archimedean absolute value on Qp. The ring of p-adic integers is
Zp := {x ∈ Qp : |x|p ≤ 1}. The ring Zp contains a unique maximal ideal pZp, with the
quotient Zp/pZp being isomorphic to Fp (the finite field with p elements). When we refer to
elements of Zp modulo p we refer to their image under this quotient map.

Given a sequence of numbers ⟨an⟩∞
n=0 in Zp, the infinite sum

∑∞
n=0 an converges to

an element of Zp if and only if |an|p → 0 (equivalently, vp(an) → ∞) as n → ∞. It
follows that given a sequence ⟨an⟩∞

n=0 in Zp with |an|p → 0, the corresponding power series
f(X) =

∑∞
j=0 ajXj defines a function f : Zp → Zp.

Consider a monic polynomial g(X) ∈ Z[X] with non-zero discriminant ∆(g). Let p be a
prime that does not divide ∆(g). Denote by g(X) ∈ Fp[X] the polynomial obtained from
g by replacing each coefficient with its residue modulo p. It is well known that a sufficient
condition for g to split completely over Zp is that g split over Fp. Indeed, in this situation
one can use Hensel’s Lemma [17, Theorem 3.4.1] to “lift” each of the roots of g in Fp to a
distinct root in Zp. Moreover, by the Chebotarev density theorem [19] there are infinitely
many primes p for which g splits over Fp. Hence there are infinitely many primes p such
that g splits over Zp. Note that the last statement holds even without the assumption that
∆(g) ̸= 0, since g ∈ Z[X] splits over Zp whenever g

gcd(g,g′) ∈ Z[X] splits over Zp (and the
latter has non-zero discriminant).

Let p be an odd prime.3 The p-adic exponential is defined as exp(x) =
∞∑

k=0

xk

k! , which

converges for all x ∈ pZp. The p-adic logarithm is defined as log(x) =
∞∑

k=0
(−1)k+1 (x − 1)k

k
,

which converges for all x ∈ 1 + pZp. For x, y ∈ pZp we have exp(x + y) = exp(x) exp(y) and
for x, y ∈ 1 + pZp we have log(xy) = log(x) + log(y). Indeed we have that exp and log yield
mutually inverse isomorphisms between the additive group pZp and multiplicative group
1 + pZp.

3 We omit the prime p = 2 to avoid special cases in the facts below.

MFCS 2022
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Schanuel’s Conjecture for the complex numbers is a powerful unifying principle in
transcendence theory. We will need the following p-adic version of the weak form of Schanuel’s
Conjecture, which can be found, e.g., as [12, Conjecture 3.10].

▶ Conjecture 5 (Weak p-adic Schanuel Conjecture). Let α1, . . . , αs ∈ 1+pZp be algebraic over
Q and such that log α1, . . . , log αs are linearly independent over Q. Then log α1, . . . , log αs

are algebraically independent over Q, i.e., for every non-zero polynomial P ∈ Qp[X1, . . . , Xs]
whose coefficients are algebraic over Q, we have that P (log α1, . . . , log αs) ̸= 0.

A known special case of Conjecture 5 is the following result of Brumer [11], which is a
p-adic analog of Baker’s Theorem on linear independence of logarithms of algebraic numbers.

▶ Theorem 6. Let α1, . . . , αs ∈ 1+pZp be algebraic over Q and such that log α1, . . . , log αs are
linearly independent over Q. Then β0 + β1 log α1 + · · · + βs log αs ̸= 0 for all β0, . . . , βs ∈ Qp

that are algebraic over Q and not all zero.

3 p-adic Power-Series Representation of LRBS

Let u = ⟨un⟩∞
n=−∞ be an LRBS of rational numbers satisfying the linear recurrence

un+d = c1un−d−1 + · · · + cdun (n ∈ Z),

where cd ̸= 0. For the purposes of computing the zeros of u we can assume without loss
of generality that the coefficients c1, . . . , cd of the recurrence are integers. (It is easy to see
that for any integer ℓ such that ℓci ∈ Z for i ∈ {1, . . . , d}, the scaled sequence ⟨ℓnun⟩∞

n=−∞
satisfies an integer recurrence.) Write g(X) := Xd − c1Xd−1 − · · · − cd for the characteristic
polynomial of the recurrence and let

A :=


c1 · · · cd−1 cd

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

 , α :=
(
0 · · · 0 1

)
, and β :=


ud−1

...
u1
u0

 .

We now have the matrix-exponential representation un = αAnβ for all n ∈ Z. (Here A is
known as the companion matrix of the recurrence.)

The key tool in our approach – which also underlies the proof of the Skolem-Mahler-Lech
Theorem – is the representation of the LRBS u in terms of a power series f(X) =

∑∞
j=0 ajXj

with coefficients in Zp. In defining f we work with an odd prime p such that (i) p does
not divide the constant term cd of the recurrence; (ii) p does not divide the discriminant
∆
(

g
gcd(g,g′)

)
; (iii) the characteristic polynomial g splits over Zp. As explained in Section 2.2,

there are infinitely many such primes. Moreover, for a particular prime p that does not
divide ∆

(
g

gcd(g,g′)

)
, we can easily verify whether g splits over Zp, since this is equivalent to

g
gcd(g,g′) splitting over Fp.

Write λ1, . . . , λs ∈ Zp for the distinct roots of g. Let K be the subfield of Qp generated by
λ1, . . . , λs. Then K is a number field and thus we can compute symbolically in K as described
in Section 2.1. It is well known that the sequence u admits an exponential-polynomial
representation

un =
s∑

i=1
Qi(n)λn

i (n ∈ Z) , (3)
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where Qi ∈ K[X] has degree strictly less than the multiplicity of λi as a root of g. The
coefficients of each polynomial Qi can be computed as the unique solution of the system of
linear equations that arises by substituting n = 0, . . . , d − 1 in Equation (3) (where, recall, d

is the order of the recurrence).
The companion matrix has determinant det(A) = ±cd, which is non-zero modulo p; hence

A is invertible modulo p. Let L be the least positive integer such that AL ≡ I mod p. Being
an eigenvalue of AL, λL

i ≡ 1 mod p for all i ∈ {1, . . . , s} and hence the p-adic logarithm
log λL

i is defined for all i ∈ {1, . . . , s}. We thus obtain the following representation of the
subsequence ⟨uLn⟩∞

n=−∞ in terms of the p-adic exponential and logarithm functions:

uLn =
s∑

i=1
Qi(Ln)λLn

i =
s∑

i=1
Qi(Ln) exp(n log λL

i ) .

Now consider the power series f(X) =
∑∞

j=0 ajXj such that

f(x) :=
s∑

i=1
Qi(Lx) exp(x log λL

i ) (4)

for all x ∈ Zp. Then we have uLn = f(n) for all n ∈ Z. Moreover, since aj = 1
j! f

(j)(0), by
taking derivatives in (4) we obtain the following expression for the coefficients of f :

aj = 1
j!

s∑
i=1

j∑
k=0

(
j

k

)
LkQ

(k)
i (0)

(
log λL

i

)j−k
. (5)

In the remainder of this section we recall an alternative formula for the coefficients of f as
p-adically convergent sums of rational numbers. This provides a simple method to compute
vp(aj) that avoids computing p-adic approximations of the characteristic roots, as would be
needed if we were to directly use (5).

Recall that we have AL ≡ I mod p. Let us say that AL = I +pB for some integer matrix
B. Then we have:

uLn = αALnβ

= α(I + pB)nβ

=
n∑

k=0

(
n

k

)
pkαBkβ

=
n∑

k=0

n(n − 1) . . . (n − k + 1)
k! pkαBkβ

=
∞∑

k=0

n(n − 1) . . . (n − k + 1)
k! pkαBkβ

=
∞∑

k=0

∞∑
j=0

ck,jnj pk

k! for certain ck,j ∈ Z with ck,j = 0 for j > k

=
∞∑

j=0

∞∑
k=j

ck,jnj pk

k! .

It remains to see why one can reverse the order of summation in the last line above and why
the resulting sums converge in Zp. For this we can apply [17, Proposition 4.1.4], for which
we require that the summand ck,jnj pk

k! converge to 0 as j → ∞ and converge to 0 uniformly
in j as k → ∞. But this precondition follows from the fact that vp(k!) < k

p−1 , from which

we have vp

(
ck,jnj pk

k!

)
≥ (p−2)k

p−1 for all k ≥ j.

MFCS 2022
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Now consider the power series f̃(X) :=
∑∞

j=0 bjXj where

bj :=
∞∑

k=j

ck,j
pk

k! ∈ Zp . (6)

By the above considerations we have that vp(bj) ≥ (p−2)j
p−1 and hence f̃ converges on Zp and

satisfies f̃(n) = uLn for all n ∈ Z. In particular, the power series f and f̃ agree on Z and
hence (e.g., by [17, Proposition 4.4.3]) are identical, i.e., aj = bj for all j ∈ N. Thus we can
use Equation (6) to exactly compute vp(aj) for any j such that aj ̸= 0.

4 Computing all the Zeros of an LRBS

In this section we show, assuming the weak p-adic Schanuel Conjecture, that the set of all
zeros of a non-degenerate LRBS is computable using an oracle for the Bi-Skolem Problem. In
particular, this gives a Turing reduction of the Skolem Problem to the Bi-Skolem Problem.

▶ Proposition 7. Let f : Zp → Zp be given by a convergent p-adic power series f(X) =∑∞
k=0 akXk, with coefficients in Zp. Suppose that ℓ is a positive integer such that a0 = · · · =

aℓ−1 = 0 and aℓ ≠ 0. Then, writing ν := vp(aℓ), we have f(pν+1x) ̸= 0 for all non-zero
x ∈ Zp.

Proof. Let x ∈ Zp be non-zero. For every m > ℓ we have

vp(aℓ(pν+1x)ℓ) = ν + ℓ(ν + 1) + vp(xℓ)
< m(ν + 1) + vp(xm) (since ℓ < m and x ̸= 0)
≤ vp(am(pν+1x)m) .

It follows that for all m ≥ ℓ,

vp

(
m∑

k=0
ak(pν+1x)k

)
= vp(aℓ(pν+1x)ℓ) .

Letting m tend to infinity, we have vp(f(pν+1x)) = vp(aℓ(pν+1x)ℓ) < ∞ and we conclude
that f(pν+1x) ̸= 0. ◀

▶ Proposition 8. Let u = ⟨un⟩∞
n=−∞ be a non-zero LRBS consisting of rational numbers.

Assuming the weak p-adic Schanuel Conjecture, one can compute a positive integer M such
that uMn ̸= 0 for all n ∈ Z \ {0}.

Proof. As explained in Section 3, there exists a prime p and a positive integer L such that
uLn = f(n) for all n ∈ Z, for the p-adic power series f(X) =

∑∞
j=0 ajXj whose coefficients

are given by the formula (4). Recall that in this formula the λi are the characteristic roots
of u and the Qi are the coefficients appearing in the exponential polynomial formula (3).

Pick a maximal multiplicatively independent subset of characteristic roots. Without loss
of generality we can write this set as {λ1, . . . , λt} for some t ≤ s. As discussed in Section 2,
given the characteristic polynomial of the recurrence, we can compute such a set, as well as
integers mi and ni,j for i ∈ {1, . . . , s} and j ∈ {1, . . . , t}, where the mi are non-zero, such
that for all i ∈ {1, . . . , s} we have

λmi
i = λ

ni,1
1 · · · λ

ni,t

t .
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Raising the left- and right-hand sides in the above equation to the power L and then taking
(p-adic) logarithms, we get that

log λL
i = ni,1

mi
log λL

1 + · · · + ni,t

mi
log λL

t

for all i ∈ {1, . . . , s}. In other words, for all i ∈ {1, . . . , s} we have that log λL
i =

ℓi(log λL
1 , . . . , log λL

t ) for an effectively computable linear form ℓi(X1, . . . , Xt) with rational
coefficients.

For j ∈ N, define Fj ∈ K[X1, . . . , Xt] by

Fj(X1, . . . , Xt) := 1
j!

s∑
i=1

j∑
k=0

(
j

k

)
LkQ

(k)
i (0)ℓi(X1, . . . , Xt)j−k .

Then by Equation (5) we have

aj = Fj

(
log λL

1 , . . . , log λL
t

)
. (7)

We claim that aj ̸= 0 if Fj is not identically zero. Since the coefficients of Fj are algebraic
over Q and the set {log λ1, . . . , log λt} is linearly independent over Q, the claim follows
immediately from Equation 7 and the weak p-adic Schanuel Conjecture (Conjecture 5).

We can now use the following procedure to compute a positive integer M such that
uMn ̸= 0 for all n ∈ Z:
1. Successively compute the polynomials F0, F1, . . . .
2. Let j0 be the least index j such that Fj is not identically zero. Compute ν := vp(aj0)

using the series (6). The weak p-adic Schanuel Conjecture implies that aj0 ̸= 0 and hence
the computation of vp(aj0) terminates.

3. Set M := Lpν+1. Applying Proposition 7, we have uMn ̸= 0 for all non-zero integers n.

Note that j0 is well defined in Line 2, since if all the aj were zero, then u would be the
identically zero sequence, contradicting our initial assumption. ◀

A couple of remarks about the proof of Proposition 8 are in order.

▶ Remark 9. Observe that the p-adic Schanuel Conjecture is only required for termination of
the procedure described at the end of the proof. If the procedure terminates then it is certain
that aj0 is the first non-zero coefficient of the power series (6) and hence the outputted value
of M is guaranteed to be such that uMn ̸= 0 for all non-zero integers n.

▶ Remark 10. Examining the expression (5) and noting that Q
(k)
i (0) = 0 for k > deg(Qi),

we see that the sequence ⟨j!aj⟩∞
j=0 is given by an exponential polynomial corresponding to

a (non-rational) LRS of order d and hence at least one of a0, a1, . . . , ad−1 is non-zero. This
means that the index j0 in Line 2 of the above procedure is at most d − 1.

▶ Theorem 11. Assuming the weak p-adic Schanuel Conjecture, there is a Turing reduction
from the Skolem Problem to the Bi-Skolem Problem.

Proof. We present a recursive procedure that uses an oracle for the Bi-Skolem Problem to
compute all the zeros of a non-degenerate LRBS that is not identically zero.

Given a non-degenerate LRBS u = ⟨un⟩∞
n=−∞, we use the oracle for the Bi-Skolem

Problem to determine whether there exists n ∈ Z with un = 0. If the oracle outputs that
no such n exists then the procedure terminates. Otherwise one searches for n0 ∈ Z such
that un0 = 0; clearly the search is guaranteed to terminate. Having found n0, by reindexing
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the sequence u we can suppose that n0 = 0. Now we use Proposition 8 to compute a
positive integer M such that uMn ̸= 0 for all n ̸= 0. We then divide the sequence u into
M subsequences u(0), . . . , u(M−1), where for j ∈ {0, . . . , M − 1}, the j-th subsequence is
given by u

(j)
n = uMn+j for all n ∈ Z. We know that n = 0 is the only zero of u(0). We now

recursively call the procedure to find all zeros of the remaining subsequences u(1), . . . , u(M−1).
Observe that the computation must terminate since each recursive call involves discovering a
new zero of the original sequence u, and by the version of the Skolem-Mahler-Lech Theorem
for LRBS, there are only finitely many such zeros. ◀

If we restrict to recurrences of order at most 5 then we obtain an unconditional version
of Theorem 11.

▶ Theorem 12. There is a Turing reduction from the Skolem Problem for LRS of order at
most 5 to the Bi-Skolem Problem for simple LRBS of order at most 5.

Proof. As summarised in Appendix A, the Skolem Problem can be decided for all LRS
⟨un⟩∞

n=0 of order at most 5 except those that (after scaling) have a closed form un =
∑5

i=1 αiλ
n
i

satisfying the following three conditions, where λ1, . . . , λ5 are algebraic integers that generate
a number field K := Q(λ1, . . . , λ5):
1. α1 ̸= −α3;
2. λ1λ2 = λ3λ4;
3. there is a prime ideal p in OK that divides λ1 and λ3 but not λ2, λ4, λ5.

The theorem at hand is proven using the procedure described in the proof of Theorem 11,
which uses as a subroutine the procedure described in Proposition 8. To avoid relying on the
weak p-adic Schanuel Conjecture, it suffices to give an unconditional proof of the termination
of the latter procedure when invoked on LRBS whose closed-form representation satisfies the
above three conditions. In other words, we must show (unconditionally) that for such LRBS
one can compute a positive integer M such that uMn ̸= 0 for all n ∈ Z \ {0}.

Let p be a prime satisfying Conditions (i)–(iii) listed in Section 3. In particular, we have
an embedding of K into Qp. Recall from Section 3 that there exists a positive integer L such
that uLn = f(n) for a p-adic power series f(X) =

∑∞
j=0 ajXj such that a1 =

∑5
i=1 αi log λL

i .
The termination of the procedure described in the proof of Proposition 8 will be assured
if a1 ̸= 0. We claim that for an LRBS satisfying the above three conditions, one has
a1 =

∑5
i=1 αi log λL

i ̸= 0.
To prove the claim, suppose for a contradiction that

∑5
i=1 αi log λL

i = 0. Raising to the
L-th power and then taking logarithms in Condition 2 above, we also have log λL

1 + log λL
2 −

log λL
3 − log λL

4 = 0. Combining the two previous equations to cancel log λL
1 we have

(α2 − α1) log λL
2 + (α3 + α1) log λL

3 + (α4 + α1) log λL
4 + α5 log λL

5 = 0 . (8)

From Condition 1 (α1 ̸= −α3), we have that the coefficient of log λL
3 in Equation (8) is

non-zero. Applying Theorem 6, possibly several times, we eventually obtain an equation∑5
i=2 βi log λL

i = 0 such that the βi are integers and β3 ≠ 0. Equivalently, we have a
multiplicative relation among the characteristic roots that involves λ3 but not λ1. But this
contradicts Condition 3 and the proof is concluded. ◀

▶ Theorem 13. The Skolem Problem for simple LRS is decidable assuming the Skolem
Conjecture and the weak p-adic Schanuel Conjecture. The Skolem Problem for LRS of order
at most 5 is decidable assuming the Skolem Conjecture.
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▶ Remark 14. Given that the Skolem Conjecture remains open in general, it is worth
remarking that the proof of Theorem 13 sustains the following more general formulation:
Consider a class C of simple LRBS that is closed under taking subsequences and under
translations. If the Skolem Conjecture holds for C then, assuming the weak p-adic Schanuel
Conjecture, the Skolem Problem is decidable over LRS in C.

5 The Skolem Tool

We have implemented our algorithm in the Skolem tool, which finds all zeros (at both
positive and negative indices) for simple integer LRS, and produces independent certificates
guaranteeing that there are no further zeros. Even though we do not have complexity
bounds, Skolem can efficiently handle many interesting examples, including several from the
literature for which no proof technique was previously known to apply. Our tool is available
online at https://skolem.mpi-sws.org and includes several built-in examples.

The implementation is written in Python, using the SageMath computer-algebra extension.
This allows for the efficient and exact manipulation of mathematical objects, including
elements of Zp. Python handles integers of arbitrary sizes seamlessly, making it especially
suitable for our purposes, since even small examples can give rise to very large numbers
within the inner workings of our algorithm.

▶ Example 15. Consider the LRS from [22, Example 2.4]:

un+5 = 9un+4 − 10un+3 + 522un+2 − 4745un+1 + 4225un

with initial terms (for n = 0, 1, 2, 3, 4) of ⟨−30, −27, 0, 469, 1762⟩. It is shown in [22] to have
a unique zero at index 2 by being non-zero modulo 12625 at all indices larger than 2. The
Skolem tool establishes this in a simpler way: after finding u2 = 0, the tool calculates that
there are no zeros in ⟨u2+14n⟩∞

n=−∞ for n ̸= 0. Then the tool computes that ⟨uk+14n⟩∞
n=−∞

is non-zero modulo 29 for each even k ̸= 2, and non-zero modulo 2 for each odd k (where
0 ≤ k ≤ 13). Observe that the computed modulo classes, and thus the resulting certificate,
is much smaller than those arising from 12625 as used in [22].

▶ Example 16. Consider the LRS from [22, Example 2.5]:

un+6 = 6un+5 − 26un+4 + 66un+3 − 130un+2 + 150un+1 − 125un

with initial terms (for n = 0, 1, 2, 3, 4, 5) of ⟨0, 3, 11, −12, −125, −177⟩, which was established
at the time of writing to lie beyond the reach of existing known techniques. The Skolem
tool is able to show using the methods developed in the present paper that there are indeed
no further zeros (other than u0 = 0).

▶ Example 17. Consider the reversible order-8 LRS from [22, Example 3.5]:

un+8 = 6un+7 − 25un+6 + 66un+5 − 120un+4 + 150un+3 − 89un+2 + 18un+1 − un

with initial terms (for n = 0, . . . , 7) of ⟨0, 0, −48, −120, 0, 520, 624, −2016⟩, which likewise
was established at the time to lie beyond the reach of existing techniques. Skolem shows
that there are no zeros other than those lying at indices 0, 1, and 4.
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Table 1 Table showing the distribution of outcomes by order. The line between orders 6 and 7
shows the boundary beyond which more than 50% of runs timeout. The second experiment shows
the timeout rate when the timeout is increased to 60s · order (“degenerate” and “not-simple” counts
omitted as the distribution is similar to the 60s timeout experiment and unaffected by the timeout).

Timeout of 60 seconds Timeout of 60 · order seconds
Order Total Success Degen-

erate
Not

simple
Timeout Timeout

%
Total Success Timeout Timeout

%
2 9250 8836 358 50 0 0.00% 1245 1200 0 0.00%
3 8995 8919 74 2 0 0.00% 1327 1322 0 0.00%
4 9195 9157 35 2 1 0.01% 1395 1392 0 0.00%
5 9188 8700 15 3 470 5.12% 1303 1290 11 0.84%
6 9172 4905 10 6 4251 46.35% 1318 952 366 27.77%
7 9213 1339 12 0 7862 85.34% 1328 310 1016 76.51%
8 9157 378 10 0 8769 95.76% 1249 73 1173 93.92%
9 9143 87 4 3 9049 98.97% 1330 18 1312 98.65%
10 9047 25 8 1 9013 99.62% 1294 7 1286 99.38%

Total 82360 42346 526 67 39415 47.86% 11789 6564 5164 43.80%

5.1 Testing

The Skolem tool was tested on a suite of random LRS, with the order taken uniformly
between 2 and 10 and the coefficients taken uniformly at random between −20 and 20. Tests
were run for 48 hours using a 60-second timeout4, generating 82367 test instances.5

The results are presented in Tables 1 and 2. In particular, from order 7 onwards the tool
is unable to handle more than half of the instances within one minute, with the timeout
percentage jumping significantly from order 6. Both degenerate and non-simple LRS instances
are very sparse, and as expected the higher the order the fewer such instances were randomly
produced.

The experiments were re-run using a timeout of 60 · order seconds (i.e., ranging from 2–10
minutes) in order to determine whether the 60-second timeout was too strict. The timeout
percentage does decrease, but the overall pattern shows that the vast majority of LRS of
order 7 and above could not be handled to completion before the timeout.

Table 2 presents statistical information. In the main experiment the average time is below
9 seconds for order-6 examples that succeed within 60 seconds. However, the decrease from
order-8 onwards is explained by there being significantly fewer examples succeeding within
60 seconds. On average there are very few zeros (as can be expected) and those that do
occur are almost always those occurring within the initial terms (the largest zero is nearly
always at index less than the order).

The average maximum jump step used (i.e., M such that ⟨uMn⟩ has no zeros for n ̸= 0
and u0 = 0) is observed on average to grow with the order (except at order 10 with only 25
successful samples).

4 Testing was conducted using SageMath 9.5 in Docker on a Dell PowerEdge M620 blade equipped with
2× 3.3 GHz Intel Xeon E5-2667 v2 (2×8 cores, 32 with hyper-threading) and 256GB ram. Testing was
restricted to 16 parallel threads (50% of the computer’s resources) for institutional reasons.

5 7 instances were discarded: 6 happened to be the zero sequence, one resulted in an exception (outside
of the main tool code) which was later fixed.
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Table 2 Table listing statistical information for successful runs, by order. Line between orders
6 and 7 shows the boundary beyond which more than 50% of runs timeout, resulting in skewed
analysis for the subsequent rows. For the second experiment, with timeout of 60 · order seconds,
only the mean time is shown as there are fewer data points.

Order mean
time

(seconds)

mean
count of

zeros

max
count of

zeros

mean
max
zero

max
zero

index

mean
tree

depth

mean
max

jump

mean time
(seconds)

60s · order
2 0.03 0.06 1 0.63 6 1.06 5.11 0.03
3 0.05 0.08 3 1.03 5 1.08 13.56 0.06
4 0.19 0.10 3 1.58 7 1.10 37.05 0.22
5 4.82 0.11 2 2.05 6 1.11 107.39 10.07
6 8.95 0.20 2 2.58 7 1.20 254.12 55.36
7 11.72 0.30 2 2.80 9 1.30 482.34 70.19
8 8.07 0.35 2 3.51 8 1.35 533.92 68.21
9 7.38 0.38 1 4.24 8 1.38 689.33 138.40

10 5.71 0.40 1 5.20 9 1.40 249.60 112.11
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A Hard Cases of the Skolem Problem at Order 5

As explained in [22], the Skolem Problem is known to be decidable for all LRS of order at most
5 except for those sequences u = ⟨un⟩∞

n=0 having an exponential-polynomial representation

un = α1λn
1 + α1λ1

n + α2λn
2 + α2λ2

n + α3λn
3 (9)
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such that α1, α2, α3, λ1, λ2, λ3 ∈ Q satisfy |λ1| = |λ2| > |λ3| and λ1, λ2, λ3 are not all units.
It is further shown in [22] that by scaling sequences of this form we can assume that there
exists a prime ideal p in the ring of integers of the number field generated by λ1, λ1, λ2, λ2, λ3
such that p divides λ1 and λ2, but not λ1, λ2 and λ3.

Here we make the further observation that for non-degenerate LRS of the form (9), under
the assumption that |α1| = |α2|, there is a computable upper bound on n such that un = 0.

By scaling we can assume without loss of generality that |λ1| = |λ2| = 1 and |α1| = |α2| =
1. Thus we can write λ1 = eiθ1 and λ2 = eiθ2 for θ1, θ2 ∈ [0, 2π) and we can put α1 = eiϕ1

and α2 = eiϕ2 for ϕ1, ϕ2 ∈ [0, 2π). Then we have

un = α1λn
1 + α1λ1

n + α2λn
2 + α2λ2

n + α3λn
3

= 2 cos(nθ1 + ϕ1) + 2 cos(nθ2 + ϕ2) + α3λn
3

= 4
(

cos
(

n(θ1 + θ2) + ϕ1 + ϕ2

2

)
cos
(

n(θ1 − θ2) + ϕ1 − ϕ2

2

))
+ α3λn

3 .

By non-degeneracy of u, the terms cos
(

n(θ1+θ2)+ϕ1+ϕ2
2

)
and cos

(
n(θ1−θ2)+ϕ1−ϕ2

2

)
are

respectively zero for at most one value of n ∈ N. Furthermore, using Baker’s Theorem on
linear forms in logarithms (see [26, 34] for details), each of these terms has a lower bound
(when non-zero) of the form c

nd for explicitly computable constants c and d. Since |λ3| < 1 it
follows that un ̸= 0 for all n ≥ n0 for some effective threshold n0.
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Abstract
When computing stable matchings, it is usually assumed that the preferences of the agents in the
matching market are fixed. However, in many realistic scenarios, preferences change over time.
Consequently, an initially stable matching may become unstable. Then, a natural goal is to find a
matching which is stable with respect to the modified preferences and as close as possible to the
initial one. For Stable Marriage/Roommates, this problem was formally defined as Incremental
Stable Marriage/Roommates by Bredereck et al. [AAAI ’20]. As they showed that Incremental
Stable Roommates and Incremental Stable Marriage with Ties are NP-hard, we focus on
the parameterized complexity of these problems. We answer two open questions of Bredereck et
al. [AAAI ’20]: We show that Incremental Stable Roommates is W[1]-hard parameterized by
the number of changes in the preferences, yet admits an intricate XP-algorithm, and we show that
Incremental Stable Marriage with Ties is W[1]-hard parameterized by the number of ties.
Furthermore, we analyze the influence of the degree of “similarity” between the agents’ preference
lists, identifying several polynomial-time solvable and fixed-parameter tractable cases, but also
proving that Incremental Stable Roommates and Incremental Stable Marriage with Ties
parameterized by the number of different preference lists are W[1]-hard.
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1 Introduction

Efficiently adapting solutions to changing inputs is a core issue in modern algorithmics [3, 6,
9, 16, 27]. In particular, in incremental combinatorial problems, roughly speaking, the goal
is to build new solutions incrementally while adapting to changes in the input. Typically,
one wants to avoid (if possible) too radical changes in the solution relative to perhaps
moderate changes in the input. The corresponding study of incremental algorithms attracted
research on numerous problems and scenarios [24], including among many others shortest path
computation [40], flow computation [31], clustering problems [9, 35], and graph coloring [28].

In this paper, we study the problem of adapting stable matchings under preferences to
change. Consider for instance the following two scenarios: First, as reported by Feigenbaum
et al. [18], school seats in public schools are centrally assigned in New York. Ahead of the
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start of the new year, all interested students are asked to submit their preferences over public
schools. Then, a stable matching of students to public schools is computed and transmitted.
However, in the past, shortly before the start of the new year typically around 10% of
students changed their preferences and decided to attend a private school instead, leaving the
initially implemented matching unstable and triggering lengthy decentralized ad hoc updates.
Second, consider the assignment of freshmen to double bedrooms in college accommodation.
After the orientation weeks, it is quite likely that students got to know each other (and in
particular their roommates) better and thus their initially uninformed preferences changed,
making the matching unstable.

In our work, we focus on the problem of finding a stable matching after the “change” that
is as close as possible to a given initially stable matching. The closeness condition here is
due to the fact that in most applications reassignments come at some cost which we want to
minimize (e.g., in the above New York example, reassigning students might make it necessary
for the family to reallocate within the city). We build upon the work of Bredereck et al. [7],
who performed a first systematic study of incremental versions of stable matching problems,
and the recent (partially empirical) follow-up work by Boehmer et al. [5], who proved among
others that different types of changes are “equivalent” to each other. The central focus of our
studies lies on the Stable Roommates (SR) problem: given a set of agents with each agent
having preferences over other agents, the task is to find a stable matching, i.e., a matching
so that there are no two agents preferring each other to their assigned partner. We also
consider a famous special case of SR, namely Stable Marriage (SM), where the set of
agents is partitioned into two sets, and each agent may only be matched to an agent from
the other set. Formally, in the incremental versions of SR and SM, called Incremental
Stable Roommates (ISR) and Incremental Stable Marriage (ISM), we are given
two preference profiles containing the preferences of each agent before and after the “change”
and a matching that is stable in the preference profile before the change. Then, the task
is to find a matching that is stable after the change and as close as possible to the given
matching, i.e., has a minimum symmetric difference to it.

Related Work. Bredereck et al. [7] formally introduced Incremental Stable Mar-
riage [with ties] (ISM/[ISM-T]) and Incremental Stable Roommates [with ties]
(ISR/[ISR-T]). They showed that ISM without ties (in the preference lists) is solvable in
polynomial time by a simple reduction to finding a stable matching maximizing the weight of
the included agent pairs (which is solvable in polynomial time [17]). In contrast to this, ISR
is NP-complete [12, Theorem 4.2], yet admits an FPT-algorithm for the parameter k, that is,
the maximum allowed size of the symmetric difference between the two matchings [7]. With
ties, Bredereck et al. [7] showed that ISM-T and ISR-T are NP-complete and W[1]-hard for
k even if the two preference profiles only differ in a single swap in some agent’s preference list.
As ISR-T can be considered as a generalization of ISM-T, their results motivate us to focus
on the NP-hard ISR and ISM-T problems (which are somewhat incomparable problems).
Recently, Boehmer et al. [5] followed up on the work of Bredereck et al. [7], proving that
different types of changes such as deleting agents or performing swaps of adjacent agents
in some preference list are “equivalent”. Moreover, they introduced incremental variants of
further stable matching problems and performed empirical studies.

More broadly considered, matching problems involving preferences in the presence of
change are of high current interest in several application domains. Many such works fall into
the category of “dynamic matchings” [1, 2, 14, 15, 34]. However, different from our work,
there the focus is typically on adapting classic stability notions to dynamic settings while we
rather aim for “reestablishing” (classic) stability at minimal change cost.



N. Boehmer, K. Heeger, and R. Niedermeier 21:3

Table 1 Overview of our main results where each row contains results for one parameterization.
Note that ISM is polynomial-time solvable as proven by Bredereck et al. [7].

ISR ISM-T
|P1 ⊕ P2| W[1]-h. (Th. 1) & XP (Th. 2) NP-h. for |P1 ⊕ P2| = 1 (Th. 5)

#ties+k FPT wrt. k (Th. 1 in [7])
W[1]-h. even if |P1 ⊕ P2| = 1 (Th. 5)

XP (even for parameter #agents with ties) (Pr. 6)

#outliers FPT (Th. 10) ?
#master lists W[1]-h. even for complete preferences (Th. 11/12)

Closer to our work, there are several papers on adapting a given matching to change
(while minimizing the number of reassignments): First, Gajulapalli et al. [20] designed a
polynomial-time (and incentive-compatible) algorithm for an incremental variant of the
many-to-one version of Stable Marriage (known as Hospital Residents) where new
agents are added. Second, Feigenbaum et al. [18] considered an incremental variant of
Hospital Residents where some agents may leave the system. They designed a “fair”,
Pareto-efficient, and strategy-proof algorithm for finding a matching before and after the
change. Both these works are closest related to the polynomial-time solvable ISM problem,
which we do not study. Third, Bhattacharya et al. [3] studied one-to-one matching markets
where agents are added and deleted over time and for some agents the set of acceptable
partners may change. Their focus is on updating the matching in each step such that the
number of reassignments is small while maintaining a small unpopularity factor. So in
contrast to our work, they do not maintain that the matching is stable but (close to) popular.

Also motivated by temporally evolving preferences, several papers study the robustness of
stable matchings subject to changing preferences [4, 11, 21, 22, 23, 36]. By selecting a robust
initial stable matching, one can increase the odds that it remains stable after some changes.

Our Contributions. Focusing on the two NP-hard problems ISR and ISM-T, we significantly
extend the work of Bredereck et al. [7] on incremental stable matchings, particularly answering
their two main open questions. Moreover, we strengthen several of their results. In addition,
we analyze the impact of the degree of “similarity” between the agents’ preference lists.
Doing so, from a conceptual perspective, we complement work of Meeks and Rastegari [38].
They studied the influence of the number of agent types on the computational complexity of
stable matching problems (two agents are of the same type if they have the same preferences
and all other agents are indifferent between them). By way of contrast, we consider the
smaller so far unstudied parameter “number of different preference lists”.

Next, we present a brief summary of the structure of the paper (for each section marking
the main studied problem(s)) and our main contributions (see Table 1 for an overview):

Section 3 (ISR). Motivated by the observation that ISM-T is NP-hard even if just one
swap has been performed, Bredereck et al. [7] asked for the parameterized complexity of
ISR with respect to the difference |P1 ⊕ P2| between the two given preference profiles.
We design and analyze an involved algorithm solving ISR in polynomial time if |P1 ⊕ P2|
is constant (in other words, this is an XP-algorithm). Our algorithm relies on the
observation that if we know how certain agents are matched in the matching to be
constructed and we adapt the given matching accordingly, then we can find an optimal
solution by propagating these changes through the matching until a new stable matching
is reached; a general approach that might be of independent interest. We complement
this result by proving that ISR parameterized by |P1 ⊕ P2| is W[1]-hard.
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Section 4 (ISM-T). Bredereck et al. [7] considered the total number of ties to be a promising
parameter to potentially achieve fixed-parameter tractability results. We prove that this
is not the case as ISM-T is W[1]-hard with respect to k plus the total number of ties
even if |P1 ⊕ P2| = 1. Notably, this result strengthens the W[1]-hardness with respect to
k for |P1 ⊕ P2| = 1 of Bredereck et al. [7] for ISM-T, while presenting a fundamentally
different yet less technical proof. On the positive side, we devise an XP-algorithm for the
number of agents with at least one tie in their preferences.

Section 5 (ISR; ISM-T). We study different cases where the agents have “similar” prefer-
ences. For instance, we consider the case where all but s agents have the same preference
list (we call these s agents outliers), or the case where each agent has one out of only
p different master preference lists. We devise an algorithm that enumerates all stable
matchings in an SR instance in FPT time with respect to s, implying an FPT algorithm
for ISR parameterized by s. In contrast to this and to a simple FPT algorithm for the
number of agent types [5], we prove that ISR and ISM-T are W[1]-hard with respect to
the number p of different preference lists.

2 Preliminaries

The input of Stable Roommates with Ties (SR-T) is a set A = {a1, . . . , a2n} of agents.
Each agent a ∈ A has a subset Ac(a) ⊆ A\{a} of agents it accepts and a preference relation ≿a

which is a weak order over the agents Ac(a). Without loss of generality, we assume that
acceptance is symmetric, i.e., for two agents a, a′ ∈ A, a′ ∈ Ac(a) implies a ∈ Ac(a′). We
collect the preferences of all agents in a preference profile P. For two agents a′, a′′ ∈ Ac(a),
agent a weakly prefers a′ to a′′ if a′ ≿a a′′. If a weakly prefers a′ to a′′ but does not weakly
prefer a′′ to a′, then a strictly prefers a′ to a′′, and we write a′ ≻a a′′. If a weakly but
not strictly prefers a′ to a′′, then a is indifferent between a′ and a′′ and we write a′ ∼a a′′;
in other words, a′ and a′′ are tied. If a strictly prefers a′ to a′′ or a′ = a′′ holds, then we
write a′ ⪰a a′′. We say that an agent a has strict preferences, which we denote as ≻a,
if ≿a is a strict order, and, in this case, we use the terms “strictly prefer” and “prefer”
interchangeably. For two preference relations ≿ and ≿′ defined over the same set, the swap
distance between ≿ and ≿′ is the number of agent pairs that are ordered differently by the
two relations, i.e., |{(a, b) : a ≻ b ∧ b ≿′ a}| + |{(a, b) : a ∼ b ∧ ¬(a ∼′ b)}|; for two preference
relations over different sets, we define the swap distance to be infinite. For two preference
profiles P1 and P2 containing the preferences of the same agents, |P1 ⊕ P2| denotes the total
swap distance between the two preference relations of an agent summed over all agents.1

A matching M is a set of pairs {a, a′} with a ̸= a′ ∈ A, a ∈ Ac(a′), and a′ ∈ Ac(a), where
each agent appears in at most one pair. In a matching M , an agent a is matched if a is part
of one pair from M ; otherwise, a is unmatched. A perfect matching is a matching in which
all agents are matched. For a matching M and an agent a ∈ A, we denote by M(a) the
partner of a in M , i.e., M(a) = a′ if {a, a′} ∈ M and M(a) := □ if a is unmatched in M .
All agents a ∈ A strictly prefer any agent from Ac(a) to being unmatched, i.e., a′ ≻a □ for
all a ∈ A and a′ ∈ Ac(a).

1 Notably, by the equivalence theorem of Boehmer et al. [5, Theorem 1], all our results (except for
Theorem 5 where the constant |P1 ⊕ P2| increases by a small number) still hold if |P1 ⊕ P2| instead
denotes the number of agents whose preferences changed, the number of deleted agents (i.e., the number
of agents with empty preferences in P2 and non-empty preferences in P1), or the number of added
agents (i.e., the number of agents with empty preferences in P1 and non-empty preferences in P2).
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Two agents a ̸= a′ ∈ A block a matching M if a and a′ accept each other and strictly
prefer each other to their partners in M , i.e., a ∈ Ac(a′), a′ ∈ Ac(a), a′ ≻a M(a), and
a ≻a′ M(a′). A matching M is stable if it is not blocked by any agent pair.2 An agent
pair {a, a′} is called a stable pair if there is a stable matching M with {a, a′} ∈ M . For two
matchings M and M ′, we denote by M△M ′ the set of pairs that appear only in M or only
in M ′, i.e., M△M ′ = {{a, a′} |

(
{a, a′} ∈ M ∧ {a, a′} /∈ M ′) ∨

(
{a, a′} /∈ M ∧ {a, a′} ∈ M ′)}.

The incremental variant of Stable Roommates [with Ties] is defined as follows.

Incremental Stable Roommates [with Ties] (ISR/[ISR-T])
Input: A set A of agents, two preference profiles P1 and P2 containing the strict
[weak] preferences of all agents, a stable matching M1 in P1, and an integer k.
Question: Is there a matching M2 that is stable in P2 such that |M1△M2| ≤ k?

We also consider the incremental variant of Stable Marriage. Instances of Stable
Marriage are instances of Stable Roommates where the set of agents is partitioned into
two sets U and W such that agents from one of the sets only accept agents from the other
set, i.e., Ac(m) ⊆ W for all m ∈ U and Ac(w) ⊆ U for all w ∈ W . Following traditional
conventions, we refer to the agents from U as men and to the agents from W as women. All
definitions from above still analogously apply to Stable Marriage. Thus, in Incremental
Stable Marriage [with Ties] (ISM/[ISM-T]), we are given a set A = U ∪· W of agents
and two preference profiles P1 and P2 containing the strict [weak] preferences of all agents,
where each m ∈ U accepts only agents from W and the other way round.

Lastly, in Stable Roommates, the preferences of an agent a ∈ A are complete if
Ac(a) = A \ {a}. In Stable Marriage, the preferences of an agent a ∈ U ∪· W are complete
if Ac(a) = W for a ∈ U or if Ac(a) = U for a ∈ W . If the preferences of an agent are not
complete, then they are incomplete.

We defer the proofs (or their completions) of all results marked by (⋆) to a full version.

3 Incremental Stable Roommates Parameterized by |P1 ⊕ P2|

Bredereck et al. [7] showed that ISR-T and ISM-T are NP-hard even if P1 and P2 differ only
by a single swap. While Bredereck et al. showed that ISR (without ties) is NP-hard, they
asked whether it is fixed-parameter tractable parameterized by |P1 ⊕ P2|. We show that ISR
is W[1]-hard with respect to |P1 ⊕ P2| (Section 3.1), yet admits an intricate polynomial-time
algorithm for constant |P1 ⊕ P2| (Section 3.2), thus still clearly distinguishing it from the
case with ties.

3.1 W[1]-Hardness
This section is devoted to proving that ISR with respect to |P1 ⊕ P2| is W[1]-hard:

▶ Theorem 1 (⋆). ISR parameterized by |P1 ⊕ P2| is W[1]-hard.

To prove the theorem, we reduce from the W[1]-hard Multicolored Clique problem
parameterized by the solution size ℓ [39]. In Multicolored Clique, we are given an
ℓ-partite graph G = (V 1 ∪· V 2 ∪· · · · ∪· V ℓ, E) and the question is whether there is a clique X

2 This definition of stability in the presence of ties is the by far most frequently studied variant known
as weak stability. Strong stability and super stability are the two most popular alternatives. Notably,
ISM-T (as defined later) becomes polynomial-time solvable for both strong and super stability, as for
these two stability notions a stable matching maximizing a given weight function on all pairs of agents
can be found in polynomial time [19, 32, 33].
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of size ℓ in G with X ∩ V c ̸= ∅ for all c ∈ [ℓ]. To simplify notation, we assume that
V c = {vc

1, . . . , vc
ν} for all c ∈ [ℓ] and that the given graph G is r-regular for some r ∈ N. We

refer to the elements of [ℓ] as colors and say that a vertex v has color c ∈ [ℓ] if v ∈ V c. The
structure of the reduction is as follows. For each color c ∈ [ℓ], there is a vertex-selection
gadget, encoding which vertex from V c is part of the multicolored clique. Furthermore,
there is one edge gadget for each edge. Unless both endpoints of an edge are selected by
the corresponding vertex-selection gadgets, the matching M2 selected in the edge gadget
contributes to the difference M1△M2 between M1 and M2. We set k (that is, the upper
bound on |M1△M2|) such that at least

(
ℓ
2
)

edges need to have both endpoints in the selected
set of vertices, implying that the selected set of vertices forms a clique.

Vertex-Selection Gadget. For each color c ∈ [ℓ], we add a vertex selection gadget. For
each vertex vc

i ∈ V c, we add one 4-cycle consisting of agents ac
i,1, ac

i,2, ac
i,3, and ac

i,4. Further,
in P2, two agents sc and s̄c are “added” to the gadget (more formally, sc and s̄c are matched
to dummy agents tc and t̄c in all stable matching in P1 but cannot be matched to tc and
t̄c in a stable matching in P2). We construct the vertex-selection gadget such that the
agents sc and s̄c have to be matched to agents from the same 4-cycle in a stable matching
in P2. This encodes the selection of the vertex corresponding to this 4-cycle to be part
of the multicolored clique. Lastly, we add a second 4-cycle consisting of agents āc

i,1, āc
i,2,

āc
i,3, and āc

i,4 for each vertex vc
i ∈ V c to achieve that M1△M2 contains the same number of

pairs from the vertex-selection gadget, independent of which vertex is selected to be part of
the clique.

Apart from agents sc and s̄c, all agents from the vertex-selection gadget only find agents
from the gadget acceptable, while sc and s̄c also find agent ae,1 (this agent will be introduced
in the next paragraph “Edge Gadget”) for each edge e incident to a vertex from V c acceptable.
For vc

i ∈ V c, let Aδ(vc
i

),1 denote the set of agents ae,1 such that e is an edge incident to vc
i ,

i.e., Aδ(vc
i

),1 := {ae,1 | e ∈ E ∧ e ∩ vc
i ̸= ∅}, and let [Aδ(vc

i
),1] denote an arbitrary strict order

of Aδ(vc
i

),1. For all c ∈ [ℓ] and i ∈ [n], each vertex-selection gadget contains the following
agents with the indicated preferences in P1:

sc : tc ≻ ac
1,1 ≻ āc

1,1 ≻ [Aδ(vc
1),1] ≻ ac

2,1 ≻ āc
2,1 ≻ [Aδ(vc

2),1] ≻ · · · ≻ ac
n,1

≻ āc
n,1 ≻ [Aδ(vn

1 ),1]

s̄c : t̄c ≻ ac
n,4 ≻ āc

n,4 ≻ [Aδ(vc
n),1] ≻ ac

n−1,4 ≻ āc
n−1,4 ≻ [Aδ(vc

n−1),1] ≻ · · · ≻ ac
1,4

≻ āc
1,4 ≻ [Aδ(vc

1),1]

tc : sc ≻ uc, t̄c : s̄c ≻ ūc, uc : tc, ūc : t̄c

ac
i,1 : ac

i,2 ≻ sc ≻ ac
i,4, ac

i,2 : ac
i,3 ≻ ac

i,1, ac
i,3 : ac

i,4 ≻ ac
i,2, ac

i,4 : ac
i,1 ≻ s̄c ≻ ac

i,3

āc
i,1 : āc

i,2 ≻ sc ≻ āc
i,4, āc

i,2 : āc
i,3 ≻ āc

i,1, āc
i,3 : āc

i,4 ≻ āc
i,2, āc

i,4 : āc
i,1 ≻ s̄c ≻ āc

i,3

In P2, only the preferences of agents tc and tc̄ change to uc ≻ sc, respectively,
ūc ≻ s̄c. See Figure 1 for an example. Notably, in each of the added 4-cycles, there
exist two matchings of the four agents that are stable within the cycle in both P1 and P2
(i.e.,

{
{ac

i,1, ac
i,2}, {ac

i,3, ac
i,4}

}
or

{
{ac

i,1, ac
i,4}, {ac

i,2, ac
i,3}

}
and

{
{āc

i,1, āc
i,2}, {āc

i,3, āc
i,4}

}
or{

{āc
i,1, āc

i,4}, {āc
i,2, āc

i,3}
}

for c ∈ [ℓ] and i ∈ [ν]). Matching M1 contains for the 4-cycles
consisting of agents {ac

i,t | t ∈ [4]} the edges {ac
i,1, ac

i,2} and {ac
i,3, ac

i,4} and for the 4-cycles
consisting of agents {āc

i,t | t ∈ [4]} the edges {āc
i,1, āc

i,4} and {āc
i,2, āc

i,3}.

Edge Gadget. For each edge e = {vc
i , vĉ

j}, we add an edge gadget. This gadget consists of a
4-cycle with agents ae,1, ae,2, ae,3, and ae,4, admitting two different matchings that are stable
within the gadget in both P1 and P2. The matching M1 contains {ae,1, ae,4} and {ae,3, ae,2}
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scs̄c
tct̄c

ucūc

ac
2,1

ac
2,2

ac
2,3

ac
2,4

. . .
ac

1,1

ac
1,2

ac
1,3

ac
1,4

āc
2,1

āc
2,2

āc
2,3

āc
2,4

āc
1,1

āc
1,2

āc
1,3

āc
1,4

. . .
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Figure 1 An example for the vertex-selection gadget from Theorem 1. For an edge between two
agents a and a′, the number x closer to agent a means that a ranks a′ at position x, i.e., there are
x − 1 agents which a prefers to a′. For example, the preferences of ac

1,4 are ac
1,1 ≻ s̄c ≻ ac

1,3. The
depicted preferences are those in P1. The preferences in P2 arise from swapping the red numbers.
The matching M1 is marked in bold.

in this 4-cycle and remains stable in M2 if all of sc, s̄c, sĉ, and s̄ĉ are matched at least
as good as the respective agents corresponding to vc

i and vĉ
j . This notably only happens

if the vertex-selection gadgets of V c and V ĉ “select” the endpoints of e. Otherwise, the
agents in this component need to be matched as {ae,1, ae,2} and {ae,3, ae,4} in M2, thereby
contributing four pairs to M1△M2. For each e = {vc

i , vĉ
j} ∈ E, the agent’s preferences are as

follows:

ae,1 : ae,2 ≻ sc ≻ s̄c ≻ sĉ ≻ s̄ĉ ≻ ae,4, ae,2 : ae,3 ≻ ae,1,

ae,3 : ae,4 ≻ ae,2, ae,4 : ae,1 ≻ ae,3.

The Reduction. To complete the description of the parameterized reduction, we set M1 :=
{{sc, tc}, {s̄c, t̄c} | c ∈ [ℓ]} ∪ {{ac

i,1, ac
i,2}, {ac

i,3, ac
i,4}, {āc

i,1, āc
i,4}, {āc

i,3, āc
i,2} | c ∈ [ℓ], i ∈ [ν]} ∪

{{ae,1, ae,4}, {ae,3, ae,2} | e ∈ E} and k := ℓ · (4ν + 5) + 4(|E| −
(

ℓ
2
)
).

For the correctness of the reduction one can show that in M2 for each c ∈ [ℓ] there is
some i∗ ∈ [ν] such that the matching M2 contains pairs {sc, ac

i∗,1}, {s̄c, ac
i∗,4} (this corresponds

to selecting vertex vc
i∗ for color c). Then, the only agents ae,1 for an edge e ∈ E incident

to some vertex from V c that both sc and s̄c do not prefer to their partner in M2 are those
in Aδ(vc

i∗ ),1. This implies that for all edges e = {vc
i , vĉ

j} with both endpoints selected we
can match ae,1 worse than sc, s̄c, sĉ, and s̄ĉ. Thus, we can select {ae,1, ae,4}, {ae,2, ae,3} as
in M1 in the respective edge gadget. In contrast, for all other edges we have to select the
other matching in the edge gadget. To upper-bound the overall symmetric difference, one
needs to further prove that for all j < i∗, matching M2 contains {{āc

j,1, āc
j,2}, {āc

j,3, āc
j,4}},

and that for all j > i∗, matching M2 contains {{ac
j,1, ac

j,4}, {ac
j,2, ac

j,3}}. Thus, independent
of the selected vertex, each vertex-selection gadget contributes 4ν + 5 pairs to M1△M2.

3.2 XP-Algorithm
Complementing the above W[1]-hardness result, we now sketch an intricate XP-algorithm
for ISR parameterized by |P1 ⊕ P2|, resulting in the following theorem:
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▶ Theorem 2 (⋆). ISR can be solved in O(24|P1⊕P2| · n5|P1⊕P2|+3) time.

Our algorithm works in two phases: In the initialization phase, we make some guesses how
the stable matching M2 looks like and accordingly change the original stable matching M1.
These changes and guesses then impose certain constraints how good/bad some agents must
be matched in M2. Subsequently, in the propagation phase, we locally resolve blocking
pairs caused by the initial changes by “propagating” these constraints through the instance
until a new stable matching is reached. This matching is then guaranteed to be as close as
possible to the original stable matching. We believe that our technique to propagate changes
through a matching is also of independent interest and might find applications elsewhere. In
the following, we sketch the main ingredients of our algorithm. We say that we update a
matching M to contain a pair e = {a, b} if we delete all pairs containing a or b from M and
add pair e to M .

Initialization Phase (First Part of Description). Our algorithm maintains a matching M .
At the beginning, we set M := M1. Before we change M , we make some guesses on how the
output matching M2 shall look like. These guesses are responsible for the exponential part of
the running time (the rest of our algorithm runs in polynomial time). The guesses result in
some changes to M and, for some agents a ∈ A, in a “best case” and “worst case” to which
partner a can be matched in M2. Consequently, we will store in bc(a) the best case how a

may be matched in M2, i.e., the most-preferred (by a in P2) agent b for which we cannot
exclude that a is matched to b in a stable matching in P2 respecting the guesses. Similarly,
wc(a) stores the worst case to which a can be matched. We initialize bc(a) = wc(a) = ⊥ for
all a ∈ A, encoding that we do not know a best or worst case yet.

To be more specific, among others, in the initialization phase we guess for each agent a ∈ A

with modified preferences as well as for M1(a) how they are matched in M2 and update M to
include the guessed pairs. Moreover, as an unmatched agent a shall always have bc(a) ̸= ⊥
or wc(a) ̸= ⊥, we guess for all agents a that became unmatched by this whether they
prefer M1(a) to M2(a) (in which case we set bc(a) := M1(a)) or M2(a) to M1(a) (in which
case we set wc(a) := M1(a)). Our algorithm also makes further guesses in the initialization
phase. However, in order to understand the purpose of these additional guesses, it is helpful
to first understand the propagation phase in some detail. Thus, we postpone the description
of the additional guesses to the end of this section.

Propagation Phase. After the initialization phase, blocking pairs for the current match-
ing M force the algorithm to further change M and force a propagation of best and worst
cases through the instance until a stable matching is reached. As our updates to M are in
some sense “minimally invasive” and exhaustive, once M is stable in P2, it is guaranteed
to be the stable matching in P2 which is closest to M1 among all matchings respecting the
initial guesses. At the core of the technique lies the simple observation that in an SR instance
for each stable pair {c, d} and each stable matching N not including {c, d} exactly one of c

and d prefers the other to its partner in N :

▶ Lemma 3 ([26, Lemma 4.3.9]). Let N be a stable matching and e = {c, d} /∈ N be a stable
pair in an SR instance. Then either N(c) ≻c d and c ≻d N(d) or d ≻c N(c) and N(d) ≻d c.

From this we can draw conclusions in the following spirit: Assuming that for a stable pair
{c, d} in P2 we have that wc(c) ≻c d, i.e., c is matched better than d in M2, it follows from
Lemma 3 that d is matched worse than c in M2, implying that we can safely set bc(d) = c.
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Algorithm 1 Simplified propagation step performed for a pair {a, b} of two matched agents
blocking M with bc(b) = M(b) or for an unmatched agent a with wc(a) ̸= ⊥.

1: if a is unmatched then Let e = {a, c} be the stable pair in P2 such that c ≻P2
a wc(a)

and bc(c) ≻P2
c a (or bc(c) = ⊥) and c is worst-ranked by a among all such pairs.

2: else Let e = {a, c} be the stable pair in P2 such that c ≻P2
a M(a) and bc(c) ≻P2

c a (or
bc(c) = ⊥) and c is worst-ranked by a among all such pairs.

3: if no such pair exists then Reject this guess.
4: else Update M such that it contains e, set wc(a) := c and bc(c) := a.
5: if M(a) ̸= □ then bc(M(a)) := a.
6: if M(c) ̸= □ then wc(M(c)) := c.

In the following, we will now explain simplified versions of some parts of the propagation
phase, while leaving out others (in fact, for the full algorithm and proof of correctness an
extensive analysis is needed; see our full version).

Assume for a moment that the current matching M is perfect and that there is a
blocking pair for M in P2 (see Algorithm 1 for a pseudocode-description of the following
procedure). Because M1 is stable in P1, all pairs that currently block M1 either involve an
agent with changed preferences or resulted from previous changes made to M . Using this,
one can show that at least one of the two agents from a blocking pair {a, b}, say b, will have
a ≻b bc(b) = M(b). Thus, we know that b is matched worse than a in any stable matching
in P2 respecting our current guesses. Accordingly, for {a, b} not to block M2, agent a has
to be matched to b or better and, in particular, better than M(a) in the solution. As a
consequence, we update the worst case of a to be the next agent c which a prefers to M(a)
such that {a, c} is a stable pair in P2, i.e., we set wc(a) := c (see Line 4). This change is then
further propagated through the instance. Note that from Lemma 3 it follows that if {a′, a′′}
is a stable pair in P2 and agent a′′ is the worst possible partner of a′ in a stable matching
in P2 (or a′ prefers its worst possible partner to a′′), then agent a′′ cannot be matched
better than agent a′ in a stable matching in P2. Thus, by setting wc(a′) := a′′ we also get
bc(a′′) := a′. Consequently, applying this to our previous update wc(a) = c, we can also
set bc(c) := a (see Line 4). Moreover, recall that a prefers c to a’s current partner M(a) in
M . Thus, assuming that in a stable matching M∗ in P2 one of a and M(a) prefers the other
to its partner in M∗ and the other prefers its partner in M∗, we can use the same argument
again and set bc(M(a)) := a (see Line 5; we will discuss in the last paragraph in this section
why this assumption can be made). For the update in Line 6 a similar reasoning applies.

So far we assumed that all agents are matched (which indeed needs to be the case for M2
because we can delete all agents not matched by M2 in a preprocessing step). Using this,
whenever there is an unmatched agent a, one can show that it cannot be matched to bc(a)
or wc(a). Thus, if wc(a) ̸= ⊥, then we match a to the next-better agent c before wc(a) in
its preferences such that {a, c} is a stable pair in P2 and set wc(a) = c. Subsequently, we
propagate this change as in the above described case of a blocking pair (see Algorithm 1).
Otherwise, we have bc(a) ̸= ⊥ and we match a to the next-worse agent b after bc(a) in the
preferences of a such that {a, b} is a stable pair in P2. Here, a slightly more complicated
subsequent propagation step is needed (as described in our full version).

Repeating these steps, i.e., matching so far unmatched agents and resolving blocking
pairs, eventually either results in a conflict (i.e., an agent preferring its worst case to its best
case, or changing a pair which we guessed to be part of M2) or in a stable matching. In
the first case, we conclude that no stable matching obeying our guesses exists, while in the
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latter case, we found a stable matching obeying the guesses and minimizing the symmetric
difference to M1 among all such matchings. The reason for the optimality of this matching
is that every matching obeying our initial guesses has to obey the best and worst cases at
the termination of the algorithm, and the computed matching M contains all pairs from M1
which comply with the best and worst cases.

Initialization Phase (Second Part of Description). In addition to the guesses described
above, the algorithm guesses the set F of pairs from M1 for which both endpoints prefer M2
to M1. Similarly, the algorithm guesses the set H of pairs from M2 for which both endpoints
prefer M1 to M2. Notably, one can prove that the cardinality of both F and H can be
upper-bounded by |P1 ⊕ P2|, ensuring XP-running time. The reason why we need to guess
the set F is that pairs {a, b} from M1 may not be stable pairs in P2. In this case, a

preferring M(a) to b does not imply that b prefers a to M(b). Thus, if we would treat the
pairs from F as “normal” pairs, we would propagate an incorrect worst case in Line 5. Note
that all pairs from M \ M1 are stable pairs in P2, as we only add pairs that are stable over
time (see Line 4). The reason why we need to guess the set H is more subtle but also due to
fact that pairs from H might cause problems for our propagation step (see our full version).
To incorporate our guesses, for each {a, b} ∈ F , we delete {a, b} from M and set wc(a) = b

and wc(b) = a, while for each {a, b} ∈ H we update M to include H. We remark that from
the proof of Theorem 1 it follows that ISR is NP-complete even if we know for each agent a

whose preferences changed as well as M1(a) how they are matched in M2 and the set of
pairs F ⊆ M1 for which both endpoints prefer M2 to M1. This indicates that guessing the
set H might be necessary for an XP-algorithm.

4 Incremental Stable Marriage with Ties Parameterized by the
Number of Ties

Bredereck et al. [7] raised the question how the total number of ties influences the compu-
tational complexity of ISM-T. Note that the number of ties in a preference relation is the
number of equivalence classes of the relation containing more than one agent. For instance
the preference relation a ∼ b ∼ c ≻ d ∼ e ≻ f contains two ties, where the first tie has size
three and the second tie has size two. In this section, following a fundamentally different
and significantly simpler path than Bredereck et al., we show that their W[1]-hardness result
for ISM-T parameterized by k for |P1 ⊕ P2| = 1 still holds if we parameterize by k plus the
number of ties. To prove this, we introduce a natural extension of ISM called Incremental
Stable Marriage with Forced Edges (ISMFE). ISMFE differs from ISM in that as
part of the input we are additionally given a subset Q ⊆ M1 of the initial matching, and
the question is whether there is a stable matching M2 for the changed preferences with
|M1△M2| ≤ k containing all pairs from Q, i.e., Q ⊆ M2.

We first show that ISMFE with ties is intractable even if |Q| = 1 by reducing from a
W[1]-hard local search problem related to finding a perfect stable matching with ties [37]:

▶ Proposition 4 (⋆). ISMFE with ties parameterized by k and the summed number of ties
in P1 and P2 is W[1]-hard, even if |P1 ⊕ P2| = 1 and |Q| = 1 and only women have ties in
their preferences.

Second, we reduce ISMFE with ties to ISM-T. The general idea of this parameterized
reduction is to replace a forced pair {m, w} ∈ Q by a gadget consisting of 6(k + 1) agents.
In M1, we match the agents from the gadget in a way such that if m and w are matched
differently in M2, then, compared to M1, the matching in the whole gadget needs to be
changed, thereby exceeding the given budget k. This reduction implies:
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▶ Theorem 5 (⋆). ISM-T parameterized by k and the summed number of ties in P1 and P2
is W[1]-hard, even if |P1 ⊕ P2| = 1 and only women have ties in their preferences.

We remark that our reduction also implies the W[1]-hardness of ISM-T parameterized
by k if each tie has size at most two and |P1 ⊕ P2| = 1.

On the algorithmic side, parameterized by the number of agents with at least one tie
in their preferences in P2, ISM-T lies in XP. The idea of our algorithm is to first guess
the partners of all agents in M2 with a tie in their preferences in P2 and subsequently
reduce the problem to an instance of Weighted Stable Marriage, which is polynomial-
time solvable [17]. Note that parameterizing by the summed size of all ties results in
fixed-parameter tractability, as we can iterate over all possibilities of breaking the ties and
subsequently apply the algorithm for ISM.

▶ Proposition 6 (⋆). ISM-T parameterized by the number of agents with at least one tie in
their preferences in P2 lies in XP. ISM-T parameterized by the summed size of all ties in P2
is fixed-parameter tractable.

5 Master Lists

After having shown in the previous section that ISM-T and ISR mostly remain intractable
even if we restrict several problem-specific parameters, in this section we analyze the influence
of the structure of the preference profiles by considering what happens if the agents’ preferences
are similar to each other. The arguably most popular approach in this direction is to assume
that there exists a single central order (called master list) and that all agents derive their
preferences from this order. This approach has already been applied to different stable
matching problems in the quest for making them tractable [8, 13, 29, 30]. Specifically, we
analyze in Section 5.1 the case where the preferences of all agents follow a single master
list, in Section 5.2 the case where all but few agents have the same preference list, and
in Section 5.3 the case where each agent has one of few different preference lists (which
generalizes the setting considered in Section 5.2).

5.1 One Master List
In an instance of Stable Marriage/Roommates with agent set A, we say that the
preferences of agent a ∈ A can be derived from some preference list ≿∗ over agents A if the
preferences of a are ≿∗ restricted to Ac(a). If the preferences of all agents in P2 can be
derived from the same strict preference list (which is typically called master list), then there
is a unique stable matching in P2 which iteratively matches the so-far unmatched top-ranked
agent in the master list to the highest ranked agent it accepts:

▶ Observation 7. If all preferences in P2 can be derived from the same strict preference list,
then ISR can be solved in linear time.

This raises the question what happens when the master list is not a strict but a weak
order. If the preferences of the agents may be incomplete, then reducing from the NP-hard
Weakly Stable Pair problem (the question is whether there is a stable matching in an
SM-T/SR-T instance containing a given pair [29, Lemma 3.4]), one can show that even
assuming that all preferences are derived from a weak master list is not sufficient to make
ISM-T or ISR-T polynomial-time solvable.

▶ Observation 8 (⋆). ISM-T and ISR-T are NP-hard even if all preferences in P1 and P2
can be derived from the same weak preference list.
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In contrast to this, if we assume that the preferences of agents in P2 are complete and
derived from a weak master list, then we can solve ISM-T and ISR-T in polynomial time.
While for ISM-T this follows from a characterization of stable matchings in such instances
as the perfect matchings in a bipartite graph due to Irving et al. [29, Lemma 4.3], for ISR-T
this characterization does not directly carry over. Thus, we need a new algorithm: Assume
that the master list consists of q ties (possibly containing just one agent) and let Ai ⊆ A be
the set of agents from the ith tie for i ∈ [q]. Distinguishing between several cases, we build
the matching M2 by dealing for increasing i ∈ [q] with each tie separately while greedily
maximizing the overlap of the so-far constructed matching with M1. Our algorithm exploits
the observation that in a stable matching, for i ∈ [q], all agents from Ai are matched to
agents from Ai except if (i) |

⋃
j∈[i−1] Aj | is odd in which case one agent from Ai is matched

to an agent from Ai−1, or (ii) if |
⋃

j∈[i] Aj | is odd in which case one agent from Ai is matched
to an agent from Ai+1.

▶ Proposition 9 (⋆). If the preferences of agents in P2 are complete and derived from a
weak master list, then ISM-T/ISR-T can be solved in polynomial time.

5.2 Few Outliers
Next, we consider the case that almost all agents derive their complete preferences from a
single strict preference list (we will call these agents followers), while the remaining agents (we
will call those agents outliers) have arbitrary preferences. ISR is fixed-parameter tractable
with respect to the number of outliers, as we show that all stable matchings in a Stable
Roommates instance can be enumerated in FPT time with respect to this parameter:

▶ Theorem 10 (⋆). Given a Stable Roommates instance (A, P) and a partitioning F ∪· S

of the agents A such that all agents from F have complete preferences that can be derived
from the same strict preference list, one can enumerate all stable matchings in (A, P)
in O(n2 · |S||S|) time. Consequently, ISR is solvable in O(n2 · |S||S|) time, where |S| is the
number of outliers in P2.

If the master list may contains ties, then enumerating stable matchings becomes a lot
more complicated, as here we have much more flexibility on how the agents are matched.
Thus, we leave it open whether there exists a similar fixed-parameter tractability result for a
weak master list (both in the roommates and marriage setting).

5.3 Few Master Lists
Motivated by the positive result from Section 5.2, in this section we consider the smaller
parameter “number of different preference lists”. Recall that Observation 7 states that if the
preference lists of all agents are derived from a strict master list in a Stable Roommates
instance, then there exists only one stable matching (even if the preferences of the agents
may be incomplete). This raises the question what happens if there exist “few” master lists
and each agent derives its preferences from one of the lists. To the best of our knowledge,
the parameter “number of master lists” has not been considered before. However, it nicely
complements (and lower-bounds) the parameter “number of agent types” as studied by Meeks
and Rastegari [38]. Two agents are of the same type if they have the same preferences and
all other agents are indifferent between them. Notably, Boehmer et al. [5, Proposition 5]
proved that ISM-T is fixed-parameter tractable with respect to the number of agent types.
Their algorithm also works for ISR-T.



N. Boehmer, K. Heeger, and R. Niedermeier 21:13

If the preferences of agents are incomplete, then as proven in Observation 8, ISM-T is
already NP-hard for just one weak master list. Moreover, note that a reduction of Cseh and
Manlove [12, Theorem 4.2] implies that ISR with incomplete preferences is NP-hard even if
the preferences of each agent are derived from one of two weak preference lists. Consequently,
in this subsection we focus on the case with complete preferences.

In contrast to the two fixed-parameter tractability results for the number of outliers
(Theorem 10) and the number of agent types [5], we show that parameterized by the number p

of master lists, ISR is W[1]-hard even if the preferences of agents are complete:

▶ Theorem 11 (⋆). ISR is W[1]-hard parameterized by the minimum number p such that
in P2 the preferences of each agent can be derived from one of p strict preference lists, even
if in P1 as well as in P2 all agents have complete preferences.

Containment of this problem in XP is an intriguing open question; in other words, is
there a polynomial-time algorithm if the number of master lists is constant?

Recalling that ISM-T is polynomial-time solvable if agents have complete preferences
derived from one weak master list (Proposition 9), we now ask the same question for ISM-T.
Using a similar but slightly more involved reduction than for Theorem 11, we show that this
problem is W[1]-hard with respect to the number of master lists.

▶ Theorem 12 (⋆). ISM-T is W[1]-hard parameterized by the minimum number p such that
in P2 the preferences of each agent can be derived from one of p weakly ordered preference
lists, even if in P1 as well as in P2 all agents have complete preferences.

Again, it remains open whether ISM-T for a constant number of master lists is polynomial-
time solvable or NP-hard.

6 Conclusion

Among others, answering two open questions of Bredereck et al. [7], we have contributed to the
study of the computational complexity of adapting stable matchings to changing preferences.
From a broader algorithmic perspective, in particular, the “propagation” technique from our
XP-algorithm for the number of swaps, and the study of the number of different preference
lists/master lists as a new parameter together with the needed involved constructions for the
two respective hardness proofs could be of interest.

There are several possibilities for future work. As direct open questions, for the para-
meterization by the number of outliers, we do not know whether ISM-T or ISR-T are
fixed-parameter tractable. Moreover, it remains open whether ISR or ISM-T with complete
preferences is polynomial-time solvable for a constant number of master lists.

Finally, it would also be interesting to analyze a variation of ISR or ISM where the
matching in P1 is not given, i.e., we have to find two matchings M1 and M2 with |M1△M2| ≤ k

such that M1 is stable in P1 and M2 is stable in P2. Notably, this is a special case of a
multistage [16, 25] variant of stable matching problems and Chen et al. [10] already proved
that this problem is NP-hard for k = 0 in the bipartite case.
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Abstract
We study the problem of online tree exploration by a deterministic mobile agent. Our main objective
is to establish what features of the model of the mobile agent and the environment allow linear
exploration time. We study agents that, upon entering a node, do not receive as input the edge via
which they entered. In such model, deterministic memoryless exploration is infeasible, hence the
agent needs to be allowed to use some memory. The memory can be located at the agent or at each
node. The existing lower bounds show that if the memory is either only at the agent or only at the
nodes, then the exploration needs superlinear time. We show that tree exploration in dual-memory
model, with constant memory at the agent and logarithmic in the degree at each node is possible in
linear time when one of the two additional features is present: fixed initial state of the memory at
each node (so called clean memory) or a single movable token. We present two algorithms working
in linear time for arbitrary trees in these two models. On the other hand, in our lower bound we
show that if the agent has a single bit of memory and one bit is present at each node, then the
exploration may require quadratic time even on paths, if the initial memory at nodes could be set
arbitrarily (so called dirty memory). This shows that having clean node memory or a token allows
linear time exploration of trees in the dual-memory model, but having neither of those features may
lead to quadratic exploration time even on a simple path.
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1 Introduction

Consider a mobile entity deployed inside an undirected graph with the objective to visit all
its nodes without any a priori knowledge of the topology or size of the graph. This problem,
called a graph exploration, is among the basic problems investigated in the context of a mobile
agent in a graph [1, 10, 24, 26, 33] and has applications to robot navigation [35] and searching
the World Wide Web [7]. In this paper we focus on tree exploration by a deterministic agent.
Clearly, to explore the whole tree of n nodes, any agent needs time Ω(n). A question arises:
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22:2 Tree Exploration in Dual-Memory Model

“What are the minimum agent capabilities required to complete the tree exploration in linear
time?” Many practical applications may not allow the agent to easily backtrack its moves
due to technical, security or privacy reasons. Thus, in this work we assume that the agent,
upon entering a node, does not receive any information about the edge via which it entered.

We consider three components of the input to the agent: memory at the agent, memory
at each node, and movable tokens (cf. e.g. [4, 3, 10, 11]). A deterministic agent given some
input always chooses the same outgoing edge. Hence at a node of degree d needs at least d

different inputs in order to be able to choose all of d outgoing edges. Thus in order to ensure
the sufficient number of possible inputs, the number of possible values of the memory and
possible present or absent states of the tokens, must exceed d. Hence, the sum of the memory
at the agent, memory at the node and the number of tokens must be at least ⌈log dv⌉ bits,
for any node of degree dv, where log denotes base-2 logarithm (cf. [34, Observation 1.1]).

In many applications, mobile agents are meant to be small, simple and inexpensive devices
or software, cf. [11, 24]. These restrictions limit the size of the memory with which they
can be equipped. Thus it is crucial to analyse the performance of the agent equipped with
the minimum size of the memory. In this paper we assume the asymptotically minimum
necessary memory size of O(log dv), where only a constant number of bits is stored at the
agent and logarithmic number (in the degree) at each node.

We consider two additional features of the model, namely – clean memory or a single
token, and we show that each of these assumptions alone allows linear-time tree exploration.
We also prove that when both features are absent, then the linear time exploration with
small memory may be impossible even on a simple path.

2 Model

The agent is located in an initially unknown tree T = (V, E) with n = |V | nodes, where n

is not known to the agent. The agent can traverse one of the edges incident to its current
location within a single step, in order to visit a neighbouring node at its other end. The
nodes of the tree are unlabelled, however in order for the agent to locally distinguish the
edges outgoing from its current position, we assume that the tree is port-labelled. This
means that at each node v with some degree dv, its outgoing edges are uniquely labelled
with numbers from {1, 2, . . . , dv}. Throughout the paper we assume that the port labels are
assigned by an adversary that knows the algorithm used by the agent in advance and wants
to maximize the exploration time.

Memory. The agent is endowed with some number of memory bits (called agent memory
or internal memory), which it can access and modify. In our results, we assume that the
agent has O(1) bits of memory.

Each node v ∈ V contains some number of memory bits as well, which can be modified
by the agent when visiting that node. We will call these bits node memory or local memory.
We assume that node v contains Θ(log dv) bits of memory. Hence, each node is capable of
storing a constant number of pointers to its neighbours in the tree.

General Exploration Algorithm. Upon entering a node v, the agent a receives, as input,
its current state sa, the state sv of the current node v, the number tokv of tokens at v, the
number toka of tokens at the agent and the degree dv of the current node. It outputs its
new state s′

a, new state s′
v of node v, new state tok′

a, tok′
v of the tokens at the agent/node,

respectively, and port pout via which it exits node v; hence, the algorithm defines a transition:
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(sa, sv, toka, tokv, dv)→ (s′
a, s′

v, tok′
a, tok′

v, pout),

that must satisfy toka +tokv = tok′
a +tok′

v. In models without the tokens, the state transition
of the algorithm can be simplified to:

(sa, sv, dv)→ (s′
a, s′

v, pout)

Starting state. We assume that for a given deterministic algorithm, there is one starting
state s of the agent (obtained from the agent memory), in which the agent is at the beginning
of (any execution of) the algorithm. The agent can also use this state later (it can transition
to s in subsequent steps of the algorithm). The starting location of the agent is chosen by an
adversary accordingly to agent’s algorithm (to maximize the agent’s exploration time).

Our models. In this paper we study the following three models:
In CleanMem, there is a fixed state ŝ and each node v is initially in the state sv = ŝ, regard-

less of the degree of the vertex. In this model the agent does not have access to any tokens.
In DirtyMem, the memory at the nodes is in arbitrary initial states, which are chosen by

an adversary. In this model the agent does not have access to any tokens.
In Token, the agent is initially equipped with a single token. If the agent holds a token, it

can drop it at a node upon visiting that node. When visiting a node, the agent receives as
input whether the current node already contains a token. In this case the agent additionally
outputs whether it decides to pick up the token, i.e., deduct from tokv and add to toka.
Clearly, since the agent has only one token, then after dropping it at some node, it needs to
pick it up before dropping it again at some other node. In this model we assume that the
initial state of the memory at each node is chosen by an adversary (like in DirtyMem model).

3 Our results

Upper bounds. While a lot of the existing literature focuses on feasibility of exploration,
we show that it is possible to complete the tree exploration in the minimum possible linear
time using (asymptotically) minimal memory. We show two algorithms in models CleanMem
and Token, exploring arbitrary unknown trees in the optimal time O(n) if constant memory
is located at the agent and logarithmic memory is located at each node. Our results show
that in the context of tree exploration in dual-memory model, the assumption about clean
memory (fixed initial state of node memory) can be “traded” for a token.

It is worth noting that in both our algorithms, the agent returns to the starting position
and terminates after completing the exploration, which is a harder task than a perpetual
exploration. If the memory is only at the agent, exploration of trees with stop at the starting
node requires Ω(log n) bits of memory [14]; if the agent is only required to terminate at any
node then still a superconstant Ω(log log log n) memory is required [14]; while exploration
without stop is feasible using O(log ∆) agent memory [14] (where ∆ is the maximum degree
of a node). All these results assume that the agent could receive the port number via which
it entered the current node, while our algorithms operate without this information.

Lower bound. To explore a path with a single bit of memory and with arbitrary initial
state at each node (note that log dv = 1 for internal nodes on the path), one can employ
the Rotor-Router algorithm and achieve exploration time of O(n2) [41] (there is no need for
agent memory), which is time and memory optimal in the model with only node memory [34].
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We want to verify the hypothesis that dual-memory allows to achieve linear time of
exploration of trees. In our lower bound we analyse path exploration with one bit at each node
and additional one bit of memory at the agent. We prove that in this setting, in DirtyMem
model an exploration of the path requires Ω(n2) steps in the worst case. Interestingly, since
time O(n2) in already achievable with only a single bit at each node (and no memory at the
agent), our lower bound shows that adding a single bit at the agent does not reduce the
exploration time significantly.

3.1 Previous and related work

Only node memory. One approach for exploration using only node memory is Rotor-
Router [41]. It is a simple strategy, where upon successive visits to each node, the agent is
traversing the outgoing edges in a round-robin fashion. Its exploration time is Θ(mD) for
any graph with m edges and diameter D [2, 41]. It is easy to see that this algorithm can be
implemented in port-labelled graphs with zero bits of memory at the agent and only ⌈log dv⌉
bits of memory at each node v with degree dv (note that this is the minimum possible amount
of memory for any correct exploration algorithm using only memory at the nodes). Allowing
even unbounded memory at each node still leads to Ω(n3) time for some graphs, and Ω(n2)
time for paths [34]. These lower bounds hold even if the initial state of the memory at each
node is clean (i.e., each node starts in some fixed state ŝ like in CleanMem model). Hence,
only node memory is insufficient for subquadratic time exploration of trees.

Only agent memory. When the agent is not allowed to interact with the environment, then
such agent, when exploring regular graphs, does not acquire any new information during
exploration. Hence such an algorithm is practically a sequence of port numbers that can
be defined prior to the exploration process. In the model with agent memory, the agent
is endowed with some number of bits of memory that the agent can access and modify at
any step. Thus for the case of the path, the lower bound (for unlimited agent memory)
can be infered from a lower bound Ω(n1.51) for Universal Traversal Sequences (UTS) [9]. If
this number of bits is logarithmic in n (otherwise, the exploration is infeasible [14]), then
in this model it is possible to implement UTS (the agent only remembers the position in
the sequence). The best known upper bound is O(n3) [1] and the best known constructive
upper bound is O(n4.03) [31]. Memory Θ(D log ∆) is sufficient and sometimes required to
explore any graph with maximum degree ∆ [24]. For directed graphs, memory Ω(n log ∆) at
the agent is sometimes required to explore any graph with maximum outdegree ∆, while
memory O(n∆ log ∆) is always sufficient [23].

Finite state automata. An agent equipped with only constant number of bits of persistent
memory can be regarded as a finite state automaton (see e.g. [8, 24, 25]). Movements of such
agent, typically modelled as a finite Moore or Mealy automaton, are completely determined
by a state transition function f(s, p, dv) = (s′, p′), where s, s′ are the agent’s states and p, p′

are the ports through which the agent enters and leaves the node v. A finite state automaton
cannot explore an arbitrary graph in the setting, where the nodes have no unique labels [39].
Fraigniaud et al. [24] showed that for any ∆ ⩾ 3 and any finite state agent with k states, one
can construct a planar graph with maximum degree ∆ and at most k + 1 nodes, that cannot
be explored by the agent. It is, however, possible in this model to explore (without stop) the
trees, assuming that the finite state agent has access to the incoming port number (cf. [14]).
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Two types of memory. Sudo et al. [40] consider exploration of general graphs with two types
of memory, where both memories may have arbitrary initial states. They show that O(log n)
bits at the agent and at each node allows exploration in time O(m + nD). Cohen et al. [8]
studied the problem of exploring an arbitrary graph by a finite state automaton, which
is capable of assigning O(1)-bit labels to the nodes. They proposed an algorithm, that –
assuming the agent knows the incoming port numbers – dynamically labels the nodes with
three different labels and explores (with stop) an arbitrary graph in time O(mD) (if the
graph can be labelled offline, both the preprocessing stage and the exploration take O(m)
steps). They also show that with 1-bit labels and O(log ∆) bits of agent memory it is possible
to explore (with stop) all bounded-degree graphs of maximum degree ∆ in time O(∆10m).

Tokens. Deterministic, directed graph exploration in polynomial time using tokens has
been considered in [3], where it was shown that a single token is sufficient if the agent has an
upper bound on the number of vertices n and Θ(log log n) tokens are sufficient and necessary
otherwise. In [4] the authors proposed a probabilistic polynomial time algorithm that allows
two cooperating agents without the knowledge of n to explore any strongly connected directed
graph. They also proved that for a single agent with O(1) tokens this is not possible in
polynomial time in n with high probability. Using one pebble, the exploration with stop
requires an agent with Ω(log n) bits of memory [25]. The same space bound remains true for
perpetual exploration [24]. Disser et al. [15] show that for a single agent with O(1) memory,
to explore any undirected anonymous graph (i.e. with unlabelled vertices and port-labelled
edges) with n vertices, Θ(log log n) distinguishable pebbles are necessary and sufficient. They
proposed an algorithm based on universal exploration sequences (UXS, cf. [30, 38]), which
runs in polynomial time and the agent terminates after returning to the starting vertex with
all pebbles. For the lower bound they show that an agent with O((log n)1−ε) bits of memory
(for any constant ε > 0) needs Ω(log log n) pebbles to explore all undirected graphs.

Randomized and collaborative exploration. Although we focus on deterministic graph
exploration by a single agent, there is a vast body of literature on randomized exploration
techniques, see e.g. [1, 12, 18, 19]. A classical and well-studied processes are random walks,
where the agent in each step moves to a neighbour chosen uniformly at random (or does
not move with some constant probability). Exploration using this method takes expected
time Ω(n log n) [20] and O(n3) [21], where for each of these bounds there exists a graph class
for which it is tight. Randomness alone cannot ensure linear time of tree exploration, since
expected time Ω(n2) is required even for paths [32]. However approaches using memory at the
agent [28], local information on explored neighbours [5], or local information on degrees [36]
have shown that there are many methods to speedup random walks. Finally, to achieve fast
exploration, usage of multiple agents is possible, cf. [12, 13, 15, 16, 17, 22, 27, 29, 37].

4 Upper bounds

4.1 Exploration in CleanMem model
To simplify descriptions, let us denote the starting position of the agent as Root. In this
section we show an algorithm exploring any tree in O(n) steps using O(1) bits of memory
at the agent and O(log dv) bits of memory at each node v of degree dv in CleanMem model.
The memory at each node is organized as follows. It contains two port pointers (of ⌈log dv⌉
bits each):
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v.parent – at some point of the execution, contains the port number leading to Root,
v.last – points to the last port taken by the agent during the exploration

and two flags (of 1 bit):
v.root – indicates whether the node is Root of the exploration,
v.visited – indicates whether the node has already been visited.

At each node, the initial state of last pointers is 1, initial state of parent is NULL and initial
state of each flag is False. The agent’s memory contains one variable State that can take
one of five possible values: Initial, Roam, Down, Up, Terminated.

For simplicity of the pseudocode we use a flag parentSet, which controls if parent is
correctly set. This flag does not need to be stored because it is set and accessed in the same
round. It is possible to write a more complicated pseudocode without this variable.

In our pseudocode, we use a procedure MOVE(p), in which the agent traverses an edge
labelled with port p from its current location. When the agent changes its state to Terminated,
it does not make any further moves.

Algorithm’s description. For the purpose of the analysis, assume that tree T is rooted at
the initial position of the agent (the Root). The main challenge in designing an exploration
algorithm in this model is that the agent located at some node v may not know which port
leads to the parent of v. Indeed, if the agent knew which port leads to its parent, it could
perform a DFS traversal. In Algorithm 1 the agent would traverse the edges corresponding
to outgoing ports in order 1, 2, 3, . . . , dv (skipping the port leading to its parent) and take
the edge to its parent after completing the exploration of the subtrees rooted at its current
position. Note that it is possible to mark, which outgoing ports have already been traversed
by the agent using only a single pointer at each node hence 0 bits at the agent and ⌈log dv⌉
bits at each node allow for linear time exploration in this case.

Since in our model, the agent does not know, which port leads to the parent, we need a
second pointer parent at each node. To set it correctly, we first observe that in the model
CleanMem, using flag visited, it is possible to mark the nodes that have already been visited.
Notice that when the agent traverses some edge outgoing from v in the tree for the first time
and enters to a node that has already been visited, then this node is certainly the parent of
v. We can utilize this observation to establish correctly v.parent pointer using state Down.
When entering to a node in this state, we know that the previously taken edge (port number
of this edge is stored in v.last) leads to the parent of v. Our algorithm also ensures, that
after entering a subtree rooted at v, the agent leaves it once, and the next time it enters this
subtree it correctly sets v.parent and in subsequent steps it visits all the nodes of the subtree.
Finally, having correctly set pointers parent at all the nodes, allows the agent to efficiently
return to the starting node after completing the exploration and flag root allows the agent to
terminate the algorithm at the starting node.

▶ Theorem 1. Algorithm 1 explores any tree and terminates at the starting node in O(n)
steps in CleanMem model.

Proof. First note that the algorithm marks the starting node with flag root (line 2). The
algorithm never returns to state Initial, hence only this node will be marked with the root
flag. The only line, where the agent terminates the algorithm is line 14 hence the agent can
only terminate in the starting node. We need to show that the agent will terminate in every
tree and before the termination it will visit all the vertices and the time of the exploration
will be O(n). Let us denote the starting node as Root and for any node v different from
Root, will call the single neighbour of v that is closer to Root as the parent of v.
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Algorithm 1 Tree exploration in CleanMem model.

// Agent is at some node v and the outgoing ports are {1, 2, . . . , dv}
1 if State = Initial then
2 v.root← True, State← Roam, v.visited← True;
3 MOVE(v.last);
4 else
5 if State = Down then
6 v.parent← v.last, State← Roam; // mark edge as leading to parent
7 v.parentSet← True;
8 else
9 v.parentSet← False

10 if ((State = Roam and dv = 1) or State = Up or v.parentSet = True) and
v.root = False and v.last = dv and v.parent ̸= NULL then

11 State← Up; // exploration of this subtree completed
12 MOVE(v.parent) ; // return to the parent
13 else if State = Up and v.root = True and v.last = dv then
14 State← Terminated; // exploration of the whole tree completed
15 else
16 if State = Roam and v.visited = True and v.parentSet = False then
17 State← Down;
18 else if State = Up then
19 State← Roam, v.last← v.last + 1;
20 else
21 if v.visited = True then v.last← v.last + 1;
22 else v.visited← True;
23 MOVE(v.last);

We will show the following claim using induction over the structure of the tree.

▷ Claim 2. Assume that the agent enters to some previously unvisited subtree rooted at v

with nv vertices for the first time in state Roam in step ts. Then the agent:

C.1 returns to the parent of v for the first time in state Roam (denote by tr > ts the step
number of the first return from v to its parent),

C.2 goes back to v in the state Down at step tr + 1,
C.3 returns to the parent of v for the second time in state Up (denote by tf > tr + 1 the

step number of the second return from v to its parent),
C.4 visits all the vertices of this subtree and spends O(nv) steps within time interval [ts, tf ].

Proof. We will first show it for all the leaves. Then, assuming that the claim holds for all the
subtrees rooted at the children of some node v, we will show it for v. To show this claim for
any leaf l, consider the agent entering in state Roam to l. Upon the first visit to l, the agent
sets the flag l.visited to True and leaves (without changing the state of the agent) with port 1.
This proves C.1. In the next step, at the parent of l, a state changes to Down and the agent
uses the same port as during the last time in parent of l. Therefore the agent moves back to
l (C.2) and sets l.parent← 1 (line 6). Then the agent changes its state to Up and moves to
the parent (lines 11–12). This shows C.3. Node l was visited twice within the considered
time steps, which shows C.4. This completes the proof of the claim for all the leaves.
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22:8 Tree Exploration in Dual-Memory Model

Now, consider any internal node v of the tree (with dv > 1) and assume that the claim
holds for all its children. When the agent enters to v for the first time, it sets the flag v.visited
to True and moves to its neighbour w (while being in state Roam) via port 1.
Case 1: w is the parent of v. This immediately shows C.1. If the parent of v is not Root,

then it has the degree at least 2, hence the agent will evaluate the if-statement in line 10
to False. Thus the agent will execute line 16 and change its state to Down. The agent
uses the same port as during the previous visit of w, therefore the agent goes back to
v (C.2), hence it will correctly set the pointer v.parent (it will point to the parent of v),
which shows C.3.

Case 2: w is a child of v. In this case we enter to a child of v. We have by the inductive
assumption (C.1), that the agent will return from w to v in state Roam. Since the agent
enters to v in state Roam, then the value of parentSet is False and the agent executes
line 16, transitions to state Down and then line 23 it takes the same edge as during the
last visit to v, hence it moves back to node w (C.2). By C.3 we get that the next time
the agent will traverses the edge from w to v, it will be in state Up. Then the agent
increments pointer v.last (line 19) and moves to the next neighbour of v (line 23).

Thus the agent either finds the parent or explores the whole subtree rooted at one of its
children w in O(nw) steps (by the inductive assumption C.4). An analogous analysis holds
for ports 2, 3, . . . , dv. When the agent returns from the neighbour connected to v via the last
port dv, it is either in state Up or Down (the second case happens if the edge leading from v

to its parent has port number dv). In both cases it executes lines 11 and 12 and leaves to its
parent (the pointer to parent is established since the agent had traversed each outgoing edge,
hence it moved to its parent and correctly set the parent pointer).

By this way, the agent visits all the subtrees rooted at v’s children w1, w2, . . . , wdv−1
(or up to wdv

if v = Root). Hence, the total number of steps for a node v ̸= Root is

O

(
dv−1∑
i=1

nwi

)
= O(nv) and v = Root it is O

(
dv∑

i=1
nwi

)
= O(n). ◁

To complete the proof of Theorem 1 we need to analyse the actions of the agent at
Root. Consider the actions of the agent at Root when the Root.last pointer takes values
i = 1, 2, . . . , dRoot. Let vi be the neighbour of Root pointed by port number i at Root. Observe
that the agent at Root behaves similarly as in all the other internal nodes (only exception is
that the agent will never enter Root in state Down, because by Claim 2 the agent can enter to
it only in states Roam or Up, since the Root has no parent). By Claim 2, the agent visits the
whole subtrees rooted at these nodes in time proportional to the number of nodes in these
subtrees. When the agent returns from node vdRoot in state Up then the algorithm terminates
(line 14). The total runtime is proportional to the total number of nodes in the tree. ◀

4.2 Exploration in Token model
Algorithm’s description. In Algorithm 2, the agent has a single token, which can be
DROPped, TAKEn and MOVEd (i.e., carried by the agent across an edge of the graph).
Moreover, the agent is always in one state from set {Initial, Roam, RR, Down, Up, Terminated}.
Our algorithm ensures, that in states Roam and RR the agent does not hold the token and
in the remaining states, it does. In these four states the agent can eventually DROP it. Each
node v has degree denoted by dv, which is part of the input to the agent, when entering
to a node. Moreover, the memory at each node v is organized into three variables: v.last
and v.parent of size ⌈log dv⌉ and a flag v.root ∈ {True, False} to mark the Root. We assume
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that in all vertices, variables last, parent and root have initially any admissible value (if not,
then the agent would easily notice it and change such a value). Moreover, when the agent is
entering to a node, it can see whether the node contains the token or not.

We would like to perform a similar exploration as in CleanMem model – we will use
pointers last and parent as in Algorithm 1. However, the difficulty in this model is that
these pointers may have arbitrary initial values. Especially, if the initial value of parent is
incorrect, Algorithm 1 may fall into an infinite loop. Hence in this section we propose a new
Algorithm 2 that handles dirty memory using a single token. In this algorithm the agent
maintains an invariant that the node with the token, and all the nodes on the path from the
token’s location to the Root are guaranteed to have correctly set parent pointers. To explore
new nodes, the agent performs a Rotor-Router (shortly RR) traversal, starting from node v

with the token to its neighbour w (by the invariant, the agent chooses w as one of its children,
not its parent). During this traversal, the agent is resetting the parent pointers at each node
(and cleaning the root flags). The agent is using last as the pointer for the purpose of RR
algorithm. The agent does not have to reset last as the RR requires no special initialization.
Moreover, by the properties of RR the agent does not traverse the same edge twice in the
same direction before returning to the starting node. Since the agent starts in the node with
the token, it can notice that it completed a traversal. During this traversal each edge is used
at most twice (once in each direction). Moreover, each node visited during this traversal has
cleaned memory (pointer parent points to NULL and root is set to False). After returning
to the node with the token, pointer v.last points at w and w.last points at v. Hence it is
possible to traverse this edge and correctly set pointer w.parent maintaining the invariant.
After moving the token down, the agent starts the RR procedure again. Since the agent
is not cleaning the pointer last, the RR will use different edges than during the previous
traversal. Using this we show in the proof of Theorem 2 that our algorithm traverses every
edge at most 6 times.

Preliminaries. Let us introduce some notation: a variable Token associated with a vertex
currently occupied by the agent, which is 1, when the agent meets the token and 0 otherwise. If
Token = 1, then the agent can TAKE the token and the agent with the token can DROP it. Let
Path(v) denote a set of all vertices, which are on the shortest path from Root to v, excluding
Root. Let Tv denote the subtree of T rooted at v, i.e., (w ∈ Tv) ≡ (w = v ∨ v ∈ Path(w)).
Let Tv,p denote a subtree of Tv, rooted at a node connected by edge labelled by outport p at
vertex v, i.e. if p leads from v to w (where v ∈ Path(w)), then Tv,p = Tw (we do not define
such a tree when p directs towards Root). We say that the action is performed away from
Root (downwards), if it starts in v and ends in Tv. Otherwise the action is towards Root
(upwards). Let Tok(t) and Ag(t) be the positions of the token and the agent, respectively, at
the end of the moment t. Let Act(t) be the action performed during the t-th step. Let the
variable v.visited(t) ∈ {0, 1} indicate whether v was visited by Algorithm 2 until the moment
t. Note that this variable is not stored at the nodes and this notation is only for the analysis.

Additionally, we consider two substates of RR, depending on the value of the Token
variable. Substate RR0 is state RR, if variable Token = 0 at the node to which the agent
entered in the considered step. Similarly RR1 indicates that the agent enters in state
RR to a node with Token = 1. Note that this distinction is only for the purpose of the
analysis, and it does not influence the definition of the algorithm. In our analysis, we
will call Initial, Roam, RR0, RR1, Down, Up, Terminated actions as these states (and substates)
correspond to different commands executed by the agent (see the pseudocode of Algorithm 2).

MFCS 2022



22:10 Tree Exploration in Dual-Memory Model

Algorithm 2 Tree exploration in Token model.

// Agent is at some node v and the
outgoing ports are {1, 2, . . . , dv}

1 if State = Initial then
2 Clean(), v.last← 1, DROP;

// mark the root for termination
3 v.root← True;
4 State← Roam;
5 else if State = RR and Token = 1 then

// substate RR1
6 TAKE, State← Down;
7 else if State = RR and Token = 0 then

// substate RR0
8 Clean();
9 Progress() ; // increment last

10 else if State = Down then
11 DROP, v.parent← v.last;
12 Progress();
13 State← Roam;
14 IfUp() ; // check if in a leaf

15 else if State = Up then
16 DROP, Progress();
17 State← Roam;
18 if v.last = 1 and v.root = True then
19 State← Terminated;
20 IfUp();
21 else // State = Roam
22 Clean(), State← RR;
23 if State ̸= Terminated then
24 MOVE(v.last);

1 Procedure Clean()
2 v.root← False, v.parent← NULL;

1 Procedure Progress()
2 v.last← (v.last mod dv) + 1;

1 Procedure IfUp()
2 if v.parent = v.last then
3 TAKE, State← Up;

We assume that Initial action is performed at time step 0. Let Root denote the initial
position of the agent. Let v.last(t) and v.parent(t) denote, respectively, the values of v.last
and v.parent pointers at the end of the moment t. If v is the starting point of the t-th step,
then we say that v.last(t) is the outport related to t-th moment. Moreover, v.last(·) cannot
be changed until the node v will be visited for the next time. Each MOVE(v.last) involves
traversing an edge outgoing from the current position of the agent via the port indicated by
the current value of variable last at the current position.

Properties of the algorithm. Let us define the following set of properties P(t) (the k-th
property at moment t is denoted as P.k(t); in this definition we denote Ag(t) = w) that
describe the structure of the walk and the interactions with the memory at the nodes by an
agent performing Algorithm 2.

P.1 During t-th step:
a. If Down or Roam is performed, the move of the agent is away from Root (downwards).
b. If Up or RR1 is performed, the move of the agent is towards Root (upwards).

P.2 w ∈ TTok(t).
P.3 If w is visited for the first time at step t (Act(t) ∈ {Initial, Roam, RR0}), then it is also

cleaned, which means that w.parent is set to NULL and w.root is set to False.
P.4 For every v ∈ Path(Tok(t)), v.parent(t) ̸= NULL.
P.5 If w.visited(t− 1) = 1 and w.parent(t− 1) ̸= NULL, then Act(t) ̸∈ {Roam, RR0}.
P.6 If w.visited(t) = 1 and w.parent(t) ̸= NULL, then w.parent(t) points towards Root.
P.7 If the state at the end of t-th moment is Up, then Tw is explored.
P.8 If t > 0, then for every x ≤ Root.last(t− 1), TRoot,x is explored before t-th moment.
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P.9 If w.parent(t) = NULL, then there do not exist s1 < s2 < t such that w.last(s1) =
w.last(t) ̸= w.last(s2), where w.parent(s1) = NULL (w.last(·) cannot be changed to the
same value two times before w.parent(·) was established).

P.10 There do not exist s1 < s2 < t such that w.last(s1) = w.last(t) ̸= w.last(s2) and
w.parent(s1) ̸= NULL (w.last(·) cannot be changed to the same value two times after
w.parent(·) was established).

▶ Lemma 3. At time 0, Initial phase of Algorithm 2 guarantees P(0).

▶ Lemma 4. If Algorithm 2 satisfies P(s) for all s ≤ t, then it also fulfills P(t + 1).

All the omitted proofs from this section are deferred to the full version of the paper [6].

Initial
Clean()
last = 1

root = True
DROP

Roam
Clean()

RR1

TAKE
RR0

Clean()
Progress()

Down
DROP

Progress()

Up

DROP
Progress()

Terminated
End

Tok =
1

with Tok

parent = last
TAKE then MOVE

parent = last
TAKE then MOVE

paren
t ̸=

last

To
k =

0

Tok = 0

Tok = 1

parent ̸= last

last = 1
root = True

Figure 1 Illustration of actions and state transitions in Algorithm 2.

We will use properties P(t) to show correctness and time complexity of our Algorithm 2.

▶ Theorem 5. Algorithm 2 explores any tree and terminates at the starting node in at most
6(n− 1) steps in the Token model.

Proof. Using Lemmas 3 and 4, we get that Algorithm 2 satisfies P(t) for each step t. First
of all, from P.3, all visited vertices are cleaned upon the first visits.

Consider some vertex v and its arbitrary outport p. If v ̸= Root, then from P.9 and
P.10, p may be used two times instantly after the incrementation of v.last(·) (once when
v.parent(·) = NULL and once when v.parent(·) ̸= NULL). Realize that, when v = Root, then
from P.2 and the fact, that any vertex with the token cannot be cleaned by RR0 and Roam
moves, we claim that Root.parent(·) will always be NULL. By P.9, p may be used once
instantly after the incrementation of Root.last(·). Moreover, regardless of the choice of p, it
may be used also after Roam or RR1 action without a change of v.last(·).

Case 1. Assume that Act(t) = RR1 is taken via port p. From P.1(t) and P.2(t), p directs
upwards towards the token. Then Act(t + 1) = Down is performed downwards (from
P.1(t + 1)) via the same edge as p (but with the opposite direction) and changes the
position of the token to Tok(t + 1) = v and establishes v.parent(t + 1) ← p. By P.1, p

cannot be used during Roam action. Realize that if p = v.last(s− 1) for some moment
s > t and Act(s) = RR1, then Tok(s− 1) is one step towards Root from v (from P.1(s)).
Since the token can be moved only during Up and Down actions, then there exists a
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moment s′ such that t < s′ < s and Act(s′) = Up changes the position of the token from
v to Tok(s). However then Tok(s).last(s) ̸= Tok(s).last(s− 1) (Tok(s) is not a leaf) and
by P.10, P.6 and P.4, it cannot be changed back since parent(Tok(s)) ̸= NULL.

Case 2. Assume that Act(t) = Roam is taken from node v = Tok(t−1) via port p (downwards,
by P.1(t)). The first action after time t, which leads to the token, is always RR1. However,
as showed before, after RR1 action there is an instant Down action, which moves the
token via p to some vertex w and sets w.parent ̸= NULL. Hence by P.5, Roam action
cannot be performed via p once again. By P.1, p cannot be used during RR1 action.

Our considerations show that each outport can be used at most 3 times. Since each tree
of size n has 2(n− 1) outports, Algorithm 2 terminates after at most 6(n− 1) moves.

It remains to show that all vertices are then explored. Realize that Algorithm 2 terminates
in (t + 1)-st moment only when the agent is in Tok(t), Tok(t).last(t) = 1, Tok(t).root = True
and the state is Up at the end of t-th moment. From P.3, we know that the first visit in
some v sets root flag to True in Root and to False in all other nodes, and this flag does not
change (Roam and RR0 do not clean the vertices with the token, so by P.2, Root cannot be
cleaned by these moves). Hence the termination entails Tok(t) = Root. Since Root.parent(t)
= NULL, then from P.9 we know that each port p in Root will be set by Root.last(·) only
once (since the first moment) and P.8 means that each subtree TRoot,p for p ∈ {1, . . . , dRoot}
were explored before returning to Root, hence the exploration of TRoot was completed. ◀

5 Lower bound

In this section we analyse the exploration of paths with one bit of memory at each node and
one bit at the agent. We show that in this setting, in the DirtyMem model, the exploration
of the path sometimes requires Ω(n2) steps.

Notation. In the following lower bound on the path, we will focus on the actions of the
algorithm performed in vertices with degree 2. In such vertices, there are four possible inputs
to the algorithm S = {(0, 0), (0, 1), (1, 0), (1, 1)}, where in a pair (a, v), a denotes a bit on
the agent and v is a bit saved on the vertex. Let us denote the sets of agent and vertex
states by As and Vs, respectively. We also use elements from Ps = {0, 1} to denote ports in
vertices of degree 2. Moreover, a shorthand notation b indicates the inverted value of a bit.
For example, if a = 0, then a = 1 and vice versa. The goal of this section is to prove:

▶ Theorem 6. Every deterministic algorithm that can explore any path in the DirtyMem
model with one bit at the agent and one bit at each node requires time Ω(n2) to explore some
worst-case path with n nodes.

Assume, for a contradiction, that there exists algorithm A, which explores every path in
o(n2) steps. Without loss of generality, we may assume that the adversary always sets the
agent in the middle point of the path. For algorithm A, for every s ∈ S, by A(s), V (s), P (s)
we denote, respectively, the returned agent state, vertex state and the chosen outport in each
vertex with degree 2. Moreover, let R3(s) := (A(s), V (s), P (s)) and R2(s) := (A(s), V (s)).
We will show that A either falls into an infinite loop or performs no faster than Rotor-Router.

The proof of Theorem 6 is divided into several parts. In the first one, we provide several
properties of potential algorithms A that can eventually explore the path in o(n2) time.
These properties are used in the second part, where we prove that the agent does not change
its internal state every time, however it has to change the state of the vertex in each step.
Further, we check two algorithms (called X and Y), which turn out to explore the path
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even slower than the Rotor-Router algorithm. The analysis of those two algorithms is quite
challenging. Next we show that if three states of A return the same outport, then either it
falls into an infinite loop or explores the path in Ω(n2) steps. In the latter part we consider
the rest of amenable algorithms, which can either be reduced to previous counterexamples or
fall into an infinite loop. A big part of the proof is technical and due to space limitations it
is moved to the full version of the paper [6]. Nevertheless, in here we present two parts of
the proof to let the reader feel the flavour of high-level ideas and utilized techniques.

▶ Fact 7. (∀ a ∈ As)(∃ v ∈ Vs) A(a, v) = a.

Proof. Assume that (∃ a ∈ As)(∀ v ∈ Vs) A(a, v) = a. If a is the initial state of the agent,
then the agent will never change its state before reaching an endpoint of the path. Hence,
the time to reach the endpoint cannot be faster than Rotor-Router algorithm, hence the
adversary can initialize ports in such a way that the endpoint will be reached after Ω(n2)
steps. If a is the starting state, then either the agent state never changes which reduces to
the previous case or A(a, w) = a for some w ∈ Vs. Then, the adversary sets w as the initial
state of the starting vertex and after the fist step the state of the agent changes to a and by
the same argument as in the first case, the algorithm requires Ω(n2) steps. ◀

▶ Fact 8. (∀ a ∈ As)(∀ v ∈ Vs) R2(a, v) ̸= (a, v).

Proof. We will show that otherwise algorithm A falls into an infinite loop for some initial
state of the path. Assume that R3(a, v) = (a, v, p) for some a ∈ As, v ∈ Vs, p ∈ Ps. Then if a

is the starting agent state, the agent falls into an infinite loop on the left gadget from Figure 2
(double circle denotes the starting position of the agent and a above the node indicates its
initial state). If a is the starting state, then by Fact 7, (∃ w ∈ Vs) A(a, w) = a. Let q = P (a, w)
and note that the agent falls into an infinite loop in the right gadget at Figure 2. ◀

v

a

v

p p

pp

w

a

v v

q p p

ppq

Figure 2 Two looping gadgets for an algorithm with R2(a, v) = (a, v).

Independently of the above facts, let us consider the foregoing Algorithm Q and more
complicated gadgets, which force the agent to fall into an infinite loop (see Figure 3).
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v
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v

a

v

a

v

p

p

p p

v

a

v v v

p p p p

pppp

v

a

v v v v

p p p p p

ppppp

Figure 3 Definition of Algorithm Q (left) and gadgets on which it falls into an infinite loop.
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6 Conclusions and open problems

One conclusion from our paper is that certain assumptions of the model of mobile agents can
be exchanged. We showed, that in the context of linear time tree exploration, the assumption
of clean memory at the nodes can be exchanged for a single token or the knowledge of the
incoming port. The paper leaves a number of promising open directions. We showed that
token and clean memory allow for linear time exploration of trees, however, we have not
ruled out the possibility that linear time exploration of trees is feasible without both these
assumptions. Our lower bound suggests that memory ω(1) at the agent is probably necessary
in DirtyMem model. Another open direction would be to consider different graph classes, or
perhaps directed graphs. Finally, a very interesting future direction is to study dual-memory
exploration with team of multiple mobile agents. Such approach could lead to even smaller
exploration time, however, dividing the work between the agents in such models is very
challenging since the graph is initially unknown.

References
1 Romas Aleliunas, Richard M. Karp, Richard J. Lipton, László Lovász, and Charles Rackoff.

Random Walks, Universal Traversal Sequences, and the Complexity of Maze Problems. In
20th Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 29-31
October 1979, pages 218–223. IEEE Computer Society, 1979. doi:10.1109/SFCS.1979.34.

2 Evangelos Bampas, Leszek Gąsieniec, Nicolas Hanusse, David Ilcinkas, Ralf Klasing, Adrian
Kosowski, and Tomasz Radzik. Robustness of the Rotor-Router Mechanism. Algorithmica,
78(3):869–895, 2017. doi:10.1007/s00453-016-0179-y.

3 Michael A. Bender, Antonio Fernández, Dana Ron, Amit Sahai, and Salil P. Vadhan. The
Power of a Pebble: Exploring and Mapping Directed Graphs. Inf. Comput., 176(1):1–21, 2002.
doi:10.1006/inco.2001.3081.

4 Michael A. Bender and Donna K. Slonim. The Power of Team Exploration: Two Robots Can
Learn Unlabeled Directed Graphs. In Proceedings 35th Annual Symposium on Foundations of
Computer Science, pages 75–85, 1994. doi:10.1109/SFCS.1994.365703.

5 Petra Berenbrink, Colin Cooper, and Tom Friedetzky. Random Walks Which Prefer Unvisited
Edges: Exploring High Girth Even Degree Expanders in Linear Time. Random Struct.
Algorithms, 46(1):36–54, 2015. doi:10.1002/rsa.20504.

6 Dominik Bojko, Karol Gotfryd, Dariusz R. Kowalski, and Dominik Pajak. Tree exploration in
dual-memory model, 2022. (Full version). arXiv:2112.13449.

7 Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems, 30(1):107–117, 1998. Proceedings of the Seventh
International World Wide Web Conference. doi:10.1016/S0169-7552(98)00110-X.

8 Reuven Cohen, Pierre Fraigniaud, David Ilcinkas, Amos Korman, and David Peleg. Label-
Guided Graph Exploration by a Finite Automaton. ACM Trans. Algorithms, 4(4):42:1–42:18,
August 2008. doi:10.1145/1383369.1383373.

9 H. K. Dai and Kevin E. Flannery. Improved Length Lower Bounds for Reflecting Sequences.
In Jin-Yi Cai and Chak Kuen Wong, editors, Computing and Combinatorics, pages 56–67.
Springer Berlin Heidelberg, 1996. doi:10.1007/3-540-61332-3_139.

10 Shantanu Das. Graph Explorations with Mobile Agents. In Paola Flocchini, Giuseppe Prencipe,
and Nicola Santoro, editors, Distributed Computing by Mobile Entities: Current Research
in Moving and Computing, Lecture Notes in Computer Science, pages 403–422. Springer
International Publishing, Cham, 2019. doi:10.1007/978-3-030-11072-7_16.

11 Shantanu Das and Nicola Santoro. Moving and Computing Models: Agents. In Paola Flocchini,
Giuseppe Prencipe, and Nicola Santoro, editors, Distributed Computing by Mobile Entities:
Current Research in Moving and Computing, Lecture Notes in Computer Science, pages 15–34.
Springer International Publishing, Cham, 2019. doi:10.1007/978-3-030-11072-7_2.

https://doi.org/10.1109/SFCS.1979.34
https://doi.org/10.1007/s00453-016-0179-y
https://doi.org/10.1006/inco.2001.3081
https://doi.org/10.1109/SFCS.1994.365703
https://doi.org/10.1002/rsa.20504
http://arxiv.org/abs/2112.13449
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1145/1383369.1383373
https://doi.org/10.1007/3-540-61332-3_139
https://doi.org/10.1007/978-3-030-11072-7_16
https://doi.org/10.1007/978-3-030-11072-7_2


D. Bojko, K. Gotfryd, D. R. Kowalski, and D. Pająk 22:15

12 Dariusz Dereniowski, Yann Disser, Adrian Kosowski, Dominik Pająk, and Przemysław Uznański.
Fast collaborative graph exploration. Inf. Comput., 243:37–49, 2015. doi:10.1016/j.ic.2014.
12.005.

13 Dariusz Dereniowski, Adrian Kosowski, Dominik Pająk, and Przemyslaw Uznanski. Bounds
on the cover time of parallel rotor walks. J. Comput. Syst. Sci., 82(5):802–816, 2016. doi:
10.1016/j.jcss.2016.01.004.

14 Krzysztof Diks, Pierre Fraigniaud, Evangelos Kranakis, and Andrzej Pelc. Tree exploration
with little memory. J. Algorithms, 51(1):38–63, 2004. doi:10.1016/j.jalgor.2003.10.002.

15 Yann Disser, Jan Hackfeld, and Max Klimm. Tight Bounds for Undirected Graph Exploration
with Pebbles and Multiple Agents. J. ACM, 66(6), October 2019. doi:10.1145/3356883.

16 Yann Disser, Frank Mousset, Andreas Noever, Nemanja Škorić, and Angelika Steger. A general
lower bound for collaborative tree exploration. Theoretical Computer Science, 811:70–78, 2020.
doi:10.1016/j.tcs.2018.03.006.

17 Mirosław Dynia, Jakub Łopuszański, and Christian Schindelhauer. Why Robots Need Maps.
In G. Prencipe and S. Zaks, editors, Structural Information and Communication Complexity,
volume 4474 of Lecture Notes in Computer Science, pages 41–50. Springer Berlin Heidelberg,
2007. doi:10.1007/978-3-540-72951-8_5.

18 Klim Efremenko and Omer Reingold. How Well Do Random Walks Parallelize? In
Irit Dinur, Klaus Jansen, Joseph Naor, and José Rolim, editors, Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques, volume 5687
of Lecture Notes in Computer Science, pages 476–489. Springer Berlin Heidelberg, 2009.
doi:10.1007/978-3-642-03685-9_36.

19 Robert Elsässer and Thomas Sauerwald. Tight bounds for the cover time of multiple random
walks. Theor. Comput. Sci., 412(24):2623–2641, 2011. doi:10.1016/j.tcs.2010.08.010.

20 Uriel Feige. A Tight Lower Bound on the Cover Time for Random Walks on Graphs. Random
Struct. Algorithms, 6(4):433–438, 1995. doi:10.1002/rsa.3240060406.

21 Uriel Feige. A Tight Upper Bound on the Cover Time for Random Walks on Graphs. Random
Struct. Algorithms, 6(1):51–54, 1995. doi:10.1002/rsa.3240060106.

22 Pierre Fraigniaud, Leszek Gąsieniec, Dariusz R. Kowalski, and Andrzej Pelc. Collective Tree
Exploration. Networks, 48(3):166–177, 2006. doi:10.1002/net.20127.

23 Pierre Fraigniaud and David Ilcinkas. Digraphs Exploration with Little Memory. In V. Diekert
and M. Habib, editors, STACS 2004, volume 2996 of Lecture Notes in Computer Science,
pages 246–257. Springer Berlin Heidelberg, 2004. doi:10.1007/978-3-540-24749-4_22.

24 Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, and David Peleg. Graph exploration
by a finite automaton. Theor. Comput. Sci., 345(2-3):331–344, 2005. doi:10.1016/j.tcs.
2005.07.014.

25 Pierre Fraigniaud, David Ilcinkas, Sergio Rajsbaum, and Sébastien Tixeuil. Space Lower Bounds
for Graph Exploration via Reduced Automata. In A. Pelc and M. Raynal, editors, Structural
Information and Communication Complexity, volume 3499 of Lecture Notes in Computer
Science, pages 140–154. Springer Berlin Heidelberg, 2005. doi:10.1007/11429647_13.

26 Leszek Gąsieniec and Tomasz Radzik. Memory Efficient Anonymous Graph Exploration. In
H. Broersma, T. Erlebach, T. Friedetzky, and D. Paulusma, editors, Graph-Theoretic Concepts
in Computer Science, volume 5344 of Lecture Notes in Computer Science, pages 14–29. Springer
Berlin Heidelberg, 2008. doi:10.1007/978-3-540-92248-3_2.

27 Ralf Klasing, Adrian Kosowski, Dominik Pająk, and Thomas Sauerwald. The multi-agent
rotor-router on the ring: a deterministic alternative to parallel random walks. Distributed
Comput., 30(2):127–148, 2017. doi:10.1007/s00446-016-0282-y.

28 Adrian Kosowski. Faster Walks in Graphs: A Õ(n2) Time-Space Trade-off for Undirected
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1 Introduction

Statements from combinatorics, constraint satisfaction problems (CSP), arithmetic circuit
design, and algebra itself can be formalized either as statements about polynomial equalities
(and inequalities), or via propositional logic. The approach based on propositional logic is
amenable to state-of-the-art algorithms for satisfiability (SAT), usually variations of Conflict-
Driven-Clause-Learning SAT solvers (CDCL), see for instance [28, 29, 3]. These solvers are
surprisingly efficient, but their reasoning is ultimately based on the resolution proof system.
On problems coming from algebra, CDCL solvers do not exploit the algebraic aspects of
the problem, and therefore are typically unable to solve them. Switching to algebra allows
to leverage on tools as Hilbert’s Nullstellensatz and Gröbner basis computation in order to
solve systems of polynomial equations [10], or semidefinite programming to solve systems
of polynomial inequalities [30, 25]. These algebraic tools have been successful in practice
for instance to solve κ-coloring [11, 12, 13] and the verification of arithmetic multiplier
circuits [22, 21, 23]. κ-coloring, and in general CSP problems over finite domains of
size κ, are naturally encoded using κ-valued variables. In particular, the algebraic tools
for κ-coloring use the Fourier encoding, which represents values via complex variables z

subjected to the constraint zκ = 1 and hence such that

z ∈ {1, ζ, ζ2, . . . , ζκ−1} ,

where ζ is a primitive κth root of unity. A κ-valued variable z can be alternatively
represented as a collection of indicator Boolean variables x1, . . . , xκ equipped with the
additional constraint x1 + · · · + xκ = 1.
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Picking the right encoding is essential to leverage the algebraic structure of the problem.
Even simple changes, for instance adding new variables to represent Boolean negations may
already give significant speedups both in theory and in practice [14, 20].

In this paper, following a general approach from proof complexity, we show that algorithms
leveraging Hilbert’s Nullstellensatz or Gröbner basis computations cannot prove efficiently
the unsatisfiability of some natural sets of polynomials equations over the Fourier variables.

The proof systems we consider are polynomial calculus and sum-of-squares. Polynomial
calculus is a well studied proof system that captures Hilbert’s Nullstellensatz and Gröbner
basis computations. It is a system that certifies the unsatisfiability of sets of polynomial
equations. It has been studied for polynomials over different fields or rings and, in particular,
also for polynomials over the complex numbers C, see for instance [7]. Given polynomials
p1, . . . , pm with coefficients in a field F, a refutation of {p1 = 0, . . . , pm = 0} in polynomial
calculus over F, denoted as PCF, is a sequence of polynomials p1, . . . , ps over F such that
ps = 1 and each pm+1, . . . , ps is either (1) r · pk for some polynomial r with coeffcients in F
and some k < i; or (2) a linear combination αpj + βpk for j, k < i and α, β ∈ F.

Regarding sum-of-squares, it is a systems to certify the unsatisfiability of sets of polynomial
equations and inequalities over R. A sum-of-squares SoSR refutation of the set of contraints
{p = 0 : p ∈ P} ∪ {h ≥ 0 : h ∈ H} is an identity of the form

−1 =
∑
p∈P

qp · p +
∑
h∈H

qh · h +
∑
s∈S

s2 ,

where the s, qp, qh are polynomials over R and moreover the qhs are sums of squared
polynomials. In presence of Boolean or {±1}-valued variables, SoSR p-simulates PCR [4, 34].

In this paper, we introduce a generalization of sum-of-squares with polynomials over
C, SoSC (see Section 2 for the formal definition). Since C is not an ordered field, this
generalization of sum-of-squares to C can only be used to certify the unsatisfiability of sets
of polynomial equations. For sets of polynomial equations over R and in the presence of
Boolean variables, SoSC coincides with the usual notion of sum-of-squares over R, but the
generalization is necessary to deal with Fourier variables or to reason about polynomials over
C. In presence of Fourier variables, SoSC p-simulates PCC, see Section 2 for more details.

PC and SoS can be used to solve computational problems once they are encoded as sets
of polynomials equations. It is customary to discuss sets of polynomial equations simply as
sets of polynomials. We adopt this custom and we say that a set of polynomials over C is
satisfiable when it has a common zero α ∈ Cn. The most naïve algebraic encoding is to use
variables ranging over {0, 1} to represent the truth values of variables. This Boolean nature
of a variable x is enforced via the polynomial x2 − x. With this encoding then, for example,
the satisfiability of a propositional clause x ∨ ¬y ∨ z can be encoded as the satisfiability of
the set of polynomials {(1 − x)y(1 − z), x2 − x, y2 − y, z2 − z}. Truth values of variables
are sometimes also encoded in the Fourier basis {±1} and, as we already mentioned, for
some CSPs it is convenient to use κ-valued variables using the κth roots of unity.

Finding deductions in PC/SoS may be hard, and in general there are important proxy
measures to estimate such hardness: the maximum degree of the polynomials involved in the
deductions, and the number of monomials involved in the whole proof when polynomials are
written explicitly as sums of monomials (size). The degree is a very rough measure of the
proof search space, the size is a lower bound on the time required to produce the proof.

Studying size and degree complexity in algebraic systems over Fourier encodings is
particularly relevant to understand how to leverage to proof complexity techniques like
the Smolensky’s method in circuit complexity [33]. He proved exponential lower bounds
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to compute the MODp function by bounded-depth circuits using the unbounded gates in
{∧, ∨, MODq}, for p and q relatively prime, employing a reduction to low-degree polynomials
over GF(q) approximating such circuits. In proof complexity, it is a long-standing problem
to obtain lower bounds for proof systems over bounded-depth formulas with modular gates.

Non-trivial degree lower bounds for Fourier encodings were first obtained for the Nullstel-
lensatz proof system and PC by Grigoriev in [18] and Buss et al. in [7] for the Tseitin principle
over p-valued variables (instead of the usual {0, 1}) and the so-called MODp principles [7].

For PC/SoSR over Boolean variables we know degree and size lower bounds for the
encodings of several computational problems, see for instance [2, 17, 31, 32, 35]. For the
size lower bounds in PC and SoSR this is essentially due to degree-size tradeoffs: if a set of
polynomials over Boolean variables has no refutation in PC/SoSR of degree at most D, then
it has no refutation containing less than 2Ω

(
(D−d)2

n

)
monomials, see [1, 19].

No such degree-size relation holds for polynomials over the Fourier variables. For instance,
it is well-known that Tseitin contradictions over the Boolean variables {0, 1} require an
exponential number of monomials to be refuted in PC, while PC can refute them with a
linear number of monomials if the encoding uses the variables {±1}, see [7].

To the best of our knowledge, the first size lower bounds in PC/SoSR for polynomials with
{±1} variables are proved by [34] for the pigeonhole principle and random 11-CNFs. Moreover
that work provides a technique to turn strong degree lower bounds in that framework into
strong size lower bounds for the same polynomials composed with some carefully constructed
gadgets. We extend this latter approach to get size lower bound under the Fourier encoding
of κ-valued variables, and we apply it to a generalization of knapsack for these variables.

The classical knapsack problem corresponds to the set of polynomials{ n∑
i=1

cixi − r , x2
1 − x1, . . . , x2

n − xn

}
, (1)

where r, c1, . . . , cn ∈ C. For knapsack are known linear degree lower bounds in PC, see
[19, Theorem 5.1], and, when all the cis are 1 and r ∈ R, degree lower bounds in SoSR of
the form min{2⌊min{r, n − r}⌋ + 3, n}, see [17]. Size lower bounds are also implied by the
respective size-degree tradeoffs [19, 1].

Sums of roots of unity. We consider the problem of when a sum of n variables with values
in the κth roots of unity can be equal to some value r ∈ C, that is the satisfiability of

SRUκ,r
n :=

{ ∑
i∈[n]

zi − r, zκ
1 − 1, . . . , zκ

n − 1
}

. (2)

Linear relations of the form
∑n

i=1 ciζi = 0, where ci are complex numbers and ζi are roots
of unity, arise naturally in several contexts [9], and have been extensively studied in the
literature, see for instance [16, 15]. When κ divides n, κ | n, it is easy to see that SRUκ,0

n is
satisfiable, because the κth roots of unity sum to zero.

When κ is a power of a prime number p, this is indeed the only possibility, that is SRUκ,0
n

is satisfiable over C if and only if p | n. (For the simple proof of this fact see the full version.)
For the general case of κ ∈ N, Lam and Leung [24] characterize exactly the set of natural
numbers n such that SRUκ,0

n is satisfiable. As a corollary of their results, if κ is not a power
of a prime then, there exists a n0(κ) s.t. for every n ≥ n0(κ) the set of polynomials SRUκ,0

n

is satisfiable.

MFCS 2022
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Our results. In this paper we show the hardness to certify in PC and SoSC the unsatisfiability
of SRUκ,0

n when κ is a prime and does not divide n. For simplicity, we leave the discussion
for the case when κ is a power of a prime for the journal version. Our main results regarding
PC/SoSC informally say that SoSC and PCC cannot capture divisibility arguments.

A linear degree lower bound for SRU2,0
n follows immediately, via a linear transformation,

from the known degree lower bound for knapsack in SoS, since the Grigoriev’s lower bound
in [17] can easily extended to SoSC. In this paper we generalize this result proving degree
and size lower bounds in SoSC for SRUκ,r

n for κ an odd prime.

▶ Theorem 1 (Degree lower bound for SRUκ,r
n ). Let n, d ∈ N, κ be a prime, r ∈ C. Let r be

written as r1 + ζr2, where r1, r2 ∈ R and ζ is some κth primitive root of unity. If

κd ≤ min{r1 + r2 + (κ − 1)n + κ, n − r1 − r2 + κ} ,

then there are no SoSC-refutations of SRUκ,r
n of degree at most d. In particular, SRUκ,0

n

requires refutations of degree Ω
(

n
κ

)
in SoSC.

From the set of polynomials in SRU2,r
n we can easily infer the polynomials in SRUκ,0

n , via
a linear transformation and a weakening. This is enough to prove degree lower bounds for
SRUκ,0

n in PCC since, Impagliazzo, Pudlák, and Sgall [19, Theorem 5.1] proved a linear degree
lower bound for knapsack and therefore SRU2,r

n for any r. This is not the case for SoSC:
SRU2,r

n is refutable in small degree and size in SoSC if r ∈ C \ R, see Example 4. In other
words, in SoSC, unlike the case of PC, it is not possible to reduce the hardness of SRUκ,0

n , for
κ > 2 to knapsack.

To prove the degree lower bound in SoSC for SRUκ,r
n (Theorem 1) first we construct a

candidate pseudo-expectation for SRUκ,r
n based on the symmetries of the set of polynomials.

Then we prove its correctness, following the approach by Blekherman [5, 6] as presented
in [27, Theorem B.11] but generalized to SoSC. Due to page limitations we only show in
Section 4 how to use the generalization of Blekherman’s theorem (Theorem 13) to prove
Theorem 1.

We also prove a size lower bound for SRUκ,0
n in SoSC. We lift degree lower bounds to size

lower bounds generalizing to κ-valued Fourier variables the lifting approach due to Sokolov
[34], originally designed for real valued polynomials and {±1}-variables.

▶ Theorem 2 (Size lower bound for SRUκ,0
n ). Let κ be a prime and n ∈ N, if n ≫ κ then the

set of polynomials SRUκ,0
n has no refutation in SoSC within monomial size 2o(n).

Theorem 2, for κ = 2, follows easily from the techniques of Sokolov [34] and Grigoriev’s
degree lower bound for knapsack [17]. For κ > 2 it requires some non-trivial extension of the
lifting technique from [34]. That is, the composition of polynomials with appropriate gadgets
(see Definition 6). Our generalization of the lifting from [34] is Theorem 7 in Section 3.

Theorem 1 and Theorem 2 also hold for PCC, since SoSC simulates PCC.

Structure of the paper. In the next section, we give the necessary preliminaries on roots
of unity and the formal definition of SoSC. In Section 3 we layout the proof of a way to lift
degree lower bounds to size lower bounds in SoSC for sets of polynomials over the Fourier
variables (Theorem 7) and we show how to prove Theorem 2 from Theorem 1 and Theorem 7.
The proof of Theorem 1 is in Section 4.
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2 Preliminaries

Given n, k ∈ N, let [n] := {1, . . . , n}, and if k divides n we write k | n. For a ∈ R and
b ∈ N, let

(
a
0
)

:= 1 and
(

a
b

)
:= a(a−1)...(a−b+1)

b! for b ≥ 1. Boldface symbols indicate vectors,
and x denotes a vector with n elements (x1, . . . , xn). We denote with x Boolean variables,
with z κ-valued variables and with y generic variables or auxiliary variables. Given a set of
polynomials P ⊆ C[y], ⟨P ⟩ denotes the ideal generated by P in C[y]. Let i be the imaginary
unit in C, i.e. i2 = −1.

Roots of unity. For a positive integer κ, a κth root of unity is a root of the polynomial
zκ − 1. All the roots of unity except 1 are also roots of the polynomial 1 + z + · · · + zκ−1,
indeed zκ − 1 = (z − 1) · (1 + z + · · · + zκ−1). A κth root of unity ζ is called primitive if
ζt ̸= 1 for all 1 ≤ t < κ. If this is the case the κth roots of unity are indeed 1, ζ, ζ2, . . . , ζκ−1.
Some of the results of this paper hold for roots of unity in generic fields but, for sake of
clarity, we only consider roots of unity in C. Notice that the complex conjugate of ζt is ζκ−t.
For concreteness, we denote as ζ a specific primitive κth root of unity, for instance e2πi/κ,
and as Ωκ the set {1, ζ, ζ2, . . . , ζκ−1}. We often denote as ω a generic element in Ωκ.

SoS over the complex numbers. The key concept at the core of the sum-of-squares proof
system is that squares of real valued polynomials are always positive. For a complex valued
polynomial p ∈ C[y] we use that p ·p∗ ≥ 0, where p∗ is the function that maps the assignment
α to the complex conjugate of the value p(α). We need a polynomial representation of
function p∗ that we call formal conjugate of p. To have such polynomial, in general, we would
need to use a twin formal variable to represent x∗ for any original variable x. Furthermore
we would need to add to the proof system various axioms to relate x and x∗. In this work
we focus on SoSC under the Boolean and Fourier encodings, hence we can represent formal
conjugates as polynomials without any additional axiom or variable. For a Boolean variable
x ∈ {0, 1} we have that x∗ is x itself. For a Fourier variable z raised to an integer power
0 ≤ t < κ, the function (zt)∗ is zκ−t. Then the operator ∗ extends homomorphically on sums
and products, and it is equal to the usual complex conjugate on complex number. We are
now ready to define the sum-of-squares proof system over complex number.

▶ Definition 3 (Sum-of-Squares over C, SoSC). Fix an integer κ ≥ 2. Consider a set of
polynomials P ⊆ C[x, z] where P contains zκ − 1 and for each variable z, and contains
x2 − x for each variable x. A refutation of P in SoSC is an equality of the form

−1 =
∑
p∈P

qp · p +
∑
s∈S

s · s∗ ,

where the s ∈ S and qp for p ∈ P are in C[x, z] and each s∗ is the formal conjugate of s.
The degree of the refutation is max{deg(qp) + deg(p), deg(s · s∗) : p ∈ P, s ∈ S}. The

size of the refutation is the total number of monomials occurring with non-zero coefficients
among polynomials {qp, p : p ∈ P} ∪ {s, s∗ : s ∈ S}.

Notice that, for polynomials p, q ∈ R[x, z], (p + iq)(p − iq) = p2 + q2. Therefore for
P ⊆ R[x] and containing x2

i − xi for every i ∈ [n], the notion of SoSC and SoSR coincide.
By Hilbert’s Nullstellensatz, SoSC is complete: for every unsatisfiable set of polynomials

P there is a SoSC-refutation. Conversely, only unsatisfiable sets of polynomials have SoSC
refutations: for any assignment α of a polynomial s, polynomial s · s∗ evaluates to |s(α)|2

which is a non-negative real number.

MFCS 2022
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▶ Example 4. The set of polynomials {
∑

j∈[n] xj − i, x2
1 − x1, . . . , x2

n − xn} has a simple
SoSC refutation:

−1 = −(
∑

j∈[n]

xj − i)(
∑

j∈[n]

xj + i) + (
∑

j∈[n]

xj)2 .

Via similar algebraic equalities it is not hard to see that SoSC can refute easily the set of
polynomials corresponding to knapsack in eq. (1) when r ∈ C \ R and all cis are real. By a
simple modification of [4, Lemma 3.1] and [34], we also have that, in presence of the axioms
yκ

i − 1, SoSC simulates PCC, that is PCC refutations can be converted to SoSC refutations
with just a polynomial increase in size.1 Impagliazzo, Pudlák, and Sgall in [19, Theorem 5.1]
prove that the set of polynomials in eq. (1) is hard for PCC, hence SoSC is strictly stronger
than PCC.

3 Size lower bounds in Sum-of-Squares

In this section we prove the size lower bound for SRUκ,0
n in SoSC from the the corresponding

degree lower bound. That is we show how to prove Theorem 2 from Theorem 1. On a
very high level, this is done composing the polynomials in SRUκ,r

n with some polynomials
g, obtaining then some new set of polynomials SRUκ,r

n ◦ g, and then via a lifting theorem
showing how degree lower bounds on SRUκ,r

n imply size lower bounds on SRUκ,r
n ◦ g.

▶ Definition 5 (composition of polynomials). Let x, y1, . . . yn be tuples of distinct variables
where yj = (yj1, . . . , yjℓj ). Given a polynomial p ∈ C[x] and g = (g1 . . . , gn) with gj ∈ C[yj ]
we denote by p ◦ g the polynomial obtained substituting each instance of the variable xj in p

with the polynomial gj(yj) and then expanding the obtained algebraic expression as a sum of
monomials in the new variables. The polynomial p ◦ g then belongs to the ring C[y1, . . . , yn].

Similarly, for a set of polynomials P ⊂ C[x] we denote as P ◦ g the set of polynomials
{p ◦ g : p ∈ P}.

We are only interested in composing polynomials with g when g has some good properties.
Those are a generalization of the notion of compliant gadgets from [34, Definition 2.1].

▶ Definition 6 (compliant polynomial). A polynomial g ∈ C[y1, . . . , yℓ] is compliant if it is
symmetric and there exists a function h : Ωκ → Ωℓ

κ such that
1. g ◦ h = id, i.e. for all b ∈ Ωκ, g(h(b)) = b;
2. for each b ∈ Ωκ, the first κ coordinates of h(b) list all the elements of Ωκ; and
3.
∏

ω∈Ωκ
h(ω) is a constant function.

We say that g = (g1 . . . , gn) with gj ∈ C[yj ] is compliant when each gj is compliant.

The original definition of [34, Definition 2.1] focuses on real polynomials and sets of values
{0, 1} and {±1}, while ours focuses on complex polynomials and the set of κth roots of unity.

The size lower bound on SRUκ,0
n in SoSC follows from the following general result.

▶ Theorem 7. Let P a finite set of polynomials of degree at most d0 in C[x] containing
the polynomials xκ

i − 1 for each i ∈ [n]. Let g be a tuple of compliant polynomials with
gi ∈ C[yi1, . . . , yiℓi ]. If P requires degree D to be refuted in SoSC, then

P ◦ g ∪ {yκ
ij − 1 : i ∈ [n], j ∈ [ℓi]}

requires monomial size at least exp( (D−d0)2

8ℓκ(κ−1)n ) to be refuted in SoSC, where ℓ = maxi∈[n] ℓi.

1 The main difference with [4, Lemma 3.1] and [34] is to consider polynomials s · s∗ instead of squares s2

and then to use the algebraic equality (p + q)(p + q)∗ + (p − q)(p − q)∗ = 2pp∗ + 2qq∗ instead of the
one for the reals (p + q)2 + (p − q)2 = 2p2 + 2q2 .
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This result is a generalization of [34, Theorem 4.2]. Before seeing how to prove this result
let us see how to apply it to prove a size lower bound for SRUκ,0

n , that is Theorem 2, restated
below for convenience of the reader.

▶ Theorem 2 (Size lower bound for SRUκ,0
n ). Let κ be a prime and n ∈ N, if n ≫ κ then the

set of polynomials SRUκ,0
n has no refutation in SoSC within monomial size 2o(n).

Proof. Let n = (2κ + 1)n′ + b with b ∈ {0, . . . , 2κ}. Let ℓ1 = · · · = ℓb = 2κ + 2 and
ℓb+1 = · · · = ℓn′ = 2κ + 1. Consider the tuple g = (g1, . . . , gn′) where gi ∈ C[yi1, . . . , yiℓi

] is
the polynomial

gi(yi1, . . . , yiℓi
) := 1

κ
(
∑

j∈[ℓi]

yij − (ℓi − 2κ)) .

We have that SRUκ,0
n after renaming of variables is a subset of

SRUκ,r
n′ ◦ g ∪ {yκ

ij − 1 : i ∈ [n′], j ∈ [ℓi]} (3)

with r = − n′+b
κ . By Theorem 1, there are no SoSC refutations of SRUκ,r

n′ in degree n′

κ . Each
gi is compliant. Indeed, the polynomial gi is symmetric and we can take as hi : Ωκ → Ωℓi

κ

the function mapping

hi : ω 7→ (1, ζ, ζ2, . . . , ζκ−1, 1, 1, . . . , 1︸ ︷︷ ︸
ℓi−2κ

, ω, ω, . . . , ω︸ ︷︷ ︸
κ

) ,

where ζ is a primitive κth root of unity in C. Clearly, g ◦ h is the identity and∏
ω∈Ωκ

hi(ω) = ζκ(κ−1)/2ωκ = ζκ(κ−1)/2

since ω is a κth root of unity. By Theorem 7, the set of polynomials (3) requires SoSC

refutations of monomial size at least exp( ( n′
κ −κ)2

8ℓκ(κ−1)n′ ) = 2Ω(n) if n ≫ κ. Therefore SRUκ,0
n

requires refutations size 2Ω(n), too. ◀

We conclude this section with a proof sketch of Theorem 7. The overall structure of the
argument is that typical for size-degree trade-offs and can be found for instance in [8, 34, 1].
The idea is to show, on one side, that there exists a relatively long sequence of restrictions
such that the restricted polynomials have small degree refutations (Theorem 8) and that
each individual restriction can only make the degree decrease a little (Lemma 9). Those two
facts will imply that the sequence of restrictions must be very long and this will imply the
size-degree trade-off.

The reduced degree of a refutation in SoSC of a set of polynomials P containing the
polynomials xκ

j −1 is the degree of the refutation where we do not take in account the degrees
of the polynomials qp where p is xκ

j − 1 (see Definition 3).
Next theorem is the first ingredient for the proof of Theorem 7. It is a generalization

of [34, Theorem 4.1] and its proof, an adaptation of the argument given in [34], is in the full
version.

▶ Theorem 8. Let P be finite a set of polynomials of degree d0 in C[x] containing the
polynomials xκ

j − 1 for each j ∈ [n]. Let g be a tuple of compliant polynomials with
gi ∈ C[yi1, . . . , yiℓi

] and ω1, ω2, . . . , ωm ∈ Ωκ. If there is a SoSC refutation of P ◦ g ∪ {yκ
ij −

1 : i ∈ [n], j ∈ [ℓi]} of size s then there exists a sequence of variables xi1 , . . . , xim with
m ≥ ℓκn ln(s)/D such that
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1. ℓ = maxi ℓi;
2. the choice of xit

only depends on ω1, . . . , ωt−1;
3. there is a SoSC refutation of P↾xi1 =ω1,...,xim =ωm

of reduced degree at most D + d0.
The second ingredient for the proof of Theorem 7 is the following lemma.

▶ Lemma 9. Let P be a finite set of polynomials in C[x] containing the polynomials xκ
j − 1

for each j ∈ [n]. Suppose any SoSC refutation of P has reduced degree at least D. Then,
for any variable xj there is ω ∈ Ωκ such that SoSC refutations of P↾xj=ω must have reduced
degree at least D − 2κ + 2.

Proof. (sketch) For sake of contradiction, suppose there exists some variable x such that
for every ω ∈ Ωκ, P↾x=ω has a refutation of reduced degree D − 2κ + 1. For every ℓ ∈ N,
xℓ − ωℓ is a multiple of x − ω. Therefore, for every p ∈ P , the polynomial p − p↾x=ω belongs
to the ideal generated by x − ω. This means that we can transform refutations of P↾x=ω

into refutations of P ∪ {x − ω} without increasing the degree. Hence, there are refutations of
P ∪ {x − ω} of reduced degree D − 2κ + 1 for every ω ∈ Ωκ.

Let πω be a refutation of P ∪ {x − ω} of reduced degree D − 2κ + 1. Let qω(x) =∏
ω′ ̸=ω(x − ω′).

It is easy to see that multiplying πω by the polynomial qωq∗
ω we get a derivation of −qωq∗

ω

from P . This new derivation has reduced degree D−2κ+1+2(κ−1) = D−1. Now we can take
a linear combination (with non-negative real coefficients) of the previous derivations to get
the derivation of −1. More precisely we need numbers αω ≥ 0 such that

∑
ω∈Ωκ

αωqωq∗
ω −1 ∈

⟨xκ − 1⟩. Setting αω = 1/qω(ω)qω(ω)∗ we get that that
∑

ω∈Ωκ
αωqωq∗

ω − 1 is zero for all
ω ∈ Ωκ and therefore in the ideal ⟨xκ − 1⟩. This finally gives a SoSC refutation of P in degree
D − 1, contradicting the assumption on P . ◀

Proof of Theorem 7. Let s be the smallest size of a SoSC refutation of the set of polynomials
P ◦ g ∪ {yκ

ij − 1 : i ∈ [n], j ∈ [ℓi]}. We alternate applications of Theorem 8 to pick xit
with

applications of Lemma 9 to pick ωt, and in the end we have a sequence of variables/values xi1 =
ω1, . . . , xim = ωm. By these choices, the restricted set of polynomials P ↾xi1 =ω1,...,xim =ωm

requires refutations of reduced degree at least D − 2κm + 2m. By Theorem 8, we can set
m = ℓkn ln(s)/D′ for some D′ > 0 and get a refutation of reduced degree at most D′ + d0.
Hence, D′ + d0 ≥ D − 2m(κ − 1) and we get that ln(s) ≥ D′(D−D′−d0)

2ℓkn(κ−1) . The largest value is

attained for D′ = (D − d0)/2 and we get ln(s) ≥ (D−d0)2

8ℓkn(κ−1) . ◀

4 Degree lower bounds in SoSC

In this section we prove Theorem 1, restated here for convenience of the reader.

▶ Theorem 1 (Degree lower bound for SRUκ,r
n ). Let n, d ∈ N, κ be a prime, r ∈ C. Let r be

written as r1 + ζr2, where r1, r2 ∈ R and ζ is some κth primitive root of unity. If

κd ≤ min{r1 + r2 + (κ − 1)n + κ, n − r1 − r2 + κ} ,

then there are no SoSC-refutations of SRUκ,r
n of degree at most d. In particular, SRUκ,0

n

requires refutations of degree Ω
(

n
κ

)
in SoSC.

It is convenient to consider the following Boolean encoding of the sums of roots of unity,

bool-SRUκ,r
n :=

{ ∑
i∈[n]

( ∑
j∈[κ]

ζj−1xij

)
− r, x2

ij − xij ,
∑
j∈[κ]

xij − 1 : i ∈ [n], j ∈ [κ]
}

. (4)
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The set of equations SRUκ,r
n uses variables taking values in {1, ζ, ζ2, . . . , ζκ−1}, the encoding

in eq. (4) uses indicator variables to select the appropriate power of ζ. It is easy to see
that the degree needed to refute SRUκ,r

n in PCC/SoSC is at least the degree needed to
refute bool-SRUκ,r

n in PCC/SoSC. Hence, it is enough to show the degree lower bound for
bool-SRUκ,r

n . To show this we construct a degree-d pseudo-expectation for bool-SRUκ,r
n , i.e.,

a linear operator Ẽ : C[x] → C such that
Ẽ(1) = 1,
Ẽ(mp) = 0, for every p ∈ bool-SRUκ,r

n and m monomial such that deg(p) + deg(m) ≤ d,
Ẽ(s · s∗) ∈ R≥0, for every polynomial s s.t. deg(s · s∗) ≤ d.

It is easy to see that the existence of a degree-d pseudo-expectation for a set of polynomials
P implies that P cannot be refuted in degree-d SoSC. The construction of an appropriate
pseudo-expectation Ẽ for bool-SRUκ,r

n is the goal of this section.

Some notation. In this section we consider fixed r ∈ C and r1, r2 ∈ R such that r = r1 +ζr2.
Let ej be the vector of dimension κ with the jth entry 1 and all other entries 0. For j ∈ [κ],
let x(j) := (x1j , . . . , xnj). That is, bool-SRUκ,r

n is a set of polynomials in C[x(1), . . . , x(κ)].
Given a tuple of sets I = (I1, . . . , Iκ), where Ij ⊆ [n], let XI :=

∏
j∈[κ]

∏
i∈Ij

xij . With ∥ · ∥
we always denote the 1-norm. So ∥x(j)∥ denotes the polynomial

∑
i∈[n] xij .

A potential satisfying assignment of bool-SRUκ,r
n consists of γ = (γ1, . . . , γκ), the

allocation of the n roots of unity in the directions ζ0, . . . , ζκ−1. The sum
∑

j∈[κ] ζj−1γj must
be equal to the target value r = r1 + ζr2, so we spread uniformly n − r1 − r2 among the γjs,
and then add r1 and r2 to γ1 and γ2 respectively. This leads to the definitions

γ1 = n−r1−r2
κ + r1 ,

γ2 = n−r1−r2
κ + r2 ,

γj = n−r1−r2
κ for j ≥ 3 .

(5)

Observe that ∥γ∥ = n. For ease of notation let γ̂ = n−r1−r2
κ and r3 = · · · = rκ = 0.

Therefore, we can write γj = γ̂ + rj for each j ∈ [κ].
Given I = (I1, . . . , Iκ) with Ij ⊆ [n], and variables v = (v1, . . . , vκ), let S(XI) be the

polynomial in the variables v defined by

S(XI) :=


(n − |

⋃
j∈[κ] Ij |)!
n!

∏
j∈[κ]

|Ij |−1∏
ℓ=0

(vj − ℓ) if the sets in I are pair-wise disjoint ,

0 otherwise .

(6)

By linearity, extend S(·) to all polynomials. That is, given p =
∑

I αIXI with αI ∈ C, let
S(p) :=

∑
I αIS(XI). We define

Ẽ(p) := S(p)(γ)

and we show that Ẽ is a pseudo-expectation for bool-Knκ,r
n .

Let B be the ideal ⟨x2
ij − xij , xijxij′ : i ∈ [n], j, j′ ∈ [κ], j ̸= j′⟩. Given polynomials

p, q ∈ C[x(1), . . . , x(κ)], we use the notation p ≡ q to denote that p − q ∈ B.

▶ Lemma 10. If p ≡ q then Ẽ(p) = Ẽ(q).

Proof. By definition p ≡ q means there exists a polynomial s ∈ B such that p = q + s. By
construction, Ẽ maps to 0 every polynomial in B, in particular Ẽ(s) = 0. By the linearity of
Ẽ, then Ẽ(p) = Ẽ(q). ◀
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From the definition of Ẽ, it follows easily that the lifts of the polynomials in bool-SRUκ,r
n

are mapped to 0 by Ẽ.

▶ Theorem 11. For every I = (I1, . . . , Iκ) with Ij ⊆ [n] and i ∈ [n], and every p ∈
bool-SRUκ,r

n , Ẽ(XIp) = 0.

Proof. The fact that Ẽ(XI(x2
ij − xij)) = 0 is immediate by the definition of Ẽ.

Given a = (a1, . . . , aκ) ∈ [n]κ, let Ea := (n−∥a∥)!
n!

∏
j∈[κ]

∏aj−1
ℓ=0 (γj − ℓ). Notice that for

every j ∈ [κ], Ea+ej
= Ea

γj−aj

n−∥a∥ . If the sets Ij are not pair-wise disjoint then, by definition,
the pseudo-expectation is already 0, so it is enough to consider the case when the Ijs are
pair-wise disjoint.

Let t = (t1, . . . , tκ) where tj = |Ij |. To show that Ẽ(XI(
∑

j∈[κ] xij − 1)) = 0 we have two
cases. If i ∈

⋃
j∈[κ] Ij , then

Ẽ(XI(
∑
j∈[κ]

xij − 1)) = Et − Et = 0 .

If i /∈
⋃

j∈[κ] Ij , then

Ẽ(XI(
∑
j∈[κ]

xij − 1)) =
∑
j∈[κ]

Et+ej − Et = Et ·

(∑
j∈[κ]

γj − tj

n − ∥t∥ − 1

)
= Et ·

(
∥γ∥ − ∥t∥
n − ∥t∥ − 1

)
= 0 ,

since ∥γ∥ = n.
Finally we prove that Ẽ(XI(

∑
j∈[κ] ζj−1∥x(j)∥ − r1 − ζr2)) = 0:

Ẽ(XI(
∑
j∈[κ]

ζj−1∥x(j)∥ − r1 − ζr2)) = Et

∑
j∈[κ]

ζj−1tj +
∑

i/∈
⋃

j∈[κ]
Ij

(
∑
j∈[κ]

ζj−1Et+ej ) − (r1 + ζr2)Et

= Et

∑
j∈[κ]

ζj−1tj + (n − ∥t∥)
∑
j∈[κ]

ζj−1Et+ej − (r1 + ζr2)Et

= Et

∑
j∈[κ]

ζj−1tj + Et

∑
j∈[κ]

ζj−1(γj − tj) − (r1 + ζr2)Et

= Et ·

(∑
j∈[κ]

ζj−1tj +
∑
j∈[κ]

ζj−1(γj − tj) − (r1 + ζr2)

)

= Et ·

(∑
j∈[κ]

ζj−1γj − (r1 + ζr2)

)

= Et ·

(∑
j∈[κ]

ζj−1γ̂ +
∑
j∈[κ]

ζj−1rj − (r1 + ζr2)

)
= 0 ,

since γj = γ̂ + rj , rj = 0 for j > 2, and
∑

j∈[k] ζj−1 = 0. ◀

This result, together with Theorem 12 below, implies that Ẽ is a degree-d pseudo-
expectation for bool-SRUκ,r

n , and therefore a degree-d lower bound for the refutations of
bool-SRUκ,r

n and SRUκ,r
n in SoSC, i.e. Theorem 1. The idea is to use to Blekherman’s

approach in [27, Appendix B,C]. Let us recall first some useful notation.
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Let Sn be the symmetric group of n elements. For a set J ⊆ [n] and a permutation
σ ∈ Sn, let σJ := {σ(j) : j ∈ J}. Consider variables y = (y1, . . . , yn). For a set J ⊆ [n] let
YJ :=

∏
j∈J yj . Given a polynomial p ∈ C[y], that is p(y) =

∑
J⊆[n] pJYJ , with pJ ∈ C, let

σp(y) :=
∑

J

pJYσJ .

Then define the symmetrization of p as the polynomial Sym(p) ∈ C[y] given by

Sym(p)(y) := 1
n!
∑

σ∈Sn

σp(y) .

▶ Theorem 12. For every polynomial p ∈ C[x(1), . . . , x(κ)] of degree at most d, if

−(κ − 1)n + κd − κ ≤ r1 + r2 ≤ n − κd + κ ,

then Ẽ(p · p∗) ≥ 0 where p∗ is the formal conjugate of p.

Proof. Let γ be defined as in eq. (5), and recall γ̂ = n−r1−r2
κ . Recall that the polynomial

S(XI) when evaluated on γ is exactly Ẽ(XI), see the comment after eq. (6). We have that

Ẽ(p · p∗) = S(p · p∗)(γ) [by the definition of Ẽ]
= S(p · p∗)(r1 + γ̂, r2 + γ̂, . . . , rκ + γ̂) [by the definition of γ]
= Sym(p↾ρ ·p↾∗

ρ)(γ̂e1) [by Theorem 14 below]

=
d∑

j=0
pd−j(γ̂) · p∗

d−j(γ̂)
j−1∏
i=0

(γ̂ − i)(n − γ̂ − i) , [by Theorem 13 below]

where ρ is the substitution given by ρ(xij) := yi + rj

n (recall that r3 = · · · = rκ = 0). Now,
pd−j(γ̂) · p∗

d−j(γ̂) is always real and non-negative since it is the module of the complex
number pd−j(γ̂), hence to enforce the non-negativity of Ẽ(p · p∗) it is enough to argue that∏j−1

i=0 (γ̂ − i)(n − γ̂ − i) ≥ 0. This is true if γ̂ − d + 1 ≥ 0 and n − γ̂ − d + 1 ≥ 0. I.e. if

−(κ − 1)n + κd − κ ≤ r1 + r2 ≤ n − κd + κ . ◀

▶ Theorem 13 (adaptation of [27, Theorem B.11]). Given variables y = (y1, . . . , yn) and
p, q ∈ C[y] with degree at most d ≤ n/2,

Sym(p · p∗)(y) ≡
d∑

j=0
pd−j(∥y∥) · p∗

d−j(∥y∥)
j−1∏
i=0

(∥y∥ − i)(n − ∥y∥ − i) ,

where pd−j is a univariate polynomial with coefficients in C, p∗
d−j is the formal conjugate of

pd−j and the degree of both polynomials is at most (d − j)/2.

This result is provable using exactly the same argument of Blekherman in [27, Theorem
B.11], adapted to complex numbers.

▶ Theorem 14. Given p ∈ C[x(1), . . . , x(κ)],

S(p)(r1 + ∥y∥, r2 + ∥y∥, r3 + ∥y∥, . . . , rκ + ∥y∥) ≡ Sym(p↾ρ)(y) ,

where ρ is the substitution given by ρ(xij) := yi + rj

n (recall that r3 = · · · = rκ = 0).
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Proof. Given a vector of variables y = (y1, . . . , ym), let
(∥y∥

t

)
be the polynomial(

∥y∥
t

)
:= ∥y∥(∥y∥ − 1) · · · (∥y∥ − t + 1)

t! .

It holds that
(∥y∥

t

)
≡
∑

I⊆[n]
|I|=t

YI . (A proof of this fact is in the full version.) This immediately

implies that∏
j∈[κ]

(
∥x(j)∥

tj

)
≡

∑
I=(I1,...,Iκ), Ij⊆[n]

|Ij |=tj

XI . (7)

For a vector of sets I = (I1, . . . , Iκ) and a permutation σ ∈ Sn, let σI := (σI1, . . . , σIκ).
Given a polynomial p =

∑
I pIXI in C[x(1), . . . , x(κ)] and a permutation σ ∈ Sn let

σp :=
∑

I

pIXσI .

Now, for any polynomial p ∈ C[x(1), . . . , x(κ)]
1
n!
∑

σ∈Sn

σp ≡ S(p)(∥x(1)∥, . . . , ∥x(κ)∥) . (8)

To see this equivalence, by linearity, it is enough to show that for every I with Ij ⊆ [n]

1
n!
∑

σ∈Sn

XσI ≡ S(XI)(∥x(1)∥, . . . , ∥x(κ)∥) .

If the sets in I are not pair-wise disjoint it is immediate to see that 1
n!
∑

σ∈Sn
XσI ∈ B, and

therefore 1
n!
∑

σ∈Sn
XσI ≡ 0. Suppose then I = (I1, . . . , Iκ) and the sets Ij are pair-wise

disjoint. Let tj = |Ij |, then

1
n!
∑

σ∈Sn

XσI =
(n − ∥t∥)!

∏
j∈[κ] tj !

n! ·
∑

S=(S1,...,Sκ)
pair-wise disj.

|Sj |=tj

XS

≡
(n − ∥t∥)!

∏
j∈[κ] tj !

n! ·
∑

S=(S1,...,Sκ)
|Sj |=tj

XS

≡ (n − ∥t∥)!
n!

∏
j∈[κ]

tj ! ·
∏

j∈[κ]

(
∥x(j)∥

tj

)
(9)

= S(XI)(∥x(1)∥, . . . , ∥x(κ)∥) ,

where the equality in eq. (9) follows from eq. (7).
To conclude, it is then enough to observe that the statement we want to prove follows

from eq. (8) restricting both sides of the equality by ρ. To prove this we use that σXI↾ρ=
σ(XI↾ρ). ◀

5 Conclusions

The study of algebraic proof systems under Fourier encoding is still at its infancy. There are
many natural questions about its size efficiency. We understand reasonably well the strength
relation between resolution and PC in the Boolean encoding. Sokolov [34] stresses that we
do not even know yet whether PC with {±1} simulates resolution or not.
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We mentioned already that the study of κ-coloring of graphs is a very natural application
of PC with Fourier encoding. There are some degree lower bounds in literature [26], but size
lower bounds are still unknown. Understanding size would allow to understand larger classes
of algebraic algorithms for this problem.
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1 Introduction

The ZX-calculus is a powerful yet intuitive graphical language for reasoning about quantum
computing, or, more generally, about operations on quantum systems [23, 46]. It allows one
to represent such quantum operations pictorially, and comes equipped with a set of rules
which, in principle, make it possible to derive any equality between those pictures [3, 38, 42].
It has now had several applications in quantum information processing, from MBQC [32, 5]
through quantum error correction codes [31, 29, 20, 33]. More recently, it has been used to
obtain state-of-the-art optimisation techniques for quantum circuits [39, 28, 30] and faster
classical simulation algorithms for general quantum computations [40].

Despite its origins in categorical quantum mechanics and the diagrammatic language
for finite-dimensional linear spaces [1, 22, 23] the literature on the ZX-calculus has been
concerned almost exclusively with small-dimensional quantum systems, and even then mostly
with the case of two-dimensional quantum systems, or qubits. The qubit ZX-calculus is
remarkable in its simple treatment of stabiliser quantum mechanics, along with the fact that
any diagram can be treated purely graph-theoretically, without concern to its overall layout,
and without losing its quantum-mechanical interpretation. Those proposals that go beyond
qubits lose many of these nice features, and are significantly more complicated than the qubit
case [43, 51, 9, 50, 49]. In particular, they eschew the prised “Only Connectivity Matters”
(OCM) meta-rule, often cited as one of the key features in the qubit case. In these calculi,
which can represent any linear map between the corresponding Hilbert spaces, it is also not
necessarily obvious (at least, to us) how to pick out and work with the stabiliser fragment.
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Stabiliser quantum mechanics is a simple yet particularly important fragment of quantum
theory. While much less powerful than the full fragment – it can be efficiently classically
simulated, even in odd prime dimensions [27] – it has seen significant study [34, 36] and forms
the basis for a number of key methods in quantum information theory [35]. Operationally, it
can be described as the fragment of quantum mechanics which is obtained if one allows only
state preparation and measurement in the computational basis, and unitary operations from
the Clifford groups [35]. In the qubit case, the stabiliser fragment of the ZX-calculus was
proved complete in [3] while ignoring global scalars, and extended to include scalars in [4]. A
simplified calculus further reducing the set of axioms of the calculus was presented in [6].

In this article, we present a simple family of ZX-calculi which are complete for stabiliser
quantum mechanics in odd prime dimensions, and which recover as many of the nice features
of the qubit calculus as possible. In odd prime dimensions, stabiliser quantum mechanics can
be given a particularly nice graphical presentation, owing to the group-theory underlying the
corresponding Clifford groups [41, 2, 27]. We then give this calculus a set of rewrite rules
that is complete, i.e. rich enough to derive any equality of stabiliser quantum operations.
In particular, it is a design priority to recover OCM, and to make explicit the stabiliser
fragment and its group-theoretical underpinnings. Adding a discard construction [18], we
obtain a universal and complete calculus for mixed state stabiliser quantum mechanics in
odd prime dimensions. By previous work [26], this gives a complete axiomatisation for the
related diagrammatic language for affine co-isotropic relations, while still maintaining OCM.

Although we do not do so here, these calculi can naturally be extended to represent much
larger fragments of quantum theory, up to the entire theory in odd prime dimensions [51].
However, finding a complete axiomatisation for such calculi will presumably be a much more
complicated task, and we leave this for future work.

All proofs and additional appendices are available in the full version of the paper [14].

2 Stabiliser quantum mechanics in odd prime dimensions

Throughout this paper, p denotes an arbitrary odd prime, and Zp = Z/pZ the ring of integers
with arithmetic modulo p. We also put ω := ei 2π

p , and let Z∗
p be the group of units of Zp.

Since p is prime, Zp is a field and Z∗
p = Zp \ {0} as a set. We also have need of the following

definition:

χp(x) =
{

1 if there is no y ∈ Zp s.t. x = y2;
0 otherwise;

(1)

which is just the characteristic function of the complement of the set of squares in Zp.
The Hilbert space of a qupit [35, 52] is H = span{|m⟩ | m ∈ Zp} ∼= Cp, and we write

U(H) the group of unitary operators acting on H. We have the following standard operators
on H, also known as the clock and shift operators: Z |m⟩ := ωm |m⟩ and X |m⟩ := |m+ 1⟩
for any m ∈ Zp. In particular, note that ZX = ωXZ.

We call any operator of the form ωkXaZb for k, a, b ∈ Zp a Pauli operator. We say
a Pauli operator is trivial if it is proportional to the identity. The collection of all Pauli
operators is denoted P1 and called the Pauli group. For n ∈ N∗, the generalised Pauli group
is Pn :=

⊗n
k=1 P1.

Of particular importance to us are the (generalised) Clifford groups. These are defined, for
each n ∈ N∗, as the normaliser of Pn in U(H⊗n): C is a Clifford operator if for any P ∈ Pn,
CPC† ∈ Pn. It is clear that that every Pauli operator is Clifford, but there are non-Pauli
Clifford operators. An important example is the Fourier gate: F |m⟩ = 1√

d

∑
n∈Zp

ωmn |n⟩
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which is such that FXF † = Z and FZF † = X−1. We also need the phase gate: S |m⟩ =
ω2−1m(m+1) |m⟩ such that SXS† = ωXZ and SZS† = Z. Yet another important example
is the controlled-phase gate, which acts on H ⊗ H, E |m⟩ |n⟩ := ωmn |m⟩ |n⟩. It is important
to emphasise a key difference between the qupit and the qubit case: when p ≠ 2, none of
these operators are self-inverse. In fact, if Q is a Pauli and I the identity operator on H, we
have Qp = I, Ep = I ⊗ I and F 4 = I.

As a side note, these equations imply that both X and Z, and in fact every Pauli, have
spectrum {ωk | k ∈ Zp}. As a result, we denote |k : Q⟩ the eigenvector of a given Pauli Q
associated with eigenvalue ωk, and furthermore use the notation |k, . . . , k : Q⟩ =

⊗n
k=1 |k : Q⟩.

It follows from the definition of Z that we can identify |k : Z⟩ = |k⟩.
Now, for any α ∈ [0, 2π), the operator eiαI is Clifford. However, we want to construct

calculi with a finite axiomatisation. As a result, the diagrams in the calculus are countable
and this makes it impossible for us to represent all such phases eiα. Unfortunately, finding a
group of phases that behaves well diagrammatically is somewhat inconvenient, and involves
some elementary number theory. This is why, for an odd prime p, we consider the group of
phases generated by the composition of the previously defined Clifford gates. Explicitly, it is
given by:

if p ≡ 1 mod 4, if p ≡ 3 mod 4,
Pp :=

{
(−1)sωt | s, t ∈ Z

}
Pp :=

{
isωt | s, t ∈ Z

}
This of course covers all cases since p is odd. Then, we restrict our attention to the reduced
Clifford group, Cn = {λC | λ ∈ Pp, C ∈ U(H⊗n) is Clifford and special unitary}. We call
C ⊗n

1 the local Clifford group on n qupits. It is clear from these examples that Cn is strictly
larger than C ⊗n

1 , but it turns out to not be that much larger:

▶ Proposition 1 ([21, 41]). The reduced Clifford group Cn is generated by the gate-set
{Fj , Sj , Ej,k | j, k = 1, . . . , n}.

Stabiliser quantum mechanics can be operationally described as the fragment of quantum
mechanics in which the only operations allowed are initialisations and measurements in the
eigenbases of Pauli operators, and unitary operations from the generalised Clifford groups. As
before, we restrict our attention to the fragment of stabiliser quantum mechanics where only
unitary operations from the reduced Clifford group are allowed. Scalars are then taken from
the monoid Gp := {0,

√
prλ | r ∈ Z, λ ∈ Pp}. Little is lost for the description of quantum

algorithms, since we can always simplify by a global phase to make the Clifford generators
special unitary. Thus, we can embed any stabiliser circuit into the calculus, and then calculate
the relative phases of different branches of a computation without restriction.

▶ Definition 2. The symmetric monoidal category Stabp has as objects Cpn for each n ∈ N,
and morphisms generated by:

C → Cp : λ 7→ λ |0⟩;
Cpn → Cpn : |ψ⟩ 7→ U |ψ⟩ for any U ∈ Cn;
Cp → C : |ψ⟩ 7→ ⟨0|ψ⟩.

The monoidal product is given by the usual tensor product of linear spaces.

It is clear that Stabp is a subcategory of the category FLin of finite dimensional C-linear
spaces; it is also a PROP.

MFCS 2022
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3 A ZX-calculus for odd prime dimensions

In this section, we present our family of ZX-calculi, with one for each odd prime. Relying on
some of the group theoretical properties of the qupit Clifford groups, we can give a relatively
simple presentation of the calculi, which avoids the need to explicitly consider rotations in
p-dimensional space, significantly simplifing the presentation compared to previous work [43].
These calculi are also constructed in order to satisfy the property of flexsymmetry, proposed
in [15, 16], and which allows one to recover the OCM meta-rule. OCM is an intuitively
desirable feature for the design of a graphical language; anecdotally, it greatly simplifies the
human manipulation of diagrams, including in the proofs of this paper. More formally, it
means that the equational theory can be formalised in terms of double pushout rewriting over
graphs rather than over hypergraphs as is necessary in the more general theory [11, 10, 12].

Another key concern is the issue of completeness, which we begin to address in this article.
Outside of qubits [38, 42, 47], there has so far been a complete axiomatisation only for the
stabiliser fragment in dimension p = 3 [48]. We present an axiomatisation which is complete
for the stabiliser fragment for any odd prime p, and leave the general case for future work.

3.1 Generators
For any odd prime p, consider the symmetric monoidal category ZXStab

p with objects N and
morphisms generated by:

: 1 → 1 : 1 → 1 : 0 → 2 : 2 → 0 : 2 → 2

: 1 → 1
x, y

: 1 → 1
x, y

: 0 → 2 : 2 → 0 : 2 → 2

: 1 → 1
x, y

: 1 → 1
x, y

: 0 → 2 : 2 → 0 : 2 → 2

where x, y ∈ Zp. We also introduce a generator ⋆ : 0 → 0 to simplify the calculus; it
will correspond to a scalar whose representation in terms of the other generators depends
non-trivially on the dimension p. Morphisms are composed by connecting output wires
to input wires, and the monoidal product is given on objects by n ⊗ m = n + m and on
morphisms by vertical juxtaposition of diagrams.

We extend this elementary notation with a first piece of syntactic sugar, which is standard
for the ZX-calculus family: green spiders are defined inductively, for any m,n ∈ N, by

:=
m... :=

n
...

:=+
1

n...+1m
...

m
... m

...n
... n

... ,

and it is clear that these have types m+ 1 → 1, 1 → n+ 1 and m → n respectively.
Red spiders are defined analogously to ZH-calculus harvestmen:

:=
n ... :=

n
...

:=+
1

m...+1n
...

m
... m

...n
... n

... .

Labelled spiders are given by: m
... n

...

x, y

x, y

m
... n

... := and m
... n

...

x, y

x, y

m
... n

... := .

3.2 Standard interpretation and universality
The standard interpretation of a ZXStab

p -diagram is a symmetric monoidal functor J−K :
ZXStab

p → FLin (the category of finite-dimensional complex Hilbert spaces). It is defined on
objects as JmK := Cp×m, and on the generators of the morphisms as:
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s
x, y

{
=

∑
k∈Zp

ω2−1(xk+yk2) |k : Z⟩
s

x, y
{

=
∑

k∈Zp

ω2−1(xk+yk2) |−k : X⟩ J K =
∑

k∈Zp

|k : X⟩⟨k : Z|

s
x, y

{
=

∑
k∈Zp

ω2−1(xk+yk2) ⟨k : Z|
s

x, y
{

=
∑

k∈Zp

ω2−1(xk+yk2) ⟨k : X|
r z

=
∑

k,ℓ∈Zp

|k, ℓ : Z⟩⟨ℓ, k : Z|

r z
=

∑
k∈Zp

|k : Z⟩⟨k, k : Z|
r z

=
∑

k∈Zp

|−k,−k : X⟩⟨k : X|
r z

=
∑

k∈Zp

|k, k : Z⟩

r z
=

∑
k∈Zp

|k, k : Z⟩⟨k : Z|
r z

=
∑

k∈Zp

|−k : X⟩⟨k, k : X|
r z

=
∑

k∈Zp

⟨k, k : Z|

J K =
∑

k∈Zp

|k : Z⟩⟨k : Z| J K =
∑

k∈Zp

|−k : X⟩⟨k : X| J K =
∑

k∈Zp

|k : Z⟩⟨k : Z|

and

J⋆K = −1. Then, by the functoriality of the standard interpret-
ation, we deduce that

s
x, y

m
... n

...

{
=

∑
k∈Zp

ω2−1(xk+yk2) |k : Z⟩⊗n ⟨k : Z|⊗m and
s

x, y

m
... n

...

{
=

∑
k∈Zp

ω2−1(xk+yk2) |−k : X⟩⊗n ⟨k : X|⊗m.

▶ Theorem 3 (Universality). The standard interpretation J−K is universal for the qupit
stabiliser fragment, i.e. for any stabiliser operation C : Cpm → Cpn there is a diagram
D ∈ ZXStab

p such that JDK = C. Put formally, the co-restriction of J−K to Stabp is full.

3.3 Axiomatisation

We now begin to introduce rewrite rules with which to perform a purely diagrammatic
reasoning. By doing so we are in fact describing a PROP by generators and relations [7],
thus the swap is required to verify the following properties:

=D ...

...
...

D...
...

...
=

Note that the last equation is required to hold for any diagram D : n → m. This property
states that our diagrams form a symmetric monoidal category. Furthermore, we want this
category to be self-dual compact-closed, hence the cup and cap must verify:

= == =

Furthermore, as long as the connectivity of the diagram remains the same, vertices can be
freely moved around without changing the standard interpretation of the diagram. This is a
consequence of the fact that we require our generators to be flexsymmetric, as shown in [15].
This amounts to imposing that all generators except the swap verify:

=σ

g g... ... ...

...

...

...

...

... ......

where σ : n+m → n+m stands for any permutation of the wires involving swap maps. We
will consider all the previous rules as being purely structural and will not explicitly state
their use. Using these rules, we can in fact deduce that both the green and red spiders (and

MFCS 2022
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=
(G-Elim)

=
(R-Elim)

=
(Char)...p

=
(Bigebra)

=
(Shear)

=
(Mult)...z

=
(Fusion)

a, b ...
...

c, d ...
...

a+c,
b+d

...

...

...

...

x, y

=
(One)

=
(Zero)z, 0 z, 0

0, z91

0, z91

0, z

0, z91

a, 0
=

(Copy)
a, 0

a, 0

( )⊗z

a, b

=
(Colour)...

a, b...
...

...

( )⊗p

=
(M-Elim)...z

a, b 9z91a, z92b

( )⊗z91

c, da, 0 a, 0

291, 0

ac, 0

c + ad, d

9292, 0

da2, 0

0, z 0, 1

( )⊗χp(z)
=

(Gauss) ⋆ ⋆
⋆

=
(M-One)

0, 1
=

(Neg) ⋆

if p ≡ 1 mod 8

0, 1
=

(Pos)

if p ≡ 5 mod 8

Figure 1 A presentation of the equational theory zxp, which is sound and complete for the
stabiliser fragment. The equations hold for any a, b, c, d ∈ Zp and z ∈ Z∗

p. χp is the characteristic
function of the complement of the set of squares in Zp, defined in equation (1).

their labelled varieties) are themselves flexsymmetric. This means that the language follows
the OCM meta-rule, and we can formally treat any ZXStab

p -diagram as a graph1 whose vertices
are the spiders, and whose edges are labelled by the 1 → 1 generators of the language.2

Figure 1 presents the remainder of the equational theory zxp, which as we shall see
axiomatises the stabiliser fragment of quantum mechanics in the qupit ZX-calculus. Firstly
though, we must be sure that all of these rules are sound for the standard interpretation,
i.e. it should not be possible to derive an equality of diagrams whose quantum mechanical
interpretations are different.

▶ Theorem 4 (Soundness). The equational theory zxp is sound for J−K, i.e., for any A,B ∈
ZXStab

p , zxp ⊢ A = B implies JAK = JBK. Put formally, J−K factors through the projection
ZXStab

p → ZXStab
p /zxp.

This set of rewriting rule also turns out to be also complete:

▶ Theorem 5 (Completeness). The equational theory zxp is complete for J−K, i.e., for any
A,B ∈ ZXStab

p , JAK = JBK implies zxp ⊢ A = B.

The proof of Theorem 5 will be the object of the following sections.

1 Note that the graphs in question must be allowed to have loops and parallel edges, so are perhaps better
called pseudographs or multigraphs.

2 There is a small ambiguity: 1 → 1 spiders can be treated as either edges or vertices. When considering
diagrams, it matters little which, since any given graph is always to be understood as one of the many
equivalent ZXStab

p -diagrams constructed formally out of the generators. Any computer implementation
of the calculus will have to carefully resolve this ambiguity in its internal representation.
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3.4 Syntactic sugar for multi-edges
Before we move into the proof of completeness, we introduce some syntactic sugar to the
language. Given axiom (Char), in ZXStab

p , unlike the qubit case, spiders of opposite colours
can be connected by more that one edge, and these multi-edges cannot be simplified. We
therefore add some syntactic sugar to represent such multi-edges. These constructions add
no expressiveness to the language, and are simply used to reduce the size of some recurring
diagrams. They are shamelessly stolen from previous work [13, 53, 17, 19], and we use
them to obtain a particularly nice representation of qupit graph states [54]. Graph states a
central role in our proof of completeness, as they have in previous completeness results of
the stabiliser fragments for dimensions 2 and 3 [3, 30, 48]. In particular, these constructions
permit a nice presentation of how graph states evolve under local Clifford operations.

Firstly, we extend ZXStab
p by multipliers, which are defined inductively by:

m + 1 :=
m

0 := and .

Explicitly, then, for x ∈ Z∗
p, ...xx =

( )⊗x91

.

We also define inverted multipliers, using the standard notation for graphical languages
based on symmetric monoidal categories:

x x:= .

▶ Proposition 6. Multipliers verify the following equations under zxp: for any x, y ∈ Zp and
z ∈ Z∗

p,

= 91

x y = xy z91 = z

x

y

= x + y

= 1

p = 0

which amounts to saying that the multipliers form a presentation of the field Zp. They also
verify the following useful copy and elimination identities:

x

x

x = x

x

x

=x = z =

We can also unambiguously define Fourier boxes: x := x since
x = x . Fourier boxes exactly match the labelled “Hadamard” boxes intro-

duced for the qutrit case [45] when p = 3. Owing to the flexsymmetry of the language, we
have that for any x ∈ Zp,

=x x and =x
...x

( )⊗x91

. (2)

▶ Proposition 7. zxp proves the following equations:

yx = -xy-1

=9xx x x x = 9x

x

y

= x + y 0 =

1 =
(3)
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4 Completeness

We now have all the necessary tools to show that our equational theory is complete. The
structure of our proof is similar to the one used to show the completeness in the qubit case
[3]. However, if the overall scheme is very similar, each step separately can involve different
approaches more suited to the qupit situation. The plan is as follows. We identify a family
of scalars, called elementary scalars, which correspond to those which appear when applying
the rewrites of zxp. We first show the completeness up to non-zero elementary scalars,
which allows us to work with simpler diagrams without taking care of all the invertible
scalars appearing along the way. Then, we show the completeness for elementary scalars
independently, leading to a general proof of completeness. The proof of completeness up to
non-zero elementary scalars goes something like this:
1. Take two diagrams with the same interpretation.
2. Put them into a simplified form, called the GS+LC form in [3].
3. Define the notion of simplified GS+LC form for a pair of diagrams in which some vertices

are marked. Then show that in a simplified GS+LC pair if a vertex is marked on one
side, it must also be marked on the other side, else the two diagrams cannot have the
same interpretation.

4. Show that two diagram forming an rGS+LC pair such that their marked vertices matches
and having the same interpretation are equal modulo the equational theory.

4.1 Elementary scalars
The following is standard from categorical quantum mechanics:

▶ Lemma 8. If A,B ∈ ZXStab
p [0, 0], then JA⊗BK = JAK · JBK = JA ◦BK, where · is the

usual multiplication on C restricted to the monoid G.

Now, as when we were defining the group of phases Pp, the set of normal forms for phases
must depend on the prime p in question:

▶ Definition 9. An elementary scalar is a diagram A ∈ ZXStab
p [0, 0] which is a tensor product

of diagrams from the collection Op ∪ P ∪Q: where

P =
{

,
s, 0

1, 0
| s ∈ Z∗

p

}
, Q =

{
( )⊗r, , ( )⊗r | r ∈ Z

}
,

if p ≡ 1 mod 4, if p ≡ 3 mod 4,

Op =
{

, ⋆
}

Op =
{

,
0, 1

, ⋆,
0, 1

⋆
}

If A,B ∈ ZXStab
p , we say that A and B are equal up to an elementary scalar if there is

an elementary scalar C such that A = B ⊗ C. In that case, we write A ≃ B.

Comparing with the definition of G, the interpretation of the elements of P correspond to
powers of ω, the elements of Q to (possible negative) powers of √

p, and the elements of Op

to powers of −1 or i depending on the value of p. This remark will naturally lead to the
normal for for scalars in a few sections.

Now, as written, equality up to an elementary scalar might seem like a relation that is
not symmetric and therefore not an equivalence relation.
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▶ Proposition 10. Every elementary scalar C ∈ ZXStab
p [0, 0] has a multiplicative inverse, i.e.

an elementary scalar C−1 ∈ ZXStab
p [0, 0] such that C ⊗ C−1 = C ◦ C−1 = .

In light of this fact, if A ≃ B, there is an elementary scalar C such that A = B ⊗ C, and
then B = B ⊗ C ⊗ C−1 = A⊗ C−1, so that B ≃ A.

▶ Proposition 11. Every equation in zxp can be loosened to equality up to an elementary
scalar by erasing every part of the LHS and RHS diagrams which is disconnected from the
inputs and outputs.

Probably the most important case of equality up to elementary scalars is the completeness
of the single-qupit Clifford groups, on which the entire proof of completeness of the calculus
rests. The fragment of ZXStab

p which corresponds to C1 is that generated by the 1 → 1

diagrams:
x, y

,
x, y

, x and x . We call any such diagram a single-qupit
Clifford diagram or C1-diagram.

▶ Proposition 12. If A ∈ ZXStab
p [0, 0] is a single-qupit Clifford diagram, then zxp proves

that

u, v

s, t

orw
u, v

s, 1
w

0, 1
≃A ≃A , (4)

for some s, t, u, v ∈ Zp and w ∈ Z∗
p. Furthermore, this form is unique.

4.2 Relating stabiliser diagrams to graphs
The completeness proof begins by relating every diagram to simpler one in the form of a
graph state diagram. Graph states are defined as usual – diagrammatically, we have an
embedding of graphs given (informally) by:

3
⇝

3
=

3
(5)

More specifically, we want to relate the diagram to the following form:

▶ Definition 13 ([3, 48]). A GS+LC diagram is a ZXStab
p -diagram which consists of a graph

state diagram with arbitrary single-qupit Clifford operations applied to each output. These
associated Clifford operations are called vertex operators.

▶ Proposition 14. Every ZXStab
p -diagram 0 → n can be rewritten, up to elementary scalars,

to GS+LC form under zxp.

In other words, zxp proves that, for any stabiliser ZXStab
p -diagram D : m → n, there is a

graph G on m+ n vertices and a set (vk)m+n
k=1 of C1-diagrams such that

...
...

D ≃

v1

vm+n

...

G
vn

...
vn+1

n

m (6)

and we need only consider the question of whether zxp can prove the equality of two GS+LC
diagrams.

MFCS 2022
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4.3 Completeness modulo elementary scalars
Now, as a first step, we show that zxp can normalise any pair of diagrams with equal
interpretations, up to elementary scalars. In particular, as was shown in the previous section,
we can relax zxp to reason about equality up to elementary scalars by simply ignoring the
scalar part of each rule, and make free use of the “scalarless” equational theory. We will take
care of the resulting scalars in the next section.

This part of the completeness proof follows the general ideas of [3]. The first step on the
way to completeness is to note that, considering a diagram in GS+LC form, where the vertex
operators have been normalised, we can obtain a yet more reduced diagram by absorbing as
much as possible of the vertex operators into local scalings and local complementations. We
then obtain the following form for the vertex operators:

▶ Definition 15 ([3]). A ZXStab
p -diagram is in reduced GS+LC (or rGS+LC) form if it is

in GS+LC form, and furthermore:

1. All vertex operators belong to the following set: R =
{

s, t

,
s, 1

0, 1

∣∣∣∣ s, t ∈ Zp

}
.

2. Two adjacent vertices do not have vertex operators that both include red spiders.

▶ Proposition 16. If D ∈ ZXStab
p is a Clifford diagram, then there is a diagram G ∈ ZXStab

p

in rGS+LC form such that zxp ⊢ D ≃ G.

Then, given two diagrams with equal interpretations, taking them both to rGS+LC makes
the task of comparing the diagrams considerably easier. In particular, we can guarantee that
the corresponding vertex operators in each diagram always have matching forms:

▶ Definition 17 ([3]). A pair of rGS+LC of the same type (i.e. whose graphs have the same
vertex set V ) is said to be simplified if there is no pair of vertices q, p ∈ V such that q has a
red vertex operator in the first diagram but not the second, q has a red vertex operator in the
second diagram but not the first, and q and p are adjacent in at least one of the diagrams.

▶ Proposition 18. Any pair A,B of rGS+LC diagrams of the same type (i.e. on the same
vertex set) can be simplified.

For the sake of clarity, we shall say that a vertex operator (or equivalently, the vertex itself)
is marked if it contains a red spider (i.e. it belongs to the right-hand form of definition 15).
Then, two diagrams with the same interpretation can always be rewriten so that the marked
vertices match:

▶ Proposition 19. Let C,D ∈ ZXStab
p be a simplified pair in rGS+LC form, then JCK = JDK

only if the marked vertices in C and D are the same.

We have enough control over the pair of diagrams to finish the completeness proof:

▶ Theorem 20. zxp is complete for J−K, i.e. if for any pair of diagrams A,B ∈ ZXStab
p [0, n]

with n ̸= 0 , JAK = JBK, then zxp ⊢ A ≃ B.

4.4 Completeness of the scalar fragment
Finally, we are ready to leap-frog off of the previous section into the full completeness
(including scalars). First, we need to find a normal form for diagrams which evaluate to 0.
In fact, we need pick one normal form for each type m → n:
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▶ Proposition 21. The zero scalar “destroys” diagrams: for any m,n ∈ N and D ∈

ZXStab
p [m,n], n

...m
... D

1, 0

= n
...m

...
1, 0

⊗ . We take the RHS diagram to be the
“zero” diagram of type m → n.

A scalar diagram is in normal form if it is either the zero scalar, or it belongs to the set{
, ⋆

}
⊗

{
,

s, 0

1, 0
| s ∈ Z∗

p

}
⊗

{
( )⊗r, , ( )⊗r | r ∈ Z

}
,

when p ≡ 1 mod 4, or to the set{
,

0, 1

, ⋆,
0, 1

⋆
}

⊗
{

,
s, 0

1, 0
| s ∈ Z∗

p

}
⊗

{
( )⊗r, , ( )⊗r | r ∈ Z

}
.

when p ≡ 3 mod 4. It is straightforward to see, by evaluating J−K on each element, that
these sets contain exactly one diagram for each scalar in Gp \ {0} (and the zero scalar 1, 0

corresponds to 0 ∈ Gp).

▶ Theorem 22. zxp proves any scalar diagram equal to a scalar in normal form (depending
on the congruence of p modulo 4), or to the zero scalar 1, 0 .

The completeness for the whole stabiliser fragment follows immediately, combining
theorems 20 and 22:

▶ Theorem 23. The equational theory zxp is complete for Stabp, i.e. for any ZXStab
p -diagrams

A and B, if JAK = JBK, then zxp ⊢ A = B.

5 Mixed states and co-isotropic relations

In this last section we use the work of [18] to extend our completeness result to the mixed-state
case. We then unravel the connection to the Lagrangian relation investigated in [26].

5.1 A complete graphical language for CPM(Stabp)
We now extend our completeness result form Stabp to CPM(Stabp), the category of completely
positive maps corresponding to mixed state stabiliser quantum mechanics, see [44, 23] for
a formal definition. We will rely on the discard construction of [18] to define a graphical
language (ZXStab

p ) . It consists in adding to the equational theory one generator, the discard
: 1 → 0 and equations stating that this generator erases all isometries. In Stabp, the

isometries are generated by a small family of diagrams, the equations to add are then:

= = =
x, y

=
0, 1 a, 0 1, 0

⋆ == =

A new interpretation J_K : ZXStab
p → CPM(Stabp) is defined as

q y
: ρ 7→ Tr(ρ) for

the ground and for all ZXStab
p -diagram D : n → m:

r
D ......

z
: ρ 7→

r
D ......

z†
ρ

r
D ......

z
.

MFCS 2022
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Corollary 22 of [18] provides a sufficient condition for the previous construction to extend
to a universal and complete graphical language for Stabp into a universal complete graphical
language for CPM(Stabp). This condition is for Stabp to have enough isometries in the sense
of [18], By similar arguments as is the qubit case, we can show that Stab2 indeed has enough
isometries and then it follows that:

▶ Theorem 24. (ZXStab
p ) is universal and complete for CPM(Stabp).

5.2 Co-isotropic relations

It has been shown in [26, 25, 24] that CPM(Stabp) is equivalent to the category of affine
co-isotropic relations up to scalars. More formally, we endow Z2

p with the symplectic form:

ω

([
a

b

]
,

[
c

d

])
= ad− bc, and Z2m

p =
⊕

m Z2
p with the direct sum symplectic form.

▶ Definition 25. The symmetric monoidal category AffCoIsoRelZp
has as objects N, and as

morphisms, relations R : Z2m
p → Z2n

p such that R viewed as a subset of Zm
p × Zn

p is an affine
co-isotropic subspace thereof.

Since [26] works in the scalarless ZX-calculus, we need to add one extra axiom, which suffices
to eliminate all remaining (non-zero) scalars in Stabp: we impose the rule (Mod) that p = 1.
Diagrammatically, this amounts to quotienting (ZXStab

p ) by the rule: = .

Then we can give an interpretation [−] of (ZXStab
p ) making it universal and complete

for AffCoIsoRelZp , and which is defined uniquely by the commutative diagram:

(ZXStab
p ) AffCoIsoRelZp

CPM(Stabp) CPM(Stabp)/(Mod)

[−]

J−K

Explicitly, it is given by the identity on objects, [m] = m, and is defined on morphisms
by: for x, y ∈ Zp and z ∈ Z∗

p,

[
m

... n
...

]
=

{(⊕m

k=1

[
a

bk

]
,
⊕n

k=1

[
−a

−ck

]) ∣∣∣∣ a, bk, ck ∈ Zp and
∑

k
bk =

∑
k

ck

}
[
m

... n
...

]
=

{(⊕m

k=1

[
ak

c

]
,
⊕n

k=1

[
bk

c

]) ∣∣∣∣ a, bk, ck ∈ Zp and
∑

k
ak =

∑
k

bk

}
[

x, y
]

=
{(

•,

[
−1 0
−y −1

] [
v

0

]
+

[
−x

0

]) ∣∣∣∣ v ∈ Zp

}
[ ] =

{(
v,

[
0 −1
1 0

]
v

) ∣∣∣∣ v ∈ Z2
p

}
[

x, y
]

=
{(

•,

[
1 −y

0 1

] [
0
v

]
+

[
0
x

]) ∣∣∣∣ v ∈ Zp

}
[ z ] =

{(
v,

[
z 0
0 z−1

]
v

) ∣∣∣∣ v ∈ Z2
p

}

Note that all of these are actually affine Lagrangian relations. The only generator which
has a co-isotropic but not Lagrangian semantics is the discard map:

[ ]
=

{
(v, •)

∣∣ v ∈ Z2
p

}
.

As pointed out in [7, 8, 26], the related category of affine Lagrangian relations over the
field R[x, y]/(xy − 1) can be used to represent a fragment of electrical circuits. We expect
that the axiomatisation of figure 1 can be adapted to that setting, but leave this for a future
article.
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6 Conclusion

We have constructed a ZX-calculus which captures the stabiliser fragment in odd prime
dimensions, whilst retaining many of the “nice” features of the qubit ZX-calculus. Of course,
there are a few obvious questions that we leave for future work.

First amongst these is the question of whether a fully universal calculus can be obtained
from the ideas we used here. The spiders we have used here labelled with elements a, b ∈
Zp × Zp and which can be interpreted as polynomials x 7→ ax+ bx2 which parametrise the
phases of the spider. Adding one additional term of degree 3 is already sufficient to obtain
a universal calculus in prime dimensions (strictly) greater than 3 [37]. In fact, one might
as well add all higher order of polynomials (mod p) since access to such higher degrees will
hopefully prove useful in finding commutation relations for the resulting spiders.

Secondly, it remains to be seen how to formulate a universal ZX-calculus for non-prime
dimensions, even for just the stabiliser fragment. For this, the methods in this article are
clearly inadequate: for example local scaling is no longer an invertible operation and thus
certainly not in the Clifford group.

Finally, the set of axioms we provide here is probably not minimal. It would be nice to
see if a simplified version can be obtained, as was done in [6] for the qubit case.
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Abstract
The partial representation extension problem generalizes the recognition problem for geometric
intersection graphs. The input consists of a graph G, a subgraph H ⊆ G and a representation H of
H. The question is whether G admits a representation G whose restriction to H is H. We study this
question for circle graphs, which are intersection graphs of chords of a circle. Their representations
are called chord diagrams.

We show that for a graph with n vertices and m edges the partial representation extension
problem can be solved in O((n+m)α(n+m)) time, where α is the inverse Ackermann function. This
improves over an O(n3)-time algorithm by Chaplick, Fulek and Klavík [2019]. The main technical
contributions are a canonical way of orienting chord diagrams and a novel compact representation of
the set of all canonically oriented chord diagrams that represent a given circle graph G, which is of
independent interest.
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1 Introduction

Geometric intersection representations of graphs are an important concept that establishes
a strong connection between geometry, combinatorics and graph theory. In an intersection
representation of a graph G = (V, E) each vertex v ∈ V is represented by a geometric
object R(v) whose intersections encode the edges of G, i.e., {u, v} ∈ E if and only if R(u)
and R(v) intersect. Different classes of graphs can be obtained by restricting the types of
geometric objects used for the representation. For example interval graphs are intersection
representations of intervals of the real line, string graphs are intersection graphs of curves in
the plane and circle graphs are intersection graphs of chords of a circle; see Figure 1.

For a fixed class C of intersection graphs a natural question is the recognition problem,
which asks whether a given graph G belongs to C. For circle graphs the recognition problem
has been studied for a long time, and has culminated in an algorithm with running time
O((n + m)α(n + m)) [10, 13], where n and m denote the number of vertices and edges of
the input graph, respectively, and α denotes the slowly growing inverse of the Ackermann
function. There is also an O(n2) time algorithm which is faster for very dense graphs [24].

A generalization of the basic recognition problem has attracted considerable attention:
the partial representation extension problem [19, 1, 23, 2, 9, 18, 17, 21]. In this problem, the
input consists of a triplet (G, H, R′), where G is a graph, H ⊆ G is an induced subgraph
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Figure 1 A graph G with good (a) and overlapping (b) splits. Only one side of each split is
marked. The square vertices in (a) are the boundary of the blue split. (c) an undirected chord
diagram of G (d) an oriented chord diagram of G with reference chord r.

of G, and R′ is an intersection representation of H. The question is whether there exists a
representation R of G that extends R′, i.e., its restriction to H coincides with R′. Following
the notation of Chaplick, Fulek and Klavík [4], for a class C of intersection graphs, we denote
the partial representation extension problem for C by RepExt(C).

Related Work

The recognition problem can be solved efficiently for a wide range of classes of intersection
graphs. The partial representation extension problem was introduced by Klavík et al. [20],
who gave an efficient algorithm for RepExt(

∫
), where

∫
denotes the class of interval graphs,

which they improved to linear running time in their full version [19]. Angelini et al. [1]
give a linear-time algorithm for planar topological graph drawings and Patrignani shows
NP-hardness for planar straight-line drawings [23]. Recently, the problem has also been
considered for simple topological and 1-planar drawings [2, 9]. In the meantime efficient
algorithms are known for proper and unit interval graphs [18], permutation graphs and
function graphs [17], as well as for trapezoid graphs [21]. Concerning the class Circle of
circle graphs, Chaplick et al. [4] gave the first efficient algorithm for RepExt(Circle) with
running time O(n3).

For other forms of representation, there are compact descriptions of all representations of
a graph G, e.g., SPQR-trees [22, 8] for planar graphs and modular decomposition trees [11]
for comparability graphs. Both descriptions express a representation of G by choosing
representations for small graphs that are associated to the nodes of a tree in such a way that
a bijection is obtained between the representations of G and the choices for the small graphs.
For circle graphs, Cunningham and Edmonds introduced split-trees [7] that decompose a
graph along its splits into smaller graphs from which G is assembled in a tree structure.
Gioan and Paul [12] described split-trees using graph-labeled trees. Gioan et al. [13] observed
that all possible chord diagrams of G can be obtained by choosing a chord diagram for each
of the small graphs associated to the nodes of the split-tree of G and combining them suitably
with each other.

Contribution and Outline

However, besides the choices of the chord diagrams, there are choices to be made when
combining those diagrams, which Gioan et al. [13] express by basically directing the individual
chords. These choices allow to obtain the same chord diagram starting with a different set
of directed chord diagrams for the nodes of the split-tree; see Figure 2. We strengthen this
connection by generalizing the concept of split-trees and introducing a canonical orientation
of chord diagrams. In particular, for the canonical split-trees of Cunningham and Edmonds,
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Figure 2 (a), (b) split-trees with different associated chord diagrams, only the relevant orientations
are shown (c) the chord diagram resulting from the join for (a) and (b).

we establish a situation analogous to SPQR-trees or modular decomposition trees: the
canonically oriented chord diagrams of G correspond bijectively to choices of canonically
oriented chord diagrams for the nodes of the canonical split-tree.

In the O(n3)-time algorithm of Chaplick et al. [4] for RepExt(Circle), they characterize
all viable chord diagrams and solve the problem recursively, creating a decomposition that
appears to be similar to the decomposition in our representation. To illustrate the usefulness
of our representation, we improve over this result by showing how to extend partial chord
diagrams in near-linear time O((n + m)α(n + m)). This answers open questions of Chaplick
et al. [4] and Kalisz et al. [16] who specifically ask whether such a representation of all chord
diagrams exists and whether it can be used to solve RepExt(Circle) faster. We note that,
given the data structure computed by the fastest known recognition algorithm by Gioan et
al. [13], our algorithm runs in linear time.

We introduce notation and preliminary definitions in Section 2. In Section 3 we develop
the compact description of representations. Section 4 shows how these results can be used
to obtain an almost-linear time algorithm for RepExt(Circle). Lemmas and theorems
marked with (⋆) are proven in the full version.

2 Preliminaries

In this section we introduce important concepts that we use throughout the paper. In
particular, we recall the concepts of circle graphs and chord diagrams, and we introduce
a way to canonically orient them. Moreover, we also recall the notion of splits and split
decompositions, which are a classic tool in circle graph recognition algorithms.

Circle Graphs and Chord Diagrams

An (undirected) chord diagram D consists of a set C of chords of the unit circle, i.e.,
undirected straight-line segments that connect pairwise distinct points on the unit circle. A
chord diagram D naturally defines an intersection graph G(D) = (C, E) of its chords, where
{c, c′} ∈ E if and only if the chords c and c′ intersect in D, i.e., if and only if their endpoints
alternate around the unit circle. A graph G is a circle graph if it is an intersection graph of
the chords of a chord diagram.

While chord diagrams are geometric objects, we are mostly interested in their combinatorial
structure, i.e., we identify chord diagrams with the same order of chord ends on the circle.
To break certain symmetries we usually consider oriented chord diagrams, which additionally
have a chord end as a starting point. Then an oriented chord diagram D can be encoded as
the word over the set of chords C obtained by starting at the starting point and walking
around the unit circle in clockwise direction and recording the encountered chords. For
c ∈ C, we refer to the first end of c that we encounter with c̊ and to the second end with

MFCS 2022



25:4 Extending Partial Representations of Circle Graphs in Near-Linear Time

å
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â

d̊

b̊

d̂

b̂

c̊ĉ
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Figure 3 The turn and rev operation on a chord diagram with reference chord a.

ĉ. We consider the chord c as directed from c̊ to ĉ in the geometric interpretation; see
Figure 3 (reference). Unless mentioned otherwise, chord diagrams are always considered
oriented and they are usually treated as their encodings.

We call the chord with the starting point the reference chord of D. We never change
the reference chord. In the following, we consider changes that can be applied to every
chord diagram without changing the represented graph or the reference chord. For a word
w we write wrev for the word obtained by reading w backwards. The reverse of a chord
diagram aρaσ is rev(aρaσ) = aσrevaρrev. Geometrically, this corresponds to mirroring the
chord diagram at the reference chord a; see Figure 3 (reversed). The turn of a chord
diagram aρaσ is turn(aρaσ) = aσaρ. Geometrically, this corresponds to choosing â as
the new starting point. In a sense, this turns the chord diagram by 180 degrees; see
Figure 3 (turned). Note that turn(turn(aρaσ)) = aρaσ, rev(rev(aρaσ)) = aρaσ and
turn(rev(aρaσ)) = turn(aσrevaρrev)) = aρrevaσrev = rev(aσaρ) = rev(turn(aρaσ)), i.e.,
turn and rev are selfinverse and commute.

Splits and Split-Trees

Let G = (V, E) be a graph. Consider a bipartition (X, Y ) of V with ∅ ⊊ X, Y ⊊ V and
let BX ⊆ X denote the subset of vertices of X that are adjacent to a vertex in Y and
let BY ⊆ Y denote the subset of vertices of Y that are adjacent to a vertex in X. The
bipartition (X, Y ) is called a split if all possible edges between BX and BY exist in G, i.e.,
{{x, y} | x ∈ BX , y ∈ BY } ⊆ E. Then (BX , BY ) is called the split boundary; see Figure 1.
Observe that if X and Y are not connected, then BX , BY are empty. A split (X, Y ) is trivial
if one of its sides consists of a single vertex. Following Courcelle [5], we call a split (X, Y )
good if it does not overlap any other split, in the sense that for any other split (W, Z) at least
one of X ∩ W , X ∩ Z, Y ∩ W , Y ∩ Z is empty. A graph is prime if all its splits are trivial,
and it is degenerate if every bipartition of the vertices yields a split. It is well known that
the connected degenerate graphs are precisely cliques and stars [6].

Next, we define split-trees, introduced by Cunningham and Edmonds [7] as decomposition
trees. We use the graph-labeled tree description of Gioan and Paul [12]. However we consider
graph-labeled trees that correspond to general decompositions in the sense of Cunningham
and Edmonds, while Gioan and Paul used the term split-tree for a unique structure which
we later define as the canonical split-tree. To avoid confusion with the vertices and edges of
our graphs, we refer to the vertices and edges of split-trees as nodes and arcs, respectively. A
split-tree T is a tree where each inner node µ has a skeleton graph skel(µ) and a bijection
corrµ from V (skel(µ)) to the nodes of T adjacent to µ; see Figure 4. Given an inner node µ

and a neighbor ν of µ, we often need to refer to the vertex v of skel(µ) that represents ν.
For convenience, we define vµ(ν) as the vertex v of skel(µ) with corrµ(v) = ν.
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Figure 4 Split-trees of the graph from Figure 1a. (a) shows the base case, in (b) the node λ

from (a) is decomposed into µ and ν along the split ({a, b}, {c, d, e, r, f}). In (c) the node µ from
(b) is further decomposed along the split that has {c, d, e} on one side.

We define split-trees inductively. Let G = (V, E) be a graph. In the base case; see
Figure 4a, a split-tree T of G consists of one inner node λ and one leaf for each vertex v ∈ V

that is adjacent to λ. We identify the leaves of T with the vertices in V . Define the skeleton
of λ as skel(λ) = G. For every vertex v ∈ V (skel(λ)), we define corrλ(v) as the leaf node v

of T .
We can further decompose such a split-tree. Let λ be an inner node and let (X, Y ) be a

non-trivial split of skel(λ). Let GX denote the graph obtained from skel(λ) by contracting
Y into a single vertex y. Symmetrically, let GY denote the graph obtained from skel(λ) by
contracting X into a single vertex x. Then λ can be split into two nodes µ, ν connected
by an arc {µ, ν}; see Figure 4b. Define skel(µ) = GX and skel(ν) = GY . Observe that y in
GX represents the graph GY and x in GY represents the graph GX . We define corrµ(y) = ν

and corrν(x) = µ. For any vertex v ∈ V (skel(λ)) we replace the arc {λ, corrλ(v)} with
{µ, corrλ(v)} if v ∈ X or {ν, corrλ(v)} if v ∈ Y . Finally, for each inner node κ adjacent to
λ consider the unique vertex v ∈ skel(κ) with corrκ(v) = λ. We redefine corrκ(v) = µ if
vλ(κ) ∈ X and corrκ(v) = ν if vλ(κ) ∈ Y . Observe that the result is still a tree and corrξ is
well defined for each inner node ξ. Hence, the inner nodes may be decomposed again. The
split-trees of G are the split-trees that can be obtained in this way.

The inverse of a decomposition is a join. Let G1, G2 be two (vertex-disjoint) graphs with
v2 ∈ G1, v1 ∈ G2. Then we define their join at v2,v1 as the graph obtained from G1 ∪ G2 by
connecting all neighbors of v2 in G1 with all neighbors of v1 in G2 and removing the vertices
v1, v2. We denote the resulting graph by G1 ⊕v2,v1 G2 = (V, E). For a split-tree T with an
arc {µ, ν} let b = vµ(ν), a = vν(µ). The nodes µ, ν can be joined into a single node λ with
skel(λ) = skel(µ) ⊕b,a skel(ν). Moreover, for any inner node κ adjacent to µ or ν and the
unique vertex v ∈ V (skel(κ)) with corrκ(v) ∈ {µ, ν} we redefine corrκ(v) = λ.

Let T denote a split-tree and let {µ, ν} be an arc of T . Removing {µ, ν} separates T

into two trees Tµ and Tν where Tµ contains the node µ and Tν contains the node ν. Let
L(Tµ) ⊆ V denote the set of leaves of Tµ. By construction of the split-tree (L(Tµ), L(Tν)) is
a split of G, which is induced by the arc {µ, ν}. For example, the blue split from Figure 1a is
represented by the arc {κ, ξ} in Figure 4c. Let (A, B) be a non-trivial split of skel(µ). This
split induces a split (LA, LB) of G with LA =

⋃
v∈A L(Tcorrµ(v)) and LB =

⋃
v∈B L(Tcorrµ(v)).

An example of this is the red split from Figure 1b that is represented by a non-trivial split
inside node ξ of Figure 4c. We call an inner node of a split-tree degenerate and prime, if
its skeleton graph is degenerate and prime, respectively. Observe that in the split-tree in
Figure 4c, the node κ is prime, and ν, ξ are degenerate.

MFCS 2022



25:6 Extending Partial Representations of Circle Graphs in Near-Linear Time

In a good-split-tree every inner arc {µ, ν} of T induces a good split. For a connected
graph G, a canonical split-tree is a good-split-tree such that no skeleton has a non-trivial
good split, no inner arc induces a trivial split, and any two arcs induce different splits. A
canonical split-tree is obtained by decomposing G (in arbitrary order) along all its good
splits. This is possible since the good splits form a laminar set. The resulting canonical
split-tree is denoted by ST(G). It was first defined by Cunningham and Edmonds [7]. We
use the graph-labeled-tree description by Gioan and Paul [12]. It is unique, and nodes have
connected skeletons that are either prime or degenerate. Moreover, if two adjacent nodes µ, ν

are both degenerate, then either one of them is a star and one is a clique, or they are both
stars and the vertices vµ(ν) and vν(µ) are either both leaves or both the star centers of their
respective skeletons. By the following useful property, ST(G) represents all splits of G.

▶ Proposition 1 ([6],[14, Theorem 2.18]). A partition (A, B) of the vertex set of a connected
graph G is a split of G if and only if it is induced by an arc of ST(G) or by a non-trivial
split of a (skeleton of a) degenerate node of ST(G).

3 Compact Representation of all Chord Diagrams

Let G = (V, E) be a circle graph. In Section 3.1 we establish a correspondence between the
chord diagrams of G and assignments of chord diagrams to the inner nodes of a split-tree
of G. For canonical split-trees, this correspondence turns out to be a bijection. We further
show that both directions of this bijection can be computed in linear time. In Section 3.2 we
describe the possible choices for the chord diagrams for nodes of a canonical split-tree of G.
Altogether, this gives the claimed compact representation for connected circle graphs.

3.1 Configurations of Split-Trees

Let G = (V, E) be a circle graph, let r ∈ V be the reference chord of G and let T be a
split-tree of G. We root T at r and direct all arcs away from the root. For each inner node ν

of T , we define the reference chord rν as the chord vν(µ) associated with the parent µ of ν. A
configuration c of T is a mapping that assigns to each inner node µ of T a chord diagram c(µ)
of skel(µ) with reference chord rµ; see Figure 5. We also refer to c(µ) as the configuration
of µ. Recall that a split decomposition can be used to split a node λ of T into two nodes µ, ν

connected by a (directed) arc (µ, ν). In the reverse direction, a join composition can be used
to join two nodes µ, ν connected by an arc (µ, ν) into a single node λ. The join operation
extends to configurations.

The configurations of µ and ν induce a unique configuration of λ as follows. Let v = vµ(ν)
and let c(ν) = rνρrνσ. The induced configuration c(λ) = c(µ) ⊕v,rν

c(ν) of λ is obtained
from c(µ) by replacing v̊ with ρ and v̂ with σ. See Figure 5b. The order of multiple joins
affects neither the resulting split-tree nor the resulting configuration. For a configuration c of
a split-tree T we denote by D(c) the chord diagram obtained by joining the configurations of
all inner nodes of T . For connected graphs, the two joined chord diagrams c(µ), c(ν) are fully
determined by their join c′(λ) since the four combined words ρ, σ, µ, ν are fully determined
by c′(λ). This implies that two different configurations yield two different chord diagrams.

If G is connected, a diagram D can be decomposed along a split (A, B) only if the
endpoints of the chords in A and B appear suitably in D. We say that D respects the split
(A, B) if D decomposes into two words over A and two words over B that alternate. Formally,
this means we have D = ρ1σ1ρ2σ2ρ3 where ρ2, (ρ3ρ1) and σ1, σ2 are words over A and B.
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Figure 6 (a) A star G with a non-good split ({r,a},{b,c}). (b) A split-tree T of G with an arc
corresponding to the bad split in (a). (c) A chord diagram of G that is not represented by T .

We show that a chord diagram can be recursively decomposed along several splits if it
respects each of them. This yields the following lemma.

▶ Lemma 2 (⋆). Let G be a (not necessarily connected) circle graph and let T be a split-tree
of G rooted at some reference chord r. Then the mapping D that maps configurations of T to
chord diagrams of G is surjective on the set of chord diagrams of G with reference chord r

that respect all splits induced by arcs of T .

Note that, for any configuration c of T , the chord diagram D(c) respects all splits induced
by arcs of T . Since it is known that a chord diagram D of a connected circle graph G respects
all good splits of G [5, Proposition 9], we conclude the following.

▶ Theorem 3. Let T be a good-split-tree of a connected circle graph G rooted at some
reference chord r ∈ V (G). Then the mapping D that maps configurations of T to chord
diagrams of G with reference chord r is a bijection.

We can translate between configuration and chord diagram in linear time, which allows us
to use this result algorithmically. Note that in the following theorem the split-trees are not
required to be good-split-trees, which means there may be chord diagrams for their graph that
they do not represent; see Figure 6. This will be useful when dealing with RepExt(Circle).

▶ Theorem 4. Let T be a split-tree of a connected circle graph G rooted at some reference
chord r ∈ V (G). Then the mapping D can be computed in linear time. Conversely, given a
chord diagram D of G with reference chord r, it can be tested in linear time whether there
exists a configuration c of T with D(c) = D. If it exists, the configuration c can also be
computed in linear time.
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Proof. We store chord diagrams as circular doubly linked lists of endpoints of chords in
clockwise order. We assume that each chord endpoint is equipped with a pointer to the
corresponding vertex and each vertex has pointers to the two endpoints of its chord.

Let c be a configuration of T . We first store for each chord u in a chord diagram which
of its ends is ů. We then process the tree T in bottom-up order. If c contains only a single
inner node, then the configuration of this node is the desired diagram D(c). Otherwise let µ

be an inner node of T whose children are all leaves and let ν be its parent. Let T ′ be the
split tree obtained by replacing in T the node µ together with all its leaves by a single leaf v

and let c′ be the configuration of T ′ that coincides with c for all nodes of T ′. Clearly, c′

and T ′ can be computed from c and T in O(1) time. We now recursively compute D(c′) in
time linear in the size of T ′. To obtain D(c), we replace in D(c′) the endpoints v̊, v̂ of v by
the sequences π, σ, respectively, where c(µ) = rπrσ and r is the reference chord of µ. Since
we maintain the order of the endpoints in doubly linked lists, this can be done in O(1) time.
Therefore we only spend O(1) time per node of T .

Conversely assume that D is a chord diagram of G with reference chord r. We again
process the tree T in bottom-up order. As before, if T contains only a single inner node µ

then c(µ) = D is the desired configuration. Otherwise let µ be an inner node whose children
are all leaves. We denote the set of leaves of µ by L. Note that (L, V \ L) is a split of G. Let
T ′ be the tree obtained from T by replacing µ and its leaves by a single leaf v. Using simple
flags, we can decide for an endpoint of a chord of D in constant time whether it belongs to a
vertex of L and if so, whether it has already been processed. We now treat the endpoints
of the vertices in L one by one. For the first endpoint e we obtain in this way, we scan to
the left and right in the doubly linked list of D starting at e. In this way we determine a
maximal sublist [e1, e2] of D (containing all endpoints that lie clockwise between the first
and last points e1, e2 of that list) with e ∈ [e1, e2] such that all elements of [e1, e2] belong to
vertices of L. We mark all endpoints that we encounter in this way as processed. We then
scan further the leaves of L. We do find another endpoint f that is not yet processed since G

is connected. We similarly determine a sublist [f1, f2] around f so that all endpoints that lie
clockwise between f1, f2 belong to vertices of L and the predecessor of f1 and the successor
of f2 do not. If there is an unprocessed endpoint left, this means D does not respect split
(L, V \ L) and we can reject. Hence, assume no unprocessed endpoint remains.

We thus have partitioned the endpoints of the chords of L into two disjoint sublists [e1, e2]
and [f1, f2] of D. Then let D′ be the diagram obtained from D by replacing the sublists [e1, e2],
[f1, f2] each with v. We recursively compute a configuration c′ of T ′ with D(c′) = D′ where
for each chord u the end ů is stored. If this succeeds, we obtain the desired configuration
c as follows. For each inner node ν ̸= µ we set c(ν) = c′(ν). Since we know from each
predecessor and successor u of v̊, v̂ whether it is ů, we can set c(µ) = r[e1, e2]r[f1, f2] or
c(µ) = r[f1, f2]r[e1, e2] accordingly, where r is the reference chord of skel(µ). By construction
it is D(c) = D. Note that any other choice of c(µ) or D(c|T −µ) results in a chord diagram
different from D, since [e1, e2] and [f1, f2] are non-empty and separated by chords not in L.
We can then first iterate through the list of [e1, e2], [f1, f2] that replaces v̊ and then other
one to store each endpoint ů.

The time spent to compute T ′, D′ as well to modify c′ into c is proportional to |L|.
Therefore the algorithm runs in linear time. ◀

3.2 Configurations of Canonical Split-Trees
In a chord diagram D of a degenerate circle graph G, i.e., of a clique or a star, one half of D

determines the other half. More precisely, we can describe a chord diagram of a connected
degenerate circle graph G = (V, E) with reference chord r ∈ V with a cyclic permutation of V
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using the following mapping ϕG,r to chord diagrams of G with reference chord r. If G is a
clique, we set ϕG,r(rρ) = rρrρ. If G is a star with center x, we set ϕG,r(xρσ) = ρrevxρσxσrev

where ρ ends with r or is empty if x = r.

▶ Lemma 5 (⋆). For a clique or a star G = (V, E) with r ∈ V the map ϕG,r is a bijection.

Bouchet [3] showed that the undirected chord diagram of a connected prime circle graph
is unique up to reversal. We can additionally choose the orientation of the reference chord.
As a shorthand, we set tr = {id, turn, rev, turn(rev)} and for any chord diagram D we set
tr(D) = {D, turn(D), rev(D), turn(rev(D))}. Note that we can have | tr(D)| < 4, e.g., for
cliques we have turn(D) = D.

▶ Lemma 6 (⋆). Let G be a connected prime circle graph, r ∈ V (G), and D a chord diagram
with reference chord r. Then | tr(D)| = 4 and tr(D) is the set of chord diagrams of G with
reference chord r.

By combining Theorem 3 with Lemmas 5, 6 we obtain the claimed compact representation
of all chord diagrams of a connected circle graph G.

▶ Theorem 7. Let G be a connected circle graph and let T be the canonical split-tree of G

with reference chord r ∈ V (G). Let each prime node µ be equipped with a chord diagram
of skel(µ) with reference chord rµ. There is a bijection between the chord diagrams of G with
reference chord r and the choices of (i) applying an operation τµ ∈ tr to each prime node µ

and (ii) choosing a cyclic permutation of V (skel(µ)) for each degenerate node µ.

4 Partial Representation Extension

In this section, we solve RepExt(Circle) for a given circle graph G = (V, E) and a chord
diagram DH of an induced subgraph H ⊆ G in near-linear time. The idea is the following.
Assume G is connected and let T be the canonical split-tree of G. By Theorem 3, all chord
diagrams of G are represented by T . We project T and its configurations in a sense on H

and obtain an enriched split-tree TH of H. We show that TH describes exactly the chord
diagrams of H that can be extended to G. This means we just need to check whether TH

describes the given chord diagram DH .
If G is disconnected and there is a connected component C with two predrawn chord ends

a, b, and a distinct connected component C ′ with two predrawn chord ends c, d in DH such
that a, b and c, d alternate in DH , then there is no extension of DH to G since C, C ′ need
to cross each other (even though the crossing chords might not be predrawn). Chaplick et
al. [4] argue that otherwise an extension exists if and only if each connected component of G

admits an extension. Testing this requirement as well as combining representation extensions
of the different components can be done in linear time. Hence, we assume in the following
that G is connected. Note that H may still be disconnected.

We start with a canonical split-tree T of G rooted at a reference chord r ∈ V (H), which
by Theorem 3 represents all chord diagrams of G. For a chord diagram D of G let D|H
denote the chord diagram for H induced by D (i.e., the chords of H are placed as in D with
the same starting point). Let TH be the subtree of T whose leaves are the vertices of H and
whose inner nodes are the inner nodes of T that lie on a path from r to some leaf in V (H).
For each inner node of TH , we define skelTH

(µ) as the subgraph of skelT (µ) induced by the
vertices vµ(V (TH)), i.e., we keep exactly those chords that represent nodes that lead to at
least one vertex of H (see Figure 7). Finally, we suppress nodes with K2 as skeleton in TH
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(a)

ν′

µ′

κ′

λ′ (b)

κ

µ

λ

Figure 7 (a) Configuration of a canonical split-tree T . Leaves in V (H) are blue squares. (b)
split-tree TH with the corresponding configuration. Node µ is degenerate in TH while µ′ is prime in
T . skel(κ) is an isolated set while skel(κ′) is a star.

by (iteratively) joining them with one of their neighbors. Note that TH is a split-tree of H

rooted at r, and each inner node µ of TH stems from exactly one inner node µ′ of T . We
call TH the projection of T onto H.

Let now c be a configuration of T . We define its projection cH by setting cH(µ) =
c(µ′)|skelTH

(µ) for each node µ of TH , i.e., it is the restriction of the chord diagram c(µ′)
to skelTH

(µ). Observe that the reference chord is not removed, and therefore cH(µ) has the
same reference chord as c(µ′), i.e., cH is a configuration of TH . The following lemma shows
that the projection (T, c) 7→ (TH , cH) commutes with all relevant operations.

▶ Lemma 8. We have (i) D(c)|H = D(cH) and (ii) for every inner node µ of TH ,
turn(cH(µ)) = turn(c(µ′))|skelTH

(µ) and rev(cH(µ)) = rev(c(µ′))|skelTH
(µ).

Proof. For Property (i) observe that it suffices to show that joining two diagrams commutes
with the projection to a subgraph H . It then follows that D(c)|H , where the join is projected
to H, is the same as D(cH), where the skeletons are projected before the join, coincide.

More formally, let H1, H2 be two induced subgraphs of graphs G1, G2, respectively, and
let H = H1 ⊕v2,v1 H2 and G = G1 ⊕v2,v1 G2. We show that for any chord diagrams D1, D2
of G1, G2, respectively, it is (D1 ⊕v2,v1 D2)|H = D1|H1 ⊕v2,v1 D2|H2 . To see this, let D1 =
αv2βv2γ and D2 = v1ρv1σ and let α′, β′, γ′, ρ′, σ′ be the words obtained from α, β, γ, ρ, σ by
removing all symbols for chords that are not in V (H). Then we have (D1 ⊕v2,v1 D2)|H =
(αρβσγ)|H = α′ρ′β′σ′γ′. On the other hand, it is D1|H1 ⊕v2,v1 D2|H2 = α′v2β′v2γ′ ⊕v2,v1

v1ρ′v1σ′ = α′ρ′β′σ′γ′.
For Property (ii), let H be an induced subgraph of G. Let D = rρrσ be a chord diagram

for G with reference chord r and let ρ′, σ′ be the restrictions of ρ, σ to H, respectively.
Then turn(D)|H = turn(rρrσ)|H = (rσrρ)|H = rσ′rρ′ = turn(rρ′rσ′) = turn((rρrσ)|H) =
turn(D|H) and rev(D)|H = rev(rρrσ)|H = (rσrevrρrev)|H = rσrevrρrev|H = rσ′revrρ′rev =
rev(rρ′rσ′) = rev(D|H). ◀

Let DH be a chord diagram of H. By Theorem 3 there exists a chord diagram of G

that extends DH if and only if there exists a configuration c of T with D(c)|H = DH . By
Lemma 8(i) this holds if and only if there exists a configuration c of T whose projection cH

satisfies D(cH) = D(c)|H = DH . We aim to find such a configuration c. To do this, we make
use of the property from Lemma 8(ii) as follows. Let c′ be an arbitrary configuration of
T . By Theorem 7, the configuration c is obtained from c′ by (i) choosing a configuration
for each degenerate node of T and (ii) by choosing for each prime node µ one of the
diagrams c(µ) ∈ tr(c′(µ)). Note that induced subgraphs of cliques are themselves cliques
and an induced subgraph of a star is either a star or an independent set. In the latter case
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Figure 8 (a) a restricted split-tree for a graph H (b) a chord diagram DH for H where the chord
ends of the leaves of µ are contiguous. (c) the chord diagram we wish to create from DH by replacing
b,c by v. Note that the position of v̂ is not neighboring the position of any leaf of µ in (b).

an induced chord diagram has the form ρrevρσσrev where the center of the original star has
one end between ρrev and ρ and one end between σ and σrev. By Lemma 8(ii) it follows
that cH is obtained from c′

H by (i) arbitrarily choosing a configuration for each node of TH

that stems from a degenerate node of T and is connected, (ii) choosing a configuration of
the form ρrevρσσrev for each node of TH that stems from a degenerate node of T and is an
independent set and (iii) by choosing for each node µ of TH that stems from a prime node
in T one of the diagrams cH(µ) ∈ tr(c′

H(µ)).
We condense these rules as follows. We label the nodes of TH as degenerate if they stem

from a degenerate node in T and as prime if they stem from a prime node of T . We call two
configuration cH , c′

H of TH equivalent if cH(µ) ∈ tr(c′
H(µ)) for each prime-labeled node, and

for each degenerate-labeled node ν where skel(ν) is an independent set, cH(ν) is of the form
ρrevρσσrev. We call (TH , c′

H) the restricted split-tree of H with respect to G and say that
(TH , c′

H) represents a diagram DH of H if DH = D(cH) for some configuration cH that is
equivalent to c′

H . By the above observations, DH can be extended to a diagram of G if and
only if DH is represented by (TH , c′

H), where c′
H is the projection of a configuration of T .

If H is connected, this condition can be tested in linear time by computing the unique
configuration cH of TH with D(cH) = DH using Theorem 4 and then checking whether it is
equivalent to c′

H . If H is not connected, we use the following lemma to test whether (TH , c′
H)

represents DH and to obtain a corresponding configuration cH of TH in that case.

▶ Lemma 9 (⋆). Let (TH , c′
H) be a restricted split-tree of a graph H with respect to a

connected graph G and let DH be a chord diagram of H with the root r of TH as reference
chord. It can be tested in linear time whether (TH , c′

H) represents DH . If so, a corresponding
configuration cH can also be computed in linear time.

Sketch of proof. We use a bottom-up approach as in the proof of Theorem 4 to find cH .
Recall that in the proof of Theorem 4, we iteratively processed an inner node µ with only
leaves as children and searched for subwords of DH that correspond to a chord diagram
Dµ of skel(µ) to check whether Dµ can be part of a configuration and then replace these
subwords with a chord that represents µ as a leave for the remaining split-tree. To find these
subwords we started at arbitrary leaves of µ to find contiguous sublists of such leaves in DH .
However, if H is not connected, it can happen that when processing a node µ, all its leaves
are contiguous in DH ; see Figure 8. For example, this happens if µ is a leftmost leaf of a
star node in T that lost its center in TH (something similar can happen in prime-labeled
nodes). In this case the first found sublist [e1, e2] of leaves of µ already contains all leaves
of µ and we do not find a second sublist [f1, f2]. This means that we have no pointer to

MFCS 2022



25:12 Extending Partial Representations of Circle Graphs in Near-Linear Time

the correct place in the new chord diagram D′ for the second end of the leaf chord v that
replaces µ. We thus allow DH to be a relaxed chord diagram where for some chords only
one end is fixed. We then use the characterization of inner nodes of restricted split-trees to
compute configurations for those nodes that match the given relaxed chord diagrams.

For example, if µ is a labeled degenerate and skel(µ) is a star with center x, we start at
an end of x in DH and traverse simultaneously in both directions until all ends are traversed
(except possibly the second end of x). At each end of a chord v with no second end, insert
that second end where the other traversal is at that moment. When a chord with two ends
is reached, wait in front of that chord until the other traversal also reaches that chord and
then skip that chord in both traversals. If the traversals wait at different chords we reject.
In that case DH induces the subword xaabb (or some cyclic shifted version of that word)
which cannot be realized by a star with center x. If x has a second end, the traversals meet
and end there. Otherwise, add the second end of x where the traversals meet. Thereby, all
chords for leaves intersect x and no other intersection occurs. By construction we obtain a
chord diagram cH(µ) that realizes DH .

Note that both ends of v can be neighbors in D(cH |TH −µ). Then, moving the end r̂ of the
reference chord in cH(µ) does not change D(cH) and cH is no longer required to be unique. ◀

▶ Theorem 10. Given T = ST(G) and a chord diagram D of G, RepExt(Circle) can
be solved in linear time. In the positive case a representation of G that extends the given
diagram DH of H can be computed in the same running time.

Proof. From D we compute in linear time a configuration c′ of T with D(c′) = D using
Theorem 4. From T and c′, we compute in linear time the projection to the restricted
split-tree (TH , c′

H) of H. With Lemma 9, we test whether it represents the given diagram
DH of H and obtain a configuration cH equivalent to c′

H with D(cH) = DH . We now define
a configuration c of T as follows. For each prime-labeled node µ of TH , we define c(µ′) =
τ(c′(µ′)) where τ ∈ tr such that cH(µ) = τ(c′

H(µ)). For each degenerate-labeled node µ

of TH , we choose a configuration as follows. If skelH(µ) is connected we can extend c′(µ)
arbitrarily. For a precise argument, we have by Lemma 5, cH(µ) = ϕskelH (µ),r(σ) for
some cyclic permutation σ of V (skelTH

(µ)). We create a permutation σ′ of V (skelT (µ))
by appending the elements of V (skelT (µ′)) \ V (skelTH

(µ)) to σ in an arbitrary order. We
then set c(µ′) = ϕH,r(σ′). If skelTH

(µ) is not connected, then skelT (µ′) is a star where the
reference chord rµ′ is not the center x and skelTH

(µ) does not contain x. In that case cH(µ)
is of the form cH(µ) = ρrevρσσrev and we have to insert the other chords in parallel, such
that x can intersect all chords. Then set c(µ′) = ρrevxρσαxαrev, where α are the elements of
V (skelT (µ)) \ V (skelTH

(µ)) \ {x}. Finally, for each node µ′ of T that is not contained in TH ,
we set c(µ′) = c′(µ′). By construction, we have that cH is the projection of c, and therefore
D(c)|H = D(cH) = DH , i.e., D(c) is the desired representation of G. Clearly the amount of
work per skeleton is linear, and therefore the overall running time is linear. ◀

Theorem 10 assumes that ST(G) and a chord diagram of G are available. If not, we can
compute them in O((n + m)α(n + m)) time [13, 14].

▶ Corollary 11. RepExt(Circle) can be solved in O((n + m)α(n + m)) time.

5 Conclusion

We have developed a data structure that compactly represents all chord diagrams for
a connected circle graph. As an application, we have shown how to solve the partial
representation extension problem for circle graphs in almost linear time, improving over
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the O(n3) algorithm of Chaplick et al. [4]. Using a reduction of Chaplick et al. this also
solves the extension problem for permutation graphs in near linear time, improving over two
different O(n3) algorithms [4], [17]. Our data structure may also be useful when seeking
restricted chord diagrams that satisfy additional constraints. For example, we believe that it
is possible to significantly simplify the circular-arc graph recognition of Hsu et al. [15].
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Abstract
Coalition formation considers the question of how to partition a set of agents into coalitions with
respect to their preferences. Additively separable hedonic games (ASHGs) are a dominant model
where cardinal single-agent values are aggregated into preferences by taking sums. Output partitions
are typically measured by means of stability, and we follow this approach by considering stability
based on single-agent movements (to join other coalitions), where a coalition is defined as stable
if there exists no beneficial single-agent deviation. Permissible deviations should always lead to
an improvement for the deviator, but they may also be constrained by demanding the consent of
agents involved in the deviations, i.e., by agents in the abandoned or welcoming coalition. Most
of the existing research focuses on the unanimous consent of one or both of these coalitions, but
more recent research relaxes this to majority-based consent. Our contribution is twofold. First, we
settle the computational complexity of the existence of contractually Nash-stable partitions, where
deviations are constrained by the unanimous consent of the abandoned coalition. This resolves the
complexity of the last classical stability notion for ASHGs. Second, we identify clear boundaries to
the tractability of stable partitions under majority-based stability concepts by proving elaborate
hardness results for restricted classes of ASHGs. Slight further restrictions lead to positive results.
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1 Introduction

Coalition formation is a vibrant topic in multi-agent systems at the intersection of theoretical
computer science and economic theory. Given a set of agents, e.g., humans or machines, the
central concern is to determine a coalition structure, or partition, of the agents into subsets,
or so-called coalitions. Agents have preferences over coalition structures, and therefore
coalition formation naturally generalizes the matching problem under preferences [22]. As in
the special case of matchings, a common assumption is that externalities outside one’s own
coalition play no role, i.e., agents are only concerned about the coalition they are part of.
This assumption leads to the popular framework of hedonic games [18].

In contrast to matchings, the number of coalitions an agent can be part of is not
polynomially bounded in coalition formation, and therefore, a lot of effort has been put into
identifying reasonable and succinct classes of hedonic games (see, e.g., [2, 5, 8, 20]). In many
such classes, agents extract cardinal preferences from a weighted and possibly directed graph
by some aggregation method. Probably the most natural and thoroughly researched way to
aggregate preferences is by taking the sum of the weights of edges towards agents in one’s
own coalition. This leads to the concept of additively separable hedonic games (ASHGs) [8].
This paper continues to investigate this class of hedonic games.
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26:2 Boundaries to Single-Agent Stability in Additively Separable Hedonic Games

The desirability of an output, i.e., of a coalition structure, is frequently measured with
respect to stability, which captures the prospect of agents maintaining their coalitions. A
coalition structure is stable if no single agent or group of agents has an incentive to deviate
by leaving their coalitions and joining other coalitions or forming new coalitions. Depending
on the requirements that deviators need to meet, one can define various specific stability
notions. In this paper, we focus on stability based on single-agent deviations. This means
that a deviation consists of a single agent that abandons her current coalition to join another
existing coalition or to form a new coalition of her own.

In this case, a reasonable minimum requirement is that a deviating agent should improve
her coalition. If no such deviation is possible, then a coalition structure is said to be Nash-
stable. However, this leads to an immensely strong stability concept because the deviation
is only constrained weakly. As a consequence, Nash-stable outcomes hardly ever exist. For
instance, consider a game with two agents x and y where x prefers to form a coalition with
y over staying alone, whereas y prefers to stay alone. Then, x always has an incentive to
join y whenever she is in a coalition of her own, whereas y would always leave x. Such
run-and-chase situations occur in most classes of hedonic games.1

Therefore, various weakenings of Nash stability have been proposed. These restrict the
possible deviations by adding further requirements on other agents involved in the deviation.
Typically, two types of constraints are considered, namely the demanding of some kind of
consent from the abandoned or the welcoming coalition. Most of the research has focused
on the unanimous consent of these coalitions. This leads to the concepts of contractual
Nash stability and individual stability where all agents in the abandoned or welcoming
coalition have to approve the deviation. Still, unanimous consent of involved coalitions is a
strong requirement. Hence, a reasonable compromise is to merely demand partial consent.
Therefore, we also study stability where deviations are constrained by the approval of a
majority vote of the abandoned or welcoming coalition.

1.1 Contribution
Our contribution is twofold. First, we settle the complexity of the existence problem of
contractually Nash-stable coalition structures. Despite knowing for quite long that No-
instances, i.e., additively separable hedonic games which do not admit a contractually
Nash-stable coalition structure, exist [28], detailed computational investigations of single-
agent stability during the last decade have left this problem open [10, 29]. Hence, we complete
the picture of the complexity of unanimity-based single-agent stability concepts in ASHGs.

Second, we investigate majority-based stability concepts. We will show that, even under
significant weight restrictions, stable coalition structures need not exist and we can leverage
No-instances to obtain computational intractabilities. This complements very recent results
by Brandt et al. [10] and resolves problems left open by this work. In particular, we completely
pinpoint the complexity of majority-based stability notions in friends-and-enemies games
and appreciation-of-friends games.

These results are in line with the repeatedly observed theme in hedonic games research
that the existence of counterexamples is the key to computational intractabilities (see, e.g.,
[3, 10, 11, 16, 29]).2 On the other hand, we demonstrate that the observed intractabilities
lie at the computational boundary by carving out further weak restrictions that lead to the
existence and efficient computability of stable states.

1 Notably, Nash-stable coalition structures always exist in ASHGs if the input graph is symmetric [8],
and in a generalization of this class of games called subset-neutral hedonic games [27].

2 A notable exception is provided by Bullinger and Kober [13] who identify a class of hedonic games
where partitions in the core always exist, but are still hard to compute.
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1.2 Related Work
The study of hedonic games was initiated by Drèze and Greenberg [18] but was only
popularized two decades later by Banerjee et al. [6], Cechlárová and Romero-Medina [15], and
Bogomolnaia and Jackson [8]. Aziz and Savani [4] review many important concepts in their
survey. Two important research questions concern the design of reasonable computationally
manageable subclasses of hedonic games and the detailed investigation of their computational
properties. The former has led to a broad landscape of game representations. Some of these
representations [5, 20] are ordinal and fully expressive, i.e., they can, in principle, express
every preference relation over coalitions. Still, representing certain preference relations
requires exponential space. These representations are contrasted by cardinal representations
based on weighted graphs [2, 8, 26], which are not fully expressive but only require polynomial
space (except when weights are artificially large). Apart from the already discussed additively
separable hedonic games, important aggregation methods consider the average of weights
leading to the classes fractional hedonic games [2] and modified fractional hedonic games [26].
Additively separable hedonic games have important subclasses where the focus lies in
distinguishing friends and enemies, and therefore only two different weights are present in
the underlying graph [16].

The computational properties of hedonic games have been extensively studied and we
focus on literature related to additively separable hedonic games. Various versions of stability
have been investigated [1, 3, 10, 16, 29, 21]. The closest to our work are the detailed studies of
single-agent stability by Sung and Dimitrov [29] and Brandt et al. [10]. Gairing and Savani [21]
settle the complexity of single-agent stability for symmetric input graphs. Majority-based
stability has only received little attention thus far [10, 21]. Apart from stability, other
desirable axioms concern efficiency and fairness. Aziz et al. [3] cover a wide range of axioms,
whereas Elkind et al. [19] and Bullinger [12] focus on Pareto optimality, and Brandt and
Bullinger [9] investigate popularity, an axiom combining ideas from stability and efficiency
which is also related to certain majority-based stability notions [10]. Finally, a recent trend
in the research on coalition formation is to complement the static view of existence problems
by considering dynamics based on stability concepts (see, e.g., [7, 10, 11, 14, 23]).

2 Preliminaries

In this section, we formally introduce hedonic games and our considered stability concepts.

2.1 Hedonic Games
Let N = [n] be a set of n ∈ N agents, where we define [n] = {1, . . . , n}. The output of a
coalition formation problem is a coalition structure, that is, a partition of the agents into
different disjoint coalitions according to their preferences. A partition of N is a subset π ⊆ 2N

such that
⋃

C∈π C = N , and for every pair C, D ∈ π, it holds that C = D or C ∩ D = ∅.
An element of a partition is called a coalition and, given a partition π, the unique coalition
containing agent i is denoted by π(i). We refer to the partition π given by π(i) = {i} for
every agent i ∈ N as the singleton partition, and to π = {N} as the grand coalition.

Let Ni denote all possible coalitions containing agent i, i.e., Ni = {C ⊆ N : i ∈ C}. A
hedonic game is a tuple (N,≿), where N is an agent set and ≿ = (≿i)i∈N is a tuple of weak
orders ≿i over Ni representing the preferences of the respective agent i. Hence, as mentioned
before, agents express preferences only over the coalitions of which they are part without
considering externalities. The strict part of an order ≿i is denoted by ≻i, i.e., C ≻i D if and
only if C ≿i D and not D ≿i C.

MFCS 2022
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Additively separable hedonic games assume that every agent is equipped with a cardinal
utility function that is aggregated by taking the sum of single-agent values. Formally,
following [8], an additively separable hedonic game (ASHG) (N, v) consists of an agent set
N and a tuple v = (vi)i∈N of utility functions vi : N → R such that π ≿i π′ if and only if∑

j∈π(i) vi(j) ≥
∑

j∈π′(i) vi(j). Clearly, ASHGs are a subclass of hedonic games. When we
specify ASHG utilities, we neglect, without loss of generality, vi(i) because the preferences
do not depend on it and we implicitly assume that it is set to an appropriate constant if an
ASHG has to fit into a certain subclass of games.

Every ASHG can be naturally represented by a complete directed graph G = (N, E)
with weight vi(j) on arc (i, j). There are various subclasses of ASHGs that allow a natural
interpretation in terms of friends and enemies. An agent j ∈ N is called a friend (or enemy)
of agent i ∈ N if vi(j) > 0 (or vi(j) < 0). An ASHG is called a friends-and-enemies game
(FEG) if vi(j) ∈ {−1, 1} for every pair of agents i, j ∈ N [10]. Further, following [16], an
ASHG is called an appreciation-of-friends game (AFG) (or an aversion-to-enemies game
(AEG)) if vi(j) ∈ {−1, n} (or vi(j) ∈ {−n, 1}). In such games, agents seek to maximize
their number of friends while minimizing their number of enemies, where these goals have a
different priority in each case. Based on the friendship of agents, we define the friendship
relation (or enemy relation) as the subset R ⊆ N × N where (i, j) ∈ R if and only if vi(j) > 0
(or vi(j) < 0).

2.2 Single-Agent Stability
We want to study stability under single agents’ incentives to perform deviations. A single-
agent deviation performed by agent i transforms a partition π into a partition π′ where
π(i) ̸= π′(i) and, for all agents j ̸= i,

π′(j) =


π(j) \ {i} if j ∈ π(i),
π(j) ∪ {i} if j ∈ π′(i), and
π(j) otherwise.

We write π
i−→ π′ to denote a single-agent deviation performed by agent i transforming

partition π to partition π′.
We consider myopic agents whose rationale is to only engage in a deviation if it immediately

makes them better off. A Nash deviation is a single-agent deviation performed by agent i

making her better off, i.e., π′(i) ≻i π(i). Any partition in which no Nash deviation is possible
is said to be Nash-stable (NS).

Following [10], we introduce consent-based stability concepts via favor sets. Let C ⊆ N

be a coalition and i ∈ N an agent. The favor-in set of C with respect to i is the set of
agents in C (excluding i) that strictly favor having i inside C rather than outside, i.e.,
Fin(C, i) = {j ∈ C \ {i} : C ∪ {i} ≻j C \ {i}}. The favor-out set of C with respect to i is the
set of agents in C (excluding i) that strictly favor having i outside C rather than inside, i.e.,
Fout(C, i) = {j ∈ C \ {i} : C \ {i} ≻j C ∪ {i}}.

An individual deviation (or contractual deviation) is a Nash deviation π
i−→ π′ such that

Fout(π′(i), i) = ∅ (or Fin(π(i), i) = ∅). Then, a partition is said to be individually stable (IS)
or contractually Nash-stable (CNS) if it allows for no individual or contractual deviation,
respectively. A related weakening of both stability concepts is contractual individual stability
(CIS), based on deviations that are both individual and contractual deviations [8, 17].

Finally, we define hybrid stability concepts according to [10] where the consent of the
abandoned or welcoming coalition is decided by a majority vote. A Nash deviation π

i−→ π′ is
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Nash Stability

Majority-Out Stability

Majority-In Stability

Contractual Nash Stability

Individual Stability

Contractual Individual Stability

Figure 1 Logical relationships between stability notions. An arrow from concept S to concept
S′ indicates that if a partition satisfies S, it also satisfies S′. Conversely, this means that every S′

deviation is also an S deviation.

called a majority-in deviation (or majority-out deviation) if |Fin(π′(i), i)| ≥ |Fout(π′(i), i)|
(or |Fout(π(i), i)| ≥ |Fin(π(i), i)|). Similar to before, a partition is said to be majority-in
stable (MIS) or majority-out stable (MOS) if it allows for no majority-in or majority-out
deviation, respectively. The concepts MIS and MOS are special cases of the voting-based
stability notions by Gairing and Savani [21] for a threshold of 1/2. Brandt et al. [10] also
consider stability concepts that require voting-based consent by both the abandoned and
welcoming coalition, similar to CIS.

For a stability concept S ∈ {NS, IS, CNS, MIS, MOS}, we denote the deviation corre-
sponding to S as S deviation, e.g., CNS deviation for a contractual deviation. A taxonomy
of our related solution concepts is provided in Figure 1.

3 Contractual Nash Stability

Our first result settles the computational complexity of contractual Nash stability in ASHGs.
All of our reductions in this and the subsequent sections are from the NP-complete problem
Exact3Cover (E3C) [25]. An instance of E3C consists of a tuple (R, S), where R is a
ground set together with a set S of 3-element subsets of R. A Yes-instance is an instance
such that there exists a subset S′ ⊆ S that partitions R.

Before giving the complete proof, we briefly describe the key ideas. Given an instance
(R, S) of E3C, the reduced instance consists of three types of gadgets. First, every element in
R is represented by a subgame that does not contain a CNS partition. In principle, any such
game can be used for a reduction, and we use the game identified by Sung and Dimitrov [28].
Moreover, we have further auxiliary gadgets that also consist of the same No-instance. The
number of these auxiliary gadgets is equal to the number of sets in S that would remain after
removing an exact cover of R, i.e., there are |S| − |R|/3 such gadgets. By design, the agents
in the subgames corresponding to No-instances have to form coalitions with agents outside
of their subgame in every CNS partition. The only agents that can achieve this are agents in
gadgets corresponding to elements in S. A gadget corresponding to an element s ∈ S can
either prevent non-stability caused by exactly one auxiliary gadget, or by the three gadgets
corresponding to the elements r ∈ R with r ∈ s. Hence, the only possibility to deal with all
No-instances simultaneously is if there exists an exact cover of R by sets in S. Then, the
gadgets corresponding to elements in R can be dealt with by the cover and there are just
enough elements in S to additionally deal with the other auxiliary gadgets.

▶ Theorem 1. Deciding whether an ASHG contains a CNS partition is NP-complete.

Proof. We provide a reduction from E3C. Let (R, S) be an instance of E3C and set a =
|S|− |R|/3 (this is the number of additional sets in S if removing some exact cover). Without
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NS ∪ N̄S
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ūe

x1
4

x1
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1

Figure 2 Schematic of the reduction from the proof of Theorem 1. We depict the reduced instance
for the instance (R, S) of E3C where R = {a, b, c, d, e, f}, and S = {s, t, u}, with s = {a, b, c},
t = {b, c, d}, and u = {d, e, f}. Fully drawn edges mean a positive utility, which is usually 1 except
between agents of the types s̄r and sr, where vs̄r (sr) = 3. Dashed edges represent a utility of 0. For
agents in N̄S , only the single positive utility is displayed. Other omitted edges represent a negative
utility of −4.

loss of generality, a ≥ 0. We define an ASHG (N, v) as follows. Let N = NR ∪ NS ∪ N̄S ∪ NA

where
NR = ∪r∈RNr with Nr = {ri : i ∈ [4]} for r ∈ R,
NS = ∪s∈SNs with Ns = {sr : r ∈ s} for s ∈ S,
N̄S = ∪s∈SN̄s with N̄s = {s̄r : r ∈ s} for s ∈ S, and
NA = ∪1≤j≤aN j with N j = {xj

i : i ∈ [4]} for 1 ≤ j ≤ a.

We define valuations v as follows:
For each r ∈ R, i ∈ [3]: vri

(r4) = 1.
For each r ∈ R, (i, j) ∈ (1, 2), (2, 3), (3, 1): vri(rj) = 0.
For each 1 ≤ j ≤ a, i ∈ [3]: vxj

i
(xj

4) = 1.

For each 1 ≤ j ≤ a, (i, k) ∈ (1, 2), (2, 3), (3, 1): vxj
i
(xj

k) = 0.
For each s ∈ S, r ∈ s: vsr (r4) = 1.
For each s ∈ S, r ∈ s, 1 ≤ j ≤ a: vsr

(xj
4) = vxj

4
(sr) = 0.

For each s ∈ S, r, r′ ∈ s: vsr
(sr′) = 0.

For each s ∈ S, r, r′ ∈ s, r ̸= r′, z ∈ (NS ∪ NA) \ Ns: vs̄r (sr) = 3, vs̄r (sr′) = −2, and
vs̄r

(z) = 0.
All other valuations are −4.

An illustration of the game is given in Figure 2. The agents in NR in the reduced instance
form gadgets consisting of a subgame without CNS partition for every element in R. The
agents in NA constitute further such gadgets. The agents in NS consist of triangles for every
set in S and are the only agents who can bind agents in the gadgets in any CNS partition.
Finally, agents in N̄S avoid having agents in NS in separate coalitions to bind agents in NA.
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We claim that (R, S) is a Yes-instance if and only if (N, v) contains a CNS partition.
Suppose first that S′ ⊆ S partitions R. Consider any bijection ϕ : S \ S′ → [a]. Define a
partition π by taking the union of the following coalitions:

For every r ∈ R, i ∈ [3], form {ri}.
For s ∈ S′, r ∈ s, form {sr, r4}.
For s ∈ S \ S′, form {sr : r ∈ s} ∪ {x

ϕ(s)
4 }.

For s ∈ S, r ∈ s, form {s̄r}.
For 1 ≤ j ≤ a, i ∈ [3], form {xj

i }.

We claim that π is CNS. We will show that no agent can perform a deviation.
For r ∈ R, i ∈ [3], it holds that vri

(π) = 0 and joining any other coalition results in a
negative utility. In particular, vri(π(r4) ∪ {ri}) = −3.
For r ∈ R, r4 is not allowed to leave her coalition.
For s ∈ S′, r ∈ s, it holds that vsr

(π) = 1 and joining any other coalition results in a
negative utility. The agent sr is in a most preferred coalition.
For s ∈ S \ S′, r ∈ s, it holds that vsr

(π) = 0 and joining any other coalition results in a
negative utility. In particular, vsr

(π(r4) ∪ {sr}) = −3.
For s ∈ S′, r ∈ s, the agent s̄r obtains a non-positive utility by joining any other coalition.
In particular, vs̄r (π(sr) ∪ {s̄r}) = −1.
For s ∈ S \ S′, r ∈ s, the agent s̄r obtains a non-positive utility by joining any other
coalition. In particular, vs̄r (π(sr) ∪ {s̄r}) = −1.
For 1 ≤ j ≤ a, i ∈ [3], it holds that vxj

i
(π) = 0 and joining any other coalition results in

a negative utility. In particular, vxj
i
(π(xj

4) ∪ {xj
i }) = −11.

For 1 ≤ j ≤ a, xj
4 is in a best possible coalition (achieving utility 0).

Conversely, assume that (N, v) contains a CNS partition π. Define S′ = {s ∈ S : π(sr) ∩
NR ̸= ∅ for some r ∈ s}. We will show first that S′ covers all elements in R and then show
that |S′| = |R|/3.

Let r ∈ R. Then, for all i ∈ [3], π(ri) ⊆ Nr. This follows because there is no agent who
favors ri in her coalition. Therefore, she would leave any coalition with an agent outside Nr

to receive non-negative utility in a singleton coalition. Further, if there is no s ∈ S with r ∈ s

such that r4 ∈ π(rs), then π(r4) ⊆ Nr. Indeed, if r4 forms any coalition except a singleton
coalition, she will receive negative utility, and then there must exist an agent who favors her
in the coalition. Consequently, if r4 /∈ π(rs) for all s ∈ S with r ∈ s, then r4 is in a singleton
coalition, or there exists i ∈ [3] with r4 ∈ π(ri), for which we already know that π(ri) ⊆ Nr.

Assume now that π(r4) ⊆ Nr. For i, i′ ∈ [3], ri /∈ π(ri′) because then one of them would
receive a negative utility and could perform a CNS deviation to form a singleton coalition.
If {r4} ∈ π, then r1 would deviate to join her. Hence, there exists exactly one i ∈ [3] with
{ri, r4} ∈ π. Suppose without loss of generality that {r1, r4} ∈ π. But then, r3 would
perform a CNS deviation to join them, a contradiction. We can conclude that there exists
s ∈ S with r ∈ s such that r4 ∈ π(rs). Hence, s ∈ S′ and we have shown that S′ covers R.

To bound the cardinality of S′, we will show that, for every 1 ≤ j ≤ a, there exists
s ∈ S \ S′ with Ns ⊆ π(xj

4). Let therefore 1 ≤ j ≤ a and let C = π(xj
4). Similar to the

considerations about agents in Nr, we know that π(xj
i ) ⊆ Xj for i ∈ [3], and that it cannot

happen that C ⊆ Xj , and therefore C ∩ Xj = {xj
4}. In particular, there must be an agent

y ∈ N \ Xj with y ∈ C. Since no agent in C favors xj
4 to be in her coalition, we know

that vxj
4
(π) ≥ 0 and therefore C ⊆ {xj

4} ∪ NS . Let s ∈ S and r ∈ s with sr ∈ C. As we
already know that s̄r /∈ C, it must hold that Ns ⊆ C to prevent her from joining. It follows
that s /∈ S′. Since π(xj

4) ∩ π(xj′

4 ) = ∅ for 1 ≤ j′ ≤ a with j′ ≠ j, we find an injective
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mapping ϕ : [a] → S \ S′ such that, for every 1 ≤ j ≤ a, Nϕ(j) ⊆ π(xj
4). Consequently,

|S′| ≤ |S| − |ϕ([a])| ≤ |S| − a = |R|/3. Hence, S′ covers all elements from R with (at most)
|R|/3 sets and therefore is an exact cover. ◀

The reduction in the previous proof only uses a very limited number of different weights,
namely the weights in the set {1, 0, −2, −4}, where the weight −4 may be replaced by an
arbitrary smaller weight. By contrast, CNS partitions always exist if the utility functions
of an ASHG assume at most one nonpositive value, and can be computed efficiently in this
case [10, Theorem 4]. This encompasses for instance FEGs, AFGs, and AEGs. Hence, the
hardness result is close to the boundary of computational feasibility.

4 Appreciation-of-Friends Games

In this section, we consider appreciation-of-friends games. Typically, these games behave well
with respect to stability. In particular, IS, CNS, and MIS partitions always exist and can be
computed efficiently, while it is only known that NS leads to non-existence and computational
hardness among single-agent stability concepts [10, 16]. By contrast, we show in our next
result that MOS partitions need not exist in AFGs. In other words, despite their conceptual
complementarity, the stability concepts MOS and MIS lead to very different behavior in a
natural class of ASHGs. The constructed game has a sparse friendship relation in the sense
that almost all agents only have a single friend. After discussing the counterexample, we
show how requiring slightly more sparsity yields a positive result. Due to space restrictions,
some proofs are omitted or sketched.

▶ Proposition 2. There exists an AFG without an MOS partition.

Proof. We define the game formally. An illustration is given in Figure 3. Let N =
{z} ∪

⋃
x∈{a,b,c} Nx, where Nx = {xi : i ∈ [5]} for x ∈ {a, b, c}. In the whole proof, we

read indices modulo 5, mapping to the respective representative in [5]. The utilities are
given as:

For all i ∈ [5], x ∈ {a, b, c} : vxi(xi+1) = n.
For all x ∈ {a, b, c} : vx1(z) = n.
All other valuations are −1.

The AFG consists of 3 cycles with 5 agents each, together with a special agent that is liked
by a fixed agent of each cycle and has no friends herself. The key insight to understanding why
there exists no MOS partition is that agents of type x1 where x ∈ {a, b, c} have conflicting
candidate coalitions in a potential MOS partition. Either, they want to be with z (a coalition
that has to be small because z prefers to stay alone) or they want to be with x2 which
requires a rather large coalition containing their cycle.

Before going through the proof that this game has no MOS partition, it is instructional
to verify that, for cycles of 5 agents, the unique MOS partition is the grand coalition, i.e.,
the unique MOS partition of the game restricted to Nx is {Nx}, where x ∈ {a, b, c}. This is
a key idea of the construction and is implicitly shown in Case 2 of the proof for x = b.

Assume for contradiction that the defined AFG admits an MOS partition π. To derive a
contradiction, we perform a case distinction over the coalition sizes of z.

Case 1. |π(z)| = 1.
In this case, it holds that π(z) = {z}. Then, π(a1) ∈ {{a1, a2}, {a1, a5}}. Indeed, if

π(a1) ̸= {a1, a2}, then a1 has an NS deviation to join z, and is allowed to perform it
unless π(a1) = {a1, a5}. We may therefore assume that {ai, ai+1} ∈ π for some i ∈ {1, 5}.
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a3 a4

b2 b5

b3 b4

c2 c5

c3 c4

b1
a1 c1

Figure 3 AFG without an MOS partition. The depicted (directed) edges represent friends, i.e., a
utility of n, whereas missing edges represent a utility of −1.

Then, π(ai−1) = {ai−1, ai−2} =: C. Otherwise, ai−1 can perform an MOS deviation to join
{ai, ai+1}. But then ai+2 can perform an MOS deviation to join C. This is a contradiction
and concludes the case that |π(z)| = 1.

Case 2. |π(z)| > 1.
Let F := {a1, b1, c1}, i.e., the set of agents that have z as a friend. Note that z can

perform an NS deviation to be a singleton. Hence, as π is MOS, |F ∩ π(v)| ≥ |π(z)|/2. In
particular, there exists an x ∈ {a, b, c} with π(z) ∩ Nx = {x1}. We may assume without
loss of generality that π(z) ∩ Na = {a1}. Then, π(a5) = {a4, a5}. Otherwise, a5 has an
MOS deviation to join π(z). Similarly, π(a3) = {a2, a3} (because of the potential deviation
of a3 who would like to join {a4, a5}). Now, note that va1({a1, a2, a3}) = n − 1. We can
conclude that |π(z)| ≤ 3 as a1 would join {a2, a3} by an MOS deviation, otherwise. Hence,
we find x ∈ {b, c} with Nx ∩ π(z) = ∅. Assume without loss of generality that x = b has this
property.

Assume first that π(b1) = {b1, b5}. Then, π(b4) = {b3, b4}. Otherwise, b4 has an MOS
deviation to join {b1, b5}. But then b2 has an MOS deviation to join {b3, b4}, a contradiction.
Hence, π(b1) ̸= {b1, b5}. Note that we have now excluded the only case where b1 is not
allowed to perform an NS deviation. In all other cases, no majority of agents prefers her to
stay in the coalition. We can conclude that b2 ∈ π(b1) because otherwise, b1 can perform
an MOS deviation to join π(z). If b5 /∈ π(b1), then π(b5) = {b4, b5} (to prevent a potential
deviation by b5). But then b3 has an MOS deviation to join them. Hence, b5 ∈ π(b1).
Similarly, if b4 /∈ π(b1), then π(b4) = {b3, b4} and b2 has an MOS deviation to join {b3, b4}
(which is permissible because b5 ∈ π(b1)). Hence {b1, b2, b4, b5} ⊆ π(b1), and therefore even
Nb ⊆ π(b1). Hence, b1 has an MOS deviation to join π(v) (recall that |π(v)| ≤ 3). This is
the final contradiction, and we can conclude that π is not MOS. ◀

Note that most agents in the previous example have at most 1 friend (only three agents
have 2 friends). By contrast, if every agent has at most one friend, MOS partitions are
guaranteed to exist. This is interesting because it covers in particular directed cycles, which
cause problems for Nash stability. The constructive proof of the following proposition can be
directly converted into a polynomial-time algorithm.

▶ Proposition 3. Every AFG where every agent has at most one friend admits an MOS
partition.

Proof. We prove the statement by induction over n. Clearly, the grand coalition is MOS for
n = 1. Now, assume that (N, v) is an AFG with n ≥ 2 such that every agent has at most
one friend. Consider the underlying directed graph G = (N, A) where (x, y) ∈ A if and only
if vx(y) > 0, i.e., y is a friend of x. By assumption, G has a maximum out-degree of 1, hence
it can be decomposed into directed cycles and a directed acyclic graph.
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Assume first that there exists C ⊆ N such that C induces a directed cycle in G. We call
an agent y reachable by agent x if there exists a directed path in G from x to y. Let c ∈ C

and define R = {x ∈ N : c reachable by x}. Note that C ⊆ R and that R is identical to the
set of agents that can reach any agent in C. By induction, there exists an MOS partition π′

of the subgame of (N, v) induced by N \ R that is MOS. Define π = π′ ∪ {R}. We claim
that π is MOS. Let x ∈ N \ R. By our assumptions on π′, there exists no MOS deviation of
x to join π(y) for y ∈ N \ R. In particular, if x is allowed to perform a deviation, then x

must have a non-negative utility (otherwise, she can form a singleton coalition contradicting
that π′ is MOS). So her only potential deviations are to a coalition where she has a friend.
Note that x has no friend in R. Indeed, if y was a friend of x in R, then c is reachable for x

in G through the concatenation of (x, y) and the path from y to c. Hence, x has no MOS
deviation. Now, let x ∈ R. Then, vx(π) > 0 because she forms a coalition with her unique
friend. By assumption, x has no friend in any other coalition. Therefore, x has no MOS
deviation either.

We may therefore assume that G is a directed acyclic graph. Hence, there exists an
agent x ∈ N with in-degree 0. If x has no friend, let T = {x}. If x has a friend y, we
claim that there exists an agent w such that (i) w is the friend of at least one agent and
(ii) every agent that has w as a friend has in-degree 0, i.e., such agents are not the friend
of any agent. We provide a simple linear-time algorithm that finds such an agent. We will
maintain a tentative agent w that will continuously fulfill (i) and update w until this agent
also fulfills (ii). Start with w = y. Note that this agent w fulfills (i) because y is a friend of x.
If w is the friend of some agent z that is herself the friend of some other agent, update w = z.
For the finiteness (and efficient computability) of this procedure, consider a topological order
σ of the agents N in the directed acyclic graph G [24], i.e., a function σ : N → [n] such that
σ(a) < σ(b) whenever (a, b) ∈ A. Note that if w is replaced by the agent z in the procedure,
then σ(z) < σ(w). Hence, w is replaced at most n times, and our procedure finds the desired
agent w after a linear number of steps. Now, define T = {a ∈ N : w reachable by a}, i.e., T

contains precisely w and all agents that have w as a friend.
We are ready to find the MOS partition. By induction, we find a partition π′ that is

MOS for the subgame induced by N \ T . Consider π = π′ ∪ {T }. Then, a ∈ T \ {w} has no
incentive to deviate, because she has no friend in any other coalition and has w as a friend.
Also, w is not allowed to perform a deviation, because the non-empty set of agents T \ {w}
unanimously prevents that. Possible deviations by agents in N \ T can be excluded as in the
first part of the proof because these agents have no friend in T . Together, we have completed
the induction step and found an MOS partition. ◀

On the other hand, it is NP-complete to decide whether an AFG contains an MOS
partition. For a proof, we use the game constructed in Proposition 2 as a gadget in a greater
game. The difficulty is to preserve bad properties about the existence of MOS partitions
because the larger game might allow for new possibilities to create coalitions with the agents
in the counterexample.

▶ Theorem 4. Deciding whether an AFG contains an MOS partition is NP-complete.

5 Friends-and-Enemies Games

Friends-and-enemies games always contain efficiently computable stable coalition structures
with respect to the unanimity-based stability concepts IS and CNS [10]. In this section, we
will see that the transition to majority-based consent crosses the boundary of tractability.



M. Bullinger 26:11

a0a1a2a3a4

b0b1b2b3b4

c0c1c2c3c4

d0d1d2d3d4

z1

z2

z3

Figure 4 FEG without an MOS partition. The depicted (directed) edges represent friends. The
double arrow means that every agent to the left of the tail of the arrow has every agent below the
arrow as a friend.

The closeness to this boundary is also emphasized by the fact that it is surprisingly difficult
to even construct No-instances for MOS and MIS, i.e., FEGs which do not contain an MOS
or MIS partition, respectively. Indeed, the smallest such games that we can construct are
games with 23 and 183 agents, respectively. We will start by considering MOS.

▶ Proposition 5. There exists an FEG without an MOS partition.

Proof sketch. We only give a brief overview of the instance by means of the illustration in
Figure 4. The FEG consists of a triangle of agents together with 4 sets of agents whose
friendship relation is complete and transitive, together with one additional agent each that
gives a temptation for the agent of the transitive substructures with the most friends.

An important reason for the non-existence of MOS partitions is that there is a high
incentive for the transitive structures to form coalitions. This gives incentive to agents zi

to join them. If z1, z2, and z3 are in disjoint coalitions, then they would chase each other
according to their cyclic structure. If they are all in the same coalition, then agents x0 for
x ∈ {a, b, c, d} prevent the complete transitive structures to be part of this coalition and
other transitive structures are more attractive. ◀

In the previous proof, it is particularly useful to establish disjoint coalitions of groups of
agents who dislike each other. On the other hand, if we make the further assumption that one
agent from every pair of agents likes the other agent, then this does not work anymore and
the grand coalition is MOS. This condition essentially means completeness of the friendship
relation.3 Note that this proposition is not true for other stability concepts such as NS or
even IS.

▶ Proposition 6. The grand coalition is MOS in every FEG with complete friendship relation.

Proof. Let (N, v) be an FEG with complete friendship relation, and let π be the grand
coalition. We claim that π is MOS. Suppose that there is an agent x ∈ N who can perform
an NS deviation to form a singleton.

3 Technically, the friendship relation may not be reflexive, but we can set vi(i) = 1 for all i ∈ N in an
FEG to formally achieve completeness.
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j ∈ {0, 1, . . . , 9}

Figure 5 FEG without an MIS partition. The depicted edges represent friends. Undirected edges
represent mutual friendship. For i ∈ [5], some of the edges of agents in Ai are omitted. In fact, these
agents form cliques. Also, each Ki represents a clique of 11 agents.

Then, vx(N) < 0 and therefore |{y ∈ N \ {x} : vx(y) = −1}| > {y ∈ N \ {x} : vx(y) = 1}|.
Hence,

|Fin(N, x)| ≥ |{y ∈ N \ {x} : vx(y) = −1}|
> |{y ∈ N \ {x} : vx(y) = 1}|
≥ |Fout(N, x)|.

In the first inequality, we use that x is a friend of all of her enemies. In the final inequality,
we use that x can only be an enemy of her friends. Hence, x is not allowed to perform an
MOS deviation. ◀

Still, the non-existence of MOS partitions in FEGs shown in Proposition 5 can be leveraged
to prove an intractability result. Interestingly, in contrast to the proofs of Theorem 1 and
Theorem 4, the next theorem merely uses the existence of an FEG without an MOS partition
to design a gadget and does not exploit the specific structure of a known counterexample.

▶ Theorem 7. Deciding whether an FEG contains an MOS partition is NP-complete.

In our next result, we construct an FEG without an MIS partition. Despite a lot of
structure, the game is quite large encompassing 183 agents.

▶ Proposition 8. There exists an FEG without an MIS partition.

Proof sketch. We illustrate the example with the aid of Figure 5 and briefly discuss some
key features. Again, the central element is a directed cycle of three agents. These agents are
connected to five copies of the same gadget. This gadget consists of a main clique {a0

i , . . . , a9
i }

of 10 mutual friends and further cliques that cause certain temptations for agents in the
main clique. Cliques are linked by agents that have an incentive to be part of two cliques,
which are part of disjoint coalitions. Since it is possible to balance all diametric temptations,
the instance does not admit an MIS partition. ◀



M. Bullinger 26:13

Similar to Proposition 6, it is easy to see that the singleton partition is MIS in every
FEG with complete enemy relation. Indeed, then an agent either has no incentive to join
another agent, or the other agent will deny her consent. Hence, MIS can also prevent typical
run-and-chase games which do not admit NS partitions. We are ready to prove hardness of
deciding on the existence of MIS partitions in FEGs.

▶ Theorem 9. Deciding whether an FEG contains an MIS partition is NP-complete.

6 Discussion and Conclusion

We have investigated single-agent stability in additively separable hedonic games. Our main
results determine strong boundaries to the efficient computability of stable partitions. Table 1
provides a complete picture of the computational complexity of all considered stability notions
and subclasses of ASHGs, where our results close all remaining open problems. First, we
resolve the computational complexity of computing CNS partitions, which considers the last
open unanimity-based stability notion in unrestricted ASHGs. The derived hardness result
stands in contrast to positive results when considering appropriate subclasses such as FEGs,
AEGs, or AFGs [10]. Second, our intractability concerning AFGs stands in contrast to known
positive results for all other consent-based stability notions, and can also be circumvented
by considering AFGs with a sparse friendship relation. Finally, we provide sophisticated
hardness proofs for majority-based stability concepts in FEGs. These turn into computational
feasibilities when transitioning to unanimity-based stability, or under further assumptions to
the structure of the friendship graph.

A key step of all hardness results in restricted classes of ASHGs was to construct the first
No-instances, that is, games that do not admit stable partitions for the respective stability
notion. This is no trivial task as can be seen from the complexity of the constructed games.
Once No-instances are found, we can leverage them as gadgets of hardness reductions, which
is a typical approach for complexity results about hedonic games. We have provided both
reductions where the explicit structure of the determined No-instances is used as well as
reductions where the mere existence of No-instances is sufficient and used as a black box.

Our results complete the picture of the computational complexity for all considered
stability notions and game classes. Still, majority-based stability notions deserve further
attention because they offer a natural degree of consent to perform deviations. Their thorough
investigation in other classes of hedonic games might lead to intriguing discoveries.

Table 1 Overview of the computational complexity of single-agent stability concepts in different
classes of ASHGs. The NP-completeness results concern deciding on the existence of a stable partition.
Membership in Function-P means that the search problem of constructing a stable partition can be
solved in polynomial time.

ASHG Unrestricted Friends-and-enemies games Appreciation-of-friends games
NS NP-complete [29] NP-complete [10] NP-complete [10]
IS NP-complete [29] Function-P [10] Function-P [16]
CNS NP-complete (Th. 1) Function-P [10] Function-P [10]
MIS NP-complete [10] NP-complete (Th. 9) Function-P [10]
MOS NP-complete [10] NP-complete (Th. 7) NP-complete (Th. 4)
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Abstract
Constraint satisfaction problems (CSP) encompass an enormous variety of computational problems.
In particular, all partition functions from statistical physics, such as spin systems, are special cases
of counting CSP (#CSP). We prove a complete complexity classification for every counting problem
in #CSP with nonnegative valued constraint functions that is valid when every variable occurs
a bounded number of times in all constraints. We show that, depending on the set of constraint
functions F , every problem in the complexity class #CSP(F) defined by F is either polynomial
time computable for all instances without the bounded occurrence restriction, or is #P-hard even
when restricted to bounded degree input instances. The constant bound in the degree depends
on F . The dichotomy criterion on F is decidable. As a second contribution, we prove a slightly
modified but more streamlined decision procedure (from [15]) for tractability. This enables us to fully
classify a family of directed weighted graph homomorphism problems. This family contains both
P-time tractable problems and #P-hard problems. To our best knowledge, this is the first family
of such problems explicitly classified that are not acyclic, thereby the Lovász-goodness criterion of
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1 Introduction

Constraint Satisfaction Problems (CSPs) have been a subject of immense interest due to
their wide applicability and intrinsic elegance. In particular, counting CSPs, or #CSPs, have
been an active subject in computational counting complexity [18, 19, 10, 9, 22, 7, 15, 13],
including their approximate solutions [28, 30, 20, 42, 41]. Roughly speaking, an (unweighted)
constraint satisfaction problem deals with the following scenario, where there is a set of
variables, each taking values over some finite domain D, and a set of constraints, each applied
on an (ordered) subsequence of these variables. The #CSP problem on an instance asks how
many assignments there are of these variables that satisfy all of the given constraints.

Applications of CSP problems are wide-ranging and varied. They range from within
computer science to physical sciences such as physics, chemistry, engineering, even music
[52, 1, 38, 47]. Within computer science, belief propagation has been a popular research
topic in AI, which are ultimately based on some forms of partition function evaluations [5,
39, 40, 46, 29, 48, 51]. The term partition function, which we define formally later, arises
from statistical physics, where one can see special cases of (weighted) counting CSPs in the
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form of spin systems such as the Ising and Potts models, e.g. [25]. As is the case in physical
sciences as well as in applications within computer science, the instances of counting CSP
problems that occur in practice are often with the additional restriction that variables occur
a bounded number of times.

To define (unweighted) #CSP problems formally, let D be a finite domain set, Γ be a
set of constraint relations Θi, where each Θi is a relation on D of arity ri = r(Θi) ≥ 1. An
instance of #CSP(Γ) is then defined by a set X of n variables over D, and a list of constraints
Θ from Γ, and for each constraint Θ in the list a sequence of r(Θ) variables from X that the
constraint is applied to. This defines an n-ary relation R in Dn on the input variables where
an assignment (x1, . . . , xn) ∈ Dn is in R iff all constraints are satisfied. For any fixed Γ, the
counting CSP problem #CSP(Γ) consists of all input instances using constraint relations
from Γ. The computational problem is to compute the size of R given an arbitrary input
instance, where the (worst case) computational complexity is measured in terms of size n

of the set of variables and the size of the list of constraints. For a finite (fixed) Γ, this can
be simplified to just n, up to a polynomial factor. A complexity dichotomy theorem can
classify, depending on Γ, the problem #CSP(Γ) as either computable in polynomial time
(P-time), or #P-complete, with no intermediate cases. Typically, the set Γ is a fixed finite
set, which defines the #CSP problem – this Γ is the name of the problem. However, in most
dichotomy theorems one can allow infinite sets, where in the P-time computable case we
assume the specification of the constraints in the instances counts toward the input size, and
in the #P-complete case there is a finite subset Γ0 ⊆ Γ such that #CSP(Γ0) is #P-hard.

For example, if we let D = {0, 1} and Γ = {ORk|k ≥ 1} ∪ {̸=2}, where ORk is the
k-ary OR function, and ̸=2 the binary disequality function, then the problem #CSP(Γ) is
equivalent to #SAT, the counting Boolean satisfiability problem.

This formulation can be generalized to the weighted setting. In the most general case, the
constraint functions can take real or complex values. In this paper we only consider #CSP
defined by nonnegatively weighted constraint functions. This means that we replace the
constraint language Γ by a set of constraint functions F , where each fi ∈ F has some arity
ri ≥ 1 and maps Dri to nonnegative algebraic reals, denoted as R+.1 Any given instance
I defines a function FI : Dn → R+, such that on each assignment of variables, FI takes
the value the product over the constraint functions in I evaluated on the assignment. The
solution to this instance I of #CSP(F) is then

ZF (I) =
∑

(x1,...,xn)∈Dn

FI(x1, . . . , xn). (1)

This sum-of-products expression in (1) is called the partition function for an instance
of #CSP, with the terminology coming from statistical physics [3]. When all functions in
F are 0-1 valued, then the product is also 0-1 valued and is equivalent to the logical And,
and the partition function counts the number of satisfying assignments. Thus this ZF (I)
generalizes the unweighted case when F is a set of constraint relations Γ.

As a special case of #CSP, a q-state spin system is a problem on a domain [q] with the
constraint language having only a single binary constraint defined by the q × q interaction
matrix A. An instance to this problem is a graph G = (V, E), where the vertices (sites)
are considered to be variables (spins) and the edges (bonds) correspond to the interactions
between these vertices. The famous Ising model with parameter λ has domain size q = 2,

1 Restricting to algebraic numbers is standard in this research area because we wish to state our results
in the Turing machine model for strict bit complexity. See [14].
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and is defined by its interaction matrix Aλ
Ising =

[
λ 1
1 λ

]
(see Figure 1b). The Potts model

(Figure 1d) and Widom-Rowlinson model (Figure 1c) on 3 states are defined by the following
interaction matrices respectively,

Aλ
3Potts =

λ 1 1
1 λ 1
1 1 λ

 and AWR =

1 1 0
1 1 1
0 1 1

 .

Familiar problems in computer science can also be expressed in this model; e.g., independent

set (IS) is defined by AIS =
[
1 1
1 0

]
(Figure 1a).

(a) Indepenedent Set

λ λ

(b) Ising

(c) WR with 3 states

λ

λ λ

(d) Potts with 3 states

Figure 1 The graphs corresponding to some well known spin systems.

Bulatov [9] proved a sweeping complexity dichotomy for unweighted #CSPs in, which
used deep results from universal algebra. His dichotomy theorem states that #CSP(Γ)
is solvable in polynomial time if Γ satisfies a condition called congruence singularity; it
is #P-complete otherwise. Dyer and Richerby [22] gave another proof of this dichotomy
using a new P-time tractability criterion, which they proved to be equivalent to congruence
singularity.

A nonnegative matrix is block-rank-1 if it becomes a block-diagonal matrix after a
permutation of its rows and a permutation of its columns separately, such that all blocks are
rank 1 except for possibly one all-zero block. (Here the blocks in the block-diagonal form of
the matrix need not be square matrices.) For example, the following matrix (where blank
entries are 0’s)

A0,0 A0,2
A1,0 A1,2

A2,4 A2,6
A3,4 A3,6

A4,1 A4,3
A5,1 A5,3

A6,5 A6,7
A7,5 A7,7

 (2)

is block-rank-1 if each nonzero rectangle of the form
[

Ai,j Ai,j′

Ai′,j Ai′,j′

]
has rank 1.

For unweighted #CSP, the Dyer-Richerby condition in [22] for polynomial time tractability
in the dichotomy theorem is Strong Balance. Let d = |D| be the domain size. We say a
constraint language Γ is Strongly Balanced if every n-ary relation R defined by an instance
of #CSP(Γ) satisfies the following condition:
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For any a, b ≥ 1 and c ≥ 0 with a + b + c ≤ n, the following da × db matrix M is
block-rank-1:

M(u, v) =
∣∣{w ∈ Dc : ∃z ∈ Dn−c−b−a s.t. (u, v, w, z) ∈ R}

∣∣ .

(If a + b + c = n, then the quantified statement “∃z ∈ Dn−c−b−a such that (u, v, w, z) ∈ R”
simply means that (u, v, w) ∈ R.)

If we are dealing with F rather than Γ, and if F is not a set of 0-1 valued functions,
then the existential quantified statement “∃z” has no meaning. It turns out that there are
several equivalent notions of Balance, which when F is restricted to a set of 0-1 valued
functions (i.e. when F can be identified with a constraint language Γ) are all equivalent to
the notion of Strong Balance; see Lemma 9.4 in [15]. These notions of Balance do not use
existential quantifiers (see Definition 2 in Section 2). These notions are central to the #CSP
dichotomies for #CSP(F) for nonnegative valued F .

The study of #CSPs is closely related to that of counting graph homomorphisms [35,
27, 4, 36]. For two graphs G and H, a graph homomorphism from G to H is a mapping
f : V (G) → V (H) that preserves vertex adjacency. In other words, if e = {u, v} ∈ E(G)
then e′ = {f(u), f(v)} ∈ E(H), for all edges e in G. The question of interest in counting
complexity is the number of graph homomorphisms from one graph to another, which can
also be represented by a partition function. If we let A be the m × m adjacency 0-1 matrix
of the graph H, then the number of homomorphisms from G to H can be represented as a
sum-of-products partition function as follows,

ZA(G) =
∑

f :V (G)→[m]

∏
{u,v}∈E(G)

Af(u),f(v).

Partition functions of graph homomorphism can represent important physical spin systems
such as the Ising, Potts, or Widom-Rowlinson models, as well as many other well known
problems in computer science.

Counting graph homomorphisms is a special case of #CSP. In fact, the vertex-edge
incidence graph of G defines an input to a #CSP problem, where vertices V (G) are vari-
ables and edges E(G) are (applications of binary) constraints, and the constraint language
consists of a single binary relation represented by the adjacency matrix A defining the graph
homomorphism problem G 7→ ZA(G). Just as in #CSPs, the counting graph homomorphism
function ZA(G) can be generalized from the 0-1 unweighted case to the weighted case where
A is a real or complex matrix. It is symmetric for an undirected graph H, in which case
we also only consider undirected G; for directed graph homomorphisms, A need not be
symmetric.

The first dichotomy on counting graph homomorphisms was due to Dyer and Greenhill
[21] for undirected graphs. They showed that there is a simple criterion such that if A satisfies
the criterion then G 7→ ZA(G) is computable in P-time, otherwise it is #P-complete. In fact
they proved that if A does not satisfy the criterion then the problem of evaluating ZA(G)
remains #P-complete even when restricted to graphs G with bounded degree ∆, for some ∆
depending on A. Computing G 7→ ZA(G) when restricted to graphs G with bounded degree
∆ is called EVAL(∆)(A). The Dyer-Greenhill dichotomy was extended to the nonnegatively
weighted case by Bulatov and Grohe in [8]. This dichotomy was then referenced throughout
the field, as many other discoveries, including the results on #CSPs, ended up applying it.
However, the hardness part of the proof of the Bulatov-Grohe dichotomy theorem required
input graphs that have unbounded degrees. When restricted to bounded degree graphs, the
worst case complexity of the Bulatov-Grohe dichotomy was left open for 15 years, until it was
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finally resolved by Govorov, Cai, and Dyer in [26] for graph homomorphisms with nonnegative
weights, and continued by Cai and Govorov in [16] for complex weights. Most problems in
statistical physics [6, 11, 31] use bounded degree graphs, and also most of the approximation
algorithms work on bounded degree graphs [2, 23, 32, 33, 37, 43, 44, 45, 49]. Over the
Boolean domain where variables take 0-1 values, it is known that the #CSP dichotomy for
complex valued constraint functions holds for input instances where each variable occurs at
most three times [17].

It has been an open problem to extend the general domain #CSP dichotomies to include
the bounded degree case, i.e. where each variable occurs a bounded number of times. It was
open even for the 0-1 unweighted case. For the nonnegative cases, this would be the analogous
Govorov-Cai-Dyer extension [26] of the Bulatov-Grohe dichotomy for graph homomorphism,
but apply to a much broader class of problems, as graph homomorphism is the special case
of #CSP(F) where F consists of a single binary function.

In this paper we prove such a dichotomy for bounded degree nonnegative #CSPs. For
any finite domain D, any finite set of nonnegative constraint functions F on D, and any
integer ∆ ≥ 0, we define #CSP(∆)(F) to be the #CSP problem, where the input consists
of n variables x1, . . . , xn over D and a sequence of constraint functions f1, . . . , fm ∈ F each
applied to a subsequence of the n variables, where each variable xi appears no more than ∆
times among f1, . . . , fm. Note that in general, a function f ∈ F may occur multiple times
among f1, . . . , fm. We take n + m as the input size. We prove that the same dichotomy
criterion in [15] applies to the bounded degree case: if the P-time tractability criterion is
not satisfied, then #CSP(∆)(F) remains #P-hard for some ∆ > 0. The dichotomy criterion
of [15] will be explained in more detail after we introduce some more definitions in Section 2.
These notions are further explicated in Theorem 4, and a more technical statement of
Theorem 1 is given in Theorem 6.

▶ Theorem 1. For any finite domain D and any nonnegatively weighted constraint functions
F on D, if F satisfies the tractability criterion in [15], then #CSP(F) is P-time computable;
otherwise, #CSP(∆)(F) is #P-hard 2 for some ∆ > 0.

For any fixed finite set F of constraint functions, the arities of f ∈ F are bounded.
Viewing any instance as a bipartite graph, with the variables x1, . . . , xn on one side and
constraints f1, . . . , fm ∈ F on the other, with an edge between xi and fj if xi is an input to
the function fj , we can see that the condition for a #CSP instance to be bounded degree
corresponds exactly to this bipartite graph having bounded degree.

Our second contribution in this paper is a slightly modified but more streamlined decision
procedure (compared to that of [15]) for polynomial time tractability. This enables us to
fully classify a family of directed weighted graph homomorphism problems. This family
contains both P-time tractable problems and #P-hard problems. To our best knowledge,
this is the first family of such problems explicitly classified that are not acyclic, thereby the
Lovász-goodness criterion of Dyer-Goldberg-Paterson [24] cannot be applied.

2 Balance

Several variants of the Balance condition have been used in the study of counting constraint
satisfaction problems. In addition to the Strong Balance condition [22], the following
conditions have been introduced in [15]. Recall that d = |D| denotes the domain size.

2 The problem #CSP(∆)(F) is also no harder than #P under a polynomial-time Turing reduction for
any F . The statement for Theorem 1 does not state #P-complete only for the technical reason that by
definition functions in #P take nonnegative integer values while the partition function in (1) need not.
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▶ Definition 2 (Various notions of Balance). We have the following notions:
1. (Balance) We say F is Balanced if for any n ≥ 2, any a ≥ 1 and b ≥ 1 with a + b ≤ n,

and any instance I of #CSP(F) which defines an n-ary function FI(x1, . . . , xn) over Dn,
the following da × db matrix MI is block-rank-1: The rows and columns of MI are indexed
by tuples u ∈ Da and v ∈ Db respectively, and

MI(u, v) =
∑

w∈Dn−a−b

FI(u, v, w),

for all u ∈ Da, v ∈ Db. If a + b = n then the sum
∑

w∈Dn−a−b FI(u, v, w) is simply
FI(u, v).

2. (Weak Balance) We say F is Weakly Balanced if the definition for Balance holds for
b = 1.

3. (Primitive Balance) We say F is Primitively Balanced if the definition for Balance holds
for a = b = 1.

While these three notions may seem to have varying strengths, all three are in fact equivalent
by combining the proof in [15] and [34]. See Theorem 4 below. We need the following
definition.

▶ Definition 3 (Strong Rectangularity). We say a matrix M is Rectangular if after a row
permutation and a column permutation it is a block diagonal matrix where all diagonal blocks
have no zero entries, except possibly one all zero block. We say a constraint language Γ over
D is Strongly Rectangular if for any input instance I of #CSP(Γ) which defines an n-ary
relation RI over Dn and for any a and b such that 1 ≤ a < b ≤ n, the following |D|a ×|D|b−a

matrix M is rectangular: The rows of M are indexed by u ∈ Da, the columns of M are
indexed by v ∈ Db−a, and

M(u, v) =
∣∣{w ∈ Dn−b : (u, v, w) ∈ RI}

∣∣ .

▶ Theorem 4. The notions of Balance, Weak Balance, and Primitive Balance are equivalent,
and can be taken as the P-time tractability criterion of the dichotomy in [15].

Proof. For any F of nonnegative valued constraint functions, Cai, Chen and Lu proved
in [15] that (1) if F is Balanced then it is Weakly Balanced and that the support constraint
language of F satisfies Strong Rectangularity, and (2) the latter two conditions imply that
#CSP(F) is P-time computable. Here the support constraint language of F is obtained by
taking the support set of each function in F . On the other hand they also proved that if
F is not Balanced then #CSP(F) is #P-hard. Thus their dichotomy criterion is that F is
Balanced. They also proved in [15] that Primitive Balance implies Weak Balance. Lin and
Wang proved in [34] that Weak Balance implies Balance, thus unifying all three notions. ◀

3 Bounded Degree #CSPs

▶ Lemma 5. Let M be a nonnegative matrix. If M is not block-rank-1 then neither is MMT .

Proof. If every two rows of M are either proportional or their nonzero entries are on disjoint
subsets of columns, then M would be block-rank-1. Thus there are rows Mi and Mj , such
that they are linearly independent, and the subsets of columns where their nonzero entries
occur intersect. Being nonnegative, the latter condition implies that they are not orthogonal.
So by the Cauchy-Schwarz inequality we have

0 < (Mi · Mj)2 < (Mi · Mi)(Mj · Mj).

Letting A = MMT we find four nonzero elements Ai,i, Ai,j = Aj,i, and Aj,j satisfying
Ai,iAj,j > A2

i,j > 0, so A is not block-rank-1. ◀
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We can now prove our main result, i.e., if a nonnegative constraint set F does not satisfy
the Balance condition, then #CSP(∆)(F) is #P-hard for some ∆ > 0.

▶ Theorem 6. If F is Primitively Balanced, then the problem #CSP(F) without degree
restriction is computable in polynomial time, otherwise #CSP(∆)(F) is #P-hard for some
∆ > 0.

Proof. We only need to prove the hardness part. Let F be a finite set of nonnegatively
weighted constraint functions that is not Primitively Balanced. Then for some instance I on
n variables, the |D| × |D| matrix M defined by

M(x1, x2) =
∑

(x3,...,xn)∈Dn−2

FI(x1, x2, x3, . . . , xn)

is not block-rank 1. If we let A = MMT , then A is symmetric, nonnegative, and not
block-rank 1 by Lemma 5. This A defines a graph homomorphism problem. We know
from [26] that the bounded degree nonnegative graph homomorphism problem EVAL(∆)(A)
is #P-hard for some ∆ > 0, where the constant ∆ depends on A. Here we show a reduction
EVAL(∆)(A) ≤P #CSP(∆′)(F), for some ∆′ > 0, thereby showing that #CSP(∆′)(F) is
#P-hard for some ∆′ > 0.

To show that, consider graphs G with maximum degree at most ∆ as input instances of
EVAL(∆)(A). We can compute the value ZA(G) by expressing it as the partition function
ZF (I(G)) for some instance I(G) of polynomial size in #CSP(∆′)(F). We will use the
instance I that defines the matrix M as having constant size, as it does not depend on G.
We construct I(G), an input to #CSP(F), with the additional property that every variable
occurs at most ∆′ times, such that ZF (I(G)) = ZA(G), as follows.

We note that each entry in A is a dot product of two row vectors in M , and every entry
of M is a sum over |D|n−2 evaluations of FI .

We will define a (binary) gadget, which is an instance of #CSP(F) of bounded size, with
two specially labelled variables called x∗ and x∗∗. Copies of this gadget will be used in the
construction of (global) #CSP(F) instances. A (binary) gadget may have other variables,
but in the global #CSP(F) instances all constraints applied to the variables other than x∗

and x∗∗ in each copy are from within the gadget. We define I(G) by replacing every edge
in G by a copy of this gadget. Formally, the construction is as follows, where the gadget
simulates the edge weights in A in the #CSP setting.

1. Define a variable xv over D for every v ∈ V (G).
2. For each e = uv ∈ E(G) we add 2n − 3 variables ye, ze = (ze,3, . . . , ze,n), and z′

e =
(z′

e,3, . . . , z′
e,n) over the same domain D. We then apply two copies of I as constraints,

one copy over the variables (xu, ye, ze) and another over (xv, ye, z′
e). There are no other

constraints applied on the variables ye, ze and z′
e.

Thus one copy of the binary gadget is used to replace each edge uv ∈ E(G), with the two
specially labelled variables x∗ and x∗∗ identified with xu and xv. This gadget defines the
following constraint function with input variables xu and xv taking values in D,

∑
ye∈D

 ∑
ze∈Dn−2

FI(xu, ye, ze)
∑

z′
e∈Dn−2

FI(xv, ye, z′
e)


=

∑
ye∈D

MI(xu, ye)MI(xv, ye)

= (MMT )(xu, xv)
= A(xu, xv).
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Therefore the gadget defines the edge constraint function represented by the matrix A,
which is exactly the edge weights in ZA(G).

Since G has bounded degrees, and I also has constant size, I(G) also has bounded degrees.
The variables ye are “local” to each edge e ∈ E(G) in the sense that there are no other
constraints on them except in the definition of the gadget for this edge e, which has constant
size. The same is true for ze and z′

e.
Also, the size of I(G) is linear in the size of G, so this is a polynomial time reduction.

That ZF (I(G)) = ZA(G) follows from the fact that A is the edge constraint function by our
construction. ◀

The constant ∆ in Theorem 1 depends on F . In [21], Dyer and Greenhill conjectured that
a universal constant ∆ = 3 suffices for EVAL(∆)(A) where A is a 0-1 symmetric matrix. This
is still open. It is open whether a universal constant ∆, or a constant that only depends on the
domain size |D|, may suffice for even the 0-1 case, for both EVAL(∆)(A) and #CSP(∆)(F).
In [17] it is known that the constant 3 suffices for the Boolean domain. Xia [50] proved that
a universal ∆ does not exist for EVAL(∆)(A) for complex symmetric matrices A, assuming
#P does not collapse to P.

4 Effective Dichotomy and a Family of Directed GH

The condition of Balance (Definition 2) in the dichotomy refers to all instances I of #CSP(F),
which is an infinitary statement. Thus it is not immediate that the tractability condition
in Theorem 6 is decidable. However the condition is the same as the one in [15] for the
unbounded degree case, and in that paper a decision procedure is given. Here we give a
slight modification of the same decision procedure for the dichotomy in Theorem 6. This
form is more symmetric and allows us to apply the procedure more effectively.

▶ Theorem 7. The polynomial-time tractability condition of balance in Theorem 6 can be
tested by the following two conditions. Measured in the size of D and F , this shows that the
decision problem for testing balance is in NP.
(A) There is a Mal’tsev polymorphism φ : D3 → D for (the support of) every function in

F . This means that φ preserves all relations defined as the support of some function
in F (this is called a polymorphism), and satisfies φ(a, a, b) = φ(b, a, a) = b for all
a, b ∈ D (Mal’tsev property). The existence of such a mapping φ is equivalent to Strong
Rectangularity.

(B) For all α ̸= β, κ ≠ λ ∈ D there is a bijection π : D6 → D6 satisfying the following three
properties:
1. π((α, α, α, β, β, β)) = (α, α, α, β, β, β).
2. π((κ, λ, κ, λ, κ, λ)) = (λ, κ, λ, κ, λ, κ).
3. Any function f ∈ F with arity r is invariant under π, that is, for any sequence

(y1, . . . , yr) of length r of 6-tuples where yi = (yi,1, . . . , yi,6) ∈ D6 for 1 ≤ i ≤ r, the
following holds:∏

j∈[6]

f(y1,j , . . . , yr,j) =
∏

j∈[6]

f(π(y1)j , . . . , π(yr)j). (3)

The only difference in the statement of this decision criterion compared to the one stated
in [15] is a more symmetric expression for condition B2 of (B). We omit the proof here as
it closely follows the proof in [15]3 However, this more symmetric form makes the criterion

3 Alternatively, one can apply a perm π =
(1 2 3 4 5 6

1 3 2 4 6 5

)
which is an automorphism of the

relational structure (D,F), the 6th power of #CSP(F), to derive this form of the decision criterion from
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more easily applicable. We demonstrate this by proving new tractable and intractable
cases of directed graph homomorphisms that were previously unknown. The tractability or
intractability of these problems were decidable in principle by previous methods; however,
the decision procedure of the previous method was in practice too complicated to be useful.

Dyer, Goldberg and Paterson in [24] proved a decidable complexity dichotomy for
(unweighted) directed graph homomorphisms that is restricted to directed acyclic graphs.
Their polynomial-time tractability criterion is an interesting condition of being layered and
Lovász-good for directed acyclic graphs. They state in [24] that “An interesting feature of
the dichotomy, which is absent from previously-known dichotomy results, is that there is a
rich supply of tractable graphs H with complex structure”. Going beyond directed acyclic
graphs, as it is done with Theorem 6 and 7, is expected to yield even more polynomial-time
tractable problems. However, up until now we don’t have any interesting concrete examples.
(Part of the reason is probably that testing for the tractability criterion, while decidable, is
not a simple matter; see below.) The dichotomy theorem in this paper applies more generally
without the acyclicity restriction. We now give a family of non-acyclic directed graph
homomorphism problems that we can completely classify using our tractability criterion in
Theorem 7. To our best knowledge, this is the first such explicit family that can be classified,
going beyond the Lovász-goodness criterion [24].

To start, if we take all nonzero Ai,j = 1 in equation (2), we get a binary relation that
defines a polynomial-time tractable problem. This represents an adjacency matrix of a
directed graph H illustrated in Figure 2. In fact, we can give an infinite family of tractable
#CSP based on a weighted binary constraint function given in equation (4). These problems
were considered in [12], where it was shown that, while the complexity of the #CSP defined
by these relations is provably decidable, the decision criterion was yet too complicated,
therefore for what values of Ai,j in equation (2) the problem it defines is tractable for #CSP
was not resolved.

We will show that a nonnegative binary constraint function given in the form of equation
(2) with positive entries Ai,j defines a tractable #CSP iff the constraint function is a positive
multiple of the function in equation (4)

A =


1 v
u uv

y yv
yu yuv

x xv
xu xuv

z zv
zu zuv

 (4)

for some positive reals u, v, x, y, z, with the condition that z = xy.
The #CSP problem it defines is on a domain of size 8 and has a constraint function set

F consisting of a single binary (but not symmetric) constraint function given by the matrix
in (4). The directed graph defined by the support of the function is not acyclic.

We first prove the relation in (4) for any positive u, v, x, y and z = xy defines a tractable
problem. After that we prove the reverse direction.

To apply Theorem 7, we treat D = {0, . . . , 7} as a vector space (GF[2])3 of size 8,
represented by three bit strings {0, 1}3. Then we can take the Mal’tsev polymorphism
φ : D3 → D where φ(x, y, z) = x − y + z. (Here − is the same as + in GF[23].) It is Mal’tsev
because φ(a, a, b) = φ(b, a, a) = b for all a, b ∈ D. The directed edge relation given by the
matrix (2) (by setting all 16 nonzero entries Ai,j = 1) is given symbolically as follows:

Ai,j = 1 where i = i1i2i3, j = j1j2j3 ∈ D ⇐⇒ j1 = i2 and j3 = i1. (5)

the form proved in [15]. For detailed definitions of (D,F) and automorphism of relational structures see
page 2190 in [15].
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Figure 2 A tractable binary relation represented by a directed graph. The adjacency matrix is
given in equation (4).

One can easily check that φ is a polymorphism, i.e. for any (x, x′), (y, y′) and (z, z′), if
Ax,x′ = Ay,y′ = Az,z′ = 1 then Aφ(x,y,z),φ(x′,y′,z′) = 1.

For the second requirement (B), there are |D|6! = 262144! > 101306590 bijections from D6

to D6, so it is infeasible to enumerate them. However the following map π works.
Let M : {0, 1}6 → {0, 1}6 be the bijection that swaps (010101) and (101010) and acts

as the identity on the rest. In particular, M preserves the Hamming weight. Let Mi be
the ith output bit of M , and let x1, x2, . . . , x6 ∈ D where each xi consists of three bits
xi = aibici ∈ {0, 1}3.

We write x = (x1, . . . , x6) = (a1b1c1, . . . , a6b6c6) ∈ D6. We will also represent x bitwise
using a = (a1, . . . , a6) ∈ {0, 1}6, b = (b1, . . . , b6) ∈ {0, 1}6, and c = (c1, . . . , c6) ∈ {0, 1}6,
and write x = abc.

Then we define

π(x) = π(x1, x2, . . . , x6) = π(a1b1c1, a2b2c2, . . . , a6b6c6)
= (M1(a)M1(b)M1(c), M2(a)M2(b)M2(c), . . . , M6(a)M6(b)M6(c))

▷ Claim 8. The mapping π : D6 → D6 satisfies properties B1, B2, and B3 of (B) in
Theorem 7 for all α ̸= β, κ ̸= λ ∈ D. 4

Proof Sketch. Property B1 holds by construction, because M fixes pointwise 06, 16, 0313,
1303. It satisfies property B2 because in addition it swaps (010101) and (101010).

For property B3, equation (3) is expressed as (more details are given below)

u

∑
ci v

∑
di x

∑
ai y

∑
bi

(
z

xy

)∑
aibi

= u

∑
Mi(c)

v

∑
Mi(d)

x

∑
Mi(a)

y

∑
Mi(b)

(
z

xy

)∑
Mi(a)Mi(b)

(6)

4 In Theorem 7 the mapping π may depend on α ̸= β, κ ̸= λ ∈ D, but the π in Claim 8 is in fact the
same for all α, β, κ, λ.
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where all sums (as well as those below) range from i = 1 to 6. Because M preserves Hamming
weight, we get

∑6
i=1 ai =

∑6
i=1 Mi(a), and similarly for b, c, d, and since z = xy, this

equation holds. ◀

We now investigate all possible tractable cases of A in (2) with positive entries Ai,j . By
the necessary condition of Balance applied to the binary function A itself, all relevant four
2 × 2 blocks must be of rank 1, in order to be tractable, i.e., it takes the form in (4) with
some positive u, v, x, y and z, up to a global positive factor. We prove that, up to a global
positive factor, a nonnegative matrix A in (2) with the given support structure defines a
tractable partition function ZF (·) where F = {A} iff A has the form in (4) for some positive
reals u, v, x, y and z = xy; otherwise ZF (·) is #P-hard.

This #CSP problem has F consisting of a single binary (nonsymmetric) constraint
function defined by the matrix A. By its support structure and the Mal’tsev polymorphism
we already satisfied condition (A) of Theorem 7. So, the problem is tractable if and only if
for all α ̸= β, κ ≠ λ ∈ D, there is a bijection π : D6 → D6 that satisfies the following three
properties:
1. π((α, α, α, β, β, β)) = (α, α, α, β, β, β).
2. π((κ, λ, κ, λ, κ, λ)) = (λ, κ, λ, κ, λ, κ).
3. For the binary function represented by the matrix A, and any 6-tuples x, y ∈ D6, where

x = (x1, . . . , x6) and y = (y1, . . . , y6), we have the following invariance under π,∏
i∈[6]

Axi,yi
=

∏
i∈[6]

Aπ(x)i,π(y)i
. (7)

Suppose there is a bijection π : D6 → D6 that satisfies these properties. Let π(x1, . . . , x6)
= (π1(x1, . . . , x6), . . . , π6(x1, . . . , x6)), where πi : D6 → D, and πi(x1, . . . , x6) is the ith
output entry in D of π. Denote the three bits of πi(x1, . . . , x6) as fi(x1, . . . , x6), gi(x1, . . . , x6),
and hi(x1, . . . , x6). To satisfy property 3, we need each πi to preserve the edge relation 5,
i.e., preserve the support set. Since π is a bijection, if we verify that a nonzero LHS of (7)
implies a nonzero RHS of (7), we will also have proved that it maps a zero LHS to a zero
RHS; thus it preserves the support set. So, consider arbitrary

x = (x1, . . . x6) = (a1b1c1, . . . , a6b6c6) ∈ D6, y = (y1, . . . , y6) = (b1d1a1, . . . , b6d6a6) ∈ D6.

This is a generic pair of tuples such that Axi,yi
≠ 0, for 1 ≤ i ≤ 6. We need Aπi(x),πi(y) ≠ 0

for each i. As before we will also represent x bitwise using a = (a1, . . . , a6) ∈ {0, 1}6,
b = (b1, . . . , b6) ∈ {0, 1}6, c = (c1, . . . , c6) ∈ {0, 1}6 and d = (d1, . . . , d6) ∈ {0, 1}6, and write
x = abc and y = bda.

Therefore, by the edge relation, we have fi(abc) = hi(bda). Hence fi is independent
of the third part of the input c. Also, gi(abc) = fi(bda), so fi is also independent of the
second part of the input, and therefore is in fact a function on the first part of the input
only. Thus there is a function f ′

i : {0, 1}6 → {0, 1}, such that fi(abc) = f ′
i(a). Then, from

f ′
i(a) = hi(bda), we know that hi is actually a function of its third part of the input only.

From gi(abc) = f ′
i(b), we know that gi is a function of its second part of the input only. Thus,

there are functions g′
i, h′

i : {0, 1}6 → {0, 1}, such that gi(abc) = g′
i(b) and hi(abc) = h′

i(c).
Putting these together, we see f ′

i(a) = g′
i(a) = h′

i(a). Since a ∈ {0, 1}6 is arbitrary, we get
f ′

i = g′
i = h′

i. We now rename these as Mi := f ′
i = g′

i = h′
i. In other words, π : D6 → D6

has the form π = (π1, π2, . . . , π6) where πi(abc) = Mi(a)Mi(b)Mi(c). We will name the
mapping M = (M1, M2, . . . , M6) : {0, 1}6 → {0, 1}6 with Mi being its ith bit output. Since
π is a bijection, so must be M .
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Now we pick α =
[

0
1
0

]
, β =

[
1
0
0

]
, κ =

[
1
0
1

]
, λ =

[
0
1
1

]
∈ D. (We write them as column

vectors to visually aid the readers.) Then clearly α ̸= β, κ ̸= λ. We have (α, α, α, β, β, β) =[
0 0 0 1 1 1
1 1 1 0 0 0
0 0 0 0 0 0

]
. For any π defined by a bijection M as above, it satisfies property 1. above iff M

pointwise fixes 000000, 000111 and 111000. We also have (κ, λ, κ, λ, κ, λ) =
[

1 0 1 0 1 0
0 1 0 1 0 1
1 1 1 1 1 1

]
, and

(λ, κ, λ, κ, λ, κ) =
[

0 1 0 1 0 1
1 0 1 0 1 0
1 1 1 1 1 1

]
. Hence π satisfies property 2. above iff M fixes 111111 and

swaps 010101 with 101010. Below we assume M is a bijection that satisfies these properties.
It is easy to verify that for any bijection M : {0, 1}6 → {0, 1}6, the mapping π defined

above preserves the support (defined by nonzero values of the LHS in (7)). Since M is a
bijection, in the following we only need to verify that (7) holds for any nonzero LHS of (7)
(as any zero LHS automatically has a zero RHS).

Now we show that equation (7) in property 3 is the same as (6).
To see that, take any nonzero of the LHS in (7) with x = abc and y = bda, then the

LHS is evaluated as∏
i∈[6]

(uci vdi )(1−ai)(1−bi)(yuci vdi )(1−ai)bi (xuci vdi )ai(1−bi)(zuci vdi )aibi

=
∏
i∈[6]

uci vdi xai ybi

(
z

xy

)aibi

= u
∑

ci v
∑

di x
∑

ai y
∑

bi

(
z

xy

)∑
aibi

The expression for the RHS is nearly identical, with Mi(a) substituting ai, and so on.
Now it is clear that if z = xy, then the partition function ZF (·) is tractable, witnessed

by any π defined by a bijection on {0, 1}6 that preserves Hamming weight, pointwise fixes
000000, 111111, 000111, 111000, and swaps 010101 and 101010.

Next, assume z ̸= xy. We can multiply both sides of (6) over all 26 possible c and all 26

possible possible d, and using the fact that M is a bijection, to get

u6·211
v6·211

x212
∑

aiy212
∑

bi

(
z

xy

)212
∑

aibi

=

u6·211
v6·211

x212
∑

Mi(a)y212
∑

Mi(b)
(

z

xy

)212
∑

Mi(a)Mi(b)
,

which is equivalent to

x
∑

aiy
∑

bi

(
z

xy

)∑
aibi

= x
∑

Mi(a)y
∑

Mi(b)
(

z

xy

)∑
Mi(a)Mi(b)

. (8)

Then multiplying over all 26 possible 6-tuples b,

x26
∑

aiy6·211
(

z

xy

)25
∑

ai

= x26
∑

Mi(a)y6·211
(

z

xy

)25
∑

Mi(a)
,

we get
(

xz

y

)∑
ai

=
(

xz

y

)∑
Mi(a)

.

Suppose xz ≠ y, it follows that
6∑

i=1
ai =

6∑
i=1

Mi(a) for any a, i.e., M preserves Hamming

weight. Then it follows from (6) that(
z

xy

)∑
aibi

=
(

z

xy

)∑
Mi(a)Mi(b)

.
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But if we take a = 000111 and b = 010101, we have M(a) = a and M(b) = 101010. Then
6∑

i=1
aibi = 2, but

6∑
i=1

Mi(a)Mi(b) = 1. This is a contradiction to (6), since z ̸= xy. Hence we

conclude that the partition function ZF (·) is #P-hard.
Next, suppose that xz = y, then (8) is simplified to

x
∑

aiy
∑

bix−2
∑

aibi = x
∑

Mi(a)y
∑

Mi(b)x−2
∑

Mi(a)Mi(b). (9)

Multiplying over all possible a, this becomes

x25
y26

∑
bix−2·25

∑
bi = x25

y26
∑

Mi(b)x−2·25
∑

Mi(b).

This simplifies to( y

x

)∑
bi

=
( y

x

)∑
Mi(b)

.

If x ̸= y, M preserves weight and we are done by the same argument as for when xz ̸= y.
Otherwise if x = y, (9) becomes

x
∑

ai+
∑

bi−2
∑

aibi = x
∑

Mi(a)+
∑

Mi(b)−2
∑

Mi(a)Mi(b).

This is equivalent to

x
1
2 − 1

2

∑
(2ai−1)(2bi−1) = x

1
2 − 1

2

∑
(2Mi(a)−1)(2Mi(b)−1),

which can be written as

x
∑

a′
ib′

i = x
∑

Mi(a)′Mi(b)′

where a′
i = 2ai − 1 ∈ {−1, 1}, and similarly for b′

i, and Mi(a)′, Mi(b)′. We can fix the same
a and b as above, and this gives a′ = (−1, −1, −1, 1, 1, 1) and b′ = (−1, 1, −1, 1, −1, 1). Then

we get 2 =
6∑

i=1
a′

ib
′
i ≠

6∑
i=1

Mi(a)′Mi(b)′ = −2. Thus we must have x = 1, and then y = 1 and

z = 1, which contradicts z ̸= xy. We have proved that if z ̸= xy the partition function ZF (·)
is #P-hard.
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Abstract
A word-to-word function is rational if it can be realized by a non-deterministic one-way transducer.
Over finite words, it is a classical result that any rational function is regular, i.e. it can be computed
by a deterministic two-way transducer, or equivalently, by a deterministic streaming string transducer
(a one-way automaton which manipulates string registers).

This result no longer holds for infinite words, since a non-deterministic one-way transducer can
guess, and check along its run, properties such as infinitely many occurrences of some pattern, which
is impossible for a deterministic machine. In this paper, we identify the class of rational functions
over infinite words which are also computable by a deterministic two-way transducer. It coincides
with the class of rational functions which are continuous, and this property can thus be decided.
This solves an open question raised in a previous paper of Dave et al.
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1 Introduction

Transducers are finite-state machines obtained by adding outputs to finite automata. They are
very useful in a lot of areas like coding, computer arithmetic, language processing or program
analysis, and more generally in data stream processing. In this paper, we study transducers
which compute partial functions. They are either deterministic, or non-deterministic but
unambiguous (they have at most one accepting run on a given input).

Over finite words, a deterministic two-way transducer (2-dT) consists of a deterministic
two-way automaton which can produce outputs. Such machines realize the class of regular
functions, which is often considered as one of the functional counterparts of regular languages.
It coincides with the class of functions definable by monadic second-order transductions [7],
or copyless deterministic streaming string transducers (dSST), which is a model of one-way
automata manipulating string registers [1]. On the other hand, the model of non-deterministic
one-way transducers (1-nT) describe the well-known class of rational functions. It is well
known that any rational function is regular, but the converse does not hold.

Infinite words. The class of regular functions over infinite words was defined in [2] using
monadic second-order transductions. It coincides with the class of functions realized by
2-dT with ω-regular lookahead, or by copyless dSST with some Müller conditions. However,
the use of ω-regular lookaheads (or Müller conditions for dSST) is necessary to capture the
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28:2 Continuous Rational Functions Are Deterministic Regular

expressive power of monadic second-order logic on infinite words, in order to check properties
such as infinitely many occurrences of some pattern. Similarly, the model of 1-nT with Büchi
acceptance conditions defines the subclass of rational functions over infinite words.

Even if regular and rational functions give very natural frameworks for specification (due
to their connections with logic), not all these functions can effectively be computed by a
deterministic machine without lookaheads. It turns out that the regular functions which can
be computed by a deterministic Turing machine (doing an infinite computation on its infinite
input) are exactly those which are continuous for the Cantor topology [5]. Furthermore
continuity can be decided, which was has been known for rational functions since [10].

The authors of [5] conjecture that any continuous rational (or even regular) function
can in fact be computed by a 2-dT (without lookahead), instead of a Turing machine. A
partial answer was obtained in [8], whose results imply that 2-dT can be built for a subclass
of rational functions defined by 1-nT where some forms of non-determinism are prohibited.
Their proof is based on game-theoretic techniques.

Contributions. This paper shows that any continuous rational function over infinite words
can be extended to a function which is computable by a 2-dT (without lookaheads). Since
the converse also holds, this result completely characterizes rational functions which can
be computed by 2-dTs, up to an extension of the domain. Furthermore, this property is
decidable and our construction of a 2-dT is effective.

This result is tight, in the sense that two-way moves cannot be avoided. Indeed, one-way
deterministic transducers (describing the class of sequential functions) cannot realize all
continuous rational functions, even when only considering total functions (contrary to what
happens for the subclass of rational functions studied in [8]).

In order to establish this theorem, we first study the expressive power of 2-dT over infinite
words. We introduce the class of deterministic regular functions as the class of functions
computed by 2-dT (as opposed to the regular functions, which are not entirely deterministic
since they use lookaheads to guess the future). Following the aforementioned equivalences
between two-way and register transducers, we prove that deterministic rational functions are
exactly the functions which are realized by copyless dSST (without Müller conditions). Hence
our problem is reduced to showing that any continuous rational function can be realized by
a copyless dSST. Building a copyless dSST is also relevant for practical applications, since it
corresponds to a streaming algorithm over infinite strings.

REGULAR

SEQUENTIAL

DETERMINISTIC
REGULAR

RATIONAL
RATIONAL

& CONTINUOUS

Normalization in base 2.
x∈{0,1}ω 7→ x if |x|0=∞

u01ω 7→ u10ω for u∈{0,1}∗

0n1 a10n2 a2··· 7→ (a1)n1 (a2)n2 ···
with ni∈N and ai∈{1,2}

Division by 3 in base 2

Figure 1 Classes of partial functions over infinite words studied in this paper.

Then we introduce various new concepts in order to transform a 1-nT computing a
continuous function into a dSST. This determinization procedure is rather involved. The
main difficulty is that even if the 1-nT is unambiguous, it might not check its guesses after
reading only a finite number of letters. In other words, a given input can label several infinite
runs, even if only one of them is accepting. However, a deterministic machine can never
determine which run is the accepting one, since it requires to check whether a property
occurs infinitely often. This intuition motivates our key definition of compatible sets among
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the states of a 1-nT. Such sets are the sets of states which have a “common infinite future”.
The restriction of 1-nT considered in [8] leads to compatible sets which are always singletons
(hence their condition defines a natural special case). We show that when the function
computed by the 1-nT is continuous, the outputs produced along finite runs which end in a
compatible set enjoy several combinatorial properties.

We finally describe how to build a dSST which realizes the continuous function given by
a 1-nT. Its construction is is rather complex, and it crucially relies on the aforementioned
properties of compatible sets. These sets are manipulated by the dSST in an original tree-like
fashion. To the knowledge of the authors, this construction of this dSST is completely new
(in particular, it is not based on the constructions of [5] nor of [8]).

Outline. We recall in Section 2 the definitions of rational functions and one-way transducers.
In Section 3, we present the new class of deterministic regular functions and give the various
transducer models which capture it. Our main result which relates continuous rational and
deterministic regular functions is given in Section 4. The proof is sketched in sections 4 and 5.

2 Rational functions

Letters A, B denote alphabets, i.e. finite sets of letters. The set A∗ (resp. A+, Aω) denotes
the set of finite words (resp. non-empty finite words, infinite words) over the alphabet A.
If u ∈ A∗ ∪ Aω, we let |u| ∈ N ∪ {∞} be its length. For a ∈ A, |u|a denotes the number of
a in u. For 1 ⩽ i ⩽ |u|, u[i] ∈ A is the i-th letter of u. If 1 ⩽ i ⩽ j ⩽ |u|, u[i:j] stands for
u[i]u[i+1] · · · until j. We write w[i:] for u[i:|u|]. If j > |u| we let u[i:j] := u[i:|u|]. If j < i

we let u[i:j] := ε . We write u ⊑ v (resp. u ⊏ v) when u is a (resp. strict) prefix of v. Given
two words u, v, we let u ∧ v be their longest common prefix. We say that u, v are mutual
prefixes if u ⊑ v or v ⊑ u. In this case we let u ∨ v be the longest of them. A function f

between two sets S, T is denoted by f : S → T . If f is a partial function (i.e. possibly with
non-total domain), it is denoted f : S ⇀ T . Its domain is denoted Dom(f).

▶ Definition 2.1. A one-way non-deterministic transducer (1-nT) T = (A, B, Q, I, F, ∆, λ) is:
a finite input (respectively output) alphabet A (respectively B);
a finite set of states Q with I ⊆ Q initial and F ⊆ Q final;
a transition relation ∆ ⊆ Q×A×Q;
an output function λ : ∆→ B∗ (defined for each transition).

We write q a|α−−→ q′ whenever (q, a, q′) ∈ ∆ and λ(q, a, q′) = α. A run labelled by some
x ∈ A∗ ∪ Aω is a sequence of consecutive transitions ρ := q0

x[1]|α1−−−−→ q1
x[2]|α2−−−−→ q2 · · · . The

output of ρ is the word α1α2 · · · ∈ A∗∪Aω. If x ∈ Aω, we also write q0
x|α1α2···−−−−−−→∞ to denote

an infinite run starting in q0. The run ρ is initial if q0 ∈ I, final if x ∈ Aω and qi ∈ F infinitely
often (Büchi condition), and accepting if both initial and final. T computes the relation
{(x, y) : y ∈ Bω is output along an accepting run on x}. It is functional if this relation is a
(partial) function. In this case, T can be transformed in an equivalent unambiguous 1-nT (a
transducer which has at most one accepting run on each x ∈ Aω) [3, Corollary 3]. A function
f : Aω ⇀ Bω is said to be rational if it can be computed by a (unambiguous) 1-nT.

▶ Example 2.2. In Figure 2, we describe 1-nTs which compute the following functions:
normalize : {0, 1}ω ⇀ {0, 1}ω mapping x 7→ x if |x|0 =∞ and u01ω 7→ u10ω if u ∈ {0, 1}∗;
replace : {0, 1, 2}ω ⇀ {1, 2}ω with Dom(replace) = {x : |x|1 = ∞ or |x|2 = ∞} and
mapping 0n1a10n2a2 · · · 7→ a1

n1+1a2
n2+1 · · · if ai ∈ {1, 2}, ni ∈ N;

double : {0, 1, 2}ω → {0, 1, 2}ω mapping 0n1a10n2a2 · · · 7→ 0a1n1a10a2n2a2 · · · and
0n1a1 · · · 0nmam0ω 7→ 0a1n1a1 · · · 0amnmam0ω (if finitely many 1 or 2).

MFCS 2022



28:4 Continuous Rational Functions Are Deterministic Regular

q0

q1

q2

0|1

0|0

1|1

1|0

1|1

0|0

(a) 1-nT computing normalize.

q0

q1

q2

0|1

1|1

0|2

2|2

0|1

0|2

1|1
2|2

(b) 1-nT computing replace.

q0

q1

q2

0|0

1|1

0|00

2|2

0|0

0|00

1|1
2|2

(c) 1-nT computing double.

Figure 2 Unambiguous, clean and trim 1-nTs computing the functions of Example 2.2.

▶ Remark 2.3. The functions mentioned in Example 2.2 are not sequential, i.e. they cannot
be computed by deterministic one-way transducers (i.e. deterministic 1-nTs).

A 1-nT is trim if any state is both accessible and co-accessible, or equivalently if it occurs
in some accepting run. It is clean if the production along any accepting run is infinite.

▶ Lemma 2.4. A trim 1-nT is clean if and only if for all q ∈ F , the existence of a cycle
q u|α−−→ q for u ∈ A+ implies α ̸= ε. Given an unambiguous 1-nT, one can build an equivalent
unambiguous, clean and trim 1-nT.

3 Deterministic regular functions

We now introduce the new class of deterministic regular functions, which are computed by
deterministic two-way transducers. Contrary to 1-nTs, such machines cannot test ω-regular
properties of their input. Hence they describe continuous (and computable) functions.

▶ Definition 3.1. A deterministic two-way transducer (2-dT) T = (A, B, Q, q0, δ, λ) is:
an input alphabet A and an output alphabet B;
a finite set of states Q with an initial state q0 ∈ Q;
a transition function δ : Q× (A ⊎ {⊢}) ⇀ Q× {◁, ▷};
an output function λ : Q× (A ⊎ {⊢}) ⇀ B∗ with same domain as δ.

If the input is x ∈ Aω, then T is given as input the word ⊢x. The symbol ⊢ is used to mark
the beginning of the input. We denote by x[0] := ⊢. A configuration over ⊢x is a tuple (q, i)
where q ∈ Q is the current state and i ⩾ 0 is the current position of the reading head. The
transition relation → is defined as follows. Given a configuration (q, i), let (q′, ⋆) := δ(q, w[i]).
Then (q, i)→ (q′, i′) whenever either ⋆ = ◁ and i′ = i− 1 (move left), or ⋆ = ▷ and i′ = i + 1
(move right). A run is a (finite or infinite) sequence of configurations (q1, i1)→ (q2, i2)→ · · · .
An accepting run is an infinite run which starts in (q0, 0) and such that in →∞ when n→∞
(otherwise the transducer repeats the same loop).

The partial function f : Aω ⇀ Bω computed by T is defined as follows. Let x ∈ Aω be
such that there exists a (unique) accepting run (qx

0 , ix
0)→ (qx

1 , ix
1)→ · · · labelled by x. Let

y :=
∏∞

j=1 λ(qx
j , w[ix

j ]) ∈ B∗ ∪Bω be the concatenation of the outputs produced along this
run. If y ∈ Bω, we define f(x) := y. Otherwise f(x) is undefined.

▶ Example 3.2. The function replace from Example 2.2 can be computed by 2-dT. For each
i ⩾ 1, this 2-dT crosses the block 0ni to determines ai, and then crosses the block once more
and outputs ai

ni+1. The function double can be computed using similar ideas. However, an
important difference is that the 2-dT must output the block 0ni when it crosses it for the
first time, in order to ensure that the production over 0ω is 0ω.

There exists deterministic regular functions which are not rational, for instance the function
which reverses (mirror image) a prefix of its input.
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Over finite words, it is known that two-way transducers are equivalent to copyless
streaming string transducers [1]. Over infinite words, a similar equivalence holds between
two-way transducers with lookahead and copyless streaming string transducers with Müller
output conditions [2]. These models define the class of regular functions over infinite words.
However, lookaheads enable two-way transducers to check ω-regular properties of their input
(and thus non-computable behaviors). Hence our deterministic regular functions form a strict
subclass of these regular functions over infinite words.

We now introduce a model of streaming string transducer to describe deterministic regular
functions, in the spirit of the aforementioned results. In our setting, it consists of a one-way
deterministic automaton with a finite set R of registers that store words from B∗. We use a
distinguished register out to store the output produced when reading an infinite word. The
registers are modified using substitutions, i.e. mappings R→ (B ⊎R)∗. We denote by SB

R

the set of these substitutions. They can be extended morphically from (B ⊎R)∗ to (B ⊎R)∗

by preserving the elements of B. They can be composed (see Example 3.3).

▶ Example 3.3. Let R = {r, s} and B = {b}. Consider σ1 := r 7→ b, s 7→ brsb and
s2 := r 7→ rb, s 7→ rs, then σ1 ◦ σ2(r) = s1(rb) = bb and σ1 ◦ σ2(s) = σ1(rs) = bbrsb.

▶ Definition 3.4. A deterministic streaming string transducer (dSST) is:
a finite input (resp. output) alphabet A (resp. B);
a finite set of states Q with q0 ∈ Q initial;
a transition function δ : Q×A ⇀ Q;
a finite set of registers R with a distinguished output register out ∈ R;
an update function λ : Q×A ⇀ SB

R such that for all (q, a) ∈ Dom(λ) = Dom(δ):
λ(q, a)(out) = out · · · ;
there is no other occurence of out in {λ(q, a)(r) : r ∈ R}.

We denote it T = (A, B, Q, q0, δ,R, out, λ).

This machine defines a function f : A∗ ⇀ B∗ as follows. For i ⩾ 0 let qx
i := δ(q0, x[1:i])

(when defined). For i ⩾ 1, we let λx
i := λ(qx

i−1, x[i]) (when defined) and λx
0(r) = ε for all

r ∈ R. For i ⩾ 0, define the substitution J·Kx
i := λx

0 ◦ · · · ◦ λx
i . By construction we get

JoutKx
i ⊑ JoutKx

i+1 (when defined). If JoutKx
i is defined for all i ⩾ 0 and |JoutKx

i | → +∞, we let
f(x) :=

∨
i JoutKx

i (it denotes the unique infinite word y such that JoutKx
i ⊑ y for all i ⩾ 0).

Otherwise f(x) is undefined.
We say that a substitution σ ∈ SB

R is copyless (resp. K-bounded) if for all r ∈ R, r occurs
at most once in {σ(s) : s ∈ R} (resp. for all r, s ∈ R, r occurs at most K times in σ(s)).

▶ Definition 3.5 (Copy restrictions). We say that a dSST T = (A, B, Q, q0, δ,R, out, λ) is
copyless (resp. K-bounded) if for all x ∈ Aω and i ⩽ j such that λx

i ◦ · · · ◦ λx
j is defined, this

substitution is copyless (resp. K-bounded).

▶ Example 3.6. The function replace from Example 2.2 can be computed by a copyless
dSST. For all i ⩾ 1, it crosses the block 0ni and computes 1ni and 2ni in two registers. Once
it sees ai it adds in out the register storing ai

ni . The function double can be computed using
similar ideas. However, an important difference is that the dSST must directly output the
block 0ni while crossing it, in order to ensure that the production over 0ω is 0ω.

The proof of the next result is quite involved, but it is largely inspired by the techniques
used for regular functions over finite or infinite words (see e.g. [4, 6]).
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28:6 Continuous Rational Functions Are Deterministic Regular

▶ Theorem 3.7. The following machines compute the same class of functions Aω ⇀ Bω:
1. deterministic two-way transducers (2-dT);
2. K-bounded deterministic streaming string transducers (K-bounded dSST);
3. copyless deterministic streaming string transducers (copyless dSST).
Furthermore, all the conversions are effective.

▶ Remark 3.8. Even if this result is a variant of existing results over finite or infinite words,
it requires a proof on its own. Indeed, the authors are not aware of a direct proof which
would enable to deduce it from the existing similar results.

Let us now describe the domains of deterministic regular functions. We say that a
language is Büchi deterministic if it is accepted by a deterministic Büchi automaton [9].

▶ Proposition 3.9. If f is deterministic regular, then Dom(f) is Büchi deterministic.

We finally give a closure property of deterministic regular functions under pre-composition.

▶ Definition 3.10. A restricted 1-nT is a 1-nT whose states all are final.

The semantics of a restricted 1-nT N = (A, B, Q, I, ∆, λ) is defined so that it always computes
a function f : Aω ⇀ Bω. The domain Dom(f) is the set of x ∈ Aω such that N has a unique
accepting run labelled by x, and such that the output along this unique run is infinite. In
this case, we let f(x) be the output of along this run. Intuitively, such a transducer expresses
the ability to make non-deterministic guesses, as long as these guesses can be verified after
reading a finite number of letters (i.e. there are no two possible infinite runs).

▶ Theorem 3.11. Given a restricted 1-nT computing a function f : Aω ⇀ Bω and a
deterministic regular function g : Bω ⇀ Cω, g ◦ f is (effectively) deterministic regular.

4 Continuous rational functions are deterministic regular

We now state the main result of this paper, which shows that a rational function can be
extended to a deterministic regular function. Using an extension of the original function
is necessary since not all ω-regular languages are Büchi deterministic (see Proposition 3.9).
Note that Theorem 4.2 is in fact an equivalence, in the sense that a rational function which
can be extended to a deterministic regular function is obviously continuous.

We recall that a function f : Aω ⇀ Bω is continuous if and only if for all x ∈ Dom(f)
and n ⩾ 0, there exists p ⩾ 0 such that ∀y ∈ Dom(f), |x ∧ y| ⩾ p⇒ |f(x) ∧ f(y)| ⩾ n.

▶ Example 4.1. The functions replace and double are continuous, but normalize is not.

▶ Theorem 4.2. Given a continuous rational function f : Aω ⇀ Bω, one can build a
deterministic regular function f ′ which extends f (i.e. for all x ∈ Dom(f), f(x) = f ′(x)).

To prove Theorem 4.2, it is enough by theorems 3.7 and 3.11 to show that f ′ can be
computed as a composition of a restricted 1-nT and a K-bounded dSST (see Subsection 4.2,
the construction will in fact give a 1-bounded transducer).

4.1 Properties of continuous rational functions
We first describe some structural properties of 1-nT computing continuous functions. In
this subsection, we let T = (A, B, Q, I, F, ∆, λ) be an unambiguous, clean and trim 1-nT
computing a continuous function f : Aω ⇀ Bω. It is well known that T verifies Lemma 4.3.
This property is in fact equivalent to the continuity of f (see e.g. [10] or [5]).
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▶ Lemma 4.3. For all q1, q2 ∈ I, q′
1 ∈ F , q′

2 ∈ Q, u ∈ A∗, u′ ∈ A+, α1, α′
1, α2, α′

2 ∈ B∗

such that qi
u|αi−−−→ q′

i
u′|α′

i−−−→ q′
i for i ∈ {1, 2} we have (note that α′

1 ̸= ε since T is clean):
if α′

2 ̸= ε, then α1α′
1

ω = α2α′
2

ω;
if α′

2 = ε, x ∈ Aω, β ∈ Bω and q′
2

x|β−−→∞ is final, then α1α′
1

ω = α2β.
Empty cycles q u|ε−−→ q for q ̸∈ F cannot be avoided in a 1-nT. However, we shall see in
Lemma 4.4 that such cycles can be avoided if the function is continuous. Formally, we say
that the clean T is productive if the hypotheses of Lemma 4.3 imply α′

2 ̸= ε.

▶ Lemma 4.4. Given T , one can build an equivalent unambiguous, trim and productive 1-nT.

Compatible sets and steps. We now introduce the key notion of a compatible set which is
a set of states having a “common future” and such that one of the future runs is accepting.

▶ Definition 4.5 (Compatible set). We say that a set of states C ⊆ Q is compatible whenever
there exists x ∈ Aω and infinite runs ρq for each q ∈ C labelled by x such that:
∀q ∈ C, ρq starts from q;
∃q ∈ C such that ρq is final.

Let Comp be the set of compatible sets. If S ⊆ Q, let Comp(S) be the set 2S ∩ Comp.

▶ Definition 4.6 (Pre-step). We say that C, u, D is a pre-step if C, D ∈ Comp, u ∈ A∗ and
for all q ∈ D, there exists a unique state preu

C,D(q) ∈ C such that preu
C,D(q) u−→ q.

Note that for all D′ ∈ Comp(D), we have preu
C,D(D′) ∈ Comp.

▶ Definition 4.7 (Step). We say that a pre-step C, u, D is a step if preu
C,D is surjective.

Given q ∈ D, let produ
C,D(q) be the output α ∈ B∗ produced along the run preu

C,D(q) u|α−−→ q.
We say that a (pre-)step is initial whenever C ⊆ I. We first claim that the productions along
the runs of an initial step are mutual prefixes. Lemma 4.3 is crucial here.

▶ Lemma 4.8. Let J, u, C be an initial step. Then produ
J,C(q) for q ∈ C are mutual prefixes.

▶ Example 4.9. In Figure 2b, if a step is initial, it is of the form {q0}, u, {qi} for some
i ∈ {0, 1, 2}. In Figure 2c, {q0}, 0n, {q1, q2} is an initial step for all n ⩾ 0.

▶ Definition 4.10 (Common, advance). Let J, u, C be an initial step. We define:
the common comu

J,C ∈ B∗ as the longest common prefix
∧

q∈C produ
J,C(q);

for all q ∈ C, its advance advu
J,C(q) ∈ B∗ as (comu

J,C)−1 produ
J,C(q);

the maximal advance max-advu
J,C as the longest advance, i.e.

∨
q∈C advu

J,C(q).
Definition 4.10 makes sense by Lemma 4.8, and furthermore produ

J,C(q) = comu
J,C advu

J,C(q)
for all q ∈ C. Now let M := maxq,q′∈Q,a∈A |λ(q, a, q′)| and Ω := M |Q||Q|. We say that a
compatible set C is separable if there exists an initial step which ends in C, and such that
the lengths of the productions along two of its runs differ of at least Ω.

▶ Definition 4.11 (Separable set). Let C ∈ Comp, we say that C is separable if there exists
an initial step J, u, C and p, q ∈ C such that

∣∣| advu
J,C(p)| − | advu

J,C(q)|
∣∣ > Ω.

▶ Remark 4.12. In other words, it means that |max-advu
J,C | > Ω.

It is easy to see (by a pumping argument) that one can decide if a set is separable. We now
show that the productions along the initial steps which end in a separable set are forced to
“iterate” some value θ if the step is pursued. The following lemma is the key ingredient for
showing that a rational function is deterministic regular (see Section 4).
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28:8 Continuous Rational Functions Are Deterministic Regular

▶ Lemma 4.13 (Looping futures). Let C ∈ Comp be separable and J, u, C be an initial step
(not necessarily the one which makes C separable). There exists τ, θ ∈ B∗ with |τ | ⩽ 3Ω, and
|θ| = Ω! which can be uniquely determined from C and advu

J,C(q) for q ∈ C, such that:
τ ⊑ max-advu

J,C ⊑ τθω;
for all step C, v, D and q ∈ D, prodv

C,D(q) ⊑ (advu
J,C(p))−1τθω with p := prev

C,D(q).

▶ Remark 4.14. Since advu
J,C(p) ⊑ max-advu

J,C ⊑ τθω, the second item makes sense.

▶ Example 4.15. In Figure 2c, the compatible set C := {q1, q2} is separable. For all step
C, v, D we have D = C thus v = 0n, prod0n

C,D(q1) = 0n and prod0n

C,D(q2) = 02n.

4.2 Composition of a restricted 1-nT and a 1-bounded dSST

In the rest of this paper, we let T = (A, B, Q, I, F, ∆, λ) be an unambiguous, productive
and trim 1-nT computing a continuous f : Aω ⇀ Bω. Our goal is to rewrite f as the
composition of a restricted 1-nT and a 1-bounded dSST. We first build the restricted 1-nT,
which computes an over-approximation of the accepting run of T in terms of compatible sets.

▶ Lemma 4.16. One can build a restricted 1-nT N computing g : Aω ⇀ (Comp⊎A)ω such
that Dom(f) ⊆ Dom(g), and for all x ∈ Dom(g), g(x) = C0x[1]C1x[2]C2 · · · where:

C0 ⊆ I and for all i ⩾ 0, Ci, x[i+1], Ci+1 is a pre-step;
if x ∈ Dom(f) then ∀i ⩾ 0, qx

i ∈ Ci, where qx
0

x[1]−−→ qx
1

x[2]−−→ · · · is the accepting run of T .

Given x ∈ Dom(f), we denote by Cx
0 , Cx

1 , . . . the sequence of compatible sets produced
by N in Lemma 4.16. We now describe a 1-bounded dSST S which, when given as input
g(x) ∈ (Comp⊎A)ω for x ∈ Dom(f), outputs f(x) (this description is continued in Section 5).

Tree of compatibles. Given C ∈ Comp, we define tree(C) as a finite set of words over
Comp(C), which describes the decreasing chains for ⊂. It can be identified with the set of
all root-to-node paths of a tree labelled by elements of Comp(C), as shown in Example 4.18.

▶ Definition 4.17 (Tree of compatibles). Given C ∈ Comp, we denote by tree(C) the set of
words π = C1 · · ·Cn ∈ (Comp(C))+ such that C1 = C and for all 1 ⩽ i ⩽ n−1, Ci ⊃ Ci+1.

▶ Example 4.18. If C = {1, 2, 3} and Comp(C) = {{1, 2, 3}, {1, 2}, {2, 3}, {1}, {2}, {3}}, then
we have tree(C) = {{1, 2, 3}{1, 2}{1}, {1, 2, 3}{1, 2}{2}, {1, 2, 3}{2, 3}{2}, {1, 2, 3}{2, 3}{3},
{1, 2, 3}{1}, {1, 2, 3}{2}, {1, 2, 3}{3}}. Its view as a tree is depicted in Figure 3.

{1, 2, 3}

{1, 2}

{1} {2}

{2, 3}

{2} {3}

{1} {2} {3}

Figure 3 The tree of compatibles obtained from Example 4.18.
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Information stored. The states of the dSST S are partitioned in two categories: the sets of
the separable mode and the sets of of the non-separable mode. A configuration of the dSST S
will always keep track of the following information:

the content of a register out;
two sets J, C ∈ Comp and a function pre : C→ J (stored in the state);
a function lag : C→ B∗ such that | lag(q)| ⩽ 3Ω for all q ∈ C (stored in the state).

Furthermore, when S is in a state of the separable mode, it will additionally store:
a value θ ∈ B∗ with |θ| = Ω! (stored in the state);
for all π = C1 · · ·Cn ∈ tree(C) (note that C1 = C by definition of tree(C)):

a function nbπ : Cn → [0:4] (stored in the state);
the content of a register outπ. For π = C, we identify the register outC with out;

a function last : C→ B∗ such that | last(q)| < Ω! forall q ∈ C (stored in the state).

If a configuration of S is clearly fixed, we abuse notations and denote by outπ (resp. nbπ,
lag, etc.) the value contained in register outπ (resp. stored in the state) in this configuration.
In a given configuration of S, we say that π ∈ tree(C) is close if for all π ⊏ π′ ∈ tree(C), we
have nbπ′ = 0 and outπ′ = ε (intuitively, the subtree rooted in π stores empty informations).

Invariants. The main idea for building S it the following. If Cx
i is a non-separable set, then

the productions along the initial runs which end in Cx
i are mutual prefixes (by Lemma 4.8)

which only differ from a bounded information. Hence the common part com of these runs is
stored to out, and the adv are stored in the lag. If Cx

i becomes separable, then these runs
still produce mutual prefixes, but two of them can differ by a large information. However by
Lemma 4.13, they iterate some value θ. Hence the only relevant information is the number
of θ which were produced along these runs. Formally, our construction ensures that the
following invariants hold when S has just read Cx

0 x[1]Cx
1 · · ·x[i]Cx

i for i ⩾ 0:
1. C = Cx

i ;
2. J, x[1:i], C is an initial step and pre = preJ,C
3. if C is not separable, then S is in non-separable mode and:

a. out = comx[1:i]
J,C ;

b. lag(q) = advx[1:i]
J,C (q) for all q ∈ C.

4. if C is separable, then S is in separable mode and:
a. the lag(q) for q ∈ Q are mutual prefixes, and so max-lag :=

∨
q∈C lag(q) is defined.

Furthermore, there exists q ∈ C such that lag(q) = ε. We say that some q ∈ C is
lagging if and only if lag(q) ⊏ max-lag (strict prefix), otherwise it is not lagging;

b. if π ∈ tree(C) is such that π ̸= C (i.e. outπ ̸= out), then outπ ∈ θ∗;
c. for all q ∈ C, last(q) ⊑ θω (if furthermore | last(q)| < Ω!, then last(q) ⊏ θ);
d. if q is lagging, then last(q) = ε and for all π = C1 · · ·Cn ∈ tree(C) such that q ∈ Cn,

we have nbπ(q) = 0 and, if π ̸= C, outπ = ε;
e. for all π = C1 · · ·Cn ∈ tree(C), for 1 ⩽ i ⩽ n define πi := C1 · · ·Ci. If Cn = {q}, then:

prodx[1:i]
J,C (q) = out lag(q) if q is lagging;

prodx[1:i]
J,C (q) = out max-lag θnbπ1 (q) (∏n

i=2 outπi
θnbπi

(q)) last(q) if q is not lagging.
f. for all future steps C, u, D and for all q ∈ D, prodx[1:i]u

J,D (q) ⊑ out max-lag θω;
g. for all π = C1 · · ·Cn ∈ tree(C) not close, let Jn := prex[1:i]

J,C (Cn) ⊆ J. Then Jn, x[1:i], Cn

is an initial step, which can be decomposed as an initial step Jn, x[1:j], E and a step
E, x[j+1:i], Cn such that |max-advx[1:j]

Jn,E | ⩾ 4Ω!.
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5 Description of the 1-bounded dSST for Subsection 4.2

In this section, we finally describe how the dSST S can preserve the invariants of Subsection 4.2,
while being 1-bounded and outputting f(x) when x ∈ Dom(f).

Let us first deal with the initialization of S. When reading the first letter Cx
0 of g(x), S

stores J← Cx
0 , C← Cx

0 and lag(q)← ε for all q ∈ Cx
0 . This is enough if Cx

0 is not separable.
Otherwise, we let θ be given by Lemma 4.13 (applied to the initial simulation Cx

0 , ε, Cx
0 ),

nbπ(q)← 0 and outπ ← ε for all π = C1 · · ·Cn ∈ tree(Cx
0 ) and all q ∈ Cn.

▷ Claim 5.1. Invariants 1 to 4 (with i = 0) hold after this operation.

Assume now that the invariants hold for some x ∈ Dom(f) and i ⩾ 0. We describe how
S updates its information when it reads x[i+1]Cx

i+1. Let a := x[i+1].

5.1 If Cx
i was not separable

In this case S was in the non-separable mode. We update pre ← pre ◦ prea
Cx

i
,Cx

i+1
, C← Cx

i+1
and J← pre(C). Since Cx

i , a, Cx
i+1 was a pre-step, then J, x[1:i+1], C is an initial step. For

all q ∈ Cx
i+1, let δq := lag(prea

Cx
i

,Cx
i+1

(q)) proda
Cx

i
,Cx

i+1
(q). Now let c :=

∧
q∈Q δq, we update

out← out c and define αq := c−1δq for all q ∈ C. It is easy to see that:

▷ Claim 5.2. out = comx[1:i+1]
J,C and αq = advx[1:i+1]

J,C (q) for all q ∈ C.

Finally we discuss two cases depending on the separability of C = Cx
i+1:

if C is not separable, then S stays in non-separable mode and it updates lag(q)← αq for
all q ∈ C (note that |αq| ⩽ Ω ⩽ 3Ω). We easily see that invariants 1, 2 and 3 hold.
if C is separable, S goes to separable mode. By applying Lemma 4.13 to J, x[1:i+1], C we
get τ ∈ B∗ with k := |τ | ⩽ 3Ω. We update lag(q)← αq[1:k] and last(q)← αq[k+1:] for
all q ∈ C. The θ is given by Lemma 4.13, and we let nbπ(q) ← 0 and outπ ← ε for all
π = C1 · · ·Cn ∈ tree(C) (except for outπ = out when π = C = Cx

i+1) and all q ∈ Cn.
▶ Lemma 5.3. Invariants 1, 2 and 4 hold in i+1 after this operation. Furthermore
|θ| = Ω!, | lag(q)| ⩽ 3Ω for all q ∈ C, and for all π = C1 · · ·Cn ∈ tree(C), nbπ = 0.
Note that we may have | last(q)| ⩾ Ω!. In order to reduce their sizes, we apply the tool
detailed in Subsection 5.2 (it will push the last(q) into the nbπ(q) and outπ).

5.2 Toolbox: reducing the size of last(q)

In this subsection, we assume that S is in its separable mode and that invariants 2 and 4
hold in some i ⩾ 0. Furthermore, we suppose that |θ| = Ω!, | lag(q)| ⩽ 3Ω for all q ∈ C, and
for all C1 · · ·Cn ∈ tree(C), nbC1···Cn : Cn → [0:4]. However last may be longer than it should.

From invariant 4c, there exists n : C→ N such that last(q) = θn(q)δq with δq ⊏ θ for all
q ∈ C. We update last(q) ← δq and nbC(q) ← nbC(q) + n(q) for all q ∈ C. Now, we have
| last(q)| < Ω! and nbπ(q) ⩽ 4 when π ̸= C.

In order to reduce the value nbC, we apply the function down(C) of Algorithm 1 which
adds some θ in the outπ. Let us describe its base case informally. If nbC(q) > 0 for all
q ∈ C, then no state is lagging by invariant 4d. Thus lag(q) = max-lag for all q ∈ C, and so
max-lag = ε by invariant 4a. With the notations of invariant 4e (note that π1 = C), we get
prodJ,C

x[1:i](q) = out θnbπ1 (q) (∏n
i=2 outπi

θnbπi
(q)) last(q) for all q ∈ C. Thus we can produce in

out the value θm :=
∧

q∈C θnbC(q) (i.e. m← minq∈C nbC(q)) and remove m to each nbC(q).
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Algorithm 1 Sending down values in tree(C).

Function down(π)
C1 · · ·Cn ← π;
/* 1. Add the common part of the buffers to the local output */
m← minq∈Cn nbπ(q);
outπ ← outπ θm;
nbπ(q)← nbπ(q)−m for all q ∈ C ′;
/* 2. Check if some buffers nbπ(q) are still more than 4 */
for q ∈ Cn do

if nbπ(q) > 4 then
for C ′ ∈ Comp(Cn) such that C ′ ̸= Cn and q ∈ C ′ do

nbπC′(q)← nbπC′(q) + (nbπ(q)−4);
end
nbπ(q)← 4;

end
end
/* 3. Recursive calls */
for C ′ ∈ Comp(Cn) with C ′ ̸= Cn do

down(πC ′);
end

▶ Lemma 5.4. Algorithm 1 is well defined. After the operation described in this subsection,
invariants 2 and 4 hold, and furthermore we have |θ| = Ω!, | lag(q)| ⩽ 3Ω and | last(q)| < Ω!
for all q ∈ C, and for all π = C1 · · ·Cn ∈ tree(C), nbπ : Cn → [0:4].

5.3 If Cx
i was separable

If Cx
i is separable, then S was in the separable mode by invariant 4. We first explain in

Subsubsection 5.3.1 how to perform the update when C, a, Cx
i+1 is a step (it corresponds to

the “easy case” thanks to invariant 4f which deals with future steps). Then, we explain in
Subsubsection 5.3.2 how the other case can be reduced to the first one, after a preprocessing
which selects a subset C ′ ⊆ C such that C ′, a, Cx

i+1 is a step.

5.3.1 Updating when C, a, Cx
i+1 is a step

In the current subsubsection we assume that invariants 2 and 4 hold, that C ⊆ Cx
i is

separable, and that C, a, Cx
i+1 is a step. We show how to update the information stored by S

in accordance with this step. Note that Cx
i+1 is necessarily separable.

Since C will be modified, so will be tree(C), hence we begin with several register updates.
For π = D1 · · ·Dn ∈ tree(Cx

i+1), we define Ci := prea
C,Cx

i+1
(Di) for 1 ⩽ i ⩽ n. Since we had a

step then C1 = C, Ci ∈ Comp(C) and C1 ⊇ · · · ⊇ Cn. But we may not have C1 · · ·Cn ∈ tree(C)
due to possible equalities. Let 1 = i1 < · · · < im ⩽ n be such that Ci1 = · · · = Ci2−1 ⊃ Ci2

and so on until Cim−1 ⊃ Cim
= · · · = Cn. Then ρ := Ci1 · · ·Cim

∈ tree(C) and:
if im = n, we let nbπ ← nbρ ◦ prea

C,Cx
i+1

and outπ ← outρ;
if im < n, we let nbπ ← 0 and outπ ← ε.

For all q ∈ Cx
i+1, let kq := |lag(prea

C,Cx
i+1

(q))−1 max-lag | and:
lag(q)← lag(prea

C,Cx
i+1

(q))(proda
C,Cx

i+1
(q)[1:kq]) (note that max-lag remains unchanged);

last(q)← last(prea
C,Cx

i+1
(q))(proda

C,Cx
i+1

(q)[kq+1:]).

MFCS 2022



28:12 Continuous Rational Functions Are Deterministic Regular

Now let c :=
∧

q∈C lag(q). We update lag(q) ← c−1 lag(q) for all q ∈ C (therefore max-lag
becomes c−1 max-lag), out← out c, C← Cx

i+1 and finally pre ← pre ◦ prea
C,Cx

i+1
.

▶ Lemma 5.5. After the operation described in this subsection, invariants 1, 2 and 4 hold,
and |θ| = Ω!, | lag(q)| ⩽ Ω for all q ∈ C, and nbπ : Cn → [0:4] for all π = C1 · · ·Cn ∈ tree(C).

However, we may have | last(q)| ⩾ Ω!. Thus we finally apply Subsection 5.2 once more.

5.3.2 Preprocessing when C, a, Cx
i+1 is not a step

In the current subsubsection we assume that invariants 1, 2 and 4 hold in i ⩾ 0, that C = Cx
i

is separable, and that Cx
i , a, Cx

i+1 is not a step. Then let C ′ := prea
Cx

i
,Cx

i+1
(Cx

i+1) ⊂ C (an
equality would give a step) and π := C C ′ ∈ tree(C). Two cases can occur.

If π is close. In this case, we have for all π ⊏ π′ ∈ tree(C) that nbπ′ = 0 and outπ′ = ε.
Therefore by invariant 4e we can describe the productions for all q ∈ C ′ as follows:

prodJ,C
x[1:i](q) = out lag(q) if q is lagging;

prodJ,C
x[1:i](q) = out max-lag outC C′ θnbC(q)+nbC C′ (q) last(q) if q is not lagging.

Now two cases are possible, depending on whether there is a lagging state in C ′ or not:
if there exists q′ ∈ C ′ which is lagging, then we must have outC C′ = ε by invariant 4d. For
all q ∈ C ′ let δq := lag(q)θnbC(q)+nbC C′ (q) last(q) and let c :=

∧
q∈C′ δq. Then we update

out← out c and define αq := c−1δq for all q ∈ C ′;
if each q ∈ C ′ is not lagging, we define δq := θnbC(q)+nbC C′ (q) last(q) and c :=

∧
q∈C′ δq.

Then we update out← out max-lag outC C′ c and define αq := c−1δq for all q ∈ C ′;
We finally update J← pre(C ′), C← C ′ and pre ← pre|C′ . It is easy to see that J, x[1:i], C is
a step and furthermore that we have computed com and adv.

▷ Claim 5.6. out = comx[1:i+1]
J,C and αq = advx[1:i+1]

J,C (q) for all q ∈ C.

This result exactly corresponds to Claim 5.2 from Subsection 5.1 (replace i+1 by i). Thus,
to conclude, we just need to apply the operations described after Claim 5.2.

If π is not close. Let c :=
∧

q∈C′ lag(q), we update out← out c outC C′ and for all q ∈ C ′,
lag(q) ← c−1 lag(q) and last(q) ← θnbC(q) last(q). Then, we update nbC′π ← nbC C′π and
outC′π ← outC C′π for all π ∈ (C ′)−1 tree(C ′) (except for π = ε, in which case we have already
updated outC′ = out before). We finally update J← pre(C ′), C← C ′ and pre ← pre|C′ .

▶ Lemma 5.7. After the operation described in this subsection, invariants 2 and 4 hold, and
|θ| = Ω!, | lag(q)| ⩽ Ω for all q ∈ C, and nbπ : Cn → [0:4] for all π = C1 · · ·Cn ∈ tree(C).
Furthermore C is separable.

▶ Remark 5.8. Contrary to the former cases, the main difficulty here is to show the preservation
of invariant 4f. For this we essentially rely on invariant 4g and show that θ is still suitable.

Again, we may have | last(q)| ⩾ Ω!. Thus we finally apply Subsection 5.2 once more.

5.4 Boundedness and productivity of the construction
We first claim that S is a 1-bounded dSST, by construction.

▶ Lemma 5.9. The dSST S is 1-bounded.
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It follows from invariants 1, 2 and 4e that for all x ∈ Dom(f), out is always a prefix of f(x)
when S reads g(x). To conclude the construction of S, it remains to see that out tends to an
infinite word. The key ideas for showing Lemma 5.10 is to use the fact that T is productive,
and that Algorithm 1 can only empty a buffer nbC(q) if it outputs a word.

▶ Lemma 5.10. If x ∈ Dom(f), then |out| → ∞ when S reads g(x).

6 Outlook

This paper provides a solution to an open problem. From a practical point of view, it allows
to build a copyless streaming algorithm from a rational specification whenever it is possible
(it is impossible when the rational function is not continuous). We conjecture that the
techniques introduced in this paper can be extended to show that any continuous regular
function is deterministic regular. Furthermore, they may also be used to study the rational
or regular functions which are uniformly continuous for the Cantor topology, and capture
them with a specific transducer model (another open problem of [5]).
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Abstract
In this paper we study the kernelization of the d-Path Vertex Cover (d-PVC) problem. Given a
graph G, the problem requires finding whether there exists a set of at most k vertices whose removal
from G results in a graph that does not contain a path (not necessarily induced) with d vertices.
It is known that d-PVC is NP-complete for d ≥ 2. Since the problem generalizes to d-Hitting
Set, it is known to admit a kernel with O(dkd) edges. We improve on this by giving better kernels.
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1 Introduction

Vertex deletion problems have been studied extensively in graph theory. These problems
require finding a subset of vertices whose deletion results in a graph that belongs to some
desired class of graphs. One such problem is path covering. Given a graph G = (V, E), the
d-Path Vertex Cover problem (d-PVC) asks to compute a subset S ⊆ V of vertices such
that the graph resulting from removal of S does not contain a path on d vertices. Here
the path need not necessarily be induced. The problem was first introduced by Brešar et
al. [1]. It is known to be NP-complete for any d ≥ 2 due to the meta-theorem of Lewis
and Yannakakis [21]. The 2-PVC problem is the same as the well known Vertex Cover
problem. The 3-PVC problem is also known as Maximum Dissociation Set or Bounded
Degree-One Deletion. The d-PVC problem is motivated by the field of designing secure
wireless communication protocols [22] or in route planning and speeding up of shortest path
queries [18].
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With respect to exact algorithms, several efficient (better than brute force enumeration)
algorithms are known for 2-PVC and 3-PVC. In particular, 2-PVC (Vertex Cover) can
be solved in O(1.1996n) time and polynomial space due to Xiao and Nagamochi [33], while
3-PVC can be solved in O(1.4613n) time and polynomial space due to Chang et al. [6] or in
O(1.3659n) time and exponential space due to Xiao and Kou [31].

From the approximation point of view, it is known due to Brešar et al. [1] that d-PVC,
for d > 2, cannot be r-approximated within a factor of r = 1.3606 in polynomial time, unless
P=NP. A greedy d-approximation algorithm for d-PVC can be employed by repeatedly
finding a d-path and putting its vertices into the solution. Due to Fomin et al. [17], we can find
an arbitrary d-path in O(2.619ddn log n) time, and therefore the approximation algorithm
runs in O(n2 log n) time in the size of the input. While the algorithms of Zehavi [34] and
Tsur [25], with running times O∗(2.597d) and O∗(2.554d),1 respectively, can be faster for
large d, their running time factor polynomial in input size is much worse than O(n log n).
Lee [20] gave a O(log d)-approximation algorithm which runs in O∗(2O(d3 log d)) time. For
3-PVC a 2-approximation algorithm was given by Tu and Zhou [30] and for 4-PVC a
3-approximation algorithm is known due to Camby et al. [2].

When parameterized by the size of the solution k, d-PVC is directly solvable by a trivial
FPT algorithm for d-Hitting Set, that runs in O∗(dk) time. However, since d-PVC is a
restricted case of d-Hitting Set, it is known due to Fomin et al. [15] that for d ≥ 4 d-PVC
can be solved in O∗((d − 0.9245)k) time and for d ≥ 6 algorithms with even better running
times are known due to Fernau [14]. Namely the running times are O∗((d − 1 + cd)k), where
cd is a small positive constant which monotonically approaches 0 as d goes to ∞. There has
been considerable study for the case when d is a small constant. For the 2-PVC (Vertex
Cover) problem, current best known algorithm due to Chen, Kanj, and Xia [7] runs in
time O∗(1.2738k). For 3-PVC, the current best known algorithm due to Tsur [27] runs in
O∗(1.713k) time. For the 4-PVC problem, Tsur [28] gave the current best algorithm that
runs in O∗(2.619k) time. In previous work [3, 4], a subset of authors developed an O∗(4k)
algorithm for 5-PVC. For d = 5, 6, and 7 Tsur [26] claimed algorithms for d-PVC with
running times O∗(3.945k), O∗(4.947k), and O∗(5.951k), respectively. A subset of authors
used a computer to generate even faster algorithms for 3 ≤ d ≤ 8 [5].

In this paper, we are interested in kernels for the d-PVC problem. Since an instance of
d-PVC can be formulated as an instance of d-Hitting Set, by using the results of Fafianie
and Kratsch [13] we immediately get a kernel for d-PVC with at most d(k + 1)d vertices and
at most (d − 1)(k + 1)d edges by keeping only the vertices and edges that are contained in
the corresponding sets of the reduced d-Hitting Set instance.

Regarding the lower bounds for kernels of d-PVC, Dell and Melkebeek [10] have shown
that for Vertex Cover it is not possible to achieve a kernel with O(k2−ε) edges unless
coNP is in NP/poly (which would imply a collapse of the polynomial hierarchy). This result
extends to d-PVC for any d ≥ 2 . Therefore, kernels with O(k2) edges for d-PVC are the
best we can hope for.

The current best kernels known are a kernel for Vertex Cover with 2k − c log k vertices
for any fixed constant c due to Lampis [19] and a kernel with 5k vertices for 3-PVC due to
Xiao and Kou [32]. No specific kernels are known for d-PVC with d ≥ 4, except for those
inherited from d-Hitting Set.

Dell and Marx [9] recently studied kernels for the related d-Path Packing problem,
which also inspired our work.

1 The O∗() notation suppresses all factors polynomial in the input size.
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Our contribution

We give kernels with O(k2) edges for 4-PVC and 5-PVC (asymptotically optimal, unless
coNP ⊆ NP/poly). Furthermore, for the general case, we give a kernel for d-PVC for any
d ≥ 6 with O(k4d2d+9) edges.

2 Preliminaries

We use the notations related to parameterized complexity as described by Cygan et al. [8].
We consider simple and undirected graphs unless otherwise stated. For a graph G, we use
V (G) to denote the vertex set of G and E(G) to denote the edge set of G. By G[X] we
denote the subgraph of G induced by vertices of X ⊆ V (G). By N(v) we denote the set
of neighbors of v ∈ V (G) in G. Analogically, N(X) =

⋃
x∈X N(x) \ X denotes the set of

neighbors of vertices in X ⊆ V (G). The degree of vertex v is denoted by deg(v) = |N(v)|.
For simplicity, we write G \ v for v ∈ V (G) and G \ X for X ⊆ V (G) as shorthands for
G[V (G) \ {v}] and G[V (G) \ X], respectively.

A d-path (also denoted by Pd), denoted as an ordered d-tuple (p1, p2, . . . , pd), is a path
on d vertices {p1, p2, . . . , pd}. A d-path free graph is a graph that does not contain a d-path
as a subgraph (the d-path needs not to be induced). The length of a path P is the number
of edges in P , in particular, the length of a d-path Pd is d − 1.

The d-Path Vertex Cover problem is formally defined as follows:

d-Path Vertex Cover, d-PVC
Input: A graph G = (V, E), a non-negative integer k.
Output: A set S ⊆ V , such that |S| ≤ k and G \ S is a Pd-free graph.

A d-path packing P of size l in a graph G is a collection of l vertex disjoint d-paths in the
graph G. We use V (P) to denote the union of the vertex sets of the d-paths in the packing
P. For rest of the graph theory notations we refer to Diestel [11].

For a positive integer i, we will use [i] to denote the set {1, 2, . . . , i}.

▶ Proposition 1 (⋆). For a given graph G and an integer k, there is an algorithm which
either correctly answers whether G has a d-path vertex cover of size at most k, or finds an
inclusion-wise maximal d-path packing P of size at most k in O(2.619ddkn log n) time.

3 General Reduction Rules

Let us start with reduction rules that apply to d-PVC for most values of d. Assume that
we are working with an instance (G = (V, E), k) of d-PVC for some d ≥ 4. We start with a
reduction rule whose correctness is immediate.

▶ Reduction Rule 1. If there is a connected component C in G which does not contain a Pd,
then remove C.

The next rule allows us to get rid of multiple degree-one vertices adjacent to a single
vertex.

▶ Reduction Rule 2 (⋆). Let there be three distinct vertices v, x, y ∈ V such that N(x) =
N(y) = {v}. We reduce the instance by deleting the vertex x.
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4 High Degree Reduction Rule for 4-PVC and 5-PVC

In this section, we are going to introduce the reduction rules which are applicable to both
4-PVC and 5-PVC instances. We assume that we are working with a d-PVC instance
(G = (V, E), k) for d ∈ {4, 5} which is reduced by exhaustively employing Reduction Rule 2.

Our aim is to show that the degree of each vertex can be reduced to linear in the parameter.
First assume that there is a large matching in the neighborhood of some vertex v. We call
a matching M in G adjacent to vertex v, if it is a matching in G \ v and for each edge
{ai, bi} ∈ M at least one of its vertices, say ai, is adjacent to v in G.

▶ Reduction Rule 3 (⋆). If v is a vertex and M a matching adjacent to v of size |M| ≥ k +2,
then delete v and decrease k by 1.

To exhaustively apply Reduction Rule 3, we need to find for each v ∈ V a largest matching
adjacent to v. This can be done as follows. Let A = N(v) and B = N(A) \ {v}. Let Gv be
the graph obtained from G[A ∪ B] by removing edges with both endpoints in B. It is easy
to observe, that each matching adjacent to v is also a matching in Gv and vice-versa. Hence,
it suffices to find a largest matching in Gv, which can done in polynomial time [12].

Therefore, we further assume that the instance is reduced with respect to Reduction
Rule 3. We fix a vertex v and find a largest matching M adjacent to it by the above algorithm.
Let M be the set of vertices covered by matching M and m = |M|. Since the instance is
reduced, we know that m ≤ k + 1. Let X = N(v) \ M . We refer the reader to the Figure 1
for overview of our setting.

▶ Observation 2 (⋆). For each x ∈ X we have N(x) \ {v} ⊆ M .

▶ Observation 3 (⋆). No two distinct vertices x, y ∈ X are connected to the opposite
endpoints of a single edge {ai, bi} in M.

▶ Observation 4 (⋆). If there is a vertex x ∈ X such that for some edge {ai, bi} in the
matching M we have that {ai, bi} ⊆ N(x), then N({ai, bi}) ∩ X = {x}.

We now partition the set X into three sets. Let X2 be the set of vertices such that for
each x ∈ X2 we have some edge {ai, bi} in the matching M such that {ai, bi} ⊆ N(x). Let
X0 be the vertices such that for each x ∈ X0 we have that N(x) = {v}. Note, that X0
contains at most one vertex due to Reduction Rule 2 being exhaustively applied. Lastly, let
X1 = X \ (X2 ∪ X0) be the rest of the vertices in X. See Figure 1 for an illustration of the
sets X2, X0, and X1.

▶ Observation 5 (⋆). If the vertex v has degree at least (d + 2)(k + 1) + 1, then |X1| ≥
(d − 1)(k + 1).

Now we focus on the edges between X1 and M . By Observation 3, for each edge {ai, bi}
in M we have that the vertices in X1 may be adjacent to at most one vertex of such edge,
i.e. |{ai, bi} ∩ N(X1)| ≤ 1. Letting M1 = M ∩ N(X1) we have |M1| ≤ k + 1.

We are now ready to employ the Expansion Lemma. We use the version of Fomin et al. [16],
which is a generalization of the original results by Prieto [23, Corollary 8.1] and Thomassé [24,
Theorem 2.3].

▶ Definition 6. Let G be a bipartite graph with vertex bipartition (A, B). A set of edges
Q ⊆ E(G) is called a q-expansion, q ≥ 1, of A into B if every vertex of A is incident with
exactly q edges of Q, and Q saturates exactly q|A| vertices in B.
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M

M1

XX2

X0X1

v

a1

b1

a2

b2

a3

b3

am

bm

· · ·

· · ·

Figure 1 An overview of the definitions of sets X0, X1, X2, and M1.

▶ Lemma 7 (Expansion Lemma; Fomin et al. [16]). Let q be a positive integer, and G be a
bipartite graph with bipartition (A, B) such that |B| ≥ q|A|, and there are no isolated vertices
in B. Then, there exists nonempty A′ ⊆ A and B′ ⊆ B such that A′ has a q-expansion
into B′ and N(B′) ⊆ A′. Moreover, the sets A′, B′ and the q-expansion can be found in
polynomial time.

▶ Observation 8 (⋆). There exist non-empty subsets M ′ ⊆ M1 and X ′ ⊆ X1 such that there
is a (d − 1)-expansion Q′ from M ′ into X ′ and N(X ′) ⊆ M ′ ∪ {v}.

M1

M ′

X1

X ′

v

· · ·

x · · ·

Q

Figure 2 A graphical interpretation of applying the Expansion Lemma to our setting.

We refer the reader to Figure 2 for a graphical interpretation of the situation guaranteed
by Observation 8. Now, let us focus on the sets M ′ and X ′ and the way they are connected
with vertex v. We are going to show that some edge between v and X ′ is now redundant.

▶ Reduction Rule 4. Let v be a vertex of degree at least (d+2)(k +1)+1. Let M be a largest
matching adjacent to v and M be the set of vertices covered by M. Let X1 ⊆ N(v) \ M be
the set of vertices x with N(x) ∩ M ̸= ∅ and |N(x) ∩ {ai, bi}| ≤ 1 for each {ai, bi} ∈ M. Let
M1 = M ∩ N(X1). Let the non-empty subsets M ′ ⊆ M1 and X ′ ⊆ X1 be the sets with the
(d − 1)-expansion Q from M ′ into X ′ and such that N(X ′) ⊆ M ′ ∪ {v}. Let x ∈ X ′. Reduce
the instance by deleting the edge {x, v}.
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Proof of Correctness. Let (G = (V, E), k) be the original instance and (G′ = (V, E′), k) the
reduced one. For each vertex m ∈ M ′ let Qm be the set of vertices of X ′ incident to m in
the (d − 1)-expansion Q. Since G′ is a subgraph of G, if S is a solution for G, then S is also
a solution for G′. Hence we will concetrate on the other direction.

Suppose that S′ is a solution for the reduced instance. If it is also a solution for the
original one, then we are done. Suppose it is not, i.e., there is a Pd in G\S′. This Pd contains
the edge {x, v}, otherwise it would be also present in G′ \ S′. Therefore v /∈ S′ and x /∈ S′.

There are three ways how solution S′ can interact with M ′ and X ′ that we need to
address.

X ′

Qm̂1 Qm̂2

M ′

M̂

X ′

Qm̂1 Qm̂2

M ′

M̂

v

x

m̂1 m̂2

v

x

m̂1 m̂2

Figure 3 Illustration of the first part of the proof of correctness of Reduction Rule 4.

Firstly, suppose that M ′ ⊈ S′ and let M̂ = M ′ \ S′. See Figure 3 for an illustration. We
have that for each vertex m̂ ∈ M̂ it must be that |Q

m̂
∩ S′| ≥ 2. Indeed, if this is not the

case, there would be a Pd in G′ \ S′ which uses the (d − 2) vertices of Q
m̂

not in S′ and
the vertices m̂ and v. Consider a set S = (S′ ∪ M̂ ∪ {v}) \

⋃
m̂∈M̂

Q
m̂

. Observe, that any
Pd which uses some vertex from X ′ must contain at least one of the vertices in M ′ or v,
because N(X ′) ⊆ M ′ ∪ {v}. Therefore the set S is a solution for the reduced graph G′ as it
contains both M ′ and v. The set S is also a solution for G as it contains v and therefore
covers any Pd which might use the deleted edge {x, v}. Finally, |S| ≤ |S′|, because for each
m̂ that we add into S, we remove at least two vertices of Q

m̂
from S and therefore we have

that |M̂ ∪ {v}| ≤ 2|M̂ | ≤ |
⋃

m̂∈M̂
Q

m̂
|.

Secondly, assume that M ′ ⊆ S′ and there is some x′ ∈ X ′ such that x′ ∈ S′. We construct
the set S = (S′ \ X ′) ∪ {v}. Again, observe that S′ is a solution for G′ because any Pd which
uses some vertex from X ′ must contain at least one of the vertices in M ′ or v and both are
fully contained in S. We also have that S is a solution for G, again, as it contains v and
therefore covers any Pd which might use the deleted edge {x, v}. Finally, |S| ≤ |S′|, because
we have the assumption that there is some x′ ∈ X ′ and x′ ∈ S′.
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Lastly, assume that M ′ ⊆ S′ and X ′ ∩ S′ = ∅. In this case, the Pd that we found in
G \ S′ must be of the form P = (x, v, u3, . . . , ud) and u3, . . . , ud /∈ (M ′ ∪ X ′). The existence
of such Pd also gives us that v, u3, . . . , ud /∈ S′. Let x′ be an arbitrary vertex of X ′ \ {x}
(note that |X ′| ≥ (d − 1)|M ′| ≥ 3). Then the Pd of the form P ′ = (x′, v, u3, . . . , ud) can be
found in both G and G′, which contradicts the fact that S′ is a solution in G′.

To sum up, we have shown that when we delete the edge {x, v} from G, then for any
solution S′ for G′ which is not also a solution for G, we can always find a new solution S,
|S| ≤ |S′| which is a solution for both G′ and G. ◀

As the application of the rule only requires finding a largest matching adjacent to v, classifying
the vertices of N(v), and finding a (d−1)-expansion and these tasks can be done in polynomial
time, the rule can be applied in polynomial time.

5 4-PVC Kernel with Quadratic Number of Edges

Let (G = (V, E), k) be an instance reduced by exhaustively employing Reduction Rules 1–4.
Then the maximum degree in G is at most (d + 2)(k + 1) = 6k + 6. Furthermore, assume
that the algorithm of Proposition 1 actually returned an inclusion-wise maximal packing
P in G with at most k 4-paths instead of answering immediately. Let P = V (P), and let
A = V \ P . There are at most 4k vertices in P . Each connected component in G[A] is a
4-path free graph, otherwise we would be able to increase the size of the packing P. Since
the instance is reduced with respect to Reduction Rule 1, each connected component in G[A]
is connected to P by at least one edge.

To show that an instance reduced with respect to all the above rules has a quadratic
number of edges, it suffices to count separately the number of edges incident on P and the
number of edges in G[A]. Since the maximum degree in G is at most 6k + 6 and there are at
most 4k vertices in P , there are at most 4k · (6k + 6) = 24k2 + 24k edges incident on P .

To count the edges in G[A], we first observe that a connected 4-path free graph is either
a triangle, or a star (possibly degenerate, i.e., with at most 3 vertices). Here a q-star is
a graph with vertices {c, l1, . . . , lq}, q ≥ 0 and edges {{c, li} | i ∈ {1, . . . , q}}. Vertex c is
called a center, vertices {l1, . . . , lq} are called leaves. The term star will be used for a q-star
with an arbitrary number of leaves. Note that, a graph with a single vertex is a 0-star, a
graph with two vertices and a single edge is a 1-star, and a 3-path is a 2-star. A triangle is
a cycle on three vertices.

Secondly, as the instance is reduced with respect to Reduction Rule 1, each connected
component in G[A] is connected to P by at least one edge. Therefore, there are at most
24k2 + 24k connected components in G[A], as there are only that many edges going from P

to A. Next, we provide an observation about stars in G[A].

▶ Observation 9 (⋆). For each q-star (c, l1, l2, . . . , lq) in G[A], there are at most two vertices
in the q-star which are not connected to P by any edge in G, one possibly being the center c

and the other possibly being a leaf li of the star.

▶ Observation 10 (⋆). There are at most 72k2 + 72k edges in G[A].

We conclude this section with the final statement about our kernel.

▶ Theorem 11 (⋆). 4-Path Vertex Cover admits a kernel with 96k2 + 96k edges, where
k is the size of the solution.

MFCS 2022



29:8 On Kernels for d-Path Vertex Cover

6 5-PVC Kernel with Quadratic Number of Edges

The idea is completely analogous to the previous section. We employ the following character-
ization.

A star with a triangle is formed by connecting two leaves of a star with an edge. A bi-star
is formed by connecting the centers of two stars with an edge.

▶ Lemma 12 (Červený and Suchý [3, Lemma 4]). A connected 5-path free graph is either a
graph on at most 4 vertices, a star with a triangle, or a bi-star.

We conclude this section with the final statement about our kernel.

▶ Theorem 13 (⋆). 5-Path Vertex Cover admits a kernel with 245k2 + 245k edges, where
k is the size of the solution.

7 d-PVC Kernel with O(k4d2d+9) Edges

In this section, we give a kernelization algorithm for d-PVC with d ≥ 6.
An intuition behind the approach. The kernelization algorithm marks some vertices and

edges, which it wants to keep, and throws away the rest. Essentially, the kernelization creates
a subgraph Ĝ of the input graph G. For correctness of the algorithm, we want to show that
if there is a d-path P in G which misses some set of vertices S (a prospective solution), then
we will also find some d-path P ′ in Ĝ, which also misses the set S.

We begin by finding a maximal packing M in G and we keep in Ĝ all vertices M of the
packing and all edges between them. Now, on one hand, if the path P would be completely
contained in M , then trivially the path appears also in Ĝ. On the other hand, the path P

cannot be completely outside of M . Thus, the path P crosses between M and outside of M

at least once. This corresponds to vertices of M being connected by a path of prescribed
length outside of M . We later formalize this as a “request”.

To get more structure, we leverage the behavior of DFS trees of the connected components
outside of M . With the DFS trees we identify vertices, which are “crucial” for the requests,
and we further split the requests into “sub-requests” according to the “crucial” vertices.

The algorithm is inspired by Dell and Marx [9]. However, while the considered problems
have similarities, many ideas are not translatable. In particular, they could afford to consider
all “sub-requests” and keep Ω(k) vertices for each without affecting their bound (cf. [9, p.
23]). We had to be more careful in which “sub-requests” we consider and we need to employ
Lemma 15 (below) to only keep dO(d) vertices and edges for each such “sub-request” to
achieve our precise bound. Also, to achieve the edge bound, we need to keep track of the
purpose for which the individual vertices were marked, which makes it hard to split the
algorithm into small self-contained steps.

Formal definitions. More formally, assume that we are given an instance (G = (V, E), k)
of d-PVC. We start by running the algorithm of Proposition 1 on the instance. If it answers
directly, then we are done. Otherwise it returns a maximal packing M in G. Let M be the
vertices of the packing M. Recall that |M | ≤ dk.

Let G′ = G \ M , i.e., G′ is the graph outside the packing M. Label the connected
components of G′ as G′

1, G′
2, . . . , G′

t. For each component G′
i pick an arbitrary vertex ri ∈ G′

i

and compute a depth-first search tree Ti of G′
i rooted at ri. Note that V (Ti) = V (G′

i). Let
F denote the forest consisting of all the trees Ti, i ∈ [t]. Note that V (F) = V (G′).

For a rooted forest F and its vertex v ∈ V (F ), sub(v) denotes the set of vertices
of a maximal subtree of F rooted at v and anc(v) the set of ancestors of v in F , i.e.,
anc(v) = {u | u ∈ V (F ), v ∈ sub(u)}. Note that v ∈ anc(v).
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We provide the following observations regarding the DFS trees Ti and the forest F .

▶ Observation 14 (⋆).
(a) Each y ∈ V (F) has at most d − 1 ancestors.
(b) For two vertices u, v ∈ V (F) which are not in ancestor-descendant relation, we have

sub(u) ∩ sub(v) = ∅ and {u, v} /∈ E(G).
(c) If C is a connected subgraph of G′, then there is a vertex w ∈ V (C) such that V (C) ⊆

sub(w).

A triple (f, l, X) is an X-request, if l ∈ {1, . . . , d−1}, X ⊆ V (G), and either f = {u, v} ⊆
X, u ̸= v, or f = {x} ⊆ X. For an X-request (f, l, X) and H ⊆ V (G), we use PH

f,l to denote
the set of paths P of length l in G[H ∪ f ] such that each x ∈ f is an endpoint of P . In
particular, if f = {u, v}, u ̸= v, then u and v are the endpoints of P and if f = {x}, then
one endpoint of P is x and the other can be any vertex of H. A set H ⊆ V (G) is said to
satisfy an X-request (f, l, X) if PH

f,l ̸= ∅.
An M -request (f, l, M) will be simply denoted as ϱ(f, l) and called a request.
In the next paragraphs we cover the notion of the “crucial” vertices mentioned in the

earlier intuition. Roughly speaking, a vertex of F is “crucial” if the set of its descendants
(vertices of its subtree) satisfies some request.

For each request ϱ(f, l) we define the set Yf,l ⊆ V (F) as the set of all vertices v ∈ V (F)
such that sub(v) satisfies the request ϱ(f, l). Note that if v ∈ Yf,l, then also w ∈ Yf,l for every
w ∈ anc(v), since sub(w) ⊇ sub(v). Thus, if Yf,l ∩ V (G′

i) ̸= ∅ for some i, then in particular
ri ∈ Yf,l and Yf,l induces a connected subtree of Ti. The request ϱ(f, l) is resolved if the
subforest F [Yf,l] has at least k + d + 1 leaves.

Recall, that in the intuition we examined some d-path P in G. The resolved request
basically ensures that there are at least k + d + 1 disjoint paths in G which satisfy said
request. The idea is that the prospective solution may compromise at most k of these paths
and the other parts of P may compromise at most d of these paths. As we will keep exactly
k + d + 1 of these disjoint paths in Ĝ, we can be sure, that at least one of them will always
be usable to reroute some part of P which will help us to find the desired path P ′ in Ĝ.

Now, we focus on the unresolved requests. Let R∗ be the set of all requests ϱ(f, l) which
are not resolved and let Y =

⋃
ϱ(f,l)∈R∗ Yf,l.

We are now getting to the notion of sub-requests. These have either one endpoint in M

and the other in Y, or both endpoints in Y, or only one prescribed endpoint, which is in Y.
Note that if the two endpoint are in Y , then, by Observation 14, either one of the endpoints
is an ancestor of the other, or there is no path connecting them outside (M ∪ Y).

An (M ∪Y)-request (g, j, M ∪Y) will be simply denoted as σ(g, j) and called a sub-request
if there exists y ∈ Y such that y ∈ g and g ⊆ M ∪ anc(y). In particular, either g = {y} or
one of the vertices in g is y and the other vertex is in M ∪ anc(y).

Even though we will not formally define a resolved sub-request, later we will actually show
that the sub-request is “resolved” if there are at least 2d paths satisfying it.

Description of the algorithm. We are now ready to describe the kernelization algorithm.
As we mentioned earlier, the algorithm first marks some vertices and edges, which it wants
to keep, and it deletes the rest of the graph. Therefore, the core of the algorithm is the
marking procedure. In our case, the main procedure is called Mark which in turn uses a
procedure called Mark 2. These procedures are described in Algorithm 1 and Algorithm 2,
respectively.

Let us now give an insight into how the procedures Mark and Mark 2 were constructed.
We will start with Mark.
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Algorithm 1 Marking procedure Mark.

1 Let M , F , and Y be as in the text.
2 Mark all the vertices and edges in G[M ∪ Y ].
3 foreach resolved request ϱ(f, l) do
4 Pick arbitrary k + d + 1 leaves h1, h2, . . . , hk+d+1 of F [Yf,l].
5 foreach leaf hi do
6 Pick an arbitrary path P from Psub(hi)

f,l .
7 Mark the vertices and edges of P .

8 foreach y ∈ Y do
9 foreach sub-request σ(g, j) such that g ⊆ M ∪ anc(y) and g ̸⊆ M do

10 Let C1, C2, . . . , Cq′ be the vertex sets of the connected components of
G \ (M ∪ Y) such that for all i ∈ [q′], N(Ci) ∩ Y ⊆ anc(y) and Ci satisfies
σ(g, j).

11 if q′ ≥ 2d then
12 foreach i ∈ [2d] do
13 Pick an arbitrary path P ∈ PCi

g,j .
14 Mark the vertices and edges of P .

15 else
16 foreach i ∈ [q′] do
17 Run the marking procedure Mark 2 on

(
σ(g, j), Ci, ∅

)
.

Algorithm 2 Marking procedure Mark 2
(

σ(g, j), Ci, W
)

.

1 if |W | ≤ 2d and PCi\W
g,j ̸= ∅ then

2 Let P ∈ PCi\W
g,j .

3 Mark all the edges and vertices of P .
4 foreach v ∈ V (P ) \ g do
5 W ′ = W ∪ {v}
6 Call Mark 2 on

(
σ(g, j), Ci, W ′

)

The lines 3–7 deal with the resolved requests. Essentially, by preserving k + d + 1
corresponding paths for the request ϱ(f, l), we retain all the necessary structure such that
we do not create any new solutions in the reduced instance.

In the two following for-cycles, we first pick a vertex y of Y . This fixes the set of ancestors
anc(y), i.e., it fixes the set of vertices on the path from y to the root of its tree in F . And,
for this particular y, we then pick a sub-request σ(g, j) which lives on this fixed set anc(y)
and M . This allows us to look only at some components of G \ (M ∪ Y) and actually makes
it possible for us to bound their number. The bounding happens on lines 11–14 and we
can also say that the sub-request σ(g, j) is resolved when the number of components is at
least 2d. The bound 2d follows from Lemma 15, which will be stated later. For a resolved
sub-request we proceed similarly to resolved request. Namely, we preserve one corresponding
path in each of some 2d of the components.
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If the number of components is not large, the lines 15–17 run the second marking procedure
Mark 2 on each of these components and the aim is to bound their size.

Now, recall again, that in the intuition we examined some d-path P in G and some
prospective solution S. The purpose of the marking procedure Mark 2 is to brute-force
all the possible ways of how the path P and solution S may compromise the paths which
satisfy the sub-request σ(g, j) and which are contained in the component Ci. The procedure
works recursively, starts with the empty set of “compromising” vertices W and it always
picks a path which was not yet compromised, marks it (so that it remains in Ĝ), and tries to
compromise its vertices one by one. By doing it like this, we ensure, that all the important
parts of Ci remain in Ĝ no matter what parts of Ci were compromised.

And the main trick is that we can stop the recursion of Mark 2 once the number of
“compromising” vertices reaches 2d. This number 2d again follows from Lemma 15.

Now, the kernelization can be formally summarized as follows. Run the marking procedure
Mark on the instance (G, k). The marking results in two subsets V̂ ⊆ V (G) and Ê ⊆ E(G)
corresponding to marked vertices and edges by Mark. Reduce the instance (G, k) to the
instance (Ĝ, k) where Ĝ = (V̂ , Ê).

With that we conclude the intuition and we continue with the formal proof of correctness.
First, we state the crucial Lemma 15, then the main body of the proof follows in Lemma 16,
and we finish with the proof of the size of the kernel in Lemma 17.

Lemma 15 roughly states that any reasonable solution only contains at most d vertices
among each set of components considered on line 10 of Algorithm 1.

▶ Lemma 15. Let (G, k) be an instance of d-PVC. Let Ĝ = (V̂ , Ê) be a subgraph of G such
that V̂ and Ê are the result of running the marking procedure Mark on (G, k). Let S′ be
a solution for the instance (Ĝ, k) of d-PVC. Let y ∈ Y and let C1, C2, . . . , Cc be the vertex
sets of the connected components of Ĝ \ (M ∪ Y) such that N(Ci) ∩ Y ⊆ anc(y) for i ∈ [c].
Then Ŝ = (S′ \

⋃
i∈[c] Ci) ∪ anc(y) is a solution for Ĝ.

Proof. If Ŝ is a solution for (Ĝ, k), we are done. Suppose to the contrary that it is not.
Then there is a d-path P in Ĝ \ Ŝ. Assume that P is selected such that it contains the
least number of vertices which are in S′ i.e., |V (P ) ∩ S′| is minimized among all d-paths in
Ĝ \ Ŝ. As S′ \ Ŝ ⊆

⋃
i∈[c] Ci, path P must contain at least one vertex from at least one set

Ci ∩ S′, because otherwise P would also be in Ĝ \ S′, which is a contradiction with S′ being
a solution for (Ĝ, k). Further, since N(Ci) ⊆ (M ∪ Y), N(Ci) ∩ Y ⊆ anc(y), and anc(y) ⊆ Ŝ

by assumption, we have N(Ci) \ Ŝ ⊆ M . Therefore P ∩ M ≠ ∅, as otherwise the path P

would be contained in Ci, which is a contradiction with M being a maximal packing of
d-paths.

We split the path P into segments according to the vertices of M , i.e., a segment of P is a
sub-path (v1, v2, . . . , vs) of P such that v2, v3, . . . , vs−1 ∈ V (G) \ M and either {v1, vs} ⊆ M

(an inner segment), or one of v1, vs is in M , while the other is an endpoint of P (an outer
segment). The argument is the same in both cases.

Let P ′ = (v1, v2, . . . , vs) be the segment of P which uses some vertex from Ci∩S′. Observe,
that the segment P ′ corresponds to request ϱ(f, l) = ϱ(V (P ′) ∩ M, s − 1) as 2 ≤ s ≤ d and
|V (P ′) ∩ M | ∈ {1, 2}. In particular, V (P ′) \ M satisfies ϱ(f, l).

We also know that V (P ′) ∩ Y = ∅, because N(Ci) \ Ŝ ⊆ M . With that we argue that the
request ϱ(f, l) must be resolved. Indeed, suppose it is not. By Observation 14(c) there is
a vertex v in V (P ′) ∩ Ci such that that V (P ′) ∩ Ci ⊆ sub(v). But that implies that sub(v)
satisfies the request ϱ(f, l) and, therefore, vertex v should have been included in Yf,l and,
consequently, v should have been included in Y , which is a contradiction with V (P ′) ∩ Y = ∅.
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Now, as the request ϱ(f, l) is resolved, the marking procedure Mark picked k + d + 1
leaves h1, h2, . . . , hk+d+1 from F [Yf,l] and for each such leaf hi it marked the vertices and
edges of some path Pi ∈ Psub(hi)

f,l . Therefore, these paths P1, P2, . . . , Pk+d+1 remained in Ĝ.
Further, at least one of these paths is untouched by the vertices of S′ and the vertices of P

as |S′| ≤ k and |V (P )| ≤ d, respectively. Let this one untouched path be Pi. Observe, that
we can swap the segment P ′ with the path Pi in P to obtain a d-path P ∗. But then the path
P ∗ contains strictly fewer vertices which are in S′ than P , which is a contradiction with the
choice of P . ◀

Now we can prove the correctness of the algorithm.

▶ Lemma 16 (⋆). Let (G, k) be an instance of d-PVC. Let Ĝ = (V̂ , Ê) be a subgraph of G

such that V̂ and Ê are obtained by running the marking procedure Mark on (G, k). Then,
(G, k) is a YES instance if and only if (Ĝ, k) is a YES instance.

Proof sketch. For the “if” direction we pick a solution S′ to Ĝ such that any application of
Lemma 15 would increase its size. If S′ was not a solution to G, then as in Lemma 15, we pick
a special d-path P witnessing that, but this time with the least number of unmarked edges in
G. Then we again split P into segments according to M and, in case the corresponding request
was not resolved, further into sub-segments according to Y . We always pick a (sub-)segment
with at least one unmarked edge and we show that we can swap the (sub-)segment with some
other suitable fully marked sub-path to obtain a contradiction with the choice of P . ◀

The following lemma shows the bound on the size of the kernel.

▶ Lemma 17 (⋆). Let (G, k) be an instance of d-PVC. Let Ĝ = (V̂ , Ê) be a subgraph of G

such that V̂ and Ê are obtained by running the marking procedure Mark on (G, k). Then,
|V̂ | = O(k4d2d+9) and |Ê| = O(k4d2d+9).

We summarize the result in the following theorem.

▶ Theorem 18. d-Path Vertex Cover admits a kernel with O(k4d2d+9) vertices and
edges, where k is the size of the solution.

Proof. As the marking procedures Mark and Mark 2 can by implemented in polynomial
time, the theorem directly follows from Lemmas 16 and 17. ◀

8 Conclusion

We presented kernels with O(k2) edges for 4-PVC and 5-PVC and with O(k4d2d+9) edges
for d-PVC for any d ≥ 6. An obvious open question is whether there is a kernel with O(k2)
edges for every d ≥ 6.

Furthermore, the size of our kernel depends on d by a factor of dO(d). We believe that
this could be improved to 2O(d) with the use of representative sets. However, improving this
to a factor polynomial in d would imply coNP ⊆ NP/poly. As observed by Dell and Marx [9],
running such a kernel with k = 0 would give a polynomial kernel for the d-Path problem,
which would have the above mentioned implications.

Next, for 2-PVC and 3-PVC, there are kernels with linear number of vertices [19, 32].
Hence, another open question is whether such a kernel can be obtained also for say 4-PVC.
Further interesting open questions can be found in the recent survey of Tu [29].
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Abstract
Skolem functions play a central role in the study of first order logic, both from theoretical and practical
perspectives. While every Skolemized formula in first-order logic makes use of Skolem constants
and/or functions, not all such Skolem constants and/or functions admit effectively computable
interpretations. Indeed, the question of whether there exists an effectively computable interpretation
of a Skolem function, and if so, how to automatically synthesize it, is fundamental to their use in
several applications, such as planning, strategy synthesis, program synthesis etc.

In this paper, we investigate the computability of Skolem functions and their automated synthesis
in the full generality of first order logic. We first show a strong negative result, that even under
mild assumptions on the vocabulary, it is impossible to obtain computable interpretations of Skolem
functions. We then show a positive result, providing a precise characterization of first-order theories
that admit effective interpretations of Skolem functions, and also present algorithms to automatically
synthesize such interpretations. We discuss applications of our characterization as well as complexity
bounds for Skolem functions (interpreted as Turing machines).
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1 Introduction

The history of Skolem functions can be traced back to 1920, when the Norwegian mathem-
atician, Thoralf Albert Skolem, gave a simplified proof of a landmark result in logic, now
known as the Löwenheim-Skolem theorem. Skolem’s proof made use of a key observation:
For every first order logic formula ∃y φ(x, y), the choice of y that makes φ(x, y) true (if at
all) depends on x in general. This dependence can be thought of as implicitly defining a
function that gives the “correct” value of y for every value of x. If Fy denotes a fresh unary
function symbol, the second order sentence ∃Fy ∀x

(
∃y φ(x, y) ⇒ φ(x, Fy(x))

)
formalizes this

idea. Since the implication trivially holds in the other direction too, the second order sentence
∃Fy ∀x

(
∃y φ(x, y) ⇔ φ(x, Fy(x))

)
is valid.

Let ξ1 ≡ ∃y φ(x, y) and ξ2 ≡ φ(x, Fy(x)). The fresh function symbol Fy introduced
in transforming ξ1 to ξ2 is called a Skolem function. Skolem functions play an extremely
important role in logic – both from theoretical and applied perspectives. While it suffices in
some contexts to simply know that a Skolem function Fy exists, in other contexts, we require
an effective procedure to compute Fy(x) for every value of x. This motivates us to ask if
Skolem functions are always computable, and whenever they are, can we algorithmically
generate a halting Turing machine that computes the function? Note that we are concerned
with computability at two levels here: (i) computability of the Skolem function itself, and (ii)
computability of a halting Turing machine that computes the Skolem function. For clarity of
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exposition, we call the Turing machine referred to in (ii) above a computable interpretation
of Skolem function, and the problem of generating it algorithmically the synthesis problem
for Skolem functions.

The synthesis problem for Skolem functions has been studied in detail in the propositional
setting, specifically for quantified Boolean formulas (QBF) with a ∀∗∃∗ quantifier prefix [17,
16, 12, 18, 13, 22, 27, 5, 23, 3, 1, 21, 4, 14, 24]. Surprisingly, a similar in-depth investigation
in the context of general first order logic appears lacking in the literature, despite several
potential applications, viz. automatic program synthesis and repair [26, 19, 28]. Some
notable works in the context of specific theories include those of Kuncak et al [19] (for linear
rational arithmetic), Spielman et al [25] (unbounded bit-vector theory), Preiner et al [20]
(bit-vector theory) etc. in which terms that serve as interpretations of Skolem functions in
specific theories are synthesized. In [17], Jiang presented a partial approach for quantifier
elimination in general first-order theories by relying on the availability of functions that can
be conditionally expressed by a finite set of terms. Unfortunately, such finite conditional
decomposition may not always be possible (as acknowledged in [17]), even when a computable
interpretation of the Skolem function exists. The problem of quantifier-free constraint solving,
i.e. finding assignments of free variables that render a quantifier-free formula true, has been
investigated in depth for several theories, viz. propositional logic, theory of arrays, linear
rational arithmetic, real algebraic numbers, Presburger arithmetic, regular languages of finite
strings etc. If the theory also admits effective quantifier elimination, this yields an algorithm
for synthesizing computable interpretations of Skolem functions. However, not all first order
theories admit effective quantifier elimination, e.g. Presburger arithmetic (without divisibility
predicates) or the theory of evaluated trees [10] does not. We show that for some such
theories, computable interpretations of Skolem functions can be synthesized algorithmically.

Our main contributions are to ask and answer the following questions:
Does there always exist computable interpretations of Skolem functions for a first order
formula interpreted over a structure? We answer this question strongly in the negative
by showing that uncomputable interpretations cannot be avoided even with one binary
predicate and one existential quantifier in the formula.
We next ask if it is possible to algorithmically decide whether computable interpretations
exist for all Skolem functions, given a formula and a structure over which it is interpreted.
We answer this question in the negative.
Next, we ask if it is possible to characterize the class of structures such that effectively
computable interpretations of Skolem functions can be algorithmically synthesized for
all formulas interpreted over a structure in the class. We answer this by showing that
decidability of the elementary diagram of a structure serves as the required necessary and
sufficient condition. Using this result, we show that several important first-order theories
admit synthesis of effectively computable Skolem functions, while others do not.
For structures satisfying the condition in the above characterization, we present lower and
upper complexity bounds for effectively computable interpretations of Skolem functions.
Finally, we distinguish between synthesizing Skolem functions as halting Turing machines
vs terms in the underlying logic and show that the latter is a strictly weaker notion.

Our results reveal a highly a nuanced picture of the computability landscape for synthesizing
interpretations of Skolem functions in first-order logic. We hope that this work will be a
starting point towards further research into the design of practical algorithms (whenever
possible) to synthesize Skolem functions for various first order theories. Proofs that are
missing due to lack of space can be found in the full version at [2].
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2 Preliminaries

Since every Turing machine with tape alphabet {0, 1} can be encoded as a natural number
(we use N for naturals), and since every finite string over {0, 1}∗ can be encoded as a natural
number, we often speak of Turing machine i, denoted TMi, running on input string j, where
i, j ∈ N.

We use x, y, z, etc., possibly with subscripts, to denote first order variables, X, Y, Z,
etc., possibly with subscripts, to denote sequences of first order variables. We use φ, ξ, α,
possibly with subscripts, to denote formulas. For a sequence Xi, |Xi| denotes the count of
variables in Xi, and xi,1, . . . xi,|Xi| denotes the variables. A vocabulary V , is a set of function
and/or predicate symbols, along with their respective arities. Constants are function symbols
with arity 0. We assume that V has finitely many predicate and function symbols, except
possibly for countably infinitely many constant symbols. We also assume that a special binary
predicate “=” (equality) is present in every vocabulary.

We consider first order logic formulas over vocabulary V, also called V-formulas. The
notion of bound and free variables is standard, V-formulas without free variables are V-
sentences. A V-term is either a variable or f(t1, . . . tk), where f is a k-ary function symbol in
V and t1, . . . tk are V-terms. When V is implicit from the context, we omit it. A ground term
(resp. ground formula) is a term (resp. formula) without any variables. For x, a free variable
in ξ, t a term in which all variables (if any) are free in ξ, ξ[x 7→ t] denotes the formula
obtained by substituting t for x in ξ, i.e., replacing every free occurrence of x in ξ with t.

A V-structure M consists of a universe UM of elements and an interpretation of every
predicate and function symbol in V over UM. The interpretation of the special predicate
“=” is always the identity relation, and we write t1 = t2 instead of = (t1, t2) for notational
convenience. We denote the interpretation of a predicate symbol P (resp. function symbol
f) in M as PM (resp. fM). In general, an interpretation of a predicate or function symbol
may be well-defined but not computable. We say a V-structure M is computable if UM is
countable and if PM (resp. fM) is computable for all predicate symbol P (resp. function
symbol f) in V. In other words, there exists a halting Turing machine for computing the
interpretations PM (resp. fM). Throughout this paper, we assume that all V-structures are
computable. This is motivated by practical applications of Skolem functions; additionally,
non-computable V-structures may make it difficult (even impossible) to obtain computable
interpretations of Skolem functions in most cases. A computable V structure can be finitely
represented, e.g. by using a single bit to encode whether the universe is finite or countably
infinite, and by giving a natural number encoding of each Turing machine that computes
an interpretation of a predicate or function symbol. If there are countably infinite constant
symbols, we assume that interpretations of all of them can be collectively encoded by a single
Turing machine that computes a mapping from N (index of constant symbol) to N (index of
element in universe). If a V-formula ξ(Z) evaluates to true when interpreted over M and
with Z set to σ ∈

(
UM)|Z|, we say that M is a model of ξ(σ) and denote it by M |= ξ(σ).

An expansion of a vocabulary V is a vocabulary V ′ such that V ⊆ V ′. Given a V-structure
M and a V ′-structure M′, where V ′ is an expansion of V, M′ is an expansion of M if (i)
UM′ = UM, and (ii) all predicate/function symbols in V are interpreted identically in M

and M′.
For a quantifier Q ∈ {∃, ∀} and sequence of variables Xi = (xi,1, . . . xi,|Xi|), we use

QXi to denote the block of quantifiers Qxi,1 . . . Qxi,|Xi|. Every first order logic formula
can be effectively transformed to a semantically equivalent prenex normal form, in which
all quantifiers appear to the left of the quantifier-free part of the formula. Henceforth,
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we assume all first order formulas are in prenex normal form, unless stated otherwise.
Let ξ(Z) ≡ ∀X1∃Y1 · · · ∀Xq∃Yq φ(Z,X1,Y1, . . .Xq,Yq) be such a formula, where Z is a
sequence of free variables, and φ is quantifier-free. We say that ∀X1∃Y1 · · · ∀Xq∃Yq is the
quantifier prefix of the formula, and it has q ∀∗∃∗ blocks. The quantifier-free part, i.e. φ,
is called the matrix of the formula. Note that in case the leading (leftmost) quantifier in ξ

is existential, X1 may be considered to be an empty sequence, and similarly, if the trailing
(rightmost) quantifier in ξ is universal. Every variable yi,j that is existentially quantified in
the quantifier prefix is called an an existential variable in ξ. The notion of universal variables
is analogously defined. The quantifier prefix imposes a total order on the quantified variables
in ξ. We say that a variable u is to the left (resp. right) of variable v in the quantifier prefix
iff Qu appears to the left (resp. right) of Q′v in the quantifier prefix, where Q,Q′ ∈ {∃, ∀}.

Skolemization. Given a formula ξ in prenex normal form, Skolemization refers to the process
of transforming ξ to a new formula ξ⋆ via the following steps: (i) for every existential variable
yi,j , substitute Fyi,j

(Z,X1, . . .Xi) for yi,j in φ, where Fyi,j
is a new function symbol of arity

|Z|+
∑i

j=1 |Xj |, and (ii) remove all existential quantifiers from the quantifier prefix of ξ. The
functions Fyi,j introduced above are called Skolem functions. In case ξ has no free variables
and the leading quantifier is existential, the Skolem functions for variables in the leftmost
existential quantifier block have no arguments (i.e. they are nullary functions). Such functions
are also called Skolem constants. The sentence ξ⋆ is said to be in Skolem normal form if the
matrix of ξ⋆ is in conjunctive normal form. The key guarantee of Skolemization is as follows:
for every existential variable yi,j , let ξ⋆

yi,j
denote the formula obtained by Skolemizing all

existential variables to the left of yi,j in the quantifier prefix. Formally, ξ⋆
yi,j

is obtained by (i)
substituting the Skolem function Fyk,l

for every existential variable yk,l to the left of yi,j in
the quantifier prefix, and (ii) removing all quantifiers to the left of and including ∃yi,j from
the quantifier prefix. Note that ξ⋆

yi,j
has free variables in Z,X1, . . .Xi, yi,j . Skolemization

guarantees that for every V-structure M over which ξ is interpreted, there always exists an
expansion M⋆ of M that provides an interpretation of Fyi,j

for all existential variables yi,j

such that the following holds for every i ∈ {1, . . . q} and j ∈ {1, . . . |Yi|}:

∀Z∀X1 . . . ∀Xi

(
∃yi,j ξ

⋆
yi,j

⇔ ξ⋆
yi,j

[yi,j 7→ Fyi,j
(Z,X1, . . .Xi)]

)
(1)

▶ Example 1. Consider ξ(z) ≡ ∃y∀x∃u∀v∃wφ(z, x, y, u, v, w). Skolemizing gives ξ⋆ ≡
∀x∀v φ(z, x, Fy(z), Fu(z, x), v, Fw(z, x, v)), where Fy(z), Fu(z, x) and Fw(z, x, v) are Skolem
functions for y, u and w respectively. Using the notation introduced above, we have

ξ⋆
y(z, y) ≡ ∀x∃u∀v∃wφ(z, x, y, u, v, w)
ξ⋆

u(z, x, u) ≡ ∀v∃wφ(z, x, Fy(z), u, v, w)
ξ⋆

w(z, x, v, w) ≡ φ(z, x, Fy(z), Fu(z, x), v, w)
By virtue of Skolemization, we know that for every structure M over which ξ is interpreted,
there exists an expansion M⋆ that interprets Fy, Fu and Fw such that the following hold.

∀z
(
∃y ξ⋆

y(z, y) ⇔ ξ⋆
y [y 7→ Fy(z)]

)
∀z∀x

(
∃u ξ⋆

u(z, x, u) ⇔ ξ⋆
u[u 7→ Fu(z, x)]

)
∀z∀x∀v

(
∃wξ⋆

w(z, x, v, w) ⇔ ξ⋆
w[w 7→ Fw(z, x, v)]

)
Let V⋆ be the expansion of V obtained by adding all Skolem function and constant

symbols in ξ⋆ to V. In general, a V-structure M over which ξ(Z) is interpreted can be
expanded to a V⋆-structure by adding interpretations of Skolem functions for all existential
variables in ξ(Z). However, not every such expansion of M may model the sentence (1)
above for every existential variable yi,j . Skolemization guarantees that there exists at least
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one “correct” expansion M⋆ of M that does so. We call the interpretation of Skolem
functions in such a “correct” expansion as an M-interpretation of the Skolem functions.
There may be multiple “correct” expansions of M, and hence multiple M-interpretations of
Skolem functions. Skolemization guarantees the existence of at least one M-interpretation
of all Skolem functions/constants; however, it doesn’t tell us whether these are computable
interpretations, and if so, can we algorithmically synthesize the interpretation as a halting
Turing machine? These are two central questions that concern us in this paper.

Sometimes, given a V-formulas ξ, we can find an M-interpretation of Skolem functions
that works in the same way for all computable structures M over which ξ is interpreted
(modulo differences in interpreting predicates and functions). Formally, suppose there exists
a halting Turing machine Mξ with access to oracles that compute the interpretations of
predicates and functions in M, and suppose Mξ computes an M-interpretation of Skolem
functions for all existential variables in ξ, and for all V-structures M. Then, we say that ξ
admits a uniform representation of M-interpretations of Skolem functions.

Model theory. We use V(M) to denote the expansion of V obtained by adding a fresh
constant symbol ce for every element e ∈ UM, if not already present in V . Clearly, if UM and
V are countable, so is V(M). We use MC to denote the expansion of M to a V(M)-structure
that interprets the additional constants in V(M) in the natural way, i.e. ce is interpreted to
have the value e, for all e ∈ UM. The elementary diagram of M, denoted ED(M), is the set
of all V(M)-sentences ξ such that MC |= ξ. The diagram of M, denoted D(M), is the set of
all literals in ED(M), i.e. the set of all atomic ground formulas that hold in MC . Clearly,
D(M) ⊆ ED(M). A set Γ of V-sentences is called a V-theory if it is consistent, i.e. there
exists a V-structure that serves as a model for every sentence in Γ. Given a V-structure M,
the set of all first order V-sentences ξ such that M |= ξ is called the theory of M, denoted
Th(M). Note that both ED(M) and D(M) are V-theories, and ED(M) = Th(MC), where
Th(MC) is the V(M)-theory of MC . We say that a V-theory Γ is decidable iff there exists a
Turing machine that takes as input an arbitrary V-sentence ξ and always halts and correctly
reports whether ξ ∈ Γ or not. If M is a computable structure, it follows immediately that
D(M) is a decidable theory, but ED(M) is not necessarily so.

A V-theory Γ is said to admit quantifier elimination if for every V-formula ξ(Z) with
free variables Z, there exists a semantically equivalent quantifier-free V-formula ξ#(Z) such
that the sentence ∀Z

(
ξ(Z) ⇔ ξ#(Z)

)
is in Γ. If, in addition, there exists a Turing machine

that takes an arbitrary V-formula (ξ) as input and computes its quantifier-eliminated form
(ξ#) and halts, we say that Γ admits effective quantifier elimination1. For a V-structure
M, we say that Th(M) admits effective constraint solving if there exists a Turing machine
that takes a V-formula ξ(Z) with free variables Z as input and halts after reporting one
of two things: (i) a |Z|-tuple σ of elements from UM such that M |= ξ(σ), or (ii) no such
|Z|-tuple of elements from UM exists. Note that the formula ξ(Z) may have quantifiers in
general. In case the above Turing machine exists only if ξ(Z) is quantifier-free, we say that
Th(M) admits effective quantifier-free constraint solving. Clearly, if Th(M) admits effective
quantifier elimination and effective quantifier-free constraint solving, then it also admits
effective constraint solving.

1 There is a technique, popularly called “Morleyization”, that trivially makes a theory admit effective
quantifier elimination by expanding the vocabulary to include a separate predicate symbol for each V-
formula. For purposes of this paper, we disallow expansion of the vocabulary (and hence “Morleyization”)
during effective quantifier elimination.
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3 An illustrative example

Consider the vocabulary V = {P, c, d}, where P is a binary predicate symbol, and c and d

are constants, and the first-order V-sentence ξ ≡ ∀x∃yP (x, y) ∧
(
P (x, c) ∨ P (x, d)

)
. We will

use φ(x, y) to denote the matrix of the above formula, i.e. P (x, y) ∧
(
P (x, c) ∨ P (x, d)

)
. On

Skolemizing ξ we get ξ⋆ ≡ ∀xφ(x, Fy(x)), where Fy is a fresh unary Skolem function symbol.
Let M be a computable V-structure. We now ask if there exists an algorithm A[F ] that serves
as a computable interpretation of Fy : UM → UM. A careful examination of ξ and ξ⋆ reveals
that such an algorithm indeed exists. Specifically, the algorithm (represented informally as an
imperative “program” for ease of understanding) “input(x); if PM(x, cM) then return cM

else return dM” takes as input x ∈ UM and returns either cM or dM depending on whether
PM(x, cM) evaluates to true or false. If we let this algorithm interpret Fy in the expansion
M⋆ of M, then it is not hard to see that we indeed have M⋆ |= ∀x

(
∃yφ(x, y) ⇔ φ(x, Fy(x)).

However, is this always possible? Consider the V-formula α ≡ ∀x∃y P (x, y) instead of ξ,
whose Skolemized version is α⋆ ≡ ∀xP (x, Fy(x)). As we show in Section 5, it is impossible
to obtain a computable M-interpretation of the Skolem function Fy(x) in this case for all
V-structures M.

There are several observations that one can now make. Clearly, algorithm A[F ] described
above is specific to the formula ξ; a different formula would have required a different algorithm
to be designed for its Skolem function(s). Interestingly, algorithm A[F ] also requires access
to the interpretations of c, d and P in the V-structure M on which ξ is interpreted. Since
we are given an effectively computable interpretation of P in M, there exists an algorithm
A[P ] to compute PM. Algorithm A[F ] effectively uses A[P ] as a sub-routine to compute the
value of Fy(x) for every x ∈ UM. Note that if the interpretation of P (in perhaps a different
V-structure M′) was not effectively computable, the “program” above would not serve as an
effectively computable interpretation of Fy. This underlines the importance of effectively
computable structures in the synthesis of Skolem functions.

It is easy to see that “input(x); if PM(x, cM) then return cM else return dM”
uniformly serves as a computable interpretation of Fy in every computable V-structure
M over which ξ is interpreted. Regardless of the actual structure M, a computable M-
interpretation of Fy is obtained by invoking algorithms to compute interpretations of P , c, d
in M as sub-routines. Thus we get a uniform representation of an M-interpretation of Fy.

Finally, the interpretation of Skolem function F discussed above is represented as an al-
gorithm, and not as a V-term. Is it possible to obtain a V-term that uniformly represents an M-
interpretation of Fy in this case? To answer this, first observe that there are only two terms, viz.
c and d, that can be formed using V . If one of these terms serves as a uniform M-interpretation
of Fy, choose a structure M as follows: UM = {a0, a1}, cM = a0, d

M = a1, P
M(a0, a0) =

PM(a1, a1) = false and PM(a0, a1) = PM(a1, a0) = true. Clearly M |= ∀x∃yφ(x, y). How-
ever, with Fy(x) = c (or Fy(x) = d), we have MM⋆ ̸|= ∀x

(
∃yφ(x, y) ⇔ φ(x, F (x))

)
. Thus

even when an effectively computable interpretation of a Skolem function exists, it may not
be representable as a term over V.

4 Problem statement

We now formulate the primary questions that we wish to address in this paper.
1. Given a vocabulary V, a V-formula ξ(Z) in prenex normal form and a computable V-

structure M, the SkolemExist problem asks if there exists a computable M-interpretation
of Skolem functions for all existential variables in ξ. We have already seen in Section 3
that there are positive instances of SkolemExist. We ask if there are negative instances
as well, i.e. there is no computable M-interpretation of Skolem functions.
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2. Next, we ask if SkolemExist is decidable.
3. We then consider special cases where either the formula ξ(Z) or structure M is fixed,

and ask if it is possible to characterize the class of problems where the SkolemExist
problem has a positive answer.

4. In cases where the SkolemExist problem has a positive answer, we ask the following:
a. Does there exist an algorithm to synthesize computable M-interpretations of Skolem

functions? We call this problem SkolemSynthesis and consider two variants of it,
where either (i) V and ξ(Z) are fixed and M is the input of SkolemSynthesis, or (ii)
V and M is fixed and ξ is the input of SkolemSynthesis.

b. Is it possible to obtain finite uniform representations of M-interpretations of Skolem
functions, and if so, can we obtain these as V-terms?

c. In case SkolemExist has a positive answer, can we give bounds on the worst-case
running time of computable M-interpretations of Skolem functions?

Note that SkolemSynthesis is not meaningful in cases where SkolemExist has a neg-
ative answer. Hence, we don’t try to answer SkolemSynthesis in negative instances of
SkolemExist. Moreover, all the above problems except the last one is trivial if the universe
UM is finite. Therefore, we focus mostly on structures with countably infinite universe.

5 Hardness of SkolemExist and SkolemSynthesis

We have already seen a positive instance (i.e. problem instance with positive answer) of
SkolemExist in Section 3. The following lemma shows that SkolemExist always has
a positive answer if all Skolem functions are Skolem constants. In the following, we use
(V,M, ξ) to denote an instance of SkolemExist, where V is a vocabulary, M is a computable
V-structure and ξ is a V-formula.

▶ Lemma 2. For every vocabulary V, every computable V-structure M and every V-sentence
∃Yφ(Y), where φ is a quantifier-free V-formula with free variables in Y, the instance
(V ,M, ξ) of SkolemExist has a positive answer.

However, there are negative instances of SkolemExist, even with a restricted vocabulary.

▶ Theorem 3. There exists a negative instance of SkolemExist where the vocabulary has
a single binary predicate.

Now that we know there are positive and negative instances of SkolemExist, we ask if
SkolemExist is decidable. Unfortunately, we obtain a negative answer in general.

▶ Theorem 4. SkolemExist is undecidable.

Proof. We prove this theorem by contradiction. Suppose, if possible, there exists a halting
Turing machine M that takes as inputs a vocabulary V , a V-formula ξ(Z) and a computable
V-structure M, and decides if there exists a computable M-interpretation of Skolem functions
for all existential variables in ξ(Z). We show below that we can use M to effectively decide
if an arbitrary Turing machine, say TMi, halts on the empty tape.

Consider V = {Q, a}, where Q is a binary predicate symbol and a is a constant symbol. For
each i ∈ N, define Mi to be a V-structure such that UMi = N, aMi = i and QMi(u, v) = true
for u, v ∈ N iff the Turing machine TMu halts on the empty tape within v steps. It is
easy to see that each Mj is a computable V-structure. We also define the V-sentence
ξ ≡ ∃s∀u∃x

((
Q(a, s) ∧ (x = u)

)
∨

(
¬Q(a, u) ∧ Q(u, x)

))
. Skolemizing this formula gives

ξ⋆ ≡ ∀u
((
Q(a, cs) ∧ (Fx(u) = u)

)
∨

(
¬Q(a, u) ∧Q(u, Fx(u))

))
, where cs is a Skolem constant

for s, and Fx is a Skolem function for x. From the guarantee of Skolemization, the following
must hold:

MFCS 2022



30:8 On Synthesizing Computable Skolem Functions for First Order Logic

∃s∀u∃x
((
Q(a, s) ∧ (x = u)

)
∨

(
¬Q(a, u) ∧ Q(u, x)

))
⇔ ∀u∃x

((
Q(a, cs) ∧ (x = u)

)
∨(

¬Q(a, u) ∧Q(u, x)
))

∀u
(
∃x

((
Q(a, cs) ∧ (x = u)

)
∨

(
¬Q(a, u) ∧ Q(u, x)

))
⇔

((
Q(a, cs) ∧ (Fx(u) = u)

)
∨(

¬Q(a, u) ∧Q(u, Fx(u))
)))

We now consider two cases.
Suppose TMi halts on the empty tape after p ∈ N steps. Then Mi |= Q(a, p). In this
case, by choosing the cMi

s = p and by choosing FMi
x (u) = u for all u ∈ N, both the above

guarantees of Skolemization are easily seen to hold. Clearly, the Skolem functions have
computable interpretations in this case.
If TMi doesn’t halt on the empty tape, then Mi |= ∀u¬Q(a, u). In this case, we choose
an arbitary value, say 0, for s. However, for the guarantee of Skolemization to hold, we
must have the following: for every u ∈ N, if ∃xQ(u, x) holds (i.e. TMu halts on the empty
tape), then Q(u, FMi

x (u)) must also hold (i.e. TMu must also halt in FMi
x (u) steps).

Clearly, such an interpretation FMi
x is not computable, as otherwise it can be used to

decide the halting problem.
The above reasoning shows that there exist computable Mi-interpretations of all Skolem
functions of existential variables in ξ iff TMi halts on empty tape. Thus, if we feed the
instance (V,Mi, ξ) as input to the supposed Turing machine M that decides SkolemExist,
we can decide if TMi halts on the empty tape, for every i ∈ N. This gives a decision procedure
for the halting problem on the empty tape – an impossibility! ◀

It is easy to see that the proof of Theorem 4 can be repeated with ξ ≡ ∀u∃s∃x
((
Q(a, s) ∧

(x = u)
)

∨
(
¬Q(a, u) ∧Q(u, x)

))
as well. This gives the following interesting result.

▶ Theorem 5. If the vocabulary contains a binary predicate and a constant, SkolemExist
is undecidable for the quantifier prefix classes ∃∀∃ and ∀∃∃. However it is decidable for the
class ∃+∀∗.

The second part of the above Theorem follows from an easy generalization of the proof
of Lemma 2. This leaves only the case of ∀∃ quantifier prefix, for which the decidability of
SkolemExist remains open. We consider the case of the vocabulary having only monadic
predicates later in Theorem 7.

The above negative results motivate us to consider special cases of SkolemExist and
SkolemSynthesis, where either the V-formula ξ(Z) or the V-structure M is fixed.

Fixing the formula. The proof of Theorem 4 is quite damning: even if we allow the
possibility of a potentially different algorithm, say AV,ξ, for deciding SkolemExist for each
combination of V and ξ, we cannot hope to have an algorithm AV,ξ for every (V, ξ) pair. This
is because in the proof of Theorem 4, we had indeed kept the vocabulary and formula fixed.
This leaves only a few questions to be investigated if we fix the vocabulary and formula. If
we consider V and ξ as fixed, the V-structure M is the only input to our problems of interest.
The following theorem shows that SkolemSynthesis cannot be answered positively in this
case even under fairly strong conditions.

Recall from Lemma 2 that SkolemExist has a positive answer if all Skolem functions are
Skolem constants. Hence, by choosing ξ to be a V-sentence with only existential quantifiers,
we are guaranteed that all problem instances are positive instances of SkolemExist.

▶ Theorem 6. There exists a vocabulary V, a V-sentence ξ and a family of V-structures
F = {Mi | i ∈ N}, such that (V,Mi, ξ) is a positive instance of SkolemExist for all
i ∈ N, yet there is no uniform representation of Mi-interpretations of the Skolem constants.
Additionally, the SkolemSynthesis problem has a negative answer for the class of problem
instances {(V , ξ,Mi) | i ∈ N}.
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It is interesting to ask now if there is a characterization of V-formulas, such that for
each V-formula satisfying this characterization, the SkolemExist and SkolemSynthesis
problems have positive answers for all V-structures. The proof of Theorem 3 tells us that
we must disallow binary predicates and ∀∃ blocks in the quantifier prefix, which severely
restricts the vocabulary and formulas. What happens if we allow a relational vocabulary
with only monadic predicates (Löwenheim class with equality) [9]?

▶ Theorem 7. Let the vocabulary V contain only monadic predicates and equality. Then
SkolemExist has a positive answer, but not so for SkolemSynthesis.

Proof. With k monadic predicates, the universe can be partitioned into 2k equivalence classes
based on predicate valuations. By an argument (based on Ehrenfeucht-Fraisse games) similar
to that used to prove small-model property of Löwenheim class (see [9]), if a prenex formula ξ
has quantifier rank r, the range of each Skolem function can be restricted to ≤ r.2k elements.
Using an argument similar to that in proof of Lemma 2, there exists a TM that enumerates
the required set, say S, of ≤ r.2k elements. Since elements of an equivalence class can only
be distinguished using =, for each Skolem function of arity p, we must search for its correct
interpretation over all Sp → S mappings. Since there are finitely many such mappings,
we can enumerate the TMs computing these mappings, and one of them must effectively
serve as the correct interpretation for the Skolem function under consideration. Since ξ has
finitely many existential variables, it follows that there exists computable interpretations of
all Skolem functions in ξ.

To see why SkolemSynthesis has a negative answer in general even with one monadic
predicate P and one existential quantifier, consider V = {P}, ξ ≡ ∃xP (x), and a structure
Mi having universe N and PMi(x) = true iff TMi halts on empty tape within x steps. If
there exists an algorithm to synthesize computable Mi-interpretations of the Skolem constant
for x in ξ, we can use it to decide if TMi halts on empty tape – an impossibility! Thus, we
must disallow even monadic predicates if we want to characterize V-formulas that admit
positive answer to SkolemSynthesis for all V-structures. ◀

Fixing the structure. We now fix the structure M (and vocabulary V) and take the formula
ξ as the only input of our problems of interest. Since the structure M is fixed, we use the
notation U for UM henceforth. Theorem 3 already shows that even when the structure is
fixed, the SkolemExist problem has a negative instance. However, the V-structure used in
that proof may appear hand-crafted. This leads us to ask if there is a “natural” vocabulary
V and V-structure M, such that SkolemExist has a negative instance when considering
V-formulas. It turns out that this is indeed the case, and we show it by appealing to the
classical Matiyasevich-Robinson-Davis-Putnam (MRDP) theorem [11].

▶ Proposition 8. Skolem functions for the first order theory of natural numbers over the
vocabulary {×,+, 0, 1} do not admit computable interpretations.

Finally, in the setting of a fixed V-structure M, even if SkolemExist is answered in the
positive for all V-formulas in a class Ξ, the SkolemSynthesis problem may have a negative
answer for the class of problem instances {(V ,M, ξ) | ξ ∈ Ξ}.

▶ Theorem 9. There exists a vocabulary V, a V-structure M and a class of V-sentences
Ξ = {ξi | i ∈ N} s.t., (V,M, ξ) is a positive instance of SkolemExist for all ξi ∈ Ξ, yet
SkolemSynthesis has a negative answer for the class of instances {(V ,M, ξi) | i ∈ N}.
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6 Necessary & sufficient condition for synthesizing Skolem functions

Given these strong negative results is there hope for proving existence and synthesizability of
computable interpretations for Skolem functions. Indeed, there do exist many natural theories
where computable interpretations of Skolem functions exist and can indeed be synthesized,
e.g., Boolean case, Presburger arithmetic etc. So, what determines when a V-theory admits
effective synthesis of computable interpretations of Skolem functions for all V-formulas? Our
first positive result is a surprising characterization of a necessary and sufficient condition for
algorithmic synthesis of computable interpretations of Skolem functions.

▶ Theorem 10. Let M be a computable V-structure for vocabulary V. The SkolemSynthesis
problem for V-formulas, i.e. for problem instances {(V,M, ξ) | ξ is a V-formula}, has a
positive answer iff ED(M) is decidable.

Proof. (⇐=) Let ξ(Z) be a V-formula with free variables Z, where ξ(Z) ≡
∀X1∃Y1 . . . ∀Xn∃Yn

ξn(Z,X1,Y1,. . . , Xn,Yn), where X1, . . . ,Xn are n sequences of universally quantified vari-
ables, Y1, . . .Yn are sequences of existentially quantified variables, Z is a sequence of free
variables and ξn is quantifier-free. We will show that there is an algorithm, that for every
i ∈ {1, . . . , n}, takes as input a (|Z|+ |X1|+ . . .+ |Xi|) tuple of values from the universe U , say,
µ ∈ U |Z|, σ1 ∈ U |X1|, . . . , σi ∈ U |Xi| and halts after computing a (|Y1|+. . .+|Yi|)-dimensional
vector of values, F1(µ, σ1) ∈ U |Y1|, . . .Fi(µ, σ1, . . . σi) ∈ U |Yi| where for each 1 ≤ j ≤ i, Fj is
a |Yj |-dimensional vector of Skolem functions, each of arity |Z| + |X1| + . . .+ |Xj |.

The proof is by induction on i. For i = 1, let ξ(Z) ≡ ∀X1∃Y1 ξ1(Z,X1,Y1), where ξ1
has one less number of quantifier alternations than ξ. On Skolemizing, we get ξ⋆(Z) ≡
∀X1 ξ1(Z,X1,F1(Z,X1)), where F1 is a |Y1|-dimensional vector of Skolem functions each
of arity |Z| + |X1|. We now design a Turing machine (or algorithm) M1 that takes any
|Z| + |X1|-tuple of elements from U , say (µ, σ1), as input and halts after computing F1(µ, σ1):
(a) It first determines if ∃Y1 ξ1(µ, σ1,Y1) holds, using the decision procedure for ED(M).
(b) If the answer to the above question is “Yes”, the machine M1 recursively enumerates

|Y1|-tuples of elements of U , and for each tuple ν thus enumerated, it checks if ξ1(µ, σ1, ν)
evaluates to true. Again the decidability of ED(M) ensures that this check can also be
effectively done. The machine M1 outputs the first (in recursive enumeration order)
element of U |Y1|, for which ξ1(µ, σ1, ν) is true as F1(µ, σ1), and halts.

(c) If the answer is “No”, i.e. there is no ν ∈ U |Y1| s.t. ξ1(µ, σ1, ν) is true, M1 outputs the
first (in recursive enumeration order) tuple of U |Y1| as F1(µ, σ1), and halts.

It is easy to verify that the vector of functions F1 computed by M1 satisfies
∀X1

(
∃Y1 ξ1(Z,X1,Y1) ⇔ ξ1(Z,X1,F1(Z,X1))

)
for every valuation of the free variables Z

in U |Z|, i.e., we have a (correct) M-interpretation of Skolem function F1. This completes the
base case for i = 1.

For the general case of i ≥ 1, we write ξ(Z) as ∀X1∃Y1 . . .

∀Xi∃Yiξi(Z,X1,Y1, . . .Xi,Yi), where ξi is a formula with i less ∀∗∃∗ blocks than
ξ. By induction hypothesis, we know that there exists a Turing machine Mi that takes as
input any values for free variables Z and universally quantified variables X1, . . .Xi and out-
puts values for Y1, . . .Yi so that they correspond to outputs of (correct) M-interpretations
of vectors of Skolem functions F1, . . .Fi.

We need to show the existence of a computable interpretation of the vector of Skolem
functions Fi+1 for Yi+1. Thus, we are given a (|Z| + |X1| + . . . + |Xi| + |Xi+1|)-tuple
of values from U , and we need to show how to define a Turing machine Mi+1 that
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takes this vector as input and halts after computing values of vectors of Skolem func-
tions F1(µ, σ1), . . .Fi+1(µ, σ1, . . . σi, σi+1). Let (µ, σ1, . . . , σi, σi+1) be the given set of input
values. The Turing machine Mi+1 first simulates Mi on input (µ, σ1, . . . , σi). This re-
turns i vectors of values ν1 = F1(µ, σ1) ∈ U |Y1|, . . . νi = Fi(µ, σ1, . . . σi) ∈ U |Yi| such that
each of F1, . . . ,Fi is a Skolem function vector. Plugging in all these values in ξi gives
a sentence ξ̂i = ξi[Z 7→ µ,X1 7→ σ1,Y1 7→ ν1, . . . ,Xi 7→ σi,Yi 7→ νi]. Observe that
ξ̂i ≡ ∀Xi+1∃Yi+1ξ̂i+1(Xi+1,Yi+1) for some formula ξ̂i+1(Xi+1,Yi+1). We can then apply
the same argument as in the base case above and conclude.

Note that the values of Z,X1, . . .Xn used above were arbitrary tuples from U |Z|,
U |X1|, . . .U |Xn|. Hence lifting the notation introduced in sentence (1) of Section 2 to talk
about vector of variables Yi+1 instead of single variables yi,j , we conclude that the vector of
functions Fi+1 computed by Turing machine Mi+1 satisfies ∀Z∀X1 . . . ∀Xi+1(
∃Yi+1ξ

⋆
Yi+1

⇔ ξ⋆
Yi+1

[Yi+1 7→ Fi+1(Z,X1, . . .Xi+1)]
)
. Thus, Fi+1 gives a (correct)

M-interpretation of a vector of Skolem functions for Yi+1, which completes the proof.
(⇒) In the other direction, we will show that if there exists a halting Turing machine,

say M , that synthesizes computable M-interpretations of Skolem functions for all existential
variables in all V-formulas, then ED(M) must be decidable. We assume that there are at
least two elements in U ; let’s call them d1, d2. To show that ED(M) is decidable, we need to
show a decision procedure for the V(M)-theory of MC . Consider any V(M)-sentence φ. This
sentence may have finitely many constants that are not in V. Let us say c1, . . . ck are these
constants, for some non-negative integer k. We introduce k fresh variables y1, . . . yk and define
φ′ to be the formula obtained by taking φ and replacing each occurrence of the constant ci

by variable yi respectively. Note that φ′ is a V-formula. We introduce 3 more fresh variables
x, z1, z2 and consider the sentence ψ ≡ ∀y1 . . . ∀yk∀z1∀z2∃x

(
((x = z1)∧φ′)∨((x = z2)∧¬φ′)

)
.

We can easily rewrite this formula in prenex normal form, but doing so still leaves x as
the leftmost existentially quantified variable. We now feed this prenex normal form of ψ
as the input to Turing machine M (that synthesizes computable interpretations of Skolem
functions for all existential variables in all V-formulas). Let the computable interpretation of
the Skolem function for x, as output by M , be the Turing machine Mx. Therefore, Mx takes
as inputs values of y1, . . . yk, z1, z2 (as these are the only universally quantified variables to
the left of x in the quantifier prefix) and it always halts after computing a value for x. Now
we run the Turing machine Mx with the inputs: ci as the value for yi for i ∈ {1, . . . k}, d1 as
the value for z1 and d2 as the value for z2. Let the value computed by Mx with these inputs
be t. We then check if t = d1. If yes, we conclude that MC |= φ, else MC ̸|= φ. Thus, we
have a decision procedure for V(M)-theory of MC , i.e., ED(M) is decidable. ◀

The construction in the first part of the above proof shows that there exists a Turing machine
that runs in time polynomial in the length of ξ and in the length of a decision procedure for
ED(M), and generates a computable interpretation (i.e. code for a halting Turing machine)
that computes M-interpretations of all Skolem functions in ξ. Further, since a positive
answer to SkolemSynthesis implies a positive answer to SkolemExist, Theorem 10 also
gives a sufficient condition for SkolemExist to have a positive answer.

7 Applications and complexity

We now look at some consequences of the above characterization. We first ask if we can
algorithmically synthesize computable interpretations of Skolem functions in some well-known
theories in first-order logic. We start with a lemma.

MFCS 2022
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▶ Lemma 11. Let M be a computable V-structure with universe U . Suppose for every
element e ∈ U , there exists an effectively computable uni-variate V-formula αe(x) such that
αe(x) is true iff x = e. Then Th(M) is decidable iff ED(M) is decidable.

One may wonder if decidability of Th(M) automatically implies decidability of ED(M).
However, this is not true in general (see [2] for more details), emphasizing the need for
Lemma 11. From Lemma 11 and Theorem 10 we now have,

▶ Corollary 12. For the following theories, both SkolemExist and SkolemSynthesis
have positive answers, and we can effectively synthesize computable M-interpretations for
Skolem functions for a V-formula: 1. Presburger arithmetic; 2. Linear rational arithmetic
(LRA); 3. Theory of real algebraic numbers; 4. Theory of dense linear orders without
endpoints.

For the theory of natural numbers with addition, multiplication and order, we have seen
in Proposition 8 that SkolemExist has a negative answer, which of course implies that
SkolemSynthesis cannot have a positive answer. Using Lemma 11 and Theorem 10 we get
a direct proof for the latter fact. To see this note that the premise of Lemma 11 holds for
this theory as for Presburger arithmetic. Hence, ED(M) is decidable iff Th(M) is decidable.
But we know from the MRDP theorem [11] that the latter is indeed undecidable. Thus, from
Theorem 10, we obtain that SkolemSynthesis has negative instances in this theory.

We remark that the above discussion can also be seen as an alternate proof of the fact
that the elementary diagram is undecidable, since Theorem 10 is a characterization.

Complexity bounds on M-interpretations. When it applies, the proof of Theorem 10 gives
us a construction of a Turing machine M that takes a formula ξ as input and outputs a
computable M-interpretation (i.e. code for another Turing machine, say M ′) of Skolem
functions for all existential variables in ξ. What bounds can we give on the worst case
running time of M ′ (Problem 4.c in Section 4)? We start with a lower bound that follows
from the second part of the proof of Theorem 10.

▶ Theorem 13. Let M be a computable V-structure with a decidable ED(M). The worst
case running time of any computable M-interpretation of Skolem functions for a V-formula
is at least as much as that of a decision procedure for ED(M).

This shows for instance that for Presburger arithmetic, there exists formulas for which
any computable M-interpretation of Skolem functions will take at least (alternating) double
exponential time [8, 15] Next, for upper bounds, the computable M-interpretation of Skolem
functions, as detailed in the proof of Theorem 10, relies on enumeration. Hence, it does not
help in giving complexity upper bounds. However, if a theory admits effective constraint
solving (see Sec. 2 for a definition), then we can do better.

▶ Theorem 14. Let M be a V-structure such that ED(M) is decidable. Suppose ED(M)
admits effective constraint solving with worst-case time complexity T (n) and the solution
is represented as a tuple of domain elements requiring at most S(n) bits. Then we can
synthesize M-interpretations of Skolem functions for V-formulas of size n, such that the
running time and output size of the M-interpretations are bounded by recursive functions of
T (n) and S(n).

As an example, if S(n) is linear, i.e., S(n) ≤ C.n for a constant C > 0, then we get
time(n) ≤ k.T (k.(max{C, 1})k.n) and size(n) ≤ k.(max{C, 1})k.n. Finally, one way to
obtain an algorithm for effective constraint solving is by using effective quantifier elimination
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repeatedly and then using quantifier-free constraint solving. Thus, we could further bound
the complexity as functions of the complexity for effective quantifier elimination and that
of quantifier-free constraint solving. This can be applied, for example, for LRA, theory of
reals etc. Significantly, there are first-order theories that do not admit effective quantifier
elimination but admit effective constraint solving, e.g., theory of evaluated trees [10]. In such
cases, we can still use our approach to synthesize Skolem functions.

8 Expressing Skolem functions as terms

Whenever Skolem functions are computable, one can further ask: Can Skolem functions be
represented as terms? Notice that in the Boolean setting, the notions of terms, functions and
formulas are often conflated (as noted by Jiang [17] as well). Note that there are theories
without any terms, for which Skolem functions can still be synthesized as halting Turing
machines. For instance, the theory of (countable) dense linear order without endpoints does
not admit any terms. Yet, from Corollary 12, we know that we can effectively synthesize
computable Skolem functions for this theory. In fact, we can show a stronger result, viz, even
when the theory admits terms, we may not be able to interpret a Skolem function as a term.
To see this, consider the Presburger formula: ∀y∀z∃x(((x = y)∨(x = z))∧((x ≥ y)∧(x ≥ z))).
The unique Skolem function for x is max(y, z), which can be written as an imperative program
as: “input(y,z); if y ≥ z then return y else return z”. This is a uniform representation
(see Sec. 2) of a computable M-interpretation of the Skolem function for x. However, this
function cannot be written as a term in Presburger arithmetic. Indeed, any term of y, z that
uses only +, 0, 1 must be linear, while max is a non-linear function. Thus, we have

▶ Proposition 15. There exist first order theories for which Skolem functions can be effectively
computed, but they cannot be expressed as terms.

As described in [17], if Skolem functions in a first order theory can be represented using
a finite set of conditional terms (like in the case of max(y, z) above), the theory admits
effective quantifier elimination. However, we already have first order theories, e.g. the theory
of evaluated trees, that don’t admit quantifier elimination, but admit effective synthesis of
computable interpretations of Skolem functions. In such cases, Skolem functions can’t be
represented as a finite set of conditional terms either.

Note that there is a related notion of deskolemization in proof theory (see e.g., [6], [7])
in which proofs of Skolemized formulas are related to the proofs of corresponding formulas
without Skolem functions. However, this does not necessarily yield computable interpretations
of Skolem functions as terms.

9 Conclusion

The study of algorithmic computation of Skolem functions is highly nuanced. We explored
what it means for Skolem functions for first order logic to be computable and synthesizable.
Defining computable interpretations of Skolem functions as Turing machines, we showed that
they may not always exist and checking if they exist is undecidable in general. However,
when we fix a computable structure, we gave a precise characterization of when they exist
and show several applications for specific theories. While we have made some preliminary
progress regarding complexity issues, the question of synthesizing succinct interpretations is
still open as is the question of when Skolem functions can be represented as terms in the
logic. We hope that the theoretical framework set up here will lead to research towards
implementable synthesis of Skolem functions for first order logic.
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Abstract
One of the open problems in machine learning is whether any set-family of VC-dimension d admits
a sample compression scheme of size O(d). In this paper, we study this problem for balls in graphs.
For balls of arbitrary radius r, we design proper sample compression schemes of size 4 for interval
graphs, of size 6 for trees of cycles, and of size 22 for cube-free median graphs. We also design
approximate sample compression schemes of size 2 for balls of δ-hyperbolic graphs.
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1 Introduction

Sample compression schemes were introduced by Littlestone and Warmuth [22], and have been
vastly studied in the literature due to their importance in computational machine learning.
Roughly, a sample compression scheme consists of a compressor α and a reconstructor β,
and the aim is to compress data as much as possible, such that data coherent with the
original data can be reconstructed from the compressed data. For balls in graphs, sample
compression schemes of size k can be defined as follows. Given a ball B = Br(x) of a graph
G = (V, E), a realizable sample for B is a signed subset X = (X+, X−) of V such that X+ is
included in B, and X− is disjoint from B. Given a realizable sample X, X is compressed to
a subsample α(X) ⊆ X of size at most k. The reconstructor β takes α(X) as an input and
returns β(α(X)), a subset B′ of vertices of G that is consistent with X, i.e., X+ is included
in B′, and X− is disjoint from B′. If B′ is always a ball of G, then the compression scheme
is proper. If X+ = B and X− = V \ B, then β(α(X)) must coincide with B. Note that a
proper sample compression scheme of size k for the family of all balls of G yields a sample
compression scheme of size k for any subfamily of balls (e.g., for balls of a fixed radius r),
but this scheme is no longer proper. Sample compression schemes are labeled if β knows the
labels of the elements of α(X), and are unlabeled otherwise (abbreviated LSCS and USCS,
resp.). The Vapnik-Chervonenkis dimension (VC-dimension) of a set system was introduced
by Vapnik and Chervonenkis [27] as a complexity measure of set systems. VC-dimension is
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central in PAC-learning, and is important in combinatorics and discrete geometry. Floyd and
Warmuth [17] asked whether any set-family of VC-dimension d has a sample compression
scheme of size O(d). This remains one of the oldest open problems in machine learning.

In this paper, we consider the family of balls in graphs, which is as general as the sample
compression conjecture. Indeed, the sample compression conjecture for set families in general
is equivalent to the same conjecture restricted to the family of balls of radius 1 on split graphs
in which samples only contain vertices in the clique, and the centers of the unit balls are in the
stable set. Balls in graphs also constitute an important topic in graph theory, and moreover,
their VC-dimension has often been considered in the literature (see, e.g., [4, 7, 10, 16, 26]).

The VC-dimension of the balls of radius r of a graph not containing Kn+1 as a minor is at
most n [10]. This result was extended to arbitrary balls in [7]. Hence, the VC-dimension of
balls of planar graphs is at most 4 (2 for trees and 3 for trees of cycles), and the VC-dimension
of balls of a chordal graph G is at most its clique number ω(G). The VC-dimension of balls
of interval graphs was shown to be at most 2 in [16]. Finally, the VC-dimension of balls of
cube-free median graphs is unknown, but we can prove that it is at least 4.

Our results. In this paper, we design proper sample compression schemes of small size for
the family of balls of a graph G. We investigate this problem for different graph classes. For
trees of cycles, we exhibit proper LSCS of size 6 for all balls. Then, we design proper LSCS of
size 22 for all balls of cube-free median graphs. We also construct proper LSCS of size 4 for
all balls of interval graphs. Finally, we define (ρ, µ)-approximate proper sample compression
schemes, and design (2δ, 3δ)-approximate LSCS of size 2 for δ-hyperbolic graphs.

Related work. Floyd and Warmuth [17] proved that, for any concept class of VC-dimension
d, any LSCS has size at least d

5 , and that, for some maximum classes of VC-dimension
d, they have size at least d. Pálvölgyi and Tardos [25] proved that some concept classes
of VC-dimension 2 do not admit USCS of size at most 2. On the positive side, it was
shown by Moran and Yehudayoff [24] that LSCS of size O(2d) exist (their schemes are not
proper). For particular concept classes, better results are known. Floyd and Warmuth [17]
designed LSCS of size d for regions in arrangements of central hyperplanes in Rd. Ben-David
and Litman [5] obtained USCS of size d for regions in arrangements of affine hyperplanes
in Rd. Helmbold, Sloan, and Warmuth [19] (implicitly) constructed USCS of size d for
intersection-closed concept classes. Moran and Warmuth [23] designed proper LSCS of size d

for ample classes. Chalopin et al. [9] designed USCS of size d for maximum families. They
also combinatorially characterized USCS for ample classes via the existence of unique sink
orientations of their graphs. However, the existence of such orientations is open. Chepoi,
Knauer, and Philibert [12] extended the result of [23], and designed proper LSCS of size d for
concept classes defined by Complexes of Oriented Matroids (COMs). COMs were introduced
in [3] as a natural common generalization of ample classes and Oriented Matroids [6].

2 Definitions

Concept classes and sample compression schemes. Let V be a non-empty finite set. Let
C ⊆ 2V be a family of subsets (also called a concept class) of V . The VC-dimension VC-dim(C)
of C is the size of a largest set Y ⊆ V shattered by C, i.e., such that {C ∩ Y : C ∈ C} = 2Y .
In machine learning, a (labeled) sample is a set X = {(x1, y1), . . . , (xm, ym)}, where xi ∈ V

and yi ∈ {−1, +1}. To X is associated the unlabeled sample X = {x1, . . . , xm}. A sample
X is realizable by a concept C if yi = +1 if xi ∈ C, and yi = −1 if xi /∈ C. A sample X is
realizable by a concept class C if X is realizable by some C ∈ C.
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We adopt the language of sign maps and sign vectors from [6]. Let L be a set of sign vectors,
i.e., maps from V to {±1, 0} := {−1, 0, +1}. The elements of L are also called covectors.
For X ∈ L, let X+ := {v ∈ V : Xv = +1} and X− := {v ∈ V : Xv = −1}. X = X− ∪ X+

is called the support of X, and its complement X0 := V \ X = {v ∈ V : Xv = 0} the zero
set of X. Since X0 = V \ (X− ∪ X+), we will view any sample X as X− ∪ X+. Let ⪯ be
the product ordering on {±1, 0}V relative to the ordering of signs with 0 ⪯ −1 and 0 ⪯ +1.
Any concept class C ⊆ 2V can be viewed as a set of sign vectors of {±1}V : for any C ∈ C we
consider the sign vector X(C), where Xv(C) = +1 if v ∈ C and Xv(C) = −1 if v /∈ C. For
simplicity, we will consider C as a family of sets and as a set of {±1}-vectors. We now define
sample compression schemes. This way of presenting them seems novel. From the definition,
it follows that a sample X is just a {±1, 0}-sign vector. Given a concept class C ⊆ 2V and
C ∈ C, the set of samples realizable by C consists of all covectors X ∈ {±1, 0}V such that
X ⪯ C. We denote by ↓ C the set of all samples realizable by C.

A proper labeled sample compression scheme (proper LSCS) of size k for a concept
class C ⊆ {±1}V is defined by a compressor α : {±1, 0}V → {±1, 0}V and a reconstructor
β : {±1, 0}V → C such that, for any realizable sample X ∈↓ C, α(X) ⪯ X ⪯ β(α(X)) and
|α(X)| ≤ k, where ⪯ is the order between sign vectors defined above, and α(X) is the support
of the subsample of the sign vector X. Hence, α(X) is a signed vector with a support of size
at most k such that α(X) ⪯ X, and β(α(X)) is a concept C of C viewed as a sign vector.
It suffices to define the map α only on ↓ C, and the map β only on Im(α) := α(↓ C). The
condition X ⪯ β(α(X)) is equivalent to the condition β(α(X))|X = X, which means that
the restriction of the concept β(α(X)) to the support of X coincides with the sign vector X.
Proper unlabeled sample compression schemes (proper USCS) are defined analogously, only
that α(X) is not a signed vector, but a subset of size at most k of the support of X. For
graphs, any preprocessing on the input graph G, such as a labeling or an embedding of G, is
permitted and known to both the compressor and the reconstructor. As in, e.g., [22, 24],
information, like representing the support as a vector with coordinates, is also permitted,
and when we use such information, we refer to α and β as vectors rather than maps. Lastly,
in our schemes, the reconstructor returns the empty set when X+ = ∅, and thus, one may
consider that our schemes are not proper. We note that in all of the LSCS for the family
of balls of arbitrary radius we exhibit in this paper, we could simply choose an ordering on
the vertices of the graph G = (V, E), and put into α(X) a single vertex z ∈ X− such that
its successor z′ in the ordering does not belong to X−. Then, the reconstructor returns a
ball B0(z′) that does not intersect X = X− by the choice of z. However, to avoid additional
complications for such degenerate cases, we make use of the empty set.

Graphs. Every graph G = (V, E) in this paper is simple and connected. The distance
d(u, v) := dG(u, v) between two vertices u and v of a graph G is the length of a (u, v)-shortest
path. The interval I(u, v) is the set of vertices contained in (u, v)-shortest paths. A set
S is gated if, for any vertex x ∈ V , there is a vertex x′ ∈ S (the gate of x, with x′ = x if
x ∈ S) such that x′ ∈ I(x, y) for any y ∈ S. A median of a triplet u, v, w is any vertex in
I(u, v) ∩ I(v, w) ∩ I(w, u). A graph G is median [1] if any triplet of vertices u, v, w has a
unique median. For any vertex x ∈ V and any integer r ≥ 0, the ball of radius r centered
at x is the set Br(x) := {v ∈ V : d(v, x) ≤ r}. The unit ball B1(x) is usually denoted by
N [x] and called the closed neighborhood of x. The sphere of radius r centered at x is the
set Sr(x) = {z ∈ V : d(z, x) = r}. Let also cBr(u) = V \ Br(u). Two balls Br1(x) and
Br2(y) are distinct if Br1(x) and Br2(y) are distinct as sets. We denote by B(G) the set of
all distinct balls of G, and by Br(G) the set of all distinct balls of radius r of G. For a subset
Y ⊆ V , we call diam(Y ) = max{d(u, v) : u, v ∈ Y } the diameter of Y , and we call any pair
u, v ∈ Y such that d(u, v) = diam(Y ) a diametral pair of Y .

MFCS 2022



31:4 Sample Compression Schemes for Balls in Graphs

3 Trees of cycles

A tree of cycles (or cactus) is a graph in which each block (2-connected component) is a cycle
or an edge. We can design proper labeled (unlabeled, resp.) sample compression schemes of
size 2 for balls of (metric, resp.) trees, and balls of radius r of trees [8]. Indeed, for balls in
metric trees, α(X) is generally a diametral pair u, v of X+ and we return the ball of radius
d(u, v)/2 centered at the middle point of the (u, v)-shortest path. This does not work for
balls of radius r in trees, for which we cleverly encode a center.

We now describe the main result of this section: a proper labeled sample compression
scheme of size 6 for balls of trees of cycles. Let G be a tree of cycles. For a vertex v of G

that is not a cut vertex, let C(v) be the unique cycle containing v. If v is a cut vertex or
a degree-one vertex, then set C(v) = {v}. Let T (G) be the tree whose vertices are the cut
vertices and the blocks of G, and where a cut vertex v is adjacent to a block B of G if and
only if v ∈ B. For any two vertices u, v of G, let C(u, v) denote the union of all cycles and/or
edges on the unique path of T (G) between C(u) and C(v). Note that C(u, v) is a path of
cycles, and that C(u, v) is gated. Let X be a realizable sample for B(G), and {u+, v+} a
diametral pair of X+. The next lemma shows that the center of a ball realizing X can always
be found in C(u+, v+).

▶ Lemma 1. Let Br(x) be a ball realizing X, x′ be the gate of x in C(u+, v+), and r′ =
r − d(x, x′). Then, the ball Br′(x′) also realizes X.

In what follows, let Br(x) be a ball realizing X with x in C(u+, v+) (it exists by Lemma 1).
Let C be a cycle of C(u+, v+) containing x. The main idea is to encode a region of C(u+, v+)
where the center x of Br(x) is located (this region may be C), the center, and the radius
of Br(x) by a few vertices of X. The diametral pair {u+, v+} is in α(X). If X contains a
vertex w ̸= u+, v+ whose gate in C(u+, v+) is in C, then C is easily detected by including w

in α(X). In this case, it remains to find the position of x in C and to compute the radius r.
This is done by using 2 or 3 vertices of X. Otherwise, if the gates in C(u+, v+) of all vertices
w ∈ X \ {u+, v+} are outside C, then we show that Br(x) is determined by 4 vertices in X.

The partitioning of X. For a vertex y ∈ C(u+, v+), set ry := max{d(y, u+), d(y, v+)} and
r∗

y := max{d(y, w) : w ∈ X+}. Clearly, Br∗
y
(y) is the smallest ball centered at y containing

X+. For any vertex z of G, we denote by z′ its gate in C(u+, v+). Let u∗ and v∗ be the
gates of u+ and v+ in C. We partition X and X− as follows. Let Xu (X−

u , resp.) consist
of all w ∈ X (w ∈ X−, resp.) whose gate w′ in C(u+, v+) belongs to C(u+, u∗). The sets
Xv and X−

v are defined analogously. Let XC (X−
C , resp.) consist of all the vertices w ∈ X

(w ∈ X−, resp.) whose gates w′ in C(u+, v+) belong to the cycle C. Note that some of these
sets can be empty and that X−

u ⊆ Xu, X−
v ⊆ Xv, and X−

C ⊆ XC . Let u0 be the cut vertex
of C(u+, v+) farthest from u∗, and such that, for any vertex w ∈ Xu, its gate w′ ∈ C(u+, v+)
is not in C(u0, u∗). Analogously, we define the cut vertex v0 with respect to v∗ and Xv. If
u∗ = u+ (v∗ = v+, resp.), then set u0 = u∗ = u+ (v0 = v∗ = v+, resp.).

First, suppose that XC = ∅. Let w1 be a vertex of Xu closest to u0, and z1 a vertex of
X−

u closest to x. Note that w1 always exists as u+ is in Xu, and that z1 exists if and only if
X−

u is non-empty. Similarly, we define the vertices w2 and z2 with respect to Xv and X−
v .

See Fig. 1 for an illustration. The next lemmas show how to compute Br(x) in this case.

▶ Lemma 2. For y ∈ C(u0, v0), if there exists a vertex w ∈ X+ \ Bry (y), then w′ ∈ C(y).
Consequently, if XC = ∅, then, for any y ∈ C(u0, v0), we have X+ ⊂ Bry

(y) and ry = r∗
y.
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v+C v∗

X−u

u+

w′1

z1

x

X−v

v0

w2

w′2

z2

X−C

u∗u0

w1

Xu Xv

Figure 1 The vertices and sets used in the proper labeled sample compression scheme for trees of
cycles. The ball Br(x) is represented in red. The cycles outside C(u+, v+) are represented as paths.

▶ Lemma 3. If X− ̸= ∅ and XC = ∅, then Br∗
y
(y) ∩ X− = ∅ for any vertex y ∈ C(u0, v0)

such that Br∗
y
(y) ∩ {z1, z2} = ∅.

Now, suppose that XC ̸= ∅. By the definition of r∗
x, Br∗

x
(x) also realizes X. Let w be a

vertex of X whose gate w′ in C(u+, v+) is in C. If, for every y ∈ C, Br∗
y
(y) realizes X, then

Br∗
w′

(w′) realizes X, and, in this case, let s ∈ X+ be such that d(w′, s) = r∗
w′ . Otherwise, we

can find two adjacent vertices x and y of C such that Br∗
x
(x) realizes X, but Br∗

y
(y) does

not. This implies that there is a vertex z ∈ X− with z ∈ Br∗
y
(y) \ Br∗

x
(x). In this case, let

s, t ∈ X+ be such that r∗
y = d(y, s) and r∗

x = d(x, t), with t = s whenever r∗
y = r∗

x + 1. Let s′,
t′, and z′ be the respective gates of s, t, and z in C. If s = t (s ̸= t, resp.), then let P ′ be the
path of C between s′ and z′ (t′, resp.) containing the edge xy. See Fig. 2 for an illustration.

▶ Lemma 4. For adjacent vertices x, y ∈ C, and the corresponding vertices z ∈ X− and
s ∈ X+, one of the following conditions holds:
(1) r∗

y = r∗
x + 1, d(x, z) = d(y, z) + 1, and d(x, s) = d(y, s) − 1;

(2) r∗
y = r∗

x + 1, d(x, z) = d(y, z), and d(x, s) = d(y, s) − 1;
(3) r∗

y = r∗
x, d(x, z) = d(y, z) + 1, and d(x, s) = d(y, s);

(4) r∗
y = r∗

x, d(x, z) = d(y, z) + 1, and d(x, s) = d(y, s) − 1.

Without the knowledge of r∗
x and r∗

y, the relationships between d(x, z) and d(y, z), and
between d(x, s) and d(y, s) do not allow us to distinguish between the cases (1) and (4). This
can be done by additionally using the vertex t ∈ X+ defined above. Indeed, in Case (1) we
have t = s, while in Case (4) we have t ̸= s and d(x, t) = d(y, t) + 1. We continue with the
following simple lemma for paths (where, for each edge xy in the path, x is to the left of y):

▶ Lemma 5. Let Q be a graph which is a path with end-vertices a ̸= b, and let d′ be its
distance function. Then, Q contains a unique edge x0y0 such that d′(x0, b)−d′(x0, a) ∈ {1, 2}.

(1) (2) (3) (4)

x

y

s′

t′z′

z

s

t

y

x x

y

s′

s

s′

s

z′

z

z′

z

z′ z s′ s

t′

t

x

y

P ′ P ′ P ′ P ′

Figure 2 Definition and positioning of s, t, and z in the four cases of Lemma 4.

We use Lemma 5 to find adjacent vertices x0 and y0 of C and an integer r∗
x that satisfy a

condition of Lemma 4. Let P ′ be the path between z′ and s′ (or between s′ and t′) containing
the edge xy as defined above. Let P be the path of G obtained by joining the shortest (s′, s)-
and (z, z′)-paths ((s, s′)- and (t′, t)-paths, resp.) to P ′. Let d′ be the distance function on P .
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▶ Lemma 6. Let P be the (s, z)-path or (s, t)-path of G defined above. Let x0y0 be the unique
edge of P satisfying the conclusion of Lemma 5. Then, x0 = x and y0 = y. Moreover,
(1) if P is an (s, z)-path, d′(x0, z) = d(x0, z), and d′(y0, s) = d(y0, s), then r∗

x = d(y0, s) − 1;
(2) if P is an (s, z)-path, d′(x0, z) = d(x0, z) + 1, and d′(y0, s) = d(y0, s), then r∗

x =
d(y0, s) − 1;

(3) if P is an (s, z)-path, d′(x0, z) = d(x0, z), and d′(y0, s) = d(y0, s) + 1, then r∗
x = d(y0, s);

(4) if P is an (s, t)-path, then r∗
x = d(x0, t).

The compressor α(X). The compressor α(X) is a vector with six coordinates, which
are grouped into three pairs: α(X) := (α1(X), α2(X), α3(X)). The pair α1(X) ⊆ X+ is a
diametral pair (u+, v+) of X+, α2(X) is used to specify the region of C(u+, v+) where the
center of the target ball is located, and the pair α3(X) is used to compute the radius of this
ball. We use the symbol ∗ to indicate that the respective coordinate of α(X) is empty.

We continue with the definitions of α2(X) and α3(X). First, suppose that XC = ∅, i.e.,
Xu ∪ Xv = X and X−

u ∪ X−
v = X−. Then, set α2(X) := (w1, w2) and α3(X) := (z1, z2).

Now, suppose that XC ̸= ∅. Let w be a vertex of X whose gate w′ in C(u+, v+) belongs to
C. If Br∗

x
(x) realizes X for any vertex x of C, then set α2(X) := (w, ∗) and α3(X) := (s, ∗),

where s ∈ X+ is such that d(w′, s) = r∗
w′ . Otherwise, we pick an edge xy of C such that

Br∗
x
(x) realizes X and Br∗

y
(y) does not realize X. Let s′, t′, and z′ be the respective gates in

C of the vertices s, t, and z as defined previously. If s = t, then the path P is defined by the
vertices s and z, and set α3(X) := (s, z). Otherwise, the path P is defined by the vertices s

and t, and set α3(X) := (s, t). Moreover, set α2(X) := (∗, w) if the edge xy belongs to the
path from s′ to z′ (from s′ to t′, resp.) in the clockwise traversal of C, and α2(X) := (w, ∗)
otherwise. Formally, the compressor function α is defined in the following way:
(C1) if X− = ∅, set α1(X) = α2(X) = α3(X) := (∗, ∗);
(C2) otherwise, if |X+| = 0, set α1(X) = α2(X) := (∗, ∗) and α3(X) := (z, ∗), where z is an

arbitrary vertex of X−;
(C3) otherwise, if X+ = {u}, set α1(X) := (u, ∗), α2(X) := (∗, ∗), and α3(X) := (z, ∗),

where z is an arbitrary vertex of X−;
(C4) otherwise, if |X+| ≥ 2 and XC = ∅, set α1(X) := (u+, v+), α2(X) := (w1, w2), and

(C4i) if the vertex z2 does not exist, then set α3(X) := (z1, ∗);
(C4ii) if the vertex z1 does not exist, then set α3(X) := (∗, z2);
(C4iii) if the vertices z1 and z2 exist, set α3(X) := (z1, z2);

(C5) otherwise (|X+| ≥ 2 and XC ̸= ∅), and
(C5i) if, for any vertex y ∈ C, the ball Br∗

y
(y) realizes X, then set α1(X) := (u+, v+),

α2(X) := (w, ∗), and α3(X) := (s, ∗), where s ∈ X+ is such that d(w′, s) = r∗
w′ ;

(C5ii) otherwise, if s and z are given, and the edge xy belongs to the clockwise (s′, z′)-path
of C, then set α2(X) := (∗, w) and α3(X) := (s, z);

(C5iii) otherwise, if s and z are given, and the edge xy belongs to the counterclockwise
(s′, z′)-path of C, then set α2(X) := (w, ∗) and α3(X) := (s, z);

(C5iv) otherwise, if s and t are given, and the edge xy belongs to the clockwise (s′, t′)-path
of C, then set α2(X) := (∗, w) and α3(X) := (s, t);

(C5v) otherwise, if s and t are given, and the edge xy belongs to the counterclockwise
(s′, t′)-path of C, then set α2(X) := (w, ∗) and α3(X) := (s, t).
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The reconstructor β(X). Let Y be a vector on six coordinates grouped into three pairs Y1,
Y2, and Y3. If Y1 = (y1, y2), then, for any vertex t of G, we denote by t′ its gate in C(y1, y2).
For any vertex y of C(y1, y2), we also set ry := max{d(y, y1), d(y, y2)}. The reconstructor β

takes Y and returns a ball Br(y) of G defined in the following way:
(R1) if Y = ((∗, ∗), (∗, ∗), (∗, ∗)), then β(Y ) is any ball that contains the vertex set of G;
(R2) if Y = ((∗, ∗), (∗, ∗), (y5, ∗)), then β(Y ) is the empty set;
(R3) if Y = ((y1, ∗), (∗, ∗), (y5, ∗)), then β(Y ) is the ball B0(y1);
(R4) if Y1 = (y1, y2) and Y2 = (y3, y4), then let u0 be the cut vertex of C(y′

3) between y′
3

and y2, and v0 be the cut vertex of C(y′
4) between y′

4 and y1. Then, β(Y ) is any ball
Bry (y) centered at y ∈ C(u0, v0) such that Bry (y) contains no vertex of Y3.

(R5i) if Y = ((y1, y2), (y3, ∗), (y5, ∗)), then β(Y ) is the ball Br(y′
3) of radius r = d(y′

3, y5);
(R5ii) if Y = ((y1, y2), (∗, y4), (y5, y6)) and (y5, y6) ∈ X+ × X−, let xy be the edge of the

(y′
5, y′

6)-path in the clockwise traversal of the cycle C(y′
4) such that |d′(x, y6) − d′(x, y5)| ∈

{1, 2} and y is closer to y6 than x is. Let β(Y ) be the ball Br(x), where r = d(y, y5) if
d′(y, y5) = d(y, y5) + 1, and r = d(y, y5) − 1 otherwise;

(R5iii) if Y = ((y1, y2), (y3, ∗), (y5, y6)) and (y5, y6) ∈ X+ × X−, let xy be the edge of the
(y′

5, y′
6)-path in the counterclockwise traversal of C(y′

3) such that |d′(x, y6) − d′(x, y5)| ∈
{1, 2} and y is closer to y6 than x is. Let β(Y ) be the ball Br(x), where r = d(y, y5) if
d′(y, y5) = d(y, y5) + 1, and r = d(y, y5) − 1 otherwise;

(R5iv) if Y = ((y1, y2), (∗, y4), (y5, y6)) and (y5, y6) ∈ X+ × X+, let xy be the edge of the
(y′

5, y′
6)-path in the clockwise traversal of the cycle C(y′

4) such that |d′(x, y6) − d′(x, y5)| ∈
{1, 2} and y is closer to y6 than x is. Let β(Y ) be the ball Br(x), where r = d(x, y6);

(R5v) if Y = ((y1, y2), (y3, ∗), (y5, y6)) and (y5, y6) ∈ X+ × X+, let xy be the edge of the
(y′

5, y′
6)-path in the counterclockwise traversal of the cycle C(y′

3) such that |d′(x, y6) −
d′(x, y5)| ∈ {1, 2} and y is closer to y6 than x is. Let β(Y ) be the ball Br(x), where
r = d(x, y6);

▶ Proposition 7. For any tree of cycles G, the pair (α, β) of vectors defines a proper labeled
sample compression scheme of size 6 for B(G).

Proof. Let X be a realizable sample for B, Y = α(X), and Br(x∗) = β(Y ). We prove
case by case that the ball Br(x∗) realizes the sample X. One can easily see that the
cases (Rk) and their subcases in the definition of β correspond to the cases (Ck) and
their subcases in the definition of α: namely, the vector Y in Case (Rk) has the same
specified coordinates as the vector α(X) in Case (Ck). We consider only the Case (R4),
the other cases being similar. Then, Y1 = (y1, y2) and Y2 = (y3, y4). Since Y = α(X), the
sample X satisfies the conditions of Case (C4), i.e., |X+| ≥ 2 and XC = ∅. Therefore,
Y1 = (y1, y2) = (u+, v+) = α1(X), Y2 = (y3, y4) = (w1, w2) = α2(X), and Y3 (containing one
or two vertices) coincides with α3(X) (containing one or two vertices z1, z2 as in subcases
(C4i)–(C4iii)). The ball Bry

(y) returned by Case (R4) is centered at y ∈ C(u0, v0), contains
Y1, and is disjoint from Y3. Since the target ball Br(x) has its center on C(u0, v0) and is
compatible with X ⊇ Y1 ∪ Y3, the ball Bry (y) is well-defined. By Lemma 2, Bry (y) contains
X+. By Lemma 3, Bry

(y) is disjoint from X−. Thus, Bry
(y) is compatible with X. ◀

▶ Remark 8. The most technically involved case of the previous result is the case XC ̸= ∅. In
fact, this case corresponds to proper labeled sample compression schemes in spiders, i.e., in
graphs consisting of a single cycle C and paths of different lengths emanating from this cycle.
Due to this case, α(X) in our result is not a signed map but a signed vector of size 6. Thus,
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in this case, we need extra information compared to the initial definition of proper labeled
sample compression schemes. The VC-dimension of the family of balls in a spider and in a
tree of cycles is 3. We wonder whether the family of balls in spiders admits a proper labeled
sample compression scheme without any information that is of (a) size 3 or (b) constant size.

4 Cube-free median graphs

The dimension dim(G) of a median graph G is the largest dimension of a hypercube of G. A
cube-free median graph is a median graph of dimension 2, i.e., a median graph not containing
3-cubes as isometric subgraphs. For references about median graphs, see [1]. For cube-free
median graphs, see [2, 11, 13, 14]. We use the fact that intervals of median graphs are gated.
We describe a proper LSCS of size 22 for balls of cube-free median graphs.

Let G be a cube-free median graph. Let X be a realizable sample for B(G), and {u+, v+}
a diametral pair of X+. The next lemma shows that the center of a ball realizing X can
always be found in I(u+, v+) (this result does not hold for all median graphs):

▶ Lemma 9. If x′ is the gate of x in the interval I(u+, v+), and r′ = r − d(x, x′), then X is
a realizable sample for Br′(x′), i.e., X+ ⊆ Br′(x′) and X− ∩ Br′(x′) = ∅.

By [14], I(u+, v+) of a cube-free median graph has an isometric embedding in the square
grid Z2. We denote by (za, zb) the coordinates in Z2 of a vertex z ∈ I(u, v). We consider
isometric embeddings of I(u, v) in Z2 for which u = (0, 0) and v = (va, vb) with va ≥ 0 and
vb ≥ 0. We fix a canonical isometric embedding, which can be used both by the compressor
and the reconstructor. Finally, we use the same notation for the vertices and their images
under the embedding, and we denote by I the interval I(u+, v+) embedded in Z2. As usual,
for a vertex z ∈ V , we denote by z′ its gate in the interval I(u+, v+).

The compressor α(X). The compressor α(X) is a vector with 22 coordinates grouped
into four parts α(X) := (α1(X), α2(X), α3(X), α4(X)). The part α1(X) ⊆ X+ consists of
a diametral pair (u+, v+) of X+. The part α2(X) ⊆ X has size 4, and is used to specify a
region R ⊆ I = I(u+, v+) such that the gates in I(u+, v+) of all the vertices of X are located
outside or on the boundary of R. Moreover, R contains the center x of the target ball Br(x).
The parts α3(X) ⊆ X+ and α4(X) ⊆ X− each have size 8 and are used to locate the center
and the radius of a ball Br′′(y) realizing X. Now, we formally define αi(X), i = 1, ..., 4.
Let X1 := {w ∈ X : w′

b ≥ xb}, X2 := {w ∈ X : w′
a ≥ xa}, X3 := {w ∈ X : w′

b ≤ xb}, and
X4 := {w ∈ X : w′

a ≤ xa}. Since I(u+, v+) is gated, X = ∪4
i=1Xi. Denote by X ′

i, i = 1, ..., 4,
the gates of the vertices of Xi in I(u+, v+). Set α2(X) := (w1, w2, w3, w4) ∈ X4, where:

w1 is a vertex of X1 whose gate w′
1 has the smallest ordinate among the vertices of X ′

1;
w2 is a vertex of X2 whose gate w′

2 has the smallest abscissa among the vertices of X ′
2;

w3 is a vertex of X3 whose gate w′
3 has the largest ordinate among the vertices of X ′

3;
w4 is a vertex of X4 whose gate w′

4 has the largest abscissa among the vertices of X ′
4;

For a vertex w = (wa, wb) ∈ Z2, we consider the four coordinate halfplanes H≤wa
:= {t : ta ≤

wa}, H≥wa ,H≤wb
, and H≥wb

. Let R be the set of vertices of I that belong to the intersection
of the halfplanes H1 := H≤w1b

, H2 := H≤w2a
, H3 := H≥w3b

, and H4 := H≥w4a
. If a vertex

wi does not exist, then the corresponding halfplane Hi is not defined. From the definition,
the inside of R does not contain gates of vertices of X. We denote by Si, i = 1, ..., 4, the
intersection of I with the closure of the complementary halfspace of Hi. We call Si, i = 1, ...4,
a strip of I. Consequently, the interval I is covered by the region R, two horizontal strips S1
and S3, and two vertical strips S2 and S4. Using this notation, we can redefine Xi as the
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Figure 3 On the left, the region R and the halfstrips S′
1(x), S′′

2 (x), S′
3(x), and S′′

4 (x). On the
right, the regions R, R′, and R′′ computed from α(X). Steps 1-4 of the reconstruction correspond
to the black, green, blue, and red parts of the figure. The target center x is given in gray.

sets of all the vertices of X whose gate in I belongs to the strip Si. Consequently, X ′
i ⊆ Si.

Furthermore, for a vertex z ∈ Z2, each strip Si is partitioned into two strips S′
i(z) and S′′

i (z)
by the vertical or horizontal line passing via z. The labeling of the strips is done in the
clockwise order around z, see Fig. 3 (left). Let α3(X) := (s1, t1, s2, t2, s3, t3, s4, t4), where

s1 is a vertex of X+ furthest from x, whose gate s′
1 belongs to S′

1(x), and t1 is a vertex
of X+ such that its gate t′

1 belongs to S′′
1(x) and the abscissa of t′

1 is closest to xa;
s2 is a vertex of X+ furthest from x, whose gate s′

2 belongs to S′′
2(x), and t2 is a vertex

of X+ such that its gate t′
2 belongs to S′

2(x) and the ordinate of t′
2 is closest to xb;

s3 is a vertex of X+ furthest from x, whose gate s′
3 belongs to S′

3(x), and t3 is a vertex
of X+ such that its gate t′

3 belongs to S′′
3(x) and the abscissa of t′

3 is closest to xa;
s4 is a vertex of X+ furthest from x, whose gate s′

4 belongs to S′′
4(x), and t4 is a vertex

of X+ such that its gate t′
4 belongs to S′

4(x) and the ordinate of t′
4 is closest to xb.

Let α4(X) := (p1, q1, p2, q2, p3, q3, p4, q4), where pi is a vertex of X− closest to x, whose gate
p′

i belongs to S′
i(x), and qi is a vertex of X− closest to x, whose gate q′

i belongs to S′′
i (x). If

any of the vertices of the four groups is not defined, then its corresponding coordinate in
α(X) is set to ∗.

The reconstructor β(Y ). Let Y be a vector of 22 coordinates corresponding to a re-
alizable sample and grouped into four parts Y1 := (y1, y2), Y2 := (y3, y4, y5, y6), Y3 :=
(y7, y8, y9, y10, y11, y12, y13, y14), and Y4 := (y15, y16, y17, y18, y19, y20, y21, y22). The recon-
structor β(Y ) returns a ball Br′′(y) by performing the following steps (see Fig. 3 (right)):
1. Using Y1, canonically isometrically embed I(y1, y2) into Z2 as I.
2. Using Y2, compute the gates y′

i of yi in I and compute the region R as the intersection of
the halfplanes H≤y1b

, H≤y2a , H≥y3b
, and H≥y4a with I.

3. Using Y3, compute the set R′ ⊆ R of all y = (ya, yb) ∈ R such that the gates
y′

7, y′
8, y′

9, y′
10, y′

11, y′
12, y′

13, y′
14 belong to S′

1(y), S′′
1(y), S′′

2(y), S′
2(y), S′

3(y), S′′
3(y), S′′

4(y),
S′

4(y), resp. For each y ∈ R′, let r′
y be the smallest radius such that Y1 ∪ Y3 ⊆ Br′

y
(y).

4. Using Y4, compute the region R′′ ⊆ R consisting of all the vertices y ∈ R such that the
gates y′

15, y′
16, . . . , y′

21, y′
22 belong to the strips S′

1(y), S′′
1(y), . . ., S′

4(y), S′′
4(y), respectively.

For each y ∈ R′′, let r′′
y be the largest radius such that Br′′

y
(y) ∩ Y4 = ∅.

5. Let R0 := {y ∈ R′ ∩ R′′ : r′′
y ≥ r′

y} and return as β(Y ) any ball Br′′
y

(y) with y ∈ R0.

▶ Proposition 10. For any cube-free median graph G, the pair (α, β) of vectors defines a
proper labeled sample compression scheme of size 22 for B = B(G).
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5 Interval Graphs

For any interval graph G = (V, E), we construct proper LSCS of size 4 for B(G) and Br(G).
We consider a representation of G by a set of segments Jv, v ∈ V of R with pairwise distinct
ends. For any u ∈ V , we denote by Ju = [su, eu] its segment, where su is the start of Ju, and
eu is the end of Ju, i.e., su ≤ eu. We use the following property of interval graphs:

▶ Lemma 11. If u, v ∈ Br(x), su, sz < sv, and eu < ev, ez, then z ∈ Br(x).

Proof. Since sz < sv and eu < ez, if Ju and Jv intersect, then Jz covers the segment [sv, eu],
and otherwise, Jz intersects [eu, sv]. Let P be a path obtained from a shortest (x, u)-path
of G by removing u, and Q be a path obtained from a shortest (x, v)-path by removing
v. The union JS of all segments of S := P ∪ {x} ∪ Q intersects Ju and Jv. If Ju and Jv

intersect, then Jz covers [sv, eu], and thus, intersects JS . Otherwise, JS covers [eu, sv], and
Jz intersects [eu, sv]. In both cases, Jz and JS intersect, whence a segment of S intersects
Jz. Since all segments of S are at distance at most r − 1 from x, z ∈ Br(x). ◀

Let X be a realizable sample for B(G). A farthest pair of X+ is a pair {u+, v+} such
that u+ is the vertex in X+ whose interval Ju+ ends farthest to the left, and v+ is the
vertex in X+ whose interval Jv+ begins farthest to the right, i.e., for any w ∈ X+, we
have eu+ < ew and sw < sv+ . If u+ ̸= v+, then [eu+ , sv+ ] ∩ Jw ≠ ∅ for any w ∈ X+. If
u+ = v+, then Ju+ ⊆ Jw for any w ∈ X+. A vertex p− of X− is a left-bounder if there is a
ball Br(x) realizing X such that ep− < sx and, for all p ∈ X− with ep < sx, it holds that
ep ≤ ep− . Analogously, a vertex q− of X− is a right-bounder if there is a ball Br(x) realizing
X such that ex < sq− and, for all q ∈ X− with ex < sq, it holds that sq− ≤ sq. If p− is a
left-bounder and q− is a right-bounder, then {p−, q−} is a bounding pair of X−. The farthest
pair {u+, v+} of X+ and the bounding pair {p−, q−} of X− have the following properties:

▶ Lemma 12. If u+, v+ ∈ Br(x) and r > 0, then X+ ⊆ Br(x).

Proof. Pick any w ∈ X+ \ {u+, v+}. By the definition of u+ and v+, we have sw < sv+

and eu+ < ew. If u+ ̸= v+, then su+ < sv+ and eu+ < ev+ , and so, su+ , sw < sv+ and
eu+ < ev+ , ew. By Lemma 11, w ∈ Br(x). Now, let u+ = v+. Then, Ju+ ⊂ Jw, and thus,
any segment intersecting Ju+ also intersects Jw. Consequently, w is included in any ball of
G of radius r > 0 containing u+, and, in particular, w ∈ Br(x). ◀

▶ Lemma 13. If ep− < sx and p− /∈ Br(x), then, for all z ∈ X− with ez < ep− , z /∈ Br(x).
Also, if ex < sq− and q− /∈ Br(x), then, for all w ∈ X− with sq− < sw, w /∈ Br(x).

Proof. For the first statement, towards a contradiction, suppose that ep− < sx and p− /∈
Br(x), but there exists z ∈ X− such that ez < ep− and z ∈ Br(x). Then, sz, sp− < sx since
sz ≤ ez < ep− < sx, and ez < ex, ep− as ez < ep− < sx ≤ ex. By Lemma 11, p− ∈ Br(x),
a contradiction. For the second statement, suppose by way of contradiction that ex < sq−

and q− /∈ Br(x), but there exists w ∈ X− such that sq− < sw and w ∈ Br(x). Then,
sx, sq− < sw since sx ≤ ex < sq− < sw, and ex < ew, eq− as ex < sq− < sw ≤ ew. By
Lemma 11, q− ∈ Br(x), a contradiction. ◀

The compressor α(X) of X is a vector with four coordinates grouped into two pairs:
α(X) := (α1(X), α2(X)). The pair α1(X) is a farthest pair {u+, v+} of X+ and the pair
α2(X) is a bounding pair {p−, q−} of X−. We use the symbol ∗ to indicate that the respective
coordinate of α(X) is empty. We define α(X) as follows:
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(C1) if X+ = ∅, then set α1(X) = α2(X) := (∗, ∗);
(C2) if X+ = {x}, then set α1(X) := (x, ∗) and α2(X) := (∗, ∗);
(C3) if |X+| ≥ 2, then set α1(X) := (u+, v+) if u+ ̸= v+ and α1(X) := (∗, v+) if u+ = v+;

(C3i) if X− = ∅, then set α2(X) := (∗, ∗);
(C3ii) if there exists a bounding pair of X−, then set α2(X) := (p−, q−);
(C3iii) if there exists a left-bounder, but not a right-bounder of X−, then set α2(X) :=

(p−, ∗);
(C3iv) if there exists a right-bounder, but not a left-bounder vertex of X−, then set

α2(X) := (∗, q−).

The reconstructor β takes any signed vector Y on four coordinates grouped into two pairs
Y1 and Y2 from Im(α), and returns a ball β(Y ) defined as follows:
(R1) if Y1 = Y2 = (∗, ∗), then β(Y ) is the empty ball;
(R2) if Y1 = (y1, ∗) and Y2 = (∗, ∗), then β(Y ) is the ball of radius 0 centered at y1;
(R3) if Y1 = (y1, y2) or Y1 = (∗, y2), then β(Y ) is any ball Br(x) of radius r ≥ 1 containing

Y1, not intersecting Y2, and such that:
(R3i) if Y2 = (∗, ∗), then no condition;
(R3ii) if Y2 = (y3, y4), then ey3 < sx and ex < sy4 ;
(R3iii) if Y2 = (y3, ∗), then ey3 < sx;
(R3iv) if Y2 = (∗, y4), then ex < sy4 .

Now, let X be a realizable sample for Br(G). If |X+| ≥ 2 or r ≥ 1, then we define α and
β as above, since, in these cases, we do not specify the radius of the ball realizing X in α, nor
the radius of the ball returned by β. So, we can exhibit a proper LSCS of size 4 for Br(G)
if we can deal with the case |X+| ≤ 1. The only difference is that if |X+| ≤ 1, then we set
α2(X) as in Case (C3), but we set α1(X) := (∗, ∗) when X+ = ∅, and α1(X) := (∗, x) when
X+ = {x}. Now, let r = 0. If |X+| = 0 and there is a ball B0(y) such that y /∈ X− and
ey < ez for any z ∈ V, z ̸= y, then α(X) := ((∗, ∗), (∗, ∗)). Otherwise, if |X+| = 0, there is a
ball B0(y) such that y /∈ X−, w′ ∈ X−, ew′ < ey, and, for all w ∈ V with ew < ey, we have
ew ≤ ew′ . In this case, α(X) := ((∗, ∗), (w′, ∗)). If X+ = {x}, set α(X) := ((x, ∗), (∗, ∗)).
Given any signed vector Y on four coordinates, β returns a ball β(Y ) defined as follows. If
Y = ((∗, ∗), (∗, ∗)), then β(Y ) is the ball B0(x) such that ex < ez for any z ∈ V \ {x}. If
Y = ((∗, ∗), (y3, ∗)), then β(Y ) is the ball B0(x) such that ey3 < ex, and, for all w ∈ V with
ew < ex, it holds that ew ≤ ey3 . Lastly, if Y = ((x, ∗), (∗, ∗)), then β(Y ) is the ball B0(x).

▶ Proposition 14. For any interval graph G = (V, E), the pair (α, β) of vectors defines a
proper labeled sample compression scheme of size 4 for B(G) and Br(G).

Proof. Let X be a realizable sample for B(G) (the case of Br(G) is similar), Y = α(X), and
Br(x) = β(Y ). The cases (Rk) and their subcases in the definition of β correspond to the
cases (Ck) and their subcases in the definition of α. The correctness is trivial if k = 1, 2. Now,
let k = 3. Since Y1 always contains a farthest pair of X+ and the returned ball Br(x) contains
Y1 and r ≥ 1, by Lemma 12, X+ ⊆ Br(x). Furthermore, in Case (C3), any ball realizing
X must have a radius r ≥ 1 since |X+| ≥ 2. Now, we prove that X− ∩ Br(x) = ∅. This is
trivial in subcase (R3i) since X− = ∅. In the remaining subcases of (R3), X− ∩ Br(x) = ∅
follows from the definition of the corresponding subcase of case (C3) and Lemma 13. ◀
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6 Hyperbolic graphs

A (ρ, µ)-approximate proper labeled sample compression scheme of size k for the family of
balls B(G) of a graph G compresses any realizable sample X to a subsample α(X) of support
of size k, such that β(α(X)) is a ball Br(x) such that X+ ⊆ Br+ρ(x) and X− ∩Br−µ(x) = ∅.
Let (V, d) be a metric space and w ∈ V . Let δ ≥ 0. A metric space (X, d) is δ-hyperbolic [18] if,
for any four points u, v, x, y of X, the two larger of the sums d(u, v)+d(x, y), d(u, x)+d(v, y),
and d(u, y) + d(v, x), differ by at most 2δ ≥ 0. Next, we show that δ-hyperbolic graphs admit
a (2δ, 3δ)-approximate labeled sample compression scheme of size 2.

An interval I(u, v) of a graph is ν-thin if d(x, y) ≤ ν for any two points x, y ∈ I(u, v) with
d(u, x) = d(u, y) and d(v, x) = d(v, y). Intervals of δ-hyperbolic graphs are 2δ-thin. A metric
space (X, d) is injective if, whenever X is isometric to a subspace Z of a metric space (Y, d′),
there is a map f : Y → Z such that f(z) = z for any z ∈ Z and d′(f(x), f(y)) ≤ d′(x, y) for
any x, y ∈ Y . By a construction of Isbell [20] (rediscovered by Dress [15]), any metric space
(V, d) has an injective hull E(V ), i.e., the smallest injective metric space into which (V, d)
isometrically embeds. Lang [21] proved that the injective hull of a δ-hyperbolic space is δ-
hyperbolic. It was shown in [15] that the injective hull T := T (u, v, y, w) of a metric space on
4 points u, v, y, w is a rectangle R := R(u′, v′, y′, w′) with four attached tips uu′, vv′, yy′, ww′

(one or several tips may reduce to a single point or R may reduce to a segment or a single
point). The smallest side of R is exactly the hyperbolicity of the quadruplet u, v, y, w.

Let X be a realizable sample of B(G) and {u+, v+} be a diametral pair of X+. Let Br∗(y)
be a ball of smallest radius such that X+ ⊆ Br∗(y) and X− ∩Br∗(y) = ∅. We set α(X) := ∅
if X+ = ∅, α(X) := X+ if |X+| = 1, and α(X) := {u+, v+} if |X+| ≥ 2. Given a subset Y

of size at most 2, the reconstructor returns β(Y ) = ∅ if Y = ∅, β(Y ) = B0(y) if Y = {y},
and β(Y ) = Bd(y1,y2)/2(x) if Y = {y1, y2}, where x is the middle of a (y1, y2)-geodesic.

▶ Proposition 15. For any δ-hyperbolic graph G = (V, E), the pair (α, β) defines a (2δ, 3δ)-
approximate proper labeled sample compression scheme of size 2 for B(G).

Proof. We first show that X+ ⊆ Br+2δ(x), where r = d(u+, v+)/2 and x is a middle of a
(u+, v+)-geodesic. Pick any w ∈ X+. Since u+, v+ is a diametral pair of X+, d(u+, w) ≤ 2r

and d(v+, w) ≤ 2r. We also have d(u+, v+) = 2r and d(x, u+) = d(x, v+) = r. Thus, the
three distance sums have the form d(u+, w) + d(x, v+) ≤ 3r, d(v+, w) + d(x, u+) ≤ 3r, and
d(u+, v+)+d(x, w) = 2r+d(x, w). By the definition of δ-hyperbolicity, we conclude that either
d(x, w) ≤ r (if d(u+, v+) + d(x, w) is at most 3r) or d(x, w) ≤ r + 2δ (if d(u+, v+) + d(x, w)
is the largest sum). Hence, w ∈ Br+2δ(x). We now show that X− ∩ Br−3δ(x) = ∅. Pick
w ∈ X− and consider the injective hull T of the points {u+, v+, y, w}. T is a rectangle R with
four tips (see Fig. 4) and is a subspace of the injective hull E(V ). Since w ∈ X−, w /∈ Br∗(y).
Since u+, v+ ∈ Br∗(y), we deduce that d(y, w) > d(y, u+) and d(y, w) > d(y, v+). Let x′ be
a point of I(u+, v+) ∩ T such that d(u+, x′) = d(u+, x) = r and d(v+, x′) = d(v+, x) = r.
Since the injective hull T is δ-hyperbolic, its intervals are 2δ-thin, and thus, d(x, x′) ≤ 2δ.

Case 1. u+, v+, y, and w are as in Fig. 4(1). First, suppose that x′ belongs to the tip
between u+ and u′ or to the segment between u′ and v′. Since y′ and w′ belong to a
common geodesic from y to w and from y to v+, and since v+ ∈ Br∗(y) and w /∈ Br∗(y),
we deduce that d(w, w′) > d(w′, v+) ≥ d(v′, v+). Consequently, d(v′, w) > d(v′, v+). If
x′ is located on the tip between u+ and u′ or on the segment between u′ and v′, then,
since r = d(x′, v+) = d(x′, v′) + d(v′, v+) and d(x′, w) = d(x′, v′) + d(v′, w), we obtain
that w /∈ Br(x′). Since d(x, x′) ≤ 2δ, w /∈ Br−2δ(x). If x′ belongs to the tip between v′

and v+, then r = d(x′, v+) ≤ d(v′, v+) ≤ d(v′, w), whence w /∈ Br(x′) and w /∈ Br−2δ(x).
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Figure 4 Cases 1-3 of Proposition 15.

Case 2. u+ and v+, and y and w are opposite in T as in Fig. 4(2). Consider x′ to be
on the boundary of T containing the vertices u′, w′, and v′. Since v+ ∈ Br∗(y) and
w /∈ Br∗(y), then d(v′, w′) + d(w′, w) > d(v′, v+). Note also that d(v′, w′) ≤ δ, and
thus, d(w, v′) > d(v′, v+) − δ. Independently of the location of x′ on the boundary of T ,
w /∈ Br−δ(x′). Thus, w /∈ Br−3δ(x).

Case 3. u+, v+, y, and w are as in Fig. 4(3). Since w′ belongs to a geodesic between y

and w and between y and v+, and w /∈ Br∗(y), v+ /∈ Br∗(y), we deduce that d(w′, w) >

d(w′, v′) + d(v′, v+) ≥ d(v′, v+). Independently of the location of x′, we obtain that
w /∈ Br−2δ(x). ◀

7 Perspectives

A direction of interest is to design proper sample compression schemes for balls of radius r

in trees of cycles or cube-free median graphs. Designing sample compression schemes of size
O(d) for balls in general median graphs G of dimension d is also open, as well as whether the
VC-dimension of B(G) is O(d) or not. For general median graphs, it no longer holds that
the interval between a diametral pair of X+ contains a center of a ball realizing X. However,
one can show that X+ contains 2d vertices whose convex hull contains such a center. This
convex hull can be d-dimensional and it is unclear how to encode the center in this region.

Other open questions are to design proper sample compression schemes of constant size
for balls of planar graphs and of size O(ω(G)) for balls of a chordal graph G. In [8], we
showed that the former is possible for balls of radius 1, and that the latter is possible for
split graphs. Finding proper sample compression schemes of size O(ω(G)) for B(G) is also
interesting for other classes of graphs from metric graph theory: bridged graphs (generalizing
chordal graphs) and Helly graphs; for their definitions and characterizations, see [1].
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Abstract
It is well known [16] that up to isomorphism a graph G is determined by the homomorphism counts
hom(F, G), i.e., by the number of homomorphisms from F to G where F ranges over all graphs.
Moreover, it suffices that F ranges over the graphs with at most as many vertices as G. Thus, in
principle, we can answer any query concerning G with only accessing the hom(·, G)’s instead of G

itself. In this paper, we deal with queries for which there is a hom algorithm, i.e., there are finitely
many graphs F1, . . . , Fk such that for any graph G whether it is a Yes-instance of the query is
already determined by the vector −−→homF1,...,Fk (G) := (hom(F1, G), . . . , hom(Fk, G)).

We observe that planarity of graphs and 3-colorability of graphs, properties expressible in monadic
second-order logic, have no hom algorithm. On the other hand, queries expressible as a Boolean
combination of universal sentences in first-order logic FO have a hom algorithm. Even though it
is not easy to find FO definable queries without a hom algorithm, we succeed to show this for the
non-existence of an isolated vertex, a property expressible by the FO sentence ∀x∃yExy, somehow
the “simplest” graph property not definable by a Boolean combination of universal sentences. These
results provide a characterization of the prefix classes of first-order logic with the property that each
query definable by a sentence of the prefix class has a hom algorithm.

For adaptive hom algorithms, i.e., algorithms that might access a hom(Fi+1, G) with Fi+1

depending on hom(Fj , G) for 1 ≤ j ≤ i we show that three homomorphism counts hom(·, G) are
sufficient and in general necessary to determine the (isomorphism type of) G. In particular, by three
adaptive queries we can answer any question on G. Moreover, adaptively accessing two hom(·, G)’s
is already enough to detect an isolated vertex.

In 1993 Chaudhuri and Vardi [6] showed the analogue of the Lovász Isomorphism Theorem for
the right homomorphism vector of a graph G, i.e, the vector of values hom(G, F ) where F ranges
over all graphs characterizes the isomorphism type of G. We study to what extent our results carry
over to the right homomorphism vector.
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1 Introduction

In [16], one of the first papers on graph homomorphisms, Lovász proved that graphs G and H
are isomorphic if and only if for all graphs F the number hom(F,G) of homomorphisms from F

to G is equal to the number hom(F,H) of homomorphisms from F to H . Recently, this result
has attracted a lot of attention in various contexts, e.g., algorithms and complexity [3, 9],
machine learning [2, 14], and logic [1, 15]. Among others, it provides a powerful reduction of
problems concerning graph structures to questions on the number of homomorphisms.

Lovász’ result says that the infinite vector −−→hom(G) := (hom(F,G))F a graph determines the
graph G up to isomorphism. For a class C of graphs set −−→homC(G) := (hom(F,G))F ∈C. Using
Lovász’ Cancellation Law [17] (see Theorem 7.9) it is easy to see that for some classes C,
including the class of 3-colorable graphs and the class of graphs that can be mapped
homomorphically to an odd cycle, −−→homC(G) already determines G up to isomorphisms. A
further example: the class of 2-degenerate graphs has this property [12]. For other natural
classes of graphs, −−→homC(G) does not have the full power of distinguishing non-isomorphic
graphs but characterizes interesting graph properties (e.g., see [10]).

We turn to results more relevant for the algorithmic problems we are interested in.
Actually Lovász’ proof shows that in order to determine the isomorphism type of G it is
sufficient to consider the homomorphism counts hom(F,G) for the graphs F with at most as
many vertices as G. As a consequence, given an oracle to −−→hom(G), we might answer any query
by first recovering G and then computing the query on G. However, such a naive algorithm
requires exponentially many entries in −−→hom(G), i.e., hom(F,G) for all isomorphism types
of graphs F with at most as many vertices as G, rendering any practical implementation
beyond reach.

There are queries that can be answered very easily using −−→hom(G), e.g., to decide whether G
has a clique of size k, all we need to know is hom(Kk, G) where Kk is the complete graph
on k vertices. So ideally, one would hope that to answer a query on G it suffices to access−−→hom(G) for finitely many fixed graphs independent of G.

The question of using −−→hom(G) to answer queries algorithmically has been raised before.
In [9] Curticapean et al. observed that counting (induced) subgraphs isomorphic to a
fixed graph F can be reduced to computing appropriate linear combinations of subvectors
of −−→hom(G). Thereby they introduced the so-called graph motif parameters. Using this
framework, they were able to design some algorithms faster than the known ones to count
various specific subgraphs and induced subgraphs. These results can be understood as
answering counting queries using hom(·, G)’s. More explicitly, Grohe [15] asked whether it is
possible to answer any Ck+1-query in polynomial time by accessing hom(F,G) for graphs F of
tree-width bounded by k. Here, Ck+1 denotes counting first-order logic with k+1 variables [5].
Observe that without the polynomial time constraint such an algorithm exists because graphs
G and H cannot be distinguished by Ck+1 if and only if hom(F,G) = hom(F,H) for finitely
many graphs F of tree-width bounded by k [12] (see also [10]).

Our contributions
In this paper we study what Boolean queries (equivalently, graph properties) can be answered
using a constant number of homomorphism counts. More precisely, let C be a class of graphs
closed under isomorphism. We ask: are there graphs F1, . . . , Fk such that for any graph G

whether G ∈ C can be decided knowing −−→homF1,...,Fk
(G) := (hom(F1, G), . . . , hom(Fk, G)).

In Section 4 we observe that this is the case if C can be defined by a sentence of first-order
logic (FO) that is a Boolean combination of universal sentences. For d ≥ 1 this includes the
class of graphs of maximum degree d, of tree-depth [7] exactly d, and the class of graphs of
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SC-depth [8] exactly d (but also the classes where we replace “exactly d” by “at most d”).
On the negative side, in Section 6 we show that for any k ≥ 1 and any F1, . . . , Fk there are
graphs G and H such that

−−→homF1,...,Fk
(G) = −−→homF1,...,Fk

(H) and G contains an isolated vertex but H does not.
That is, any −−→homF1,...,Fk

(G) is not sufficient to detect the existence of an isolated vertex
in G. This is our technically most challenging result; it requires non-trivial arguments using
linear algebra. We introduce some of the tools and construction methods needed in this
proof already in Section 5, thereby showing the corresponding result for the class of planar
graphs and the class of 3-colorable graphs.

A graph G has no isolated vertex if it satisfies the FO-sentence ∀x∃yExy. Thus we know
for what quantifier-prefix classes of FO-sentences all queries definable by a sentence of the
class can be answered by −−→homF1,...,Fk

(G) for some F1, . . . , Fk independent of G.
Answering a query using −−→homF1,...,Fk

(·) can be phrased as an algorithm checking this
query with non-adaptive access to −−→hom(G) on entries F1, . . . , Fk. It is also very natural to
allow access to −−→hom(G) to be adaptive. Informally, on input G an adaptive hom algorithm
still queries some hom(F1, G), . . . , hom(Fk, G), but for i = 0, . . . , k − 1 the choice of Fi+1
might depend on hom(F1, G), . . . , hom(Fi, G) (see Definition 7.2 for a precise description). It
turns out that adaptive hom algorithms are extremely powerful. In Section 7 we first present
an adaptive hom algorithm with two accesses to −−→hom(G) that can decide whether G has no
isolated vertices. Even more, the algorithm is able to compute the number of vertices of G
of degree k for each k ≥ 0. So in particular, it can decide whether G is regular. Furthermore,
in Section 7 we provide an adaptive hom algorithm that queries three entries in −−→hom(G) and
determines (the isomorphism type of) G. Hence, it can answer any question on G. The
downside of this algorithm is its superpolynomial running time, while all the aforementioned
hom algorithms run in polynomial time (when provided with access to hom(G)). For graph
classes that are relevant in applications it is a challenging task to study whether there is
an algorithm where the size of the corresponding F ’s are polynomial in the size of G. We
conjecture that there is no polynomial time algorithm that can reconstruct a graph G only
accessing −−→hom(G) (even without the requirement of a constant number of accesses).

Results in [1] may be interpreted as saying that often proper subvectors of the right
homomorphism vector −−→hom(G) := (hom(G,F ))F a graph of a graph G are not so expressive
as the corresponding subvectors of the (left) homomorphism vector. For our topic, the finite
subvectors, in Section 8 we prove that our two “positive results” on hom algorithms (namely,
Theorem 4.4 on Boolean combinations of universal sentences and Theorem 7.4 on the power
of 3 adaptive hom algorithms) fail for the finite right subvectors. Even when the result is the
same (e.g., there is no right hom algorithm showing the non-existence of isolated vertices)
the proof and its complexity can be quite different.

Due to space limitations for some proofs we refer to the full version of the paper.

2 Preliminaries

We denote by N the set of natural numbers greater than or equal to 0. For n ∈ N let
[n] := {1, 2, . . . , n}.

For graphs we use the notation G = (V (G), E(G)) common in graph theory. Here V (G)
is the nonempty set of vertices of G and E(G) is the set of edges. We only consider finite,
simple, and undirected graphs and briefly speak of graphs. To express that there is an edge
connecting the vertices u and v of the graph G, we use (depending on the context) one of the
notations uv ∈ E(G) and {u, v} ∈ E(G). For graphs G and H with disjoint vertex sets we
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denote by G ∪̇ H the disjoint union of G and H , i.e., the graph with vertex set V (G) ∪V (H)
and edge set E(G) ∪ E(H). If the vertex sets are not disjoint, we tacitly pass to isomorphic
copies with disjoint vertex sets. Similarly,

⋃̇
i∈IGi denotes the disjoint union of the graphs

Gi with i ∈ I. For a graph G and ℓ ≥ 1 we denote by ℓG the disjoint union of ℓ copies of G.
For n ≥ 1 we denote by Kn a clique with n vertices, by Pn a path of n vertices, and by

Cn a cycle of n vertices.
For graphs G and H by G ∼= H we express that G and H are isomorphic. All classes of

graphs considered in this paper are closed under isomorphism.

▶ Definition 2.1. Let G and H be graphs and f : V (G) → V (H). The function f is a
homomorphism if uv ∈ E(G) implies f(u)f(v) ∈ E(H) for all u, v ∈ V (G). It is an embedding
(or monomorphism) if f is a homomorphism that is one-to-one. We call f an epimorphism
if f is a homomorphism, the range of f is V (H), and for every u′v′ ∈ E(H) there are
u, v ∈ V (G) such that uv ∈ E(G) and f(u) = u′, f(v) = v′. We get the definitions of strong
homomorphism, strong embedding, and strong epimorphism by additionally requiring in the
previous definitions that (uv ∈ E(G) ⇐⇒ f(u)f(v) ∈ E(H)) for all u, v ∈ V (G).

We denote by Hom(G,H) the set of homomorphisms from G to H, thus hom(G,H) :=
|Hom(G,H)| is the number of homomorphisms from G to H. Similarly, we define
s-Hom(G,H) and s-hom(G,H) for strong homomorphisms and use corresponding nota-
tions for the other notions of morphisms. Finally, Aut(G) and aut(G) denote the set of
automorphisms of G and their number, respectively.

The equalities (1) and (2) are easy to verify and will often be used tacitly. For graphs F1,
F2, and G and xyz ∈ {hom, emb},

hom(F1 ∪̇ F2, G) = hom(F1, G) · hom(F2, G), (1)

if G is connected, then xyz(G,F1 ∪̇ F2) = xyz(G,F1) + xyz(G,F2). (2)

Once and for all we fix an enumeration

F 0
1 , F

0
2 , F

0
3 , . . . (3)

of graphs such that each graph is isomorphic to exactly one graph in the list and such that
i ≤ j implies F 0

i ≤ F 0
j . Here for graphs F and G by F ≤ G we mean that

|V (F )| < |V (G)| or (|V (F )| = |V (G)| and |E(F )| ≤ |E(G)|).

In particular, F 0
1 is a graph whose vertex set is a singleton. We repeatedly use:

▶ Theorem 2.2 (Lovász Isomorphism Theorem [16]). Let G and H be graphs. If hom(F,G) =
hom(F,H) for all graphs F with |V (F )| ≤ min{|V (G)|, |V (H)|}, then G and H are iso-
morphic, i.e., the finite vector hom(F,G))F a graph with |V (F )| ≤ |V (G)| determines G up to
isomorphism.

3 Algorithms accessing morphism counts

For what classes C of graphs is there a finite set F of graphs such that the membership of any
graph G in C is determined by the values hom(F,G) where F ranges over F? This question
leads to the following definition.
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▶ Definition 3.1. Let C be a class of graphs. A hom algorithm for C (with a constant number
of non-adaptive accesses to homomorphism counts) consists of a k ≥ 1, graphs F1, . . . , Fk,
and an X ⊆ Nk such that for all G,

G ∈ C ⇐⇒ (hom(F1, G), . . . , hom(Fk, G)) ∈ X.

We then say that the hom algorithm decides C. Analogously we define the notions of emb
algorithm, s-hom algorithm, and s-emb algorithm.

Often we use the following fact, whose proof is immediate: A class C can be decided by a
hom algorithm if and only if there is a finite set F = {F1, . . . , Fk} of graphs such that for all
G and H (recall that −−→homF(G) = (hom(F1, G), . . . , hom(Fk, G))),

−−→homF(G) = −−→homF(H) implies (G ∈ C ⇐⇒ H ∈ C).

▶ Remark 3.2. If the set X in Definition 3.1 is decidable, then we easily extract an actual
algorithm for C with an oracle to −−→hom(G). However the previous equivalence only holds for
arbitrary X. Nevertheless, all our positive results have decidable X’s. We use the current
definition to ease presentation, and also to make our negative result, namely Theorem 6.1,
stronger. Let C have a hom algorithm as in Definition 3.1. Then the set X can be chosen to
be decidable if and only if C is decidable.

▶ Examples 3.3.
(a) By taking k = 1, a graph F whose vertex set is a singleton, and an arbitrary set X ⊆ N,

we get a hom algorithm for the class of graphs whose number of vertices is in X. In
particular, for an undecidable X we get an undecidable class of graphs with a hom
algorithm.

(b) Theorem 2.2 shows that every class that only contains finitely many graphs up to
isomorphism can be decided by a hom algorithm.

(c) By passing from k ≥ 1, F1, . . . , Fk, and X ⊆ Nk to k ≥ 1, F1, . . . , Fk, and Nk \ X, we
see that with every class C also the class Ccomp := {G | G /∈ C} has a hom algorithm.

By Definition 3.1 we have four types of algorithms (hom, emb, s-hom, s-emb). The following
proposition shows that a class has an algorithm of one type if and only if it has an algorithm
of any other type. This allows us to speak of a query algorithm accessing morphism counts
(or query algorithm for short) if in the given context it is irrelevant to what type we refer.

▶ Proposition 3.4. For a class C of graphs the following five statements are equivalent.
(a) There is a hom algorithm for C.
(b) There is an emb algorithm for C.
(c) There is an s-hom algorithm for C.
(d) There is an s-emb algorithm C.
(e) There is a hom algorithm for Cc, the class of graphs that are complements of graphs in C

(the complement of a graph G is the graph Gc =
(
V (G), {uv | u ̸= v and uv /∈ E(G)}

)
.

The equivalence (a) ⇔ (b) and (c) ⇔ (d) are well known (e.g., see the proof of the Lovász
Isomorphism Theorem in [15]). It uses the fact that every h ∈ Hom(F,G) can be written as
h = f ◦ g, where for some graph F ′ we have g ∈ Epi(F, F ′) and f ∈ Emb(F ′, G). Clearly,
F ′ ≤ F (as otherwise Epi(F, F ′) = ∅). Hence.

hom(F,G) =
∑

F ′≤F

1
aut(F ′) · epi(F, F ′) · emb(F ′, G), (4)

where the sum ranges over all isomorphism types of graphs F ′ with F ′ ≤ F and the
corresponding equation for s-hom and s-emb.
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As in the literature we did not find a proof of the equivalence (a) ⇔ (c), the main tool in
our proof of Theorem 4.4, we present proofs of the equivalences (a) ⇔ (c) and its consequence
(a) ⇔ (e) in the full version of the paper.

▶ Remark 3.5. The proof of the equivalences of (a) to (e) show: If for C we have a query
algorithm of one type based on graphs F1, . . . , Fk and m := max

{
|V (Fi)|

∣∣ i ∈ [k]
}

, then for
any other type we can compute finitely many graphs, all with at most m vertices, that are
the graphs of a query algorithm for C of this other type.

4 FO-definable classes with query algorithms

We start by showing that every class of graphs that excludes a finite set of graphs as induced
subgraphs has a query algorithm. Of course, the complement and the union of such classes
again have such an algorithm. In terms of first-order logic this means that every class
axiomatizable by a Boolean combination of universal sentences has a query algorithm.

For a finite set F of graphs we define the class Forb(F) by

Forb(F) :=
{
G

∣∣ G has no induced subgraph isomorphic to a graph in F
}
.

We say that a class C of graphs is definable by a set of forbidden induced subgraphs if there
is a finite set F with C = Forb(F).

Examples of classes definable by a set of forbidden induced subgraphs are classes of
bounded vertex cover number (attributed to Lovász), of bounded tree-depth [11], or even of
bounded shrub-depth [13]. All these classes have a query algorithm:

▶ Lemma 4.1. Every class of graphs definable by a set of forbidden induced subgraphs can
be decided by a query algorithm.

Proof. If C = Forb(∅), we set k = 1, let F be an arbitrary graph, and take X := N. Assume
now that C = Forb(F) with F = {F1, . . . , Fk} and k ≥ 1. Then, for X = {(0, 0, . . . , 0)} ⊆ Nk,

G ∈ C ⇐⇒
(
s-emb(F1, G), . . . , s-emb(Fk, G)

)
∈ X.

Hence, k, F1, . . . , Fk, and X constitute an s-emb algorithm for C. ◀

The following lemma shows that the universe of classes with query algorithms is closed under
the Boolean operations. Part (a) was already mentioned as Examples 3.3 (c). We omit the
straightforward proof.

▶ Lemma 4.2.
(a) If C has a query algorithm, then so does {G | G /∈ C}.
(b) If C and C′ have query algorithms, then C ∩ C′ and C ∪ C′ have query algorithms.

Recall that formulas φ of first-order logic FO for graphs are built up from atomic formulas
x = y and Exy (where x, y are variables) using the Boolean connectives ¬, ∧, and ∨ and
the universal ∀ and existential ∃ quantifiers. A sentence is a formula without free variables
(i.e., all variables of φ are in the scope of a corresponding quantifier). If φ is a sentence, we
denote by C(φ) the class of graphs that are models of φ.

An FO-formula is universal if it is built up from atomic and negated atomic formulas
by means of the connectives ∧ and ∨ and the universal quantifier ∀. If in this definition we
replace the universal quantifier by the existential one, we get the definition of an existential
formula. The following result is well known (e.g., see [18]).
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▶ Lemma 4.3. Let C be a class of graphs. Then C is the class of graphs definable by a
universal sentence if and only if C is definable by a set of forbidden induced subgraphs.

By Lemma 4.1 – Lemma 4.3 we get:

▶ Theorem 4.4. If the FO-sentence φ is a Boolean combination of universal sentences, then
there is a query algorithm for C(φ).

▶ Remark 4.5. The class C(3) of 3-regular graphs (each vertex has exactly 3 neighbors)
is an example of a class decidable by a query algorithm, definable in FO but not by a
Boolean combination of universal sentences. Indeed, using the following steps we get a query
algorithm deciding whether a graph G belongs to C(3).

We check whether G ∈ C(≤ 3), i.e., whether each vertex has at most 3 neighbors. Note
that C(≤ 3) is definable by a universal sentence. Hence there is a hom algorithm for
C(≤ 3), say consisting of k ≥ 1, F1, . . . , Fk, and X≤3 (⊆ Nk).
We query hom(K1, G) in order to get n := |V (G)|.
We query hom(P2, G), i.e., the number of homomorphisms from the path P2 of two
vertices to G. Then, G is 3-regular if and only if hom(P2, G) = 3 · n.

Hence, we have a hom algorithm for C(3) consisting of k + 2, F1, . . . , Fk,K1, P2, and X

where X consists of all tuples (n1, . . . , nk, n, 3n) with (n1, . . . , nk) ∈ X≤3 and n ≥ 1.
The class C(3) is definable in FO by

∀x∀y1 . . . ∀y4∃z1 . . . ∃z3

(
¬

( ∧
1≤i<j≤4

yi ̸= yj ∧
∧

i∈[4]

Exyi

)
∧

( ∧
1≤i<j≤3

zi ̸= zj ∧
∧

j∈[3]

Exzj

))
.

If it would be definable by a Boolean combination of universal sentences, then it would be
also definable by a sentence φ of the form φ = ∃x1 . . . ∃xm∀y1 . . . ∀yℓψ with m, ℓ ∈ N and
with quantifier-free ψ. Let G be a graph with more than m+ 1 vertices that is the disjoint
union of copies of the clique K4. Of course, G is 3-regular. Hence, G is a model of φ. In
particular, there are vertices u1, . . . , um that satisfy in G the formula ∀y1 . . . ∀yℓψ(x1, . . . , xm)
if we interpret x1 by u1, . . . , xm by um. Choose a vertex u ∈ V (G) \ {u1, . . . , um}. Then,
G \ u, the graph induced by G on V (G) \ {u}, is still a model of φ but not 3-regular.

By the previous remark the question arises whether every class C(φ) for an FO-sentence φ
of the form∀x1 . . . ∀xm∃y1 . . . ∃yℓψ with quantifier free ψ can be decided by a query algorithm.
We will see that already for the simple formula ∀x∃yExy of this type, the class C(∀x∃yExy),
i.e., the class of graphs not containing isolated vertices, has no query algorithm.

5 Planarity and 3-colorability

As just mentioned we want to show that no query algorithm detects the existence of an
isolated vertex. In this section we prove the corresponding result for planarity, where some
easy tools and construction methods relevant in the much more involved proof for isolated
vertices are used. Essentially by a similar proof one can show the same result for 3-colorability.
Note that the class of planar graphs and the class of 3-colorable graphs are definable in
monadic second-order logic but not in first-order logic.

By the following lemma a class has no query algorithm if there is no emb algorithm for
this class that only uses connected graphs:

▶ Lemma 5.1. Let C be a class of graphs. Assume that for every finite set K′ of connected
graphs there are graphs G and H such that (a) and (b) hold.
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(a) G ∈ C and H /∈ C.
(b) For all F ′ ∈ K′ we have emb(F ′, G) = emb(F ′, H).
Then there is no hom algorithm for C, i.e., for every finite set K of graphs there are graphs
G and H such that (c) and (d) hold
(c) G ∈ C and H /∈ C.
(d) For all F ∈ K we have hom(F,G) = hom(F,H).

Proof. By (1), hom(F 1 ∪̇ F 2, F 3) = hom(F 1, F 3) · hom(F 2, F 3) holds for arbitrary graphs
F 1, F 2, F 3. Thus, if the class of connected components of graphs in a finite set K satisfies (d)
for some G and H, then K satisfies (d), too. Hence, we can assume that the graphs in K are con-
nected. Let n := max{|V (F )| | F ∈ K} and K′ := {F 0

i | i ≥ 1, |V (F 0
i )| ≤ n, F 0

i connected}.
By assumption we know that there are graphs G and H such that (a) and (b) hold for K′.
Now we recall (4), i.e.,

hom(F,G) =
∑

F ′≤F

1
aut(F ′) · epi(F, F ′) · emb(F ′, G).

If F is connected, then epi(F, F ′) > 0 implies that F ′ is connected, too. That is, the values
hom(F,G) for F ∈ K are determined by the values of emb(F ′, G) for F ′ ∈ K′. Therefore, (d)
holds by (b). ◀

▶ Theorem 5.2. The class P of planar graphs and the class C(3-col) of 3-colorable graphs
have no query algorithm.

Proof. Here we only present the proof for P. For a contradiction, by Lemma 5.1 we can
assume that there is an emb algorithm for P that uses the finite set F of connected graphs.
By induction on n := |F|, we show that this cannot be the case. Let |F| = 1, i.e., F = {F}
for some connected F . Set k := |V (F )| + 4. Clearly, Kk /∈ P and both, emb(F, F ) and
emb(F,Kk), are nonzero. If F is planar, we set (recall that for a graph G and p ∈ N by pG
we denote the disjoint union of p copies of G),

G := emb(F,Kk)F and H := emb(F, F )Kk

By (2), emb(F,G) = emb(F,Kk)·emb(F, F ) = hom(F,H) and G ∈ P, H /∈ P, a contradiction.
If F is not planar, we set G := K1 and take as H a topological minor of Kk in which every edge
in Kk is subdivided into 1 + |(V (F )| edges. Then H /∈ P but emb(F,G) = 0 = emb(F,H),
again a contradiction.

Now assume |F| ≥ 2. If F contains no planar graphs, we essentially can proceed as in the
preceding case. So assume that F contains a planar graph. Choose a “minimal” (w.r.t. ≤)
planar graph F ∈ F and set F′ := F \ {F}. By minimality, emb(F ′, F ) = 0 for all planar
F ′ ∈ F′. As there is no embedding from a non-planar graph to a planar graph, we have
emb(F ′, F ) = 0 for all F ′ ∈ F′. By induction hypothesis, there are G0 and H0 satisfying the
desired properties with respect to F′. If emb(F,G0) = emb(F,H0), then we can simply take
G := G0 and H := H0. Otherwise, assume first that emb(F,G0) < emb(F,H0). We set

G := aut(F )G0 ∪̇ (emb(F,H0) − emb(F,G0))F and H := aut(F )H0.

Hence, G ∈ P, H /∈ P, and emb(F,G) = emb(F,H) (by (2)). In case emb(F,G0) >

emb(F,H0) we argue similarly. ◀
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6 No query algorithm detects isolated vertices

▶ Theorem 6.1. The class C(∀x∃yExy) of graphs without isolated vertices has no query
algorithm.

In the proof given in the full version of the paper we use some tools already used in the
preceding section:

By Lemma 5.1 it suffices to show that C(∀x∃yExy) has no emb algorithm that only uses
connected graphs.
If C is one of the classes P or C(∀x∃yExy), then the disjoint union

⋃̇
i∈IGi of a family

(Gi)i∈I of graphs is in C if and only if each Gi is in C.
By (2), for graphs F1 and F2, p, q ≥ 1, and a connected graph G, we have

emb(G, pF1 ∪̇ qF2) = p emb(G,F1) + q emb(G,F2),

i.e., emb(G, pF1 ∪̇ qF2) is a linear combination of emb(G,F1) and emb(G,F2).
Furthermore note:

Let G be a connected graph with more than one vertex. If the graph F ′ is obtained from
the graph F by adding a set of isolated vertices, then emb(G,F ′) = emb(G,F ).

Recall that in (3) we fixed the enumeration F 0
1 , F

0
2 , . . . of graphs that contains a copy of every

isomorphism type and respects the relation ≤. Here we let H1, H2, . . . be the subsequence of
F 0

1 , F
0
2 , . . . consisting of the connected graphs.

For i ≥ 1 let αi := (emb(Hi, Hj))j≥1 be the vector containing the emb-values of Hi for
connected graphs. We sketch the idea underlying the proof of Theorem 6.1. The central
idea can be vaguely expressed by saying that for each n ≥ 1 there is an rn ∈ N such that
appropriate “subvectors” of length rn of rn-many of the α1, . . . , αn are linearly independent
vectors of the vector space Qrn and hence, a basis of Qrn . In particular, every further vector
of Qrn is a linear combination of these vectors. Furthermore, rn tends to infinity when n

increases.
For an arbitrary emb algorithm with connected graphs we must show the existence of

graphs G and H , one with isolated vertices the other one without, that cannot be distinguished
by this emb algorithm. We use the tools mentioned above to construct such graphs using
the knowledge about the linear independence or linear dependence of some tuples of vectors
obtained in the first steps of the proof.

7 Adaptive hom algorithms

For r ≥ 1 let Sr denote the star of r vertices, i.e., a graph that consists of a vertex of degree
r − 1 (the center of the star) and r − 1 vertices of degree 1, all neighbors of the center. For
a vertex u of a graph we denote by deg(u) its degree. Note that deg(u) = 0 means that u
is isolated. The proof in the full paper of the following result is built on the well-known
equality (see e.g., [4, 15]) obtained by looking at the value of the center of a star under a
homomorphism: hom(Sr, G) =

∑
v∈V (G) deg(v)r−1.

▶ Proposition 7.1. Let G be a graph and di := |{u ∈ V (G) | deg(u) = i}| for i ≥ 0. If
n := |V (G)|, then hom(Sn·log n, G) determines d0, . . . , dn−1.

In Section 6 we showed that there is no query algorithm that decides whether a graph G

is in C(∀x∃yExy), i.e., whether d0 = 0 for G. However, Proposition 7.1 shows that for a
graph G with n vertices this can be decided by querying hom(Sn·log n, G). Thus, we have an
algorithm for C(∀x∃yExy) consisting of two homomorphism counts:
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query n := hom(F 0
1 , G) (= |V (G)|),

query hom(Sn·log n, G).
That is, the selection of the graph for the second homomorphism count, in our case Sn·log n,
depends on the answer to the first query. This leads to the notion of adaptive hom algorithm.
Recall that F 0

1 , F
0
2 , . . . is an enumeration of all graphs (up to isomorphism) respecting ≤.

▶ Definition 7.2. Let C be a class of graphs and k ≥ 1. A k adaptive hom algorithm for C
consists of a function g : {∅} ∪

⋃
i∈[k−1] Ni → N and a subset X of Nk such that for all G,

G ∈ C ⇐⇒ (n1, . . . , nk) ∈ X,

where n1 := hom(F 0
g(∅), G), n2 := hom(F 0

g(n1), G), . . . , nk := hom(F 0
g(n1,n2,...,nk−1), G). We

then say that C can be decided by a k adaptive hom algorithm.

The main result of this section:

▶ Theorem 7.3. Every class C can be decided by a 3 adaptive hom algorithm.

To get this result we show:

▶ Theorem 7.4. For n ≥ 1 there exist graphs F1 (= F1(n)) and F2 (= F2(n)) such that for
all graphs G and H with n vertices,

hom(F1, G) = hom(F1, H) and hom(F2, G) = hom(F2, H) imply G ∼= H.

In fact, by this result for any class C of graphs, we get the 3 adaptive hom algorithm
that for a graph G queries

hom(F 0
1 , G); set n := hom(F 0

1 , G)
hom(F1(n), G) and hom(F2(n), G)

(where F1(n) and F2(n) are the graphs of Theorem 7.4) and has as set X the set

X := {(n, hom(F1(n), H), hom(F2(n), H)) | n ≥ 1, H ∈ C, and |V (H)| = n}.

▶ Corollary 7.5. For graphs G and H, if n0 := hom(F 0
1 , G) = hom(F 0

1 , H),
hom(F1(n0), G) = hom(F1(n0), H), and hom(F2(n0), G) = hom(F2(n0), H), then G ∼= H.

Hence, by “3 adaptive hom counts” we can characterize the isomorphism type of any
graph. It is not possible to do this by two queries, more precisely (for a proof see the full
paper):

▶ Theorem 7.6. There is no s0 ∈ N such that for some function g : N → N and all graphs G
and H, if n0 := hom(F 0

s0
, G) = hom(F 0

s0
, H) and hom(F 0

g(n0), G) = hom(F 0
g(n0), H), then

G ∼= H.

We turn to a proof of Theorem 7.4. An important tool will be the following lemma.

▶ Lemma 7.7. Let n ≥ 1 and K be a finite set of graphs. We can construct a graph FK such
that for all G and H with exactly n vertices we have hom(FK, G) = hom(FK, H) if and only
if G and H satisfy at least one of the conditions (a) and (b).
(a) There exist F, F ′ ∈ K such that hom(F,G) = 0 and hom(F ′, H) = 0.
(b) For all F ∈ K, hom(F,G) = hom(F,H).
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Proof. The idea of the construction is best seen by assuming K = {F1, F2} (iterating the
following process one gets the general case). We set r := n|V (F1)|. As |V (G)| = n, we know
that hom(F1, G) ≤ r. We set FK := F1 ∪̇ rF2. By (1) for every graph F ,

hom(FK, F ) = hom(F1, F ) · hom(F2, F )r. (5)

Hence, if (a) or (b) hold, then hom(FK, G) = hom(FK, H). Conversely, assume z :=
hom(FK, G) = hom(FK, H). If z = 0, then (a) must hold by (5). If z = 1, then
hom(Fi, G) = hom(Fi, H) = 1 for i ∈ [2] and (b) holds. Otherwise, z ≥ 2. Let F := G or
F := H and set x := hom(F1, F ) and y := hom(F2, F ). Let p be a prime number with p|z
(i.e., p divides z). Choose the maximum k such that pk|z. Write k in the form k = ℓ · r +m

with 0 ≤ m < r. As z = x · yr and x ≤ r, the factor pm appears in x and the factor pℓ in y.
This determines x and y; they do not depend on the F ∈ {G,H} chosen. ◀

If the alternative (b) holds, we can replace in a hom algorithm the set K of graphs by the
single graph FK. The previous lemma doesn’t help too much if the alternative (a) holds. To
overcome this alternative essentially we consider the bipartite graphs and the non-bipartite
graphs separately. For this purpose we recall the definition and some simple facts on bipartite
graphs.
A graph G is bipartite if there is a partition V (G) = X ∪̇ Y such that each edge has one end
in X and one end in Y . The next lemma contains some simple facts on bipartite graphs.

▶ Lemma 7.8. Let G be a graph. Then:
(a) G is bipartite ⇐⇒ hom(G,P2) ̸= 0.
(b) If G is connected and bipartite, then hom(G,P2) = 2.
(c) G is bipartite ⇐⇒ hom(G,H) ̸= 0 for all graphs H with at least one edge.
(d) G is bipartite ⇐⇒ G does not contain a cycle of odd length.
(e) If G is bipartite and F is not, then hom(F,G) = 0.
(f) If G is bipartite, then G is determined (up to isomorphism) by the values hom(F,G) for

the bipartite graphs F with F ≤ G (by the Lovász Isomorphism Theorem and part (e)).

For graphs G and H the product G×H of G and H is the graph with V (G×H) := {(u, v) |
u ∈ V (G), v ∈ V (H)} and E(G × H) := {{(u, v), (u′, v′)} | {u, u′} ∈ E(G) and {v, v′} ∈
E(H)}. One easily verifies that for any graph H,

hom(F,G×H) = hom(F,G) · hom(F,H). (6)

Besides the simple facts on bipartite graphs mentioned above, we also need a deep result:

▶ Theorem 7.9 (Lovász Cancellation Law [17]). A graph H is not bipartite if and only if
F ×H ∼= G×H implies F ∼= G for all graphs F and G.

The following lemma contains a further step for the proof of Theorem 7.4.

▶ Lemma 7.10. Let n ≥ 2 and t be the smallest natural number with n ≤ 2t. We set (recall
that Cm denotes a cycle of length m)

Kt := {F | hom(F,C2t+1) > 0 and |V (F )| ≤ (2t+ 1)2}. (7)

For graphs G and H with |V (G)| = |V (H)| = n, if hom(F,G) = hom(F,H) for all F ∈ Kt,
then G ∼= H.
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Proof. Assume G ̸∼= H. By Lemma 7.8 (d), C2t+1 is not bipartite. Thus, by the Lovász
Cancellation Law G×C2t+1 ̸∼= H×C2t+1 As G×C2t+1 has n · (2t+1) vertices, by the Lovász
Isomorphism Theorem (see Theorem 2.2) there is a graph F with |V (F )| ≤ n · (2t+ 1) ≤
(2t+ 1)2 such that

hom(F,G× C2t+1) ̸= hom(F,H × C2t+1). (8)

If F is not in Kt, then hom(F,C2t+1) = 0 and thus by (6) we get a contradiction to (8).
Hence, F ∈ Kt and so by assumption, hom(F,G) = hom(F,H). However, this contradicts (8)
(use again (6)). ◀

Proof of Theorem 7.4. The case n = 1 is trivial. Assume n ≥ 2. Let again t be the smallest
natural number with n ≤ 2t and Kt be defined by (7). For the class Kbip of bipartite graphs
in Kt let F1 be the graph constructed in Lemma 7.7 for Kbip (i.e., F1 = FKbip). As the disjoint
union of bipartite graphs is bipartite, the proof of Lemma 7.7 shows that F1 is bipartite. Let
F2 be the graph constructed in Lemma 7.7 for the class Kt \ Kbip. We show that for graphs
G and H with |V (G)| = |V (H)| = n,

hom(Fi, G) = hom(Fi, H) for i ∈ [2] implies G ∼= H.

If G and H both have no edge, then clearly G ∼= H. If, say G has an edge but E(H) = ∅,
then, as F1 is bipartite, hom(F1, G) ̸= 0 = hom(F1, H) by Lemma 7.8 (c) and E(F1) ̸= ∅.
Hence we can assume that both graphs contain at least one edge. For a contradiction assume
that hom(Fi, G) = hom(Fi, H) for i ∈ [2] and that G ̸∼= H. Then, by Lemma 7.10 there is a
graph F0 ∈ Kt with

hom(F0, G) ̸= hom(F0, H). (9)

Assume first that F0 ∈ Kbip. As G and H contain at least one edge, by Lemma 7.8 (c)

hom(F,G) > 0 and hom(F,H) > 0,

for every bipartite graph F . In particular, this holds for all graphs F in Kbip. Thus,
hom(F1, G) = hom(F1, H) implies the second case in Lemma 7.7, i.e., for every F ∈ Kbip,

hom(F,G) = hom(F,H).

In particular, this holds for F = F0 contradicting (9).
Thus F0 ∈ Kt \ Kbip. Then hom(F0, F ) = 0 for all bipartite graphs F

(
by Lemma 7.8 (e)

)
.

Hence, by (9) at least one of G and H must be non-bipartite. By hom(F2, G) = hom(F2, H),
Lemma 7.7, and (9) there exist graphs FG and FH in Kt \ Kbip with

hom(FG, G) = hom(FH , H) = 0.

W.l.o.g. suppose that G is not bipartite and thus contains an odd cycle, say of length ℓ. Since
ℓ ≤ n ≤ 2t+1, we have hom(C2t+1, Cℓ) > 0. In fact, one easily verifies that hom(Ck, Cm) > 0
for oddm and k withm < k. As FG ∈ Kt, hom(FG, C2t+1) > 0. Therefore, hom(FG, Cℓ) > 0,
which implies hom(FG, G) > 0, a contradiction. ◀
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8 Right hom algorithms

In 1993 Chaudhuri and Vardi [6] (see also [1]) showed the analogue of the Lovász Isomorphism
Theorem for the right homomorphism vector of a graph G. More precisely, the vector of
values hom(G,F ), where F ranges over all graphs, characterizes the isomorphism type of G.
In this section we will see that our main “positive” results on hom algorithms fail for right
hom algorithms (see Proposition 8.2) and that various results that survive use a completely
different proof technique. Note that a graph G is 3-colorable if hom(G,K3) > 0 in contrast
to Theorem 5.2.

▶ Definition 8.1. A class C of graphs can be decided by a right hom algorithm if and only if
there is a k ≥ 1 and graphs F1, . . . , Fk such that for all graphs G and H,

hom(G,F1) = hom(G,Fk), . . . , hom(G,Fk) = hom(G,Fk) imply (G ∈ C ⇐⇒ H ∈ C),

or equivalently, if in addition to F1, . . . , Fk there is a set X ⊆ Nk such that for any graph G,(
G ∈ C ⇐⇒ (hom(G,F1), . . . , hom(G,Fk)) ∈ X

)
.

Again one can show that C is decidable if and only if as X can be chosen a decidable set.
It should be clear how we define k adaptive right hom algorithms for a class C of graphs.
The failure in the “right world” of the “positive” results Theorem 4.4 and Theorem 7.3 is

shown by (it should be clear how we define k adaptive right hom algorithms for a class C of
graphs):

▶ Proposition 8.2. let k ≥ 1. The class K(3) of graphs containing a clique of size 3
(expressible by the existential sentence ∃x∃y∃z(Exy ∧ Eyz ∧ Exz)) cannot be decided by a k
adaptive right hom algorithm (and hence not by a right hom algorithm).

Proof. For a graph G we denote by χ(G) the chromatic number of G, i.e., the least s such
that G is s-colorable. Clearly,

(
m < χ(G) ⇐⇒ hom(G,Km) = 0

)
for the clique Km with m

elements, and hence, for every graph F ,

if |V (F )| < χ(G), then hom(G,F ) = 0. (10)

For a contradiction, assume that g and X (compare Definition 7.2) witness the existence of
a k adaptive right hom algorithm for C. Then set

n1 := g(∅), n2 := g(0), n3 := g(0, 0), . . . , nk := g( 0, . . . , 0︸ ︷︷ ︸
k−1 times

).

Let s > 3 be bigger than any of the |V (F 0
ni

)|’s. According to [19] there is a G0 /∈ K(3) such
that χ(G0) = s. Thus by (10), we have hom(G0, F

0
n1

) = 0, . . . , hom(G0, F
0
nk

) = 0 and hence,
(0, 0, . . . , 0) /∈ X. However, Ks ∈ K(3) and hom(Ks, F

0
n1

) = 0, . . . , hom(Ks, F
0
nk

) = 0, thus
(0, 0, . . . , 0) ∈ X, a contradiction. ◀

Note that Theorem 10 in [1] cannot be applied to show (directly) the existence of an
FO-sentence φ with no right hom algorithm. To apply this theorem to such a φ we should
have for all graphs G and H, (G |= φ ⇐⇒ H |= φ) implies |V (G)| = |V (H)|. One easily
verifies that this condition is not satisfied by any FO-sentence φ.

We mention a positive result on right hom algorithms (proven in the full version of the
paper).
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▶ Theorem 8.3. Every class C of graphs with the property that there is a bound on the
number of edges of graphs in C has a right hom algorithm.

Finally we remark that some results with nontrivial proofs for hom algorithms are trivial
for right hom algorithms. For example, the following simple proof shows that there is no
right hom algorithm for the class C(∀x∃yExy) of graphs with no isolated vertices.

Let F1, . . . , Fk be any finite set of graphs and set m := 1 + max{|V (Fi)| | i ∈ [k]}. Then,
hom(Km, Fi) = 0 = hom(Km ∪̇ K1) for every i ∈ [k]. Thus there is no right hom algorithm
that detects an isolated vertex.
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Abstract
The Boolean satisfiability problem plays a central role in computational complexity and is often
used as a starting point for showing NP lower bounds. Generalisations such as Succinct SAT, where
a Boolean formula is succinctly represented as a Boolean circuit, have been studied in the literature
in order to lift the Boolean satisfiability problem to higher complexity classes such as NEXP. While,
in theory, iterating this approach yields complete problems for k-NEXP for all k > 0, using such
iterations of Succinct SAT is at best tedious when it comes to proving lower bounds.

The main contribution of this paper is to show that the Boolean satisfiability problem has
another canonical generalisation in terms of higher-order Boolean functions that is arguably more
suitable for showing lower bounds beyond NP. We introduce a family of problems HOSAT(k, d),
k ≥ 0, d ≥ 1, in which variables are interpreted as Boolean functions of order at most k and there are
d quantifier alternations between functions of order exactly k. We show that the unbounded HOSAT
problem is TOWER-complete, and that HOSAT(k, d) is complete for the weak k-EXP hierarchy
with d alternations for fixed k, d ≥ 1 and d odd.

We illustrate the usefulness of HOSAT by characterising the complexity of weak Presburger
arithmetic, the first-order theory of the integers with addition and equality but without order. It has
been a long-standing open problem whether weak Presburger arithmetic has the same complexity as
standard Presburger arithmetic. We answer this question affirmatively, even for the negation-free
fragment and the Horn fragment of weak Presburger arithmetic.
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1 Introduction

The Boolean satisfiability problem (SAT) plays a central role in computational complexity. It
was the first problem shown to be NP-complete [8] and has ever since been used a countless
number of times to show NP lower bounds for numerous combinatorial problems, a prime
example being Karp’s list of twenty-one NP-complete problems [17]. What makes SAT stand
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out is its simplicity: describing an instance of SAT does not require tapes and automata as
in the case of Turing machines, and neither grids nor dominoes like in tiling problems; it also
does not require the introduction of graphs and their properties as in, e.g., graph colouring
problems. To obtain a reduction from SAT, it suffices to show how to encode assignments
to Boolean variables and how to model connectives. Unfortunately, this simplicity does not
transfer over to higher complexity classes.

Succinct representations have been used as a technical tool to lift NP-complete problems
to exponential classes [27, 20, 2, 32]. The idea is that the main object of interest is succinctly
encoded by a Boolean circuit. For instance, a Boolean formula represented as a DAG whose
vertices are labelled by a type (e.g., a Boolean connective or constant value) and a unique
integer index can be encoded by a Boolean circuit with outputs. Given a binary encoding of
an index, this circuit returns the type of the node with that index and, if present, the indices
of its two predecessor nodes. Succinct variants of P- or NP-complete problems become EXP-
or NEXP-complete, e.g., the Succinct Circuit Value problem and the Succinct SAT Problem
are respectively EXP- and NEXP-complete [26]. In theory, this approach can be iterated
indefinitely, and, e.g., the problem of deciding whether a propositional formula encoded by a
Boolean circuit that is itself encoded by a Boolean circuit evaluates to true is a “canonical”
2-EXP-complete problem. One does not need too much imagination to see that these iterated
succinct problems become unbearable for showing lower bounds.

This loss of simplicity for higher complexity classes compared to classical SAT is at odds
with other canonical problems, such as the halting problem for a (non)deterministic Turing
machine running in time f(n) on an input of length n, or the problem of tiling a grid of
size f(n) × f(n). Here, the function f can be chosen appropriately in order to obtain hard
problems for many complexity classes such as k-EXP and k-NEXP [26]. The same picture
emerges in the presence of alternation: whereas QBF [12, Chapter 7.4] elegantly extends
SAT to the whole polynomial hierarchy [33], no simple extension of SAT has been defined to
capture every level of the weak k-EXP hierarchies, for any k ≥ 1 (cf. [15]). Again, this is
in contrast with Turing machines and tiling problems: both admit extensions to deal with
alternation in the context of complexity classes above NP [4, 5, 23].

The main contribution of this paper is to identify a canonical generalisation of SAT,
called HOSAT, that gives complete problems for all weak k-EXP hierarchies and that shares
the simplicity of classical SAT. Instead of Boolean variables, the building blocks of HOSAT
are function applications. The functions considered are higher-order Boolean function f of
order k, i.e., functions that take as input higher-order functions of order k−1 and return a
Boolean value, and Boolean values themselves are functions of order zero. HOSAT closes
function applications under Boolean connectives as well as quantification.

The development of HOSAT is a result of an attempt of the authors to settle the open
problem of the computational complexity of weak Presburger arithmetic, the first-order theory
of the integers with addition and equality, but without an order predicate (which is provably
not definable in this theory). This less expressive theory is in fact the “original” arithmetic
theory studied by Presburger in his seminal paper [28], see also [7], and it has been an open
problem whether it is computationally as hard as what is nowadays commonly understood
as Presburger arithmetic; see, e.g., [6]. The lower bound for Presburger arithmetic given
by Berman [3] reduces from an alternating Turing machine running in doubly exponential
time with a linear number of alternations. This reduction glosses over some technical details,
which is unproblematic in the presence of the sufficient expressive power that the order
predicate provides, but becomes problematic for weak Presburger arithmetic. Giving a clean
reduction from HOSAT enables us to settle the complexity of weak Presburger arithmetic
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and to show that it has indeed the same complexity as Presburger arithmetic with the order
predicate. We hope that HOSAT will be as beneficial as it was for us for other researchers
for proving their lower bounds, in particular since the question of finding canonical complete
problems for weak k-EXP hierarchies frequently comes up; see, e.g., [31, 21].

2 Preliminaries

We write Z, N and N+ to denote the set of integers, natural numbers including zero, and
natural numbers without zero, respectively. Unless otherwise stated, we assume integers to
be encoded in binary. Given l, u ∈ N, we define [l, u] := {l, l+1, . . . , u}, [l, u) := [l, u− 1] and
[u] := [0, u). The cardinality of a finite set A is denoted by #A. For k, n ∈ N, we write expk

2(n)
for the tetration function inductively defined as exp0

2(n) := n and expk
2(n) := 2expk−1

2 (n).
Intuitively, expk

2(n) is a tower of exponentials of height k, base 2, and top-most exponent n.
We recall complexity classes based on the notion of alternating Turing machines [5]. The

class Σk-EXP
d contains all problems that can be decided by an alternating Turing machine

running in time expk
2(f(n)) on an input of length n, where f : N → N is some polynomial

that does not depend on the input, and starting in an existential state and making at most
d− 1 alternations on every computation path. By definition, Σk-EXP

1 = k-NEXP. The weak
k-EXP hierarchy is defined as

⋃
d≥0 Σk-EXP

d ; for k = 1 see [15].
Given functions a, s, t : N → N, the class STA(s(n), t(n), a(n)) contains all problems that

can be decided by an alternating Turing machine in time t(n) using space s(n) making
at most a(n) alternations on every computation path, where n is the length of the input.
We use ∗ to indicate an unbounded availability of a certain resource. For instance, the
polynomial hierarchy can be characterized as

⋃
d∈N STA(∗, nO(1), d), and the d-th level of the

weak k-EXP hierarchy Σk EXP
d corresponds to STA(∗, expk

2(nO(1)), d). The STA complexity
measure was introduced by Berman [3] to show the following result.

▶ Theorem 1 ([3]). Presburger arithmetic is complete for STA(∗, 22nO(1)

, O(n)).

A function f : N → N is said to be elementary if there is a k ∈ N such that f(n) < expk
2(n)

for all n ∈ N. The (non-elementary) class TOWER [29] contains all problems decidable by a
Turing machine in time expg(n)

2 (f(n)) for some fixed polynomial f and elementary function g,
on inputs of length n. We have ∪k≥1 k-EXP ⊊ TOWER, as TOWER contains problems
decidable in time expn

2 (1).

3 The higher-order quantified satisfiability problem

We introduce the higher-order quantified satisfiability problem, a problem whose instances form
a hierarchy (HOSAT(k, d))k,d of problems that characterise every complexity class Σk-EXP

d .
We write B to denote the Boolean domain {0, 1}. We often treat B as the set of the two

nullary Boolean functions () → {0} and () → {1}. Fix n ∈ N+ and let B0,n := B. Given
k ≥ 1, we write Bk,n for the set of all functions with domain (Bk−1,n)n and codomain B. For
instance, B1,n is the set of all n-ary Boolean functions f : {0, 1}n → {0, 1}, whereas B2,n is
the set of all n-ary second-order Boolean functions f : ({0, 1}n → {0, 1})n → {0, 1}. For
k ≥ 1, the number of functions in Bk,n satisfies the recurrence relation #(Bk,n) = 2#(Bk−1,n)n ,
and therefore expk+1

2 (n) ≤ #Bk,n ≤ expk+1
2 ((k + 1) · n). We refer to the indices k and n as

the order and the arity of Bk,n, respectively. Both n and k are written in unary.
We discuss the encoding enc(f) of Boolean functions as bit-strings over {0, 1}, which we

often treat as the binary number from N represented by the bit-string, with least significant
digit first. For b ∈ B, enc(b) := b. Functions f ∈ B1,n can be encoded as a string of length

MFCS 2022



33:4 Higher-Order Quantified Boolean Satisfiability

2n over B, whose i-th position encodes the truth value of f on the tuple (b1, . . . , bn) ∈ Bn

such that b1 · · · bn is the binary encoding of i, with least significant digit first. For k > 1,
functions f ∈ Bk,n can be encoded as a string over B whose i-th position encodes the truth
value of f on input (g1, . . . , gn) ∈ (Bk−1,n)n such that the concatenation enc(g1) · · · enc(gn)
of the encodings of g1, . . . , gn is a binary encoding of i, with least significant digit first. The
length |f | of a function f from Bk,n is defined as the length of enc(f). Therefore, |b| = 1 for
all b ∈ B, and for every f ∈ Bk,n with k ≥ 1, we have |f | = (#(Bk−1,n))n ≥ (expk

2(n))n.
A quantifier-free generalised Boolean formula is a formula from the following grammar

Φ ::= ⊤ | f(g1, . . . , gn) | ¬Φ | Φ ∧ Φ

where f(g1, . . . , gn) is said to be a function application, and each f , g1, . . . , gn are function
symbols taken from an infinite alphabet Σ. Each function symbol in Σ is implicitly endowed
with a type Bk,n, with k, n ∈ N. A (quantifier-free) generalised Boolean formula is said to be
well-formed whenever every function application is consistent with the type of the function
symbol, i.e., a function application f(g1, . . . , gn) requires f to be of arity n, if f ∈ B then
n = 0, and otherwise f ∈ Bk,n for some k ≥ 1 and every gi with i ∈ [1, n] belongs to Bk−1,n.

Given a vector-variable of function symbols f = (f1, . . . , fm) of type Bk,n, we write
∃f : Bk,n as a shorthand for the existential quantifier block ∃f1 : Bk,n . . . ∃fm : Bk,n; the
universal quantifier block ∀f : Bk,n stands for ∀f1 : Bk,n . . . ∀fm : Bk,n. The set of all
generalised Boolean formulae of order 0 and alternation depth d is the set of all formulae
∃b1 : B ∀b2 : B . . . ∃bd : B .Φ, where Φ is a quantifier-free generalised Boolean formula.
Generalised Boolean formulae of order k ≥ 1 and alternation depth d are formulae

∃f1 : Bk,n ∀f2 : Bk,n . . . ∃fd : Bk,n .Φ,

where the arity n is arbitrary and Φ is a generalised Boolean formula of order k− 1, arbitrary
alternation depth, and same arity n. The semantics of generalised Boolean formulae is as
expected, e.g., ∃f : Bk,n Ψ states that there is a function f ∈ Bk,n that makes Ψ true. We
write Φ ≡ Ψ to denote that Φ and Ψ are equivalent.

The size |Φ| of a generalised Boolean formula Φ is the number of symbols required to
write it down, where “: Bk,n” is a lexeme that decorates the function symbols, providing
their type, and should not be confused with the actual set Bk,n. We write fv(Φ) for the set of
free function symbols of Φ, i.e., the set of those function symbols that do not appear in the
scope of a quantifier. A sentence is a well-formed generalised Boolean formula Φ where all
function symbols are quantified, i.e. fv(Φ) = ∅. We sometimes write Φ(f1, . . . , fm) or Φ(f),
with f = (f1, . . . , fm), for a formula Φ with fv(Φ) = {f1, . . . , fm}. Given function symbols
g1, . . . , gm and a formula Φ(f1, . . . , fm), we write Φ(g1, . . . , gm) for the formula obtained
from Φ by replacing each fi with gi.

Generalised Boolean formulae are formulae in prenex normal form in which the type Bk,n

of Boolean functions of the quantifier prefix weakly decreases with respect to k. For
presentational convenience, throughout the remainder of the paper we relax these constraints
and consider formulae that are not in prenex formal form. This is done w.l.o.g., as standard
ways of efficiently translating formulae in prenex normal form also work for generalised
Boolean formulae. Moreover, we use standard Boolean connectives ∨, → and ↔, and ⊥.

Let k and d in N+. We introduce the problem HOSAT(k, d):

HOSAT(k, d) : d-alternating satisfiability problem of order k

INPUT: A sentence Φ of order k and alternation depth d.
QUESTION: Is Φ valid?
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We define HOSAT(k, ∗) :=
⋃

d∈N+
HOSAT(k, d), i.e., the problem of deciding the validity of

a sentence of order k and arbitrary alternation depth; and HOSAT :=
⋃

k∈N+
HOSAT(k, ∗).

▶ Theorem 2. (I) HOSAT(k, d) is complete for Σk-EXP
d for odd d.

(II) HOSAT(k, ∗) is complete for STA(∗, expk
2(nO(1)), O(n)).

To keep the presentation simple, we only formulate the result for odd d. The reduction we
use to show the lower bound of Theorem 2(I) is uniform for all k ≥ 1. By uniform polynomial
time reduction [29], this implies that HOSAT is TOWER-complete.

Related work. In view of the fact that HOSAT is a natural generalisation of SAT, it comes
with no surprise that some of its instances have previously been defined and have found
diverse application in the past. In [1], Babai, Fortnow and Lund relied on HOSAT(1, 1)
(called Oracle-3-satisfiability in the paper) to show that NEXP ⊆ MIP, where MIP is the
class of all languages with multiple-prover interactive proof systems. In [19], Lohrey relied
on HOSAT(1, d) (called QOΣd-SAT in the paper) to show ΣEXP

d -hardness of model checking
Σd-MSO sentences over hierarchical graph unfoldings. These works already hint at how
considering Boolean functions instead of succinct circuits is already beneficial, in terms of
directness of the reductions, for NEXP-hard problems.

Above ΣEXP
d , closely related is the work of Statman on the typed λ-calculus. In [30],

he considers the λ-calculus with single ground type 0, no constants, only power types (→)
and β-conversion, and shows that checking whether two λ-terms of the calculus reduce to
the same normal form is non-elementary recursive (in fact, it shows that the problem is
TOWER-complete). The proof of TOWER-hardness follows thanks to a Church encoding
of the basic language of set theory denoted by Statman with Ω. The variables in formulae
from Ω are associated with a number type from N. A variable of type n ranges over Dn where
D0 := {0,1}, with 0 and 1 constants, and Dn+1 is the powerset of Dn. Formulae of Ω are
obtained by taking the closure under Boolean connectives and quantification of membership
queries of the form 0 ∈ x, 1 ∈ x and y ∈ z, where x is of type 1 and y and z are of types n
and n+1, respectively, for some n ∈ N. While HOSAT and the satisfiability of formulae from
Ω are essentially the same problem, the logic Ω is not suitable to capture any of the levels of
the weak k-EXP hierarchies. To see this, fix k ≥ 1 and let Ω(k) be the subset of the formulae
in Ω having variables of type at most k. Differently from HOSAT(k, ∗), the satisfiability
problem of Ω(k) can be shown to be in PSPACE (more precisely, it is equivalent to QBF)
since the sets Dj with j ≤ k are now fixed a priori. Here, the reason why HOSAT(k, ∗) is
instead k-NEXP-hard is because the sets Bj,n with j ≤ k still have some degree of freedom
given by the unbounded number of choices for n ∈ N.

According to [30], TOWER-completeness of the satisfiability problem of Ω was announced
by Meyer in [24, Theorem 1(7)] as part of a forthcoming paper coauthored with Fischer. To
the best of our knowledge, the latter paper was never published. To resolve this issue, in [22]
Mairson gives a revision of [30] that provides a standalone proof of the TOWER-hardness of
Ω and a simplification to the aforementioned Church encoding.

4 The complexity of HOSAT(k, d)

We prove Theorem 2(I). The proof of the Σk-EXP
d upper bound is quite simple: given a

sentence ∃f1 : Bk,n ∀f2 : Bk,n · · · ∃fd : Bk,n .Φ, where Φ is a generalised Boolean formula
of order k − 1 and arbitrary alternation depth, an alternating Turing machine running in
k-EXP time and performing d alternations implements the following recursive procedure.
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1. Guess functions from Bk,n for each of the function symbols in the vectors f1, . . . ,fd,
alternating between existential and universal states according to the quantifier prefix.

2. Recursively on Φ, if Φ = ∃f : Bj,n Ψ (resp. Φ = ∀f : Bj,n Ψ) with j < k then check whether
some (resp. each) function of order j satisfies Φ when assigned to f ; if Φ is quantifier-free,
then check whether it is satisfied under the current assignment of function symbols.

Since k-exponential time is available, the second step can be performed deterministically by
iterating through all function in Bj,n, thus without introducing further alternation.

The Σk-EXP
d lower bound of HOSAT(k, d) is shown by reducing from the d-alternating

multi-tiling problem of order k (in short, AMTP(k, d)) considered in [10]. A multi-tiling system
S is a tuple (T , T0, Tacc,H,V,M,m) such that T is a finite set of tile types, T0, Tacc ⊆ T are
sets of initial and accepting tiles, respectively, H,V,M ⊆ T × T represent the horizontal,
vertical and multi-tiling matching relations, respectively, and m ∈ N+ is a number written in
unary. We write |S| for the number of symbols required to encode S.

Fix k ∈ N+, and let grid(k,m) be the two-dimensional grid [expk
2(m)] × [expk

2(m)], where
we recall that [u] := [0, u). Each (h, v) ∈ grid(k,m) is said to be a position of the grid,
comprised of a horizontal position h and a vertical position v. Let d ∈ N odd (so that the
innermost quantifier of the AMTP(k, d) problem we are about to formalise is existential).
A d-level S-tiling for grid(k,m) is a tuple (f1, f2, f3, . . . , fd) such that for all ℓ ∈ [1, d]:
maps: fℓ : grid(k,m) → T assigns a tile type to each position of grid(k,m);
hori: (fℓ(i, j), fℓ(i, j + 1)) ∈ H for every j ∈ [expk

2(m) − 1] and i ∈ [expk
2(m)];

vert: (fℓ(i, j), fℓ(i+ 1, j)) ∈ V for every i ∈ [expk
2(m) − 1] and j ∈ [expk

2(m)];
multi: if ℓ < d, then (fℓ(i, j), fℓ+1(i, j)) ∈ M for every i, j ∈ [expk

2(m)]; and
accept: fd(expk

2(m) − 1, j) ∈ Tacc, for some j ∈ [expk
2(m)].

The initial row I (f) of a map f : grid(k,m) → T is the word f(0, 0)f(0, 1) . . . f(0, expk
2(m) − 1).

AMTP(k, d) : d-alternating multi-tiling problem of order k

INPUT: A multi-tiling system S = (T , T0, Tacc,H,V,M,m).
QUESTION: Is it true that there is w1 ∈ (T0)expk

2 (m) such that for all w2 ∈ (T0)expk
2 (m)

there is · · · there is wd ∈ (T0)expk
2 (m) such that grid(k,m) has a d-level tiling

(f1, . . . , fd) where I (fℓ) = wℓ for all ℓ ∈ [1, d] ?

▶ Proposition 3 ([10]). The problem AMTP(k, d) is complete for Σk-EXP
d . When d is given

as part of the input instead of being fixed, the problem is STA(∗, expk
2(nO(1)), O(n))-complete.

The AMTP(k, d) problem arose from [4], in which the case k = 1 and d not fixed is shown
to be STA(∗, 2nO(1)

, O(n))-complete. See [25, Appendix E.7] or [23] for self-contained proofs.
In the remaining part of this section, we describe a reduction from AMTP(k, d) to

HOSAT(k, d). First, we introduce a family of generalised Boolean formulae that allows us to
compare the bit-strings enc(f) and enc(g) of two functions f and g in Bk,n, with n, k ∈ N.
Subsequently, we define formulae to encode the tiling conditions (maps)–(accept) as well as
the alternation on elements of (T0)expk

2 (m) required by the AMTP(k, d) problem. We remind
the reader that, w.l.o.g., we define generalised Boolean formulae without constraining them
to be in prenex normal form, though we need to keep track of the quantifier alternation for
function symbols of type k.

Comparing bit-strings. We define formulae eqk(f, g), lessk(f, g) and succk(f, g) stating that
enc(f) = enc(g), enc(f) < enc(g) and enc(f) + 1 = enc(g), respectively, and (h1, . . . , hn) <k

(h′
1, . . . , h

′
n), with all hi and h′

i in Bk,n, which checks if the concatenation enc(h1) · · · enc(hn)
encodes a number smaller than enc(h′

1) · · · enc(h′
n). The formula eqk(f, g) is defined as:

eqk(f, g) := ∀h1, . . . , hn : Bk−1,n.f(h1, . . . , hn) ↔ g(h1, . . . , hn).
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The formulae lessk(f, g) and (h1, . . . , hn) <k (h′
1, . . . , h

′
n) have a mutually recursive definition:

lessk+1(f, g) is defined using (h1, . . . , hn) <k (h′
1, . . . , h

′
n), which in turn requires lessk(f, g).

First, we define the base case (h1, . . . , hn) <0 (h′
1, . . . , h

′
n), with each hi and h′

i in B = {0, 1}:

(h1, . . . , hn) <0 (h′
1, . . . , h

′
n) :=

∨n
i=1 ¬hi ∧ h′

i ∧
∧n

j=i+1(h′
j ↔ hj).

Intuitively, this formula forces enc(h1) . . . enc(hn) < enc(h′
1) . . . enc(h′

n) by requiring that
there is a bit i ∈ [1, n] that is set to 0 in enc(h1) . . . enc(hn), set to 1 in enc(h′

1) . . . enc(h′
n),

and the binary representations of enc(h′
1) . . . enc(h′

n) and enc(h1) . . . enc(hn) coincide on all
bits j > i. This is indeed the characterisation of < on binary numbers in least significant digit
first encoding. The same idea is used to define the formula lessk(f, g). Inductively, assume
that the formula (h1, . . . , hn) <k (h′

1, . . . , h
′
n) was defined. We use it to define lessk+1(f, g):

lessk+1(f, g) := ∃h : Bk,n .¬f(h) ∧ g(h) ∧ ∀h′ : Bk,n .h <k h′ → (f(h′) ↔ g(h′)),

where h = (h1, . . . , hn) and h′ = (h′
1, . . . , h

′
n).

To complete the definitions of lessk(f, g) and (h1, . . . , hn) <k (h′
1, . . . , h

′
n), what is left is

to define (h1, . . . , hn) <k+1 (h′
1, . . . , h

′
n) using lessk+1. We need to respect the equivalence

(h1, . . . , hn) <k+1 (h′
1, . . . , h

′
n) ≡

∨n
i=1 lessk+1(hi, h

′
i) ∧

∧n
j=i+1 eqk+1(hj , h

′
j). However, we

cannot define (h1, . . . , hn) <k+1 (h′
1, . . . , h

′
n) as the formula in the right hand side of this

equivalence, as this formula uses n occurrences of lessk and would thus lead to both lessk and
(h1, . . . , hn) <k (h′

1, . . . , h
′
n) being of size exponential in k. To solve this issue and obtain

formulae of polynomial size, we rely on a variant of a trick used by Fisher and Rabin in [11],
based on the equivalence Φ(a) ∨ Φ(b) ≡ ∃c : Φ(c) ∧ (c = a ∨ c = b):

(h1, . . . , hn) <k+1 (h′
1, . . . , h

′
n) :=

∃a, b : Bk+1,n . lessk+1(a, b) ∧
∨n

i=1 eqk+1(a, hi) ∧ eqk+1(b, h′
i) ∧

∧n
j=i+1 eqk+1(hj , h

′
j).

▶ Lemma 4. Let f, g ∈ Bk,n. Then, lessk(f, g) iff enc(f)<enc(g); and |lessk(f, g)| ≤ O(n3k).

The definition of succk(f, g) follows a similar characterisation of successor for binary
numbers: we have a+ 1 = b whenever (1) there is a bit i that is set to 0 in a and to 1 in b,
(2) the binary representations of a and b coincide on every bit j > i (exactly as in the case of
<) and moreover (3) every bit j < i is set to 1 in a and it is set to 0 in b. For instance, in
least significant digit first encoding, (1111001)2 + 1 = (0000101)2. We have:

succk+1(f, g) := ∃h : Bk,n .¬f(h) ∧ g(h) ∧ ∀h′ : Bk,n .(
h <k h′ → (f(h′) ↔ g(h′))

)
∧

(
h′ <k h → f(h′) ∧ ¬g(h′)

)
,

where h = (h1, . . . , hn) and h′ = (h′
1, . . . , h

′
n).

▶ Lemma 5. For f, g ∈ Bk,n, succk(f, g) iff enc(f)+1 = enc(g); and |succk(f, g)| ≤ O(n3k).

From AMTP(k, d) to HOSAT(k, d). We are ready to prove the lower bounds of The-
orem 2. For k = 1, the ΣEXP

d -hardness of HOSAT(1, d) was already established by Lohrey
in [19, Proposition 33] via a reduction from Turing machines. Therefore, we consider k ≥ 2
(our proof can nonetheless be adapted to the case k = 1). Let S = (T , T0, Tacc,H,V,M,m) be
a multi-tiling system. We assume T = [1, r] for some r ∈ N+ (thus H,V,M ⊆ [1, r] × [1, r]).

Let n := 2 + #T + m. We write ⊥k for the function in Bk,n such that enc(⊥k) = 0,
i.e. ⊥k is the only solution f of the formula botk(f) := ∀g1, . . . , gn : Bk−1,n .¬f(g1, . . . , gn).
Similarly, we write ⊤k for the function in Bk,n with maximal encoding, that is the only
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33:8 Higher-Order Quantified Boolean Satisfiability

solution f to the formula topk(f) := ∀g1, . . . , gn : Bk−1,n . f(g1, . . . , gn). The first step of the
reduction consists of encoding the d functions of a d-level S-tiling (f1, . . . , fd). We encode
each of these functions using a function f ∈ Bk,n satisfying the following two properties:
1: If f(h, v, t1, . . . , tr, u1, . . . , um) = 1 then enc(h) and enc(v) belong to [expk

2(m)], each ti
belongs to {⊥k−1,⊤k−1} and every uj is ⊥k−1.

2: Given h, v ∈ Bk−1,n, if enc(h), enc(v) ∈ [expk
2(m)] then there is exactly one tuple t =

(t1, . . . , tr) such that f(h, v, t, u1, . . . , um) = 1; and exactly one among t1, . . . , tr is ⊤k−1.
Here, the inputs h and v are used to represent horizontal and vertical positions in the grid,
the inputs t1, . . . , tr are used to encode the tiles, and the inputs u1, . . . , um are only required
to makes sure we have enough inputs to encode the fact that h and v belong to [expk

2(m)] (see
the formula ok1 below). Together, Properties (1) and (2) characterise the condition (maps)
of the S-tiling (we add the other tiling conditions later). To capture Property 1 above,
notice first that h and v should be taken from a space of exactly expk

2(m) functions. As
#(Bk−1,n) ≥ expk

2(m), this obliges us to introduce a formula okk(g) characterising the fact
that a function g ∈ Bk,n is such that enc(g) ∈ [expk+1

2 (m)]. We have

ok1(g) := ∀h1, . . . , hn : B . g(h1, . . . , hn) →
∧n

i=m+1 ¬hi

okk+1(g) := ∀h1, . . . hn : Bk,n . g(h1, . . . , hn) → (okk(h1) ∧
∧n

i=2 botk(hi)).

Intuitively, for k ≥ 1 the formula okk(g) holds whenever for all inputs (h1, . . . , hn) and
j := enc(h1) · · · enc(hn), if the j-th bit of enc(g) is set to 1 then j ∈ [expk

2(m)]. This means
that enc(g) corresponds to a binary number with expk

2(m) bits, i.e. enc(g) ∈ [expk+1
2 (m)].

In all the formulae below, we let t = (t1, . . . , tr), u = (u1, . . . , um) and t′ = (t′1, . . . , t′r).
We define the formula mapsOnek(f) stating that f ∈ Bk,n satisfies Property 1:

mapsOnek(f) :=∀h, v, t,u : Bk−1,n . f(h, v, t,u) → okk−1(h) ∧ okk−1(v) ∧∧r
i=1(topk−1(ti) ∨ botk−1(ti)) ∧

∧m
j=1 botk−1(uj).

Suppose that f ∈ Bk,n satisfies mapsOnek(f). In a similar fashion, one defines a for-
mula mapsTwok(f) stating that f satisfies Property 2 of the encoding:

mapsTwok(f) := ∀h, v : Bk−1,n . okk−1(h) ∧ okk−1(v) → ∃t,u : Bk−1,n . f(h, v, t,u)∧∨r
i=1(topk−1(ti) ∧

∧r
j=1
j ̸=i

botk−1(tj)) ∧ ∀t′ : Bk−1,n . f(h, v, t′,u) →
∧r

i=1 eqk−1(ti, t′i).

We define mapsk(f) := mapsOnek(f) ∧ mapsTwok(f), and move to the remaining tiling
conditions. The conditions (hori) and (vert) can be defined with the help of the formula succk.
Below, we present the definition of the formula horik(f) that encodes the condition (hori):

horik(f) := ∀h, v, v′ : Bk−1,n . okk−1(h) ∧ okk−1(v) ∧ okk−1(v′) ∧ succk−1(v, v′)
→

∨
(i,j)∈H f(h, v, i) ∧ f(h, v′, j),

where f(h, v, i) is a shortcut for ∃t,u : Bk−1,n . topk−1(ti) ∧ f(h, v, t,u), i.e. a formula stating
that the tile i ∈ T is assigned to the position (enc(h), enc(v)) of the grid, under the
hypothesis that f satisfies mapsk(f). The definition of the formula vertk(f) encoding the
condition (vert) is defined analogously. For the condition (multi), let f and g be two functions
of Bk,n satisfying mapsk. We define:

multik(f, g) := ∀h, v : Bk−1,n . okk−1(h) ∧ okk−1(v) →
∨

(i,j)∈M f(h, v, i) ∧ g(h, v, j).
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Lastly, we define the formula acck(f) corresponding to the condition (accept):

acck(f) := ∃h, v : Bk−1,n . okk−1(h) ∧ okk−1(v) ∧
( ∨

i∈Tacc
f(h, v, i)

)
∧

∀h′ : Bk−1,n . lessk−1(h, h′) → ¬okk−1(h′).

Here, the subformula ∀h′ : Bk−1,n . lessk−1(h, h′) → ¬okk−1(h′) forces enc(h) = exp2
2(m)−1.

To complete the reduction, what is left is to encode the quantifier prefix “∃w1 ∈ (T0)expk
2 (m)

∀w2 ∈ (T0)expk
2 (m) . . . ∃wd ∈ (T0)expk

2 (m)” of the AMTP(k, d) problem. To this end, we
introduce two formulae rowk(f) and rowCpk(f, g). The former states that f ∈ Bk,n satisfies
mapsk, and whenever f(h, v, t,u) holds the only ti equal to ⊤k−1 is such that i ∈ T0:

rowk(f) := mapsk(f) ∧ ∀h, v, t,u : Bk−1,n . f(h, v, t,u) →
∨

i∈T0
topk(ti).

We use this formula to quantify on the initial row I(f) of a S-tiling function f, forgetting about
the information stored by f elsewhere. This is done thanks to the formula rowCpk(f, g),
which given f, g ∈ Bk,n satisfying mapsk, states that f and g agree on the first row:

rowCpk(f, g) := ∃h : Bk−1,n . botk−1(h) ∧ ∀v, t,u : Bk−1,n . f(h, v, t,u) ↔ g(h, v, t,u),

The quantifier prefix of AMTP(k, d) is encoded in HOSAT(k, d) by first quantifying over
functions w1, . . . , wd ∈ Bk,n satisfying rowk, appropriately alternating between existential and
universal quantification, and then existentially quantifying over functions f1, . . . , fd ∈ Bk,n

that encode the S-tiling functions (f1, . . . , fd). The formula rowCpk(fi, wi) is used to “copy”
the first row of wi in fi. This leads to the formula amtpk(S):

∃w1 : Bk,n . rowk(w1) ∧
∀w2 : Bk,n . rowk(w2) →
. . .

∃wd : Bk,n . rowk(wd) ∧
∃f1, . . . , fd : Bk,n .

∧d
i=1(mapsk(fi) ∧ rowCpk(fi, wi) ∧ horik(fi) ∧ vertk(fi))

∧
∧d−1

i=1 multik(fi, fi+1) ∧ acck(fd).

▶ Proposition 6. Let d ∈ N+ and k ≥ 2. The formula amtpk(S) is valid if and only if
AMTP(k, d) accepts on input S. Moreover, the formula amtpk(S) has size O(d · k · |S|4).

Notice that amtpk(S) is a generalised Boolean formula of order k and alternation depth d,
since bringing it into prenex normal form yields a formula of the form ∃w1 : Bk,n ∀w2 : Bk,n . . .

∃wd, f1, . . . , fd : Bk,n .Φ, where Φ is a generalised Boolean formula of order k − 1 and size
in O(d · k · |S|4). By Proposition 3 (first part), this completes the proof of Theorem 2(I).
Theorem 2(II) is proven analogously, by simply treating d as part of the input instead of
being fixed. The upper bound follows the same strategy as the case of HOSAT(k, d), and
the lower bound follows form Proposition 6 together with the second part of Proposition 3.

5 Weak Presburger arithmetic is as hard as Presburger arithmetic

In this section, we illustrate the usefulness of the higher order satisfiability problem by
employing it to derive a STA(∗, exp2

2(nO(1)), O(n)) lower bound for the weak fragment of
Presburger arithmetic (Weak PA), hence showing that this logic matches the complexity
of (standard) Presburger arithmetic. Weak PA is the first-order theory of the structure
⟨Z, (c)c∈Z,+,=⟩, where (c)c∈Z are constant symbols interpreted as their homographic integer,
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33:10 Higher-Order Quantified Boolean Satisfiability

the binary function symbol + is interpreted as addition on Z and the binary relation = is
interpreted as equality on Z. Subsequently, linear Terms t, t′, . . . are of the form a1x1 +
· · · + adxd + c, where d is arbitrary, a1, . . . , ad, c ∈ Z, and x1, . . . , xd are first-order variables
interpreted over Z. Formulae of Weak PA close equalities between linear terms t = t′ under
Boolean connectives ¬, ∧, ∨, etc., and first-order quantifiers ∃x and ∀x. For example, given
m ∈ N+ and linear terms t, t′, the modulo constraint t ≡m t′ stating that t is congruent to t′
modulo m is characterised by the Weak PA formula ∃x . t− t′ = x ·m, where x is a variable
not appearing in t or t′.

Surprisingly, our lower bound holds for the following two fragments of Weak PA:
The positive fragment that forbids negation, allowing formulae from the grammar

Φ ::= a1x1 + · · · + adxd = c | Φ ∧ Φ | Φ ∨ Φ | ∃x .Φ | ∀x .Φ.

The Horn fragment, in which formulae are of the form ∃x1∀x2 . . . ∃xm .
∧

i∈I(Φi → Ψi),
where x1, . . . ,xm are vectors of variables, and each Φi and Ψi is a system of equalities,
that is a conjunction of equalities between linear terms.

▶ Theorem 7. The positive and Horn fragments of Weak PA are STA(∗, 22nO(1)

, O(n))-hard.
To prove this theorem we provide a reduction from HOSAT(2, ∗) to the validity problem for
the positive fragment of Weak PA, and a translation from Weak PA to its Horn fragment.
The reduction defines arithmetic with multiplication on doubly exponential finite segments
of integers, such as [22n ], and, in a more restricted way, one exponential higher. Here we
strengthen Berman’s lower bound argument for standard PA [3] (see also [18, Lecture 22]),
which relies on the order predicate throughout.

Encoding second-order Boolean functions in Weak PA. Let n ∈ N+ be encoded in unary.
In a nutshell, the main difficulty in the reduction from HOSAT(2, ∗) is to understand how
to encode the functions in B1,n and B2,n using integer numbers, as well as translating the
function applications f(g1, . . . , gn). For the set B1,n, we rely on the encoding enc(.) defined
in Section 3 that maps every function f ∈ B1,n into the number enc(f) ∈ [22n ] written in
binary. To encode functions in B2,n, we borrow ideas from [13, 14]. We say that z ∈ Z
encodes some function in B2,n if and only if for every i ∈ [2n2n ] and all prime numbers
p, q ∈ [i3, (i+ 1)3), z ≡p 0 or z ≡p 1, and z ≡p 0 if and only if z ≡q 0. Furthermore, we say
that z ∈ Z (precisely) encodes the function f ∈ B2,n if and only if z encodes some function
in B2,n and moreover for every g = (g0, . . . , gn−1) ∈ (B1,n)n and b ∈ {0, 1},

f(g) = b if and only if z ≡p b for a prime p ∈ [β(g)3, (β(g) + 1)3),

where β : (B1,n)n → [0, 2n2n) is the bijection β(g0, . . . , gn−1) :=
∑n−1

j=0 enc(gj) · 2j·2n . The
fact that any function in B2,n is encoded by some z ∈ Z follows from the Chinese remainder
theorem together with Ingham’s theorem [16], a theorem ensuring that for i sufficiently large,
[i3, (i+ 1)3) contains at least one prime. As in, e.g., [13, 14], to simplify the presentation we
apply Ingham’s theorem as if it was known to be true for all i ∈ N. An alternative would be
to use an analogous result on primes between fixed powers that holds for all i [9], or to add
constant offsets throughout.

From HOSAT(2, ∗) to the positive fragment of Weak PA. We formalise the translation τ
that, given a formula from HOSAT(2, ∗) returns an equivalent formula in the positive fragment
of Weak PA. We divide the translation into three parts, depending on whether we are dealing
with a generalised Boolean formula of order 0, 1 or 2. The translation τ is homomorphic for
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formula semantics
φn(x, z) x = 22n

· z
multn(x, y, z) x = y · z, z ∈ [22n

]
In(x) z ∈ [22n

]
powern(y, j) y = 2j and j ∈ [2n]
ψk,n(x) x = 2k2n

formula semantics
intdivn(x, y, q, r) x = q · y + r, y ∈ [22n

], r ∈ [y]
quotn(x, y, q) ∃r ∈ [y] s.t. intdivn(x, y, q, r)
remn(x, y, r) ∃q ∈ Z s.t. intdivn(x, y, q, r)
(not)primen(p) p ∈ [22n

] is (not) prime
x =n y

3 y ∈ [222(n+1)
] and x = y3

Figure 1 Auxiliary formulae required to reduce HOSAT(2, ∗) to positive Weak PA.

binary Boolean connectives: τ(Φ ∧ Ψ) := τ(Φ) ∧ τ(Ψ) and τ(Φ ∨ Ψ) := τ(Φ) ∨ τ(Ψ). Without
loss of generality we assume that negations occurring in the quantifier-free part of generalised
Boolean formulae only appear in front of function applications (recall that we see Boolean
values as 0-ary functions). A (function application) literal is either a function application
f(g1, . . . , gℓ) or its negation ¬f(g1, . . . , gℓ).

Formulae of order 0. We translate ∃f : B, ∀f : B and literals f and ¬f , with f of type B.
Let B(x) := x = 0 ∨ x = 1, i.e. the formula stating x ∈ B. Clearly, τ(f) := f = 1 and
τ(¬f) := f = 0. The quantifiers ∃f : B and ∀f : B are translated as follows:

τ(∃f : B Φ) := ∃f .B(f) ∧ τ(Φ), τ(∀f : B Φ) := ∀f ′∃f . f ≡2 f
′ ∧ B(f) ∧ τ(Φ).

A few words on the translation of ∀f : B. We cannot translate the universal quantifier ∀f : B Φ
as ∀f .B(f) → τ(Φ), i.e. relying on the ∃-∀ duality, as B(f) → τ(Φ) is not in the positive
fragment of Weak PA. Our definition circumvents this problem by relying on the equivalence
∀x . x ∈ [0, ℓ] → Φ(x, z) ≡ ∀x′∃x . x′ ≡ℓ+1 x ∧ x ∈ [0, ℓ] ∧ Φ(x, z).

Formulae of order 1. We treat quantifiers ∃f : B1,n, ∀f : B1,n and literals f(g1, . . . , gn) and
¬f(g1, . . . , gn), where f is of type B1,n and each gi is of type B. To achieve this we rely on the
auxiliary formulae formally specified in Figure 1 and defined below (ψk,n(x), notprimen(p)
and x =n y

3 are defined later as only used for formulae of order 2). The formulae φn, multn,
In and intdivn are an adaptation of the homonymous formulae provided by Kozen in [18,
Lecture 22] in the context of linear real arithmetic. For instance, the formula φn(x, z) is
inductively defined in [18, p. 147] as follows:

φ0(x, z) := x = 2z, φn+1(x, z) := ∃y∀a, b . (a = x ∧ b = y) ∨ (a = y ∧ b = z) → φn(a, b).

The inductive case of φn+1(x, z) is defined relying on the trick of Fisher and Rabin [11] we
already encountered in Section 3, used here to obtain a linear size formula equivalent to
∃y : φn(x, y) ∧ φn(y, z). As it stands φn+1(x, z) is not in the positive fragment of Weak PA.
We rely on modulo constraints to resolve this issue, redefining φn+1(x, z) as follows:

φn+1(x, z) := ∃y∀i∃a, b .
(
(i ≡2 0 ∧ a = x ∧ b = y) ∨ (i ≡2 1 ∧ a = x ∧ b = y)

)
∧ φn(a, b) .

The definitions of multn(x, y, z), In(x) and intdivn(x, y, q, r) require similar adaptations
w.r.t. [18, p. 148f], which are omitted due to space constraints. The formulae quotn and
remn are simple shortcuts of intdivn, e.g., quotn(x, y, q) := ∃r intdivn(x, y, q, r).

Finally, powern(y, j) is intuitively defined by bit-blasting j into n bits j0, . . . , jn−1, so
that j =

∑n−1
i=0 ji · 2i, and forcing y = 2j =

∏
{exp2

2(i) : i ∈ [n] and ji = 1} to hold:

powern(y, j) := ∃(j0, y0, z0), . . . , (jn−1, yn−1, zn−1) . j =
∑n−1

i=0 ji · 2i ∧ z0 = y0 ∧ y = zn−1

∧
∧n−1

i=1

(
multn(zi, zi−1, yi) ∧

(
(ji = 0 ∧ yi = 1) ∨ (ji = 1 ∧ φi(yi, 1))

))
.
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The subformula z0 = y0 ∧ y = zn−1 ∧
∧n−1

i=1 multn(zi, zi−1, yi) computes y =
∏n−1

i=0 yi. We
are ready to translate the generalised Boolean formula of order 1. Recall that we encode
a function f in B1,n with the number enc(f) ∈ [22n ], and we have f(g0, . . . , gn−1) = 1
if and only if the jth bit of enc(f) is 1, where j =

∑n−1
i=1 gi · 2i. With this in mind,

the case for existential quantifiers closely follows the definition for formulae of order 0:
τ(∃f : B1,n Φ) := ∃f . In(f) ∧ τ(Φ). The case of universal quantifiers is more involved:
whereas for the case of formulae of order 0 we resorted to reasoning modulo 2, we now reason
modulo 22n . We can bind 22n to a variable ℓ with the formula φn(ℓ, 1). For m ∈ Z and
r ∈ [22n ], we can then check if m ≡ℓ r holds using the formula remn+1(m, ℓ, r). Note that we
use remn+1 instead of remn, as ℓ belongs to the set [22n+1 ] \ [22n ]. Here is the translation:

τ(∀f : B1,n Φ) := ∀f ′∃f, ℓ . φn(ℓ, 1) ∧ remn+1(f ′, ℓ, f) ∧ τ(Φ).

For the function application literal f(g0, . . . , gn−1), where each gi is mapped through τ into
a homonymous Boolean variable according to the translation of formulae of order 0, we
consider the number j =

∑n−1
i=0 gi · 2i and check that the jth bit of enc(f) is set to 1 by

verifying that the quotient of the division f/2j is odd. As a formula:

τ(f(g0, . . . , gn−1)) := ∃j, y, q . j =
∑n−1

i=0 gi · 2i ∧ powern(y, j) ∧ quotn(f, y, q) ∧ q ≡2 1.

We treat the literal ¬f(g0, . . . , gn−1) in a similar way, by checking whether f/2j is even. So,
τ(¬f(g0, . . . , gn−1)) is obtained from τ(f(g0, . . . , gn−1)) by replacing q ≡2 1 with q ≡2 0.

Formulae of order 2. To complete the definition of τ , we now show how to handle quantifiers
∃f : B2,n and ∀f : B2,n, and function application literals f(g1, . . . , gn) and ¬f(g1, . . . , gn),
where f is of type B2,n and every gi is of type B1,n. As explained at the beginning of the
section, functions in B2,n are encoded as integers z ∈ Z having the property that for every
i ∈ [2n2n ] and all prime numbers p, q ∈ [i3, (i + 1)3), z ≡p 0 or z ≡p 1, and z ≡p 0 if and
only if z ≡q 0. Below, we aim at defining the formula enc2

n(z) stating that z encodes some
function in B2,n. We start by defining the formula notprimen(p) from Figure 1:

notprimen(p) := In(p) ∧ ∃d . In(d) ∧ In(d− 2) ∧ In(p− d− 1) ∧ remn(p, d, 0).

Informally, notprimen(p) states that p is not a prime number by finding a divisor d ∈ [2, p− 1].
Notice that if we assume p, d ∈ [22n ] then In(d− 2) ≡ d ≥ 2 and In(p− d− 1) ≡ d < p.

Two further comments on the definition of encoding for functions in B2,n given above:
first, observe that this definition requires the construction of numbers (i+ 1)3 with i ∈ [2n2n ].
Since (2n2n + 1)3 < 222(n+1) , all these numbers satisfy the formula I2(n+1)(x). This explains
the contribution of notprime2(n+1) and similar formulae in the forthcoming definition of
enc2

n(z). Second, the encoding requires to iterate over all i ∈ [2n2n ]. As in the definition of τ
for the case ∀f : B1,n, this is done by binding 2n2n to a variable ℓ and then considering all
numbers in [ℓ] by relying on the formula rem2(n+1). To characterise 2n2n we use the following
formula that, given k ∈ N+ in unary, is satisfied whenever x = 2k2n :

ψk,n(x) := ∃z1, . . . , zk . zk = 1 ∧ φk(x, z1) ∧
∧k−1

i=1 φn(zi, zi+1).

We define x =n y
3 := ∃z .mult2(n+1)(z, y, y) ∧ mult2(n+1)(x, z, y) and the formula enc2

n(z):

enc2
n(z) := ∀i′∃i, ℓ, a, b . ψn,n(ℓ) ∧ rem2(n+1)(i′, ℓ, i) ∧ a =n i

3 ∧ b =n (i+ 1)3 ∧
∀p′, q′∃ℓ′, p, q . φ2(n+1)(ℓ′, 1) ∧ rem2n+3(p′, ℓ′, p) ∧ rem2n+3(q′, ℓ′, q) ∧( ∨

r∈{p,q}
(
I2(n+1)(a− r − 1) ∨ I2(n+1)(r − b) ∨ notprime2(n+1)(r)

)
∨

∨
s∈{0,1}

(
rem2(n+1)(z, p, s) ∧ rem2(n+1)(z, q, s)

))
.
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Let us dissect this formula line by line. The first line iterates through all i ∈ [ℓ] = [2n2n ],
binding a and b to i3 and (i+1)3 respectively. The second line iterates through all p, q ∈
[ℓ′] = [222(n+1) ]. Following the definition of our encoding of functions in B2,n, we check that

one among p and q lies outside [a, b) or is not prime (third line of the formula), or
z ≡p 0 or z ≡p 1, and z ≡p 0 if and only if z ≡q 0 (fourth line of the formula).

▶ Lemma 8. A number z ∈ Z satisfies enc2
n(z) iff z encodes some function in B2,n.

We can now define τ for ∃ quantifiers: τ(∃f : B2,n Φ) := ∃f : enc2
n(f) ∧ τ(Φ). For universal

quantifiers we reason dually and define a positive Weak PA formula notenc2
n(z) stating that

z does not encode any function in B2,n. Defining this formula requires a positive Weak PA
formula to test for the primality of p ∈ [22n ]:

primen(p) := In(p) ∧ ∀z∃d, r . remn(z, p, d) ∧
(
d = 0 ∨ d = 1 ∨

(
remn(p, d, r) ∧ In(r− 1)

))
.

Afterwards, notenc2
n(z) is defined by slightly revisiting enc2

n(z):

notenc2
n(z) := ∃i, ℓ, a, b, p, q . ψn,n(ℓ) ∧ I2(n+1)(ℓ− i− 1) ∧ a =n i

3 ∧ b =n (i+ 1)3 ∧∧
r∈{p,q}

(
I2(n+1)(r − a) ∧ I2(n+1)(b− r − 1) ∧ prime2(n+1)(r)

)
∧

∃s, t . rem2(n+1)(z, p, s) ∧ rem2(n+1)(z, p, t) ∧ (I2(n+1)(s− 2) ∨ s ≡2 t+ 1).

We define the translation for universal quantifiers as τ(∀f : B2,n Φ) := ∀f : notenc2
n(f)∨τ(Φ).

Let g = (g0, . . . , gn−1). What is left is to treat the literals f(g) and ¬f(g). Once
more, recall that every gi is a function in B1,n, and thus it is translated through τ into a
homonymous integer variable that is constrained to be in [22n ]. Suppose that z encodes the
function f . To check whether f(g) holds (resp. does not hold), we must check whether z ≡p 1
(resp. z ≡p 0) for some prime number p in the interval [i3, (i+ 1)3) with i :=

∑n−1
j=0 gj · 2j·2n .

Formally, given d ∈ {0, 1} and i ∈ [2n2n ], we define the macro z[i] =n d to check this property:

z[i] =n d := ∃a, b, p . a =n i
3 ∧ b =n (i+ 1)3 ∧ prime2(n+1)(p) ∧

I2(n+1)(p− a) ∧ I2(n+1)(b− p− 1) ∧ rem2(n+1)(z, p, d).

It then suffices to compute i from g = (g0, . . . , gn−1), with the following formula

γn(i, g) := ∃x0, y0, . . . , xn−1, yn−1 . i =
∑n−1

j=0 xj ∧
∧n−1

j=0
(
ψj,n(yj) ∧ mult2(n+1)(xj , yj , gj)

)
,

leading to the following translations for the literals f(g) and ¬f(g):

τ(f(g)) := ∃i . γn(i, g) ∧ f [i] =n 1, τ(¬f(g)) := ∃i . γn(i, g) ∧ f [i] =n 0.

The correctness of the translation τ is provided by the following proposition, shown by
structural induction on the generalised Boolean formula Φ.

▶ Proposition 9. A generalised Boolean formula Φ of order 2 is valid if and only if so
is τ(Φ). The size of τ(Φ) is polynomial in the size of Φ.

Horn Weak PA = Weak PA. To complete the proof of Theorem 7, we need to show
that Weak PA reduces to its Horn fragment. Briefly, this is done with standard formula
manipulations and by relying on the equivalences below (notice the similarities to the trick
used to define φn):

Φ ∧ Ψ ≡ ∀x . (x ≡2 0 → Φ) ∧ (x ≡2 1 → Ψ), Φ ∨ Ψ ≡ ∃x . (x ≡2 0 → Φ) ∧ (x ≡2 1 → Ψ);

where the variable x above does not occur in Φ nor in Ψ.
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Abstract
A graph has arboricity α if its edges can be partitioned into α forests. The dynamic arboricity
decomposition problem is to update a partitioning of the graph’s edges into forests, as a graph
undergoes insertions and deletions of edges. We present an algorithm for maintaining partitioning
into α + 1 forests, provided the arboricity of the dynamic graph never exceeds α. Our algorithm has
an update time of Õ(n3/4) when α is at most polylogarithmic in n.

Similarly, the dynamic bounded out-orientation problem is to orient the edges of the graph such
that the out-degree of each vertex is at all times bounded. For this problem, we give an algorithm
that orients the edges such that the out-degree is at all times bounded by α + 1, with an update
time of Õ(n5/7), when α is at most polylogarithmic in n. Here, the choice of α + 1 should be viewed
in the light of the well-known lower bound by Brodal and Fagerberg which establishes that, for
general graphs, maintaining only α out-edges would require linear update time.

However, the lower bound by Brodal and Fagerberg is non-planar. In this paper, we give a lower
bound showing that even for planar graphs, linear update time is needed in order to maintain an
explicit three-out-orientation. For planar graphs, we show that the dynamic four forest decomposition
and four-out-orientations, can be updated in Õ(n1/2) time.
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1 Introduction

Dynamic graphs have been the subject of much study. Here one is typically interested in
maintaining some property of or information about the graph, as edges of the graph are inser-
ted and deleted. Sometimes one studies more restricted classes of graphs with more structure
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in the hopes of improving algorithmic performance. The existence of efficient algorithms for
testing planarity of a fully-dynamic graph [17, 24] motivates efforts to dynamically maintain
well-known properties of planar graphs, such as e.g. bounded out-degree orientations and
colourings.

The arboricity of a graph G is the smallest number α such that α forests can cover the
edges of G. Planar graphs have arboricity at most 3. If a forest is rooted arbitrarily, and all
of the edges in the forest are oriented towards the roots, then every vertex has out-degree 1.
In particular, this implies that the edges of a planar graph resp. graphs of arboricity α can
be oriented such that no vertex has out-degree more than 3 resp. α . We call an orientation
of a graph such that no vertex has more than k out-edges a k-bounded out-orientation. Since
there exists planar graphs on n vertices with more than 2n edges, it follows that there exists
planar graphs for which a 3-bounded out-orientation is the lowest out-orientation possible.

In light of the above, we ask the question: can one efficiently maintain a 3-bounded
out-orientation of a dynamic planar graph? Here the aim is to be more efficient than the
fastest static algorithm – running in linear time – as one could construct a dynamic algorithm
by statically recomputing a new solution after every update.

It turns out that it is not possible to improve upon this; at least not if we want to
maintain an explicit orientation. Here, one has to store the orientation of every edge in
memory opposed to an implicit orientation, where one is allowed to compute the orientation
of an edge at query-time. More precisely we show that any algorithm maintaining an explicit
3-bounded out-orientation of a dynamic planar graph must spend Ω(n) update time, even
amortised. For the broader class of graphs with bounded arboricity, Brodal & Fagerberg [9]
showed that any algorithm maintaining an explicit α-bounded out-orientation must spend
Ω(n) update time, even amortised. However for α = 3 their example is far from planar. Our
lower bound shows that the same bounds indeed hold for planar graphs.

In light of this negative result, it is natural to ask if one can do better if a little slack
on the number of out-edges is allowed. We show that this is indeed the case, as we provide
an algorithm maintaining a 4-bounded out-orientation of a dynamic planar graph with
Õ(

√
n) amortised update time. In fact, this generalises to maintaining an (α + 1)-bounded

out-orientation of a dynamic graph whose arboricity never exceeds α through-out the entire
update sequence. Here the algorithm has an amortised update-time of Õ(n5/7). Here Õ

hides α and log n factors, so one should think of α = O(1).
An arboricity decomposition of a graph is a decomposition of the graph’s edges into forests.

We show how to dynamically maintain a 4-arboricity decomposition of a dynamic planar
graph with Õ(

√
n) amortised update time. This also generalises to graphs of bounded degree

α: here we present an algorithm maintaining an (α + 1) arboricity decomposition with an
amortised update-time of Õ(n3/4).

The presented algorithms all follow the same idea: we show how to update the out-
orientation or arboricity decomposition in such a way that 1) every update only uses very
little of the extra slack provided by having one more out-edge or one more forest available
and 2) the update time scales with the amount of extra slack used. Combining these two
properties allow us to truncate the update algorithm if it runs for too long and instead
statically recompute an optimal solution.

1.1 Results
We consider dynamic graphs on n vertices undergoing a sequence of updates such that the
arboricity of the graph at all times is bounded by α. We refer to such a sequence of updates
as an α preserving sequence of updates.
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We show the following theorem for maintaining an α + 1 out-orientation.

▶ Theorem 1. Given an initially empty dynamic graph undergoing an arboricity α preserving
sequence of updates and a static black box algorithm that computes an α-bounded out-degree
orientation of a graph with n vertices and arboricity α in time S(α, n), the algorithm will
maintain an (α + 1)-bounded out-degree orientation with an amortised insertion time of
O(

√
α · S(α, n)), and a worst-case deletion time of O(1).

Specifying a black box algorithm gives the following corollary:

▶ Corollary 2. Given an initially empty dynamic planar graph undergoing edge insertions
and deletions, there is an algorithm that maintains a 4-bounded out-degree orientation with
an amortised insertion time of O(

√
n), and a worst-case deletion time of O(log n).

Proof. Chrobak & Eppstein gave a linear-time algorithm for computing a 3-bounded out-
degree orientation in planar graphs [12]. Now applying Theorem 1 yields the result. ◀

For bounded arboricity graphs, applying the fastest static algorithm [31] gives an amortised
update time of Õ(n5/7). We show the following theorem for maintaining an α + 1 arboricity
decomposition:

▶ Theorem 3. Given an initially empty dynamic graph undergoing an arboricity α preserving
sequence of updates and a static black box algorithm that computes an α arboricity decompos-
tion of a graph with n vertices and arboricity α in time S(α, n), the algorithm will maintain
an (α + 1) arboricity decomposition with an amortised insertion time of O(α

√
S(α, n) log n),

and a worst-case deletion time of O(log n).

Specifying black box algorithms gives the following corollaries:

▶ Corollary 4. Given an initially empty dynamic planar graph undergoing edge insertions
and deletions, then there exists an algorithm maintaining a 4-arboricity decomposition with
an amortised insertion time of O(

√
n log n), and a worst-case deletion cost of O(log n).

Proof. Chrobak & Eppstein also showed how to compute a 3-forest partition in linear time
in planar graphs [12]. ◀

For bounded arboricity graphs, applying the fastest static algorithm [18, 19] gives an amortised
update time of Õ(n3/4). Finally, we show a lower bound for maintaining explicit 3-bounded
out-orientations in dynamic planar graphs:

▶ Theorem 5. Let A be an algorithm explicitly maintaining a 3-bounded out-degree orientation
of an n-vertex planar graph under insertion and deletion of edges. Then there exists a sequence
of updates taking Ω(n) amortised time per update.

Note that some results rely on ideas similar to those that appeared in the master’s thesis by
A. B. G. Christiansen [10].

1.2 Related Work
Dynamic Planar Graphs. Dynamic planar graphs have been studied both in the incremental
(edge-insertion only) [13, 25, 35, 38] and fully-dynamic (insertion/deletion) setting [16, 17,
20, 24, 26].
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Table 1 Overview of dynamic algorithms for maintaining out-orientations. This table is inspired
by a similar table in [11].

Reference Out-degree Update time α preserving seq.
Brodal & Fagerberg [9] 2(α + 1) Õ(log n) am. yes
Kopelowitz et al. [27] βα + logβ n Õ(β2 + β log n) no
He et al. [22] O(α

√
log n) O(

√
log n) am. yes

Berglin & Brodal [5] O(α + log n) O(log n) no
Henzinger et al. [23] 40α O(log2 n) am. no
Kowalik [29] O(α log n) O(1) am. yes
Christiansen & Rotenberg [11] α + 2 Õ(log3 (n))) yes
New (Thm. 1) α + 1 Õ(n5/7) yes

Bounded Out-Orientations. For the more general class of graphs with bounded arboricity,
the out-orientation problem is well studied – both from a dynamic view-point [9, 27, 37, 29, 5]
and a static view-point [18, 34, 6, 1]. For dynamic arboricity-bounded graphs, Brodal &
Fagerberg gave an algorithm maintaining a 2(α + 1)-bounded out-orientation with amortised
O(α + log n) update time. There also exists an algorithm [11] for maintaining an (α + 2)-
bounded out-orientation with worst-case update time in O(poly(log n, α)).See Table 1 for an
overview.

From a static view-point, the fastest algorithms have running time Õ(m10/7) [31] and
Õ(m

√
n) [30]. Furthermore, Kowalik [28] also gave an algorithm computing a (α + 1) out-

orientation in Õ(m) time. Specialising to the planar case, where the graphs are assumed to
be planar at all times, the lowest out-degree one can get in the dynamic setting while still
achieving sublinear update time becomes 5 with update time in O(poly(log n)). In the static
case, Chrobak & Eppstein showed how to compute a 3 out-orientation in linear time [12].

Arboricity Decompositions. There has been a lot of work dedicated to computing an
arboricity decomposition [18, 19, 14, 34]. The state-of-the-art for computing exact arboricity
decompositions run in Õ(m3/2) time [18, 19]. There also exists approximation algorithms.
There is a 2-approximation algorithm [3, 15] as well as an algorithm for computing an
α + 2 arboricity decomposition in near-linear time [7]. From the dynamic side, Bannerjee
et al. [4] give a dynamic algorithm for maintaining the current arboricity. The algorithm
has a near-linear update time. They also provide a lower bound of Ω(log n) for dynamically
maintaining arboricity. Henzinger et al. [23] provide a dynamic algorithm for maintaining a
2α′ arboricity decomposition, given access to any black box dynamic α′ out-degree orientation
algorithm. Combining this technique with the results from Table 1 yields different trade-offs.
Finally there also exists an algorithm maintaining an (α + 2) arboricity decomposition with
O(poly(log(n), α)) update-time [11].

Specialising to the planar case, the last of the algorithms above yields a sublinear update
time dynamic algorithm for computing a 5 arboricity decomposition. In the static case,
Chrobak & Eppstein also showed how to compute a 3-forest partition in linear time [12].

1.3 Paper Outline

In Section 2 we recall preliminaries. Section 3 is dedicated to Theorem 1. In Section 4 we
show Theorem 3. Finally in Section 5, we prove Theorem 5.
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2 Preliminaries & Notation

We follow standard graph-terminology. We say that a graph G = (V, E) is k-degenerate if
every subgraph of G has a vertex of degree at most k. If the edges of G receives an orientation,
we let the out-edges of a vertex v be the edges oriented away from v. The out-degree of v is
then the number of out-edges incident to v.

Nash-Williams showed the following density formula for graphs of arboricity α:

▶ Theorem 6 ([33, 32]). Let G be a graph with no loops. Then

α(G) =
⌈

max
J⊂G,|V (J)|≥2

|E(J)|
|V (J)| − 1

⌉
A plane graph is a planar graph together with an embedding into the plane such that no
edges cross. For plane graphs we have the usual notion of faces. A triangulation is a maximal
planar subgraph (wrt. the edges). If the triangulation is equipped with an embedding, we
call it a plane triangulation. For planar graphs, we have the following well-known theorem:

▶ Theorem 7 (Euler’s Theorem). If G is a connected plane graph with n vertices, m edges and
f faces, then n − m + f = 2. In particular, if G is a planar triangulation, then m = 3n − 6.

3 Low Out-orientations

In this section, we present a dynamic algorithm that maintains an (α + 1)-bounded out-
degree orientation. Suppose we are given an initially empty dynamic graph G on n vertices
undergoing an arboricity α preserving sequence of updates. Then the algorithm has an
update time of Õ(

√
S(α, n)) provided that it is given access to a black box static algorithm

for computing an α-bounded out-degree orientation in O(S(α, n)) time.
The idea behind the algorithm is the following: suppose we are given a graph G, an edge

e = uv ∈ G and an α + 1 orientation of G − e. Then we can extend the orientation of G − e

to an α + 1 orientation of G in the following way. Find a minimal oriented path P beginning
at u that ends at a vertex w with out-degree at most α. We will refer to such a path as an
augmenting path. After finding P , we reorient all edges along the path. Finally, we make
uv an out-edge of u. This yields an α + 1 orientation of G since the only vertex to have its
out-degree increased is w, and w was specifically chosen to have out-degree < α + 1.

In order to find P , we look for w by doing a breadth-first-search (BFS) beginning from u.
In Lemma 8, we show that such a BFS always succeeds and that it takes time proportional
to the number of vertices visited. Finally, we show that if the BFS visits too many vertices,
we have witnessed enough updates to be able to truncate the search and recompute an α

orientation.

The Algorithm. Whenever an edge is deleted, we can simply delete it in the graph, so we
focus on insertions. Suppose e = uv is inserted. Either u has out-degree < α + 1 and P = u

is an augmenting path or u has out-degree α + 1 in which case, we push u’s neighbours to a
queue Q and mark them as visited. Now we can recursively visit vertices in Q by pushing the
un-visited neighbours of vertices with degree α+1 to Q, and terminating with an augmenting
path if we locate a vertex with out-degree < α + 1. In the end of the update algorithm, we
mark all visited vertices as un-visited. The search for P has the following properties:

▶ Lemma 8. Suppose that G − uv is given an (α + 1)-bounded out-degree orientation, and
we begin a search from u. Then after visiting t vertices the following holds:
1. If no vertex with out-degree < α + 1 has been visited, then Q is not empty.
2. The algorithm has spent O(α · t)-time.
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Proof. We begin by showing that 1) holds. Suppose for contradiction that the algorithm
has visited all vertices pushed to Q without finding a vertex with out-degree < α + 1. Let J

be the set of visited vertices. Since the algorithm pushes all new out-neighbours of a vertex
v to Q, when visiting v, it must be the case that all out-edges of vertices in J go to other
vertices in J . Since the algorithm did not find a vertex with out-degree < α + 1, all vertices
of J have out-degree α + 1, and as a result, there must be at least (α + 1)|J | edges between
vertices in J . But then, |E(J)|

|J|−1 = (α+1)|J|
|J|−1 > α + 1 > α, contradicting Theorem 6.

Now, we show that 2) also holds. After visiting t vertices, the algorithm has traversed
every out-edge out of the visited vertices when pushing new out-neighbours to Q. The time
needed to perform these steps is O(1) per visited vertex and O(1) per out-edge leaving a
visited vertex. Since every visited vertex has out-degree α + 1 by assumption, the total time
spent in the search is O(α · t). ◀

▶ Remark 9. Lemma 2 in [9] implies that P has length O(α log(n)).
Now we make the following observation:

▶ Observation 10. Inserting an edge e into G increases the number of vertices with out-degree
α + 1 by at most one.

Proof. The only vertex that has its out-degree increased during an insertion is the final
vertex of the augmenting path. ◀

In particular this means that if we visit t vertices when searching for P , then we must have
witnessed at least t insertions, since the last time we statically re-computed an α-bounded
out-orientation. As such, we arrive at Theorem 1 (restated below for convenience):

▶ Theorem 11 (Theorem 1). Given an initially empty dynamic graph undergoing an arboricity
α preserving sequence of updates and a static black box algorithm that computes an α-bounded
out-degree orientation of a graph with n vertices and arboricity α in time S(α, n), the
algorithm will maintain an (α+1)-bounded out-degree orientation with an amortised insertion
time of O(

√
α · S(α, n)), and a worst-case deletion time of O(1).

Proof. The algorithm clearly maintains an (α + 1)-bounded out-degree orientation. All
that remains is to analyse the amortised cost of running the black box algorithm. To this
end, say a vertex is bad, if it has out-degree α + 1. Suppose that we have witnessed i

insertions since the last time that the static black-box algorithm was run, and suppose
furthermore that inserting ei+1 causes the insertion search to visit

√
S(α, n)/α bad vertices.

Then Observation 10 implies that i ≥
√

S(α, n)/α, and so setting aside O(
√

α · S(α, n))
credit for each insertion, ensures that at least O(S(α, n)) credit is stored, when the black
box algorithm is run. Furthermore, by Lemma 8 each truncated search spends no more than
O(α ·

√
S(α, n)/α)-time, yielding a total amortised insertion time in O(

√
α · S(α, n)), as

claimed. To delete an edge, we may remove it from the graph in constant time (assuming
that we are given a pointer to the edge as part of the query). ◀

4 Low Arboricity Decompositions

In this section, we present a dynamic algorithm that maintains an (α + 1)-arboricity decom-
position. The setup is the same as in the previous section: we assume that we are given
an initially empty dynamic graph G on n vertices undergoing an arboricity α preserving
sequence of updates. The algorithm has an update time of Õ(

√
S(α, n)) provided that it is

given access to a black box static algorithm for computing an α-arboricity decomposition in
O(S(α, n)) time.
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The idea behind this algorithm is the same as in the previous section. We give an algorithm
based on a search procedure with slow update time, and arrive at the final algorithm via
truncation of the search. The main difficulty of turning the algorithm from the previous
section into an algorithm maintaining an arboricity decomposition is that it is not clear how
to direct a search to obtain a sequence of forest alterations that allows one to accommodate
the insertion of an edge.

We will now present how to accommodate the edge insertion using techniques that are
inspired by [18] and [21]. To this end, suppose we are given a graph G, an edge e = uv ∈ G

and an α + 1 arboricity decomposition of G − e. We are then interested in extending this to
an α + 1 arboricity decomposition of G. If e cannot be added to forest Fi, it is because u

and v are connected by a path T 1
i in Fi. If this is the case for all i, then we must move one

of the edges in T 1
j for some j to be able to put e into Fj . If this is not possible for any j, it

is because all vertices on T 1
j sit in the same tree in all forests. So for all j we can let T 2

j be

the smallest tree in Fj spanning the vertices
α+1⋃
i=1

V (T 1
i ). Continuing like this yields trees T r

i

(see Figure 1). We cannot continue this construction indefinitely since we cannot partition

Figure 1 An illustration of the first two layers of the forests. The forests are represented by
different colours.

G’s edges into α + 1 spanning trees without contradicting the fact that G has arboricity
α. Hence, there must exist a largest k for which T k

j has no movable edges for all choices
of j. For an edge e′ ≠ e, we let the rank r(e′) of e′ be the smallest r such that e′ ∈ T r

i for
some i that we denote t(e′). We set r(e) = 0. Furthermore, we define T r =

⋃
i

T r
i . Similar

to [18, 21], we can now define an augmenting sequence of edges that we can move between
forests to accommodate an insertion of e:

▶ Definition 12. Suppose G is a graph, e0 ∈ E(G) an edge in G, and that we are given an
α + 1 arboricity decomposition F1, . . . , Fα+1 of G − e0. Then an augmenting sequence of
edges is a sequence of edges e0, e1, . . . , ek satisfying the following conditions:
1. For all i ≥ 0, the rank of ei satisfies r(ei) ≤ i.
2. For all i ≥ 1, if ei−1 = xy, then x and y sit in different trees in Ft(ei) − ei.
3. There exists some j ̸= k such that Fj ∪ ek is a forest.
Given such a sequence of edges e1, . . . , ek, we can extend the arboricity decomposition of
G − e to contain e. Indeed, we move ek from Ft(k) to Fj . Now e1, . . . , ek−1 is an augmenting
sequence. Eventually, e can be inserted into Ft(e1).

We shall search for an augmenting sequence differently than in [18]. Here, when visiting
an edge e′ belonging to forest Fi, for j ̸= i they en-queue the entire fundamental cycle in
Fj ∪ ei. However, this cycle could possibly have length Ω(n). Instead, we visit the paths
blocking e′ one edge at time, only en-queuing the visited edge. This ensures that at all
times, the time spent searching for an augmenting sequence is proportional to the number
of vertices that we have processed. This property is key in ensuring that we can afford to
truncate our search and run a static algorithm, if we do not identify an augmenting sequence
fast.
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The algorithm. Similar to the previous section, we first describe a slow, search–based
algorithm, and then we obtain a faster algorithm via truncation. We accommodate edge
deletions by simply deleting the edge from the dynamic forest data structure, it resides in.
To handle an insertion of an edge e = uv, we construct a short augmenting sequence as
follows. Beginning with e, we process an edge by trying to insert it into all forests. If this is
not possible, u and v must be connected by a path in Fi for all i. For each i, beginning with
i = 1, we then try to move every edge on this path in Fi. If we fail to do so, it means that
there is no augmenting sequence ending with an edge in T 1 =

⋃
i

T 1
i . Now we search for an

augmenting sequence ending with an edge in T 2. If we fail to locate such an augmenting
sequence, we try to find one ending with an edge in T 3 and so on. To do so for T r, having
already tried all edges in T r−1, we try to move all edges blocking an edge in T r−1 i.e. we
try to move edges blocking the previously explored edges. When we try to move such an
edge, but fail to do so, it is because the endpoints of these edges are connected by blocking
paths in all forests. Conceptually we would like to push these blocking paths to a queue as
we encounter them, in order to remember them. This is relevant, since we might have to
visit them later to try to locate an augmenting sequence. However, these paths might have
length Ω(n), and, similar to the last section, we would like the time spent during a search to
depend on the number of visited vertices. Hence, in practice, we traverse the blocking paths
one by one. Whenever we visit an edge f on a blocking path in a forest Fj , we try to move
it to another forest. If this is not possible, we push f to a queue Q, store that f is blocking
e by saving a value b(f) = e, and mark both endpoints of f as visited in Fj . Now we can
always recover the edges on the paths blocking f one-by-one using standard dynamic forest
data-structures. When we are done trying to move edges from the previous set of blocking
paths, we recursively try to move the un-processed edges blocking e′ = pop(Q). Note that
whenever a blocking path reaches a previously visited edge, we terminate that blocking path
and push no further edges of it to Q. The nature of the search ensures that the blocking
paths form trees in each forest, and therefore no blocking edge is left unvisited by this early
termination. Indeed, one of the endpoints of the blocking path was already in the tree, and
so as soon as the path connects to this tree we can be certain that the rest of the edges on
the path have been processed. If we encounter an edge g that we can move to a new forest,
we extract an augmenting sequence by moving the edge and then recursively moving the
edge it was blocking. We have the following claim:

▷ Claim 13. Let e and g be as above. We have that e = br(g)(g), . . . , b(b(g)), b(g), g is an
augmenting sequence, where bk(g) is the edge obtained by following the blocked edge k steps
back.

Proof. Observe that we process all edges of rank i before processing any edges of rank i + 1.
In particular, we only visit edges of rank i + 1 when processing edges of rank i. Therefore,
for all processed edges h, we have that r(b(h)) = r(h) − 1. Hence, br(g)(g) = e, as e is the
only edge of rank 0. It is now easy to verify that the conditions of Definition 12 hold. ◁

By storing each vertex in a data structure for maintaining dynamic forests for instance
top-trees [2] or link-cut trees [36], we can determine whether a blocking path exists, and if it
does, we can traverse it spending O(log n) time to find the path and O(1) time per visited
edge on the path. Thus the search satisfy the following properties:

▶ Lemma 14. Suppose that we have an α + 1 arboricity decomposition of G − uv, and we
begin a search to extend it to an α + 1 arboricity decomposition of G. Then after visiting t

vertices the following holds:
1. If no moveable edge has been located, then Q is not empty.
2. The algorithm has spent O(α2 · t · log n)-time.
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Proof.

1. Let E denote the set of edges, visited by the algorithm. Every time we unsuccessfully
try to move an edge e = xy, we conceptually push all edges on the unique x to y path
in Fi to Q for all i. Thus, the blocking paths necessarily form trees in each forest. In
particular, this means that if Q is empty, the graph formed by all the visited edges,
J = G[E], will be a tree if restricted to Fi for all i. Indeed, suppose it is not true, and
that the restriction of J to Fj is not a tree. Then we must have visited some first edge
leaving the component, containing u, of the restriction of J to Fj for which we did not
explore a blocking path in Fj , contradicting the fact that Q is empty. This means, in
particular, that |E(J)| ≥ (α + 1)(|V (J)| − 1), and hence J contradicts Theorem 6, as in
the proof of Lemma 8.

2. Since the algorithm has visited t vertices, it cannot have visited more than α · t edges.
Otherwise, the t visited vertices form a subgraph with a density contradicting Theorem 6.
Each time the algorithm visits an edge, it spends only O(α log n)-time. Indeed, it takes
O(α log n)-time to check if the edge can be moved and O(1)-time to push it to Q. Finally,
we can update pointers to the blocked edge with only O(1) overhead per visit. Since the
algorithm has visited no more than α · t edges, 2) follows. ◀

Furthermore, we make the following observations:

▶ Observation 15. If the search phase is unsuccessful after visiting t vertices, then every
vertex visited by the algorithm during the search phase must belong to the same tree in every
forest Fi. In particular, this means that |E(Fα+1)| ≥ t − 1.

Proof. We prove the observation by contraposition. Suppose that we initially tried to insert
uv. If at some point we try to move an edge e = xy ∈ Fj with endpoints belonging to different
trees in Fk, k ̸= j, then e could be moved to Fk rendering the search phase successful. In
particular, this means that if u ∈ T ⊂ Fi and there is some other vertex w in a different tree
T ′ in Fi that we also visit, then at some point, we must have tried to move an edge e′ with
only one endpoint in T . But then e′ could have been moved to Fi, contradicting the fact
that the search was unsuccessful. ◀

▶ Observation 16. Augmenting along an augmenting sequence e0, e1, . . . , ek increases the
size of the forest that ek is moved to by one. All other forests remain the same size.

Proof. We prove the statement by induction on k. The induction basis is clear, so we move to
the induction step. After moving ek from Ft(ek) to some forest Fi, the size of Fi is increased
by one, the size of Ft(ek) is decreased by one, and all other forests have the same size. Now
e0, e1, . . . , ek−1 is an augmenting sequence, so we can apply induction on it. This sequence
increases the size of Ft(ek) by exactly one, and all other forests remain the same size. Hence,
we arrive at the statement. ◀

Since a deletion never increases the size of a forest, the two above observations together
imply that choosing the truncation t =

√
S(α,n)

α2 + 1 means that we witness at least
√

S(α,n)
α2

insertions between any two runs of the static black box algorithm. Since we can extend
the black box algorithm to maintain the dynamic forests using only O(log n) overhead
per operation, the total time needed for each run is in O(S(α, n) log n). Combining this
with Lemma 14, we find that setting aside O(α

√
S(α, n) log n) per insertion yields a total

amortised update time in O(α
√

S(α, n) log n). Hence:
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▶ Theorem 17 (Identical to Theorem 3). Given an initially empty dynamic graph undergoing
an arboricity α preserving sequence of updates and a static black box algorithm that computes
an α arboricity decompostion of a graph with n vertices and arboricity α in time S(α, n), the
algorithm will maintain an (α + 1) arboricity decomposition with an amortised insertion time
of O(α

√
S(α, n) log n), and a worst-case deletion time of O(log n).

5 Dynamic 3-Out Orientations in planar graphs

In this section, we show that any dynamic algorithm maintaining a 3-bounded out-orientation
of a dynamic planar graph can be forced to spend Ω(n) update time. The idea is to first
consider a different problem: let G be a plane triangulation. Then G has an outer face xyz.
Every vertex incident to the outer face is an outer vertex. All vertices that are not outer
vertices are inner vertices. A 3-orientation of G is then an orientation of all edges incident
to inner vertices such that all inner vertices have out-degree 3. Given a plane triangulation,
we have the notion of a diagonal flip: a diagonal flip is the action of removing an edge xy

incident on faces xyz and vxy and replacing it with the edge vz (see Figure 2). note that
such a flip is only possible, if the edge vz does not already exist. The flip distance between
two undirected graphs is then the minimum number of diagonal flips needed to go from one
one graph to the other. We show that any algorithm explicitly maintaining a 3-orientation

Figure 2 A diagonal flip.

of a dynamic plane triangulation under diagonal flips of inner edges, can be made to spend
linear update time. This is done by constructing two planar graphs of constant flip distance,
but with unique 3-orientations differing on Ω(n) edges. By slightly generalising and by
considering a graph containing multiple copies of this construction, we arrive at the explicit
lower bound for maintaining 3-orientations in dynamic planar graphs.

3-Orientations. Brehm [8] showed that a plane triangulation has a unique 3-orientation
if and only if it is stacked which is equivalent to being 3-degenerate. In fact this can be
slightly generalised - and we will use this slight generalisation later on, when dealing with
graphs where no embedding is specified. The proof of the generalisation is similar, so we
only provide a sketch:

▶ Lemma 18. Let G be a planar triangulation with a 3-bounded out-degree orientation O.
Let x, y, z form a triangle in G, and let H be a component of G − {x, y, z}, such that
the out-degree d+

G(v) = 3 for all v ∈ H. Then the restriction of any 3-bounded out-degree
orientation of G to all edges incident to H is unique if and only if G[V (H) ∪ {x, y, z}] is
3-degenerate.

Proof (Sketch). A counting argument shows that all edges between H and x, y, z are oriented
away from H . Indeed, G[H ∪ {x, y, z}] is planar and so contains at most 3(|H| + 3) − 6 edges.
3 of these go between x, y, z, so the remaining 3|H| edges must be out-edges of vertices in H .

Next, we show that the restriction of any 3-bounded out-degree orientation O to H

is unique iff it is acyclic. Indeed, suppose it is not acyclic. Then it has a directed cycle.
Reversing the orientation along this cycle creates a new 3-bounded out-degree orientation
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with a different restriction. The other direction is as follows: suppose that there exists
an orientation for which the restriction to H is acyclic, but that this restriction is not
unique. Comparing two such restrictions gives an edge which is oriented differently in the
two orientations. Now, since every point has out-degree 3 an endpoint cannot be incident to
only one such edge, so there is a new edge - oriented differently by the two orientations -
that one can follow. Continuing like this eventually gives you a directed cycle in H as, by
above, one never reaches x, y, z. This is a contradiction.

The Lemma then follows by noting that having an acyclic 3-bounded out-degree orientation
is equivalent to being 3-degenerate. Indeed, beginning at an arbitrary vertex in H and
following incoming edges backwards ensures that one ends up in a source in H. This source
has degree at most 3. We can remove this vertex and apply induction to see that any
subgraph not containing this vertex also has a vertex of degree at most 3. The other direction
follows, since the 3-degeneracy implies that in any non-empty subgraph S ⊂ H one can
always find a vertex v ∈ S of degree 3 in G[S ∪ {x, y, z}]. Beginning from H one can remove
such a vertex and orient its incident edges so that it becomes a source. Continuing like this
never creates cycles and therefore yields an acyclic 3-bounded out-degree orientation. ◀

As noted earlier, we give the lower bound by first considering explicit 3-orientations in plane
graphs. We have the following lemma:

▶ Lemma 19. Let A be an algorithm explicitly maintaining a 3-orientation of an n-vertex
plane triangulation under diagonal flips. Then the flip operation can be made to spend Ω(n)
update time, even when considering amortised complexity.

Proof. Consider the following plane triangulation containing a path s1, s2, . . . , sk of length
k = n − 5 = Ω(n) (see Figure 3). The plane triangulation is 3-degenerate, and hence by
Lemma 18, it has a unique 3-orientation: By diagonal flipping the edge uv and subsequently

Figure 3 The plane triangulation along with its unique 3-orientation.

the edge s1x, one gets a new plane triangulation. It is again 3-degenerate, and hence by
Lemma 18 it has a unique 3-orientation. (see Figure 4). By diagonally flipping the same
edges in the opposite order, one reclaims the original graph. The new 3-orientation has
Ω(n) edges oriented differently compared to the original 3-orientation, but it only requires a
constant number of diagonal flips to go between the two graphs. Hence, a constant number
of flips forces A to change the orientation of Ω(n) edges, and thus, the update time for the
diagonal flip operation must be Ω(n), even amortised, as one can force this update sequence
as many times as desired. ◀
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Figure 4 Going between two unique 3-orientations.

3-Bounded Out-Orientations. The goal now is to extend this lower bound to 3-bounded out-
degree orientations of planar graphs under insertion/deletion of edges. There are only three
things to consider before doing such an extension. Firstly, now we support the operations
insertion/deletion of edges and not the diagonal flip. This is however a non-issue since a
diagonal flip can be simulated by first deleting the edge and then inserting the other diagonal.
Secondly, we now consider 3-bounded out-degree orientations and so outer vertices also have
out-edges, and not all inner vertices are required to have out-degree 3. Lastly, the lower
bound should apply not only to plane graphs where an embedding is chosen, but also to
planar graphs. We deal with the last two points by using at least 13 copies of the graph from
above. Then, in at least one of the copies, all inner vertices must have out-degree 3 - both
before and after a sequence of updates. Hence, we can do the aforementioned updates in all
13 copies, and this will then ensure that at least one copy has to behave as in Lemma 19.
Now, we show Theorem 5:

▶ Theorem 20 (Identical to Theorem 5). Let A be an algorithm explicitly maintaining a
3-bounded out-degree orientation of an n-vertex planar graph under insertion and deletion of
edges. Then there exists a sequence of updates taking Ω(n) amortised time per update.

Proof. Create a planar graph G by placing 13 copies of the graph P from the proof of
Lemma 19 in the plane, and triangulating the outside arbitrarily. Let n = |V (G)|. For each
copy Pi of P , we let the set Ii resp. Oi be the set of vertices that are inner resp. outer
vertices of Pi, if Pi is embedded as in Lemma 19. In particular, for a specific copy of P , say
Pi, the corresponding set Ii has size |Ii| = n

13 − 3 = Ω(n). Since G is a plane triangulation,
it follows from Euler’s Theorem that |E(G)| = 3n − 6. This implies that at most 6 vertices
of G can have out-degree strictly less than 3. Hence, in at least 7 of the 13 copies of P ,
every vertex in I has out-degree 3. Since the O vertices of each of these specific copies of P

form a triangle, it follows from Lemma 18 that the edges incident to I must have the same
orientation as in the plane embedding in Lemma 19 and that this orientation is unique.

Now, we simulate the flip sequence used in Lemma 19 in each copy. Doing this in all
13 copies only requires 26 insertions and 26 deletions in total. After these alterations, it
is still the case that in at least 7 of the 13 copies of P every vertex in I has out-degree 3.
Furthermore, since the O vertices of each of these specific copies of P form a triangle, it
follows from Lemma 18 that the edges incident to I must have the same orientation as in
the altered plane embedding in Lemma 19 and that this orientation is unique. At least one
copy Pi of P has out-degree 3 at every vertex in Ii in both the orientation before and in
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the orientation after the update sequence. Consequentially, A must have reoriented at least
|Ii| − 3 = Ω(n) edges during the update sequence. The update sequence consists of only a
constant number of updates, and it can be reversed by first deleting uv and re-inserting it
across the opposite diagonal in each copy, and then doing the same for sky in every copy of
P . Each reversal of the update sequence, requires only a constant number of updates, but
forces A to change at least Ω(n) edge-orientations. It follows that there exists a sequence of
updates taking Ω(n) amortised time per update. ◀

6 Conclusion

We have shown how to dynamically maintain 4-bounded out-orientations and 4-arboricity
decompositions with sublinear update time. We extended these algorithms to compute α + 1-
bounded out-orientations and arboricity decompositions in α-arboricity bounded dynamic
graphs. Finally, we also showed that maintaining a 3-bounded out-orientation of a planar
graph explicitly, must take Ω(n) update time, even amortised. This extends the explicit
lower bound of Brodal & Fagerberg to the planar case.

It would be interesting to see, if one can maintain α + 1 out-edges or forests in sub-
polynomial time. Results of Brodal & Fagerberg [9] and Harris et al. [21] show that the
problems of maintaining α + 1 out-edges resp. forests have O(α log n) recourse – how close
to this worst-case recourse can one get the update times?
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evolving and manipulating the systems according to the laws of quantum mechanics. This
opens up the possibility of exploiting non-classical behaviours available to quantum systems
in order to process information in radically new and potentially advantageous ways.

The development of quantum technologies has proceeded at pace over the past number of
years, with a variety of different physical supports for quantum information being pursued.
These include matter-based systems like superconducting circuits, cold atoms, and trapped
ions, as well as light-based systems, in which information is encoded in photons. Among
these, photons have a privileged role in the sense that regardless of hardware choice it will
eventually be necessary to network quantum processors, and (as the only sensible support
for communicating quantum information) some quantum information will need to be treated
photonically. Yet, in their own right, photons also offer viable approaches to quantum
computation in the noisy intermediate-scale [40] and large-scale fault-tolerant [6] regimes.

The standard unit of quantum information is the quantum bit or qubit, and photons allow
for a rich variety of ways to encode qubits. However it is also interesting to note that treating
photons as informational units in their own right can be advantageous. A good example is
BosonSampling, originally proposed by Aaronson and Arkhipov [1], a computational task that
is #P -hard but which can be efficiently solved by interacting photons in an idealised generic
linear-optical circuit in which no qubit encoding need be imposed. At present, along with
Random Circuit Sampling [2, 9], this provides one of the two main routes to experimental
demonstrations of quantum computational advantage [3, 55, 53, 54], in which quantum
devices have been claimed to outperform classical capabilities for specific tasks.

The usual semantics for quantum computation stemming from quantum mechanics is
based on unitary matrices (or unitary operators in general) over Hilbert spaces. Although
this faithfully models the extensional behaviour of a computation, it fails to address several
key aspects that are of interest when considering the design and implementation of quantum
algorithms. A first limitation is the intensional description of the computation: an algorithm
or quantum computation in general consists of modular components that are composed and
combined in specific way, and one wants to keep track of this information. One therefore
needs a language for coding these. The other important aspect is the need to specify and
verify the said code. Indeed, classically simulating a quantum process is a task that is
exponentially costly in the size of the system, while running code on physical devices is
expensive. If some limited testing techniques are available on quantum systems [29, 43], it is
however highly desirable to be able to reason and prove the desired properties of the code
upstream, and rely on formal methods. If text-based high-level languages oriented towards
formal methods have successfully been proposed in the literature [32, 8, 37], we aim in this
paper to explore a lower-level, graphical language, making contact with photonic hardware.

Graphical languages for quantum computation have a long history: since Feyman dia-
grams [30], graphical languages for representing (low-level) quantum processes have been
considered as an answer to the limitations of plain unitary matrices. Quantum circuits
– the quantum equivalent to classical, boolean circuits – are an obvious candidate for a
graphical language, and indeed, several lines of research took them as their main object of
study [32, 22, 46, 13]. Quantum circuits in particular form a natural medium for describing
the execution flow of a computation. The main problem with the model of quantum circuits
is the lack of a satisfactory equational presentation. If several attempts have been made for
various subsets [20, 19, 36, 45], none of them provides a complete presentation.

A recent proposal responding to the shortfalls of quantum circuits as a model is the
ZX-calculus [21], which, along with its variants [11, 4, 12], have proved to be particularly
useful for reasoning about qubit quantum mechanics, for applications such as quantum circuit
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optimisation [25, 5], verification [26, 31, 35] and representation e.g. for MBQC patterns [27]
or error-correction [27, 23]. However, while ZX-calculus is versatile and provides a welcomed
formal semantics for quantum computation, it remains at an abstract level.

There is therefore a clear interest in developing a graphical language for quantum
photonic processes, especially linear quantum optics, which is closer to photonic hardware
and laboratory operations that are easily implementable in bulk optics, fibres, or in integrated
photonic circuits. This would provide a more formal counterpart to software frameworks
that have been proposed for defining and classically simulating such processes to the extent
that it is tractable [39, 34]. The need for such a formal language is also evidenced, for
example, by the appeal to diagrams to concisely illustrate equivalent unitaries in recent
work in the physics literature [48]. Following on the trend for graphical quantum languages,
the PBS-calculus [16, 10, 17] has been proposed as a first step towards an alternative to
ZX dedicated to linear quantum optical computation (LOQC). The PBS-calculus makes
it possible to reason on a small subset of linear optical components only acting on the
polarisation of a photon. While it is enough to describe and analyse non causally-ordered
computations, it falls short at expressing other aspects of LOQC typically considered in the
physics community, such as the phase. Note that a recent, independent work1 establishes
some connections between the ZX-calculus and the photon preserving fragment of linear
optics with multiple photons [24].

Our goal here is to take a more bottom-up approach and to propose a new language which
formalises the kinds of diagrammatics that are currently in use in the physics community. In
practice this can find many uses including for the design, optimisation, verification, error-
correction, and systematic study of linear optical quantum circuits for quantum information.

Contributions. Our main contributions are the following.
A graphical language for LOQC featuring most of the physical apparatuses used in the
physics literature. The language comes equipped with an equational theory that is sound
and complete with respect to the standard semantics of LOQC.
A strongly normalising and globally confluent rewrite system and normal form for the
polarisation-preserving fragment, for which we recover the Reck et al. [49] decomposition
as normal form (modulo 0-angled beam splitters and 0-angled phase shifters) with a novel
proof of its uniqueness.

Finally, and maybe more importantly, our language makes it possible to formalise and reason
within a common framework on various presentations of LOQC stemming from parallel
research paths. Our semantics not only allow us to recover, extend and improve on some key
results in LOQC such as the universal decompositions of Reck et al. [49] and Clements et al.
[18], but it also gives a unifying language for the different formalisms from the literature.
Furthermore, this result paves the way towards the design of complete equational theories
for quantum circuits [14].

Plan of the paper. The article is structured as follows. In Section 2, we present the syntax
and the semantics of the LOv-calculus. The equational theory and its soundness are given in
Section 3. In Section 4 we present the strongly normalising and globally confluent rewrite
system. This allows us to prove the completeness of the LOv-calculus in Section 5. Finally,
we conclude in Section 6. More complete proofs can be found in the appendix of the technical
report [15].

1 The preprint version of [24] has been upladed to arXiv a few days after the one of the present paper [15].
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(b) Rectangular form [18].

Figure 1 Triangular and rectangular forms for polarisation-preserving circuits.

2 Linear Optical Quantum Circuits

A linear optical quantum computation [42, 41] (LOQC) consists of spatial modes through
which photons pass – which may be physically instantiated by optical fibers, waveguides in
integrated circuits, or simply by paths in free space (bulk optics) – and operations that act
on the spatial and polarisation degrees of freedom of the photons, including in particular
beam splitters ( θ ), polarising beam splitters ( ), phase shifters ( φ ), wave plates
(

θ
), pola-negations ( ¬ ) and finally the vacuum state sources and detectors ( 0 and

0 ). Their action and the semantics are described in Section 2.2.

2.1 Syntax
In order to formalise linear optical quantum circuits, we use the formalism of PROPs [44]. A
PRO is a strict monoidal category whose monoid of objects is freely generated by a single
X: the objects are all of the form X ⊕ ... ⊕ X,2 and simply denoted by n, the number
of occurrences of X. PROs are typically represented graphically as circuits: each copy of
X is represented by a wire and morphisms by boxes on wires, so that ⊕ is represented
vertically and morphism composition “◦” is represented horizontally. For instance, D1 and
D2 represented as D1 and D2 can be horizontally composed as D2 ◦D1, represented

by D2D1 , and vertically composed as D1 ⊕ D2, represented by D1

D2

. A PROP is

the symmetric monoidal analogue of PRO, so it is equipped with a swap .

▶ Definition 1. LOv is the PROP of LOv-circuits generated by

0 : 0 → 1 0 : 1 → 0 φ : 1 → 1
θ

: 1 → 1

θ : 2 → 2 : 2 → 2

where θ, φ ∈ R. When the parameters θ and φ are omitted we take them to be equal to
π/4. We write ¬ as a shortcut notation for π

2
− π

2 . The tensor of the monoidal

structure is denoted with ⊕, and the identity, swap and empty circuit (unit of ⊕) are denoted
as follows: : 1 → 1, : 2 → 2, : 0 → 0.

▶ Example 2. An example of a linear optical quantum circuit using all of the connectives
presented in Definition 1 is shown in Figure 2.

2 Here we denote the monoidal product as ⊕ rather than ⊗ in order to better correspond to the semantics
of LOv-circuits (see Section 2.2).
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¬0

¬0

θ1

θ3

φ1

φ3

θ4

θ2

θ6

θ8

θ7
φ2

φ4

θ5

¬

¬

θ10

θ13

φ6

φ8

θ12

θ9

φ5

φ7

θ11

0

0

0

0

0

0

Figure 2 LOv-circuit implementing a variational quantum eigensolver [47], an algorithm with
applications including calculation of ground-state energies in quantum chemistry.

¬

θ
φ

θ′

0
= φ

θ′¬

0
θ

Figure 3 Two equivalent representations of the same LOv-circuit.

▶ Remark 3. The axioms of PROPs guarantee that linear optical quantum circuits are defined
up to deformations: Figure 3 shows two equivalent circuits under the equations of PROPs.

Among the generators, the beam splitters and phase shifters are known to preserve the
polarisation of the photons, as a consequence, we define a polarisation-preserving sub-PRO
of LOv as follows.

▶ Definition 4. LOPP is the PRO of polarisation-preserving circuits generated by beam
splitters θ and phase shifters φ .

Notice that we define polarisation-preserving circuits as a PRO rather than a PROP, thus
they do not include swaps.

2.2 Single-Photon Semantics
We will characterise photons by their spatial and polarisation modes. Spatial modes refer
to position, and polarisation can be horizontal (H) or vertical (V). Note that the quantum
formalism admits (normalised complex) superpositions of both spatial and polarisation
modes. For any n ∈ N, let Mn = {V, H} × [n], where [n] = {0, . . . n − 1}, be the set of states
(spatial and polarisation modes). The elements of Mn are denoted cp with c ∈ {V, H} and
p ∈ [n]. The state space of a single photon is CMn = span(|Vi⟩, |Hi⟩ | i ∈ [n]). Notice that
CM0 = C∅ = {0} is the Hilbert space of dimension 0. For instance, on 2 spatial modes (i.e. 2
wires), there are four possible basis states: H0, H1, V0, V1. Indeed, a photon can be on one
of the two wires, while in the horizontal or vertical polarisation. The state space is then a
4-dimensional Hilbert space. The semantics of a LOv-circuit is defined as follows.

▶ Definition 5. For any LOv-circuit D : n → m, let JDK : CMn → CMm be the linear map
inductively defined by Table 13, and by JD2 ◦ D1K = JD2K ◦ JD1K, JD1 ⊕ D2K = JD1K ⊕ JD2K,
where for all f ∈ CMn → CMm and g ∈ CMn′ → CMm′ , (f ⊕ g)(|ck⟩) = f(|ck⟩) if k < n and
Sm,m′(g(|ck−n⟩)) if k ≥ n, with Sm,m′ : CMm′ → CMm+m′ = |ck⟩ 7→ |ck+m⟩ a shift of the
positions by m.

3 There are many possible conventions for beam splitters. We have chosen this one as it is a symmetric
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Table 1 Semantics of LOv-circuits.

r
0

z
= 0

r
0

z
= 0 J K = 0

r
θ

z
= |cp⟩ 7→ cos(θ)|cp⟩ + i sin(θ)|c1−p⟩

r

θ

z
=

{
|V0⟩ 7→ cos(θ)|V0⟩ + i sin(θ)|H0⟩
|H0⟩ 7→ cos(θ)|H0⟩ + i sin(θ)|V0⟩

r
φ

z
= |c0⟩ 7→ eiφ|c0⟩

r z
=

{
|Vp⟩ 7→ |Vp⟩
|Hp⟩ 7→ |H1−p⟩

r z
= |cp⟩ 7→ |c1−p⟩

J K = |c0⟩ 7→ |c0⟩

▶ Example 6. The negation inverts polarisation: J ¬ K : |V0⟩ 7→ |H0⟩ and |H0⟩ 7→ |V0⟩.

▶ Remark 7. The semantics of the circuits is sound with respect to the axioms of PROPs. In
other words two circuits that are equal up to deformation have the same semantics. More
formally, J.K : LOv → (Hilb, ⊕, 0) is a monoidal functor where Hilb is the category of state
spaces CMn and linear maps.

▶ Remark 8. All the generators of the LOv-circuits are photon preserving, even the vacuum
state sources ( 0 ) and detectors ( 0 ). Indeed the vacuum state source produces no photons,
whereas the semantics of the detector corresponds to a postselection on the case where no
photons are detected.

▶ Definition 9. For any LOPP-circuit D : n → n, we define JDKpp : Cn → Cn as the unique
linear map such that J.K ◦ ι = ι ◦ J.Kpp where ι : Cn → CMn = |k⟩ 7→ |Hk⟩.

For instance
q

θ
y

pp =
(

cos(θ) i sin(θ)
i sin(θ) cos(θ)

)
.

Polarisation-preserving circuits are universal for unitary transformations, this is a direct
consequence of the result of Reck et al. [49]. Unitary transformations can actually be uniquely
represented by LOPP-circuits, as illustrated by the following two cases on 2 and 3 modes,
the general case being proved in Section 4.

▶ Lemma 10. For any unitary 2 × 2 matrix U , there exist unique β1, α1 ∈ [0, π) and

β2, β3 ∈ [0, 2π) such that
t

β1 α1 β2

β3

|

pp

= U , and α1 ∈ {0, π
2 } ⇒ β1 = 0.

Proof. The proof is given in [15]. ◀

▶ Lemma 11. For any unitary 3×3 matrix U , there exist unique angles α1, α2, α3, β1, β2, β3 ∈

[0, π) and β4, β5, β6 ∈ [0, 2π) such that

u

ww
v α1

α2

α3

β2

β1 β3

β4

β5

β6

}

��
~

pp

= U where

∀i ∈ {1, 2, 3}, αi ∈ {0, π
2 } ⇒ βi = 0, and where α2 = 0 ⇒ α1 = 0.

Proof. The existence of such a canonical form is shown in [49]. The uniqueness can then be
derived by analysing the possible cases (See [15]). ◀

operation with good composition properties. The convention for the wave plate has been chosen for
similar reasons.
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LOv-circuits are more expressive than LOPP-ones, they not only act on the polarisation
but the use of detectors and sources allow the representation of non-unitary evolutions: For
any LOv-circuit D : n → m, JDK is sub-unitary4. LOv-circuits are actually universal for
sub-unitary transformations:

▶ Theorem 12 (Universality of LOv). For every sub-unitary map U : CMn → CMm (i.e. such
that U†U ⊑ I) there exists a diagram D : n → m s.t. JDK = U .

Proof. The proof given in [15] relies on the normal forms developed in Section 5. ◀

3 Equational Theory

Two distinct LOv-circuits may represent the same quantum evolution: for instance, composing
two negations is equivalent to the identity. In order to characterise equivalences of LOv-
circuits, we introduce a set of equations, shown in Figure 4. They capture basic properties
of LOv-circuits, such as: detectors and sources essentially absorbing the other generators
(Equations (9) to (12)); parameters forming a monoid (Equations (1) and (2)); and various
commutation properties (Equations (15), (16)). Notice that there are two equations acting
on 3 modes: Equation (6) and Equation (18). Equation (6) is a variant of the Yang-Baxter
Equation [38], whereas Equation (18) is a property of decompositions into Euler angles.
Indeed, in 3-dimensional space, the two sides of this equation correspond to two distinct
decompositions in elementary rotations.

▶ Definition 13 (LOv-calculus). Two LOv-circuits D1, D2 are equivalent according to the
rules of the LOv-calculus, denoted LOv ⊢ D1 = D2, if one can transform D1 into D2 using
the equations given in Figure 4. More precisely, LOv ⊢ · = · is defined as the smallest
congruence which satisfies the equations of Figure 4 in addition to the axioms of PROP.

▶ Proposition 14 (Soundness). For any two LOv-circuits D1 and D2, if LOv ⊢ D1 = D2
then JD1K = JD2K.

Proof. Since semantic equality is a congruence it suffices to check that for every equation
of Figure 4 both sides have the same semantics, which follows from Definition 5 and
Lemma 11. ◀

▶ Proposition 15. The rules of the LOv-calculus imply that the parameters are 2π-periodic,
i.e. for any θ, φ ∈ R:

LOv ⊢ θ = θ+2π LOv ⊢ φ = φ+2π LOv ⊢
θ

=
θ+2π

Proof. The proof is given in [15]. ◀

We now state one of our main results: the completeness of the LOv-calculus.

▶ Theorem 16 (Completeness). For any two LOv-circuits D1 and D2, if JD1K = JD2K then
LOv ⊢ D1 = D2.

The proof of Theorem 16 is given in Section 5. As a step towards proving the theorem,
we first consider the fragment of the LOPP-circuits.

4 U is sub-unitary (see for instance [50]) iff U†U ⊑ I, where ⊑ is the Löwner partial order, i.e. I − U†U
is a positive semi-definite.

MFCS 2022
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φ2φ1 = φ1+φ2 (1)

0 = (2)

0 = (3)

¬

¬

¬

¬
= (4)

= (5)

= (6)

¬
=

¬ ¬
(7)

0 0 = (8)

0 φ = 0 (9)

0
θ

= 0 (10)

0

0
=

0

0
(11)

0φ = 0 (12)

0
θ

= 0 (13)

0

0
=

0

0
(14)

φ
π
2

= φ
π
2

(15)

φ

φ
=

φ

φ
(16)

θ =
¬¬

θ

θ

(17)

θ1

θ2

θ3

φ1

φ2

= α1

α2

α3

β2

β1 β3

β4

β5

β6

(18)

Figure 4 Axioms of the LOv-calculus. The equations are valid for arbitrary parameters
φ,φi, θ, θi ∈ R. In Equation (18), the angles on the left-hand side can take any value while
the right-hand side is given by Lemma 11 (where U is the J.Kpp-semantics of the left-hand side of
the equation).

4 Polarisation-Preserving Circuits

This section gives a universal normal form for any LOPP-circuit. We prove the uniqueness
of that form by introducing a strongly normalising and confluent polarisation-preserving
rewrite system: PPRS.

▶ Definition 17. The rewrite system PPRS is defined on LOPP-circuits with the rules of
Figure 5.

▶ Lemma 18. If D1 rewrites to D2 using the PPRS rewrite system then LOv ⊢ D1 = D2.

Proof. The proof is given in [15]. ◀

▶ Theorem 19. The rewrite system PPRS is strongly normalising.

Proof. The proof is done by defining a lexicographic order on six distinct values: numbers
of beam splitters of various angle ranges, count of specific patterns, numbers and positions
of phase shifters. The order is shown to be decreasing with respect to the rewrite rules of
PPRS. The complete proof is given in [15]. ◀
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ψ → ψ mod 2π (28)

ψ
→

ψ mod 2π
(29)

φ2φ1 → φ1+φ2 (30)

0 → (31)

0 → (32)

θ

φ
→ θ

−φ φ

φ
(33)

π
2

φ

→
π
2

φ
(34)

θ0
φ0

→
π−θ0

φ0−π

π
(35)

θ4 →
θ4−π π

π
(36)

θ1

θ2

θ3

φ1

φ2

∗

∗

→ α1

α2

α3

β2

β1 β3

β4

β5

β6

(37)

θ1
φ1 θ2

∗

→
β1 α1 β2

β3

(38)

Figure 5 Rewriting rules of PPRS. ψ ∈ R \ [0, 2π), φ,φ1, φ2 ∈ (0, 2π), φ0, θ4 ∈ [π, 2π),

θ, θ0, θ1, θ2, θ3 ∈ (0, π), and θ0 ̸= π
2 . φ

∗
denotes either φ or . In Rules (37)

and (38), the angles on the left-hand side can take any value while the right-hand side is given by
Lemma 11 and Lemma 10 respectively.

As PPRS is terminating, we can therefore derive the existence of normal forms. The next
step is to show that these normal forms are unique: this is derived from Theorem 20.

▶ Theorem 20. PPRS is globally confluent.

Proof. PPRS is locally confluent. Indeed, one can show by case analysis that the non-trivial
peaks all use at most three wires. Each peak can be closed since for any polarisation-
preserving LOv-circuit of size n ∈ {1, 2, 3}, PPRS terminates to a specific unique normal
form: when n = 1, a simple phase-shift; when n = 2, the form shown in Lemma 10; when
n = 3, the form shown in Lemma 11. See [15] for details. Finally, using Theorem 19, global
confluence is deduced from Newman’s lemma [52]. ◀

▶ Definition 21. A PPRS triangular normal form is a circuit with a triangular shape similar
to Figure 1a, but with all 0-angled generators replaced with identities and with additional
conditions on the angles, as described in Figure 6.

Figure 7 shows an example: the figure on the left is the “full” circuit with 0-angled beam
splitters while on the right is the corresponding PPRS triangular normal form.

▶ Lemma 22. Any irreducible LOPP-circuit is a PPRS triangular normal form.

MFCS 2022
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α0,1

α0,0
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α1,2β1,2
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∗

∗
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∗ ∗
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∗
∗∗

∗

∗∗

∗

Figure 6 General scheme of a PPRS triangular normal form. The stars mean that any phase
shifter or beam splitter with angle 0 is replaced by the identity. The conditions on the angles are the
following: αi,j , βi,j ∈ [0, π); γi ∈ [0, 2π); αi,j = 0 ⇒ ∀j′ > j, αi,j′ = 0; αi,j ∈ {0, π

2 } ⇒ βi,j = 0.

∗
∗

∗
∗∗

∗ ∗
∗

∗

0

∗

0 ∗

0

0 ∗
∗

∗
∗0

∗

∗∗

∗
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⋆

⋆
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0
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⋆

⋆

0

00
00

0
00 00

00
00

00
00

00
00

00 00

∗
∗

∗
∗∗
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∗

∗

∗ ∗
∗

∗
∗

∗

∗∗

∗
∗∗

∗

∗∗
⋆

⋆

⋆

⋆

⋆

Figure 7 An example of a PPRS triangular normal form. In the figure on the left, the beam
splitters and phase shifters with angle 0 in the corresponding triangular form are shown in red. In
the figure on the right, they are replaced with identities.

Proof. This property can be proven by induction. First, we lay out the properties of any
irreducible circuit that can be directly deduced from the PPRS rules of Figure 5. Then, we
give two more properties characterising the PPRS triangular normal forms. By induction,
we prove that any irreducible circuit respects those two properties, so that any irreducible
circuit is a PPRS triangular normal form. See [15] for more details. ◀

▶ Theorem 23. Any LOPP-circuit, with the rules of PPRS, converges to a unique PPRS
triangular normal form.

Proof. PPRS is globally confluent and terminating: normal forms are unique. From
Lemma 22, PPRS triangular normal forms are the only irreducible forms. Therefore, any
polarisation-preserving circuit terminates to such a unique normal form. ◀

▶ Remark 24. In particular by using Equation (18) and by adding 0-angled beam splitters
if necessary, one can turn any circuit in PPRS triangular normal form into a circuit in the
rectangular form of [18] shown in Figure 1b. A schematic example of such a transformation
is shown in [15].

We can now prove the completeness of the polarisation-preserving fragment.

▶ Theorem 25. For any LOPP-circuits C1,C2 such that JC1Kpp = JC2Kpp, their normal
forms are equal, i.e. N1 = N2, where N1 (resp. N2) is the unique normal form of C1 (resp.
C2) given by Theorem 23.

Proof. As the rewrite system preserves the semantics, it is sufficient to prove that JN1Kpp =
JN2Kpp ⇒ N1 = N2. First, we can show by induction that JNKpp = JInKpp ⇒ N = In.
Indeed, to have the semantics as the identity, we can show the upper beam splitter and
phase shifters are necessarily 0-angled. The proof follows from induction, details are given
in [15]. Let P be an inverse circuit of N1 and N2, that is, a polarisation-preserving circuit
such that JP Kpp = JN1K

−1
pp . The existence of such a circuit follows from [49]. As JN1P Kpp =

JPN2Kpp = JInKpp, the term N1PN2 can both be reduced to N1 (by reducing PN2 first) and
N2 (by reducing N1P first). By Theorem 23, N1 = N2. ◀
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}
m′

0

0
n′

{
0

0

T

¬ 0

¬ 0

m¬0

¬0

n



Figure 8 Shape of a circuit in normal form as of Definition 27.

▶ Proposition 26 (Universality and uniqueness in the polarisation-preserving fragment). For
any unitary U : Cn → Cn, there exists a unique circuit T in PPRS triangular normal form
such that JT Kpp = U .

Proof. This follows directly from [49], Theorems 23 and 25 and the fact that all PPRS
triangular normal forms are irreducible. ◀

5 Completeness of the LOv-Calculus

To prove the completeness of the LOv-Calculus (Theorem 16), we introduce the following
notion of normal form.

▶ Definition 27 (Normal form). A circuit in normal form N : n → m is a circuit of the
form shown in Figure 8, where T is a PPRS triangular normal form (Definition 21). If
n′ = m′ = 0, then N is said to be in pure normal form.

▶ Lemma 28 (Uniqueness of the pure normal form). If two circuits N1 and N2 in pure normal
form are such that JN1K = JN2K, then N1 = N2.

Proof. Let T1 (resp. T2) be the LOPP-circuit associated with N1 (resp N2) as in Figure 8.
Notice that JTiKpp ◦ µ = µ ◦ JNiK where µ : CMn → C2n is the isomorphism |Vk⟩ 7→ |2k⟩ and
|Hk⟩ 7→ |2k + 1⟩. Thus JN1K = JN2K implies JT1Kpp = JT2Kpp so that the result follows from
Theorem 23. ◀

▶ Lemma 29. For any circuit D without vacuum state sources or detectors there exists a
circuit in pure normal form N such that LOv ⊢ D = N .

Proof. The proof is given in [15]. ◀

Completeness for circuits without vacuum state sources or detectors follows directly from
Lemmas 28 and 29:

▶ Proposition 30. Given any two circuits D1 and D2 without any 0 or 0 , if
JD1K = JD2K then LOv ⊢ D1 = D2.

Proof. By Lemma 29, there exist two circuits in pure normal form N1 and N2 such that
LOv ⊢ D1 = N1 and LOv ⊢ D2 = N2. By Proposition 14, one has JN1K = JD1K = JD2K =
JN2K, so that by Lemma 28, N1 = N2. The result follows by transitivity. ◀

MFCS 2022
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Proof of Theorem 16

We now have the required material to to finish the proof of Theorem 16. Let D1, D2 : n → m

be any two LOv-circuits such that JD1K = JD2K. By deformation, we can write them as

}
m′0

0
n′

{
0

0

D′
1

}
mn

{
and }

m′′0

0
n′′

{
0

0

D′
2

}
mn

{

where D′
1, D′

2 do not contain 0 or 0 . Up to using Equation (8), we can assume that
n′′ = n′. Since circuits without vacuum state sources and detectors necessarily have the
same number of input wires as of output wires, this implies that m′′ = m′. By Lemma 29,
we can put D′

1 and D′
2 in pure normal form. Then by using Equations (9)–(14), we get two

circuits in normal form

DNF
1 = }

m′0

0
n′

{
0

0

T1

}
mn

{
¬0

¬0

¬ 0

¬ 0

and DNF
2 = }

m′0

0
n′

{
0

0

T2

}
mn

{
¬0

¬0

¬ 0

¬ 0

with T1 and T2 in PPRS triangular normal form.
JD1K = JD2K implies that π ◦ JT1Kpp ◦ ι = π ◦ JT2Kpp ◦ ι where ι : C2n → C2n+n′ is the

injection |k⟩ 7→ |k⟩ and π : C2m+m′ → C2m is the projector s.t. π|k⟩ = |k⟩ when k < 2m and
π|k⟩ = 0 otherwise. Thus there exists two unitaries Q, Q′ s.t. JT2Kpp = (I⊕Q′)◦JT1Kpp◦(I⊕Q)
(see [15]).

By Proposition 26, there exist two circuits Tin and Tout in PPRS triangular normal form
such that JTinKpp = Q and JToutKpp = Q′. Using the equational theory we can then make Tin
and Tout appear, turning DNF

1 into

Tin

}
m′

0

0
n′

{
0

0

T1

mn

 ¬0

¬0

¬ 0

¬ 0

Tout

.

Since by construction, the middle part has the same single-photon semantics as T2, by
Proposition 30 we can transform it into T2 using the axioms of the LOv-calculus, which
means transforming DNF

1 into DNF
2 . The result follows by transitivity. ◀

6 Conclusion

In this paper, we presented the LOv-calculus, a graphical language for LOQC capturing
most of the components typically considered in the physics community for linear optical
quantum circuits. The language comes equipped with a sound and complete semantics, and
we discussed how it provides a unifying framework for many of the existing approaches in the
literature. We explained how several existing results can be ported in the LOv framework.

An obvious direction for future work is to extend the language to allow for sources and
detectors of a non-zero number of photons. A more exploratory research avenue is to add
support for features such as squeezed states or continuous variables.
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Abstract
Coherent control of quantum computations can be used to improve some quantum protocols and
algorithms. For instance, the complexity of implementing the permutation of some given unitary
transformations can be strictly decreased by allowing coherent control, rather than using the
standard quantum circuit model. In this paper, we address the problem of optimising the resources
of coherently controlled quantum computations. We refine the PBS-calculus, a graphical language
for coherent control which is inspired by quantum optics. In order to obtain a more resource-sensitive
language, it manipulates abstract gates – that can be interpreted as queries to an oracle – and
more importantly, it avoids the representation of useless wires by allowing unsaturated polarising
beam splitters. Technically the language forms a coloured PROP. The language is equipped with an
equational theory that we show to be sound, complete, and minimal.

Regarding resource optimisation, we introduce an efficient procedure to minimise the number of
oracle queries of a given diagram. We also consider the problem of minimising both the number of
oracle queries and the number of polarising beam splitters. We show that this optimisation problem
is NP-hard in general, but introduce an efficient heuristic that produces optimal diagrams when at
most one query to each oracle is required.
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1 Introduction

Most models of quantum computation (like quantum circuits) and most quantum program-
ming languages are based on the quantum data/classical control paradigm. In other words,
based on a set of quantum primitives (e.g. unitary transformations, quantum measurements),
the way these primitives are applied on a register of qubits is either fixed or classically
controlled.

However, quantum mechanics offers more general control of operations: for instance in
quantum optics it is easy to control the trajectory of a system, like a photon, based on its
polarisation using a polarising beam splitter. One can then position distinct quantum primit-
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Figure 1 [Left] Coherently controlled quantum computation for solving the commuting problem.
Only two queries are used: one query to U and one query to V . [Right] Optimal circuit for solving
the commuting problem, where the 3-qubit gate is a control-swap. Notice that three queries are
necessary in the quantum circuit model.

ives on the distinct trajectories. Since the polarisation of a photon can be in superposition,
it achieves some form of quantum control, called coherent control: the quantum primitives
are applied in superposition depending on the state of another quantum system. Coherent
control is not only a subject of interest for foundations of quantum mechanics [21, 26, 33], it
also leads to advantages in solving computational problems [18, 4, 14, 27] and in designing
more efficient protocols [19, 9, 1, 17, 20].

Indeed, some problems can be solved more efficiently by using coherent control rather than
the usual quantum circuits. This separation has been proved in a multi-oracle model where
the measure of complexity is the number of queries to (a single or several distinct) oracles,
which are generally unitary maps. The simplest example is the following problem [9]: given
two oracles U and V with the promise that they are either commuting or anti-commuting,
decide whether U and V are commuting or not. This problem can be solved using the
so-called quantum switch [10] which can be implemented using only two queries by means of
coherent control, whereas solving this problem requires at least 3 queries (e.g. two queries to
U and one query to V ) in the quantum circuit model (see Figure 1).

In this paper, we address the problem of optimising resources of coherently controlled
quantum computations. To do so, we first refine the framework of the PBS-calculus – a
graphical language for coherently controlled quantum computation – to make it more resource-
sensitive. Then, we consider the problem of optimising the number of queries, and also the
number of polarising beam splitters, of a given coherently controlled quantum computation,
described as a PBS-diagram.

PBS-calculus. The PBS-calculus is a graphical language that has been introduced [12] to
represent and reason about quantum computations involving coherent control of quantum
operations. Inspired by quantum optics [11], the polarising beam splitter (PBS for short),
denoted is at the heart of the language: when a photon enters the PBS, say from the
top left, it is reflected (and hence outputted on the top right) if its polarisation is vertical; or
transmitted (and hence outputted on the bottom right) if its polarisation is horizontal. If
the polarisation is a superposition of vertical and horizontal, the photon is outputted in a
superposition of two positions. As a consequence, the trajectory of a particle, say a photon,
will depend on its polarisation. The second main ingredient of the PBS-calculus are the
gates, denoted U which applies some transformation U on a data register. Notice that
the gates never act on the polarisation of the particle.

PBS-diagrams, which form a traced symmetric monoidal category (more precisely a traced
prop [24]), are equipped with an equational theory that allows one to transform a diagram.
The equational theory has been proved to be sound, complete, and minimal [12].

Notice that a PBS-diagram may have some useless wires, like in the example of the “half
quantum switch”, see Figure 2 (left). We refine the PBS-calculus in order to allow one to
remove these useless wires, leading to unsaturated PBS (or 3-leg PBS) like or .
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U

V

U

V

Figure 2 A coherent control of U and V , also called a half quantum switch: when the initial
polarisation is vertical (V), U is applied on the data register, when the polarisation is horizontal
(H), V is applied. Whatever the polarisation is, the particle always goes out of the top port of the
second beam splitter. On the right-hand side the diagram is made of beam splitters with a missing
leg, whereas on the left-hand side standard beam splitters are used, and a useless trace is added.

To avoid ill-formed diagrams like , a typing discipline is necessary. To this end,
we use the framework of coloured props: each wire has 3 possible colours: black, red and
blue which can be interpreted as follows: a photon going through a blue (resp. red) wire
must have a horizontal (resp. vertical) polarisation.

The introduction of unsaturated polarising beam splitters requires to revisit the equational
theory of the PBS-calculus. The heart of the refined equational theory is the axiomatisation of
the 3-leg polarising beam splitters, together with some additional equations which govern how
4-leg polarising beam splitters can be decomposed into 3-leg ones. To show the completeness
of the refined equational theory, we introduce normal forms and show that any diagram can
be put in normal form. Finally, we also show the minimality of the equational theory by
proving that none of the equations can be derived from the other ones.

Resource Optimisation. The PBS-calculus, thanks to its refined equational theory, provides
a way to detect and remove dead-code in a diagram. We exploit this property to address
the crucial question of resource optimisation. We introduce a specific form of diagrams that
minimises the number of gates, more precisely the number of queries to oracles, with an
appropriate modelisation of oracles. We provide an efficient procedure to transform any
diagram into this specific form. We then focus on the problem of optimising both the number
of queries and the number of polarising beam splitters. We refine the previous procedure,
leading to an efficient heuristic. We show that the produced diagrams are optimal when every
oracle is queried at most once, but might not be optimal in general. We actually show that
the general optimisation problem is NP-hard using a reduction from the maximum Eulerian
cycle decomposition problem [8].

Related work. Several languages have been designed to represent coherently controlled
quantum computation: some of them are extensions of quantum circuits, and other dia-
grammatic languages [30, 5, 31, 29]; others are based on abstract programming languages
[2, 32, 16, 15, 6]. While there are numerous works on resource-optimisation of quantum
computation, in particular for quantum circuits [23, 3, 25], there was, up to our knowledge,
no procedure for resource optimisation of coherently controlled quantum computation.

All omitted proofs can be found in the preprint version of the paper [13].

2 Coloured PBS-diagrams

We use the formalism of traced coloured props (i.e. small traced symmetric strict monoidal
categories whose objects are freely spanned by the elements of a set of colours) to represent
coherently controlled quantum computations. We are going to use the “colours” v, h, ⊤, to
denote respectively vertical, horizontal or possibly both polarisations.
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Figure 3 (Left) An example of diagram of type ⊤ ⊕ ⊤ ⊕ v ⊕ h → ⊤ ⊕ h ⊕ ⊤ ⊕ v. (Right) An
example of a diagram of type ⊤ ⊕ v ⊕ h ⊕ ⊤ ⊕ h → h ⊕ ⊤ ⊕ v ⊕ ⊤ ⊕ h, in a particular form that we
will call normal form (see Definition 15).

▶ Definition 1. Given a monoid M, let DiagM be the traced coloured prop with colours
{v, h, ⊤} freely generated by the following generators, for any U ∈ M:

: ⊤ ⊕ ⊤ → ⊤ ⊕ ⊤ : ⊤ ⊕ v → v ⊕ ⊤ : ⊤ → h ⊕ v

: h ⊕ ⊤ → h ⊕ ⊤ : v ⊕ ⊤ → ⊤ ⊕ v : v ⊕ h → ⊤

: ⊤ ⊕ h → ⊤ ⊕ h : ⊤ → v ⊕ h : h ⊕ v → ⊤

¬ : ⊤ → ⊤ ¬ : v → h ¬ : h → v

U : ⊤ → ⊤ U : v → v U : h → h

The morphisms of DiagM are called M-diagrams or simply diagrams when M is irrelevant
or clear from the context. Intuitively, the diagrams are inductively obtained by compos-
ition of the generators from Definition 1 using the sequential composition D2 ◦ D1, the
parallel composition D3 ⊕ D4, and the trace Trd(D) which are respectively depicted as

follows: D1 D2

D3

D4

D
d

. Notice that these compositions should type-check,

i.e. D1 : a → b, D2 : b → c and D : a ⊕ d → b ⊕ d with d ∈ {⊤, v, h}. The axioms of
the traced coloured prop guarantee that the diagrams are defined up to deformation: two
diagrams whose graphical representations are isomorphic are equal.

Regarding notations, we use actual colours for wires: blue for h-wires, red for v-wires,
and black for ⊤-wires. We also add labels on the wires, which are omitted when clear from
the context, so that there is no loss of information in the case of a colour-blind reader or
black and white printing. Two examples of diagrams are given in Figure 3.

Unless specified, the unit of M is denoted I and its composition is · which will be generally
omitted (V U rather than V · U). The main two examples of monoids we consider in the rest
of the paper are:

The monoid U(H) of isometries of a Hilbert space H with the usual composition. When
H is of finite dimension, the elements of U(H) are unitary maps. With a slight abuse of
notations, the corresponding traced coloured prop of diagrams is denoted DiagH.
The free monoid G∗ on some set G. The gates, when the monoid is freely generated, can
be interpreted as queries to oracles (each element of G corresponds to an oracle): the
gates implement a priori arbitrary operations with no particular structures. We use the
term abstract diagram when the underlying monoid is freely generated. Notice that the
free monoid case can also be seen as an extension of the bare diagrams [7] whose gates
are labelled with names.
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3 Semantics

The input of a diagram is a single particle, which has a polarisation, a position and a data
register. A basis state for the polarisation is either vertical or horizontal, and a basis state for
the position is an integer which corresponds to the wire on which the particle is located. The
type of a diagram restricts the possible input/output configurations: if D : v⊕⊤ → h⊕h⊕v
then the possible input (resp. output) configurations are the following polarisation-position
pairs: {(V, 0), (V, 1), (H, 1)} (resp. {(H, 0), (H, 1), (V, 2)}). More generally for any object
a, let [a] be the set of possible configurations, and |a| be its size, inductively defined as
follows: |I| = 0, |a ⊕ ⊤| = |a ⊕ v| = |a ⊕ h| = |a| + 1, and [I] = ∅, [a ⊕ v] = [a] ∪ {(V, |a|)},
[a ⊕ h] = [a] ∪ {(H, |a|)} and [a ⊕ ⊤] = [a] ∪ {(V, |a|), (H, |a|)}.

The semantics of a M-diagram D : a → b is a map [a] → [b] × M which associates with
an input configuration (c, p), an output configuration (c′, p′) and a side effect Uk . . . U1 ∈ M
which represents the action applied on a data register of the particle. Thus the semantics of
a diagram can be formulated as follows:

▶ Definition 2. Given an M-diagram D : a → b, let JDK : [a] → [b] × M be inductively defined
as: ∀D1 : a → b, D2 : b → d, D3 : d → e, D4 : a ⊕ f → b ⊕ f , where f ∈ {⊤, v, h}:

r z
=

{
(V, 0) 7→ ((V, 0), I)
(H, 0) 7→ ((H, 1), I)

r z
=

{
(V, 0) 7→ ((V, 1), I)
(H, 0) 7→ ((H, 0), I)

r z
=

{
(V, 0) 7→ ((V, 0), I)
(H, 1) 7→ ((H, 0), I)

r z
=

{
(V, 1) 7→ ((V, 0), I)
(H, 0) 7→ ((H, 0), I)

sa

b

{
= (c, p) 7→

{
((c, p), I) if c = V
((c, 1 − p), I) if c = H

s a

b

{
= (c, p) 7→ ((c, 1 − p), I)

r
a

z
= (c, 0) 7→ ((c, 0), I)

r
U

a
z

= (c, 0) 7→ ((c, 0), U)

q
¬a y

=

{
(V, 0) 7→ ((H, 0), I)
(H, 0) 7→ ((V, 0), I)

JD1 ⊕ D3K = (c, p) 7→

{
JD1K (c, p) if p < |a|
Sa(JD3K (c, p − |a|)) otherwise

JD2 ◦ D1K = JD2K ◦ JD1K

JT rf (D4)K = (c, p) 7→


JD4K (c, p) if πpos(JD4K (c, p)) < |b|
JD4K ◦ Sa−b(JD4K (c, p))

if πpos(JD4K ◦ Sa−b(JD4K (c, p))) < |b| ≤ πpos(JD4K (c, p))
JD4K ◦ Sa−b(JD4K ◦ Sa−b(JD4K (c, p))) otherwise

where the composition is: g◦f(c, p) = ((c′′, p′′), U ′U) with f(c, p) = ((c′, p′), U) and g(c′, p′) =
((c′′, p′′), U ′); πpos : [a] × M → N = ((c, p), U) 7→ p is the projector on the position, and
Sa : [b] × M → [a ⊕ b] × M = ((c, p), U) 7→ ((c, p + |a|), U) and Sa−b : [b] × M → [a] × M =
((c, p), U) 7→ ((c, p + |a| − |b|), U) shift the position.

Given D : a → b and (c, p) ∈ [a], we denote respectively by cD
c,p, pD

c,p and UD
c,p the

polarisation, the position and the element of M, such that JDK (c, p) = ((cD
c,p, pD

c,p), UD
c,p). In

the case where M is the free monoid G∗, its elements can be seen as words, so we will use the
notation wD

c,p instead of UD
c,p.
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Notice that the semantics of the trace is not defined as a fixed point but as a finite number
of unfoldings. Indeed, like for PBS-diagrams, one can show that any wire of a diagram is
used at most twice, each time with a distinct polarisation.

▶ Proposition 3. J.K is well defined, i.e. the axioms of the traced coloured prop are sound
and the semantics of the trace is well defined.

3.1 Quantum semantics
Any diagram whose underlying monoid consists of linear maps, admits a quantum semantics
defined as follows:

▶ Definition 4 (Quantum semantics). Given a monoid M of linear maps (with the standard
composition) on a complex vector space V, for any M-diagram D : a → b the quantum
semantics of D is the linear map VD : C[a] ⊗V → C[b] ⊗V = |c, p⟩⊗|ϕ⟩ 7→

∣∣cD
c,p, pD

c,p

〉
⊗UD

c,p |ϕ⟩.

The diagrams in DiagH are valid by construction, in the sense that their semantics are
valid quantum evolutions:

▶ Proposition 5. For any D ∈ DiagH, VD : C[a] ⊗ H → C[b] ⊗ H is an isometry.

Note that JDK = JD′K implies VD = VD′ ; the converse is true if and only if 0 /∈ M:

▶ Proposition 6. Given a monoid M of complex linear maps, we have ∀D, D′, JDK = JD′K ⇔
VD = VD′ , if and only if 0 /∈ M.

In particular, two diagrams in DiagH have the same action semantics if and only if they
have the same quantum semantics.

3.2 Interpretation
Given a monoid homomorphism γ : M → M′, one can transform any M-diagram into a
M′-diagram straightforwardly, by applying γ on each gate of the diagram:

▶ Definition 7. Given a M-diagram D : a → b and a monoid homomorphism γ : M → M′,
we define its γ-interpretation γ(D) : a → b as the M′-diagram obtained by applying γ to each
gate of D. It is defined inductively as: γ( U

a : a → a) = γ(U)a : a → a, for any other
generator g, γ(g) = g, γ(D2 ◦ D1) = γ(D2) ◦ γ(D1), γ(D1 ⊕ D2) = γ(D1) ⊕ γ(D2), and
γ(Tre(D)) = Tre(γ(D)).

▶ Proposition 8. Any M-diagram is the interpretation of an abstract diagram.

It is easy to see that the action of monoid homomorphisms on diagrams is well-behaved
with respect to the semantics:

▶ Proposition 9. Given any M-diagram D : a → b and any monoid homomorphism
γ : M → M′, for any configuration (c, p) ∈ [a], if JDK (c, p) = ((c′, p′), U) then Jγ(D)K (c, p) =
((c′, p′), γ(U)).

As a consequence, given two abstract diagrams D1, D2 ∈ DiagG∗
, if JD1K = JD2K then

for any homomorphism γ : G∗ → M, Jγ(D1)K = Jγ(D2)K. The converse is not true in general.
Notice that in the framework of graphical languages an equation holds in graphical languages
for traced symmetric (resp. dagger compact closed) monoidal categories if and only if it
holds in finite-dimensional vector (resp. Hilbert) spaces [22, 28]. We prove a similar result
by showing that interpreting abstract diagrams using 2-dimensional Hilbert spaces is enough
to completely characterise their semantics:
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▶ Proposition 10. Given a Hilbert space H of dimension at least 2 and a set G, ∀D1, D2 ∈
DiagG∗

, there exists a monoid homomorphism γ : G∗ → U(H) s.t. JD1K = JD2K ⇔ Jγ(D1)K =
Jγ(D2)K.

A stronger result, where the homomorphism γ is independent of the diagrams, is also
true, assuming the axiom of choice:

▶ Proposition 11. Given a Hilbert space H of dimension at least 2, and a set G of cardinality
at most the cardinality of U(H), there exists a monoid homomorphism γ : G∗ → U(H) s.t.
∀D1, D2 ∈ DiagG∗

, JD1K = JD2K ⇔ Jγ(D1)K = Jγ(D2)K.

▶ Remark 12. Notice that the cardinality of U(H) is max(2ℵ0 , 2dim(H)) (where 2ℵ0 is the car-
dinality of R).

4 Equational theory

In this section, we introduce an equational theory which allows one to transform any M-
diagram into an equivalent one. Indeed, all the equations we present in this section preserve
the semantics of the diagrams (see Proposition 14).

These equations are summarised in Figure 4. They form what we call the CPBS-calculus:

▶ Definition 13 (CPBS-calculus). Two M-diagrams D1, D2 are equivalent according to the
rules of the CPBS-calculus, denoted CPBS ⊢ D1 = D2, if one can transform D1 into D2
using the equations given in Figure 4. More precisely, CPBS ⊢ · = · is defined as the smallest
congruence which satisfies equations of Figure 4 in addition to the axioms of coloured traced
prop.

I
v = v (1)

U V
v = V U

v (2)

U ¬v = ¬ U
v (3)

¬
=

¬

¬
(4)

U
=

U

U

(5)

U v = (6)

¬ ¬v = v (7)

¬ ¬h = h (8)

= (9)

=
v

h
(10)

= (11)

= (12)

= (13)

v
= (14)

v
= (15)

h
= (16)

h = (17)

Figure 4 Axioms of the CPBS-calculus. U, V ∈ M. Equations (1) and (2) reflect the monoid
structure of M; Equations (3) to (5) show how the three generators commute; Equation (6) means
that a disconnected diagram (with no inputs/outputs) can be removed; Equations (7) to (10) witness
the fact that the negation and the 3-leg PBS are invertible; Equations (11) and (12) are essentially
topological rules; Equations (13) to (17) show how 4-leg PBS can be decomposed into 3-leg PBS.
Notice in particular that the other rules do not use 4-leg PBS, as a consequence one could define the
language using 3-leg PBS only and see the 4-leg PBS as syntactic sugar.
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U U

WV

¬ WU ¬

¬U

Figure 5 An example of a CPBS-diagram (left) and its equivalent diagram in normal form (right).

Notice that the CPBS-calculus subsumes the PBS-calculus: the fragment of monochro-
matic (black) H-diagrams of the CPBS-calculus coincides with the set of PBS-diagrams,
moreover, for any two PBS-diagrams D1, D2, PBS ⊢ D1 = D2 if and only if CPBS ⊢ D1 = D2.

▶ Proposition 14 (Soundness). For any two M-diagrams D1 and D2, if CPBS ⊢ D1 = D2
then JD1K = JD2K.

We introduce normal forms, that will be useful to prove that the equational theory is
complete, and will also play a role in optimising the number of gates in a diagram in Section 5.

▶ Definition 15. A diagram is said to be in normal form if it is of the form M ◦P ◦F ◦G◦S,
where:

S is of the form b1 ⊕ · · · ⊕ bn, where each bi is either v , h or
G is of the form g1 ⊕ · · · ⊕ gk, where each gi is either v , h , or Ui

v or Ui
h

with Ui ̸= I

F is of the form n1 ⊕ · · · ⊕ nk, where each ni is either v , h , ¬v or ¬h

P is a permutation of the wires, that is, a trace-free diagram in which all generators are
identity wires or swaps
M is of the form w1 ⊕ · · · ⊕ wm, where each wi is either v , h or .

For example, the diagram shown in Figure 3 (right) is in normal form.

▶ Theorem 16. For any M-diagram D, there exists a M-diagram in normal form N such
that CPBS ⊢ D = N .

Note that the structure of the normal form as well as the proof of Theorem 16 use in
an essential way the removal of useless wires made possible by the use of colours, and in
particular Equation (10), which has no equivalent in the monochromatic PBS-calculus of [12].
An example of CPBS-diagram and its normal form are given in Figure 5.

Now we use the normal form to prove the completeness of the CPBS-calculus:

▶ Lemma 17 (Uniqueness of the normal form). For any two diagrams in normal form N and
N ′, if JNK = JN ′K then N = N ′.

▶ Theorem 18 (Completeness). Given any two M-diagrams D1 and D2, if JD1K = JD2K then
CPBS ⊢ D1 = D2.

Finally, each equation of Figure 4 is necessary for the completeness:

▶ Theorem 19 (Minimality). None of the equations of Figure 4 is a consequence of the others.

5 Resource optimisation

We show in this section that the equational theory of the CPBS-calculus can be used for
resource optimisation.
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5.1 Minimising the number of oracle queries
We consider the problem of minimising the number of oracle queries: given a set G of
(distinct) oracles and a G∗-diagram D, the objective is to find a diagram D′ equivalent to D

(i.e. JDK = JD′K) such that D′ is using a minimal number of queries to each oracle. Since
there are several oracles, the definition of the optimal diagrams should be made precise.

First, we define the number of queries to a given oracle:
▶ Definition 20. Given a G∗-diagram D, for any U ∈ G, let #U (D) be the number of queries
to U in D, inductively defined as follows: #U ( wa ) = |w|U , #U (g) = 0 for all the other
generators, and #U (D1 ⊕ D2) = #U (D2 ◦ D1) = #U (D1) + #U (D2), #U (Tra(D)) = #U (D),
where |w|U is the number of occurrences of U in the word w ∈ G∗.

We can now define a query-optimal diagram as follows:
▶ Definition 21. A G∗-diagram D is query-optimal if ∀D′ ∈ DiagG∗

, ∀U ∈ G, JDK = JD′K
implies #U (D) ≤ #U (D′).

Notice that given a diagram, it is not a priori guaranteed that there exists an equivalent
diagram which is query-optimal, if for instance, all the diagrams which minimise the number
of queries to some oracle U do not minimise the number of queries to another oracle V . We
actually show (Proposition 23) that any diagram can be turned into a query-optimal one.
To this end, we first need a lower-bound on the number of queries to a given oracle:
▶ Proposition 22 (Lowerbound). For any G∗-diagram D : a → b and any U ∈ G, #U (D) ≥⌈∑

(c,p)∈X

|wD
c,p|U

2

⌉
where wD

c,p ∈ G∗ is such that JDK (c, p) = (c′, p′, wD
c,p).

Notice that Proposition 22 provides a lower bound on the minimal number of queries
to U one can reach in optimising a diagram since the right-hand side of the inequality only
depends on the semantics of the diagram.

We are now ready to introduce an optimisation procedure that transforms any diagram
into an equivalent query-optimal one:

Query optimisation procedure of a G∗-diagram D.
1. Transform D into its normal form DNF . A recursive procedure for doing this can easily

be deduced from the proof of Theorem 16.
2. Split all gates into elementary gates (that is, gates whose label is a single letter), using the

following variants of Equation (2), which are consequences of the equations of Figure 4
(see [13]): ∀U ∈ G, ∀w ∈ G∗, w ̸= I:

wU
v → U w

v (18) wU
h → U w

h (19) wU → U w (20)

3. As long as the diagram contains two nonblack gates with the same label, merge them.
To do so, deform the diagram to put one over the other, and apply one of the following
equations, which are also consequences of the equations of Figure 4 :

U

U

v

h
→

U

(21)
U

U
h

v
→

U

(22)

U

U

v

v
→

¬¬

U

(23)
U

U

h

h
→

¬¬ U

(24)
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U

U
h

v
U

Figure 6 Two equivalent diagrams: the diagram on the left is optimal in terms of number of
polarising beam splitters, the diagram on the right is optimal in terms of queries. Notice there is no
equivalent diagram with no polarising beam splitter and at most a single query.

An example of query-optimised diagram is given in Figure 8. The query-optimisation
procedure transforms any diagram into an equivalent query-optimal one:

▶ Proposition 23. The diagram D0 output by the query optimisation procedure is query-
optimal: for any U and any D′ s.t. JD′K = JD0K, one has #U (D0) ≤ #U (D′).

Notice that the query-optimisation procedure is efficient: one can naturally define the size
|D| of a diagram D ∈ DiagG∗

as follows: | wa | = |w|, |g| = 1 for all the other generators,
and |D1 ⊕ D2| = |D2 ◦ D1| = |D1| + |D2|, |Tra(D)| = |D| + 1. Step 1 of the procedure, which
consists in putting the diagram in normal form, can be done using a number of elementary
equations of Figure 4 which is quadratic in the size of the diagram, the other two steps being
linear. Notice that here we only count the number of basic equations, but it requires also
some diagrammatic transformations, which can be handled efficiently using appropriate data
structures.

5.2 Optimising both queries and PBS

We refine the resource optimisation of a diagram by considering not only the number of
queries but also the number of instructions, and in particular the number of polarising beam
splitters. Notice that the number of beam splitters and the number of queries cannot be
minimised independently, in the sense that there might not exist a diagram that is both
query-optimal and PBS-optimal (see such an example in Figure 6). As the implementation of
an oracle is a priori more expensive than the implementation of a single PBS, we optimise the
number of queries and then the number of PBS in this order, i.e. the measure of complexity
is the lexicographic order number of queries, number of polarising beam splitters.

▶ Definition 24. A diagram D is query-PBS-optimal if D is query-optimal and for any
query-optimal diagram D′ equivalent to D (i.e. JDK = JD′K), #PBS(D) ≤ #PBS(D′), where
#PBS(D) be the number of PBS of D.

We introduce an efficient heuristic, called PGT procedure that, when applied on a query-
optimal diagram D0, preserves the number of queries. Moreover, the produced diagram,
called in PGT form (see Figure 7), is query-PBS-optimal when there is at most one query to
each oracle:

▶ Theorem 25. Any query-optimal diagram in PGT form that does not contain two queries
to the same oracle (i.e. ∀U ∈ G, #U (D) ≤ 1) is query-PBS-optimal.

The procedure relies on equations of Figure 4, together with easy to derive variants of
these equations. The procedure, with all steps detailed, more pictures and explicit statement
of the variants of the equations, is given in the preprint version of the paper [13].
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U1

Uℓ

P (A)
C1

Ck

σ1 σ2

⋆
⋆

⋆
⋆

⋆
⋆

⋆
⋆

(B)

v h v v

Figure 7 Schematic description of a diagram in PGT form (for Permutation, Gates and Traces).
A diagram is in PGT form if it is of the form (A), with P of the form (B), and the Ci of the forms
depicted on the second line. ⋆ denotes either a or ¬a with a ∈ {v, h}, and σ1, σ2 are
permutations of the wires.

PGT procedure. Given a query optimal diagram D0:
0. During all the procedure, every time there are two consecutive negations, we remove

them using Equation (7), (8) or their all-black version.
1. Deform the gate-optimal diagram D0 to put it in the form (A) with P gate-free. The

goal of the following steps is to put P in stair form.
2. Split all PBS of the form

a

b into combinations of , , and ,
using Equations (13) to (17).

3. As long as there are two PBS connected by a black wire, with possibly a black negation
on this wire, push the possibly remaining negation out using Equation (4), and cancel
the PBS together using Equation (10) and its variants. For example:

→ v

h

¬
→ vh

¬

¬

When there are not two such PBS anymore, all black wires are connected to at least one
side of P (possibly through negations), and the PBS are connected together with red and
blue wires with possibly negations on them.

4. Remove all isolated loops. Note that since D0 is query-optimal, there cannot be loops
containing gates at this point.

5. Deform P to put it in the form (B) with the Ci of the form
⋆
⋆ and σ1 and σ2

being wire permutations, where ⋆ is either a or ¬a with a ∈ {v, h}, is
either or and is either or .

6. Remove the negations in the middle of the Ci by pushing them to the bottom by means
of variants of Equation (4).

7. Transform each Ci, which is now, up to deformation, a ladder of PBS without negations,
into one of the five kinds of stairs depicted in Figure 7, depending on its type. To do
so, deform it and apply Equations (11) and (12) appropriately, and repeatedly apply the
appropriate equation among (14), (15), (16), and a variant of (13). This gives us D1.

An example of diagram produced by the PGT procedure is given in Figure 8.
Since the PGT procedure consists in putting a subdiagram of D0 in stair form (except

Step 1 which is just deformation and does not change the number of PBS), this procedure
does not increase the number of PBS in D0:
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W ¬

¬

U W ¬U

Figure 8 The diagram on the left is the obtained by applying the query-optimisation procedure on
the example of Figure 5. The diagram on the right is (up to deformation) obtained by applying the
PGT procedure to the diagram on the left. Notice that this diagram is both query- and PBS-optimal.

▶ Proposition 26. The diagram D1 output by the PGT procedure contains at most as many
PBS as the initial diagram D0.

This also implies that given any diagram D, there exists an equivalent query-PBS-optimal
diagram in PGT form. Indeed, by Proposition 23, there exist query-optimal diagrams
equivalent to D, and among these diagrams, some of them have minimal number of PBS
and are therefore query-PBS-optimal. Finally, applying the PGT procedure to one of these
diagrams gives us an equivalent diagram in PGT form, which, since the PGT procedure does
not change the gates or increase the number of PBS, is still query-PBS-optimal.

Applying the PGT procedure after the query optimisation procedure produces an inter-
esting heuristic: the output diagram is necessarily query-optimal and can even be query-
PBS-optimal when it does not contain two queries to the same oracle.

Notice that, like the query optimisation procedure, the PGT procedure is efficient, i.e.
it can be done using a number of elementary graphical transformations (those of Figure 4)
which is linear in the size of the diagram. Moreover, it also requires some diagrammatic
transformations, which can be handled using appropriate data structures, leading to a
quadratic algorithm.

5.3 Hardness
We show in this section that the query-PBS optimisation problem is actually NP-hard.

▶ Theorem 27. The problem of, given an abstract diagram, finding an equivalent query-
PBS-optimal diagram, is NP-hard.

The proof, given in [13], is based on a reduction from the maximum Eulerian cycle de-
composition problem (MAX-ECD) which is known to be NP-hard [8]. The MAX-ECD
problem consists, given a graph, in finding a partition of its set of edges into the max-
imum number of cycles. Intuitively, the reduction goes as follows: given an Eulerian
graph G = (V = {v0, . . . vn−1}, E), let σ be a permutation of the vertices of the graph s.t.
∀i, (vi, σ(vi)) ∈ E (such a σ exists since G is Eulerian), we construct a V ∗-diagram D such
that the number of occurrences of each vi in D is half its degree in G; and such that ∀i,
JDK (V, i) = ((V, i), vi) and JDK (H, i) = ((H, i), σ(vi)). Roughly speaking, we show that the
edge-partitions of G into cycles correspond to the possible implementations of D, and that
a partition with a maximal number of cycles leads to an implementation with a minimal
number of PBS.

In the following, we explore a few variants of the problem, which remain NP-hard.
First, query-PBS optimisation is still hard when restricted to negation-free diagrams:

▶ Corollary 28. The problem of, given a negation-free abstract diagram, finding an equivalent
diagram which is query-PBS-optimal among negation-free diagrams, is NP-hard.

Additionally, it is also hard, in a query-optimal diagram, to optimise the gates and
the negations together by, respectively, defining a cost function (at least in the case where
the negation cost is not less than the PBS), prioritising the negations over the PBS, and
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prioritising the PBS over the negations. Note that the NP-hardness is clear in the third
case since the considered problem is a refinement of the query-PBS-optimisation problem
addressed in Theorem 27.

▶ Corollary 29. For any α ≥ 1, the problem of, given an abstract diagram D, finding an
equivalent query-optimal diagram D′ such that #PBS(D′) + α#¬(D′) is minimal, is NP-hard,
where #¬(D) is the number of negations in D.

▶ Corollary 30. The problem of, given an abstract diagram D, finding an equivalent query-
¬-PBS-optimal1 diagram is NP-hard.

6 Discussions and Future Work

The power and limits of quantum coherent control is an intriguing question. Maybe surpris-
ingly, we have proved that coherently controlled quantum computations, when expressed
in the PBS-calculus, can be efficiently optimised: any PBS-diagram can be transformed in
polynomial time into a diagram that is optimal in terms of oracle queries. We have refined
the procedure to also decrease the number of polarising beam splitters. It leads to an optimal
diagram when each oracle is queried only once, but the corresponding optimisation problem
is NP-hard in general. We leave to future work an experimental evaluation of the PGT
procedure when each oracle is not necessarily queried only once.

To perform the resource optimisation, we have introduced a few add-ons to the framework
of the PBS-calculus. First, we have refined the syntax in order to allow the representation of
unsaturated (or 3-leg) polarising beam splitters. They are essential ingredients for resource
optimisation, as they provide a way to decompose a diagram into elementary components and
then remove the useless ones. However, notice that one can perform resource optimisation
of vanilla PBS-diagrams, using the refined one only as an intermediate language. Indeed,
given a vanilla PBS-diagram (where all wires are black), one can apply the optimisation
procedures described in this paper. The resulting optimised PBS-diagram may contain some
unsaturated PBS, but all these 3-leg PBS can be saturated by adding useless traces and then
one can make the diagram monochromatic. The resulting vanilla PBS-diagram keeps the
same number of queries and PBS.

We have also generalised the gates of the diagrams, by considering arbitrary monoids.
This is a natural abstraction that allows one to consider various examples and in particular
the one of the free monoid which is appropriate to model the oracle queries. The query
complexity is a convenient model to prove lower bounds, but note that the optimisation
procedures described in this paper can be applied with any arbitrary monoid (for instance
using Proposition 8). However, there is no guarantee of minimality with an arbitrary monoid.

Another direction of research is to consider resource optimisation in a more expressive
language for quantum control. Indeed, the polarisation of a particle can only be flipped
within a PBS-diagram. The PBS-calculus is well suited for most applications of coherent
control in quantum computing, by allowing the description of superpositions of classical
controls (in particular superposition of causal orders) since the input particle can be in
any superposition of polarisations. However, it would be interesting to develop resource
optimisation techniques for quantum computation involving arbitrary quantum control.

1 A diagram is query-¬-PBS-optimal if it is optimal according to the lexicographic order: the number of
queries then the number of negations and finally the number of polarising beam splitters.
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Abstract
In this paper, we consider infinitely sorted tree algebras recognising regular language of finite trees.
We pursue their analysis under the angle of their asymptotic complexity, i.e. the asymptotic size of
the sorts as a function of the number of variables involved.

Our main result establishes an equivalence between the languages recognised by algebras of
polynomial complexity and the languages that can be described by nominal word automata that
parse linearisation of the trees. On the way, we show that for such algebras, having polynomial
complexity corresponds to having uniformly boundedly many orbits under permutation of the
variables, or having a notion of bounded support (in a sense similar to the one in nominal sets).

We also show that being recognisable by an algebra of polynomial complexity is a decidable
property for a regular language of trees.
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1 Introduction

Among the many different approaches to language theory, the algebraic one focalises toward
the understanding of the expressive power of regular languages based on the properties of
algebraic recognizers. The first work in this direction [11] characterized star-free languages,
and initiated a very fruitful branch of research. While algebraic theories for word languages
(both finite and inifinite) are already well developed, the corresponding picture remains
incomplete for e.g. languages of trees (both finite or infinite) or graphs. Finding an effective
characterization of the regular languages of trees definable in first order logic remains for
instance a long standing open problem.

When designing algebras for tree languages or graph languages, one is naturally inclined to
consider infinitely sorted algebras. The case of tree algebras (such as preclones, ω-hyperclones,
operads [8, 1]) is typical: plugging a subtree into another one requires a mechanism for
identifying the leaf/leaves in which the substitution has to be performed. Notions such as
variables, hole types, or colors are used for that. Another example is the one of graphs
(HR- and VR- algebras [7]) in which basic operations (a) glue graphs together using a set of
colors (sometimes called ports) for identifying the glue-points, or (b) add all possible edges
between vertices of fixed given colors. In these examples, the algebras are naturally sliced
into infinitely many sorts based on the number of variables/hole types/colors that are used
simultaneously.
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However, a technical difficulty arises immediately when using such algebras. Even when
all sorts are finite (what we call a finite algebra), these algebras are not really finite due
to the infinite number of sorts. This forbids, for instance, to explicitely describe the whole
algebra in a finite way, which is of course a problem for designing algorithms. This hurdle to
handle infinitely sorted algebras can, arguably, be seen as one of the causes of the many years
that it took before having a good definition of an algebra for infinite trees [2], or the time
that it took before it was possible to characterize logically the expressiveness of recognizable
properties of graphs under bounded tree-width hypothesis [4].

Complexity of algebras. To cope with this difficulty, the notion of complexity for infinitely
sorted algebras was introduced in [5]. In each of the above cases, the sorts are naturally
indexed by a natural number parameter: the number of variables, or hole types, or colors.
Hence an algebra A would have a carrier of the form

(An)n∈N

together with suitable operations that depend on the particular algebra type. Such an algebra
is called finite if all the An are finite and, in this case, the complexity map cA : N→ N of
the algebra is defined as:

cA(n) = |An| , for all n ∈ N.

This approach gives rises to the classification of finite algebras depending on the asymptotic
growth of cA: algebras can have bounded complexity, polynomial complexity, etc. It is then
possible to study the expressive power of algebras in a prescribed complexity class.

In all of the mentioned examples of algebras, there is a natural operation that performs a
renaming of the variables/hole types/colors. This renaming is parameterized by a bijection
over variables/hole types/colors, and this permutation acts on the corresponding sort. Thus,
there is an action of the symmetric group over n elements, Sym(n) over An. The orbit-
complexity map c◦ : N→ N is then naturally defined as:

c◦
A(n) = |An/Sym(n)| , for all n ∈ N.

The notions of bounded orbit-complexity, polynomial orbit-complexity, etc. are then defined
accordingly.

Along with the definitions of complexity and orbit-complexity, a precise description of
the languages recognized by tree algebras of bounded complexity was given in [5]1. In this
article we endeavor to study tree algebras of polynomial complexity.

Tree algebras. The notion of tree algebra that we presented above is a bit unpractical,
because the variables/hole types/colors are unnamed (we will simply call them variables
from now on). We instead consider tree algebras with a carrier of the form

(AX)X finite set of variables

for which the notions of complexity and orbit-complexity can be easily adapted. Given a
finite X, a tree is then seen as an element of AX whenever all the variables on the leaves of
the tree are in X. This notion of tree algebras may have different flavors:

1 Let us emphasize that the algebras used in [5] are different, since all variables are furthermore required
to appear at least once. This apparently inocuous modification has consequences on the results.
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Unrestrained tree algebras in which there is no additional constraint, as in this paper.
Affine tree algebras: all variables must appear on at most one leaf of the tree [2].
Relevant tree algebras: all variables must appear on at least one leaf of the tree [5].
Linear tree algebras: all variables must appear on exactly one leaf of the tree [8, 9].

We could also consider variants in which the variables are ordered. For instance, starting
from linear tree algebras and adding the condition that, when read from left to right, the
variables are monotone, corresponds to preclones [8]. The expressive power of relevant tree
algebras of bounded complexity was precisely described in [5].

Contributions of the article. In this article, we study unrestrained tree algebras (or simply
tree algebras from now on) of polynomial complexity.

We introduce a way to encode finite trees into data words, and thus to encode languages
of trees into languages of data words (we say that the language of trees is described by the
language of data words).

We then establish that tree algebras of polynomial complexity and of bounded orbit-
complexity have the same expressive power, thus answering a question from [5] (for un-
restrained tree algebras). Moreover, the languages that they recognize are exactly those
described by regular languages over our data alphabet (in which the notion of regular lan-
guage is defined using orbit-finite nominal automata [10, 3], a mild generalization of register
automata that fit nicely into our algebraic setting).

Our main result is the following Theorem 1. It states the above described equivalences,
and add a third item that will be formalised in the body of the paper.

▶ Theorem 1. For a regular language of finite trees, the following properties are equivalent:
1. Being recognized by a finite tree algebra of polynomial complexity.
2. Being recognized by a finite tree algebra of bounded orbit complexity.
3. Being recognized by a finite tree algebra that has a bounded and stable system of supports.
4. Being described by a coding automaton.
Our second theorem, Theorem 22, establishes the decidability of this class.

Structure of the paper. In Section 2, we recall some classical definitions, and introduce the
notion of algebras. In Section 3, we explain our encoding of trees into data words, and prove
Proposition 16 corresponding to the implication from Item 4 to Items 1 and 2 of Theorem 1.
In Section 4, we look in detail at the properties of tree algebras of polynomial complexity and
bounded orbit-complexity. Doing this, we prove Propositions 19 and 20, that correspond to
proving implications from Items 1 and 2 to Item 3, and from Item 3 to Item 4 of Theorem 1.
We also address the decidability question an prove Theorem 22. Section 5 concludes.

2 Definitions

We denote by N the set of all non-negative integers. Given n ∈ N, we write [n] = {0, 1, ..., n−
1}. The symmetric group (resp. alternating group) of a set X is denoted Sym(X) (resp.
Alt(X)). We fix a finite ranked alphabet Σ; the arity of a symbol a ∈ Σ is denoted ar(a). It is
a constant if ar(a) = 0, and is unary if ar(a) = 1. For k ∈ N, we set Σk = {a ∈ Σ | ar(a) = k}.
A∗ is the set of finite words over A, and A+ = A∗ \ {ε}.

MFCS 2022
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2.1 Trees
In this section, we introduce notions and notations for trees.

We fix a countable set of variables V. Given a finite set of variables X, a Σ, X-tree is,
informally, a tree in which nodes are labelled by elements of Σ and leaves also possibly by
variables of X. Formally, a Σ, X-tree is a partial map t : N∗ → Σ ⊎X such that dom(t) is
non-empty and prefix-closed, and furthermore, for every u ∈ dom(t) there exists n ∈ N such
that {i | ui ∈ dom(t)} = [n], and

either t(u) ∈ Σn (symbol node), or
t(u) ∈ X and n = 0 (variable node). Note that a variable node is always a leaf.

Σ, ∅-trees are simply called Σ-trees. The elements in dom(t) are called nodes. The prefix
relation over nodes is called the ancestor relation. The node ε is called the root of the tree.
The tree t is finite if it has finitely many nodes. A branch of a tree t is a maximal set of
nodes ordered under the ancestor relation. Let Trees(Σ, X) bet the set of finite Σ, X-trees,
for every finite set of variables X.
▶ Remark 2. Note that Σ, X-trees are also Σ, Y -trees whenever X ⊆ Y . This is in contrast
with [5] in which all variables were assumed to appear at least once.

Building trees. We introduce now some operations on trees. See Fig. 1.
εx, where x is a variable, denotes the Σ, {x}-tree consisting of a single root node labelled x.
a(x0, . . . , xn−1), for x0, . . . , xn−1 variables and a ∈ Σn, denotes the Σ, {x0, . . . , xn−1}-tree
consisting of a root labelled a, and children 0, . . . , n−1 labelled with variables x0, . . . , xn−1
respectively.
s ·x t, for two trees s ∈ Trees(Σ, X), t ∈ Trees(Σ, Y ) and a variable x ∈ V, is the
Σ, (X \ {x}) ∪ Y -tree s in which t is substituted for every occurrence of the variable x,
which may not be present in s at all.
σ̃(t), for a tree t ∈ Trees(Σ, X) and a map σ : X → Y , is the Σ, Y -tree obtained as t in
which variable σ(x) has been substituted to x for every x ∈ X. Note that σ̃ ◦ τ̃ = σ̃ ◦ τ .
t[x0 ← t0, . . . , xn−1 ← tn−1] denotes the tree of sort X \ {x0, . . . , xn−1} ∪

⋃
i Yi obtained

from t by simultaneously substituting the tree ti for the variable xi for every i ∈ [n],
where t is a tree of sort X, x0, . . . , xn−1 ∈ V, and t0, . . . , tn−1 are trees of sort Yi for
every i ∈ [n]. Note that this operation is equivalent to a combination of the previous
ones.
a(t0, ..., tn−1), for a ∈ Σn, denotes the tree of root a and children t0, . . . , tn−1 at respective
positions 0, . . . , n−1. Again, this operation is equivalent to a combination of the previous
ones.

▶ Example 3. Throughout this paper, we use the map createX
x : X → X ∪ {x}, acting as

the identity, in which X is a finite set of variables and x ∈ V. ˜createX
x is thus a mapping

from Trees(Σ, X) to Trees(Σ, X ∪ {x}) that maps every tree to itself. Most of the time, we
will simply write createx(t) when X is clear from the context.

▶ Lemma 4. All finite trees can be obtained from the trees of the form εx and a(x0, . . . , xn−1)
using the operations “·”.

Expressions denoting finite trees. For X a finite set of variables, a tree-expression of
sort X (over the alphabet Σ) is an expression built inductively as follows:

εx is a tree-expression of sort {x} for every variable x,
a(x0, . . . , xn−1) is a tree-expression of sort {x0, . . . , xn−1} for every symbol a ∈ Σn,
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a
x y

a

x b
x

a
z z

a

a
x y

b
x

a

x □{y}

t = a(x, y) t ·y b(x) σ̃(t) t[x← t, y ← b(x)] a(x,□{y})

Figure 1 Trees and contexts with their notations. Here σ(x) = σ(y) = z.

S ·x T is a tree-expression of sort X \ {x} ∪ Y for all tree-expressions S of sort X, all
tree-expressions T of sort Y , and all variables x ∈ V (substitution),
σ̃(T ) is a tree-expression of sort Y for all tree-expressions T of sort X, and map σ : X → Y

(renaming). Note that σ needs not be bijective here.
For a tree-expression T of sort X, [[T ]] denotes its evaluation into a finite Σ, X-tree using the
operations of substitution and renaming.

Contexts. We define now contexts, which are terms with a specific leaf called the hole.
Since we work in a multi-sorted algebra, the hole itself has a sort. Essentially, to a hole of
sort X will be substituted a term of sort X. Formally, for fixed finite set of variables Y , a
context of sort X with hole of sort Y (or simply a context) is defined inductively as a tree
expression of sort X, using the extra construction □Y (the hole of sort Y ) which is a context
of sort Y with hole of sort Y . This new construction must appear exactly once in a context.

For C a context of sort X with hole of sort Y , [[C]] : Trees(Σ, Y ) → Trees(Σ, X) is the
function which to a tree of sort Y t associates the tree of sort X obtained by evaluating the
operations as above, interpreting □Y as t.

2.2 Finite tree algebras
Our notion of tree algebra is the natural notion associated to finite trees equipped with the
above operations. We give here a more formal definition, though the detail of identities is
more for reference. What matters is that it is defined such that the free algebra coincides
with finite trees. A tree algebra A consists of an infinite collection of carrier sets AX indexed
by finite sets of variables X, together with operations:

εA
x ∈ A{x} for every variable x,

a(x0, . . . , xn−1)A ∈ A{x0,...,xn−1} for all a ∈ Σn and variables x0, . . . , xn−1,
·Ax : AX ×AY → AX\{x}∪Y for all finite sets of variables X, Y and x ∈ V ,
σA : AX → AY for every renaming σ : X → Y ,

that satisfy the expected identities, i.e. the ones guaranteeing that several ways to describe
the same tree yield the same evaluation in the algebra. Formally, for all s, t, u that belong
to AX , AY , AZ respectively,

εx ·x t = t for every x ∈ V ,
t ·x εx = t for every x ∈ Y ,
(s ·Ax t) ·Ay u = s ·Ax (t ·Ay u) for all x ∈ X and y ∈ X \ Y (horizontal associativity), and
(s ·Ax t) ·Ay u = s ·Ax (t ·Ay u) for all x ∈ X and y ∈ Y \X ∪ {x} (vertical associativity),

for all s, t that belong to AX , AY , x ∈ X and renaming σ : X → Y ,
σA(s ·Ax t) = σA(s) ·Ax t if σ−1(σ(x)) = {x} and σ(y) = y for every y ∈ X ∩ Y \ {x},
σA(s ·Ax t) = s ·x σA(t) if σ(y) = y for every y ∈ X ∩ Y \ {x},

for all maps σ : X → Y and τ : Y → Z, (τ ◦ σ)A = τA ◦ σA, and for all
maps σ : {x0, . . . xn−1} → Y and a ∈ Σn, σA(a(x0, . . . , xn−1)A) = a(σ(x0), . . . , σ(xn−1))A.
In practice, we shall not explicitly use these identities, and simply write two elements of the
algebra equal as soon as they obviously come from expressions denoting the same trees. A
tree algebra is finite if the AX ’s are all finite.
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A morphism of tree algebras from A to B is a family of maps αX : AX → BX for every
finite sets of variables X which preserves all operations, i.e. αY (σA(s)) = σB(αX(s)) for
every map σ : X → Y , α(a(x0, . . . , xn−1)A) = a(x0, . . . , xn−1)B, and αX\{x}∪Y (s ·Ax t) =
αX(s) ·Bx αY (t) for all s ∈ AX , t ∈ AY and x ∈ V .

The Trees(Σ, X) sets equipped with the operations of substitution and renaming form a
tree algebra (it is the free tree algebra generated by ∅). For A a tree algebra, its associated
evaluation morphism is the unique morphism from Trees(Σ) to A.

A congruence ∼ over a tree algebra A is a family ∼ of equivalence relations over the
AX ’s (each denoted ∼) such that, for any a ∼ b ∈ AX , c ∼ d ∈ AY , y ∈ Y and σ : X → Y :
c ·y a ∼ c ·y b; c ·y a ∼ d ·y a and σ̃(a) ∼ σ̃(b). From such a congruence, one can define the
quotient algebra A/ ∼ in the natural way.

2.3 Languages and syntactic algebras
A language of finite Σ-trees L is a set of Σ-trees. It is recognized by a tree algebra A if there
is a set P ⊆ A∅ such that L = α−1(P ) in which α is the evaluation morphism of A.

The syntactic congruence ∼L of a language L of finite Σ-trees is defined in the following
way s ∼L t for s, t finite Σ-trees if, for every context C, [[C]](s) ∈ L if and only if [[C]](t) ∈ L.
It is easy to prove that ∼L is indeed a congruence. The quotient algebra Trees(Σ)/∼L

is
called the syntactic algebra of L, and this algebra recognizes L.

▶ Example 5. The language of all finite trees in which the symbol a appears on the leftmost
branch has for syntactic tree algebra the algebra with sorts AX = {⊥,⊤}⊎X for every finite
set of variables X. Let t be a Σ, X-tree, we define α as follows: αX(t) = ⊤ if there is an a on
the leftmost branch of t, αX(t) = x if the leftmost branch of t ends with an x but contains
no a, and αX(t) = ⊥ otherwise. The operations of the algebra are defined so that α becomes
the evaluation morphism.

2.4 Complexity
Following [5], we define the notion of complexity and of orbit-complexity of a tree algebra A.

Complexity. We start by highlighting the fact that any bijection σ between finite sets of
variables X and Y induces a bijection σ̃ between AX and AY . As such, it is meaningful to
define the complexity map of the algebra cA : N→ N as follows:

cA(|X|) = |AX | , for every finite set of variables X.

A tree algebra A has bounded complexity if cA is bounded. It has polynomial complexity if
there is a polynomial P such that cA(n) ⩽ P (n) for every n ∈ N.

Orbit-complexity. Similarly, we define the orbit-complexity map c◦
A : N→ N as:

c◦
A(|X|) = |AX/Sym(X)| , for every finite set of variables X,

in which AX/Sym(X) is the set of all orbits of AX under the action of Sym(X). A tree
algebra A has bounded orbit-complexity if c◦

A is bounded.

▶ Example 6. The tree algebra A from Example 5 has polynomial complexity and bounded
orbit-complexity: cA(n) = n + 2 and c◦

A(n) = 3 for every n ∈ N.
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To check whether a language of trees is recognized by an algebra with a prescribed
complexity, one only needs to look at its syntactic algebra.

▶ Lemma 7. If L is a language of Σ-trees recognized by a tree algebra B, then its syntactic
tree algebra A has lower complexity:

cA(n) ⩽ cB(n) and c◦
A(n) ⩽ c◦

B(n) , for all n ∈ N.

2.5 Tree automata

A tree automaton B = (Q, I, (δa)a∈Σ) over Σ has a finite set Q of states, a set of accepting
states I ⊆ Q and a transition relation δa ⊆ Q × Qar(a) for every symbol a ∈ Σ. A run of
B over a finite tree t is a mapping ρ : dom(t) → Q such that, for any vertex u ∈ dom(t)
with t(u) = a ∈ Σ, (ρ(u), (ρ(u0), ..., ρ(u(ar(a)− 1)))) ∈ δa. A run is accepting if ρ(ε) ∈ I. A
language L of finite trees is called regular if it is recognized by a tree automaton B, meaning
the trees in L are exactly those for which there is an accepting run in B.

Example 8 below shows the translation from tree automata to tree algebra.

▶ Example 8 (Automaton algebra). Consider a regular language L of finite trees recognized
by the tree automaton B = (Q, q0, (δa)a∈Σ). Consider some finite set of variables X. An
X-run profile is a tuple τ ∈ Q × P(Q)X . For a Σ, X-tree t, τ = (p, (Ux)x∈X) is a run
profile over t if there exists a run ρ of the automaton over Q such that ρ(ε) = p and for
every variables x ∈ X, Ux is the set of states assumed by ρ at leaves labelled x. We define
a tree algebra A that has as elements of sort X sets of X-run profiles. The definition of
the operations is natural, and is such that the image of a Σ, X-tree t under the evaluation
morphism yields the set of run profiles over t. It naturally recognizes the language L.

Note that this definition yields an algebra of doubly exponential complexity (and hence,
this is an upper bound for regular languages). Of course, in practice, one can restrict the
algebra to the reachable elements, and this may dramatically reduce the complexity.

The converse translation is also true (it is for instance proved for preclones in [8]), yielding
the following result.

▶ Proposition 9. A finite tree language is regular if and only if it is recognized by a finite
algebra. Moreover, every regular tree language is recognized by an algebra of doubly exponential
complexity.

2.6 Group actions and orbit-finite sets

To conclude this list of definitions, we recall some notions on group actions.

Group actions. A (left) group action of a group G on a set X is given by a function
· : G×X → X such that e · x = x and σ · (τx) = (στ) · x for all x ∈ X and σ, τ ∈ G, where e

is the neutral element of G. A set X equipped with such an action is called a G-set.

Orbits. For every x in a G-set X, the set G · x = {σ · x | σ ∈ G} is called the orbit of x. A
G-set is partitioned by the orbits of its elements, and it is said to be orbit-finite whenever it
has only a finite number of different orbits.

MFCS 2022



37:8 A Complexity Approach to Tree Algebras: The Polynomial Case

Equivariant subsets and relations. Given a G-set X, a subset Y of X is equivariant if
σ · Y = Y for every σ ∈ G. Accordingly, a relation R ⊆ X × Y between G-sets X and Y is
equivariant if it is an equivariant subset of the G-set X × Y equipped with the point-wise
action of G. In particular, a function f : X → Y is equivariant exactly when f(σ ·x) = σ ·f(x)
for all x ∈ X and σ ∈ G.

Support and nominal sets. From now on, we will only be looking at the group G = Sym(V).
Consider then a Sym(V)-set X. A set S ⊆ V supports an element x ∈ X if σ · x = x for
every σ ∈ Sym(V \ S), where Sym(V \ S) is seen as a subgroup of Sym(V ). A Sym(V )-set
is called a nominal set if all of its elements are supported by a finite set.

Given an element x ∈ X that is finitely supported, it admits a least support. The least
support of an element x from a nominal set X will be denoted supp(x).

Whenever A and B are Sym(V)-sets, the set of all functions from A to B may be equipped
with the action that maps f : A→ B to σ·f defined for every a ∈ A by (σ·f)(a) = σ·f(σ−1 ·a).
When seen in this way as a Sym(V)-set, a function f : A → B is supported by X ⊆ V
whenever f(σ · x) = σ · f(x) for every σ ∈ Sym(V \X).

3 Nominal word automata for tree languages

We start our presentation by showing how nominal word automata can be used to describe
regular languages of finite trees. To this end, we first explain in Section 3.1, how to encode
trees into data words. In Section 3.2, we exploit this to interpret data languages as tree
languages, using the notion of coding automata. In Section 3.3 we establish Proposition 16
stating that languages of trees that are described by coding automata are recognized by
tree algebras of polynomial complexity and bounded orbit complexity (thus proving the
implication from Item 4 to Items 1 and 2 of Theorem 1).

3.1 Coding languages
In this section, we show how to encode finite trees into data words.

Coding alphabet. We begin by defining the nominal alphabet used for this encoding:
Let CV be the set of elements [x] for x ∈ V .
Let CV,Σ be the set of elements [·xa(x0, ..., xn−1)] for a ∈ Σn and x, x0, ..., xn−1 ∈ V .
Let C = CV ⊎ CV,Σ. It is called the coding alphabet.

The coding alphabet is naturally made into a Sym(V )-set, by defining, for every σ ∈
Sym(V), σ[x] = [σ(x)] and σ[·xa(x0, ..., xn−1)] = [·σ(x)a(σ(x0), ..., σ(xn−1))] for all [x] and
[·xa(x0, ..., xn−1)] in the coding alphabet. It is obviously both orbit-finite and nominal.

Tree coding. A coding is a word in Codings = CVCV,Σ
∗. We shall describe now how codings

can be evaluated to trees. This is natural since, forgetting the bracket notation, codings
can be seen as tree expressions. The evaluation T (c) of a coding c is defined as follows:
T ([x]) = x, where [x] ∈ CV and T (c[·xa(x0, ..., xn−1)]) = createx(T (c)) ·x a(x0, ..., xn−1),
where c is a tree coding and [·xa(x0, ..., xn−1)] ∈ CV,Σ.

▶ Example 10. According to the definition of evaluation, T ([x][·xa(x, y)]) = x ·x a(x, y) =
a(x, y). Similarly, T ([x][·xa(x, y)][·xc][·xd]) = ((x ·x a(x, y)) ·x c) ·y d = a(c, d).
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We will be particularly interested in codings c that evaluate to trees without variables
(meaning T (c) ∈ Trees(Σ, ∅)). Let Codings∅ be the set of these codings that evaluate to
variable-less trees.

Describing languages of trees. A language of codings K is said to describe a language L of
trees without free variables if, for every coding c ∈ Codings∅, c ∈ K if and only if T (c) ∈ L.
The crucial point in this definition is that the language K may also contain codings that do
not evaluate to a tree without free variables.

▶ Example 11. Let L be a language of trees without free variables, and let K be the language
of all codings that evaluate to trees in L. Then both K and K ′ = K∪{[x][·xa(x, y)]} describe
L. That is because [x][·xa(x, y)] /∈ Codings∅.

However, not all languages of codings describe tree languages.

▶ Example 12. Let Σ = Σ0 ∪ Σ2 with Σ0 = {c} and Σ2 = {a, b}, and consider the language
K of codings in which the third letter is [·xc] for any choice of x ∈ V .

Let c = [x][·xa(x, y)][·yc][·xa(y, y)][·yc] and c′ = [x][·xa(x, y)][·xa(y, y)][·yc], then c is in K

but not c′. Note however that T (c) = T (c′) = a(a(c, c), c), and thus K does not describe a
language of trees.

3.2 Coding automata
Let us now look at acceptance of coding languages by automata. We start by recalling the
notion of nominal automata [10], which is used to recognize data languages over orbit-finite
nominal alphabets.

Nominal automaton. A deterministic G-automaton is given by
an orbit-finite G-set A (the alphabet),
a G-set Q (the states),
an empty supported q0 ∈ Q called the initial state,
an equivariant subset F ⊆ Q of final states,
and an equivariant function δ : Q×A→ Q called the transition function.

Acceptance of a word w ∈ A∗ is then defined in the standard way. A deterministic G-
automaton is called orbit-finite whenever Q is. It is called nominal when G = Sym(V ) and
when A and Q are both nominal sets. In this paper, we only consider orbit-finite nominal
automata.

Coding automata. An orbit-finite nominal automaton A over the coding alphabet is called
a coding automaton if it recognizes a language that describes a tree language. We also assume
that there is no transition toward the initial state. The tree language described by a coding
automaton is the language L of trees without free variables described by the language K

recognized by A. In other words, it is the language

L = {T (c) | c ∈ Codings∅, A accepts c} .

▶ Example 13. Let Σ = Σ0 ∪ Σ2 with Σ0 = {c} and Σ2 = {a, b}, and consider the language
L of trees such that the total number of nodes labelled a appearing on the leftmost branch
and the rightmost branch is even. We give a coding automaton that describes L. Its set
of states is Q = {q0} ⊎ {ε(x) | x ∈ V} ⊎ {i(x, y) | i ∈ [2], x, y ∈ V ∪ {∗}}, and the action of
Sym(V ) on Q is the one naturally obtained by permuting the variables. Its transitions are
defined in the natural way so that:
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q0 is the initial state,
ε(x) is reached from q0 by reading [x],
δ(q0, c) = i(x, y), in which i is the total number of nodes labelled a on the leftmost and
rightmost branches of t modulo 2, and x (resp. y) is the variable on the leaf of the
leftmost (resp. rightmost) branch (∗ if there is no such variable), for t = T (c).

Setting the only accepting state to be 0(∗, ∗), this automaton describes L.

A coding automaton is thus a device that takes as input a top-down description of a tree
(a coding), and that decides its belonging to a language while remembering only boundedly
many variables. Intuitively, such a device can only remember what happens along boundedly
many branches. The subtlety of the model is that it must always yield the same result for a
given tree, nonwithstanding the actual coding that was provided.

Minimization. Coding automata can be minimized, in the sense that a coding automaton
can be effectively turned into another one that describes the same tree language and is
minimal. This property turns out to be key to prove Theorem 1. The construction, though
similar to the classical one for minimizing nominal automata recognizing a word language, is
not the same. One subtlety is that in our case, there are states in the automaton that may
accept both codings in Codings∅ and codings outside of Codings∅. Standard constructions
are not able to cope with such a phenomenon.

We start by defining the Myhill-Nerode relation (or congruence) of a tree language L over
codings by c≡L c′, for codings c, c′, when

T (cv)∈L⇔ T (c′v) ∈ L for all v ∈ CV,Σ
∗ such that cv ∈ Codings∅ and c′v ∈ Codings∅ .

Note here that the trees coded by c and c′ may have a different set of free variables. This is
the only subtlety in the proof of the following expected statement.

▶ Lemma 14. The Myhill-Nerode relation of a tree language L is an equivariant congruence
in the sense that it is an equivalence and cv ≡L c′v for all codings c, c′ such that c≡L c′, and
every v ∈ CV,Σ

∗.

It is now standard (see e.g. [10]) to define the minimal automaton MinL = (Q, q0, F, δ)
of a tree language L as follows:

Q = {q0} ⊎ Codings/≡L
, in which q0 is the (fresh) initial state,

F = {[c]≡L
| [c]≡L

⊆ L},
the transition function δ is given by δ(q0, [x]) = [ [x] ]≡L

and δ([c]≡L
, v) = [cv]≡L

,
where [c]≡L

is the ≡L-class of c ∈ Codings.

▶ Lemma 15. For L a a tree language described by a coding automaton, MinL is effectively
a coding automaton which describes L.

3.3 From coding automata to tree algebras
Our next result is Proposition 16 below, which corresponds to the implication from Item 4
to Items 1 and 2 of Theorem 1.

▶ Proposition 16. Every tree language L described by a coding automaton is also recognized
by a tree algebra that has both polynomial complexity and bounded orbit-complexity.
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This is proved by transforming the minimal automaton MinL = (Q, q0, F, δ) that describes
a language L, into a tree algebra A that recognizes the same language and has both polynomial
complexity and bounded orbit-complexity. We only outline this construction, which is similar
to the monoid of transitions of a word automaton.

Let Q− be Q \ {q0}. Given a state q ∈ Q−, a variable x and a tree t possibly with free
variables, we define:

δt(q, x) := δ(q, v)

in which v ∈ CV,Σ
∗ is such that T ([x]v) = t and does not contain a letter of the form

[·ya(z0, ..., zar(a)−1)] in which y ∈ supp(q) \ {x}. This definition is shown to be meaningful,
in the sense that it does not depend on the choice of v.

The elements of A are then defined to be the δt’s, and the operations of the algebra are
defined so that the image of a tree t under the evaluation morphism is δt. This algebra
recognizes L and we show, this is the difficult part of the proof, that it has both polynomial
complexity and bounded orbit-complexity.

4 Tree algebras

We now tackle the study of tree algebras of polynomial complexity and bounded orbit-
complexity, and prove the remaining implications of Theorem 1. We first define in Section 4.1
the notion of system of supports of a tree algebra that appears in Theorem 1. In Section 4.2,
we make use of this notion to prove Theorem 1. Finally we state Theorem 22, our decidability
result, in Section 4.3.

4.1 Syntactic tree algebras and systems of supports
We start this section by defining systems of supports of a tree algebra. We then prove
Lemma 17 which states that a syntactic tree algebra always has a minimal system of
supports, and that it is stable (this property is mentionned in Item 3 of Theorem 1). Finally,
we prove Proposition 19, corresponding to implications from Items 1 and 2 to Item 3 in
Theorem 1.

System of supports. We now introduce the notion of system of supports. It is a way to
transport the notion of support from Sym(V )-sets to tree algebras, which are a collection of
Sym(X)-sets for X finite.

For every finite set of variables X, a subset Sa of X is a support of a ∈ AX if σ(a) = a

for every σ ∈ Sym(X \ Sa). A system of supports for an algebra A is a family (Sa)a∈A such
that Sa is a support of a for all finite X and a ∈ AX .

Stability. The notion of system of supports is however lacking to describe properties of tree
algebras, as there is no relation between the supports of the different elements, we introduce
different notions of stability to cope with this issue.

We define the following properties for a system of supports (Sa)a∈A:
Being stable under renamings if Sσ(a) ⊆ σ(Sa) for a ∈ AX , X finite, and renaming σ.
Being stable under internal substitutions if Sa·xb ⊆ (Sa \ {x})∪ Sb for all a ∈ AX , x ∈ Sa

and b ∈ AY , for finite X and Y .
Being stable under external substitutions Sa·xb ⊆ Sa for all a ∈ AX , x ∈ X \ Sa and
all b ∈ AY , for finite X and Y .
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Being stable under substitutions if it is both stable under internal and external substitu-
tions.

Finally, a system of supports is stable if it is both stable under renamings and substitutions,
and it is bounded if there is a bound K such that |Sa| ≤ K for every a ∈ A.

Our main result concerning systems of supports, Lemma 17, states the existence of a
canonical support for syntactic tree algebras. Moreover, this system of supports (Sa)a∈A is
minimal, meaning that Sa ⊆ Ta, for every a ∈ A and every (Ta)a∈A with the same stability
properties.

▶ Lemma 17. Let A be a syntactic tree algebra. Then A has a minimal stable system of
supports.

The proof of this result is lengthy and relies on the fact that a Σ, X-tree t can be seen as
a Σ, Y -tree for all X ⊆ Y , allowing one to use standard techniques from nominal set theory.
The system of supports introduced in Lemma 17 is the canonical system of supports of A.

▶ Example 18. We once again take a look at the tree algebra introduced in Example 5. Its
canonical system of supports is given, for all finite X, by:

S⊤ = S⊥ = ∅ , Sx = {x} for all x ∈ X .

We now establish Proposition 19 below, corresponding to implications from Item 1 to
Item 3 and from Item 2 to Item 3 of Theorem 1. According to Lemma 7, it is enough to prove
the results for syntactic tree algebras, meaning we only need to prove that the canonical
system of supports is bounded.

▶ Proposition 19. Let A be a finite syntactic tree algebra that has either polynomial complexity
or bounded orbit complexity. Then A has a bounded and stable system of supports.

4.2 From tree algebras to coding automata
Our next result is Proposition 20 below, corresponding to implication from Item 3 to Item 4
of Theorem 1.

▶ Proposition 20. Let L be recognized by a finite tree algebra with a bounded and stable
system of supports. Then there is a coding automaton that describes L.

The following Lemma 21 shows that we only need to consider syntactic tree algebras.

▶ Lemma 21. Let L be a language of trees. If L is recognized by a tree algebra that has
a bounded and stable system of supports, then the syntactic tree algebra of L can also be
equipped with such a system of supports.

From tree algebra to coding automata. Fix a language of trees L, let A be its syntactic
tree algebra, and let (Sa)a∈A be its canonical system of supports, which is bounded (by say
K) and stable. In order to prove Proposition 20, we extract from A a coding automaton
AutoA that describes L. Intuitively, because (Sa)a∈A is stable and bounded, A is uniquely
determined by the AX ’s for |X| ≤ K. This is used to defined an appropriate automaton,
whose set of states is orbit-finite.

This concludes the proof of Proposition 20 and thus the proof of Theorem 1.
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4.3 Decidability
Our last result is the following.

▶ Theorem 22. There is an algorithm which, given a regular tree language, decides whether
it is recognizable by a tree algebra of polynomial complexity.

The proof informally consists in constructing the expected coding automaton, dropping
when possible the variables that are irrelevant for deciding the membership to the language
(in the sense that, whatever tree is plugged in it, it does not change the membership to
the language). The crucial point is to prove that a bounded number of variables suffices.
Regular cost functions over finite trees provide a straightforward technique for solving this
boundedness question [6].

5 Conclusion

We analyzed the expressive power of unrestrained tree algebras of polynomial complexity.
Theorem 1 shows a link between combinatorial properties (being recognized by tree algebras
of polynomial complexity, or of bounded orbit-complexity) and an algebraic one (being
described by a coding automaton). Doing so, it gives a crisp description of the expressive
power of this class of tree algebras, which we also proved to be decidable.

Other types of tree algebras. This theory is easily ported to affine tree algebras, for which
we get the same equivalence and decidability results. In the case of relevant and linear tree
algebras, however, the breaking point is the existence of a canonical system of supports.
At the cost of a much more technical proof, it remains possible to prove the equivalence of
Items 1, 3, and 4 in Theorem 1. We conjecture Theorem 1 to still hold.

Future work. A natural extension to this work is to study the expressive power of tree
algebras of exponential complexity, which we conjecture to be the same as the one of tree
algebras of polynomial orbit-complexity. Such tree algebras are much more expressive than
those studied in this article. It is for instance easy to check that both of these classes subsume
the one of languages recognized by top-down deterministic tree automata.
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1 Introduction

In computational complexity theory, most often decision problems are studied that ask for
the existence of a solution to some problem instance, e.g., a satisfying assignment of a given
propositional formula. In contrast, enumeration problems ask for a list of all solutions, e.g.,
all satisfying assignments. In many application areas these are the more “natural” kind
of problems – let us just mention database queries, web search, diagnosis, data mining,
bioinformatics, etc.

The notion of tractability for enumeration problems requires a new approach, simply
because there may be a large number of solutions, exponential in the input size. Widely
studied is the class DelayP (“polynomial delay”), containing all enumeration problems
where, for a given instance x, (i) the time to compute the first solution, (ii) the time between
producing any two consecutive solutions, and (iii) the time to detect that no further solution
exists, are all polynomially bounded in the length of x. Also the class IncP (“incremental
polynomial time”), where we allow the time to produce the next solution and to signal
that no further solution exists to grow by a polynomial bounded in the size of the input
plus the number of already computed solutions. These classes were introduced in 1988
in [14], and since then, an immense number of membership results have been obtained.
Recently, also intractable enumeration problems have received some attention. Reducibilities,
a completeness notion and a hierarchy of intractable enumeration problems, analogous to
the well-known polynomial hierarchy, were defined and studied in [9].

In this paper we will look for notions of tractability for enumeration stricter than the
above two. More specifically, we will introduce a refinement of the existing classes based
on the computation model of Boolean circuits. The main new class in our framework is
the class Del·AC0. An enumeration problem belongs to this class if there is a family of
AC0 circuits, i.e., a family of Boolean circuits of constant depth and polynomial size with
unbounded fan-in gates, that (i) given the input computes the first solution, (ii) given input
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and a solution computes the next solution (in any fixed order of solutions), and (iii) given
input and the last solution, signals that no further solution exists. Still using AC0 circuits
we then consider extended classes by allowing

precomputation of different complexity (typically, polynomial time precomputation)
and/or

memory to be passed on from the computation of one solution to the next (from a constant
to a polynomial number of bits)

By this, we obtain a hierarchy of classes within DelayP/IncP shown in Fig. 1.

The main motivation behind our work is the wish to be able to compare the complexity
of different tractable enumeration problems by classifying them in a fine hierarchy within
DelayP, and to obtain lower bounds for enumeration tasks. From different application
areas such as graph problems, Gray code enumeration and satisfiability, we identify natural
problems, all belonging to DelayP, some of which can be enumerated in Del·AC0, some
cannot, but allowing precomputation or a certain number of bits of auxiliary memory they
can. We would like to mention in particular the maybe algorithmically most interesting
contribution of our paper, the case of enumeration for satisfiability of 2-CNF (Krom) formulas.
While it is known that counting satisfying assignments for formulas from this fragment of
propositional logic is #P-complete [18], we exhibit a DelP ·AC0 algorithm (i.e. Del·AC0

with polynomial time precomputation but no memory), for enumeration, thus placing the
problem in one of the lowest class in our framework. This means that surprisingly satisfying
assignments of Krom formulas can be enumerated very efficiently (only AC0 is needed to
produce the next solution) after a polynomial time precomputation before producing the
first solution.

Building on well-known lower bounds (in particular for the parity function [12, 1]) we
prove (unconditional) separations among (some of) our classes and strict containment in
DelayP, and building on well-known completeness results we obtain conditional separations,
leading to the inclusions and non-inclusions depicted in Fig. 1.

Another refinement of DelayP that has received considerable attention in the past,
in particular in the database community, is the class CD◦ lin of problems that can be
enumerated on RAMs with constant delay after linear time preprocessing [11] (see also the
surveys [16, 10]). A consequence of the widely believed assumption that Boolean matrix
multiplication cannot be computed in time linear in the number m of non-zero entries of the
matrices A, B and AB (the so called BMM conjecture, see e.g. [5]), is that enumerating the
one-entries in AB is not in CD◦lin [3], but we will see that it is in Del·AC0. On the other
hand, the familiar lower bound for parity [1, 12] easily leads to an enumeration problem not
in Del·AC0 but in CD◦lin; hence we see that CD◦lin and Del·AC0 are incomparable
classes; thus our approach provides a novel way to refine polynomial delay (see Section 3.3).

This paper is organized as follows. After some preliminaries, we introduce our new classes
in Sect. 3. In Sect. 4 we present a number of upper and lower bounds for example enumer-
ation problems from graph theory, Gray code enumeration and propositional satisfiability.
Depending whether we allow or disallow precomputation steps, we obtain further conditional
or unconditional separation results between classes in Sect. 5. Finally we conclude with a
number of open problems.

Because of space limitations, some of our proofs are only sketched or even omitted here;
full proofs will appear in the final version of this paper.
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2 Preliminaries

Since our main computational model will be Boolean circuits, we fix the alphabet Σ = {0, 1},
and use this alphabet to encode graphs, formulas, etc., as usual. Any reasonable encoding
will do for all of our results.

Let R ⊆ Σ∗ × Σ∗ be a computable predicate. We say that R is polynomially balanced,
if there is a polynomial p such that for all pairs (x, y) ∈ R, we have |y| ≤ p(|x|). Now we
define the enumeration problem associated to R as follows.

Enum·R
Input: x ∈ Σ∗

Output: an enumeration of elements in SolR(x) = {y : R(x, y)}

We require that R is computable but do not make any complexity assumptions on R. In
the enumeration context, it is sometimes stipulated that R is polynomial-time checkable, i.e.,
membership of (x, y) in R is decidable in time polynomial in the length of the pair [17, 6].
Generally, we do not require this, but we will come back to this point later.

We assume basic familiarity of the reader with the model of Boolean circuits, see, e.g.,
[20, 7]. We use AC0 to denote the class languages that can be decided by uniform families of
Boolean circuits of polynomial size and constant depth with gates of unbounded fan-in. The
class of functions computed by such circuit families is denoted by FAC0, and for simplicity
often again by AC0. The notation for the corresponding class of languages/functions defined
by uniform families of circuits of polynomial size and logarithmic depth with gates of bounded
fan-in is NC1.

The actual type of uniformity used is of no importance for the results of the present
paper. However, for concreteness, all circuit classes in this paper are assumed to be uniform
using the “standard” uniformity condition, i. e., DLOGTIME-uniformity/UE-uniformity [4];
the interested reader may also consult the textbook [20].

3 Delay Classes with Circuit Generators

In this section we present the formal definition of our new enumeration classes. As we already
said, we will restrict our definition to usual delay classes; classes with incremental delay can
be defined analogously, however, we will see that our delay-classes with memory in a sense
reflect incremental classes in the circuit model.

The main idea is that the generation of a next solution will be done by a circuit from a
family; in the examples and lower and upper bounds in the upcoming sections, these families
are usually of low complexity like AC0 or NC1. The generator will receive the original input
word plus the previous solution. Parameters in the definition will be first the complexity of
any precomputation before the first solution is output, and second the amount of information
passed from the generation of one solution to the next.

3.1 Delay Classes with no Memory
For a family C = (Cn)n∈N of Boolean circuits, circuit Ci will be the circuit in the family
with i input gates. When the length of the circuit input is clear from the context, we will
usually simply write C|·| to refer to the circuit with appropriate number of input gates. In
the subsequent definitions we use K to denote a complexity classes defined by families of
Boolean circuits obeying certain complexity restrictions. Examples are the above mentioned
cases K = AC0 or K = NC1, but any circuit complexity class will do. Our definitions make
sense both for uniform and for non-uniform classes.

MFCS 2022
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▶ Definition 1 (K-delay). Let R be a polynomially balanced predicate. The enumeration
problem Enum·R is in Del·K if there exists a family of K-circuits C = (Cn)n∈N such that,
for all inputs x, there is an enumeration y1, ..., yk of SolR(x) and:

C|·|(x) = y1 ∈ SolR(x),
for all i < k: C|·|(x, yi) = yi+1 ∈ SolR(x)
C|·|(x, yk) = yk

Note that by the last requirement, the circuit family signals there is no further solution if
the input solution is given again as output. Moreover, we point out that, in the definition
above, if x is an input and y ∈ SolR(x), then C|x|+|y| produces a z ∈ SolR(x). However, if
y ̸∈ SolR(x), nothing is specified about the output z.

Next we consider classes where a precomputation before outputting the first solution is
allowed. The ressource bounds of the precomputation are specified by an arbitrary complexity
class.

▶ Definition 2 (K-delay with T -precomputation). Let R be a polynomially balanced predicate
and T be a complexity class. The enumeration problem Enum·R is in DelT ·K if there exists
an algorithm M working with resource T and a family of K-circuits C = (Cn)n∈N such that,
for all input x there is an enumeration y1, ..., yk of SolR(x) and:

M computes some value x∗, i.e., M(x) = x∗

C|·|(x∗) = y1 ∈ SolR(x),
for all i < k: C|·|(x∗, yi) = yi+1 ∈ SolR(x)
C|·|(x∗, yk) = yk

3.2 Delay Classes with Memory
Extending the above model, we now allow each circuit to produce slightly more than the
next solution. These additional information is then passed as extra input to the computation
of the next solution, in other words, it can serve as an auxiliary memory.

▶ Definition 3 (K-delay with auxiliary memory). Let R be a polynomially balanced predicate.
The enumeration problem Enum·R is in Del∗ ·K if there exist two families of K-circuits
C = (Cn)n∈N, D = (Dn)n∈N such that, for all input x there is an enumeration y1, ..., yk of
SolR(x) and:

C|·|(x) = y∗
1 and D|·|(y∗

1) = y1 ∈ SolR(x),
for all i < k: C|·|(x, y∗

i ) = y∗
i+1 and D|·|(y∗

i+1) = yi+1 ∈ SolR(x),
C|·|(x, y∗

k) = y∗
k,

for 1 ≤ i ≤ k, yi is a prefix of y∗
i ; i. e., the information y∗

i passed on to the next round
consists of the previous solution yi plus any additional information.

When there exists a polynomial p ∈ N[x] such that |y∗
i | ≤ p(|x|), for all i ≤ k, the class is

called DelP ·K, K-delay with polynomial auxiliary memory. When there exists a constant
c ∈ N such that |y∗

i | ≤ |yi| + c, for all i ≤ k, the class is called Delc·K, K-delay with constant
auxiliary memory.

The idea is that the y∗
i will contain the previous solution plus the additional memory.

Hence the superscript “c” indicates a bounded auxiliary memory size.
By abuse of expression, we will sometimes say that a problem in some of these classes

above can be enumerated with a delay in K or with a K-delay. When there is no restriction
on memory i.e. when considering the class Del∗

T ·K, an incremental enumeration mechanism
can be used. Indeed, the memory can then store all solutions produced so far which results
in an increase of the expressive power.
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Also in the case of memory, we allow possibly precomputation before the first output is
made:

▶ Definition 4 (K-delay with T -precomputation and auxiliary memory). Let R be a polynomially
balanced predicate and T be a complexity class. The enumeration problem Enum·R is in
Del∗

T ·K if there exists an algorithm M working with resource T and two families of K-circuits
C = (Cn)n∈N, D = (Dn)n∈N such that, for all input x there is an enumeration y1, ..., yk of
SolR(x) and:

M computes some value x∗, i.e., M(x) = x∗,
C|·|(x∗) = y∗

1 and D|·|(y∗
1) = y1 ∈ SolR(x),

for all i < k: C|·|(x∗, y∗
i ) = y∗

i+1 and D|·|(y∗
i+1) = yi+1 ∈ SolR(x),

C|·|(x∗, y∗
k) = y∗

k,
for 1 ≤ i ≤ k, yi is a prefix of y∗

i .

When there exists a polynomial p ∈ N[x] such that |y∗
i | ≤ p(|x|), for all i ≤ k, the class is

called DelP
T ·K, K-delay with T -precomputation and polynomial auxiliary memory. When

there exists a constant c ∈ N such that |y∗
i | ≤ |yi|+ c, for all i ≤ k, the class is called Delc

T ·K,
K-delay with T -precomputation and constant auxiliary memory.

3.3 Relation to Known Enumeration Classes
All classes we consider in this paper are subclasses of the well-known classes DelayP or
IncP, resp., even if we allow our circuit to be of arbitrary depth (but polynomial size).

▶ Theorem 5. If K, T ⊆ P, then DelP
T ·K ⊆ DelayP and Del∗

T ·K ⊆ IncP.

Let us briefly clarify the relation between our classes and the class CD◦lin of enumeration
problems that have a constant delay on a RAM after linear-time precomputation. This class
was introduced in [11].

The algorithmic problem, given a graph, to enumerate all pairs of vertices that are
connected by a path of length 2 has only a polynomial number of solutions and is trivially
in Del·AC0. Since it is essentially the same as Boolean matrix multiplication, it is not in
CD◦lin, assuming the beforementioned BMM hypothesis.

On the other hand, note that the enumeration problem Enum-Parity, given as input a
sequence of bits with the solution set consisting only of one solution, the parity of the input,
is not in Del·AC0, since the parity function is not in AC0 [12, 1]. However, since Parity
can be computed in linear time, Enum-Parity is trivially in CD◦lin.

As we will show in detail in the full version of this paper, the computation of a constant
number of time steps of a RAM can be simulated by AC0 circuits. Hence if we add linear
precomputation and polynomial memory to save the configuration of the RAM, we obtain
an upper bound for CD◦lin. To summarize:

▶ Theorem 6. Assuming the BMM hypothesis, the classes Del ·AC0 and CD◦ lin are
incomparable, and CD◦lin ⊊ DelP

lin ·AC0.

4 Examples

In this section we show that many natural problems, ranging from graph problems, enumera-
tion of Gray codes and satisfiability problems lie in our circuit classes.

MFCS 2022
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4.1 Graph Problems
We first consider the enumeration problem associated with the notion of reachability in a
graph.

Enum-Reach
Input: a graph G = (V, E), s ∈ V

Output: an enumeration of vertices reachable from s

▶ Theorem 7. Enum-Reach ∈ DelP ·AC0

Proof. At each step multiplication of Boolean matrices gives the set of vertices which are
reachable from s with one more step. This can be done in AC0. The polynomial memory is
used to remember all vertices that have been encountered to far. Observe that in each step,
more vertices are being produced, until we reach convergence. ◀

Let us now turn to the enumeration of all transversals (i. e., vertex-sets intersecting every
edge), not only the minimal ones.

Enum-Transversal
Input: A hypergraph H = (V, E)
Output: an enumeration of all transversals of H

▶ Theorem 8. Enum-Transversal ∈ Del·AC0.

Proof. Let E be a set of hyperedges over a set of n vertices. Every binary word y = y1 · · · yn ∈
{0, 1}n can be interpreted as a subset of vertices. We propose an algorithm that enumerates
each of these words that corresponds to a transversal of H in lexicographical order with the
convention 1 < 0. The algorithm is as follows:

As a first step output 1 . . . 1, the trivial solution.
Let H be the input and y be the last output solution.

For each prefix y1 . . . yi of y with yi = 1 and i ≤ n consider the word of length n,
zi = y1 . . . yi−101 . . . 1.
Check whether at least one of these words zi is a transversal of H.
If yes select the one with the longest common prefix with y, that is the transversal zi

with the largest i and output it as the next solution.
Else stop.

First we prove that the algorithm is correct. The transversal that is the successor of y in
our lexicographical order (where 1 < 0), if it exists, has a common prefix with y, then a bit
flipped from 1 to 0, and finally is completed by 1’s only. Indeed, a successor of y necessarily
starts this way, and by monotonicity the first extension of such a prefix into a solution is the
one completed by 1’s only. As a consequence our algorithm explores all possible candidates
and select the next transversal in the lexicographical order.

Now let us prove that this is an AC0-delay enumeration algorithm that does not require
memory. The main observation is that one can check with an AC0 circuit whether a binary
word corresponds to transversal of H. Now, for each i we can use a sub-circuit, which on
input (H, y) checks whether yi = 1 and if yes whether zi is a transversal of H. This circuit
can output (zi, 1) if both tests are positive, and (yi, 0) otherwise. All these sub-circuits can
be wired in parallel. Finally it suffices to use a selector to output zi with the largest i for
which (zi, 1) is output at the previous step. Such a selector can be implemented by an AC0

circuit. ◀
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It is then easy to show (in a similar way) that enumeration of all dominating sets of a
graph can be done in Del·AC0.

4.2 Gray Code
Given n ∈ N, a Gray n-code is a ranked list of elements of Σn such that between two
successive words x, y there exists only one bit such that xi ̸= yi. Since we deal with Boolean
circuits, we have to fix Σ = {0, 1}, but Gray codes are defined for arbitrary alphabets.

The binary reflected Gray code of length n, denoted Gn, is made of 2n words: Gn =
[Gn

0 , Gn
1 , . . . , Gn

2n−1]. It is defined recursively as follows: G1 = [0, 1] and, for n ≥ 1

Gn = [0Gn−1
0 , 0Gn−1

1 , . . . , 0Gn−1
2n−1−1, 1Gn−1

2n−1−1, . . . , 1Gn−1
1 , 1Gn−1

0 ].

As an example let us consider the list of pairs (rank, word) for n = 4: (0, 0000), (1, 0001),
(2, 0011), (3, 0010), (4, 0110), (5, 0111), (6, 0101), (7, 0100), (8, 1100), (9, 1101), (10, 1111),
(11, 1110), (12, 1010), (13, 1011), (14, 1001), (15, 1000).

Given n and r < 2n, let bn−1 · · · b1b0 be the binary decomposition of r and Gn
r =

an−1 · · · a1a0 ∈ Σn be the rth word in the binary reflected code of length n. It is well-known
that, for all j = 0, ..., n − 1,

bj =
n−1∑
i=j

ai mod 2 and aj = (bj + bj+1) mod 2.

Hence computing the rank of a word in the binary reflected code amounts to be able to
compute parity. On the other side, computing the word from its rank can easily be done by
a circuit.

While it is trivial to enumerate all words of length n in arbitrary or lexicographic order,
this is not so clear for Gray code order. Also, given a rank or a first word, to enumerate all
words of higher Gray code rank (in arbitrary order) are interesting computational problems.

Enum-Gray-Rank
Input: a binary word r of length n interpreted as an integer in [0, 2n[
Output: an enumeration of words of Gn that are of rank at least r.

Enum-Gray-Word
Input: a word x of length n

Output: an enumeration of words of Gn, that are of rank at least the rank of x.

It turns out that for those problems where the order of solutions is not important, a very
efficient enumeration is possible:

▶ Theorem 9. Let n be an integer
1. Given 1n, enumerating all words of length n even in lexicographic ordering is in Del·AC0

2. Enum-Gray-Rank ∈ Del·AC0

3. Enum-Gray-Word ∈ Del·AC0

We next turn to those versions of the above problems, where we require that solutions are
given one after the other in Gray code order. For each of them, the computational complexity
is provably higher than in the above cases.

▶ Theorem 10. Given 1n, enumerating all words of length n in a Gray code order is in
Delc ·AC0\DelP ·AC0

MFCS 2022
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Proof. A classical method to enumerate gray code of length n is the following [15].
Step 0 : produce the word 0 · · · 0 of length n.
Step 2k + 1 : switch the bit at position 0.
Step 2k + 2: find minimal position i where there is a 1 and switch bit at position i + 1.

This method can be turned into an AC0-delay enumeration without precomputation
using one bit of memory (to keep trace if the step is an even or odd one all along the
computation). This proves the membership in Delc ·AC0.

For the lower bound, suppose C = (Cn)n∈N is an AC0 circuit family enumerating the
Gray code of length n after polynomial time precomputation produced by machine M .
We will describe how to use C to construct an AC0-family computing the parity function,
contradicting the lower bound given by [1, 12].

Given is an arbitrary word w = wn−1 . . . w0 of length n, and we want to compute its
parity

(∑n−1
i=0 wi

)
mod 2. Let x∗ = M(1n). Then, w will appear as a solution somewhere in

the enumeration defined by C. Let w′ be the next words after w. There exists r such that
Gn

r = w and Gn
r+1 = w′. By comparing w and w′, one can decide which transformation step

has been applied to w to obtain w′ and thus if r is odd or even. Note that the parity of
w is 1 if and only if r is odd. Hence, one can compute parity by a constant depth circuit
operating as follows:

Input w:
n := |w|;
x∗ := M(1n);
w′ := C|·|(x∗, w);
if last bits of w and w′ differ then v := 1 else v := 0;
output v.

Note that the computation of x∗ does not depend on w but only on the length of w; hence
x∗ can be hardwired into the circuit family, which, since M runs in polynomial time, will
then be P-uniform. But we know from [12, 1] that parity cannot even be computed by
non-uniform AC0 circuit families. ◀

We also consider the problem of enumerating all words starting not from the first one
but at a given position, but now in Gray code order. Surprisingly this time the complexity
will depend on how the starting point is given, by rank or by word.

Enum-Gray-Rankord

Input: A binary word r of length n interpreted as an integer in [0, 2n[
Output: an enumeration of words of Gn in increasing number of ranks starting from rank r.

Enum-Gray-Wordord

Input: A word x of length n

Output: an enumeration of words of Gn in Gray code order that are of rank at least the rank of x.

▶ Theorem 11. 1. Enum-Gray-Rankord ∈ Delc ·AC0\DelP ·AC0.
2. Enum-Gray-Wordord is in the class Delc

P·AC0, but neither in DelP·AC0 nor Delc·AC0.

4.3 Satisfiability Problems
Deciding the satisfiability of a CNF-formula is well-known to be NP-complete. Nevertheless
the problem becomes tractable for some restricted classes of formulas. For such classes
we investigate the existence of an AC0-delay enumeration algorithm. First we consider
monotone formulas.
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Enum-Monotone-Sat
Input: A set of positive (resp. negative) clauses Γ over a set of variables V

Output: an enumeration of all assignments over V that satisfy Γ

The following positive result is an immediate corollary of Theorem 8.

▶ Theorem 12. Enum-Monotone-Sat ∈ Del·AC0.

If we allow polynomial precomputation, then we obtain an AC0-delay enumeration
algorithm for a class of CNF-formulas, referred to as IHS in the literature (for Implicative
Hitting Sets, see [8]), which is larger than the monotone class. A formula in this class consists
of monotone clauses (either all positive or all negative) together with implicative clauses.

Enum-IHS-Sat
Input: A set of clauses C over a set of variables V , with C = M ∪ B, where M is a set of positive

clauses (resp. negative clauses) and B a set of clauses of the form (¬x) or (x ∨ ¬x′) (resp.
of of the form (x) or (x ∨ ¬x′))

Output: an enumeration of all assignments over V that satisfy Γ

▶ Theorem 13. Enum-IHS-Sat ∈ DelP ·AC0 \ Del∗ ·AC0.

Proof sketch. Observe that contrary to the monotone case 1....1 is not a trivial solution.
Indeed a negative unary clause (¬x) in B forces x to be assigned 0, and this truth value can
be propagated to other variables by the implicative clauses of the form (x ∨ ¬x′). For this
reason as a precomputation step, for each variable x we compute tc(x) the set of all variables
that have to be set to 0 in any assignment satisfying Γ in which x is assigned 0. With this
information we can use an algorithm that enumerates all truth assignments satisfying Γ in
lexicographical order very similar to the one used for enumerating the transversals of a graph
(see the proof of Theorem 8).

For the lower bound, consider the st-connectivity problem: given a directed graph
G = (V, A) with two distinguished vertices s and t, decide whether there exists a path from
s to t. From G, s and t we build an instance of Enum-IHS-Sat as follows. We consider a
set a clauses C = P ∪ B, where P = {(s ∨ t)} and B = {(¬s)} ∪ {(x ∨ ¬y) | (x, y) ∈ A}. This
is an AC0-reduction.

Observe that there exists a path from s to t if and only if Γ is unsatisfiable. Suppose that
Enum-IHS-Sat ∈ Del ·AC0, this means in particular that outputting a first assignment
satisfying Γ or deciding there is none is in AC0. Thus the above reduction shows that
st-connectivity is in AC0, thus contradicting the fact that st-connectivity is known
not to be in AC0 (see [12, 1]). ◀

Surprisingly the enumeration method used so far for satisfiability problems presenting a
kind of monotonicity can be used for the enumeration of all assignments satisfying a Krom
set of clauses (i.e., a 2-CNF formula) as soon as the literals are considered in an appropriate
order.

▶ Theorem 14. Enum-Krom-Sat ∈ DelP ·AC0 \ Del∗ ·AC0.

Proof sketch. The proof builds on the algorithm in [2] that decides whether a set of Krom
clauses is satisfiable in linear time.

Let Γ be a set of 2-clauses over a set of n variables V . We perform the following
precomputation steps:

Build the associated implication graph, i.e., the directed graph G whose set of vertices is
the set of literals V ∪ {v̄ : v ∈ V }. For any 2-clause (l ∨ l′) in Γ there are two arcs l̄ → l′

and l̄′ → l in G.

MFCS 2022
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For each literal l compute tc(l) the set of vertices that are reachable from l in G.
Compute the set of strongly connected components of G. If no contradiction is detected,
that is if no strongly connected component contains both a variable x and its negation,
then contract each strongly connected component into one vertex. The result of this
operation is a DAG, which, by abuse of notation, we also call G.
Compute a topological ordering of the vertices of G.
In searching through this topological ordering, build an ordered sequence M of n literals
corresponding to the first occurrences of each variable.

If the set of clauses is satisfiable, one can enumerate the satisfying assignments given as truth
assignments on M in lexicographic order. The enumeration process is similar in spirit as the
one developed in the preceding theorem.

For the lower bound, the proof given in Theorem 13 applies. ◀

We next turn to the special case where clauses are XOR-clauses, i.e., clauses in which the
usual “or” connective is replaced by the exclusive-or connective, ⊕. Such a clause can be
seen as a linear equation over the two elements field F2.

Enum-XOR-Sat
Input: A set of XOR-clauses Γ over a set of variables V

Output: an enumeration of all assignments over V that satisfy Γ

If we allow a polynomial precomputation step, then we obtain an AC0-delay enumeration
algorithm for this problem that uses constant memory. Interestingly this algorithm relies
on the efficient enumeration of binary words in a Gray code order that we have seen in the
previous section and contrary to the satisfiability problems studied so far does not provide
an enumeration in lexicographic order.

▶ Theorem 15. Enum-XOR-Sat ∈ Delc
P ·AC0 \ Del∗ ·AC0.

Proof sketch. Observe that a set of XOR-clauses Γ over a set of variables V = {x1, . . . xn}
can be seen as a linear system over V on the two elements field F2. As a consequence
enumerating all assignments over V that satisfy Γ comes down to enumerating all solutions
of the corresponding linear system.

As a precomputation step we apply Gaussian elimination in order to obtain an equivalent
triangular system. If the system has no solution, we indicate this as required by Definition 1.
Otherwise we can suppose that the linear system is of rank n − k for some 0 ≤ k ≤ n − 1, and
without loss of generality that x1, . . . , xk are free variables, whose assignment determines the
assignment of all other variables in the triangular system. We then compute a first solution
s0 corresponding to x1, . . . , xk assigned 0 . . . 0. Next, for each i = 1, . . . , k compute the
solution si corresponding to all variables in x1, , . . . xk assigned 0 except xi which is assigned
1. Compute then the influence list of xi, L(xi) = {j | k + 1 ≤ j ≤ n, s0(xj) ̸= si(xj)}. The
influence list of xi gives the bits that will be changed when going from a solution to another
one in flipping only the bit xi in the prefix corresponding to the free variables. Observe that
this list does not depend on the solution (s0 in the definition) we start from.

With this precomputation we start our enumeration procedure, which uses the enumeration
of binary prefixes of length k in a Gray code order as a subprocedure. ◀

5 Separations of Delay Classes

In the previous results we already presented a few lower bounds, but now we will systematically
strive to separate the studied classes.
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As long as no precomputation is allowed, we are able to separate all delay classes – with
the exception of the class with unbounded auxiliary memory. With precomputation, the
situation seems to be more complicated. We obtain only a conditional separation of the class
with constant memory from the one without memory at all.

5.1 Unconditional Separations for Classes without Precomputation
▶ Theorem 16. Del·AC0 ⊊ Delc ·AC0

Proof. Let x ∈ {0, 1}∗, |x| = n ∈ N∗, x = x1 . . . xn. We denote by m = ⌈log n⌉ + 1. Let RL

be defined for all x ∈ {0, 1}∗ as the union of the two following sets A and B:
A =

{
y ∈ {0, 1}∗

∣∣|y| = m, y ̸= 0m, y ̸= 1m
}

B = { 1m} if x has an even number of ones, else B = { 0m}.

We denote by z1, ..., zt an enumeration of elements of A. Clearly, |RL(x)| = t + 1 and
t ≥ n. To show that RL ∈ Delc·AC0, we use the enumeration of elements of A (which is easy)
and one additional memory bit that is transferred from one step to the other to compute
Parity. Indeed, we build families of circuits (Cn) and (Dn) according to Definition 3 as
follows.

First C|·|(x) computes y∗
1 = z1b1 where b1 = x1, and D|·|(y∗

1) = z1.
For 1 < i ≤ t, the circuit C|·|(x, y∗

i−1) computes y∗
i , where y∗

i = zib
i with bi = bi−1 ⊕ xi if

i ≤ n, and bi = bi−1 else, and D|·|(y∗
i ) = zi.

After t steps, the memory bit bt contains a 0 if and only if the number of ones in x is
even. According to this, we either output 1m or 0m as last solution.

Note that the size of the solutions is m, the size of the memory words above is m + 1,
hence we need constant amount of additional memory. The circuit families (Cn) and (Dn)
are obviously DLOGTIME-uniform.

Suppose now that RL ∈ Del·AC0 and let (Cn) be the associated family of enumeration
circuits. We construct a circuit family as follows: We compute in parallel all C|·|(x) and
C|·|(x, zi) for 1 ≤ i ≤ t. In this way, we will obtain among other solutions either 0m or 1m.
We accept in the first case. Note that the zi are the same for all inputs x of the same length.
Thus, we obtain an AC0 circuit family for parity, contradicting [12, 1]. ◀

By extending the above approach, one can prove the following separation:

▶ Theorem 17. Delc ·AC0 ⊊ DelP ·AC0

The parity problem can be seen as an enumeration problem: given x, one output the
unique solution 1 if the number of ones in x is even. One outputs 0 if it is odd. Since as
a function problem, parity can not be in DelP ·AC0 (the fact there is only one solution
makes memory useless). It is obviously in DelayP. This implies that DelP·AC0 ⊊ DelayP.
Putting all the previous results together, we conclude:

▶ Corollary 18. Del·AC0 ⊊ Delc ·AC0 ⊊ DelP ·AC0 ⊊ DelayP.

5.2 Conditional Separation for Classes with Precomputation
If precomputation is allowed, the separation proofs of the previous subsection no longer
work; in fact we do not know if the corresponding separations hold. However, under
reasonable complexity-theoretic assumptions we can at least separate the classes DelP ·AC0

and Delc
P ·AC0. Note that in Theorem 10 we already proved a separation of just these

MFCS 2022
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two classes, but this concerns only the special case of ordered enumeration, and does not
say anything about the general case. We find it interesting that the proof of the result
below relies on a characterization of the class PSPACE in terms of regular leaf-languages
or serializable computation [13, 19].

▶ Theorem 19. If NP ̸= PSPACE, then Delc ·AC0 \ DelP ·AC0 ̸= ∅.

Del·AC0

Delc ·AC0

DelP ·AC0

Del∗ ·AC0

DelP ·AC0

Delc
P ·AC0

DelP
P ·AC0

Del∗
P ·AC0

DelayP

IncP

(if NP ̸= PSPACE)

Figure 1 Diagram of the classes. Bold lines denote strict inclusions.

6 Conclusion

The obtained inclusion relations among the classes we introduced are summarized in Fig. 1.
We noted earlier that in our context, enumeration problems are defined without a complexity
assumption concerning the underlying relation. We should remark that quite often, a
polynomial-time upper bound is required, see [17, 6]. All of our results, with the exception
of the conditional separations in Sect. 5 also hold under the stricter definition; however, the
relation RL used in the lower bounds in Subsect. 5.2 is based on a PSPACE-complete set
and therefore, to check whether y ∈ RL(x) requires polynomial space w.r.t. the length of x.
It would be nice to be able to base these separations on polynomial-time checkable relations,
or even better, to separate the classes unconditionally, but this remains open. Moreover,
some further inclusions in Fig. 1 are still not known to be strict.

In Subsect. 4.3, we proved that, for several fragments of propositional logic, among them
the Krom and the affine fragments, the enumeration of satisfiable assignments is in the
class DelP ·AC0. This means satisfiable assignments can be enumerated very efficiently,
i. e., by an AC0-circuit family, after some precomputation, which is also efficiently doable
(in polynomial time). For another important and very natural fragment of propositional
logic, namely the Horn fragment, a DelayP-algorithm is known, but it is not at all clear
how polynomial-time precomputation can be of any help to produce more than one solution.
Since Horn-Sat is P-complete, we conclude that Enum-Horn-Sat ̸∈ Del∗ ·AC0, and we
conjecture that it is not in DelP ·AC0. In fact, we do not see any reasonable better bound
than the known DelayP.
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Abstract
We study the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic
sets. We establish a uniform upper bound on the number of iterations it takes for every orbit of
a rational matrix to escape a compact semialgebraic set defined over rational data. Our bound is
doubly exponential in the ambient dimension, singly exponential in the degrees of the polynomials
used to define the semialgebraic set, and singly exponential in the bitsize of the coefficients of these
polynomials and the bitsize of the matrix entries. We show that our bound is tight by providing a
matching lower bound.
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1 Introduction

An invariant set of a dynamical system is a set K such that every trajectory that starts in
K remains in K. Dually, an escape set K is one such that every trajectory that starts in K

eventually leaves K (either temporarily or permanently). While it is usually straightforward
to establish that a given set K is invariant, it can be challenging to decide whether it is an
escape set. Indeed, while the former problem amounts to showing that K is closed under the
transition function, the latter potentially involves considering entire orbits. In particular,
even in case K has a finite escape time (the maximum number of steps for an orbit to escape
the set), it can be highly non-trivial to establish an explicit upper bound on the escape time.

In this paper we focus on escape sets for (discrete-time) linear dynamical systems. Given
a rational matrix A ∈ Qn×n we say that K ⊆ Rn is an escape set for A if for all points
x ∈ K, there exists t ∈ N such that Atx ̸∈ K. The compact escape problem (CEP) asks to
decide whether a given compact semialgebraic set K is an escape set for a given matrix A.
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Decidability of CEP was shown in [18] and its computational complexity was characterised
in [9] as being interreducible with the decision problem for a certain fragment of the theory
of real closed fields.

The present paper focusses exclusively on positive instances (A, K) of CEP, that is, we
assume that we are given a compact semialgebraic escape set for a linear dynamical system.
In this situation it turns out, due to compactness of K, that there exists a finite time T such
that for all x ∈ K there exists t ≤ T with Atx ̸∈ K. The least such T is called the escape
time of (A, K). Our main result (Theorem 1, shown below) gives an explicit upper bound
on the escape time of (A, K) as a function of the length of the description of the matrix A

and semialgebraic set K. In general, it is recognised that bounded liveness is a more useful
property than mere liveness. Theorem 1 can be used to establish bounded liveness of several
kinds of systems. For example, the result gives an upper bound on the termination time
of a single-path linear loop with compact guard (cf. [22, 5]); it also gives a bound on the
number of steps to remain in a particular control location of a hybrid system before a given
(compact) state invariant becomes false, forcing a transition.

We next introduce some terminology to formalise our main contribution. We say that
a semialgebraic set S has complexity at most (n, d, τ) if it can be expressed by a boolean
combination of polynomial equations and inequalities P (x1, . . . , xn) ▷◁ 0 with ▷◁∈ {≤, =},
involving polynomials P ∈ Z[x1, . . . , xn] in at most n variables of total degree at most d with
integer coefficients bounded in bitsize by τ . Our main result is as follows:

▶ Theorem 1. There exists an integer function CompactEscape(n, d, τ ) ∈ 2(dτ)nO(1)

with the
following property. If K ⊆ Rn is a compact semialgebraic set of complexity at most (n, d, τ)
that is an escape set for a matrix A ∈ Qn×n with entries of bitsize at most τ , then the escape
time of K is bounded by CompactEscape(n, d, τ ).

As explained in the proof sketch below, Theorem 1 relies on the availability of certain
quantitative bounds within semialgebraic geometry and number theory, particularly concern-
ing quantifier elimination and Diophantine approximation. The latter results are crucial to
handling the case in which the matrix A has complex eigenvalues of absolute value one.

Note that the upper bound on the escape time in Theorem 1 is singly exponential in the
degrees and the bitsize of the coefficients of the polynomials used to define K and the bitsize
of the coefficients of A. It is doubly exponential in the dimension. In Section 8 we provide
two examples, one where A is an isometry and another in which all eigenvalues of A have
absolute value strictly greater than one, that yield a corresponding lower bound of this form.
It is moreover straightforward to give examples of non-compact escape sets for which the
escape time is infinite.

Proof Overview. Let us now give a high-level overview of the proof of Theorem 1. As in
the statement of the theorem, let K ⊆ Rn be a compact semialgebraic set of complexity at
most (n, d, τ) and let A ∈ Qn×n be a matrix with entries of bitsize bounded by τ , and such
that for all x ∈ K there exists t ∈ N such that Atx /∈ K.

To facilitate the analysis of the dynamical behaviour of A we first transform our system
into real Jordan normal form. A theorem of Cai [6] ensures that this step does not significantly
increase the complexity of the system.

The dynamics of A naturally decomposes into a rotational part, corresponding to eigen-
values of modulus one, and an expansive or contractive part, corresponding to eigenvalues of
absolute value different from 1 and to generalised eigenvalues of arbitrary moduli. Accord-
ingly, the ambient space Rn decomposes into two subspaces Vrec and Vnon-rec, such that A
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exhibits rotational behaviour on Vrec and expansive or contractive behaviour on Vnon-rec. We
start by considering the special cases where either Vrec = 0 or Vnon-rec = 0, so that only one
of the two types of behaviours occurs.

First, assume that A has no complex eigenvalues of modulus 1. Since every trajectory
under A escapes K we have in particular that 0 /∈ K. A theorem due to Jeronimo, Perrucci
and Tsigaridas [15] shows that K is bounded away from zero by a function of the form
2−(dτ)nO(1)

and a theorem due to Vorobjov [23] establishes an upper bound on the absolute
value of every coordinate of every point in K of the form 2(dτ)nO(1)

. Furthermore, thanks to
a result of Mignotte [17], we can bound the eigenvalues of A away from 1 by a function of
the form 2τnO(1)

. This yields a doubly exponential bound on how long it takes for A to leave
the set K (either by converging to 0 or by converging to infinity in some eigenspace).

Now assume that all eigenvalues of A have modulus 1. This case is handled through a
combination of two bounds. For the first bound we start by noting that for every x ∈ K

the closure of the orbit OA(x) is a compact semialgebraic set that is not entirely contained
within K. In fact we show that for all x ∈ K there exists a point y ∈ OA(x) whose distance
to K is at least 2−(dτ)nO(1)

. This bound is achieved by applying [15, Theorem 1] to a
suitable polynomial on an auxiliary semialgebraic set, which is constructed using quantifier
elimination. The singly exponential bounds obtained in [14, 20] are crucial for this step
to work. The second step of the argument combines Baker’s theorem on linear forms in
logarithms with a quantitative version of Kronecker’s theorem on simultaneous Diophantine
approximation to obtain a bound of the form NP ∈ 2(τP )nO(1)

such that for all positive
integers P every point z ∈ OA(x) is within 2−P of a point of the form Atx with 0 ≤ t ≤ NP .
Combining the two bounds described above, we obtain a doubly exponential bound on the
escape time.

In the presence of both types of behaviour, the analysis of each case becomes more
involved. We select a parameter ε > 0 and partition K into three sets: Krec = K ∩ Vrec, K≥ε,
and K<ε. The matrix A exhibits purely rotational behaviour on Krec. Intuitively, on K≥ε

the expansive or contractive behaviour of A dominates the overall dynamics, while on K<ε

the rotational behaviour dominates the overall dynamics. We establish in Lemma 14 a bound
Nrec such that for each initial point x ∈ Vrec, one of its first Nrec iterates is bounded away
from K. In Lemma 15 we establish a bound N≥ε such that every x ∈ K≥ε either escapes or
enters K<ε ∪ Krec within at most N≥ε iterations. Finally, in Section 7, we establish a bound
on how often the system can switch from a state where rotational behaviour dominates to
one where expansive or non-expansive behaviour does and vice versa. We use this to combine
the two bounds to an overall bound on the escape time, proving Theorem 1.

Main Contributions. While decidability of CEP was already established in [18], the proof
given there was non-effective, combining two unbounded searches. To obtain a uniform
quantitative bound on the escape time, the argument given in [18] needs to be refined and
extended in two significant ways:

Firstly, one needs to establish non-trivial quantitative refinements of the techniques used
in the decidability proof: to bound the escape time for purely expanding or retracting systems,
we need to combine the sharp effective bounds on compact semialgebraic sets from real
algebraic geometry established in [23, 15] with Mignotte’s root separation bound [17]. The
case of purely rotational systems requires an original combination of a quantitative version
of Kronecker’s theorem on simultaneous Diophantine approximation [12] and a quantitative
version of Baker’s theorem on linear forms in logarithms [1]. All of these techniques were
completely absent from the decidability proof.

MFCS 2022



39:4 Bounding the Escape Time of an LDS over a Compact Semialgebraic Set

Secondly, to establish mere decidability of the problem, it was possible to study the
possible behaviours of the system – rotating, expanding, or retracting – in isolation. For
example, if the set K contains a point which has a non-zero component in an eigenspace
of A for an eigenvalue whose modulus is strictly greater than one, then the system must
eventually escape. However, no uniform bound on the escape time may be derived in this
situation, for the component is allowed to be arbitrarily close to zero. Therefore, as outlined
above, it is necessary in our proof to subdivide K into pieces where rotational, retractive, and
expansive behaviour can be present simultaneously. The interaction of the three behaviours
significantly increases the difficulty of the analysis and requires completely new ideas.

2 Mathematical Tools

We use the following singly exponential quantifier elimination result given in [2]. For a
historical overview on this type of result see [2, Chapter 14, Bibliographical Notes].

▶ Theorem 2 ([2, Theorem 14.16]). Let S ⊆ Rk+n1+···+nℓ be a semialgebraic set of complexity
at most (k + n1 + n2 + · · · + nℓ, d, τ). Let Q1, . . . , Qℓ ∈ {∃, ∀} be a sequence of alternating
quantifiers. Consider the set S′ ⊆ Rk of all (x1, . . . , xk) ∈ Rk satisfying the first-order
formula

(Q1(x1,1, . . . , x1,n1)) . . . . (Qℓ(xℓ,1, . . . , xℓ,nℓ
)) .

((x1, . . . , xk, x1,1, . . . , x1,n1 , . . . , xℓ,1, . . . , xℓ,nℓ
) ∈ S)

Then S′ is a semialgebraic set of complexity at most (k, dO(n1·····nℓ), τdO(n1·····nℓ·k)).

The next theorem is due to Vorobjov [23]. See also [13, Lemma 9] and [3, Theorem 4].

▶ Theorem 3. There exists an integer function Bound(n, d, τ) ∈ 2τdO(n) with the following
property:

Let K be a compact semialgebraic set of complexity at most (n, d, τ ). Then K is contained
in a ball centred at the origin of radius at most Bound(n, d, τ ).

A closely related result, due to [15], yields a lower bound on the minimum of a polynomial
over a compact semialgebraic set, provided the minimum is non-zero. The result in [15]
mentions explicit constants, which is more than we need.

▶ Theorem 4 ([15, Theorem 1]). There exists an integer function LowerBound(n, d, τ) ∈
2(τd)nO(1)

such that the following holds true:
Let P ∈ Q[x1, . . . , xn] be a polynomial of degree at most d, whose coefficients have

bitsize at most τ . Let K be a compact semialgebraic set of complexity at most (n, d, τ). If
minx∈K P (x) > 0 then minx∈K P (x) > 1/ LowerBound.

With the help of Theorem 2, Theorem 4 can be generalised to yield a lower bound on the
distance of two disjoint compact semialgebraic sets. A very similar result is proved in [21]
under more general assumptions. Unfortunately, the complexity bound stated there is not
sufficiently fine-grained for our purpose, since the author do not distinguish the dimension of
a set from the other complexity parameters.

▶ Lemma 5. There exists an integer function Sep(n, d, τ) ∈ 2(τd)nO(1)

with the following
property:

Let K and L be compact semialgebraic sets of complexity at most (n, d, τ). Assume that
every x ∈ K has positive euclidean distance to L. Then infx∈K d(x, L) > 1/ Sep(n, d, τ).
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Proof. See [10, Appendix E]. ◀

We require a version of Kronecker’s theorem on simultaneous Diophantine approximation.
See [19, Corollary 3.1] for a proof.

▶ Theorem 6. Let (λ1, . . . , λm) be complex algebraic numbers of modulus 1. Consider the
free Abelian group

L = {(n1, . . . , nm) ∈ Zm | λn1
1 · · · · · λnm

m = 1} .

Let (β1, . . . , βs) be a basis of L. Let Tm = {(z1, . . . , zm) ∈ Cm | |zj | = 1} denote the complex
unit m-torus. Then the closure of the set

{
(λk

1 , . . . , λk
m) ∈ Tm | k ∈ N

}
is the set S ={

(z1, . . . , zm) ∈ Tm | ∀j ≤ s.(z1, . . . , zm)βj = 1
}

.
Moreover, for all ε > 0 and all (z1, . . . , zm) ∈ S there exist infinitely many indexes k

such that |λk
j − zj | < ε for j = 1, . . . , m.

Moreover, the integer multiplicative relations between given complex algebraic numbers
in the unit circle can be elicited in polynomial space. For a proof see [7, 16]. We assume the
standard encoding of algebraic numbers, see [8] for details.

▶ Theorem 7. Let (λ1, . . . , λm) be complex algebraic numbers of modulus 1. Consider the
free Abelian group

L = {(n1, . . . , nm) ∈ Zm | λn1
1 · · · · · λnm

m } .

Then one can compute in polynomial space a basis (β1, . . . , βs) ∈ (Zm)s for L. Moreover, the
integer entries of the basis elements βj are bounded polynomially in the size of the encodings
of λ1, . . . , λm and singly exponentially in m.

We need to be able to bound away the modulus of eigenvalues that fall outside the unit
circle away from 1. This is achieved by combining a classic result due to Mignotte [17] on
the separation of algebraic numbers with a bound on the height of the resultant of two
polynomials, proved in [4, Theorem 10].

▶ Lemma 8. Let λ be a complex algebraic number whose minimal polynomial has degree
at most d and coefficients bounded in bitsize by τ . Assume that |λ| ̸= 1. Then we have
||λ| − 1| > 2−(τd)O(1)

.

Proof. See [10, Appendix C]. ◀

3 Preliminaries

3.1 Converting the matrix to real Jordan normal form
To obtain a bound on the escape time it will be important to work with instances of the
Escape Problem in real Jordan normal form. In the following, let A denote the field of
algebraic numbers. We establish the following reduction to this case:

▶ Lemma 9. Let (K, A) be an instance of the Compact Escape Problem. Assume that
K is given by a formula involving s polynomial equations and equalities P ▷◁ 0 where
P ∈ Z[x1, . . . , xn] is a polynomial in n variables of degree at most d whose coefficients are
bounded in bitsize by τ .

Let γ1, . . . , γm ∈ R denote the real and imaginary parts of the eigenvalues of A. Let δ be
a bound on the degrees of γ1, . . . , γm.
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Then there exists an equivalent instance (J, K ′) of the Compact Escape Problem where
J ∈ A(n+m)×(n+m) is in real Jordan normal form and K ′ is given by a formula involving
at most s + 3m polynomial equations and equalities P ▷◁ 0 where P ∈ Z[x1, . . . , xn+m] is a
polynomial in n + m variables of degree at most δ · d whose coefficients are bounded in bitsize
by τ + d(log(2n) + log(δ + 1) + σ), where σ depends polynomially on n and the bitsize of the
entries of A.

Proof. See [10, Appendix B]. ◀

3.2 Decomposing K

Let K ⊆ Rn be a compact semialgebraic set. Let A ∈ Rn×n be a matrix in real Jordan
normal form,

A =

J1
. . .

Jm

 .

Here, each Ji is a real Jordan block of the form

Ji =


Λi Ii

. . . . . .
Λi Ii

Λi

 ,

where Λi,1 is either a real number or a 2 × 2 real matrix of the form
(

ai −bi

bi ai

)
and,

accordingly, Ii is either the real number 1 or the 2 × 2 identity matrix. The elements Λi

correspond to real or complex eigenvalues λi ∈ C of A. By slight abuse of language we call
|λi| the modulus of Λi. By further slight abuse of language we define the “eigenspace” of
Λi as the one- or two-dimensional space spanned by the vectors that correspond to the first
entry of the Jordan block Ji. The “generalised eigenspaces” for Λi are defined analogously.

Write Rn as the direct sum of two spaces Rn = Vrec ⊕ Vnon-rec where Vrec is the direct
sum of the eigenspaces for eigenvalues of modulus 1, and Vnon-rec is the direct sum of the
eigenspaces and generalised eigenspaces for eigenvalues of modulus ̸= 1 and the generalised
eigenspaces for eigenvalues of modulus 1. By convention, if A has no eigenvalues of modulus
1 we let Vrec = 0. Similarly, if A has only eigenvalues of modulus 1 and no generalised
eigenvalues we let Vnon-rec = 0. Thus, we decompose the state space Rn into a part Vrec on
which A exhibits purely rotational behaviour, and a part Vnon-rec where A is additionally
expansive or contractive.

We will work with several different norms throughout this paper. In addition to the
familiar ℓ2 and ℓ∞ norms we introduce a third norm, depending on the matrix A, that
combines features of the two. It facilitates block-wise arguments while ensuring that the
restriction of A to Vrec is an isometry.

Write Rn as a direct sum Rn = V1 ⊕· · ·⊕Vs ⊕W1 ⊕· · ·⊕Wt, where V1, . . . , Vs correspond
to the Jordan blocks of A associated with real eigenvalues and W1, . . . , Wt correspond to
the Jordan blocks of A associated with non-real eigenvalues. Let πWj

: Rn → Wj and
πVj : Rn → Vj denote the orthogonal projections onto Wj and Vj respectively.

For a vector x ∈ Vi, let ∥x∥Vi

J = ∥x∥∞ . For a vector x = (x1, y1, . . . , xk, yk) ∈ Wi, let

∥x∥Wi

J = max
j=1,...,k

(√
x2

j + y2
j

)
.
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For a vector x ∈ Rn, let

∥x∥J = max
{

max
j=1,...,s

∥∥πVj
(x)

∥∥Vj

J
, max

j=1,...,t

∥∥πWj
(x)

∥∥Wj

J

}
.

Call ∥x∥J the Jordan norm of x. Observe that ∥x∥J depends on the choice of the Vi’s and
Wi’s. The Jordan norm compares to the ℓ2- and ℓ∞- norms as follows:

n−1/2 ∥x∥J ≤ n−1/2 ∥x∥2 ≤ ∥x∥∞ ≤ ∥x∥J ≤ ∥x∥2 ≤ n1/2 ∥x∥∞ ≤ n1/2 ∥x∥J .

Let ε > 0. Consider the ball BJ (0, ε) ⊆ Rn about 0 with respect to the distance induced
by the ∥·∥J -norm. We partition K into three sets:

Krec = K ∩ Vrec

K<ε = K ∩ (Vrec ⊕ ((Vnon-rec ∩ BJ(0, ε)) \ {0}))
K≥ε = K ∩ (Vrec ⊕ (Vnon-rec \ BJ(0, ε)))

4 A quantitative version of Kronecker’s theorem for complex algebraic
numbers

Our central tool for bounding the escape time in the recurrent case is a quantitative version
of Kronecker’s theorem for complex algebraic numbers.

Let (λ1, . . . , λm) be complex algebraic numbers of modulus 1. Our goal is to find for
all ε > 0 a bound N such that for all (α1, . . . , αm) ∈ Tm contained in the closure of the
sequence (λt

1, . . . , λt
m)t∈N there exists t ≤ N such that |λt

j − αj | < ε for all j = 1, . . . , m.
We first consider the case where the λj ’s do not admit any integer multiplicative relations.

In this case we can employ the following quantitative version of the continuous formulation
of Kronecker’s theorem, proved in [12]:

▶ Theorem 10 ([12, Theorem 4.1]). Let φ1, . . . , φN and ζ1, . . . , ζN be real numbers. Let
ε1, . . . , εN be positive real numbers with εj < 1/2 for all j. Let Mj =

⌈
1
εj

log N
εj

⌉
. Let

φ = (φ1, . . . , φN ). Let δ = min
{

|φ · m| | m ∈ ZN , |mj | < Mj , m ̸= 0
}

. Assume that δ > 0.
Then in any interval I of length T ≥ 4/δ there is a real number t such that ∥φjt − ζj∥ < εj ,

where ∥·∥ denotes distance to the nearest integer.

Intuitively, the number δ in Theorem 10 is a quantitative measure of the linear independ-
ence of the φj ’s, as it bounds away from zero all integer linear combinations of the φj ’s with
suitably bounded coefficients. In our case we consider the numbers φj = log λj . For our
purpose we need to obtain a bound on t, and thus a bound on δ, in terms of the algebraic
complexity of the numbers λ1, . . . , λm. This is achieved by invoking a quantitative version
of Baker’s theorem on linear forms in logarithms due to Baker and Wüstholz [1]. Recall
that any algebraic number µ is the root of a unique irreducible polynomial pµ with pairwise
coprime integer coefficients. The height of an algebraic number µ is the maximum of the
absolute values of the coefficients of pµ. The degree of µ is the degree of pµ. Recall that a
field E is called an extension of a field F if E contains F as a subfield. The degree of a field
extension E ⊇ F is the dimension of E as an F -vector space.

MFCS 2022



39:8 Bounding the Escape Time of an LDS over a Compact Semialgebraic Set

▶ Theorem 11. Let µ1, . . . , µN be algebraic numbers, none of which is equal to 0 or 1. Let

L(z1, . . . , zN ) = b1z1 + · · · + bN zN

be a linear form with rational integer coefficients b1, . . . , bN . Let B be an upper bound on the
absolute values of the bj ’s. For j = 1, . . . , N , let Aj ≥ exp(1) be a bound on the height of µj .
Let d be the degree of the field extension Q(µ1, ,̇µN ) generated by µ1, . . . , µN over Q. Fix a
determination of the complex logarithm log. Let Λ = L(log µ1, . . . , log µN ). If Λ ̸= 0 then

log |Λ| > −(16Nd)2(N+2) log A1 · · · · · log AN log B.

Finally, in the case where the λj ’s admit integer multiplicative relations, we employ
Theorem 7 to bound their complexity. We arrive at the following result:

▶ Theorem 12. Let (λ1, . . . , λm) be complex algebraic numbers of modulus 1. Assume that the
numbers 2πi, log λ1, . . . , log λs are linearly independent over the rationals, where 0 ≤ s ≤ m.
Let d be the degree of the field extension Q(λ1, . . . , λs). Let A1, . . . , As ≥ exp(1) be upper
bounds on the heights of λ1, . . . , λs. Let ℓ ∈ N, and εs+1, . . . , εm ∈ Zs be such that

λℓ
j = (λ1, . . . , λs)εj

for all j = s + 1, . . . , m. By convention, if s = 0 the right-hand side of the above equation is
to be taken equal to 1.

Let

L = max
{

ℓ,
s∑

k=1
|εs+1,k|, . . . ,

s∑
k=1

|εm,k|

}
.

Let α1, . . . , αm ∈ Tm be such that any rational linear relation between the numbers
2πi, log λ1, . . . , log λm is also satisfied by the numbers 2πi, log α1, . . . , log αm. Let ε > 0.
Then there exists a positive integer

t ≤ 8πℓ
( 2πL

ε

)s (
2s 2πL

ε

⌈ 4πL
ε log 4πsL

ε

⌉)(16(s+1)d)2(s+3) log A1·····log As + ℓ

such that
∣∣λt

j − αj

∣∣ < ε for j = 1, . . . , m.

Proof. An outline of the proof is sketched above. See [10, Appendix D] for a full proof. ◀

For the purpose of bounding the escape time, the following coarse bound suffices:

▶ Corollary 13. There exists an integer function Kron(n, τ, P ) ∈ 2(τP )nO(1)

, such that the
following holds true:

Let λ1, . . . , λn be algebraic numbers of modulus 1. Assume that the degree of each λj is
bounded by n. Let τ be a bound on the bitsize of the coefficients of the minimal polynomials of
the λj ’s. Let P be a positive integer. Let α1, . . . , αn be complex numbers which are contained
in the closure of the sequence (λt

1, . . . , λt
n)t∈N. Then there exists a t ≤ Kron(n, τ, P ) such

that |αj − λt
j | < 2−P for all j ∈ {1, . . . , n}.

Proof. By Kronecker’s theorem, any integer multiplicative relation between the λj ’s is also
satisfied by the αj ’s. Theorem 12 hence yields a bound on t such that |αj − λt

j | < 2−P holds
for all j ∈ {1, . . . , n}.

This bound is given in terms of quantities s, d, ℓ, εs+1, . . . , εm ∈ Zs, A1, . . . , As, and L.
It remains to show that these quantities can be chosen to be suitably bounded in terms of n

and τ .
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Proposition 26 in [10, Appendix D], which is mainly based on Theorem 7, shows that
numbers ℓ and ε1, . . . , εm can be computed in polynomial space. In particular, the absolute
size of L and ℓ is of the form 2(nτ)O(1) . The numbers log Ai are bounded by τ by assumption.
We have s ≤ m ≤ n by definition. Finally, we have assumed that each λj has degree at most
n. It follows that the degree d of the field extension Q(λ1, . . . , λs) is bounded by nn. The
result follows from Theorem 12. ◀

5 The recurrent eigenspace

The next lemma establishes as a special case an escape bound for all initial values x ∈ Krec.
In order to combine the recurrent and the non-recurrent case we need a stronger result,
however. Thus, we establish not only a bound on the escape time for all initial values
x ∈ Krec, but a bound N such that every x ∈ Vrec – not just in Krec – has distance at least
1/N – not just positive distance – from K. Further, note that Lemma 14 is still applicable
in the special cases where Krec = ∅ or Vrec = 0.

▶ Lemma 14. There exists an integer function Rec(n, d, τ) ∈ 2(τd)nO(1)

with the following
property:

Let A ∈ An×n be a matrix in real Jordan normal form with algebraic entries. Assume
that the minimal polynomial of A has rational coefficients whose bitsize is bounded by τ .
Let K ⊆ Rn be a compact semialgebraic set of complexity at most (n, d, τ). If every point
x ∈ Krec escapes K under iterations of A then for all x ∈ Vrec there exists t ≤ Rec(n, d, τ)
such that

distℓ2(Atx, K) >

√
n

Rec(n, d, τ ) .

Proof. The full proof is given in [10, Appendix F]. We only sketch an outline here.
We first prove the result for initial points x ∈ Krec. For these points, the closure of the

orbit OA(x) of x under A is a compact semialgebraic set. We employ Corollary 13 to obtain
for all ε > 0 a doubly exponential bound N such that for all x ∈ Krec and all y ∈ OA(x)
there exists t ≤ N such that ∥Atx − y∥2 < ε. We then use Theorem 4 to obtain a uniform
at most doubly exponentially small lower bound on the quantity

inf
x∈Krec

sup
y∈OA(x)

inf
z∈K

∥y − z∥2
2 .

In order to apply this theorem we construct an auxiliary semialgebraic set, whose complexity
is controlled by Theorem 2. Combining these two steps, we obtain a function Rec0 that
satisfies the statement of the lemma for all initial points x ∈ Krec.

Finally, we extend the result to all initial points x ∈ Vrec. The special case where Krec = ∅
is treated using Theorem 4.

In the case where Krec is non-empty we obtain from Lemma 5 that every x ∈ Vrec which
is doubly exponentially close to K with a sufficiently large constant in the third exponent
is already doubly exponentially close to Krec, with a slightly smaller constant in the third
exponent. Now, any point that is sufficiently far away from K trivially satisfies the claim.
By the preceding discussion, points x ∈ Vrec that are sufficiently close to K are already
sufficiently close to Krec, so that there exists an escaping orbit OA(x′) with x′ ∈ Krec which
is close to the orbit of x since A is an isometry on Vrec. This allows us to reduce the result
to the already established result for initial values in Krec. ◀
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6 The non-recurrent eigenspace

The next lemma concerns the subset K≥ε of K containing the points in K that are bounded
away from Vrec by some ε > 0.

For any such point, there exist coordinates (or pairs of coordinates if the corresponding
eigenvalues are not real) whose contribution to the Jordan norm is greater than ε. Moreover,
the contribution to the Jordan norm of these coordinates does not stay constant under
applications of A. If the contribution to the norm of at least one such coordinate is increasing
under applications of A, the orbit will eventually leave K, since K is compact. Moreover,
Theorem 3 yields an upper bound on the escape time.

Coordinates whose contribution to the norm is decreasing under applications of A will,
after sufficiently many iterations, contribute less than ε. We establish a uniform upper bound
on the number of iterations required to ensure this for all such coordinates. Combining this
with the previous bound, we obtain a number N such that after at most N applications of
A, every x ∈ K≥ε has either escaped K, entered K<ε ∪ Krec, or it remains in K≥ε because
it has a component whose contribution to the norm was initially smaller than ε, but grew
beyond ε under iteration of A. In the last case, the point will grow in norm beyond the
bound established in Theorem 3 and thus escape K after a further N applications of A. This
yields a uniform bound on the number of iterations that are required for any point x ∈ K≥ε

to either leave K entirely or move into K<ε ∪ Krec.
The overall structure of this proof closely follows the one given in [11], where the

assumptions allow the authors to restrict the discussion to real eigenvalues.

▶ Lemma 15. There exists an integer function NonRec(n, d, τ, P ) ∈ 2(dτP )nO(1)

with the
following property:

Let K be a compact semialgebraic set of complexity at most (n, d, τ). Let A ∈ An×n be
a matrix in real Jordan normal form. Assume that the characteristic polynomial of A has
rational coefficients whose bitsize is bounded by τ . Let P be a positive integer.

Then for all x ∈ K≥2−P there exists t ≤ NonRec(n, d, τ, P ) such that Atx /∈ K≥2−P .

Proof. See [10, Appendix G] for details. ◀

7 Proof of Theorem 1

In the previous two sections, we successively showed how to establish a bound on the escape
time for an instance (A, K) when the orbit remains in the recurrent eigenspace and how the
orbit behaves when it starts away from the recurrent eigenspace. In this section, we show
how to combine both results in order to establish an escape bound for any starting point in
K. This will thus prove Theorem 1.

Let (A0, K0) be an instance of the compact escape problem, where K0 ⊆ Rn is a compact
semialgebraic set of complexity at most (n0, d0, τ0) and A0 ∈ Qn×n is a square matrix with
rational entries whose bitsize is bounded by τ0. Assume that every point x ∈ K0 escapes K0
under iterations of A0.

Apply Lemma 9 to convert the instance (A0, K0) into an equivalent instance (A, K) such
that A ∈ An×n is in real Jordan normal form. Then the set K has complexity at most
(n, d, τ), were n = 2n0, d = n0d0, and τ = (n0τ0d0)Cτ for some absolute constant Cτ . By
construction, the characteristic polynomial of A has rational coefficients of bitsize at most τ .

Let Rec be the function from Lemma 14. Let ε = 1
Rec(n,d,τ) and Nrec = Rec(n, d, τ ). Let

x ∈ K. If x ∈ Krec then x escapes within Nrec steps. Suppose that x ∈ K<ε.
Then there are two possibilities:
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1. We have Atx /∈ K≥ε for all t ≤ Nrec.
2. We have Atx ∈ K≥ε for at least one t ≤ Nrec.
In the first case, the orbit of x remains close to Vrec for long enough that we can rely on
Lemma 14. Indeed, let x0 denote the orthogonal projection of x onto Vrec. Let t ≤ Nrec be
such that distℓ2(Atx0, K) >

√
nε. Since Atx /∈ K≥ε, we have ∥Atx − Atx0∥J < ε, so that

∥Atx − Atx0∥2 <
√

nε. Let y ∈ K. Then∥∥Atx − y
∥∥

2 ≥
∥∥Atx0 − y

∥∥
2 −

∥∥Atx − Atx0
∥∥

2 >
√

nε −
√

nε = 0.

Thus, x escapes K under iterations of A.
In the second case, let t1 be such that At1x ∈ K≥ε. Let NonRec be the function from

Lemma 15. Let N≥ε = NonRec(n, d, τ, ⌈log(1/ε)⌉). By Lemma 15 there exists t2 ≤ N≥ε such
that At2At1x is contained either in K<ε ∪ Krec or in the complement of K. In the latter case
we are done. In the former case we apply the initial case distinction: either for all t ≤ Nrec
we have AtAt2At1x /∈ K≥ε or we have At3At2At1x ∈ K≥ε for at least one t3 ≤ Nrec. Once
again, in the first case, the point has escaped. By repeating this reasoning, we construct a
(finite or infinite) sequence t1, t2, . . . such that ti ≤ Nrec if i is odd and ti ≤ N≥ε if i is even
and

Ats · · · · · At1x ∈

{
K<ε ∪ Krec if s is even,
K≥ε if s is odd.

We claim that the sequence t1, t2, . . . is finite and contains at most n3 elements.
Consider a real Jordan block of A of size m ≤ n associated to the eigenvalue Λ. Denote

by xJ the orthogonal projection of x onto the dimensions associated with this block.
Assume first that Λ is a real eigenvalue (as opposed to a 2 × 2 block representing a

complex eigenvalue). If Λ = 0, then clearly
∥∥JkxJ

∥∥
J

is monotonically decreasing. Thus,
assume in the sequel that Λ ̸= 0.

Let j ∈ {1, . . . , m}. The m − j + 1’th component of the vector JkxJ , viewed as a function
of t, is an exponential polynomial Ej(t) = ΛtP (t), where P ∈ R[z] is a real polynomial of
degree j − 1. Consider the real function

(Ej(·))2 : R → R, (Ej(t))2 = |Λ|2t |P (t)|2.

This function is differentiable in t with derivative

d
dt (Ej(t))2 = Λ2t

(
log(Λ2)(P (t)2) + 2P (t)P ′(t)

)
.

This derivative vanishes if and only if the factor
(
log(Λ2)(P (t)2) + 2P (t)P ′(t)

)
vanishes. This

factor is a polynomial of degree 2j − 2, so that it has at most 2j − 2 real zeroes. It follows
that there exist numbers tj,1, . . . , tj,mj

with mj ≤ 2j − 2 such that the function (Ej(t))2 − ε2

does not change its sign in any of the open intervals

(0, tj,1), (tj,1, tj,2), . . . , (tj,mj−1, tj,mj
), (tj,mj

, +∞).

Thus, the norm ∥J txJ∥J changes from smaller than ε to bigger than ε at most

m∑
j=1

(2j − 2) = 2
m∑

j=1
j − 2m = (m + 1)m − 2m = m2 − m

times.
The case where Λ represents a complex eigenvalue λ is similar. However, we now consider

the evolution of the two coordinates corresponding to one Λ-block simultaneously.
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For j ∈ {1, . . . , m}, write Ej(t) for the m− j +1’th component of the vector J txJ , viewed
as a function of t. We have for all j ∈ {1, . . . , m/2} that the function

Fj(t) = (E2j(t))2 + (E2j−1(t))2

is an exponential polynomial Fj(t) = |λ|tPj(t), where Pj ∈ R[z] is a real polynomial of
degree j − 1. Therefore, exactly as in case where Λ is a real eigenvalue, the derivative of Fj

vanishes at most 2j − 2 times. From which we can deduce that the norm ∥J txJ∥J crosses
the ε-threshold at most m2 − m times.

Estimating generously, we have at most n Jordan blocks of size at most n, each of which
crosses the ε-threshold at most n2 − n times. In total, we cross the threshold at most n3 − n2

times. The total escape bound is hence n3 max{Nrec, N≥ε}. By the same argument, the same
escape bound holds true when the initial point x lies in K≥ε.

Substituting the constants Nrec, N≥ε, n, d, and τ with their definitions, we obtain the
upper bound

CompactEscape(n0, d0, τ0) =

(2n0)3 max
{

Rec
(
2n0, n0d0, (n0d0τ0)Cτ

)
,

NonRec
(
2n0, n0d0, (n0d0τ0)Cτ , log

⌈
Rec

(
2n0, n0d0, (n0d0τ0)Cτ

)⌉) }
.

One easily verifies that CompactEscape(n, d, τ ) ∈ 2(dτ)nO(1)

as claimed.

8 A matching lower bound on escape time

In Theorem 1 we established a uniform upper bound on the escape time for all positive
instances of the Compact Escape Problem. Our bound is doubly exponential in the ambient
dimension and singly exponential in the rest of the data. We will now show that this bound
cannot be significantly improved by showing that a doubly exponential bound cannot be
avoided even for purely rotational systems. A second example displaying a doubly exponential
lower bound is presented in [10, Appendix H].

▶ Example 16. For (n, d, τ ) ∈ N3, let K(n,d,τ) ⊆ Rn+2 be the set of all points (x, y, u1, . . . , un)
satisfying the (in)equalities: x2 + y2 = 1, u1 = 2−τ , (x − 1)2 + y2 ≥ un and for 1 ≤ i ≤
n − 1, ui+1 = (ui)d.

Hence, K(n,d,τ) =
(

S1 \ B
(

(1, 0), 2−τdn−1
))

×
{(

2−τ , 2−τd, . . . , 2−τdn−1
)}

, where S1 ⊆
R2 is the unit circle. Let a = 3

5 , b = 4
5 . Let

A(n,d,τ) =

a −b 0
b a 0
0 0 In


where In is the n × n- identity matrix. It is easy to see that the complex number 3

5 + i 4
5 has

modulus 1 and is not a root of unity. It follows from Dirichlet’s theorem on simultaneous
Diophantine approximation that the orbit of A is equal to S1 ×

{(
2−τ , 2−τd, . . . , 2−τdn−1

)}
,

so that every initial point escapes under A.
We claim that there exists a point x ∈ K(n,d,τ) that requires 2τdn−1 steps to escape.

Indeed, let x0 ∈ K(n,d,τ) be an arbitrary initial point. Consider the orbit xt = Atx0. Let
N < 2τdn−1 . By the pigeonhole principle, the finite set of points x0, . . . , xN contains at least
one consecutive pair of points xi, xj on the circle such that the points xi and xj are joined
by an arc of the circle of length strictly greater than 2/N . It follows that we can ensure that
none of the points x1, . . . , xN is outside of K(n,d,τ) by applying a suitable planar rotation to
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all points. Since all planar rotations commute, there exists for each angle θ an initial point
xθ ∈ S1 ×

{(
2−τ , 2−τd, . . . , 2−τdn−1

)}
, such that the orbit of xθ under A is equal to the

orbit of x0 under A rotated by θ. This proves the claim.
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We study fundamental reachability problems on pseudo-orbits of linear dynamical systems. Pseudo-
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1 Introduction

A discrete-time linear dynamical system (LDS) is given by an update matrix M ∈ Qd×d and
a starting point s ∈ Qd. An LDS describes a system whose state contains d rational numbers
and evolves linearly. The orbit of such a system is the infinite sequence ⟨s,Ms,M2s, . . .⟩
of points in Qd. Orbits of LDS arise in many areas of computer science and mathematics,
including verification of linear loops [10], automata theory [3], and the theory of linear
recurrence sequences [17].

A fundamental problem about LDS is the question of deciding, given a system ⟨M, s⟩
and a semialgebraic target set S ⊆ Rd, whether there exists n ∈ N such that Mns ∈ S. This
problem is known as the reachability problem for LDS and has been studied extensively over
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the last few decades. In their seminal work, Kannan and Lipton showed that the point-to-point
reachability problem, i.e., the case in which S is a singleton, is decidable in polynomial time.
At the same time they observed that the case in which S is a (d− 1)-dimensional subspace of
Rd (i.e. a hyperplane) is equivalent to the famous Skolem problem whose decidability remains
open to this day. The Skolem problem asks, given a linear recurrence sequence defined by a
recurrence relation un+d = a1un + . . .+ adun+d−1 and initial values u0, . . . , ud−1, to decide
whether there exists n such that un = 0. In addition to this Skolem-hardness, the difficulty of
settling the reachability problem was further demonstrated by the results of [16], which show
that solving the reachability problem with halfspace targets, known as the positivity problem,
would entail major mathematical breakthroughs in the field of Diophantine approximation.

The reachability problem is defined with reference to the exact dynamics of an LDS.
Since computational systems typically operate with finite precision, it is natural to consider
an alternate notion of reachability involving so-called pseudo-orbits. The notion of pseudo-
orbit is an important conceptual tool in dynamical systems that was studied by Anosov [2],
Bowen [4], and Conley [6], and was used by the latter to prove what is sometimes called the
fundamental theorem of dynamical systems. Given an LDS ⟨M, s⟩, a sequence ⟨xn | n ∈ N⟩
is an ϵ-pseudo-orbit of s under M if x0 = s and ∥Mxn − xn+1∥ < ϵ for all n ∈ N. In other
words, in a pseudo-orbit one considers an enlarged transition relation that is obtained by
considering the dynamical system up to precision ϵ. Given ϵ > 0, a set S is said to be
ϵ-pseudo-reachable if there exists an ϵ-pseudo-orbit ⟨x0 = s, x1, x2, . . .⟩ of s under M that
reaches S. We further say that S is pseudo-reachable if S is ϵ-pseudo-reachable for every
ϵ > 0. If a set S of error states is not pseudo-reachable then we can consider the system as
being safe if implemented with sufficient precision, while if S is pseudo-reachable, it means
that no finite amount of precision suffices to make the system reliably safe.

Recently, D’Costa et al. [7] considered the pseudo-reachability problem and, somewhat
surprisingly, showed decidability in cases where S is a point (the pseudo-orbit problem), a
hyperplane (the pseudo-Skolem problem) or a halfspace (the pseudo-positivity problem).
Their proof of the first result relies on an exact characterisation of ϵ-pseudo-orbits. Their
solution to the latter two problems, however, depends heavily on the fact that a hyperplane (a
halfspace) can be defined using a single equality (inequality), an approach which unfortunately
cannot be generalised to arbitrary semialgebraic targets. In this work, we develop a novel
logical approach to show the decidability of the pseudo-reachability problem for
diagonalisable systems with arbitrary semialgebraic targets.

1.1 High-level proof sketch of our approach
Our solution to the diagonalisable pseudo-reachability problem can be summarised as follows.
Let Õϵ(n) denote the set of all points that are reachable exactly at time n via an ϵ-pseudo-
orbit. The pseudo-reachability problem then consists in checking whether the sentence
Φ := ∀ϵ. ∃n ∈ N : Õϵ(n) ∩ S ≠ ∅ is true. In this form, Φ is not amenable to application
of logical methods as it involves both integer and real-valued variables, in addition to
exponentiation with a complex base (coming from non-real eigenvalues of M). We therefore
first move to the continuous domain and construct an abstraction Aϵ(t) for t ∈ R≥0 that
is definable in Rexp such that Aϵ(n) ⊇ Õϵ(n) for all n ∈ N. We then investigate the values
of ϵ and t that make Ψ(ϵ, t) := Aϵ(t) ∩ S ̸= ∅ true. We show that by the o-minimality of
Rexp, either for every ϵ > 0 there exists T such that for all t > T , Ψ(ϵ, t) holds, or the
pseudo-reachability problem is equivalent to a finite-horizon reachability problem that is
easily solvable. In the former case, it follows that for every ϵ > 0, Ψ(ϵ, n) holds for all
sufficiently large integer values n, thus establishing a bridge back to the discrete setting. We
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conclude by showing that in this case, S is pseudo-reachable. Intuitively, the idea is to use
the universal quantification over ϵ to argue that if S can be reached using an ϵ/2-abstraction
at all but finitely many time steps, then it can be reached by an ϵ-pseudo-orbit, in fact at
infinitely many possible time steps. The importance of the universal quantification is also
illustrated by the following hardness result. For any fixed ϵ > 0, it is decidable whether
∃n ∈ N : Aϵ(n) ∩ S ̸= ∅ holds, whereas the ϵ-pseudo-reachability problem of determining
whether ∃n ∈ N : Õϵ(n) ∩S ≠ ∅ holds is hard with respect to (a hard subclass of) the Skolem
problem, as shown in Section 4.

The approach outlined above can be adapted to solve a few other related problems about
linear dynamical systems. An example would be the robust reachability problem recently
considered by Akshay et al. in [1]: given an LDS ⟨M, s⟩ and a semialgebraic target S, decide
whether for all ϵ > 0 there exists a point s′ in the ϵ-neighbourhood of s whose orbit reaches S.
This problem can be thought of as a modification of the pseudo-reachability problem where
only one perturbation is allowed at the very beginning. Due to this simplification, we are
able to show, in the full version of this paper, full decidability (that is, without the restriction
to diagonalisable systems) of the robust reachability problem. Finally, as the first step of
our solution is to translate the problem into the continuous domain, the continuous versions
of both the pseudo-reachability problem (Section 5) and the robust reachability problem
(discussed in the full version) can be handled using the same approach, arguably more
naturally. For the former, because we proceed by reducing the pseudo-reachability problem
to bounded-time reachability problem, the decidability result assumes Schanuel’s conjecture.

2 Mathematical tools

We write B(c, r) for the closed ℓ2-ball of radius r centred around c ∈ Rd and 0 ∈ Rd for the
d-dimensional zero vector. We denote by T ⊆ C the unit circle in the complex plane and
by ||x|| the ℓ2-norm of a vector x ∈ Rd.

2.1 First-order logic

We denote by R0 the (structure of) real numbers with addition and multiplication, by Rexp
the real numbers with addition, multiplication and (unbounded) exponentiation and by
Rexp,cos ↾[0,T ] the real numbers with exponentiation and bounded (in input, by some T > 0)
trigonometric functions. By the Tarski-Seidenberg theorem, the theory of R0 admits effective
quantifier elimination and is therefore decidable. The theories of Rexp and Rexp,cos ↾[0,T ] are
known to be decidable subject to Schanuel’s conjecture (see, e.g., [11]) in transcendental
number theory [13, 19]. However Rexp,cos ↾[0,T ] (and hence Rexp and R0) are unconditionally
known to be o-minimal [18]. That is, any subset of R definable using arithmetic operations,
real exponentiation and bounded trigonometric functions is a finite union of intervals.
In particular, any subset of R≥0 definable in this way is either bounded or contains all
sufficiently large real numbers. For the discrete-time problems considered in this paper we
will only need to work with Rexp. We will need Rexp,cos ↾[0,T ] only when considering the
classical bounded-time reachability problem for continuous-time linear dynamical systems.

A semialgebraic set is a subset of Rd definable (without parameters) in R0. We say
that a function φ : Rl → Rm is semialgebraic if its graph is a semialgebraic subset of Rl+m.
Intuitively, semialgebraic functions are exactly the functions that can be specified using
arithmetic and logical operations over the real numbers.

MFCS 2022
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2.2 Kronecker’s theorem and its applications
The analysis of problems about linear dynamical systems often reduces to that of the orbit
⟨Γn | n ∈ N⟩ where Γn = (γn

1 , . . . , γ
n
k ) for γ1, . . . , γk ∈ T. Let T = cl({Γn : n ∈ N}) be the

topological closure of this discrete orbit. The set T is semialgebraic and well-understood
with the help of Kronecker’s theorem in simultaneous Diophantine approximation [9].

▶ Theorem 1 (Kronecker). Let θ1, . . . , θk, φ1, . . . , φk ∈ R be such that for any a1, . . . , ak ∈ Z,

k∑
i=1

aiθi ∈ Z ⇒
k∑

i=1
aiφi ∈ Z.

For any ϵ > 0 there exist infinitely many n ∈ N such that {nθi − φi} < ϵ for all 1 ≤ i ≤ k,
where {x} denotes the distance from x ∈ R to the nearest integer.

To apply this theorem to our situation, let

T = {(z1, . . . , zk) : ∀a1, . . . , ak ∈ Z : γa1
1 · · · γak

k = 1 ⇒ za1
1 · · · zak

k = 1}.

For z = (z1, . . . , zk) ∈ T , by considering θi = arg(γi)
2π and φi = arg(zi)

2π for 1 ≤ i ≤ k we
can deduce that for each ϵ > 0 there exists n such that ||z − Γn|| < ϵ and hence the orbit
⟨Γn | n ∈ N⟩ is dense in T . On the other hand, using Masser’s deep results [14] about
multiplicative relations between algebraic numbers one can compute, in polynomial time, a
finite basis for {(a1, . . . , ak) ∈ Zk : γa1

1 · · · γak

k = 1}. Hence T is closed, semialgebraic and
effectively computable. It then follows that T = cl({Γn : n ∈ N}).

We will also need the following lemma which is a consequence of the effective computability
of T = cl({Γn : n ∈ N}) as a semialgebraic set.

▶ Lemma 2. Let R = diag(Λ1, . . . ,Λk) ∈ R2k×2k be a block diagonal matrix where Λi is an
algebraic rotation matrix for 1 ≤ i ≤ k. The closure of the set {Rnx : n ∈ N}, for x with
algebraic entries, is semialgebraic and effectively computable.

The proof follows immediately from diagonalising Rn and observing that all eigenvalues of R
are algebraic numbers in T.

3 Decidability for discrete-time diagonalisable systems

In this section we prove our main result: the decidability of the pseudo-reachability problem
for discrete-time diagonalisable affine dynamical systems, which are a generalisation of LDS.
The reason we consider affine systems is that the well-known homogenisation trick (increasing
the dimension by one and adding a coordinate that is always equal to 1) used for reducing the
classical reachability problem for affine systems to the reachability problem for LDS doesn’t
work for the pseudo-reachability problem: when perturbations are allowed, one cannot force
a coordinate to remain constant. Hence affine systems require separate treatment.

▶ Problem 3 (pseudo-reachability). Let M ∈ QL×L be an update matrix, s ∈ QL be a starting
point, b ∈ QL be an affine term and S ⊆ RL be a semialgebraic target set. A sequence
⟨x0 = s, x1, x2 . . .⟩ is an ϵ-pseudo-orbit of s if ||Mxn + b− xn+1|| ≤ ϵ for all n. The pseudo-
reachability problem asks: given M, b, s and S, decide whether for each ϵ > 0 there exists an
ϵ-pseudo-orbit of s that reaches the set S.
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Let Õϵ(n) denote the set of all points that are reachable via an ϵ-pseudo-orbit of s under the
map x 7→ Mx + b at time n. Since Õϵ(0) = {s} and Õϵ(n + 1) = MÕϵ(n) + b + ϵB(0, 1),
by induction we can show that Õϵ(n) = Mns+

∑n−1
i=0 M

ib+ ϵ
∑n−1

i=0 M
iB(0, 1). The pseudo-

reachability problem is then equivalent to determining the truth of ∀ϵ. ∃n : Õϵ(n) ∩ S ̸= ∅.
Here B(0, 1) can be viewed as a set of “control inputs”, and the pseudo-reachability problem
can be viewed as the problem of determining whether S can be reached using arbitrarily
small control inputs. The next lemma shows that we can in fact, choose any reasonable
control set.

▶ Lemma 4 (Invariance under change of the control set). Let B ⊆ RL be a bounded set
containing an open ball around the origin.
1. The pseudo-reachability problem as defined above is equivalent to the problem of determining

whether

∀ϵ. ∃n : (Mns+
n−1∑
i=0

M ib+ ϵ
n−1∑
i=0

M iB) ∩ S ̸= ∅.

2. We may assume the matrix M is in real Jordan form.

Proof. Since B is assumed to be bounded and to contain an open neighbourhood around
the origin, there must exist constants C1, C2 such that C1B(0, 1) ⊆ B ⊆ C2B(0, 1). Hence

C1ϵ
n−1∑
i=0

M iB(0, 1) ⊆ ϵ
n−1∑
i=0

M iB ⊆ C2ϵ
n−1∑
i=0

M iB(0, 1).

The proof of (1) then follows from the fact that ϵ is universally quantified: one can simulate
(i) an ϵ-pseudo-orbit with control set B using a C2ϵ-pseudo-orbit with control set B(0, 1) and
(ii) an ϵ-pseudo-orbit with control set B(0, 1) using a ϵ/C1-pseudo-orbit with control set B.
Proof of (2) follows from observing that multiplying B(0, 1) by an invertible change of basis
matrix results in a bounded control set containing a neighbourhood around 0. ◀

Observe that the change of the control set described above is not applicable when ϵ is fixed,
as in the ϵ-pseudo-reachability problem discussed in Section 4.

3.1 A closed form for Õϵ(n)

We now use Lemma 4 to choose a control set that results in Õϵ(n) with a convenient first-order
closed form: observe that the naïve formulation above involves the term

∑n−1
i=0 M

iB(0, 1)
which is not “first-order”.

Assume M is diagonalisable and in real Jordan form: M = diag(Λ1, . . . ,Λk, ρk+1, . . . , ρd).
That is, M consists of d block, the first k of which have dimension 2 × 2 and a pair of
non-real conjugate eigenvalues, whereas the remaining blocks are 1 × 1 and real. Write ρj

for the spectral radius of the jth block. We can factor M into a “scaling” and a “rotation”
as M = DR where D = diag(ρ1, ρ1, . . . , ρk, ρk, ρk+1, ρk+2, . . . , ρd) is diagonal and R is a
block-diagonal matrix that consists of blocks that are either 2 × 2 rotation matrices or 1 × 1
and equal to

[
±1

]
. Hereafter we will be using the convenient “rotation-invariant” control set

B =
k∏

j=1
B((0, 0), 1) ×

d∏
j=k+1

[−1, 1] =
d∏

j=1
B(0, 1)

MFCS 2022
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where B((0, 0), 1) is the unit disc. Observe that B is a product of ℓ2-balls that matches the
block structure of M . It follows that RB = B and hence

Õϵ(n) = DnRns+
n−1∑
i=0

M ib+ ϵ
n−1∑
i=0

DiRiB = DnRns+
n−1∑
i=0

M ib+ ϵB(n)

where B(n) =
∑n−1

i=0 D
iB. We then have

B(n) =
n−1∑
i=0

Di
d∏

j=1
B(0, 1) =

n−1∑
i=0

d∏
j=1

B(0, ρi
j) =

d∏
j=0

B(0,
n−1∑
i=0

ρi
j).

Geometrically, the idea is that a 2 × 2 or a 1 × 1 block of D maps an origin-centred disc
(which corresponds to a symmetric interval in 1D) to an origin-centred disc, and a set-sum
of such discs is again an origin-centred disc. Note that our ability to reason in this way
crucially depends on the fact that M is diagonalisable. Finally, since

∑n−1
i=0 ρ

i
j is either ρn

j −1
ρj−1

or nρj , we can write B(n) = {z : φ(z, n, ρn
1 , . . . , ρ

n
d )}, where φ is a semialgebraic predicate.

We can apply the blockwise summation technique, distinguishing between the cases where
the spectral radius of the block is 1 or different from 1, to the term

∑n−1
i=0 M

ib to obtain the
closed form

∑n−1
i=0 M

ib = DnRnx′ + cn+ d, where x′, c and d only depend on M and b. We
then fold s and x′ into a new, fictive starting point x to obtain the final closed form

Õϵ(n) = DnRnx+ cn+ d+ ϵB(n).

In order to solve the pseudo-reachability problem, we henceforth consider the problem of
determining the truth of the sentence ∀ϵ > 0. ∃n : (DnRnx+ cn+ d+ ϵB(n)) ∩ S ̸= 0, where
all the input vectors and matrices have real algebraic entries.

3.2 Passing to the abstraction
The expression for Õϵ(n) contains the term DnRnx, which is the last obstacle to obtaining
an expression which we can attack using known results about theories of real numbers. To
address this issue we resort to abstracting Õϵ(n). Let

T := cl ({Rnx : n ∈ N}) and Aϵ(n) := DnT + cn+ d+ ϵB(n)

where T is the closure of the orbit of x under R, and is semialgebraic and effectively
computable by the discussion in Subsection 2.2. Moreover, recall that by Kronecker’s
theorem for every z ∈ T and ϵ > 0 there exist infinitely many integers 0 < n1 < n2 < . . .

such that ||Rnix− z|| < ϵ for all i.
Here Aϵ(n) acts as an abstraction of Õϵ(n). In particular, for all ϵ > 0 and n ∈ N we

have Aϵ(n) ⊇ Õϵ(n). Observe that Aϵ(n) = {z : φ(z, ϵ, n, ρn
1 , . . . , ρ

n
d )} for a semialgebraic

predicate φ. Viewing Aϵ(n) as a proxy for Õϵ(n), we arrive at the following dichotomy.

▶ Lemma 5. Either
1. for every ϵ > 0 there exists Nϵ such that for all n > Nϵ, Aϵ(n) intersects S, or
2. there exist N and ϵ > 0, both effectively computable, such that Aϵ(n) does not intersect S

for all n > N .
Moreover, it can be effectively determined which case holds.
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Proof. First we show that the dichotomy holds, putting the issues of effectiveness aside. Let

Φ(ϵ, n) =
∨

α∈A

∧
β∈B

pα,β(ϵ, n, ρn
1 , . . . , ρ

n
d ) ▷◁α,β 0

be a quantifier-free formula equivalent to Aϵ(n) ∩ S ̸= ∅. Such Φ(ϵ, n) must exist because
Aϵ(n) is semialgebraic with parameters from {ϵ, n, ρn

1 , . . . , ρ
n
d } and by the Tarski-Seidenberg

theorem, each such set can be described using a quantifier-free formula of the form given
above. Suppose Case 1 does not hold. Then there exists a particular ϵ > 0 such that Φ(ϵ, n)
does not hold for arbitrarily large n. Treating n as a continuous parameter, consider the
set {n ∈ R≥0 : Φ(ϵ, n) does not hold}. By o-minimality of Rexp this set is a finite union of
intervals and and by the assumption that Case 1 does not hold, it contains arbitrarily large
integers. Hence it must contain all integers in (N,∞) for some N ∈ N. That is, for all n > N

the formula Φ(ϵ, n) does not hold.

Effectiveness. We now address the issues of effectiveness. Consider the formula

Ψ(ϵ) = ∃Nϵ. ∀n > Nϵ : Φ(ϵ, n).

We show that Ψ(ϵ) is equivalent to a formula ψ(ϵ) in the language of R0. To determine which
case holds it then remains to determine the truth value of the sentence ∀ϵ : ψ(ϵ).

By the o-minimality argument above, given ϵ > 0, each pα,β(ϵ, n, ρn
1 , . . . , ρ

n
d ) ▷◁α,β 0 either

holds for finitely many integer values of n or holds for all sufficiently large integer values n.
By elementary considerations it follows that Ψ(ϵ) is equivalent to∨

α∈A

∧
β∈B

∃Nϵ. ∀n > Nϵ : pα,β(ϵ, n, ρn
1 , . . . , ρ

n
d ) ▷◁α,β 0.

Hence it suffices to show how to construct a formula ψ(ϵ) in the language of R0 that is equiv-
alent to ∃Nϵ. ∀n > Nϵ : pα,β(ϵ, n, ρn

1 , . . . , ρ
n
d ) ▷◁α,β 0. For each ϵ > 0, the formula first tests if

pα,β(ϵ) (as a polynomial in d+1 remaining variables) is identically zero. If yes, then φ(ϵ) is true
or false depending only on ▷◁α,β . Otherwise, write pα,β(ϵ, n, ρn

1 , . . . , ρ
n
d ) =

∑k
i=1 qi(ϵ, n)Rn

i

where qi(ϵ) is not identically zero for all i and R1 > · · · > Rk > 0 are real algebraic numbers of
the form ρp1

1 · · · ρpd

d for p1, . . . , pd ∈ N. Since |q1(ϵ, n)Rn
1 | >

∣∣∣∑k
i=2 qi(ϵ, n)Rn

i

∣∣∣ for sufficiently
large n, whether pα,β(ϵ, n, ρn

1 , . . . , ρ
n
d ) ▷◁α,β 0 holds for sufficiently large n depends only on

q1(ϵ, n). Hence we can choose ψ(ϵ) to be limn→∞ q1(ϵ) ▷◁α,β 0, which amounts to a sign
condition on the coefficients of q1(ϵ, n).

Computing N . Finally, we show that in Case 2, the value N can be effectively computed.
To this end, by repeatedly trying smaller and smaller values of ϵ first compute a rational e > 0
such that Ψ(e) (equivalently, ψ(e)) does not hold. To be able to compute N it then suffices
to compute, for a particular (α, β), a value Nα,β such that pα,β(e, n, ρn

1 , . . . , ρ
n
d ) ▷◁α,β 0 does

not hold for all n > Nα,β , assuming that it does not hold for sufficiently large n. We can
then take N to be the maximum of Nα,β over (α, β) ∈ A×B.

To compute Nα,β , consider p := pα,β(e). Assuming it is not identically zero (otherwise
we can choose Nα,β to be any positive integer), write p(n, ρn

1 , . . . , ρ
n
d ) =

∑k
i=1 qi(n)Rn

i

where qi is not identically zero for all i and R1 > · · · > Rk > 0 are real algebraic. Since
pα,β(e, n, ρn

1 , . . . , ρ
n
d ) ▷◁α,β 0 and hence p(n, ρn

1 , . . . , ρ
n
d ) ▷◁α,β 0 do not hold for sufficiently

large n, it must be the case that q1(n) ▷◁α,β 0 does not hold for sufficiently large n. Hence
it remains to choose Nα,β large enough so that for all n > Nα,β , |q1(n)Rn

1 | dominates∣∣∣∑k
i=2 qi(n)Rn

i

∣∣∣. ◀
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3.3 From the abstraction back to ϵ-pseudo-orbits
In this section we consider the relationship between the two cases of Lemma 5 and our
original pseudo-reachability problem. We start with Case 2. Observe that Oϵ(n) ⊆ Aϵ(n) for
every n ∈ N and ϵ > 0. Therefore, when Case 2 holds, for any n > N and ϵ > 0 the target
set cannot be reached by Oϵ. It remains to check pseudo-reachability at time steps n ≤ N .
We claim that S is pseudo-reachable if and only

∀ϵ. ∃n ≤ N : (Mnx+ cn+ d+ ϵB(n)) ∩ S ̸= ∅.

Let S denote the topological closure of S. We show that the statement above is equivalent
to ∃n ≤ N : Mnx + cn + d ∈ S. Observe that if for all n ≤ N the point Mnx + cn + d is
not in S, then by compactness the smallest distance from {Mnx+ cn+ d | n ≤ N} to S is
positive and hence for sufficiently small ϵ the target S cannot be ϵ-pseudo-reached within the
first N steps. Conversely, if Mnx+ cn+ d ∈ S for some n ≤ N , then because B(n) is full
dimensional and contains 0 in its interior, it follows that (Mnx+ cn+ d+ ϵB(n)) ∩ S ̸= ∅
for all ϵ > 0. Therefore, in Case 2 pseudo-reachability can be decided by simply checking if
{Mnx+ cn+ d | n ≤ N} reaches S.

Next we will show that S is pseudo-reachable if Case 1 holds. Given z ∈ T , we define a
“localisation” of the abstraction at the point z as Aϵ(n)(z) := Dnz+ cn+ d+ ϵB(n). Observe
that Aϵ(n) = {Aϵ(n)(z) : z ∈ T }. This definition of a localisation will allow us to select a
“concrete trajectory” from the set of all possible (abstract) trajectories.

Fix ϵ > 0 and let Tn := {z ∈ T : Aϵ(n)(z) intersects S}. The next lemma implies that
the sequence Tn must tend towards a limiting shape; i.e. it cannot “jump around” forever.

▶ Lemma 6. Let Tn = {z : φ(z, n, ρn
1 , . . . , ρ

n
d )}, where φ is a semialgebraic predicate and

ρ1, . . . , ρd are real algebraic, be a family of non-empty sets contained in a compact set T .
There exists a non-empty limiting set L ⊆ T to which the sequence Tn converges as n → ∞,
in the following sense.
a For every ϵ > 0, there exists N such that for all n > N , Tn ⊆ L+B(0, ϵ).
b For all z ∈ L and ϵ > 0 there exists N such that for all n > N , z +B(0, ϵ) intersects Tn.

Proof. Write φ(z, n, ρn
1 , . . . , ρ

n
d ) =

∨
α∈A

∧
β∈B pα,β(z, n, ρn

1 , . . . , ρ
n
d ) ▷◁α,β 0. We can define

the sequence ⟨Tt | t ∈ R⟩ as Tt = {z : φ(z, t, ρt
1, . . . , ρ

t
d)}. Let L = {x : lim inf d(x, Tt) = 0}

where d(x, Tt) denotes the shortest Euclidean distance from x to a point in Tt.
We prove the first claim by contradiction. Suppose there exists ϵ > 0 such that at infinitely

many unbounded time steps t1 < t2 < . . . there are points z1, z2, . . . such that zi ∈ Ti but
zi /∈ L+B(0, ϵ). Then the sequence zi must have an accumulation point z in T \ L. But z
will also satisfy lim inf d(z, Tt) = 0 and hence z ∈ L, a contradiction.

We prove the second claim using o-minimality of Rexp. Fix z ∈ L and ϵ > 0 and consider
the set Z = {t ∈ R : z +B(0, ϵ) intersects Tt}. The set Z is o-minimal, and since z ∈ L, it is
unbounded from above. Hence it must contain an interval of the form (N,∞), which implies
the desired result. ◀

One can also show that the set L described above is in fact semialgebraic, but this is not
necessary for our arguments. We are now ready to show that S is pseudo-reachable if Case 1
of Lemma 5 holds.

▶ Lemma 7. If for every ϵ > 0 there exists Nϵ such that for all n > Nϵ, Aϵ(n) intersects S
then S is pseudo-reachable.
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The main idea of the proof is to use the assumption that Aϵ/2(n) intersects S for sufficiently
large n to construct an ϵ-pseudo-orbit that hits S. Intuitively, in order to simulate Aϵ/2(n)
using an ϵ-pseudo-orbit, ϵ/2 of the total control allowance is used to replicate the effect of
the control inputs (of size at most ϵ/2, corresponding to the ϵ

2 B(n) term in the definition of
Aϵ/2(n)) and the remaining ϵ/2 is used to compensate for the abstraction from the starting
point a to the set T . In fact, we do not know if one can deduce that S is ϵ-pseudo-reachable
from knowing that Aϵ(n) intersects S for sufficiently large n. This illustrates the reason
why the pseudo-reachability problem is easier than the ϵ-pseudo-reachability problem; see
Section 4 for a more concrete argument.

Proof. Fix ϵ > 0. We show how to construct an ϵ-pseudo-orbit that hits S. Consider Aϵ/2(n).
By assumption, there exists N1 such that for all n > N1, Aϵ/2(n) intersects S. We now
investigate which localisations of the abstraction are responsible for intersecting S. Apply
Lemma 6 to the sequence of sets Tn = {z ∈ T : Aϵ/2(n)(z) intersects S} to obtain their
“limit” L. Fix any p ∈ L.

Let ϵ′ be small enough so that ϵ′DnB ⊆ ϵ
2 B(n) for all n > 0. Intuitively, such ϵ′ must exist

because DnB and Dn−1B only differ by at most a constant factor that only depends on the
magnitudes ρ1, . . . , ρd of eigenvalues of M , and we have that Dn−1B ⊆

∑n−1
i=0 D

iB = B(n).
By Lemma 6 (b), there exists N > N1 such that for all n > N , p+B(0, ϵ′/2) intersects Tn.
That is, for all n > N there exists pn ∈ T such that ||p − pn|| < ϵ′/2 and pn ∈ Tn.
Equivalently,

||p− pn|| < ϵ′/2 and Aϵ/2(n)(pn) intersects S.

By Kronecker’s theorem there must exist m > N such that ||Rmx− p|| < ϵ′/2. Hence we
have ||Rmx− pm|| < ϵ′ which implies Rmx− pm ∈ ϵ′B and hence Dm(Rmx− pm) ∈ ϵ′DmB.
Since by construction of ϵ′ we have ϵ′DmB ⊆ ϵ

2 B(m), it follows that Dm(Rmx−pm) ∈ ϵ
2 B(m)

and hence Dmpm ∈ DmRmx+ ϵ
2 B(m). Therefore,

Õϵ(m) = (DmRmx+ ϵ

2B(m))+cm+d+ ϵ

2B(m) ⊇ Dmpm+cm+d+ ϵ

2B(m) = Aϵ/2(m)(pm).

Since Aϵ/2(m)(pm) intersects S, it then follows that Õϵ(m) too must intersect S. ◀

3.4 The algorithm
To summarise, the analysis above gives us the following algorithm for determining if S is
pseudo-reachable, i.e. if ∀ϵ > 0. ∃n : Õϵ(n) ∩ S ̸= ∅. Let φ(n, ϵ) be a quantifier-free formula
in Rexp defining the abstraction Aϵ(n). First determine, using the algorithm described in
the proof of Lemma 5, whether Case 1 or Case 2 holds. If the former holds, then conclude
that S is pseudo-reachable. If Case 2 holds, then compute the value of N effectively and
check if there exists n < N such that (Mnx+ cn+ d) ∩ S ̸= ∅.

4 Skolem-hardness of the ϵ-pseudo-reachability problem

In this section we consider the ϵ-pseudo-reachability problem for discrete diagonalisable
systems: given diagonalisable M , starting point s, a target set S and ϵ > 0, decide whether
there exists n such that Mns+

∑n−1
k=0 M

kB(0, ϵ) ∩ S ̸= 0. This problem is also known as the
reachability problem for linear time-invariant systems [8] with the control set B(0, ϵ). We
will reduce a hard subclass of the Skolem problem to our ϵ-pseudo-reachability problem.

MFCS 2022
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The Skolem problem is not known to be decidable for orders d ≥ 5, even for diagonal-
isable recurrences. The largest class of sequences for which decidability is known is the
MSTV (Mignotte-Shorey-Tijdeman-Vereschagin) class, which consists of all linear recurrence
sequences over integers that (i) have at most three dominant roots with respect to the usual
(Archimedean) absolute or (ii) have at most two dominant roots with respect to a p-adic
absolute value [12]. We consider the Skolem problem for integer sequences whose roots
ρ, λ1, . . . , λd satisfy ρ = |λ1| = · · · = |λd|. This class of sequences contains infinitely many
instances that are not in the MSTV class and hence is a hard subclass of the Skolem problem.

Recall that any linear recurrence sequence can be written as un = c⊤Mns where M is the
companion matrix of un whose eigenvalues are the roots of un. Let un be a diagonalisable
sequence that belongs to the hard subclass described above, i.e. un = c⊤Mns where
M = diag(Λ1, . . . ,Λd, ρ) and Λi is a 2 × 2 real Jordan block with ρ(Λi) = ρ for 1 ≤ i ≤ d.
We reduce the problem “does un have a zero?” to an ϵ-pseudo-reachability problem.

Consider the sequence vn = u2
n. Observe that vn =

∑L
i=1 ciΓn

i si + Crn where
r = ρ2,
Γi is a 2 × 2 real Jordan block with ρ(Γi) = r for 1 ≤ i ≤ L,
ci, si ∈ R2 for 1 ≤ i ≤ L, and
C > 0.

The first two statements follow from the fact that the eigenvalues of vn are products of
eigenvalues of un. That C > 0 can be deduced as follows. Consider wn =

∑L
i=1 ciΓn

i si. It
only has non-real roots and hence by [15] is infinitely often positive and negative. Hence if C
is not positive, then vn < 0 for infinitely many n, which contradicts the fact that vn ≥ 0.

Next observe that un has a zero iff there exists n such that vn ≤ 0. Since we are interested
only in the sign of vn, by scaling vn by C(2r)n if necessary we assume that r ∈ (0, 1) and
C = 1. We will construct an instance of the ϵ-pseudo-reachability problem that is positive if
and only if there exists n such that vn ≤ 0.

Define
A = diag(Γ1, . . . ,ΓL),
s = (s1, . . . , sL) and c = (c1, . . . , cL),
ϵ = 1−r

||c|| , and
H = {z : c⊤ · z + 1 ≤ 0}.

Observe that H is ϵ-pseudo-reachable if and only if Ans+
∑n−1

i=0 A
iB(0, ϵ)∩H ̸= 0 for some n.

Since AiB(0, ϵ) = B(0, riϵ), we have
∑n−1

i=0 A
iB(0, ϵ) = B(0, 1−rn

1−r ϵ) := B(n) and

H is ϵ-pseudo-reachable ⇐⇒ min
z∈B(n)

c · (Ans+ z) + 1 is ≤ 0 for some n.

We will show that in fact minz∈B(n) c · (Ans+ z) + 1 = vn, which will conclude the proof.

min
z∈B(n)

c · (Ans+ z) + 1 =
L∑

i=1
ciΓn

i si + 1 + min
z∈B(n)

c · z

=
L∑

i=1
ciΓn

i si + 1 − ||c||1 − rn

1 − r
ϵ

=
L∑

i=1
ciΓn

i si + rn

= vn.
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5 The continuous-time pseudo-reachability problem

In this section we show that the approach we described in Section 3 for deciding the discrete-
time pseudo-reachability problem for diagonalisable systems also works in the continuous
setting with one important difference: to handle Case 2 of the dichotomy lemma (exactly the
same as Lemma 5) we need to solve the bounded-time reachability problem for continuous-
time affine dynamical systems, which is only known to be decidable assuming Schanuel’s
conjecture [5]. For detailed proofs see the full version of the paper.

Let M = diag(Λ1, . . . ,Λk, ρk+1, . . . , ρd) ∈ (R ∩ Q)L×L be a diagonalisable matrix in real
Jordan form, s ∈ QL be a starting point, b ∈ QL be an affine term and S ⊆ RL be a
semialgebraic target set. The trajectory of the system (in the absence of additional control
inputs) is given by

x(t) = eMts+
∫ t

0
eMhb dh.

Intuitively, while in the discrete setting control inputs are applied after each unit of time
and thus are represented by a sequence ⟨dn | n ∈ N⟩, in the continuous setting they are
represented by a continuous function ∆ : R≥0 → RL. Hence an ϵ-pseudo-orbit is defined as a
trajectory

x(t) = eMts+
∫ t

0
eMhb dh+

∫ t

0
eMh∆(t− h) dh.

for some control signal ∆ : R≥0 → RL satisfying ||∆ϵ(t)|| ≤ ϵ for all t ≥ 0. The pseudo-
reachability problem is then defined in the same way as before: decide whether for every
ϵ > 0 there exists an ϵ-pseudo-orbit that reaches S.

Let B be the same control set as defined in Subsection 3.1. For 1 ≤ j ≤ k, let rj = Re(λj)
and ωj = Im(λj) where λj is a non-real eigenvalue of the block Λj . For k < j ≤ d let rj = ρj

and ωj = 0. By using essentially the same arguments as in Subsection 3.1, we can show that
the pseudo-reachability problem is equivalent to determining the truth of

∀ϵ > 0. ∃t : (eMtx+ ct+ d+ ϵB(t)) ∩ S ̸= ∅

where x, c, d are L-dimensional vectors and B(t) = {z : φ(z, t, er1t, . . . , erdt)} for semialgebraic
predicate φ. We denote the term eMtx+ ct+ d+ ϵB(t) by Õϵ(n).

To define a convenient abstraction, we again write eMt = D(t)R(t) where D(t) :=
diag(er1t, er1t, . . . , erkt, erkt, erk+1t, erk+2t, . . . , erk+dt) is diagonal and R(t) is a block diagonal

matrix whose blocks are rotation matrices of the form
[
cos(ωjt) − sin(ωit)
sin(ωjt) cos(ωjt)

]
for 1 ≤ j ≤ k

and are of the form Ωi =
[
1
]

for k + 1 ≤ j ≤ d. Just as in the discrete case, we next define

T := cl({R(t)x : t ∈ R≥0}) and Aϵ(t) := D(t)T + ct+ d+ ϵB(t),

where T is again semialgebraic and effectively computable [5] and Aϵ acts as an abstraction
of Õϵ(t). In particular, for all ϵ > 0 and t ∈ R≥0, we have Õϵ(t) ⊆ Aϵ(t). Moreover, observe
that Aϵ(t) = φ(t, er1t, . . . , erdt) for a semialgebraic function φ, which is the most important
property we need. In the full verision, using the same approach based on o-minimality we
show the following.

▶ Theorem 8. The continuous-time pseudo-reachability problem reduces to the bounded-time
reachability problem for continuous-time affine dynamical systems.
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Intuitively, the dichotomy lemma (Lemma 5) holds verbatim for the continuous systems,
and in Case 1 again S is always pseudo-reachable. It then remains to handle Case 2. Since
bounded-time reachability problem for continuous-time affine dynamical systems can be
encoded in Rexp,cos ↾[0,T ], we have the following (conditional) decidability result.

▶ Corollary 9. Continuous-time pseudo-reachability problem for diagonalisable affine dynam-
ical systems is decidable subject to Schanuel’s conjecture.

6 Discussion

The main technical result of our paper is that it is decidable whether

∀ϵ > 0. ∃n : (Mnx+ f(n) + ϵB(n)) ∩ S ̸= 0

where M is a diagonalisable matrix with algebraic entries, x is an algebraic starting point,
f is a semialgebraic function, S is a semialgebraic target and B(n) = φ(n, ρn

1 , . . . , ρ
n
d ) for

ρ1, . . . , ρd ∈ R ∩ Q and a semialgebraic function φ. We used this result to show decidability
of the discrete-time pseudo-reachability problem for diagonalisable systems in the following
way. We first observed that the pseudo-reachability problem can be cast as the problem of
determining whether ∀ϵ > 0. ∃n : Õϵ(n) ∩ S ̸= ∅, where Õϵ(n) is the set of all points that
are reachable exactly at the time n via an ϵ-pseudo-orbit. After choosing B as the most
convenient control set (see Lemma 4 and Subsection 3.1), we then showed that Õϵ(n) can be
written as Mnx+ f(n) + ϵB(n).

The reason we are unable to show decidability for non-diagonalisable systems in this
fashion is that we are unable to write Õϵ(n) as Mnx+ f(n) + ϵB(n). For example, already

for the Jordan block M =
[
1 1
0 1

]
, and in general already for blocks with a single repeated

real eigenvalue, we do not know whether it is even possible to eliminate the summation∑n−1
i=0 M

iB and express Õϵ(n) = Mnx+ ϵ
∑n−1

i=0 M
iB, where B is any full dimensional shape

containing 0 in its interior, in the required fashion.
Our approach, however, can be used to solve, in full generality, the robust reachability

problem of [1]: given M,x and S, decide whether ∀ϵ > 0 : ∃n : (Mnx+ ϵMnB(0, 1)) ∩S ̸= ∅.
Intuitively, the reason is that in this version there is no summation of the form

∑n−1
i=0 M

iB.
Detailed proofs (for both the discrete-time and the continuous-time versions) can be found
in the full version. For diagonalisable systems in particular, decidability of the robust
reachability problem is almost immediate. First, one can again show that the problem is
equivalent to determining whether ∀ϵ > 0 : ∃n : (Mnx+ ϵMnB) ∩ S ̸= ∅. It then remains to
observe that MnB = φ(n, ρn

1 , . . . , ρ
n
d ) for a semialgebraic predicate φ and apply the technical

result described above.
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Abstract
We consider the problem of listing all avoidable vertices in a given n vertex graph. A vertex is
avoidable if every pair of its neighbors is connected by a path whose internal vertices are not
neighbors of the vertex or the vertex itself. Recently, Papadopolous and Zisis showed that one can
list all avoidable vertices in O(nω+1) time, where ω < 2.373 is the square matrix multiplication
exponent, and conjectured that a faster algorithm is not possible.

In this paper we show that under the 3-OV Hypothesis, and thus the Strong Exponential Time
Hypothesis, n3−o(1) time is needed to list all avoidable vertices, and thus the current best algorithm
is conditionally optimal if ω = 2. We then show that if ω > 2, one can obtain an improved algorithm
that for the current value of ω runs in O(n3.32) time. We also show that our conditional lower bound
is actually higher and supercubic, under a natural High Dimensional 3-OV hypothesis, implying that
for our current knowledge of rectangular matrix multiplication, the avoidable vertex listing problem
likely requires Ω(n3.25) time. We obtain further algorithmic improvements for sparse graphs and
bounded degree graphs.
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1 Introduction

The notion of an “avoidable” vertex in a graph has been studied since the 1970s in the
context of minimal elimination orderings for Gaussian elimination [24, 26], though the name
“avoidable” was first used by Beisegel et al. [9]. A vertex is avoidable if and only if a minimal
elimination ordering can start from it.

In Gaussian elimination of sparse matrices, one iteratively selects a pivot, and then
eliminates its row from the rest of the matrix, potentially creating new nonzero entries: i.e.
fill-in. One seeks to find a good elimination ordering to minimize the fill-in, as the fill-in
determines both the running time and the necessary storage. An iterative approach from the
1970s by [24, 26] was to pick an avoidable vertex (in a graph corresponding to the current
sparse matrix), use it as a pivot, and repeat.

A single avoidable vertex always exists and can be found in linear time in the size of the
matrix as shown by Beisegel, Chudnovsky, Gurvich, Milanic and Servatius [9]. By repeating
n times (for an n × n matrix), one can complete the Gaussian elimination in O(n3) time;
cubic time can be necessary, as the fill-in can make an originally sparse matrix into a dense
one very quickly (though for some matrices this approach can still work well).

A natural question is, can one still use the minimal elimination orderings approach from
the 1970s to find a minimal elimination ordering and hopefully perform Gaussian elimination
in truly subcubic time O(n3−ε) for ε > 0, without using the heavy Strassen-like techniques
that achieve the fastest matrix multiplication algorithms nowadays [28, 12, 6]?
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The hope here is that instead of iteratively finding a new pivot n times, we can compute
several pivots in batch faster and then use them in the Gaussian elimination process. As a
first step, one would ask whether one can find all the (at most n) possible avoidable vertices
in an n-node graph in truly subcubic time? Finding n avoidable vertices as the matrix graph
changes due to fill-in, can intuitively be more complicated.

This motivates studying the problem of listing all avoidable vertices in a graph. Beisegel
et al. [9] present further motivations for studying avoidable vertices, including faster clique
algorithms in certain classes of graphs. Beisegel et al. [9] showed that every graph on at
least two vertices contains at least two avoidable vertices that are at distance the diameter
of the graph, and that two avoidable vertices can be found in linear time. They provided
extensions for avoidable edges, and also used their results for avoidable vertices to provide
fast algorithms for maximum weight clique detection in special classes of graphs.

While the algorithm of [9] can find an avoidable vertex in linear time, the authors only
mention a very slow algorithm for finding the set of all avoidable vertices of a graph. Recently,
Papadopolous and Zisis [25] provide algorithms for computing all avoidable vertices of an n

vertex, m edge graph, running in time O(min{nω+1, n2 + m2}), where ω < 2.37286 is the
exponent of square matrix multiplication [6].

A simpler definition than the one based on minimal elimination orderings is that v is
avoidable if every two neighbors of v, are connected by a path that has no internal vertices
that are v or neighbors of v. As [9] put it, if vertices represent people, then any two neighbors
of an avoidable person v can communicate a secret without any direct acquaintances of v

learning the secret.
A special case of avoidable vertices are simplicial vertices. A vertex is simplicial if its

neighborhood is a clique. Simplicial vertices are very well studied in graph theory. For
example, in the 1960s Dirac [17] showed that every chordal graph contains a simplicial vertex.

Kloks, Kratsch and Müller [20] showed how to list all simplicial vertices in an n-node
graph in O(nω) time. It has been open for over 20 years whether a faster algorithm exists.
(Spinrad [27] explicitly states finding such an algorithm as an open problem.) In the
preliminaries we give a simple proof that the O(nω) time algorithm of [20] is optimal for
listing all simplicial vertices, unless triangles can be found faster. It still remains open
whether finding a single simplicial vertex can be done faster.

Papadopoulos and Zisis [25] state that they do not believe that the running times of
their algorithms for listing avoidable vertices can be improved without resolving the open
problem for simplicial vertices. In this paper we show that it is actually possible to improve
the avoidable vertex listing running time slightly, and further provide fine-grained hardness
reductions that point to concrete hurdles that need to be overcome to further improve the
running time.

1.1 Our results
We provide new algorithms and fine-grained lower bounds for listing all avoidable vertices.

1.1.1 Fine-grained lower bounds
In Section 3, we provide a tight connection between Avoidable Vertex Listing and one of the
central problems in fine-grained complexity, 3-Orthogonal Vectors.

In the k-Orthogonal Vectors problem (k-OV), one is given k sets of n Boolean Vectors
each S1, . . . , Sk ⊆ {0, 1}d in d dimensions, and one wants to determine whether there exist
a1 ∈ S1, . . . , ak ∈ Sk so that

∑d
c=1

∏k
i=1 ai[c] = 0, i.e. that a1, . . . , ak are orthogonal.
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The k-OV Hypothesis of Fine-Grained Complexity (see e.g. [31]) states that there is no
O(nk−ε) time algorithm with ε > 0 that solves size n instances of k-OV when d = poly log(n),
in the word-RAM model of computation with O(log n) bit words.

For any integer k ≥ 2, the k-OV Hypothesis follows from the popular Strong Exponential
Time Hypothesis (SETH) as shown by Williams [33]. The k-OV Hypothesis is even more
believable than SETH, as even if SETH fails, the k-OV Hypothesis might still be true. SETH
and the k-OV Hypothesis have been shown to imply a large variety of tight conditional lower
bounds (see the survey [31] for some results). 3-OV in particular implies such bounds for
graph diameter approximation [8, 23, 16, 14], various dynamic problems [1] and more.

Our first theorem is:

▶ Theorem 1. Under the 3-OV Hypothesis, listing all avoidable vertices in an n vertex graph
requires n3−o(1) time in the word-RAM model of computation with O(log n) bit words.

One can think of this as a negative result. It gives a concrete limitation to using
minimal elimination orderings to obtain a general truly subcubic time algorithm for Gaussian
elimination.

The O(nω+1) time algorithm of [25] would run in O(n3) time if ω = 2 (as some believe).
Thus, if ω = 2, their algorithm would be optimal, under SETH and the 3-OV Hypothesis.

Nevertheless, ω might not be 2. Indeed, there has been quite a bit of work (e.g. [7, 10, 5, 4])
that shows that the known techniques for matrix multiplication cannot achieve ω = 2. Can
we have a conditional lower bound in terms of ω?

Here, we notice that the reduction used to prove Theorem 1 can also be used to tightly
reduce to Avoidable Vertex Listing the 3-OV problem for vectors of dimension n, rather than
polylogarithmic in n, which the standard 3-OV Hypothesis is about.

While 3-OV in polylogarithmic dimensions has a simple n3+o(1) time algorithm (compute
the inner product of every triple of vectors), the fastest known algorithm for 3-OV in n

dimensions is essentially the same as that for 4-clique [18]. It runs in O(nω(1,2,1)) time where
ω(1, 2, 1) is the exponent of multiplying an n by n2 matrix by an n2 by n matrix (see the
preliminaries). The current best bound on this exponent is ω(1, 2, 1) < 3.251640 [22].

We formulate the High Dimensional 3-OV Hypothesis that states that 3-OV for n vectors
in n dimensions requires nω(1,2,1)−o(1) time on the word RAM with O(log n) bit words. This
Hypothesis is the natural extension of the High Dimensional 2-OV Hypothesis used in prior
work (e.g. [13]).

We then extend Theorem 1:

▶ Corollary 2. Under the High Dimensional 3-OV Hypothesis, listing all avoidable vertices
in an n vertex graph requires nω(1,2,1)−o(1) time on the word RAM with O(log n) bit words.

Thus, with the current bounds on ω and ω(1, 2, 1), the algorithm of [25] runs in O(n3.373),
while our conditional lower bound is n3.251−o(1). This gap motivates the question:

In the case when ω > 2, is there an algorithm for listing all avoidable vertices that runs
faster than O(nω+1)? Can one achieve a running time closer to O(nω(1,2,1))?

1.1.2 Faster Algorithms
Utilizing rectangular matrix multiplication techniques, in Section 4-7 we develop a method for
listing all avoidable vertices with a running time strictly between O(nω+1) and O(nω(1,2,1)).

▶ Theorem 3. All avoidable vertices in an m-edge, n-vertex graph can be listed in time

O
(

min{m1.7n0.2 + mn1+o(1), m0.977n1.4+o(1), n3.32}
)

.
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In particular, in dense graphs the above running time is O(n3.32) which is faster than
O(nω+1) for the current value of ω < 2.373. In fact, for any value of ω greater than 2, our
algorithm would run faster than in O(nω+1) time, as rectangular matrix multiplication can
always give us some savings. Our algorithm runs even faster in sparse graphs. Finally, we
also address the case of bounded degree graphs in Appendix B and obtain improved running
times for that case as well.

2 Preliminaries

Let G = (VG, EG) be an undirected, unweighted graph. For a vertex v ∈ V , we use NG(v) to
denote the neighborhood of v. For X ⊂ VG, we define G(X) to be the induced subgraph of
X, namely the graph with vertex set X and edge set {uv|u, v ∈ X} ∩ EG, and define G\X

to be G(VG\X). We call u, v connected in a graph if there is a path connecting them. The
connected components of a graph V are the maximal subsets of VG such that any two vertices
in the subset are connected. When G is clear from the context, we omit G as a subscript.

Avoidable Vertex Listing
Input: G = (VG, EG)
Task: Call a vertex v ∈ VG avoidable if for any a ̸= b ∈ NG(v), there exists a path from
a to b not containing v and any other neighbor of v (“avoiding” v and neighbors). Find
all avoidable vertices.

Throughout the paper, unless otherwise noted, we denote n = |VG| and m = |EG|, where
G is the current graph.

There is an alternative definition which defines v as avoidable if and only if for any
x ≠ y ∈ N(v), there exists T ⊆ VG where {v, x, y} ⊆ T and G(T ) is a single simple cycle
(e.g. [9]). We can see both definitions are equivalent by taking T as the shortest valid path
from a to b in the first definition.

A vertex v in G is simplicial if for every pair of vertices x, y ∈ N(v), (x, y) is an edge.

▶ Proposition 4 ([20]). All simplicial vertices of an n node graph can be listed in O(nω)
time.

Proof. The following simple O(nω) time algorithm lists all simplicial vertices of G: Define A

as the n × n adjacency matrix of G, where A[i, j] = 1 if (i, j) is an edge of G, and A[i, j] = 0
otherwise. Let B be the n × n matrix with B[i, j] = 1 if i ̸= j and (i, j) is not an edge of
G; let B[i, j] = 0 otherwise. Compute the matrix product C = ABA in O(nω) time. For a
vertex i, C[i, i] is nonzero iff there exist distinct neighbors j, k of i for which (j, k) is not
an edge. Thus C[i, i] = 0 if and only if i is a simplicial vertex. Thus by going through the
diagonal of C, we can in additional O(n) time list all simplicial vertices of G. ◀

It is not hard to show that listing all simplicial vertices is at least as hard as Triangle
detection. This means that the problem probably needs nω−o(1) time, unless one can detect
triangles faster. Moreover via [32], we get that there is a truly subcubic time combinatorial
fine-grained reduction from Boolean Matrix Multiplication to listing all simplicial vertices.
Thus any subcubic algorithm for the problem likely requires matrix multiplication.

▶ Proposition 5. If one can list all simplicial vertices of a graph in T (n) time, then one can
detect a triangle in an n node graph in O(T (n)) time.
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Proof. Let G = (V, E) be a graph in which we want to find a triangle. Create a new graph
G′ as follows. Every v ∈ V has two copies v1 and v2 in G′. Let V1 and V2 be the sets of
vertices with the corresponding subscripts. For every edge (u, v) of G, add edges (u1, v2) and
(u2, v1) in G′. Finally, for every non-edge (x, y) of G where x ̸= y, add an edge (x2, y2) to G′.

Suppose v1 is a simplicial vertex of G′. All neighbors of v1 are in V2, and the only way
for v1 to be simplicial is if in G no pair of its neighbors has an edge between them, i.e. v1
does not appear in a triangle. On the other hand, any vertex that is not simplicial must have
a pair of neighbors in G that are connected by an edge. Thus, if we can list all simplicial
vertices, we can determine if a vertex of V1 is not in the list, and that will tell us whether G

has a triangle. ◀

The 3-OV problem (see e.g. [31]) is defined as follows1.

3-OV
Input: Three sets of Boolean vectors A, B, C ⊆ {0, 1}d where |A| = |B| = |C| = n

Task: decide whether there are a ∈ A, b ∈ B, c ∈ C so that their generalized inner
product is 0, i.e.

∑d
i=1 aibici = 0.

The 3-OV Hypothesis (see e.g. [31]), states that in the word-RAM model with O(log n)
bit words, 3-OV requires n3−o(1) even if d is polylogarithmic.

A now well-known result that follows from the seminal work of Williams [33] is that
the 3-OV Hypothesis follows from the Strong Exponential Time Hypothesis (SETH) of
Impagliazzo, Paturi, Zane and Calabro [11, 19].

In the high dimensional version of 3-OV, when the dimension d can be large, the fastest
algorithm for the problem is no longer cubic. In particular, when d = O(n), the fastest
known algorithm runs in O(nω(1,2,1)) ≤ O(n3.252) time. The running time O(nω(1,2,1)) is a
bit faster than O(nω+1) as long as ω > 2, and is O(n3) if ω = 2.

We give the folklore algorithm here for completeness.

▶ Proposition 6 (Folklore). 3-OV on vectors of dimension d = O(n) can be solved in
O(nω(1,2,1)) time.

Proof. Let A and B be the given sets of d-dimensional vectors. Without loss of generality,
assume that d = n. Create an n2 × n matrix Boolean D such that for a ∈ A, b ∈ B, i ∈ [n],
we have D[(a, b), i] = 1 if and only if ai = bi = 1. Let C ′ be the n × n matrix which for
i ∈ [n], c ∈ C, C ′[i, c] = 1 if and only if ci = 1. Then DC ′[(a, b), c] contains a 0 if and only if
the generalized inner product of a, b, c is 0. ◀

Prior work (see e.g. [13, 3]) conjectured that the high dimensional variant (when d = O(n))
of 2-OV requires nω−o(1) time. A natural extension of this assumption is that the matrix
multiplication based running time for 3-OV is best possible.

▶ Definition 7. The High Dimensional 3-OV Hypothesis states that in the word-RAM model
with O(log n) bit words, 3-OV in n dimensions requires nω(1,2,1)−o(1) time.

Our hypothesis above is also related to a popular hypothesis (e.g. [15, 31]) that the best
known running time for 4-Clique is best possible. The best known algorithm for 4-Clique
by [20] is analogous to the best known algorithm for high-dimensional 3-OV above, and it
is natural to conjecture that if this algorithm is best for 4-Clique, it could also be best for
3-OV.

1 An equivalent definition has as an input a single set of vectors and we want to find a triple of orthogonal
vectors in the set.

MFCS 2022



41:6 New Lower Bounds and Upper Bounds for Listing Avoidable Vertices

C ′
clique

A′ B′clique clique

all edges
in C ′ ×A′

all edges
in C ′ ×B′

coordinates [d]

x1 xi xd. . .. . .

c′

iff ci = 0

edge (c′, xi)

a

edge (a, xi)
iff ai = 1

edge (b, xi)
iff bi = 1

b

C ′′
clique

C ′′′
clique

and C ′′ ×A′ and C ′′′ ×B′

c′′′c′′

edge (c′′, xi)

iff ci = 0

edges between
copies of different cs

edge (c′′′, xi)

iff ci = 0

Figure 1 A depiction of the construction from 3-OV to Avoidable Vertex Listing.

3 Conditional Lower Bound

In this section, we derive a conditional lower bound for the problem based on 3-OV-hardness.
We show that an instance of 3-OV of size n can be reduced to the Avoidable Vertex Listing
problem in a graph of O(n) vertices. Therefore Avoidable Vertex Listing requires Ω(n3−o(1))
time, under the 3-OV Hypothesis and the Strong Exponential Time Hypothesis.

Construction

Let an instance A, B, C ⊆ {0, 1}d of 3-OV be given. We create a graph G from it as follows.
The construction is depicted in figure 1.

For every vector a ∈ A, we create a node a′ in G. Denote by A′ the set of nodes formed
by all such a′s. Similarly, for every vector b ∈ B, we create a node b′ in G, forming a set of
nodes B′, and for every vector c ∈ C, we create a node c′, forming a set of nodes C ′.

We make each of A′, B′, C ′ into a clique by adding an edge between every pair of nodes
in it. Also, we add edges between each node of C ′ and every node in A′ ∪ B′.

We add d “coordinate nodes” x1, . . . , xd, corresponding to each coordinate. For each
a ∈ A and i ∈ [d], add an edge (a′, xi) if ai = 1. Similarly, for each b ∈ B and i ∈ [d], add an
edge (b′, xi) if bi = 1. For each c ∈ C and i ∈ [d], we add an edge (c′, xi) if ci = 0. Notice we
treat C differently from A and B: we add edges for C if the corresponding bit is not set but
we add edges for A, B if the bit is set.

For each c ∈ C, we add two more new nodes c′′ and c′′′, forming sets C ′′ and C ′′′

respectively. We add edges from each c′′ to all of A′, and edges from each c′′′ to all of B′.
We add edges from both c′′ and c′′′ to all xi for which ci = 0. For every p ≠ q ∈ C, we
add edges (p′, q′), (p′, q′′), (p′, q′′′), (p′′, q′′), (p′′, q′′′), (p′′′, q′′′). In other words, we connect all
pairs of nodes in C ′ ∪ C ′′ ∪ C ′′′ corresponding to different vectors in C.



M. Deng, V. Vassilevska Williams, and Z. Zhong 41:7

Proof of Correctness
We now prove the correctness of our construction. Specifically, for every c′ ∈ C ′ corresponding
to vector c ∈ C, we will show that c′ is not avoidable in G if and only if there exists
a ∈ A, b ∈ B such that a · b · c = 0.

Take some c′ ∈ C ′. Let Xc be the set of coordinate nodes xi for which ci = 0.
First, consider a pair of the neighbors of c′ that is not in A′ × B′. We’ll show such a pair

is connected without visiting c′ and other neighbors of c′. Since a neighbor of c′ can either
fall in A′, B′, Xc or C ′ ∪ C ′′ ∪ C ′′′, there are several cases:

If the pair contains a vertex a′ ∈ A′, let it be (a′, t). When t ∈ A′ ∪ C ′ ∪ C ′′, there is a
direct edge between t and a′. When t ∈ C ′′′, we must have t = e′′′ with e ≠ c. Thus
there is a path from a′ to c′′ (which is not a neighbor of c′) to t. When t ∈ Xc, there is
also a path from a′ to c′′ (which is not a neighbor of c′) to t.
Similarly, if the pair of neighbors contains a vertex b′ ∈ B′, the pair is also connected.
If the pair of neighbors (e, f) are in Xc ∪ C ′ ∪ C ′′ ∪ C ′′′, then these nodes are not copies
of c′, so they have a path through c′′ ∈ C ′′.

Thus every pair of neighbors of c′ except for those in A′ × B′ has either an edge between
them or a path through non-neighbors of c′.

Consider now some a′ ∈ A′, b′ ∈ B′. If there is a path from a′ to b′ through non-neighbors
of c′, then this path can only go through xi such that ci = 1. The path cannot go through
c′′ or c′′′ as those nodes only have neighbors that are also neighbors of c′. Hence the only
possible paths from a′ to b′ through non-neighbors of c′ are of the form a′ to xi to b′ where
ai = bi = 1 = ci. Thus, there is a neighbor pair of c′ that is not connected when c′ and its
neighbors are removed if and only if there are a ∈ A, b ∈ B so that a · b · c = 0.

Proof of Theorem 1, Corollary 2. Any algorithm for Avoidable Vertex Listing can solve
High Dimensional 3-OV in roughly the same time: we convert the given instance to the
aforementioned graph (which takes O(n2 + nd) time), run Avoidable Vertex Listing on
the graph, and check if there is any non-avoidable c′. The converted graph has O(n + d)
vertices. Thus, if avoidable vertices for n-node graphs could be listed in O(nα) time, so does
n dimensional 3-OV. ◀

4 Basic Algorithm

In this section, we present a basic algorithm for Avoidable Vertex Listing, which performs
a series of Boolean matrix multiplications. The approach is similar to the method of
Papadopolous and Zisis [25].

Let G = (V, E) be a given graph, an instance of Avoidable Vertex Listing.
For each v ∈ G, we check if v is avoidable in two steps. We first find all the connected

components C(v) in G\{v}\NG(v). Then for every x ̸= y ∈ N(v), we check if there exists
a ∈ N(x), b ∈ N(y) such that a, b are in the same connected component in G\{v}\NG(v).

The first step takes O(nm) time via e.g., breadth-first search. For the second step, we
can set a matrix A with entries labeled N(v) × C(v), where A[i, j] = 1 iff N(i) ∩ j ̸= ∅. Then
it suffices to check if A × AT (where × corresponds to Boolean matrix multiplication) has a
zero outside of its diagonal. Calculating matrix multiplication directly takes O(nω) time per
vertex, thus we can solve the problem in O(nω+1) time.

With a more careful analysis, we can show the above algorithm is in fact of O(mnω−1) time.
For each vertex v, we need to do a matrix multiplication of size (deg v, n) × (n, deg v), which
can be done in O((deg v)ω(n/ deg v)) = O(n(deg v)ω−1) time. Notice that

∑
v∈V deg v =

2m, by convexity of function xω−1, the total time complexity O(
∑

v∈V n(deg v)ω−1) ≤
O((m/n)nω) = O(mnω−1) - minimized when 2m/n vertices each have degree n.
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For sparse graphs, we can do even better. Notice that every entry in A corresponds
to an edge in G, so there are only O(m) non-zero entries in A. We can use sparse matrix
multiplication [34] to perform the multiplication, taking Õ((deg v)1.2m0.7 + (n deg v)1+o(1))
time2. By convexity, the function is maximized when deg v ∈ {0, n}, so Õ(

∑
v((deg v)1.2m0.7+

(n deg v)1+o(1))) = Õ((m/n)(n1.2m0.7 + (n2)1+o(1))) = Õ(m1.7n0.2 + mn1+o(1)), which works
better when m is small.

5 Algorithm for Dense Graphs and High Degree Vertices

We first show how to handle dense graphs and high degree vertices. We achieve this by
dividing paths into short and long paths, and utilizing rectangular matrix multiplication.

Let the set of vertices we consider be Vh ⊆ V . For every v ∈ Vh and p, q ∈ N(v), we
call a path from p to q passing no other neighbours of v short if its length ≤ ℓ where ℓ is a
parameter to be set, or long if its length > ℓ. We treat short paths and long paths separately.

5.1 Short paths
On short paths, for every l ≤ ℓ, we want to compute for every v ∈ Vh, p, q ∈ V , if there is a
path from p to q in G that has at most l edges and does not use any internal nodes that are
neighbors of v or v itself. Let X l

v(p, q) = 1 if so and X l
v(p, q) = 0 otherwise. Notice here we

do not require p, q ∈ N(v).
We compute this matrix incrementally. Let A be the adjacency matrix of G and suppose

we have calculated X l−1
v . For some X l

v(p, q) = 1, consider the last node r in the corresponding
path from p to q, we must have X l−1

v (p, r) = 1, A(r, q) = 1, r ̸∈ N(v) ∪ {v}, and vice versa.
Therefore, we can construct a (n · |Vh|) × n matrix C where

C[(v, p), r] = 1 if X l−1
v (p, r) = 1 and r ̸∈ N(v) ∪ {v}, and C[(v, p), r] = 0 otherwise,

then X l
v(p, q) = 1 if and only if (C × A)[(v, p), q] ̸= 0.

Thus X l
v can be computed from X l−1

v in O(M(n|Vh|, n, n))3 time with rectangular
matrix multiplication (e.g. [22]). The computation of Xℓ

v would thus take overall time
O(ℓM(n|Vh|, n, n)).

5.2 Long paths
For p, q ∈ V and v ∈ Vh, suppose that there is a path from p to q with at least ℓ edges that
does not use internal vertices that are v or neighbors of v. Let Pv(p, q) be such a path.

We randomly sample a set of vertices S ⊆ V of size 10n/ℓ log n. We claim that S “splits”
every Pv(p, q) into pieces of length ≤ ℓ with high probability. (This lemma is well-known
and widely used. We include it for completeness.)

▶ Lemma 8. Suppose the path is of nodes t0, t1, · · · , tm where t0 = p, tm = q, m ≥ ℓ. For
every i, call ti, ti+1, · · · , ti+ℓ−1 an ℓ-length segment. For a randomly sampled S ⊆ V where
|S| = ⌈10n/ℓ log n⌉, every ℓ-length segment of the path contains an element from S with
probability ≥ 1 − n−9.

2 Õ hides logarithmic factors. Our matrix multiplication is rectangular with size (deg v, n, deg v), but the
original proof also holds for this case.

3 M(a, b, c) is the time complexity of multiplying (possibly rectangular) matrices of size a × b and b × c.
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Proof. For any ℓ elements, the probability that none of them lies in S is
(

n−ℓ
|S|

)
/
(

n
|S|

)
=∏|S|−1

i=0
n−ℓ−i

n−i ≤ (1 − ℓ
n )|S| ≤ (1 − ℓ

n )n/ℓ·10 log n ≤ n−10. The result then follows from a union
bound. ◀

By the lemma, with high probability S splits each Pv(p, q) into consecutive pieces of
length at most ℓ: the first is from p to some s1 ∈ S, then a piece from s1 to some s2 ∈ S,
. . ., a piece from some st−1 ∈ S to st ∈ S, and finally a piece from st to q. Since we have
computed for every pair of vertices whether there is a path of length at most ℓ between them
not using neighbors of v, we can use this information to compute the full paths as follows.

For every v ∈ Vh, we build a graph Gv whose vertices are the nodes S′ of S that are not
v or neighbors of v, and there is an edge in Gv between a and b if Xℓ

v(a, b) = 1 (i.e. there is
a path of length at most ℓ avoiding the neighbors of v and v). We compute the transitive
closure of Gv. Since Gv is undirected, this can be done in time Õ(n2/ℓ2) for each v.

Let Tv be the transitive closure matrix, compute Yv = Xℓ
v[·, S′] × Tv × Xℓ

v[S′, ·] which
accounts for the first and the final piece in the path. By the above argument, this will tell us
for every pair of nodes if there is a path between them avoiding the neighbors of v with high
probability.

The running time of this over all v is Õ(|Vh| · M(n, n/ℓ, n)), where M(r, s, t) is the time
to multiply an r × s by an s × t matrix.

5.3 Overall runtime on dense graphs
Combining the two algorithms, the final running time would be

Õ(ℓM(n|Vh|, n, n) + |Vh| · M(n, n/ℓ, n)).

Take Vh = V , we immediately get an algorithm for dense graphs. Let ℓ = na,

Õ(ℓM(n|Vh|, n, n) + |Vh| · M(n, n/ℓ, n)) = Õ(nmax(ω(1,2,1)+a,1+ω(1,1,1−a)))

Using bounds from [22], let a = 0.0682157, we have ω(1, 1, 1 − a) < 2.319856,
max(ω(1, 2, 1) + a, 1 + ω(1, 1, 1 − a)) < 3.319856, so the running time exponent of our
algorithm is < 3.320, slightly better than ω + 1 ≈ 3.373. As long as ω > 2, this algorithm
will benefit from rectangular matrix multiplication and have a complexity of O(nω−ε) for
some ε > 0.

6 Algorithm for Low Degree Vertices

The result in the previous section works well for dense graphs or high degree vertices. One
simple improvement is to combine the previous algorithm with sparse matrix multiplication
as in Section 4. In the following, we show we can actually do a bit better by a carefully
designed counting method.

We call a vertex “low-degree” if it has degree ≤ d. Let the set of low-degree vertices be
Vl ⊆ V . Again for every v ∈ Vl and p, q ∈ N(v), we call a path from p to q passing no other
neighbours of v or v short or long depending on whether its length is ≤ L.

For long paths, we calculate connected components of Gv = G\{v}\NG(v) for each v ∈ Vl

and perform the matrix multiplication as in Section 4, but here we can keep only connected
components with size ≥ L, since otherwise the shortest path will have length ≤ L and a short
path could instead be considered. As there are at most n/L such components, we only need to
perform matrix multiplications of size (deg(v), n/L, deg(v)), in time M(deg(v), n/L, deg(v)).
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Now we show how to handle the short paths. We count the number of short avoiding
paths (not necessarily simple) modulo some random prime p and check if it equals to zero.
Since the number of paths of a given length < n is ≤ nn, it has no more than n different
prime factors ≥ n. We randomly sample p as a prime in (n5, n6), by prime number theorem
there are Ω(n5.99) primes within the range, so with probability ≥ 1−O(n−4.99), if the number
of paths is non-zero, it would remain non-zero modulo p. Since we need to check whether the
number of paths is zero at most n3 times, by union bound, all the checks would be correct
with high probability.

For each i ∈ [1, L] and each u, v ∈ G, we compute the number of paths (not necessar-
ily simple) from u to v using exactly i steps, modulo p. This could be done by matrix
multiplication in time Õ(Lnω).

For a vertex v with neighbors v1, v2, · · · , vs, let v0 = v. Construct the following matrices
Fi where

Fi[x, y] = number of paths from vx to vy with length i without visiting other v’s (mod p)

To compute F , let Gi be the matrix where

Gi[x, y] = the number of paths from vx to vy with length i (mod p)

G’s can be directly retrieved from the computed matrices. For an invalid path that visits
neighbors of v or v midways (which are the paths counted in G but not in F ), we consider
the number of steps j took before the first such visit, and the contribution will be FjGi−j .
Therefore we have Fi ≡ Gi −

∑
1≤j<i FjGi−j (mod p).

To compute F1, F2, · · · , FL from G1, G2, · · · , GL, we can use the standard divide-and-
conquer technique (see e.g. [30]). To compute Fl, Fl+1, · · · , Fr, let m = ⌊(l + r)/2⌋, we first
recursively compute Fl, Fl+1, · · · , Fm, then calculate the contribution of Fl, Fl+1, · · · , Fm to
Fm+1, Fm+2, · · · , Fr, then recursively compute Fm+1, Fm+2, · · · , Fr.

To calculate the contribution, for every i ∈ [m + 1, r], we need to calculate
∑m

j=l FjGi−j .
By introducing variable x, the problem can be formulated as a polynomial multiplication:

m∑
j=l

FjGi−j =
m−l∑
j=0

Fj+lGi−l−j

= [xi−l]

m−l∑
j=0

Fj+lx
j

 r−l∑
j=0

Gjxj


4

Therefore we can let F ′ =
∑m−l

j=0 Fj+lx
j , G′ =

∑r−l
j=0 Gjxj , compute their matrix product

modulo p, extract coefficients of x to get the contributions. Entries in these matrices are
polynomials in Fp[x] with degree O(r − l), and operations on such polynomials can be done
in Õ(r − l) time via Fast Fourier Transform (e.g. [2]). Each divide-and-conquer process takes
Õ((r − l)sω) time and computing F1, F2, · · · , FL takes Õ(Lsω) time in total.

Combining the algorithm for short and long paths, we now have an algorithm that takes
Õ(Lnω) time for pre-computation and spends Õ(M(deg(v), n/L, deg(v)) + L deg(v)ω) time
for each vertex v ∈ VL.

3 [xc] extracts coefficient of xc in a polynomial p(x).
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7 Final Algorithm

Finally, we combine the ideas in Section 5 and Section 6. We set a parameter d, use the
algorithm in Section 5 to treat vertices with degree > d and use the algorithm in Section 6
to treat vertices with degree ≤ d.

The number of vertices with degree > d is O(m/d), so the combined complexity would be

Õ(ℓM(nm/d, n, n)+(m/d) ·M(n, n/ℓ, n)+Lnω +
∑

deg(v)≤d

(M(deg(v), n/L, deg(v)) + L deg(v)ω)).

By convexity, it would be maximized when deg(v) ∈ {0, d} for low-degree vertices. The final
complexity would then be

Õ(ℓM(nm/d, n, n) + Lnω + (m/d)(M(n, n/ℓ, n) + M(d, n/L, d) + Ldω)).

Optimizing with respect to d, ℓ, L, we find the complexity to be O(m0.977n1.4+o(1))
(Appendix A).

Combining the algorithms discussed in Section 4, Section 5, Section 7, we arrive at the
following theorem.

▶ Theorem 9. Avoidable Vertex Listing can be solved in time

O(min{m1.7n0.2 + mn1+o(1), m0.977n1.4+o(1), n3.32}).

8 Conclusion

In this paper, we present a new fine-grained reduction from 3OV to Avoidable Vertex Listing,
providing essentially cubic and even supercubic (if ω > 2) conditional hardness for the
problem. We also present new improved algorithms for the problem, combining techniques
such as rectangular matrix multiplication, sparse matrix multiplication, the principle of
inclusion-exclusion and counting.

As analyzed in Section 4, the algorithm by Papadopoulos and Zisis [25] solves Avoidable
Vertex Listing in O(mnω−1) time, and our algorithm improves upon this bound when ω > 2.
When ω = 2, that algorithm runs in O(mn) time, and by our 3OV lower bound, this running
time is conditionally optimal when m = Ω(n2). An interesting problem would be, when
m = o(n2) and ω = 2, can we do better than Ω(nm)? While we can break this bound in
regular or random graphs4 (Appendix B), it remains open for more general graphs.
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A Missing Calculation in Section 7

Suppose m = nα (α ∈ [1, 2]), let
d = n0.015122α2−0.07237α+1.056742

ℓ = n−0.0364α2+0.17612α−0.138437

L = ℓ0.180156.

When t ∈ [1, 2], ω(1, 1, t) < 0.0625t2 + 0.697t + 1.614 (this can be verified by bounds in [22],
[21] and convexity). Let f(t) = 0.0625t2 + 0.697t + 1.614.
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ℓM(nm/d, n, n) = n−0.0364α2+0.17612α−0.138437M(n−0.015122α2+1.07237α−0.056742, n, n)

= O(n−0.0364α2+0.17612α−0.138437+ω(1,1,−0.015122α2+1.07237α−0.056742))

= O(n−0.0364α2+0.17612α−0.138437+f(−0.015122α2+1.07237α−0.056742))
= O(n0.977α+1.4)

The last step can be proved by calculating the extrema of the function −0.0364α2+0.17612α−
0.138437 + f(−0.015122α2 + 1.07237α − 0.056742) − (0.977α + 1.4), which stays negative
in [1, 2].

Similarly we can verify the following by computing the extrema of functions:

Lnω = n0.180156(−0.0364α2+0.17612α−0.138437)+ω = O(n0.977α+1.4)

(m/d)M(n, n/ℓ, n) =O(nα−logn d+ω(1,1,logn(n/ℓ)))

=O(nα−logn d+f(1−logn ℓ))
=O(n0.977α+1.4)

(m/d)M(d, n/L, d) =O(nα−logn d+logn d·ω(1,1,logn(n/L)/ logn d))

=O(nα−logn d+logn d·f((1−logn L)/ logn d))
=O(n0.977α+1.4)

(m/d)Ldω = O(nα−logn d+logn L+ω logn d) = O(n0.977α+1.4)

Thus the whole complexity is bounded by O(n0.977α+1.4) = O(m0.977n1.4+o(1)).

B An Õ(nd3) Time Algorithm for Bounded Degree Graphs

Suppose every vertex in the graph G has degree not exceeding d, we provide a simple
algorithm listing all avoidable vertices of G in Õ(nd3) time.

We maintain a fully-dynamic graph connectivity oracle X supporting addition and removal
of edges [29]. In the beginning, we add all edges in G to X.

For each vertex v, to judge if v is avoidable, we remove all edges adjacent to v or neighbors
of v in X. Then we enumerate every two neighbors of v: p and q. Assume p and q is not
directly connected, we add all edges adjacent to p and q, but not to v or neighbors of v, to
X, and in X check if p and q is now connected. After checking we remove these edges and
consider the next pair. After considering each vertex v we add back initially removed edges.

In this way, for each vertex O(d3) edge modifications (enumerating neighboring pairs and
their adjacent edges) to X will be performed, thus taking Õ(nd3) time in total.
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consider trees, with the keys represented as vertices of the tree. Additionally, we allow the
cost of comparisons to vary across the vertices of the tree. As a result, instead of minimizing
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the search. This problem has been introduced for trees in [26] and for general graphs in [15].
There are two characteristics of such search algorithms: the computational complexity of
calculating a search strategy and the worst-case cost called the query complexity.

As a fundamental problem in computer science, binary search in trees and graphs has
numerous practical applications in data management systems or scheduling of parallel
processes (through graph coloring), machine learning, and other fields. We discuss the
relevant practical problems later on in more detail.
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Figure 1 Binary search on weighted trees. The input tree A contains a target vertex (2), whose
position is unknown to the algorithm. A series of queries is performed to the vertices 1, 6, and 7,
which incurs a cost equal to 4, 2 and 1, for each query respectively. As a result of the subsequent
queries, subtrees B and C are generated that consist of all vertices that may still contain the target,
given the information revealed by previous queries.

1.1 Problem statement
An a priori unknown target vertex t in a known input tree T = (V, E, ω), with a query cost
function ω : V (T ) → R+, should be located by an algorithm via a series of queries. Each
query selects a vertex v and as an answer receives information that either v is the target
(which completes the search), or otherwise it is given an edge {v, u} such that u lies on a path
between v and t. (Note that in the case of a tree the path is unique but for general graphs,
any of the shortest paths is provided, see [15].) The answer is generated at the cost of ω(v)
and we want to design an algorithm that finds the target with the minimum cost in the worst
case. More precisely, once the target has been returned by the algorithm, the cost of the
search equals the sum of the costs of all queries that have been asked, and the performance
of the algorithm is the maximum search cost taken over all vertices as potential targets.
One might think about this search process that with each query the search is narrowed to a
subtree of T that can still contain the target. The process is adaptive in the sense that the
choice of the subsequent elements to be queried depends on the locations and answers of
the previous queries. Also, we consider only deterministic algorithms, where given a fixed
sequence of queries performed so far (and the information obtained), the algorithm selects
always the same element as the next query for a given tree. E.g., the optimal algorithm
for the classic binary search problem on paths that always queries the median element is
adaptive and deterministic. It can be equivalently stated that the algorithm calculates a
strategy for the given input tree, which encodes the queries to be performed for each potential
target.

1.2 Related work and earlier techniques
While in this work we analyze queries that ask questions about vertices of a tree (vertex
query model), an edge query model has been also studied. In the latter, the answer to
each queried edge e ∈ E(G) returns one of the two subgraphs in G \ {e} which contains the
target. The two search models are basically equivalent for paths, but in general, a query to a
vertex with a high degree reveals more information than a query to an incident edge. For
example, to locate the target in a star, one query is sufficient in the vertex model, while in
the edge model all edges need to be queried in the worst case. The binary search can be
further generalized to general graphs, where the answer to a vertex (or edge) query returns
directional information with respect to the shortest path to the target [15].
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It should be noted that other optimization criteria can be considered (e.g., the average
search cost), as well as noisy search models where the response to a query can be incorrect
with a certain probability.

For paths, a natural dynamic programming approach obtains an optimal algorithm for the
weighted version of the problem, which runs in O(n3) time and O(n2) space [19]. The cubic
time can be improved by exploiting a monotonic structure of search costs of the sub-intervals,
which yields an O(n2) time solution [5], for any assignment of the query costs. A linear
time (2 + ϵ + o(1))-approximation algorithm has been presented in [21], where the approach
is based on a trade-off between querying the vertices with small costs and maintaining a
balanced decision tree.

For unweighted trees, optimal search strategies can be computed in linear time by
calculating vertex rankings of the input tree [23, 26], which is a type of graph coloring, where
on a path between any two vertices with the same color there must be a vertex with a color
of a higher value [17, 18]. Once the ranking is calculated, the search strategy is obtained by
always querying the vertex with the highest color, considering the set of vertices that can
still contain the target. Tree rankings have been studied as an independent line of research
leading to the discovery of several algorithms, including linear time algorithms [22, 28].

For weighted trees, the binary search problem becomes NP-complete [12]. A quasi
polynomial-time approximation scheme was obtained through a dynamic programming
approach [8]. The QPTAS is then recursively applied to carefully selected subtrees of the
input tree, which results in a polynomial-time algorithm with an approximation ratio of
O(
√

log n).
The binary search problem has been extended to general graphs in [13, 15], where a

function Φ is defined over the vertex set of the graph that can still contain the search target,
given the responses to the queries performed so far. The Φ is defined in such a way that for
each considered vertex it encodes the sum of distances to all other considered vertices. In
each step, the vertex that minimizes Φ is selected as the next query, and the search space is
reduced to the vertices consistent with the query response, i.e., the vertices with a shortest
path from the queried vertex containing the edge returned by the query. The algorithm uses
at most log2 n queries to find arbitrary vertex in a graph with a uniform cost of queries. A
further study of using graph median for queries can be found in [11].

In the context of practical applications, a related search model has been used to charac-
terize the confidentiality of searching information in databases of genetics information [16].

1.3 Our contribution
An open question has been posed several times about whether a constant-factor approximation
algorithm exists for arbitrary weight functions, see e.g. [2, 4, 5]. The main motivation of this
work is to address this question by finding a natural input instance for which a constant-factor
approximation is achievable. We define this instance as follows: we allow an input tree to
have arbitrary structure but the weight function is assumed to be monotonic:

▶ Definition 1. Given a tree T = (V, E, ω), we say that a cost function ω is monotonic if
there exists a vertex r ∈ V such that for any u, v ∈ V , if v lies on the path between r and u

in T , then ω(u) ≤ ω(v).

Our primary contribution is in providing a constant-factor approximation algorithm for
the binary search problem in this subclass of trees with non-uniform weights. Our solution
shows how a method developed for the problem with uniform costs [26] can be leveraged for
the monotonic case. Our main result is the following.

MFCS 2022
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▶ Theorem 2. There exists an 8-approximate adaptive search algorithm for the search
problem in weighted trees with monotonic cost functions. The algorithm runs in linear time.

The organization of the remaining parts of the paper is as follows. Section 1.4 describes
the motivation for our work, based on practical applications of the studied search model and
several use cases of the monotonic structure of the cost function. Section 2 introduces our
notation and essential concepts commonly used in the related body of research. Section 3
presents the class of decision trees (structured decision trees) that we restrict ourselves to
when building the solution for the search problem. Section 4 introduces further concepts,
which are needed to formulate our algorithm in the subsequent Section 5 and to prove the
approximation factor in Section 6. Section 7 concludes the paper, where we suggest potential
directions for future research.

1.4 Motivation and applications
Graphs form a natural abstraction for processes in many domains. Large graphs are becoming
common in data management and processing systems [27]. Compared to data structures
without order over its elements, it is known that maintaining at least a partial order improves
the performance of fundamental operations like search, update or insert in terms of the
number of comparisons needed [20]. At the same time, creating optimal strategies for
searching in structures with a partial order, can be inherently hard [12]. We conclude
that efficient approximation algorithms for searching in large graphs are important for the
advancement of systems focused on large graph analysis.

The classic binary search and its generalizations is a basic problem in computer science that
occurs in numerous practical problems. The binary search problem posed as a graph ranking
problem can be used to model parallel Cholesky factorization of matrices [9], scheduling of
parallel database queries [10], and VLSI layouts [29]. The binary search model for graphs
has been used to build a general framework for interactive learning of classifiers, rankings, or
clusterings [14].

A monotonic structure of the comparisons cost occurs naturally when considering data
access times in computer systems, e.g., due to memory hierarchies of modern processors,
characteristics of the storage devices, or distributed nature of data management systems. In
the literature on the binary search problem, a Hierarchical Memory Model of computation
has been studied [1], in which the memory access time is monotonic with respect to the
location of a data element in the array. Another work was devoted to modeling the problem
of text retrieval from magnetic or optical disks, where a cost model was such that the cost
of a query was monotonic from the location of the previous query performed in the search
process [24]. We also mention an application of tree domains in automated bug search in
computer code [3]. In such a case naturally occurs a possibility that the tree to be searched
has the monotonicity property. In particular, each query represents performing an automatic
test that determines whether the part of the code that corresponds to the subtree under the
tested vertex has an error. Thus, the vertices that are closer to the root represent larger
parts of the code and thus may require more or longer lasting tests.

2 Preliminaries

The set of vertices of a tree T is denoted by V (T ). Given a tree T = (V, E, w) and a connected
subset of vertices V ′ ⊆ V (T ), we denote by T [V ′] the induced subtree of T consisting of all
vertices from V ′. For a rooted T , we denote the root of T by r(T ), while for any v ∈ V (T ),
Tv denotes the subtree of T rooted at v and consisting of v and all its descendants. For any
two intervals I, I ′ ∈ {[a, b) : 0 ≤ a < b} we write I > I ′ when i > i′ for each i ∈ I and i′ ∈ I ′.
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The sequence of queries is defined as a sequence of vertices queried by a search strategy A
for a target t and is denoted by QA(T, t). The vertex queried by A in the i-th step is denoted
by QA,i(T, t). Given a search strategy for T , one can easily generate a search strategy for
any subtree T ′ by simply discarding the queries to the vertices outside of T ′. A useful way
of encoding search strategies is by using decision trees.

▶ Definition 3. We define a decision tree for T = (V, E, w) generated by a search strategy A
as a rooted tree T = (V, E), where V = V (T ). The root of T is the first vertex queried by A.
For any v ∈ V, v has a child v′ if and only if v′ is queried by A right after v for some choice
of the target. Each v ∈ V corresponds to a subset T (v) ⊂ V (T ) which contains all vertices
that can still contain the target when A queries v.

It can be seen that the root r of any decision tree corresponds to T (r) = V (T ) and the
leaves correspond to single vertices in V (T ).

Lemma 4 shows a property of the decision trees with respect to the positions of vertices
that belong to some connected component of the input tree.

▶ Lemma 4. Let T be a decision tree for T . If T ′ is a subtree of T , then there exists a
vertex u ∈ V (T ′), such that for every v ∈ V (T ′) it holds v ∈ V (Tu).

Proof. We traverse the decision tree T starting at the root of T and following a path to
some leaf. If r(T ) ∈ V (T ′), then the lemma follows. Otherwise, consider children vi of r(T ).
Because in T there is only one edge incident to r(T ) that lies on a path to all vertices of T ′,
all vertices of T ′ belong to exactly one subtree Tvi

. We continue the traversal in Tvi
and set

u as the first visited vertex in this process that belongs to T ′. ◀

We now formally define the cost of a search process, which is the property the algorithm
is trying to minimize. In terms of the search strategy A for an input tree T = (V, E, ω),
the sum of costs of all queries performed when finding a target t ∈ V (T ) is denoted by
COST (A, t), while the cost of A is defined as COST (A) = maxt∈V COST (A, t).

Sometimes in our analysis, we will take one decision tree and measure its cost with
different query times, i.e., for different weights. This approach will allow us to artificially
increase the cost of some queries in the decision tree, which we formalize as follows. Let
T be a decision tree for T = (V, E, ω) and ω′ an arbitrary cost function defined on V (T ),
potentially a different one than ω. We denote by COST (T , ω′) the cost of the decision tree
according to the cost function ω′:

COST (T , ω′) = max{
∑
v∈P

ω′(v) | P is a path from the root to a leaf in T }.

The cost of T is then COST (T , ω) and we shorten it to COST (T ). (Note that one may
equivalently define the cost of T by taking COST (T ) = COST (A) where T is generated by
A.) The minimum cost that is achievable for T is denoted by

OPT (T ) = min{COST (T ) | T is a decision tree for T}.

We say that T is optimal if and only if COST (T ) = OPT (T ).
We will use the following simple folklore lemma whose proof is given for completeness.

Lemma 5 has been previously formulated in [5] in the context of a slightly different problem
of edge search in weighted trees.

▶ Lemma 5. If T is a decision tree for T , then for any subtree T ′ of T there exists a decision
tree T ′, such that COST (T ′) ≤ COST (T ).

MFCS 2022
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Proof. We first apply Lemma 4 and reduce T to its subtree rooted at u ∈ V (T ′). Then, we
sequentially remove from Tu all nodes that do not belong to T ′. For every removed node v,
consider all subtrees rooted at the children of v in the current decision tree. When removing
v we also remove all subtrees that do not contain any vertex from T ′ but we connect the
roots of all other subtrees (note that there will be only one such subtree) directly under the
parent of v. Hence, the reduced tree is still a decision tree. What is more, all paths from
the root to a leaf in the obtained decision tree result from corresponding paths from T by
removing zero or more nodes, which upperbounds the cost of T ′ by the cost of T . ◀

We say that a cost function ω is rounded if the values taken by ω are powers of two (for
any v ∈ V (T ), ω(v) = 2k for some k ∈ N). We also say that T ′ is the rounding of T if it
is obtained from T by rounding the cost function to the closest, greater power of two. We
obtain that OPT (T ′) ≤ 2 OPT (T ) because ω′ ≤ 2ω. On the other hand, Lemma 6 shows
how large is the overhead from applying an optimal decision tree for the input with a rounded
cost function to search through the input tree with the original weights.

▶ Lemma 6. Let T ′ = (V, E, ω′) be the rounding of T = (V, E, ω). Let T and T ′ be optimal
decision trees respectively for T and T ′. We have:

COST (T ′, ω) ≤ 2 COST (T ) = 2OPT (T ).

Proof. We have COST (T ′, ω) ≤ COST (T ′, ω′) ≤ COST (T , ω′) ≤ 2COST (T , ω). The first
inequality holds because ω ≤ ω′. The second inequality holds because T ′ is optimal for T ′.
The last inequality holds because ω′ ≤ 2ω. ◀

3 Structured decision trees

For a rooted tree T = (V, E, ω) with a monotonic ω, we assume that the root is selected as
in Definition 1, that is informally speaking, while traversing any path from the root to a leaf,
the weights of visited vertices are non-increasing. From now on we assume that the input
tree is rooted. We define a layer of a tree T as a subgraph L of T such that all vertices in
V (L) have the same cost, ω(u) = ω(v) for any u, v ∈ V (L). A connected component of L is
called a layer component. We also denote by ω(L) the cost of querying a vertex that belongs
to L, i.e., ω(L) = ω(v) for any v ∈ V (L).

The upper border of layer L is the set of roots of its layer components. The subset of
V (L) consisting of vertices that have at least one child that belongs to a different layer is
called the lower border of L. We will also say that a layer component L′ is directly below a
layer component L if and only if r(L′) has a parent in L. The top layer component is the
one that contains the root of T and a bottom layer component is any L such that there is no
component directly below L. We note that we will apply the above terms to a rounded ω.

▶ Definition 7. Let T be a tree with a monotonic cost function and T a decision tree for T .
Consider a layer component L of T . Let v = r(L). We say that T is structured with respect
to L if for every vertex u ∈ V (Tv), it holds that u ∈ V (Tv). We say that a decision tree T
for T is structured if and only if T is structured with respect to all layer components of T .

Informally speaking, in a structured T we require that each vertex in the entire subtree Tv is
below v in T . This is one of the central ideas in our work for the following reason. While
performing bottom-up processing of (an unweighted) T in [26] (and also other works e.g. [22])
each vertex v encodes which steps are already used for queries of the vertices from Tv. In our
case, that is in a weighted T , we need to encode intervals and the technical problem with
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that is that they have different durations while moving upwards from one layer component
to the next. Thus, some intervals that are free to perform queries while moving to a parent
of v may be too short due to the weights in the next layer component. To deal with that, we
make v = r(L) also the root of Tv. In this way only one interval, i.e., the one assigned to v

needs to be taken into account while moving upwards.
Our method requires the decision tree to be structured only when processing the internal

components of T . By not enforcing structuring with respect to the top layer component,
a potential additive cost of a single query can be avoided. See the Process Component
procedure (Line 9, Algorithm 2). However, this optimization does not change the worst-case
cost of the strategy. In result, the decision tree generated by our algorithm is not structured
in general, and although r(T ), the first vertex queried by the strategy, always belongs to the
top layer component of T , we may have that r(T ) ̸= r(T ), while in a structured decision
tree we always have r(T ) = r(T ), because T is structured with respect to the top layer
component of T .

It turns out in our analysis that considering only structured decision trees introduces an
overall multiplicative cost of 2 to the performance of the algorithm:

▶ Lemma 8. Let T = (V, E, ω) be a tree with a monotonic and rounded cost function. There
exists a structured decision tree T ′ for T , such that COST (T ′) ≤ 2 OPT (T ).

Proof. Let T be any decision tree for T . Since T is selected arbitrarily, it is enough to prove
that COST (T ′) ≤ 2 COST (T ).

In order to construct the structured decision tree, we traverse T in a breadth-first fashion
starting at the root of T . The T ′ is constructed in the process.

By Lemma 4, for an arbitrary layer component L of T , there exists a vertex u′ ∈ V (L)
such that all vertices from L belong to Tu′ . Among all vertices of L, u′ is visited first during
the traversal.

Consider an arbitrary node u being accessed during the traversal. Let L be the layer
component such that u ∈ L. If T is structured with respect to L we continue with the next
node. Otherwise (which for a specific L will happen only once, when u = u′, as argued in
the last paragraph of the proof), we modify T by performing the following steps.

Let v = r(L). We want to replace the subtree Tu with a subtree consisting of the same
nodes but rooted at v. Consider a subtree T ′ of the input T , which can still contain the
target when the search process is about to query u according to T . E.g., V (T ′) = V (Tu).
Let v has k neighbors in T ′. We attach under v the decision trees created with Lemma 5 for
the k components obtained by removing v from T ′. Lemma 5 shows that the cost of any of
the k decision trees is not greater than COST (Tu). Accounting for the cost of v, structuring
L increases COST (T ) no more than ω(L). Consider an arbitrary path P from root to a
leaf in T . For every node u ∈ P that triggers structuring (informally, u is u′ for some L)
an additional node from L is inserted in P . Thus, in the worst case, the weighted length of
arbitrary P increases 2 times when transforming T into structured T ′.

By starting the breadth-first traversal at the root of T , structuring with regards to one
layer component does not make T not structured with regards to any of the previously
structured layer components. ◀

By combining Lemmas 6 and 8 one obtains Corollary 9, which relates the cost of an
optimal decision tree for an input T with the cost of a structured decision tree obtained
through the analysis of the rounding of T .

▶ Corollary 9. For any tree T with a monotonic cost function there exists a structured
decision tree with rounded weights, whose cost is at most 4 ·OPT (T ).

MFCS 2022
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4 Bottom-up tree processing

Our method extends the ranking-based method for searching in trees with uniform costs of
queries [26, 28]. The state-of-the-art algorithm calculates a function f : V (T )→ N called a
strategy function (also called in the literature a ranking [22, 28], or tree-depth [25]). The
strategy function is such that for each pair of distinct vertices v1, v2 ∈ V (T ), if f(v1) = f(v2),
then each path connecting v1 and v2 has a vertex v3 such that f(v3) > f(v1). One property
of the strategy function is that it encodes the (reversed) order of the queries. E.g., in any
sequence of queries, a vertex with a higher value of f is always queried before those with
lower values of the strategy function. Thus, the maximal value of f over the vertices of a
tree is the worst-case number of queries necessary to search the tree. In order to express the
variable costs of queries we extend the strategy function into an extended strategy function
(see also [7]).

▶ Definition 10. A function f : V (T )→ {[a, b) : 0 ≤ a < b}, where |[a, b)| ≥ ω(v) for each
v ∈ V (T ), is an extended strategy function if for each pair of distinct vertices v1, v2 ∈ V (T ),
if f(v1)∩f(v2) ̸= ∅, then the path connecting v1 and v2 has a v3 such that f(v3) > f(v1)∪f(v2).
The length of an interval assigned to a vertex v encodes the cost corresponding to querying v.

Keeping in mind that the cost function is the time needed to perform a query, the values
of an extended strategy function indicate the time periods in which the respective vertices
will be queried. Note that, e.g., due to the rounding, the time periods will be longer than the
query durations and this is easily resolved either by introducing idle times or by following
the actual query durations while performing a search based on a strategy produced by our
algorithm.

We say that u ∈ V (T ) is visible from v ∈ V (T ) if on the path from v to u there is no
vertex x such that f(x) > f(u), where f is a strategy function defined on V (T ). If u is
visible from v we also say that the value f(u) is visible from v. The sequence of values visible
from v in descending order is called a visibility sequence for v.

In our approach, informally speaking, we will partition the rounding of the input tree
into several subtrees (the layer components) and for each of them, we will use the algorithm
from [26]. To clearly describe the initialization required prior to triggering the leveraged
subroutine, and also for completeness, we recall a vertex extension operator used in [26]
for calculating a strategy function. Let f be a strategy function defined on all vertices
below v ∈ V (T ). Let vi, 1 ≤ i ≤ k, be the children of v. The vertex extension operator
attributes v with f(v), based on the visibility sequences S(vi) of the children according to
the following procedure. Consider a set M with values that belong to at least two distinct
visibility sequences S(vi). Let m be the maximum value in M if M ≠ ∅ or −1 otherwise.
The f(v) is set to the lowest integer greater than m that does not belong to any S(vi). The
following lemma characterizes the vertex extension operator.

▶ Lemma 11 ([26]). Given the visibility sequences assigned to the children of v ∈ V (T ), the
vertex extension operator assigns to v a visibility sequence that is lexicographically minimal
(the vertex extension operator is minimizing). Moreover, (lexicographically) increasing the
visibility sequence of a child of v does not decrease the visibility sequence calculated for v (the
vertex extension operator is monotone).

In our approach, we restrict ourselves to extended strategy functions which generate
decision trees that are structured (see Definition 7).
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▶ Definition 12. We say that an extended strategy function f , defined on the vertices of a
tree T with monotonic cost function, is structured if for any layer component L, f(u) > f(v)
for each v ∈ V (Tu), where u = r(L).

It follows that a structured extended strategy function represents a structured decision tree.
As mentioned earlier, we will process each layer component L with the vertex extension

operator but in order to do it correctly, we need to initialize appropriately the roots of the
layer components below L. For that, we define the following operators. Let f be an extended
strategy function defined on the vertices of Tv, where v is the root of a layer component
L′. The structuring operator assigns to v the minimal interval so that f is a structured
extended strategy function on Tv. (We note that in our algorithm v will have some interval
assigned when the structuring operator is applied to v. Hence, the application will assign
the new required interval.) The cost scaling operator aligns the interval attributed to v:
if f(v) = [a, b) and L is the layer component directly above L′, the cost scaling operator
assigns v a new interval [ω(L)⌈ b

ω(L)⌉ − ω(L), ω(L)⌈ b
ω(L)⌉). We will say that the interval

f(v) is aligned to ω(L) after this modification. Informally speaking, this is done so that the
children of the leaves in L have intervals whose endpoints are multiples of ω(L) so that they
become “compatible” with the allowed placements for intervals of the vertices from L. Yet in
other words, this allows us to translate the intervals of the children of the leaves in L into
integers that can be treated during bottom-up processing of L in a uniform way.

▶ Observation 13. Let a layer component L′ be directly below a layer component L in
T = (V, E, ω). If r(L′) is assigned an interval [a, b), whose endpoints are consecutive
multiples of ω(L′) (i.e. a = kω(L′) and b = (k + 1)ω(L′) for some integer k), then the cost
scaling operator assigns to r(L′) an interval [a′, b′) such that b′ ≤ b + ω(L)− ω(L′).

Proof. Consider a layer component L of T = (V, E, ω) and a structured extended strategy
function f defined on the vertices below L. The cost scaling operator selects b′ as the smallest
multiple of ω(L) that is greater or equal than b. Since a′ = b′ − ω(L), we have that a′ < b.
On the other hand, because b− a = ω(L′), a is the highest multiple of ω(L′) that is less than
b. Subsequently, because w(L) is divisible by w(L′), we obtain that a′ ≤ a. What follows,
a′ + ω(L′) ≤ b, and finally b′ ≤ b + ω(L)− ω(L′). ◀

5 Algorithm

We propose an algorithm Structured Tree Search (Algorithm 1). The algorithm starts with
a pre-processing pass, which transforms the input tree to its rounding and selects a root
arbitrarily from the set of vertices with the highest cost o query (cf. Definition 1). An
extended strategy function f is then calculated during a bottom-up traversal over the layer
components of the tree by applying the Process Component procedure (Algorithm 2). Hence,
the extended strategy function for the vertices of a layer component L is calculated only after
it is already defined for all vertices below the component. Moreover, since we use a structured
f , only its values assigned to the roots of the layer components below L are important when
calculating f for the vertices of L.

Given a layer component L, the procedure Process Component iterates over the vertices
of L in a depth-first, postorder fashion. Suppose that a structured extended strategy function
f is defined on all vertices below L and that f is aligned to ω(L) at all roots of layer
components directly below L. To calculate f for the vertices of L, we first calculate the
strategy function f ′ for each vertex of L and then obtain f from f ′ using the formula:
f(u) = [f ′(u)ω(L), (f ′(u) + 1)ω(L)), where u ∈ V (L). (Recall that this is a conversion
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Algorithm 1 Structured Tree Search.

1: Let T be an input tree with a monotonic cost function, for which the extended strategy
function f is calculated.

2: T ← the rounding of T

3: for each layer component L in bottom-up fashion do
4: ProcessComponent(L, f )
5: end for
6: return f

that takes us from the integer-valued strategy function f ′ to the interval-valued extended
strategy function.) To provide an applicable input for the vertex extension operator at the
leaves of L, for each child u ∈ V (L′) of such leaf, we calculate the integer f ′(u) = b

ω(L′)
that is derived from the extended strategy function at u, i.e. from f(u) = [a, b). Note
that since our decision trees are structured, the visibility sequence corresponding to each
root of a layer component below L (which includes u) consists of only one value, the one
that equals the strategy function at the root. What follows, deriving the value of f ′ only
for the roots of the layer components directly below L is sufficient to create a valid input
for the vertex extension operator. In other words, we make these preparations to use the
operator and the corresponding method from [26]. Once each vertex v ∈ V (L) obtains the
corresponding extended strategy function f(v), we apply for the root of L the structuring
operator followed by the cost scaling operator. This will close the entire “cycle” of processing
one layer component.

Algorithm 2 Calculates extended strategy function f for vertices of a layer component L.

1: procedure ProcessComponent(L, f)
2: for each root v of a layer component directly below L do
3: f ′(v)← b

ω(L) , where b is the right endpoint of the interval f(v)
4: end for
5: for each u ∈ V (L) in a postorder fashion do
6: Obtain f ′(u) by applying the vertex extension operator to v

7: f(u)← the interval derived from f ′(u), see Section 4
8: end for
9: if the root v of L is not the root of T then

10: Update f(v) by applying the structuring operator to v

11: Update f(v) by applying the cost scaling operator to v

12: end if
13: end procedure

6 Analysis

Lemma 14 characterizes the interval of the extended strategy function that the Process
Component procedure assigns to the root of a layer component.

▶ Lemma 14. Consider a layer component L of T = (V, E, ω) and a structured extended
strategy function f defined on the vertices below L. Let the intervals of f assigned to the
roots of the layer components directly below L be aligned to ω(L). Suppose that the values of
f over V (L) are obtained by a call to procedure ProcessComponent(L,f). We have that f is
a structured extended strategy function on V (Tr(L)), and the lowest possible interval I, such
that I > f(u), for each u below r(L), is assigned to r(L).
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Proof. Due to the alignment of f at the roots of the components directly below L, the
strategy function f ′ derived from f for these roots is consistent with the query costs in L.
That is, the construction of f ′ done at the beginning of the procedure gives an integer-valued
strategy function. Since f is structured, among all vertices below L, the extension operator
correctly needs to consider only the values of f ′ at the roots of components directly below L.

By Lemma 11, the visibility sequence calculated for the root of L is (lexicographically)
minimized among all possible valid assignments of f ′. Hence in particular, the value of
max{f ′(v) | v ∈ V (Tr(L))} is minimized. It follows that if there exists such an optimal
assignment of f ′ that is structured, then this f ′ is calculated by the procedure is structured
and consequently the f obtained from f ′ is minimal and structured. If there exists no optimal
assignments of f ′ over V (L) that is structured, the structuring operator modifies f and
assigns to r(L) the lowest interval that is greater than f(u) for any u below r(L). ◀

What follows from Lemma 14 and Observation 13 is that given an extended strategy
function f fixed below a layer component L, Algorithm 1 extends f to the vertices of L

in such a way that the interval assigned to r(L) is not higher than the optimal interval
(assuming that f is fixed below L) incremented by an additive factor ω(L′)− ω(L), where L′

is a layer component directly above L. If L is the top component, the structuring transform
is not applied and the additional cost is not incurred.

We now formulate a technical Lemma 15 that helps analyze the strategy generated by
Algorithm 1.

▶ Lemma 15. Let T = (V, E, ω) be a tree with a monotonic and rounded cost function.
We denote by fopt an optimal structured extended strategy function on V (T ). Let L be
a layer component of T with k layer components Lj, 1 ≤ j ≤ k, directly below L. Let
vj = r(Lj), 1 ≤ j ≤ k. We define f ′ as a function defined on V (T ) such that for all vertices
below any vj , f ′ is equal to fopt, while for the vertices vj and above, f ′ is equal to fopt +ω(L).
It holds that f ′ is a structured extended strategy function on V (T ).

Proof. We first show that f ′ is an extended strategy function. We need to show that for
any pair x, y ∈ V (T ), x ̸= y, if f ′(x) = f ′(y), then there is a vertex z ∈ V (T ) separating x, y

such that f ′(z) > f ′(x). (See Definition 10.)
We analyze the following cases with respect to the locations of the vertices x and y. In all

cases we assume that x ̸= y, f ′(x) = f ′(y), and z is the vertex separating x and y according
to f ′.

x ∈ V (Li), y ∈ V (Lj) and i = j.
Let v = r(Li). Because fopt is structured, f ′ is also structured within the subtree Tv,
since it assigns v a higher interval than fopt and f ′ is otherwise identical to fopt. What
follows, because f ′ is structured and we assumed f ′(x) = f ′(y), we have that x ≠ v and
y ̸= v.
Consider the fopt as defined on all vertices of Li. Because x, y ∈ V (Li), we have z ∈ V (Li).
If z ̸= v, then f ′(z) = fopt(z) > fopt(x) = f ′(x), where the last equation holds because
x ̸= v. If z = v, we also have f ′(z) > f ′(x), because f ′ is structured in Tv.
x ∈ V (Li), y ∈ V (Lj) and i ̸= j.
Because f ′ is structured in Li, we have z = r(Li).
Both x and y belong to V (L).
Because fopt is an extended strategy function in L, there is a z ∈ V (L) such that
fopt(z) > fopt(x). Then, by adding ω(L) to both sides of the inequality one obtains
f ′(z) > f ′(x).
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x ∈ V (Li) for some i and y ∈ V (L).
If x ̸= r(Li) then z = r(Li), because f ′ is structured in Li.
Otherwise, both x and y are in the subtree T [V (L) ∪ {x}]. Recall that in this subtree
f ′ is derived from fopt by adding a constant offset, which gives an extended strategy
function.

To show that f ′ is structured in the remaining cases, we observe that for all vertices
above L, f ′ is derived from the structured fopt by shifting the assigned intervals by a positive
offset, which does not change the structural property of the layer components’ roots. ◀

▶ Lemma 16. The cost of the decision tree generated by Algorithm 1 is at most 2 times
greater than the cost of an optimal structured decision tree.

Proof. The proof is by induction, bottom-up over the layer components of the input tree.
Take a tree T = (V, E, ω) with a monotonic and rounded cost function. We denote by
c(i), 1 ≤ i ≤ l, the query cost to a vertex in the i − th layer, where the layers are ordered
according to their cost of query and l is the number of layers in T . Let fopt be an optimal
(structured) extended strategy function and falg be the extended strategy function generated
by Algorithm 1. We denote by z(v) the cost of querying the parent of v or the cost of v itself
if there is no vertex above v, i.e. when v is the root of T .

We want to prove the following induction claim. For any layer component L it holds
falg(v) ≤ fopt(v) + z(v), where v = r(L).

The cost of the decision tree generated by falg is equal to the supremum of falg(r(T )).
Since the cost of a single query to the top layer is not more than the cost of an optimal
structured decision tree, the lemma follows from the induction claim applied to the top layer
component.

Let L be a bottom layer component. Based on Lemma 14 we know that by applying the
vertex extension and structuring operators, Algorithm 1 generates an optimal structured
assignment of the extended strategy function to the vertices of L. In a case where L is also
the top component (which is the trivial case of T being a single layer component) we have
falg is optimal and the induction claim holds. Otherwise, the cost scaling operator extends
the interval assigned to r(L), increasing the cost of L by (at most) an additive factor of
c(2)− c(1) over the optimal cost. Since the added factor is less than z(r(L)), the induction
claim holds for the bottom layer component L.

Let L be a layer component from the i-th layer, with k layer components Lj , 1 ≤ j ≤ k,
directly below L. We denote the roots of the layer components Lj by vj . Consider a strategy
function f ′ which is defined as in Lemma 15, that is for all vertices below any vj , f ′ is equal
to fopt, while for vertices vj and all vertices above, f ′ is equal to fopt + ω(L). Lemma 15
implies that f ′ is a structured extended strategy function on V (T ).

From the induction hypothesis we have that for any vj , falg(vj) ≤ fopt(vj) + z(vj) =
fopt(vj) + ω(L). According to Lemma 14 and Observation 13, Algorithm 1 assigns intervals
to the vertices of L such that the interval assigned to the root of L is the lowest possible
(when L is the top component), or the lowest possible interval incremented by a positive
offset of ω(L′) − ω(L), where L′ is the layer component directly above L. If we sum
up the additive increments due to cost scaling in all layer components below L, we obtain∑

i<l c(i) < c(l) = z(v) (recall that c(i)’s are powers of 2). Thus, falg(v) ≤ fopt(v)+z(v). ◀

By combining Lemmas 6, 8, and 16 we obtain that Algorithm 1 generates a solution
for the binary search problem with a cost at most 8 times greater than that of an optimal
solution. We note that Algorithm 1 maintains the main structure of the linear time algorithm
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from [26] (a single bottom-up pass over vertices of the tree.) Our method extends the
state-of-the-art algorithm by adding a fixed number of O(1) steps, computed when visiting
vertices during the bottom-up traversal. See the Process Component procedure, Algorithm 2.
What follows, Algorithm 1 also runs in linear time. This proves Theorem 2.

7 Conclusions

We recall a related tree search problem, called edge search, in which one performs queries on
edges: each reply provides information which endpoint of the queried edge is closer to the
target [3]. One can similarly define a monotonic cost function ω : E(T )→ R+ for the edge
search by requiring that there exists a choice for the root r so that for any two edges {x, y}
and {y, z}, if x is closer to r than y, then ω({x, y}) ≥ ω({y, z}).

Interestingly, the edge search problem is NP-complete for monotonic weight function
which follows from [6], although the authors do not obtain this fact directly. More precisely,
the reduction in [6] constructs a spider in which each leg has three edges with weights 2a, a,
and Θ(an) (listing them by following from the root to the leaf). Denote by e the latter edge
incident to a leaf. It is not hard to see that e can be replaced by a star on Θ(n) edges, each
of weight at most a, thus getting an instance with a monotonic cost function and the same
search cost.

It turns out that the problem we study in this work is more general in the class of
weighted trees – see the corresponding reduction in [8]. This reduction however does not
preserve the property of monotonicity. In other words, a conversion from an instance of
the edge search with a monotonic cost function produces an instance of the vertex search
with a non-monotonic cost function. Thus, the fact that the edge search is NP-complete for
weighted trees pointed above does not imply hardness in our case. We do believe that the
argument of hardness cannot be easily obtained in a similar way as for the edge search in [6]
and we leave as an open question whether the vertex search problem studied in this work is
NP-complete in case of monotonic cost functions.

Also, we repeat the previously mentioned interesting and challenging open question
whether a constant-factor approximation is possible for the vertex search in trees with general
weight functions.
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Abstract
We show that the Identity Problem is decidable in polynomial time for finitely generated sub-
semigroups of the group UT(4,Z) of 4 × 4 unitriangular integer matrices. As a byproduct of our
proof, we also show the polynomial-time decidability of several subset reachability problems in
UT(4,Z).
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1 Introduction

Among the most prominent algorithmic problems for matrix semigroups are the Identity
Problem and the Membership Problem. For the Membership Problem, the input is a finite
set of square matrices A1, . . . , Ak and a target matrix A. The problem is to decide whether
A lies in the semigroup generated by A1, . . . , Ak. The Identity Problem is the Membership
Problem restricted to the case where A is the identity matrix. These two problems are closely
related to each other, and, as shown in many circumstances, studying the Identity Problem
is usually the first step in studying the Membership Problem.

For general matrices, the Membership Problem is undecidable by a classical result of
Markov [10]. Indeed, it is one of the earliest undecidability results on algorithmic problems
in matrix semigroups. Most variants of the problem remain undecidable in low dimension.
For example, the Mortality Problem, which is the Membership Problem in which the target
matrix is 0, is undecidable in dimension three [12]. In dimension four, the Membership
Problem is undecidable for matrices in SL(4,Z) (see [11]), while the Identity Problem is
undecidable for the set of 4 × 4 integer matrices M4×4(Z) (see [2]).

However, there has also been steady progress on the decidability side. The Membership
Problem is shown to be decidable for GL(2,Z) in [4]. This decidability result is then extended
to 2 × 2 integer matrices with nonzero determinant [13], and to 2 × 2 integer matrices with
determinants equal to 0 and ±1 [14]. It remains an intricate open problem whether the
Membership Problem or the Identity Problem is decidable for SL(3,Z).

Recently, there has been more progress on closing the decidability gap by restricting
consideration to the class of unitriangular matrices. It has long been known that the
Group Membership Problem is decidable for UT(n,Z), the group of unitriangular integer
matrices of dimension n. The Group Membership Problem asks to decide whether a matrix
A lies in the group generated by given matrices A1, . . . , Ak. In fact, it is decidable for all
finitely generated solvable matrix groups [8]. Later, Babai et al. [1] showed that the Group
Membership Problem for commuting matrices can be computed in polynomial time (note
that commuting matrices are simultaneously upper-triangularizable). However, there are
significant differences between the group case and the semigroup case. In fact, for large
enough n, the Knapsack Problem for UT(n,Z) is undecidable [7]. Given matrices A1, . . . , Ak
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and A, the Knapsack Problem asks to decide whether there exist natural numbers e1, . . . , ek

such that Ae1
1 · · · Aek

k = A. From the undecidability of the Knapsack Problem, one can deduce
the undecidability of the semigroup Membership Problem for UT(n,Z) for large enough n [9].

Nevertheless, there have been some positive decidability results. The Identity Problem
has been shown to be decidable for the group of 3 × 3 unitriangular integer matrices UT(3,Z)
and the Heisenberg groups H2n+1 in [6]. Shortly after, the decidability result was extended to
the Membership Problem [5]. Ko et al. left open the problem whether the Identity Problem
in UT(n,Z) is decidable for n ≥ 4, as well as finding the smallest n for which the Membership
Problem for UT(n,Z) becomes undecidable.

The main result of this paper is that the Identity Problem is decidable in polynomial time
for UT(4,Z). This further narrows the gap between decidability and undecidability and can be
regarded as a first step towards the Membership Problem for UT(4,Z). The foundation of our
method is the arguments developed in [5] for the Membership Problem of UT(3,Z). However,
in order to pass from dimension three to four, we need to introduce additional methods
from convex geometry, linear programming and even use the aid of computational algebraic
geometry software. The proof for UT(3,Z) heavily relies on the fact that the subgroup
generated by commutators of matrices from a given subset of {A1, . . . , Ak} ⊂ UT(3,Z) is
isomorphic to a subgroup of Z. This is no longer the case for UT(4,Z). However, UT(4,Z)
is still metabelian [15], and its derived subgroup is isomorphic to Z3. Given a finite set
G ⊆ UT(4,Z), we construct elements in ⟨G⟩ that fall inside the derived subgroup of UT(4,Z).
These elements then generate a cone in Z3 under the isomorphism between the derived
subgroup and Z3. The possible shapes of this cone will determine the Identity Problem.

There is strong evidence that the new techniques introduced in this paper can help tackle
the Identity Problem for UT(n,Z) with n ≥ 5.

2 Preliminaries

Denote by UT(4,Z) the group of upper triangular integer matrices with ones on the diagonal:

UT(4,Z) :=




1 a d f

0 1 b e

0 0 1 c

0 0 0 1


∣∣∣∣∣∣∣∣a, b, c, d, e, f ∈ Z

 .

Denote its normal subgroups

U1 :=




1 0 d f

0 1 0 e

0 0 1 0
0 0 0 1


∣∣∣∣∣∣∣∣d, e, f ∈ Z

 , U2 :=




1 0 0 f

0 1 0 0
0 0 1 0
0 0 0 1


∣∣∣∣∣∣∣∣f ∈ Z


in the lower central series: UT(4,Z) ⊵ U1 = [UT(4,Z), UT(4,Z)] ⊵ U2 = [UT(4,Z), U1] (see
[15, Chapter 5]). In particular, U1 and U2 are respectively the derived subgroup and the
centre of UT(4,Z). For convenience, we introduce the following notations:

UT (a, b, c; d, e, f) :=


1 a d f

0 1 b e

0 0 1 c

0 0 0 1

 , U1(d, e, f) := UT (0, 0, 0; d, e, f).

There are surjective group homomorphisms φ0 : UT(4,Z) → Z3 defined by

φ0(UT (a, b, c; d, e, f)) = (a, b, c),
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with ker(φ0) = U1, and φ1 : U1 → Z2,

φ1(U1(d, e, f)) = (d, e),

with ker(φ1) = U2. Moreover, U1 is itself abelian, with a natural isomorphism τ : U1
∼−→ Z3:

τ(U1(d, e, f)) = (d, e, f).

Denote by τd the projection U1(d, e, f) 7→ d, τe the projection U1(d, e, f) 7→ e, and τf the
projection U1(d, e, f) 7→ f . Then, φ1 = (τd, τe) and τ = (τd, τe, τf ).

Finally, define the subgroup of UT(4,Z):

U10 := {U1(0, e, f) | e, f ∈ Z} ⊴ U1.

For a finite set of matrices G = {A1, . . . , Ak}, denote by ⟨G⟩ the semigroup generated by G.
In this paper, we are concerned with the following problems.

▶ Definition 1. Let G be a monoid of matrices, and H a subset of G.
(i) The Identity Problem in G asks, given a finite set of matrices G in G, whether I ∈ ⟨G⟩.

If this is the case, we say that the identity matrix is reachable.
(ii) The H-Reachability Problem in G asks, given a finite set of matrices G in G, whether

H ∩ ⟨G⟩ ̸= ∅. If this is the case, we say that H is reachable.
The main result of this paper is that the Identity Problem in UT(4,Z) is decidable in
polynomial time, with respect to the number of bits required to encode all the entries of the
matrices in G (each matrix UT (a, b, c, d, e, f) is encoded by the entries a, b, c, d, e, f).

It turns out that the three problems: Identity Problem, U2-Reachability and U10-
Reachability are interconnected and it is more convenient to devise algorithms that decide
them simultaneously. A trivial observation is that, because I ∈ U2 ⊂ U10, a positive instance
of the Identity Problem is also a positive instance of U2-Reachability; and a positive instance
of U2-Reachability is also a positive instance of U10-Reachability.

The following definitions will be used throughout this paper.

▶ Definition 2 (String, product and Parikh vector). Let G = {A1, . . . , Ak} be a fixed set of
matrices in UT(4,Z). A string of G is an expression B1B2 · · · Bm such that Bi ∈ G, i =
1, . . . , m. The product of a string B1B2 · · · Bm is the matrix P ∈ UT(4,Z) such that P =
B1B2 · · · Bm. The Parikh vector of a string B1B2 · · · Bm is the vector ℓ = (ℓ1, . . . , ℓk) ∈ Z≥0
where

ℓj = card({i | Bi = Aj}), j = 1, . . . , k.

When G is clear from the context, we simply use the term “string” instead of “string of G”.

For an integer n ≥ 1, the Heisenberg group of dimension 2n + 1 is the group H2n+1 of

(n + 2) × (n + 2) integer matrices of the form H =

1 a c

0 In b⊤

0 0 1

 , where a, b ∈ Zn, c ∈ Z.

The following result comes from [6] and [5].

▶ Lemma 3 ([5, Theorem 7]). The Identity Problem and the Membership Problem in H2n+1
are decidable for all n ≥ 1.

3 Identity problem, U2- and U10-Reachability in UT(4,Z)

In this section, we construct algorithms that decide the Identity Problem, U2-Reachability
and U10-Reachability in UT(4,Z).

MFCS 2022
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3.1 Overview of decision strategy
For any set of vectors v1, . . . , vl ∈ Rn, denote by

⟨v1, . . . , vl⟩R≥0 :=
{

l∑
i=1

rivi

∣∣∣∣∣ri ∈ R≥0, i = 1, . . . , l

}

the R≥0-cone generated by v1, . . . , vl, and by ⟨v1, . . . , vl⟩R the R-vector space spanned by
v1, . . . , vl.

Let G = {A1, . . . , Ak} be a set of matrices in UT(4,Z), for which we want to decide the
Identity Problem, U2-Reachability and U10-Reachability. Define the R≥0-cone

C := ⟨φ0(A1), . . . , φ0(Ak)⟩R≥0 , (1)

and denote by Clin its lineality space, i.e. the largest linear subspace (by inclusion) contained
in C. In particular, Clin = C ∩ −C. A basis of Clin can be effectively computed in polynomial
time [16]. For any matrix Ai ∈ G, the projection φ0(Ai) can be either in Clin or in C \ Clin.
However, in order to reach U1, which contains the identity matrix, U2 and U10, one can only
use matrices Ai with φ0(Ai) ∈ Clin. This is formally stated by the following proposition.

▶ Proposition 4. If the product of a string B1 · · · Bm is in U1, then every Bj , j = 1, . . . m,

must be in the set {Ai ∈ G | φ0(Ai) ∈ Clin}.

Proof. Suppose on the contrary that some Bj satisfies φ0(Bj) ∈ C \ Clin.
Since φ0 is a group homomorphism, we have

B1 · · · Bm ∈ U1 ⇐⇒ φ0(B1 · · · Bm) = 0 ⇐⇒
m∑

i=1
φ0(Bi) = 0.

Therefore, −φ0(Bj) =
∑

i̸=j φ0(Bi) ∈ C.
Hence, the linear subspace φ0(Bj)R = ⟨φ0(Bj), −φ0(Bj)⟩R≥0 is contained in C. This

yields φ0(Bj)R ⊆ Clin, a contradiction to φ0(Bj) ∈ C \ Clin. ◀

The overall strategy for constructing our algorithm is to use induction on card(G). If
card(G) = 0, then the answers to the Identity Problem, U2-Reachability and U10-Reachability
are all negative. Suppose now that we have an algorithm that decides all three problems
for every set of at most k − 1 matrices, we will construct an algorithm that decides them
for a set of k matrices G = {A1, . . . , Ak}. By Proposition 4, if some matrix Ai satisfies
φ0(Ai) ∈ C \Clin, then we can discard it without changing the answer to the Identity Problem
or U2, U10-Reachability. This decreases the number of elements in G, and an algorithm is
available by the induction hypothesis on card(G). Hence, we can suppose that every Ai ∈ G
satisfies φ0(Ai) ∈ Clin, so C = Clin is a linear space.

Since φ0(Ai) ∈ Z3, C is a linear subspace of R3. We identify cases according to the
dimension of C, with each of the following four subsections treating the case of dimension 3,
1, 0, 2. The pseudocode of the decision procedure for the Identity Problem is given here as a
reference point for the detailed case analysis. The decision procedures for U2-reachability
and U10-reachability follow similar patterns and their pseudocode is given in the appendix
of the full version of this paper. Note that the decision procedure for the Identity Problem
invokes the decision procedure for U2-reachability as a subroutine. Similarly, the decision
procedure for U2-reachability will invoke the decision procedure for U10-reachability as a
subroutine.
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Algorithm 1 IdentityProblem(): deciding the Identity Problem for a subset of UT(4,Z).

Input: A set G = {A1, . . . , Ak} of matrices in UT(4,Z).
Output: True or False.

Step 1: Compute the cone C and its lineality space Clin. For i = 1, . . . , k, if some
φ0(Ai) is not in Clin, return IdentityProblem(G \ {Ai}).

Step 2: a. If dim(C) = 3, return True.
b. If dim(C) = 1, return True if the condition in Proposition 15(i) is satisfied,

otherwise return False.
c. If dim(C) = 0, return True if τ(Ai), i = 1, . . . , m generate a semigroup

containing 0, otherwise return False.
d. If dim(C) = 2, compute a non-zero vector (p, q, r) ∈ Q3 orthogonal to C.

i. If p = 0, but q, r are not zero, or r = 0, but q, p are not zero.
Compute L0, if supp(L0) = {1, . . . , k}, return True, otherwise return
IdentityProblem({Ai | i ∈ supp(L0)}).

ii. If p = r = 0, problem reduces to Identity Problem in H5.
iii. If p = q = 0, r ̸= 0 or r = q = 0, p ̸= 0, compute A′

i as in (9). Return
U2Reachability(A′

1, . . . , A′
k) (see full version of paper).

We now give an overview of the motivation behind classifying cases according to the
dimension of C. As a convention, we always use Ai, i = 1, . . . , k to denote elements of the fixed
generating set G, and Greek letters to denote their entries, i.e. Ai = UT (αi, βi, κi; δi, ϵi, ϕi).
We use Bi, i = 1, . . . , m to denote arbitrary elements in ⟨G⟩ (when appearing in strings, they
are elements in G), and Latin letters to denote their entries, i.e. Bi = UT (ai, bi, ci, di, ei, fi).
The variables Bi can depend on the context.

First of all, we need some results on the structure of products in UT(4,Z). For a positive
integer m, denote by Sm the permutation group of the set {1, . . . , m}. Throughout this paper,
given some matrices B1, . . . , Bm ∈ ⟨G⟩, we will often be computing the product of strings
of the form Bt

σ(1) · · · Bt
σ(m), where σ ∈ Sm and t ∈ Z≥0. The overall idea is to find various

strings Bt
σ(1) · · · Bt

σ(m) whose product is in U1
τ∼= Z3, then use them to generate an abelian

semigroup containing the identity matrix. Let us define the following important values and
abbreviations that will be used throughout this paper. These complicated formulas are
related to the logarithm of the matrices Bi, and readers can for the time being ignore their
exact form and treat them as black boxes.

▶ Notation 5. Given a series of matrices B1, . . . , Bm where Bi = UT (ai, bi, ci; di, ei, fi), i =
1, . . . , m, we introduce the following notation:

(i) For σ ∈ Sm, t ∈ Z≥0,

B(σ, t) := Bt
σ(1) · · · Bt

σ(m). (2)

(ii) For σ ∈ Sm,

Dσ :=
∑
i<j

aσ(i)bσ(j) + 1
2

m∑
i=1

aibi, Eσ :=
∑
i<j

bσ(i)cσ(j) + 1
2

m∑
i=1

bici,

Fσ :=
∑

i<j<k

aσ(i)bσ(j)cσ(k) + 1
2
∑
i<j

(aσ(i)bσ(i)cσ(j) + aσ(i)bσ(j)cσ(j)) + 1
6

m∑
i=1

aibici,
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Gσ :=
∑
i<j

(aσ(i)eσ(j) + dσ(i)cσ(j) − 1
2aσ(i)bσ(j)cσ(j) − 1

2aσ(i)bσ(i)cσ(j))

+ 1
2

m∑
i=1

(aiei + dici − aibici). (3)

(iii) For i = 1, . . . , m,

Di := di − 1
2aibi, Ei := ei − 1

2bici, Fi := fi − 1
2(aiei + dici) + 1

3aibici. (4)

The following proposition gives an exact expression for B(σ, t). Because of the heavily
computational nature of most of our propositions, their proofs are given in the appendix of
the full version of this paper.

▶ Proposition 6. Let Bi = UT (ai, bi, ci; di, ei, fi), i = 1, . . . , m, σ ∈ Sm, t ∈ Z≥0, then

B(σ, t) = UT

(
t

m∑
i=1

ai, t
m∑

i=1
bi, t

m∑
i=1

ci;

t2Dσ + t
m∑

i=1
Di, t2Eσ + t

m∑
i=1

Ei, t3Fσ + t2Gσ + t
m∑

i=1
Fi

)
. (5)

Notice that B(σ, t) ∈ U1 if and only if
∑m

i=1 ai =
∑m

i=1 bi =
∑m

i=1 ci = 0, a condition
that does not depend on the value of t.

Proposition 6 shows that, if B(σ, t) is in U1, then as t → ∞, the asymptotic behaviour of
τ(B(σ, t)) approaches the vector (t2Dσ, t2Eσ, t3Fσ), provided that Dσ, Eσ, Fσ do not vanish.
Therefore, the hope is that, as t, σ vary, the vectors (t2Dσ, t2Eσ, t3Fσ) can generate R3 as an
R≥0-cone, barring a few degenerate cases. If these degenerate cases do not happen, then the
different vectors τ(B(σ, t)) will also generate R3 as an R≥0-cone. In particular, the identity
element in R3 can be generated by τ(B(σ, t)) as an additive semigroup, giving a positive
answer to the Identity Problem. For the degenerate cases, they will be treated individually.
As it will turn out, there are only two types of degeneracy (which may occur simultaneously):

(i) Fσ = 0 for all σ.
(ii) For some p, r ∈ Q, possibly zero, we have pDσ = rEσ for all σ.

When (i) occurs, the asymptotic behaviour of τ(B(σ, t)) approaches the vector
(t2Dσ, t2Eσ, t2Gσ), since Gσ is the second most dominant term after Fσ. This situation
reminds us of the Identity Problem for H3, and can be solved in a similar way. When (ii)
occurs, the vectors (t2Dσ, t2Eσ, t3Fσ) are constrained to a strict linear subspace of R3. Hence,
in order to describe the R≥0-cone generated by the vectors τ(B(σ, t)), one needs to consider
the sub-dominant terms as well, i.e. the terms t

∑m
i=1 Di, t

∑m
i=1 Ei.

The rest of this paper aims to formalize this idea. We first exhibit a series of lemmas that
characterise these degenerate cases. Our first lemma shows that, supposing B(σ, t) ∈ U1,
then degenerate case (ii) happens if and only if ⟨φ0(B1), . . . , φ0(Bm)⟩R is degenerate (i.e. of
dimension at most 2).

▶ Lemma 7. Given p, r ∈ R and m ≥ 2. Suppose
∑m

i=1 ai =
∑m

i=1 bi =
∑m

i=1 ci = 0. The
two following statements are equivalent:

(i) For all σ ∈ Sm, pDσ = rEσ.
(ii) Either bi = 0 for all i = 1, . . . , m, or there exist q ∈ R, such that pai + qbi + rci = 0

for all i = 1, . . . , m.
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The next lemma shows that if B(σ, t) ∈ U1, then by “inverting” σ, we get a permutation
σ′ such that (Dσ, Eσ) and (Dσ′ , Eσ′) are opposites of one another.

▶ Lemma 8. Suppose
∑m

i=1 ai =
∑m

i=1 bi =
∑m

i=1 ci = 0, m ≥ 2. For every σ ∈ Sm, there
exists σ′ ∈ Sm, such that (Dσ′ , Eσ′) = −(Dσ, Eσ).

We then show that, if B(σ, t) ∈ U1, then the value of Fσ for different σ ∈ Sm sums up to
zero:

▶ Lemma 9. Suppose
∑m

i=1 ai =
∑m

i=1 bi =
∑m

i=1 ci = 0, where m ≥ 3. Then we have∑
σ∈Sm

Fσ = 0.

The last lemma characterizes situations where the aforementioned degenerate case (i)
happens. Its proof relies on the aid of a computational algebraic geometry software due to
the complexity of the expressions Fσ.

▶ Lemma 10. Let m = 4. Suppose
∑4

i=1 ai =
∑4

i=1 bi =
∑4

i=1 ci = 0. Then, Fσ = 0 for all
σ ∈ S4, if and only if at least one of the following four conditions holds:

(i) a1 = a2 = a3 = a4 = 0.
(ii) b1 = b2 = b3 = b4 = 0.
(iii) c1 = c2 = c3 = c4 = 0.

(iv) rank

a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

 ≤ 1.

A common idea of Lemma 7 and Lemma 10 is that the degeneracy of (Dσ, Eσ, Fσ)
is related to the degeneracy of φ0(B1), . . . , φ0(Bm). Hence, it is natural to consider the
degeneracy of the vectors φ0(Ai), i = 1, . . . , k, where Ai ∈ G are the elements of the generating
set. This degeneracy is described by the dimension of the linear space C discussed at the
beginning of the section. This justifies the classification according to dim(C). We now begin
the case analysis.

3.2 C has dimension 3

The main idea of this case is that, for a well chosen set of matrices B1, B2, B3, B4 ∈ ⟨G⟩, the
vectors (Dσ, Eσ, Fσ), σ ∈ S4, are not degenerate and the asymptotic behaviour of τ(B(σ, t))
approaches the vector (t2Dσ, t2Eσ, t3Fσ), leading to a positive answer to the Identity Problem.

Let B1, B2, B3, B4 ∈ ⟨G⟩ with Bi = UT (ai, bi, ci; di, ei, fi), i = 1, . . . , 4 be such that

4∑
i=1

φ0(Bi) = 0 (6)

and

⟨φ0(B1), φ0(B2), φ0(B3), φ0(B4)⟩R≥0 = C = R3. (7)

Equation (6) shows that B(σ, t) ∈ U1 for all σ ∈ S4, t ∈ Z≥0.
The following lemma shows that the d, e-coordinates of different τ(B(σ, t)) generate R2

as an R≥0-cone.

▶ Lemma 11. Assuming (6) and (7), we have ⟨{φ1(B(σ, t)) | σ ∈ S4, t ∈ Z}⟩R≥0 = R2.
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Proof. First, we claim that ⟨{(Dσ, Eσ) | σ ∈ S4}⟩R = R2.

In fact, suppose to the contrary that ⟨{(Dσ, Eσ) | σ ∈ S4}⟩R has dimension at most 1.
Then there exist p, r ∈ R, not both zero, such that for all σ ∈ S4, pDσ = rEσ. By Lemma 7,
this means that either bi = 0 for all i or there exists some q ∈ R such that pai + qbi + rci = 0
for all i. In both cases, the R-linear subspace spanned by φ0(B1), φ0(B2), φ0(B3), φ0(B4)
has dimension at most 2, contradicting Equation (7). This proves the claim. Hence, there
exist σ1, σ2 ∈ S4 such that (Dσ1 , Eσ1) and (Dσ2 , Eσ2) span R2 as an R-linear space.

Next, by Lemma 8, there exist σ′
1, σ′

2 ∈ S4 such that (Dσ′
1
, Eσ′

1
) = −(Dσ1 , Eσ1) and

(Dσ′
2
, Eσ′

2
) = −(Dσ2 , Eσ2). It follows that (Dσ1 , Eσ1), (Dσ2 , Eσ2), (Dσ′

1
, Eσ′

1
), (Dσ′

2
, Eσ′

2
) gen-

erate R2 as an R≥0-cone, and all four vectors are non-zero.
Finally, consider the products B(σ, t) with σ ∈ {σ1, σ2, σ′

1, σ′
2}. By Proposition 6, when

t → +∞, we have φ1(B(σ, t)) = (Dσ, Eσ)t2 + O(t). Therefore, when t is large enough, the
angle between φ1(B(σ, t)) and (Dσ, Eσ) tends to zero, for all σ ∈ {σ1, σ2, σ′

1, σ′
2}. Hence,

for large enough t, φ1(B(σ1, t)), φ1(B(σ2, t)), φ1(B(σ′
1, t)), φ1(B(σ′

2, t)) generate R2 as an
R≥0-cone. This proves the Lemma. ◀

The next proposition shows that as σ, t vary, the vectors τ(B(σ, t)) generate R3 as an
R≥0-cone.

▶ Proposition 12. Assuming (6) and (7), we have ⟨{τ(B(σ, t)) | σ ∈ S4, t ∈ Z}⟩R≥0 = R3.

Proof. First, note that all B(σ, t) have integer coefficients. By Lemma 11, there exist
elements P1, P2, P3 ∈ ⟨{B(σ, t) | σ ∈ S4, t ∈ Z}⟩ such that φ1(Pi), i = 1, 2, 3 generate R2 as
an R≥0-cone (see Figure 1 for an illustration.).

Next, the idea is to find two additional matrices P+, P− ∈ {B(σ, t) | σ ∈ S4, t ∈ Z},
whose images under τ are relatively close to the f -axis in R3. By Lemmas 9 and 10, there
exist σ+, σ− ∈ S4 such that Fσ+ > 0, Fσ− < 0. Indeed, by condition (7), none of the four
conditions of Lemma 10 hold. Thus there exists σ ∈ S4 such that Fσ ̸= 0. Then Lemma 9
shows we can find σ+ and σ− such that Fσ+ > 0 and Fσ− < 0.

By Proposition 6, when t → +∞, we have τf (B(σ+, t)) = Fσ+t3 + O(t2) and
τf (B(σ−, t)) = Fσ−t3 + O(t2), whereas τd(B(σ±, t)) = O(t2) and τe(B(σ±, t)) = O(t2).
Therefore, when t is large enough, the angle between τ(B(σ+, t)) and (0, 0, 1) tends to zero,
as well as the angle between τ(B(σ−, t)) and (0, 0, −1).

Finally, we claim that there exists t such that τ(P1), τ(P2), τ(P3), τ(B(σ+, t)), τ(B(σ−, t))
generate R3 as an R≥0-cone. See Figure 1 for an illustration. To justify this claim, suppose
to the contrary that for every t, the R≥0-cone spanned by the five vectors τ(P1), τ(P2), τ(P3),
τ(B(σ+, t)), τ(B(σ−, t)) is a proper subset of R3. In other words, if we denote by ⟨·, ·⟩
the canonical inner product of R3, then there exists a vector vt with norm 1, such that
⟨vt, τ(Pi)⟩ ≥ 0, i = 1, 2, 3 and ⟨vt, τ(B(σ±, t))⟩ ≥ 0. For example, we can take vt to be any
normalized vector in the dual of the cone generated by these five vectors ([3, Chapter 2.6]).
By the compactness of the unit sphere, {vt}t∈N has a limit point v. We have ⟨v, τ(Pi)⟩ ≥
0, i = 1, 2, 3, so v is not orthogonal to the f -axis, otherwise τ(Pi), i = 1, 2, 3 would all be
on the same side of a hyperplane passing through the f -axis, contradicting the fact that
their d, e-coordinates generate R2 as an R≥0-cone. Hence, ⟨v, (0, 0, 1)⟩ ̸= 0. Without loss of
generality, suppose ⟨v, (0, 0, 1)⟩ < 0. When t → ∞, the angle between (0, 0, 1) and τ(B(σ+, t))
tends to zero. Therefore, for all large enough t, we have ⟨v, τ(B(σ+, t))⟩ < 0. Since v is a
limit point of {vt}t∈N, there exists a large enough t such that ⟨vt, τ(B(σ+, t))⟩ < 0. This
contradicts the fact that ⟨vt, τ(B(σ+, t))⟩ ≥ 0 for all t. ◀
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f

Figure 1 Illustration of the five vectors
constructed in Proposition 12.

d

e

f

pd - re = 0

Figure 2 Illustration of the four vectors
constructed in Proposition 19.

▶ Corollary 13. When C has dimension 3, the identity matrix is reachable (and hence also
U2 and U10).

Proof. By Proposition 12, one can find Q1, Q2, Q3, Q4 ∈ ⟨G⟩∩U1 such that τ(Qi), i = 1, . . . , 4
generate R3 as an R≥0-cone. In particular, −τ(Q1) ∈ ⟨τ(Q1), τ(Q2), τ(Q3), τ(Q4)⟩R≥0 .
So there exist xi ∈ R≥0, i = 1, . . . , 4, not all zero, such that

∑4
i=1 xiτ(Qi) = 0. Since

τ(Qi), i = 1, . . . , 4 have integer entries, one can suppose xi ∈ Z≥0. Hence, τ(
∏4

i=1 Qxi
i ) =∑4

i=1 xiτ(Qi) = 0, which yields I =
∏4

i=1 Qxi
i ∈ ⟨G⟩. ◀

3.3 C has dimension 1
Next, we consider the case where dim C = 1. The main idea of this case is that if the product
of a string B1 · · · Bm is in U1, then all Dσ, Eσ, Fσ vanish, so τ(B(σ, t)) is determined by some
linear terms as well as by Gσ. Recall that we write Ai = UT (αi, βi, κi; δi, ϵi, ϕi), i = 1, . . . , k.
Similar to notation (4), we define the following quantities for convenience:

∆i := δi − 1
2αiβi, Ei := ϵi − 1

2βiκi, Φi := αiβiκi − 1
2(αiϵi + δiκi) + 1

3ϕi. (8)

Since C has dimension 1, there exist α, β, κ ∈ Z such that φ0(Ai) = (α, β, κ) · ρi for
ρi ∈ Z, i = 1, . . . , k.

▶ Proposition 14. Suppose φ0(Ai) = (α, β, κ) ·ρi for ρi ∈ Z, i = 1, . . . , k. Let ℓ = (ℓ1, . . . , ℓk)
be the Parikh vector of a string B1 · · · Bm, with the product P = B1 · · · Bm. Then

(i) P ∈ U10 if and only if
∑k

i=1 ℓiρi = 0 and
∑k

i=1 ℓi∆i = 0.
(ii) P ∈ U2 if and only if

∑k
i=1 ℓiρi = 0,

∑k
i=1 ℓi∆i = 0 and

∑k
i=1 ℓiEi = 0.

The immediate consequence of Proposition 14 is that U2-Reachability and U10-Reachability
are decidable using linear programming (LP). For example, U10-Reachability has a positive
answer if and only if the LP instance

∑k
i=1 ℓiρi = 0,

∑k
i=1 ℓi∆i = 0, ℓi ≥ 0, i = 1, . . . , k, has

a non-zero integer solution (ℓ1, . . . , ℓk). However, because all the equations and inequalities
in the LP instance are homogeneous, the LP instance has a non-zero integer solution if and
only if it has a non-zero rational solution. Furthermore, the total bit length of ρi, ∆i, Ei is
linear with respect to the encoding size of G. Therefore, the existence of a non-zero rational
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solution is decidable in polynomial time. In particular, for i = 1, . . . , k, one can decide
whether this LP instance has a rational solution (ℓ1, . . . , ℓk) with ℓi = 1. Then, the LP
instance has a non-zero rational solution if and only if it has a rational solution with ℓi = 1
for some i. The decision procedure for U2-Reachability is similar.

Next, we consider the Identity Problem. Define the set

Λ :=
{

(ℓ1, . . . , ℓk) ∈ Zk
≥0

∣∣∣∣∣
k∑

i=1
ℓiρi =

k∑
i=1

ℓi∆i =
k∑

i=1
ℓiEi = 0

}
.

By Proposition 14, the product of a string is in U2 if and only if its Parikh vector is in Λ. It
is easy to see that Λ is additively closed, meaning Λ + Λ ⊆ Λ. Define the support of a Parikh
vector ℓ = (ℓ1, . . . , ℓk) to be supp(ℓ) = {i | ℓi ̸= 0}, and the support of the set Λ to be

supp(Λ) :=
⋃
ℓ∈Λ

supp(ℓ) = {i | ∃(ℓ1, . . . , ℓk) ∈ Λ, ℓi ̸= 0}.

For i = 1, . . . , k, we have i ∈ supp(Λ) if and only if the LP instance
∑k

i=1 ℓiρi =
∑k

i=1 ℓi∆i =∑k
i=1 ℓiEi = 0, ℓi > 0 and ℓj ≥ 0, j ̸= i has an integer solution. Again, by homogeneity, this is

decidable in polynomial time by deciding the existence of a rational solution. Hence, supp(Λ)
is computable in polynomial time by deciding whether i ∈ supp(Λ) for all i = 1, . . . , k.

If supp(Λ) ̸= {1, . . . , k}, we can discard the elements Ai ∈ G with i /∈ supp(Λ), then
card(G) decreases and we are done by the induction hypothesis. Hence, we only need to
consider the case where supp(Λ) = {1, . . . , k}. The following proposition answers the Identity
Problem in this case. Again, the homogeneity yields a polynomial time deciding procedure.

▶ Proposition 15. Suppose φ0(Ai) = (α, β, κ) · ρi for ρi ∈ Z, i = 1, . . . , k, and supp(Λ) =
{1, . . . , k}. Define the values Γi = αϵi − κδi, i = 1, . . . , k. Then

(i) When ρiΓj = ρjΓi for all i, j ∈ {1, . . . , k}, the identity matrix is reachable if and only
if the set {(ℓ1, . . . , ℓk) ∈ Λ |

∑k
i=1 ℓiΦi = 0} is not equal to {0}.

(ii) When ρiΓj ̸= ρjΓi for some i, j ∈ {1, . . . , k}, the identity matrix is reachable.

3.4 C has dimension 0
In this case, φ0(Ai) = 0 for all i, so G ⊂ U1. Since U1

τ∼= Z3, the Identity Problem and U2,
U10-Reachability are decidable using linear programming. For example, deciding the Identity
Problem amounts to deciding whether the LP instance

∑k
i=1 ℓi ·τ(Ai) = 0, ℓi ≥ 0, i = 1, . . . , k

has a non-zero integer solution. As before, by the homogeneity of the LP instance, this is
decidable in polynomial time by considering solutions in Q.

3.5 C has dimension 2
Suppose now that there exist p, q, r ∈ Z, not all zero, such that pαi+qβi+rκi = 0, i = 1, . . . , k.
Consider the following cases on the values of p, q, r.

3.5.1 Case 1: there is at most one zero among p, q, r

The main difficulty of this case is as follows. By Lemma 7, (Dσ, Eσ) is constrained to the
one dimensional subspace {(d, e) | pd − re = 0} ⊂ R2. Therefore, in order to decide whether
the vectors τ(B(σ, t)) can generate the neutral element, one needs to take into account their
linear terms, i.e. (

∑m
i=1 Di,

∑m
i=1 Ei) as well. Define the additively closed set:

L :=
{

(ℓ1, . . . , ℓk) ∈ Zk
≥0

∣∣∣∣∣
k∑

i=1
ℓiφ0(Ai) = 0

}
.
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The product P of a string B1 · · · Bm is in U1 if and only if its Parikh vector is in L.

▶ Lemma 16. When C = Clin, we have supp(L) = {1, . . . , k}.
We continue to adopt the notations from (8) for ∆i, Ei. Consider the subset of L:

L0 :=
{

(ℓ1, . . . , ℓk) ∈ L

∣∣∣∣∣p
k∑

i=1
ℓi∆i − r

k∑
i=1

ℓiEi = 0
}

.

L0 can be described as the set of Parikh vectors whose corresponding strings have linear
terms falling on the line pd−re = 0. Again, L0 is additively closed. The main idea is that the
quadratic term of φ1(B(σ, t)) falls on the line pd−re = 0, therefore, if P ∈ U2, φ1(B(σ, t)) = 0,
then its linear term must also fall on the line pd − re = 0. This leads to the following lemma.

▶ Lemma 17. Suppose dim C = 2. If the product P of a string B1 · · · Bm is in U2, then its
Parikh vector ℓ is in L0.

The following proposition gives a solution to the U10-Reachability problem.

▶ Proposition 18. Suppose dim C = 2 and at most one of p, q, r is zero.
(i) When r ̸= 0, U10 is reachable.
(ii) When r = 0, p ̸= 0, U10 is reachable if and only if L0 is not equal to {0}.

In particular, whether L0 equals {0} is decidable by linear programming, (again, by
homogeneity, one can solve the linear programming instance in Q). Hence, U10-Reachability
is decidable. We then treat the Identity Problem and U2-Reachability. Consider the support
of L0. As before, supp(L0) = {i | ∃(ℓ1, . . . , ℓk) ∈ L0, ℓi ̸= 0} is computable using linear
programming. By Lemma 17, in order to reach U2 (or the identity matrix), we can only use
matrices with index in supp(L0). By discarding matrices and using the induction hypothesis
on card(G), we only need to consider the case where supp(L0) = {1, . . . , k}. The following
proposition gives a positive answer to the Identity Problem and U2-Reachability in this case.

▶ Proposition 19. Suppose dim C = 2 and at most one of p, q, r is zero. If supp(L0) =
{1, . . . , k}, then the identity matrix is reachable. (In particular, U2 is reachable.)

Sketch of proof. Similarly to Proposition 12, we construct four elements in U1 ∩ ⟨G⟩ whose
images under τ generate the two-dimensional linear subspace {(d, e, f) ∈ R3 | pd − re = 0}
as an R≥0-cone (see Figure 2 for an illustration). Consequently, the Z≥0-cone that they
generate is two-dimensional lattice in {(d, e, f) ∈ Z3 | pd − re = 0}, which contains the
neutral element. ◀

3.5.2 Case 2: p = r = 0

In this case, G ⊂ H5, so the Identity Problem is decidable by Lemma 3. U2 and U10-
Reachability reduce to the Identity Problem in Z4 and Z3, respectively, which are decidable
in polynomial time using linear programming. Here, we claim an additional complexity
result that strengthens Lemma 3, which is crucial for a polynomial complexity algorithm for
UT(4,Z).

▶ Proposition 20. For a fixed n, the Identity Problem in H2n+1 is decidable in polynomial
time.
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43:12 On the Identity Problem for Unitriangular Matrices of Dimension Four

3.5.3 Case 3: p = q = 0, r ̸= 0 or r = q = 0, p ̸= 0
The main technique in this case is a reduction from the Identity Problem to U2-Reachability,
from U2-Reachability to U10-Reachability, and from U10-Reachability to linear programming
or to the Identity Problem in H3. If p = q = 0, r ̸= 0, then κi = 0, i = 1, . . . , k. If r = q = 0,
p ̸= 0, then αi = 0, i = 1, . . . , k. Define the following matrices in H3:

Hi :=

1 αi δi

0 1 βi

0 0 1

 , i = 1, . . . , k.

The following proposition along with Proposition 20 provides a solution to U10-Reachability.

▶ Proposition 21.
(i) When κi = 0, i = 1, . . . , k, U10-Reachability for A1, . . . , Ak is equivalent to the Identity

Problem for H1, . . . , Hk.
(ii) When αi = 0, i = 1, . . . , k, U10 is reachable for A1, . . . , Ak if and only if

∑k
i=1 ℓiδi =∑k

i=1 ℓiβi =
∑k

i=1 ℓiκi = 0 has a non-zero integer solution (ℓ1, . . . , ℓk) ∈ Zk
≥0.

Next, consider the Identity Problem and U2-Reachability. By symmetry, we can suppose
p = q = 0, r ̸= 0, so κi = 0, i = 1, . . . , k. Define

A′
i := UT (βi, αi, ϵi; δi, ϕi, 0), i = 1, . . . , k, (9)

the following proposition reduces the Identity Problem and U2-Reachability for A1, . . . , Ak

to reachability problems for A′
1, . . . , A′

k:

▶ Proposition 22. Suppose κi = 0, i = 1, . . . , k.
(i) The Identity Problem for A1, . . . , Ak is equivalent to U2-Reachability for A′

1, . . . , A′
k.

(ii) U2-Reachability for A1, . . . , Ak is equivalent to U10-Reachability for A′
1, . . . , A′

k.

Together with the previous Subsections 3.2 - 3.5.2, we have completely reduced the Identity
Problem for G to either the problem for a set of smaller cardinality, or to U2-reachability
of another set. We have also reduced U2-reachability for G to either a problem for a set of
smaller cardinality, or to U10-reachability of another set. By Proposition 21 and the previous
subsections, U10-reachability is decidable. Hence, we have now exhausted all the possible
cases for the dimension of C, and we conclude that the Identity Problem, U2-Reachability
and U10-Reachability in UT(4,Z) are decidable.

4 Complexity analysis and concluding remarks

In this paper, we have shown that the Identity Problem for UT(4,Z) is decidable. A brief
analysis of our algorithm shows that it terminates in polynomial time. In fact, we can first
show that the algorithm for U10-Reachability terminates in polynomial time. Starting with
k = card(G) matrices, we need to solve at most O(k) linear equations, O(k) homogeneous
linear programming instances and one Identity Problem in H3 before either card(G) decreases
or a conclusion on U10-Reachability is reached. All these problems have O(k) inputs which
are of polynomial size with respect to the coefficients of the matrices in G, and are known
to have polynomial complexity. Furthermore, the number card(G) decreases at most k

times. Hence, the total complexity of our algorithm for U10-reachability is polynomial with
respect to the input G. Then, using the same method, we can show that the algorithm for
U2-Reachability terminates in polynomial time: since after polynomial time, either card(G)
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decreases, or the problem is reduced to U10-Reachability, or a conclusion on U2-Reachability
is reached. At last, we can show that the algorithm for the Identity Problem terminates in
polynomial time: after polynomial time, either card(G) decreases, or the problem is reduced
to U2-Reachability or the Identity Problem in H5, or a conclusion on the Identity Problem is
reached. (In particular, the polynomial complexity of the Identity Problem in H5 is a new
result of our paper, see Proposition 20.)

It is likely that our method can be adapted to study the Identity Problem for other
metabelian matrix groups, for instance the direct product Hn

3 . There is also evidence that
the arguments in this paper can be strengthened to tackle the Identity Problem for UT(n,Z)
with n ≥ 5, even though UT(5,Z) ceases to be metabelian. In fact, one can push the
convex geometry arguments down the derived series of UT(n,Z), even when the series has
length greater than two. Another natural follow-up question is the Membership Problem for
UT(4,Z). An interesting idea would be to adapt the Register Automata method introduced
in [5] for passing from the Identity Problem to the Membership Problem.
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1 Introduction

Classical formal language theory has been extended to various kinds of algebraic structures,
such as infinite words, rational sequences, trees, countable linear orders, graphs of bounded
tree width, etc. In recent years, the essential unity of the field has been better understood
[1, 16]. Such structures can often be seen as algebras for monads on the category of sets,
and sufficient conditions exist [1] for formal language theory to extend to their algebras.

In this paper, we make a first step into a programme of extending language theory to
higher-dimensional algebraic structures. Here we make the step from monoids to 2-monoids,
better known as monoidal categories.

We introduce a categorial framework for reasoning about languages of morphisms in strict
monoidal categories – including their associated grammars and automata. We show how
these include classical and tree automata, but also open up a wilder world of string diagram
languages. By investigating the morphisms in monoidal categories from the perspective of
language theory, this work contributes to research into the computational manipulation of
string diagrams, and so their usage in industrial strength applications. Omitted proofs can
be found in the full version [6].
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2 Related work

Bossut [2] studied rational languages of planar acyclic graphs and proved a Kleene theorem
for a class of such languages. Bossut’s graph languages feature initial and final states, whereas
our languages consist of scalar morphisms, which more neatly generalizes the theory of regular
string and tree languages. Bossut introduces a notion of automaton for these languages, but
these lack a state machine denotation – being more similar to our grammars.

In [10], Heindel recasts Bossut’s approach using monoidal categories. Unfortunately
the purported Myhill-Nerode result was incorrect, due to a flawed definition of syntactic
congruence. We rectify this in Section 5, but a Myhill-Nerode type theorem remains open.

Zamdzhiev [18] introduced context-free languages of string diagrams using the string
graph representation of string diagrams and the machinery of context-free graph grammars.
In contrast, our approach does not require an intermediate representation of string diagrams
as graphs: we work directly with morphisms in monoidal categories. This allows us to use
the algebra of monoidal categories to reason about properties of monoidal languages.

Winfree et al. [13] use DNA self-assembly to simulate cellular automata and Wang tile
models of computation. The kinds of two-dimensional languages obtained in this way can be
seen quite naturally as regular monoidal languages, as illustrated in Example 12.

Walters’ note [17] on regular and context-free grammars served as a starting point for
our definition of regular monoidal grammar. Rosenthal [12], developing some of the ideas
of Walters, defined automata as relational presheaves, which is similar in spirit to our
functorial definition of monoidal automata. The framework of Colcombet and Petrişan [5]
considering automata as functors is also close in spirit to our definition of monoidal automata.
However, all of these papers are directed towards questions involving classical one-dimensional
languages, rather than languages of diagrams as in the present paper.

Fahrenberg et al. [7] investigated languages of higher-dimensonal automata, a well-
established model of concurrency. We might expect that the investigations of the present
paper correspond to a detailed study of a particular low-dimensional case of such languages,
but the precise correspondence between these notions is unclear.

3 Regular monoidal grammars and regular monoidal languages

A monoidal grammar is a finite specification for the construction of string diagrams: i.e.
morphisms in free monoidal categories (more specifically, free pros). We introduce regular
monoidal grammars, an analogue of classical (right-) regular grammars, and their equivalent
representation as non-deterministic monoidal automata. We begin by recalling the notion of
monoidal graph and how they present free monoidal categories.

3.1 Monoidal graphs and free pros

▶ Definition 1. A monoidal graph G consists of sets EG , VG and functions dom, cod : EG ⇒ V ∗
G

where V ∗
G is the underlying set of the free monoid. The elements of EG are called generators,

and for a generator γ ∈ EG, dom(γ), cod(γ) are the domain, codomain (resp.) types of γ.

Diagrammatically, a monoidal graph can be pictured as a collection of boxes, labelled by
elements of EG with wires entering on the left and exiting on the right, labelled by types
given by the functions dom, cod. For example, the following depicts the monoidal graph G
with EG = {γ, γ′}, VG = {A, B}, dom(γ) = AB, cod(γ) = ABA, dom(γ′) = A, cod(γ′) = BB:
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A
B

γ
A
B
A

A γ′ B
B

Given that we are interested in finite state machines over finite alphabets, we shall work
exclusively with finite monoidal graphs, i.e. those in which EG and VG are both finite sets.

▶ Definition 2. A morphism Ψ : G′ → G of monoidal graphs is a pair of functions VΨ : VG →
VG′ , EΨ : EG → EG′ such that dom # V ∗

Ψ = EΨ # dom and cod # V ∗
Ψ = EΨ # cod.

Monoidal graphs and their morphisms form a category MonGraph. Recall that a (coloured)
pro is a strict monoidal category whose monoid of objects is free (on the set of “colours”).
There is a category Pro with objects pros and morphisms strict monoidal functors whose
action on objects is determined by a function between their sets of colours. We call these pro
morphisms. (Coloured) props are pros that are also symmetric (strict) monoidal categories.

Pros (and props) are monadic over monoidal graphs: the forgetful functor U : Pro →
MonGraph has a left adjoint F : MonGraph → Pro, and Pro is equivalent to the category of
algebras for the induced monad on MonGraph (see [8, §2.3]). F sends a monoidal graph G to
a pro FG whose set of objects is V ∗

G and whose morphisms are string diagrams (see [15]).

3.2 Monoidal languages and regular monoidal grammars
Classically, a language over an alphabet Σ is a subset of the free monoid Σ∗. A monoidal
language is defined similarly, replacing free monoids with free pros over a monoidal alphabet:

▶ Definition 3. A monoidal alphabet Γ is a finite monoidal graph where VΓ is a singleton.

For a generator γ of a monoidal alphabet, we refer to dom(γ), cod(γ) as the arity, coarity
(resp.) of γ, writing ar(γ), coar(γ). Such generators are drawn with “untyped” wires.

▶ Definition 4. A monoidal language L over a monoidal alphabet Γ is a subset L ⊆ FΓ(0, 0)
of morphisms with arity and coarity 0 in the free pro generated by Γ.

▶ Remark 5. The restriction to arity and coarity zero (i.e. scalar) morphisms may appear
arbitrary. However, we will see in Section 4 that this captures and explains the classical
definitions of finite-state automata over words and trees. It also leads to more concise
definitions in our theory.

Regular monoidal grammars specify monoidal languages that are an analogue of classical
regular languages. They can be obtained by taking Walters’ [17] definition of regular language
and replacing the adjunction between reflexive graphs and categories with that between
monoidal graphs and pros. As shown in Section 4, they include the classical definitions of
regular tree and word languages as grammars over monoidal alphabets of a particular shape.

▶ Definition 6. A regular monoidal grammar is a morphism of finite monoidal graphs
Ψ : M → Γ where Γ is a monoidal alphabet.

Intuitively, a regular monoidal grammar is a labelling of the edges of M by generators in
Γ. Indeed, the vertex function VΨ : VM → {•} is unique, so the grammar is determined by
its edge function EΨ : EM → EΓ, sending edges to their labels. In Section 3.4 we show that
this data determines a transition system with states words w ∈ V ∗

M.
▶ Remark 7. Every regular monoidal grammar determines a pro morphism between free pros,
FΨ : FM → FΓ, which we may also refer to as a regular monoidal grammar.

For any string diagram s ∈ FΓ over an alphabet Γ, we can think of the set of string
diagrams FΨ−1(s) as a set of possible “parsings” of that diagram.
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▶ Remark 8. We represent regular monoidal grammars diagrammatically by drawing the
monoidal graph M as above, but labelling each box e ∈ EM with EΨ(e). The resulting
diagram is not in general a diagram of a monoidal graph, since it may contain boxes with
the same label but different domain or codomain types. Examples are given below.

3.3 Regular monoidal languages
A regular monoidal grammar determines a monoidal language as follows:
▶ Definition 9. Given a regular monoidal grammar Ψ : M → Γ, the image under FΨ of the
endo-hom-set of the monoidal unit ε in FM is a monoidal language FΨ[FM(ε, ε)] ⊆ FΓ(0, 0).

We call the class of languages determined by regular monoidal grammars the regular
monoidal languages. We shall see that they are precisely the languages accepted by non-
deterministic monoidal automata (Section 3.4). The basic idea is that a “word” is a scalar
string diagram, i.e. one with no “dangling wires”. The language of a monoidal grammar
then consists of those scalar string diagrams that can be given a parsing. Parsings can be
visually explained using the graphical notation for grammars (Remark 8). A morphism in
the language defined by a grammar is any string diagram that can be built using the “typed”
building blocks, such that there are no dangling wires, and then erasing the types on the
wires. The following examples of regular monoidal grammars illustrate this idea:
▶ Example 10 (Balanced parentheses). Recall that the Dyck language, the language of
balanced parentheses, is a paradigmatic example of a non-regular word language. However,
we can recognize balanced parentheses using the regular monoidal grammar shown below left.
An example of a morphism in the language defined by this grammar is shown on the right.

A (A
A
B

) A
A
B

A (
( )

)

This illustrates how regular monoidal grammars permit unbounded concurrency. Here, as one
scans from left to right, the (unbounded) size of the internal boundary of a string diagram
keeps track of the number of open left parentheses.
▶ Example 11 (Brick walls). A variant on the “brick wall” language introduced by [2] is
given by the following grammar (left below). An example of a morphism in the language
defined by this grammar is shown on the right.

H

V

H

V

V

H

H

V

In Section 3.5 we will see how this language of “brick walls” allows us to construct the
following example as an intersection of two languages:
▶ Example 12 (Sierpiński gasket). In [13], self-assembly of DNA tiles was used to realize the
behaviour of a cellular automaton that computes the Sierpiński gasket fractal, based on the
computation of the XOR gate. [13] implicitly depicts a monoidal grammar, and so Sierpiński
gaskets of arbitrary iteration depth (e.g. right below) are in fact the monoidal language over
this grammar (left below, where we use colours for the alphabet):

H1

V1

H1

V1

V0

H0

H0

V0

V0

H0

H0

V1

V1

H1

H1

V0

V1

H1

V1

H1
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▶ Example 13. We define a grammar (left below) that will serve as a running counterexample
in Section 7, as it defines a language that cannot be deterministically recognized. The
connected string diagrams in this language are exactly two (right below).

δ
α

β

A

A

B

C
γ

A

A

B

C
γ

A

A

C

B
γ δ

α

β
γ δ

α

β

▶ Remark 14. If the monoidal graph M has no edges whose domain is ε and no edges whose
codomain is ε, a regular monoidal grammar Ψ : M → Γ will define a language containing
only the identity on the monoidal unit, i.e. the empty string diagram (denoted ). In fact,
every monoidal language contains the empty string diagram.

3.4 Non-deterministic monoidal automata
Recall that a non-deterministic finite automaton (NFA) is given by a finite set Q of states,
an initial state i ∈ Q, a set of final states F ⊆ Q, and for each a ∈ Σ, a function Q

∆a−−→ P(Q).
Non-deterministic monoidal automata do not have initial and final states; string diagrams
are simply accepted or rejected depending on their shape. In Section 4, we will see that
initial and final states derive from this definition, when the alphabet is of a particular form.

▶ Definition 15. A non-deterministic monoidal automaton ∆ = (Q, ∆Γ) over a monoidal
alphabet Γ is given by a finite set Q, together with a set of transition functions indexed by
generators ∆Γ = {Qar(γ) ∆γ−−→ P(Qcoar(γ))}γ∈EΓ .

For classical NFAs, the assignment a 7→ ∆a extends uniquely to a functor Σ∗ → Rel,
the inductive extension of the transition structure from letters to words. We define the
inductive extension of monoidal automata from generators to string diagrams. First recall
the definition of the endomorphism pro of an object in a monoidal category:

▶ Definition 16. Let C be a monoidal category, and Q an object of C. The endomorphism pro
of Q, CQ, has natural numbers as objects, hom-sets CQ(n, m) := C(Qn, Qm), composition and
identities as in C. The monoidal product is addition on objects, and as in C on morphisms.

The codomains of our inductive extension will be endomorphism pros of finite sets Q in
Rel, considered as the Kleisli category of the powerset monad P. Since P is a commutative
monad (with respect to the cartesian product of sets, with PX × PY → P(X × Y ) given by
the product of subsets), the following lemma gives us the monoidal structure on Rel:

▶ Lemma 17 ([11], Corollary 4.3). Let T be a commutative monad on a symmetric monoidal
category C. Then the Kleisli category Kl(T ) has a canonical monoidal structure, which is
given on objects by the monoidal product in C, and on morphisms f : X → TA, g : Y → TB

by X ⊗ Y
f⊗g−−−→ TA ⊗ TB

∇−→ T (A ⊗ B), where ∇ is given by the commutativity of T .

▶ Remark 18. The maybe monad (–)⊥ is also commutative, so its Kleisli category, equivalent
to the category Par of sets and partial functions, also has a canonical monoidal structure, and
for each set Q there is an endomorphism pro ParQ. We will come back to ParQ in Section 6.

Now we can define the inductive extension of a non-deterministic monoidal automaton:

▶ Observation 19. The assignment of generators to transition functions γ 7→ ∆γ in Definition
15 determines a morphism of monoidal graphs Γ → |RelQ|. Such morphisms are in bijection
with pro morphisms ∆ : FΓ → RelQ. We will also refer to the inductive extension ∆ as a non-
deterministic monoidal automaton, and sometimes write ∆α for the relation ∆(α : n → m).
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A scalar string diagram is mapped to one of the two possible nullary relations {•} →
P({•}), which represent accepting or rejecting computations, and thus can be used to define
the language of the automaton:

▶ Definition 20. Let ∆ : FΓ → RelQ be a non-deterministic monoidal automaton. Then the
monoidal language accepted by ∆ is L(∆) := {α ∈ FΓ(0, 0) | ∆α(•) = {•}}.

There is an evident correspondence between regular monoidal grammars and non-
deterministic monoidal automata. The graphical representation of a grammar makes this
most clear: it can also be thought of as the “transition graph” of a non-deterministic monoidal
automaton. More explicitly we have:

▶ Proposition 21. Given a regular monoidal grammar Ψ : M → Γ, define a monoidal
automaton with Q = VM, w(∆γ)w′ ⇐⇒ ∃σ ∈ E−1

Ψ (γ) such that dom(σ) = w, cod(σ) = w′.
Conversely given a monoidal automaton (Q, ∆Γ), define a regular monoidal grammar with
VM = Q and take an edge w → w′ over γ ⇐⇒ w(∆γ)w′. This correspondence of grammars
and automata preserves the recognized language.

▶ Remark 22. In automata theory it is often convenient to consider automata with ε-
transitions, or word-labelled transitions more generally. As monoidal grammars, these
correspond to arbitrary functors FM → FΓ, that is (by the adjunction U ⊣ F), to morphisms
of finite monoidal graphs M → UFΓ. The corresponding generalization of monoidal automata
requires considering RelQ as a monoidal 2-category with 2-cells the inclusions. Identity on
objects, strict monoidal lax 2-functors FΓ → RelQ (where FΓ is considered as equipped with
identity 2-cells), then give the refined notion of monoidal automaton. Such a lax 2-functor
need no longer send the identity on n wires to the identity relation on Qn, but merely to a
relation that includes the identity; this corresponds to allowing silent transitions. Similarly,
lax preservation of composition corresponds to allowing “term-labelled” transitions.

3.5 Closure properties of regular monoidal languages
We record some closure properties of regular monoidal languages.

▶ Lemma 23 (Closure under union). Let L and L′ be regular monoidal languages over Γ.
Then L ∪ L′ is a regular monoidal language over Γ.

▶ Lemma 24 (Closure under intersection). Let L and L′ be regular monoidal languages over
Γ. Then L ∩ L′ is a regular monoidal language over Γ.

▶ Remark 25. The Sierpiński gasket language (Example 12) is the intersection of the brick
wall language (Example 11) and an “XOR gate” language: this explains the origin of the
states in the grammar shown in Example 12.

▶ Lemma 26 (Closure under monoidal product and factors). Let L be a regular monoidal
language. Then α, β ∈ L ⇐⇒ α ⊗ β ∈ L.

▶ Lemma 27 (Closure under images of alphabets). Let L a be regular monoidal language over
Γ, and Γ h−→ Γ′ be a morphism of monoidal alphabets. Then (Fh)L is a regular monoidal
language over Γ′.

▶ Lemma 28 (Closure under preimages of alphabets). Let L a regular monoidal language
over Γ, and Γ′ h−→ Γ be a morphism of monoidal alphabets. Then the inverse image of L,
(Fh)−1(L) is a regular monoidal language over Γ′.
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Closure under complement is often held to be an important criterion for what should count
as a recognizable language. Indeed, for the abstract monadic second order logic introduced
in [1], it is a theorem that the class of recognizable languages relative to a monad on Set is
closed under complement. However, given that every monoidal language contains the empty
string diagram, we obviously have that:

▶ Observation 29. Regular monoidal languages are not closed under complement.

This suggests that there is no obvious account of regular monoidal languages in terms of
monadic second order logic. On the other hand, there is no reason we should expect even the
general account of monadic second order logic given in [1] to extend to monoidal categories,
since these are not algebras for a monad on Set. Moreover, taking inspiration from classical
examples in Section 4, one could also refine what is meant by complement, for instance
focussing on the set of non-empty connected scalar diagrams – see below for more details.

4 Regular word and tree languages as regular monoidal languages

Classical non-deterministic finite-state automata and tree automata can be seen as non-
deterministic monoidal automata over alphabets of a particular shape.

To make the correspondence precise, in the following we restrict monoidal languages to
their connected string diagrams. Strictly speaking, the language of a monoidal automaton
always contains only the empty diagram or is countably infinite, because if α is accepted by
the automaton, so are arbitrary finite monoidal products α ⊗ · · · ⊗ α. However, it is of course
possible for a monoidal language to consist of a finite number of connected string diagrams.

From another perspective, without restricting to connected components, we can say that
the monoidal automata corresponding to finite-state and tree automata have the power of an
unbounded number of such classical automata running in parallel.

4.1 Finite-state automata

▶ Definition 30. A word monoidal alphabet is a monoidal alphabet having only generators of
arity and coarity 1, σ , along with a single “start” generator of arity 0 and coarity
1, and “end” generator of arity 1 and coarity 0.

▶ Observation 31. Non-deterministic monoidal automata over word monoidal alphabets
correspond to classical NFAs.

Let an NFA A = (Q, Σ, ∆, i, F ) be given. We build a monoidal automaton as follows. Form the
monoidal alphabet Σ′ by starting with generators , and adding generators σ for
each σ ∈ Σ. For each σ , take the transition function ∆σ := ∆(σ, –) : Q → P(Q).
For take the transition function Q → P(Q0) to be the characteristic function of F ⊆ Q,
sending elements of F to {•} and to ∅ otherwise, and for take the function Q0 → P(Q)
to pick out the singleton {i}. This defines a monoidal automaton A′ := (Q, ∆′

Σ′), and a
simple induction shows that L(A) = L(A′), if one restricts to connected string diagrams.

Conversely, the data of a monoidal automaton over a word monoidal alphabet corresponds
to the data of an NFA, the only difference being that the transition function associated
to picks out a set of initial states {•} → P(Q). We can always “normalize” such an
automaton into an equivalent NFA with one initial state (see [14, §2.3.1]). This shows how
NFA initial and final states are captured by this particular shape of monoidal alphabet.
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4.2 Tree automata
Recall that non-deterministic finite tree automata come in two flavours, bottom-up and
top-down, depending on whether they process a tree starting at the leaves or at the root,
respectively. A non-deterministic bottom-up finite tree automaton is given by a finite set of
states Q, a “ranked” alphabet (Σ, r : Σ → N), a set of final states F ⊆ Q, and for each σ ∈ Σ
a transition function ∆σ : Qr(σ) → P(Q). A non-deterministic top-down tree automaton,
instead, has a set of initial states I ⊆ Q and transition functions ∆σ : Q → P(Qr(σ)). We
can recover these as non-deterministic monoidal automata over tree monoidal alphabets:

▶ Definition 32. A top-down tree monoidal alphabet is a monoidal alphabet having only
generators of arity 1 (and arbitrary coarities ⩾ 0), σ ... , along with a single “root”
generator . Analogously, a bottom-up tree monoidal alphabet is a monoidal alphabet
having only generators of coarity 1 (and arbitrary arities ⩾ 0), σ... , along with a single
“root” generator .

▶ Observation 33. Bottom-up tree automata are exactly non-deterministic monoidal auto-
mata over bottom-up tree monoidal alphabets, and likewise for top-down tree automata.

The idea is similar to that sketched above for NFAs. For example, consider the following
graph of a monoidal automaton over a bottom-up tree monoidal alphabet, recognizing trees
corresponding to terms of the inductive type of lists of boolean values (a list may be empty,
[], or be a boolean value “consed” onto a list via ::).

::
ft [] L LVV

L
V

L

Intuitively, the connected scalar string diagrams determined by this language are trees,
with leaves on the left, and the root on the right. Monoidal automata over top-down tree
monoidal alphabets have a similar form, but are mirrored horizontally, and thus morphisms
in the language have the root on the left, and leaves on the right, and monoidal automata
read the morphism starting at the root.

5 The syntactic pro of a monoidal language

In this section we introduce the syntactic congruence on monoidal languages and the cor-
responding syntactic pro, by analogy with the syntactic congruence on classical regular
languages and their associated syntactic monoid. In Section 7.2 we will give an algebraic
property of the syntactic pro sufficient for the language to be deterministically recognizable.

▶ Definition 34. A context of capacity (n, m), where n, m ⩾ 0, is a scalar string diagram
with a hole – as illustrated below – with zero or more additional wires exiting the first box
and entering the second (indicated by ellipses).

...

......α β}n m{

...

Given a context of capacity (n, m), we can fill the hole with a string diagram α : n → m.
Write C[α] for the resulting string diagram. Note that the empty diagram is a context, the
empty context. Contexts allow us to define contextual equivalence of string diagrams:
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▶ Definition 35 (Syntactic congruence). Given a monoidal language L ⊆ FΓ(0, 0) we define
its syntactic congruence ≡L as follows. Let α, β be morphisms in FΓ(n, m). Then α ≡L β

whenever C[α] ∈ L ⇐⇒ C[β] ∈ L, for all contexts C of capacity (n, m).

▶ Definition 36. The syntactic pro of a monoidal language L is the quotient pro FΓ/≡L.
The quotient functor SL : FΓ → FΓ/≡L is the syntactic morphism of L. For more details,
see the full version [6].

▶ Remark 37. The syntactic congruences for classical regular languages of words and trees
are also special cases of this congruence over word and tree monoidal alphabets.

▶ Lemma 38. L is the inverse image along the syntactic morphism of the equivalence class
of the empty diagram.

Proof. Let α ∈ L. Then α ≡L , since the empty diagram is in every language and if C

is a context of capacity (0, 0) distinguishing α and , then we have a contradiction by

Lemma 26. So α ∈ S−1
L (

[ ]
), and conversely. ◀

In the terminology of algebraic language theory, we say that the syntactic morphism
recognizes L. A full investigation of algebraic recognizability of monoidal languages is a topic
for future work. For now, we record the following lemma which is needed for Theorem 59:

▶ Lemma 39. If a monoidal language L is regular, then its syntactic pro FΓ/≡L is locally
finite (i.e. has finite hom-sets).

Proof. It suffices to exhibit a full pro morphism into FΓ/≡L from a locally finite pro. Let L

be a regular monoidal language recognized by ∆ : FΓ → RelQ. ∆ induces a congruence ∼ on
FΓ defined by α ∼ β ⇐⇒ ∆(α) = ∆(β), which implies that FΓ/∼ is locally finite, since
RelQ is locally finite. Define the pro morphism FΓ/∼ → FΓ/≡L to be identity on objects
and [α]∼ 7→ [α]≡L

on morphisms. This is well-defined since if α ∼ β and C[α] ∈ L for some
context C, then by functoriality C[β] ∈ L. Clearly it is full, so FΓ/≡L is locally finite. ◀

6 Deterministic monoidal automata

Classically, the expressive equivalence of deterministic and non-deterministic finite-state
automata for string languages is well known, but already for trees, top-down deterministic
tree automata are less expressive than bottom-up deterministic tree automata. Therefore
we cannot expect to determinize non-deterministic monoidal automata. However, we have
already seen monoidal languages that are deterministically recognizable (Examples 10, 11,
12, interpreted as the transition relations of monoidal automata, are functional relations).
Here we introduce deterministic monoidal automata and show that their languages enjoy the
property of causal closure. In Section 7 we consider the question of determinizability.

▶ Definition 40. A deterministic monoidal automaton δ = (Q, δΓ) over a monoidal alphabet
Γ is given by a finite set Q, together with transition functions δΓ = {Qar(γ) δγ−→ Q

coar(γ)
⊥ }γ∈Γ.

Recall the definition of the pro ParQ from Remark 18. Then as in Observation 19, such
assignments γ 7→ δγ uniquely extend to pro morphisms δ : FΓ → ParQ, and we will also refer
to such pro morphisms as deterministic monoidal automata. δ maps scalar string diagrams to
one of the two functions Q0 → Q0

⊥, and we use this to define the language of the automaton:

▶ Definition 41. Let δ : FΓ → ParQ be a deterministic monoidal automaton. Then the
language accepted by δ is L(δ) := {α ∈ FΓ(0, 0) | δα(•) = •}.
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We give a necessary condition for a monoidal language to be recognized by a deterministic
monoidal automaton. The idea is to generalize the characterization of top-down determinist-
ically recognizable tree languages as those that are closed under the operation of splitting a
tree language into the set of possible paths through the trees, and reconstituting trees by
grafting compatible paths [9]. For string diagrams, we call the analogue of paths through a
tree the causal histories of a diagram (Definition 46).

First, we briefly recall the machinery of (cartesian) restriction categories [3], that will be
necessary in the following. Restriction categories are an abstraction of the category of partial
functions, and provide us with a diagrammatic calculus for reasoning about determinization
of monoidal languages.

▶ Definition 42 ([4]). A cartesian restriction prop is a prop in which every object is equipped
with a commutative comonoid structure (with the counit depicted by , comultiplication by

, and symmetry by ) that is coherent, and for which the comultiplication is natural
(for more details, see the full version [6]).

▶ Definition 43. The free cartesian restriction prop on a monoidal graph M, denoted F↓M
is given by taking the free prop on the monoidal graph M extended with a comultiplication
and counit generator for every object in VM, and quotienting the morphisms by the structural
equations of cartesian restriction categories (for more details, see the full version [6]).

▶ Remark 44. Par is the paradigmatic example of a cartesian restriction category, with on
X given by the relation X → {•, ⊥} sending every element to •, and given by the
diagonal relation. ParQ inherits this structure and so is a cartesian restriction prop. Therefore
deterministic monoidal automata (Q, δΓ) also have inductive extensions to morphisms of
cartesian restriction props, δ : F↓Γ → ParQ, and these have a obvious notion of associated
language, defined similarly to Definition 41. These are related by the following lemma, which
follows from the universal properties of FΓ and F↓Γ:

▶ Lemma 45. If (Q, δΓ) is a deterministic monoidal automaton, then δ factors through δ as
δ = HΓ # δ, where HΓ : FΓ → F↓Γ sends morphisms to their equivalence class in F↓Γ.

Recall that any restriction category is poset-enriched: f ⩽ g if f is “less defined” than g,
i.e. if f coincides with g on f ’s domain of definition. For the hom-set from the monoidal
unit to itself, we have f ⩽ g ⇐⇒ f ⊗ g = f . Now we can define causal histories:

▶ Definition 46. Let γ be a string diagram in FΓ(0, 0). We call a string diagram h in
F↓Γ(0, 0) a causal history of γ if HΓ(γ) ⩽ h in F↓Γ(0, 0). Let L ⊆ FΓ(0, 0) be a regular
monoidal language. The set of causal histories of L, denoted ch(L), is defined to be HΓ(L)↑,
the upwards closure of HΓ(L) in the poset F↓Γ(0, 0).

A causal history represents the possible causal influence of parts of a diagram on generators
appearing “later” in the diagram. For example, the following five string diagrams are causal
histories of the rightmost string diagram below (every diagram is a causal history of itself),
taken from the language introduced in Example 13:

γ δγ γ δ
β β

γ δ
α

γ δ
α

▶ Lemma 47. Let M = (Q, δΓ) be a deterministic monoidal automaton, with functors
δ : FΓ → ParQ, δ : F↓Γ → ParQ. Then if δ accepts γ, δ accepts all causal histories of γ.
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Proof. Since δ = HΓ # δ, if δ accepts γ, then δ accepts HΓ(γ). Let h be a causal history of γ.
Then δ(HΓ(γ)) = δ(h ⊗ HΓ(γ)) = δ(h) ⊗ δ(HΓ(γ)). But then δ accepts h by Lemma 26. ◀

▶ Definition 48 (Causal closure of a language). Let L be a monoidal language over a monoidal
alphabet Γ. Let

⊗
ch(L) denote the closure of the set of causal histories of L under monoidal

product. Then the causal closure of L is H−1
Γ

⊗
ch(L). A monoidal language is causally

closed if it is equal to its causal closure.

To illustrate causal closure, consider the following figure, which shows part of the derivation
of a morphism in the causal closure of the language of Example 13:

γ δ
δ

δ

γ

α

α

αγ δ
α

γ δ
α

α==

The leftmost diagram depicts the monoidal product of two causal histories determined by
the counterexample language. By the equational theory of cartesian restriction categories
(see the full version [6]), this is equal to the string diagrams in the center and on the right,
where we first apply the naturality of (for γ), then unitality (twice), then naturality

of (for δ). The rightmost form of the diagram exhibits this morphism as being in the
image of HΓ, and its preimage under HΓ is the same diagram in FΓ. Since this diagram is
not in the original language, the language is not causally closed.

▶ Theorem 49. If a monoidal language is recognized by a deterministic monoidal automaton,
then it is causally closed.

Proof. Let L be recognized by a deterministic monoidal automaton δ : FΓ → ParQ. We
have δ = HΓ # δ and from Lemma 47 that δ accepts causal histories of morphisms in L. Since
languages are closed under monoidal product (Lemma 26), then by definition of the causal
closure, δ must accept everything in the causal closure of L. ◀

7 Deterministically recognizable monoidal languages

Non-deterministic finite state automata for words and bottom-up trees can be determinized
via the well known powerset construction. However, top-down tree automata cannot be
determinized in general [9, §2.11], so general monoidal automata also cannot be determinized
(Observation 33). However, there are interesting examples of deterministically recognizable
monoidal languages that are not tree languages, such as the monoidal Dyck language (Example
10) and Sierpiński gaskets (Example 12), and it is an intriguing theoretical challenge to
characterize such languages.

In Section 7.1 we study a class of determinizable automata called convex automata. In
Section 7.2 we give a sufficient condition for a language to be deterministically recognizable.

7.1 Convex automata and the powerset construction
The classical powerset construction is given conceptually by composition with the functor
Rel → Set, right adjoint to the inclusion Set ↪→ Rel. As remarked above, we cannot hope
to obtain an analogue of this functor for monoidal automata. Thus we describe a suitable
subcategory of RelQ for which determinization is functorial, that of convex relations.
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▶ Definition 50. A relation ∆ : Qn → P(Qm) is convex if there is a morphism ∆∗ such that
the following square commutes:

(PQ)n (PQ)m

P(Qn) P(Qm)

∆∗

∆#
∇ ∇

where ∆# is the Kleisli lift of ∆, and ∇ is the monoidal multiplication given by the
commutativity of the powerset monad.

▶ Observation 51. If ∆ is convex, the morphism ∆∗ is unique, since ∇ is a monomorphism.

▶ Example 52. The relation ∆γ : Q0 → P(Q4) induced by the grammar in Example 13 is not
convex, since (A, B, B, A) and (A, C, C, A), which we can think of as “convex combinations”
of the other state vectors, are not included in the image of the relation.

▶ Lemma 53. Convex relations determine a sub-pro CRelQ ↪→ RelQ.

▶ Definition 54. An automaton ∆ : FΓ → RelQ is convex if it factors through CRelQ.

The following lemma gives the powerset construction on convex automata. We use the
non-empty powerset P+ to avoid duplication of failure state (∅ in RelQ, but ⊥ in ParP+(Q)):

▶ Lemma 55. For each set Q there is a morphism of pros DQ : CRelQ → ParP+(Q) which is
identity on objects and acts as follows on morphisms:

∆α : Qn → P(Qm)

P+(Q)n ηn

−−→ (⊥P+(Q))n
∼=−→ P(Q)n ∆∗

α−−→ P(Q)m
∼=−→ (⊥P+(Q))m ∇−→ ⊥P+(Q)m

where ⊥ is the maybe monad, η is the unit of this monad, and ∇ is its monoidal
multiplication with respect to the cartesian product.

Determinization of a convex automaton ∆ : FΓ → CRelQ is now just given by post-
composition with the functor DQ. We show that this preserves the language:

▶ Theorem 56. Determinization of convex automata preserves the accepted language: let
∆ : FΓ → CRelQ be a convex automaton, then L(∆) = L(∆ #DQ).

Proof. Let α ∈ L(∆), i.e. ∆α(•) = {•}. Then we must have ∆∗
α(•) = •, and so

(∆ #DQ)α(•) = •. Conversely let α ∈ LD(∆ #DQ), i.e. (∆ #DQ)α(•) = •. Then we
must have that ∆∗

α(•) = •, and so ∆α(•) = {•}, that is α ∈ L(∆). ◀

▶ Example 57. Non-deterministic monoidal automata over word monoidal alphabets (Defin-
ition 30) are convex: for a relation ∆ : Q → P(Q), ∆∗ is given by the Kleisli extension of ∆.
This reflects the well known determinizability of classical finite-state automata.

▶ Example 58. Similarly, non-deterministic monoidal automata over bottom-up tree monoidal
alphabets (Definition 32) are convex, with ∆∗ := ∇ # ∆#. For top-down tree monoidal
alphabets, the general obstruction to convexity (and thus determinizability) is seen as the
non-existence of a left inverse of ∇.
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7.2 A sufficient condition for deterministic recognizability
▶ Theorem 59. If the syntactic pro of a regular monoidal language has the structure of
a cartesian restriction prop, then the language is recognizable by a deterministic monoidal
automaton.

Proof. Let L be a monoidal language such that FΓ/≡L has a cartesian restriction prop
structure. We exhibit a pro morphism FΓ/≡L

ϕ−→ ParQ such that FΓ SL−−→ FΓ/≡L
ϕ−→ ParQ is

a deterministic monoidal automaton accepting exactly L.
Let Q := FΓ/≡L(0, 1). By Lemma 39, this is a finite set. For m > 0 and [β] ∈

FΓ/≡L(n, m), define ϕ([β]) : n → m to be the following map from Qn → Qm
⊥ :

... ...
αₙ

...

α1 α1 α1

αn

β ...

...

...

αₙ

β

, ,

ϕ([β])( (( (↦

When m = 0 (i.e. [β] has coarity 0), let ϕ([β])([α1], ..., [αn]) = •, if [(α1 ⊗ ... ⊗ αn) # β] =[ ]
, and ϕ([β])([α1], ..., [αn]) = ⊥ otherwise. The proof that this defines a morphism

of pros is an exercise in diagrammatic reasoning using the equational theory of cartesian
restriction categories, see the full version [6]. To see that this automaton accepts exactly
L, let α ∈ L(SL # ϕ), then by definition we must have SL(α) =

[ ]
, and so α ∈ L (by

Lemma 38). Conversely let α ∈ L, then SL(α) =
[ ]

and by definition ϕ
([ ])

(•) = •,
so α ∈ L(SL # ϕ). Therefore SL # ϕ is a deterministic monoidal automaton recognizing L. ◀

▶ Example 60. A simple example is the language L of “bones” over the monoidal alphabet
Γ = { , }, having one connected component: . The syntactic pro FΓ/≡L has a
cartesian restriction prop structure, with the counit given by the equivalence class [ ],
comultiplication by [ ], and symmetry by [ ]. It is clear that FΓ/≡L(0, 1)
has one equivalence class, [ ], which becomes the state of the monoidal automaton. The
construction above then gives the obvious transition functions required for each generator.

8 Conclusion and future work

The most immediate open question is to determine necessary and sufficient conditions for
determinizability: causal closure is a promising candidate. Furthermore we would like to
understand the relation between convexity and Theorem 59. Classical topics in the theory
of regular languages such as a Myhill-Nerode theorem are also ripe for future investigation.
We also plan to investigate further applications of regular monoidal languages in computer
science, for example representing trace languages and look-ahead parsing.

Just as our definition of regular monoidal grammar was obtained from Walters’ definition
of regular grammar by replacing the adjunction Cat → Graph with the adjunction Pro →
MonGraph, we might consider other adjunctions and their corresponding notion of grammar.
In the first instance, our theory should smoothly generalize to languages in free props, but
perhaps also other (higher) categorical structures.

We plan to investigate a notion of context-free monoidal language, using a similar algebraic
approach to this paper. One candidate for the algebra of such languages, inspired again
by [17], are (monoidal) multicategories of n-hole contexts (in the sense of Definition 34).

MFCS 2022
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Abstract
We construct an oracle relative to which P = NP ∩ coNP, but there are no many-one complete sets
in UP, no many-one complete disjoint NP-pairs, and no many-one complete disjoint coNP-pairs.

This contributes to a research program initiated by Pudlák [33], which studies incompleteness
in the finite domain and which mentions the construction of such oracles as open problem. The
oracle shows that NP ∩ coNP is indispensable in the list of hypotheses studied by Pudlák. Hence
one should consider stronger hypotheses, in order to find a universal one.
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1 Introduction

Questions of the existence of complete sets in promise classes have a long history. They
turned out to be difficult and remained open. Consider the following examples, where the
questions are expressed as hypotheses.

NP ∩ coNP :NP ∩ coNP does not contain many-one complete sets [23]
UP :UP does not contain many-one complete sets [22]

CON :p-optimal proof systems for TAUT do not exist [26]
SAT :p-optimal proof systems for SAT do not exist [15]

TFNP :TFNP does not contain many-one complete problems [27]
DisjNP :DisjNP does not contain many-one complete pairs [34]

DisjCoNP :DisjCoNP does not contain many-one complete pairs [28, 32]

So far, the following implications are known: DisjNP ⇒ CON [34], UP ⇒ CON [25],
DisjCoNP ⇒ TFNP [33], TFNP ⇒ SAT [5, 33], and NP ∩ coNP ⇒ CON ∨ SAT [25]. This
raises the question of whether further implications are provable with the currently available
means. Thanks to a work by Pudlák [33], this question recently gained momentum. In fact,
Pudlák’s interest goes beyond: He initiated a research program to find a general principle
from which the remaining hypotheses follow as special cases. This is motivated by the
study of incompleteness in the finite domain, since these hypotheses can either be expressed
as the non-existence of complete elements in promise classes or as statements about the
unprovability of sentences of some specific form in weak theories.
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Pudlák [33] states as open problem to construct oracles that show that the relativized
conjectures are different or show that they are equivalent. Such oracles have been constructed
by Verbitskii [38], Glaßer et al. [18], Khaniki [24], Dose [10, 11, 9], and Dose and Glaßer [12].
The restriction to relativizable proofs arises from the following idea: We consider the
mentioned hypotheses as conjectures, hence we expect that they are equivalent. In this
situation we are not primarily concerned with the question of whether two hypotheses are
equivalent, but rather whether their equivalence can be recognized with the currently available
means. An accepted formalization of this is the notion of relativizable proofs.

Our Contribution. We construct an oracle relative to which the following holds: UP, DisjNP,
DisjCoNP, but P = NP ∩ coNP, which implies ¬NP ∩ coNP. Hence there is no relativizable
proof for NP∩coNP, even if we simultaneously assume all remaining hypotheses we mentioned
so far. This demonstrates that NP ∩ coNP is indispensable in the list of currently viewed
hypotheses and suggests to broaden the focus and include stronger statements.

Pudlák [33] ranks NP ∩ coNP as a plausible conjecture that is apparently incomparable
with CON and TFNP. Our oracle supports this estimation, as it rules out relativizable proofs
for “CON ⇒ NP ∩ coNP” and “TFNP ⇒ NP ∩ coNP.” By Dose [10, 11], the same holds for
the converse implications. Overall, we recognize a strong independence between NP ∩ coNP
and all remaining hypotheses:

(i) There does not exist a relativizable proof for NP ∩ coNP, even if we simultaneously
assume all remaining hypotheses.

(ii) There exists a relativizable proof for the implication NP ∩ coNP ⇒ CON ∨ SAT [25].
But there does not exist a relativizable proof showing that NP ∩ coNP implies one of
the remaining hypotheses [10, 11].

Our oracle combines several separations with the collapse P = NP ∩ coNP. This leads to
conclusions on the independence of the statement P ̸= NP ∩ coNP from typical assumptions.
For instance, the oracle shows that P ̸= NP ∩ coNP cannot be proved by relativizing means,
even under the strong but likely assumption UP ∧ DisjNP ∧ DisjCoNP.

Further characteristics of our oracle are, for example, NE ̸= coNE, NPMV ̸⊆c NPSV,
and the shrinking and separation properties do not hold for NP and coNP. Corollary 10
presents a list of additional properties.

Open Questions. Currently, for almost every pair A, B of hypotheses, we either know a
relativizable proof for the implication A ⇒ B, or we know an oracle relative to which A ∧ ¬B.
Only three cases are left: (1) UP ?⇒ DisjNP, (2) TFNP ?⇒ DisjCoNP, and (3) SAT ?⇒ TFNP.
This leads to the following task for future research: Prove these implications or construct
oracles relative to which they do not hold.

Background on Connections Between Promise Classes and Proof Systems. Informally,
promise classes are complexity classes that are characterized by machines that satisfy certain
properties. Usually, these properties are hard or even impossible to validate. Thus, when
working with an element of a promise class, one has to trust the promise that the respective
machine has said property. We are mainly interested in the following well-studied promise
classes: The class of disjoint NP-pairs DisjNP = {(A, B) | A, B ∈ NP, A∩B = ∅} [35, 21], the
class of disjoint coNP-pairs DisjCoNP [14, 15] (defined respectively), the class of sets accepted
by nondeterministic polynomial-time machines with at most one accepting computation path
UP [37], the class NP ∩ coNP [13], and the class of all total polynomial search problems
TFNP [27]. As an example, the machines characterizing UP promise that on every input,
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P ̸= NP

CON ∨ SAT

CON SAT

DisjNP DisjCoNP

TFNPNP∩coNP
UP

DisjNP ∧ NP∩coNP

DisjNP ∧ UP ∧ NP∩coNP

DisjNP ∧ UP ∧ DisjCoNP

[11][1
2]

[10] [24]

Thm. 9

[18]

[9]

Figure 1 Solid arrows mean implications. All implications occurring in the figure have relativizable
proofs. (The only nontrivial ones are DisjNP ⇒ CON [34], UP ⇒ CON [25, Cor. 4.1], DisjCoNP ⇒
TFNP ⇒ SAT [33, Prop. 5.6][5, Thm. 25][33, Prop. 5.10].) Implications between the conjectures
originally considered by Pudlák (i.e., not the conjunctions) are highlighted bold. A dashed arrow
from one conjecture A to another conjecture B means that there is an oracle X against the implication
A ⇒ B, meaning that A ∧ ¬B holds relative to X.

they either reject on all computation paths, or accept on exactly one computation path.
Furthermore, we are interested in proof systems defined by Cook and Reckhow [8], especially
optimal and p-optimal proof systems for the set of satisfiable formulas SAT, for the set of
tautologies TAUT.

The connections between propositional proof systems and promise classes have been
studied intensively. Krajícek and Pudlák [26] linked propositional proof systems (and thus
the hypothesis CON) to standard complexity classes by proving that NE = coNE implies
the existence of optimal propositional proof systems and E = NE implies the existence of
p-optimal propositional proof systems. These results were subsequently improved by Köbler,
Messner, and Torán [25].

Glaßer, Selman, and Sengupta [17] give several characterizations of DisjNP. Some
characterizations use different notions of reducibility while others use the existence of ≤p

m-
complete functions in NPSV and the uniform enumerability of disjoint NP-pairs. Glaßer,
Selman, and Zhang [19, 20] connect propositional proof systems to disjoint NP-pairs. They
prove that the degree structure of DisjNP and of all canonical disjoint pairs of propositional
proof systems is the same. Beyersdorff [1, 2, 3, 4] and Beyersdorff and Sadowkski [6]
investigate further connections between disjoint NP-pairs and propositional proof systems.

Pudlák [30, 31, 33] draws connections between the finite consistency problem, proof
systems, and promise classes like DisjNP and TFNP. Moreover, he asks for oracles that
separate hypotheses regarding proof systems and promise classes. Several oracles have been
constructed since Pudlák formulated his research questions. Concerning the listed hypotheses,
Figure 1 summarizes all known (relativizing) implications and implications that do not hold
relative to some oracle.

MFCS 2022
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The paper is organized as follows: Section 2 defines the complexity classes mentioned
above and presents our notations. Section 3 contains the oracle construction: the first part
defines the construction, the second part proves that it is well-defined, and the last part
shows the claimed properties.

2 Preliminaries

Basic Notation. Throughout this paper, let Σ be the alphabet {0, 1}. The set Σ∗ denotes
the set of finite words over Σ. The set Σω denotes the set of ω-infinite words, i.e., the
ω-infinite sequences of characters from Σ. Let Σ≤n := {w ∈ Σ∗ | |w| ≤ n}. For a word
w ∈ Σ∗ ∪Σω, we denote with w(i) the i-th character of w for 0 ≤ i < |w| ≤ ω. We write v ⊑ w

when v is a prefix of w, that is, |v| ≤ |w| and v(i) = w(i) for all 0 ≤ i < |v|. Accordingly,
v ⊑p w when v ⊑ w and v ̸= w. The empty word is denoted by ε. For a finite set A ⊆ Σ∗, we
define ℓ(A) :=

∑
w∈A |w|.

Let N denote the set of non-negative integers, and N+ the set of positive integers. We
say that two sets X and Y agree on set Z when X ∩ Z = Y ∩ Z.

The finite words Σ∗ can be linearly ordered by their quasi-lexicographic (i.e., “shortlex”)
order ≺lex, uniquely defined by requiring 0 ≺lex 1. Under this definition, there is a unique
order-isomorphism between (Σ∗, ≺lex) and (N, <), which induces a polynomial-time comput-
able, polynomial-time invertible bijection between Σ∗ and N. Hence, we can transfer the
notations, relations, and operations for Σ∗ to N and vice versa. In particular, |n| denotes
the length of the word represented by n ∈ N. By definition of ≺lex, whenever a ≤ b, then
|a| ≤ |b|. We eliminate the ambiguity of the expressions 0i and 1i by always interpreting
them over Σi. Moreover, < denotes both the less-than relation for natural numbers and the
quasi-lexicographic order ≺lex for finite words. Similarly for ≤ and ⪯lex. From the properties
of order-isomorphism, this is compatible with the above identification of words and numbers.

Complexity Classes. We understand P (resp., NP) as the usual complexity class of languages
decidable by a deterministic (resp., nondeterministic) polynomial-time Turing machine. The
class FP refers to the class of total functions that can be computed by a deterministic
polynomial-time Turing transducer [29]. Valiant [37] defined UP as the set of all languages
that can be recognized by a nondeterministic polynomial-time machine that, on every
input, accepts on at most one computation path. For a complexity class C we define
coC := {A | A ∈ C} as the complementary complexity class of C. Between sets of words, we
employ the usual polynomial-time many-one reducibility: A ≤p

m B if there exists an f ∈ FP
such that x ∈ A ⇔ f(x) ∈ B. The usual notion of ≤p

m-completeness and -hardness follows.
A disjoint NP-pair is a pair (A, B) of disjoint sets in NP. Selman [35] and Grollmann

and Selman [21] defined the class DisjNP as the set of disjoint NP-pairs. The classes
DisjCoNP [14, 15], DisjUP, and DisjCoUP are defined similarly. Between two pairs, we
employ the following related notion of reducibility [34, 18]: Let (A, B) and (C, D) be two
disjoint pairs. We say that (A, B) is polynomial-time many-one reducible to (C, D), denoted
by (A, B) ≤pp

m (C, D), if there is a function h ∈ FP such that h(A) ⊆ C and h(B) ⊆ D. The
terms ≤pp

m -completeness and -hardness also follow directly from this definition of reduction.

Proof Systems. We use the notion of proof systems for sets by Cook and Reckhow [8]:
A function f ∈ FP is called a proof system for img(f). Specifically, a proof system f for
TAUT is a propositional proof system. We say that a proof system g is (p-)simulated by a
proof system f , denoted by f ≤ g (resp., f ≤p g), if there exists a total function π (resp.,
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π ∈ FP) and a polynomial p such that |π(x)| ≤ p(|x|) and f(π(x)) = g(x) for all x. We call
a proof system f (p-)optimal for the set img(f), if g ≤ f (resp., g ≤p f) for all g ∈ FP with
img(g) = img(f).

Relativizations. We can relativize each complexity and function class to some oracle O, by
equipping all machines corresponding to the respective class with oracle access to O. That is,
e.g., UPO := {L(MO) | M is a nondeterministic polynomial-time oracle Turing machine, and
for all inputs x, MO(x) accepts on at most one path }. The classes PO, NPO and so on are
defined similarly. We can also relativize our notions of reducibility by using functions from
FPO instead of FP. In other words, we allow the reduction functions to access the oracle
in relativized instances. This results in polynomial-time many-one reducibilities relative to
an oracle O, which we denote as ≤p,O

m for sets and ≤pp,O
m for pairs of disjoint sets. In the

same way, we can relativize (p-)simulation of proof systems to some oracle O, and denote the
relativized simulation as ≤O resp. ≤p,O. When it is clear from context that some statements
refer to the relativized ones relative to some fixed oracle O, we sometimes omit the indication
of O in the superscripts.

We define pi(n) := ni + i. Let {Mi}i∈N and {Fi}i∈N be, respectively, standard enu-
merations of nondeterministic polynomial-time (oracle) Turing machines resp. determin-
istic polynomial-time (oracle) Turing transducers, having the property that runtime of
Mi, Fi is bounded by pi relative to any oracle. Note that {L(MO

i ) | i ∈ N} = NPO,
{F O

i | i ∈ N} = FPO.

Specific Notation Used in our Oracle Construction. We now take on the notations
proposed by Dose and Glaßer [12] designed for the construction of oracles. The do-
main of definition, image, and support for partial function t : A → N are defined as
dom(t) := {x ∈ A | t(x) defined}, img(t) := {t(x) | x ∈ A, t(x) defined}, supp(t) := {x ∈ A |
t(x) defined and t(x) > 0}. We say that t is injective on its support if, for any a, b ∈ supp(t),
t(a) = t(b) implies a = b. If t is not defined at point x, then t∪{x 7→ y} denotes the extension
t′ of t that at x has value y and satisfies dom(t′) = dom(t) ∪ {x}.

For a set A, we denote with A(x) the characteristic function at point x, i.e., A(x) is 1
if x ∈ A, and 0 otherwise. We can identify an oracle A ⊆ N with its characteristic ω-word
A(0)A(1)A(2) · · · over Σω. In this way, A(i) denotes both the characteristic function at point
i and the i-th character of its characteristic word. Similarly, for a finite word w ∈ Σ∗, we
also understand w as the set {i | w(i) = 1} and, e.g., we write A = w ∪ B where A and B are
sets. (However, we understand |w| as the length of the word w, and not the cardinality of set
{i | w(i) = 1}.) Thus, a finite word w describes an oracle which is partially defined, i.e., only
defined for natural numbers (or equivalently words) x < |w|. Being able to interpret a word
w as a set and partial oracle is very useful for the oracle construction. In most construction
steps we decide the membership of the smallest undefined word of a partial oracle w, which
is simply |w|. This gives access to very concise notation.

In particular, for oracle machines M , the notation Mw(x) refers to M{i|w(i)=1}(x) (that
is, oracle queries that w is not defined for are negatively answered). This also allows us to
define the following notion: we say that Mw(x) is definite if all queries on all computation
paths are < |w| (or equivalently: w(q) is defined for all queries q on all computation paths);
we say that Mw(x) definitely accepts (resp., definitely rejects) if Mw(x) is definite and accepts
(resp., rejects). Intuitively, the term definite describes computations that do not change when
extending the respective oracle, because the queries are too short. This allows the following
observation:
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▶ Observation 1.
(i) When Mw(x) is a definite computation, and v ⊒ w, then Mv(x) is definite. Computation

Mv(x) accepts if and only if Mw(x) accepts.
(ii) When w is defined for all words of length pi(|x|), then Mw

i (x) is definite.
(iii) When Mw(x) accepts on some computation path with set of oracle queries Q, and w, v

agree on Q, then Mv(x) accepts on the same computation path and with the same set
of oracle queries Q.

For an oracle w, a transducer F , and a machine M , we occasionally understand the
notation Mw(F w(x)) as the single computation of the machine M ◦ F on input x relative
to w. Consequently, we say that Mw(F w(x)) definitely accepts (resp., rejects) when M ◦ F

definitely accepts (resp., rejects) input x relative to w.
In our oracle construction, we want to injectively reserve and assign countably infinitely

many levels n, that are, words of same length n, for a countably infinite family of witness
languages, with increasingly large gaps. For this, let e(0) := 2, e(i) := 2e(i−1). There is
a polynomial-time computable, polynomial-time invertible injective function f , mapping
(m, h) ∈ N × N to N. Now define Hm := {e(f(m, h)) | h ∈ N} as the set of levels reserved for
witness language m. This definition ensures

▶ Observation 2.
(i) The set Hm is countably infinite, a subset of the even numbers, and all H0, H1, . . . are

pairwise disjoint.
(ii) The sequence min H0, min H1, . . . is unbounded.
(iii) When n ∈ Hm, then n < n′ < 2n implies n′ ̸∈ H0, H1, . . . .
(iv) Every set Hm ∈ P for all m ∈ N.

3 Oracle Construction

We are primarily interested in an oracle O with the property that relative to that oracle, UP,
DisjNP, DisjCoNP, and ¬NP ∩ coNP hold, but our construction yields the following slightly
stronger statements:

(i) NP ∩ coNP = P (implying ¬NP ∩ coNP).
(ii) DisjNP does not contain ≤pp

m -hard pairs for DisjUP (implying DisjNP).
(iii) UP does not contain ≤p

m-complete languages (i.e., UP).
(iv) DisjCoNP does not contain ≤pp

m -hard pairs for DisjCoUP (implying DisjCoNP).
Given a (possibly partial) oracle O and m ∈ N, we define the following witness languages:

AO
m := {0n | n ∈ Hm, there exists x ∈ Σn such that x ∈ O and x ends with 0}

BO
m := {0n | n ∈ Hm, there exists x ∈ Σn such that x ∈ O and x ends with 1}

CO
m := {0n | n ∈ Hm, there exists x ∈ Σn such that x ∈ O}

DO
m := {0n | n ∈ Hm, for all x ∈ Σn, x ∈ O → x ends with 0}

EO
m := {0n | n ∈ Hm, for all x ∈ Σn, x ∈ O → x ends with 1}

Their purpose is to be a “witness” that an element of DisjNP (resp., UP, DisjCoNP) is
not complete by admitting no reduction to this element. This only works if the witness
languages themselves belong to the respective classes. The following observation shows how
the membership of the witness languages to the respective classes depends on the oracle.
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▶ Observation 3.
(i) If for all n ∈ Hm, |O ∩ Σn| ≤ 1, then (AO

m, BO
m) is in DisjUPO, and CO

m is in UPO.
(ii) If for all n ∈ Hm, O ∩ Σn contains at least one word but not two words with the same

parity, (i.e., there exists α ∈ Σn−10, β ∈ Σn−11 such that the set O ∩ Σn is equal to
{α} or {β} or {α, β}), then (DO

m, EO
m) is in DisjCoUPO.

Preview of the Construction. The construction is quite technical, since the oracle has to
satisfy several properties which simultaneously demand structure (i.e., property (i)) and
freedom (i.e., properties (ii), (iii) and (iv)) during the construction. This leads to several
dependencies and special cases that need to be addressed, mostly by combinatorial arguments
and various extensions of the oracle constructed so far. To keep track of the progress of the
construction, it is divided into tasks corresponding to the desired properties (i)–(iv). Each
task contributes to the goal of satisfying its corresponding property.

1. Work towards P = NP ∩ coNP: For all a ̸= b, the construction tries to achieve that
Ma, Mb do not accept complementary. (Accepting complementary should mean that for
each input x, precisely one of Ma(x), Mb(x) accepts and the other rejects.) If this is
not possible, (Ma, Mb) inherently accept complementary, and thus L(Ma) ∈ NP ∩ coNP.
Then, we start to encode into the oracle, whether Ma accepts some inputs or not. Thus,
the final oracle will contain the encodings for almost all inputs, thus allowing to recover
the accepting behavior of Ma and hence to decide L(Mi) in P using oracle queries.

2. Work towards (ii), which implies DisjNP: For all i ̸= j, the construction tries to achieve
that Mi, Mj both accept some input x, hence x ∈ L(Mi) ∩ L(Mj) and (L(Mi), L(Mj)) ̸∈
DisjNP. If this is not possible, (Mi, Mj) inherently is a disjoint NP-pair. In this case, we
fix some m, make sure that (Am, Bm) is a disjoint UP-pair and diagonalize against every
transducer Fr, so that Fr does not realize the reduction (Am, Bm) ≤pp

m (L(Mi), L(Mj)).
This is achieved by, (i) for all n ∈ Hm, insert at most one word of length n into O (and
thus (Am, Bm) ∈ DisjUP), and (ii) for every r there is an n ∈ Hm such that 0n ∈ Am

but Mi(Fr(0n)) rejects (or analogously 0n ∈ Bm but Mj(Fr(0n)) rejects).
3. Work towards (iii), i.e., UP: Try to make Mi accept on two separate paths. If this is not

possible, then L(Mi) inherently is a UP-language. In this case, we fix some m, make sure
that Cm is a language in UP and diagonalize against every transducer Fr so that Fr does
not realize the reduction Cm ≤p

m L(Mi). This is achieved by, (i) for all n ∈ Hm, insert at
most one word of length n into O (and thus Cm ∈ UP), and (ii) for every r there is an
n ∈ Hm such that 0n ∈ Cm if and only if Mi(Fr(0n)) rejects.

4. Work towards (iv), which implies DisjCoNP: Try to achieve that Mi, Mj both reject some
input x, hence x ∈ L(Mi) ∩ L(Mj) and (L(Mi), L(Mj)) ̸∈ DisjNP. If this is not possible,
(Mi, Mj) inherently is a disjoint coNP-pair. In this case, we fix some m, make sure that
(Dm, Em) is a disjoint coUP-pair and diagonalize against every transducer Fr, so that
Fr does not realize the reduction (Dm, Em) ≤pp

m (L(Mi), L(Mj)). This is achieved by, (i)
for all n ∈ Hm, insert at least one word of length n into O but not two words with same
parity (and thus (Dm, Em) ∈ DisjCoUP), and (ii) for every r there is an n ∈ Hm such
that 0n ∈ Dm but Mi(Fr(0n)) accepts (or analogously 0n ∈ Em but Mj(Fr(0n)) accepts).

To these requirements, we assign the following symbols representing tasks: τ1
a,b, τ2

i,j , τ2
i,j,r,

τ3
i , τ3

i,r, τ4
i,j , τ4

i,j,r for all a, b, i, j, r ∈ N, i ̸= j, a ̸= b. The symbol τ1
a,b represents the coding or

the destruction of NP ∩ coNP-pairs. The symbol τ2
i,j represents the destruction of a disjoint

NP-pair, τ2
i,j,r the diagonalization of that pair against transducer Fr. Analogously for UP

and τ3
i , τ3

i,r. Analogously for DisjCoNP and τ4
i,j , τ4

i,j,r.
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For the coding, we injectively define the code word c(a, b, x) := 0a10b10l10p1x with
p = pa(|x|) + pb(|x|), l ∈ N minimal such that l ≥ 7/8|c(a, b, x)| and c(a, b, x) has odd length.
By this, a code word contains the word x as information and is padded to sufficient length.
We call any word of the form c(·, ·, ·) a code word. This ensures the following properties:

▷ Claim 4. For all a, b ∈ N, x ∈ Σ∗, the following holds:
(i) |c(a, b, x)| ̸∈ Hm for any m.
(ii) For fixed a, b, the function x 7→ c(a, b, x) is polynomial-time computable, and polynomial-

time invertible with respect to |x|.
(iii) Relative to any oracle, the running times of Ma(x) and Mb(x) are both bounded by

< |c(a, b, x)|/8.
(iv) For every partial oracle w ∈ Σ∗, if c(a, b, x) ≤ |w|, then Mw

a (x) and Mw
b (x) are definite.

During the construction we successively add requirements that we maintain. To keep
track of these requirements, we use a partial function t belonging to some set T , which we
define below. In particular, the partial function t maps some of the above task symbols to
N. In fact, these requirements determine to a large extent how tasks are treated and are
mainly responsible that the oracle satisfies the desired properties. To add a requirement in
the construction, we can extend the function t.

Define T as the set of all partial functions t mapping τ1
a,b, τ2

i,j , τ3
i , τ4

i,j , i ̸= j, a ≠ b to N,
and dom(t) is finite, and t is injective on its support.

To now link the maintenance of the requirements with the oracle construction, we
introduce the notion of validity. A partial oracle w ∈ Σ∗ is called t-valid for t ∈ T if it
satisfies the following properties:
V1 If t(τ1

a,b) = 0, then there exists an x such that Mw
a (x), Mw

b (x) both definitely accept or
both definitely reject.
(Meaning: if t(τ1

a,b) = 0, then for every extension of the oracle, Ma, Mb do not accept
complementary.)

V2 If 0 < t(τ1
a,b) ≤ c(a, b, x) < |w|, then Mw

a (x) is definite. Additionally, the computation
Mw

a (x) accepts when c(a, b, x) ∈ w, and rejects when c(a, b, x) ̸∈ w. When the above
conditions are met by c(a, b, x) we sometimes refer to these code words as mandatory
code words with respect to some t-valid partial oracle w. Note that when the previous
conditions are not met (τ1

a,b ̸∈ dom(t) or t(τ1
a,b) = 0 or t(τ1

a,b) > c(a, b, x)) then the code
word c(a, b, x) may be a member of oracle w, independent of Ma, Mb.
(Meaning: if t(τ1

a,b) > 0, then from t(τ1
a,b) on, we encode L(Ma) into the oracle. That is,

L(MO
a ) = ({x | c(a, b, x) ∈ O} ∪ some finite set) ∈ PO.)

V3 If t(τ2
i,j) = 0, then there exists an x such that Mw

i (x), Mw
j (x) both definitely accept.

(Meaning: if t(τ2
i,j) = 0, then for every extension of the oracle, (L(Mi), L(Mj)) ̸∈ DisjNP.)

V4 If t(τ2
i,j) = m > 0, then for every n ∈ Hm it holds that |Σn ∩ w| ≤ 1.

(Meaning: if t(τ2
i,j) = m > 0, then ensure that (Am, Bm) ∈ DisjUP relative to the final

oracle.)
V5 If t(τ3

i ) = 0, then there exists an x such that Mw
i (x) is definite and accepts on two

different paths.
(Meaning: if t(τ3

i ) = 0, then for every extension of the oracle, L(Mi) ̸∈ UP.)
V6 If t(τ3

i ) = m > 0, then for every n ∈ Hm it holds that |Σn ∩ w| ≤ 1.
(Meaning: if t(τ3

i ) = m > 0, then ensure that Cm ∈ UP relative to the final oracle.)
V7 If t(τ4

i,j) = 0, then there exists an x such that Mw
i (x), Mw

j (x) both definitely reject.
(Meaning: if t(τ4

i,j) = 0, then for every extension of the oracle, (L(Mi), L(Mj)) ̸∈
DisjCoNP.)
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V8 If t(τ4
i,j) = m > 0, then for every n ∈ Hm it holds that all words in Σn ∩ w have pairwise

different parity. If additionally w is defined for all words of length n, then |Σn ∩ w| > 0.
(Meaning: if t(τ4

i,j) = m > 0, then ensure that (Dm, Em) ∈ DisjCoUP relative to the final
oracle.)

Intuitively, a t-valid oracle is a possibly partial oracle which has the desired properties
(i)–(iv) “partially satisfied”. This notion of validness helps in the oracle construction, since
our oracle is defined inductively, the induction step deals with a partial oracle and therefore
t-validity fits great as part of an induction hypothesis which states that the partial oracle is
constructed properly so far. Observe that V4, V6, V8 do not (pairwise) contradict each other,
since t is injective on its support and all H1, H2, . . . are pairwise disjoint, by Observation 2(i).
Also observe that V2 and V4 (resp., V2 and V6, V2 and V8) do not contradict each other,
as c(·, ·, ·) has odd length, but all n in all Hm are even by Observation 2(i).

Oracle Construction. Let T be a countable enumeration of

{τ1
a,b | a, b ∈ N, a ̸= b} ∪ {τ2

i,j | i, j ∈ N, i ̸= j} ∪ {τ2
i,j,r | i, j, r ∈ N, i ̸= j}

∪ {τ3
i | i ∈ N} ∪ {τ3

i,r | i, r ∈ N}
∪ {τ4

i,j | i, j ∈ N, i ̸= j} ∪ {τ4
i,j,r | i, j, r ∈ N, i ̸= j}

with the property that τ2
i,j appears earlier than τ2

i,j,r, τ3
i appears earlier than τ3

i,r, τ4
i,j earlier

than τ4
i,j,r.

We inductively define an infinite sequence {(ws, ts)}s∈N, where the s-th term of the
sequence is a pair (ws, ts) of a partial oracle and a function in T . We call the s-th term the
stage s. We ensure that for all s ∈ N, ws is a ts-valid partial oracle.

In each stage, we treat the smallest task in the order specified by T , and after treating a
task we remove it and possibly other higher tasks from T . In the next stage, we continue
with the next task not already removed from T . (In every stage, there always exists a task
not already removed, as we never remove all remaining tasks from T in any stage.)

We start with the nowhere defined function t0 ∈ T and the t0-valid oracle w0 := ε as 0-th
stage. Then we begin treating the tasks.

Thus, for stage s > 0, we have that w0, w1, . . . , ws−1 and t0, t1, . . . , ts−1 are defined.
With this, we define the s-th stage (ws, ts) such that (a) ws−1 ⊑p ws, and ts ∈ T is a (not
necessarily strict) extension of ts−1, and (b) ws is ts-valid, and (c) the earliest task τ still in
T is treated and removed in some way.

So for each task we strictly extend the oracle and are allowed to add more requirements,
by extending the valid function, that have to be maintained in the further construction.
Finally, we choose O :=

⋃
i∈N wi. (Note that O is totally defined since in each step we strictly

extend the oracle.) Also, every task in T is assigned some stage s where it was treated (or
removed from T ).

We now define stage s > 0, which starts with some ts−1 ∈ T and a ts−1-valid oracle ws−1
and treats the first task that still is in T choosing an extension ts ∈ T of ts−1 and a ts-valid
ws ⊒p ws−1. Let us recall that each task is immediately deleted from T after it is treated.
There are seven cases depending on the form of the task that is treated in stage s:

Task τ1
a,b: Let t′ := ts−1 ∪ {τ1

a,b 7→ 0}. If there exists a t′-valid v ⊒p ws−1, then assign
ts := t′ and let ws := v.
Otherwise, let ts := ts−1 ∪ {τ1

a,b 7→ n} with n ∈ N+ sufficiently large such that n >

|ws|, max img(ts−1). Thus ts is injective on its support, and ws−1 is ts-valid. Let
ws := ws−1y with y ∈ {0, 1} such that ws is ts-valid. Lemma 5 shows that such y does
indeed exist.

MFCS 2022



45:10 Oracle with P = NP∩coNP but No Completeness in UP, DisjNP, DisjCoNP

(Meaning: try to ensure that Ma, Mb do not accept complementary, cf. V1. If that is
impossible, require that from now on the computations of Ma are encoded into the oracle,
cf. V2.)
Task τ2

i,j : Let t′ := ts−1 ∪ {τ2
i,j 7→ 0}. If there exists t′-valid v ⊒p ws−1, then assign ts := t′

and ws := v. Besides task τ2
i,j , also remove all tasks τ2

i,j,0, τ2
i,j,1, . . . from T .

Otherwise, let ts := ts−1 ∪ {τ2
i,j 7→ m} with m ∈ N+ sufficiently large such that m ̸∈

img(ts−1) and that ws−1 defines no word of length min Hm. Thus ts is injective on its
support, and ws−1 is ts-valid. Let ws := ws−1y with y ∈ {0, 1} such that ws is ts-valid.
Again, Lemma 5 shows that such y does indeed exist.
(Meaning: try to ensure that Mi, Mj do not accept disjointly, cf. V3. If that is im-
possible, choose a sufficiently large “fresh” m and require for the further construction that
(Am, Bm) ∈ DisjUP (cf. V4). The treatment of the tasks τ2

i,j,0, τ2
i,j,1, . . . defined below

makes sure that (Am, Bm) cannot be reduced to (L(Mi), L(Mj)).)
Task τ3

i : Defined symmetrically to task τ2
i,j . Let t′ := ts−1 ∪ {τ3

i 7→ 0}. If there exists
t′-valid v ⊒p ws−1, then assign ts := t′ and ws := v. Besides task τ3

i , also remove all tasks
τ3

i,0, τ3
i,1, . . . from T .

Otherwise, let ts := ts−1 ∪ {τ3
i 7→ m} with m ∈ N+ sufficiently large such that m ̸∈

img(ts−1) and that ws−1 defines no word of length min Hm. Thus ts is injective on its
support, and ws−1 is ts-valid. Let ws := ws−1y with y ∈ {0, 1} such that ws is ts-valid.
Again, Lemma 5 shows that such y does indeed exist.
(Meaning: try to ensure that Mi does accept on two different paths, cf. V5. If that is
impossible, choose a sufficiently large “fresh” m and require for the further construction
that Cm ∈ UP (cf. V6). The treatment of the tasks τ3

i,0, τ3
i,1, . . . defined below makes

sure that Cm cannot be reduced to L(Mi).)
Task τ4

i,j : Defined symmetrically to task τ2
i,j . (Meaning: try to ensure that Mi, Mj do

not reject disjointly, cf. V7. If that is impossible, choose a sufficiently large “fresh” m and
require for the further construction that (Dm, Em) ∈ DisjCoUP (cf. V8). The treatment
of the tasks τ4

i,j,0, τ4
i,j,1, . . . defined below makes sure that (Dm, Em) cannot be reduced

to (L(Mi), L(Mj)).)
Task τ2

i,j,r: We have ts−1(τ2
i,j) = m ∈ N+. Let ts := ts−1 and choose a ts-valid ws ⊒p ws−1

such that there is some n ∈ N and at least one of the following holds:
0n ∈ Av

m for all v ⊒ ws and Mws
i (F ws

r (0n)) definitely rejects.
0n ∈ Bv

m for all v ⊒ ws and Mws
j (F ws

r (0n)) definitely rejects.
In Theorem 6 we show that such ws does exist.
(Meaning: ensure that Fr does not reduce (Am, Bm) to (L(Mi), L(Mj)).)
Task τ3

i,r: We have ts−1(τ3
i ) = m ∈ N+. Let ts := ts−1 and choose a ts-valid ws ⊒p ws−1

such that there is some n ∈ N and at least one of the following holds:
0n ∈ Cv

m for all v ⊒ ws and Mws
i (F ws

r (0n)) definitely rejects.
0n ̸∈ Cv

m for all v ⊒ ws and Mws
i (F ws

r (0n)) definitely accepts.
In Theorem 7 we show that such ws does exist.
(Meaning: ensure that Fr does not reduce Cm to L(Mi).)
Task τ4

i,j,r: Defined symmetrically to τ2
i,j,r. Choose a ts-valid ws ⊒p ws−1 such that for

some n ∈ N, one of the two holds:
0n ∈ Dv

m for all v ⊒ ws and Mws
i (F ws

r (0n)) definitely accepts.
0n ∈ Ev

m for all v ⊒ ws and Mws
j (F ws

r (0n)) definitely accepts.
In Theorem 8 we show that such ws does exist.
(Meaning: ensure that Fr does not reduce (Dm, Em) to (L(Mi), L(Mj)).)
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Observe that ts is always defined to be in T . Remember that the treated task is
immediately deleted from T . This completes the definition of stage s, and thus, the entire
sequence {(ws, ts)}s∈N. We now show that this construction is indeed possible. The proofs
of the theorems/lemma announced in the definition are either roughly sketched or omitted.
For detailed proofs, we refer to the full version of the paper. It is not difficult to see that a
valid oracle can be extended by one bit such that it remains valid:

▶ Lemma 5. Let s ∈ N, (w0, t0), . . . , (ws, ts) defined, and let w ∈ Σ∗ be a ts-valid oracle
with w ⊒ ws, and z := |w|. (Think of z as the next word we need to decide its membership
to the oracle, i.e., z ̸∈ w0 or z ∈ w1.) Then there exists y ∈ {0, 1} such that wy is ts-valid.
Specifically:

(i) If z = c(a, b, x) and 0 < ts(τ1
a,b) ≤ z, then w1 is ts-valid if Mw

a (x) accepts (or when
Mw

b (x) rejects), and w0 is ts-valid if Mw
a (x) rejects (or when Mw

b (x) accepts).
(Meaning: if we are at a position of some mandatory code word, add the word as
appropriate for the NP ∩ coNP-pair.)

(ii) If there exists τ = τ2
i,j or τ = τ3

i with m = ts(τ) > 0 and n ∈ Hm such that |z| = n,
w ∩ Σn ̸= ∅, then w0 is ts-valid.
(Meaning: if we are on a level n belonging to a DisjUP-pair or a UP-language, ensure
that there is no more than one word on that level.)

(iii) If there exists τ4
i,j, m = ts(τ4

i,j) > 0 and n ∈ Hm such that |z| = n and there is some
other word x ∈ w ∩ Σn with same parity as z, then w0 is ts-valid. (Meaning: if we are
on a level n belonging to a DisjCoUP-pair, ensure that on that level, there are no two
words with the same parity.)

(iv) If there exists τ4
i,j, m = ts(τ4

i,j) > 0 and n ∈ Hm such that |z| = n, |z + 1| > n,
w ∩ Σn = ∅, then w1 is ts-valid.
(Meaning: if we finalize level n belonging to a DisjCoUP witness pair, ensure that there
is at least one word on that level.)

(v) In all other cases, w0 and w1 are ts-valid.

Lemma 5 shows that the construction is possible for the tasks τ1
a,b, τ2

i,j , τ3
i and τ4

i,j . Now
we show that the construction is possible for τ2

i,j,r, τ3
i,r and τ4

i,j,r, respectively. We first
consider task τ2

i,j,r.

▶ Theorem 6. Let s ∈ N+, (w0, t0), . . . , (ws−1, ts−1) defined. Consider task τ2
i,j,r.

Suppose that ts = ts−1, ts(τ2
i,j) = m > 0. Then there exists a ts-valid w ⊒p ws−1 and

n ∈ N such that one of the two holds:
(i) 0n ∈ Av

m for all v ⊒ w and Mw
i (F w

r (0n)) definitely rejects.
(ii) 0n ∈ Bv

m for all v ⊒ w and Mw
j (F w

r (0n)) definitely rejects.

Proof sketch. We prove the Theorem by contradiction. Let ŝ < s be the stage that treated
τ2

i,j with tŝ = tŝ−1 ∪ {τ2
i,j 7→ m} and m > 0. We construct a suitable alternative oracle

u′ ⊒p wŝ−1, which is valid with respect to t′ := tŝ−1 ∪ {τ2
i,j 7→ 0}. Then, by definition,

we obtain that u′ is one possible t′-valid extension of wŝ−1 in stage ŝ, hence tŝ = t′ and
tŝ(τ2

i,j) = 0, contradicting ts(τ2
i,j) = m > 0 in the hypothesis of this Theorem 6.

Assume that (i) and (ii) do not hold. Fix some sufficiently large n ∈ Hm. This is some
level that belongs to the witness NP-pair (Am, Bm). For every ξ ∈ Σn, one can provisionally
keep extending ws−1 bitwise with Lemma 5 while inserting precisely the word ξ into level
n. Continue extending until a sufficiently long but fixed length n′ such that Mi(Fr(0n))
and Mj(Fr(0n)) are definite (relative to any oracle), and call the resulting oracle uξ. By
construction, this oracle is ts-valid. By assumption, when α ∈ Σn−10, then Mi(Fr(0n))
accepts relative to uα, and when β ∈ Σn−11, then Mj(Fr(0n)) accepts relative to uβ .
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We want to maintain these accepting computations relative to an oracle containing,
in level n, exactly one α ∈ Σn−10 and one β ∈ Σn−11. The accepting behavior for any
such computation, say Mi(Fr(0n)) relative to uα, depends on the oracle queries posed on
that path. However, this computation might also query certain mandatory code words
c(a, b, x), whose memberships depend on further, shorter queries of computations Ma(x),
Mb(x). Continuing this recursively, we obtain a set of queries Q+

α the original computation
Mi(Fr(0n)) transitively depends on.

Similarly, for each β ∈ Σn−11 we can define a set of queries Q+
β an accepting path of the

computation Mj(Fr(0n)) relative to uβ depends on. One can verify that Q+
α and Q+

β only
have polynomially many elements.

The crucial idea that completes the proof is to find suitable α ∈ Σn−10 and β ∈ Σn−11
such that uα and uβ agree on the set Q+

α ∩ Q+
β . Such a pair of words α and β exists; we

skip here the combinatorial argument, but intuitively this assertion holds from the fact that
there are exponentially many choices for α, β but for each choice, Q+

α and Q+
β create only

polynomially many dependencies. With this property, it is possible to construct a tŝ−1-valid
oracle u′ ⊒p ws−1 such that α, β ∈ u′ holds, u′ and uα agree on Q+

α , and symmetric u′ and
uβ agree on Q+

β . By assumption and Observation 1(iii), this means that both Mi(Fr(0n))
and Mj(Fr(0n)) definitely accept relative to u′. Thus u′ is also t′-valid, as desired. ◀

With only slight modifications, one can give the same Theorem concerning tasks τ3
i,r. We

omit the specific details.

▶ Theorem 7. Let s ∈ N+, (w0, t0), . . . , (ws−1, ts−1) defined. Consider task τ3
i,r.

Suppose that ts = ts−1, ts(τ3
i ) = m > 0. Then there exists a ts-valid w ⊒p ws−1 and n ∈ N

such that one of the following holds:
(i) 0n ∈ Cv

m for all v ⊒ w and Mw
i (F w

r (0n)) definitely rejects.
(ii) 0n ̸∈ Cv

m for all v ⊒ w and Mw
i (F w

r (0n)) definitely accepts.

Lastly, handling task τ4
i,j,r is also possible. For this we use techniques similar to previous

theorems. In this setting, it is in fact possible to explicitly construct a suitable extension
for the task. Due to many additional technical details required, we omit the proof of this
theorem and refer to the full version of the paper.

▶ Theorem 8. Let s ∈ N+, (ws−1, ts−1) defined. Consider task τ4
i,j,r.

Suppose that ts = ts−1, ts(τ4
i,j) = m > 0. Then there exists a ts-valid w ⊒p ws−1 and

n ∈ N such that one of the following holds:
(i) 0n ∈ Dv

m for all v ⊒ w and Mw
i (F w

r (0n)) definitely accepts.
(ii) 0n ∈ Ev

m for all v ⊒ w and Mw
j (F w

r (0n)) definitely accepts.

We have now completed the proofs showing that the oracle construction can be performed
as desired. The following theorem confirms the desired properties of O :=

⋃
i∈N wi. Remember

that |w0| < |w1| < . . . is unbounded, hence for any z there is a sufficiently large s such
that |ws| > z. Also remember that ws is ts-valid for all s ∈ N. Using these facts and the
properties V1–V8 of ts-valid oracles, one can easily state the following result for the final
oracle.

▶ Theorem 9. Relative to O =
⋃

i∈N wi, the following holds:
(i) NP ∩ coNP = P, which implies ¬NP ∩ coNP.
(ii) No pair in DisjNP is ≤pp

m -hard for DisjUP, which implies DisjNP.
(iii) No language in UP is ≤p

m-complete for UP, i.e., UP.
(iv) No pair in DisjCoNP is ≤pp

m -hard for DisjCoUP, which implies DisjCoNP.
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From Theorem 9 and known relativizable results, we obtain the following additional
properties that hold relative to the oracle. See, e.g., the work of Fenner et al. [15] for a
definition of the mentioned function classes NPSV, NPbV, NPkV, NPMV and their total
variants NPSVt, NPbVt, NPkVt, NPMVt. Here, NEE means NTIME

(
2O(2n)).

▶ Corollary 10. The following holds relative to the oracle O constructed in this section.
(i) P = NP ∩ coNP ⊊ UP ⊊ NP
(ii) UP, NP, NE, and NEE are not closed under complement.
(iii) UP ̸⊆ coNP
(iv) NEE ∩ TALLY ̸⊆ coNEE
(v) NPSVt ⊆ PF
(vi) NPbVt ̸⊆c NPSVt
(vii) NPkVt ̸⊆c NPSVt for all k ≥ 2
(viii) NPMVt ̸⊆c NPSVt
(ix) NPMV ̸⊆c NPSV
(x) TFNP ̸⊆c PF
(xi) NP ∩ coNP has ≤p

m-complete sets, i.e., ¬NP ∩ coNP.
(xii) UP has no ≤p

m-complete sets, i.e., UP.
(xiii) DisjNP has no ≤pp

m -complete pairs, i.e., DisjNP.
(xiv) DisjCoNP has no ≤pp

m -complete pairs, i.e., DisjCoNP.
(xv) No pair in DisjNP is ≤pp

m -hard for DisjUP.
(xvi) No pair in DisjCoNP is ≤pp

m -hard for DisjCoUP.
(xvii) There are no p-optimal proof systems for TAUT, i.e., CON.
(xviii) There are no optimal proof systems for TAUT.
(xix) There are no p-optimal proof systems for SAT, i.e., SAT.
(xx) TFNP has no ≤p

m-complete problems, i.e., TFNP.
(xxi) NPMVt has no ≤p

m-complete functions.
(xxii) NP and coNP do not have the shrinking property. [7, 16]
(xxiii) NP and coNP do not have the separation property. [16]
(xxiv) DisjNP and DisjCoNP contain P-inseparable pairs.
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Abstract
In the Exact Matching Problem (EM), we are given a graph equipped with a fixed coloring of its
edges with two colors (red and blue), as well as a positive integer k. The task is then to decide
whether the given graph contains a perfect matching exactly k of whose edges have color red. EM
generalizes several important algorithmic problems such as perfect matching and restricted minimum
weight spanning tree problems.

When introducing the problem in 1982, Papadimitriou and Yannakakis conjectured EM to be
NP-complete. Later however, Mulmuley et al. presented a randomized polynomial time algorithm
for EM, which puts EM in RP. Given that to decide whether or not RP=P represents a big
open challenge in complexity theory, this makes it unlikely for EM to be NP-complete, and in fact
indicates the possibility of a deterministic polynomial time algorithm. EM remains one of the few
natural combinatorial problems in RP which are not known to be contained in P, making it an
interesting instance for testing the hypothesis RP=P.

Despite EM being quite well-known, attempts to devise deterministic polynomial algorithms
have remained illusive during the last 40 years and progress has been lacking even for very restrictive
classes of input graphs. In this paper we push the frontier of positive results forward by proving
that EM can be solved in deterministic polynomial time for input graphs of bounded independence
number, and for bipartite input graphs of bounded bipartite independence number. This generalizes
previous positive results for complete (bipartite) graphs which were the only known results for EM
on dense graphs.
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1 Introduction

The problem of deciding whether a given graph contains a perfect matching, as well as the
related problem of computing a maximum (minimum) weight perfect matching in a given
graph are amongst the foundational problems in algorithmic graph theory and beyond, and
the fact that they can be solved in polynomial time [4] is an integral part of many efficient
algorithms in theoretical computer science.

In 1982, Papadimitriou and Yannakakis [17] studied a decision problem related to perfect
matchings in edge-colored graphs as follows: Given as input a graph G whose edges come
with a given fixed two-edge coloring (say, with colors red and blue), then the task is to decide
whether for a given integer k there exists a perfect matching M of G such that exactly k of
the edges in M are red. Clearly, in the special case when all edges are colored red and k = n
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this problem is simply to decide whether there exists a perfect matching in a given graph.
For a heterogeneous coloring of the edges, however, the difficulty of the problem seems to
change quite dramatically (see below).

The original motivation of Papadimitriou and Yannakakis [17] to study the above problem,
which from now on will be called Exact Matching and abbreviated by EM, was their
investigation of restricted minimum weight spanning tree problems. In the usual minimum
weight spanning tree problem, we are given a graph with non-negative edge-weights and
seek to find a spanning tree minimizing the total edge-weight, and this is well-known to be
solvable in polynomial time using for instance Kruskal’s algorithm [12]. Papadimitriou and
Yannakakis considered what happens if we restrict the shape of the spanning trees allowed
in the output, and obtained several results. For instance, the problem is easily seen to be
NP-hard if the considered spanning trees are constrained to be paths, by a reduction from the
Hamiltonian Path problem, but it is polynomial-time solvable if the tree shapes are restricted
to stars or 2-stars. While for many classes of trees, Papadimitriou and Yannakakis [17]
classified the complexity of the above problem, some cases remained unsettled. In particular,
they proved that the restricted minimum weight spanning tree problem for so-called double
2-stars is equivalent to EM, and left it as an open problem to decide its computational
complexity. In fact, they stated the conjecture that EM is NP-complete. Up until today,
neither has this conjecture been confirmed, nor is it known whether EM can be solved in
polynomial time by a deterministic algorithm. Yet, there have been some interesting results
and developments regarding the problem in the past, which we summarize in the following.

Only few years after the introduction of the problem, in a breakthrough result Mulmuley,
Vazirani and Vazirani [16] developed their so-called isolation lemma, and demonstrated its
power by using it to prove that EM can be solved by a randomized polynomial time algorithm,
i.e. it is contained in RP. This makes it unlikely to be NP-hard. In fact, deciding whether
RP=P remains one of the big challenges in complexity theory. This means that problems
such as EM, for which we know containment in RP but are not aware of deterministic
polynomial time algorithms, are interesting candidates for testing the hypothesis RP=P.
Indeed, due to this, EM is cited in several papers as an open problem. This includes recent
breakthrough papers such as the seminal work on the parallel computation complexity of
the matching problem [19], works on planarizing gadgets for perfect matchings [8], works on
more general constrained matching problems [1, 14, 15, 18] and on multicriteria optimization
problems [7] among others. Even though EM has caught the attention of many researchers
from different areas, there seems to be a substantial lack of progress on the problem even
when restricted to very special subclasses of input graphs as we will see next. This highlights
the surprising difficulty of the problem given how simple it may seem at first glance.

Previous results for EM on restricted classes of graphs. It may surprise some readers
that EM is even non-trivial if the input graphs are complete or complete bipartite graphs:
In fact, at least four different articles have appeared on resolving these two special cases
of EM [10, 20, 6, 9], which are now known to be solvable in deterministic polynomial time.
Another positive result follows from the existence of Pfaffian orientations and their analogues
on planar graphs and K3,3-minor free graphs [21], EM is solvable in polynomial time on these
classes via a derandomization of the techniques used in [16]. Considering a generalization
of Pfaffian orientations, it was further proved in [5] that EM can be solved in polynomial
time for graphs embeddable on a surface of bounded genus. Finally, from the well-known
meta-theorem of Courcelle [2], one easily obtains that EM can be efficiently solved on classes
of bounded tree-width.
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Our contribution. In this paper, we generalize the known positive results for EM on very
dense graphs such as complete and complete bipartite graphs to graphs of independence
number at most α and to bipartite graphs of bipartite independence number at most β, for
all fixed integers α, β ≥ 1. The independence number of a graph G is defined as the largest
number α such that G contains an independent set of size α. The bipartite independence
number of a bipartite graph G equipped with a bipartition of its vertices is defined as
the largest number β such that G contains a balanced independent set of size 2β, i.e., an
independent set using exactly β vertices from both color classes.

▶ Theorem 1. There is a deterministic algorithm for EM on graphs of independence number
α running in time nO(f(α)), for f(α) = 2O(α).

▶ Theorem 2. There is a deterministic algorithm for EM on bipartite graphs of bipartite
independence number β running in time nO(f(β)), for f(β) = 2O(β).

The special cases α = 1 and β = 1 of the above results correspond exactly to the
previously studied cases of complete and complete bipartite graphs. We emphasize that even
though bounding the independence number might seem like a big restriction on the input
graphs, already for α = 2, β = 2 our results cover rich and complicated classes of graphs,
for instance every complement of a triangle-free graph belongs to the class of independence
number at most 2, and every bipartite complement of a C4-free bipartite graph belongs to
the class of bipartite independence number at most 2.

Another interesting observation in support of the above is the following: So far, for all
classes of graphs on which EM was known to be solvable in polynomial time (including planar
graphs, K3,3-minor-free graphs, graphs of bounded genus, complete and complete bipartite
graphs), the number of perfect matchings was also known to be countable in polynomial
time (cf. [11, 13, 5, 21]), and one may wonder about whether tractability of EM aligns with
the tractability of corresponding counting problems for perfect matchings. However, even for
graphs of independence number 2 we are not aware that polynomial schemes for counting
perfect matchings exist, and in fact conjecture that this problem is computationally hard,
therefore putting our result into nice contrast with previous positive results on EM.

▶ Conjecture 3. The problem of counting perfect matchings in input graphs of independence
number 2 is #P-complete.

Organization of the paper. The remainder of this paper is organized as follows: In Section 2
we present the basic definitions and conventions we use throughout the paper. In Section 3
we prove Theorem 1, i.e., showing the existence of an XP algorithm parameterized by the
independence number of the graph. In Section 4 we consider the bipartite graphs case and
prove Theorem 2. In Section 5 we discuss distance-d independence number parameterizations
and in Section 6 we conclude the paper and provide some open problems.

2 Preliminaries

Due to space restrictions, proofs of statements marked ⋆ have been deferred to the appendix.
All graphs considered are simple. For a graph G = (V, E) we let n = |V (G)|, i.e. the number
of vertices in G. Given an instance of EM and a perfect matching1 (abbreviated PM) M , we

1 A perfect matching of a graph is a matching (i.e., an independent edge set) in which every vertex of the
graph is incident to exactly one edge of the matching.
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define edge weights as follows: blue edges get weight 0, matching red edges get weight −1
and non-matching red edges get weight +1. For G′ a subgraph2 of G, we define R(G′) (resp.
B(G′)) to be the set of red (resp. blue) edges in G′, r(G′) := |R(G′)| and wM (G′) to be the
sum of the weights of edges in G′. For ease of notation, we will use w(G′) for wM (G′) and
will make the matching explicit whenever it is not M .

Whenever we consider a set of cycles or paths, it is always assumed that they are vertex
disjoint and alternating with respect to the current matching M (unless specified otherwise).
Define an x-path to be an alternating path of weight x. Undirected cycles are considered to
have an arbitrary orientation. For a cycle C and u, v ∈ C, C[u, v] is defined as the path from
u to v along C (in the fixed but arbitrarily chosen orientation). For simplicity, a cycle is also
considered to be a path i.e. a closed path (its starting vertex is chosen arbitrarily). Ram(r, s)
refers to the Ramsey number, i.e. every graph on Ram(r, s) vertices contains either a clique
of size r or an independent set of size s. For simplicity we will use the following upper bound
Ram(s + 1, s + 1) < 4s [3]. For two sets of edges M and M ′, M∆M ′ refers to the symmetric
difference between the two sets (i.e. the edges that appear in exactly one of the two sets).
Note that if M and M ′ are two PMs, then M∆M ′ forms a set of cycles (each alternating
with respect to both matchings) and will be use as such. Also note that with the above
defined edge weights we have r(M ′) = r(M) + w(M∆M ′).

3 Bounded Independence Number Graphs

The algorithm relies on a 2 phase process. The first phase is an algorithm that outputs a
PM M with |k − r(M)| bounded (by a function of α), i.e. with a number of red edges that
only differs from k by a function of α. This algorithm is also of independent interest since
it provides a solution that is close to optimal (for small independence number) while its
running time is polynomial and independent of the independence number.

▶ Theorem 4. Given a “Yes” instance of EM, there exists a deterministic polynomial time
algorithm that outputs a PM M with k − 2 · 4α ≤ r(M) ≤ k.

▶ Remark. Note that a standalone proof of Theorem 4 can be made quite simple but would
require additional notions and definitions. Our main focus however, is on the proof of
Theorem 1, so the proof structure is tailored towards that end and the proof of Theorem 4
will come as result along the way.

The second phase is an algorithm that outputs a solution matching with a running time
that depends on the size of the smallest color class in a symmetric difference between a
given matching and a solution matching. It is also of independent interest as it can be more
generally useful for the study of other parameterizations of EM as well as other matching
problems with color constraints.

▶ Proposition 5. Let M and M ′ be two PMs in G s.t. |B(M∆M ′)| ≤ L or |R(M∆M ′)| ≤ L.
Then there exists a deterministic algorithm running in time nO(L) such that given M it
outputs a PM M ′′ with r(M ′′) = r(M ′).

Proof. Suppose w.l.o.g. |R(M∆M ′)| ≤ L (the other case is similar by swapping the
colors). Guess R(M∆M ′) in time nO(L) by trying all possibilities (the rest of the algorithm
should succeed for at least one such possibility). Compute R(M ′) = R(M)∆R(M∆M ′).

2 Note that the subgraph can also be a set of edges or cycles.
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Remove the edges R(M ′) and their endpoints from the graph as well as all remaining
red edges. Compute a PM M1 on the rest of the graph (such a PM must exist since
M ′\R(M ′) is one such example) and let M ′′ := M1 ∪ R(M ′). Observe that M ′′ is a PM
with r(M ′′) = |R(M ′′)| = |R(M ′)| = r(M ′). ◀

For this phase to run in polynomial time for bounded independence number, we need to
show that there exists a PM M∗ with exactly k red edges, where M∆M∗ (M being the PM
we get after the first phase) has a bounded (by a function of α) number of edges of some
color class. The main technical challenge is to show that for this to be the case it is sufficient
to have |k − r(M)| bounded (which is guaranteed by the first phase). The rest of this section
is devoted to this proof. Along the way we will also prove Theorem 4. Before going into the
technical details, we give a quick overview.

3.1 Proof Overview

In order to apply Proposition 5, we will consider the solution matching M∗ which minimizes
the number of edges in M∆M∗ (M being the PM we get after the first phase) and aim to show
that it contains a bounded number of edges of some color class. Towards this end, we want to
show that if the set of alternating cycles M∆M∗ contains a large number of edges from both
color classes, then there be must another set of alternating cycles C with the same total weight
as M∆M∗, but containing strictly less edges. This contradicts the minimality of M∆M∗

since M∆C is also a solution matching with |E(M∆(M∆C))| = |E(C)| < |E(M∆M∗)|. In
other words, we want to show that unless one color class in M∆M∗ is bounded, we can reduce
the size of one or more of the cycles in M∆M∗ while keeping the total weight unchanged.

e2e1v1

v′1
v2

v′2

Figure 1 A skip formed by two non-matching edges e1 and e2 (in orange). Matching edges are
represented by full lines and non-matching edges by dotted lines. The paths removed by the skip
are depicted in black.

Skips. The main tool we use to show the existence of smaller alternating cycles is something
we call a skip (see Figure 1). At a high level, a skip is simply a pair of edges that creates a
new alternating cycle C ′ by replacing two paths of an alternating cycle C. If those paths have
total length more than 2 then |C ′| < |C|. This means that if a solution matching M∗∗ exists,
such that M∆M∗∗ is the same as M∆M∗ but with C replaced by C ′, it would contradict
the minimality of M∆M∗. For M∗∗ to be a solution matching, we also need w(C) = w(C ′)
so that M∗∗ also has k red edges. For this reason we look for skips that do not change the
total weight (we call them 0 skips). It can happen however, that even though no 0 skip exists,
a collection of skips exists, that can be used independently, and their total weight change is
zero (we call them 0 skip sets). Also observe that these skips can come from different cycles
of M∆M∗ and still be used to reduce its total number of edges (i.e. we can modify multiple
cycles in M∆M∗ simultaneously to preserve the total weight change). So by taking M∆M∗

to be minimal (in terms of total number of edges), we are guaranteed that no such skip sets
can exist.
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46:6 Exact Matching in Graphs of Bounded Independence Number

Skips from Paths. To show the existence of skips (which will lead to the desired contradic-
tion), we rely on Ramsey theory to show that if we take a large enough (with respect to α)
collection of disjoint paths on an alternating cycle, starting and ending with non-matching
edges, then they must form skips. Now if these paths have certain desired weights, then we
could make sure that we get a 0 skip set as desired.

Paths from Edge Pairs. To prove the existence of paths of desired weight, we analyze
the cycles in M∆M∗ by looking at their edge pairs, i.e. pairs of consecutive matching and
non-matching edges. These edge pairs can have 3 configurations from which we can extract
the paths. (1) Consecutive same sign pairs (sign here refers to the weight of the pair), (2)
consecutive different sign pairs and (3) consecutive 0 pairs. We show that we can extract
paths of the desired properties from all of these configurations, and the types of skips we get
is dependent on the weights of the cycles and the sizes of their color classes.

Bounding the Cycle Weights. Next, we show that if M∆M∗ is minimal, all of its cycles
have bounded weight. This is mainly achieved by showing that cycles of large weight must
have skips that reduce their weight. This changes the total weight of M∆M∗ however, and
must be compensated for either by skips on a cycle of opposite sign weight, or by removing
some of the cycles in M∆M∗.

Bounding one color class. After bounding the weights of the cycles in M∆M∗ (by a
function of α), we will also bound their number given that their total weight is bounded.
With these properties (bounded cycle weights and number of cycles), we can show that if
M∆M∗ has enough edges from both colors, then at least one of its cycles contains enough
positive skips and one of its cycles contains enough negative skips, together forming a 0 skip
set, i.e. M∆M∗ is not minimal. So choosing M∆M∗ minimal implies a bound on the size of
one of its color classes.

3.2 Detailed Proof
Skips. We start by formally defining a skip and its properties.

▶ Definition 6. Let C be an alternating cycle. A skip S is a set of two non-matching edges
e1 := (v1, v2) and e2 := (v′

1, v′
2) with e1, e2 /∈ C and v1, v′

1, v2, v′
2 ∈ C (appearing in this order

along C) s.t. C ′ = e1 ∪ e2 ∪ (C \ C[v1, v′
1] ∪ C[v2, v′

2]) is an alternating cycle, |C| − |C ′| > 0
and |w(S)| ≤ 4 where w(S) := w(C ′) − w(C) is called the weight of the skip.

Note that we require a skip to have weight at most 4. This is mainly to simplify the analysis
since it is enough to only consider such skips.

If P ⊆ C is a path and C[v1, v′
2] ⊆ P , then we say that P contains the skip S. We say

using S to mean replacing C by C ′. If C ∈ M∆M ′ for some PM M ′, then by using S we
also modify M ′ accordingly (i.e. s.t. M∆M ′ now contains C ′ instead of C). Observe that a
positive skip (where positive refers to the weight of the skip) increases the cycle weight, a
negative skip decreases it and a 0 skip does not change the cycle weight. Using a skip always
results in a cycle of smaller cardinality. Two skips {(v1, v2), (v′

1, v′
2)} and {(u1, u2), (u′

1, u′
2)}

are called disjoint if they are contained in disjoint paths along the cycle. Note that two
disjoint skips can be used independently.

▶ Definition 7. Let C be a set of alternating cycles. A 0 skip set is a set of disjoint skips on
cycles of C s.t. the total weight of the skips is 0.
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Observe that finding a skip with some desired properties can be done in polynomial time
by trying all possible combinations of 2 edges, every time checking if the edges form a skip
with the desired properties (i.e. checking if the resulting cycle C ′ is alternating, has strictly
less edges then C and the weight change is as desired, which can all be done in polynomial
time).

Skips from Paths. Next, we show that if a cycle contains a lot of disjoint paths then it
must contain a skip that replaces 2 of these paths by its 2 edges.

Clique of size α + 1

e2e1

Figure 2 A subset of P of size α + 1 whose starting vertices form a clique.

▶ Lemma 8. Let P be an alternating path containing a set P of disjoint paths, each of length
at least 3 and starting and ending at non-matching edges, of size |P| ≥ 4α. Then P contains
a skip. If all paths in P have the same weight x, then if x is one of the following values, we
get the following types of skips:

x = 2: negative skip.
x = 1: negative or 0 skip.
x = 0: positive or 0 skip.
x = −1: positive skip.

Proof. The set of starting vertices of the paths in P must contain a clique Q of size α + 1
since |P| > Ram(α + 1, α + 1) (and the independence number of the graph is α). Let P ′

be the set of paths from P starting with vertices in Q and Q′ their set of ending vertices.
Since |Q′| = α + 1, there must be an edge connecting two of its vertices, call it e2. Let P1
and P2 be the two paths in P ′ connected by e2. Let e1 be the edge connecting the starting
vertices of P1 and P2 (which must exist since Q is a clique). Note that e1 and e2 must
be non-matching edges since they are chords of the alternating cycle C so their endpoints
are matched to edges of C. Now observe that e1 and e2 form a skip S (see Figure 2) and
w(S) = w(e1) + w(e2) − w(P1) − w(P2). Finally, suppose P1 and P2 have weight x and note
that w(e1), w(e2) ∈ {0, 1} since they are non-matching edges. We get −2x ≤ w(S) ≤ 2 − 2x

thus proving the lemma. ◀

The above lemma only shows the existence of a skip of a certain sign, and does not
guarantee the existence of 0 skips, i.e. skips that do not change the cycle weight. The next
lemma shows that if there are enough disjoint positive and negative skips we can still obtain
a 0 skip set (i.e. we can still reduce the cardinality of M∆M ′ without changing its weight).

▶ Lemma 9 (⋆). Let S be a collection of disjoint skips. If S contains at least 4 positive skips
and at least 4 negative skips (all mutually disjoint), then S must contain a 0 skip set.
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+1 0 +1 0 +1 0 -1 +1 -1 0 -1

+1 bundle path SAP -1 bundle path

Figure 3 An example of an alternating path containing a +1 bundle, a −1 bundle and an SAP.
Matching edges are represented by full lines and non-matching edges by dotted lines. The colors of
the edges correspond to their color in the graph.

Edge Pairs. For a given alternating cycle, our goal is to find paths of some desired weight
in order to apply Lemma 8. To make finding these paths easier, we look at pairs of edges.
Each pair consists of two consecutive edges (the first a matching-edge and the second a
non-matching edge). We label the pairs according to their weight (see in Figure 3 the label
above each pair of edges).

▶ Definition 10. A +1 pair (resp. −1 pair and 0 pair) is a pair of consecutive edges (the
first a matching-edge and the second a non-matching edge) along an alternating cycle such
that their weight sums to 1 (resp. −1 and 0).

Two +1 (resp. −1) pairs are called consecutive if there is an alternating path between
them on the cycle which only contains 0 pairs.

▶ Definition 11. A +1 (resp. −1) bundle is a pair of edge-disjoint consecutive +1 (resp.
−1) pairs. The path starting at the first pair and ending at the second one (including both
pairs) is referred to as the bundle path (see Figure 3 for an example of such bundles).

Note that a +1 (resp. −1) bundle path has weight +2 (resp. −2). Two bundles are called
disjoint if their bundle paths are edge disjoint.

▶ Definition 12. A Sign Alternating Path (SAP) is an alternating path P formed by edge
pairs, such that it does not contain any bundles (see Figure 3 for an example of such path).

Note that for an SAP P , |w(P )| ≤ 1.

Paths from Edge Pairs. Our goal is to bound the number of edges from some color class
in M∆M∗, when the latter is chosen to contain a minimum number of edges. To this end,
we aim to show that a large number of edges of both color classes implies the existence of
a 0 skip set (which would contradict the minimality of M∆M∗). By Lemma 9 it suffices
to show the existence of many positive and negative skips which in turn can be a result of
many paths of certain weight (by Lemma 8).

In the next two lemmas, we first show that a large number of edges of some color class
implies the existence of either many bundles, a long SAP or many 0-paths starting with an
edge of that color class. Then we show that all of these structures result in paths of the
desired weights.

▶ Lemma 13 (⋆). Let P be an alternating path containing at least 10t3 blue (resp. red)
edges. Then one of the following properties must hold:
(a) P contains at least t disjoint bundles.
(b) P contains an SAP with at least t non-zero pairs.
(c) P contains at least t edge-disjoint 0-paths of length at least 4 starting with a blue (resp.

red) matching edge.
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▶ Lemma 14 (⋆). A path P , satisfying one of the following properties, must contain t disjoint
paths each of length at least 3, starting and ending with non-matching edges and having
specific weights that depend on the satisfied property:
(a) P contains t disjoint +1 bundles: paths of weight +2.
(b) P contains t disjoint −1 bundles: paths of weight −1.
(c) P contains t edge-disjoint 0-paths of length at least 4 starting with a red matching edge:

paths of weight +1.
(d) P contains t edge-disjoint 0-paths of length at least 4 starting with a blue matching edge:

paths of weight 0.
(e) P contains an SAP with at least 2t + 1 non-zero pairs: paths of weight +1.
(f) P contains an SAP with at least 2t + 1 non-zero pairs: paths of weight 0.

While the above lemmas would be enough to show the existence of many skips whenever
M∆M∗ contains many edges from both color classes, these skips can still be of the same
sign (e.g. all positive) which is not enough to use Lemma 9. We will later show that this
cannot happen if the cycles in M∆M∗ have bounded weight.

Bounding Cycle Weights. In this part, we will deal with cycles of unbounded weight. We
start by showing that a large cycle weight implies the existence of many skips that can be
used to reduce it.

▶ Lemma 15 (⋆). Let P be an alternating path with w(P ) ≥ 2t · 4α (resp. w(P ) ≤ −2t · 4α),
then P contains at least t disjoint negative (resp. positive) skips.

The above lemma also allows for simple proof of Theorem 4.

Proof of Theorem 4. Let M1 be a PM containing a minimum number of red edges and M2
a PM with a maximum number of red edges (should be at least k). Note that M1 (resp. M2)
can be computed in polynomial time by simply using a maximum weight perfect matching
algorithm with −1 (resp. +1) weights assigned to red edges and 0 weights assigned to blue
edges.

Now as long as r(M1) ≤ k − 2 · 4α and r(M2) > k we will apply the following procedure
(otherwise we output M := M1): Let C ∈ M1∆M2 with w(C) > 0 (such a cycle must exist
since r(M1) < r(M2)). If w(C) ≤ 2 · 4α then we replace M1 by M1∆C and iterate (note that
r(M1) < r(M1∆C) ≤ k). Otherwise, by Lemma 15, C contains a negative skip. We find it in
polynomial time and use it to reduce the cycle weight, and iterate the whole procedure (note
that r(M2) decreases). If at any point r(M2) drops below k, we simply output M := M2. In
all cases w(M1∆M2) decreases after every iteration. So there can be at most n iterations
(since the PMs have at most n/2 edges each, so w(M1∆M2) ≤ n and we only iterate as long
as it is bigger than 0), each running in polynomial time. ◀

▶ Remark. Note that the proof only relies on Lemma 15 which in turn only relies on Lemma 8
and the part of Lemma 14 that deals with bundles. Most of the previously defined notions
are not needed for this standalone result.

From Lemma 15 we get that if M∆M∗ contains both a positive cycle of unbounded weight
and a negative cycle of unbounded weight, we can find a 0 skip set using Lemma 9. It could
be the case however, that we have only one of the two, say a positive cycle of unbounded
weight (with respect to α), and many negative weight cycles (which would be required if
|w(M∆M∗)| is bounded, which is guaranteed by the first phase of the algorithm). In this
case we can get many negative skips from the positive weight cycle of unbounded weight
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but we are not guaranteed to find positive skips, so we need another way to compensate
for the total weight change. Notice that this can be achieved by removing negative cycles
from M∆M∗. So we will combine the use of negative skips with the removal of some of the
negative cycles in order to get a zero total weight change. We call this a 0 skip-cycle set.

▶ Definition 16. Let C be a set of alternating cycles. A 0 skip-cycle set is a set of disjoint
skips on cycles of C and/or cycles from C, s.t. the total weight of the skips minus the total
weight of the cycles is 0.

We say that we use a skip-cycle set S to mean that we use all skips in S and remove all
cycles in S from C. Note that a 0 skip set is a 0 skip-cycle set. Also a cycle C ∈ M∆M∗ with
w(C) = 0 is a 0 skip-cycle set. The following lemma shows that if a set of alternating cycles
has bounded weight but one of its cycles has an unbounded weight then it must contain a 0
skip-cycle set.

▶ Lemma 17 (⋆). Let t ≥ 8 · 4α and t′ = 4t2. Let C be a set of alternating cycles and C ∈ C
s.t. |w(C)| ≤ t′ and |w(C)| ≥ 2t′, then C contains a 0 skip-cycle set.

Bounding one color class. So far we have shown that we can bound the weight of the
cycles in M∆M∗ (if M∆M∗ is minimal). What we want to show next is that if M∆M∗

contains many blue (resp. red) edges and all of its cycles have bounded weight, then it also
contains many positive (resp. negative) skips. This way we show that having many edges of
both color classes results in a 0 skip set.

First we deal with the case when the number of cycles in M∆M∗ is unbounded. The
following lemma shows that if the number of cycles is large enough compared to their
individual and total weights, then there must be a subset of them of 0 total weight (i.e., a 0
skip-cycle set).

▶ Lemma 18 (⋆). Let t ≥ 3. Let C be a set of alternating cycles s.t. |w(C)| ≤ t, |w(C)| ≤ 2t

for all C ∈ C and |C| ≥ 10t3, then C contains a 0 skip-cycle set.

Now we deal with the case when the number of cycles in M∆M∗ is bounded. In this
case, for the number of edges of some color class to be unbounded, it has to be unbounded
on at least one of the cycles. Lemma 21 deals with this case by first using Lemma 13 to show
the existence of many bundles, many 0-paths starting with a red edge and many 0-paths
starting with a blue edge, or a long SAP. In the latter two cases, we can prove the existence
of both positive and negative skips resulting in a 0 skip set. In the case of bundles however,
we need to have both many +1 and many −1 bundles for this to work. In Lemma 19 we
show that if the weight of an alternating cycle is bounded, then the difference between the
number of +1 and −1 bundles is also bounded. This in turn allows us to prove that the
existence of many bundles results in a 0 skip set as well (see Lemma 20).

▶ Lemma 19 (⋆). Let C be a cycle with |w(C)| ≤ l. If C contains 3t + l disjoint −1 (resp.
+1) bundles, then C also contains at least t disjoint +1 (resp. −1) bundles.

▶ Lemma 20 (⋆). Let t ≥ 8 · 4α. Let C be a cycle with |w(C)| ≤ 2t. If C contains more
than 10t disjoint bundles then it must contain a 0 skip set.

▶ Lemma 21 (⋆). Let t ≥ 8 · 4α. Let C be a collection of cycles s.t. |C| ≤ 10t3, |w(C)| ≤ 2t

for all C ∈ C and C contains at least 1000t6 blue edges and 1000t6 red edges, then C contains
a 0 skip set.
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Proof of Theorem 1. Use the algorithm of Theorem 4 to get a matching M s.t. k − 2 · 4α ≤
r(M) ≤ k. Let M∗ be a PM with k red edges that minimizes |E(M∆M∗)|. Consider the set of
cycles M∆M∗. Observe that it cannot contain a 0 skip-cycle set (by minimality of its number
of edges) and |w(M∆M∗)| ≤ |k − r(M)| ≤ 2 · 4α. Let t = 256 · 42α (so t is large enough to
apply all the previous lemmas). If some cycle C ∈ M∆M∗ has |w(C)| ≥ 2t, by Lemma 17 we
get a 0 skip-cycle set. So we consider the case when all cycles C ∈ M∆M∗ have |w(C)| < 2t.
If M∆M∗ contains at least 10t3 cycles, by Lemma 18 we get a 0 skip set. So we consider the
case when |M∆M∗| ≤ 10t3. By Lemma 21, since M∆M∗ does not contain a 0 skip set, it
must contain at most f(α) edges of some color class (for f(α) = 1000 · (256 · 42α)6 = 2O(α)).
By Proposition 5 we can find a PM with exactly k red edges in nO(f(α)) time if one exists. ◀

4 Bipartite Graphs

In this section, we consider Bipartite graphs, which contain very large independent sets
(≥ n/2). For this reason, we instead parameterize by the bipartite independence number
β. Note that for the proof of Theorem 1 the only time we used the bounded independence
number is in the proof of Lemma 8. So we need an analogue of it that works for bounded
bipartite independence number, which will be given in Lemma 23. We will also need a new
notion of a skip that better fits the bipartite case. We call it a biskip (see Definition 22 and
Figure 4). We will also rely on an orientation of the edges of the graph defined as follows.
Given a bipartite graph G with bipartition (A, B) and a matching M , we transform G into a
directed graph GM by orienting every matching edge from A to B and every non-matching
edge from B to A.

▶ Definition 22. Let C be a directed alternating cycle. A biskip S is a set of 2 arcs
a1 := (v1, v2) and a2 := (v′

1, v′
2) with a1, a2 /∈ C and v1, v′

2, v′
1, v2 ∈ C (appearing in this order

along C) s.t. C1 := C[v2, v1] ∪ a1 and C2 := C[v′
2, v′

1] ∪ a2 are vertex disjoint alternating
cycles, |C| − |C1| − |C2| > 0 and |w(S)| ≤ 4 where w(S) := w(C1) + w(C2) − w(C) is called
the weight of the biskip.

If P ⊆ C is a path and C[v1, v2] ⊆ P , then we say that P contains the biskip S. We say
using S to mean replacing C by C1 and C2. If C ∈ M∆M ′ for some PM M ′, then by using
S we also modify M ′ accordingly (i.e. s.t. M∆M ′ now contains C1 and C2 instead of C).
Two skips {(v1, v2), (v′

1, v′
2)} and {(u1, u2), (u′

1, u′
2)} are called disjoint if they are contained

in disjoint paths.

a2

a1
v1

v′2
v′1

v2

Figure 4 A biskip formed by two non-matching arcs a1 and a2 (in orange). Matching edges are
represented by full lines and non-matching edges by dotted lines. The paths removed by the biskip
are depicted in black.

▶ Remark. Note that the biskip could have been defined with one arc instead of two (since
in this case one arc is enough to shorten an alternating cycle), which would have made the
definition simpler. Definition 22 is however, very similar to the definition of the skip (see
Definition 6) and this in turn allows us to prove Theorem 2 in an analogous way to Theorem 1
instead of requiring a completely different proof.
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▶ Lemma 23. Let P ⊆ GM be a directed alternating path containing a set P of disjoint
directed paths, each of length at least 3 and starting and ending at a non-matching edge, s.t.
|P| ≥ 42β+2. Then P contains a biskip. If all paths in P have the same weight x, then if x

is one of the following values, we get the following types of biskips:
x = 2: negative biskip.
x = 1: negative or 0 biskip.
x = 0: positive or 0 biskip.
x = −1: positive biskip.

Proof. Consider the graph GC defined as follows: V (GC) = P , there is an edge between two
vertices if their corresponding paths have an arc that goes from the start vertex of the first
path to the end vertex of the second.

▷ Claim. GC has independence number bounded by 2β + 1.

Proof. Take any subset Q of vertices of GC of size 2β + 2. Let Q1 be β + 1 consecutive
(along C) vertices of Q and Q2 the rest. Let V1 be the set of start vertices of the paths
corresponding to Q1 in GM and V2 be the set of end vertices of the paths corresponding to
Q2 in GM . Observe that V1 ∪ V2 is a balanced set of size 2β + 2, so there must be an arc
connecting two of its vertices. Observe that the arc must be going from V1 to V2 since it
corresponds to a non-matching edge. So GC contains an edge corresponding to this arc, i.e.
Q is not an independent set. ◁

GC must contain a clique Q of size 2β + 2 since |V (GC)| = |P| ≥ Ram(2β + 2, 2β + 2).
Let Q1 be β + 1 consecutive (along C) vertices of Q and Q2 the rest. Let V1 be the set of
end vertices of the paths corresponding to Q1 in GM and V2 be the set of start vertices of
the paths corresponding to Q2 in GM . Observe that V1 ∪ V2 is a balanced set of size 2β + 2,
so there must be an arc (call it a1) connecting two of its vertices. Observe that the arc must
be going from V2 to V1 since it corresponds to a non-matching edge. Let P1 and P2 be the
paths corresponding to its start and end vertices. P1 and P2 must be connected by an edge
in Q, let a2 be the corresponding arc in GM . So a2 connects the start of P1 to the end of
P2 and a1 connects the start of P2 to the end of P1. Observe that a1 and a2 form a biskip
S and w(S) = w(a1) + w(a2) − w(P1) − w(P2). Let x = w(P1) = w(P2) (x depends on the
type of paths considered) and note that w(e1), w(e2) ∈ {0, 1}. We get −2x ≤ w(S) ≤ 2 − 2x

thus proving the lemma. ◀

The rest of the proof of Theorem 2 follows the same structure as that of Theorem 1
while using biskips instead of skips. Due to lack of space we will defer all the details to the
appendix where we will restate all the definitions and lemmas that need to be adapted.

5 Distance-d Independence Number

In this section we show that the algorithms developed for small independence number graphs
cannot be generalized to distance-d independence number, for d > 2, unless they can be
used to solve EM on any graph. A distance-d independent set is a set of vertices at pairwise
distance at least d (i.e. the shortest path between any two of them contains at least d edges)
and the distance-d independence number is the size of the largest such set. Note that for
d = 2 we get the normal independence number. Let αd(G) be the distance-d independence
number of a graph G.
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▶ Theorem 24. EM can be reduced to EM on graphs with αd(G) = 1, for any d > 2, in
deterministic polynomial time.

Proof. Given a graph G = (V, E) we construct another graph G′ = (V ′, E′) by adding two
new vertices u and v s.t. V ′ = V ∪ {u, v} and E′ := E ∪ (u, v) ∪ {(u, x) : x ∈ V }. All edges
in E keep their colors while new edges get color blue. Observe that any PM on G′ must
contain (u, v) since it is the only edge connected to v, so by removing this edge from the
PM we get a PM for G. Also note that G′ has distance-d independence number of 1, for any
d > 2, since any two vertices are connected to u, i.e. have distance 2. Now if there exists a
PM M with exactly k red edges in G′, we know that M\(u, v) is a PM with exactly k red
edges in G. ◀

A similar theorem applies for bipartite graphs. Note that here we do not need to consider
balanced independent sets (a similar result holds if we do).

▶ Theorem 25. EM on bipartite graphs can be reduced to EM on bipartite graphs with
αd(G) = 2, for any d > 2, in deterministic polynomial time.

Proof. Given a bipartite graph G = (U, V, E) we construct another bipartite graph G′ =
(U ′, V ′, E′) s.t. U ′ = U ∪ {u, u′} , V ′ = V ∪ {v, v′} and E′ := E ∪ {(u, x) : x ∈ V ′} ∪ {(v, x) :
x ∈ U ′}. All edges in E keep their colors while new edges get color blue. Observe that any
PM on G′ must contain (u, v′) and (v, u′) since they are the only edges connected to u′ and
v′, so by removing these edges from the PM we get a PM for G. Also note that G′ has
distance-d independence number of 2, for any d ≥ 2, since it can contain at most one vertex
from each of U ′ and V ′ (any two vertices of U ′ are connected to v, and any two vertices of
V ′ are connected to u). Now if there exists a PM M with exactly k red edges in G′, we know
that M\((u, v′) ∪ (v, u′)) is a PM with exactly k red edges in G. ◀

6 Conclusion and Open Problems

In this paper we initiated the study of the parameterized complexity of EM by showing
that it can be solved in deterministic polynomial time on graphs of bounded independence
number and bipartite graphs of bounded bipartite independence number (i.e. we developed
XP algorithms). This is an important step towards finding the right complexity class of the
problem in general graphs as it generalizes the only previously known results on dense graph
classes which were restricted to complete (bipartite) graphs.

A natural next step would be to design corresponding FPT-algorithms in which the
exponent in the running time is independent of the independence number. Another future
direction would be to study the parameterized complexity of EM for other graph parameters.
As we showed, parameterizing by higher distance independence numbers does not provide
any additional structure, so it would be interesting to find other parameters that could yield
non-trivial structure. Finally, it would be interesting to prove our conjecture on the hardness
of counting PMs in graphs of independence number 2 or to find deterministic polynomial
time algorithms for EM that work on graph classes for which counting PMs is #P-hard.
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Abstract
The minimum number of clauses in a CNF representation of the parity function x1 ⊕ x2 ⊕ · · · ⊕ xn

is 2n−1. One can obtain a more compact CNF encoding by using non-deterministic variables (also
known as guess or auxiliary variables). In this paper, we prove the following lower bounds, that
almost match known upper bounds, on the number m of clauses and the maximum width k of clauses:
1) if there are at most s auxiliary variables, then m ≥ Ω

(
2n/(s+1)/n

)
and k ≥ n/(s + 1); 2) the

minimum number of clauses is at least 3n. We derive the first two bounds from the Satisfiability
Coding Lemma due to Paturi, Pudlák, and Zane using a tight connection between CNF encodings
and depth-3 circuits. In particular, we show that lower bounds on the size of a CNF encoding
of a Boolean function imply depth-3 circuit lower bounds for this function.
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1 Overview

1.1 Motivation
A popular approach for solving a difficult combinatorial problem in practice is to encode it
in conjunctive normal form (CNF) and to invoke a SAT-solver. There are two main reasons
why this approach works well for many hard problems: the state-of-the-art SAT-solvers
are extremely efficient and many combinatorial problems are expressed naturally in CNF.
At the same time, a CNF encoding is not unique and one usually determines a good encoding
empirically. Moreover, there is no such thing as the best encoding of a given problem
as it also depends on a SAT-solver at hand. Prestwich [10] gives an overview of various
ways to translate problems into CNF and discusses their desirable properties, both from
theoretical and practical points of view.

Already for such simple functions as the parity function x1 ⊕ x2 ⊕ · · · ⊕ xn, it is not
immediate how to encode them in CNF (to make it efficiently handled by SAT-solvers).
Parity function is used frequently in cryptography (hash functions, stream ciphers, etc.).
It is known that the minimum number of clauses in a CNF computing parity is 2n−1. This
becomes impractical quickly as n grows. A standard way to reduce the size of an encoding is
by using non-deterministic variables (also known as guess or auxiliary variables). Namely, one
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introduces s non-deterministic variables y1, . . . , ys and partitions the set of input variables
into s + 1 blocks of size at most ⌈n/(s + 1)⌉: {x1, x2, . . . , xn} = X1 ⊔X2 ⊔ · · · ⊔Xs+1. Then,
one writes down the following s + 1 parity functions in CNF:(

y1 =
⊕

x∈X1

x

)
,

(
y2 = y1 ⊕

⊕
x∈X2

x

)
, . . . ,

(
ys = ys−1 ⊕

⊕
x∈Xs

x

)
,

1 = ys ⊕
⊕

x∈Xs+1

x

 . (1)

The value for the parameter s is usually determined experimentally. For example, Prestwich [9]
reports that taking s = 10 gives the best results when solving the minimal disagreement
parity learning problem using local search based SAT-solvers.

The simple construction above implies several upper bounds on the number m of clauses,
the number s of non-deterministic variables, and the width k of clauses:
Limited non-determinism: using s non-deterministic variables, one can encode parity either

as a CNF with at most

m ≤ (s + 1)2⌈n/(s+1)⌉+2−1 ≤ 4(s + 1)2n/(s+1)

clauses or as a k-CNF, where

k = 2 + ⌈n/(s + 1)⌉ ≤ 3 + n/(s + 1) .

Unlimited non-determinism: one can encode parity as a CNF with at most 4n clauses
(to do this, use s = n− 1 non-deterministic variables; then, each of n functions in (1) can
be written in CNF using at most four clauses).

1.2 Results
In this paper, we show that the upper bounds mentioned above are essentially optimal.

▶ Theorem 1. Let F be a CNF-encoding of PARn with m clauses, s non-deterministic
variables, and maximum clause width k.
1. The parameters s and m cannot be too small simultaneously:

m ≥ Ω
(

s + 1
n
· 2n/(s+1)

)
. (2)

2. The parameters s and k cannot be too small simultaneously:

k ≥ n/(s + 1) . (3)

3. The parameter m cannot be too small:

m ≥ 3n− 9 . (4)

1.3 Techniques
We derive a lower bound m ≥ Ω((s + 1)2n/(s+1)/n) from the Satisfiability Coding Lemma
due to Paturi, Pudlák, and Zane [8]. This lemma allows to prove a 2

√
n lower bound

on the size of depth-3 circuits computing the parity function. Interestingly, the lower bound
m ≥ Ω((s + 1)2n/(s+1)/n) implies a lower bound 2Ω(

√
n) almost immediately, though it is

not clear whether a converse implication can be easily proved.
To prove a lower bound m ≥ 3n−9, we analyze carefully the structure of a CNF encoding.
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1.4 Related work
Many results for various computational models with limited non-determinism are surveyed
by Goldsmith, Levy, and Mundhenk [2]. An overview of known approaches for CNF encodings
is given by Prestwich [10]. Two recent results that are close to the results of this paper
are the following. Morizumi [7] proved that non-deterministic inputs do not help in the
model of Boolean circuits over the U2 basis (the set of all binary functions except for the
binary parity and its complement) for computing the parity function: with and without
non-deterministic inputs, the minimum size of a circuit computing parity is 3(n− 1). Kucera,
Savický, Vorel [5] prove almost tight bounds on the size of CNF encodings of the at-most-one
Boolean function ([x1 + · · · + xn ≤ 1]). Sinz [11] proves a linear lower bound on the size
of CNF encodings of the at-most-k Boolean function.

2 General setting

2.1 Computing Boolean functions by CNFs
For a Boolean function f(x1, . . . , xn) : {0, 1}n → {0, 1}, we say that a CNF F (x1, . . . , xn)
computes f if f ≡ F , that is, for all x1, . . . , xn ∈ {0, 1}, f(x1, . . . , xn) = F (x1, . . . , xn).
We treat a CNF as a set of clauses and by the size of a CNF we mean its number of clauses.
It is well known that for every function f , there exists a CNF computing it. One way
to construct such a CNF is the following: for every input x ∈ {0, 1}n such that f(x) = 0,
populate a CNF with a clause of length n that is falsified by x.

This method does not guarantee that the produced CNF has the minimal number
of clauses: this would be too good to be true as the problem of finding a CNF of minimum
size for a given Boolean function (specified by its truth table) is NP-complete as proved
by Masek [6] (see also [1] and references herein). For example, for a function f(x1, x2) = x1
the method produces a CNF (x1 ∨ x2)∧ (x1 ∨ x2) whereas the function x1 is already in CNF
format.

2.2 Parity
It is well known that for many functions, the minimum size of a CNF is exponential. The
canonical example is the parity function PARn(x1, . . . , xn) = x1 ⊕ · · · ⊕ xn. The property
of PARn that prevents it from being computable by short CNF’s is its high sensitivity:
by flipping any bit in any input x ∈ {0, 1}n, one flips the value of PARn(x).

▶ Lemma 2. The minimum size of a CNF computing PARn has size 2n−1.

Proof. An upper bound follows from the method above by noting that |PAR−1
n (0)| = 2n−1.

A lower bound is based on the fact that any clause of a CNF F computing PARn must
contain all variables x1, . . . , xn. Indeed, if a clause C ∈ F did not depend on xi, one could
find an input x ∈ {0, 1}n that falsifies C (hence, F (x) = PARn(x) = 0) and remains to be
falsifying even after flipping xi. As any clause of F has exactly n variables, it rejects exactly
one x ∈ {0, 1}n. Hence, F must contain at least |PAR−1

n (0)| = 2n−1 clauses. ◀

2.3 Encoding Boolean functions by CNFs
We say that a CNF F encodes a Boolean function f(x1, . . . , xn) if the following two conditions
hold.

MFCS 2022
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1. In addition to the input bits x1, . . . , xn, F also depends on s bits y1, . . . , ys called guess
inputs or non-deterministic inputs.

2. For every x ∈ {0, 1}n, f(x) = 1 iff there exists y ∈ {0, 1}s such that F (x, y) = 1. In other
words, for every x ∈ {0, 1}n,

f(x) =
∨

y∈{0,1}s

F (x, y) . (5)

Such representations of Boolean functions are widely used in practice when one translates
a problem to SAT. For example, the following CNF encodes PAR4:

(x1 ∨ x2 ∨ y1) ∧ (x1 ∨ x2 ∨ y1) ∧ (x1 ∨ x2 ∨ y1) ∧ (x1 ∨ x2 ∨ y1) ∧ (y1 ∨ x3 ∨ y2)∧
(y1 ∨ x3 ∨ y2) ∧ (y1 ∨ x3 ∨ y2) ∧ (y1 ∨ x3 ∨ y2) ∧ (x4 ∨ y2) ∧ (x4 ∨ y2) . (6)

2.4 Boolean Circuits and Tseitin Transformation
A natural way to get a CNF encoding of a Boolean function f is to take a circuit computing f

and apply Tseitin transformation [12]. We describe this transformation using a toy example.
The following circuit computes PAR12 with three gates. It has 12 inputs, 3 gates (one of
which is an output gate), and has depth 3.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

⊕
y1 ⊕

y2 ⊕
y3

y1 = x1 ⊕ x2 ⊕ x3 ⊕ x4
y2 = y1 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8
y3 = y2⊕x9⊕x10⊕x11⊕x12

To the right of the circuit, we show the functions computed by each gate. One can translate
each line into CNF. Adding a clause (y3) to the resulting CNF gives a CNF encoding of
the function computed by the circuit. In fact, the CNF (1) can be obtained this way (after
propagating the value of the output gate).

A CNF can be viewed as a depth-2 circuit where the output gate is an AND, all other
gates are ORs, and the inputs are variables and their negations. For example, the following
circuit corresponds to a CNF (6). Such depth-2 circuits are also denoted as AND ◦OR
circuits.

x1 x2 y1 x1 x2 y1 x1 x2 y1 x1 x2 y1 y1 x3 y2 y1 x3 y2 y1 x3 y2 y1 x3 y2 y2x4 y2 x4

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

∧

2.5 Depth-3 circuits
Depth-3 circuits is a natural generalization of CNFs: a Σ3-circuit is simply an OR of CNFs.
In a circuit, these CNFs are allowed to share clauses. A Σ3-formula is a Σ3-circuit whose
CNFs do not share clauses (in other words, it is a circuit where the out-degree of every gate
is equal to one).
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On the one hand, this computation model is still simple enough. On the other hand,
proving lower bounds against this model is much harder: getting a 2ω(n) lower bound for
an explicit function (say, from NP or ENP) is a major challenge. Proving a lower bound
2ω(n/ log log n) would resolve another open question, through Valiant’s depth reduction [13]:
proving a superlinear lower bound on the size of logarithmic depth circuits. We refer the
reader to Jukna’s book [4, Chapter 11] for an exposition of known results for depth-3 circuits.
For the parity function, the best known lower bound on depth-3 circuits is Ω(2

√
n) [8]. If one

additionally requires that a circuit is a formula, i.e., that every gate has out-degree at most 1,
then the best lower bound is Ω(22

√
n) [3]. Both lower bounds are tight up to polynomial

factors.
Equation (5) shows a tight connection between CNF encodings and depth-3 circuits of type

OR ◦AND ◦OR. Namely, let F (x1, . . . , xn, y1, . . . , ys) = {C1, . . . , Cm} be a CNF encoding
of a Boolean function f : {0, 1}n → {0, 1}. Then, f(x) = ∨y∈{0,1}sF (x, y). By assigning y’s
in all 2s ways, one gets an Σ3-formula that computes f :

f(x) =
∨

j∈[2s]

Fj(x) , (7)

where each Fj is a CNF. We call this an expansion of F . For example, an expansion of
a CNF (6) looks as follows. It is an OR of four CNFs.

x1 x2x1 x2 x3 x4 x1 x2x1 x2 x3 x4 x1 x2x1 x2 x3 x4 x1 x2x1 x2 x3 x4

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

∧ ∧ ∧ ∧

∨

An expansion is a formula: it is an OR of CNFs, every gate has out-degree one. One can also
get a circuit-expansion: in this case, gates are allowed to have out-degree more than one;
alternatively, CNFs are allowed to share clauses. For example, this is a circuit-expansion
of (6).

x1 x2 x1 x2 x1 x2 x1 x2 x3 x3 x4 x4

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

∧ ∧ ∧ ∧

∨

Below, we show that CNF encodings and depth-3 circuits can be easily transformed one
into the other. It will prove convenient to define the size of a circuit as its number of gates
excluding the output gate. This way, the size of a CNF formula equals its number of clauses
(a CNF is a depth-2 formula). By a Σ3(t, r)-circuit we denote a Σ3-circuit having at most
t ANDs on the second layer and at most r ORs on the third layer (hence, its size is at most
t + r).
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▶ Lemma 3. Let F (x1, . . . , xn, y1, . . . , ys) be a CNF encoding of size m of a function
f : {0, 1}n → {0, 1}. Then, f can be computed by a Σ3(2s, m ·2s)-formula and by a Σ3(2s, m)-
circuit.

Proof. Let F = {C1, . . . , Cm}. To expand F as
∨

j∈[2s] Fj , we go through all 2s assignments
to non-deterministic variables y1, . . . , ys. Under any such assignment, each clause Ci is either
satisfied or becomes a clause C ′

i ⊆ Ci resulting from Ci by removing all its non-deterministic
variables. Thus, for each j ∈ [2s], Fj ⊆ {C ′

1, . . . , C ′
m}. The corresponding Σ3-formula

contains at most 2s + m2s gates: there are 2s gates for Fj ’s, each Fj contains no more
than m clauses. The corresponding Σ3-circuit contains no more than 2s + m gates: there
are 2s gates for Fj ’s and m gates for C ′

1, . . . , C ′
m (each Fj selects which of these m clauses

to contain). ◀

Interestingly, the upper bounds on depth-3 circuits resulting from this simple transfor-
mation cannot be substantially improved. Indeed, by plugging in a CNF encoding of PARn

with s =
√

n and m = O(
√

n2
√

n) (see (1)), one gets a Σ3-formula and a Σ3-circuit of size
22

√
n and 2

√
n, respectively, up to polynomial factors. As discussed above, these bounds are

known to be optimal.
Below, we show a converse transformation.

▶ Lemma 4. Let C be a Σ3(t, r)-formula (circuit) computing a Boolean function f : {0, 1}n →
{0, 1}. Then, f can be encoded as a CNF with ⌈log t⌉ non-deterministic variables of size r

(2rt, respectively).

Proof. Let C = F1∨· · ·∨Ft be a Σ3-formula (hence, r = size(F1)+ · · ·+size(Ft)). Introduce
s = ⌈log t⌉ non-deterministic variables y1, . . . , ys. Then, for every assignment to y1, . . . , ys,
take the corresponding CNF Fi (1 ≤ i ≤ 2s is the unique integer corresponding to this
assignment) and add yi’s with the corresponding signs to every clause of Fi. Call the resulting
CNF F ′

i . Then, F = F ′
1 ∧ · · · ∧ F ′

2s encodes f and F has at most r clauses.
If C is a Σ3-circuit, we need to create a separate copy of every gate corresponding to

a clause in each of 2s CNFs. Hence, the size of the resulting CNF encoding is at most
r2s ≤ 2rt. ◀

Finally, we show that proving strong lower bounds on the size of CNF encodings is not
easier than proving strong lower bounds on the size of depth-3 circuits. Let C be a Σ3(t, r)-
formula computing PARn. Lemma 4 guarantees that PARn can be encoded as a CNF of
size r with ⌈log t⌉ non-deterministic variables. Then, by the inequality (2),

size(C) = t + r ≥ t + Ω
(

1
n
· 2

n
log t+2

)
≥ 1

n

(
t + Ω

(
2

n
log t+2

))
≥ Ω

(
2

√
n

n

)
.

Similarly, if C is a Σ3(t, r)-circuit, Lemma 4 guarantees that PARn can be encoded as a CNF
of size 2rt with ⌈log t⌉ non-deterministic variables. Then,

size(C) = t + r ≥ t + Ω
(

1
2tn
· 2

n
log t+2

)
≥ Ω

(
2
√

n/2

n

)
.

3 Lower bounds for CNF encodings of parity

In this section, we prove Theorem 1. The essential property of the parity function used
in the proof is its high sensitivity (every satisfying assignment is isolated): for any i ∈ [n]
and any x, x′ ∈ {0, 1}n that differ in the i-th position only, PAR(x) ̸= PAR(x′). This means



G. Emdin, A. S. Kulikov, I. Mihajlin, and N. Slezkin 47:7

that if a CNF F computes PAR and F (x) = 1, then F must contain a clause that is satisfied
by xi only. Following [8], we call such a clause critical with respect to (x, i). This notion
extends to CNF encodings in a natural way. Namely, let F (x, y) be a CNF encoding of PAR.
Then, for any (x, y) such that F (x, y) = 1 and any i ∈ [n], F contains a clause that becomes
falsified if one flips the bit xi. We call it critical w.r.t. (x, y, i).

3.1 Limited non-determinism
To prove a lower bound m ≥ Ω((s + 1)2n/(s+1)/n), we adapt a proof of the Ω(n1/42

√
n)

lower bound for depth-3 circuits computing PARn by Paturi, Pudlák, and Zane [8]. Let
F (x1, . . . , xn) be a CNF. For every isolated satisfying assignment x ∈ {0, 1}n of F and
every i ∈ [n], fix a shortest critical clause w.r.t. (x, i) and denote it by CF,x,i. Then, for
an isolated satisfying assignment x, define its weight w.r.t. F as

wF (x) =
n∑

i=1

1
|CF,x,i|

.

▶ Lemma 5 (Lemma 5 in [8]). For any µ, F has at most 2n−µ isolated satisfying assignments
of weight at least µ.

Proof of (2), m ≥ Ω
(

s+1
n · 2

n/(s+1)). Let F (x1, . . . , xn, y1, . . . , ys) be a CNF encoding of
size m of PARn. Consider its expansion:

PARn(x) =
∨

j∈[2s]

Fj(x) .

We extend the definitions of CF,x,i and w(x) to CNFs with non-deterministic variables
as follows. Let x ∈ PAR−1

n (1) and let j ∈ [2s] be the smallest index such that Fj(x) = 1. For
i ∈ [n], let C ′

F,x,i = CFj ,x,i (that is, we simply take the first Fj that is satisfied by x and take
its critical clause w.r.t. (x, i)). Then, the weight w′

F (x) of x w.r.t. to F is defined simply
as wFj

(x). Clearly,

w′
F (x) =

∑
i∈[n]

1
|C ′

(F,x,i)|
.

For l ∈ [n], let also Nl,F (x) = |{i ∈ [n] : |C ′
F,x,i| = l}| be the number of critical clauses

(w.r.t. x) of length l. Clearly,

w′
F (x) =

∑
l∈[n]

Nl,F (x)
l

. (8)

For a parameter 0 < ε < 1 to be chosen later, split PAR−1
n (1) into light and heavy parts:

H = {x ∈ PAR−1
n (1) : w′

F (x) ≥ s + 1 + ε} ,

L = {x ∈ PAR−1
n (1) : w′

F (x) < s + 1 + ε} .

We claim that

|H| ≤ 2s · 2n−s−1−ε .

Indeed, for every x ∈ H, w′
F (x) = wFj

(x) for some j ∈ [2s], and by Lemma 5, Fj cannot
accept more than 2n−s−1−ε isolated solutions of weight at least s + 1 + ε. Since |H|+ |L| =
|PAR−1

n (1)| = 2n−1, we conclude that

|L| = 2n−1 − |H | ≥ (1− 2−ε)2n−1 . (9)
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Let F = {C1, . . . , Cm}. For every k ∈ [m], let C ′
k ⊆ Ck be the clause Ck with all

non-deterministic variables removed. Hence, for every j ∈ [2s], Fj ⊆ {C ′
1, . . . , C ′

m}. For
l ∈ [n], let ml = |{k ∈ [m] : |C ′

k| = l}| be the number of such clauses of length l. Consider
a clause C ′

k and let l = |C ′
k|. Then, there are at most l2n−l pairs (x, i), where x ∈ PAR−1(1)

and i ∈ [n], such that C ′
F,x,i = C ′

k: there are at most l choices for i, fixing i fixes the values
of all l literals in C ′

k (all of them are equal to zero except for the i-th one), and there are
no more than 2n−l choices for the other bits of x. Recall that Nl,F (x) is the number of critical
clauses w.r.t. x of length l. Thus, we arrive at the following inequality:

ml · l · 2n−l ≥
∑

x∈PAR−1(1)

NF,l(x) ≥
∑
x∈L

NF,l(x) .

Then,

m =
∑
l∈[n]

ml ≥
∑
l∈[n]

∑
x∈L NF,l(x)

l2n−l
=
∑
x∈L

∑
l∈[n]

NF,l(x)
l2n−l

=
∑
x∈L

n2−n
∑
l∈[n]

NF,l(x)
n

· 2l

l
. (10)

To estimate the last sum, let

T (x) =
∑
l∈[n]

NF,l(x)
n

· 2l

l
=
∑
l∈[n]

NF,l(x)
n

· g(l) ,

where g(l) = 2l

l . Since g(l) is convex (for l > 0) and
∑

l∈[n]
NF,l(x)

n = 1, Jensen’s inequality
gives

T (x) ≥ g

∑
l∈[n]

NF,l(x)
n

· l

 . (11)

Further, Sedrakyan’s inequality1 (combined with (8) and
∑

l∈[n] NF,l(x) = n) gives

∑
l∈[n]

lNF,l(x) =
∑
l∈[n]

N2
F,l(x)

NF,l(x)/l
≥

(
∑

l∈[n] NF,l(x))2∑
l∈[n] NF,l(x)/l

= n2

w′
F (x) . (12)

Since g(l) is monotonically increasing for l ≥ 1/ ln 2 and w′
F (x) < s + 1 + ε for every x ∈ L,

combining (11) and (12), we get

T (x) ≥ g

(
n

w′
F (x)

)
≥ g

(
n

s + 1 + ε

)
, (13)

for s ≤ n ln 2 − 1 − ε. (If s > n ln 2 − 1 − ε, then the lower bound m ≥ Ω(2n/(s+1)/n) is
trivial.)

1 Sedrakyan’s inequality is a special case of Cauchy–Schwarz inequality: for all a1, . . . , an ∈ R and
b1, . . . , bn ∈ R>0,

∑n

i=1 a2
i /bi ≥

(∑n

i=1 ai

)2
/
∑n

i=1 bi.
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Thus,

m ≥
∑
x∈L

n2−nT (x) ≥ (10 and 13)

≥
∑
x∈L

n2−ng

(
n

s + 1 + ε

)
= (definition of g)

= |L|2−n2
n

s+1+ε (s + 1 + ε) ≥ (9)

≥
(

1
2 −

1
2ε+1

)
(s + 1 + ε)2

n
s+1+ε = (rewriting)

=
(

1
2 −

1
2ε+1

)
(s + 1 + ε)2

n
s+1 2

−nε
(s+1)(s+1+ε) .

Set ε = 1/n. Then,(
1
2 −

1
2 1

n +1

)
= Θ

(
1
n

)
.

Also,

1
2 ≤ 2

−1
(s+1)(s+1+1/n) ≤ 1 ,

as 2−1/x is increasing for x > 0. This finally gives a lower bound

m ≥ Ω
(

s + 1
n
· 2

n
s+1

)
. ◀

3.2 Width of clauses

To prove the lower bound k ≥ n/(s + 1), we use the following corollary of the Satisfiability
Coding Lemma.

▶ Lemma 6 (Lemma 2 in [8]). Any k-CNF F (x1, . . . , xn) has at most 2n−n/k isolated
satisfying assignments.

Proof of (3), k ≥ n/(s + 1). Consider a k-CNF F (x1, . . . , xn, y1, . . . , ys) that encodes PARn.
Expand F to an OR of 2s k-CNFs:

PARn(x) =
∨

j∈[2s]

Fj(x) .

By Lemma 6, each Fj accepts at most 2n−n/k isolated solutions. Hence,

2s ≥ 2n−1

2n−n/k
= 2n/k−1

and thus, k ≥ n/(s + 1). ◀

3.3 Unlimited non-determinism

In this section, we prove the lower bound m ≥ 3n− 9.
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Proof of (4), m ≥ 3n − 9. We use induction on n. The base case n ≤ 3 is clear. To prove
the induction step, assume that n > 3 and consider a CNF encoding F (x1, . . . , xn, y1, . . . , ys)
of PARn with the minimum number of clauses. Below, we show that one can find k de-
terministic variables (where k = 1 or k = 2) such that assigning appropriately chosen
constants to them reduces the number of clauses by at least 3k, respectively. The resulting
function computes PARn−k or its negation. It is not difficult to see that the minimum
number of clauses in encodings of PAR and its negation are equal (by flipping the signs
of all occurrences of any deterministic variable in a CNF encoding of PAR, one gets a CNF
encoding of the negation of PAR, and vice versa). Hence, one can proceed by induction and
conclude that F contains at least 3(n− k)− 9 + 3k = 3n− 9 clauses.

To find the required k deterministic variables, we go through a number of cases. In the
analysis below, by a d-literal we mean a literal that appears exactly d times in F , a d+-literal
appears at least d times. A (d1, d2)-literal occurs d1 times positively and d2 times negatively.
Other types of literals are defined similarly. We treat a clause as a set of literals (that do not
contain a literal together with its negation) and a CNF formula as a set of clauses.

Note that for all i ∈ [s], yi must be a (2+, 2+)-literal. Indeed, if yi (or yi) is a 0-literal,
one can assign yi ← 0 (y1 ← 1, respectively). It is not difficult to see that the resulting
formula still encodes PAR. If yi is a (1, t)-literal, one can eliminate it using resolution: for
all pairs of clauses C0, C1 ∈ F such that yi ∈ C0 and yi ∈ C1, add a clause C0 ∪C1 \ {yi, yi}
(if this clause contains a pair of complementary literals, ignore it); then, remove all clauses
containing yi or yi. The resulting formula still encodes PARn, but has a smaller number
of clauses than F (we remove 1 + t clauses and add at most t clauses).

In the case analysis below, by li we denote a literal that corresponds to a deterministic
variable xi or its negation xi.
1. F contains a 3+-literal li. Assigning li ← 1 eliminates at least three clauses from F .
2. F contains a 1-literal li. Let li ∈ C ∈ F be a clause containing li. C cannot contain

other deterministic variables: if li, lj ∈ C (for i ̸= j ∈ [n]), consider x ∈ {0, 1}n such that
PARn(x) = 1 and li = lj = 1 (such x exists since n > 3), and its extension y ∈ {0, 1}s

such that F (x, y) = 1; then, F does not contain a critical clause w.r.t. (x, y, i). Clearly,
C cannot be a unit clause, hence it must contain a non-deterministic variable yj . Consider
x ∈ {0, 1}n, such that PARn(x) = 1 and li = 1, and its extension y ∈ {0, 1}s such that
F (x, y) = 1. If yj = 1, then F does not contain a critical clause w.r.t. (x, y, i). Thus,
for every (x, y) ∈ {0, 1}n+s such that F (x, y) = 1 and li = 1, it holds that yj = 0. This
observation allows us to proceed as follows: first assign li ← 1, then assign yj ← 0. The
former assignment satisfies the clause C, the latter one satisfies all the clauses containing
yj . Thus, at least three clauses are removed.

3. For all i ∈ [n], xi is a (2, 2)-literal. If there is no clause in F containing at least two
deterministic variables, then F contains at least 4n clauses and there is nothing to prove.
Let li, lj ∈ C1 ∈ F , where i ̸= j, be a clause containing two deterministic variables and
let li ∈ C2 ∈ F and lj ∈ C3 ∈ F be the two clauses containing other occurrences of li
and lj (C1 ̸= C2 and C1 ̸= C3, but it can be the case that C2 = C3).
Assume that C2 contains another deterministic variable: lk ∈ C2, where k ̸= i, j. Consider
x ∈ {0, 1}n, such that PARn(x) = 1 and li = lj = lk = 1 (such x exists since n > 3),
and its extension y ∈ {0, 1}s such that F (x, y) = 1. Then, F does not contain a critical
clause w.r.t. (x, y, i): C1 is satisfied by lj , C2 is satisfied by lk. For the same reason, C2
cannot contain the literal lj . Similarly, C3 cannot contain other deterministic variables
and the literal li. (At the same time, it is not excluded that lj ∈ C2 or li ∈ C3.) Hence,
C2 ̸= C3. Note that each of C2 and C3 must contain at least one non-deterministic
variable: otherwise, it would be possible to falsify F by assigning li and lj .
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a. At least one of C2 and C3 contains a single non-deterministic variable. Assume that
it is C2:

{li, y1} ⊆ C2 ⊆ {li, lj , y1} .

Assign lj ← 1. This eliminates two clauses: C1 and C3 are satisfied. Also, under
this substitution, C2 = {li, y1} and li is a 1-literal. We claim that in any satisfying
assignment of the resulting formula F ′, li = y1. Indeed, if (x, y) satisfies F ′ and li = y1,
then li = y1 = 1 (otherwise C2 is falsified). But then there is no critical clause in F ′

w.r.t. (x, y, i). Since in every satisfying assignment li = y1, we can replace every
occurrence of y1 (y1) by li (y1, respectively). This, in particular, satisfies the clause C2.

b. Both C2 and C3 contain at least two non-deterministic variables:

{li, lj} ⊆ C1, {li, y1, y2} ⊆ C2, {lj , y3, y4} ⊆ C3 .

Here, y1 and y2 are different variables, y3 and y4 are also different, though it is not
excluded that some of y1 and y2 coincide with some of y3 and y4. Let Y ⊆ {y1, . . . , ys}
be non-deterministic variables appearing in C2 or C3.
Recall that for every (x, y) ∈ {0, 1}n+s such that F (x, y) = 1 and li = lj = 1, it holds
that y = 0 for all y ∈ Y . This means that if a variable y ∈ Y appears in both C2
and C3, then it has the same sign in both clauses. Consider two subcases.
i. Y = {y1, y2}:

{li, lj} ⊆ C1, {li, y1, y2} ⊆ C2, {lj , y1, y2} ⊆ C3 .

Assume that y1 ̸∈ C1. Assign li ← 1, lj ← 1. Then, assigning y1 ← 0 eliminates
at least two clauses. Let us show that there remains a clause that contains y2.
Consider x ∈ PAR−1

n (1), such that li = lj = 1, and its extension y ∈ {0, 1}s, such
F (x, y) = 1. We know that y1 and y2 must be equal to 0. However, flipping the
value of y2 results in a satisfying assignment. Thus, it remains to analyze the
following case:

{li, lj , y1, y2} ⊆ C1, {li, y1, y2} ⊆ C2, {lj , y1, y2} ⊆ C3 .

Assume that lj ̸∈ C2 and li ̸∈ C1. Assign li ← 1, then assign y1 ← 0 and y2 ← 0.
Under this assignment, C3 = {lj} (recall that C3 cannot contain other deterministic
variables, see Case 3). This would mean that lj = 1 in every satisfying assignment
of the resulting CNF formula which cannot be the case for a CNF encoding of parity.
Thus, we may assume that either lj ∈ C2 or li ∈ C1. Without loss of generality,
assume that lj ∈ C2.
Let us show that for every (x, y) ∈ {0, 1}n+s, such that F (x, y) = 1 and li = 1,
it holds that lj ≠ y1 and lj ̸= y2. Indeed, if there is (x, y) ∈ {0, 1}n+s such that
F (x, y) = 1 and li = lj = 1, then y1 and y2 must be equal to 0. If there is
(x, y) ∈ {0, 1}n+s, such that F (x, y) = 1, li = 1, lj = 0, then y1 and y2 must be equal
to 0, otherwise F does not contain a critical clause w.r.t. (x, y, i). Thus, assigning
li ← 1 eliminates two clauses (C1 and C2). We then replace y1 and y2 with lj and
delete the clause C3.

ii. |Y | ≥ 3, {y1, y2, y3} ⊆ Y :

{li, lj} ⊆ C1, {li, y1, y2} ⊆ C2, {lj , y1, y3} ⊆ C3 .
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Assigning li ← 1, lj ← 1 eliminates C1, C2, C3. Assigning y1 ← 0 eliminates at least
one more clause (y1 appears positively at least two times, but it may appear in C1).
There must be a clause with y2 (otherwise we could assign y2 ← 1). Assigning
y2 ← 0 eliminates at least one more clause. Similarly, assigning y3 ← 1 eliminates
another clause. In total, we eliminate at least six clauses. ◀
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Abstract
In 1981, Neil Immerman described a two-player game, which he called the “separability game” [15],
that captures the number of quantifiers needed to describe a property in first-order logic. Immerman’s
paper laid the groundwork for studying the number of quantifiers needed to express properties in
first-order logic, but the game seemed to be too complicated to study, and the arguments of the
paper almost exclusively used quantifier rank as a lower bound on the total number of quantifiers.
However, last year Fagin, Lenchner, Regan and Vyas [10] rediscovered the game, provided some tools
for analyzing them, and showed how to utilize them to characterize the number of quantifiers needed
to express linear orders of different sizes. In this paper, we push forward in the study of number of
quantifiers as a bona fide complexity measure by establishing several new results. First we carefully
distinguish minimum number of quantifiers from the more usual descriptive complexity measures,
minimum quantifier rank and minimum number of variables. Then, for each positive integer k, we
give an explicit example of a property of finite structures (in particular, of finite graphs) that can be
expressed with a sentence of quantifier rank k, but where the same property needs 2Ω(k2) quantifiers
to be expressed. We next give the precise number of quantifiers needed to distinguish two rooted
trees of different depths. Finally, we give a new upper bound on the number of quantifiers needed to
express s-t connectivity, improving the previous known bound by a constant factor.
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1 Introduction

In 1981 Neil Immerman described a two-player combinatorial game, which he called the
“separability game” [15], that captures the number of quantifiers needed to describe a property
in first-order logic (henceforth FOL). In that paper Immerman remarked,

“Little is known about how to play the separability game. We leave it here as a jumping off
point for further research. We urge others to study it, hoping that the separability game
may become a viable tool for ascertaining some of the lower bounds which are ‘well believed’
but have so far escaped proof.”
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48:2 On the Number of Quantifiers as a Complexity Measure

Immerman’s paper laid the groundwork for studying the number of quantifiers needed
to express properties in FOL, but alas, the game seemed too complicated to study and the
paper used the surrogate measure of quantifier rank, which provides a lower bound on the
number of quantifiers, to make its arguments. One of the reasons for the difficulty of directly
analyzing the number of quantifiers is that the separability game is played on a pair (A,B) of
sets of structures, rather than on a pair of structures as in a conventional Ehrenfeucht-Fraïssé
game. However, last year Fagin, Lenchner, Regan and Vyas [10] rediscovered the games,
provided some tools for analyzing them, and showed how to utilize them to characterize the
number of quantifiers needed to express linear orders of different sizes. In this paper, we
push forward in the study of number of quantifiers as a bona fide complexity measure by
establishing several new results, using these rediscovered games as an important, though not
exclusive, tool. Although Immerman called his game the “separability game,” we keep to the
more evocative “multi-structural game,” as coined in [10].

Given a property P definable in FOL, let Quants(P ) denote the minimum number of
quantifiers over all FO sentences that express P . This paper exclusively considers
expressibility in FOL. Quants(P ) is related to two more widely studied descriptive
complexity measures, the minimum quantifier rank needed to express P , and the minimum
number of variables needed to express P . The quantifier rank of an FO sentence σ is typically
denoted by qr(σ). We shall denote the minimum quantifier rank over all FO sentences
describing the property P by Rank(P ), and denote the minimum number of variables needed
to describe P by V ars(P ). When referring to a specific sentence σ, we shall denote the
analogs of Quants() and V ars() by quants(σ) and vars(σ). (That is, quants(σ), vars(σ)
and qr(σ) refer to the number of quantifiers, variables and quantifier rank of the particular
sentence σ.) On the other hand, Quants(P ), V ars(P ) and Rank(P ) refer to the minimum
values of these quantities among all expressions describing P . Possibly there is one sentence
establishing Quants(P ), another establishing V ars(P ), and a third establishing Rank(P ).
We investigate the extremal behavior of Quants(P ), via studying concrete properties P for
which Quants(P ) behaves differently from the other measures.

First of all, for every property P , since every variable in a sentence describing P is
bound to a quantifier, and quantifiers can only be bound to a single variable, it must be
that V ars(P ) ≤ Quants(P ). The following simple proposition observes that V ars(P ) is also
upper bounded by Rank(P ).

▶ Proposition 1. For every property P : V ars(P ) ≤ Rank(P ).

A proof is in [11, Prop. 1]. Since clearly Rank(P ) ≤ Quants(P ), we have:

V ars(P ) ≤ Rank(P ) ≤ Quants(P ). (1)

Furthermore, it follows from Immerman [16, Prop. 6.15] that Quants(P ) and Rank(P ) can
both be arbitrarily larger than V ars(P ). When the property P is s-t connectivity up to
path length k, Immerman shows that V ars(P ) ≤ 3, yet Rank(P ) ≥ log2(k).

Summary of Results

From equation (1), we see that the number of quantifiers needed to express a property is
lower-bounded by the minimum quantifier rank and number of variables. How much larger
can Quants(P ) be, compared to the other two measures? It is known (see [8]) that there
exists a fixed vocabulary V and an infinite sequence P1, P2, ... of properties such that Pk is a
property of finite structures with vocabulary V such that Rank(Pk) ≤ k, yet Quants(Pk) is
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not an elementary function of k. However, the existence of such Pk are proved via counting
arguments. We provide an explicitly computable sequence of properties {Pk} with a high
growth rate in terms of the number of quantifiers required. (By “explicitly computable”, we
mean that there is an algorithm A such that, given a positive integer k, the algorithm A

prints a FO sentence σk with quantifier rank k defining the property Pk, in time polynomial
in the length of σk.)

▶ Theorem (Theorem 4, Section 2). There is an explicitly computable sequence of properties
{Pk} such that for all k we have Rank(Pk) ≤ k, yet Quants(Pk) ≥ 2Ω(k2).

Next, we give an example of a setting in which one can completely nail down the number
of quantifiers that are necessary and sufficient for expressing a property. Building on Fagin et
al. [10], which gives results on the number of quantifiers needed to distinguish linear orders
of different sizes, we study the number of quantifiers needed to distinguish rooted trees of
different depths.

Let t(r) be the maximum d such that there is a formula with r quantifiers that can
distinguish rooted trees of depth d (or larger) from rooted trees of depth less than d. Reasoning
about the relevant multi-structural games, we can completely characterize t(r), as follows.

▶ Theorem (Theorem 14, Section 3). For all r ≥ 1 we have

t(2r) = 7 · 4r

18 + 4r
3 − 8

9 , t(2r + 1) = 8 · 4r

9 + 4r
3 − 8

9 .

It follows from the above theorem that we can distinguish (rooted) trees of depth at most d
from trees of depth greater than d using only Θ(log d) quantifiers, and we can in fact pin
down the exact depth that can be distinguished with r quantifiers. This illustrates the power
of multi-structural games, and gives hope that more complex problems may admit an exact
number-of-quantifiers characterization.

Next, we consider the question of how many quantifiers are needed to express that two
nodes s and t are connected by a path of length at most n, in directed (or undirected)
graphs. In our notation, we wish to determine Quants(P ) where P is the property of s-t
connectivity via a path of length at most n. Considering the significance of s-t connectivity
in both descriptive complexity and computational complexity, we believe this is a basic
question that deserves a clean answer. It follows from the work of Stockmeyer and Meyer
that s-t connectivity up to path length n can be expressed with 3 log2(n) +O(1) quantifiers.
As mentioned earlier, s-t connectivity is well-known to require quantifier rank at least
log2(n) −O(1). We manage to reduce the number of quantifiers necessary for s-t connectivity.

▶ Theorem (Theorem 15, Section 4). The number of quantifiers needed to express s-t
connectivity is at most 3 log3(n) +O(1) ≈ 1.893 log2(n) +O(1).

The remainder of this manuscript proceeds as follows. In the next subsection we describe
multi-structural games and compare them to Ehrenfeucht-Fraïssé games. In the subsection
that follows we review related work in complexity. We then prove the theorems mentioned
above. In Section 2 we prove Theorem 4. In Section 3 we prove Theorem 14. In Section 4 we
prove Theorem 15. In Section 5, we give final comments and suggestions for future research.

1.1 Multi-Structural Games
The standard Ehrenfeucht-Fraïssé game (henceforth E-F game) is played by “Spoiler” and
“Duplicator” on a pair (A,B) of structures over the same FO vocabulary V , for a specified
number r of rounds. If V contains constant symbols λ1, ..., λk, then designated (“constant”)
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elements ci of A, and c′
i of B, must be associated with each λi. In each round, Spoiler

chooses an element from A or from B, and Duplicator replies by choosing an element from
the other structure. In this way, they determine sequences of elements a1, . . . , ar, c1, . . . , ck

of A and b1, . . . , br, c
′
1, . . . , c

′
k of B, which in turn define substructures A′ of A and B′ of

B. Duplicator wins if the function given by f(ai) = bi for i = 1, . . . , r, and f(cj) = c′
j for

j = 1, . . . , k, is an isomorphism of A′ and B′. Otherwise, Spoiler wins.
The equivalence theorem for E-F games [9, 12] characterizes the minimum quantifier rank

of a sentence ϕ over V that is true for A but false for B. The quantifier rank qr(ϕ) is defined
as zero for a quantifier-free sentence ϕ, and inductively:

qr(¬ϕ) = qr(ϕ),
qr(ϕ ∨ ψ) = qr(ϕ ∧ ψ) = max{qr(ϕ), qr(ψ)},

qr(∀xϕ) = qr(∃xϕ) = qr(ϕ) + 1.

▶ Theorem 2 ([9, 12], Equivalence Theorem for E-F Games). Spoiler wins the r-round E-F
game on (A,B) if and only if there is a sentence ϕ of quantifier rank at most r such that
A |= ϕ while B |= ¬ϕ.

In this paper we make use of a variant of E-F games, which have come to be called
multi-structural games [10]. Multi-structural games (henceforth M-S games) make Duplicator
more powerful and can be used to characterize the number of quantifiers, rather than the
quantifier rank. In an M-S game there are again two players, Spoiler and Duplicator, and
there is a fixed number r of rounds. Instead of being played on a pair (A,B) of structures
with the same vocabulary (as in an E-F game), the M-S game is played on a pair (A,B) of
sets of structures, all with the same vocabulary. For k with 0 ≤ k ≤ r, by a labeled structure
after k rounds, we mean a structure along with a labeling of which elements were selected
from it in each of the first k rounds. Let A0 = A and B0 = B. Thus, A0 represents the
labeled structures from A after 0 rounds, and similarly for B0 – in other words nothing is yet
labelled except for constants. If 1 ≤ k < r, let Ak be the labeled structures originating from
A after k rounds, and similarly for Bk. In round k + 1, Spoiler either chooses an element
from each member of Ak, thereby creating Ak+1, or chooses an element from each member
of Bk, thereby creating Bk+1. Duplicator responds as follows. Suppose that Spoiler chose an
element from each member of Ak, thereby creating Ak+1. Duplicator can then make multiple
copies of each labeled structure of Bk, and choose an element from each copy, thereby creating
Bk+1. Similarly, if Spoiler chose an element from each member of Bk, thereby creating Bk+1,
Duplicator can then make multiple copies of each labeled structure of Ak, and choose an
element from each copy, thereby creating Ak+1. Duplicator wins if there is some labeled
structure A in Ar and some labeled structure B in Br where the labelings give a partial
isomorphism. Otherwise, Spoiler wins.

In discussing M-S games we sometimes think of the play of the game by a given player, in
a given round, as taking place on one of two “sides”, the A side or the B side, corresponding
to where the given player plays from on that round.

Note that on each of Duplicator’s moves, Duplicator can make “every possible choice”,
via the multiple copies. Making every possible choice creates what we call the oblivious
strategy. Indeed, Duplicator has a winning strategy if and only if the oblivious strategy is a
winning strategy.

The following equivalence theorem, proved in [15, 10], is the analog of Theorem 2 for E-F
games.
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▶ Theorem 3 ([15, 10], Equivalence Theorem for Multi-Structural Games). Spoiler wins the
r-round M-S game on (A,B) if and only if there is a sentence ϕ with at most r quantifiers
such that A |= ϕ for every A ∈ A while B |= ¬ϕ for every B ∈ B.

In [10] the authors provide a simple example of a property P of a directed graph that
requires 3 quantifiers but which can be expressed with a sentence of quantifier rank 2. P is
the property of having a vertex with both an in-edge and an out-edge. P can be expressed via
the sentence σ = ∃x(∃yE(x, y) ∧ ∃yE(y, x)), where E(, ) denotes the directed edge relation.
In [10] it is shown that while Spoiler wins a 2-round E-F game on the two graphs A and B in
Figure 1, Duplicator wins the analogous 2-round M-S game starting with these two graphs.

Figure 1 The graph B, on the right, contains a vertex with both an in-edge and an out-edge,
while the graph A, on the left, does not.

Hence, by Theorem 3, the property P is not expressible with just 2 quantifiers.

1.2 Related Work in Complexity
Trees are a much studied data structure in complexity theory and logic. It is well known
that it is impossible, in FOL, to express that a graph with no further relations is a tree [18,
Proposition 3.20]. We note, however, that given a partial ordering on the nodes of a graph,
it is easy to express in FOL the property that the partial ordering gives rise to a tree. The
relevant sentence expresses that there is a root (i.e., a greatest element) from which all other
nodes descend, and if a node x has nodes y and z as distinct ancestors then one of y and z

must have the other as its own ancestor. Hence the needed sentence is the conjunction of
the following two sentences:

∃x∀y(y ̸= x → y < x),
∀x∀y∀z((x < y ∧ x < z ∧ y ̸= z) → (y < z ∨ z < y)).

There are also interesting models of computation and logics based on trees. See, for example,
the literature on Finite Tree Automata [7] and Computational Tree Logic [6].

We now discuss s-t connectivity. In this paragraph only, n denotes the number of nodes
in the graph and k the number of edges in a shortest path from s to t. The s-t connectivity
problem has been studied extensively in both logic [1, 16] and complexity theory. Most
complexity studies of this problem have focused on space and time complexity. Directed
s-t connectivity is known to be NL-complete (see for example Theorem 16.2 in [19]), while
undirected s-t connectivity is known to be in L [20]. Savitch [22] proved that s-t connectivity
can be solved in O(log2(n)) space and nlog2(n)(1+O(1)) time. Recent work of Kush and
Rossman [17] has shown that the randomized AC0 formula complexity of s-t connectivity is
at most size n0.49 log2(k)+O(1), a slight improvement. Barnes, Buss, Ruzzo and Schieber [2]
gave an algorithm running in both sublinear space and polynomial time for s-t connectivity.
Gopalan, Lipton, and Meka [13] presented randomized algorithms for solving s-t connectivity
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with non-trivial time-space tradeoffs. The s-t connectivity problem has also been studied
from the perspective of circuit and formula depth. For the weaker model of AC0 formulas an
nΩ(log(k)) size lower bound is known to hold unconditionally [4, 5, 21].

There is also a natural and well-known correspondence with the number of quantifiers in
FOL and circuit complexity, in particular with the circuit class AC0 (constant-depth circuits
comprised of NOT gates along with unbounded fan-in OR and AND gates). For example,
Barrington, Immerman, and Straubing [3] proved that uniformFO-AC0 = FO[<,BIT], thus
characterizing the problems solvable in uniform AC0 by those expressible in FOL with ordering
and a BIT relation.

More generally it is known that uniformFO-AC[t(n)] = FO[<,BIT][t(n)] ([16], Theorem
5.22), i.e., FO formulas over ordering and BIT relations, defined via constant-sized blocks
that are “iterated” for O(t(n)) times, are equivalent in expressibility with AC circuits of
depth O(t(n)). (See [11, Appendix C] for a more detailed statement.) Generally speaking,
the number of quantifiers of FOL sentences (with a regular form) roughly corresponds to the
depth of a (highly uniform) AC0 circuit deciding the truth or falsity of the given sentence.
Thus the number of quantifiers can be seen as a proxy for “uniform circuit depth”.

2 Difference in Magnitude: Quantifier Rank vs. Number of Quantifiers

Let V be a vocabulary with at least one relation symbol with arity at least 2. It is known
[8] that the number of inequivalent sentences in vocabulary V with quantifier rank k is not
an elementary function of k (that is, grows faster than any tower of exponents). Since the
number of sentences in vocabulary V with k quantifiers is at most only double exponential
in k (e.g., a function that grows like 22p(k) for some polynomial p(k) – see [11, Appendix
A] for a proof), it follows by a counting argument that for each positive integer k, there is
a property P of finite structures with vocabulary V that can be expressed by a sentence
of quantifier rank k, but where the number of quantifiers needed to express P is not an
elementary function of k. However, to our knowledge, up to now no explicit examples have
been given of a property P where the quantifier rank of a sentence to express P is k, but
where the number of quantifiers needed to express the property P is at least exponential in
k. In the proof of the following theorem, we give such an explicit example.

Let fV (k) be the number of structures with k nodes up to isomorphism in vocabulary
V (such as the number of non-isomorphic graphs with k nodes). Note that in the case of
graphs (a single binary relation symbol), fV (k) is asymptotic to (2k2)/k! [14], and Stirling’s
formula implies that fV (k) = 2Ω(k2)). We have the following theorem.

▶ Theorem 4. Assume that the vocabulary V contains at least one relation symbol with arity
at least 2. There is an algorithm such that given a positive integer k, the algorithm produces
a FO sentence σ of quantifier rank k where the minimum number of quantifiers needed to
express σ in FOL is kfV (k − 1), which grows like 2Ω(k2), and where the algorithm runs in
time polynomial in the length of σ.

Proof. For simplicity, let us assume that the vocabulary V consists of a single binary relation
symbol, so that we are dealing with graphs. It is straightforward to modify the proof to deal
with an arbitrary vocabulary with at least one relation symbol of arity at least 2. Let us
write f for fV . Let C1, . . . , Cf(k−1) be the f(k − 1) distinct graphs up to isomorphism with
k − 1 nodes. For each j with 1 ≤ j ≤ f(k − 1), derive the graph Dj that is obtained from
Cj by adding one new node with a single edge to every node in Cj . Thus, Dj has k nodes.
Dj uniquely determines Cj , since Cj is obtained from Dj by removing a node a that has a
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single edge to every remaining node; even if there were two such nodes a, the result would
be the same. Therefore, there are f(k − 1) distinct graphs Dj . We now give our sentence σ.
Let σj be the sentence ∃x1 · · · ∃xkτj(x1, . . . , xk), which expresses that there is a graph with
a subgraph isomorphic to Dj . Then the sentence σ is the conjunction of the sentences σj for
1 ≤ j ≤ f(k − 1). Since the sentence σ is of length 2Ω(k2), it is not hard to verify that this
sentence can be generated by an algorithm running in polynomial time in the length of the
sentence (there is enough time to do all of the isomorphism tests by a naive algorithm).

The sentence σ has quantifier rank k. As written, this sentence has kf(k − 1) quantifiers.
Let A be the disjoint union of D1, . . . , Df(k−1). If p is a point in A, define Bp to be the
result of deleting the point p from A. Let A consist only of A, and let B consist of the graphs
Bp for each p in A. If p is in the connected component Dj of A, then Bp does not have a
subgraph isomorphic to Dj . Hence, no member of B satisfies σ. Since the single member A
of A satisfies σ, and since no member of B satisfies σ, we can make use of M-S games played
on A and B to find the number of quantifiers needed to express σ.

Assume that we have labeled copies of A and the various Bp’s after i rounds of an M-S
game played on A and B. The labelling tells us which points have been selected in each
of the first i rounds. Let us say that a labeled copy of A and a labeled copy of Bp are in
harmony after i rounds if the following holds. For each m with 1 ≤ m ≤ i, if a is the point
labeled m in A, and b is the point labeled m in Bp, then a = b. In particular, if the labeled
copies of A and Bp are in harmony, then there is a partial isomorphism between the labeled
copies of A and Bp.

Let Duplicator have the following strategy. Assume first that in round i, Spoiler selects
in A, and selects a point a from a labeled member A of A. Then Duplicator (by making
extra copies of labeled graphs in B as needed) does the following for each labeled Bp in B. If
a ̸= p, and if the labeled copies of A and Bp before round i are in harmony, then Duplicator
selects a in Bp, which maintains the harmony. If a = p, or if the labeled A and Bp before
round i are not in harmony, then Duplicator makes an arbitrary move in Bp.

Assume now that in round i, Spoiler selects in B. When Spoiler selects the point b from
a labeled copy of Bp, then for each labeled A from A, if the labeled copy of A is in harmony
with the labeled copy of Bp before round i, then Duplicator selects b in A, and thereby
maintains the harmony. We shall show shortly (Property * below) that in every round, each
labeled member of A is in harmony with a labeled member of B, so in the case we are now
considering where Spoiler selects in B, Duplicator does select a point in round i in each
labeled member of A.

We prove the following by induction on rounds:
Property *: If A is a labeled graph in A and if point p in A was not selected in the first i
rounds, then there is a labeled copy of Bp that is in harmony with A after i rounds.

Property * holds after 0 rounds (with no points selected). Assume that Property * holds
after i rounds; we shall show that it holds after i+ 1 rounds. There are two cases, depending
on whether Spoiler moves in A or in B in round i+ 1. Assume first that Spoiler moves in A
in round i+ 1. Assume that point p was not selected in A after i+ 1 rounds. By inductive
assumption, there are labeled versions of A and Bp that are in harmony after i rounds. So by
Duplicator’s strategy, labeled versions of of A and Bp are in harmony after i+ 1 rounds. Now
assume that Spoiler moves in B in round i+1. For each labeled graph A in A, if a labeled Bp

is in harmony with the labeled A after i rounds, then by Duplicator’s strategy, the harmony
continues between the labeled A and Bp after i+ 1 rounds. So Property * continues to hold
after i+ 1 rounds. This completes the proof of Property *.
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After (kf(k − 1)) − 1 rounds, pick an arbitrary labeled graph A in A. Since at most
(kf(k − 1)) − 1 points have been selected after (kf(k − 1)) − 1 rounds, and since A contains
kf(k − 1) points (because it is the disjoint union of f(k − 1) graphs each with k points),
there is some point p that was not selected in A in the first (kf(k)) − 1 rounds. Therefore,
by Property *, a labeled version of A and of Bp are in harmony after (kf(k)) − 1 rounds,
and hence there is a partial isomorphism between the labeled A and Bp. So Duplicator wins
the (kf(k − 1)) − 1 round M-S game! Therefore, by Theorem 3, the number of quantifiers
needed to express σ is more than (kf(k− 1)) − 1. Since σ has kf(k− 1) quantifiers it follows
that the minimum number of quantifiers need to express σ is exactly kf(k − 1). ◀

3 Rooted Trees

Our aim in this section is to establish the minimum number of quantifiers needed to distinguish
rooted trees of depth at least k from those of depth less than k using first-order formulas,
given a partial ordering on the vertices induced by the structure of the rooted tree. Figure 2
gives an example of a tree where we designate x as the root node. We define the depth of

Figure 2 A rooted tree with designated root node x and depth 3.

such a tree to be the maximum number of nodes in a path from the root to a leaf, where all
segments in the path are directed from parent to child. Although it is more customary to
denote the depth of a tree in terms of the number of edges along such a path, we keep to the
above definition because we will often run into the special case of linear orders, which we
view as trees in the natural way, and linear orders are characterized by their size (number of
nodes) and we would like the size of a liner order to correspond to the depth of the associated
tree. Let us denote the tree rooted at x by Tx. We make the arbitrary choice that the node
x is the largest element in the induced partial order, so that for two nodes α, β of Tx, we
have α > β if and only if there is a path (x1, ..., xn) in Tx with α = x1 and β = xn such that
xi is a parent of xi+1 for 1 ≤ i ≤ n− 1. Thus, for example, in Figure 2, x > q and z > s, etc.

The problem of distinguishing the depth of a rooted tree via a first-order formula with
a minimum number of quantifiers is similar to the analogous problem for linear orders of
different sizes, since a rooted tree has depth k or greater if and only if it has a leaf node,
above which there is linear order of size at least k − 1.

Our strategy will be to characterize a tree of depth d recursively as a graph containing
a vertex v which has a subtree of depth k that includes v and everything below it, and a
linear order of length d− k comprising the vertices above v, where k is chosen to minimize
the total number of quantifiers. We then show that this is the minimum quantifier way to
characterize a tree of each given depth.

The following result is classic and key to establishing a number of fundamental inexpress-
ibility results in FOL [18]. It is typically obtained by appeal to Theorem 2.

▶ Theorem 5 ([18], Theorem 3.6). Let f(r) = 2r − 1. In an r-round E-F game played on two
linear orders of different sizes, Duplicator wins if and only if the size of the smaller linear
order is at least f(r).
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Analogs of Theorem 5 are proven for M-S games in [10]. The following definition and
theorems are from that paper.

▶ Definition 6 ([10]). Define the function g : N → N such that g(r) is the maximum number
k such that there is a formula with r quantifiers that can distinguish linear orders of size k
or larger from linear orders of size less than k.

▶ Theorem 7 ([10]). The function g takes on the following values: g(1) = 1, g(2) = 2, g(3) =
4, g(4) = 10, and for r > 4,

g(r) =
{

2g(r − 1) if r is even,
2g(r − 1) + 1 if r is odd.

▶ Theorem 8 ([10]). In an r-round M-S game played on two linear orders of different sizes
Duplicator has a winning strategy if and only if the size of the smaller linear order is at least
g(r).

For given positive integers r and k, we want to know if there exist sentences with r

quantifiers that distinguish rooted trees of depth k or larger from rooted trees of depth
smaller than k. For k = r, one such sentence is

∃x1 · · · ∃xr

∧
1≤i<r

(xi < xi+1), (2)

which distinguishes rooted trees of depth r or larger from rooted trees of depth less than r.
Here, if Tx is a rooted tree of depth exactly r then x1 would be a deepest child. Since there
are only finitely many inequivalent formulas in up to r variables that include the relations <
and = and at most r quantifiers, there is some maximum such k, which we shall designate
by t(r). With N = {1, 2, ...}, we restate this definition of t formally as follows. Note that no
meaningful sentence about trees can be constructed with a single quantifier, so the definition
begins at r = 2.

▶ Definition 9. Define the function t : {2, 3, ...} → N such that t(r) is the maximum number
z such that there is a formula with r quantifiers that can distinguish rooted trees of depth z
or larger from rooted trees of depth less than z.

By (2) above, t(r) ≥ r for r ≥ 2. For an M-S game of r rounds on rooted trees of sizes
t(r) or larger on one side, and t(r) − 1 or smaller on the other side, by the Equivalence
Theorem, Spoiler will have a winning strategy.

Since linear orders are perfectly good rooted trees, we have the following:

▶ Observation 10. For all r we have t(r) ≤ g(r).

Simple arguments establishing that t(2) = 2, and t(3) = 4, stemming from Observation
10, are given in [11, Sec. 3.1]. An analysis establishing t(4) = 8 is given in [11, Sec. 3.2].
Except for one paragraph, we shall not need that analysis, nor the particular result, though
the reader may have an easier time understanding the rather intricate inductive argument
that follows by first reading the analysis of this case.

In the proof of Theorem 7 [10], the authors provide explicit sentences that distinguish
linear orders of size g(r) or greater from those of size less than g(r). From the proof of their
Theorem 1.6, it can be seen that the distinguishing sentences Φr, for r > 4 take the form:

Φr =
{

∃x1∀x2 · · · ∀xr−1∃xrϕr for r odd,
∀x1∃x2 · · · ∀xr−1∃xrϕr for r even,
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where ϕr is quantifier-free. For odd r, the formula Φr says that there exists a point x1, with
a linear order of size at least ⌊ r

2 ⌋ to both sides of x1. For even r, the formula Φr says that
for all x1, there exists a linear order of at least size r

2 to one side or the other of x1.
Let us denote by t∀(r) the maximum number k such that rooted trees of depth k and

above can be distinguished from rooted trees of depth less than k using prenex formulas
with r quantifiers beginning with a universal quantifier. Equivalently, t∀(r) = k is the largest
depth of a rooted tree such that Spoiler has a winning strategy on r-round M-S games played
on rooted trees of depth k or greater versus those of depth less than k when his first move is
constrained to be on the tree of lesser depth. Analogously, when considering linear orders,
let g∀(r) and g∃(r) denote, respectively, the maximum number k such that linear orders of
size k and above can be distinguished from linear orders of size less than k using prenex
formulas with r quantifiers beginning, respectively, with a universal or existential quantifier.

▶ Lemma 11. For r > 1, one has t∀(r) = t(r − 1) + 1.

A proof of this very simple lemma is given in [11, Proof of Lemma 18].

▶ Lemma 12. For r ≥ 2, the following hold:

g∃(2r) = 2g∀(2r − 1) + 1, (3)
g∀(2r + 1) = 2g∃(2r). (4)

Further, there are expressions establishing the g∃ relations having prenex signatures ∃∀···∃∀∃∃
with r−1 iterations of the ∃∀ pair and then a final ∃∃, while there are expressions establishing
the g∀ relations having prenex signatures ∀∃ · · · ∀∃∃ with r iterations of the ∀∃ pair and then
a final ∃.

A proof of this lemma is given in [11, Proof of Lemma 19].

▶ Theorem 13. For r ≥ 2, the following holds:

t(r) = g∀(r − 1) + t∀(r − 1) + 1 = g∀(r − 1) + t(r − 2) + 2. (5)

If r is odd, then g∀(r − 1) = g(r − 1) so for r odd we have:

t(r) = g(r − 1) + t∀(r − 1) + 1 = g(r − 1) + t(r − 2) + 2. (6)

A proof of this theorem is given in [11, Proof of Theorem 20].

We can combine the previous results to prove the following explicit expression for t() [11,
Proof of Theorem 21].

▶ Theorem 14. For all r ≥ 1 we have

t(2r) = 7 · 4r

18 + 4r
3 − 8

9 , t(2r + 1) = 8 · 4r

9 + 4r
3 − 8

9 .

A table comparing the values of f, g and t for 2 ≤ r ≤ 10 is given in [11, Section 3.4].

4 s-t Connectivity

In this section we explore the number of quantifiers needed to express either directed or
undirected s-t connectivity (henceforth STCON) in FOL with the binary edge relation E, as
a function of the number n of edges in a shortest path between the distinguished nodes s and
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t. STCON, also known as reachability between labelled nodes s and t, refers to the property
of graphs that labelled nodes s and t are connected. STCON(n) denotes the property that s
and t are connected by a path of length at most n edges.

In [11, Appendix B], we show how to describe STCON(n) using 2 log2(n)+O(1) quantifiers.
The following theorem generalizes that construction, to improve the number of quantifiers to
3 log3(n) +O(1). A similar argument shows that K logK(n) +O(1) quantifiers can be used
for any positive integer K, although this quantity is minimized for K = 3.

▶ Theorem 15. STCON(n) can be expressed with 3 log3(n) +O(1) quantifiers.

Proof. We shall use Υi to denote sentences with i quantifiers, and τj to denote quantifier-free
expressions, where the subscript j denotes the path length characterized by τj .

We start with the following simple expression stating that s and t are connected and
d(s, t) ≤ 3, where d(s, t) denotes the length of the shortest path from s to t:

Υ2 = ∃x1∃x2(τ3 ∨ τ2 ∨ τ1), (7)

where:

τ3 = E(s, x1) ∧ E(x1, x2) ∧ E(x2, t), (8)
τ2 = E(s, x1) ∧ E(x1, t), (9)
τ1 = E(s, t). (10)

We now iteratively add three quantifiers at each stage and slot two nodes between each of
the previously established nodes, as in Figure 3.

Figure 3 An illustration of slotting two nodes between each of the pre-established nodes s, x1, x2

and t in order to express a distance 9, s − t path, using 5 quantifiers as in expressions (11) and (12).

We express that there is a path of length at most 9 from s to t, using 5 quantifiers as follows:

Υ5 = ∃x1∃x2∀x3∃x4∃x5(τ9 ∨ τ8 ∨ · · · ∨ τ1). (11)

In this case, we just show τ9. The simplifications required to get from τ8 down to τ4 are
analogous to those for getting from τ3 down to τ1, but where we apply (8) – (10) separately
to each of (12) – (14).

τ9 = ((x3 = s) → E(s, x4) ∧ E(x4, x5) ∧ E(x5, x1)) ∧ (12)
((x3 = t) → E(x1, x4) ∧ E(x4, x5) ∧ E(x5, x2)) ∧ (13)
((x3 ̸= s ∧ x3 ̸= t) → E(x2, x4) ∧ E(x4, x5) ∧ E(x5, t)). (14)

Using 8 quantifiers, we can slot two new nodes between each node established in the prior
step, as depicted in Figure 4. The associated logical expression is

Υ8 = ∃x1∃x2∀x3∃x4∃x5∀x6∃x7∃x8(τ27 ∨ τ26 ∨ · · · ∨ τ1), and (15)

τ27 =((x3 = s ∧ x6 = s) → E(s, x7) ∧ E(x7, x8) ∧ E(x8, x4)) ∧ (16)
((x3 = s ∧ x6 = t) → E(x4, x7) ∧ E(x7, x8) ∧ E(x8, x5)) ∧ (17)
((x3 = s ∧ (x6 ̸= s ∧ x6 ̸= t)) → E(x5, x7) ∧ E(x7, x8) ∧ E(x8, x1)) ∧ (18)

... (19)
(((x3 ̸= s ∧ x3 ̸= t) ∧ (x6 ̸= s ∧ x6 ̸= t)) → E(x5, x7) ∧ E(x7, x8) ∧ E(x8, t)). (20)
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Figure 4 Slotting two nodes between each of the pre-established nodes s, x1, x2, x4, x5, and t in
order to express a distance 27, s − t path, using 8 quantifiers as in expressions (15) and (16)-(20).

The expression τ27 will have the two “pivot points” around the universally quantified variables
x3 and x6 and so have 32 = 9 antecedent conditions corresponding to the possible ways the
universally quantified variables x3 and x6 can each take the values s, t or neither s nor t.
The right hand side of each equality condition describes how to fill in the edges in Figure 4
with two new vertices (utilizing the two newest existentially quantified variables, x7 and x8)
and three new edges.

In this way we obtain sentences with 3n−1 quantifiers that can express STCON instances
of path length up to 3n. Thus, when n is a power of 3, we can express STCON instances of
length n with 3 log3(n) − 1 ≈ 1.893 log2(n) − 1 quantifiers, and when n is not a power of 3,
with ⌊3 log3(n) + 2⌋ quantifiers. The theorem therefore follows. ◀

A Remark on Lower Bounds on Quantifier Rank and hence on Number of Quantifiers

Lower bounds on the number of quantifiers for s-t connectivity follow readily from the
literature. The well-known proof that connectivity is not expressible in FOL ([16, Prop. 6.15]
or [18, Corollary 3.19]) can be used to establish that s-t connectivity with path length n is
not expressible as a formula of quantifier rank log2(n) − c for some constant c.

▶ Theorem 16 (Immerman, Proposition 6.15 [16]). There exists a constant c such that s-t
connectivity to path length n is not expressible as a formula of quantifier rank log2(n) − c.

Since the quantifier rank is a lower bound on the number of quantifiers, the previous
theorem immediately implies a lower bound on the number of quantifiers as well. While we
have shown that STCON(n) can be expressed with 3 log3(n) +O(1) quantifiers, we note that
the minimum quantifier rank of STCON(n) is well-known to be lower.

▶ Theorem 17 ([18]). s-t connectivity to path length n can be expressed with a formula of
quantifier rank log2(n) +O(1).

5 Final Comments and Future Directions

Although progress on M-S games did not come until 40 years after their initial discovery
in [15], the results of this paper show that these games are quite amenable to analysis, and
the more detailed information they give about the requisite quantifier structure has the
potential to yield many new and interesting insights.

Theorem 4 tells us that the number of quantifiers can be more than exponentially larger
than the quantifier rank. This shows that the number of quantifiers is a more refined measure
than the quantifier rank, and gives an interesting and natural measure of the complexity of a
FO formula. It would be interesting to find explicit examples where the quantifier rank is k,
but where the required number of quantifiers grows even faster than in our example in the
proof of Theorem 4. Ideally, we would even like to find explicit examples where the required
number of quantifiers is non-elementary in k.
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We have extended the results on the number of quantifiers needed to distinguish linear
orders of different sizes [10] to distinguish rooted trees of different depths. Can this line
of attack be carried further to incorporate other structures, say to other structures with
induced partial orderings such as finite lattices?

The most immediate question arising from our work is whether one can improve the
known upper or lower bounds on the number of quantifiers needed to express s-t con-
nectivity. In particular, what is the smallest constant c ≥ 1 such that s-t connectivity
(up to path length n) is expressible using c log2(n) quantifiers? Our Theorem 15 shows
that Quants(STCON(n)) is at most 3 log3(n) + O(1) ≈ 1.893 log2(n) + O(1). The well-
known lower bound of Rank(STCON(n)) ≥ log2(n) − O(1) (cited as Theorem 16) yields
the only lower bound we know on Quants(STCON(n)), but we also know the upper bound
Rank(STCON(n)) ≤ log2(n)+O(1) (cited as Theorem 17). As these upper and lower bounds
for the quantifier rank of STCON(n) essentially match, in order to improve the lower bound
on Quants(STCON(n)) further (by a multiplicative constant), we cannot rely on a rank
lower bound: we will have to resort to other methods, such as M-S games.

Another question is whether we can find other problems with even larger quantifier
number lower bounds than logarithmic ones. Let us stress that substantially larger lower
bounds on the number of quantifiers would have major implications for circuit complexity
lower bounds. For example, by the standard way of expressing uniform circuit complexity
classes in FOL [16], a property (over the < relation) that requires logα(n)(n) quantifiers,
where α(n) is an unbounded function of n, would imply a lower bound for uniformFO-NC.
See [11, Appendix C] for an exact statement.

Another interesting direction to push this research is to extend the notion of multi-
structural games to 2nd-order logic, FOL with counting, or to fixed point logic.
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Abstract
Global transformations provide a categorical framework for capturing synchronous rewriting systems,
generalizing cellular automata to dynamical systems over dynamic spaces. Originally developed
for addressing deterministic dynamical systems, the presented work raises the question of non-
determinism. While a usual approach is to develop a general non-deterministic setting where
deterministic systems can be retrieved as a specific case, we show here that by choosing the right
parametrization, global transformations can already be used to handle non-determinism. Context-free
Lindenmayer systems, already shown to be captured by global transformation in the deterministic
case, are used to illustrate the approach. From this concrete example, the formal obstructions are
exhibited, leading to a solution involving a 2-categorical monad and its associated Kleisli construction.
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1 Introduction

Global transformations (GT) has been introduced in [12] as a precise formal description of
dynamical systems defined over a space which is also dynamic while being still synchronous.
This synchronicity property makes GT apart from the main stream of the literature on graph
transformations and graph rewriting systems. They however share with this literature the
fact that they are very generically defined using category theory in order not to be tied to
a specific kind of space. For instance, GT can be used with directed or undirected graphs,
labeled or not, hypergraphs, abstract cell complexes.

In order to present the framework to a public not familiar with category theory, the well
known deterministic Lindenmayer systems have been presented in terms of GT in [4]. In
this paper, we return to Lindenmayer systems, not as a pedagogical exercise but to explore
non-determinism in GT in the simplest possible concrete setting.

A usual approach for studying non-determinism from a deterministic object consists in
generalizing the deterministic object into a non-deterministic one and then to show that the
original deterministic case is a degenerate case of the new non-deterministic setting. We
rather seek to demonstrate that non-determinism is already encompassed as a particular
case of the current definition of GT. This is in complete analogy with dynamical systems.
Indeed, the general definition of dynamical systems is in terms of sets of states and evolution
functions. Non-deterministic dynamical systems are particular dynamical systems where
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the sets happen to be powersets of an underlying set of real states. This quest emerged
from the necessity to talk about non-deterministic, probabilistic and quantum systems, with
the intuition that it should not be very different to what happens for dynamical systems.
It is not obvious at first that this is possible, because GT are mainly about the notion of
(dynamic) locality, but non-deterministic, probabilistic and quantum systems all exhibit
somewhat non-local features of correlation and entanglement.

At this point, it is not possible to say much without properly defining the terms that we
use. So we dig into the formal definitions of the main objects in Section 2. This will allow us
to show that a naive approach of this quest, based on powersets, does not work as explored
in Section 3. In Section 4, we circumvent the obstruction in the most natural way and go to
an intuitive solution that does not look as a dynamical system, because the transformation
does not go from a set to itself but from a set to a bigger set. Section 5 comes back on the
relation between dynamical system and non-deterministic system in terms of monad and
Kleisli category. This well-known categorical point of view on dynamical systems leads us to
consider a 2-monad and its Kleisli 2-category, linking together the previous attempts with
this setting as a coherent whole, and providing a positive answer to our quest.

2 Preliminaries

The following notations are used along the paper. Formal language operations are written as
follows. For a given alphabet Σ, Σ∗ is the set of finite words on Σ, and ε is the empty word.
The length of a word u ∈ Σ∗ is written |u| and its ith letter, for 0 ≤ i < |u|, is written ui.
The concatenation of two words u, v ∈ Σ∗ is written u · v. Concatenation of sets U, V ⊆ Σ∗

is written U · V and is defined by {u · v | u ∈ U, v ∈ V }. For a given set U , the powerset of
U is written P(U). The cartesian product of a family of sets {Ui}i∈I is written

∏
i∈I Ui, and

the projection on component i for an element x of that product is written x(i).
The reader is assumed familiar with basic notions of category theory. The colimit of a

given diagram D is written Colim(D). The notation F/x stands for the comma category F

over x where x is an object of some category and F is a functor into that category. The first
projection is then written Proj[F/x]. The restriction of a category C to the full subcategory
with objects S ⊂ C is written C ↾ S. The restriction of a functor F to a subcategory C of
its domain is written F ↾ C as well.

2.1 Global Transformations
A global transform is a synchronous rewriting rule system. This is made possible by con-
sidering inclusions between rules in order to make explicit how overlapping applications of
rules should be handle, similarly to the notion of amalgamation in classical graph transform-
ation [2, 1]. Asking the coherence of the rule inclusions means exactly to ask them to form
categories and functors, leading to the following definitions.

▶ Definition 1 (rule systems and global transformations). A rule system T on a category C is
a tuple ⟨ΓT , LT , RT ⟩ where ΓT is a category whose objects and morphism are called rules
and rule inclusions, LT : ΓT → C is a full embedding functor called the l.h.s. functor, and
RT : ΓT → C is a functor called the r.h.s. functor. A rule system is a global transformation
when the functor:

T (−) = Colim(RT ◦ Proj[LT /−]) (1)

abusively also denoted T , is well-defined. The subscript T is omitted when this does not lead
to any confusion.
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This definition is a simplified version of alternative definitions found in [12, 5] but is
enough for the present study. This definition makes GT T into a (pointwise) left Kan
extensions of RT along LT , i.e., a pair ⟨T, η : RT =⇒ T ◦ LT ⟩ such that any other pair
⟨K, ρ : RT =⇒ K ◦ LT ⟩ factorizes through η by a unique λ : T =⇒ K as in the following
diagram. The natural transformation η is the identity, i.e., T ◦ LT = RT .

C

Γ C

TLT

RT

K

η
ρ

λ

For more information on GT, one can consult [12, 4, 5, 7] but the specific case considered
below might be enough to exemplify the relation between synchronous rewriting systems and
left Kan extensions as explored by GT.

2.2 Non-Deterministic Lindenmayer Systems
Lindenmayer systems are a variant of formal grammars for specifying languages through a
mechanism of parallel string rewriting [13, 10]. The present study focuses on Lindenmayer
systems without context, where a word u on an alphabet Σ is synchronously rewritten by
mapping each individual letter to a word (deterministic case) or set of words (non-deterministic
case).

▶ Definition 2. A non-deterministic Lindenmayer system on an alphabet Σ is given by a
function δ : Σ → P(Σ∗) and produces the function on words ∆ : Σ∗ → P(Σ∗):

∆(u) = {v0 · . . . · v|u|−1 | (v0, . . . , v|u|−1) ∈ δ(u0) × . . . × δ(u|u|−1)} (2)

and the dynamical system ∆ : P(Σ∗) → P(Σ∗):

∆(U) =
⋃

u∈U

∆(u). (3)

▶ Example 3. Consider the alphabet Σ = {a, b} with function δ defined by δ(a) = {a, ab} and
δ(b) = {ε, b}. In this system, each a may potentially produce a new b on its right, and each b
remains or vanishes. The behavior on the word ab is given by ∆(ab) = {a·ε, ab·ε, a·b, ab·b} =
{a, ab, abb}. Notice that ab is produced in two different ways.

In [4], deterministic Lindenmayer systems (without and with context) are presented as
GT. This encoding relies on the category W of finite words that also plays a crucial role in
this study. Let us fix the symbol Σ for the alphabet.

▶ Definition 4. Let W be the category having Σ∗ as set of objects, and

W(u, v) := { p ∈ {0, . . . , |v| − |u|} | ui = vp+i ∀i ∈ {0, . . . , |u| − 1} }

as set of arrows from any u ∈ Σ∗ to any v ∈ Σ∗. We write p : u → v for p ∈ W(u, v). The
composite q ◦ p : u → w of any two arrows q : v → w and p : u → v is given by q + p, 0 being
the identity arrow of any u ∈ Σ∗.

MFCS 2022
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Category W records the many places words appear in each other which is the relevant
notion of locality for Lindenmayer systems. Indeed, the concatenations involved in Equa-
tion (2) correspond to colimits in W, as stated by the following theorem, and is the basic
ingredient of the expression of deterministic Lindenmayer systems as GT.

▶ Theorem 5 (from [4]). For any two words u, v, the word u · v is the colimit in W of the
diagram:

u v

ε|u| 0

with components

u · v

u v

ε

0 |u|
|u|

|u| 0

.

▶ Example 6. Let us illustrate the construction of [4] with a simple example. Consider the
deterministic Lindenmayer system defined on Σ = {a, b} by δ(a) = {ab} and δ(b) = {a}. The
associated GT T = ⟨Γ, L, R⟩ is completely determined by the following diagrams presenting
respectively the category of rules Γ as a full subcategory of W with inclusion functor L, and
the image of Γ by R:

εa b R7−→ εab a
0

1

0

1

0

2

0

1

The computation of T (ab) as defined by Equation (1) is pictured by the following diagrams:

ε

a b

ab

1 0
1

0 1

ε

ab a

2 0 ε

ab a

ab · a

2 0
2

0 2

On the left, the diagram illustrates the information provided by the comma category L/ab. It
corresponds to the pattern matching of the rules l.h.s. in the input word ab. On the middle,
the diagram R ◦ Proj[L/ab] is represented. On the right, the application of Theorem 5 for
computing the colimit requested by T (ab) constructs the expected result aba.

3 The Challenge of Powersets

Let us recall the goal and make it more precise in light of the formal definitions. We already
know from [4] that deterministic Lindenmayer systems are GT, and now we want to establish
that non-deterministic Lindenmayer systems are also GT, without any extension of the
framework. This means that we want to provide a rule system (Definition 1) based on δ such
that ∆ (Definition 2) is obtained by the colimit formula of Equation (1). This implies in
particular that we need to design the appropriate category, say PW, with a calibrated notion
of arrows to capture what we can informally call non-deterministic locality. The first idea
that comes to mind is to take P(Σ∗) as set of objects for PW so that an object represents a
set of possibilities. It remains to define arrows of PW. However, it will cause difficulties as
we are now going to see.

To make this more concrete, let us take the simple example of Σ = {a, b}, δ(a) = {a, b}
and δ(b) = {ε}. First, notice that ∆(ε) = {ε}. Second, on the input aa, it produces
the behavior ∆(aa) = {aa, ab, ba, bb} corresponding to the four possibilities combining the
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possible evolutions of each a. Using the lessons learned in the deterministic case as illustrated
in Example 6, we make the educated guess that the involved diagram should be of the form:

{a, b} {a, b}

{ε}end beg

to produce the colimit

{aa, ab, ba, bb}

{a, b} {a, b}

{ε}

η1 η2

η3

end beg

.

The diagram contains {ε} for the matched ε between the two a in aa, and two times {a, b}
for each occurrence of a. The arrows in the diagram indicate that the empty words at the end
of the words in the left object need to correspond to the empty words at the beginning of the
words in the right object as in Theorem 5. The expected colimit results in the concatenation
{aa, ab, ba, bb}. Based on these assumptions, we know that:

the arrow “end” of PW should be based on arrows 1 : ε → a and 1 : ε → b of W,
the arrow “beg” of PW should be based on arrows 0 : ε → a and 0 : ε → b of W,
the arrow η1 should be based on 0 : a → aa, 0 : a → ab, 0 : b → ba, and 0 : b → bb,
the arrow η2 should be based on 1 : a → aa, 1 : b → ab, 1 : a → ba, and 1 : b → bb,
the arrow η3 should be based on 1 : ε → aa, 1 : ε → ab, 1 : ε → ba, and 1 : ε → bb.

A natural choice for designing the arrows of PW is then to gather of these arrows of W into
sets of arrows, leading to the following definition.

▶ Definition 7. Let PW be the category having P(Σ∗) as set of objects, and

PW(U, V ) := P({ p : u → v ∈ W | u ∈ U, v ∈ V })

as set of arrows from any U ∈ P(Σ∗) to any V ∈ P(Σ∗). As usual, we write P : U → V

for P ∈ PW(U, V ). The composite Q ◦ P : U → W of any two arrows P : U → V and
Q : V → W is given by {p + q : u → w | p : u → v ∈ P, q : v → w ∈ Q}, {0 : u → u | u ∈ U}
being the identity arrow of any U ∈ Σ∗.

Notice that for any P ∈ PW(U, V ), P does not contain integers but arrows of W with
their domain and codomain. To avoid any confusion, we always write p : u → v ∈ P for
elements of P .

▶ Example 8. With this category, the previous example works as expected if we take our
previous list of constraints to define end, beg, η1, η2, and η3 as sets of arrows: end = {1 :
ε → a, 1 : ε → b}, beg = {0 : ε → a, 0 : ε → b}, η1 = {0 : a → aa, 0 : a → ab, 0 : b → ba, 0 :
b → bb}, and so on so forth. To see this, consider another cocone to some object U ∈ PW
with components ρ1 : {a, b} → U , ρ2 : {a, b} → U , ρ3 : {ε} → U . We aim at showing that
there is a unique arrow µ : {aa, ab, ba, bb} → U such that ρi = µ ◦ ηi for i ∈ {1, 2, 3}.

First notice that ρ1, ρ2, and ρ3 are bijectively related. Indeed, by definition of the
composition in PW and by commutativity of the cocone, each f1 : l1 → u ∈ ρ1 compose
with the unique appropriate arrow 1 : ε → l1 of “end” to give a bijectively corresponding
arrow in f1 + 1 : ε → u ∈ ρ3. Surjectivity holds by the definition of the composition.
Injectivity stands on the fact that an occurrence of a and an occurrence of b in a given
word (here u) cannot be at the same position. Therefore, given f1 + 1 : ε → u ∈ ρ3, there
is a unique letter l1 such that f1 : l1 → u ∈ ρ1. Similarly, there is also such a bijection
mapping each f2 : l2 → u ∈ ρ2 to f2 : ε → u ∈ ρ3. Consequently, the mediating µ has to
contain exactly arrows with domain the concatenation of source letters li of two bijectively
related arrows f1 : l1 → u ∈ ρ1 and f2 : l2 → u ∈ ρ2, and with codomain u. Formally
µ has to be {f1 : l1 · l2 → u | f1 : l1 → u ∈ ρ1 and corresponding f1 + 1 : l2 → u ∈ ρ2}.

MFCS 2022
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The fact that this mediating commutes appropriately comes directly from the fact that
µ ◦ η1 = {f1 : l1 → u | 0 : l1 → l1 · l2 ∈ η1, f1 : l1 · l2 → u ∈ µ} which turns to be ρ1.
Commutations for ρ2 and ρ3 hold as well. Finally, µ is unique by construction.

While the previous example works, the proof uses explicitly the properties specific to the
example. In the general case, the construction fails as shown by the following example.

▶ Example 9. We consider a different non-deterministic Lindenmayer system where Σ = {a}
and δ(a) = {a, aa}. This produces the behavior ∆(aa) = {aa, aaa, aaaa}. Notice in particular
that the concatenations a · aa and aa · a give the same word aaa in ∆(aa). Following the
same construction as presented in Example 8, we consider the following colimit:

{aa, aaa, aaaa}

{a, aa} {a, aa}

{ε}

η1 η2

η3

end beg

where
η1 = {0 : a → aa, 0 : a → aaa, 0 : aa → aaa, 0 : aa → aaaa},
η2 = {1 : a → aa, 1 : aa → aaa, 2 : a → aaa, 2 : aa → aaaa}, and
η3 = {1 : ε → aa, 1 : ε → aaa, 2 : ε → aaa, 2 : ε → aaaa}.

To see that this cocone is not a colimit, consider the cocone to {aaa} having components
ρ1 = {0 : a → aaa}, ρ2 = {1 : aa → aaa}, and ρ3 = {1 : ε → aaa}. The only possible
mediating is µ = {0 : aaa, aaa} but it fails to respect the required commutation property.
Indeed, µ ◦ η1 = {0 : a → aaa, 0 : aa → aaa} which definitively differs from ρ1.

So the first and simplest intuitive idea does not work and we have not designed the
appropriate category. In particular, the construction fails since it is not able to distinguish
the different ways for generating a given output (case aaa in Example 9). We then deduce
that an appropriate category, if it exists, needs to keep track of this information. Moreover,
notice that in Equation (1), the arrows of the category are not only used for constructing
the result as a colimit, but also to decompose an input U into a coma category LT /U and
produce the diagram by the formula R ◦ Proj[LT /U ]. So the previous discussion has only
addressed one side of the problem.

4 From Sets to Indexed Families

There are plenty of other possible definitions for designing arrows of PW and the research
space to get the right one is pretty large. However, having considered several attempts of
definitions, we come to the following working hypothesis.

▶ Conjecture 10. There is no category with set of objects P(Σ∗) and an appropriate choice
of arrows begU , endU : {ε} → U producing concatenation as a colimit.

Irrespectively of the validity of that conjecture, we choose to circumvent directly the problem
that occurred in the previous example and to jump to other aspects of the program. As
previously evoked, the obstruction was that a · aa and aa · a merged into a single word aaa,
so that the mediating arrow could not specify whether it needed this word as a result of
the first concatenation or of the second one. To keep track of that information, we simply
allow for a word to appear many times and we take families of words instead of sets of words.
Taking this path of least resistance, we obtain the following category where an arrow from
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a source family of words to a target family of words, picks a unique word from the source
for each word in the target. This additional “unique source word” property is respected by
all the arrows considered up to now. Taking the view that an arrow p : u → v in W selects
a subword of v, this constraint says that an arrow to a family of words similarly selects a
subword for each member of that family.

▶ Definition 11. For any C ∈ Cat, OC ∈ Cat has pairs (I : Set, U ∈ CI) as objects and

OC((I, U), (J, V )) := { (P : J → I, P ′ :
∏
j∈J

C(UP (j), Vj)) }

as set of arrows from any (I, U) ∈ OC to any (J, V ) ∈ OC. As usual, we write (P, P ′) :
(I, U) → (J, V ) for (P, P ′) ∈ OC((I, U), (J, V )). The composite (Q, Q′) ◦ (P, P ′) : (I, U) →
(K, W ) of any two arrows (P, P ′) : (I, U) → (J, V ) and (Q, Q′) : (J, V ) → (K, W ) is given
by the pair (R : K → I, R′ :

∏
k∈K C(UR(k), Wk)) where :

R(k) = P (Q(k)) and R′(k) = Q′(k) ◦ P ′(Q(k)) : UP (Q(k)) → VQ(k) → Wk ∈ C.

The identity arrow of any (I, U) is (P, P ′) where P (i) = i and P ′(i) = idP (i) : P (i) → P (i).

One may have recognised in this definition the construction for non-determinism of [11]. It
happens to be the free cartesian completion of C, the dual of Fam(C) construction for free
coproduct completion [9, 3, 14], i.e. OC = Fam(Cop)op.

It is not hard to see that each object of this category has many isomorphic objects of
bijective index set, so that the particular index set used is irrelevant. The real information
contained in an equivalence class of isomorphic objects is the number of times each word
occurs. Here, we allow this cardinality to be arbitrary. The issue of cardinality is a detail
at this point, and we do not bother commenting on this issue before the conclusion. In the
meantime, one can freely add the word finite anywhere one feels it is needed.

At this time, some notations are required to handle families and some relevant elements
of OW. Given an arbitrary set U , we write U for the corresponding family containing each
elements of U exactly once and given by the pair (U, idU ). Also, for any (I, U) ∈ OW, we
consider the appropriate arrows beg(I,U), end(I,U) : {ε} → (I, U) identifying the occurrences
of the empty words respectively at the beginning and at the end of the words of the family
(I, U), and which are given by beg(I,U) = ([i 7→ ε], [i 7→ (0 : ε → Ui)]) and end(I,U) = ([i 7→
ε], [i 7→ (|Ui| : ε → Ui)]). We make use here of the notation [x 7→ f(x)] to specify succinctly
an anonymous function; domains and codomains can always be retrieved from the context.

With the category OW and these beginning and ending arrows, we obtain concatenation
as wanted and in a very similar way to concatenation in W with Theorem 5.

▶ Proposition 12. For any two families (I, U), (J, V ) ∈ OW, a colimit of the diagram

(I, U) (J, V )

{ε}end(I,U) beg(I,U)

is given by the cocone

(I × J, (i, j) 7→ Ui · Vj)

(I, U) (J, V )

{ε}

η1 η2η3

end(I,U) beg(I,U)

where
η1 = ([(i, j) 7→ i], [(i, j) 7→ (0 : Ui → Ui · Vj)]),
η2 = ([(i, j) 7→ j], [(i, j) 7→ (|Ui| : Vj → Ui · Vj)]), and
η3 = ([(i, j) 7→ ε], [(i, j) 7→ (|Ui| : ε → Ui · Vj)]).
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49:8 Non-Determinism in Lindenmayer Systems and Global Transformations

Proof. Indeed, consider another cocone to some (K, W ) with components, (P, P ′) : (I, U) →
(K, W ), (Q, Q′) : (J, V ) → (K, W ), and (R, R′) : {ε} → (K, W ). The mediating arrow is
given by ([k 7→ (P (k), Q(k))], [k 7→ P ′(k) : UP (k) · VQ(k) → Wk]). Notice that this mediating
follows the exact same definition as the one exhibited in Example 8. ◀

It is now time to summarize what we have just achieved. We took a diagram shape that
allowed to obtain deterministic Lindenmayer systems as GT by encoding concatenation as
colimit. Then, we changed the objects and arrows in this diagram to obtain what we can
informally call non-deterministic concatenation. But the diagram shape itself arises from
the deterministic decomposition of a single input word (see [4]). In other words, the pattern
matching is not considered in OW but in W. So for now, we only have the following.

▶ Definition 13. For any non-deterministic Lindenmayer system (Σ, δ : Σ → P(Σ∗)), we
write D : W → OW for the functor mapping words u ∈ W to D(u) = (I, V ) where

I := δ(u0) × . . . × δ(u|u|−1) and V(v0,...,v|u|−1) := v0 · . . . · v|u|−1

and arrows p : u′ → u to D(p) = (P, P ′) where

P ((v0, . . . , v|u|−1)) := (vp, . . . , vp+|u′|−1) and

P ′((v0, . . . , v|u|−1)) := |v0| + . . . + |vp−1| : vp · . . . · vp+|u′|−1 → v0 · . . . · v|u|−1.

The functor D is a categorical counterpart of ∆ : Σ∗ → P(Σ∗) of Definition 2 but
with families making sure that we keep the multiple instances of each word. Indeed, for
D(u) = (I, U), each index (v0, . . . , v|u|−1) ∈ I corresponds to a choice of a word vi among
the possibilities provided by δ(ui), for each letter ui of u. For such a choice, the associated
resulting word V(v0,...,v|u|−1) is simply given by the concatenation of the vi. The definition of
D(p) expresses the monotony of ∆. The monotony can be illustrated as follows. Consider
u = α1 · u′ · α2 with |α1| = p. Taking v′ ∈ ∆(u′), γ1 ∈ ∆(α1), and γ2 ∈ ∆(α2), we have
v = γ1 · v′ · γ2 ∈ ∆(u). So we have an arrow |γ1| : v′ → v. As a family of arrows, D(p)
gathers all of these arrows. In the formula of Definition 13, we have α1 = u0 . . . up−1,
u′ = up . . . up+|u′|−1, γ1 = v0 · . . . · vp−1, and v′ = vp · . . . · vp+|u′|−1.

Exactly as ∆ is generated from its sole behavior on letters given by δ as stated by
Definition 2, we will see that the functor D is generated from its restriction to the letters
and ε. We start by defining the categorical counterpart d of δ.

▶ Definition 14. For any non-deterministic Lindenmayer system (Σ, δ : Σ → PΣ∗), we write
d : W ↾ Σ ∪ {ε} → OW for the functor from the full subcategory W ↾ Σ ∪ {ε} of W to OW
defined as d = D ↾ (W ↾ Σ ∪ {ε}).

The functor d is entirely characterized in terms of arrows beg and end.

▶ Lemma 15. For any a ∈ Σ, we have d(0 : ε → a) = begd(a) and d(1 : ε → a) = endd(a).

Proof. Consider 0 : ε → a. By Defs 14 and 13, d(ε) = D(ε) = ({ε}, [ε 7→ ε]) = {ε}, and
d(a) = D(a) = (δ(a), [i 7→ i]). By the same definitions, d(0 : ε → a) = D(0 : ε → a) = (P, P ′)
with P (i) = ε and P ′(i) = |ε| : ε → i where i ranges over δ(a). Clearly, d(0 : ε → a) =
beg(δ(a),[i7→i]) = begd(a) as expected. We get d(1 : ε → a) = endd(a) similarly. ◀

We can now establish that D is obtained as an extension of d thereby providing a
categorical counterpart of Definition 2.
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▶ Proposition 16. D is a pointwise left Kan extension of d along the inclusion functor
ι : W ↾ Σ ∪ {ε} → W as in the following diagram where η is the identity.

W

W ↾ Σ ∪ {ε} O{W}

D
ι

d

η

Proof. Using the explicit definition of pointwise left Kan extensions in terms of colimit,
we are left to show that D(−) = Colim(d ◦ Proj[ι/−]). In [4], it is already proved that the
diagram Proj[ι/u] has the following zigzag shape:

u0 u1 . . . u|u|−1

ε
0

ε
1 0

ε
1 0

ε
1 0 ε1

Using Lemma 15, the diagram d ◦ Proj[ι/u] is:

(δ(u0), [i 7→ i]) (δ(u1), [i 7→ i]) . . . (δ(u|u|−1), [i 7→ i])

{ε} beg {ε}end beg {ε}end beg
{ε}

end beg {ε}end .

Iteratively using Prop. 12 on this finite sequence, the colimit of this diagram is clearly
the non-deterministic concatenation of the (δ(uk), [i 7→ i]), 0 ≤ k < |u|, which is also the
definition of D(u) as given in Def. 13. To prove that η is the identity, it is enough to consider
the particular case of the previous reasoning with |u| ≤ 1 that shows that (D ◦ ι)(u) = d(u).

Given some p : u′ → u, for proving that D(p) = Colim(d ◦Proj[ι/p]) we remark that D(p)
has to be a mediating arrow. By unicity of the mediating arrow, it remains to show that
D(p) obeys the requested commutations of mediating arrows, which is straightforward. ◀

So far, for a non-deterministic Lindenmayer system (Σ, δ), we have d as a categorical
counterpart of δ, which gives rise by left Kan extension to D, the categorical counterpart of
∆. However, we still do not have a dynamical system, since the domain and codomain of
D : W → OW are not strictly the same. In other words, we now want a left Kan extension
counterpart of ∆ : P(Σ∗) → P(Σ∗) of Definition 2, say D : OW → OW. Clearly, we already
know the expected definition of D since we want to apply independently D on each element
of a family (I, U) and to flatten the results altogether.

▶ Definition 17. Let D : OW → OW be the functor defined as

D((I, U)) =
(⋃

i∈I

({i} × Ji) , [(i, j) 7→ (Vi)j ]
)

where (Ji, Vi) = D(Ui),

and D((P, P ′) : (I ′, U ′) → (I, U)) = (Q, Q′) such that, for each (i, j) ∈
⋃

i∈I ({i} × Ji):

Q((i, j)) = (P (i), Ri(j)) and Q′((i, j)) = R′
i(j) where (Ri, R′

i) = D(P ′(i)).

Obtaining D as a Kan extension consists in embedding W into OW, then extending
along this embedding. The notation U that we have introduced earlier can be turned into a
singleton functor for defining this embedding.
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▶ Definition 18. For any category C, the singleton functor singC : C → OC is defined as

singC(x) = {x} and singC(f : x → y) = ([y → x], [y 7→ (f : x → y)]).

Unfortunately, the program stops here since D fails to be the extension of d along
singW ◦ ι : W ↾ Σ ∪ {ε} → W ↪→ OW. In fact, the arrows of OW are not well-suited for
decomposing a family of words in the appropriate way for the expected concatenation. For
instance, consider the family in inputs {aa, bb}. The comma category singW ◦ ι/{aa, bb}
fails to identify the occurrences of a in this family. Indeed, an arrow from {a} to {aa, bb}
requires to identify an occurrence of a in bb but there is none. So there is no arrow between
those two families and the diagram d ◦ Proj[singW ◦ ι/{a, b}] of Equation (1) contains only
ε’s and does not exhibit the expected zigzag shape.

5 The Kleisli 2-Category of the 2-Monad of Families

As explained in Section 1, we propose to solve the last issue by placing oneself in a 2-
categorical context. Since this solution can seem more elaborate than necessary, let us make
precise why this transition to 2-categories is conceptually natural with respect to our goal.

Let us develop the relation between dynamical systems and their non-deterministic
counterparts. At a general level of description, dynamical systems can be defined once we
have a collection of objects to model the states, and a way to specify endo-functions on
these objects to model the dynamics. For instance, in the category of sets and functions, the
states are modeled as a set and the dynamics as a function; the usual case of (deterministic)
dynamical systems is captured. But in the category of topological spaces and continuous
functions, states are modeled as a topological space and the dynamics by a continuous
function, allowing to handle the so-called topological dynamical systems. Similarly, in the
category of sets and relations, states are modeled as a set and the dynamics by a relation.
This last case is particularly interesting for our concern since it is the place to deal with
non-deterministic dynamical systems. Formally this latter category is equivalently described
as the Kleisli category of the so-called powerset monad. This is based on the fact that
R ⊆ X × Y is equivalently a function f : X → P(Y ), that singletons allow any set X to be
seen as included in P(X), and that unions allow any sets of sets in P(P(X)) to be simplified
in a simple set of P(X). The two lessons we learn here are that (1) dynamical systems are
parametrized by the nature of the objects and the arrows they rely on, and that (2) the
parametrization for the non-determinitic counterpart is based on the powerset monad.

We now proceed to apply the same scheme for the GT. The difference with dynamical
systems is that GT are not defined with two layers (an object for the states and an arrow
for the dynamics) but with three layers: categories, functors and natural transformations
as it can be seen in the pointwise left Kan extension diagram of Section 2.1. So they are
parametrized by a 2-category. For instance, the simple GT as defined in Definition 1 are
parametrized by Cat, the 2-category of categories. Following the second lesson on non-
deterministic dynamical systems, for the particular case of non-deterministic GT, we propose
this 2-category parameter to be set to the Kleisli 2-category induced by the 2-monad of
families.

We already have all the ingredients of a 2-monad on Cat as we now proceed to show.
Firstly, the construction OC of Definition 11 can be extended to act on functors and natural
transformations and yields a 2-functor O : Cat → Cat.

▶ Definition 19. For any functor F : C → C′, the functor OF : OC → OC′ is defined as
OF ((I, U)) = (I, F ◦ U), and OF ((P, P ′) : (I, U) → (J, V )) = (P, F ◦ P ′). For any natural
transformation α : F =⇒ G : C → C′, the natural transformation Oα : OF =⇒ OG : OC →
OC′ has components (Oα)(I,U) = ([i 7→ i], [i 7→ αUi ]) : (I, F ◦ U) → (I, G ◦ U).
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To make the 2-functor O into a 2-monad, we need to consider the obvious pairs of
operations, the first one, singC : C → OC, lifting an object of a category C to a singleton
family of OC, and the second one, µC : OOC → OC, flattening a family of families of
objects into a simple family of objects. Notice that this last construction has already been
encountered in Definition 17 of D, whose role of flattening has also been underlined above.
In particular, the function D is in fact obtained as µW ◦ OD from Definition 13. The two
operations form indeed a 2-monad.

▶ Proposition 20. Operations sing− and µ− make O : Cat → Cat into a 2-monad, i.e., all
instances of the following diagrams weakly commute.

OOOC OOC

OOC OC

OµC

µOC µC

µC

∼
OOC OC OOC

OC

singOC O(singC)

idOC
µC µC

∼ ∼

Proof. For the first square, and given an object (I, U) ∈ OOOC, the top-right path leads
to index set of the form (i, (j, k)) for the object in OC while the left-bottom path leads to
the form ((i, j), k), hence the weak commutation. For the triangles on the right, an object
(I, U) ∈ OC sees each index i ∈ I transformed into ((I, U), i) ∈ {(I, U)} × I by the left path
and into (i, Ui) ∈ {(i, Ui) | i ∈ I} by the right path. ◀

In order to ease the reading of elements of the Kleisli weak 2-category, let us introduce
some notations. We write F̃ : C ◦−→ D to represent a functor F : C → OD of the Kleisli weak
2-category. A 2-arrow η̃ : F̃ ◦=⇒ G̃ stands simply for a natural transformation η : F =⇒ G.
The composition of arrows in the Kleisli weak 2-category, written G̃ ◦ F̃ : C ◦−→ D ◦−→ E, is
the functor µE ◦ OG ◦ F : C → OD → OOE → OE.

We finally reach our initial goal as we are now able to show that the diagram of Prop. 16
is in fact a summary of a GT in the Kleisli weak 2-category induced by the 2-monad O.
More accurately, considering the GT diagram of the rule system ⟨W ↾ Σ ∪ {ε}, ˜singW ◦ ι, d̃⟩
is completely equivalent to considering the diagram of Prop. 16, achieving the fact that the
initial non-determinitic Lindenmayer system is indeed a GT. Moreover, this works for any
non-deterministic rule system ⟨Γ, ˜singC ◦ L, R̃⟩ on any category C. Notice the particular form
of the l.h.s. functor defined using L : Γ → C which is still required to be a full embedding.

▶ Theorem 21. Let T̃ = ⟨ΓT , ˜singC ◦ LT , R̃T ⟩ be a rule system in the Kleisli weak 2-category
induced by the 2-monad O. T̃ is a GT iff T is the left Kan extension of RT along LT in the
2-category Cat.

Proof. The rule system being a GT, we have a pair ⟨T̃ , η̃ : R̃T =⇒ T̃ ◦ ˜singC ◦ LT ⟩ which is
a left Kan extension in the Kleisli 2-category and takes the following diagrammatic form for
any other pair ⟨K̃, ρ̃ : R̃T =⇒ K̃ ◦ ˜singC ◦ LT ⟩:

C

Γ C

T̃˜singC ◦ LT

R̃T

K̃

η̃
ρ̃

λ̃
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This diagram corresponds by definition to the diagram in Cat on the left below. By naturality
of sing and Prop. 20, it (weakly) simplifies into the expected diagram, on the right below.

OC

OOCC

Γ OC

OK

OT
singC

LT

RT

µC

η
ρ

Oλ C

Γ OC

T
LT

RT

K

η
ρ

λ

◀

6 Final Discussion

This journey started with the general goal of going toward non-deterministic, probabilistic
and quantum GT. Starting with the first concrete step of capturing non-deterministic
Lindenmayer systems as GT, we guessed some constructions based on the deterministic
case. The result of these guesses did not have the precise form of a GT in the 2-category
of categories, functors and natural transformations. But we showed they correspond in
fact to a GT in another (weak) 2-category. The latter is induced by Kleisli’s construction
on a particular (weak) 2-monad that we made explicit. This is to be expected since the
same architecture happens for non-deterministic dynamical systems. Indeed, they are also
dynamical systems in another category, with the latter being induced by a monad. All in all,
we ended with a general solution for mixing non-determinism with locality as described in
the global transformation framework.

Along the way, we mentioned a few technicalities on which we now come back. The
first one is the Conjecture 10 on which we want to add a comment. If it is wrong, then
families can be simplified into sets. But in this case, there should be a relation between the
family-based solution just presented and this new set-based solution. But thinking of this
relation as a functor from families to sets reinforce us in the belief that the conjecture is true.

The second technicality is about the size of the families considered, which is related to
the size issues for the “2-category of categories”. For most practical purpose, it is possible to
restrict oneself to finite families. In this case, a small category C leads to a small category
OC. In this case, the 2-functor O is indeed an endomorphism of the 2-category of small
categories. Dropping the finiteness constraint though, one then considers a 2-functor OC
from small categories to large categories. This is however perfectly fine, since this describes
a so-called relative pseudomonad with an associate Kleisli’s construction, as defined in [8].

In [6], one can find a direct account of the 2-category described here in terms of 2-monad.
In particular, the open functors and open natural transformations are introduced using
presheaves and proved to form a weak 2-category. More precisely, an open functor F from
a category C to a category D is the data of a presheaf on C together with a functor from
the category of elements of that presheaf to D. An interesting feature of this presheaf
presentation is that it allows to speak directly about special properties arising from the
association of locality and non-determinism. For instance, correlations and intrications
correspond to obstructions of the presheaf to be a sheaf. The formal definition in [6] can be
made easier to manipulate by the use of discrete fibrations instead of categories of elements
through the so-called Grothendieck construction, and doing so presents this bicategory as a
particular bicategory of spans. Moreover, this bicategory is a sub-bicategory of the bicategory
of profunctors (a.k.a. distributors). Notice that the many presentations of this bicategory are
strongly related to the many possible presentations one can have of the notion of “relation”:
powerset monad (as in this paper), spans, and characteristic functions of the relation.
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Abstract
Regular nested word languages (a.k.a. visibly pushdown languages) strictly extend regular word
languages, while preserving their main closure and decidability properties. Previous works have
shown that considering languages of 2-nested words, i.e. words enriched with two matchings (a.k.a.
2-visibly pushdown languages), is not as successful: the corresponding model of automata is not closed
under determinization. In this work, inspired by homomorphic representations of indexed languages,
we identify a subclass of 2-nested words, which we call 2-wave words. This class strictly extends
the class of nested words, while preserving its main properties. More precisely, we prove closure
under determinization of the corresponding automaton model, we provide a logical characterization
of the recognized languages, and show that the corresponding graphs have bounded treewidth. As a
consequence, we derive important closure and decidability properties. Last, we show that the word
projections of the languages we define belong to the class of linear indexed languages.
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1 Introduction

The class of regular languages constitutes a cornerstone of theoretical computer science,
thanks to its numerous closure and decidability properties. A long line of research studied
extensions of this class, while preserving its robustness. Context free languages (CFL for
short) constitute a very important class: they admit multiple presentations, by means of
pushdown automata, context-free grammars and more, and have led to numerous applications.
Unfortunately, CFL do not satisfy several important properties enjoyed by regular languages.
More precisely, the corresponding automaton model, namely pushdown automata, does not
admit determinization. In addition, the class of CFL is not closed under intersection nor
complement, and universality, inclusion and equivalence are undecidable properties.

A simple way to patch this is by considering as input the word together with the inherent
matching relation, resulting in what is known as a nested word [3]. Indeed, as soon as a word
belongs to a CFL, one can identify a matching relation on (some of) the positions of the
word, whatever the presentation of the CFL. For instance, if the CFL is given as a pushdown
automaton, then this relation associates push/pop positions. Another way to define the
matching relation is to use an alternative presentation of CFL given in [16], which refines the
Chomsky-Schützenberger theorem. Following this work, one can show that a language L is a
CFL iff there exists a regular language R, a Dyck language D2 over two pairs of brackets, and
two homomorphisms h (h is non-erasing), g such that L = h(g−1(D2) ∩R). This alternative
presentation also leads to a natural matching relation, induced by D2. The model of nested
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50:2 A Robust Class of Languages of 2-Nested Words

word automata naturally extends finite-state automata by allowing to label edges of the
matching relation with states (often called hierarchical). This model accepts the so-called
class of regular nested word languages, allowing to recover most of the nice properties of
regular languages. More precisely, nested word automata can always be determinized. The
class of regular nested word languages is closed under all the boolean operations, admits an
equivalent presentation by means of logic (monadic-second order logic with a binary predicate
corresponding to the matching relation), and expected decidability properties (emptiness,
universality, inclusion and equivalence). It is worth noticing that another way to present this
class is by splitting the alphabet into call/return/internal symbols. This leads to so-called
visibly pushdown languages [2], and the associated model of visibly pushdown automata.

Several works tried to extend the class of regular nested word languages while preserving
its closure and decidability properties. In particular, a focus has been put on words with
multiple matching relations. In [19], the authors consider multiple stacks with a semantical
restriction of push/pop operations known as k phases. That way, they obtain decidability of
the emptiness problem. However, their model of automata cannot be determinized. In [6],
the authors consider visibly pushdown automata with multiple stacks, with an ordering on
stacks, and prove the closure under complement of their model. Their proof does not rely on
the determinization of the model: indeed, as shown in [19], this class cannot be determinized
in general. This corrects a previous result published in [5], which states that the general
class of 2-stack visibly pushdown automata is closed under complementation, which does
not hold, as shown in [4]. The crux in their proof was the use of determinization of 2-stack
visibly pushdown automata. In [4], Bollig studies 2-stack visibly pushdown automata in
their unrestricted form. He proves the equivalence with the existential fragment of monadic
second-order logic, but that quantifier alternation leads to an infinite hierarchy in this setting.
As a corollary, the resulting class of languages is not closed under complementation. Another
restriction, known as scope-bounded pushdown languages, has been introduced in [20, 21],
for which the authors manage to prove that the automaton model can be determinized.

The previous survey of related works shows the difficulty in identifying a class of 2-nested
words for which the corresponding automaton model can be determinized. As a consequence,
the decidability results presented in these papers require ad-hoc involved proofs. Graphs of
bounded treewidth constitute an alternative approach for obtaining decidability properties.
Indeed, in [13], the authors show that most of the previous classes with good decidability
properties actually correspond to graphs of bounded treewidth, for which MSO decidability
follows from [7, 17]. Yet, determinization of nested word automata is the keystone of the
nice properties of this model, and thus constitutes a highly desirable feature. In the present
work, taking inspiration in indexed languages, we identify a class of 2-nested words for which
automata can be determinized. Our class is incomparable with those of [19], [6] and [20, 21].
Intuitively, between two matched positions of the first matching, they bound the number of
switches between matchings, while we do not. In addition, the proof of determinizability
of [20, 21] is different from ours, as their proof is a kind of superviser that uses determinization
of [3] as a subroutine, while ours generalizes the construction of [3] to two nestings.

Indexed languages [1] correspond to the level 2 of the infinite hierarchy of higher-order
languages [14]. With numerous applications in computational linguistics, they have been
much studied during the seventies and the eighties [15, 8, 9]. Homomorphic characterizations
of CFL that we presented before have been extended to (linear) indexed languages in several
works, including [22, 10]. One of them (see [10]) shows that L is an indexed language iff
there exists a regular language R, two Dyck languages D2 and Dk over two and k pairs of
brackets respectively, and two homomorphisms h, g such that L = h(g−1(D2)∩R∩Dk), with
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some additional conditions on g. This presentation allows to associate with a word w ∈ L

two matchings, induced by D2 and Dk, which interact in a very particular way. Graphically
speaking, this interaction yields kinds of waves (see Figure 1). When restricted to linear
indexed languages, the length of these waves is upper bounded by 2, yielding the structure
of 2-waves that will be of interest to us in this paper. All these notions will be formally
presented in the paper. We also refer the reader to Section 7, in which we explore the
relationship between our work and (linear) indexed languages.

1 2 3 4 5 6 7 8 1 2 3 4 1 2 3 4 5 6 7 8 9 10 11 12

Figure 1 A 4-wave (left), a 2-wave (middle), and a combination of 2-waves (right).

In this paper, we consider 2-nested words whose matchings satisfy the structural restriction
of 2-waves; we call them 2-wave words. The main result of this paper is to show that 2-
nested word automata are closed under determinization on the class of 2-wave words. While
determinization of nested word automata extends the well-known powerset construction
with a reference state, our construction is more involved in order to be able to reconcile
the labels of the different arches, and we give a detailed proof of correction. This allows
us to prove the equivalence of automata with monadic-second order logic on 2-wave words,
as well as with its existential fragment. This contrasts with results of [4] which show that
on 2-nested words, quantifier alternation yields an infinite hierarchy. We also prove that
the graphs associated with 2-wave words are MSO-definable, and have bounded treewidth.
As a consequence, we obtain the following decidability results for the class of 2-wave words:
satisfiability of MSO, emptiness of automata (in polynomial time), universality, inclusion
and equivalence of automata (in exponential time).

In Section 2, we introduce the definitions of matchings and nested words, and provide a
grammar for 2-wave words. In Section 3, we introduce the automaton model, and present in
Section 4 the main result of the paper: the closure under determinization over 2-wave words.
Applications to logic and decidability are presented in Sections 5 and 6. Last, a discussion
on relations with (linear) indexed languages is given in Section 7.

2 Words and matchings

Words and relations. For any positive integer n, [n] = {1, . . . , n} is the set of all positive
integers ranging from 1 to n. When referencing a position in a word, integers might be called
positions or index. Σ denotes a finite alphabet. The empty word is denoted ϵ, and the set of
finite words on Σ is denoted Σ∗. The length of w ∈ Σ∗ is denoted |w|. Given a non-empty
word w ∈ Σ∗, its positions are numbered from 1 to |w|. We say that u is a factor of w if
there exist two words x, y such that w = xuy. Given an interval I ⊆ [|w|], we denote by
w|I the factor of w corresponding to positions in I. Unless specified otherwise, words and
automata introduced in this paper are defined on Σ.

▶ Definition 1. A matching relation of length n ≥ 0 is a binary relation M on [n] such that:
1. if M(i, j) then i < j, i.e. M is compatible with the natural order on integers
2. if M(i, j) and M(k, l) then {i, j} ∩ {k, l} ≠ ∅ =⇒ i = k ∧ j = l, i.e. any integer is related

at most once by the matching
3. if M(i, j) and M(k, l) then i < k < j =⇒ l < j i.e. a matching is non-crossing.

MFCS 2022



50:4 A Robust Class of Languages of 2-Nested Words

Since a matching is an injective functional relation, we will often use functional notations:
M(i) = j or M−1(j) = i rather than M(i, j). If M(i, j), we call i a call position, j a return
position and if k ∈ [n] is neither a call nor a return position we call it an internal position.

If I is a subset of [n] we denote by Ic the subset of call positions of I, and by Ir the
subset of return positions and I int the subset of internal position. We say that I is without
pending arch (wpa) if it has no pending call nor pending return, i.e. M(Ic) ∪M−1(Ir) ⊆ I.
Note that this definition holds when I is an interval, but even for an arbitrary subset of [n].
In particular, we say a pair (I1, I2) of intervals is without pending arch if I1 ∪ I2 is. In this
case, we may also say that (I1, I2) is a pair of matched intervals.

(2-)Nested words. We first recall the classical definition of nested words:

▶ Definition 2. A nested word on Σ is a pair ω = (w,M) where w ∈ Σ∗ and M is a
matching of length |w|. We write NW(Σ) the set of nested words on Σ, and NWL(Σ) the set
of languages of nested words.

Words equipped with two matchings are called 2-nested words:

▶ Definition 3. A 2-nested word on Σ is a triple ω = (w,M1,M2) where w ∈ Σ∗ and M1,
M2 are matchings of length |w|. We write 2NW(Σ) for the set of 2-nested words on Σ, and
2NWL(Σ) for the set of languages of 2-nested words.

▶ Example 4. An example of a nested word (resp. two examples of 2-nested words) is
depicted on the left (resp. on the middle and right) of Figure 2. For 2-nested words, the
matching M1 is depicted above, while matching M2 is depicted below.

Given a 2-nested word ω = (w,M1,M2) and an interval I ⊆ [|w|] which is wpa w.r.t. both
M1 and M2, we denote by ω|I the 2-nested word consisting of w|I and of the two matchings
M ′

1 and M ′
2 obtained from M1 and M2 by restricting them to I, and then shifting them to

the interval [|I|]. It is routine to verify that if ω is a 2-nested word, then so is ω|I .

a b a c b a b a b a c b a b
a b a c b a b

Figure 2 A nested word (left) and two 2-nested words (middle and right).

2-Waves and 2-wave words. In the sequel, we introduce the restriction of 2-nested words on
which we will focus. Intuitively, wave structures are graphs obtained from the two matchings
consisting of cycles alternating M1-arches and M2-arches whose shape evokes waves.

▶ Definition 5. Let n be an integer, and (M1,M2) be a pair of matching relations of length
n. A sequence of 4 integers 1 ≤ i1 < i2 < i3 < i4 ≤ n is a 2-wave if the following holds:

M1(i1, i2) and M1(i3, i4) (top arches),
M2(i2, i3) (bottom arch), and M2(i1, i4) (support arch)

A pair (M1,M2) is a 2-wave structure if any arch in M1 ∪M2 belongs to a 2-wave.

▶ Remark 6. One could allow 2-wave structures to admit 1-waves, i.e. pairs of indices (i1, i2)
with i1 < i2, M1(i1, i2) and M2(i1, i2). All our results would also hold for this generalization.
However, in order to simplify the presentation of the paper, we do not consider them in this
extended abstract.
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▶ Definition 7. A 2-wave word is a 2-nested word ω = (w,M1,M2) such that (M1,M2) is a
2-wave structure. We denote by WW2(Σ) the set of 2-wave words over the alphabet Σ.

▶ Example 8. Examples of waves are given on Figure 1. Let us consider the 2-nested words
depicted on Figure 2. The one on the middle is not a 2-wave word (the upper arch (5, 6)
does not belong to a 2-wave), while the one on the right is.

Grammar. In order to proceed with structural induction, we present an inductive presenta-
tion of 2-wave words based on multiple context-free grammars (MCFG for short [18]). To
this end, we turn to 2-visibly pushdown languages: the alphabet Σ is duplicated into five
copies Σc

c, Σc
r, Σr

c , Σr
r and Σint

int, whose disjoint is denoted Σ̃. This way, the two matchings
are encoded in the types of the symbols: the upper index is for the first and the lower index
for the second matching relation. More formally, given ω ∈ WW2(Σ), we denote by ω̃ ∈ Σ̃∗

its visibly pushdown version.
In MCFG, non-terminals allow to express tuples of words. We present a grammar with

two non-terminals W and H which represent respectively words (denoted w ∈ Σ̃∗), and pairs
of words (denoted (x, y) ∈ Σ̃∗ × Σ̃∗). The grammar is defined by the following rules:

W ∋ w ::= ϵ | i | w1w2 | xwy
H ∋ (x, y) ::= (ϵ, ϵ) | (x1x2, y2y1) | (w1xw

′
1, w2yw

′
2) | (axb, cyd)

where i ∈ Σint
int and (a, b, c, d) ∈ Σc

c × Σr
c × Σc

r × Σr
r.

▶ Lemma 9. L(W) = {ω̃ ∈ Σ̃∗ | ω ∈ WW2(Σ)}

Proof sketch. We give some hints on how to show the right to left implication. Let ω =
(w,M1,M2) ∈ WW2(Σ). We show, by induction on n ≤ |w|, the following properties:

Let I ⊆ [|w|] such that |I| = n and I is wpa, then ω̃|I ∈ L(W).
Let I1, I2 ⊆ [|w|] such that |I1| + |I2| = n and (I1, I2) is wpa, then (ω̃|I1 , ω̃|I2) ∈ L(H).

The proof decomposes the 2-wave, by distinguishing cases according to the structure of the
two matchings. One can then verify that in all cases, one can produce the words using one
of the rules of the grammar. ◀

3 2-Nested Word Automata

Nested word automata have been introduced in [3] as an extension of finite-state automata
intended to recognize nested words. They label arches of the matching relation with so-called
hierarchical states: if the position corresponds to a call (resp. a return), then the automaton
“outputs” (resp. “receives”) the hierarchical state used to label the arch, hence we place it
after the input letter (resp. before). This corresponds to push/pop operations performed
by a (visibly) pushdown automaton. The extension of this model to multiple matchings is
natural, and has already been considered in [4, 6]: with two matchings, automata label edges
of both matchings with hierarchical states.

We first introduce some notations. Let us assume that two matching relations M1, M2 of
length n are given. Then, each index i ∈ [n] can be labelled in 9 different ways depending on
it’s call, return and internal status with regard to matchings M1 and M2. We say that a
position i is a call-return if it is a call w.r.t. M1, and a return w.r.t. M2. We extend this
convention to other possible types of positions (call-call, return-call, call-internal. . . ). Let
I ⊆ [n] and x, y ∈ {c, r, int}. Following our graphical representation of 2-nested words, in
which M1 is depicted above the word, and M2 is depicted below, we denote by Ix

y the subset

MFCS 2022
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ai−1
•
ℓi−1 ℓi

•
ai

h1
i

h2
i

(ℓi−1, ai, h
1
i , h

2
i , ℓi) ∈ ∆c

c

ai−1
•
ℓi−1 ℓi

•
ai

h1
M−1

1 (i)

h2
i

(ℓi−1, h
1
M−1

1 (i), ai, h
2
i , ℓi) ∈ ∆r

c

ai−1
•
ℓi−1 ℓi

•
ai

h1
i

h2
M−1

2 (i)

(ℓi−1, h
2
M−1

2 (i), ai, h
1
i , ℓi) ∈ ∆c

r

ai−1
•
ℓi−1 ℓi

•
ai

h1
M−1

1 (i)

h2
M−1

2 (i)

(ℓi−1, h
1
M−1

1 (i), h
2
M−1

2 (i), ai, ℓi) ∈ ∆r
r

Figure 3 Examples of transition steps.

of I with x status on M1, and y status on M2. For instance, given a position i ∈ I, we
have i ∈ Ic

r if i is a call w.r.t. M1 and a return w.r.t. M2. We also introduce the following
shortcuts: for x ∈ {c, r}, Ix = Ix

c ∪ Ix
r ∪ Ix

int and Ix = Ic
x ∪ Ir

x ∪ I int
x . For instance, Ic (resp.

Ic) denotes the set of positions in I which are a call w.r.t. M1 (resp. M2).

▶ Definition 10. A 2-nested word automaton is a tuple A = (Q,Q0, Qf , P,Σ,∆) where :
Q is a finite set of states and Q0, Qf ⊆ Q are respectively the initial and final states
P is a set of hierarchical states
∆ = (∆x

y)x,y∈{c,r,int} is a set of transitions : ∆x
y ⊆ Q× P inx,y × Σ × P outx,y ×Q, where

inx,y (resp. outx,y) is the number of r (resp. c) in {x, y}. For instance, inc,r = inr,c = 1
and outc,c = 2.

▶ Remark 11. In the previous definition, elements in P inx,y correspond to hierarchical states
that label closing arches, which can be interpreted as popped symbols, while elements in
P outx,y correspond to hierarchical states that label opening arches, which can be interpreted
as pushed symbols. Elements of Q are called linear states, as they follow the edges of the
linear order, in contrast to hierarchical states.

▶ Definition 12 (Run/Language of a 2NWA). Let ω = (a1 . . . an,M1,M2) ∈ 2NW and A be a
2NWA. Let ℓ = (ℓi)i∈[[0,n]] be a sequence of states, h1 = (h1

i )i∈[n]c and h2 = (h2
i )i∈[n]c

be two
sequences of elements of P . For all i ∈ [n], we write runA

i (ω, ℓ, h1, h2) if one of the following
cases holds: (the first four cases are illustrated on Figure 3)

call-call: i ∈ [n]cc, and (ℓi−1, ai, h
1
i , h

2
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c

return-call: i ∈ [n]rc, and (ℓi−1, h
1
M−1

1 (i), ai, h
2
i , ℓi) ∈ ∆r

c

call-return: i ∈ [n]cr, and (ℓi−1, h
2
M−1

2 (i), ai, h
1
i , ℓi) ∈ ∆c

r

return-return: i ∈ [n]rr, and (ℓi−1, h
1
M−1

1 (i), h
2
M−1

2 (i), ai, ℓi) ∈ ∆r
r

call-internal: i ∈ [n]cint, and (ℓi−1, ai, h
1
i , ℓi) ∈ ∆c

int
internal-call: i ∈ [n]int

c , and (ℓi−1, ai, h
2
i , ℓi) ∈ ∆int

c

return-internal: i ∈ [n]rint, and (ℓi−1, h
1
M−1

1 (i), ai, ℓi) ∈ ∆r
int

internal-return: i ∈ [n]int
r , and (ℓi−1, h

2
M−1

2 (i), ai, ℓi) ∈ ∆int
r

internal-internal: i ∈ [n]int
int, and (ℓi−1, ai, ℓi) ∈ ∆int

int

If for all i ∈ [n], runA
i (ω, ℓ, h1, h2) holds, the triple (ℓ, h1, h2) is said to be a run of A

over ω; it is an accepting run if ℓ0 ∈ Q0 and ℓn ∈ Qf .
We will write q ω−−→

A
q′ when there exists a triple (ℓ, h1, h2) which is a run of A on ω, and

whose first (resp. last) element of ℓ is equal to q (resp. q′). If we denote by n the length of
ω, and if I ⊆ [n] is an interval wpa, then we write q ω,I−−→

A
q′ as a shortcut for q

ω|I−−→
A

q′.
A 2-nested word is accepted by A if it admits an accepting run. The set of all 2-nested

words accepted by A is denoted L(A), and a language of 2-nested words is called regular
if it is accepted by a 2-nested word automaton. In the sequel, we will also be interested in
restricting the language of a 2NWA to 2-wave words. Hence, we denote by LWW2(A) the set
of 2-wave words accepted by A, i.e. L(A) ∩ WW2(Σ).
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▶ Example 13. Let Aex = (Q,Q0, Qf , P, {a, b, c, d},∆), with Q = {qa, qb, qc, qd}, Q0 = {qa},
Qf = {qd}, P = Q and ∆ defined as follows (we only give non-empty transition sets):

∆c
c = {(qa, a, qa, qa, qa)}

∆r
c = {(qx, qa, b, qb, qb) | x ∈ {a, b}}

∆c
r = {(qx, qb, c, qc, qc) | x ∈ {b, c}}

∆r
r = {(qx, qc, qa, d, qd) | x ∈ {c, d}}

a a b b c c d d
qa qa qa qb qb qc qc qd qd

qa
qa

qc
qc

qa

qa

qb

qb

Figure 4 A run of Aex over ω2.

We illustrate the semantics of 2NWA by giving on Figure 4 a graphical representation
of a run of Aex on the 2NW ω2 = (a2b2c2d2,M1,M2), with M1,M2 depicted on Figure 4.
We let the reader check that the projection of L(Aex) on Σ∗ is equal to {anbncndn | n ≥ 1},
hence not context-free.

▶ Definition 14 (deterministic 2NWA). A 2NWA is deterministic iff Q0 = {q0} and for all
x, y ∈ {c, r, int}, ∆x

y induces a function Q× P inx,y × Σ → P outx,y ×Q.

▶ Example 15. The automaton Aex considered in Example 13 is deterministic.

Normal form. To ease further constructions, we present a normal form for 2NWA that
requires the hierarchical state of an arch to be equal to the target linear state of its call
index. More formally, we say that a 2NWA is in weakly-hierarchical post form (post form
for short) if P = Q and for all x, y ∈ {c, r, int}, ∆x

y ⊆
⋃

q∈Q Q×Qinx,y × Σ × {q}outx,y × {q}.
As a consequence, transitions of an automaton in post form can be simplified: ∆x

y ⊆
Q×Qinx,y × Σ ×Q.

It is worth observing that in a 2NWA in post form, a run is completely characterized by
the linear states. Hence, we can omit the hierarchical states in the formula runA

i , and we
can say that a sequence of (linear) states ℓ is a run of A on a 2-nested word ω.

▶ Example 16. The automaton Aex considered in Example 13 is in post form.

▶ Lemma 17. Given a 2NWA A = (Q,Q0, Qf ,Σ, P,∆), we can build a 2NWA A′ =
(Q′, q′

0, Q
′
f ,Σ, Q′,∆′) which is in weakly-hierarchical post form and such that L(A) = L(A′).

Closure properties. Applying classical automata constructions to 2NWA, one can prove the
following closure properties of regular 2NWL.

▶ Proposition 18 (See also [4]). Regular 2NWL are closed under union, intersection, and
direct and reciprocal image by a non erasing alphabetic morphism.

4 Determinization of 2NWA over 2-wave words

▶ Theorem 19. 2NWA are determinizable on the subclass of 2-wave words, i.e., given a
2NWA A, we can build a deterministic 2NWA A′ such that LWW2(A) = LWW2(A′).

MFCS 2022
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Thanks to Lemma 17, we start from a 2NWA in post normal form A = (Q,Q0, Qf ,∆).
This normal form will allow to lighten the presentation, as less arguments are needed to write
the transitions and the runs. We will describe the construction of a deterministic 2NWA A′

(not in post normal form), which accepts the same language of 2-wave words.

Introduction to the construction. The determinization of finite-state automata, known as
the powerset construction, registers all the states reachable by a run of A, which in the sequel
are named current states. The determinization procedure of [3] for nested word automata
requires the recording of two states. In addition to the current state, they also store the state
labelling the call of the arch covering the current position. This state is named reference
state. Intuitively, it stores where we come from, and will be used when closing the arch to
reconcile the global run with what happened below this arch.

In our setting, as we consider a pair of matchings (M1,M2) instead of a single one, we
need to store triples of states, composed of two reference states (one for M1 and one for M2),
and one current state. Hence, states of A′ will be sets of such triples of states.

The very particular shape of 2-wave words, and in particular the fact that the support
arch and the top arches do end up at the same return-return position, ensure that we can
gather the information collected along these two paths to compute, in a deterministic fashion,
the set of possible current states.

However, when trying to address the setting of 2-wave words, we face another difficulty
related to reference states. Indeed, the computations we will perform on each arch of the
2-wave word are somehow disconnected. In order to be sure that they can be reconciled,
we will enrich the reference state of the second top arch of the 2-wave with the state of the
bottom arch and that of the first top arch. This allows us to check whether the reference
associated with the second top arch is compatible with that chosen for the first top arch.

Construction. We will define the deterministic 2NWA A′ = (Q′, {q′
0}, Q′

f , P
′, δ) in the

following way. We first introduce the reference states for M1 and M2: 1

R1 := Q the reference for positions at the surface of the first top arch
R2 := Q3 the reference for positions at the surface of the second top arch
R := Q the reference for M2

We denote by R the union R1 ∪ R2. This allows us to define:

Q′ := 2R1×R×Q ∪ 2R2×R×Q q′
0 := {(q0, q0, q0); q0 ∈ Q0}

Q′
f := {S ∈ Q′; S ∩Q×Q×Qf ̸= ∅} P ′ := (Q′ × Σ) ∪ (Q′ × Σ)2

The transition function δ for A′ is defined as follows, by distinguishing cases according to
the nature of the symbol. The construction is illustrated on Figure 5. In order to ease the
writing, the arguments of the formula are not explicitly written.

δint(S, α) := {(r, r, q′); ∃q (r, r, q) ∈ S ∧ (q, α, q′) ∈ ∆int}
δc

c(S1, α1) := (S′
1, (S1, α1), (S1, α1)) where

S′
1 := {(q′

1, q
′
1, q

′
1); ∃r1, r0, q1 ϕ1}

ϕ1 := (r1, r0, q1) ∈ S1 ∧ (q1, α1, q
′
1) ∈ ∆c

c.

1 Observe that the reference state for the second top arch is a triple of states, as explained before.
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q1 q′
1 q2 q′

2 q3 q′
3 q4 q′

4
α1 α2 α3 α4

q′
1

(S1, α1)

q′
2

(S1, α1, S2, α2)

q′
1

(S1, α1)

q′
3

(S2, α2, S3, α3)

S1 S′
1 S2 S′

2 S3 S′
3 S4 S′

4
(r1, r0, q1) (q′

1, q
′
1, q

′
1) (q′

1, r2, q2) (r1, q
′
2, q

′
2) (r3, q

′
2, q3) (q′

1q
′
2q

′
3, r2, q

′
3) (q′

1q
′
2q

′
3, q

′
1, q4) (r3, r0, q

′
4)

r1 r3

r0

r2

Figure 5 Illustration of the determinization. The (original) run in A is depicted in red, while the
(new) one in A′ is in blue. Elements of states of A′ are illustrated by triples depicted below them.

δr
c (S2, (S1, α1), α2) := (S′

2, (S1, α1, S2, α2)) where

S′
2 := {(r1, q

′
2, q

′
2); ∃r0, r2, q1, q

′
1, q2 ϕ2}

ϕ2 := ϕ1 ∧ (q′
1, r2, q2) ∈ S2 ∧ (q2, q

′
1, α2, q

′
2) ∈ ∆r

c

δc
r(S3, (S1, α1, S2, α2), α3) := (S′

3, (S2, α2, S3, α3)) where 2

S′
3 := {(q′

1q
′
2q

′
3, r2, q

′
3); ∃r1, r3, r0, q1, q2, q3 ϕ3}

ϕ3 := ϕ2 ∧ r1 ⪯ r3 ∧ (r3, q
′
2, q3) ∈ S3 ∧ (q3, q

′
2, α3, q

′
3) ∈ ∆c

r

δr
r(S4, (S2, α2, S3, α3), (S1, α1), α4) := S′

4 where

S′
4 := {(r3, r0, q

′
4); ∃r1, r2, q1, q

′
1, q2, q

′
2, q3, q

′
3, q4 ϕ4}

ϕ4 := ϕ3 ∧ (q′
1q

′
2q

′
3, q

′
1, q4) ∈ S4 ∧ (q4, q

′
3, q

′
1, α4, q

′
4) ∈ ∆r

r

▶ Remark 20. Formulas (ϕj)j∈[4] are not quantified at all, hence all their variables are free.
Their objective is to link parameters extracted from the triplets of states of A′.

Proof of correctness. We fix a 2-wave word ω = (w,M1,M2), with w = a1 . . . an. The
following proposition states that on an interval without pending arch, runs of A′ exactly
capture possible runs of A, while keeping track of the reference states, as explained before.

▶ Proposition 21. Let [[s, f ]] ⊆ [n] be wpa, and S, S′ ∈ Q′ such that S ω,[[s,f ]]−−−−−→
A′

S′, then:

∀r ∈ R, r ∈ R, q′ ∈ Q,

(
(r, r, q′) ∈ S′ ⇐⇒ ∃q ∈ Q (r, r, q) ∈ S ∧ q

ω,[[s,f ]]−−−−−→
A

q′
)

Before sketching the proof of this proposition, we fix some notations. Let [[s, f ]] ⊆ [n] be
an interval wpa, and S, S′ ∈ Q′ such that S ω,[[s,f ]]−−−−−→

A′
S′. Observe that as A′ is deterministic,

2 ⪯ denotes the prefix partial order on strings.

MFCS 2022
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it has a unique run on the 2-wave word ω restricted to [[s, f ]]. We let (Li)i∈[[s−1,f ]] denote
the (linear) states of this run. In particular, we have Ls−1 = S and Lf = S′. As A′ is
deterministic, hierarchical states are completely determined from linear ones.

In order to prove Proposition 21, we separate the direct from the indirect case. For the
indirect case, it is easy to show by induction that any run of A on ω (restricted to [[s, f ]])
will appear in the run of A′ on ω (restricted to [[s, f ]]). This only requires to define carefully
the corresponding reference states.

▶ Lemma 22. Let ℓ = (ℓi)i∈[[s−1,f ]] be a run of A on ω (restricted to [[s, f ]]) such that
ℓs−1 = q, ℓf = q′ and (r, r, q) ∈ S = Ls−1. Then we can define reference mappings R
and R from [[s− 1, f ]] to R and R respectively, such that R(f) = r, R(f) = r, and for all
i ∈ [[s− 1, f ]], (R(i), R(i), ℓi) ∈ Li.

The direct implication will be proven by induction on [[s, f ]]. More precisely, we rely on
the grammar allowing to describe all 2-wave words given in Section 2. We use a slight abuse
of notation here, as the grammar is based on the visibly pushdown presentation, while we
work here with 2-nested words, but we believe the correspondence is without ambiguity. The
three first cases of the grammar (internal, empty word, and concatenation of 2-wave words)
are easy. The last case decomposes the 2-wave word ω as ω = xω′y, with (x, y) being a pair
of “matched” words, i.e. given by the non-terminal H. Intuitively, the grammar gives a
decomposition of the wpa interval associated with ω into a wpa interval corresponding to ω′,
and a pair of matched intervals corresponding to (x, y). Hence, this requires to study pairs
of matched intervals, i.e. a pair of intervals which is without pending arch. To this end, we
introduce a notation for a “partial” run on a pair of matched intervals:

▶ Definition 23. Let (I1 = [[i1, j1]], I2 = [[i2, j2]]) be a pair of matched intervals w.r.t. ω. Let
q1, q2, q

′
1, q

′
2 be four states. We let J = I1 ∪ I2 ∪ {i1 − 1, i2 − 1}. We write q1, q2

ω,I1,I2−−−−−→
A

q′
1, q

′
2

if there exists (ℓi)i∈J such that ∀i ∈ J , runA
i (ω, ℓ) and ∀k ∈ [2], qk = ℓik−1 and q′

k = ℓjk

We are now ready to state the following lemma:

▶ Lemma 24. Let (i1, i2, i3, i4) be a 2-wave such that i1 ∈ [[s, f ]] and (r3, r0, q
′
4) ∈ Li4 . For

any r1, r2, q1, q
′
1, q2, q

′
2, q3, q

′
3, q4 satisfying ψ4 we have q1, q3

ω,[[i1,i2]],[[i3,i4]]−−−−−−−−−−→
A

q′
2, q

′
4.

Lemma 24 confirms the intuition that a 2-wave is an encapsulation in its sort: any q1, q′
2

and q3 yielded by (r3, r0, q
′
4) ∈ Li4 via the construction of Li4 (e.g. via ψ4) define with q′

4 a
run of A on ω on the subset of positions given by [[i1, i2]] and [[i3, i4]].

We explain how to conclude the proof of Proposition 21. Starting from the 2-wave word ω,
we obtained a decomposition ω = xω′y, with (x, y) being a pair of “matched” words produced
by H. We can show in addition that extremal positions of x and y exactly correspond to a
2-wave, in the sense of the premises of Lemma 24. Combining it with the induction hypothesis
(direct implication of Proposition 21) applied on ω′, we can exhibit the expected run in A.

Proof of Theorem 19. First, observe that by construction, A′ is deterministic and complete.
Let ω ∈ WW2(Σ). As A′ is deterministic and complete, it has a unique run on ω starting
from q′

0. Let (Li)i∈[[0,n]] be this run, with L0 = q′
0. We proceed by equivalence:

ω ∈ L(A′) ⇐⇒ Ln ∈ Q′
f ⇐⇒ Ln ∩Q×Q×Qf ̸= ∅ ⇐⇒ ∃(r, r, qf ) ∈ Ln qf ∈ Qf

⇐⇒ ∃q0, qf ∈ Qf (r, r, q0) ∈ q′
0 and q0

ω−−→
A

qf ⇐⇒ ω ∈ L(A). ◀
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Closure under complementation. It is proved in [19] that regular 2NWL are not closed
under complementation, since they are not determinizable. The definition of 2NWL they
use is sightly different from ours because the two matchings do not share positions, but the
same negative result can be shown for our definition. For example, there is no deterministic
automaton recognizing the language {(an+mbmanbman, {(i, i + 2(n + m)) | 1 ≤ i ≤ n +
m}, {(i, i+ n+m) | 1 ≤ i ≤ n+m}) | n,m ≥ 0}. However, thanks to our determinization
result for regular WW2 languages, we get:

▶ Proposition 25. Regular languages of 2-wave words are closed under complementation.

5 Logical characterization

We show that languages of 2-wave words definable in monadic second order logic (MSO) are
exactly regular languages of 2-wave words. Let us fix V = V1 ∪ V2, V1 is the set of first order
variables (whose elements will be written using lower-cases) and V2 is the set of second order
variables (whose elements will be written using upper-cases).

The monadic second-order logic of 2-nested words (MSO(Σ, <,M1,M2)) is given by

ϕ := Qa(x) | x < y | X(x) | Mi(x, y) | ¬ϕ | ϕ ∧ ϕ | ∃x ϕ | ∃X ϕ

where a ∈ Σ, x, y ∈ V1, X ∈ V2, i ∈ {1, 2}.
The semantics is defined over 2-nested words in a natural way. The first-order variables

are interpreted over positions of the nested word, while set variables are interpreted over sets
of positions; Qa(x) holds if the symbol at the position interpreted for x is a, x < y holds if
the position interpreted for x is lesser than the position interpreted for y, and Mi(x, y) holds
if the positions interpreted for x and y are related by a nesting edge of matching Mi.

Let us define some fragments of MSO(Σ, <,M1,M2). The set FO(Σ, <,M1,M2) of first
order (FO) formulas is the set of all formulas in MSO(<,M1,M2) that do not contain
any second-order quantifier. Furthermore, the set EMSO(Σ, <,M1,M2) of existential MSO
(EMSO) formulas consists of all formulas of the form ∃X1 . . . ∃Xnϕ, with ϕ ∈ FO(Σ, <
,M1,M2). If L is a logic (MSO, EMSO or FO), and ϕ is a closed formula in L(Σ, <,M1,M2),
the language defined by ϕ, denoted L(ϕ) is the set of all 2-nested words that are a model for
ϕ, and LWW2(ϕ) is the set of all 2-wave words that are a model for ϕ, that is, LWW2(ϕ) =
L(ϕ) ∩ WW2(Σ).

In [4], Bollig shows the equivalence between automata and EMSO for the whole class of
2-nested words. However, he shows that quantifier alternation yields an infinite hierarchy. In
our setting, this hierarchy collapses, and we obtain the equivalence between MSO and EMSO.
The following characterization extends that given in [3] for regular nested word languages.
Its proof follows classical lines, and relies on Propositions 18 and 25.

▶ Theorem 26. A language of 2-wave words is definable in EMSO iff it is definable in MSO
iff it is regular.

6 Decision problems

The analysis we did so far of 2NWA over 2-wave words allows to establish the following
decidability results:

▶ Theorem 27. Let A and B be two 2NWA over Σ. The following holds:
Determining whether LWW2(A) = ∅ can be decided in polynomial time.
Determining whether LWW2(A) = WW2(Σ) can be decided in exponential time.
Determining whether LWW2(A) ⊆ LWW2(B) (resp. LWW2(A) = LWW2(B)) can both be
decided in exponential time.
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Proof sketch. The first result follows from the grammar presented in Section 2 that produces
all 2-wave words. More precisely, we maintain a set W of pairs of states (for non-terminal W)
and a set H of quadruplets of states (for non-terminal H). Intuitively, (p, q) ∈ W means that
there exists a 2-wave word ω and a run p ω−−→

A
q. We initialize them with identity relations and

saturate them using the rules of the grammar, and corresponding transitions of A. The other
results are direct consequences from closure under complement using the determinization
procedure, with the observation that the latter has exponential complexity. ◀

On the treewidth of 2-wave words. Any 2NW ω = (w,M1,M2) of length n can be seen as
a graph whose set of vertices is [n] and set of edges is M1 ∪M2 ∪ {(i, i+ 1)}i∈[n−1], then an
alternative approach to decidability is by using Courcelle’s Theorem on graphs of bounded
treewidth. Indeed, using the grammar presented in Section 2 for 2-wave words (Lemma 9),
we show:

▶ Lemma 28. For all ω ∈ WW2(Σ), ω has treewidth at most 11.

In addition, it is easy to verify that the class of 2-wave words can be expressed in MSO.
As a consequence, we obtain using [7, 17]:

▶ Proposition 29. Given a formula ϕ ∈ MSO(<,M1,M2), checking whether there exists
ω ∈ WW2(Σ) that satisfies ϕ is decidable.

7 Relation to indexed languages

Let L be a logic (FO, EMO, or MSO), we denote by ∃MatchL(Σ, <,M) the class of all
word languages L = {u ∈ Σ∗ | ∃M(u,M) ∈ LM } such that LM is definable in L(Σ, <,M).
Similarly, we denote by ∃WW2L(Σ, <,M1,M2) the class of languages L = {u ∈ Σ∗ |
∃(u,M1,M2) ∈ LWW2(ϕ)} for ϕ ∈ L(Σ, <,M1,M2).

It is proved in [12] that CFL = ∃Match FO(Σ, <,M) = ∃Match MSO(Σ, <,M). A key
of the proof is the fact that CF grammars can be put in Greibach double normal form. Then
each production has the form X → aub, and the derivation tree of a word can be encoded by
matching letters delimiting each production.

Consider now indexed grammars that generate Indexed Languages (IL). They are CF
grammars where each non-terminal symbol carries a pushdown stack (often denoted Xω

where X is the non terminal and ω the stack). Grammars contain push productions of the
form X → Y p saying that any Xω can be rewritten Y pω; pop productions of the form Xp → Y

saying that any Xpω can be rewritten Y ω and copy productions of the form X → Y Z saying
that any Xω can be rewritten Y ωZω.

The derivation tree of a word can be encoded using two matching relations: one delimiting
productions (corresponding to M2), and one for the stack moves (corresponding to M1). The
nested structure thus obtained is a wave structure, where each wave follows a pushed symbol
amongst the different copies. In particular, a 2-wave corresponds to a symbol which has been
popped but has never been copied. Indexed grammars which never process copies are called
linear indexed grammars and generate linear indexed languages (LIL). In such grammars,
copy productions have the form X → X•Y or X → XY • where • marks the symbol on
which the stack is transmitted.

The next Proposition establishes a formal connection between regular languages of 2-wave
words and linear indexed languages:

▶ Proposition 30. Languages in ∃WW2MSO(Σ, <,M1,M2) are linear indexed languages.
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Proof sketch. We use the homomorphic characterization of linear indexed languages given
in [22]. We denote by DA the Dyck language over alphabet A with inverse letters in
Ā = {ā | a ∈ A}. Then, a language L is linear indexed iff there exists an alphabet A,
a regular language R and a morphism h such that L = h(R ∩ DΓA

∩ g−1
A (DΓA

)), where:
Ai = {(a, i) | a ∈ A}, for i = 1, 2, ΓA = A1 ∪A2 and gA is the morphism defined by

(a, 1) 7→ (a, 1) Ę(a, 1) 7→ Ę(a, 2)
gA :

(a, 2) 7→ Ę(a, 1) Ę(a, 2) 7→ (a, 2)

(a, 1) (a, 2) Ę(a, 2) Ę(a, 1)

(a, 1) Ę(a, 1) (a, 2) Ę(a, 2)
gA

Remark that from a given a word u in DΓA
∩ g−1

A (DΓA
), we can construct a 2NW

(u,M1,M2) where arches in M2 correspond to DΓA
, and M1 to g−1

A (DΓA
).

The proof is then similar to that of Chomsky-Schützenberger Theorem applied to pushdown
automata: the regular language R encodes runs on linear states, DΓA

and g−1
A (DΓA

) ensure
the consistency of hierarchical states and h projects the run on its word. ◀

However, we don’t know if the equality holds, mainly because we don’t know if linear indexed
languages can be put in a Greibach double normal like form.

We can also ask whether the logical characterization of CFL extends to indexed languages.
The appropriate structure seems to be 2NW whose edges form waves of unbounded length.
Intuitively, a k-wave generalizes a 2-wave as follows: it consists of 2k indices in increasing
order, with k top arches, k − 1 bottom arches, and an additional support arch. An example
of a 4-wave is depicted on Figure 1. This yields the notion of k-wave word (WWk), and
that of wave word (WW), which is simply the union of WWk over k. As an example, the
2-nested word depicted on Figure 6 is in WW4. So, the question is: does IL = ∃WWFO(Σ, <
,M1,M2) = ∃WWMSO(Σ, <,M1,M2) hold? Proposition 31 provides an element of response,
and we think that IL ̸= ∃WWFO(Σ, <,M1,M2).

# a1 a2 a3 a4 # a4 a1 a2 a3 # a3 a4 a1 a2 # a2 a3 a4 a1 #

Figure 6 Example of a word in L and its associated wave structure.

▶ Proposition 31. There exists a language which is not an indexed language but being
∃WWEMSO(Σ, <,M1,M2)-definable.

Proof sketch. Consider Σ = A ∪ {#} for any alphabet A, and the set L of all words of
the form #u1#u2# . . . un#, for n ≥ 1, such that for all i ∈ [1, n − 1], ui ∈ An, and if
ui = a1 . . . an, then ui+1 = ana1 . . . an−1. Using the Shrinking Lemma given in [11] for
indexed languages, it can easily be proved that L is not an indexed language. In addition,
one can write an EMSO-formula defining 2-wave words (#u1#u2# . . . un#,M1,M2) such
that (M1,M2) forms n/2 embedded n-waves (see an example on Figure 6). ◀

8 Conclusion

A natural perspective of this work consists in studying its extension to k-wave words. We
believe that the determinization property should hold for this class too. This will require to
improve our arguments, as the present proof seems intricate to be adapted to k-waves.

MFCS 2022
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For unbounded waves, automata are not determinizable: Bollig proved in [4] that regular
2NWL are not closed under complementation, and are then not determinizable. His proof
uses the encoding of grids in 2NWL, and can thus be adapted to (unbounded) wave words.

Another perspective consists in characterizing the subclass of indexed languages capturing
languages ∃WWL, when L is a regular WW2 language, and determine if ∃WWL is still
indexed when L is a regular WWk language, for k > 2.
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Abstract

For a graph G, a subset S ⊆ V (G) is called a resolving set if for any two vertices u, v ∈ V (G), there
exists a vertex w ∈ S such that d(w, u) ̸= d(w, v). The Metric Dimension problem takes as input a
graph G and a positive integer k, and asks whether there exists a resolving set of size at most k. This
problem was introduced in the 1970s and is known to be NP-hard [GT 61 in Garey and Johnson’s
book]. In the realm of parameterized complexity, Hartung and Nichterlein [CCC 2013] proved that
the problem is W[2]-hard when parameterized by the natural parameter k. They also observed
that it is FPT when parameterized by the vertex cover number and asked about its complexity
under smaller parameters, in particular the feedback vertex set number. We answer this question
by proving that Metric Dimension is W[1]-hard when parameterized by the feedback vertex set
number. This also improves the result of Bonnet and Purohit [IPEC 2019] which states that the
problem is W[1]-hard parameterized by the treewidth. Regarding the parameterization by the
vertex cover number, we prove that Metric Dimension does not admit a polynomial kernel under
this parameterization unless NP ⊆ coNP/poly. We observe that a similar result holds when the
parameter is the distance to clique. On the positive side, we show that Metric Dimension is FPT
when parameterized by either the distance to cluster or the distance to co-cluster, both of which are
smaller parameters than the vertex cover number.
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1 Introduction

Problems dealing with distinguishing the vertices of a graph have attracted a lot of attention
over the years, with the metric dimension problem being a classic one that has been vastly
studied since its introduction in the 1970s by Slater [31], and independently by Harary and
Melter [22]. Formally, given a graph G and an integer k ≥ 1, the Metric Dimension
problem asks whether there exists a subset S ⊆ V (G) of vertices of G of size at most k such
that, for any two vertices u, v ∈ V (G), there exists a vertex w ∈ S such that d(w, u) ̸= d(w, v).
If such a subset S ⊆ V (G) exists, it is called a resolving set. The size of a smallest resolving
set of a graph G is the metric dimension of G, and is denoted by MD(G).

There are many variants and problems associated to the metric dimension, with identifying
codes [27], adaptive identifying codes [4], and locating dominating sets [32] asking for the
vertices to be distinguished by their neighborhoods in the subset chosen. Other variants
of note are the k-metric dimension, where each pair of vertices must be resolved by k

vertices in S ⊆ V (G) instead of just one [15], and the truncated metric dimension, where the
distance metric is the minimum of the distance in the graph and some integer k [34]. Along
similar lines, in the centroidal dimension problem, each vertex must be distinguished by its
relative distances to the vertices in S ⊆ V (G) [17]. The metric dimension has also been
considered in digraphs, with Bensmail et al. [6] providing a summary of the related work in
this area. Interestingly, there are many game-theoretic variants of the metric dimension, such
as sequential metric dimension [5], the localization game [9, 24], and the centroidal localization
game [8]. The metric dimension and its variants have been studied for both their theoretical
interest and their numerous applications such as in network verification [2], fault-detection in
networks [36], pattern recognition and image processing [30], graph isomorphism testing [1],
chemistry [11, 26], and genomics [35]. For more on these variants and others, see [28] for the
latest survey.

Much of the related work around the metric dimension problem focuses on its compu-
tational complexity. Metric Dimension was first shown to be NP-complete in general
graphs in [19]. Later, it was also shown to be NP-complete in split graphs, bipartite graphs,
co-bipartite graphs, and line graphs of bipartite graphs in [14], in bounded-degree planar
graphs [12], and interval and permutation graphs of diameter 2 [18]. On the positive side,
there are linear-time algorithms for Metric Dimension in trees [31], cographs [14], and
cactus block graphs [25], and a polynomial-time algorithm for outerplanar graphs [12].

Since the problem is NP-hard even for very restricted cases, it is natural to ask for ways to
confront this hardness. In this direction, the parameterized complexity paradigm allows for a
more refined analysis of the problem’s complexity. In this setting, we associate each instance
I with a parameter ℓ, and are interested in an algorithm with running time f(ℓ) · |I|O(1) for
some computable function f . Parameterized problems that admit such an algorithm are
called fixed parameter tractable (FPT) with respect to the parameter under consideration.
On the other hand, under standard complexity assumptions, parameterized problems that are
hard for the complexity class W[1] or W[2] do not admit such fixed-parameter algorithms. A
parameter may originate from the formulation of the problem itself (called natural parameters)
or it can be a property of the input graph (called structural parameters).

Hartung and Nichterlein [23] proved that Metric Dimension is W[2]-hard when paramet-
erized by the natural parameter, the solution size k, even when the input graph is bipartite
and has maximum degree 3. This motivated the study of the parameterized complexity of the
problem under structural parameterizations. It was observed in [23] that the problem admits a
simple FPT algorithm when parameterized by the vertex cover number. It took a considerable
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amount of work and/or meta-results to prove that there are FPT algorithms parameterized by
the max leaf number [13], the modular width or treelength plus the maximum degree [3], and
the treedepth [20]. In [14], they gave an XP algorithm parameterized by the feedback edge set
number. Only recently, it was shown that Metric Dimension is W[1]-hard parameterized
by the treewidth [7], answering an open question mentioned in [3, 12, 13]. This result was
improved upon since, with it being shown that Metric Dimension is even NP-hard in
graphs of treewidth 24 [29]. For more on the metric dimension, see [33] for a recent survey.

Our contributions. In this paper, we continue the analysis of structural parameterizations of
Metric Dimension. See the Hasse diagram in Figure 1 for a summary of known results and
our contributions. As mentioned before, it is known that Metric Dimension is W[1]-hard
parameterized by the treewidth [7]. There are two natural directions to improve this result.
One direction was to show that Metric Dimension is para-NP-hard parameterized by the
treewidth, which was proven in [29]. Another direction is to prove that Metric Dimension
is W[1]-hard for a higher parameter than treewidth, i.e., one for which the treewidth is
upper bounded by a function of it. A parameter fitting this profile is the feedback vertex
set number since the treewidth of a graph G is upper bounded by the feedback vertex set
number of G plus one. Moreover, the complexity of Metric Dimension parameterized by
the feedback vertex set number is left as an open problem in [23], the seminal paper on the
parameterized complexity of Metric Dimension. We take this direction and answer this
open question of [23] by proving that Metric Dimension is W[1]-hard parameterized by the
feedback vertex set number (see Sec. 2). We then revisit the complexity of the problem when
parameterized by the vertex cover number. Recall that the problem is known to admit an
FPT algorithm, and hence, a kernel, under this parameterization. We prove that, however,
Metric Dimension does not admit a polynomial kernel unless NP ⊆ coNP/poly when
parameterized by the vertex cover number (see Sec. 3)1. On the positive side, we then show
that Metric Dimension is FPT for the structural parameters the distance to cluster and
the distance to co-cluster both of which are smaller parameters than the vertex cover number
(see Sec. 4). Note that the FPT algorithm for the distance to cluster parameter implies
an FPT algorithm for the distance to clique parameter. With a slight modification of the
reduction in Sec. 3, we establish the problem does not admit a polynomial kernel, under the
same assumption, when the parameter is the distance to clique.

In this extended abstract, we omit the standard terminology and some formal proofs
(which are marked with ⋆) due to space constraints and present them in the full version on
arXiv. Recall that any two vertices u, v ∈ V (G) are true twins if N [u] = N [v], and are false
twins if N(u) = N(v). A subset of vertices S ⊆ V (G) resolves a pair of vertices u, v ∈ V (G)
if there exists a vertex w ∈ S such that d(w, u) ̸= d(w, v). A vertex u ∈ V (G) is distinguished
by a subset of vertices S ⊆ V (G) if, for any v ∈ V (G) \ {u}, there exists a vertex w ∈ S such
that d(w, u) ̸= d(w, v). We end this section with the following simple observation.

▶ Observation 1. Let G be a graph. Then, for any (true or false) twins u, v ∈ V (G) and
any resolving set S of G, S ∩ {u, v} ̸= ∅.

1 After this paper was short-listed for the proceedings of MFCS 2022, Florent Foucaud informed us of the
paper of Gutin et al. [21], which contains a slightly stronger result.
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Independent
Set
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— FPT; — XP; — W[1]; — para-NP.

Figure 1 Hasse diagram of graph parameters and associated results for Metric Dimension. An
edge indicates that the lower parameter is upper bounded by a function of the higher one. Colors
correspond to the known hardness with respect to the highlighted parameter. The parameters for
which the hardness remains an open question are not colored. The crossed bold circle in the upper-
right corner means that Metric Dimension does not admit a polynomial kernel when parameterized
by the marked parameter unless NP ⊆ coNP/poly; the white one if a polynomial kernel exists. The
bold borders highlight parameters that are covered in this paper. Also see Footnote 1.

2 The Feedback Vertex Set Number

In this section, we prove that Metric Dimension is W[1]-hard parameterized by the feedback
vertex set number. To prove this, we reduce from the NAE-Integer-3-Sat problem defined
as follows. An instance of this problem consists of a set X of variables, a set C of clauses,
and an integer d. Each variable takes a value in {1, . . . , d}, and clauses are of the form
(x ≤ ax, y ≤ ay, z ≤ az), where ax, ay, az ∈ {1, . . . , d}. A clause is satisfied if not all three
inequalities are true and not all are false. The goal is to find an assignment of the variables
that satisfies all given clauses. This problem was shown to be W[1]-hard parameterized by
the number of variables [10].

▶ Theorem 2. Metric Dimension is W[1]-hard parameterized by the feedback vertex set
number.

Proof. We reduce from NAE-Integer-3-Sat: given an instance (X, C, d) of this problem,
we construct an instance (G, k) of Metric Dimension as follows. For each variable x ∈ X,
we introduce a cycle Gx of length 2d + 2 which has two distinguished anchor vertices ux

1 and
ux

2 as depicted in Figure 2a; for convenience, we may also refer to ux
1 as vx

0 or wx
0 , and to ux

2
as vx

d+1 or wx
d+1. For each clause c = (x ≤ ax, y ≤ ay, z ≤ az), we introduce the gadget Gc

depicted in Figure 2b consisting of two vertex-disjoint copies Hc and Hc of the same graph.
More precisely, for ℓ ∈ {c, c}, Hℓ consists of a K1,3 on the vertex set {ℓ, vℓ, pℓ

1, pℓ
2}, where vℓ

has degree three, and a path Pbℓ of length d connects ℓ to bℓ. The subgraph of Gc induced
by {ℓ, vℓ, pℓ

1, pℓ
2 | ℓ ∈ {c, c}} is referred to as the core of Gc.

We further connect Gc to Gx, Gy, and Gz as follows. For every t ∈ {x, y, z}, we connect
bc to ut

1 by a path P t,c
1 of length 4d − at, and vc to ut

2 by a path P t,c
2 of length 4d + at − 1.

Furthermore, letting wt,c be the neighbor of vc on P t,c
2 , we attach a copy W t,c of K1,3 to

wt,c by identifying wt,c with one of the leaves; we denote by tt,c
1 and tt,c

2 the two remaining
leaves and refer to W t,c as a pendant claw. Similarly, for every t ∈ {x, y, z}, we connect
bc to ut

2 by a path P t,c
2 of length 3d + at, and vc to ut

1 by a path P t,c
1 of length 5d − at.

Furthermore, letting wt,c be the neighbor of vc on P t,c
1 , we attach a copy W t,c of K1,3 to

wt,c by identifying wt,c with one of the leaves; we denote by tt,c
1 and tt,c

2 the two remaining
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ux
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vx
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2
· · ·
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d

wx
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2

· · ·
wx

d
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2

(a) The variable gadget Gx.
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··
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(b) The clause gadget Gc is the disjoint union of Hc

(left) and Hc (right).

Figure 2 The gadgets in the proof of Theorem 2.

leaves and refer to W t,c as a pendant claw. Finally, we introduce a path P = t1pt2 which we
connect to the clause gadgets as follows. For every clause c ∈ C and ℓ ∈ {c, c}, we connect
p to vℓ by a path Pℓ of length 2d. Furthermore, letting wℓ be the neighbor of p on Pℓ, we
attach a copy W ℓ of K1,3 to wℓ by identifying wℓ with one of the leaves; we denote by tℓ

1
and tℓ

2 the two remaining leaves and refer to W ℓ as a pendant claw. This concludes the
construction of G (see Figure 3).

ux
1

ux
2

vx
1 wx

1

vx
d wx

d

··
·

··
·

c

vc

pc
1

pc
2

wx,c

· · ·

bc Px,c
1

· · ·

tx,c
1

tx,c
2 Px,c

2· · ·

vc

c

pc
2

pc
1

· · ·

bc

· · ·
Px,c

2

wx,c

Px,c
1

· · · tx,c
1

tx,c
2

p

t1 t2

wc

tc
1 tc

2

wc

tc
1tc

2

· · ·
Pc

· · ·Pc

Figure 3 An illustration of the reduction in the proof of Theorem 2.

We set k = |X| + 10|C| + 1. Observe that the feedback vertex set number of G is at most
2|X| + 1: indeed, removing {p} ∪ {ux

1 , ux
2 | x ∈ X} from G results in a graph without cycles.

We next show that the instance (X, C, d) is satisfiable if and only if (G, k) is a Yes-instance
for Metric Dimension. To this end, we first prove the following.

▷ Claim 3 (⋆). For any two distinct s, t ∈ {c, c | c ∈ C} and any two distinct variables
x, y ∈ X, the following hold.

(i) The shortest path from Hs to Ht contains Ps and Pt as subpaths and has length 4d.
(ii) d(V (Gx), V (Gy)) ≥ 6d.
(iii) If x appears in the clause corresponding to s, then d(V (Gx), V (Hs)) ≥ 3d.
(iv) If x does not appear in the clause corresponding to s, then any shortest path from Gx

to Hs contains Ps as a subpath and has length at least 8d.

▷ Claim 4 (⋆). For every clause c = (x ≤ ax, y ≤ ay, z ≤ az) and every t ∈ {x, y, z}, the
following hold.

(i) For every i ∈ {0, . . . , d + 1}, if i ≤ at, then the shortest path from vt
i to c contains P t,c

1
as a subpath and has length 5d + i − at. Otherwise, the shortest path from vt

i to c

contains P t,c
2 as a subpath and has length 5d + 1 + at − i.

(ii) For every i ∈ {0, . . . , d + 1}, if i ≤ at − 1, then the shortest path from vt
i to vc contains

P t,c
1 as a subpath and has length 5d + 1 + i − at. Otherwise, the shortest path from vt

i

to vc contains P t,c
2 as a subpath and has length 5d + at − i.

MFCS 2022
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(iii) For every i ∈ {0, . . . , d + 1}, if i ≤ at − 2, then the shortest path from vt
i to tt,c

1 contains
P t,c

1 as a subpath and has length 5d + 4 + i − at. Otherwise, the shortest path from vt
i

to tt,c
1 contains P t,c

2 [ut
2, wt,c] as a subpath and has length 5d + 1 + at − i.

▷ Claim 5 (⋆). For every clause c = (x ≤ ax, y ≤ ay, z ≤ az) and every t ∈ {x, y, z}, the
following hold.

(i) For every i ∈ {0, . . . , d + 1}, if i ≤ at, then the shortest path from vt
i to c contains P t,c

1
as a subpath and has length 5d + 1 + i − at. Otherwise, the shortest path from vt

i to c

contains P t,c
2 as a subpath and has length 5d + 1 + at − i.

(ii) For every i ∈ {0, . . . , d + 1}, if i ≤ at + 1, then the shortest path from vt
i to vc contains

P t,c
1 as a subpath and has length 5d + i − at. Otherwise, the shortest path from vt

i to
vc contains P t,c

2 as a subpath and has length 5d + 2 + at − i.
(iii) For every i ∈ {0, . . . , d + 1}, if i ≤ at + 2, then the shortest path from vt

i to tt,c
1 contains

P t,c
1 [ut

1, wt,c] as a subpath and has length 5d + 1 + i − at. Otherwise, the shortest path
from vt

i to tt,c
1 contains P t,c

2 as a subpath and has length 5d + 5 + at − i.

Assume first that (X, C, d) is satisfiable and let ϕ : X → {1, . . . , d} be an assignment of
the variables satisfying every clause in C. We construct a resolving set S of G as follows.
First, we add t1 to S. For every variable x ∈ X, we add vx

ϕ(x) to S. Finally, for every clause
c ∈ C, we add pc

1, pc
1, tc

1, tc
1 to S and further add, for every variable t appearing in c, tt,c

1 , tt,c
1

to S. Note that |S| = k and that every vertex of S is distinguished by itself. Let us show that
S is indeed a resolving set of G. To this end, consider two distinct vertices u, v ∈ V (G). We
distinguish the following cases to show that there exists w ∈ S such that d(w, u) ̸= d(w, v).

Case 1. At least one of u and v belongs to a pendant claw. W.l.o.g., assume first that
u ∈ V (W ℓ), where ℓ ∈ {c, c | c ∈ C}. If v ∈ V (G) \ V (W ℓ), then d(tℓ

1, v) > 2 ≥ d(tℓ
1, u).

Suppose therefore that v ∈ V (W ℓ) as well. If {u, v} ̸= {wℓ, tℓ
2}, then d(tℓ

1, u) ̸= d(tℓ
1, v).

If {u, v} = {wℓ, tℓ
2}, then d(t1, wℓ) = 2 < 4 = d(t1, tℓ

2). Second, assume that u ∈ V (W t,ℓ),
where ℓ ∈ {c, c} for some clause c ∈ C and t is a variable appearing in clause c. If
v ∈ V (G) \ V (W t,ℓ), then d(tt,ℓ

1 , v) > 2 ≥ d(tt,ℓ
1 , u). Suppose therefore that v ∈ V (W t,ℓ)

as well. If {u, v} ̸= {wt,ℓ, tt,ℓ
2 }, then d(tt,ℓ

1 , u) ̸= d(tt,ℓ
1 , v). If {u, v} = {wt,ℓ, tt,ℓ

2 }, then
d(pℓ

1, wt,ℓ) = 2 < 4 = d(pℓ
1, tt,ℓ

2 ).
Case 2. At least one of u and v belongs to the core of a clause gadget. Assume, w.l.o.g., that

u ∈ {ℓ, vℓ, pℓ
1, pℓ

2}, where ℓ ∈ {c, c} for some clause c = (x ≤ ax, y ≤ ay, z ≤ az). If v is
not a neighbor of vℓ, then d(pℓ

1, v) > 2 ≥ d(pℓ
1, u). If v is the neighbor of vℓ on the path

Pℓ, then d(t1, v) = d < d(t1, u). Also, v = wt,ℓ was covered by the previous case. So,
consider v ∈ {ℓ, vℓ, pℓ

1, pℓ
2}. If {u, v} ≠ {ℓ, pℓ

2}, then clearly d(pℓ
1, u) ̸= d(pℓ

1, v). Assume
therefore that {u, v} = {ℓ, pℓ

2}. Since ϕ satisfies c, there exist t, f ∈ {x, y, z} such that
ϕ(t) ≤ at and ϕ(f) > af . Then, either ϕ(t) < at, in which case, by Claim 4(i) and (ii),

d(vt
ϕ(t), c) = 5d + ϕ(t) − at < 5d + ϕ(t) − at + 2 = d(vt

ϕ(t), vc) + 1 = d(vt
ϕ(t), pc

2),

or ϕ(t) = at, in which case, by Claim 4(i) and (ii),

d(vt
ϕ(t), c) = 5d < 5d + 1 = d(vt

ϕ(t), vc) + 1 = d(vt
ϕ(t), pc

2).

Similarly, either ϕ(f) = af + 1, in which case, by Claim 5(i) and (ii),

d(vf
ϕ(f), c) = 5d < 5d + 2 = d(vf

ϕ(f), vc) + 1 = d(vf
ϕ(f), pc

2),

or ϕ(f) > af + 1, in which case, by Claim 5(i) and (ii),

d(vf
ϕ(f), c) = 5d + 1 + af − ϕ(f) < 5d + 3 + af − ϕ(f) = d(vf

ϕ(f), vc) + 1 = d(vf
ϕ(f), pc

2).

In all cases, we conclude that there exists w ∈ S such that d(w, ℓ) ̸= d(w, pℓ
2).
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Case 3. At least one of u and v belongs to a variable gadget. Assume, w.l.o.g., that u ∈ V (Gx)
for some variable x ∈ X. By the previous cases, we may assume that v does not belong
to the core of a clause gadget or a pendant claw. If v ∈ V (Gy) for some variable y ̸= x,
then by Claim 3(ii),

d(vx
ϕ(x), u) ≤ d + 1 < 6d ≤ d(V (Gx), V (Gy)) ≤ d(vx

ϕ(x), v).

Now, suppose that v ∈ V (Gx) as well. If {u, v} = {vx
i , wx

i } for some i ∈ [d], then

d(vx
ϕ(x), vx

i ) = |ϕ(x) − i| < d(vx
ϕ(x), wx

i ) = min{ϕ(x) + i, 2d + 2 − ϕ(x) − i}.

Suppose next that u = vx
i and v = vx

j for two distinct i, j ∈ {0, . . . , d + 1}, say i < j,
w.l.o.g. Consider a clause c = (x ≤ ax, y ≤ ay, z ≤ az) containing x. If j < ax, then by
Claim 4(ii),

d(pc
1, vx

i ) = d(vc, vx
i ) + 1 = 5d + 2 + i − ax < 5d + 2 + j − ax = d(vc, vx

j ) + 1 = d(pc
1, vx

j ).

Now, suppose that i < ax ≤ j. Then, by Claim 4(ii),

d(pc
1, vx

i ) − d(pc
1, vx

j ) = 5d + 2 + i − ax − (5d + ax − j + 1) = i + j + 1 − 2ax.

Thus, if i + j + 1 − 2ax ≠ 0, then d(pc
1, vx

i ) ̸= d(pc
1, vx

j ). Now, if i + j + 1 − 2ax = 0, then
either j = ax and i = ax − 1, in which case, by Claim 4(iii),

d(tx,c
1 , vx

i ) = 5d + 2 > 5d + 1 = d(tx,c
1 , vx

j ),

or j > ax and i < ax − 1, in which case, by Claim 4(iii),

d(tx,c
1 , vx

j ) = 5d + 1 + ax − j = 5d + 2 + i − ax < 5d + 4 + i − ax = d(tx,c
1 , vx

i ).

Finally, if ax ≤ i < j, then by Claim 4(ii),

d(pc
1, vx

j ) = 5d + 1 + ax − j < 5d + 1 + ax − i = d(pc
1, vx

i ).

Since for any t ∈ V (G) \ V (Gx) and k ∈ [d], d(t, vx
k) = d(t, wx

k), we conclude similarly if
either u = vx

i and v = wx
j , or u = wx

i and v = wx
j for two distinct i, j ∈ {0, . . . , d + 1}.

Assume, henceforth, that v /∈
⋃

x∈X V (Gx). If v does not belong to a path connecting
Gx to some clause gadget, then

d(vx
ϕ(x), v) ≥ min

c∈C
d(V (Gx), V (Gc)) ≥ 3d > d + 1 ≥ d(vx

ϕ(x), u)

by Claim 3(iii) and (iv). Suppose therefore that v ∈ V (P x,ℓ
i ), where i ∈ {1, 2} and

ℓ ∈ {c, c} for some clause c = (x ≤ ax, y ≤ ay, z ≤ az) containing x. W.l.o.g., let us
assume that u = vx

j where j ∈ {0, . . . , d + 1}.
Assume first that ℓ = c and i = 1. Let P x,c

1 = z0 . . . z4d−ax
, where z0 = bc and

z4d−ax = ux
1 . Let v = zk, where k ∈ [4d − ax − 1]. If j ≤ ax − 1, then by Claim 4(ii), the

shortest path from pc
1 to vx

j contains P x,c
1 as a subpath, which implies in particular that

d(pc
1, v) < d(pc

1, u). Suppose therefore that j ≥ ax. Then, by Claim 4(ii),

d(pc
1, u) − d(pc

1, v) = 5d + 1 + ax − j − (d + k + 2).

Thus, if 5d + 1 + ax − j − (d + k + 2) ̸= 0, then d(pc
1, u) ̸= d(pc

1, v). Now, if 5d + 1 + ax −
j − (d + k + 2) = 0, then by Claim 4(iii),

d(tx,c
1 , u) = 5d + 1 + ax − j = d + k + 2 < d + k + 4 = d(tx,c

1 , v).

MFCS 2022
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Second, assume that ℓ = c and i = 2. Let P x,c
2 = z0 . . . z4d+ax−1, where z0 = vc and

z4d+ax−1 = ux
2 . Let v = zk, where k ∈ [4d + ax − 2] (note that since v does not belong to

the core of a clause gadget or a pendant claw by assumption, in fact k ≥ 2). If j ≥ ax,
then by Claim 4(ii), the shortest path from pc

1 to u contains P x,c
2 as a subpath, which

implies in particular that d(pc
1, v) < d(pc

1, u). Otherwise, j ≤ ax − 1, in which case

d(pc
1, u) − d(pc

1, v) = 5d + 2 + j − ax − (k + 1).

Thus, if 5d+2+j−ax−(k+1) ̸= 0, then d(pc
1, u) ̸= d(pc

1, v). Now, if 5d+2+j−ax−(k+1) =
0, then j < ax − 1 since k < 5d, and so, by Claim 4(iii),

d(tx,c
1 , u) = 5d + 4 + j − ax = k + 3 > k + 1 = d(tx,c

1 , v).

Third, assume that ℓ = c and i = 1. Let P x,c
1 = z0 . . . z5d−ax

, where z0 = vc and
z5d−ax

= ux
1 . Let v = zk, where k ∈ [5d − ax − 1] (note that since v does not belong to

the core of a clause gadget or a pendant claw by assumption, in fact k ≥ 2). If j ≤ ax + 1,
then by Claim 5(ii), the shortest path from pc

1 to vx
j contains P x,c

1 as a subpath which
implies in particular that d(pc

1, v) < d(pc
1, u). Suppose therefore that j ≥ ax + 2. Then,

by Claim 5(ii),

d(pc
1, vx

j ) − d(pc
1, zk) = 5d + 3 + ax − j − (k + 1).

Thus, if 5d + 3 + ax − j − (k + 1) ̸= 0, then d(pc
1, vx

j ) ̸= d(pc
1, zk). Now, if 5d + 3 + ax −

j − (k + 1) = 0, then j > ax + 2 since k < 5d, and so, by Claim 5(iii),

d(tx,c
1 , vx

j ) = 5d + 5 + ax − j = k + 3 > k + 1 = d(tx,c
1 , zk).

Assume finally that ℓ = c and i = 2. Let P x,c
2 = z0 . . . z3d+ax

, where z0 = bc and
z3d+ax = ux

2 . Let v = zk, where k ∈ [3d + ax − 1]. If j ≥ ax + 2, then by Claim 5(ii), the
shortest path from pc

1 to u contains P x,c
2 as a subpath, which implies in particular that

d(pc
1, v) < d(pc

1, u). Suppose therefore that j ≤ ax + 1. Then, by Claim 5(ii),

d(pc
1, vx

j ) − d(pc
1, zk) = 5d + 1 + j − ax − (d + k + 2).

Thus, if 5d + 1 + j − ax − (d + k + 2) ̸= 0, then d(pc
1, vx

j ) ̸= d(pc
1, zk). Now, if 5d + 1 + j −

ax − (d + k + 2) = 0, then j < ax + 1 since k < 4d, and so, by Claim 5(iii),

d(tx,c
1 , vx

j ) = 5d + 1 + j − ax = d + k + 2 < d + k + 4 = d(tx,c
1 , zk).

In all the subcases, we conclude that there exists w ∈ S such that d(w, u) ̸= d(w, v).
Case 4. None of the above. First, note that p is distinguished by S since it is the unique

vertex of G at distance 1 from t1. Second, t2 is distinguished by S since it is the unique
vertex of G at distance 2 from t1 and distance 4 from tc

1 and tc
1 for all c ∈ C. Thus, in

this last case, we can assume that both u and v belong either to paths connecting gadgets
or to some path Pbℓ , where ℓ ∈ {c, c | c ∈ C}. Assume first that u ∈ V (Pℓ) for some
ℓ ∈ {c, c | c ∈ C}. If v ∈ V (Pℓ) as well, then surely d(t1, u) ̸= d(t1, v). If v ∈ V (Pq) for
some q ∈ {c, c | c ∈ C} different from ℓ, then d(pℓ

1, u) < d(pℓ
1, v) since the unique shortest

path from pℓ
1 to v contains Pℓ as a subpath. Finally, if there exists q ∈ {c, c | c ∈ C}

such that v belongs to Pbq
or to some path connecting Hq to a variable gadget, then

d(t1, v) > d(t1, vq) ≥ d(t1, u).
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Second, assume that u ∈ V (P x,ℓ
i ), where i ∈ [2] and ℓ ∈ {c, c} for some clause c

containing variable x. Note that by the previous paragraph, we may assume that
v /∈

⋃
q∈C V (Pq) ∪ V (Pq). Suppose first that v ∈ V (P y,q

j ), where j ∈ [2] and q ∈ {c′, c′}
for some clause c′ containing variable y. Note that d(tℓ

1, u) = d(t1, u). So, if q ̸= ℓ, then
either d(t1, u) ̸= d(t1, v), or

d(tℓ
1, v) − d(tℓ

1, u) = d(tℓ
1, p) + d(t1, v) − 1 − d(tℓ

1, u) = d(t1, v) + 2 − d(t1, u) = 2.

Thus, assume that q = ℓ. Suppose first that x = y. If i = j, then surely d(pℓ
1, u) ̸= d(pℓ

1, v).
Otherwise, assume, w.l.o.g., that u belongs to the path containing wx,ℓ. Note that
d(tx,ℓ

1 , u) = d(pℓ
1, u). Then, either d(pℓ

1, u) ̸= d(pℓ
1, v), or

d(tx,ℓ
1 , v) − d(tx,ℓ

1 , u) = d(tx,ℓ
1 , vℓ) + d(pℓ

1, v) − 1 − d(tx,ℓ
1 , u) = d(pℓ

1, v) + 2 − d(pℓ
1, u) = 2.

Second, suppose that x ̸= y. If u belongs to the path containing wx,ℓ, then we argue
as previously. By symmetry, we may also assume that v does not belong to the path
containing wy,ℓ. This implies, in particular, that i = j and bℓ is the endpoint in Hℓ of
both P x,ℓ

i and P y,ℓ
j . Thus, d(vx

ϕ(x), u) ≤ d(vx
ϕ(x), ux

i ) + d(ux
i , bℓ) ≤ d + 4d. First, note that

if a shortest path P from vx
ϕ(x) to v contains P x,ℓ

i as a subpath, then since u ∈ V (P x,ℓ
i ),

it follows that d(vx
ϕ(x), u) < d(vx

ϕ(x), v). Hence, we may assume that P contains a vertex
in Gy or both vℓ and bℓ. By Claim 3(ii), if P contains a vertex in Gy, then

d(vx
ϕ(x), v) > d(V (Gx), V (Gy)) ≥ 6d > 5d ≥ d(vx

ϕ(x), u).

Otherwise, P contains vℓ and bℓ, and so, letting t ∈ [2] \ {i}, we get that

lgt(P ) ≥ d(vx
ϕ(x), ux

t )+d(ux
t , vℓ)+d(vℓ, bℓ)+d(bℓ, v) ≥ 1+4d+d+1 > 5d ≥ d(vx

ϕ(x), u).

Suppose finally that u ∈ V (Pbℓ) for some ℓ ∈ {c, c | c ∈ C}. By the two previous
paragraphs, we may assume that v ∈ V (Pbq ) for some q ∈ {c, c | c ∈ C}. If q = ℓ, then
surely d(pℓ

1, u) ̸= d(pℓ
1, v). Otherwise, by Claim 3(i),

d(pℓ
1, v) ≥ d(V (Hℓ), V (Hq)) = 4d > d + 1 ≥ d(pℓ

1, u), which concludes case 4.

By the above case analysis, we infer that, for any u, v ∈ V (G), there exists w ∈ S such
that d(w, u) ̸= d(w, v), that is, S is a resolving set of G. Since |S| = k, it follows that
(G, k) is a Yes-instance for Metric Dimension.
Conversely, assume that (G, k) is a Yes-instance for Metric Dimension and let S be a
resolving set of size at most k. By Observation 1, for any clause c ∈ C and any variable
x ∈ X appearing in c,

|S ∩ {pc
1, pc

2}| ≥ 1, |S ∩ {pc
1, pc

2}| ≥ 1, |S ∩ {tc
1, tc

2}| ≥ 1, and |S ∩ {tc
1, tc

2}| ≥ 1. (1)

|S ∩ {tx,c
1 , tx,c

2 }| ≥ 1 and |S ∩ {tx,c
1 , tx,c

2 }| ≥ 1. (2)
|S ∩ {t1, t2}| ≥ 1. (3)

MFCS 2022
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Consider now a variable x. Since any path from a vertex in V (G) \ V (Gx) to a vertex
in {vx

i , wx
i | i ∈ [d]} contains ux

1 or ux
2 , and, for any i ∈ [d] and u ∈ {ux

1 , ux
2}, d(u, vx

i ) =
d(u, wx

i ), no vertex in V (G) \ {vx
i , wx

i | i ∈ [d]} can resolve vx
i and wx

i for any i ∈ [d]. It
follows that

|S ∩ {vx
i , wx

i | i ∈ [d]}| ≥ 1. (4)

Now, note that S has size at most k = |X| + 10|C| + 1, and so, equality must in fact
hold in every inequality of Equations (1)–(4). W.l.o.g., let us assume that t1 ∈ S

and that, for every clause c ∈ C and variable x ∈ X appearing in c, we have that
pc

1, pc
1, tc

1, tc
1, tx,c

1 , tx,c
1 ∈ S.

For every variable x ∈ X, assume, w.l.o.g., that S ∩ {vx
i , wx

i | i ∈ [d]} = S ∩ {vx
i | i ∈ [d]},

and let ix ∈ [d] be the index of the vertex in S ∩ {vx
i | i ∈ [d]}. We contend that

the assignment which sets each variable x to ix satisfies every clause in C. Indeed,
consider a clause c = (x ≤ ax, y ≤ ay, z ≤ az). We first aim to show that, for every
w ∈ S \ {V (Gx) ∪ V (Gy) ∪ V (Gz)} and ℓ ∈ {c, c}, d(w, ℓ) = d(w, pℓ

2). Note that it suffices
to show that any shortest path from w ∈ S \ {V (Gx) ∪ V (Gy) ∪ V (Gz)} to ℓ ∈ {c, c}
contains vℓ, as then d(w, ℓ) = d(w, vℓ) + 1 = d(w, pℓ

2). Now, if w ∈ V (Gt) for some
t ∈ {c′, c′ | c′ ∈ C} different from ℓ, then this readily follows from Claim 3(i); and if
w ∈ V (Gt) for some t ∈ X \ {x, y, z}, then this readily follows from Claim 3(iv). If
w = tr,q

1 for some r ∈ X and q ∈ {c′, c′ | c′ ∈ C}, then d(tr,q
1 , ℓ) = d(tr,q

1 , vq) + d(vq, ℓ),
and so, by Claim 3(i), any path from w to ℓ contains vℓ. Finally, if w ∈ {tc′

1 , tc′

1 | c′ ∈ C},
then clearly any shortest path from w to ℓ contains vℓ.
Since S is a resolving set, it follows that, for every clause c ∈ C, there exist t, f ∈ {x, y, z}
such that d(vt

it
, c) ̸= d(vt

it
, pc

2) and d(vf
if

, c) ̸= d(vf
if

, pc
2). Now, by Claim 4(i) and (ii),

if it > at, then d(vt
it

, c) = 5d + 1 + at − it = d(vt
it

, vc) + 1 = d(vt
it

, pc
2), a contradiction

to our assumption. Therefore, it ≤ at. Similarly, if if ≤ af , then by Claim 5(i) and
(ii), d(vf

if
, c) = 5d + 1 + if − af = d(vf

if
, vc) + 1 = d(vf

if
, pc

2), a contradiction to our
assumption. Therefore, if > af , and so, the assignment constructed indeed satisfies every
clause in C. ◀

3 The Vertex Cover Number and the Distance to clique

In this section, we prove that Metric Dimension parameterized by either the vertex cover
number or the distance to clique does not admit a polynomial kernel unless NP ⊆ coNP/poly.
Both reductions are similar ones from the SAT problem, in which we are given a conjunctive
normal form (CNF) formula ϕ on n variables and m clauses, and we are asked whether
there exists an assignment of either true or false to each of the variables, such that ϕ is true
(satisfied). SAT is known to not admit a polynomial kernel unless NP ⊆ coNP/poly [16].
We first prove that Metric Dimension parameterized by the vertex cover number does
not admit a polynomial kernel unless NP ⊆ coNP/poly, with the same result for distance to
clique to follow after from a small modification to this reduction.

▶ Theorem 6. Metric Dimension parameterized by the vertex cover number does not
admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. (⋆) By a reduction from SAT, we prove that Metric Dimension parameterized
by the vertex cover number does not admit a polynomial kernel unless NP ⊆ coNP/poly.
Let ϕ be an instance of SAT, i.e., a SAT formula on n variables x1, . . . , xn and m clauses
C1, . . . , Cm. Since any SAT formula on n variables trivially has at most 3n −1 unique clauses,
we may assume that m ≤ 3n − 1.
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From ϕ, we construct an instance (G, k) of Metric Dimension as follows. For each
i ∈ [n], construct a cycle (tia

1
i b1

i fib
2
i a2

i ti) on 6 vertices, and let Ii := {a1
i , a2

i , b1
i , b2

i }. Construct
a path g1gg2 on 3 vertices and, for each i ∈ [n], make both fi and ti adjacent to g. For each
j ∈ [m], add a pair of vertices c1

j and c2
j , and let Cj := {c1

j , c2
j}. For each j ∈ [m], make c2

j

adjacent to both fi and ti for each i ∈ [n]. For each j ∈ [m] and each i ∈ [n], if xi = True
does not satisfy the clause Cj in ϕ, then make c1

j adjacent to ti, and if xi = False does not
satisfy Cj , then make c1

j adjacent to fi. Let α = ⌈n · log2 3⌉, and, for each ℓ ∈ [α], construct
a path z1

ℓ zℓz
2
ℓ on 3 vertices. For each j ∈ [m], consider the binary representation bin(j) of j,

and connect both c1
j and c2

j with zℓ if bin(j)[ℓ] = 1, where [ℓ] is the ℓth bit of j in its binary
representation from right to left. Finally, construct a clique on the vertices z1, . . . , zα, g. This
completes the construction of G (see Figure 4).

g

g1 g2

t1

a1
1 b1

1

a2
1 b2

1

f1 t2

a1
2 b1

2

a2
2 b2

2

f2 · · · ti

a1
i b1

i

a2
i b2

i

fi · · · tn

a1
n b1

n

a2
n b2

n

fn

· · · c1
j c2

j · · ·

z1

z1
1 z2

1

z2

z1
2 z2

2

· · · zi

z1
i z2

i

· · · zα

z1
α z2

α

according to bin(j)

Figure 4 Illustration of the graph G constructed in the proof of Theorem 6. The vertices
z1, . . . , zα, g are in a clique that is not drawn. In this particular case, ϕ has a clause (x1 ∨ x2 ∨ xn).

To simplify notation for the proof, let I := I1 ∪ · · · ∪ In. Set k = n + α + 1. Note that the
vertex cover number of G is at most 4n + α + 1 since {g} ∪ {a1

i , a2
i , ti, fi, zℓ | i ∈ [n], ℓ ∈ [α]}

is a vertex cover of G. We now show that the instance ϕ is satisfiable if and only if (G, k) is
a Yes-instance for Metric Dimension. We just sketch the proof from here. To prove that
if ϕ is satisfiable, then (G, k) is a Yes-instance for Metric Dimension, we build a resolving
set R of G of size k as follows. First, put the vertices of {g1, z1

1 , . . . , z1
α} in R. Then, for all

i ∈ [n], if, according to the satisfying truth value assignment of ϕ, xi = True (xi = False,
resp.), then add a1

i (b1
i , resp.) to R. Clearly, |R| = k, and it is not difficult to check that R

is a resolving set of G.
Now, we prove that if (G, k) is a Yes-instance for Metric Dimension, then ϕ is

satisfiable. For any resolving set R of G, one can show that since |R| ≤ n + α + 1, then
|R ∩ {g1, g2}| = 1, |R ∩ {z1

ℓ , z2
ℓ }| = 1 for all ℓ ∈ [α], and |R ∩ Ii| = 1 for all i ∈ [n]. W.l.o.g.,

assume that {g1, z1
1 , . . . , z1

α} ⊂ R. Consider j ∈ [m]. It can be shown that no vertex in
{g1, z1

1 , . . . , z1
α} can resolve the two vertices of Cj , and thus, there must exist w ∈ R ∩ I

such that d(w, c1
j) ̸= d(w, c2

j). Since for every i ∈ [n] such that xi does not appear in the
clause Cj , d(u, c1

j ) = d(u, c2
j ) for every u ∈ Ii, there must exist i ∈ [n] such that xi appears

in the clause Cj and w ∈ R ∩ Ii. In particular, c1
j must be non-adjacent to one of ti and fi.

Now, if c1
j is non-adjacent to ti, then c1

j is adjacent to fi, and so, w ∈ {a1
i , a2

i }, as otherwise
d(w, c1

j ) = d(w, c2
j ). Symmetrically, if c1

j is non-adjacent to fi, then c1
j is adjacent to ti, and

so, w ∈ {b1
i , b2

i }, as otherwise d(w, c1
j) = d(w, c2

j). So, the truth assignment obtained by
setting a variable xi to True if R ∩ Ii ⊆ {a1

i , a2
i }, and to False otherwise, satisfies ϕ. ◀
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By making the vertices of {Cj | j ∈ [m]} into a clique in the construction of G in the
proof of Theorem 6, observe that the distance to clique of the resulting graph is at most
6n + 3α + 3, and that none of the distances described in the proof change. Then, from the
proof of Theorem 6 for this modified G, we obtain the following:

▶ Theorem 7. Metric Dimension parameterized by the distance to clique does not admit
a polynomial kernel unless NP ⊆ coNP/poly.

4 The Distance to Cluster and the Distance to co-cluster

In this section, we prove that Metric Dimension is FPT parameterized by either the
distance to cluster or the distance to co-cluster. In fact, we show that the problem admits an
exponential kernel parameterized by the distance to cluster (or co-cluster). Since the main
ideas for these two parameters are the same, we focus on the distance to cluster parameter.
Applying Reduction Rule 2 for false twins (instead of true twins) and defining equivalence
classes over the independent sets (instead of cliques) for Reduction Rule 3, we get the similar
result for the distance to co-cluster. Recall that, for a graph G, the distance to cluster of G

is the minimum number of vertices of G that need to be deleted so that the resulting graph
is a cluster graph, i.e., a disjoint union of cliques.

▶ Theorem 8. Metric Dimension is FPT parameterized by the distance to cluster.

Proof. Let (G, k) be an instance of Metric Dimension and let X ⊆ V (G) be such that
G − X is a disjoint union of cliques. To obtain a kernel for the problem, we present a set of
reduction rules. The safeness of the following reduction rule is trivial.

▶ Reduction Rule 1. If V (G) ̸= ∅ and k ≤ 0, then return a trivial No-instance.

▶ Reduction Rule 2. If there exist u, v, w ∈ V (G) such that u, v, w are true (or false) twins,
then remove u from G and decrease k by one.

▷ Claim 9 (⋆). Reduction Rule 2 is safe.

We assume, henceforth, that Reduction Rule 2 has been exhaustively applied to (G, k).
This implies, in particular, that for every clique C of G − X, there are at most two vertices
in C with the same neighborhood in X. Since the number of distinct neighborhoods in X

is at most 2|X|, each clique in G − X has order at most 2|X|+1. We now aim to bound the
number of cliques in G − X. To this end, we define a notion of equivalence classes over the
set of cliques of G − X. It will easily be seen that the number of equivalence classes is at
most 22|X|+1 . The number of cliques in each equivalence class will then be bounded by using
Reduction Rule 3.

For every clique C of G − X, the signature sign(C) of C is the multiset containing the
neighborhoods in X of each vertex of C, that is, sign(C) = {N(u) ∩ X : u ∈ C}. For
any two cliques C1, C2 of G − X, we say that C1 and C2 are identical, which we denote by
C1 ∼ C2, if and only if sign(C1) = sign(C2). It is not difficult to see that ∼ is in fact an
equivalence relation with at most 22|X|+1 equivalence classes: indeed, since the number of
distinct neighborhoods in X is at most 2|X|, and at most two vertices of each clique have
the same neighborhood in X, the number of distinct signatures is at most 22|X|+1 . Consider
now an equivalence class C of ∼. Note that since the signature of a clique is a multiset, the
number of vertices in each C ∈ C is equal to |sign(C)|. For any C1, C2 ∈ C, we say that two
vertices u ∈ C1 and v ∈ C2 are clones if N(u) ∩ X = N(v) ∩ X (in particular, if C1 = C2 and
u ̸= v, then u, v are true twins). For any C1, C2 ∈ C and any u ∈ C1, we denote by c(u, C2)
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the set of clones of u in C2 (note that |c(u, C2)| ≤ 2). Now observe that, for any two cliques
C1, C2 ∈ C, the number of pairs of true twins in C1 and C2 is the same: we let t(C) be the
number of pairs of true twins in each clique of C. We highlight that there are exactly 2t(C)
vertices in each clique of C that have true twins. The following claim for clones is the analog
of Observation 1 for twins.

▷ Claim 10 (⋆). Let C1 and C2 be two cliques of an equivalence class C of ∼. Let u ∈ C1
and v ∈ C2 be clones. Then, for any w ∈ V (G) \ (V (C1) ∪ V (C2)), d(u, w) = d(v, w), and so,
for any resolving set S of G, S ∩ (V (C1) ∪ V (C2)) ̸= ∅.

It follows from the above claim that, for any equivalence class C of ∼ and any resolving
set S, S contains at least |C| − 1 vertices in V (C) :=

⋃
C∈C V (C). We now present an upper

bound on the size of S ∩ V (C) when |C| ≥ |X| + 2.

▷ Claim 11 (⋆). For every equivalence class C of ∼, if |C| ≥ |X| + 2, then, for any minimum
resolving set S of G, |S ∩ V (C)| ≤ |X| + |C| · max{1, t(C)}.

Let C be an equivalence class of ∼, and let S be a resolving set of G. For every i ≥ 0, we
denote by CS

=i (CS
≥i, resp.) the set of cliques C ∈ C such that |S ∩ V (C)| = i (|S ∩ V (C)| ≥ i).

▷ Claim 12 (⋆). Let C be an equivalence class of ∼ such that |C| ≥ |X| + 2. Then, for any
minimum resolving set S of G, the following hold:

(i) if t(C) = 0, then |CS
=0| ≤ 1 and |CS

≥2| ≤ |X| + 1;
(ii) if t(C) ̸= 0, then |CS

≥t(C)+1| ≤ |X| + 1.

The above claim states that if some equivalence class C of ∼ contains at least |X| + 3
cliques, then, for any minimum resolving set S of G, if t(C) = 0, then CS

=1 ̸= ∅, and otherwise,
CS

=t(C) ̸= ∅. The following reduction rule is based on this claim.

▶ Reduction Rule 3. If there exists an equivalence class C of ∼ such that |C| ≥ 2|X|+2+|X|+2,
then remove a clique C ∈ C from G and reduce k by max{1, t(C)}.

▷ Claim 13 (⋆). Reduction Rule 3 is safe.

Now observe that once Reduction Rule 3 has been exhaustively applied to (G, k), each
equivalence class of ∼ contains at most 2|X|+2 + |X| + 1 cliques. Since there are at most
22|X|+1 equivalence classes and each clique of G − X has size at most 2|X|+1, we conclude
that G contains at most 22|X|+1 · (2|X|+2 + |X| + 1) · 2|X|+1 + |X| vertices. ◀

5 Conclusion

As the Metric Dimension problem is W[2]-hard when parameterized by the solution
size [23], the next natural step is to understand its parameterized complexity under structural
parameterizations. We continued this line of research, following in the steps of [3, 13, 20],
and more recently [7, 29]. Our most technical result is a proof that the Metric Dimension
problem is W[1]-hard when parameterized by the feedback vertex set number of the graph. We
thereby improved the result by Bonnet and Purohit [7] that states the problem is W[1]-hard
when parameterized by the treewidth, and answered an open question in [23]. It is easy to
see that the problem admits an FPT algorithm when parameterized by the larger parameter,
the vertex cover number of the graph. On the positive side, we proved that the problem
admits FPT algorithms when parameterized by the distance to cluster and the distance to
co-cluster, which are smaller parameters than the vertex cover number.
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Although this work advances the understanding of structural parameterizations of Metric
Dimension, it falls short of completing the picture (see Figure 1). We find it hard to extend
the positive results to the parameters like the minimum clique cover, the distance to disjoint
paths, feedback edge set, and the bandwidth. It would be interesting to find FPT algorithms
or prove that such algorithms are highly unlikely to exist for these parameters. The FPT
algorithm parameterized by the treedepth in [20] relies on the meta-result. Is it possible to
get an FPT algorithm whose running time is a single or double exponent in the treedepth?
It would also be interesting to investigate the problem parameterized by the distance to
cograph. Recall that the problem is polynomial-time solvable in cographs [14].

Bonnet and Purohit [7] conjectured that the problem is W[1]-hard even when para-
meterized by the treewidth plus the solution size. Towards resolving this conjecture, an
interesting question would be to investigate whether the problem admits an FPT algorithm
when parameterized by the feedback vertex set number plus the solution size. Note that
even an XP algorithm parameterized by the feedback vertex set number is not apparent.
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Abstract
Quantifying the similarity between two graphs is a fundamental algorithmic problem at the heart
of many data analysis tasks for graph-based data. In this paper, we study the computational
complexity of a family of similarity measures based on quantifying the mismatch between the two
graphs, that is, the “symmetric difference” of the graphs under an optimal alignment of the vertices.
An important example is similarity based on graph edit distance. While edit distance calculates the
“global” mismatch, that is, the number of edges in the symmetric difference, our main focus is on
“local” measures calculating the maximum mismatch per vertex.

Mathematically, our similarity measures are best expressed in terms of the adjacency matrices:
the mismatch between graphs is expressed as the difference of their adjacency matrices (under an
optimal alignment), and we measure it by applying some matrix norm. Roughly speaking, global
measures like graph edit distance correspond to entrywise matrix norms like the Frobenius norm
and local measures correspond to operator norms like the spectral norm.

We prove a number of strong NP-hardness and inapproximability results even for very restricted
graph classes such as bounded-degree trees.
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1 Introduction

Graphs are basic models ubiquitous in science and engineering. They are used to describe
a diverse range of objects and processes from chemical compounds to social interactions.
To understand and classify graph models, we need to compare graphs. Since data and
models are not always guaranteed to be exact, it is essential to understand what makes two
graphs similar or dissimilar, and to be able to compute similarity efficiently. There are many
different approaches to similarity, for example, based on edit-distance (e.g. [3,6,27]), spectral
similarity (e.g. [16, 29, 30]), optimal transport (e.g. [5, 23, 25]), or behavioral equivalence
(e.g. [28,31]). This is only natural, because the choice of a “good” similarity measure will
usually depend on the application. While graph similarity has received considerable attention
in application areas such as computer vision (see, for example, [7,9]) and network science (see,
for example, [8]), theoretical computer scientists have not explored similarity systematically;
only specific “special cases” such as isomorphism [14] and bisimilarity [28] have been studied
to great depth. Yet it seems worthwhile to develop a theory of graph similarity that compares
different similarity measures, determines their algorithmic and semantic properties, and thus
gives us a better understanding of their suitability for various kinds of applications. We see
our paper as one contribution to such a theory.
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Maybe the simplest graph similarity measure is based on graph edit distance: the edit
distance between graphs G, H (for simplicity of the same order) is the minimum number of
edges that need to be added and deleted from G to obtain a graph ismorphic to H.

In this paper, we study the computational complexity of a natural class of similarity
measures that generalize the similarity derived from edit distance of graphs. In general, we
view similarity as proximity with respect to some metric. A common way of converting
a graph metric d into a similarity measure s is to let s(G, H) := exp(−β · d(G, H)) for
some constant β > 0. For our considerations the transformation between distance and
similarity is irrelevant, so we focus directly on the metrics. In terms of computational
complexity, computing similarity tends to be a hard algorithmic problem. It is known that
computing edit distance, exactly or approximately, is NP-hard [3, 13, 18, 27] even on very
restricted graph classes. In fact, the problem is closely related to the quadratic assignment
problem [22,26], which is notorious for being a very hard combinatorial optimization problem
also for practical, heuristic approaches. Within the spectrum of similarities, the “limit” case
of graph isomorphism shows that overall the complexity of graph similarity is far from trivial.

The metrics we study in this paper are based on minimizing the mismatch between two
graphs. For graphs G, H with the same vertex set V , we define their mismatch graph G − H

to be the graph with vertex set V and edge set E(G)△E(H), the symmetric difference
between the edge sets of the graphs. We assign signs to edges of the mismatch graph to
indicate which graph they come from, say, a positive sign to the edges in E(G) \ E(H) and a
negative sign to the edges in E(H) \ E(G). To quantify the mismatch between our graphs
we introduce a mismatch norm µ on signed graphs that satisfies a few basic axioms such as
subadditivity as well as invariance under permutations and under flipping the signs of all
edges. Now for graphs G, H, not necessarily with the same vertex set, but for simplicity of
the same order,1 we define the distance distµ(G, H) to be the minimum of µ(Gπ − H), where
π ranges over all bijective mappings from V (G) to V (H) and Gπ is the image of G under π.

The simplest mismatch norm µed just counts the number of edges of the mismatch graph
G − H, ignoring their signs. Then the associated distance disted(G, H) is the edit distance
between G and H. (Note that we write disted instead of the clunky distµed ; we will do the
same for other mismatch norms discussed here.) Another simple yet interesting mismatch
norm is µdeg measuring the maximum degree of the mismatch graph, again ignoring the
signs of the edges. Then distdeg(G, H) measures how well we can align the two graphs in
order to minimize the “local mismatch” at every node. Hence an alignment where at every
vertex there is a mismatch of one edge yields a smaller distdeg than an alignment that is
perfect at all nodes expect one, where it has a mismatch of, say, n/2, where n is the number
of vertices. For edit distance it is the other way round. Depending on the application, one or
the other may be preferable. Another well-known graph metric that can be described via the
mismatch graph is Lovász’s cut distance (see [19, Chapter 8] and Section 3 of this paper).
And, last but not least, for the mismatch norm µiso defined to be 0 if the mismatch graph
has no edges and 1 otherwise, distiso(G, H) is 0 if G and H are isomorphic, and 1 otherwise,
so computing the distance between two graphs amounts to deciding if they are isomorphic.

Mathematically, the framework of mismatch norms and the associated distances is best
described in terms of the adjacency matrices of the graphs; the adjacency matrix AG−H of
the mismatch graph (viewed as a matrix with entries 0, +1, −1 displaying the signs of the

1 A general definition that also applies to graphs of distinct order can be found in Section 3, but for the
hardness results we prove in this paper we can safely restrict our attention to graphs of the same order;
this only makes the results stronger.
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edges) is just the difference AG − AH . Then mismatch norms essentially are just matrix
norms applied to to AG−H . It turns out that “global norms” such as edit distance and direct
generalizations correspond to entrywise matrix norms (obtained by applying a vector norm to
the flattened matrix), and “local norms” such as µdeg correspond to operator matrix norms
(see Section 3). Cut distance corresponds to the cut norm of matrices. Instead of adjacency
matrices, we can also consider the Laplacian matrices, exploiting that LG−H = LG − LH ,
and obtain another interesting family of graph distances.

For every mismatch norm µ, we are interested in the problem Distµ of computing
distµ(G, H) for two given graphs G, H. Note that this is a minimization problem where
the feasible solutions are the bijective mappings between the vertex sets of the two graphs.
It turns out that the problem is hard for most mismatch norms µ, in particular almost
all the natural choices discussed above. The single exception is µiso related to the graph
isomorphism problem. Furthermore, the hardness results usually hold even if the input
graphs are restricted to be very simple, for example trees or bounded degree graphs. For
edit distance and the related distance based on entrywise matrix norms this was already
known [3, 13]. Our focus in this paper is on operator norms. We prove a number of hardness
results for different graph classes. One of the strongest ones is the following (see Theorem 19).
Here Distp denotes the distance measure derived from the ℓp-operator norm.

▶ Theorem 1. For 1 ≤ p ≤ ∞ there is a constant c > 1 such that, unless P = NP, Distp

has no factor-c approximation algorithm even if the input graphs are restricted to be trees of
bounded degree.

For details and additional results, we refer to Section 4 and 5.
Initially we aimed for a general hardness result that applies to all mismatch norms

satisfying some additional natural conditions. However, we found that the hardness proofs,
while following the same general strategies, usually have some intricacies exploiting special
properties of the specific norms. Furthermore, for cut distance, none of these strategies seemed
to work. Nevertheless, we were able to give a hardness proof for cut distance (Theorem 23)
that is simply based on the hardness of computing the cut norm of the matrix [1]. This is
remarkable in so far as usually the hard part of computing the distance is to find an optimal
alignment π, whereas computing µ(Gπ − H) is usually easy. For cut norm, it is even hard to
compute µ(Gπ − H) for a fixed alignment π.

Related Work

Graph similarity has mostly been studied in specific application areas, most importantly
computer vision, data mining, and machine learning (see the references above). Of course
not all similarity measures are based on mismatch. For example, metrics derived from vector
embedding or graph kernels in machine learning (see [17]) provide a completely different
approach (see [12] for a broader discussion). Of interest compared to our work (specifically
for the ℓ2-operator norm a.k.a. spectral norm) is the spectral approach proposed by Kolla,
Koutis, Madan, and Sinop [16]. Intuitively, instead of the “difference” of two graphs that is
described by our mismatch graphs, their approach is based on taking a “quotient”.

The complexity of similarity, or “approximate graph isomorphism”, or “robust graph
isomorphism” has been studied in [2, 3, 13, 15, 16, 18, 27], mostly based on graph edit distance
and small variations. Operator norms have not been considered in this context.
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2 Preliminaries

We denote the class of real numbers by R and the nonnegative and positive reals by R≥0,R>0,
respectively. By N,N>0 we denote the sets of nonnegative resp. positive integers. For every
n ∈ N>0 we let [n] := {1, . . . , n}.

We will consider matrices with real entries and with rows and columns indexed by arbitrary
finite sets. Formally, for finite sets V, W , a V × W matrix is a function A : V × W → R. A
standard m × n-matrix is just an [m] × [n]-matrix. We denote the set of all V × W matrices
by RV ×W , and we denote the entries of a matrix A by Avw.

For a square matrix A ∈ RV ×V and injective mapping π : V → W , we let Aπ be the
V π × V π-matrix with entries Avπwπ := Avw. Note that we apply the mapping π from the
right and denote the image of v under π by vπ. If ρ : W → X is another mapping, we denote
the composition of π and ρ by πρ. We typically use this notation for mappings between
matrices and between graphs.

We use a standard graph theoretic notation. We denote the vertex set of a graph
G by V (G) and the edge set by E(G). Graphs are finite, simple, and undirected, that
is, E(G) ⊆

(
V (G)

2
)
. We denote edges by vw instead of {v, w}. The order of a graph is

|G| := |V (G)|. The adjacency matrix AG ∈ {0, 1}V (G)×V (G) is defined in the usual way. We
denote the class of all graphs by G.

Let G be a graph with vertex set V := V (G). For a mapping π : V → W we let Gπ be
the graph with vertex set {vπ | v ∈ V } and edge set {vπwπ | vw ∈ E(G) with vπ ≠ wπ}.
Then AGπ = Aπ

G if π is injective.
For graphs G, H, we denote the set of all injective mappings π : V (G) → V (H) by

Inj(G, H). Graphs G and H are isomorphic (we write G ∼= H) if there is an π ∈ Inj(G, H)
such that Gπ = H. We think of the mappings in Inj(G, H), in particular if |G| = |H| and
they are bijective, as alignments between the graphs. Intuitively, to measure the distance
between two graphs, we will align them in an optimal way to minimize the mismatch.

3 Graph Metrics Based on Mismatches

A graph metric is a function δ : G × G → R≥0 such that
(GM0) δ(G, H) = δ(G′, H ′) for all G, G′, H, H ′ such that G ∼= G′ and H ∼= H ′;
(GM1) δ(G, G) = 0 for all G;
(GM2) δ(G, H) = δ(H, G) for all G, H;
(GM3) δ(F, H) ≤ δ(F, G) + δ(G, H) for all F, G, H .
Note that we do not require δ(G, H) > 0 for all G ̸= H, not even for G ̸∼= H, so strictly
speaking this is just a pseudometric. We are interested in the complexity of the following
problem:

Distδ

Instance: Graphs G, H, p, q ∈ N>0
Problem: Decide if δ(G, H) ≥ p

q

A signed graph is a weighted graph with edge weights −1, +1, and for every edge e of
a signed graph we denote its sign by sg(e). For a signed graph ∆, we let E+(∆) := {e ∈
E(∆) | sg(e) = +1} and E−(∆) := {e ∈ E(∆) | sg(e) = −1}. Isomorphisms of signed graphs
must preserve signs. A signed graph ∆ is a subgraph of a signed graph Γ (we write ∆ ⊆ Γ)
if V (∆) ⊆ V (Γ), E+(∆) ⊆ E+(Γ), and E−(∆) ⊆ E−(Γ). We denote the class of all signed
graphs by S.
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For every ∆ ∈ S, we let −∆ be the signed graph obtained from ∆ by flipping the signs of all
edges. We define the sum of ∆, Γ ∈ S to be the signed graph ∆+Γ with vertex set V (∆+Γ) =
V (∆) ∪ V (Γ) and signed edge sets E+(∆ + Γ) =

(
E+(∆) ∪ E+(Γ)

)
\

(
E−(∆) ∪ E−(Γ)

)
and

E−(∆ + Γ) =
(
E−(∆) ∪ E−(Γ)

)
\

(
E+(∆) ∪ E+(Γ)

)
. The adjacency matrix A∆ of a signed

graph ∆ displays the signs of the edges, so A∆ ∈ {0, 1, −1}V (∆)×V (∆) with (A∆)vw = sg(vw)
if vw ∈ E(∆) and (A∆)vw = 0 otherwise. Note that A−∆ = −A∆ for all ∆ ∈ S and
A∆+Γ = A∆ + AΓ for all ∆, Γ ∈ S with V (∆) = V (Γ) and E+(∆) ∩ E+(Γ) = ∅ and
E−(∆) ∩ E−(Γ) = ∅.

The mismatch graph of two graphs G, H is the signed graph G − H with vertex set
V (G − H) := V (G) ∪ V (H) and signed edge set E+(G − H) := E(G) \ E(H), E−(G −
H) := E(H) \ E(G). Note that if V (G) = V (H) then for the adjacency matrices we have
AG−H = AG − AH . Observe that every signed graph ∆ is the mismatch graph of the graphs
∆+ := (V (∆), E+(∆)) and ∆− := (V (∆), E−(∆)).

A mismatch norm is a function µ : S → R≥0 satisfying the following conditions:
(MN0) µ(∆) = µ(Γ) for all ∆, Γ ∈ S such that ∆ ∼= Γ;
(MN1) µ(∆) = 0 for all ∆ ∈ S with E(∆) = ∅;
(MN2) µ(∆) = µ(−∆) for all ∆;
(MN3) µ(∆+Γ) ≤ µ(∆)+µ(Γ) for all ∆, Γ ∈ S with V (∆) = V (Γ) and E+(∆)∩E+(Γ) = ∅

and E−(∆) ∩ E−(Γ) = ∅.
(MN4) µ(∆) = µ(Γ) for all ∆, Γ ∈ S with E+(∆) = E+(Γ) and E−(∆) = E−(Γ);
For every mismatch norm µ, we define distµ : G × G → R≥0 by

distµ(G, H) :=
{

minπ∈Inj(G,H) µ(Gπ − H) if |G| ≤ |H |,
minπ∈Inj(H,G) µ(G − Hπ) if |H| < |G|.

We write Distµ instead of Distdistµ
to denote the algorithmic problem of computing distµ

for two graphs G, H.

▶ Lemma 2. For every mismatch norm µ the function distµ is a graph metric.

Proof. Conditions (GM0), (GM1), (GM2) follow from (MN0), (MN1), (MN2), respectively.
To prove (GM3), let F, G, H be graphs. Padding the graphs with isolated vertices, by
(MM4) we may assume that |F | = |G| = |H|. By (MN0) we may further assume that
V (F ) = V (G) = V (H) := V . Choose π, ρ ∈ Inj(V, V ) such that distµ(F, G) = µ(F π − G)
and distµ(G, H) = µ(Gρ − H).

Then by (MN0) we have

µ(F πρ − Gρ) = µ
(
(F π − G)ρ

)
= µ(F π − G) = distµ(F, G).

Now consider the two mismatch graphs ∆ := F πρ − Gρ and Γ := Gρ − H. We have
E+(∆) = E(F πρ) \ E(Gρ) and E+(Γ) = E(Gρ) \ E(H). Thus E+(∆) ∩ E(Gρ) = ∅ and
E+(Γ) ⊆ E(Gρ), which implies E+(∆) ∩ E+(Γ) = ∅. Similarly, E−(∆) ∩ E−(Γ) = ∅.
Moreover, ∆ + Γ = F πρ − H, because

A∆+Γ = A∆ + AΓ = (Aπρ
F − Aρ

G) + (Aρ
G − AH) = Aπρ

F − AH = AF πρ−H .

Thus by (MN3),

distµ(F, H) ≤ µ(F πρ − H) = µ(∆ + Γ) ≤ µ(∆) + µ(Γ) = distµ(F, G) + distµ(G, H).

This proves (GM3). ◀
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▶ Remark 3. None of the five conditions (MN0)–(MN4) on a mismatch norm µ can be
dropped if we want to guarantee that distµ is a graph metric, but of course we could replace
them by other conditions. While (MN0)–(MN3) are very natural and directly correspond to
conditions (GM0)–(GM3) for graph metrics, condition (MN4) is may be less so. We chose
(MN4) as the simplest condition that allows us to compare graphs of different sizes.

Having said this, it is worth noting that (MN0), (MN1) and (MN3) imply (MN4) for
graphs ∆, Γ with |∆| = |Γ|. For graphs ∆, Γ with |∆| < |Γ| they only imply µ(∆) ≥ µ(Γ).
Thus as long as we only compare graphs of the same order, (MN4) is not needed. In particular,
since our hardness results always apply to graphs of the same order, (MN4) is inessential for
the rest of the paper.

However, it is possible to replace (MN4) by other natural conditions. For example,
Lovász’s metric based on a scaled cut norm [20] does not satisfy (MN4) and instead uses a
blowup of graphs to a common size to compare graphs of different sizes.

Let us now consider a few examples of mismatch norms.

▶ Example 4 (Isomorphism). The mapping ι := S → R≥0 defined by ι(∆) := 0 if E(∆) = ∅
and ι(∆) := 1 otherwise is a mismatch norm. Under the metric distι, all nonisomorphic
graphs have distance 1 (and isomorphic graphs have distance 0, as they have under all graph
metrics).

▶ Example 5 (Matrix Norms). Recall that a matrix (pseudo) norm ∥ · ∥ associates with every
matrix A (say, with real entries) an nonnegative real ∥A∥ in such a way that ∥N∥ = 0 for
matrices N with only 0-entries, ∥aA∥ = |a| · ∥A∥ for all matrices A and reals a ∈ R, and
∥A + B∥ ≤ ∥A∥ + ∥B∥ for all matrices A, B of the same dimensions.

Actually, we are only interested in square matrices here. We call a matrix norm ∥ · ∥
permutation invariant if for all A ∈ RV ×V and all bijective π : V → V we have ∥A∥ = ∥Aπ∥.
It is easy to see that for every permutation invariant matrix norm ∥ · ∥, the mapping
µ∥·∥ : S → R≥0 defined by µ∥·∥(∆) := ∥A∆∥ satisfies (MN0)–(MN3).

We call a permutation invariant matrix norm ∥·∥ paddable if it is invariant under extending
matrices by zero entries, that is, ∥A∥ = ∥A′∥ for all A ∈ RV ×V , A′ ∈ RV ′×V ′ such that
V ′ ⊇ V , Avw = A′

vw for all v, w ∈ V , and A′
vw = 0 if v ∈ V ′ \ V or w ∈ V ′ \ V . A paddable

matrix norm also satisfies (MN4).
The following common matrix norms are paddable (and thus by definition also invariant).

Let 1 ≤ p ≤ ∞ and A ∈ RV ×V .

1. Entrywise p-norm: ∥A∥(p) :=
(∑

v,w∈V |Avw|p
) 1

p . The best-known special case is the
Frobenius norm ∥ · ∥F := ∥ · ∥(2).

2. ℓp-operator norm: ∥A∥p := supx∈RV \{0}
∥Ax∥p

∥x∥p
, where the vector p-norm is defined by

∥a∥p :=
(∑

v∈V ap
v

) 1
p . In particular, ∥A∥2 is known as the spectral norm.

3. Absolute ℓp-operator norm: ∥A∥|p| := ∥ abs(A)∥p, where abs takes entrywise absolute
values. For the mismatch norm, taking entrywise absolute values means that we ignore
the signs of the edges.

4. Cut norm: ∥A∥□ := maxS,T ⊆V

∣∣∣∑v∈S,w∈T Avw

∣∣∣.
▶ Example 6 (Laplacian Matrices). Recall that the Laplacian matrix of a weighted graph G

with vertex set V := V (G) is the V × V matrix LG with off-diagonal entries (LG)vw being
the negative weight of the edge vw ∈ E(G) if there is such an edge and 0 otherwise and
diagonal entries (LG)vv being the sum of the weights of all edges incident with v. For an
unweighted graph we have LG = DG − AG, where DG is the diagonal matrix with the vertex
degrees as diagonal entries.
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Observe that for a signed graph ∆ = G − H we have L∆ = LG − LH .
It is easy to see that for every paddable matrix norm ∥ · ∥, the function µL

∥·∥ : S → R≥0

defined by µL
∥·∥(∆) := ∥L∆∥ is a mismatch norm.

Clearly, Distµ is not a hard problem for every mismatch norm. For example, Distν is
trivial for the trivial mismatch norm ν defined by ν(∆) := 0 for all ∆, and Distι for ι from
Example 4 is equivalent to the graph isomorphism problem and hence in quasipolynomial
time [4].

However, for most natural matrix norms the associated graph distance problem is NP-hard.
In particular, for every p ∈ R>0, this holds for the metric dist(p) based on the entrywise
p-norm ∥ · ∥(p).

▶ Theorem 7 ([13]). For p ∈ R>0, Dist(p) is NP-hard even if restricted to trees or bounded-
degree graphs.

The proof in [13] is only given for the Frobenius norm, that is, Dist(2), but it actually
applies to all p. In the rest of the paper, we study the complexity of Distp, Dist|p| and
Dist□.

4 Complexity for Operator Norms

In this section we investigate the complexity of Distp and Dist|p| for 1 ≤ p ≤ ∞. However,
as µ|p| would only be a special case within the upcoming proofs, we omit to mention it
explicitly. We also omit to specify the possible values for p.

Given graphs G and H , an alignment from G to H , and a node v ∈ V (G) we refer to the
nodes whose adjacency is not preserved by π as the π-mismatches of v. If π is clear from the
context we might omit it. We call Gπ − H the mismatch graph of π.

For all ℓp-operator norms the value of µp(Gπ − H) strongly depends on the maximum
degree in the mismatch graph of π. We capture this property with the following definition.

▶ Definition 8. Let G, H be graphs of the same order and π an alignment from G to H.
The π-mismatch count (π-MC) of a node v ∈ V (G) is defined as:

MC(v, π) := |{w ∈ V (G) | w is a π-mismatch of v}| .

We use MC for nodes in H analogously. The maximum mismatch count (π-MMC) of π is
defined as:

MMC(π) := max
v∈V (G)

MC(v, π).

Again we might drop the π if it is clear from the context. Note that the MMC corresponds
to the maximum degree in the mismatch graph and that we use a slightly abbreviated notation
in which we assume the graphs are given by the alignment.

The ℓ1-operator norm and the ℓ∞-operator norm measure exactly the maximum mismatch
count. Due to the relation between the ℓp-operator norms we can derive an upper bound for
µp. The proof of Lemma 9 can be found in the full version [11].

▶ Lemma 9. Let G, H be graphs of the same order and π an alignment from G to H. Then

µ1(Gπ − H) = µ∞(Gπ − H) = MMC(π),
µp(Gπ − H) ≤ MMC(π).
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Next, we observe that µp is fully determined by the connected component of the mismatch
graph with the highest mismatch norm. The proof of Lemma 10 can be found in the full
version [11].

▶ Lemma 10. Let G, H be graphs of the same order, π an alignment from G to H, and C
the set of all connected components in Gπ − H. Then

µp(Gπ − H) = max
C∈C

µp(C).

For the sake of readability, we introduce a function as abbreviation for our upcoming
bounds.

▶ Definition 11. For all 1 ≤ p ≤ ∞ we define the function boundp as follows:

boundp(c) := max
(

c1/p, c1−1/p
)

.

In particular, bound2(c) =
√

c. Now we derive our lower bound. The proof of Lemma 12
can be found in the full version [11].

▶ Lemma 12. Let G, H be graphs of the same order, π an alignment from G to H, and
v ∈ V (G).
If v has at least c mismatches, then

µp(Gπ − H) ≥ boundp(c) .

If Gπ − H is a star, then

µp(Gπ − H) = boundp(MMC(π)) .

While µ1 and µ∞ simply measure the MMC, µ2 also considers the connectedness of the
mismatches around the node with the highest MC. As Lemma 9 and Lemma 12 tell us,
µ2 ranges between the

√
MMC and the MMC. In fact, the lower bound is tight for stars

and the upper bound is tight for regular graphs. This is intuitive as these are the extreme
cases in which no mismatch can be removed/added without decreasing/increasing the MMC,
respectively. Other ℓp-operator norms interpolate between µ2 and µ1 / µ∞ in terms of how
much they value the connectedness within the mismatch component of the node with the
highest MC.

The lower bound for µp(Gπ − H) gives us lower bound for distp(G, H).

▶ Lemma 13. Let G, H be graphs of the same order and π an alignment from G to H. If
all alignments from G to H have a node with at least c mismatches, then

distp(G, H) ≥ boundp(c) .

Proof. This follows directly from the first claim of Lemma 12. ◀

The following upper bound might seem to have very restrictive conditions but is actually
used in several hardness proofs.

▶ Lemma 14. Let G, H be graphs of the same order and π an alignment from G to H. If
the mismatch graph of π consists only of stars, then

distp(G, H) ≤ µp(Gπ − H) = boundp(MMC(π)) .

Proof. This follows directly from Lemma 10 and the second claim of Lemma 12. ◀



T. Gervens and M. Grohe 52:9

The last tool we need to prove the hardness is that we can distinguish two alignments by
their MMC as long as the mismatch graph of the alignment with the lower MMC consists
only of stars. The proof of Lemma 15 can be found in the full version [11].

▶ Lemma 15. For all c, d ∈ N with c < d it holds that boundp(c) < boundp(d).

The graph isomorphism problem becomes solvable in polynomial time if restricted to
graphs of bounded degree [21]. In contrast to this, DistF is NP-hard even under this
restriction [13]. We show that the same applies to Distp.

The reduction in the hardness proof works for any mismatch norm which can, said
intuitively, distinguish the mismatch norm of the 1-regular graph of order n from any other
n-nodes mismatch graph in which every node has at least one −1 edge but at least one
node has an additional −1 edge and +1 edge. In particular, the construction also works for
Dist(p). However, it does not work for the cut-distance, for which we independently prove
the hardness in Section 6.

▶ Theorem 16. Distp and Dist|p| are NP-hard for 1 ≤ p ≤ ∞ even if both graphs have
bounded degree.

Proof. The proof is done by reduction from the NP-hard Hamiltonian Cycle problem in
3-regular graphs (Ham-Cycle) [10]. Given a 3-regular graph G of order n as an instance of
Ham-Cycle, the reduction uses the n-nodes cycle Cn and G as inputs for Distp. We claim
G has a Hamiltonian cycle if and only if distp(Cn, G) ≤ boundp(1).

Assume that G has a Hamiltonian cycle. Then there exists a bijection π : V (Cn) → V (G)
that aligns the cycle Cn perfectly with the Hamiltonian cycle in G. Each node in G has
three neighbors, two of which are matched correctly by π as they are part of the Hamiltonian
cycle. Hence, each node has a π-mismatch count of 1 and obviously the MMC of π is 1 as
well. According to Lemma 14, we get distp(Cn, G) ≤ boundp(1).

Conversely, assume that G has no Hamiltonian cycle. Then, for any alignment π′ from Cn

to G, there exists at least one edge vw in Cn that is not mapped to an edge in G. Hence, only
one of the three edges incident to π′(v) in G can be matched correctly. In total, v has at least
one mismatch from Cn to G and two mismatches from G to Cn, which implies MC(v, π′) ≥ 3.
Using Lemma 13, we get distp(Cn, G) ≥ boundp(3). And then distp(Cn, G) > boundp(1)
according to Lemma 15. ◀

Next, we modify the construction to get an even stronger NP-hardness result. The proof
can be found in the full version [11].

▶ Theorem 17. Distp and Dist|p| are NP-hard for 1 ≤ p ≤ ∞ even if restricted to a path
and a graph of maximum degree 3.

Similar to bounded degree input graphs, restricting graph isomorphism to trees allows it
to be solved in polynomial time [24] but DistF is NP-hard for trees [13]. We show that Distp

remains NP-hard for trees even when applying the bounded degree restriction simultaneously.

▶ Theorem 18. Distp and Dist|p| are NP-hard for 1 ≤ p ≤ ∞ even if restricted to
bounded-degree trees.

Proof. The proof is done by reduction from the NP-hard Three-Partition problem [10]
that is defined as follows. Given the integers A and a1, . . . , a3m in unary representation,
such that

∑3m
i=1 ai = mA and A/4 < ai < A/2 for 1 ≤ i ≤ 3m, decide whether there exists a
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(a) T1. (b) T2.

Figure 1 Example of the construction in the proof of Theorem 18 where m=2, A=10, a1=a2=4
and a3=a4=a5=a6=3. Best viewed in color.

partition of a1, . . . , a3m into m groups of size 3 such that the elements in each group sum
up to exactly A. For technical reasons, we restrict the reduction to A ≥ 8. However, the
ignored cases are trivial. Precisely, for A ∈ {6, 7} the answer is always YES and for A ∈ [5]
there exist no valid instances.

Given an instance of Three-Partition with A ≥ 8, we construct two trees T1 and
T2 such that the given instance has answer YES, if and only if distp(T1, T2) ≤ boundp(2).
Figure 1 shows an example of T1 and T2 for m = 2 and A = 10. For illustrative reasons we
assign each node a color during the construction. The colors are used in the example and we
will refer to certain nodes by their color later in the proof. However, they do not restrict the
possible alignments in any way.

Initialize T1 as the disjoint union of paths p1
1, . . . , p1

3m such that p1
i has ai black nodes;

initialize T2 as the disjoint union of paths p2
1, . . . , p2

m consisting of A black nodes each. In
the following we refer to one endpoint of pk

i as e1(pk
i ) and the other endpoint as e2(pk

i ). We
attach three new red leaves and one new orange leaf to each black node in both T1 and T2.
Next we modify the graphs into trees by connecting the paths. For 1 ≤ i ≤ 3m − 1 we add
an edge between the orange leaf adjacent to e1(p1

i ) and the orange leaf adjacent to e2(p1
i+1).

For 1 ≤ i ≤ m − 1 we add an edge between one of the red leaves adjacent to e1(p2
i ) and one

of the red leaves adjacent to e2(p2
i+1).
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Next we attach two new pink leaves to each inner (non-endpoint) path node in T1 and
attach a new blue leaf to each pink node. Then we add the same number of blue nodes to
T2 and connect each blue node to one of the red nodes with degree 1. Finally, we attach a
new pink leaf to each blue node. Note that both T1 and T2 are trees with bounded degree.
Precisely, the highest degree in T1 is 8 and 6 in T2 independent of the problem instance.

Intuitively, the construction ensures that every inner path node has already 2 mismatches
just because of the degree difference. If there is no partition, at least one path in T1 cannot
be mapped contiguously into a path in T2 which raises the MC of some inner path node to
at least 3. Simultaneously, the construction ensures that there is an alignment for which the
mismatch graph consists only of stars with maximum degree 2 if there is an alignment.

The formal continuation of this proof can be found in the full version [11]. ◀

5 Approximability for Operator Norms

In this section we investigate the approximability of Distp and Dist|p| for 1 ≤ p ≤ ∞.
Again, we omit specifying the possible values for p and mentioning Dist|p| explicitly as
the proofs work the same for it. We consider the following two possibilities to measure
the error of an approximation algorithm for a minimization problem. An algorithm A has
multiplicative error α > 1, if for any instance I of the problem with an optimum OPT(I),
A outputs a solution with value A(I) such that OPT(I) ≤ A(I) ≤ αOPT(I). In this
case we call A an α-approximation algorithm. An algorithm B has additive error ε > 0, if
OPT(I) ≤ B(I) ≤ OPT(I) + ε for any instance I.

Approximating Distp with multiplicative error is at least as hard as the graph isomorphism
problem (GI) since such an approximation algorithm A could be used to decide GI considering
that A(G, H) = 0 if and only if G is isomorphic to H.

Furthermore, we can deduce thresholds under which the α-approximation is NP-hard
using the gap between the decision values of the reduction in each hardness proof from
Section 4.

▶ Theorem 19. For 1 ≤ p ≤ ∞ and any ε > 0, unless P = NP, there is no polynomial time
approximation algorithm for Distp or Dist|p| with a multiplicative error guarantee of
1. boundp(3) − ε, even if both input graphs have bounded degree,
2. boundp(2) − ε, even if one input graph is a path and the other one has bounded degree,
3. boundp(3)

boundp(2) − ε, even if both input graphs are trees with bounded degree.

Proof. We recall the proof of Theorem 16. If G has a Hamiltonian cycle, then distp(Cn, G) ≤
boundp(1) = 1. Otherwise distp(Cn, G) ≥ boundp(3). Assume there is a polynomial time
approximation algorithm A with a multiplicative error guarantee of boundp(3) − ε for ε > 0.
Then we can distinguish the two cases by checking whether A(Cn, G) < boundp(3) and
therefore decide Ham-Cycle on 3-regular graphs in polynomial time. The same argument can
be used for the other bounds using the proofs of Theorem 17 and Theorem 18, respectively. ◀

In particular, this implies that there is no polynomial time approximation scheme (PTAS)
for Distp or Dist|p| under the respective restrictions.

Next we show the additive approximation hardness by scaling up the gap between the
two decision values of the reduction in the proof of Theorem 16. For this we replace each
edge with a colored gadget and then modify the graph so that an optimal alignment has to
be color-preserving. The proof of Theorem 20 can be found in the full version [11].

▶ Theorem 20. For 1 ≤ p ≤ ∞ there is no polynomial time approximation algorithm for
Distp with any constant additive error guarantee unless P = NP.

MFCS 2022
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However, the approximation of Distp becomes trivial once we restrict the input to graphs
of bounded degree, although Distp stays NP-hard under this restriction. The proof of
Theorem 21 can be found in the full version [11].

▶ Theorem 21. For 1 ≤ p ≤ ∞, if one graph has maximum degree d, then there is a
polynomial time approximation algorithm for Distp and Dist|p| with
1. a constant additive error guarantee 2d,
2. a constant multiplicative error guarantee 1 + 2d.

6 Complexity for Cut Norm

Finally, we show the hardness for Dist□ which corresponds to the cut distance δ̂□ (see
[19, Chapter 8]. For any signed graph G and V ⊆ V (G) the induced subgraph G[V ]
is the signed graph with vertex set V , E+(G[V ]) = {vw ∈ E+(G) | v, w ∈ V )}, and
E−(G[V ]) = {vw ∈ E−(G) | v, w ∈ V )}.

▶ Lemma 22. Let ∆ be a signed graph and W ⊆ V (∆). Then µ□(∆) ≥ µ□(∆[W ]).

Proof. Let V := V (∆), A := A∆, B := A∆[W ] and S′, T ′ := argmaxS,T ⊆W

∣∣∣∑v∈S,w∈T Bvw

∣∣∣.
Then

∥∆[W ]∥□ =

∣∣∣∣∣∣
∑

v∈S′,w∈T ′

Bvw

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

v∈S′,w∈T ′

Avw

∣∣∣∣∣∣ ≤ max
S,T ⊆V

∣∣∣∣∣∣
∑

v∈S,w∈T

Avw

∣∣∣∣∣∣ = ∥∆∥□ . ◀

Our hardness proof for Dist□ is based on the hardness of computing the cut norm.
Intuitively, the construction enforces a specific alignment by modifying the nodes degrees.

▶ Theorem 23. The problem Dist□ is NP-hard.

Proof. The proof is done by reduction from the NP-hard Max-Cut problem on unweighted
graphs [10]. First, we recall how Alan and Naor [1] construct a matrix A for any graph G so
that ∥A∥□ = MAXCUT (G). Orient G in an arbitrary manner, let V (G) = {v1, v2, . . . , vn}
and E(G) = {e1, e2, . . . , em}. Then A is the 2m × n matrix defined as follows. For each
1 ≤ i ≤ m, if ei is oriented from vj to vk, then A2i−1,j = A2i,k = 1 and A2i−1,k = A2i,j = −1.
The rest of the entries in A are all 0.

Next, we observe that the matrix

B =
(

0 A

AT 0

)
has the property ∥B∥□ = 2 ∥A∥□ = 2 · MAXCUT (G) since the cut norm is invariant under
transposition and the two submatrices A, AT have no common rows or columns in B.

We interpret B as the adjacency matrix of a signed graph ∆′ and construct the two
unsigned graphs F ′ := (V (∆), E+(∆)), H ′ := (V (∆), E−(∆)). Then µ□(F ′−H ′) = µ□(∆′) =
∥B∥□ = 2 · MAXCUT (G). Next, we modify F ′, H ′ into the graphs F , H by adding
i ·

(⌈
n2

4

⌉
+ n

)
leaves to node vi for 1 ≤ i ≤ n. The reduction follows from the claim that

dist□(F, H) = 2 · MAXCUT (G), which we prove in the following.
Let π be an alignment that maps vi to vi for 1 ≤ i ≤ n and each leaf in F to a leaf in H so

that its adjacency is preserved; let ∆ be the mismatch graph of π. Then E(∆) = E(∆′) and
therefore µ□(F π − H) = 2 · MAXCUT (G). We conclude dist□(F, H) ≤ 2 · MAXCUT (G).
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It remains to show that no alignment can lead to a lower mismatch norm. First, let σ be
any alignment that maps vi to vi for 1 ≤ i ≤ n; let Λ be the mismatch graph of σ. Then
Λ[{v1, . . . , vn}] = ∆′ and we get µ□(Λ) ≥ 2 · MAXCUT (G) from Lemma 22.

Conversely, let ρ be any alignment that maps vi to vj for i ̸= j and i, j ≤ n; let Γ be the
mismatch graph of ρ. The number of leaves adjacent to vi in F and to vj in H differs at least
by

⌈
n2

4

⌉
+n. Without restriction we can assume there are at least l :=

⌈
n2

4

⌉
leaves w1, . . . , wl

adjacent to vi in F that are mismatched by ρ. Let S := {vρ
i , wρ

1 , . . . , wρ
l }. Then Γ[S] has

exactly l edges all of which have the same sign. It is easy to see that µ□(Γ[S]) = 2l which
implies µ□(Γ) ≥ 2l according to Lemma 22. We chose l so that 2l ≥ n2

2 ≥ 2 · MAXCUT (G).
After considering all alignments, we get dist□(F, G) ≥ 2 · MAXCUT (G). This proves our
claim and therefore concludes the reduction. ◀

7 Concluding Remarks

We study the computational complexity of a class of graph metrics based on mismatch norms,
or equivalently, matrix norms applied to the difference of the adjacency matrices of the input
graphs under an optimal alignment between the vertex sets. We find that computing the
distance between graphs under these metrics (at least for the standard, natural matrix norms)
is NP-hard, often already on simple input graphs such as trees. This was essentially known
for entrywise matrix norms. We prove it for operator norms and also for the cut norm.

We leave it open to find (natural) general conditions on a mismatch norm such that the
corresponding distance problem becomes hard. Maybe more importantly, we leave it open to
find meaningful tractable relaxations of the distance measures.

Measuring similarity via mismatch norms is only one approach. There are several other,
fundamentally different ways to measure similarity. We are convinced that graph similarity
deserves a systematic and general theory that compares the different approaches and studies
their semantic as well as algorithmic properties. Our paper is one contribution to such a
theory.
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Abstract
Given a graph, the general problem to cover the maximum number of vertices by a collection of
vertex-disjoint long paths seemingly escapes from the literature. A path containing at least k vertices
is considered long. When k ≤ 3, the problem is polynomial time solvable; when k is the total
number of vertices, the problem reduces to the Hamiltonian path problem, which is NP-complete.
For a fixed k ≥ 4, the problem is NP-hard and the best known approximation algorithm for the
weighted set packing problem implies a k-approximation algorithm. To the best of our knowledge,
there is no approximation algorithm directly designed for the general problem; when k = 4, the
problem admits a 4-approximation algorithm which was presented recently. We propose the first
(0.4394k + O(1))-approximation algorithm for the general problem and an improved 2-approximation
algorithm when k = 4. Both algorithms are based on local improvement, and their performance
analyses are done via amortization.
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1 Introduction

Path Cover (PC) is one of the most well-known NP-hard optimization problems in algorithmic
graph theory [11], in which given a simple undirected graph G = (V, E) one wishes to find
a minimum collection of vertex-disjoint paths that cover all the vertices, that is, every
vertex of V is on one of the paths. It has numerous applications from the real life, such as
transportation networks, communication networks and networking security. In particular, it
includes the Hamiltonian path problem [11] as a special case, which asks for the existence of
a single path covering all the vertices.

The Hamiltonian path problem is NP-complete; therefore, the PC problem cannot be
approximated within ratio 2 if P ̸= NP. In fact, to the best of our knowledge, there is no
o(|V |)-approximation algorithm for the PC problem. In the literature, several alternative
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objective functions have been proposed and studied [3, 1, 18, 2, 19, 4, 12, 5]. For example,
Berman and Karpinski [3] tried to maximize the number of edges on the paths in a path
cover, which is equal to |V | minus the number of paths, and proposed a 7/6-approximation
algorithm. Chen et al. [4, 5] showed that finding a path cover with the minimum total
number of order-1 and order-2 paths (where the order of a path is the number of vertices on
the path; i.e., singletons and edges) can be done in polynomial time, but it is NP-hard to
find a path cover with the minimum number of paths of order at most ℓ when ℓ ≥ 3.

Recently, Kobayashi et al. [15] generalized the problem studied by Chen et al. [4, 5] to
assign a weight representing its profit or cost to each order-ℓ path, with the goal of finding a
path cover of the maximum weight or the minimum weight, respectively. For instance, when
the weight f(ℓ) of an order-ℓ path is f(ℓ) = 1 for any ℓ ≤ k and f(ℓ) = 0 for any ℓ ≥ k + 1,
where k is a fixed integer, the minimization problem reduces to the problem studied by Chen
et al. [4, 5]; when f(ℓ) is f(ℓ) = 1 for any ℓ ≤ k and f(ℓ) = +∞ for any ℓ ≥ k + 1, the
minimization problem is the so-called k-path partition problem [20, 16, 8, 7, 9, 6]; when f(ℓ)
is f(ℓ) = 0 for any ℓ ≤ |V | − 1 but f(|V |) ̸= 0, the maximization problem reduces to the
Hamiltonian path problem.

Given an integer k ≥ 4, in the special case where f(ℓ) = 0 for any ℓ < k but f(ℓ) = ℓ for
any ℓ ≥ k, the maximization problem can be re-phrased as to find a set of vertex-disjoint
paths of order at least k to cover the most vertices, denoted as MaxPk+PC. The MaxP4+PC
problem (i.e., k = 4) is complementary to finding a path cover with the minimum number of
paths of order at most 3 [4, 5], and thus it is NP-hard. Kobayashi et al. [15] presented a
4-approximation algorithm for MaxP4+PC by greedily adding an order-4 path or extending
an existing path to the longest possible.

For a fixed integer k ≥ 4, the MaxPk+PC problem is NP-hard too [15]; to the best of
our knowledge there is no approximation algorithm designed directly for it. Nevertheless, the
MaxPk+PC problem can be cast as a special case of the Maximum Weighted (2k − 1)-Set
Packing problem [11], by constructing a set of ℓ vertices when they are traceable (that is,
they can be formed into a path) in the given graph and assigning its weight ℓ, for every
ℓ = k, k + 1, . . . , 2k − 1. (This upper bound 2k − 1 will become clear in the next section.)
The Maximum Weighted (2k − 1)-Set Packing problem is APX-complete [13] and the best
known approximation guarantee is k − 1

63,700,992 + ϵ for any ϵ > 0 [17].
In this paper, we study the MaxPk+PC problem from the approximation algorithm

perspective. The problem and its close variants have many motivating real-life applications in
various areas such as various (communication, routing, transportation, optical etc.) network
design [14]. For example, when a local government plans to upgrade its subway infrastructures,
the given map of rail tracks is to be decomposed into multiple disjoint lines of stations, each
of which will be taken care of by a team of workers. Besides being disjoint so that while
some lines are under construction the other lines can function properly, each line is expected
long enough for the team to work on continuously during a shift without wasting time and
efforts to move themselves and materials from one point to another. Viewing the map as a
graph, the goal of planning is to find a collection of vertex-disjoint long paths to cover the
most vertices (and of course, possibly under some other real traffic constraints).

We contribute two approximation algorithms for the MaxPk+PC problem, the first of
which is a (0.4394k + O(1))-approximation algorithm for any fixed integer k ≥ 4, denoted as
Approx1. We note that Approx1 is the first approximation algorithm directly designed for
the MaxPk+PC problem, and it is a local improvement algorithm that iteratively applies one
of the three operations, addition, replacement and double-replacement, each takes O(|V |k)
time and covers at least one more vertex. While the addition and the replacement operations
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have appeared in the 4-approximation algorithm for the MaxP4+PC problem [15], the double-
replacement operation is novel and it replaces one existing path in the current path collection
with two new paths. At termination, that is, when none of the local improvement operations
is applicable, we show by an amortization scheme that each path P in the computed solution
is attributed with at most ρ(k)n(P ) vertices covered in an optimal solution, where n(P )
denotes the order of the path P and ρ(k) ≤ 0.4394k + 0.6576 for any k ≥ 4.

The second O(n8)-time algorithm, denoted as Approx2, is for the MaxP4+PC problem.
Besides the three operations in Approx1, we design two additional operations, re-cover and
look-ahead. The re-cover operation aims to increase the number of 4-paths in the solution, and
the look-ahead operation covers at least one more vertex by trying multiple paths equivalent
to an existing path in the current solution in order to execute a replacement operation. With
these two more local improvement operations, we design a refined amortization scheme to
show that, on average, each vertex covered in the computed solution is attributed with at
most two vertices covered in an optimal solution. That is, Approx2 is a 2-approximation
algorithm for the MaxP4+PC problem. We also show a lower bound of 16

9 on the worst-case
performance ratio of Approx2.

The rest of the paper is organized as follows. In Section 2, we introduce the basic notations
and definitions. Section 3 is devoted to the MaxPk+PC problem, where we present the
Approx1 algorithm and its performance analysis. In Section 4, we present the Approx2
algorithm for the MaxP4+PC problem, and outline the performance analysis. Due to space
limit, while we provide most part of the performance analyses for both algorithms here to
convince the readers, some technical details are left out to the full version of the paper. We
conclude the paper in the last section with some possible future work.

2 Preliminaries

For a fixed integer k ≥ 4, in the MaxPk+PC problem, we are given a simple undirected
graph and want to find a collection of vertex-disjoint paths of order at least k to cover the
maximum number of vertices.

We consider simple undirected graphs in this paper and we fix a graph G for discussion.
Let V (G) and E(G) denote its vertex set and edge set in the graph G, respectively. We
simplify V (G) and E(G) as V and E, respectively, when the underlying graph is clear from
the context. We use n(G) to denote the order of G, that is, n = |V | is the number of vertices
in the graph. A subgraph S of G is a graph such that V (S) ⊆ V (G) and E(S) ⊆ E(G);
and likewise, n(S) = |V (S)| denotes its order. Given a subset of vertices R ⊆ V , the
subgraph of G induced on R is denoted as G[R], of which the vertex set is R and the
edge set contains all the edges of E each connecting two vertices of R. A (simple) path P

in G is a subgraph of which the vertices can be ordered into (v1, v2, . . . , vn(P )) such that
E(P ) = {{vi, vi+1}, i = 1, 2, . . . , n(P ) − 1}. A path of order ℓ is called an ℓ-path (also often
called a length-(ℓ − 1) path in the literature).

In this paper we are most interested in paths of order at least 4. In the sequel, given an
ℓ-path P with ℓ ≥ 4, we let uj denote the vertex of P at distance j from one ending vertex
of P , for 0 ≤ j ≤ ⌈ ℓ

2 ⌉ − 1, and vj denote the vertex of P at distance j from the other ending
vertex, for 0 ≤ j ≤ ⌊ ℓ

2 ⌋ − 1. When ℓ is odd, then the center vertex of the path is u ℓ−1
2

. This
way, a (2s + 1)-path is represented as u0-u1-· · · -us−1-us-vs−1-· · · -v1-v0, and a (2s)-path is
represented as u0-u1-· · · -us−1-vs−1-· · · –v1-v0. Though the path is undirected and the vertex
naming is often arbitrary, sometimes we will pick a particular endpoint of the path to be the
vertex u0.
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Given another path Q, let Q − P denote the subgraph of Q by removing those vertices
in V (P ), and the edges of E(Q) incident at them, from Q. Clearly, if V (P ) ∩ V (Q) = ∅,
then Q − P = Q; otherwise, Q − P is a collection of sub-paths of Q each has at least one
endpoint that is adjacent to some vertex on P through an edge of E(Q). For a collection P
of vertex-disjoint paths, it is also a subgraph of G, with its vertex set V (P) = ∪P ∈PV (P )
and edge set E(P) = ∪P ∈PE(P ). We similarly define Q − P to be the collection of sub-paths
of Q after removing those vertices in V (P) from V (Q), together with the edges of E(Q)
incident at them. Furthermore, for another collection Q of vertex-disjoint paths, we can
define Q − P analogously, that is, Q − P is the collection of sub-paths of the paths in Q after
removing those vertices in V (P) from V (Q), together with the edges of E(Q) incident at
them.

▶ Definition 1 (Associatedness). Given two collections P and Q of vertex-disjoint paths, if a
path S of Q − P has an endpoint that is adjacent to a vertex v in V (P) ∩ V (Q) in Q, then
we say S is associated with v.

One sees that a path S of Q − P can be associated with zero to two vertices in V (P) ∩ V (Q),
and conversely, a vertex of V (P) ∩ V (Q) can be associated with zero to two paths in Q − P .

If the paths of the collection P all have order at least k, then the vertices of V (P) are said
covered by the paths of P , or simply by P . Let R = V − V (P). For any vertex v ∈ V (P), an
extension e(v) at the vertex v is a path in the subgraph G[R] of G induced on R which has
an endpoint adjacent to v in G. Note that there could be many extensions at v, and we use
n(v) = maxe(v) n(e(v)) to denote the order of the longest extensions at the vertex v.

▶ Lemma 2. Given two collections P and Q of vertex-disjoint paths in the graph G, for
every vertex v ∈ V (P), any path of Q − P associated with v has order at most n(v).

Proof. The lemma holds since Q − P is a subgraph of the induced subgraph G[V − V (P)],
that is, every path of Q−P is a path in G[V −V (P)], and the associatedness (see Definition 1)
is a special adjacency through an edge of E(Q). ◀

Our goal is to compute a collection of vertex-disjoint paths of order at least k, such that
it covers the most vertices. In our local improvement algorithms below, we start with the
empty collection P = ∅ to iteratively expand V (P) through one of a few operations, to be
defined later. Notice that for an ℓ-path with ℓ ≥ 2k, one can break it into a k-path and an
(ℓ − k)-path by deleting an edge. Since they cover the same vertices, we assume without loss
of generality hereafter that any collection P inside our algorithms contains vertex-disjoint
paths of order in between k and 2k − 1, inclusive.

3 A (0.4394k + 0.6576)-approximation algorithm for MaxPk+PC

For a given integer k ≥ 4, the best known approximation algorithm for the Maximum Weighted
(2k − 1)-Set Packing problem leads to an O(n2k−1)-time (k − 1

63,700,992 + ϵ)-approximation
algorithm for the MaxPk+PC problem, for any ϵ > 0 [17]. In this section, we define three
local improvement operations for our algorithm for the MaxPk+PC problem, denoted as
Approx1. We show later that its time complexity is O(nk+1) and its approximation ratio is
at most 0.4394k + 0.6576.

For the current path collection P, if there is a path covering k-vertices outside of V (P),
then the following operation adds the k-path into P.

▶ Operation 3. For a k-path P in the induced subgraph G[V − V (P)], the Add(P ) operation
adds P to P.
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Since finding a k-path in the induced subgraph G[V − V (P)], for any P , can be done in
O(nk) time, determining whether or not an addition operation is applicable, and if so then
applying it, can be done in O(nk) time too. Such an operation increases |V (P)| by k.

Recall that a path P ∈ P is represented as u0-u1-· · · -v1-v0. Though it is undirected, we
may regard u0 the head vertex of the path and v0 the tail vertex for convenience. The next
operation seeks to extend a path of P by replacing a prefix (or a suffix) with a longer one.

▶ Operation 4. For a path P ∈ P such that there is an index t and an extension e(ut)
with n(e(ut)) ≥ t + 1 (an extension e(vt) with n(e(vt)) ≥ t + 1, respectively), the Rep(P )
operation replaces the prefix u0-u1-· · · -ut−1 of P by e(ut) (the suffix vt−1-· · · -v1-v0 of P by
e(vt), respectively).

Similarly, one sees that finding an extension e(ut) (of order at most k − 1, or otherwise an
Add operation is applicable) in the induced subgraph G[V −V (P)], for any vertex ut ∈ P ∈ P ,
can be done in O(nk−1) time. Therefore, determining whether or not a prefix or a suffix
replacement operation is applicable, and if so then applying it, can be done in O(nk) time.
Note that such an operation increases |V (P)| by at least 1.

The third operation tries to use a prefix and a non-overlapping suffix of a path in P to
grow them into two separate paths of order at least k.

▶ Operation 5. For a path P ∈ P such that
(i) there are two indices t and j with j ≥ t + 1 and two vertex-disjoint extensions e(ut)

and e(uj) with n(e(ut)) ≥ k − (t + 1) and n(e(uj)) ≥ k − (n(P ) − j), the DoubleRep(P )
operation replaces P by two new paths P1 = u0-u1-· · · -ut-e(ut) and P2 = e(uj)-uj-· · · -
v1-v0;

(ii) or there are two indices t and j and two vertex-disjoint extensions e(ut) and e(vj) with
n(e(ut)) ≥ k − (t + 1) and n(e(vj)) ≥ k − (j + 1), the DoubleRep(P ) operation replaces
P by two new paths P1 = u0-u1-· · · -ut-e(ut) and P2 = e(vj)-vj-· · · -v1-v0.

Note that finding an extension e(ut) (of order at most t, or otherwise a Rep operation is
applicable) can be limited to those indices t ≥ k−1

2 . Furthermore, we only need to find an
extension e(ut) of order at most k−1

2 (equal to k−1
2 only if t = k−1

2 ). For the same reason, we
only need to find an extension e(vj) of order at most k−1

2 for those indices j ≥ k−1
2 (equal

to k−1
2 only if j = k−1

2 ). Since k ≤ n(P ) ≤ 2k − 1 for any P ∈ P, we only need to find an
extension e(uj) of order at most k−1

2 too (equal to k−1
2 only if j = n(P )−1

2 and n(P ) = k).
In summary, finding the two vertex-disjoint extensions e(ut) and e(uj), or e(ut) and e(vj), in
the induced subgraph G[V − V (P)] can be done in O(nk−1) time (in Θ(nk−1) for at most 2
pairs of t and j). It follows that determining whether or not a double replacement operation
is applicable, and if so then applying it, can be done in O(nk) time. Also, such an operation
increases |V (P)| by at least 1 as the total number of vertices covered by the two new paths
P1 and P2 is at least 2k. We summarize the above observations on the three operations into
the following lemma.

▶ Lemma 6. Given a collection P of vertex-disjoint paths of order in between k and 2k − 1,
determining whether or not one of the three operations Add, Rep and DoubleRep is applicable,
and if so then applying it, can be done in O(nk) time. Each operation increases |V (P)| by at
least 1.

Given a graph G = (V, E), our approximation algorithm for the MaxPk+PC problem,
denoted as Approx1, is iterative. It starts with the empty collection P = ∅; in each iteration,
it determines whether any one of the three operations Add, Rep and DoubleRep is applicable,
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and if so then it applies the operation to update P . During the entire process, P is maintained
to be a collection of vertex-disjoint paths of order in between k and 2k − 1. The algorithm
terminates if none of the three operations is applicable for the current P , and returns it as the
solution. A simple high level description of the algorithm Approx1 is given in Algorithm 1.
From Lemma 6, we see that each operation improves the collection P to cover at least one
more vertex. Therefore, the overall running time of Approx1 is in O(nk+1).

Algorithm 1 Approx1 (high level description).

Input: A graph G = (V, E);
1. initialize P = ∅;
2. while (one of the operations Add, Rep, DoubleRep is applicable)

2.1 apply the operation to update P;
2.2 break any path of order 2k or above into two paths, one of which is a k-path;

3. return the final P.

Below we fix P to denote the collection of paths returned by our algorithm Approx1.
The next three lemmas summarize the structural properties of P, which are useful in the
performance analysis.

▶ Lemma 7. For any path Q of order at least k in the graph G, V (Q) ∩ V (P) ̸= ∅.

Proof. The lemma holds due to the termination condition of the algorithm Approx1, since
otherwise an Add operation is applicable. ◀

▶ Lemma 8. For any path P ∈ P, n(uj) ≤ j and n(vj) ≤ j for any index j.

Proof. The lemma holds due to the termination condition of the algorithm Approx1, since
otherwise a Rep operation is applicable. ◀

▶ Lemma 9. Suppose there is a vertex ut on a path P ∈ P and an extension e(ut) with
n(e(ut)) ≥ k − t − 1. Then,

(i) for any vertex uj with j ≥ t + 1, j ≤ k − 2 and every extension e(uj) vertex-disjoint to
e(ut) has order n(e(uj)) ≤ k − j − 2;

(ii) for any index j, every extension e(vj) vertex-disjoint to e(ut) has order n(e(vj)) ≤
k − j − 2.

Proof. The lemma holds due to the termination condition of the algorithm Approx1.
First, for any vertex uj with j ≥ t + 1, an extension e(uj) vertex-disjoint to e(ut) has

order n(e(uj)) ≤ k − (n(P ) − j) − 1 since otherwise a DoubleRep operation is applicable.
Using the fact that n(P ) ≥ 2j + 1, n(e(uj)) ≤ k − j − 2. Then by k − j − 2 ≥ 0, we have
j ≤ k − 2.

Next, similarly, for any index j, a vertex-disjoint extension e(vj) to e(ut) has order
n(e(vj)) ≤ k − j − 2 since otherwise a DoubleRep operation is applicable. ◀

We next examine the performance of the algorithm Approx1. We fix Q to denote an
optimal collection of vertex-disjoint paths of order at least k that covers the most vertices. We
apply an amortization scheme to assign the vertices of V (Q) to the vertices of V (P) ∩ V (Q).
We will show that, using the structural properties of P in Lemmas 7–9, the average number
of vertices received by a vertex of V (P) is upper bounded by ρ(k), which is the approximation
ratio of Approx1.



M. Gong, J. Fan, G. Lin, and E. Miyano 53:7

In the amortization scheme, we assign the vertices of V (Q) to the vertices of V (P) ∩V (Q)
as follows: Firstly, assign each vertex of V (Q) ∩ V (P) to itself. Next, recall that Q − P is
the collection of sub-paths of the paths of Q after removing those vertices in V (Q) ∩ V (P).
By Lemma 7, each path S of Q − P is associated with one or two vertices in V (Q) ∩ V (P).
If the path S is associated with only one vertex v of V (Q) ∩ V (P), then all the vertices on
S are assigned to the vertex v. If the path S is associated with two vertices v1 and v2 of
V (Q) ∩ V (P), then a half of the vertices on S are assigned to each of the two vertices v1 and
v2. One sees that in the amortization scheme, all the vertices of V (Q) are assigned to the
vertices of V (P) ∩ V (Q); conversely, each vertex of V (P) ∩ V (Q) receives itself, plus some
fraction of or all the vertices on one or two paths of Q − P . (We remark that the vertices of
V (P) − V (Q), if any, receive nothing.)

▶ Lemma 10. For any vertex uj on a path P ∈ P with j ≤ k − 2, if n(uj) ≤ k − j − 2, then
uj receives at most 3

2 min{j, k − j − 2} + 1 vertices.

Proof. By Lemma 8, we have n(uj) ≤ j. Therefore, n(uj) ≤ min{j, k − j − 2}. By Lemma 2,
any path of Q − P associated with uj contains at most min{j, k − j − 2} vertices.

If there is at most one path of Q − P associated with uj , then the lemma is proved.
Consider the remaining case where there are two paths of Q − P associated with uj .

Since 2 min{j, k − j − 2} + 1 ≤ j + (k − j − 2) + 1 = k − 1, while the path Q ∈ Q containing
the vertex uj has order at least k, we conclude that one of these two paths of Q − P is
associated with another vertex of V (Q) ∩ V (P). It follows from the amortization scheme
that uj receives at most 3

2 min{j, k − j − 2} + 1 vertices. ◀

▶ Lemma 11. Suppose s is an integer such that ⌊ k
2 ⌋ − 1 ≤ s ≤ k − 2. Then we have

s∑
j=1

min{j, k − j − 2} = ks + 3
2k − 1

4k2 − 5
2s − 1

2s2 − 2 − 1
4(k mod 2),

where mod is the modulo operation.

Proof. The formula can be directly validated by distinguishing the two cases where k is even
or odd, and using the fact that min{j, k − j − 2} = j if and only if j ≤ ⌊ k

2 ⌋ − 1. ◀

▶ Theorem 12. The algorithm Approx1 is an O(|V |k+1)-time ρ(k)-approximation algorithm
for the MaxPk+PC problem, where k ≥ 4 and

ρ(k) =
{ 3k+1

2 − 1
4
√

18k2 − 3, if k is odd;
3k+1

2 − 1
4
√

18k2 − 21, if k is even.

Proof. Recall that all the vertices of V (Q) are assigned to the vertices of V (Q) ∩ V (P),
through our amortization scheme. Below we estimate for any path P ∈ P the total number
of vertices received by the vertices of V (P ) ∩ V (Q), denoted as r(P ), and we will show that
r(P )
n(P ) ≤ ρ(k).

We fix a path P ∈ P for discussion. If it exists, we let t denote the smallest index j

such that the vertex uj on the path P is associated with a path e(uj) of Q − P with order
n(e(uj)) ≥ k − j − 1. Note that if necessary we may rename the vertices on P , so that the
non-existence of t implies any path of Q − P associated with the vertex uj or vj has order
at most k − j − 2, for any index j. Furthermore, by Lemma 9, if t exists, then any path of
Q − P , except e(ut), associated with the vertex uj or vj has order at most k − j − 2, for any
index j ≠ t. We remark that e(ut) could be associated with another vertex on the path P .
When n(P ) = 2k − 1, t exists and t = k − 1.
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We distinguish three cases for n(P ) based on its parity and on whether it reaches the
maximum value 2k − 1. Due to space limit, below we only discuss the first case in detail.

Case 1. n(P ) = 2s + 1 where k−1
2 ≤ s ≤ k − 2.

Since s ≥ k−1
2 , we have min{s, k − s − 2} = k − s − 2. If the index t does not exist, that is,

any path of Q−P associated with the vertex uj or vj has order at most k−j−2, for any index
j, then by Lemma 10 each of the vertices uj and vj receives at most 3

2 min{j, k − j − 2} + 1
vertices. Hence we have

r(P ) ≤ 2
s−1∑
j=0

(
3
2 min{j, k − j − 2} + 1

)
+ 3

2 min{s, k − s − 2} + 1

= 3
s∑

j=0
min{j, k − j − 2} − 3

2 min{s, k − s − 2} + (2s + 1)

≤ 3
s∑

j=1
min{j, k − j − 2} − 3

2k + 7
2s + 4. (1)

If the index t exists, then by Lemmas 8 and 2, n(e(ut)) ≤ t and thus the vertex ut receives
at most 2t + 1 vertices. Note that if e(ut) is associated with another vertex on the path P ,
then we count all the vertices of e(ut) towards ut but none to the other vertex (that is, we
could overestimate r(P )). It follows from Lemma 10, the above Eq. (1), t ≤ s, and s ≥ k−1

2
that

r(P ) ≤ 3
s∑

j=1
min{j, k − j − 2} − 3

2k + 7
2s + 4 −

(
3
2 min{t, k − t − 2} + 1

)
+ (2t + 1)

= 3
s∑

j=1
min{j, k − j − 2} − 3

2k + 7
2s + 4 +

(
2t − 3

2 min{t, k − t − 2}
)

= 3
s∑

j=1
min{j, k − j − 2} − 3

2k + 7
2s + 4 + max

{
1
2 t,

7
2 t − 3

2k + 3
}

≤ 3
s∑

j=1
min{j, k − j − 2} − 3

2k + 7
2s + 4 + max

{
1
2s,

7
2s − 3

2k + 3
}

= 3
s∑

j=1
min{j, k − j − 2} − 3

2k + 7
2s + 4 +

(
7
2s − 3

2k + 3
)

= 3
s∑

j=1
min{j, k − j − 2} − 3k + 7s + 7. (2)

Combining Eqs. (1, 2), and by Lemma 11, in Case 1 we always have

r(P ) ≤ 3
s∑

j=1
min{j, k −j −2}−3k +7s+7 = 3ks+ 3

2k − 3
4k2 − 1

2s− 3
2s2 +1− 3

4(k mod 2).

Therefore, using n(P ) = 2s + 1 we have

r(P )
n(P ) ≤

{
3k+1

2 − 3
8 (2s + 1) − 6k2−1

8(2s+1) ≤ 3k+1
2 − 1

4
√

18k2 − 3, if k is odd;
3k+1

2 − 3
8 (2s + 1) − 6k2−7

8(2s+1) ≤ 3k+1
2 − 1

4
√

18k2 − 21, if k is even,

where the upper bound ρ(k) is achieved when n(P ) ≈
√

2k.
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Case 2 where n(P ) = 2k − 1 and Case 3 where n(P ) = 2s with k
2 ≤ s ≤ k − 1 are

discussed similarly, and the estimated upper bounds on r(P )
n(P ) are slightly less than the

above ρ(k). Therefore, they together prove that the worst-case performance ratio of the
algorithm Approx1 is at most ρ(k), for any k ≥ 4. Note that ρ(k) ≤ 3k+1

2 − 1
4
√

18k2 − 21 ≤
0.4394k + 0.6576. ◀

4 A 2-approximation algorithm for MaxP4+PC

One sees that the algorithm Approx1 is an O(n5)-time 2.4150-approximation algorithm for
the MaxP4+PC problem, which improves the previous best O(n5)-time 4-approximation
algorithm proposed in [15] and O(n7)-time (4 − 1

63,700,992 + ϵ)-approximation algorithm
implied by [17]. In the amortized analysis for Approx1, when a path of Q − P is associated
with two vertices of V (Q) ∩ V (P), one half of the vertices on this path is assigned to each
of these two vertices. We will show that when k = 4, that is, for the MaxP4+PC problem,
the assignment can be done slightly better by observing where these two vertices are on the
paths of P and then assigning vertices accordingly. To this purpose, we will need to refine
the algorithm using two more local improvement operations, besides the three Add, Rep and
DoubleRep operations. We denote our algorithm for the MaxP4+PC problem as Approx2.

We again use P to denote the path collection computed by Approx2. Since Approx2
employs the three Add, Rep and DoubleRep operations, all of which are not applicable
at termination, the structural properties stated in Lemmas 7–9 continue to hold, and we
summarize them specifically using k = 4.

▶ Lemma 13. For any path P ∈ P,
(1) 4 ≤ n(P ) ≤ 7;
(2) n(uj) ≤ j and n(vj) ≤ j, for any valid index j;
(3) if n(P ) = 6, n(u2) > 0 and n(v2) > 0, then both u2 and v2 are adjacent to a unique

vertex in V − V (P), and hence they have common extensions;
(4) if n(P ) = 7, then n(u2) = n(v2) = 0.

We also fix Q to denote an optimal collection of vertex-disjoint paths of order at least 4
that covers the most vertices. Using Lemma 13, we may attach a longest possible extension
in Q − P to every vertex of a path of P , giving rise to the worst cases illustrated in Figure 1,
with respect to the order of the path. Since a vertex of a path P ∈ P can be associated with
up to two paths in Q − P, the worst-case performance ratio of the algorithm Approx2 is
at most max{ 17

7 , 14
6 , 13

5 , 8
4 } = 2.6. Our next two local improvement operations are designed

to deal with three of the four worst cases where the path orders are 5, 6 and 7. Afterwards,
we will show by an amortization scheme that the average number of vertices assigned to a
vertex of V (P) is at most 2.

Since the average number of vertices assigned to a vertex on a 4-path in P is already at
most 2, the first operation is employed to construct more 4-paths in V (P), whenever possible.

▶ Operation 14. For any two paths P and P ′ in P of order at least 5 such that their vertices
are covered exactly by a set of paths in G of order at least 4 and of which at least one path
has order 4, the Re-cover(P, P ′) operation replaces P and P ′ by this set of paths.

In other words, the Re-cover(P, P ′) operation removes the two paths P and P ′ from P,
and then uses the set of paths to re-cover the same vertices. Since there are O(n2) possible
pairs of paths P and P ′ in P, and by |V (P ) ∪ V (P ′)| ≤ 14 the existence of a set of paths
re-covering V (P )∪V (P ′) can be checked in O(1) time, we conclude that determining whether

MFCS 2022



53:10 Covering Vertices by Long Paths

Figure 1 The worst case of a path P ∈ P with respect to its order, where a vertex on the path P

is attached with a longest possible extension in Q − P, with its edges dashed. The edges on the
path P are solid and the vertices are shown filled, while the vertices on the extensions are unfilled.

or not a Re-cover operation is applicable, and if so then applying it, can be done in O(n2)
time. Note that such an operation does not change |V (P)|, but it increases the number of
4-paths by at least 1. For example, if n(P ) = 5 and n(P ′) = 7, and we use u′

j ’s and v′
j ’s

to label the vertices on P ′, then a Re-cover operation is applicable when u0 is adjacent to
any one of u′

0, u′
2, v′

2, v′
0 (resulting in three 4-paths); or if n(P ) = n(P ′) = 6, then a Re-cover

operation is applicable when u0 is adjacent to any one of u′
0, u′

1, v′
1, v′

0 (resulting in three
4-paths).

▶ Operation 15. For a path P ∈ P such that there is an index t ∈ {2, 3} and an extension
e(ut) with n(e(ut)) = t,

(i) if replacing P by the path e(ut)-ut-· · · -v1-v0 enables a Rep operation, then the Look-
ahead(P ) operation first replaces P by e(ut)-ut-· · · -v1-v0 and next executes the Rep
operation;

(ii) if n(P ) = 6 and one of v0 and v2 is adjacent to a vertex w, such that w is on e(u2)
or on u0-u1 or on another path of P but at distance at most 1 from one end, then
the Look-ahead(P ) operation first replaces P by the path u0-u1-u2-e(u2) and next uses
v0-v1-v2 as an extension e(w) to execute a Rep operation.

In some sense, the Look-ahead(P ) operation looks one step ahead to see whether or not
using the extension e(ut) in various ways would help cover more vertices. Recall that we
can rename the vertices on a path of P, if necessary, and thus the above definition of a
Look-ahead operation applies to the vertex v2 symmetrically, if there is an extension e(v2)
with n(e(v2)) = 2. Also, when ut is the center vertex of the path P (i.e., n(P ) = 5, 7), one
should also examine replacing P by the path u0-u1-· · · -ut-e(ut).

When the first case of a Look-ahead operation applies, its internal Rep operation must
involve at least two of the t vertices u0, u1, . . . , ut−1

2 because otherwise an Add or a Rep
operation would be applicable before this Look-ahead operation. Since there are O(n3)
possible extensions at the vertex ut, it follows from Lemma 6 that determining whether or
not the first case of a Look-ahead operation is applicable, and if so then applying it, can be
done in O(n6) time. Note that such an operation increases |V (P)| by at least 1.

2 First, at least one of these t vertices u0, u1, . . . , ut−1, say u, should be on the extension used in the
internal Rep operation; then the extension extends to the/a vertex adjacent to u.
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When the second case of a Look-ahead operation applies, we see that after the replacement
(which reduces |V (P)| by 1), the vertex w is always on a path of P at distance at most 1
from one end; and thus the succeeding Rep operation increases |V (P)| by at least 2. The net
effect is that such a Look-ahead operation increases |V (P)| by at least 1. Since there are
O(n2) possible extensions at the vertex u2, determining whether or not the second case of a
Look-ahead operation is applicable, and if so then applying it, can be done in O(n4) time.

We summarize the above observations on the two new operations into the following
lemma.

▶ Lemma 16. Given a collection P of vertex-disjoint paths of order in between 4 and 7,
determining whether or not one of the two operations Re-cover and Look-ahead is applicable,
and if so then applying it, can be done in O(n6) time. Each operation either increases |V (P)|
by at least 1, or keeps |V (P)| unchanged and increases the number of 4-paths by at least 1.

We are now ready to present the algorithm Approx2 for the MaxP4+PC problem,
which in fact is very similar to Approx1. It starts with the empty collection P = ∅; in each
iteration, it determines in order whether any one of the five operations Add, Rep, DoubleRep,
Re-cover, and Look-ahead is applicable, and if so then it applies the operation to update P .
During the entire process, P is maintained to be a collection of vertex-disjoint paths of order
in between 4 and 7. The algorithm terminates if none of the five operations is applicable for
the current P , and returns it as the solution. A simple high level description of the algorithm
Approx2 is given in Algorithm 2. From Lemmas 6 and 16, the overall running time of
Approx2 is in O(n8). Next we show that the worst-case performance ratio of Approx2 is
at most 2, and thus its higher running time is paid off. The performance analysis is done
through a similar but more careful amortization scheme.

Algorithm 2 Approx2 (high level description).

Input: A graph G = (V, E);
1. initialize P = ∅;
2. while (one of Add, Rep, DoubleRep, Re-cover and Look-ahead is applicable)

2.1 apply the operation to update P;
3. return the final P.

The amortization scheme assigns the vertices of V (Q) to the vertices of V (P) ∩ V (Q).
Firstly, each vertex of V (Q) ∩ V (P) is assigned to itself. Next, recall that Q − P is the
collection of sub-paths of the paths of Q after removing those vertices in V (Q) ∩ V (P). By
Lemma 7, each path S of Q − P is associated with one or two vertices in V (Q) ∩ V (P).

When the path S of Q − P is associated with two vertices v and v′ of V (Q) ∩ V (P), a
half of all the vertices on S are assigned to each of v and v′, except the first special case
below. In this first special case, n(S) = 1, v = u1 (or v = v1, respectively) and v′ = u′

3 on
some paths P, P ′ ∈ P with n(P ) ≥ 5 and n(P ′) = 7, respectively; then the whole vertex on
S is assigned to u′

3 (that is, none is assigned to u1, or v1, respectively).
When the path S of Q − P is associated with only one vertex v of V (Q) ∩ V (P), all the

vertices on S are assigned to the vertex v, except the second and the third special cases below
where n(S) = 1 and v = u1 (or v = v1, respectively) on a path P ∈ P with n(P ) ≥ 5. In
the second special case, S-u1-[r]-u′

3 is a subpath of some path Q ∈ Q, where u′
3 is the center

vertex of some 7-path P ′ ∈ P, and [r] means the vertex r might not exist but if it exists
then it is not the center vertex of any 7-path in P; in this case, a half of the vertex on S
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is assigned to each of u1 and u′
3.3 In the third special case, S-u1-u′

2 is a subpath of some
path Q ∈ Q, where u′

2 ̸= u2 is on some path P ′ ∈ P of order 5 or 6; in this case, a half of
the vertex on S is assigned to each of u1 and u′

2.
One sees that in the amortization scheme, all the vertices of V (Q) are assigned to the

vertices of V (P) ∩ V (Q); conversely, each vertex of V (P) ∩ V (Q) receives itself, plus some or
all the vertices on its associated paths of Q − P , and some u2, v2 vertices on 5-/6-paths and
some u3 vertices on 7-paths could receive some additional vertices not on their associated
paths, through the three special cases. (We remark that a vertex and its received vertices
are on the same path in Q, and that the vertices of V (P) − V (Q) receive nothing.)

The following lemma presents the joint effect of the above amortization scheme, of which
the proof is omitted due to space limit.

▶ Lemma 17.
1. For any path P ∈ P, each of the vertices u0 and v0 receives at most 1 vertex; each of the

vertices u1 and v1 receives at most 5
2 vertices; when n(P ) = 7, each of the vertices u2 and

v2 receives at most 1 vertex.
2. For any 5-path P ∈ P, if the vertex u2 receives more than 3 vertices, then each of the

vertices u1 and v1 receives at most 3
2 vertices.

3. For any 6-path P ∈ P, if the vertices u2 and v2 together receive more than 5 vertices,
then the total number of vertices received by all the vertices of P is at most 12.

4. For any 7-path P ∈ P, if the vertex u3 receives more than 5 vertices, then the vertices u0
and u1 (v0 and v1, respectively) together receive at most 5

2 vertices.

▶ Theorem 18. The algorithm Approx2 is an O(|V |8)-time 2-approximation algorithm for
the MaxP4+PC problem, and 16

9 is a lower bound on its performance ratio.

Proof. Similar to the proof of Theorem 12, we will show that r(P )
n(P ) ≤ 2 for any path P ∈ P ,

where r(P ) denotes the total number of vertices received by all the vertices on P through the
amortization scheme. We do this by differentiating the path order n(P ), which is in between
4 and 7.
Case 1. n(P ) = 4. By Lemma 17.1, we have r(P ) ≤ 1 + 5

2 + 5
2 + 1 = 7. It follows that

r(P )
n(P ) ≤ 7

4 .
Case 2. n(P ) = 5. If the vertex u2 receives at most 3 vertices, then by Lemma 17.1, we

have r(P ) ≤ 3 + 7 = 10. Otherwise, u2 receives at most 5 vertices, and by Lemma 17.2
each of u1 and v1 receives at most 3

2 vertices. It follows again by Lemma 17.1 that
r(P ) ≤ 5 + 5 = 10. That is, either way we have r(P ) ≤ 10 and thus r(P )

n(P ) ≤ 2.
Case 3. n(P ) = 6. If the vertices u2 and v2 together receive at most 5 vertices, then by

Lemma 17.1, we have r(P ) ≤ 5 + 7 = 12. Otherwise, by Lemma 17.3 we have r(P ) ≤ 12.
That is, either way we have r(P ) ≤ 12 and thus r(P )

n(P ) ≤ 2.
Case 4. n(P ) = 7. If the vertex u3 receives at most 5 vertices, then by Lemma 17.1, we have

r(P ) ≤ 5 + 2 + 7 = 14. Otherwise, u3 receives at most 7 vertices, and by Lemma 17.4 the
vertices u0 and u1 (v0 and v1, respectively) together receive at most 5

2 vertices. It follows
again by Lemma 17.1 that r(P ) ≤ 7 + 2 + 5 = 14. That is, either way we have r(P ) ≤ 14
and thus r(P )

n(P ) ≤ 2.

This proves that Approx2 is a 2-approximation algorithm.

3 In the second special case, if r exists and r /∈ V (P), then it falls into the first special case and, as a
result, the vertex u1 receives only 1

2 vertex and the vertex u′
3 receives 3

2 vertices.
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One might wonder whether the performance analysis can be done better. Though we are
not able to show the tightness of the performance ratio 2, we give below a graph to show
that 16

9 is a lower bound.

u0 u1 u2

v0 v1 v2

w0 w1 w2

x0 x1 x2

y0

y1

y2

y3

y4

y5

z0

z1

z2

z3

z4

z5

u3

v3

w3

x3

y6

y7

z6

z7

Figure 2 A graph of order 32 to show that the performance ratio of the algorithm Approx2 is
lower bounded by 16

9 . All the edges in the graph are shown, either solid or dashed. The 18 filled
vertices are covered by the collection of two 5-paths and two 4-paths computed by Approx2, and
the edges on these paths are shown solid; the edges on an optimal collection of paths, which covers
all the vertices, are shown dashed.

The graph displayed in Figure 2 contains 32 vertices. An optimal solution covers all
the vertices, and its paths are (vertical) u0-v0-w0-x0, y0-u1-y1-v1-y2, z0-x1-z1-w1-z2, y3-u2-
y4-v2-y5, z3-x2-z4-w2-z5, y6-u3-y7-v3, and w3-z7-x3-z6. Assuming the algorithm Approx2
adds four 4-paths (horizontal) u0-u1-u2-u3, v0-v1-v2-v3, w0-w1-w2-w3, x0-x1-x2-x3, and then
extends the first and the last to u0-u1-u2-u3-y7, x0-x1-x2-x3-z7. Then none of the five
operations can be applied to improve the solution, which covers a total of 18 vertices only.
That is, the algorithm Approx2 only achieves a performance ratio of 16

9 on the graph. ◀

5 Conclusion

In this paper, we studied the general vertex covering problem MaxPk+PC, where k ≥ 4,
to find a collection of vertex-disjoint paths of order at least k to cover the most vertices
in the input graph. The problem seemingly escapes from the literature, but it admits a
k-approximation algorithm by reducing to the weighted (2k − 1)-set packing problem [17].
We proposed the first direct (0.4394k + O(1))-approximation algorithm and an improved
2-approximation algorithm when k = 4. Both algorithms are local improvement based on a
few operations, and we proved their approximation ratios via amortized analyses.

We suspect our amortized analyses are tight, and it would be interesting to either show
the tightness or improve the analyses. For designing improved approximation algorithms,
one can look into whether the two new operations in Approx2 for k = 4 can be helpful for
k ≥ 5; other different ideas might also work, for example, one can investigate whether or not
a maximum path-cycle cover [10] can be taken advantage of.

On the other hand, we haven’t addressed whether or not the MaxPk+PC problem, for a
fixed k ≥ 4, is APX-hard, and if it is so, then it is worthwhile to show some non-trivial lower
bounds on the approximation ratio, even only for k = 4.
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Abstract
We say that a Hamilton cycle C = (x1, . . . , xn) in a graph G is k-symmetric, if the mapping
xi 7→ xi+n/k for all i = 1, . . . , n, where indices are considered modulo n, is an automorphism of G.
In other words, if we lay out the vertices x1, . . . , xn equidistantly on a circle and draw the edges
of G as straight lines, then the drawing of G has k-fold rotational symmetry, i.e., all information
about the graph is compressed into a 360◦/k wedge of the drawing. We refer to the maximum k

for which there exists a k-symmetric Hamilton cycle in G as the Hamilton compression of G. We
investigate the Hamilton compression of four different families of vertex-transitive graphs, namely
hypercubes, Johnson graphs, permutahedra and Cayley graphs of abelian groups. In several cases we
determine their Hamilton compression exactly, and in other cases we provide close lower and upper
bounds. The cycles we construct have a much higher compression than several classical Gray codes
known from the literature. Our constructions also yield Gray codes for bitstrings, combinations and
permutations that have few tracks and/or that are balanced.
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1 Introduction

A Hamilton cycle in a graph is a cycle that visits every vertex of the graph exactly once.
This concept is named after the Irish mathematician and astronomer Sir William Rowan
Hamilton (1805–1865), who invented the Icosian game, in which the objective is to find a
Hamilton cycle along the edges of the dodecahedron. Figure 1 shows the dodecahedron with
a Hamilton cycle on the circumference. Hamilton cycles have been studied intensively from
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180◦

Figure 1 The dodecahedron with a 2-symmetric Hamilton cycle.

various different angles, such as graph theory (necessary/sufficient conditions, packing and
covering etc. [11, 12, 13, 18]), optimization (shortest tours, approximation [2]), algorithms
(complexity [10], exhaustive generation [22, 25]) and algebra (Cayley graphs [5, 19, 24, 28]).
In this work we introduce a new graph parameter that quantifies how symmetric a Hamilton
cycle in a graph can be. For example, the cycle in the dodecahedron shown in Figure 1 is
2-symmetric, as the drawing has 2-fold (i.e., 360◦/2 = 180◦) rotational symmetry.

1.1 Hamilton cycles with rotational symmetry
Formally, let G = (V, E) be a graph with n vertices. We say that a Hamilton cycle
C = (x1, . . . , xn) is k-symmetric if the mapping f : V → V defined by xi 7→ xi+n/k for all
i = 1, . . . , n, where indices are considered modulo n, is an automorphism of G. I.e., we have

C = P, f(P ), f2(P ), . . . , fk−1(P ) for the path P := (x1, . . . , xn/k). (1)

The idea is that the entire cycle C can be reconstructed from the path P , which contains
only a 1/k-fraction of all vertices, by repeatedly applying the automorphism f to it. In other
words, if we lay out the vertices x1, . . . , xn equidistantly on a circle, and draw edges of G

as straight lines, then we obtain a drawing of G with k-fold rotational symmetry, i.e., f is
a rotation by 360◦/k; see Figure 2. We refer to the maximum k for which the Hamilton
cycle C of G is k-symmetric as the compression factor of C, and we denote it by κ(G, C).

1.2 Connection to LCF notation
There is yet another interesting interpretation of the compression factor in terms of the LCF
notation of a graph, named after its inventors Lederberg, Coxeter and Frucht (see [9]). The
idea is to describe a 3-regular Hamiltonian graph (such as the dodecahedron) concisely by
considering one of its Hamilton cycles C = (x1, . . . , xn). Each vertex xi has the neighbors
xi−1 and xi+1 (modulo n) in the graph, plus a third neighbor xj , which is di := j − i

(modulo n) steps away from xi along the cycle. The LCF sequence of G is the sequence
d = (d1, . . . , dn), where each di is chosen so that −n/2 < di ≤ n/2. Clearly, we also have
di /∈ {−1, 0, +1}. Note that if C is k-symmetric, then the LCF sequence d of G is k-periodic,
i.e., it has the form d = (d1, . . . , dn/k)k, where the k in the exponent denotes k-fold repetition;
see Figure 2. While LCF notation is only defined for 3-regular graphs, we can easily extend it
to arbitrary graphs with a Hamilton cycle C = (x1, . . . , xn), by considering a sequence of sets
D = (D1, . . . , Dn), where Di is the set of distances to all neighbors of xi on the cycle except
xi−1 and xi+1; see Figure 3 (a)+(d). As before, if C is k-symmetric, then the corresponding
sequence D is k-periodic, i.e., it has the form D = (D1, . . . , Dn/k)k. Frucht [9] writes:
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Figure 2 Hamilton cycles C1, . . . , C4 in the 4-permutahedron Π4 with different LCF sequences
and compression factors.

“What happens with the LCF notation if we replace one hamiltonian circuit by
another one? The answer is: nearly everything can happen! Indeed the LCF notation
for a graph can remain unaltered or it can change completely [...] In such cases we
should choose of course the shortest of the existing LCF notations.”

This observation is illustrated in Figure 2, which shows four different Hamilton cycles of the
same graph G that have different LCF sequences and compression factors.

1.3 Hamilton compression
Frucht’s suggestion is to search for a Hamilton cycle C in G whose compression factor κ(G, C)
is as large as possible. Formally, for any graph G we define

κ(G) := max
{

κ(G, C) | C is a Hamilton cycle in G
}

, (2)

and we refer to this quantity as the Hamilton compression of G. If G has no Hamilton cycle,
then we define κ(G) := 0. While the maximization in (2) is simply over all Hamilton cycles
in G, and the automorphisms arise as possible rotations of those cycles, this definition is
somewhat impractical to work with. In our arguments, we rather consider all automorphisms
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Figure 3 Symmetric Hamilton cycles in the (a) 4-cube; (b) middle levels of the 5-cube; (c) Johnson
graph J7,2; (d) abelian Cayley graph (Z2

5, {(0, 1), (1, 0)}).

of G, and then search for a Hamilton cycle that is k-symmetric under the chosen automorphism.
Specifically, proving a lower bound of κ(G) ≥ k amounts to finding an automorphism f of G

and a k-symmetric Hamilton cycle under f . To prove an upper bound of κ(G) < k, we need
to argue that there is no k-symmetric Hamilton cycle in G, for any choice of f .

By what we said in the beginning, the quantity κ(G) can be seen as a measure for the
nicest (i.e., most symmetric) way of drawing the graph G on a circle. Thus, our paper
contains many illustrations that convey the aesthetic appeal of this problem.

1.4 Easy observations and bounds
We collect a few basic observations about the quantity κ(G). Trivially, we have 0 ≤ κ(G) ≤ n,
where n is the number of vertices of G. The upper bound n can be improved to

κ(G) ≤ max
f∈Aut(G)

ord(f), (3)

where Aut(G) is the automorphism group of G, and ord(f) is the order of f . An immediate
consequence of (1) is that all orbits of the automorphism f must have the same size n/k, and
the path P = (x1, . . . , xn/k) visits every orbit exactly once. This can be used to improve (3)
further by restricting the maximization to automorphisms from Aut(G) whose orbits all have
the same size. Furthermore, as k must divide n, we obtain that κ(G) ∈ {0, 1, n} for prime n.
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Clearly, every Hamilton cycle of a graph G is 1-symmetric, by taking the identity mapping
f = id as automorphism. Consequently, we have κ(G) ≥ 1 for any Hamiltonian graph. On
the other hand, if G is Hamiltonian and highly symmetric, i.e., if it has a rich automorphism
group, then intuitively G should have a large value of κ(G), i.e., it should admit highly
symmetric Hamilton cycles. For example, for the cycle Cn on n vertices and the complete
graph Kn on n vertices we have κ(Cn) = κ(Kn) = n. More generally, note that κ(G) = n if
and only if G is a special circulant graph, namely the vertices of G can be labeled with 1, . . . , n

such that vertex i is adjacent to all vertices j = i + d (modulo n) with d ∈ L, where L is a
fixed list with 1 ∈ L. Note that general circulant graphs do not require that 1 ∈ L, but the
aforementioned characterization requires this assumption.

2 Our results

Vertex-transitive graphs are a prime example of highly symmetric graphs. A graph is vertex-
transitive if for any two vertices there is an automorphism that maps the first vertex to the
second one. In other words, the automorphism group of the graph acts transitively on the
vertices. In this paper we investigate the Hamilton compression κ(G) of four families of
vertex-transitive graphs G, namely hypercubes, Johnson graphs, permutahedra, and Cayley
graphs of abelian groups. In the following definitions the letter n denotes a graph parameter
and not the number of vertices of the graph as in Section 1. The n-dimensional hypercube Qn,
or n-cube for short, has as vertices all bitstrings of length n, and an edge between any two
strings that differ in a single bit; see Figure 3 (a). The Johnson graph Jn,m has as vertices all
bitstrings of length n with fixed Hamming weight m, and an edge between any two strings
that differ in a transposition of a 0 and 1; see Figure 3 (c). The n-permutahedron Πn, has as
vertices all permutations of [n] := {1, . . . , n}, and an edge between any two permutations that
differ in an adjacent transposition, i.e., a swap of two neighboring entries of the permutations
in one-line notation; see Figure 2. For a group Γ and generating set S ⊆ Γ, the Cayley
graph G(Γ, S) has Γ as its vertex set and undirected edges {x, y} for all x, y ∈ Γ and s ∈ S

with y = xs; see Figure 3 (d). Note that the hypercube is isomorphic to a Cayley graph of
the abelian group Zn

2 .
Hamilton cycles with various additional properties in the aforementioned families of graphs

have been the subject of a long line of previous research under the name of combinatorial Gray
codes [22, 25]. We will see that some classical constructions of such cycles have a non-trivial
small compression factor, and we construct cycles with much higher compression factor that
we show to be optimal or near-optimal. Along the way, many interesting number-theoretic
and algebraic phenomena arise. Due to space constraints, in this extended abstract we only
mention our main results, while all proofs can be found in the preprint [15].

2.1 Hypercubes
One of the classical constructions of a Hamilton cycle in Qn is the well-known binary
reflected Gray code (BRGC) [14]. This cycle in Qn is defined inductively by Γ0 := ε and
Γn := 0Γn−1, 1 #        „Γn−1 for all n ≥ 1, where ε is the empty sequence and #        „Γn−1 denotes the
reversal of the sequence Γn−1. In words, the cycle Γn is obtained by concatenating the
vertices of Γn−1 prefixed by 0 with the vertices of Γn−1 in reverse order prefixed by 1. The
cycle Γn is shown in Figure 3 (a) and Figure 4 (a) for n = 4 and n = 8, and these drawings
have 4-fold rotational symmetry.

▶ Proposition 1. The BRGC Γn has compression κ(Qn, Γn) = 4 for n ≥ 2.
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(a)

(b)

(c)

Figure 4 Symmetric Hamilton cycles in Q8. Cycles are on the left (0=white, 1=black), with the
first and last bit on the inner and outer track, respectively. The full graph Q8 is on the right, with
vertices arranged in cycle order and edges drawn as straight lines. (a) Binary reflected Gray code Γ8

with compression 4; (b) Hamilton cycle with compression 8 from Theorem 2; (c) 2-track Hamilton
cycle with compression 8 from Theorem 8.
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We improve upon this by constructing new Hamilton cycles in Qn that have optimal
linear Hamilton compression; see Figure 4 (b).

▶ Theorem 2. We have κ(Q2) = 4 and κ(Qn) = 2⌈log2 n⌉ for all n ≥ 3.

Note that n ≤ κ(Qn) < 2n for n ≥ 2, in particular κ(Qn) = Θ(n), i.e., the optimal
compression grows linearly with n.

2.2 Johnson graphs and relatives
Our definition of Hamilton compression is inspired by a variant of the well-known middle
levels problem raised by Knuth in Problem 56 in Section 7.2.1.3 of his book [17]. Let
M2n+1 denote the subgraph of Q2n+1 induced by all bitstrings with Hamming weight n

or n + 1. In other words, M2n+1 is the subgraph of the cover graph of the Boolean lattice
of dimension 2n + 1 induced by the middle two levels. There is a natural automorphism
of M2n+1 all of whose orbits have the same size, namely cyclic left-shift of the bitstrings
by one position. Knuth asked whether M2n+1 admits a (2n + 1)-symmetric Hamilton cycle

(a)

(b)

Figure 5 Symmetric Hamilton cycles in the middle levels graph M7: (a) A solution to Knuth’s
problem with compression 7 for f being cyclic left-shift; (b) Hamilton cycle with compression 10 for
f being left-shift of the last 5 bits and complementation of all bits.
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under this automorphism, and he rated this the hardest open problem in his book, with
a difficulty rating of 49/50. Such cycles are shown in Figure 3 (b) and Figure 5 (a) for
the graphs M5 and M7, respectively. Knuth’s problem was answered affirmatively in full
generality in [21], which establishes the lower bound κ(M2n+1) ≥ 2n + 1. We show that this
is at most a factor of 2 away from optimality.

▶ Theorem 3. For all n ≥ 1 we have 2n + 1 ≤ κ(M2n+1) ≤ 2(2n + 1).

Interestingly, it seems that both bounds in Theorem 3 can be improved. For example, for
n = 3 we can take the automorphism f of M7 defined by x1 · · · x7 7→ x1x2x4x5x6x7x3, which
fixes the first two bits, cyclically left-shifts the remaining five bits by one position, and then
complements all bits. A 10-symmetric Hamilton cycle under this f is shown in Figure 5 (b),
whereas the lower and upper bounds are 7 and 14, respectively. In fact, computer experiments
show that κ(M7) = 10.

For the Johnson graphs Jn,m, we obtain the following exact results and bounds. Part (i)
and (ii) of the theorem are illustrated in Figure 6 (a) and (b), respectively.

▶ Theorem 4. The Hamilton compression of the Johnson graph Jn,m, where n > m > 0,
has the following properties:

(i) If n and m are coprime, we have κ(Jn,m) = n.
(ii) If n and m are not coprime and n ̸= 2m, we have n/2 < max{m, n−m} < κ(Jn,m) ≤ n.
(iii) If n and m are not coprime and n = 2m, we have n/2 < κ(Jn,m) ≤ 2n.
(iv) For any ε > 0 there is an n0 such that for all n > n0 with n ̸= 2m we have (1 − ε)n ≤

κ(Jn,m) ≤ n. In particular, we have κ(Jn,m) = (1 − o(1))n for n ̸= 2m.

(a) (b)

Figure 6 Symmetric Hamilton cycles in Johnson graphs: (a) Balanced 1-track Hamilton cycle
in J11,3 with compression n = 11; the automorphism left-shifts all n bits; (b) 4-track Hamilton cycle
in J10,4 with compression q = 7; the automorphism left-shifts the first q bits.

2.3 Permutahedra
Another classical Gray code is produced by the Steinhaus-Johnson-Trotter (SJT) algorithm,
which generates permutations by adjacent transpositions. This algorithm computes a
Hamilton cycle in Πn, which can be described inductively as follows: Λ1 := 1 and for all
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(a)

(b)

(c)

Figure 7 Symmetric Hamilton cycles in Π5 (1=red, 2=orange, 3=yellow, 4=green, 5=blue):
(a) Steinhaus-Johnson-Trotter cycle Λ5 with compression 3; (b) Cycle with compression 5; (c) Cycle
with optimal compression 10.
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n ≥ 2 the cycle Λn is obtained from Λn−1 by replacing each permutation of length n − 1 by
the n permutations given by inserting n in every possible position, alternatingly from right
to left or vice versa. The cycle Λn is shown in Figure 2 (a) and Figure 7 (a) for n = 4 and
n = 5, respectively, and these drawings have 6-fold or 3-fold rotational symmetry.

▶ Proposition 5. The SJT cycle Λn has compression κ(Πn, Λn) = 6 for n = 3, 4 and
κ(Πn, Λn) = 3 for n ≥ 5.

We improve upon this by constructing new Hamilton cycles in Πn that have mildly
exponential Hamilton compression; see Figure 7 (b)+(c). Specifically, the growth of the
optimum compression is determined by Landau’s function λ(n), which is defined as the
maximum order of an element in the symmetric group Sn.

▶ Theorem 6. We have κ(Πn) = Θ(λ(n)) = e(1+o(1))
√

n ln n.

The lower and upper bounds in the proof of Theorem 6 differ at most by a factor of 2 for
every n ≥ 3. Moreover, we achieve the optimal compression in infinitely many cases, in particu-
lar for the following values of n ≤ 100: n = 3, 4, 5, 15, 22, 46, 49, 51, 52, 53, 55, 68, 69, 72, 73, 74,

75, 80, 82, 85, 87, 88, 89, 91, 92, 93, 96, 97, 99, 100.

2.4 Abelian Cayley graphs
A classical folklore result asserts that every Cayley graph of an abelian group has a Hamilton
cycle. The Chen-Quimpo theorem [4] asserts that in fact much stronger Hamiltonicity
properties hold. It is thus natural to ask whether Cayley graphs of abelian groups have
highly symmetric Hamilton cycles.

▶ Theorem 7. Let Γ be an abelian group.
(i) If |Γ| is a product of distinct odd primes, then for the canonical generating set S ⊆ Γ,

the Cayley graph G = G(Γ, S) has compression κ(G) = 1.
(ii) If |Γ| ≥ 3 is even or divisible by a square greater than 1, then for any generating

set S ⊆ Γ, the Cayley graph G = G(Γ, S) has compression κ(G) ≥ 2.

In particular, toroidal grids Zp × Zq for distinct odd primes p, q have only compression 1.
The canonical generating set of a finite abelian group Γ is the set of unit vectors in the
decomposition of Γ as a product of cyclic groups given by the structure theorem of finite
abelian groups.

3 Related problems

We proceed to discuss some applications of our results to closely related problems.

3.1 Lovász’ conjecture
A well-known question of Lovász’ [20] asks whether there are infinitely many vertex-transitive
graphs that do not admit a Hamilton cycle. So far only five such graphs are known, namely K2,
the Petersen graph, the Coxeter graph, and the graphs obtained from the latter two by
replacing every vertex by a triangle. Vertex-transitive graphs have a lot of automorphisms,
and we may take the quantity κ(G) as a measure of how strongly G is Hamiltonian. In
particular, Lovász’ question may be rephrased as ‘Are there infinitely many vertex-transitive
graphs G with κ(G) = 0?’ More generally, we may ask: ‘Are there infinitely many vertex-
transitive graphs G with κ(G) = k, for each fixed integer k?’ A particularly relevant subclass
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Figure 8 One of the smallest vertex-transitive non-Cayley graphs G with κ(G) = 1.

of vertex-transitive graphs are Cayley graphs, so we may ask the same question about Cayley
graphs. From our results mentioned in Section 2.4 we obtain an infinite family of Cayley
graphs G with κ(G) = 1. Computer experiments show that the smallest vertex-transitive
non-Cayley graphs G with κ(G) = 1 have 26 vertices, and one of them is shown in Figure 8.

The path P in (1) is a Hamilton path in the quotient graph G/f obtained by collapsing
each orbit of f into a single vertex. The idea of constructing a Hamilton cycle in G by
constructing a Hamilton cycle in the much smaller graph G/f that is then “lifted” to the
full graph is well known in the literature, and has been used to solve some special cases of
Lovász’ problem affirmatively; see e.g. [1, 6, 19, 21, 27]. It is particularly useful for computer
searches, as it reduces the search space dramatically.

3.2 t-track and balanced Gray codes
We say that a sequence C of strings of length n consists of t tracks if in the |C| × n matrix
corresponding to C there are t columns such that every other column is a cyclically shifted
copy of one of these columns. This property is relevant for applications, as it saves hardware
when implementing Gray-coded rotary encoders. Instead of using n tracks and n reading
heads aligned at the same angle (each reading one track), one can use only t tracks, and
place some of the n reading heads at appropriately rotated positions.

Hiltgen, Paterson, and Brandestini [16] showed that the length of any 1-track cycle in Qn

must be a multiple of 2n. In particular, such a cycle cannot be a Hamilton cycle unless n

is a power of 2. For the case n = 2r, r ≥ 3, Etzion and Paterson [7] showed that there is
1-track cycle of length 2n − 2n, and Schwartz and Etzion [26] subsequently showed that the
length 2n − 2n is best possible. Taken together, these results show that there is no 1-track
Hamilton cycle in Qn for any n ≥ 3. We complement this negative result by constructing a
2-track Hamilton cycle in Qn, for every n that is a sum of two powers of 2; see Figure 4 (c).

▶ Theorem 8. For every n = 2r and m = 2s, where r ≥ 2 and r ≥ s ≥ 0, there is a
2n-symmetric Hamilton cycle in Qn+m that has 2 tracks.

More generally, we obtain t-track Hamilton cycles in Qn for every n that is a sum of
t ≥ 2 powers of 2. In particular, every dimension n admits a Hamilton cycle with at most
logarithmically many tracks.

▶ Theorem 9. For every n = 2r and (m1, . . . , mt−1) = (2s1 , . . . , 2st−1), where r, t ≥ 2 and
r ≥ s1 ≥ · · · ≥ st−1 ≥ 0, there is a 2n-symmetric Hamilton cycle in Qn+m1+···+mt−1 that
has t tracks.
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Figure 9 Balanced 1-track Hamilton cycle in Π+
5 with compression 5 from Theorem 11 (cyclically

adjacent transpositions).

From our construction in the Johnson graph Jn,m when n and m are coprime, we obtain
1-track Hamilton cycles that are also balanced, i.e., each bit is flipped equally often (cf. [3, 8]);
see Figure 6 (a).

▶ Theorem 10. Let n > m > 0 be such that n and m are coprime. Then Jn,m has an
n-symmetric Hamilton cycle that has 1 track and is balanced, i.e., each bit is flipped equally
often (

(
n
m

)
/n many times).

We write Π+
n for the graph obtained from the permutahedron Πn by adding edges that

correspond to transpositions of the first and last entry of a permutation, i.e., we allow
cyclically adjacent transpositions. The next theorem is illustrated in Figure 9.

▶ Theorem 11. For every odd n ≥ 3 there is an n-symmetric Hamilton cycle in Π+
n that

has 1 track and is balanced, i.e., each of the n transpositions is used equally often ((n − 1)!
many times).

4 Open questions

The Hamilton compression κ(G) is a newly introduced graph parameter, so many natural
follow-up questions arise. We conclude this paper by listing several of these problems.

Can the Gray codes constructed in this paper be computed efficiently? While our proofs
translate straightforwardly into algorithms whose running time is polynomial in the size
of the graph, a more ambitious goal are algorithms whose running time per generated
vertex is polynomial in the length of the vertex labels (bitstrings, permutations, etc.).
What is the Hamilton compression of the middle levels graph (recall Theorem 3)?
For any integer n ≥ 1, the odd graph On has as vertices all bitstrings of length 2n + 1
with Hamming weight n, and an edge between any two strings that have no 1s in common.
Odd graphs On, n ≥ 3, were shown to have a Hamilton cycle in [23], so κ(On) ≥ 1. We
can use cyclic shifts as the automorphism, and it is easy to see that κ(On) ≤ 2n + 1. We
conjecture that κ(On) = 2n + 1 for all n ≥ 4, which we confirmed for n = 4.
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In view of Section 2.4, the main open question here is whether the Cayley graph G =
G(Γ, S), where Γ is an abelian group such that |Γ| is a product of distinct odd primes
and S is a non-canonical set of generators, has κ(G) equal to 1 or exceeding 1.
What is the Hamilton compression of the associahedron, which has as automorphism
group the dihedral group of a regular n-gon? For n = 5, 6, 7, 8 we determined the values
5, 2, 7, 2 by computer, and we suspect that the primality of n plays a role.
Instead of asking about the largest number k = κ(G) such that Aut(G, C) (automorphisms
of G that preserve C) contains the cyclic subgroup of order k for some Hamilton cycle C

in G, we may ask for the dihedral subgroup of the largest order, which would allow not
only for rotations of the drawings but also reflections.
Is there a 1-track Hamilton cycle in Πn (recall Theorem 11)? Equivalently, can all n!
permutations be listed by adjacent transpositions so that every column is a cyclic shift
of every other column?
Is there a balanced Hamilton cycle in Πn? Equivalently, can all n! permutations be
listed using each of the n − 1 adjacent transpositions equally often? Alternatively, what
about using each of the

(
n
2
)

transpositions equally often (see [8])? For n = 5, we found
orderings satisfying the constraints of both questions.
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Abstract
We continue the study of δ-dispersion, a continuous facility location problem on a graph where all
edges have unit length and where the facilities may also be positioned in the interior of the edges.
The goal is to position as many facilities as possible subject to the condition that every two facilities
have distance at least δ from each other.

Our main technical contribution is an efficient procedure to “round-up” distance δ. It transforms
a δ-dispersed set S into a δ⋆-dispersed set S⋆ of same size where distance δ⋆ is a potentially slightly
larger rational a

b
with a numerator a upper bounded by the longest (not-induced) path in the input

graph.
Based on this rounding procedure and connections to the distance-d independent set problem

we derive a number of algorithmic results. When parameterized by treewidth, the problem is in
XP. When parameterized by treedepth the problem is FPT and has a matching lower bound on its
time complexity under ETH. Moreover, we can also settle the parameterized complexity with the
solution size as parameter using our rounding technique: δ-Dispersion is FPT for every δ ≤ 2 and
W[1]-hard for every δ > 2.

Further, we show that δ-dispersion is NP-complete for every fixed irrational distance δ, which
was left open in a previous work.
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1 Introduction

We study the algorithmic behavior of a continuous dispersion problem. Consider an undirected
graph G, whose edges have unit length. Let P (G) be the continuum set of points on all the
edges and vertices. For two points p, q ∈ P (G), we denote by d(p, q) the length of a shortest
path containing p and q in the underlying metric space. A subset S ⊆ P (G) is δ-dispersed for
some positive real number δ, if every distinct points p, q ∈ S have distance at least d(p, q) ≥ δ.
Our goal is, for a given graph G and a positive real number δ, to compute a maximum
cardinality subset S ⊆ P (G) that is δ-dispersed. We denote by δ-disp(G) the maximum size
of a δ-dispersed set of G. The decision problem Dispersion asks for a δ-dispersed set of size
at least k, where additionally integer k ≥ 0 is part of the input. When δ is fixed and not
part of the input, we refer to the problem as δ-Dispersion.
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1.1 Known and Related Results
The area of obnoxious facility location goes back to seminal articles of Goldman & Dearing [6]
and Church & Garfinkel [3]. The area includes a wide variety of objectives and models.
For example, purely geometric variants have been studied by Abravaya & Segal [1], Ben-
Moshe, Katz & Segal [2], and Katz, Kedem & Segal [14]. Recently, van Ee studied the
approximability of a generalized covering problem in a metric space that also involves
dispersion constraints [19]. Another direction is a graph-theoretic model, where every edge
of the given graph G is rectifiable and has some individual length. Tamir discusses the
complexity and approximability of several optimization problems. For example, when G is a
tree, then a δ-dispersed set can be computed in polynomial time [18]. Another task is to
place a single obnoxious facility in a network while maximizing, for example, the smallest
distance from the facility to certain clients, as studied by Segal [16].

In a previous work, the complexity of Dispersion was studied for every rational distance δ.
When δ is a rational number with numerator 1 or 2, the problem is polynomial time solvable,
while it is NP-complete for all other rational values of δ [7, 8]. The complexity when δ is
irrational was left as an open problem.

A closely related facility location problem is δ-covering. The objective is to place as few
locations as possible on P (G) subject to the condition that any point in P (G) is in distance
at most δ to a placed location. This problem is polynomial time solvable whenever δ is a unit
fraction, while it is NP-hard for all non unit fractions δ [10]. Furthermore, the parameterized
complexity with the parameter solution size k is studied. δ-covering is fixed parameter
tractable when δ < 3

2 , while for δ ≥ 3
2 the problem is W[2]-complete [10]. Tamir [17] showed

that for δ-covering only certain distances δ are of interest. For every amount of points p

the distance max{δ⋆ : |δ⋆-cover(G)| = p} is of the form L′

2p′ where p′ ∈ {1, . . . , p} and L′ is
roughly at most twice the length of a non-induced path in G.

1.2 Our Contribution
Our main technical contribution is an efficient and constructive rounding procedure. Given a
δ-dispersed set S for some distance value δ > 0, it transforms S into a δ⋆-dispersed set S⋆ of
equal size with a slightly larger well-behaving distance value δ⋆ ≥ δ. The new distance δ⋆ is
a rational a

b with small numerator a. More precisely, the numerator is upper bounded by
the length of the longest (not-induced) path L, hence upper bounded asymptotically by the
number of vertices n of the input graph (see Section 5).

Our second technical contribution relates the optimal solution for distance δ and δ
δ+1 for

δ ≤ 3. A δ-dispersed set translates to a δ
δ+1 -dispersed set by placing one more point on every

edge, and vice versa by removing one point (see Section 3).
Further we explore a connection of Dispersion and an independent set problem (see Sec-

tion 4). The combination of that connection with our technical contributions yields several
algorithmic results for Dispersion (see Section 6 and Section 7):

Dispersion is NP-hard even for chordal graphs of diameter 4.
Dispersion is FPT for the graph parameter treedepth td(G) with a run time matching
a lower bound under ETH. We complement this result by showing that δ-Dispersion
is W[1]-hard for the slightly more general graph parameter pathwidth pw(G), even for
the combined parameter pw(G) + k. Similarly, δ-Dispersion is W[1]-hard for the graph
parameter fvs(G), the minimum size of a feedback vertex set.
Dispersion is XP for the parameter treewidth tw(G), with a running time of
(2L)tw(G)nO(1), where n is the number of vertices and L is an upper bound on the length
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of the longest path in G. We complement this result by the more general lower bound
of no(tw(G)+

√
k), assuming ETH. It implies the lower bound of Lo(tw(G)+

√
k) since L ≤ n.

Note that a mere lower bound of Lo(tw(G)+
√

k) would not exclude an no(tw(G))-algorithm.

In addition, we completely resolve the complexity of δ-dispersion, by showing NP-
hardness for irrational δ (see Section 8). We also study the parameterized complexity when
parameterized by the solution size k. The problem is W[1]-hard when δ > 2, and FPT
otherwise. Thus, there is a sharp threshold at δ = 2 where the complexity jumps from FPT
to W[1]-hard (see Section 9).

We mark statements whose proof can be found in the full version of the paper (see [9])
with “(⋆)”.

2 Preliminaries

We use the word vertex in the graph-theoretic sense, while we use the word point to denote
the elements of the geometric structure P (G). As an input for δ-dispersion, we consider
graphs G that are undirected, connected, and without loops and isolated vertices.

For an edge {u, v} ∈ E(G) and a real number λ ∈ [0, 1], let p(u, v, λ) ∈ P (G) be the
point on edge {u, v} that has distance λ from u. Note that p(u, v, 0) = u, p(u, v, 1) = v and
p(u, v, λ) = p(v, u, 1 − λ). Further, we use d(p, q) for the length of a shortest path between
points p, q ∈ P (G).

For a subset of vertices V ′ ⊆ V (G) or a subset of edges E′ ⊆ E(G), we denote by G[V ′]
and G[E′] the subgraph induced by V ′ and E′, respectively. The neighborhood of a vertex u

is N(u) := {v ∈ V (G) | {u, v} ∈ E(G)}. We use n as the number of vertices of G, when G is
clear from the context.

For a graph G and integer c ≥ 1, let the c-subdivision of G be the graph G where every
edge is replaced by a path of length c.

▶ Lemma 1 ([8]). Let G be a graph, let c ≥ 1 be an integer, and let G′ be the c-subdivision
of G. Then δ-disp(G) = (cδ)-disp(G′).

For integers a and b, we denote the rational number a
b as b-simple. A set S ⊆ P (G) is

b-simple, if for every point p(u, v, λ) in S the edge position λ is b-simple.

▶ Lemma 2 ([8]). Let δ = a
b with integers a and b, and let G be a graph. Then, there exists

an optimal δ-dispersed set S⋆ that is 2b-simple.

For an introduction into parameterized algorithms, we refer to [4]. We study of the
complexity of Dispersion with the natural parameter solution size k, as well as its dependency
on structural measures on the input graph. Besides treewidth tw(G) and pathwidth pw(G),
we also study the parameters “feedback vertex set size” fvs(G) and treedepth td(G).

A graph has a feedback vertex set W ⊆ V (G) if G after removing W contains no cycle.
The “feedback vertex set size” is the size of a smallest feedback vertex set of G.

The treedepth of a connected graph G can be defined as follows. If G is disconnected, it
is the maximum treedepth of its components; If G consists of a single vertex, then td(G) = 1;
And else it is one plus the minimum over all u ∈ V (G) of the treedepth of G without vertex u.

We provide lower bounds for the time-complexity assuming the Exponential Time Hy-
pothesis (ETH): There is no 2o(N)-time algorithm for 3-SAT with N variables and O(N)
clauses [11]. For more details on ETH, we refer to [4].
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3 Translating δ-Dispersion

There is an intriguing relation of the optimal solution for distance δ and δ
2δ+1 for the similar

problem δ-covering [10]. We may analogously expect that an optimal solution for δ-dispersion
translates to an optimal solution for δ

δ+1 -dispersion; i.e., that an optimal δ-dispersed set
corresponds to an optimal δ

δ+1 -dispersed set of the same size plus one extra point for every
edge.

This is not true for δ = 3 + ε for any ε > 0: Consider a triangle, where a (3 + ε)-dispersed
set S contains at most one point p. Since δ

δ+1 > 3
4 , a δ

δ+1 -dispersed set however contains at
most 3 < |S| + 3 points.

Causing trouble is a non-trivial closed walk containing p of length less than δ. The
translating lemma may only apply to a variation of dispersion that is sensitive to such walks,
a variant which we call auto-dispersion. A δ-dispersed set S ⊆ P (G) is δ-auto-dispersed
if additionally for every point p ∈ S there is no walk from p to p of length < δ that is
locally-injective. A walk is locally-injective if, when interpreted as a continuous mapping
f : [0, 1] → P (G) from f(0) = p to f(1) = p, has for every pre-image c ∈ (0, 1) a positive
range ε > 0 such that f restricted to the interval (c − ε, c + ε) is injective.

▶ Lemma 3. (⋆) Let G be a graph and δ > 0. Then δ-auto-disp(G) = δ
δ+1 -auto-disp(G) +

|E(G)|.

Fortunately, this translation lemma is still useful for ordinary δ-dispersion. We have
δ-auto-disp(G) = δ-disp(G) for δ ≤ 3, since there is no such locally-injective walk of length
< 3. The threshold of 3 is tight according to the above example with graph K3.

▶ Corollary 4. Let G be a graph and δ ∈ (0, 3]. Then δ-disp(G) = δ
δ+1 -disp(G) + |E(G)|.

4 Dispersion and Independent Set

To solve Dispersion we can borrow from algorithmic results from a generalized independent
set problem. A classical independent set is a set of vertices where each two elements have to
be at least 2 apart from each other (when we consider that the edges have unit length). In a
2-dispersed set also each two elements need to be at least 2 apart from each other, though
the set contains a set of points of the graph.

To generalize the independent set problem, we may ask that the vertices are not 2 apart
but some integer d apart from each other. Such a generalization for independent set is called
a distance-d independent set or d-scattered set. They have been studied by Eto et al. [5] and
Katsikarelis et al. [13].

Let αd(G) be the maximum size of a distance-d independent set, for a graph G and
integer d. We relate δ-dispersion to αd. We consider the c-subdivision of a graph G, denoted
as Gc, which is the graph G where every edge is replaced by a path of length c, for some
integer c ≥ 1.

▶ Lemma 5. Consider integers a, b and a 2b-subdivision G2b of a graph G. Then a
b -disp(G) =

α2a(G2b).

Proof. Consider the b-subdivision Gb of G. Then G2b is a 2-subdivision of Gb. We know that
a
b -disp(G) = 2a-disp(G2b) from Lemma 1. Hence it remains to show 2a-disp(G2b) = α2a(G2b).

Clearly, a distance-2a independent set I ⊆ V (G) is also a 2a-dispersed set. For the
reverse direction, assume there is a 2a-dispersed set I2a of G2b. Then I2a corresponds to
an a-dispersed set I of Gb of same size, according to Lemma 1. Since a is integer, we
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may assume that S contains only half-integral points, hence points with edge position from
{0, 1

2 , 1}, according to Lemma 2. Let G2b result from Gb by replacing each edge {u, v} by a
path uwu,vv. Then let I ⊆ V (G2b) consist of vertex u ∈ V (G) with a point in S and every
wu,v for every point p(u, v, 1

2 ) ∈ S. Then I is a distance-2a independent set of G2b of size
|I| = |S|. ◀

Thus to solve Dispersion for δ = a
b we can use algorithms for distance-d independent

set. For rationals a
b with small values of a and b this possibly leads to efficient algorithms.

For example, a distance-d independent set on graphs width treewidth tw(G) (and a given
tree decomposition) can be found in time dtw(G)nO(1), see [13]. “Simply” subdivide the edges
of the input graph sufficiently often, which does not increase the treewidth of the considered
graph. To find a a

b -dispersed set in a graph G, we can search for distance 2a independent set
the 2b-subdivision of G.

▶ Corollary 6. There is an algorithm that, given a rational distance a
b > 0 and a graph

G, a tree decomposition of width tw(G), computes a maximum a
b -dispersed set S in time

(2a)tw(G)(bn)O(1).

However, in general this constitutes a possibly exponential increase of the input size.
While in the input of a

b -dispersion encodes a and b in binary, the subdivided graph essentially
encodes b in unary. Further, if δ is irrational, we do not have a suitable subdivision at all.

5 Rounding the Distance

For a given graph G and distance δ, we state a rational δ⋆ ≥ δ such that δ-disp(G) =
δ⋆-disp(G). Our proof is constructive. We give a procedure that efficiently transforms a
δ-dispersed set into a δ⋆-dispersed set. The guaranteed rational δ⋆ has a numerator bounded
by the longest path in G (or just n as an upper bound thereof). It is independent of the
precise structure of the given graph.

To give some intuition: Generally there is some leeway for δ. For example, in a star
K1,k, k ≥ 1 for every δ ∈ (1, 2] the optimal solution puts a point on every leaf yielding a
δ-dispersed set of size k. Hence for instance 3

2 -disp(K1,k) = 2-disp(K1,k). However, for δ > 2
only one point can be placed, such that 2-disp(K1,k) ̸= (2 + ε)-disp(K1,k) for every ε > 0.

So what δ⋆ can be guaranteed such that δ-disp(G) = δ⋆-disp(G)? An illustrative example
is a path of length 6. Then 15

11 -disp(G) = 5 = 3
2 -disp(G). For δ = 15

11 tightly packing 5 points
allows to have a space of size 6

11 at either end of the path, not enough to place another point.
However, placing 5 points in distance δ = 3

2 allows no leeway; δ is (already) a divisor of 6, the
length of the considered path. Distance δ⋆ relies on L, the length of the longest (not-induced)
path in G. We have to take into account that δ might divide any path of length ≤ L. Our
δ⋆ is the smallest rational a⋆

b⋆ where the numerator a⋆ ≤ 2L. In other words, the inverse of
δ⋆ is the next smaller rational number of the inverse of δ in the Farey sequence of order 2L.

▶ Theorem 7. Let δ ∈ R+. Let L be an upper bound on the length of paths in G. Let
δ⋆ = a⋆

b⋆ ≥ δ minimal with a⋆ ≤ 2L and b⋆ ∈ N. Then δ-disp(G) = δ⋆-disp(G).

Clearly, a δ⋆-dispersed set S⋆, is also δ-dispersed, since δ⋆ ≥ δ. We have to show the
reverse direction. Consider a δ-dispersed set S (of size |S| ≥ 2) of a connected graph G that
is not δ⋆-dispersed, hence δ is irrational or is equal to a

b for some co-prime a, b with a > 2L.

In the following we develop our rounding procedure that shows the reverse direction. Our
presentation aims to be accessible by starting from the core algorithmic idea from which we
unravel all involved technical concepts piece by piece. The detailed proofs are placed in the
appendix.
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Figure 1 (left) Consider critical points {p, q} (points depicted as black dots; vertices as white
squares). If we move q away from p by ε ≥ 0, their distance increases by ε until q reaches the
half-integral point p(u, v, 1

2 ). (middle) Let {pi, pi−1} be critical for i ≥ 1. Consider moving pi, i ≥ 1
by iε away from pi−1. Once p2 becomes half-integral, points {p3, p0} become also critical, hence
we cannot continue to move points in the same way. This happens when a point in S becomes
half-integral or . . . (right) . . . a point half-way between two points in S becomes half-integral, as in
this example between p4, p5. We say p4, p5 witness the pivot p(u, v, 1

2 ).

5.1 Overview
Our rounding procedure repeatedly applies a pushing algorithm to the current point set S. We
show that each such step strictly decreases a polynomially bounded potential Φ : P (G) → N.

▶ Theorem 8. Suppose that there is an algorithm, that given a δ-dispersed set S with δ < δ⋆

computes an ε > 0 and a (δ +ε)-dispersed set Sε of size |Sε| = |S| that satisfies Φ(S) > Φ(Sε)
for some polynomially bounded potential Φ : P (G) → N. Then Theorem 7 follows.

Proof. Let S be a δ-dispersed set. Apply the assumed algorithm to obtain a ε > 0 and a
(δ + ε)-dispersed set Sε of size |Sε| = |S|. If δ = δ⋆, we reached our goal. Else we apply the
assumed algorithm again. Since the potential Φ : P (G) → N decreases for Sε compared to S

and Φ is polynomially bounded, we have to reach δ⋆ in polynomial many steps. ◀

In the remainder of this section we will develop such an algorithm. It pushes the points
of point set S away from each other such that their pairwise distance increases from “at
least δ” to “at least δ + ε”. We choose ε ≥ 0 as large as possible limited by some events.
Either we already reach δ + ε = δ⋆, hence we reached our goal, or at least one of three events
occurs. We will specify these events in the course of this section. These events mean that
one pushing step, i.e., one step for Theorem 8 terminated. All the following preparations for
such a pushing step start anew.

We make sure that our potential Φ : P (G) → N decreases when an event occurs. Each
of the three events has a corresponding partial potential Φ1(S), Φ2(S) and Φ3(S). They
define the overall potential as Φ(S) := Φ1(S) + Φ2(S) + Φ3(S). Each part never increases.
Whenever event i occurs, Φi(S) strictly decreases.

We denote a pair of points {p, q} from our given point set S as δ-critical, if they have
distance exactly δ. Hence the critical pairs of points are exactly those that we need to push
away from each other. At the same time we make sure that, once {p, q} are δ-critical, they
never turn uncritical again, i.e., they are (δ + ε)-critical in the next step. An uncritical pair
of points {p, q} might become critical, hence we have to take care of {p, q} in future steps.
This constitutes our first event. The corresponding partial potential is Φ1(S), the number of
uncritical pairs of points {p, q}.

(Event 1) A δ-uncritical pair of points {p, q} becomes (δ + ε)-critical.

Φ1(S) :=
∣∣{{p, q} ∈

(
S
2
)

| {p, q} are not δ-critical
}∣∣ ≤ |S|2
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5.2 Coordination of Movement
We need to coordinate the movement of all critical pairs of points. To this end, we will fix
some set of root points R. Our movement will be locally prescribed for sequences of points
p0, p1, . . . , ps that originate in p0 ∈ R and where each {p0, p1}, . . . , {ps−1, ps} is critical. The
overall movement will be uniquely defined by movement defined for these sequences.

For now, consider such a sequence of points p0, p1, p2, . . . . Our idea is to do not move p0,
to move p1 by distance ε away from p0, point p2 by distance 2ε away from p1 and so on. We
have to stop pushing in this way as soon as one of the points, say pi, becomes half-integral,
i.e., pi is moved onto a vertex or the midpoint of an edge. See Figure 1 for examples. This
constitutes the second event.

(Event 2) A non-half-integral p ∈ S becomes half-integral.

Φ2(S) :=
∣∣{p ∈ S | p is not half-integral

}∣∣ ≤ |S|.

The next pushing step will choose pi as one of the root point R and will move the points
away from pi instead of p0. Very similarly, we stop when a point r ∈ P (G) that is “half-way”
between two points pi, pi−1 becomes half-integral. Formally, we denote such a point r as
an (S, δ)-pivot, or simply a pivot, if it is half-integral and there is a (critical) pair of points
{p, q} ∈

(
S
2
)
, the witnesses, that have equal distances to r, which means d(p, r) = d(q, r) = δ

2 .
Let pivots(S, δ) be the set of (S, δ)-pivots, and let W (S, δ) ⊆

(
S
2
)

be the family of pairs of
points from S, that witness some (S, δ)-pivot. This leads to the third and final event.

(Event 3) A non-pivot point r ∈ P (G) becomes a pivot.

Φ3(S) :=
∣∣{r ∈ P (G) | r is half-integral

}
\ pivots(S, δ)

∣∣ ≤ |V (G)|2.

Hence a root point R may not only be a point p ∈ S but also come from the set of
pivots. We will later properly define R as a superset of half-integral points pi ∈ S and the
(S, δ)-pivots.

We use an auxiliary graph GS for the current δ-dispersed set S. Its vertex set is
S ∪ pivots(S, δ). Essentially we make all pairs of critical {p, q} adjacent unless they witness a
pivot; If they do witness a pivot, we make them adjacent to the pivot:

For {p, q} ∈ W (S, δ) and for every pivot r ∈ pivots(S, δ) they witness, add edges
{p, r}, {r, q}; and
for every critical pair of points {p, q} ∈

(
S
2
)

\ W (S, δ) add edge {p, q}.
Note that, for every edge {r, p} with r ∈ pivots(S, δ), there is at least one other edge {r, q}
such that p, q witness r as a pivot.

Now we define the sequence of points which serve as the structure to state the movement.
A path P = (p0, p1, . . . , ps) in the auxiliary graph GS of length s ≥ 1 is a spine if p1, . . . , ps

are not half-integral. Note that any sub-sequence (p0, . . . , pi) for 1 ≤ i ≤ s is also a spine.

5.3 Velocities
We assign velocities velP to the points p0, . . . , ps of a spine P that specify their movement
speed. The point pi for i ∈ {1, . . . , s} is moved by vel(pi)ε. Thus setting vel(p1) = 1 makes
the δ-critical {p0, p1} become (δ +ε)-critical, as desired. Setting vel(pi) = i for i ≥ 1, however,
can make consecutive points {pi−1, pi} uncritical. Figure 2 provides an example. To see this,
fix some shortest pi−1, pi-path Pi and some shortest pi, pi+1-path Pi+1. The paths Pi and
Pi+1 can have a trivial intersection of only {pi} or their intersection may contain more than
one point. We denote this bit of information as flipP (pi) ∈ {−1, 1}. We set flipP (pi) = 1

MFCS 2022
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p0 p1

p2

p3

p4

p5 p6 p7

Figure 2 A spine P = (p0, . . . , p7). The shortest path between p0, p1 and the shortest path
between p1, p2 have the trivial intersection of {p1}, hence flipP (p1) = 1. In turn, the shortest
path between p1, p2 and the shortest path between p2, p3 have a non-trivial intersection, hence
flipP (p1) = −1. Also flipP (p3) = flipP (p4) = −1 while the other values are positive. Con-
sequently (sgnP (p1), . . . , sgnP (p7)) = (1, 1, −1, 1, −1, −1, −1). Thus (velP (p1), . . . , velP (p7)) =
(1, 2, 1, 2, 1, 0, −1). In particular, sgnP (p5) is negative such that it is moved towards p4. In turn,
sgnP (p7) and velP (p7) are negative such that p7 has a net movement away from p0. Under this
movement all {p0, p1}, . . . , {p6, p7} remain critical.

if and only if the path Pi and Pi−1 have a trivial intersection. (The definition of flipP is
independent on the exact considered shortest paths and we will define it properly in the next
subsection.)

The easy case is when Pi and Pi+1 have a trivial intersection, i.e., flipP (pi) = 1. Then
we increase the velocity of the next point pi+1. The first time we encounter the other case,
that flipP (pi) = −1, we decrease the velocity of the next point pi+1. Further we move pi+1
towards and not away of pi. Hence we also specify a sgn of the velocity that records whether
a point pi+1 is pushed towards or away from its predecessor pi. All these changes are relative
to whether the movement of predecessor pi is away from pi−1, i.e., whether sgn(pi) is positive.
For example, the second time we encounter a point pj with flipP (pj) = −1, point pj+1 is
again moved away from its predecessor.

This leads to the following definition of velP and sgnP for a spine P . We define its half-
integral velocities velP : {p0, . . . , ps} → { z

2 | z ∈ Z} depending on signs sgnP : {p1, . . . , ps} →
{−1, 1}, which in turn depend on flipP . We may drop the subscript P , if it is clear from the
context. Let vel(p0) = 0. Let vel(p1) = 1

2 , if p0 ∈ pivots(S, δ), and let vel(p1) = 1, if p0 ∈ S.
For i ≥ 1, let

vel(pi+1) := vel(pi) + sgn(pi+1).

Thus sgn ∈ {−1, 1} indicates whether the velocity increases or decreases. The current sgn is
unchanged unless flip is negative. Let sgn(p1) = 1. For 2 ≤ i ≤ s, let

sgn(pi) := flip(pi−1) sgn(pi−1) =
∏

0<j<i

flip(pj).

The movement step of a point pi in a spine P = (p0, . . . , pi) is now as follows. We push the
point pi by the (possibly negative) distance sgnP (pi) velP (pi)ε away from its predecessor pi−1.
In other words, the point pi = p(u, v, λ) is replaced by the point p(u, v, λ+ sgnP (pi) velP (pi)ε)
assuming that vertex u compared to v is in some sense closer to the predecessor point pi−1.
We make this notion formal in the next subsection.

5.4 Directions
We formalize the notion the direction of a point p towards another point q. The direction
dir(p → q) ∈ {u, v} for distinct points p = p(u, v, λ) ∈ P (G) and q ∈ P (G) is defined as
follows:
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For points p = p(u, v, λp) and q = p(u, v, λq) on a common edge {u, v} ∈ E(G) with
λp < λq, let dir(p → q) = v. Let dir(p → q) = u.
For points p = p(up, vp, λp) and q = p(uq, vq, λq) on distinct edges {up, vp} ̸= {uq, vq},
let dir(p → q) be the unique vertex of {up, vp} that is contained in every shortest path
between p and q, if such a vertex exists. If dir(p → q) is defined, let dir(p → q) be the
unique vertex in {up, vp} \ {dir(p → q)}.

▶ Lemma 9. (⋆) For distinct points p, q ∈ V (GS), dir(p → q) is well-defined, unless p is
half-integral.

Hence we can properly define flip(pi) of a point pi of a spine (p0, . . . , ps) with 1 ≤ i ≤ s−1,
since pi with i ≥ 1 is non-half-integral. Let

flip(pi) :=
{

1, dir(pi → pi−1) ̸= dir(pi → pi+1),
−1, else.

Further, for a non-half-integral point p = p(u, v, λ) we have {u, v} = {dir(p → q), dir(p →
q)}. By symmetry assume that dir(p → q) = u. We can equivalently specify point p as
p(dir(p → q), dir(p → q), λ). Conveniently, we may write p = p(·, dir(p → q), λ) since the
missing entry is clear from the context. Doing so, the edge position λ measures a part of the
length of any shortest p, q-path, specifically the part using the edge of p (assuming q is on
another edge).

Now we can also properly define one pushing step for a point pi of a spine P = (p0, . . . , ps)
and for ε > 0. Let λi be such that pi = p(·, dir(pi → pi−1), λi). Then the new point is

(pi)P,ε := p
(
·, dir(pi → pi−1), λi + sgnP (pi) velP (pi)ε

)
.

▶ Lemma 10. (⋆) For a spine P = (p0, . . . , ps) and i ∈ {0, . . . , s−1}, points (pi)P,ε, (pi+1)P,ε

are (δ + ε)-critical for the maximal ε ≤ δ⋆ − δ that is limited by the Events 1,2,3.

5.5 Root Points
We formally define the set of root points R. Let R0 be the set of half-integral points in GS .
There may be some components of the auxiliary graph GS without a point in R0. Let R

result from R0 by adding exactly one point from every component that has no point in R0.
We consider only spines P = (p0, . . . , pi) where p0 ∈ R. Clearly every point GS is part

of at least one spine and hence has some movement prescribed. We also claim that the
prescribed movement is uniquely defined. In other words, there are no spines P = (p0, . . . , pi)
and Q = (q0, . . . , qj) with p0, q0 ∈ R that terminate at the same point pi = qj and contradict
in their prescribed movement for pi = qj .

▶ Lemma 11. (⋆) Let δ < δ⋆. Consider spines P = (p0, . . . , pi) and Q = (q0, . . . , qj) with
p0, q0 ∈ R and pi = qj . Then (1) velP (pi) = velQ(qj); and (2) dir(pi → pi−1) = dir(qj → qj−1)
if and only if sgnP (pi) = sgnQ(qj).

Therefore we can uniquely define the moved version of a point p as pε := (p)P,ε where we
may choose P to be an arbitrary spine starting in R and containing p. This defines the set
of pushed points Sε := { pε | p ∈ S }.

For the proof of Lemma 11, we use that δ⋆ = a⋆

b⋆ ≥ δ is minimal with a⋆ ≤ 2L. Since
spines P, Q meet at the point pi = qj their roots p0, q0 must be from the same component in
the auxiliary graph GS ; in other words p0, q0 are both half-integral or are the same point.
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Our proof by contradiction considers these two options and whether P, Q reach pi and qj from
the same vertex relatively to if they agree on the sgn of pi = qj . An example is that p0 = q0
and P, Q reach pi = qj from the same vertex (formally with dir(pi → pi−1) ̸= dir(qj → qj−1))
while they agree on the sgn (formally sgnP (pi) = sgnQ(qj)). Then we can glue P and Q

together forming a walk starting in p0 = q0 and returning to p0 = q0. This walk then
has half-integral length at most 2L but is made up of hops of length δ. That implies the
contradiction that already δ = δ⋆.

5.6 Summery
With the previous observations we can assemble the algorithm for Theorem 8. Our potential
counts how many elements can still trigger Events 1,2,3. That is

Φ(S) := Φ1(S) + Φ2(S) + Φ3(S) ≤ 2|S|2 + |V (G)|2.

We define ε⋆ ≥ 0 as the maximal ε ≤ δ⋆ − δ limited by the Events 1,2,3. We claim that
ε⋆ ≥ 0 is defined. This is due to that the above events depend on continuous functions in
ε, which are the distance of pε to its closest half-integral point, and the distance between
points pε and qε for p, q ∈ S.

To show termination, we prove that no such element can trigger its according event
more than once. Lemma 10 already implies that a δ-critical pair of points {p, q} stays
(δ + ε⋆)-critical. It remains to show the following monotonicities:

▶ Lemma 12. (⋆) Let S be a δ-dispersed set for δ < δ⋆ and ε⋆ defined as above. Then:
(1) Sε⋆ is a (δ + ε⋆)-dispersed set of size |S|.
(2) If {p, q} ∈

(
S
2
)

is δ-critical, then {pε⋆ , qε⋆} is (δ + ε⋆)-critical.
(3) If r ∈ pivots(S, δ), then r ∈ pivots(Sε⋆ , δ + ε⋆).

Now we have all the tools to show Theorem 8. Determine ε⋆ and the (δ + ε⋆)-dispersed
set Sε⋆ as defined before. The resulting set Sε⋆ is a (δ + ε⋆)-dispersed set of the same size,
according to Lemma 12. If δ + ε⋆ = δ⋆ then Sε⋆ is already the desired δ⋆-dispersed set. Else
one of the Events 1,2,3 occurred. We observe that the potential strictly decreases, that is
Φ(Sε⋆) < Φ(S). Because of the monotonicities of Lemma 10 and Lemma 12 the partial
potentials Φ1, Φ2 and Φ3 do not increase. If Event 1 occurs then Φ1 strictly decreases. If
Event 2 occurs then Φ2 strictly decreases. If Event 3 occurs then Φ3 strictly decreases. All in
all at least one part strictly decreases and so does Φ. This completes the proof of Theorem 8
and hence of Theorem 7.

6 Algorithmic Implications

Based on the rounding procedure from Section 5, the translation result from Section 3 and
connections to distance-d independent set we derive a number of algorithmic results.

▶ Theorem 13. There is an algorithm that, given distance δ ≥ 0, a graph G, a tree
decomposition and an upper bound L ∈ N on the length of the longest path in G, computes a
maximum δ-dispersed set S in time (2L)tw(G)nO(1).

Proof. According to Theorem 7, we may consider the rounded up distance, that is a rational
a
b ≥ δ with a ≤ 2L, instead of δ. Notice that a

b is polynomial time computable. As long as
a
b ≤ 3

4 , we may repeatedly apply Corollary 4 such that eventually we obtain that 3
4 b < a ≤ 2L.

Let G2b be a 2b-subdivision of G. Observe that tw(G) = tw(G2b) and the number of vertices
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increases only by a factor of O(n2L). According to Lemma 5 a
b -disp(G) = α2a(G2b). Thus, to

answer the original δ-Dispersion-instance we may find a maximum distance-2a independent
set in G2b, which is possible in time (2a)tw(G)nO(1), according to [12]. ◀

This result immediately yields parameterized complexity results for the parameters
treedepth and treewidth. Regarding the treewidth, note that n is an upper bound on L.
Thus the above algorithm is an XP-algorithm for the parameter treewidth. When a treewidth
decomposition is given, Dispersion can be solved in time 2ntw(G)nO(1).

▶ Corollary 14. Dispersion can be solved in time 2ntw(G)nO(1), assuming a tree decomposi-
tion is given.

Similarly we obtain an FPT algorithm for treedepth td(G) of the input graph. The
treedepth td(G) implies a bound on L, which is L ≤ 2td(G). Since also td(G) ≥ tw(G), we
obtain an 2O(td(G)2)nO(1)-time algorithm, assuming a treedepth decomposition is given.

▶ Corollary 15. Dispersion can be solved in time 2O(td(G)2)nO(1), assuming a treedepth
decomposition is given.

7 Parameterized Hardness Results

We complement the positive results by hardness results. These results borrow ideas from
hardness-reductions for the similar problem Distance Independent Set (DIS), see Sec-
tion 4.

A natural generalization of treedepth is the maximum diameter of graph G, which is
the maximum distance between any vertices u, v ∈ V (G) (since we only consider connected
graphs G). We show NP-hardness for graphs of any diameter ≥ 3 even for chordal graphs
by a reduction from Independent Set, similarly as NP-hardness for DIS is shown by Eto
et al. [5]. Our reduction also shows W[1]-hardness with respect to the solution size k.

▶ Lemma 16. (⋆) For every δ > 3, δ-Dispersion is NP-complete and W[1]-hard with
parameter solution size, even for connected chordal graphs of diameter ≤ ⌈δ⌉.

Another direct generalization of treedepth is pathwidth of the input graph G. We show
W[1]-hardness even for the combined parameters pathwidth and solution size pw(G) + k.
With the same reduction also W[1]-hardness for the combined parameters “feedback vertex
set size” fvs(G) and solution size k follows. We can essentially use the same reduction as
used by Katsikarelis et al. to show W[1]-hardness of DIS when parameterized by fvs(G) + k

by reducing from Multi-Colored-Independent-Set [12].

▶ Theorem 17. (⋆) Dispersion is W[1]-hard parameterized by pw(G)+k. Further, there is
no no(

√
pw(G)+

√
k)-time algorithm unless ETH fails. Dispersion is W[1]-hard parameterized

by fvs(G) + k. Further, there is no no(fvs(G)+
√

k)-time algorithm unless ETH fails.

Since fvs(G) is a linear upper bound for the treewidth of G, we also obtain: Dispersion
is W[1]-hard parameterized by tw(G) + k. Further, there is no no(tw(G)+

√
k)-time algorithm

unless ETH fails. Similarly as in [12] we obtain a lower bound for treedepth.

▶ Theorem 18. (⋆) Assuming ETH, there is no 2o(td(G)2)-time algorithm for Dispersion.

MFCS 2022
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8 NP-hardness for Irrational Distance

We show NP-hardness of δ-Dispersion for every irrational distance δ > 0. Thus together
with earlier results [8] the complexity for every real δ > 0 is resolved: For rational distance
δ = a

b where a ∈ {1, 2} the problem is polynomial time solvable, while it is NP-complete for
every other distance δ > 0.

▶ Theorem 19. For every irrational δ > 0, δ-Dispersion is NP-complete.

The key step is a reduction from Independent Set which shows NP-hardness not only
for a single distance δ but for the whole interval δ ∈ (2, 3].

Construction. Given a graph G and integer k ∈ N, we construct an input for δ-Dispersion
consisting of a graph G′ and integer k′ = k as follows. For every vertex u ∈ V (G) introduce
vertices u1, u2 and edge {u1, u2}. For every edge {u, v} ∈ E(G) introduce edges {ui, vj} for
every i, j ∈ {1, 2}.

▶ Lemma 20. For every δ ∈ (2, 3], δ-Dispersion is NP-hard and W[1]-hard when paramet-
erized by solution size.

Proof. Clearly, this construction is polynomial time computable. Further, the reduction is
parameter preserving such that W[1]-hardness of Independent Set implies W[1]-hardness
of Dispersion, assuming correctness of the reduction.

Hence, it remains to show the correctness, that G has an independent set of size k if and
only if G′ has a δ-dispersed set of size k.

(⇒) Let I ⊆ V (G) be an independent set of graph G. We define S := {p(u1, u2, 1
2 ) | u ∈

I} ⊆ P (G), which has size |S| = |I|. We claim that S is δ-dispersed in G′ for δ ∈ (2, 3]. Since
any vertices u, v ∈ V (G) have distance at least 2 in G, their corresponding points p(u1, u2, 1

2 )
and p(v1, v2, 1

2 ) have distance at least 3 in P (G). Thus they are δ-dispersed for δ ∈ (2, 3].
(⇐) Let S ⊆ P (G) be a δ-dispersed set for some δ ∈ (2, 3]. We define the ball Bu

for u ∈ V (G) as the points in P (G) with distance at most 1
2 to u1 or u2, which is Bu :=

{p(ui, v, λ) | i ∈ {1, 2}, {ui, v} ∈ E(G′), λ ∈ [0, 1
2 ]}. Every ball Bu for u ∈ V (G) contains at

most one point from S since points p, q ∈ Bu can be at most 2 < δ apart. Every union Bu ∪Bv

for adjacent {u, v} ∈ E(G) contains at most one point from S since points p, q ∈ Bu ∪ Bv

can also be at most 2 < δ apart.
Now we define an independent set I ⊆ V (G). Add vertex u ∈ V (G) for every point

p ∈ S ∩ Bu except when p ∈ Bu ∩ Bv for some v ∈ P (G). If p ∈ S ∩ Bu ∩ Bv, add either
the point u or v to I. Then |I| = |S| since the union of Bu for u ∈ V (G) is the whole point
space P (G). Further, no adjacent vertices u, v are in I since Bu ∪ Bv contain at most one
point from S. Thus I ⊆ V (G) is an independent set of size |S|. ◀

Because δ ≤ 3 we may apply Lemma 3 to obtain NP-hardness for δ in the interval
( 2

2x+1 , 3
3x+1 ] for every integer x ≥ 0. Applying Lemma 1 yields NP-hardness for δ in the

interval ( 2c
2x+1 , 3c

3x+1 ] for every integer c ≥ 1.
Now, consider any irrational distance δ > 0. Consider F := {cδ−1 − ⌊cδ−1⌋ | c ≥ 1}, the

set of fractional parts of multiples of δ−1. Since δ−1 is irrational, F is a dense subset of
the interval [0, 1]. Let integer c ≥ 1 be such that 1

3 ≤ cδ−1 − ⌊cδ−1⌋ < 1
2 . Thus there is a

non-negative x such that x + 1
3 ≤ cδ−1 < x + 1

2 . This implies that 2c
2x+1 < δ ≤ 3c

3x+1 and
hence NP-hardness for δ-dispersion. This finishes the proof of Theorem 19.
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9 Parameter Solution Size

δ-Dispersion parameterized by the solution size k is W[1]-hard when δ > 2: When δ ∈ (2, 3]
Lemma 20 shows W[1]-hardness, while for δ > 3 Lemma 16 implies W[1]-hardness even
when the input graph is chordal. It remains to consider δ ≤ 2. Observe that for δ ≤ 2, every
graph G satisfies δ-disp(G) ≥ ν(G) [8], where ν(G) is the maximum matching size of G.
Thus, a win-win situation occurs. Determine ν(G) in polynomial time. If k ≤ ν(G), we may
immediately answer “yes”. Otherwise k > ν(G) ≥ vc(G)

2 , where vc(G) is the minimum size of
a vertex cover in G. The size of a vertex cover upper bounds the treedepth. A treedepth
decomposition of size td(G) is computable in FPT-time [15]. Thus we may apply the FPT
algorithm for parameter treedepth from Theorem 13.

▶ Theorem 21. δ-Dispersion parameterized by solution size k is FPT if δ ≤ 2; and
W [1]-hard if δ > 2.
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Abstract
A 0, 1 matrix is said to be regular if all of its rows and columns have the same number of ones. We
prove that for infinitely many integers k, there exists a square regular 0, 1 matrix with binary rank
k, such that the Boolean rank of its complement is kΩ̃(log k). Equivalently, the ones in the matrix
can be partitioned into k combinatorial rectangles, whereas the number of rectangles needed for any
cover of its zeros is kΩ̃(log k). This settles, in a strong form, a question of Pullman (Linear Algebra
Appl., 1988) and a conjecture of Hefner, Henson, Lundgren, and Maybee (Congr. Numer., 1990).
The result can be viewed as a regular analogue of a recent result of Balodis, Ben-David, Göös, Jain,
and Kothari (FOCS, 2021), motivated by the clique vs. independent set problem in communication
complexity and by the (disproved) Alon-Saks-Seymour conjecture in graph theory. As an application
of the produced regular matrices, we obtain regular counterexamples to the Alon-Saks-Seymour
conjecture and prove that for infinitely many integers k, there exists a regular graph with biclique
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1 Introduction

For a 0, 1 matrix M of dimensions n × m, consider the following three notions of rank.
The (standard) rank of M over R, denoted by rankR(M), is the minimal k for which
there exist real matrices A and B of dimensions n × k and k × m respectively, such that
M = A · B where the operations are over R.
The binary rank of M , denoted by rankbin(M), is the minimal k for which there exist
0, 1 matrices A and B of dimensions n × k and k × m respectively, such that M = A · B

where the operations are over R. Equivalently, rankbin(M) is the smallest number of
monochromatic combinatorial rectangles in a partition of the ones in M .
The Boolean rank of M , denoted by rankB(M), is the minimal k for which there exist 0, 1
matrices A and B of dimensions n × k and k × m respectively, such that M = A · B where
the operations are under Boolean arithmetic (namely, 0 + x = x + 0 = x, 1 + 1 = 1 · 1 = 1,
and x · 0 = 0 · x = 0). Equivalently, rankB(M) is the smallest number of monochromatic
combinatorial rectangles in a cover of the ones in M .

Note that every 0, 1 matrix M satisfies rankbin(M) ≥ rankR(M) and rankbin(M) ≥ rankB(M).
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The above notions of rank play a central role in the area of communication complexity,
introduced in 1979 by Yao [31]. In the communication problem associated with a 0, 1 matrix
M of dimensions n × m, one player holds a row index i ∈ [n] and another player holds a
column index j ∈ [m], and their goal is to decide whether Mi,j = 1 while minimizing the
worst-case number of communicated bits. For the deterministic setting, the well-known log-
rank conjecture of Lovász and Saks [24] suggests that the communication complexity of the
problem is polynomially related to log2 rankR(M) (see, e.g., [25]). For the non-deterministic
setting, it is not difficult to see that the minimum number of bits that should be communicated
is precisely ⌈log2 rankB(M)⌉. For the unambiguous non-deterministic setting, where each
input is required to have at most one accepting computation, the minimum number of bits
that should be communicated is precisely ⌈log2 rankbin(M)⌉.

For a 0, 1 matrix M , let M denote the complement matrix obtained from M by replacing
the ones by zeros and the zeros by ones. A result of Yannakakis [30] implies that every 0, 1
matrix M with rankbin(M) = k satisfies

rankB(M) ≤ rankbin(M) ≤ kO(log k). (1)

The challenge of determining the largest possible value of rankB(M) for a 0, 1 matrix M

with rankbin(M) = k has attracted intensive attention in the literature, mostly with the
equivalent formulation of the clique vs. independent set problem introduced in [30] (see [20,
Chapter 4.4]). The first non-trivial bound was given by Huang and Sudakov [19] who
provided, building on a construction of Razborov [28], a family of such matrices M satisfying
rankB(M) ≥ Ω(k6/5) (see [11] for extended constructions). The constant 6/5 in the exponent
was improved to 3/2 by Amano [1] and then to 2 by Shigeta and Amano [29]. The first super-
polynomial separation was obtained by Göös [13], who provided a family of such matrices
M satisfying rankB(M) ≥ kΩ(log0.128 k). This was then improved in a work of Ben-David,
Hatami, and Tal [3] to rankB(M) ≥ kΩ(log0.22 k). In a recent breakthrough, it was shown by
Balodis, Ben-David, Göös, Jain, and Kothari [2] that the bound can be further improved to
rankB(M) ≥ kΩ̃(log k), which matches the upper bound in (1) up to log log k factors hidden
in the Ω̃ notation. Note that the result of [2] strengthens an earlier result of Göös, Pitassi,
and Watson [15], who provided a near optimal separation between the binary rank of a 0, 1
matrix and the deterministic communication complexity of the problem associated with it.

Interestingly, the above problem is closely related to a graph-theoretic problem proposed
by Alon, Saks, and Seymour in 1991 (see [21]). For a graph G, let χ(G) denote its chromatic
number, and let bp(G) denote its biclique partition number, that is, the smallest number of
edge-disjoint bicliques (i.e., complete bipartite graphs) needed for a partition of the edge
set of G. A classic result of Graham and Pollak [16] asserts that the complete graph Kn

on n vertices satisfies bp(Kn) = n − 1. Inspired by this result, Alon, Saks, and Seymour
conjectured that every graph G satisfies bp(G) ≥ χ(G) − 1. The conjecture was disproved
by Huang and Sudakov in [19], where it was shown that for infinitely many integers k there
exists a graph G satisfying bp(G) = k and χ(G) ≥ Ω(k6/5). These graphs were used there to
derive the aforementioned separation between rankbin(M) and rankB(M) for 0, 1 matrices M

(see [19, Section 4]). In a work of Bousquet, Lagoutte, and Thomassé [6], the two problems
were shown to be essentially equivalent, allowing the authors of [2] to derive, for infinitely
many integers k, the existence of a graph G satisfying bp(G) = k and χ(G) ≥ kΩ̃(log k). As
in the matrix setting, the gap is optimal up to log log k factors in the exponent.

A 0, 1 matrix M is said to be d-regular if every row and every column in M has precisely
d ones. In 1986, Brualdi, Manber, and Ross [7] proved that for every d-regular 0, 1 matrix
M of dimensions n × n where 0 < d < n, the rank of M over the reals is equal to that of
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its complement, that is, rankR(M) = rankR(M). Following their work, Pullman [27] asked
in 1988 whether every such matrix M satisfies rankbin(M) = rankbin(M). In 1990, Hefner,
Henson, Lundgren, and Maybee [18] conjectured that the answer to this question is negative
(see [18, Conjecture 3.2]). The question was asked again in 1995 in a survey by Monson,
Pullman, and Rees [26] (see [26, Open problem 7.1]).1 Note that for the Boolean rank, such
a statement does not hold in general. For example, the 1-regular identity matrix In satisfies
rankB(In) = n and yet rankB(In) = (1 + o(1)) · log2 n (see [12]).

1.1 Our Contribution
The current work aims to determine the largest possible gap between the binary rank of
regular 0, 1 matrices and the Boolean rank of their complement. Our main result is the
following.

▶ Theorem 1. For infinitely many integers k, there exists a square regular 0, 1 matrix M

satisfying rankbin(M) = k and rankB(M) ≥ kΩ̃(log k).

Theorem 1 can be viewed as a regular analogue of the aforementioned result of Balodis et al. [2],
showing that their near optimal separation between rankbin(M) and rankB(M) can also be
attained by regular matrices M . Since every 0, 1 matrix M satisfies rankbin(M) ≥ rankB(M),
Theorem 1 settles, in a strong form, the question of Pullman asked in [27, 26] (and the
variants of the question mentioned there) and confirms the conjecture of Hefner et al. [18].
We remark that regular matrices M with rankB(M) larger than rankbin(M) can also be
derived from [19] (see Section 1.2 for details). While these matrices are sufficient to answer
the original question of [27, 26], they only achieve a polynomial gap between the quantities.

The proof of Theorem 1 relies on a modification of the construction of [2] to the reg-
ular setting. It involves an extension of the query-to-communication lifting theorem in
non-deterministic communication complexity proved by Göös, Lovett, Meka, Watson, and
Zuckerman [14], as well as a two-source extractor studied by Bouda, Pivoluska, and Plesch [4]
and by Kothari, Meka, and Raghavendra [22]. For an overview of the proof, see Section 1.2.

As alluded to before, matrices M with rankbin(M) much smaller than rankB(M) are known
to imply graphs G with bp(G) much smaller than χ(G), and thus yield counterexamples to
the Alon-Saks-Seymour conjecture (see [6]). Although the conjecture is false in general, it is
of interest to identify classes of graphs that satisfy a polynomial version of the conjecture. In
particular, it was asked in [2] whether the chromatic number of perfect graphs is polynomially
upper bounded in terms of their biclique partition number (see [30] for a related question;
see also [23, 5, 10]). As an application of Theorem 1, we show that this is not the case for
the class of regular graphs. Namely, we show that the near optimal separation achieved in [2]
between the biclique partition number and the chromatic number can also be attained by
regular graphs.

▶ Theorem 2. For infinitely many integers k, there exists a simple regular graph G satisfying
bp(G) = k and χ(G) ≥ kΩ̃(log k).

1.2 Overview of Proofs
Our goal is to obtain regular 0, 1 matrices M for which the binary rank of M is much
smaller than the Boolean rank of M . We first observe that a polynomial gap between
the two quantities, for a regular matrix, can be derived from a construction of Huang and

1 The question of [27, 18, 26] was originally formulated using the notion of non-negative integer rank,
which coincides with the binary rank for 0, 1 matrices (see, e.g., [17, Lemma 2.1]).
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Sudakov [19]. Indeed, it can be verified that the (simple) graphs G given in [19], which satisfy
bp(G) = k and χ(G) ≥ Ω(k6/5), are regular, hence their adjacency matrices are regular as
well. The following simple claim implies that these adjacency matrices achieve a polynomial
gap between the binary rank and the Boolean rank of the complement.

▷ Claim 3. For every simple graph G, the adjacency matrix M of G satisfies that
rankbin(M) ≤ 2 · bp(G) and rankB(M) ≥ χ(G).

Proof. For a simple graph G on the vertex set [n], put k = bp(G), and consider the k

bipartitions (A1, B1), . . . , (Ak, Bk) of the k edge-disjoint bicliques that form a partition of the
edge set of G. Observe that for every i ∈ [k], the sets Ai ×Bi and Bi ×Ai form combinatorial
rectangles of ones in the adjacency matrix M of G, and that these 2k rectangles form a
partition of the ones in M , hence rankbin(M) ≤ 2 · k.

Next, put m = rankB(M), and let A1 × B1, . . . , Am × Bm be m combinatorial rectangles
that form a cover of the ones in M , i.e., the zeros in M . For every i ∈ [m], let Ci denote
the set of elements j ∈ [n] satisfying (j, j) ∈ Ai × Bi. Since G is simple, the elements on
the diagonal of M are all zeros, hence the sets Ci for i ∈ [m] cover all vertices of G. Since
Ai × Bi is a rectangle of zeros in M , it also follows that Ci is an independent set in G. This
implies that m ≥ χ(G), and we are done. ◁

The matrices M that are known to achieve super-polynomial separations between
rankbin(M) and rankB(M), however, are apparently far from being regular [13, 3, 2]. Their
constructions rely on a powerful technique, known as query-to-communication lifting, that
enables to deduce separation results in communication complexity from separation results
in the more approachable area of query complexity. The proofs of the separation results
of [13, 3, 2] involve two main steps, as described below.

In the first step, one provides a family of Boolean functions f : {0, 1}n → {0, 1} with
a large gap between two certain measures of Boolean functions, namely, the unambiguous
1-certificate complexity of f and the 0-certificate complexity of f (see Section 2.3). These
measures can be viewed as query complexity analogues of the binary rank of a matrix and the
Boolean rank of its complement. It is shown in [2] that the gap between the two measures
can be nearly quadratic.

In the second step, the separation is “lifted” from query complexity to communication
complexity. This is done by considering, for some gadget function g : {0, 1}ℓ×{0, 1}ℓ → {0, 1},
the communication problem in which two players get inputs from {0, 1}ℓ·n and aim to
determine the value of the composed function f ◦gn : {0, 1}ℓ·n ×{0, 1}ℓ·n → {0, 1}, defined by
(f ◦ gn)(x, y) = f(g(x1, y1), g(x2, y2), . . . , g(xn, yn)) for all x, y ∈ {0, 1}ℓ·n. Here, the vectors
x = (x1, . . . , xn) and y = (y1, . . . , yn) are viewed as concatenations of n blocks of size ℓ. Query-
to-communication lifting results typically show that for some gadget g, a gap between certain
query complexity measures of f implies a gap between the suitable communication complexity
measures of the composed function f ◦ gn. For the non-deterministic setting, it is shown
in [14] that if the gadget g is the inner product function on vectors of length ℓ = Θ(log n),
then a gap between the unambiguous 1-certificate complexity and the 0-certificate complexity
for f implies a gap between the unambiguous non-deterministic communication complexity
and the co-non-deterministic communication complexity for f ◦gn (see also [13, Appendix A]).
The analysis uses the fact that the inner product function forms a two-source extractor, as
shown by Chor and Goldreich [9].

Let M denote the matrix associated with the communication problem of f ◦ gn for the
function f constructed in [2] and the inner product function g. The lifting result of [14] implies
that M attains a near optimal separation between rankbin(M) and rankB(M). However, it
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can be seen that the matrix M is not regular at all. For example, the row and the column of
M that correspond to the all-zero vector consist of only ones or only zeros, depending on the
value of f on the all-zero vector.

We turn to describe how we obtain regular matrices M with a similar gap between
rankbin(M) and rankB(M). We first observe that to construct a regular matrix M , it suffices
to replace the inner product function in the above construction by a different gadget function
g. Specifically, it turns out that if g is unbiased in a strong sense, namely, it is unbiased even
while fixing one of its two inputs, then the matrix M associated with f ◦ gn is regular for
any function f (see Section 4.1). Hence, to obtain the desired separation on regular matrices,
we provide an extension of the query-to-communication lifting theorem of [14] which allows
the gadget function g to be not only the inner product function but any low-discrepancy
function. We note that such an extension was speculated already in [14, Remark 1] and
was actually established for the deterministic and probabilistic settings in a recent work of
Chattopadhyay, Filmus, Koroth, Meir, and Pitassi [8]. Building on the approach of [14] and
on tools supplied in [8], we prove that such an extension holds for the non-deterministic
setting as well (for a precise statement, see Theorem 7). We proceed by showing that a
slight variant g of the inner product function, studied in [4] and in [22], is unbiased in the
required sense and has low discrepancy. Then, to prove Theorem 1, we apply our generalized
query-to-communication lifting theorem to the family of functions f provided in [2] with this
gadget g.

Let us mention that our generalized lifting theorem is not essential for the proof of
Theorem 1. It turns out that the matrix M obtained using the aforementioned gadget
function g has a sub-matrix that corresponds to a composition with the standard inner
product function, hence the lower bound on rankB(M) can also be derived from the lifting
result of [14]. Yet, the generality of our lifting theorem can be used to obtain a separation
between rankbin(M) and rankB(M) using various other gadget functions, and we believe that
it might find additional applications.

We finally use the regular matrices given in Theorem 1 to provide regular counterexamples
for the Alon-Saks-Seymour conjecture and to prove Theorem 2. It is shown in [6] that a
matrix M with rankbin(M) much smaller than rankB(M) can be transformed into a graph
G with bp(G) much smaller than χ(G). This transformation, however, does not preserve the
regularity. In fact, a natural attempt to produce a regular graph G from a regular matrix M

using the approach of [6] results in a graph that is not even simple (because it has loops).
Moreover, certain steps of the argument of [6] identify subgraphs of this graph G with a
biclique partition number much smaller than the chromatic number, but those subgraphs
are not necessarily regular even if G is. We overcome these difficulties by combining the
approach of [6] with a couple of additional ideas, and show that any square regular matrix
M with a large gap between rankbin(M) and rankB(M) can be transformed into a simple
regular graph G with a similar gap between bp(G) and χ(G) (see Theorem 12).

1.3 Outline
The rest of the paper is organized as follows. In Section 2, we collect several definitions
and results needed throughout the paper. In Section 3, we present our generalized query-to-
communication lifting theorem in non-deterministic communication complexity. Its proof
can be found in the full version of the paper. In Section 4, we present and analyze a certain
gadget function, and combine it with the lifting theorem to prove Theorem 1. Finally, in
Section 5, we obtain regular graphs that form counterexamples to the Alon-Saks-Seymour
conjecture and confirm Theorem 2.
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2 Preliminaries

2.1 Non-deterministic Communication Complexity
Let Λ be a finite set, and let F : Λ×Λ → {0, 1} be a function. In the communication problem
associated with F , one player holds an input x ∈ Λ and another player holds an input y ∈ Λ,
and their goal is to decide whether F (x, y) = 1 by a communication protocol that minimizes
the worst-case number of communicated bits. The 0, 1 matrix M associated with the function
F is the matrix whose rows and columns are indexed by Λ, defined by Mx,y = F (x, y) for all
x, y ∈ Λ. Consider the following three non-deterministic communication complexity measures
of a function F .

The non-deterministic communication complexity of F , denoted by NPcc(F ), is the
smallest possible number of communicated bits in a non-deterministic communication
protocol for F , that is, a protocol satisfying that F (x, y) = 1 if and only if there exists
an accepting computation on (x, y). It holds that NPcc(F ) = ⌈log2 rankB(M)⌉.
The co-non-deterministic communication complexity of F , denoted by coNPcc(F ), is
the non-deterministic communication complexity of the negation ¬F of F , defined by
(¬F )(x, y) = 1−F (x, y) for all x, y ∈ Λ. It thus holds that coNPcc(F ) = ⌈log2 rankB(M)⌉.
A non-deterministic protocol is called unambiguous if it satisfies that each input has at
most one accepting computation. The smallest possible number of communicated bits in
such a protocol for F is referred to as the unambiguous non-deterministic communication
complexity of F and is denoted by UPcc(F ). It holds that UPcc(F ) = ⌈log2 rankbin(M)⌉.

2.2 Composed Functions
For integers n and ℓ, let f : {0, 1}n → {0, 1} and g : {0, 1}ℓ × {0, 1}ℓ → {0, 1} be two
functions. The function gn : {0, 1}ℓ·n × {0, 1}ℓ·n → {0, 1}n is defined by

gn(x, y) = (g(x1, y1), g(x2, y2), . . . , g(xn, yn))

for all x, y ∈ {0, 1}ℓ·n, where the vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) are viewed as
concatenations of n blocks of size ℓ. The composed function f◦gn : {0, 1}ℓ·n×{0, 1}ℓ·n → {0, 1}
is defined by (f ◦ gn)(x, y) = f(gn(x, y)). For a set I ⊆ [n] and a vector x ∈ {0, 1}ℓ·n, we let
xI ∈ {0, 1}ℓ·|I| denote the projection of x to the blocks whose indices are in I. Note that
when I = {i} for some i ∈ [n], we have xi = xI . For vectors x, y ∈ {0, 1}ℓ·n, we let gI(xI , yI)
denote the projection of gn(x, y) to the indices of I.

2.3 Certificate Complexity
An n-variate k-DNF formula φ is a Boolean formula on n variables that can be written as
a disjunction φ = c1 ∨ · · · ∨ cm, where every ci is a conjunction of at most k literals. The
formula φ is said to be unambiguous if for every input x ∈ {0, 1}n there is at most one i ∈ [m]
that satisfies ci(x) = 1. For a Boolean function f : {0, 1}n → {0, 1}, consider the following
query complexity measures.

The 1-certificate complexity of f , denoted by C1(f), is the smallest integer k for which f

can be written as a k-DNF formula.
The 0-certificate complexity of f , denoted by C0(f), is C1(¬f), where ¬f is the negation
of f . Equivalently, C0(f) is the smallest integer k for which f can be written as a k-CNF
formula.
The unambiguous 1-certificate complexity of f , denoted by UC1(f), is the smallest integer
k for which f can be written as an unambiguous k-DNF formula.
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We need the following result that was proved in [2].

▶ Theorem 4 ([2]). For infinitely many integers r, there exists a Boolean function f :
{0, 1}n → {0, 1} satisfying UC1(f) = r and C0(f) ≥ Ω̃(r2) where r = nΩ(1).

2.4 Discrepancy

▶ Definition 5 (Discrepancy). Let Λ be a finite set, let g : Λ × Λ → {0, 1} be a function,
and let X, Y be independent random variables that are uniformly distributed over Λ. The
discrepancy of g with respect to a combinatorial rectangle R ⊆ Λ × Λ is denoted by discR(g)
and is defined by

discR(g) =
∣∣∣Pr [g(X, Y ) = 0 and (X, Y ) ∈ R] − Pr [g(X, Y ) = 1 and (X, Y ) ∈ R]

∣∣∣.
The discrepancy of g, denoted by disc(g), is defined as the maximum of discR(g) over all
combinatorial rectangles R ⊆ Λ × Λ.

3 Lifting from Certificate to Communication Complexity

In this section, we present our extension of the query-to-communication lifting theorem in
non-deterministic communication complexity to general low-discrepancy functions. We start
with a simple upper bound on the unambiguous non-deterministic communication complexity
of a composed function.

▶ Lemma 6. For all functions f : {0, 1}n → {0, 1} and g : {0, 1}ℓ × {0, 1}ℓ → {0, 1}, it holds
that UPcc(f ◦ gn) ≤ O

(
UC1(f) · max(log2 n, ℓ)

)
.

Proof. Put k = UC1(f). Then, the function f can be written as an unambiguous n-
variate k-DNF formula φ = c1 ∨ · · · ∨ cm where m ≤ (2n)k. Consider the following non-
deterministic protocol for the communication problem associated with the function f ◦ gn.
Let x, y ∈ {0, 1}ℓ·n be the inputs of the players. The first player selects non-deterministically
an index i ∈ [m] and sends it to the other player. Let I ⊆ [n] denote the set of indices of the
variables that appear in the clause ci, and note that |I| ≤ k. Then, the first player sends the
projection xI of x to the blocks of I, and similarly, the second player sends the projection yI

of y to the blocks of I. The players accept if and only if ci(gI(xI , yI)) = 1.
Observe that (f ◦ gn)(x, y) = 1 if and only if the protocol has an accepting computation

on the inputs x, y. Observe further that the fact that φ is unambiguous implies that the
protocol is unambiguous as well. Finally, the number of bits communicated by the protocol
is O(log2 m + k · ℓ) ≤ O

(
k · max(log2 n, ℓ)

)
, completing the proof. ◀

We turn to state a lower bound on the co-non-deterministic communication complexity
of composed functions f ◦ gn for low-discrepancy functions g. Its proof can be found in the
full version of the paper.

▶ Theorem 7. For every η > 0 there exists c > 0 for which the following holds. Let ℓ and
n be integers such that ℓ ≥ c · log2 n, and let g : {0, 1}ℓ × {0, 1}ℓ → {0, 1} be a function
satisfying disc(g) ≤ 2−η·ℓ. Then, for every function f : {0, 1}n → {0, 1}, it holds that

coNPcc(f ◦ gn) ≥ Ω
(
η · C0(f) · ℓ

)
.
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4 The Binary and Boolean Rank of Regular Matrices

In what follows we consider the notion of strongly unbiased functions and show that compos-
itions with such functions are associated with regular matrices. We then present a strongly
unbiased function and analyze its discrepancy. Equipped with this function, we apply the
lifting theorem from the previous section to prove Theorem 1.

4.1 Strongly Unbiased Functions
Consider the following definition.

▶ Definition 8. Let ℓ be an integer. We call a function g : {0, 1}ℓ × {0, 1}ℓ → {0, 1}
strongly unbiased if for every vector x ∈ {0, 1}ℓ, the number of vectors y ∈ {0, 1}ℓ satisfying
g(x, y) = 1 is 2ℓ−1, and for every vector y ∈ {0, 1}ℓ, the number of vectors x ∈ {0, 1}ℓ

satisfying g(x, y) = 1 is 2ℓ−1. Equivalently, g is strongly unbiased if the matrix associated
with g is 2ℓ−1-regular.

The following lemma shows that compositions with strongly unbiased functions are
associated with regular matrices.

▶ Lemma 9. For all functions g : {0, 1}ℓ × {0, 1}ℓ → {0, 1} and f : {0, 1}n → {0, 1}, if g is
strongly unbiased then the matrix associated with the composed function f ◦ gn is regular.

Proof. Let g : {0, 1}ℓ × {0, 1}ℓ → {0, 1} be a strongly unbiased function, let f : {0, 1}n →
{0, 1} be a function, and let M be the matrix of dimensions 2ℓ·n × 2ℓ·n associated with
the composed function f ◦ gn. Since g is strongly unbiased, it follows that for every vector
x ∈ {0, 1}ℓ·n and for every vector a ∈ {0, 1}n, precisely 2−n fraction of the vectors y ∈ {0, 1}ℓ·n

satisfy gn(x, y) = a. This implies that the row of the matrix M that corresponds to a vector
x ∈ {0, 1}ℓ·n consists of the evaluations of the function f on all vectors a ∈ {0, 1}n, where
each such evaluation appears exactly 2−n · 2ℓ·n = 2(ℓ−1)n times. In particular, the number
of ones in this row is 2(ℓ−1)n · |f−1(1)|. Since this number is independent of x, it follows
that this is the number of ones in each row of the matrix M . By symmetry, this is also the
number of ones in each column of M , implying that the matrix M is regular. ◀

4.2 The Gadget Function
For an integer ℓ ≥ 1, define the function gℓ : {0, 1}ℓ × {0, 1}ℓ → {0, 1} by

gℓ(x, y) = x1 + y1 +
ℓ∑

i=2
xi · yi (mod 2)

for all x, y ∈ {0, 1}ℓ. We first observe that gℓ is strongly unbiased.

▶ Lemma 10. For every integer ℓ ≥ 1, the function gℓ is strongly unbiased.

Proof. Consider the function gℓ for an integer ℓ ≥ 1. By definition, for every x ∈ {0, 1}ℓ,
it holds that for every y′ ∈ {0, 1}ℓ−1 exactly one of the two vectors y ∈ {0, 1}ℓ with suffix
y′ satisfies g(x, y) = 1. This implies that for every x ∈ {0, 1}ℓ precisely 2ℓ−1 of the vectors
y ∈ {0, 1}ℓ satisfy g(x, y) = 1. By symmetry, we also have that for every y ∈ {0, 1}ℓ precisely
2ℓ−1 of the vectors x ∈ {0, 1}ℓ satisfy g(x, y) = 1, so we are done. ◀
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The following lemma claims that the functions gℓ have low discrepancy. We note that this
can be directly derived from a bound on the discrepancy of the inner product function. Yet,
we present in the full version of the paper a bound with a somewhat better multiplicative
constant, borrowing an argument of Bouda, Pivoluska, and Plesch [4].

▶ Lemma 11. For every integer ℓ ≥ 1, the discrepancy of the function gℓ satisfies

disc(gℓ) ≤ 2−(ℓ+1)/2.

4.3 Proof of Theorem 1
We are ready to put everything together and to complete the proof of Theorem 1.

Proof of Theorem 1. By Theorem 4, for infinitely many integers r, there exists a Boolean
function f : {0, 1}n → {0, 1} satisfying UC1(f) = r and C0(f) ≥ Ω̃(r2) where r = nΩ(1). For
an integer ℓ, consider the function gℓ : {0, 1}ℓ × {0, 1}ℓ → {0, 1} defined in Section 4.2. By
Lemma 11, it holds that disc(gℓ) ≤ 2−η·ℓ for η = 1/2. Theorem 7 yields that there exists a
constant c, such that for ℓ = ⌈c · log2 n⌉, the composed function f ◦ gn

ℓ satisfies

coNPcc(f ◦ gn
ℓ ) ≥ Ω(C0(f) · ℓ) ≥ Ω̃(r2). (2)

By Lemma 6, it further holds that

UPcc(f ◦ gn
ℓ ) ≤ O(UC1(f) · ℓ) ≤ Õ(r), (3)

where for the second inequality we have used our choice of ℓ and the fact that r = nΩ(1).
To complete the proof, let M be the square 2ℓ·n × 2ℓ·n matrix associated with the

composed function f ◦ gn
ℓ . By Lemma 10, the function gℓ is strongly unbiased, hence by

Lemma 9, the matrix M is regular. Recalling that UPcc(f ◦ gn
ℓ ) = ⌈log2 rankbin(M)⌉, it

follows from (3) that rankbin(M) ≤ 2Õ(r). Put k = rankbin(M), and combine (2) with the
fact that coNPcc(f ◦gn

ℓ ) = ⌈log2 rankB(M)⌉ to obtain that rankB(M) ≥ 2Ω̃(r2) ≥ kΩ̃(log k). ◀

5 The Alon-Saks-Seymour Conjecture and Regular Graphs

In this section, we prove the following theorem.

▶ Theorem 12. For every square regular 0, 1 matrix M , there exists a simple regular graph
G satisfying bp(G) ≤ 33 · rankbin(M)2 and χ(G) ≥ rankB(M)1/3.

Applying Theorem 12 to the matrices given by Theorem 1 yields regular graphs that form
counterexamples to the Alon-Saks-Seymour conjecture with a near optimal gap between the
biclique partition number and the chromatic number. This confirms Theorem 2.

5.1 Biclique Covering
We start with some definitions that will be used throughout the proof of Theorem 12. All
graphs considered here are undirected. They do not contain parallel edges but they may
have loops. As usual, a graph is said to be simple if it contains no loops and no parallel
edges. For a graph G = (V, E), a biclique of G is a complete bipartite subgraph of G, that is,
a pair (A, B) of sets A, B ⊆ V where every vertex of A is adjacent in G to every vertex of B.
For adjacent vertices x, y of G such that x ∈ A and y ∈ B, we say that the biclique (A, B)
covers the oriented edge (x, y). Note that although the edges of G are undirected, a biclique
of G covers edges of G with some orientation.
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For an integer t, a t-biclique covering of G is a collection of bicliques of G that cover
every edge of G at least once and at most t times. The minimum size of such a covering is
called the t-biclique covering number of G and is denoted by bpt(G). For t = 1, a 1-biclique
covering is also called a biclique partition, and we write bp(G) = bp1(G).

We need the following result of Bousquet, Lagoutte, and Thomassé [6].

▷ Claim 13 ([6, Claim 28]). Let H = (V, E) be a simple graph, and let C be a t-biclique
covering of size k of H. Let E′ ⊆ E be the set of edges of H that are covered by C exactly t

times. Then, the graph H ′ = (V, E′) satisfies bp(H ′) ≤ (2k)t.

5.2 From Regular Matrices to Regular Graphs
We are ready to prove Theorem 12.

Proof of Theorem 12. Let M be an n × n regular 0, 1 matrix, and let d denote the number
of ones in each row and each column of M . Put k = rankbin(M) and m = rankB(M).

We first define a graph H = (V, E) on the vertex set V = [n] × [n] in which every two
(not necessarily distinct) vertices (i1, j1), (i2, j2) ∈ V are adjacent if Mi1,j2 = 1 or Mi2,j1 = 1.
Define V0 = {(i, j) ∈ V | Mi,j = 0} and V1 = {(i, j) ∈ V | Mi,j = 1}. Note that V = V0 ∪ V1,
and notice that the vertices of H that have loops are precisely the vertices of V1.

Let H0 = H[V0] denote the subgraph of H induced on the vertices of V0. Clearly, H0 is a
simple graph. The following lemma relates its chromatic number to the Boolean rank of M .

▶ Lemma 14. The graph H0 satisfies χ(H0) ≥ m.

Proof. Put r = χ(H0). Then, there exists a partition of V0 into r independent sets I1, . . . , Ir

of H0. For each t ∈ [r], let At be the set of elements i ∈ [n] for which there exists some
j ∈ [n] such that (i, j) ∈ It, and let Bt be the set of elements j ∈ [n] for which there exists
some i ∈ [n] such that (i, j) ∈ It. Since It is an independent set in H0, it follows that every
pair (i, j) ∈ At × Bt satisfies Mi,j = 0. This implies that At × Bt is a combinatorial rectangle
of zeros in the matrix M . Since the r given independent sets cover the entire set V0, it
follows that for every pair (i, j) ∈ V0 there exists some t ∈ [r] such that (i, j) ∈ It, and this t

satisfies (i, j) ∈ At × Bt. This shows that the rectangles At × Bt with t ∈ [r] form a cover of
the zeros of M , hence r ≥ rankB(M) = m, as required. ◀

The next lemma provides a 2-biclique covering of H.

▶ Lemma 15. There exists a 2-biclique covering C of H such that
1. |C| = k,
2. for every adjacent distinct vertices (i1, j1), (i2, j2) of H, if both Mi1,j2 = 1 and Mi2,j1 = 1

hold, then the edge that connects them is covered by C twice in the two opposite orientations,
and if only one of them holds, then it is covered by C once, and

3. every loop of H is covered by C once.

Proof. By k = rankbin(M), there exists a collection of k combinatorial rectangles At × Bt

of ones, t ∈ [k], that forms a partition of the ones of the matrix M . We define C as the
collection of all bicliques of the form Ct = (At × [n], [n] × Bt) for t ∈ [k].

Let (i1, j1), (i2, j2) be two (not necessarily distinct) vertices of H. If Mi1,j2 = 1 then
there exists a unique t ∈ [k] such that (i1, j2) ∈ At × Bt. This implies that the oriented edge
((i1, j1), (i2, j2)) is covered by the biclique Ct and is not covered by any other biclique of C.
If, however, it holds that Mi1,j2 = 0, then no t ∈ [k] satisfies (i1, j2) ∈ At × Bt, hence the
oriented edge ((i1, j1), (i2, j2)) is not covered by any biclique of C.
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We turn to show that C is a 2-biclique covering of H that satisfies the assertion of the
lemma. By definition, we have |C| = k, as required for Item 1. Let (i1, j1), (i2, j2) be two
distinct vertices of H. If the vertices are adjacent then Mi1,j2 = 1 or Mi2,j1 = 1. The above
discussion implies that if both the conditions hold then the edge that connects them is
covered twice in the two opposite orientations, whereas if only one of the conditions holds,
then the edge is covered once, as required for Item 2. For a vertex (i, j) that has a loop, it
holds that Mi,j = 1, hence the oriented edge ((i, j), (i, j)) is covered once by C, as required
for Item 3. On the other hand, if the vertices (i1, j1), (i2, j2) are not adjacent then Mi1,j2 = 0
and Mi2,j1 = 0, hence no oriented edge between them is covered by C. It thus follows that C
is a 2-biclique covering of H, and we are done. ◀

Let C be the 2-biclique covering of H given by Lemma 15. Consider the two subgraphs of
H0 defined by H

(1)
0 = (V0, E1) and H

(2)
0 = (V0, E2), where Et is the set of edges of H0 that

are covered by C exactly t times for t ∈ [2]. Since the edge set of H0 is E1 ∪ E2, it follows
that

χ(H0) ≤ χ(H(1)
0 ) · χ(H(2)

0 ). (4)

To obtain the desired simple regular graph, we proceed by considering the following two
cases according to the chromatic number of H

(2)
0 .

Case 1. Suppose first that χ(H(2)
0 ) ≥ m1/3. Let C′ be the collection of bicliques of H

obtained from C by replacing every biclique (A, B) ∈ C by the three bicliques (A ∩ B, A ∩ B),
(A ∩ B, B \ A), and (A \ B, B), where bicliques with an empty part can be avoided. Observe
that these three bicliques cover precisely the same edges covered by (A, B) with the same
multiplicities and orientations. Therefore, C′ is a 2-biclique covering of H of size |C′| ≤ 3k

which satisfies Items 2 and 3 of Lemma 15. It further satisfies that each of its bicliques has
either equal or disjoint parts. We let C′′ ⊆ C′ denote the collection of bicliques of C′ with
equal parts. It clearly holds that |C′′| ≤ k and |C′ \ C′′| ≤ 2k.

Every biclique of C′′ has the form (A, A) for some set A ⊆ V . For every x ∈ A, it covers
a loop of x as an oriented edge (x, x), and for every distinct x, y ∈ A, it covers the edge
that connects x and y in the two opposite orientations, namely, as (x, y) and as (y, x). This
implies that all the vertices that appear in the bicliques of C′′ have loops in H and thus
belong to V1. Since the parts of the bicliques of C′ \ C′′ are disjoint, it follows that the
bicliques of C′′ cover all the loops of H . Since C′ is a 2-biclique covering of H that covers the
loops once, it follows that no edge is covered by both C′′ and C′ \ C′′.

Let F be the graph obtained from H by removing the edges of the bicliques of C′′. Since
the bicliques of C′′ cover all the loops of H, it follows that the graph F is simple. The
collection C′ \ C′′ forms a 2-biclique covering of F , hence bp2(F ) ≤ 2k. Let F (2) denote the
subgraph of F on V that includes all the edges that are covered by C′ \ C′′ twice. Since
the bicliques of C′′ involve only vertices of V1, it follows that F (2) has an induced subgraph
isomorphic to H

(2)
0 , implying that χ(F (2)) ≥ χ(H(2)

0 ) ≥ m1/3.
Now, let G be the graph that contains two disjoint copies of F (2), with additional edges

between the two copies according to the bicliques of C′′. More precisely, G is the graph on the
vertex set V × [2] in which two vertices (x, b) and (y, b) for b ∈ [2] are adjacent if x and y are
adjacent in F (2), and two vertices (x, 1) and (y, 2) are adjacent if (x, y) is an oriented edge
covered by the bicliques of C′′. The graph G is simple, because F (2) is simple and because no
oriented edge is covered twice by C′′. We claim that G satisfies the assertion of the theorem.

Firstly, G has an induced subgraph isomorphic to F (2), hence it follows that χ(G) ≥
χ(F (2)) ≥ m1/3.

MFCS 2022
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Secondly, we claim that bp(G) ≤ 33 · k2. To see this, use Claim 13 and bp2(F ) ≤ 2k

to obtain that bp(F (2)) ≤ (4k)2, that is, at most (4k)2 bicliques are needed for a partition
of the edges of each copy of F (2) in G. Consider further the bicliques (A × {1}, A × {2})
for (A, A) ∈ C′′, which form a partition with size at most k of the edges of G between the
vertices of V × {1} and those of V × {2}. It follows that bp(G) ≤ 2 · (4k)2 + k ≤ 33 · k2.

Finally, we claim that G is regular with degree d2. To see this, consider an arbitrary
vertex (i1, j1, b) ∈ V × [2] in G. This vertex is adjacent to the vertices (i2, j2, b) for which
the pairs (i1, j1) and (i2, j2) are adjacent in H and the edge that connects them is covered
twice by C′ \ C′′. It is further adjacent to the vertices (i2, j2, b′) with b′ ≠ b for which the
pairs (i1, j1) and (i2, j2) are adjacent in H and the edge that connects them is covered by C′′

(twice if they are distinct, and once otherwise). Since C′ satisfies Items 2 and 3 of Lemma 15,
it follows that the degree of (i1, j1, b) in G is precisely the number of pairs (i2, j2) ∈ V

satisfying Mi1,j2 = 1 and Mi2,j1 = 1. By the d-regularity of M , the latter is equal to d2, so
we are done.

Case 2. Suppose next that χ(H(2)
0 ) < m1/3. We start by proving that there exists an

independent set S ⊆ V0 in the graph H
(2)
0 for which

χ(H(1)
0 [S]) ≥ m1/3. (5)

Indeed, the assumption implies that there exists a proper coloring of H
(2)
0 with fewer

than m1/3 colors. If the induced subgraph of H
(1)
0 on every color class of this coloring

has chromatic number smaller than m1/3, then one can obtain a proper coloring of H
(1)
0

whose number of colors is smaller than m1/3 · m1/3 = m2/3, which implies using (4) that
χ(H0) < m2/3 · m1/3 = m, in contradiction to Lemma 14. This implies that some color class
S ⊆ V0 of the coloring of H

(2)
0 satisfies (5).

Now, consider the 3-partite graph G′ whose vertex set consists of three copies of V that
are connected by three copies of the bicliques of C oriented in a cyclic manner. More precisely,
the vertex set of G′ is V × [3] and its edges are those of the bicliques (A × {1}, B × {2}),
(A × {2}, B × {3}), and (A × {3}, B × {1}) for all (A, B) ∈ C. By Lemma 15, no oriented
edge of the bicliques of C is covered twice. It thus follows that G′ is a simple graph and that
each of its edges is covered by the above bicliques exactly once. By |C| = k, it follows that
bp(G′) ≤ 3k. Further, Items 2 and 3 of Lemma 15 imply that the degree of every vertex
(i1, j1, b) ∈ V × [3] of G′ is precisely the sum of the number of pairs (i2, j2) ∈ V satisfying
Mi1,j2 = 1 and the number of pairs (i2, j2) ∈ V satisfying Mi2,j1 = 1. Since the matrix M is
d-regular, it follows that the graph G′ is regular with degree 2nd.

We next define a graph G as follows. The graph G is obtained from G′ by removing
all the edges whose both endpoints are in S × [3] and by adding the edges of the induced
subgraph H[S] of H on S to each of the three copies of S in G (i.e., S × {b} for b ∈ [3]).
Since G′ is a simple graph, using the fact that S is a subset of V0, it follows that G is a
simple graph as well. We claim that G satisfies the assertion of the theorem.

Firstly, since S is an independent set in H
(2)
0 , the subgraph of G induced on every copy

of S is isomorphic to H
(1)
0 [S]. It thus follows from (5) that χ(G) ≥ χ(H(1)

0 [S]) ≥ m1/3.
Secondly, we claim that bp(G) ≤ 9k. To see this, recall that bp(G′) ≤ 3k, and consider

some biclique partition with size at most 3k of the edges of G′. Replace each biclique
(A × {b}, B × {b′}) of this partition, where b ̸= b′, by the two bicliques

((A \ S) × {b}, B × {b′}) and ((A ∩ S) × {b}, (B \ S) × {b′}).
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This gives us a biclique partition with size at most 6k of all the edges of G′ but those spanned
by the vertices of S × [3]. It remains to cover the edges of the three copies of H[S] in G.
Since S is an independent set in H

(2)
0 , each edge of H[S] is covered by C exactly once, so by

restricting the bicliques of C to the vertices of S, we get a biclique partition of H [S] with size
at most k. This gives us a biclique partition with size at most k of the edges of G[V × {b}]
for each b ∈ [3], implying that bp(G) ≤ 6k + 3k = 9k.

Finally, we claim that G is regular. To see this, recall that G′ is regular and that G is
obtained from G′ by replacing the edges between the different copies of S by the corresponding
edges inside the copies of S. Since those edges are covered exactly once by C, this does not
change the degrees of the vertices, yielding that the graph G is regular as well, and we are
done. ◀
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1 Introduction

We show that every NP set of low ambiguity belongs to broad collections of restricted
counting classes.

We now describe the two types of complexity classes just mentioned. For any set S ⊆ N+,
the restricted counting class RCS [7] is defined by RCS = {L | (∃f ∈ #P)(∀x ∈ Σ∗)[(x ̸∈
L =⇒ f(x) = 0) ∧ (x ∈ L =⇒ f(x) ∈ S)]}. That is, a set L is in RCS exactly if there is a
nondeterministic polynomial-time Turing machine (NPTM) that on each string not in L has
zero accepting paths and on each string in L has a number of accepting paths that belongs
to the set S. For example, though this is an extreme case, NP = RCN+ .

In the 1970s, Valiant started the study of ambiguity-limited versions of NP by introducing
the class UP [36], unambiguous polynomial time, which in the above notation is simply
RC{1}. (The ambiguity (limit) of an NPTM refers to an upper bound on how many accepting
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Table 1 Summary of containment results. (Theorem 4.19 also gives a slightly stronger form of
the 2n-nongappiness result than the version stated here.)

If T ⊆ N+ X, then Y

X Y Reference

has an (n + O(1))-nongappy, P-printable subset FewP ⊆ RCT [7]

has an O(n)-nongappy, P-printable subset UP≤O(log n) ⊆ RCT Thm. 4.10

has an O(n log n)-nongappy, P-printable subset UP≤O(
√

log n) ⊆ RCT Thm. 4.19

for some real number k > 1 has an nk-
nongappy, P-printable subset

UP≤O(1)+ log log n
2 log k

⊆ RCT Thm. 4.13

has an nlog n-nongappy, P-printable subset UP≤O(1)+ 1
2 log log log n ⊆ RCT Thm. 4.19

has an n(log n)O(1)
-nongappy, P-printable subset UP≤O(1)+ 1

3 log log log log n ⊆ RCT Thm. 4.19

has a 2n-nongappy, P-printable subset S

UP≤max(1,⌊ log∗(n)−log∗(log∗(n)+1)−1
λ

⌋)
⊆ RCT , where
λ = 4 + mins∈S,|s|≥2(|s|)

Thm. 4.19

is infinite UP≤O(1) ⊆ RCT Cor. 4.4

paths it has as a function of the input’s length. An NP language falls within a given level of
ambiguity if it is accepted by some NPTM that happens to satisfy that ambiguity limit.)
More generally, for each function f : N → N+ or f : N → R≥1, UP≤f(n) denotes the class
of languages L for which there is an NPTM N such that, for each x, if x ̸∈ L then N

on input x has no accepting paths, and if x ∈ L then 1 ≤ #accN (x) ≤ ⌊f(|x|)⌋ (where
#accN (x) denotes the number of accepting computation paths of N on input x). (Since, for
all N and x, #accN (x) ∈ N, the class UP≤f(n) just defined would be unchanged if ⌊f(|x|)⌋
were replaced by f(|x|).) Ambiguity-limited nondeterministic classes whose ambiguity limits
range from completely unambiguous (UP≤1, i.e., UP) to polynomial ambiguity (Allender
and Rubinstein’s class FewP [3]) have been defined and studied.

In this paper, we show that many ambiguity-limited counting classes – including ones based
on types of logarithmic ambiguity, loglog ambiguity, logloglog ambiguity, and loglogloglog
ambiguity – are contained in various collections of restricted counting classes. We do so
primarily through two general theorems (Theorems 4.7 and 4.12) that help make clear how,
as the size of the “holes” allowed in the sets underpinning the restricted counting classes
becomes smaller (i.e., as the sets become more “nongappy”), one can handle more ambiguity.
Table 1 summarizes our results about the containment of ambiguity-limited counting classes
in restricted counting classes.

Only for polynomial ambiguity was a result of this sort previously known. In particular,
Beigel, Gill, and Hertrampf [5], strengthening Cai and Hemachandra’s result FewP ⊆ ⊕P [13],
proved that FewP ⊆ RC{1,3,5,...}, and Borchert, Hemaspaandra, and Rothe [7] noted that
FewP ⊆ RCT for each nonempty set T ⊆ N+ that has an easily presented (formally, P-
printable [25], whose definition will be given in Section 2) subset V that is (n+O(1))-nongappy
(i.e., for some k the set V never has more than k adjacent, empty lengths; that is, for each
collection of k + 1 adjacent lengths, V will always contain at least one string whose length is
one of those k + 1 lengths).

Our proof approach in the present paper connects somewhat interestingly to the history
just mentioned. We will describe in Section 4 the approach that we will call the iterative
constant-setting technique. However, briefly put, that refers to a process of sequentially
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setting a series of constants – first c0, then c1, then c2, . . . , and then cm – in such a way that,
for each 0 ≤ j ≤ m, the summation

∑
0≤ℓ≤j cℓ

(
j
ℓ

)
falls in a certain “yes” or “no” target set,

as required by the needs of the setting. For RCS classes, the “no” target set will be {0} and
the “yes” target set will be S. In this paper, we will typically put sets into restricted counting
classes by building Turing machines that guess (for each 0 ≤ ℓ ≤ j) cardinality-ℓ sets of
accepting paths of another NPTM and then amplify each such successful accepting-path-set
guess by – via splitting/cloning of the path – creating from it cℓ accepting paths.

A technically novel aspect of the proofs of the two main theorems (Theorems 4.7 and 4.12,
each in effect a metatheorem) is that those proofs each provide, in a unified way for a broad
class of functions, an analysis of value-growth in the context of iterated functions.

Cai and Hemachandra’s [13] result FewP ⊆ ⊕P was proven (as was an even more general
result about a class known as “Few”) by the iterative constant-setting technique. Beigel,
Gill, and Hertrampf [5], while generously noting that “this result can also be obtained
by a close inspection of Cai and Hemachandra’s proof,” proved the far stronger result
FewP ⊆ RC{1,3,5,...} simply and directly rather than by iterative constant-setting. Borchert,
Hemaspaandra, and Rothe’s [7] even more general result, noted above for its proof, resurrected
the iterative constant-setting technique, using it to understand one particular level of
ambiguity. This present paper is, in effect, an immersion into the far richer world of
possibilities that the iterative constant-setting technique can offer, if one puts in the work to
analyze and bound the growth rates of certain constants central to the method. In particular,
as noted above we use the iterative constant-setting method to obtain a broad range of
results (see Table 1) regarding how ambiguity-limited nondeterminism is not more powerful
than appropriately nongappy restricted counting classes.

Each of our results has immediate consequences regarding the power of the primes as a
restricted-counting acceptance type. Borchert, Hemaspaandra, and Rothe’s result implies that
if the set of primes has an (n + O(1))-nongappy, P-printable subset, then FewP ⊆ RCPRIMES.
However, it is a long-open research issue whether there exists any infinite, P-printable subset
of the primes, much less an (n + O(1))-nongappy one. Our results lower the bar on what one
must assume about how nongappy hypothetical infinite, P-printable subsets of the primes
are in order to imply that some superconstant-ambiguity-limited nondeterministic version
of NP is contained in RCPRIMES. We prove that even infinite, P-printable sets of primes
with merely exponential upper bounds on the size of their gaps would yield such a result.
We also prove – by exploring the relationship between density and nongappiness – that
the Lenstra–Pomerance–Wagstaff Conjecture [35, 38] (regarding the asymptotic density of
the Mersenne primes) implies that UP≤O(log log n) ⊆ RCPRIMES. The Lenstra–Pomerance–
Wagstaff Conjecture is characterized in Wikipedia [41] as being “widely accepted,” the fact
that it disagrees with a different conjecture (Gillies’ Conjecture [22]) notwithstanding.

Additional results, discussions and comments, and the omitted proofs of Theorems 4.3,
4.12, 4.13, 4.14, and 4.19, Propositions 2.5, 4.9, and 4.17, and Corollary 4.15 can be found
our full technical report version [26].

2 Definitions

N = {0, 1, 2, . . . }. N+ = {1, 2, . . . }. Each positive natural number, other than 1, is prime
or composite. A prime number is a number that has no positive divisors other than 1
and itself. PRIMES = {i ∈ N | i is a prime} = {2, 3, 5, 7, 11, . . . }. A composite number
is one that has at least one positive divisor other than 1 and itself; COMPOSITES =
{i ∈ N | i is a composite number} = {4, 6, 8, 9, 10, 12, . . . }. R is the set of all real numbers,
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R+ = {x ∈ R | x > 0}, and R≥1 = {x ∈ R | x ≥ 1}. All logs in this paper (thus those
involved in log, loglog, logloglog, loglogloglog, and log[i], and also those called within the
definitions of log∗ and our new log⊛) are base 2. Also, each call of the log function in this
paper, log(·), is implicitly a shorthand for log(max(1, ·)). We do this so that formulas such
as log log log(·) do not cause domain problems on small inputs. (Admittedly, this is also
distorting log in the domain-valid open interval (0,1). However, that interval never comes
into play in our paper except incidentally when iterated logs drop something into it, and also
in the definitions of log∗ and log⊛ but in those two cases – see the discussion in Footnotes 2
and 8 of [26] – the max happens not to change what those evaluate to on (0,1).)

As mentioned earlier, for any NPTM N and any string x, #accN (x) will denote the
number of accepting computation paths of N on input x. #P [37] is the counting version of
NP: #P = {f : Σ∗ → N | (∃ NPTM N)(∀x ∈ Σ∗)[#accN (x) = f(x)]}. ⊕P (“Parity P”) is
the class of sets L such that there is a function f ∈ #P such that, for each string x, it holds
that x ∈ L ⇐⇒ f(x) ≡ 1 (mod 2) [34, 23].

We will use O in its standard sense, namely, if f and g are functions (from whose domain
negative numbers are typically excluded), then we say f(n) = O(g(n)) exactly if there exist
positive integers c and n0 such that (∀n ≥ n0)[f(n) ≤ cg(n)]. We sometimes will also,
interchangeably, speak of or write a O expression as representing a set of functions (e.g.,
writing f(n) ∈ O(g(n))) [10, 11], which in fact is what the “big O” notation truly represents.

The notions RCS , UP, and UP≤f(n) are as defined in Section 1. For each k ≥ 1,
Watanabe [39] implicitly and Beigel [4] explicitly studied the constant-ambiguity classes
RC{1,2,3,...,k} which, following the notation of Lange and Rossmanith [32], we will usually
denote UP≤k. We extend the definition of UP≤f(n) to classes of functions as follows. For
classes F of functions mapping N to N+ or N to R≥1, we define UP≤F =

⋃
f∈F UP≤f(n). We

mention that the class UP≤O(1) is easily seen to be equal to
⋃

k∈N+ UP≤k, which is a good
thing since that latter definition of the notion is how UP≤O(1) was defined in the literature
more than a quarter of a century ago [29]. UP≤O(1) can be (informally) described as the
class of all sets acceptable by NPTMs with constant-bounded ambiguity. Other related
classes will also be of interest to us. For example, UP≤O(log n) captures the class of all sets
acceptable by NPTMs with logarithmically-bounded ambiguity. Allender and Rubinstein [3]
introduced and studied FewP, the polynomial-ambiguity NP languages, which can be defined
by FewP = {L | (∃ polynomial f)[L ∈ UP≤f(n)]}.

The UP≤f(n) classes, which will be central to this paper’s study, capture ambiguity-
bounded versions of NP. They are also motivated by the fact that they completely characterize
the existence of ambiguity-bounded (complexity-theoretic) one-way functions.1

▶ Proposition 2.1. Let f be any function mapping from N to N+. P ̸= UP≤f(n) if and only
if there exists an f(n)-to-one one-way function.

1 A (possibly nontotal) function g is said to be a one-way function exactly if (a) g is polynomial-time
computable, (b) g is honest (i.e., there exists a polynomial q such that, for each y in the range of g,
there exists a string x such that g(x) = y and |x| ≤ q(|y|); simply put, each string y mapped to by g is
mapped to by some string x that is not much longer than y), and (c) g is not polynomial-time invertible
(i.e., there exists no (possibly nontotal) polynomial-time function h such that for each y in the range of
g, it holds that h(y) is defined and g(h(y)) is defined and g(h(y)) = y) [24]. For each f : N → N+ and
each (possibly nontotal) function g : Σ∗ → Σ∗, we say that g is f(n)-to-one exactly if, for each y ∈ Σ∗,
∥{x | g(x) = y}∥ ≤ f(|y|). When g is a one-way function, the function f is sometimes referred to as an
ambiguity limit on the function g, and the special case of f(n) = 1 is the case of unambiguous one-way
functions. (This is a different notion of ambiguity than that used for NPTMs, though Proposition 2.1
shows that the notions are closely connected.)
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That claim holds even if f is not nondecreasing, and holds even if f is not a computable
function. To the best of our knowledge, Proposition 2.1 has not been stated before for the
generic case of any function f : N → N+. However, many concrete special cases are well
known, and the proposition follows from the same argument as is used for those (see for
example [27, Proof of Theorem 2.5] for a tutorial presentation of that type of argument).
In particular, the proposition’s special cases are known already for UP (due to [24, 30]),
UP≤k (for each k ∈ N+) and UP≤O(1) (in [29, 6]), FewP (in [3]), and (since the following is
another name for NP) UP≤2nO(1) (folklore, see [27, Theorem 2.5, Part 1]). The proposition
holds not just for single functions f , but also for classes that are collections of functions, e.g.,
UP≤O(log n).

For any function f , we use f [n] to denote function iteration: f [0](α) = α and inductively,
for each n ∈ N, f [n+1](α) = f(f [n](α)). For each real number α ≥ 0, log∗(α) (“(base 2) log
star of α”) is the smallest natural number k such that log[k](α) ≤ 1. Although the logarithm
of 0 is not defined, note that log∗(0) is well-defined, namely it is 0 since log[0](0) = 0.

A set L is said to be P-printable [25] exactly if there is a deterministic polynomial-time
Turing machine such that, for each n ∈ N, the machine when given as input the string 1n

prints (in some natural coding, such as printing each of the strings of L in lexicographical
order, inserting the character # after each) exactly the set of all strings in L of length less
than or equal to n.

Notions of whether a set has large empty expanses between one element and the next
will be central to our work in this paper. Borchert, Hemaspaandra, and Rothe [7] defined
and used such a notion, in a way that is tightly connected to our work. We present here the
notion they called “nongappy,” but here, we will call it “nongappyvalue” to distinguish their
value-centered definition from the length-centered definitions that will be our norm in this
paper.

▶ Definition 2.2 ([7]). A set S ⊆ N+ is said to be nongappyvalue if S ≠ ∅ and (∃k > 0)(∀m ∈
S)(∃m′ ∈ S)[m′ > m ∧ m′/m ≤ k].

This says that the gaps between one element of the set and the next greater one are, as to
the values of the numbers, bounded by a multiplicative constant. Note that, if we view the
natural numbers as naturally coded in binary, that is equivalent to saying that the gaps
between one element of the set and the next greater one are, as to the lengths of the two
strings, bounded by an additive constant. That is, a nonempty set S ⊆ N+ is said to be
nongappyvalue by this definition if the gaps in the lengths of elements of S are bounded by
an additive constant, and thus we have the following result that clearly holds.

▶ Proposition 2.3. A set S ⊆ N+ is nongappyvalue if and only if S ̸= ∅ and (∃k > 0)(∀m ∈
S)(∃m′ ∈ S)[m′ > m ∧ |m′| ≤ |m| + k].

In Section 4 we define other notions of nongappiness that allow larger gaps than the above
does. We will always focus on lengths, and so we will consistently use the term “nongappy”
in our definitions to speak of gaps quantified in terms of the lengths of the strings involved.
We now introduce a new notation for the notion nongappyvalue, and show that our definition
does in fact refer to the same notion as that of Borchert, Hemaspaandra, and Rothe.

▶ Definition 2.4. A set S ⊆ N+ is (n + O(1))-nongappy if S ̸= ∅ and (∃f ∈ O(1))(∀m ∈
S)(∃m′ ∈ S)[m′ > m ∧ |m′| ≤ |m| + f(|m|)].

While at first glance this might seem to be different from Borchert, Hemaspaandra, and
Rothe’s definition, it is easy to see that both definitions are equivalent.

▶ Proposition 2.5. A set S is (n + O(1))-nongappy if and only if it is nongappyvalue.
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3 Related Work

The most closely related work has already largely been covered in the nonappendix part of the
paper, but we now briefly mention that work and its relationship to this paper. In particular,
the most closely related papers are the work of Cai and Hemachandra [13], Hemaspaandra
and Rothe [28], and Borchert, Hemaspaandra, and Rothe [7], which introduced and studied
the iterative constant-setting technique as a tool for exploring containments of counting
classes. The former two (and also the important related work of Borchert and Stephan [8])
differ from the present paper in that they are not about restricted counting classes, and
unlike the present paper, Borchert, Hemaspaandra, and Rothe’s paper, as to containment
of ambiguity-limited classes, addresses only FewP. (It is known that FewP is contained in
the class known as SPP and is indeed so-called SPP-low [31, 17, 18], however that does not
make our containments in restricted counting classes uninteresting, as it seems unlikely that
SPP is contained in any restricted counting class, since SPP’s “no” case involves potentially
exponential numbers of accepting paths, not zero such paths.) The interesting, recent paper of
Cox and Pay [16] draws on the result of Borchert, Hemaspaandra, and Rothe [7] that appears
as our Theorem 4.1 to establish that FewP ⊆ RC{2t−1 | t∈N+} (note that the right-hand side
is the restricted counting class defined by the Mersenne numbers), a result that itself implies
FewP ⊆ RC{1,3,5,...}.

“RC” (restricted counting) classes [7] are central to this paper. The literature’s earlier
“CP” classes [12] might at first seem similar, but they don’t restrict rejection to the case of
having zero accepting paths. Leaf languages [9], a different framework, do have flexibility to
express “RC” classes, and so are an alternate notation one could use, though in some sense
they would be overkill as a framework here due to their extreme descriptive power. The class
RC{1,3,5,...} first appeared in the literature under the name ModZ2P [5]. Ambiguity-limited
classes are also quite central to this paper, and among those we study (see Section 2) are
ones defined, or given their notation that we use, in the following papers: [36, 4, 39, 3, 32].

P-printability is due to Hartmanis and Yesha [25]. Allender [2] established a sufficient
condition, which we will discuss later, for the existence of infinite, P-printable subsets of the
primes. As discussed in the text right after Corollary 4.2 and in Footnote 2, none of the
results of Ford, Maynard, Tao, and others [20, 33, 19] about “infinitely often” lower bounds
on gaps in the primes, nor any possible future bounds, can possibly be strong enough to be
the sole obstacle to a FewP ⊆ RCPRIMES construction.

4 Gaps, Ambiguity, and Iterative Constant-Setting

What is the power of NPTMs whose number of accepting paths is 0 for each string not in
the set and is a prime for each string in the set? In particular, does that class, RCPRIMES,
contain FewP or, for that matter, any interesting ambiguity-limited nondeterministic class?
That is the question that motivated this work.

Why might one hope that RCPRIMES might contain some ambiguity-limited classes? Well,
we clearly have that NP ⊆ RCCOMPOSITES, so having the composites as our acceptance
targets allows us to capture all of NP. Why? For any NP machine N , we can make a new
machine N ′ that mimics N , except it clones each accepting path into four accepting paths,
and so when N has zero accepting paths N ′ has zero accepting paths, and when N has at
least one accepting path N ′ has a composite number of accepting paths.

On the other hand, why might one suspect that interesting ambiguity-limited nondeter-
ministic classes such as FewP might not be contained in RCPRIMES? Well, it is not even
clear that FewP is contained in the class of sets that are accepted by NPTMs that accept
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via having a prime number of accepting paths, and reject by having a nonprime number
of accepting paths (rather than being restricted to rejecting only by having zero accepting
paths, as is RCPRIMES). That is, even a seemingly vastly more flexible counting class does
not seem to in any obvious way contain FewP.

This led us to revisit the issue of identifying the sets S ⊆ N+ that satisfy FewP ⊆ RCS ,
studied previously by, for example, Borchert, Hemaspaandra, and Rothe [7] and Cox and
Pay [16]. In particular, Borchert, Hemaspaandra, and Rothe showed, by the iterative
constant-setting technique, the following theorem. From it, we immediately have Cor. 4.2.

▶ Theorem 4.1 ([7, Theorem 3.4]). If T ⊆ N+ has an (n + O(1))-nongappy, P-printable
subset, then FewP ⊆ RCT .

▶ Corollary 4.2. If PRIMES contains an (n + O(1))-nongappy, P-printable subset, then
FewP ⊆ RCPRIMES.

Does PRIMES contain an (n+O(1))-nongappy, P-printable subset? The Bertrand–Chebyshev
Theorem [15] states that for each natural number k > 3, there exists a prime p such that
k < p < 2k − 2. Thus PRIMES clearly has an (n + O(1))-nongappy subset.2 Indeed, since –
with pi denoting the ith prime – (∀ϵ > 0)(∃N)(∀n > N)[pn+1 − pn < ϵpn] [40], it holds that
represented in binary there are primes at all but a finite number of bit-lengths. Unfortunately,
to the best of our knowledge it remains an open research issue whether there exists any
infinite, P-printable subset of the primes, much less one that in addition is (n + O(1))-
nongappy. In fact, the best sufficient condition we know of for the existence of an infinite,
P-printable set of primes is a relatively strong hypothesis of Allender [2, Corollary 32 and
the comment following it] about the probabilistic complexity class R [21] and the existence
of secure extenders. However, that result does not promise that the infinite, P-printable set
of primes is (n + O(1))-nongappy – not even now, when it is known that primality is not
merely in the class R but even is in the class P [1].

So the natural question to ask is: Can we at least lower the bar for what strength of
advance – regarding the existence of P-printable sets of primes and the nongappiness of such
sets – would suffice to allow RCPRIMES to contain some interesting ambiguity-limited class?

In particular, the notion of nongappiness used in Theorem 4.1 above means that our
length gaps between adjacent elements of our P-printable set must be bounded by an additive
constant. Can we weaken that to allow larger gaps, e.g., gaps of multiplicative constants,
and still have containment for some interesting ambiguity-limited class?

We show that the answer is yes. More generally, we show that there is a tension and
trade-off between gaps and ambiguity. As we increase the size of gaps we are willing to
tolerate, we can prove containment results for restrictive counting classes, but of increasingly
small levels of ambiguity. On the other hand, as we lower the size of the gaps we are willing
to tolerate, we increase the amount of ambiguity we can handle.

2 We mention in passing that it follows from the fact that PRIMES clearly does have an (n + O(1))-
nongappy subset that none of the powerful results by Ford, Maynard, Tao, and others [20, 33, 19]
about “infinitely often” lower bounds for gaps in the primes, or in fact any results purely about lower
bounds on gaps in the primes, can possibly prevent there from being a set of primes whose gaps are
small enough that the set could, if sufficiently accessible, be used in a Cai–Hemachandra-type iterative
constant-setting construction seeking to show that FewP ⊆ RCPRIMES. (In fact – keeping in mind that
the difference between the value of a number and its coded length is exponential – the best such gaps
known are almost exponentially too weak to preclude a Cai–Hemachandra-type iterative constant-setting
construction.) Rather, the only obstacle will be the issue of whether there is such a set that in addition
is computationally easily accessible/thin-able, i.e., whether there is such an (n + O(1))-nongappy subset
of the primes that is P-printable.
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57:8 Establishing Complexity-Class Containments via Iterative Constant-Setting

It is easy to see that the case of constant-ambiguity nondeterminism is so extreme that
the iterative constant-setting method works for all infinite sets regardless of how nongappy
they are. (It is even true that the containment UP≤k ⊆ RCT holds for some finite sets T ,
such as {1, 2, 3, . . . , k}; but our point here is that it holds for all infinite sets T ⊆ N+.)

▶ Theorem 4.3. For each infinite set T ⊆ N+ and for each natural k ≥ 1, UP≤k ⊆ RCT .

Theorem 4.3 should be compared with the discussion by Hemaspaandra and Rothe [28,
p. 210] of an NP-many-one-hardness result of Borchert and Stephan [8] and a UP≤k-1-truth-
table-hardness result. In particular, both those results are in the unrestricted setting, and
so neither implies Theorem 4.3. The proof of Theorem 4.3 can be found as Appendix A of
our [26]. However, we recommend that the reader read it, if at all, only after reading the
proof of Theorem 4.7, whose proof also uses (and within this paper, is the key presentation
of) iterative constant-setting, and is a more interesting use of that approach.

▶ Corollary 4.4. For each infinite set T ⊆ N+, UP≤O(1) ⊆ RCT .

▶ Corollary 4.5. UP≤O(1) ⊆ RCPRIMES.

So constant-ambiguity nondeterminism can be done by the restrictive counting class
based on the primes. However, what we are truly interested in is whether we can achieve a
containment for superconstant levels of ambiguity. We in fact can do so, and we now present
such results for a range of cases between constant ambiguity (UP≤O(1)) and polynomial
ambiguity (FewP). We first define a broader notion of nongappiness.

▶ Definition 4.6. Let F be any function mapping R+ to R+. A set S ⊆ N+ is F -nongappy
if S ̸= ∅ and (∀m ∈ S)(∃m′ ∈ S)[m′ > m ∧ |m′| ≤ F (|m|)].3

This definition sets F ’s domain and codomain to include real numbers, despite the fact
that the underlying F -nongappy set S is of the type S ⊆ N+. The codomain is set to
include real numbers because many notions of nongappiness we examine rely on non-integer
values. Since we are often iterating functions, we thus set F ’s domain to be real numbers as
well. Doing so does not cause problems as to computability because F is a function that
is never actually computed by the Turing machines in our proofs; it is merely one that is
mathematically reasoned about in the analysis of the nongappiness of sets underpinning
restricted counting classes.

The following theorem generalizes the iterative constant-setting technique that Borchert,
Hemaspaandra, and Rothe used to prove Theorem 4.1.

▶ Theorem 4.7. Let F be a function mapping from R+ to R+ and let n0 be a positive
natural number such that F restricted to the domain {t ∈ R+ | t ≥ n0} is nondecreasing
and for all t ≥ n0 we have (a) F (t) ≥ t + 2 and (b) (∀c ∈ N+)[cF (t) ≥ F (ct)]. Let j be a
function, mapping from N to N+, that is at most polynomial in the value of its input and is
computable in time polynomial in the value of its input. Suppose T ⊆ N+ has an F -nongappy,
P-printable subset S. Let λ = 4 + |s| where s is the smallest element of S with |s| ≥ n0. If
for some β ∈ N+, F [j(n)](λ) = O(nβ), then UP≤j(n) ⊆ RCT .

3 In two later definitions, 4.8 and 4.18, we apply Definition 4.6 to classes of functions. In each case, we
will directly define that, but in fact will do so as the natural lifting (namely, saying a set is F-nongappy
exactly if there is an F ∈ F such that the set is F -nongappy). The reason we do not directly define
lifting as applying to all classes F is in small part that we need it only in those two definitions, and in
large part because doing so could cause confusion, since an earlier definition (Def. 2.4) that is connecting
to earlier work is using as a syntactic notation an expression that itself would be caught up by such a
lifting (though the definition given in Def. 2.4 is consistent with the lifting reading, give or take the fact
that we’ve now broadened our focus to the reals rather than the naturals).
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This theorem has a nice interpretation: a sufficient condition for an ambiguity-limited
class UP≤j(n) to be contained in a particular restricted counting class is for there to be at
least j(n) elements that are reachable in polynomial time in an F -nongappy subset of the
set that defines the counting class, assuming that the nongappiness of the counting class and
the ambiguity of the UP≤j(n) class satisfy the above conditions.

Proof of Theorem 4.7. Let F , j, n0, T , and S be as per the theorem statement. Suppose
(∃β′ ∈ N+)[F [j(n)](λ) = O(nβ′)], and fix a value β ∈ N+ such that F [j(n)](λ) = O(nβ).

We start our proof by defining three sequences of constants that will be central in our
iterative constant-setting argument, and giving bounds on their growth. Set c1 to be the
least element of S with |c1| ≥ n0. For n ∈ {2, 3, . . .}, given c1, c2, . . . , cn−1, we set

bn =
∑

1≤ℓ≤n−1
cℓ

(
n

ℓ

)
. (1)

With bn set, we define an to be the least element of S such that an ≥ bn. Finally, we
set cn = an − bn. We now show that max1≤ℓ≤j(n) |aℓ| and max1≤ℓ≤j(n) |cℓ| are both at
most polynomial in n. Take any i ∈ {2, 3, . . .}. By the construction above and since S is
F -nongappy, we have |ci| ≤ |ai| ≤ F (|bi|). Using our definition of bi from Eq. 1 we get
bi =

∑
1≤k≤i−1 ck

(
i
k

)
≤ (i − 1)(max1≤k≤i−1 ck)

(
i

⌈ i
2 ⌉

)
≤ (max1≤k≤i−1 ck)(22i). Thus we can

bound the length of bi by |bi| ≤ 2i + max1≤k≤i−1 |ck| ≤ 2i + max1≤k≤i |ck|. Since this is
true for all i ∈ {2, 3, . . .}, it follows that if max1≤ℓ≤j(n) |cℓ| is at most polynomial in n, then
max1≤ℓ≤j(n) |bℓ| is at most polynomial in n, and since for all i, ai = bi + ci, max1≤ℓ≤j(n) |aℓ|
is at most polynomial in n. We now show that max1≤ℓ≤j(n) |cℓ| is in fact polynomial in n.

Let n ∈ {2, 3, . . .} be arbitrary. For each i ∈ {2, 3, . . . , j(n)}, we have that |bi| ≥ |c1| ≥ n0.
Since F restricted to {t ∈ R+ | t ≥ n0} is nondecreasing,

|ci| ≤ F (|bi|) ≤ F (2i + max
1≤k≤i−1

|ck|). (2)

Since Eq. 2 holds for 2 ≤ i ≤ j(n) we can repeatedly apply it inside the max to get

|ci| ≤ F (2i + F (2(i − 1) + F (· · · 2 · 4 + F (2 · 3 + F (2 · 2 + |c1|)) · · · ))). (3)

Recall that λ = 4 + |c1|. From condition (a) of the theorem statement and since |c1| ≥ n0,
we have F (λ) ≥ 2 + λ = 2 + 4 + |c1| ≥ 6, and thus |ci| ≤ F (2i + F (2(i − 1) + F (· · · 2 ·
4 + F (2F (λ)) · · · ))). Since it follows from our theorem’s assumptions that (∀t ≥ λ)(∀c ∈
N+)[cF (t) ≥ F (ct)], we have |ci| ≤ F (2i+F (2(i−1)+F (· · · 2·4+2F (F (λ)) · · · ))). Continuing
to use the inequalities (∀k ≥ 3)[2 · k ≤ F [k−2](λ)] and (∀t ≥ λ)(∀c ∈ N+)[cF (t) ≥ F (ct)]
we get |ci| ≤ (i − 1)(F [i−1](λ)). Since (∀t ≥ λ)[F (t) ≥ t] and i ≤ j(n), we have that
|ci| ≤ (i − 1)(F [i−1](λ)) ≤ j(n)F [j(n)](λ). Since this bound holds for all i ∈ {2, 3, . . . , j(n)},
it follows that max2≤ℓ≤n |cℓ| ≤ j(n)F [j(n)](λ), and thus max1≤ℓ≤n |cℓ| ≤ j(n)F [j(n)](λ) + |c1|.
By supposition, F [j(n)](λ) = O(nβ). Also, from our theorem’s assumptions, j(n) is polynomial
in the value n, which means we can find some β′′ such that j(n) = O(nβ′′). Hence we have
j(n)F [j(n)](λ) = O(nβ+β′′). Since |c1| is a finite constant, this means j(n)F [j(n)](λ) + |c1| is
polynomially bounded, and so max1≤ℓ≤j(n) |cℓ| is at most polynomial in n. By the argument
in the preceding paragraph, max1≤ℓ≤j(n) |aℓ| is at most polynomial in n.

We now show that UP≤j(n) ⊆ RCT . Let L be in UP≤j(n), witnessed by an NPTM N̂ .
To show L ∈ RCT we describe an NPTM N that, on each input x, has 0 accepting paths if
x /∈ L, and has #accN (x) ∈ T if x ∈ L. On input x, our machine N computes j(|x|) and then
computes the constants c1, c2, . . . , cj(|x|) as described above. Then N nondeterministically
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guesses an integer i ∈ {1, 2, . . . , j(|x|)}, and nondeterministically guesses a cardinality-i set
of paths of N̂(x). If all the paths guessed in a cardinality-i set are accepting paths, then N

branches into ci accepting paths; otherwise, that branch of N rejects. If N̂(x) has fewer than
i paths, then the subtree of N that guessed i will have 0 accepting paths, since we cannot
guess i distinct paths of N̂(x). We claim that N shows L ∈ RCT .

Consider any input x. If x /∈ L, then clearly for all i ∈ {1, 2, . . . , j(|x|)} each cardinality-i
set of paths of N̂ guessed will have at least one rejecting path, and so N will have no
accepting path. Suppose x ∈ L. Then N̂ must have some number of accepting paths k.
Since N̂ witnesses L ∈ UP≤j(n), we must have 1 ≤ k ≤ j(|x|). Our machine N will have c1
accepting paths for each accepting path of N̂ , c2 additional accepting paths for each pair
of accepting paths of N̂ , c3 additional accepting paths for each triple of accepting paths of
N̂ , and so on. Of course, for any cardinality-i set where i > k, at least one of the paths
must be rejecting, and so N will have no accepting paths from guessing each i > k. Thus we
have #accN (x) =

∑
1≤ℓ≤k cℓ

(
k
ℓ

)
. If k = 1, we have #accN (x) = c1. If 2 ≤ k ≤ j(|x|), then

#accN (x) = ck +
∑

1≤ℓ≤k−1 cℓ

(
k
ℓ

)
= ck + bk = ak. In either case, #accN (x) ∈ S, and hence

#accN (x) ∈ T . To complete our proof for L ∈ RCT we need to check that N is an NPTM.
Note that, by assumption, j(|x|) can be computed in time polynomial in |x|. Furthermore,

the value j(|x|) is at most polynomial in |x|, and so N ’s simulation of each cardinality-i set of
paths of N̂ can be done in time polynomial in |x|. Since S is P-printable and max1≤i≤j(|x|) |ai|
is at most polynomial in |x|, finding the constants ai can be done in time polynomial in |x|.
Also, since max1≤i≤j(|x|) |ci| is at most polynomial in |x|, the addition and multiplication to
compute each ci can be done in time polynomial in |x|. All other operations done by N are
also polynomial-time, and so N is an NPTM. ◀

It is worth noting that in general iterative constant-setting proofs it is sometimes useful
to have a nonzero constant c0 in order to add a constant number c0

(
i
0
)

= c0 of accepting
paths. However, when trying to show containment in a restricted counting class (as is the
case here), we set c0 = 0 to ensure that #accN (x) = 0 if x /∈ L, and so we do not even have
a c0 but rather start iterative constant-setting and its sums with the c1 case (as in Eq. 1).

Theorem 4.7 can be applied to get complexity-class containments. In particular, we now
define a notion of nongappiness based on a multiplicative-constant increase in lengths, and
we show – as Theorem 4.10 – that this notion of nongappiness allows us to accept all sets of
logarithmic ambiguity.

▶ Definition 4.8. A set S ⊆ N+ is O(n)-nongappy if S ̸= ∅ and (∃f ∈ O(n))(∀m ∈ S)(∃m′ ∈
S)[m′ > m ∧ |m′| ≤ f(|m|)].

The following proposition notes that one can view this definition in a form similar to
Borchert, Hemaspaandra, and Rothe’s definition to see that O(n)-nongappy sets are, as to
the increase in the lengths of consecutive elements, bounded by a multiplicative constant.
(In terms of values, this means that the gaps between the values of one element of the set
and the next are bounded by a polynomial increase.)

▶ Proposition 4.9. A set S ⊆ N+ is O(n)-nongappy if and only if there exists k ∈ N+ such
that S is kn-nongappy.

▶ Theorem 4.10. If T ⊆ N+ has an O(n)-nongappy, P-printable subset, then UP≤O(log n) ⊆
RCT .

Proof. By the “only if” direction of Proposition 4.9, there exists a k ∈ N+ such that T has
a kn-nongappy, P-printable subset. We can assume k ≥ 2 since if a set has a 1n-nongappy,
P-printable subset then it also has a 2n-nongappy, P-printable subset. Let F : R+ → R+
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be the function F (t) = kt. The function F satisfies the conditions from Theorem 4.7 since
for all t ≥ 2, F (t) = kt ≥ t + 2, (∀c)[cF (n) = ckn = F (cn)], and F is nondecreasing on R+.
Let λ = 4 + |s| where s is the smallest element of the kn-nongappy, P-printable subset of T

such that the conditions on F hold for all t ≥ |s|, i.e., s is the smallest element of the kn-
nongappy, P-printable subset of T such that |s| ≥ 2. For any function g : N → R≥1 satisfying
g(n) = O(log n) it is not hard to see (since for each natural n it holds that log(n + 2) ≥ 1)
that there must exist some d ∈ N+ such that (∀n ∈ N+)[g(n) ≤ d log(n + 2)], and hence
UP≤g(n) ⊆ UP≤d log(n+2) = UP≤⌊d log(n+2)⌋. Additionally, j(n) = ⌊d log(n + 2)⌋ satisfies the
conditions from Theorem 4.7 since j(n) can be computed in time polynomial in n and has
value at most polynomial in n. Applying Theorem 4.7, to prove that UP≤j(n) ⊆ RCT it
suffices to show that there is some β ∈ N+ such that F [j(n)](λ) = O(nβ) where λ is given
by the statement of the theorem. So it suffices to show that for some β ∈ N+ and for all
but finitely many n, F [j(n)](λ) ≤ nβ . Note that F [j(n)](λ) = kj(n)λ. So it is enough to show
that for all but finitely many n, kj(n)λ ≤ nβ , or (taking logs) equivalently that for all but
finitely many n, ⌊d log(n + 2)⌋ log k + log λ ≤ β log n. Set β to be the least integer greater
than 2d log k + log λ. Then for all n ≥ 2 we have β log n ≥ 2d log k log n + log λ log n ≥
d log k log(n2) + log λ log n ≥ d log k log(n + 2) + log λ ≥ ⌊d log(n + 2)⌋ log k + log λ, which is
what we needed. Thus for any function g : N → R≥1 satisfying g(n) = O(log n) we have that
there exists a function j such that UP≤g(n) ⊆ UP≤j(n) ⊆ RCT . ◀

▶ Corollary 4.11. If PRIMES has an O(n)-nongappy, P-printable subset, then UP≤O(log n) ⊆
RCPRIMES.

In order for the iterative constant-setting approach used in Theorem 4.7 to be applicable,
it is clear that we need to consider UP classes that have at most polynomial ambiguity,
because otherwise the constructed NPTMs could not guess large enough collections of paths
within polynomial time. Since in the statement of Theorem 4.7 we use the function j to
denote the ambiguity of a particular UP class, this requires j to be at most polynomial in
the value of its input. Furthermore, since our iterative constant-setting requires having a
bound on the number of accepting paths the UP machine could have had on a particular
string, we also need to be able to compute the function j in time polynomial in the value of
its input. Thus the limitations on the function j are natural and seem difficult to remove.
Theorem 4.7 is flexible enough to, by a proof similar to that of Theorem 4.10, imply Borchert,
Hemaspaandra, and Rothe’s result stated in Theorem 4.1 where j reaches its polynomial
bound. Another limitation of Theorem 4.7 is that it requires that for all t greater than or
equal to a fixed constant n0, (∀c ∈ N+)[cF (t) ≥ F (ct)]. It is possible to prove a similar result
where for all t greater than or equal to a fixed constant n0, (∀c ∈ N+)[cF (t) ≤ F (ct)], which
we now do as Theorem 4.12.

▶ Theorem 4.12. Let F be a function mapping from R+ to R+ and let n0 be a positive
natural number such that F restricted to the domain {t ∈ R+ | t ≥ n0} is nondecreasing
and for all t ≥ n0 we have (a) F (t) ≥ t + 2 and (b) (∀c ∈ N+)[cF (t) ≤ F (ct)]. Let j be a
function mapping from N to N+ that is computable in time polynomial in the value of its
input and whose output is at most polynomial in the value of its input. Suppose T ⊆ N+ has
an F -nongappy, P-printable subset S. Let λ = 4 + |s| where s is the smallest element of S

with |s| ≥ n0. If for some β, F [j(n)](j(n)λ) = O(nβ), then UP≤j(n) ⊆ RCT .

How does this theorem compare with our other metatheorem, Theorem 4.7? Since in
both metatheorems F is nondecreasing after a prefix, speaking informally and broadly, the
functions F where (after a prefix) (∀c ∈ N+)[cF (t) ≤ F (ct)] holds grow faster than the
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functions F where (after a prefix) (∀c ∈ N+)[cF (t) ≥ F (ct)] holds. (The examples we give of
applying the two theorems reflect this.) So, this second metatheorem is accommodating larger
gaps in the sets of integers that define our restricted counting class, but is also assuming a
slightly stronger condition for the containment of an ambiguity-limited class to follow. More
specifically, since we have the extra factor of j(n) inside of the iterated application of F , we
may need even more than j(|x|) elements to be reachable in polynomial time (exactly how
many more will depend on the particular function F ).

We now discuss some other notions of nongappiness and obtain complexity-class contain-
ments regarding them using Theorem 4.12.

▶ Theorem 4.13. If there exists a real number k > 1 such that T ⊆ N+ has an nk-nongappy,
P-printable subset, then UP≤O(1)+ log log n

2 log k
⊆ RCT .

Theorem 4.13 has an interesting consequence when applied to the Mersenne primes. In
particular, as we now show, it can be used to prove that the Lenstra–Pomerance–Wagstaff
Conjecture implies that the O(log log n)-ambiguity sets in NP each belong to RCPRIMES.

A Mersenne prime is a prime of the form 2k −1. We will use the Mersenne prime counting
function µ(n) to denote the number of Mersenne primes with length less than or equal
to n (when represented in binary). The Lenstra–Pomerance–Wagstaff Conjecture [35, 38]
(see also [14]) asserts that there are infinitely many Mersenne primes, and that µ(n) grows
asymptotically as eγ log n where γ ≈ 0.577 is the Euler–Mascheroni constant. (Note: We
say that f(n) grows asymptotically as g(n) when limn→∞ f(n)/g(n) = 1.) Having infinitely
many Mersenne primes immediately yields an infinite, P-printable subset of the primes. In
particular, on input 1n we can print all Mersenne primes of length less than or equal to n in
polynomial time by just checking (using a deterministic polynomial-time primality test [1])
each number of the form 2k − 1 whose length is less than or equal to n, and if it is prime
then printing it. If the Lenstra–Pomerance–Wagstaff Conjecture holds, what can we also say
about the gaps in the Mersenne primes? We address that with the following result.

▶ Theorem 4.14. If the Lenstra–Pomerance–Wagstaff Conjecture holds, then for each ϵ > 0
the primes (indeed, even the Mersenne primes) have an n1+ϵ-nongappy, P-printable subset.

▶ Corollary 4.15. If the Lenstra–Pomerance–Wagstaff Conjecture holds, then
UP≤O(log log n) ⊆ RCPRIMES (indeed, UP≤O(log log n) ⊆ RCMersennePRIMES).

We will soon turn to discussing more notions of nongappiness and what containment
theorems hold regarding them. However, to support one of those notions, we first define a
function that will arise naturally in Theorem 4.19.

▶ Definition 4.16. For any α ∈ R, α > 0, log⊛(α) is the largest natural number k such that
log[k](α) ≥ k. We define log⊛(0) to be 0.

For α > 1, taking k = 0 satisfies log[k](α) ≥ k. Also, for all ℓ ≥ log∗(α), log[ℓ](α) ≤
log[log∗(α)](α) ≤ 1 ≤ ℓ, and so no ℓ ≥ log∗(α) can be used as the k in the definition above.
So there is at least one, but only finitely many k such that log[k](α) ≥ k, which means that
log⊛(α) is well-defined. Using the def. of log⊛(α) and the above, we get log⊛(α) ≤ log∗(α)
when α > 1. For α ≤ 1, 0 is the only natural number for which the condition from the
def. holds, and so log⊛(α) = 0 if α ≤ 1. Thus for α ≤ 1, log⊛(α) = log∗(α). As to the
relationship of its values to those of log∗, we have the following proposition.

▶ Proposition 4.17. For all α ≥ 0, log∗(α) − log∗(log∗(α) + 1) − 1 ≤ log⊛(α) ≤ log∗(α).
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▶ Definition 4.18. A nonempty set S ⊆ N+ is
1. O(n log n)-nongappy if (∃f ∈ O(n log n))(∀m ∈ S)(∃m′ ∈ S)[m′ > m ∧ |m′| ≤ f(|m|)],

and
2. n(log n)O(1)-nongappy if (∃f ∈ O(1))(∀m ∈ S)(∃m′ ∈ S)[m′ > m ∧ |m′| ≤

|m|(log |m|)f(|m|) ].

Definitions of nlog n-nongappy and 2n-nongappy are provided via Definition 4.6, since
nlog n and 2n are each a single function, not a collection of functions. Those two notions,
along with the two notions of Definition 4.18, will be the focus of Theorem 4.19. That
theorem obtains the containments related to those four notions of nongappiness. As one
would expect, as the allowed gaps become larger the corresponding UP classes become more
restrictive in their ambiguity bounds. Theorem 4.19 also gives a corollary about primes.

▶ Theorem 4.19. Let T be a subset of N+.
1. If T has an O(n log n)-nongappy, P-printable subset, then UP≤O(

√
log n) ⊆ RCT .

2. If T has an nlog n-nongappy, P-printable subset, then UP≤O(1)+ 1
2 log log log n ⊆ RCT .

3. If T has an n(log n)O(1)-nongappy, P-printable subset, then UP≤O(1)+ 1
3 log log log log n ⊆

RCT .
4. If T has a 2n-nongappy, P-printable subset S, then UP≤max(1,⌊ log⊛ n

λ ⌋) ⊆ RCT (and so
certainly also UP≤max(1,⌊ log∗(n)−log∗(log∗(n)+1)−1)

λ ⌋) ⊆ RCT ), where λ = 4+mins∈S,|s|≥2(|s|).

▶ Corollary 4.20.
1. If PRIMES has an O(n log n)-nongappy, P-printable subset, then UP≤O(

√
log n) ⊆

RCPRIMES.
2. If PRIMES has an nlog n-nongappy, P-printable subset, then UP≤O(1)+ 1

2 log log log n ⊆
RCPRIMES.

3. If PRIMES has an n(log n)O(1)-nongappy, P-printable subset, then
UP≤O(1)+ 1

3 log log log log n ⊆ RCPRIMES.
4. If PRIMES has a 2n-nongappy, P-printable subset S, then UP≤max(1,⌊ log⊛ n

λ ⌋) ⊆
RCPRIMES (and so certainly also UP≤max(1,⌊ log∗(n)−log∗(log∗(n)+1)−1)

λ ⌋) ⊆ RCPRIMES), where
λ = 4 + mins∈S,|s|≥2(|s|).

5 Conclusions and Open Problems

We proved two flexible metatheorems that can be used to obtain containments of ambiguity-
limited classes in restricted counting classes, and applied those theorems to prove containments
for some of the most natural ambiguity-limited classes. Beyond the containments we derived
based on Theorems 4.7 and 4.12, those two metatheorems themselves seem to reflect a
trade-off between the ambiguity allowed in an ambiguity-limited class and the smallness of
gaps in a set of natural numbers defining a restricted counting class. One open problem is to
make explicit, in a smooth and complete fashion, this trade-off between gaps and ambiguity.
Another challenge is to capture the relationship between log⊛ and log∗ more tightly than
Proposition 4.17 does (see Section 4 of [26]). Finally, though it would be a major advance
since not even any infinite, P-printable subsets of the primes are currently known, in light
of Corollaries 4.11 and 4.20, a natural goal would be to prove that the primes have infinite,
P-printable subsets that satisfy some, or all, of our nongappiness properties.
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Abstract
Directed Token Sliding asks, given a directed graph and two sets of pairwise nonadjacent vertices,
whether one can reach from one set to the other by repeatedly applying a local operation that
exchanges a vertex in the current set with one of its out-neighbors, while keeping the nonadjacency.
It can be seen as a reconfiguration process where a token is placed on each vertex in the current
set, and the local operation slides a token along an arc respecting its direction. Previously, such a
problem was extensively studied on undirected graphs, where the edges have no directions and thus
the local operation is symmetric. Directed Token Sliding is a generalization of its undirected
variant since an undirected edge can be simulated by two arcs of opposite directions.

In this paper, we initiate the algorithmic study of Directed Token Sliding. We first observe
that the problem is PSPACE-complete even if we forbid parallel arcs in opposite directions and that
the problem on directed acyclic graphs is NP-complete and W[1]-hard parameterized by the size of
the sets in consideration. We then show our main result: a linear-time algorithm for the problem on
directed graphs whose underlying undirected graphs are trees, which are called polytrees. Such a
result is also known for the undirected variant of the problem on trees [Demaine et al. TCS 2015],
but the techniques used here are quite different because of the asymmetric nature of the directed
problem. We present a characterization of yes-instances based on the existence of a certain set of
directed paths, and then derive simple equivalent conditions from it by some observations, which
yield an efficient algorithm. For the polytree case, we also present a quadratic-time algorithm that
outputs, if the input is a yes-instance, one of the shortest reconfiguration sequences.
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1 Introduction

In a reconfiguration problem, we are given an instance of a decision problem with two
feasible solutions Is and It. The task is to decide if we can transform Is into It by
repeatedly applying a modification rule while maintaining the feasibility of intermediate
solutions. Reconfiguration problems are studied for several problems such as Independent
Set [17, 28, 8, 12, 13, 18, 4, 10, 29, 3, 26], Dominating Set [34, 16, 30], Clique [27],
Matching [9, 5, 23], and Graph Coloring [7, 32, 6]. (See also surveys [35, 31].)

Among the problems, Independent Set Reconfiguration is one of the most well-
studied problems. There are three different modification rules studied in the literature:
Token Addition and Removal (TAR) [19, 28], Token Jumping (TJ) [24, 25, 10], and Token
Sliding (TS) [17, 8, 12, 13, 18, 4, 29, 3, 26]. TAR allows us to add or remove any vertex
in the current independent set as long as the size of the resultant set is at least a given
threshold. TJ allows us to exchange any vertex in the set with any vertex outside the set.
TS is a restricted version of TJ that requires the exchanged vertices to be adjacent. We call
Independent Set Reconfiguration under TS simply Token Sliding. Observe that all
these rules are symmetric: If one can transform Is into It, then one also can transform It

into Is. Our question is: What happens if we adopt an asymmetric rule?
In this paper, we study a directed variant of Token Sliding, which we call Directed

Token Sliding. In this problem, the input graph is directed and we can slide tokens along
the arcs only in their directions. Here, we say that a set I of vertices of a directed graph
G is an independent set when it is an independent set in the underlying undirected graph
of G.1 If we allow two arcs with the opposite directions, this problem is a generalization of
Token Sliding, and thus PSPACE-complete in general.

We show three results for Directed Token Sliding. First, we show that the problem
is PSPACE-complete even on oriented graphs, where antiparallel arcs (two parallel arcs
with opposite directions) are not allowed. Second, if we restrict input graphs to directed
acyclic graphs (DAGs), we prove that the problem is NP-complete. Moreover, the problem
is W [1]-hard parameterized by the number of tokens. As for our positive and main result,
we show that the problem can be solved in linear time on polytrees, that is, digraphs whose
underlying graphs are trees. For a polytree, we show that all reconfiguration sequences have
the same length. We can also construct one of them in O(k|V |) time, where k is the size of
the input independent sets and V is the set of vertices of the input graph. Note that our
algorithm is optimal in the following sense: We can show that there exists an infinite family
of instances on directed paths whose reconfiguration sequences have length Ω(k|V |) (which is
easily obtained from lower bound examples for undirected paths given in [12]). For Token
Sliding on undirected trees, Demaine et al. [12] showed a linear-time algorithm to check the
reconfigurability. They also showed an O(|V |2)-time algorithm to construct a reconfiguration
sequence of length O(|V |2) for yes-instances. However, the output sequence is not guaranteed
to be shortest. The best known algorithm to output a shortest reconfiguration sequence for
undirected trees runs in O(|V |5) time [33]. In contrast to the undirected counterpart, our
algorithm to construct a (shortest) reconfiguration sequence on polytrees runs in O(k|V |)
time, which is optimal. It should be mentioned that our quadratic-time algorithm does
not imply a quadratic-time algorithm for finding a shortest reconfiguration sequence for
undirected trees since we do not allow polytrees to have antiparallel arcs.

1 One may define an independent set of a digraph in an asymmetric way: A subset I of the vertex set V
of the directed graph G is an independent set if u ∈ I implies v /∈ I for all u, v ∈ V such that G has
an arc (u, v). However, this definition is the same as ours. (If u and v are adjacent in the underlying
undirected graph, at most one of u and v can belong to I.)
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Due to the space limitation, several proofs (marked with ⋆) are omitted and can be found
in the full version [21].

Related work

Token Sliding on undirected graphs was introduced by Hearn and Demaine [17]. They
show that the problem is PSPACE-complete even on planar graphs with maximum degree 3.
The problem is also PSPACE-complete on bipartite graphs [29] and split graphs [3]. In
contrast to these hardness results, the problem is polynomial-time solvable on cographs [28],
claw-free graphs [8], trees [12], cactus graphs [18], interval graphs [4], bipartite permutation
graphs, and bipartite distance-hereditary graphs [13].

Interestingly, Independent Set Reconfiguration on bipartite graphs is NP-complete
under TAR and TJ [29]. Such graph classes are not known for TS. In this paper, we show
that Directed Token Sliding is NP-complete on directed acyclic graphs (DAGs).

Token Sliding is also studied from the viewpoint of fixed-parameter tractability (FPT).
When the parameter is the number of tokens, the problem is W[1]-hard both on C4-free
graphs and bipartite graphs, while it becomes FPT on their intersection, C4-free bipartite
graphs [2]. In this paper, we show that Directed Token Sliding is W[1]-hard on DAGs.

Although Token Sliding, as far as we know, has not been studied for digraphs, there are
some studies on reconfiguration considering directions of edges. An orientation of a simple
undirected graph is an assignment of directions to the edges of the graph. There are several
studies for reconfiguring orientations of a graph, such as strong orientations [15, 14, 20],
acyclic orientations [14], nondeterministic constraint logic [17], and α-orientations [1]. Very
recently, Ito et al. [22] studied reconfiguration of several subgraphs in directed graphs, such as
directed trees, directed paths, and directed acyclic subgraphs. Although these reconfiguration
problems are defined on directed graphs, the reconfiguration rules are symmetric, meaning that
if one solution X can be obtained from another solution Y by applying some reconfiguration
rule, Y can be obtained from X by the same rule as well.

2 Preliminaries

In this section, we introduce notations on graphs and define our problem. For a positive
integer k, we define [k] := {1, . . . , k}. We also define [0] := ∅.

2.1 Graph notation
Let G be a directed graph (digraph). We denote by V (G) and A(G) the vertex and arc sets
of G, respectively. For a digraph G, its underlying (undirected) graph, denoted by Gund, is
an undirected graph obtained by ignoring the directions of arcs in G. For an undirected
graph G′, we denote by V (G′) and E(G′) the vertex and edge sets of G′, respectively. For a
digraph G, a vertex set S ⊆ V (G) is said to be independent if it is an independent set in the
underlying graph Gund, i.e., for all two different vertices u, v ∈ S, we have {u, v} /∈ E(Gund).
A digraph G is an oriented graph if, for all vertices u, v ∈ V (G), G contains at most one of the
possible arcs (u, v) or (v, u). If G contains no directed cycles, G is acyclic and such digraphs
are called directed acyclic graphs (DAGs). If Gund is a tree, G is a polytree. Similarly, if Gund

is a forest, G is a polyforest.
For an arc e = (u, v) ∈ A(G) of a digraph G, the vertex u is called the tail of e, and v

called the head of e. The both u and v are called the endpoints of e. For e ∈ A(G) and
v ∈ V (G), e is incident to v if v is an endpoint of e. If (u, v) ∈ A(G), u is an in-neighbor
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of v in G and v is an out-neighbor of u in G. In addition, u is a neighbor of v and v is a
neighbor of u. For a vertex v, we denote by N+

G (v) and N−
G (v) the sets of out-neighbors

and in-neighbors of v in G, respectively, that is, N+
G (v) := {u ∈ V (G) | (v, u) ∈ A(G)} and

N−
G (v) := {u ∈ V (G) | (u, v) ∈ A(G)}. We denote by NG(v) the set of neighbors of v, that

is, NG(v) := N+
G (v) ∪ N−

G (v). In addition, we define NG[v] := NG(v) ∪ {v}. We also define
Γ+

G(v) :=
{

(v, u)
∣∣ u ∈ N+

G (v)
}

, Γ−
G(v) :=

{
(u, v)

∣∣ u ∈ N−
G (v)

}
, and ΓG(v) := Γ+

G(v) ∪ Γ−
G(v).

If no confusion arises, we omit the subscript G from NG(v), N+
G (v), N−

G (v), NG[v], Γ+
G(v),

Γ−
G(v), and ΓG(v). A directed path P is a sequence of vertices and arcs (v1, e1, . . . , eℓ−1, vℓ)

such that, all the vertices are distinct and, for every i ∈ [ℓ − 1], ei = (vi, vi+1) holds. We call
v1 and vℓ the source and sink of P , and denote by s(P ) and t(P ), respectively. This P is
called a v1-vℓ (directed) path or a (directed) path from v1 to vℓ. The length of P is the number
of arcs and we denote it by |P |, that is, |P | = ℓ − 1. For a directed path P with |P | ≥ 2,
we define s′(P ) := v2 and t′(P ) := vℓ−1. For vertex sets X and Y with the same size k on a
digraph, we refer to a set P = {P1, . . . , Pk} of directed paths as a directed path matching
from X to Y if P have distinct sources and distinct sinks, that is, {s(Pi) | i ∈ [k]} = X and
{t(Pi) | i ∈ [k]} = Y . Note that two sets X and Y may intersect in this definition.

2.2 Definition of Directed Token Sliding
Let Is and It be independent sets in a digraph G with |Is| = |It|. A sequence ⟨I0, . . . , Iℓ⟩ of
independent sets of G is a reconfiguration sequence from Is to It in G if I0 = Is, Iℓ = It,
and for all i ∈ [ℓ] we have Ii−1 \ Ii = {u} and Ii \ Ii−1 = {v} with (u, v) ∈ A. The length of
⟨I0, . . . , Iℓ⟩ is ℓ. We say that Is is reconfigurable into It in G and It is reconfigurable from
Is in G if there is a reconfiguration sequence from Is to It.

We study the following problem:

Problem Directed Token Sliding
Instance A triple (G, Is, It), where G is a digraph and Is, It ⊆ V (G) are independent sets

in G with |Is| = |It|.
Question Is Is reconfigurable into It?

In Directed Token Sliding, the sets Is and It can be seen as the initial and target
positions of “tokens” placed on the vertices in the sets, and then the problem asks whether
we can move the tokens from Is to It by repeatedly sliding tokens along arcs keeping that
the tokens are not adjacent. The difference between our problem and Token Sliding is
that, in the former, the input graph is directed and we can slide tokens along the arcs only in
their directions. However, since we can simulate an undirected edge with the two arcs with
the opposite directions, the problem is a generalization of Token Sliding. It immediately
follows from the PSPACE-completeness of Token Sliding [17] that Directed Token
Sliding is PSPACE-complete in general.

3 Hardness results

In this section, we provide hardness results for Directed Token Sliding. The first
hardness result is the PSPACE-completeness of Directed Token Sliding for oriented
graphs. This follows from a reduction from Token Sliding on undirected graphs, which is
PSPACE-complete [17].

The idea of the proof of Theorem 1 as follows. From an undirected graph G, we construct
a directed graph G′ by replacing each edge of G with two directed arcs in opposite directions.
Then, (G, Is, It) is a yes-instance of Token Sliding if and only if (G′, Is, It) is a yes-instance
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of Directed Token Sliding. To make G′ being an oriented graph (that is, G′ has at most
one arc of (u, v) and (v, u) for u, v ∈ V (G)), we replace each vertex v of G with two copies
of vertices v1 and v2 and each edge {u, v} of G with a strongly connected tournament on
{u1, u2, v1, v2}, instead of the above replacement. This yields an oriented graph G′ and we
can show that (G, Is, It) is a yes-instance of Token Sliding if and only if (G′, Js, Jt) is a
yes-instance of Directed Token Sliding, where Js = {v1 | v ∈ Is} and Jt = {v1 | v ∈ It}.

▶ Theorem 1 (⋆). Directed Token Sliding is PSPACE-complete on oriented graphs.

The second hardness result is the NP-completeness and W[1]-hardness of Directed
Token Sliding for DAGs. These results are obtained by reducing Multicolored Inde-
pendent Set, which is known to be NP-complete and W[1]-hard parameterized by the
solution size k [11], to Directed Token Sliding.

▶ Theorem 2 (⋆). Directed Token Sliding on DAGs is NP-complete and W [1]-hard
parameterized by the number of tokens.

4 Linear-time algorithm for polytrees

This section is devoted to proving our main result Theorem 3 below, a linear-time algorithm
for Directed Token Sliding on polytrees.

▶ Theorem 3. Let T = (V, A) be a polytree. Directed Token Sliding on T can be solved
in O(|V |) time. Moreover, if the answer is affirmative, then all reconfiguration sequences
have the same length, and one of them can be constructed in O(k|V |) time, where k is the
size of the input independent set.

To establish Theorem 3, we give a simple characterization for yes-instances of Directed
Token Sliding on polytrees. This characterization is described by the concept of directed
path matchings, which will be given in the next subsection, and is a vital role in proving
Theorem 3. We would like to mention that our characterization is rather simple but its
proof is highly non-trivial. Given this characterization, we devise a linear time algorithm for
Directed Token Sliding on polytrees and a quadratic time algorithm for constructing an
actual reconfiguration sequence if the answer is affirmative, which will be given in Section 4.4.

4.1 Directed path matching
Let Is and It be independent sets in T with |Is| = |It| such that Is is reconfigurable into It.
In a reconfiguration sequence from Is to It, the i-th token moves along some directed path Pi.
Clearly P := {P1, . . . , Pk} forms a directed path matching from Is to It. Thus, the existence
of a directed path matching is a trivial necessary condition for yes-instances. However, the
converse is not true in general. Let us consider a digraph such that its underlying graph is the
star with four leaves and its center has two in-neighbors and two out-neighbors. We set Is

(resp. It) to be the set of in-neighbors (resp. out-neighbors) of the center. Then this graph
has a directed path matching from Is to It, while it is a no-instance. Nevertheless, directed
path matchings still give us some insight on Directed Token Sliding for polytrees, which is
vital for our linear-time algorithm. To this end, in this subsection, we give a characterization
of the existence of a directed path matching between given two sets of vertices in a polytree.
This characterization is described in terms of an invariant associated with each arc e.

MFCS 2022
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Let X and Y be (not necessarily disjoint) sets of vertices of a polytree T = (V, A) with
|X| = |Y |, and π a bijection from X to Y . Since T is a polytree, for each x ∈ X an
(undirected) x-π(x) path Px is uniquely determined in T und. For each e ∈ A, we define
w(e; X, Y, π) := |{x ∈ X |

−→
Px has e}| − |{x ∈ X |

−→
Px has the reverse of e}|, where −→

Px is a
directed path obtained from Px by orienting arcs from x to π(x). The following lemma states
that w(e; X, Y, π) does not depend on a particular π. Let T ′ be the polyforest obtained from
T by removing an arc e. Let C+

e (resp. C−
e ) denote the vertices of the (weakly) connected

component in T ′ containing the head of e (resp. the tail of e).

▶ Lemma 4 (⋆). Let X and Y be (not necessarily disjoint) sets of vertices of T with
|X| = |Y |, and e ∈ A an arc of T . For each bijection π : X → Y , we have w(e; X, Y, π) =
|C−

e ∩ X| − |C−
e ∩ Y |.

Based on this fact, we define a function w on A with respect to two vertex sets X and Y :

w(e; X, Y ) := |C−
e ∩ X| − |C−

e ∩ Y | (e ∈ A).

Then, we show the necessary and sufficient conditions mentioned above.

▶ Lemma 5 (⋆). There exists a directed path matching from X to Y if and only if w(e; X, Y ) ≥
0 for every arc e ∈ A.

By Lemmas 4 and 5, we can observe the following corollaries.

▶ Corollary 6. For a yes-instance, the number of tokens passing through an arc e is equal
to w(e; Is, It) in every reconfiguration sequence. In particular, all reconfiguration sequences
have the same length

∑
e∈A w(e; Is, It).

▶ Corollary 7. If there exists an arc e ∈ A such that w(e; Is, It) < 0, then the instance is
not reconfigurable.

In the following argument, we assume w(e; Is, It) ≥ 0 for all e ∈ A. By depth-first search
on T , we can compute the function w(e; Is, It) for all e in linear time.

4.2 Tokens that move at most once
In a reconfiguration sequence, there may be a token that moves at most once. In other words,
a token may not move at all or may move from the initial position to one of its out-neighbors
and stay there. Such a token causes an exception in our further discussion, and thus we
want to remove such tokens in advance. In this subsection, we show that such tokens are
determined regardless of reconfiguration sequences, and that we can remove such tokens from
the input without changing the reconfigurability.

First, we consider tokens that never move. The following lemma states that such tokens are
uniquely determined from the instance (T, Is, It) (not depending on an actual reconfiguration
sequence). From now on, we simply write w(e) to denote w(e; Is, It).

▶ Lemma 8 (⋆). Let (T, Is, It) be a yes-instance. For every reconfiguration sequence, the
set of vertices containing tokens that do not move in the sequence is equal to

R := {v ∈ Is ∩ It | w(e) = 0 for all e ∈ Γ(v)} .

A token on a vertex v ∈ R is said to be rigid. By Lemma 8, all rigid tokens do not move
in any reconfiguration sequence.
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For some v ∈ R, suppose that there exists u ∈ N(v) such that T has an arc e ∈ Γ(u)
with w(e) > 0. If (T, Is, It) is a yes-instance, in any reconfiguration sequence, some token
passes through e, implying that this token is placed on u at some point. However, since the
token on v is rigid, these tokens must be adjacent. Thus, we obtain the following corollary.

▶ Corollary 9. For v ∈ R, if there exists u ∈ N(v) such that T has an arc e ∈ Γ(u) with
w(e) > 0, then the instance (T, Is, It) is a no-instance.

Next, we consider tokens that move exactly once. We can show that the set of arcs used
by such tokens is uniquely determined from the instance (T, Is, It) (not depending on an
actual reconfiguration sequence) by a similar argument as in Lemma 8.

▶ Lemma 10 (⋆). Let (T, Is, It) be a yes-instance. For every reconfiguration sequence, the
set of arcs used by tokens that move exactly once in the sequence is equal to

B := {e = (u, v) ∈ A | w(e) = 1 and w(e′) = 0 for every e′ ∈ (Γ(u) ∪ Γ(v)) \ {e}} .

Take any (u, v) ∈ B. By Lemma 10, for every reconfiguration sequence the token on u

slides to an out-neighbor v of u and stays there, which also implies u ∈ Is and v ∈ It. Since
the tokens must form an independent set, the other tokens can be placed on neither u nor v.
Given this, we refer to an arc e ∈ B as a blocking arc in (T, Is, It).

We can compute the rigid tokens and blocking arcs from (T, Is, It) in linear time. Let R

be the set of vertices containing rigid tokens and B the set of blocking arcs. Let T ′ be the
polyforest obtained from T by removing each arc f such that f is incident to a vertex in R,
or f /∈ B and f is incident to an endpoint of e ∈ B. Then, every component of T ′ is either
an isolated vertex in R, a component containing the two vertices connected by an arc in B,
or a component without any rigid tokens or blocking arcs. The following lemma reduces our
problem to a slightly simplified one.

▶ Lemma 11 (⋆). Suppose that for every v ∈ R, there is no u ∈ N(v) such that T has an
arc e ∈ Γ(u) with w(e) > 0. Then, (T, Is, It) is a yes-instance if and only if (T ′, Is, It) is a
yes-instance.

It is easy to see that if T ′ has more than one connected components, then we can solve
the problem independently on each connected component. Moreover, the problem is trivial
on a component of size at most two. Hence, we can assume that the input polytree has no
vertices on which rigid tokens are placed or blocking arcs.

4.3 Necessary and sufficient conditions for yes-instances
In this subsection, we show the necessary and sufficient conditions for yes-instances. By
Lemma 11, we may assume that the instance does not contain rigid tokens and blocking arcs.
For a yes-instance, pick some reconfiguration sequence and let Pi be a directed path along
which the i-th token moves in the reconfiguration sequence. P = {P1, . . . , Pk} is obviously
a directed path matching from Is to It. Since the instance does not contain rigid tokens
and blocking arcs, we have |Pi| ≥ 2 for every i ∈ [k]. In addition, the successors of source
vertices in P must be distinct. To see this, observe that if the source vertices of two paths Pi

and Pj in P have a common successor x := s′(Pi) = s′(Pj), then the tokens on s(Pi) and
s(Pj) are both “gazing” the vertex x, and thus we cannot slide either of the tokens on s(Pi)
and s(Pj) at all. Therefore, P must satisfy that s′(Pi) ̸= s′(Pj) for all i, j ∈ [k] with i ̸= j.
Symmetrically, the predecessors of sink vertices must be distinct, that is, t′(Pi) ̸= t′(Pj) for
all i, j ∈ [k] with i ≠ j. The goal of this subsection is to show that these necessary conditions
are also sufficient.

MFCS 2022
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▶ Lemma 12. Let (T, Is, It) be an instance of Directed Token Sliding without rigid
tokens and blocking arcs. Then (T, Is, It) is a yes-instance if and only if there exists a set
P = {P1, . . . , Pk} of directed paths satisfying all the following conditions:
(P1) |Pi| ≥ 2 for all i ∈ [k],
(P2) P is a directed path matching from Is to It,
(P3) s′(Pi) ̸= s′(Pj) for all i, j ∈ [k] with i ̸= j, and
(P4) t′(Pi) ̸= t′(Pj) for all i, j ∈ [k] with i ̸= j.
We refer to the four conditions (P1)–(P4) as the path-set conditions.

We have already seen the only-if direction as above. In the following, we show the other
direction. We call a vertex in a path other than the source or the sink an internal vertex.
For vertices u, v ∈ V , we define dist(u, v) as the length of the unique directed u-v path in T

if such a path exists. We refer to a pair of directed paths P and P ′ satisfying the following
conditions as a biased path pair :

P and P ′ have a common internal vertex x,
dist(s(P ), x) > dist(s(P ′), x) and dist(x, t(P )) > dist(x, t(P ′)).

▶ Lemma 13 (⋆). If there exists a set of paths satisfying the path-set conditions, then there
also exists a set of paths that satisfies the path-set conditions and does not include any biased
path pair.

In the following, let P∗ = {P ∗
1 , . . . , P ∗

k } be a set of paths that satisfies the path-set
conditions and has no biased path pairs. We show that there exists a bijection π : [k] → [k]
having the following property (∗):
(∗) Is is reconfigurable into It in a path-by-path manner following π; that is, by first moving

the π(1)-th token from s(P ∗
π(1)) all the way to t(P ∗

π(1)) along P ∗
π(1), then moving the

π(2)-th token from s(P ∗
π(2)) all the way to t(P ∗

π(2)) along P ∗
π(2), and so on.

From now on, we consider how to construct π satisfying (∗). For a vertex v and a directed
path P , we say that v touches P or P touches v if N [v] ∩ V (P ) ̸= ∅, where V (P ) denotes
the set of vertices in P . For i ̸= j, let (A) and (B) be the following conditions:
(A) s(P ∗

i ) touches P ∗
j ;

(B) t(P ∗
j ) touches P ∗

i .

A binary relation L99 is defined as: i L99 j if and only if at least one of (A) and (B) holds
for different i and j. Let GL99 be the directed graph such that the vertex set of GL99 is [k]
and, for i, j ∈ [k], GL99 has the arc (i, j) if and only if j L99 i holds.

If GL99 is a directed acyclic graph, then we can construct π satisfying (∗) as follows. Since
GL99 is a DAG, there is a vertex i such that its out-degree is 0. For any j ̸= i, every vertex in
P ∗

i does not belong to N [s(P ∗
j )] since P ∗

i does not touch s(P ∗
j ), and every vertex in P ∗

j does
not belong to N [t(P ∗

i )] since P ∗
j does not touch t(P ∗

i ). The former implies that the token
on s(P ∗

i ) sliding to t(P ∗
i ) along P ∗

i does not make adjacent token pairs and hence forms a
reconfiguration sequence from Is to Is \ {s(P ∗

i )} ∪ {t(P ∗
i )}. The latter implies that the graph

GL99 for the resulting independent set Is \ {s(P ∗
i )} ∪ {t(P ∗

i )} is obtained by deleting the
vertex i, which is still a DAG. By repeating the above procedure, Is is reconfigurable into It

in a path-by-path manner. Thus a bijection π : [k] → [k] satisfying π(1) < π(2) < · · · < π(k)
with respect to a topological order of GL99 admits (∗), as required.

The following lemma says that GL99 is actually a directed acyclic graph, which verifies
the if-condition of Lemma 12.

▶ Lemma 14. GL99 is a directed acyclic graph.
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Proof. Suppose, to the contrary, that there is a directed cycle in GL99. We can assume that
(1, 2, . . . , ℓ, 1) is a minimal one. For convenience, the addition + and subtraction − are taken
over modulo ℓ, i.e., ℓ + 1 is regarded as 1 and 0 is regarded as ℓ.

Suppose moreover that P ∗
i and P ∗

i+1 have a common internal vertex for all i ∈ [k].
Let x and y be the source and the sink of the maximal common subpath of P ∗

i and P ∗
i+1,

respectively. Since T is a polytree, these x and y are uniquely determined. For i ∈ [ℓ], at
least one of (A) and (B) holds. If (A) s(P ∗

i ) touches P ∗
i+1, then we have dist(s(P ∗

i ), x) ≤ 1.
If dist(s(P ∗

i ), x) ≥ dist(s(P ∗
i+1), x), either s′(P ∗

i ) = s′(P ∗
i+1) or s(P ∗

i ) and s(P ∗
i+1) are

adjacent, which do not hold as (P3) or the fact that Is is an independent set. Thus, we have
dist(s(P ∗

i ), x) < dist(s(P ∗
i+1), x). If (B) t(P ∗

i+1) touches P ∗
i , then we have dist(y, t(P ∗

i+1)) ≤ 1.
Then, by a symmetric argument, we have dist(y, t(P ∗

i )) > dist(y, t(P ∗
i+1)). Let zi be an

arbitrary common internal vertex of P ∗
i and P ∗

i+1. The above argument is summarised as

dist(s(P ∗
i ), zi) < dist(s(P ∗

i+1), zi) or dist(zi, t(P ∗
i )) > dist(zi, t(P ∗

i+1)). (1)

Equation (1) and the non-existence of biased pairs together imply that for every i, we have

dist(s(P ∗
i ), zi) ≤ dist(s(P ∗

i+1), zi) and dist(zi, t(P ∗
i )) ≥ dist(zi, t(P ∗

i+1)). (2)

For a walk W in T und, let −→
W be an oriented walk obtained from W by orienting each edge

from (arbitrary) one of the end vertices to the other. Let fwd(−→W ) and rev(−→W ) be the numbers
of times that −→

W passes through arcs in the forward and reverse directions in T , respectively.
Here, by the fact that dist(s(P ∗

i ), zi) ≤ dist(s(P ∗
i+1), zi) (Equation (2)), there exists an

oriented walk −→
W from s(P ∗

i ) to s(P ∗
i+1) satisfying fwd(−→W ) ≤ rev(−→W ). This can be obtained

by traversing T und from s(P ∗
i ) to s(P ∗

i+1) via zi (which we denote by s(P ∗
i ) → zi → s(P ∗

i+1)).
In particular, if dist(s(P ∗

i ), zi) < dist(s(P ∗
i+1), zi), then fwd(−→W ) < rev(−→W ) holds. Suppose

that dist(s(P ∗
1 ), z1) < dist(s(P ∗

2 ), z1) holds. Then, the closed oriented walk
−→
Ws := s(P ∗

1 ) → z1 → s(P ∗
2 ) → · · · → s(P ∗

ℓ ) → zℓ → s(P ∗
1 )

satisfies fwd(−→Ws) < rev(−→Ws). See Figure 1 for an illustration. This implies that there is an
arc e in T such that e occurs in −→

Ws at least once and the number of occurrences of e is strictly
smaller than that of the reverse of e in −→

Ws. This contradicts the fact that T is a polytree.
Thus suppose dist(s(P ∗

1 ), z1) ≥ dist(s(P ∗
2 ), z1) holds. Then dist(z1, t(P ∗

1 )) > dist(z1, t(P ∗
2 ))

follows from Equation (1). By a similar argument as above, we can construct a closed
oriented walk −→

Wt from t(P ∗
1 ) to t(P ∗

1 ) satisfying fwd(−→Wt) > rev(−→Wt). This also contradicts
the fact that T is a polytree. Thus, we derive a contradiction, assuming that GL99 has a
directed cycle and P ∗

i and P ∗
i+1 have a common internal vertex for all i ∈ [k].

The remaining task is to show that P ∗
i and P ∗

i+1 have a common internal vertex for all i

under the assumption that GL99 has a directed cycle. Suppose to the contrary that P ∗
i and

P ∗
i+1 have no common internal vertex. We only consider the case where the condition (A) in the

definition of L99 holds for i L99 i+1, that is, P ∗
i+1 touches s(P ∗

i ); the case for (B) is symmetric.
As |P ∗

i | ≥ 2, P ∗
i has an arc (s′(P ∗

i ), x∗). See Figure 2 for an illustration. For x ∈ NT (s′(P ∗
i )),

we denote by Cx the weakly connected component containing x in the polyforest obtained
from T by deleting the arc (s′(P ∗

i ), x). Then observe that V (P ∗
i+1) ∩ Cx∗ = ∅. To see this, if

V (P ∗
i+1) ∩ Cx∗ ≠ ∅, then P ∗

i+1 must have the arc (s′(P ∗
i ), x∗) as P ∗

i+1 touches s(P ∗
i ). This

particularly implies that s′(P ∗
i ) belongs to P ∗

i+1 and is different from t(P ∗
i+1) due to the

direction of arc (s′(P ∗
i ), x∗). Since Is is an independent set, we have s′(P ∗

i ) ̸= s(P ∗
i+1). Thus

P ∗
i and P ∗

i+1 have a common internal vertex s′(P ∗
i ), contradicting the assumption that P ∗

i

and P ∗
i+1 have no common internal vertex. Hence we obtain V (P ∗

i+1) ∩ Cx∗ = ∅.
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P ∗
1

z1

≤

P ∗
2

z1

z2

≤

P ∗
3

z2

P ∗
ℓ

zℓ−1

zℓ

≤

P ∗
1

zℓ

Figure 1 Closed oriented walk s(P ∗
1 ) → z1 → s(P ∗

2 ) →
· · · → s(P ∗

ℓ ) → zℓ → s(P ∗
1 ).

s′(P ∗
i )

s(P ∗
i )

x∗Cx∗

Figure 2 An illustration of a
polytree considered in the proof of
Lemma 14.

Suppose i − 1 = i + 1, i.e., i + 1 L99 i (which implies ℓ = 2). Then P ∗
i touches s(P ∗

i+1) or
P ∗

i+1 touches t(P ∗
i ). In the former case, since V (P ∗

i+1) ∩ Cx∗ = ∅ and Is is an independent
set, s(P ∗

i+1) must belong to NT (s′(P ∗
i )). Then we have s′(P ∗

i+1) = s′(P ∗
i ) by i L99 i + 1,

which contradicts (P3). In the latter case, since V (P ∗
i+1) ∩ Cx∗ = ∅, we have x∗ = t(P ∗

i ) and
s′(P ∗

i ) ∈ V (P ∗
i+1). Moreover, neither s′(P ∗

i ) = s(P ∗
i+1) nor s′(P ∗

i ) = t(P ∗
i+1), since Is and

It are independent sets. Thus s′(P ∗
i ) must be an internal vertex of P ∗

i+1, contradicting the
assumption.

Suppose i − 1 ̸= i + 1 (which implies ℓ ≥ 3). Observe that V (P ∗
i−1) ∩ Cs(P ∗

i
) = ∅. To

see this, suppose V (P ∗
i−1) ∩ Cs(P ∗

i
) ̸= ∅. As i − 1 L99 i, either s(P ∗

i−1) touches P ∗
i or t(P ∗

i )
touches P ∗

i−1. In both cases, s(P ∗
i ) touches P ∗

i−1 and hence i L99 i − 1, contradicting the
minimality of the cycle (1, 2, . . . , ℓ, 1). Observe also that s′(P ∗

i ) /∈ V (P ∗
i−1) as otherwise we

obtain i L99 i − 1, which again contradicts the minimality of the cycle (1, 2, . . . , ℓ, 1). Here
we additionally distinguish the two cases: (i) s′(P ∗

i ) ∈ V (P ∗
i+1) and (ii) s′(P ∗

i ) /∈ V (P ∗
i+1).

(i) s′(P ∗
i ) ∈ V (P ∗

i+1). Since P ∗
i and P ∗

i+1 have no common internal vertices, we have
t(P ∗

i+1) = s′(P ∗
i ). By the minimality of the cycle (1, 2, . . . , ℓ, 1), P ∗

i−1 has none of vertices
in NT [s′(P ∗

i )]. This implies, together with i − 1 L99 i and V (P ∗
i−1) ∩ Cs(P ∗

i
) = ∅, that

V (P ∗
i−1) ⊆ Cx∗ and x∗ /∈ V (P ∗

i−1). By i + 1 L99 i + 2 L99 · · · L99 i − 1, there is an index m

with i − 1 ̸= m ̸= i + 1 such that x∗ ∈ V (P ∗
m). This implies m L99 i + 1, contradicting the

minimality of the cycle.
(ii) s′(P ∗

i ) /∈ V (P ∗
i+1). In this case, P ∗

i+1 has a vertex in N [s(P ∗
i )] \ {s′(P ∗

i )} and does
not have the arc (s(P ∗

i ), s′(P ∗
i )). Thus we have V (P ∗

i+1) ⊆ Cs(P ∗
i

). By i + 1 L99 i + 2 L99
· · · L99 i − 1, there is an index m with i − 1 ̸= m ̸= i + 1 such that s′(P ∗

i ) ∈ V (P ∗
m). This

implies i L99 m, contradicting the minimality of the cycle.
This completes the proof of Lemma 14. ◀

4.4 Algorithms

In this subsection, we provide an algorithm for checking the reconfigurability in O(|V |) time,
and that for constructing a reconfiguration sequence in O(k|V |) time, where k is the size of
the input independent set. (if the answer is affirmative), proving Theorem 3.

For U ⊆ V , we define N+(U) (resp. N−(U)) as N+(U) :=
⋃

u∈U N+(u) \ U (resp.
N−(U) :=

⋃
u∈U N−(u) \ U). For a mapping f : Is → N+(Is), let f(Is) denote the image of

f , i.e., f(Is) := {f(x) | x ∈ Is}. Similarly, the image of g : It → N−(It) is denoted as g(It).
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4.4.1 Algorithm for checking the reconfigurability
Suppose that there is a set P = {P1, . . . , Pk} of directed paths satisfying the path-set
conditions. Then the set of paths obtained from P by exchanging each Pi with the subpath
from s′(Pi) to t′(Pi) is a directed path matching from {s′(Pi) | i ∈ [k]} to {t′(Pi) | i ∈ [k]}. In
this case, the mappings f : Is → N+(Is) and g : It → N−(It) defined by f(s(Pi)) := s′(Pi)
and g(t(Pi)) := t′(Pi), respectively, satisfy the following four conditions:
(C1) f and g are injective,
(C2) (s, f(s)) ∈ A for all s ∈ Is,
(C3) (g(t), t) ∈ A for all t ∈ It, and
(C4) w(e; f(Is), g(It)) ≥ 0 for each arc e.
In particular, (C1) follows from (P3) and (P4), and (C4) follows from Lemma 5.

Conversely, if there are mappings f : Is → N+(Is) and g : It → N−(It) satisfying the
above four conditions (C1)–(C4), then we can construct a set of directed paths satisfying
the path-set conditions (P1)–(P4) as follows. By Lemma 5 and (C4), there exists a directed
path matching P ′ = {P ′

1, . . . , P ′
k} from f(Is) to g(It). Define a set P = {P1, . . . , Pk} of

paths from P ′ by appending f−1(s(P ′
i )) and g−1(t(P ′

i )) before the source and after the sink
for each P ′

i , respectively. Then |Pi| ≥ 2 for each i ∈ [k], and P is a directed path matching
from Is and It. Moreover, since P ′ is a directed path matching from f(Is) to g(It), we
have s′(Pi) ̸= s′(Pj) and t′(Pi) ̸= t′(Pj) for i ̸= j, implying that P satisfies the path-set
conditions.

By the above argument, we obtain the following necessary and sufficient conditions for
the reconfigurability:

▶ Lemma 15. For an instance without rigid tokens and blocking arcs, there exists a set of
paths satisfying the path-set conditions if and only if there exist mappings f : Is → N+(Is)
and g : It → N−(It) satisfying (C1)–(C4).

By Lemmas 12 and 15, for checking the reconfigurability it suffices to compute f and g

satisfying (C1)–(C4) or determine that such f and g do not exist; it can be done in O(|V |)
time in a greedy manner as follows. In the following description, we regard T as a rooted
tree with an arbitrary root. We initialize the values of f and g as f(s) := ⊥ for all s ∈ Is

and g(t) := ⊥ for all t ∈ It (⊥ means “undefined”). To let f and g satisfy the conditions in
Lemma 15, we define each value of f and g one by one. We write Is

undef ⊆ Is (resp. Is
def ⊆ Is)

as the set of the vertices for which the values of f have been undefined (resp. defined). We
also define It

undef and It
def in the same way. Throughout the following process to determine

f and g, we keep an invariant that the conditions (C1)–(C3) hold for s ∈ Is
def and t ∈ It

def ,
moreover, for each arc e, w(e; Is

undef ∪ f(Is
def), It

undef ∪ g(It
def)) ≥ 0.

In the following, we describe each step of the algorithm. Let v∗ ∈ Is
undef ∪ It

undef be a
vertex with the largest depth among Is

undef ∪ It
undef in the rooted tree. If v∗ ∈ Is

undef , we
define

Ncand(v∗) :=
{

u ∈ N+(v∗) \ f(Is
def)

∣∣ w((v∗, u); Is
undef ∪ f(Is

def), It
undef ∪ g(It

def)) ≥ 1
}

.

Otherwise, i.e., v∗ ∈ It
undef \ Is

undef , define

Ncand(v∗) :=
{

u ∈ N−(v∗) \ g(It
def)

∣∣ w((u, v∗); Is
undef ∪ f(Is

def), It
undef ∪ g(It

def)) ≥ 1
}

.

If Ncand(v∗) is empty, terminate the execution. Otherwise, choose u∗ ∈ Ncand(v∗) with the
largest depth among Ncand(v∗) and define f(v∗) := u∗ if v∗ ∈ Is

undef and define g(v∗) := u∗

otherwise. When f(v∗) or g(v∗) is newly defined in this step, we accordingly update Is
def ,

Is
undef , It

def , and It
undef .

MFCS 2022
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Note that each vertex in Is ∪ It is selected as v∗ at most twice. After the execution of
the above algorithm, output f and g if f(s) ̸= ⊥ for all s ∈ Is and g(t) ̸= ⊥ for all t ∈ It;
otherwise, we conclude that no such f and g exist. In each iteration, only one arc (v∗, u∗) or
(u∗, v∗) decreases its w-value by 1: If v∗ ∈ Is

undef ,

w(e; Is
undef \ {v∗} ∪ f(Is

def) ∪ {u∗}, It
undef ∪ g(It

def))

=
{

w(e; Is
undef ∪ f(Is

def), It
undef ∪ g(It

def)) if e ̸= (v∗, u∗)
w(e; Is

undef ∪ f(Is
def), It

undef ∪ g(It
def)) − 1 if e = (v∗, u∗);

and otherwise w(e; Is
undef ∪ f(Is

def), It
undef \ {v∗} ∪ g(It

def) ∪ {u∗}) can be computed in a
symmetric fashion. Using this property, we can implement the algorithm that runs in O(|V |)
time. More precisely, we maintain the values of w and the indicator functions of Is

def and It
def

in tables. By referring the tables, we can compute Ncand(v∗) in O(|N(v∗)|) time. Moreover,
we can update the tables in O(1) time. Therefore each iteration runs in O(|N(v∗)|) time,
and thus the algorithm runs in total in O(|V |) time since each edge is touched twice.

▶ Lemma 16 (⋆). If there exist mappings f and g that satisfy the conditions in Lemma 15,
then the algorithm described above correctly outputs one of such mappings. Otherwise the
algorithm reports that no such mappings exist.

4.4.2 Algorithm for constructing a reconfiguration sequence
By Corollary 6, if the instance is a yes-instance, all reconfiguration sequences have the same
length. In this subsection, we present an algorithm to construct one of them in O(k|V |)
time, where k is the size of the input independent set. We first assume that two mappings f

and g satisfying conditions (C1)–(C4) have already been computed. If such f and g do not
exist, the instance is a no-instance by Lemma 15. Here, our target is to fill in gaps between
f(Is) and g(It) avoiding biased path pairs. For preparation of further arguments, we define
weakly biased path pairs by relaxing “common internal vertex” to “common vertex” in the
definition of biased path pairs. If there is a directed path matching P = {P1, . . . , Pk} from
f(Is) to g(It) without any weakly biased path pairs (not necessarily satisfying the path-set
conditions), we can easily construct a directed path matching P ′ = {P ′

1, . . . , P ′
k} from Is

to It satisfying the path-set conditions: P ′
i is obtained from Pi by appending f−1(s(Pi))

before Pi and g−1(t(Pi)) after Pi. Thus, in the following, it suffices to show that P can be
constructed in O(k|V |) time.

Fix an arbitrary vertex r ∈ V . For each v ∈ V , we denote by Pr,v the unique path
between r and v in T und. Let −−→

Pr,v be a directed path obtained by orienting each edge of Pr,v

from r to v. We define dr(v) = fwd(−−→Pr,v) − rev(−−→Pr,v), where fwd(−−→Pr,v) and rev(−−→Pr,v) denote
the numbers of arcs in T that −−→

Pr,v passes in the forward and reverse directions, respectively.
Using the values of dr(v) for v ∈ V , we iteratively construct a directed path matching

P = {P1, . . . , Pk} from f(Is) to g(It) as follows. In the i-th step of the algorithm, we
construct Pi. Let Xi ⊆ f(Is) and Yi ⊆ g(It) be the sets of vertices that are not chosen
for the sources and sinks of P1, . . . , Pi−1, respectively. Throughout the execution of the
algorithm, we keep an invariant that for each arc e, w(e; Xi, Yi) ≥ 0, which means that there
is a directed path matching from Xi to Yi by Lemma 5.

Let x ∈ Xi be a vertex with the smallest value of dr(x) among Xi. Let Y ′
i ⊆ Yi be

the set of vertices to which there is a directed path from x consisting of only arcs with
w(e; Xi, Yi) > 0. Since there exists some directed path matching from Xi to Yi by our
invariant that w(e, Xi, Yi) ≥ 0 for e ∈ A, the set Y ′

i is not empty. Choose an arbitrary
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vertex y ∈ Y ′
i with the smallest value of dr(y). We set Pi to the unique directed path

from x to y in T . Since we use only arcs e with w(e; Xi, Yi) > 0 to construct Pi, we have
w(e; Xi+1, Yi+1) ≥ 0, where Xi+1 = Xi \ {x} and Yi+1 = Yi \ {y}, for all arcs and the
invariant still holds. We repeat this until Xi = ∅ (and hence Yi = ∅).

Here, we show that the obtained directed path matching {P1, . . . , Pk} does not contain
any weakly biased path pairs. Assume that Pi and Pj (i < j) have a common vertex v. By
the choice of x in the construction above, dr(s(Pi)) ≤ dr(s(Pj)) holds. Thus, we have

dist(s(Pi), v) = −dr(s(Pi)) + dr(v) ≥ −dr(s(Pj)) + dr(v) = dist(s(Pj), v).

As v is a common vertex of Pi and Pj , t(Pj) ∈ Y ′
i and thus dr(t(Pi)) ≤ dr(t(Pj)) holds by

the choice of y. Then, similarly we have

dist(v, t(Pi)) = −dr(v) + dr(t(Pi)) ≤ −dr(v) + dr(t(Pj)) = dist(v, t(Pj)).

Therefore, Pi and Pj do not form a weakly biased path pair. We can compute each Pi in
O(|V |) time, and thus the whole running time (including computing f and g) is O(k|V |).
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Abstract
We prove that the proof system OBDD(∧, weakening) is not automatable unless P = NP. The proof
is based upon the celebrated result of Atserias and Müller [5] about the hardness of automatability
for resolution. The heart of the proof is lifting with multi-output indexing gadget from resolution
block-width to dag-like multiparty number-in-hand communication protocol size with o(n) parties,
where n is the number of variables in the non-lifted formula. A similar lifting theorem for protocols
with n + 1 participants was proved by Göös et. el. [12] to establish the hardness of automatability
result for Cutting Planes.
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1 Introduction

Boolean satisfiability is one of the central problems in Computer Science. The input to this
problem is a CNF formula and the goal is to determine whether it is satisfiable or not. This
is a standard example of an NP-complete problem, and it has been very thoroughly studied.
While the consensus is that there is no polynomial algorithm for satisfiability, contemporary
SAT-solvers have been quite successful in solving it for many instances appearing “in practice”.

SAT-solvers are tightly connected to proof complexity. A propositional proof system
is a formal way of certifying that a CNF formula is unsatisfiable. The execution log of an
SAT-solver running on an unsatisfiable input φ can serve as a certificate of unsatisfiability of
φ. Then SAT-solvers face the following trade-off: on the one hand, their underlying proof
system must be sufficiently strong to have short proofs of all formulas of interest, on the
other hand, it must be sufficiently weak so short proofs can be found fast. This tradeoff is
witnessed by the success of CDCL-solvers, which are based on (subsystems of) Resolution
which is a pretty weak proof system. Nevertheless, so far SAT-solvers based on stronger
proof systems have not enjoyed the widespread success of resolution-based solvers.

A propositional proof system Π is called automatable (quasi-automatable) if there exists
an algorithm E that given an unsatisfiable CNF φ produces a Π-proof of φ in time polynomial
(quasi-polynomial) in size of φ plus the size of the shortest Π-proof of φ.

However, for many non-trivial proof systems, there are known pieces of evidence that
they likely are not automatable or quasi-automatable. A long line of results on resolution
automatability [15, 19, 2, 3] is concluded with the recent breakthrough result by Atserias
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and Müller [5] stating that resolution is not automatable unless P = NP and not quasi-
automatable under a stronger assumption. This result sparked a series of follow-up results
that establish the hardness of automating for many other proof systems; these results are
either based on Atserias-Müller’s result directly or follow their plan closely. If P ̸= NP,
then the following proof systems are not automatable: Nullstellensatz and Polynomial
Calculus [13]; Cutting Planes [12]; Res(2) [11]. Under stronger assumptions one can show
non-automatability of Frege systems [17, 7, 6].

We continue this line of research and study the automatability of OBDD-based systems.
OBDD (or ordered binary decision diagram) is a simple but rather expressive way to represent
Boolean functions introduced by Bryant [8]. An OBDD is a very restricted case of a branching
program, wherein for all paths from the source to a sink, variables appear in the same order.
It is known that branching programs are at least as powerful as Boolean formulas, hence
proving superpolynomial lower bounds on size of branching programs for explicit functions is
an extremely hard problem. But exponential lower bounds are known for restricted versions
of branching programs, including OBDDs. However, this restriction allows performing many
important operations with OBDDs very efficiently: testing satisfiability, computing binary
operations, applying restrictions, minimization, and so on. These properties have paved
the way for OBDD-based propositional proof systems introduced by Atserias, Kolaites, and
Vardi [4] to serve as a base for OBDD based SAT-solvers [1, 20].

An OBDD(∧,weakening) refutation of a CNF φ is a sequence of OBDDs that query
variables in the same order; the last OBDD in the sequence is identically false and each
of those diagrams either represents a clause of φ or follows semantically from two OBDDs
that appear earlier in the sequence (formally there are two rules: by the first (∧) we can
derive conjunction of two OBDDs and by the second (weakening) we can derive any semantic
implication of a single OBDD). The correctness of application of these rules can be efficiently
verified since binary operations for two OBDDs with the same order of variab can be
computed in polynomial time. This system simulates Resolution and CP∗ (Cutting Planes
with unary coefficients); it has short refutations of unsatisfiable linear systems over F2 [4]
and clique-coloring tautologies [9] (the latter are hard for Cutting Planes [22]).

Atserias-Müller’s approach for establishing hardness of automatability requires proving a
lower bound on the proof size of some specific CNF-formula. Unfortunately the tools for
proving lower bounds on OBDD(∧,weakening) are quite limited and related to monotone
circuit complexity. All known lower bound proofs consist of two steps.
1. To prove the lower bound for a fixed order of variables in OBDDs. Such a lower

bound was proved by Atserias et. al. [4]; an exponential lower bound on the size of
OBDD(∧,weakening) refutations of clique-coloring tautologies with a particular order of
variables follows from monotone interpolation.

2. To transform a formula that is hard for one order into a formula that is hard for all
orders. The first transformation of this kind was devised by Krajićek [16]: formulas are
equipped with additional variables that parameterize a permutation of main variables
such that by fixing these additional variables we can get the initial formula, where
variables are permuted by any desired permutation. Segerlind [23, 24] invented a more
concise transformation using 2-independent permutation family together with orification of
variables; Segerlind used it to prove that OBDD(∧,weakening) may require exponentially
longer proofs than Res(O(log n)).
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Our contribution. Our main result is the following theorem:

▶ Theorem 1. There exist a constant α and a polynomially computable function R mapping
CNF formulas to CNF formulas with the following properties. For any 3-CNF φ with n

variables such that: if φ is satisfiable, then R(φ) has a resolution refutation of size at most
nα; if φ is unsatisfiable, then any OBDD(∧,weakening) refutation of R(φ) has size 2Ω(n).

Since OBDD(∧,weakening) simulates resolution, any automation algorithm for
OBDD(∧,weakening) can be used to solve 3-SAT: if it finds proofs in fixed polynomial
time, then the input formula is satisfiable, otherwise, it is unsatisfiable.

Our technique can be applied to other proof systems as well since the only thing that we
use about OBDDs is that the value of an OBDD of size S can be computed using O(ℓ logS)
bits of communication in the ℓ-party number-in-hand communication model if the partition
of variables agrees with the order. For example, this property holds for k-OBDDs for small
k, hence our technique can be applied for proof system k-OBDD(∧, weakening) [14].

Technique. The proof consists of two parts:
1. Prove the weaker version of Theorem 1, where the lower bound holds only for refutations

that consist of OBDDs in some particular order π.
2. Devise a polynomial-time algorithm that transforms formulas with short resolution

refutations to formulas with short resolution refutations; and transforms formulas that
are hard for OBDD(∧,weakening) with a specific order to formulas that are hard for
OBDD(∧,weakening) for all orders.

To implement the second part we use Segerlind’s transformation. It almost suits our case,
but the property for resolution works only with an additional condition: if a formula has a
short resolution proof with at most constant number negative literals in every clause (we say
that the negative width of the proof is O(1)), then the result of Segerlind’s transformation
has a short resolution proof.

The first part is much more involved. The construction is built on the following result
proved by Atserias and Müller [5]. There exists an algorithm E that given a 3-CNF formula
φ produces in polynomial time another CNF formula E(φ) such that

if φ is satisfiable, E(φ) admits a polynomial-size resolution refutation;
if φ is unsatisfiable, the shortest refutation of E(φ) has size 2|φ|Ω(1) .

We get our result by applying lifting to E(φ). Lifting is a technique to obtain lower bounds
for strong computational models from lower bounds for weaker models. Recently, Garg, et.
al. [10] proved two similar lifting theorems lifting from resolution width to refutation size in
(1) any semantic proof system operating with proof lines of small 2-party communication
complexity and (2) cutting planes (precisely it works for proof systems, where proof lines
can be computed by 1-round real communication protocol).

The first lifting theorem (applied to E(φ)) seems enticing for us since a function computable
by an OBDD can be computed with small 2-party communication. Unfortunately, we can not
apply this theorem directly since E(φ) can have large resolution width even for a satisfiable
φ so after the application of lifting the resulting CNF might have only exponential-size
OBDD(∧,weakening) refutations. Göös et. al. [12] face the same problem for Cutting Planes
and deal with it by lifting from block-width instead of the plain width. However the lifting
theorem in [10] does not work for block-width, so Göös et. al. [12] prove a weaker version of
it: they lift from resolution block-width to k-dimensional simplex-dags, where k is the number
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of variables in the lifted formula plus one. Cutting planes refutations can be converted to
k-dimensional simplex-dags of the same size. However, for OBDD(∧,weakening) refutations,
the size is raised to the power of k, hence we need a lifting theorem for a smaller value of k.

We prove another lifting theorem: we lift from resolution block-width to k-dimensional box
dag size, where k is the size of the largest block in the partition w.r.t. which the block-width
is computed, plus one. In our proof, we use the structural properties of rectangles from [10]
and extend them to show the structural properties of boxes. The same theorem seems to
hold for simplex-dags (the proof in [12] can be adapted as well), but it is not clear whether
there exist context where such change in the dimension matters.

We also show that OBDD(∧,weakening) refutations with a specific order of variables
of size S can be converted to k-dimensional box dags of size SO(k). In actuality, we prove
it for every proof system that operates with proof lines that can be computed by k party
communication protocols in the number-in-hand model with a small cost.

2 Preliminaries

Notation. We use the standard notation [n] = {1, . . . , n}. Vars(φ) denotes the set of
propositional variables of a formula φ. We refer to a uniform distribution over a set X by
U(X).

Resolution. A resolution refutation of an unsatisfiable CNF φ is a sequence of clauses
ending with the empty clause such that each clause of the sequence is either a clause of φ or
is derived from the previous clauses in the sequence with a resolution rule: A∨x B∨¬x

A∨B .

The width of a clause is the number of literals in it, and the width of a formula is the
maximum width of a clause in it. The size of a resolution refutation is the number of clauses
in it. The width of a resolution refutation is the largest width of a clause in it.

Let X be a set of propositional variables and U = U1, . . . , Uk be a partition of X. Let
us define the block-width of a clause C over variables X as the number of blocks among
U1, . . . , Uk that contain variables of C: |{i ∈ [k] | Vars(C) ∩ Ui ̸= ∅}|. The block-width of a
resolution refutation is the maximum block-width of a clause in it. For an unsatisfiable CNF
φ we denote bw(φ) as the smallest block-width of a resolution refutation of φ.

Ordered Binary Decision Diagrams. A branching program (BP) is a directed acyclic graph
with a single source and two sinks: 0-sink and 1-sink. Each of the nodes of the BP except the
sinks is labeled with a variable xi for i ∈ [n] and has two outgoing edges, one labeled with 1
and another with 0. Let us define the function computed by a BP. For a node u in a BP let
fu : {0, 1}n → {0, 1} be a function computed by it. We then define f0-sink ≡ 0, f1-sink ≡ 1,
fu(x) := fv(x) if xi = 0 and fu(x) := fw(x) if xi = 1 where u is labeled with the variable xi,
v is 0-successor of u and w is the 1-successor of u. Then we define the function computed by
the BP itself as the function computed by its source.

A π-OBDD where π ∈ Sn is a BP computing a function f : {0, 1}n → {0, 1} such that
for any path from the source to a sink each of the node labels appears at most once and the
order of the labels appearing in the path respects π. That is, the labels appearing on the
path always have form xπ(i1), xπ(i2), . . . , xπ(ik) where 1 ≤ i1 < i2 < · · · < ik ≤ n.

OBDDs have the following nice property: for every order of variables every Boolean
function has a unique minimal OBDD. For a given order π, the minimal π-OBDD of a function
f may be constructed in polynomial time from any π-OBDD for the same function [18].
There are also known polynomial-time algorithms that efficiently perform all the Boolean
binary operations, negation and projection (elimination of the existential quantifier) to
π-OBDDs [18] (we refer to [26] for an introduction to OBDDs).
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OBDD refutations. A π-OBDD-refutation of a CNF formula φ is a sequence of π-OBDDs
D1, . . . , Ds such that Ds computes the identically false function and each Di either computes
a clause of φ or is obtained from the previous diagrams in the sequence by one of the rules
below.
conjunction rule (∧) Di computes the conjunction of Dj and Dk for j, k < i;
weakening rule Di computes a function implied by Dj where j < i;
projection rule (∃) Di computes a function ∃xf where f is computed by Dj with j < i,

and x ∈ Vars(φ).
The size of an π-OBDD-refutation is the sum of sizes of all diagrams in it. Using the
properties of OBDD it is easy to see that the correctness of a π-OBDD-refutation can be
verified in time polynomial in its size and the size of the refuted formula [4]. An OBDD
refutation is a π-OBDD refutation for some order π.

Depending on the set of the allowed rules we have several different propositional proof
systems: OBDD(∧) where only the conjunction rule is allowed, OBDD(∧, ∃) where the
conjunction and the projection rules are allowed, and OBDD(∧,weakening) where the
conjunction and the weakening rules are allowed. Since the projection rule is a special case
of the weakening rule, we do not include both of them simultaneously.

For an unsatisfiable CNF φ we denote by π-OBDD(φ) the size of the smallest
π-OBDD(∧,weakening) refutation of φ and by OBDD(φ) the size of the smallest
OBDD(∧,weakening) refutation of φ.

▶ Proposition 2 ([4]). OBDD(∧, ∃) (and, thus, OBDD(∧,weakening)) polynomially simu-
lates resolution: if an unsatisfiable CNF has a resolution refutation of size S, then it has an
OBDD(∧, ∃) refutation of size poly(S).

Searchφ. Searchφ is the following search problem: given an assignment to the variables of
the unsatisfiable CNF φ, find a clause that is falsified by this assignment. Formally it can be
defined as a relation {(x,C) | x ∈ {0, 1}Vars(φ); C ∈ φ; C(x) = 0}.

Dags solving relations.

▶ Definition 3 ([25]). Let F be a family of subsets of a finite set X and S ⊆ X × O be a
relation. Let D be a single-source (which we refer to as root) acyclic graph. We call D an
F-dag solving S if for every node u there exists a set Ru ∈ F such that:
(root condition) for the root r of the dag Rr = X ;
(leaf condition) for each leaf (sink) ℓ of the dag there exists o ∈ O such that for all x ∈ Rℓ,

(x, o) ∈ S;
(local condition) each inner node u has out-degree 2 and its two descendants v and w satisfy

the property Ru ⊆ Rv ∪Rw.
The size of an F-dag is the number of nodes in it. We denote the smallest size of F-dag
solving S by F-dag(S). We usually identify the nodes of an F-dag with the sets Ru.

Now we define several special cases of this general definition.

Decision dag. Assume that we have Boolean domain X = {0, 1}n that we view as a set of
values of n propositional variables. A partial assignment is an element of {0, 1, ∗}n, where ∗
means that the corresponding variable is not assigned. Let fix(ρ) = ρ−1({0, 1}) be the set of
assigned variables. If fix(ρ) = [n] then ρ is a full assignment.

Any partial assignment defines a subcube Cube(ρ) = {α ∈ {0, 1}n | ∀i ∈ fix(ρ) : ρ(i) =
α(i)} that is the set of all full assignments agreeing with ρ.
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Let S ⊆ {0, 1}n ×O be a relation and F be a set of all subcubes {Cube(ρ) | ρ ∈ {0, 1, ∗}n},
then we call an F -dag for S a decision dag. We denote the smallest size of a decision dag
solving S by dec-dag(S).

Observe that a decision tree is a decision dag: a node u of a decision tree can be labeled
with a set Cube(ρ), where ρ is a partial assignment corresponding to the path from the root
to u. Hence, since for any total relation there exists a decision tree solving it, any total
relation has a decision dag as well.

Let U = U1, . . . , Uk be a partition of [n]. The block-width of a decision dag is defined
as follows: for a node labeled with Cube(ρ) we compute |{i ∈ [k] | Ui ∩ fix(ρ) ̸= ∅}|, the
blockwidth of a decision dag is the maximum of this value among the nodes. For a relation
S we denote the smallest block-width of a decision dag that solves it as bw(S).

Observe that a resolution refutation of an unsatisfiable CNF φ can be converted to
a decision dag solving Searchφ of the same size: the topology of the dag is the topology
of the resolution refutation, a node corresponding to a clause C is labeled with a set
C−1(0) = {x ∈ {0, 1}n | C(x) = 0}. It is easy to see that this set is a subcube. If C is
derived from D and E via a resolution rule then C is implied by the conjunction of D and E
thus C−1(0) ⊆ (D ∧ E)−1(0) = D−1(0) ∪ E−1(0). Clearly the root and the leaf properties
of the constructed decision dag also hold: for a leaf ℓ labeled with C−1(0) for C ∈ φ every
point in C−1(0) falsifies φ by definition; the root corresponds to the empty clause so it is
labeled with {0, 1}n. The reverse also holds, one can convert a decision dag solving Searchφ

to a resolution refutation of φ of the same size.

▶ Proposition 4 ([10]). There exists a resolution refutation of φ of size S and block-width b
if and only if there exists a decision dag solving Searchφ of size S and block-width b.

Box dag. Let S ⊆ X1 × X2 × · · · × Xk × O be a relation. Let F be a set of boxes
{A1 ×A2 × · · · × Ak | A1 ⊆ X1, A2 ⊆ X2, . . . , Ak ⊆ Xk}. Then we call an F -dag a box dag.
Let U = U1, . . . , Uk be a partition of [n]. If Xi = {0, 1}Ui for all i ∈ [k], then we denote the
class of box dags as box-dagU or box-dagU1,...,Uk

.
▶ Remark 5. We can convert a π-OBDD refutation of a formula φ of size S to an F-dag
for Searchφ, where F consists of zero-sets of π-OBDDs of size at most S. In Section 5 we
show that if a partition of variables into k parts agrees with an order π, such a dag can be
converted to a box dag of size SO(k).

Automatability. A propositional proof system Π is called automatable if there exists an
algorithm AΠ that given an unsatisfiable CNF φ produces its refutation in Π in time
polynomial in |φ| and the size of the shortest refutation of φ in Π.

3 The outline of the proof of Theorem 1

Our starting point is the following theorem that is essentially proved in [13].

▶ Theorem 6 (Lemma 2.2 from [13]). For any constant c ≥ 2 there exists a polynomial-time
algorithm E such that given a 3-CNF formula φ of size n it produces a O(log n)-CNF formula
E(φ) such that

there exists a partition B1, . . . , Bk of the variables of E(φ) such that |B1| = |B2| = · · · =
|Bk| = O(n) and k = O(nc+1) and this partition can be computed in polynomial time;
if φ ∈ SAT then E(φ) has a resolution refutation π such that |π| = nO(c) and bw(π) = O(1)
w.r.t. partition B1, . . . , Bk;
if φ ̸∈ SAT then any resolution refutation of E(φ) has block-width at least nc−1 w.r.t.
B1, . . . , Bk.
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Notice that the statement of Theorem 6 is slightly different from one explicitly stated
in [13]. First, it is not stated that all blocks Bi have equal sizes and their sizes are O(n),
but this is clear from the definition in Section 3.1 of [13]. Second, the theorem is stated and
proved only for c = 2 but essentially the same proof holds for larger c, the only change is
that we should reduce from rPHPnc instead of rPHPn2 (see Section 5 of [13] for details).

To prove Theorem 1 we follow the plan below:
Lifting with multi-output indexing function. In Section 4 we define a block-wise indexing

function Indℓ×m and its composition with relations and formulas. In Section 4 we will
see that if a CNF formula φ has short resolution refutation of constant block-width
then φ ◦ Indn

ℓ×m has a short resolution refutation. In the remainder of Section 4 we
show that if a CNF formula φ with variables partitioned into n blocks of size ℓ requires
resolution refutations of block-width at least b, then Searchφ ◦ Indn

ℓ×m and consequently
Searchφ◦Indn

ℓ×m
requires large (ℓ+ 1)-dimensional box dags.

Making box dags out of π-OBDD refutations. In Section 5 we show that if Searchφ re-
quires k-dimensional box dags of size S, then it requires π-OBDD(∧,weakening) refuta-
tions of size SΩ(1/k) for some fixed π.

Making all orders hard. In Section 6 we adapt Segerlind’s transformation from [24] to show
that there exists a CNF-to-CNF mapping that maps CNF formulas with polynomial
resolution size to CNF formulas with polynomial resolution size and maps CNF formulas
that are hard for π-OBDD(∧,weakening) with a fixed π to CNF formulas that are hard
for OBDD(∧,weakening).

Putting the pieces together. In Section 7 we compose Ec with the two mappings above to
obtain Theorem 1.

4 Lifting with multi-output indexing function

In this section, we prove the lifting theorem for box dags. First, let us formally define the
gadget we are going to lift with.

▶ Definition 7 (Block-wise indexing, [12]). Indℓ×m : [m] × {0, 1}ℓ×m → {0, 1}ℓ is defined as
Indℓ×m(x, y) = (y1,x, y2,x, . . . , yℓ,x) i.e. given an index x ∈ [m] and a matrix y ∈ {0, 1}ℓ×m,
it returns the xth column of y. For a set R ⊆ [m]n × ({0, 1}ℓ×m)n we define Indn

ℓ×m(R) =
{(Indℓ×m(x1, y1), . . . , Indℓ×m(xn, yn)) ∈ {0, 1}nℓ | (x1, x2, . . . , xn, y1, y2, . . . , yn) ∈ R}.

Let φ =
∧t

i=1 Ci be an unsatisfiable CNF with nℓ variables that are partitioned into
n blocks of size ℓ. Let us define a CNF ψ = φ ◦ Indn

ℓ×m. First let us define C ◦ Indn
ℓ×m

for a clause C. The resulting CNF formula will compute the function C ◦ Indn
ℓ×m =

C(Indℓ×m(x1, y1), . . . , Indℓ×m(xn, yn)). Then we define φ◦ Indn
ℓ×m :=

∧t
i=1

(
Ci ◦ Indn

ℓ×m

)
.

Now let us construct a CNF representation of C ◦ Indn
ℓ×m. Let zi,j for i ∈ [n], t ∈ [ℓ] be

the tth variable of the ith block of φ. Let i1, . . . , ib ∈ [n] be indices of the blocks that are
touched by C and let Cj for j ∈ [b] be the part of the variables of C from the ijth block:
C = C1 ∨ · · · ∨ Cb. Let Pj := {k ∈ [ℓ] | zij ,k ∈ C} be the indices (inside a block) of positive
literals in Cj and Nj := {k ∈ [ℓ] | ¬zij ,k ∈ C} be the indices of negative literals in Cj .
Then the CNF representation of C ◦ Indn

ℓ×m(x1, y1, . . . , xn, yn) consists of clauses of form((∧b
j=1(xij

= αj)
)

→
(∨b

j=1

(∨
k∈Pj

yk,αj
∨

∨
k∈Nj

¬yk,αj

)))
for each α1, . . . , αb ∈ [m].

The size of this representation is |φ| ·mb where b is the largest block-width of a clause in
φ, so this representation is short for formulas of constant block-width.
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▶ Theorem 8 (the last inequality in Theorem 4 from [12]). Let φ be an unsatisfiable CNF
with nℓ variables that are partitioned into n blocks of size ℓ such that there exists a resolution
refutation of φ of size s and block-width b. Then there exists a resolution refutation of
φ ◦ Indn

ℓ×m of size mO(b) · s.

4.1 Lifting theorem

For a relation S ⊆ ({0, 1}ℓ)n × O its composition with block-wise indexing is defined as

S ◦ Indn
ℓ×m :=

{
(x1, . . . , xn, y1, . . . , yn, o) xi ∈ [m]; yi ∈ {0, 1}ℓ×m; o ∈ O;

(Indℓ×m(x1, y1), . . . , Indℓ×m(xn, yn), o) ∈ S

}
.

This is a direct analog of the composition of two functions: we first plug the output of
indexing to each ℓ-bit block of the input of S and then “compute” S on the resulting input.

We assume that m is a power of 2 so the relation S ◦ Indn
ℓ×m can be viewed as defined

on a binary domain {0, 1}n log2 m+ℓnm.
Let us define a partition of the input bits of relation S ◦ Indn

ℓ×m. Consider an element of
the input domain (x1, . . . , xn, y1, . . . , yn) ∈ [m]n ×

(
{0, 1}ℓ×m

)n where x1, . . . , xn ∈ [m] and
y1, . . . , yn are matrices in {0, 1}ℓ×m. Let A consist of bits corresponding to of x1, . . . , xn, (in
other words A corresponds to the first n log2 m bits of the input), Bj for j ∈ [ℓ] consists of
bits corresponding to jth rows of all the matrices y1, . . . , yn. We are going to imagine that
we have ℓ + 1 parties: Alice who receives the bits A of the input, Bob1, Bob2, . . . , Bobℓ,
where Bobj receives the bits Bj of the input.

Then let A := {0, 1}A = [m]n be the set of Alice’s inputs and let Bj := {0, 1}Bj = {0, 1}m

be the set of Bobj ’s inputs.
The following theorem is similar with Theorem 8 form [12], but for box dags instead of

simplex dags and, crucially, for a smaller number of parties, ℓ+ 1 instead of nℓ+ 1.

▶ Theorem 9. Let ∆ be a large enough integer constant. Let S ⊆ ({0, 1}ℓ)n × O be a total
relation where ℓ < n

2 and m = (nℓ)∆. Then mΩ(bw(S)) ≤ box-dagA,B1,...,Bℓ
(S ◦ Indn

ℓ×m),
where the block partition of inputs of S is the natural partition into n blocks of size ℓ.

Let us outline the proof of Theorem 9. The proof is constructive, i.e., we take a box
dag B solving S ◦ Indn

ℓ×m and extract from it a decision dag solving S of block-width
O(log |B|/ logm). The idea is to split boxes in the box dag into “structured” boxes that
naturally correspond to partial assignments from {0, 1, ∗}n (notice that there is a one-to-one
correspondence between partial assignments and subcubes). We then take the assignments
that our structured boxes correspond to and construct a decision dag for S out of them (we
will need some auxiliary partial assignments as well). A first attempt to formulate what this
“structuredness” could mean is the following: a box B is ρ-like if Indn

ℓ×m(B) = Cube(ρ). It
turns out that we actually can (with some caveats) partition any box in A × B1 × · · · × Bℓ

into boxes that are ρ-like for some assignments ρ. Unfortunately, we need some additional
properties of these boxes to be able to connect them into a valid decision dag.

Our definition of structured boxes is different from the one given in [12], we formulate it
in a different way reducing the structuredness of boxes to the structuredness of rectangles
(2-dimensional boxes) that is used to prove the lifting theorem in [10]. In Subsection 4.2 we
formulate the properties of structured rectangles that we need, in Subsection 4.3 we define
and prove the analogous properties for structured boxes, and in Subsection 4.4 we construct
the decision dag solving S.
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4.2 Structured Rectangles
Lifting theorems from [10] rely heavily on the notion of structuredness of rectangles. To
simplify things we will not define it explicitly, but instead, state its properties that we are
going to use.

Let Rectm,n be the set of subrectangles of [m]n ×
(
{0, 1}1×m

)n: {A×B | A ⊆ [m]n; B ⊆(
{0, 1}1×m

)n}. We are going to define several properties of predicates on Rectm,n × {0, 1, ∗}n

i.e. predicates on pairs of form (rectangle, partial assignment). Let W be a predicate on
Rectm,n × {0, 1, ∗}n.

▶ Definition 10. We say that W observes row-structure if W(X × Y, ρ) implies that for all
x ∈ X, Indn

1×m({x} × Y ) ⊆ Cube(ρ), and Prx←U(X)
[
Indn

1×m({x} × Y ) ̸= Cube(ρ)
]

≤ 2
n .

▶ Definition 11. We say that W is partitionable if for every X ⊆ [m]n there exist a partition
X :=

⊔
j∈J X̃j and a family {Fj}j∈J , Fj ⊆ [n], and for every R = X×Y ∈ Rectm,n, for every

parameter k ≤ n log n there exists a partition R =
⊔

i∈I Ri, where Ri = Xi × Yi ∈ Rectm,n,
a family of assignments {ρi}i∈I , and sets Xerr ⊆ X,Yerr ⊆ Y such that |Xerr| ≤ mn/2k,
|Yerr| ≤ 2mn−k and the following properties hold:
1. for each i one of the following holds: either W(Ri, ρi) and |fix(ρi)| = O(k/ log n); or Ri

is covered by Xerr ×
(
{0, 1}1×m

)n ∪ [m]n × Yerr.
2. For every i ∈ I there exists j ∈ J such that X̃j = Xi and fix(ρi) = Fj

1.

▶ Definition 12. We say that W respects largeness if for all X×Y such that |X| ≥ mn · 0.99
and |Y | ≥ 2mn · 0.99 W(X × Y, ∗n) holds.

▶ Theorem 13 (Lemma 4.4, Lemma 4.5 from [10]). There exists a constant ∆ such that for
any m ≥ n∆ there exists a predicate W on Rectm,n × {0, 1, ∗}n such that it observes row-
structure2; is partitionable; respects largeness3. We say that a rectangle R is ρ-structured
iff W(R, ρ) holds.

4.3 Structured Boxes
Now let us generalize the notion of structuredness from rectangles to boxes.

▶ Definition 14. Let R = X × Y1 × · · · × Yℓ, where X ⊆ A = [m]n, Yj ⊆ Bj = ({0, 1}1×m)n

be a box and ρ ∈ {0, 1, ∗}nℓ be a partial assignment. We view ρ as an assignment to variables
of input to S ⊆ ({0, 1}ℓ)n × O that are partitioned into n blocks of size ℓ. Let ρi ∈ {0, 1, ∗}n

for i ∈ [ℓ] be the marginal assignment of ρ assigning the ith variable of each block in the
partition of variables of S. We say that R is a ρ-structured box if for each i ∈ [ℓ] the
rectangle X × Yi is ρi-structured.

We now show that our definition of the structuredness satisfies the analogues of conditions
from Definitions 10, 11, and 12.

▶ Lemma 15. Assume that n > 2ℓ. Let R = X × Y1 × · · · × Yℓ ⊆ A × B1 × · · · × Bℓ be a
ρ-structured box where ρ ∈ {0, 1, ∗}nℓ. Then for all x ∈ X, Indn

ℓ×m({x} × Y1 × · · · × Yℓ) ⊆
Cube(ρ) and there exists x ∈ X such that Indn

ℓ×m({x} × Y1 × · · · × Yℓ) = Cube(ρ).

1 This property is not explicitly stated in [10], although it is clear from the Rectangle Scheme that
generates the partition: first X is partitioned and then each part Xi × Y is partitioned separately.

2 Although Lemma 4.4 of [10] is not stated in strong enough form to satisfy Definition 10, the needed
property is actually proved in Section 9 of [10].

3 This property is implicit in [10], see the full version of the paper for the details.
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Proof. If there exist x ∈ X, y1 ∈ Y1, . . . , yℓ ∈ Yℓ such that α := Indn
ℓ×m(x, y1, . . . , yℓ) does

not agree with ρ, then there exists i ∈ [ℓ] such that Indn
1×m(x, yi) does not agree with ρi

which violates Definition 10.
Now let us prove the second statement. By Definition 10 for

each i ∈ [ℓ] we have Prx←U(X)
[
Indn

1×m({x} × Yi) ̸= Cube(ρi)
]

≤ 2
n .

Then Prx←U(X)
[
Indn

ℓ×m({x} × Y1 × Y2 × · · · × Yℓ) ̸= Cube(ρ)
]

is bounded by∑ℓ
i=1 Prx←U(X)

[
Indn

1×m({x} × Yi) ̸= Cube(ρi)
]

≤ 2ℓ
n < 1. ◀

▶ Lemma 16. If R = X × Y1 × · · · × Yℓ ⊆ A × B1 × · · · × Bℓ is such that |X| ≥ mn · 0.99
and |Yi| ≥ 2mn · 0.99 for each i ∈ [ℓ], then R is ∗nℓ-structured.

Proof. By Definition 12 we have that each of the X ×Yi is ∗n-structured which by definition
implies ∗nℓ-structuredness of R. ◀

▶ Lemma 17. Let R = X×Y1×· · ·×Yℓ ⊆ A×B1×· · ·×Bℓ be an arbitrary box and k ≤ n log n
be a parameter. Then there exist sets Xerr ⊆ A, Y err

1 ⊆ B1, . . . , Y
err

ℓ ⊆ Bℓ, a partition
R =

⊔
i∈I Ri, and a family of partial assignments {ρi}i∈I , where Ri = Xi × Y i

1 × · · · × Y i
ℓ is

a box and ρi ⊆ {0, 1, ∗}nℓ satisfying the following conditions.
(1*) |Xerr| ≤ mn·ℓ

2k , |Y err
i | ≤ 2nm−k.

(2*) For each i ∈ I at least one of the following statements holds:
Ri is ρi-structured and ρi assigns O(k/ log n) blocks from the standard partition of
[nℓ] into n blocks of size ℓ;
Ri is covered by one of the error sets i.e. Xi ⊆ Xerr or there exists j ∈ [ℓ] such that
Y i

j ⊆ Y err
j .

(3*) For each x ∈ X \Xerr there exists a set Ix ⊆ [nℓ] that is a union of O(k/ log n) blocks
(i.e. it either contains all the indices from a block or none) such that x ∈ Xi implies
fix(ρi) ⊆ Ix.

4.4 Proof of Theorem 9
Recall that the inequality we are to prove is mΩ(bw(S)) ≤ box-dagA,B1,...,Bℓ

(S ◦ Indn
ℓ×m). It

is equivalent to bw(S) = O
(
log box-dagA,B1,...,Bℓ

(S ◦ Indn
ℓ×m)/ logm

)
.

Consider the smallest box-dagA,B1,...,Bℓ
B solving S ◦ Indn

ℓ×m. We construct a decision
dag solving S of block-width O(log |B|/ logm) = O(log |B|/ log n).

Similarly to [10] we first assume that partitions yielded by Lemma 17 are always errorless,
i.e. Xerr = Y err

1 = · · · = Y err
ℓ = ∅. Then we will fix the proof so it works without this

assumption, this part of the proof repeats the argument from Section 5.3 in [10] more or
less verbatim, so we omit it in this version of the paper. We apply Lemma 17 to each of the
boxes in B with some parameter k that we fix later to achieve the needed lower bound.

Let us construct a decision dag D that solves S. Each node of a decision dag labeled with
function f naturally corresponds to a partial assignment ρf such that Cube(ρf ) = f−1(0).
We will identify nodes of a decision dag with the assignments corresponding to them. That
suggests the construction of D: for each of the nodes of B we apply Lemma 17 to it and for
each ρ-structured box in the resulting partition add the node ρ to D. To turn this collection
of nodes into a correct decision dag, we need to locate the root, the leaves, and connect (via
auxiliary nodes) the nodes between each other such that the conditions on dags are met.
More precisely, it is sufficient to show that:
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1. The partition of the root of B consists of a single ∗nℓ-structured box.
2. If an o-labeled leaf of B contains a ρ-structured box in its partition, then for every

x ∈ Cube(ρ), (x, o) ∈ S.
3. Suppose a node u in B has direct descendants v1 and v2. Then let ρu

1 , . . . , ρ
u
tu

be the
assignments yielded by the partition of the box u, ρvq

1 , . . . , ρ
vq

tvq
be the assignments yielded

by the partition of the box vq for q ∈ {1, 2}. Then there exists a assignment-labeled
dag with sources ρu

1 , . . . , ρ
u
tu

, leaves ρvq

1 , . . . , ρ
vq

tvq
for q ∈ {1, 2} that satisfies the local

condition of a decision dag having block-width O(k/ log n).

Proof of 1. By Lemma 16 we have that the entire root of B is ∗nℓ-structured, thus we may
assume that its partition is a single box.

Proof of 2. Let u be an o-labeled leaf of B. Suppose that B = X × Y1 × · · · × Yℓ is a ρ-
structured box in the partition of u. By Lemma 15 there exists x0 such that Indn

ℓ×m({x0} ×
Y1 × · · · × Yℓ) = Cube(ρ), i.e. for every α ∈ Cube(ρ) there exist y1, . . . , yℓ such that
(x0, y1, . . . , yℓ) ∈ B and Indn

ℓ×m(x0, y1, . . . , yℓ) = α. Then since B is a box-dag for S◦Indn
ℓ×m,

(α, o) ∈ S.

Proof of 3. It is sufficient to construct a separate dag with local property rooted in ρu
i

with leaves from L := {ρvq
p }q∈{1,2}, p∈[tvq ] of block-width O(k/ log n).

Recall that we abuse notation by identifying nodes of a box dag with their underlying
boxes. Let B = X × Y1 × · · · × Yℓ be a ρu

i -structured box from the partition of u. And
let x ∈ X be such that Indn

ℓ×m({x} × Y1 × · · · × Yℓ) = Cube(ρu
i ). By the property of a

box-dag, B is covered by the union of boxes v1 and v2. Thus {x} × Y1 × · · · × Yℓ is also
covered by v1 ∪v2. Let Iv1

x , Iv2
x ⊆ [nℓ] be the variable sets from Lemma 17. Let our ρu

i -rooted
decision dag consist of two parts. The first part is a decision tree querying one by one
all variables from Iv1

x ∪ Iv2
x \ fix(ρu

i ). From each leaf of this decision tree we direct both
edges to one of the nodes of L. Observe that by the part (3) of Lemma 17, Iv1

x and Iv2
x

are unions of O(k/ log n) blocks and fix(ρu
i ) touches O(k/ log n) blocks. Thus block-width

of the resulting dag is also O(k/ log n).Consider any leaf of the decision tree θ ∈ {0, 1, ∗}nℓ.
Since Indn

ℓ×m({x} × Y1 × · · · × Yℓ) = Cube(ρu
i ) and θ extends ρu

i (i.e., Cube(θ) ⊆ Cube(ρu
i )),

there exist y1 ∈ Y1, . . . , yℓ ∈ Yℓ such that Indn
ℓ×m(x, y1, . . . , yℓ) ∈ Cube(θ). Then consider

an ω-structured box B0 from a partition of v1 or v2 for ω ∈ L that contains (x, y1, . . . , yℓ).
Observe that fix(ω) ⊆ Iv1

x ∪ Iv2
x ⊆ fix(θ). The first inclusion holds by the part (3) of

Lemma 17, the second holds by the construction of the decision tree. Since by Lemma 15,
Indn

ℓ×m(x, y1, . . . , yℓ) ∈ Cube(ω), Cube(ω) and Cube(θ) have a point in common, then
fix(ω) ⊆ fix(θ) implies Cube(ω) ⊇ Cube(θ). Then we can direct both edges from ω to θ.
That finishes the proof under the errorless assumption.

5 From Box-Dags to OBDD Refutations

▶ Lemma 18 (a generalization of a similar lemma in [25]). Let U1, . . . , Uk be a partition of [n].
Let F be the class of functions that are computable by k-party number-in-hand communication
protocol4 of cost c w.r.t. partition U1, . . . , Uk of [n]. Let S ⊆ {0, 1}U1 × · · · × {0, 1}Uk × Y be
a relation and let D be a F-dag that solves it. Then there exists a box-dagU1,...,Uk

D′ of size
O(|D| · 23c) that solves S.

4 For a formal definition of number-in-hand protocol see e.g. [21].
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Let X be a set of propositional variables of size n, V := (V1, . . . , Vk) be a partition of X:
X = V1 ⊔ · · · ⊔ Vk, and π : [n] → X be a bijection (order on the variables X). We say that a
partition V agrees with π if V1 comes first in the order, then goes V2 and so on until Vk.

▶ Theorem 19. Let φ be an unsatisfiable CNF over variables X. Let π : [n] → X be an
order of variables and V be a partition of X agreeing with π. Let D1, . . . , Dt be a π-OBDD(∧,
weakening) refutation of φ of size S. Then box-dagV(Searchφ) ≤ SO(k).

▶ Lemma 20. Let D be a π-OBDD over variables X computing a function f and V =
(V1, . . . , Vk) be a partition of X that agrees with π. Then there exists a k-party number-in-hand
communication protocol computing f with cost k⌈log2 |D|⌉.

Proof of Theorem 19. By Lemma 20, a π-OBDD refutation of φ of size S =
∑t

i=1 |Di|
can be viewed as an F-dag solving Searchφ (for the diagrams derived via the weakening
rule we direct both of the outgoing edges to the same node), where F is the class of
functions that can be computed with cost at most k⌈log2 S⌉ by a k-party number-in-hand
communication protocol with input partition V . Then by Lemma 18, there exists a box-dagV
of size S · 23k log S = SO(k) solving Searchφ. ◀

6 Making all orders hard

Let negative width of a resolution refutation be the maximal number of negative literals in a
clause of the refutation.

▶ Theorem 21 ([24]). There exists a polynomial-time algorithm T0 that given a CNF φ over
n variables returns a CNF-formula T0(φ) such that

for any variable ordering π, π-OBDD(φ) ≤ OBDD(T0(φ)) (Lemma 14 from [24]);
If φ has a resolution refutation of size s and negative width w, then T0(φ) has resolution
size at most s · nO(w), (Corollary 9 and Lemma 12 from [24]).

▶ Lemma 22. If a CNF-formula φ has a resolution refutation of size s and the size of the
smallest π-OBDD refutation of φ is t, then there exists polynomial-time algorithm that given
φ outputs a formula φ′ and a variable order π′ such that φ′ has a resolution refutation of
size O(s) and negative width O(1), and the size of the smallest π′-OBDD refutation of φ′ is
at least t.

▶ Corollary 23. There exists a polynomial-time algorithm T that given a CNF φ over n
variables returns a CNF-formula T (φ) such that for any variable ordering π, π-OBDD(φ) ≤
OBDD(T (φ)); and if φ has a resolution refutation of size s, then the resolution size of T (φ)
is at most s · nO(1).

Proof. The new algorithm T first applies the transformation from Lemma 22 to a CNF
formula and only then applies the algorithm T0 from Theorem 21 to it. ◀

7 Putting the pieces together

▶ Theorem 1. There exist a constant α and a polynomially computable function R mapping
CNF formulas to CNF formulas with the following properties. For any 3-CNF φ with n

variables such that: if φ is satisfiable, then R(φ) has a resolution refutation of size at most
nα; if φ is unsatisfiable, then any OBDD(∧,weakening) refutation of R(φ) has size 2Ω(n).
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Proof. Let E be the algorithm from Theorem 6 with the parameter c = 3, and T be the
algorithm from Corollary 23. Let n be the number of variables of φ and let nφ be the
number of variables in E(φ). Let ℓφ be the size of the blocks in the block partition in
Theorem 6, ℓφ = O(n). Then let mφ = (nφℓφ)∆ where ∆ is from Theorem 9 and let
R(φ) := T (E(φ) ◦ Indnφ

ℓφ×mφ
).

Let us first consider the case of φ ∈ SAT. Then by Theorem 6, E(φ) has a resolution
refutation π such that |π| = |φ|O(1) and bw(π) = O(1). Then applying Theorem 8 we get that
there exists a resolution refutation of E(φ) ◦ Indnφ

ℓφ×mφ
of size |φ|O(1). Then by Corollary 23

T (E(φ) ◦ Indnφ

ℓφ×mφ
) has a resolution refutation of size |φ|O(1).

Let us proceed with the case φ ̸∈ SAT. Suppose R(φ) has a OBDD(∧,weakening)
refutation of size S. Then by Corollary 23 the formula E(φ) ◦ Indnφ

ℓφ×mφ
has a

π-OBDD(∧,weakening) refutation of size S for any variable order π. Then consider the order
of variables π0 where the variables of E(φ) ◦ Indnφ

ℓφ×mφ
are ordered as follows:

All the variables corresponding to the indices in an arbitrary order (denote this set by A);
All the variables from the first rows of the matrices (denote this set by B1);
. . .

All the variables from the ℓφth rows of the matrices (denote this set by Bℓφ
).

The size of π0-OBDD(∧,weakening) refutation of E(φ) ◦ Indnφ

ℓφ×mφ
is at most S which by

Theorem 19 implies that box-dagA,B1,...,Bℓ

(
SearchE(φ)◦Indnφ

ℓφ×mφ

)
≤ SO(ℓφ+1).

Then the fact that SearchE(φ)◦Indnφ
ℓφ×mφ

is at least as hard as SearchE(φ) ◦ Indnφ

ℓφ×mφ

and the inequality box-dagA,B1,...,Bℓ

(
SearchE(φ) ◦ Indnφ

ℓφ×mφ

)
≥ m

Ω(bw(E(φ)))
φ implied by

Theorem 9 together imply that S ≥ m
Ω(bw(E(φ))/(ℓφ+1))
φ . By Theorem 6 using Proposition 4

to switch from decision dag to resolution refutation we have bw(E(φ)) = Ω(nc−1) = Ω(n2)
which implies that S ≥ m

Ω(n)
φ since ℓφ = O(n). This completes the proof of the theorem

since mφ ≥ 2. ◀

▶ Corollary 24. If OBDD(∧,weakening) is automatable then P = NP.
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Abstract
Schelling’s famous model of segregation assumes agents of different types, who would like to be
located in neighborhoods having at least a certain fraction of agents of the same type. We consider
natural generalizations that allow for the possibility of agents being tolerant towards other agents,
even if they are not of the same type. In particular, we consider an ordering of the types, and
make the realistic assumption that the agents are in principle more tolerant towards agents of types
that are closer to their own according to the ordering. Based on this, we study the strategic games
induced when the agents aim to maximize their utility, for a variety of tolerance levels. We provide
a collection of results about the existence of equilibria, and their quality in terms of social welfare.
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1 Introduction

Residential segregation is a broad phenomenon affecting most metropolitan areas, and is
known to be caused due to racial or socio-economic differences. The severity of its implications
to society [5] is the main reason for the vast research attention it has received, with many
different models being proposed over the years that aim to conceptualize it (e.g., see [23]).
The most prominent of those models is that of Schelling [21, 22], which studies how motives
at an individual level can lead to macroscopic behavior and, ultimately, to segregation. In
particular, the individuals are modelled as agents of two different types (usually referred
to using colors, such as red and blue), and the environment is abstracted by a topology
(such as a grid graph), representing a city. The agents occupy nodes of the topology, and
prefer neighborhoods in which the presence of their own type exceeds a specified tolerance
threshold. If an agent is unhappy with her current location, then she either jumps to a
randomly selected empty node of the topology, or swaps positions with another random
unhappy agent. Schelling’s crucial observation was that such dynamics might lead to largely
segregated placements, even when the agents are relatively tolerant of mixed neighborhoods.

A recent series of papers (discussed in Section 1.2) have generalized Schelling’s model to
include more than two types, and have taken a game-theoretic approach, according to which
the agents behave strategically rather than randomly, aiming to maximize their individual
utility. There are many ways to define the utility of an agent i of type T . For instance, Elkind
et al. [16] defined it as the ratio of the number of agents of type T in i’s neighborhood over
the total number of agents therein. Echzell et al. [15] proposed a similar definition, which
however does not take into account all the agents of different type in the denominator, but
only those of the majority type. The first definition essentially assumes that the agents view
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all the agents of different type as enemies. On the other hand, the second definition assumes
that the agents view only the majority type as hostile. An alternative way of thinking about
these particular utility functions is as if the agents have binary tolerance towards other agents
in the sense that agents are either friends or enemies; in the case of Elkind et al. all the
neighbors of an agent are taken into account when computing her utility, whereas in the case
of Echzell et al. some of her neighbors are ignored.

These functions are natural generalizations of the quantity that determines the happiness
of agents in Schelling’s original model for two types. However, they fail to capture realistic
scenarios in which the agents do not have a single-dimensional view of the other agents, but
rather have different preferences over the different types of agents. For example, suppose
that the agents correspond to voters while the types correspond to political parties. In this
case the preferences of voters over other voters are defined based on the distances of the
political views expressed by the parties they are affiliated with. Another example is when
the types correspond to research areas, in which case people working on a specific research
agenda will be more willing to collaborate with other people working on related problems.

1.1 Our Contribution
To capture scenarios like the examples above, we propose a clean model that naturally
extends the model of Elkind et al. [16] by incorporating different levels of tolerance among
agent types, and study the induced strategic games in terms of the existence and quality of
their equilibria; in Section 5, we discuss potential generalizations of our model.

To be more specific, our model consists of a set of agents who are partitioned into λ ≥ 2
types of equal size, a graph topology, and an ordering of the different agent types which
determines the relative tolerance among agents of different types. Naturally, we assume that
there is higher tolerance between agents whose types are closer according to the ordering.
The exact degree of tolerance between the different types is specified by a tolerance vector,
which consists of weights representing the tolerance between the different types depending on
their distance in the given ordering. For example, agents of the same type are in distance 0
and are fully tolerant towards each other, which is captured by a weight of 1. The utility of
an agent can then be computed as a weighted average of the tolerance that she has towards
her neighbors, and every agent aims to occupy a node of the topology to maximize her utility;
agents are allowed to unilaterally jump to empty nodes to increase their utility.

We study the dynamics of such tolerance Schelling games. We first focus on questions
related to equilibrium existence. For general games, we show that equilibria are not guaranteed
to exist if agents are not fully tolerant towards agents in type-distance 1 (Theorem 2). We
complement this impossibility by showing many positive results for important subclasses of
games, in which the topology is a structured graph (such a 4-grid or a tree) and the tolerance
vector satisfies certain properties (Theorems 3, 5, 6 and 7). We then turn our attention
to the quality of equilibria measured by the social welfare objective, defined as the total
utility of the agents, and prove (asymptotically tight) bounds on the price of anarchy [19]
(Theorems 8 and 9) and price of stability [2] (Theorem 14), which depend on the number of
types, the number of agents and/or the tolerance parameters.

1.2 Related Work
Residential segregation, and Schelling’s original randomized model in particular, has been the
basis of a continuous stream of multidisciplinary research in Sociology [13], Economics [20, 25],
Physics [24], and Computer Science [4, 6, 8, 9, 17].
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Most related to our work is a quite recent series of papers in the TCS and AI communities,
which deviated from the premise of random behavior, and instead studied the strategic games
induced when the agents act as utility-maximizers. Chauhan et al. [12] studied questions
related to dynamics convergence in games with two types of agents who can either jump to
empty nodes of a topology (as in our case) or swap locations with other agents to minimize a
cost function; their model was generalized to multiple types of agents by Echzell et al. [15].
In this paper we extend the utility model of Elkind et al. [16], who initially refined the
cost model of Chauhan et al. [12]. They introduced a simpler utility function (fraction of
same-type agents in the one’s neighborhood) which the agents aim to maximize, and studied
the existence, complexity and quality of equilibria in jump games with multiple types of
agents and general topologies. They also proposed many interesting variants, such as enemy
aversion (agents might prefer being alone to being in a group full of agent of different type
than their own) and social Schelling games (where the agents types are determined by a
social network), which have been partially studied by Kanellopoulos et al. [18] and Chan et
al. [11], respectively. Agarwal et al. [1] studied similar existence, complexity and qualitative
questions for swap games. Bilò et al. [7] also focused on swap games, and in particular, on a
constrained setting, where the agents can only view a small part of the topology near their
current location and can only swap with agents in this part of the topology. Finally, Bullinger
et al. [10] and Deligkas et al. [14] studied the (parameterized) complexity of computing
assignments with good welfare guarantees, focusing on the social welfare, Nash welfare, and
Pareto optimality, and many other welfare objectives.

2 Preliminaries

A λ-type tolerance Schelling game consists of:
A set N of n ≥ 4 agents, partitioned into λ ≥ 2 disjoint sets T1, . . . , Tλ representing types,
such that

⋃
ℓ∈[λ] Tℓ = N .

A simple connected undirected graph G = (V, E) called topology, such that |V | > n.
A tolerance vector tλ = [t0, . . . , tλ−1] consisting of λ parameters, such that td represents
the tolerance that agents of type Tℓ have towards agents of type Tk in Manhattan
distance |ℓ − k| = d ∈ {0, . . . , λ − 1} according to a given ordering ≻ of the types (say,
T1 ≻ . . . ≻ Tλ). We assume that agents are more tolerant towards agents of types that
are closer to their own according to ≻, and we thus have that 1 = t0 ≥ . . . ≥ tλ−1 ≥ 0.
We also assume that tλ−1 < 1; otherwise, all agents are completely tolerant towards all
others and the game is trivial. Let τ =

∑λ−1
d=0 td be the sum of all tolerance parameters.

Clearly, the class of λ-type tolerance Schelling games includes as a special case the classic
Schelling games studied in the related literature (e.g., see [16]), for which t0 = 1 and td = 0
for every d ∈ {1, . . . , λ − 1}. Because of this particular tolerance vector, we will use the term
λ-type zero-tolerance games to refer to the classic Schelling games.

In this paper we consider balanced games, in which the agents are partitioned in types of
equal size, such that |Tℓ| = n/λ ≥ 2 for every ℓ ∈ [λ]; thus, n is a multiple of λ. Balanced
games are the most fundamental ones that admit non-trivial and interesting results1. We
use the abbreviation λ-TS to refer to such a balanced λ-type tolerance Schelling game
I = (N, G, tλ). For convenience, we will also use the abbreviation λ-ZTS to refer to a
balanced λ-type zero-tolerance game I = (N, G).

1 Note that equilibria are not guaranteed to exist even for balanced games (see Theorem 2), while it
is not hard to observe that the price of anarchy can be unbounded when the sizes of the types are
arbitrary [16].
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Let v = (vi)i∈N be an assignment specifying the node vi of G that each agent i ∈ N

occupies, such that vi ̸= vj for i ̸= j. The neighborhood of a node v consists of the nodes
at distance 1 from v in G. For every node v, we denote by nℓ(v|v) the number of agents
of type Tℓ that occupy nodes in the neighborhood of v according to the assignment v, and
also let n(v|v) =

∑
ℓ∈[λ] nℓ(v|v). Given an assignment v, the utility of agent i of type Tℓ is

computed as

ui(v) = 1
n(vi|v)

∑
k∈[λ]

t|ℓ−k| · nk(vi|v),

if n(vi|v) ̸= 0, and 0 otherwise (in which case we say that the agent is isolated). The agents
are strategic and aim to maximize their utility by jumping to empty nodes of the topology if
they can increase their utility by doing so. We say that an assignment v is an equilibrium if
no agent i of any type Tℓ has incentive to jump to any empty node v of the topology, that is,
ui(v) ≥ ui(v, v−i), where (v, v−i) is the assignment resulting from this jump. Let EQ(I) be
the set of equilibrium assignments of a given λ-TS game I.

The social welfare of an assignment v is defined as the total utility of the agents, that is,

SW(v) =
∑
i∈N

ui(v).

Let OPT(I) = maxv SW(v) be the maximum social welfare among all possible assignments
in the λ-TS game I. For a given subclass C of λ-TS games, the price of anarchy is defined as
the worst-case ratio, over all possible games I ∈ C such that EQ(I) ̸= ∅, between OPT(I)
and the minimum social welfare among all equilibria:

PoA(C) = sup
I∈C:EQ(I) ̸=∅

OPT(I)
minv∈EQ(I) SW(v) .

Similarly, the price of stability takes into account the ratio between OPT(I) and the maximum
social welfare among all equilibria:

PoS(C) = sup
I∈C:EQ(I)̸=∅

OPT(I)
maxv∈EQ(I) SW(v) .

3 Equilibrium Existence

In this section, we show several positive and negative results about the existence of equilibrium
assignments, for interesting subclasses of tolerance Schelling games. We start with the relation
of equilibrium assignments in λ-ZTS games and general λ-TS games.

▶ Theorem 1. Consider a λ-ZTS game I = (N, G) and a λ-TS game I ′ = (N, G, tλ). For
λ = 2, EQ(I ′) ⊆ EQ(I) and EQ(I) \ EQ(I ′) consists of assignments with isolated agents.
For λ ≥ 3, EQ(I) and EQ(I ′) are incomparable.

Proof. We start with λ = 2; for convenience, we will refer to the two types as red and blue.
Let v be an equilibrium of I ′. Clearly, for I and I ′ to be different, it must be the case
that t1 > 0. Consequently, there are no isolated agents in v as they would have incentive to
deviate to nodes that are adjacent to any other agent and increase their utility from 0 to
(at least) t1. We will show that v is an equilibrium of I as well. Without loss of generality,
consider a red agent i who occupies a node vi that is adjacent to nr(vi) red and nb(vi) blue
agents. Since agent i is not isolated, it holds that nr(vi) + nb(vi) ≥ 1. If nb(vi) = 0, then
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agent i has maximum utility 1 in both I and I ′. Hence, we can assume that nb(vi) ≥ 1.
Since v is an equilibrium of I ′, agent i has no incentive to unilaterally jump to any empty
node v of the topology. That is,

nr(vi) + t1 · nb(vi)
nr(vi) + nb(vi)

≥ nr(v) + t1 · nb(v)
nr(v) + nb(v) ⇔ (1 − t1)

(
nr(vi)
nb(vi)

− nr(v)
nb(v)

)
≥ 0,

where nr(v) and nb(v) are the number of red and blue agents that are adjacent to v after
agent i jumps to v; observe that nb(v) ≥ 1, as otherwise agent i would obtain maximum
utility of 1 by jumping to v, contradicting that v is an equilibrium of I ′. Since t1 < 1, we
equivalently have that

nr(vi)
nb(vi)

≥ nr(v)
nb(v) ⇔ nr(vi)

nr(vi) + nb(vi)
≥ nr(v)

nr(v) + nb(v) .

Therefore, agent i has no incentive to jump to the empty node v in I, and v is an equilibrium
of I as well. Using similar arguments, we can show that any equilibrium of I such that there
is no isolated agent is also an equilibrium of I ′.

For λ ≥ 3, to show that EQ(I) is incomparable to EQ(I ′), consider the tolerance vector
t3 = (1, 1/2, 0) and the following two partial assignments v and v′:

In v, an agent i of type T1 occupies a node vi which is adjacent to two nodes, one
occupied by an agent of type T1 and one occupied by an agent of type T3. There is also
an empty node v which is adjacent to two nodes, one occupied by an agent of type T1
and one occupied by an agent of type T2. In I, agent i has no incentive to jump from
vi to v as both nodes give her utility 1/2. On the other hand, in I ′, agent i has utility
(1 + t2)/2 = 1/2 and has incentive to jump to v to increase her utility to (1 + t1)/2 = 3/4.
Hence, v can be an equilibrium of I, but not of I ′.
In v′, an agent i of type T1 occupies a node vi which is adjacent to three nodes, one
occupied by an agent of type T1, one occupied by an agent of type T2 and one occupied
by an agent of type T3. There is also an empty node v which is adjacent to two nodes,
one occupied by an agent of type T1 and one occupied by an agent of type T3. In I,
agent i has incentive to jump from vi to v in order to increase her utility from 1/3 to 1/2.
However, in I ′, agent i has no incentive to jump as she has utility (1 + t1)/3 = 1/2 by
occupying node vi, which is exactly the utility she would also obtain by jumping to v.
Consequently, v′ can be an equilibrium of I ′, but not of I.

This completes the proof. ◀

Since there exist simple 2-ZTS games that do not admit any equilibria [16], the first part
of Theorem 1 implies that equilibria are not guaranteed to exist for general 2-TS games as
well. In fact, by carefully inspecting the proof of Elkind et al. [16] that λ-ZTS games played
on trees do not always admit equilibria for every λ ≥ 2, we can show the following stronger
impossibility result.

▶ Theorem 2. For every λ ≥ 2 and every tolerance vector tλ such that t1 < 1, there exists a
λ-TS game I = (N, G, tλ) in which G is a tree and does not admit any equilibrium.

Since Theorem 2 implies that it is impossible to hope for general positive existence results,
in the remainder of this section we focus on games with structured topologies and tolerance
vectors. In particular, we consider the class of α-binary λ-TS games with α ∈ {1, . . . , λ} in
which the tolerance vector tλ is such that
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td =
{

1, if d < α

0, otherwise.

Clearly, the class of 1-binary λ-TS games coincides with that of λ-ZTS.
We next show that when the topology is a grid2 or a tree, there exist values of α ∈

{1, . . . , λ} for which α-binary λ-TS games played on such a topology always admit at least
one equilibrium. Our first result for grids is the following.

▶ Theorem 3. Every 2-ZTS game I = (N, G) in which G is a grid admits at least one
equilibrium.

The proof of Theorem 3 is constructive and such that in the computed equilibrium no
agent is isolated. Consequently, in combination with Theorem 1, it further implies the
following:

▶ Corollary 4. Every 2-TS game I = (N, G, t2) in which G is a grid admits at least one
equilibrium.

Unfortunately, showing a result similar to Theorem 3 for every λ ≥ 3 is a very challenging
task. Instead, we show the following result for 2-binary games.

▶ Theorem 5. Every 2-binary λ-TS game I = (N, G, tλ) in which G is a grid admits at
least one equilibrium.

Proof. Consider a 2-binary λ-TS game with n agents played on an m × M grid (m rows
and M columns) such that m ≤ M . Let x = n/λ ≥ 2 be the number of agents per type and
e = mM − n be the number of empty nodes.

We compute an equilibrium assignment v using Algorithm 1, which in turn relies on
the Tile procedure described in Algorithm 2. In particular, Algorithm 2 considers the yet
unassigned agents in increasing type according to the ordering ≻, and assigns them in an
r × M subgrid having row s as the top row, so that the k leftmost nodes of the top row
are left empty, while all other nodes host an agent (assuming the number of unassigned
agents is large enough). Tile visits these rows in a column-major order, skipping the empty
nodes. Informally, Algorithm 1 repeatedly calls Algorithm 2 to compute an assignment for
consecutive sub-grids, along the largest dimension of the topology. The exact size of the
sub-grid considered at each time is determined by the number of remaining rows of the
topology.

Algorithm 1 terminates immediately (at any step) when all agents have been assigned.
First, observe that if it terminates in Lines 3 or 7, each agent of type ℓ has neighbors of
types in {ℓ − 1, ℓ, ℓ + 1}, and, hence, v is an equilibrium. Note that the algorithm cannot
terminate at Line 11 since e < M , so let us assume that the algorithm terminates in Line 14.
Again, all agents placed in Line 3 have utility 1. Each agent i of type ℓ placed during Line
11 has utility at least 2/3; indeed, i has at least one neighbor of type ℓ, at least one neighbor
of a type in {ℓ − 1, ℓ + 1}, and at most one neighbor of type at distance at least 2. If α = 1
all agents placed in Line 14 have utility 1. Otherwise, agents placed in Line 14 at the last
x − 1 rows have utility 1, while any agent on the row with the empty nodes has utility at
least 1/2 when e = M − 1, and at least 2/3 otherwise.

2 We focus on 4-grids where internal nodes have 4 neighbors.
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Algorithm 1 Equilibrium construction for a 2-binary λ-TS game on an m × M grid.
/* x: number of agents per type */

/* e: number of empty nodes */

/* The algorithm terminates immediately when all agents have been assigned. */

1 Initialize k = 0
2 while x ≤ m − k and e ≥ M do
3 Tile(k + 1, x, 0)
4 leave the next row empty
5 update k := k + x + 1, e := e − M

6 if x > m − k then
7 Tile(k + 1, m − k, 0)
8 else /* In this case it holds that e < M and x ≤ m − k */

9 Define non-negative integers α ∈ N>0 and β ≤ x − 1 such that m − k = αx + β

10 for i = 1, . . . , α − 1 do
11 Tile(k + 1, x, 0)
12 update k := k + x

13 if β = 0 then
14 Tile(k + 1, x, e)
15 else if β = 1 then
16 if Line 3 was executed then
17 Shift all agents down by one row
18 Tile(1, 1, e)
19 Tile(k + 2, x, 0)
20 else
21 Tile(k + 1, 1, e)
22 Tile(k + 2, x, 0)

23 else
24 Tile(k + 1, x, 0)
25 Tile(k + x + 1, β, e)

Algorithm 2 Tile(s, r, k).

/* s, r: starting row and number of rows definining an r × M grid */

/* k: number of nodes to be left empty */

for i = 1 to k do
mark node (s, i) as empty

for j = 1 to M do
for i = s to s + r − 1 do

if node (i, j) is unmarked then
place the next agent (if one exists) according to the ordering ≻ at node
(i, j)
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Figure 1 On the left, an example of how Algorithm 1 operates when it terminates in Line 19.
On the right, an example when the algorithm terminates in Line 14. Agents of the same number
and color are of the same type, while ≻ is {1, 2, . . . , 9, 0, a, b, c}.

If the algorithm terminates in Line 19 (see also the leftmost part of Figure 1), agents
placed in Lines 3, 11, or 19 have utility at least 2/3, while agents placed in Line 18 have
utility at least 1/2. If the algorithm terminates in Line 22, agents placed in Line 3 have
utility 1, agents placed in Lines 11 and 22 have utility at least 2/3, while agents placed in
Line 21 have utility at least 2/3 except (perhaps) the first and the last agent on the row that
have utility at least 1/3. If the algorithm terminates in Line 25, again all agents placed in
Line 3 have utility 1, while agents placed in Lines 11 and 24 have utility at least 2/3. Finally,
the agents placed in Line 25 have utility at least 1/2 if e = M − 1 and at least 2/3 otherwise.

We now argue that no agent has an incentive to jump. Note that an empty node may
have another empty node as a top or bottom neighbor if the algorithm terminates in Line
3, or in Line 7, or in Line 14 in case α = 1. In all these cases, by the discussion above, all
agents have utility 1 and the assignment is an equilibrium. Also, note that an empty node
has always a bottom neighbor, while the only case the empty node has no top neighbor is
if the algorithm terminates in Line 19. In that case, any agent with utility less than 1 can
obtain utility at most 1/2 by jumping; again, v is an equilibrium.

So, in the following we assume that any empty node has a top and bottom neighboring
agent. Observe that, in that case, an agent gets utility at most 2/3 by jumping to an empty
node, since either the top or the bottom neighbor will have a large type distance and there
is no left neighbor. As in almost all cases, agents in v have utility at least 2/3, it remains to
argue about the nodes that have utility less than that. The agent in Line 14 with utility
1/2 (when α > 1) obtains utility at most 1/2 by jumping, the agents in Line 21 with utility
at least 1/3 obtain utility at most 1/3 by jumping, and, finally, the agent in Line 25 with
utility 1/2 obtains utility at most 1/2 by jumping. We conclude that v is an equilibrium and
the theorem follows. ◀

Note that Algorithm 1 may fail to return an equilibrium for lexicographically larger
tolerance vectors. Indeed, consider a 4 × 4 grid and 7 types of two agents each. Algorithm 1
puts agents of types 1 to 4 in each of the first two rows, skips 2 nodes, puts agents of types 6
and 7 in the third row, and places agents of types 5, 5, 6 and 7 in the last row; see also the
rightmost example in Figure 1. Under tolerance vector t7 = {1, 1, 0, 0, 0, 0, 0} the assignment
is an equilibrium (by Theorem 5), while under tolerance vector t′

7 = {1, 1, t2 > 1
2 , 0, 0, 0, 0},

the agent of type 4 in the second row has utility 2/3, but can obtain utility 1+2t2
3 > 2/3 by

jumping to the rightmost empty node.
So, a different algorithm is needed for computing equilibria in α-binary games with α ≥ 3.

While we have not been able to show this result for every α, we do show it for α ≥
√

λ. In
particular, the equilibrium constructed in the proof of the next theorem guarantees a utility
of 1 to all agents, and thus it is also an equilibrium for games with lexicographically larger
tolerance vectors, not necessarily binary ones.
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Algorithm 3 Equilibrium construction for a
⌊

λ
2

⌋
-binary λ-TS game on a tree (or games

with lexicographically larger tolerance vectors).

/* tree1, . . . , treek denote the subtrees of the tree topology in non-increasing order

by size, when the topology is rooted at a centroid node. */

1 Run Bottom-Up(tree1, T1, T2, . . . , T⌈ λ
2 ⌉). If at least one agent of type T1 remains

unassigned, repeat with the next subtree. Let a ≤
⌈

λ
2
⌉

be the smallest type index
among unassigned agents, and let treek1 be the last subtree considered in this step.

2 Run Bottom-Up(treek1+1, Tλ, Tλ−1, . . . , T⌈ λ+1
2 ⌉), where Ti are the unassigned

agents of types Ti, i = λ, . . . ,
⌈

λ+1
2

⌉
. If at least one agent of type Tλ remains

unassigned, repeat with the next subtree. Let b ≥
⌈

λ+1
2

⌉
be the largest type index

among unassigned agents, and let treek2 be the last subtree considered in this step.
3 Run Bottom-Up(treek2+1, Ta, Ta+1, . . . , Tb), where Ti are the unassigned agents of

types Ti, i = a, . . . , b. Repeat with the next subtree and the unassigned agents of
these types, until all agents have been assigned.

4 If the last subtree among the ones considered in the previous steps contains at least
two isolated agents, then rearrange them within this subtree so that each of them
has at least one neighbor. If the last subtree contains a single isolated agent, then
move this agent to the root of the tree.

▶ Theorem 6. For λ ≥ 3, every
√

λ-binary λ-TS game I = (N, G, tλ) in which G is a grid
admits at least one equilibrium.

Next we turn our attention to games in which the topology is a tree. We show the
following result for α-binary games when λ ≥ 3.

▶ Theorem 7. Every 2-binary 3-TS game I = (N, G, t3) and every α-binary λ-TS game
I = (N, G, tλ) where α ≥

⌊
λ
2
⌋

for λ ≥ 4, in which G is a tree, admit at least one equilibrium.

Proof. To construct an equilibrium, we exploit the following known property of trees: Every
tree with x ≥ 3 nodes contains a centroid node, whose removal splits the tree into at least
two subtrees with at most x/2 nodes each. We root the tree from such a centroid node, and
leave the root empty. This leads to a partition of the topology in k ≥ 2 subtrees, which we
order in non-increasing size and denote by tree1, . . . , treek.

To assign the agents we use Algorithm 3, which in turn uses the Bottom-Up allocation
procedure (described in Algorithm 4). The procedure Bottom-Up(tree, T1, T2, . . . , Ts)
assigns the unassigned agents of types T1, T2, . . . , Ts to the nodes of the subtree tree from
bottom to top (higher to lower depth), so that all the agents of T1 are covered by either
agents of the same type or agents of type T2, and the assignment for the remaining agents
is connected. Informally, Algorithm 3 roots the topology at a centroid node and considers
subtrees in non-increasing size. As long as agents of type T1 are remaining, Algorithm 3
applies the Bottom-Up procedure to the next subtree with agents in increasing type index.
Then, as long as agents of type Tλ are remaining, Algorithm 3 applies the Bottom-Up
procedure to the next subtree with agents in decreasing type index. The remaining (smaller)
subtrees are filled with the remaining agents, again using the Bottom-Up procedure.

We first claim that at the end of Step 3 of Algorithm 3, every agent either gets utility 1
or gets utility 0 if she is isolated. Indeed, it holds that agents of type T1 can only be adjacent
to agents of type T1 and T2. Similarly, the agents of type Tλ can only be adjacent to agents
of type Tλ and Tλ−1. In addition, by design, the maximum type distance among all the other
agents assigned in Steps 1 and 2 is

⌈
λ
2
⌉

− 2. By this discussion, all agents have utility 1 when
λ = 3 and the game is 2-binary. Below, we assume that λ ≥ 4.
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Algorithm 4 Bottom-Up(tree, T1, T2, . . . , Ts).

/* For i = 1, . . . , s, Ti is the set of unassigned agents of a given type */

/* The algorithm terminates immediately when all agents have been assigned or all

nodes of tree have been occupied. */

1 Start at the lowest level of tree and place agents of type T1 so that an agent of type
T1 is placed at level h only if all nodes at levels at least h + 1 have been filled.
Furthermore, and assuming the previous condition holds, after filling a node at level
h we give priority to its sibling nodes. Continue until all agents of type T1 have been
assigned.

2 Consider the agents of type T2. Begin by placing an agent of type T2 to any empty
node having a child occupied by an agent of type T1 and repeat until the parent
nodes of all agents of type T1 are occupied. This is feasible as long as there are at
least as many agents of type T2 as there are agents of type T1. Continue by placing
agents of type T2 arbitrarily in tree by maintaining a connected assignment.

3 Arbitrarily assign the remaining agents in order of input so that the assignment
remains connected after assigning each agent.

To see the claim is true for agents assigned in Step 3, observe that if Step 2 is applied on
a subtree of at least n/3 nodes, then since we visit subtrees in non-increasing order of their
size, Step 1 is also applied on a subtree of at least n/3 nodes. Hence, at most n/3 agents
remain to be allocated. Otherwise, if no subtree on which Step 2 is applied has at least n/3
nodes, then, again due to the order we visit subtrees, any subtree to which we perform Step
3 has less than n/3 nodes. In any case, at most n/3 agents will be allocated at Step 3 at any
given subtree. These agents belong to at most ⌈λ/3⌉ + 1 different types and, due to Steps
2 and 3 in Algorithm 4, we are guaranteed that no agent allocated in Step 3 will have a
neighbor of type-distance ⌈λ/3⌉. Since ⌈λ/3⌉ − 1 ≤ ⌊λ/2⌋ − 1, such agents either get utility
1, or 0 if they are isolated, as required.

It remains to argue that after a possible execution of Step 4, no agent has a profitable
deviation. We distinguish between the following two cases when Step 4 is performed:

Case I: There are at least two isolated agents in the last subtree among those considered in
the first three steps. First observe that, since the subtrees are considered in non-increasing
order by size and the last subtree contains at least two agents, there is no subtree with a
single isolated agent. Now, by the definition of the bottom-up-like allocation algorithm,
all these agents must be of the last type Tb, since if agents of two or more types are
assigned in the same subtree, the resulting assignment therein is by construction connected.
Therefore, by rearranging the agents of type Tb in the last subtree so that all of them have
at least one neighbor, each of them gets utility 1 and the assignment is an equilibrium.
Case II: There is a single isolated agent i in the last subtree of the last type Tb considered,
who is moved to the root of the tree. Since Step 4 is performed, all the subtrees that have
been considered in the first three steps are full, with the exception of the last subtree
which has been left empty after moving agent i. Thus, the empty nodes of the topology
are only adjacent to other empty nodes or the root. As a result, an agent of some type
ℓ ∈ [λ] would be able to get utility t|ℓ−b| by jumping to an empty node that is adjacent
to the root, and utility 0 by jumping to any other empty node. However, every agent
j ̸= i already has utility at least t|ℓ−b|. In particular, agent j has utility 1 if she is not
adjacent to the root, utility at least 1+t|ℓ−b|

2 ≥ t|ℓ−b| if she is adjacent to the root but not
isolated before moving i to the root, and utility exactly t|ℓ−b| if she is adjacent to the
root and was isolated before moving i to the root.

This completes the proof. ◀
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For λ = 3, Theorem 7 is tight in the sense that equilibria are not guaranteed to exist
when t1 < 1 (Theorem 2). For λ ≥ 4, it is not hard to observe that the assignment computed
is also an equilibrium in games with lexicographically larger vectors (not necessarily binary
ones) than the one stated.

4 Quality of Equilibria

In this section, we consider the quality of equilibria measured in terms of social welfare, and
bound the price of anarchy and price of stability. Recall that these notions compare the
social welfare achieved in the worst and best equilibrium to the maximum possible social
welfare achieved in any assignment. We start with a general upper bound on the price of
anarchy, whose proof follows by bounding the social welfare at equilibrium by the total utility
the agents would be able to obtain by jumping to an arbitrary empty node. Recall that
τ =

∑λ−1
d=0 td.

▶ Theorem 8. The price of anarchy of λ-TS games with tolerance vector tλ is at most λn
τn−λ .

Proof. Consider a λ-TS game I = (N, G, tλ) with EQ(I) ̸= ∅. Let v be an equilibrium,
and denote by v an empty node. The utility that an agent of type Tℓ, ℓ ∈ [λ] would obtain
by unilaterally jumping to v is

1
n(v)

∑
k∈[λ] t|ℓ−k| · nk(v) if she is not adjacent to v;

1
n(v)−1

(∑
k∈[λ] t|ℓ−k| · nk(v) − 1

)
otherwise.

Also observe that for every type Tℓ, ℓ ∈ [λ] there are exactly n
λ − nℓ(v) agents that are not

adjacent to v, and nℓ(v) agents that are adjacent to v. Since v is an equilibrium, every agent
of type Tℓ is guaranteed to have at least as much utility as if she were to deviate to v, and
therefore the social welfare is

SW(v) ≥ 1
n(v)

∑
ℓ∈[λ]

(n

λ
− nℓ(v)

) ∑
k∈[λ]

t|ℓ−k| · nk(v)

+ 1
n(v) − 1

∑
ℓ∈[λ]

nℓ(v) ·

 ∑
k∈[λ]

t|ℓ−k| · nk(v) − 1


≥ 1

n(v)
∑
ℓ∈[λ]

n

λ

∑
k∈[λ]

t|ℓ−k| · nk(v) − nℓ(v)


= 1

n(v)
∑
ℓ∈[λ]

nℓ(v) ·

n

λ

∑
k∈[λ]

t|ℓ−k| − 1


= 1

λ · n(v)
∑
ℓ∈[λ]

nℓ(v)

n
∑

k∈[λ]

t|k−ℓ| − λ

 .

The second inequality is due to increasing the denominator of the second fraction. The
first equality follows by aggregating the factors of nℓ(v) for every ℓ ∈ [λ]. Finally, the
second equality follows by factorizing λ. Now observe that because the tolerance vector tλ is
non-increasing, we have that

∑
k∈[λ] t|ℓ−k| ≥

∑λ−1
d=0 td = τ . Combining this together with the

fact that n(v) =
∑

ℓ∈[λ] nℓ(v), we obtain

SW(v) ≥ τn − λ

λ
.

The bound on the price of anarchy follows by the fact that the optimal welfare is at most n

(the maximum utility of any agent is 1). ◀
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𝐾1

𝑐𝐾2

𝐾3

Figure 2 An instance used for the proof of Theorem 9 for the case of 3 types and 21 agents,
so that each type has 7 agents. The big squares K1, K2, K3 correspond to cliques of size 7 (the
number of agents per type), while the ovals represent cliques of size 3 (the number of types). In an
optimal assignment, each large clique contains agents of the same type and each agent gets utility 1.
In a bad equilibrium, each small clique contains a single agent of each type and all gray nodes are
left empty. For each type ℓ ∈ [3], all but one agents of type ℓ get utility τℓ/3, while the last agent
gets utility (τℓ − 1)/2.

For each ℓ ∈ {1, . . . , λ}, let τℓ =
∑

k∈[λ] t|ℓ−k| be the total tolerance of agents of type ℓ

towards any subset containing one agent of every type. We can show the following general
lower bound on the price of anarchy, as a function of these parameters; see Figure 2 for a
sketch of the proof for λ = 3.

▶ Theorem 9. The price of anarchy of λ-TS games with tolerance vector tλ is at least

λn∑
ℓ∈[λ]

τℓ

λ n −
λ2−

∑
ℓ∈[λ]

τℓ

λ−1

≥ λn
2(λ−1)τ

λ n − λ2

λ−1 + 2τ
.

From Theorems 8 and 9 we obtain an asymptotically tight bound for general λ-TS games.

▶ Corollary 10. The price of anarchy in λ-TS games is Θ(λ/τ).

Theorem 9 allows us to provide concrete bounds for subclasses of λ-TS games. In
particular, for λ-ZTS games, since τℓ = 1 for every ℓ ∈ [λ], we have

∑
ℓ∈[λ] τℓ = λ, and thus

the left-hand-side of the inequality in Theorem 9 allows us to improve upon the weaker lower
of [16] and obtain the following tight bound, for any values of n and λ.

▶ Corollary 11. The price of anarchy of λ-ZTS games is λn
n−λ .

We now define the following two natural classes of λ-TS games in which the tolerance
parameters are specific functions of the distance between the types. In the first one, the
difference of the tolerance level is proportional to the type distance, while in the other, the
difference of the tolerance is decreasing in the type distance in an inversely proportional way.

Proportional λ-TS games: td = 1− d
λ−1 for each d ∈ {0, . . . , λ−1}, while τ =

∑
ℓ∈[λ]

ℓ−1
λ−1 =

λ
2 .

Inversely proportional λ-TS games: td = 1
d+1 for every d ∈ {0, . . . , λ − 1}. We have

τ =
∑

ℓ∈[λ]
1
ℓ = Hλ, where Hλ is the λ-th harmonic number.

By Theorems 8, 9 and the above definitions, we obtain the following corollaries.
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▶ Corollary 12. For every λ ≥ 2, the price of anarchy of proportional λ-TS games is at most
2n

n−2 and at least λn
(λ−1)n− λ

λ−1
.

▶ Corollary 13. For every λ ≥ 2, the price of anarchy of inversely proportional λ-TS games
is at most λn

Hλn−λ and at least λn
2(λ−1)

λ Hλn− λ2
λ−1 +2Hλ

.

We conclude our technical contribution with a lower bound on the price of stability for
the case of two types of agents. For 2-ZTS games, the following lower bound improves upon
the bound of 34/33 of Elkind et al. [16], and is also tight when the number of agents tends
to infinity because of the upper bound implied by Theorem 8; recall that τ = 1 for λ-ZTS
games.

▶ Theorem 14. The price of stability of 2-TS games is at least 2/τ − ϵ, for any ϵ > 0.

5 Open Problems

The most important question that our work leaves open is the characterization of games for
which equilibria always exist. As this is a quite general and challenging direction, one could
start with games that exhibit some structure in terms of the topology or the tolerance vector.
For instance, do equilibria exist when the topology is a grid (4-grid or 8-grid) or a regular
graph, for every tolerance vector?

The tolerance model we defined in this paper depends on a given ordering of the types
and the tolerance parameters are symmetric. While this model captures certain interesting
settings, there are multiple ways in which it can be generalized. For example, the tolerance
parameters do not need to be symmetric and a different tolerance vector could be defined
per type. Taking this further, the tolerance between types does not need to depend on an
ordering of the types. Instead, one could define a weighted, directed tolerance graph that
is defined over the different types such that the edge weights indicate the tolerance of a
type towards another type; our ordered model can be thought of as the special case with an
undirected tolerance line graph. In fact, one could further generalize this idea by considering
scenarios in which there are no types of agents at all, but rather the agents are connected
to each other via a complete weighted social network, with the different weights indicating
tolerance levels. This is essentially a generalization of the class of social Schelling games
proposed by Elkind et al. [16], and is inspired by fractional hedonic games [3].
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and Worrell proved that the Skolem Problem is decidable for a class of reversible sequences of order
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1 Introduction

The Skolem Problem

An integer-valued linear recurrence sequence ⟨Xn⟩∞n=0 satisfies a relation of the form

Xn+d = ad−1Xn+d−1 + · · ·+ a1Xn+1 + a0Xn (1)

for each n ∈ N0. Without loss of generality, we shall assume that each of the coefficients
a0, a1, . . . , ad−1 ∈ Z and additionally that a0 ̸= 0. We call d the length of the recurrence
relation and the order of ⟨Xn⟩n is the length of the shortest relation satisfied by ⟨Xn⟩n. The
polynomial f(x) = xd− ad−1x

d−1− · · ·− a1x− a0 is the characteristic polynomial associated
with relation (1). Given such a sequence, the Skolem Problem [8, 11] asks to determine
whether there exists an n ∈ N such Xn = 0. The Skolem Problem is well-motivated with
connections to research topics such as program verification [27]. Take, for example, the
following linear loop P with inputs w, b ∈ Zd and A ∈ Zd×d where

P : v ← w; while b⊤v ̸= 0 do v ← Av. (2)

Let ⟨Xn⟩n be the linear recurrence sequence with terms given by Xn = b⊤Anw. It is clear
that loop P terminates if and only if there exists an n ∈ N0 such that Xn = 0.

Motivation

A recent resurgence of interest in the Skolem Problem (and related problems) has lead to the
publication of a number of papers that consider restricted variants. The resulting specialised
decision procedures generally fall into two categories: those that consider an infinite subset
of the natural numbers [14, 20] or those that restrict the class of linear recurrence sequences.
Our motivation is the latter type of specialisation and, in particular, a recent paper by Lipton
et al. [19] that establishes the following theorem.
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▶ Theorem 1. The Skolem Problem is decidable for the class of reversible integer linear
recurrences of order at most seven.

An integer linear recurrence sequence ⟨Xn⟩∞n=0 is reversible if it satisfies a recurrence relation
of the form (1) such that a0 = ±1. As observed in Lipton et al. [19], given an integer
linear recurrence sequence ⟨Xn⟩∞n=0, the unique bi-infinite extension ⟨Xn⟩n=∞

n=−∞ has integral
terms if and only if ⟨Xn⟩∞n=0 is reversible (this claim follows from a classical observation for
Fatou rings [9]). We can also characterise the subclass of while loops (as in (2)) naturally
associated with reversible sequences: the update matrix A with characteristic polynomial f
is unimodular ; that is, A has integer entries and det(A) = −f(0) = ±1. If A is unimodular,
then A−1 also has integer entries. Thus, again, ⟨Xn⟩n=∞

n=−∞ with each Xn = b⊤Anw (as
above) is integer-valued.

Unimodular matrices appear elsewhere in the dynamical systems literature. Some classes
lead to prototypical invertible maps with hyperbolic and ergodic properties; specifically,
classes of linear toral automorphisms TA : Rd → Rd given by TA(x) = Ax [13].

A famous example of a reversible sequence is the Fibonacci sequence, which is defined
by the initial values X0 = 0, X1 = 1 and for each n ∈ N0, Xn+2 = Xn+1 + Xn. The
Fibonacci sequence can be uniquely extended to a bi-infinite sequence of integer values
⟨. . . , 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, . . .⟩.

In the sequel, we call the restricted variant of the Skolem Problem for reversible sequences
the Reversible Skolem Problem.

Background

Let us assess the current state of play with regards to the decidability of the Skolem Problem.
A classical result due to Skolem [31] (which was later generalised by Mahler [22, 23], and
Lech [18]) states that {n ∈ N : Xn = 0} is the union of a finite set together with a finite
number of (infinite) arithmetic progressions. The phenomenon that causes these vanishing
arithmetic progressions is termed degeneracy. A sequence is degenerate when one of the
ratios of two distinct characteristic roots of the sequence is a root of unity. These arithmetic
progressions can be determined algorithmically and so, from the viewpoint of verification,
to decide the Skolem Problem it suffices to consider non-degenerate recurrence sequences –
those sequences that have only finitely many zeros. Indeed, this is where the difficulty lies:
there is no known general method to compute this finite set. We refer the interested reader
to Corollary 1.20 and Chapter 2 in [8] for further details. In summary, all known proofs
of the Skolem–Mahler–Lech Theorem (as it is now known) are non-constructive and so the
decidability of the Skolem Problem remains open.

Limited progress has been made on the decidability of the Skolem Problem when one
considers linear recurrence sequences of low order. Groundbreaking work by Mignotte, Shorey,
and Tijdeman [24], and, independently, Vereshchagin [35] establish the following.

▶ Theorem 2. The Skolem Problem is decidable for the class of non-degenerate linear
recurrences with at most three simple characteristic roots that are maximal in modulus.

As a consequence, the Skolem Problem is decidable for linear recurrences of order at most
four. The aforementioned papers employ techniques from p-adic analysis and algebraic
number theory and, in addition, Baker’s theorem for linear forms in logarithms of algebraic
numbers. Unfortunately the route taken via Baker’s Theorem does not appear to extend
easily to recurrences of higher order.

A class of recurrence sequences of order five that the state of the art cannot handle
impedes further progress on the decidability of the Skolem Problem [25]. The minimal
polynomial for each member of this class has four distinct roots α, α, β, β ∈ C (two pairs
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of complex-conjugate roots) such that |α| = |β|, and a fifth real root γ of strictly smaller
modulus. Hence the terms of such a sequence ⟨Xn⟩n are given by an exponential polynomial
of the form Xn = a(αn + αn) + b(β + βn) + cγn. Here a, b, c ∈ R are algebraic numbers and,
as far as we are aware, there is no known general procedure to determine {n ∈ N : Xn = 0}
when |a| ̸= |b|.

Complexity

In [3], Blondel and Portier proved that the Skolem Problem is NP-hard. As a brief aside,
let us consider the complexity of the reversible variant of the Skolem Problem. One of the
questions considered by S. Akshay et al. [1] is the complexity of the Skolem Problem for
the restricted class of linear recurrence sequences whose characteristic roots are all roots of
unity (the so-called Cyclotomic Skolem Problem). Those authors showed, by a reduction
from the Subset-Sum Problem, that the Cyclotomic Skolem Problem is NP-hard. Because
the characteristic polynomial associated with each element in this restricted class is given by
a product of cyclotomic polynomials, it follows that each instance of the Cyclotomic Skolem
Problem is an instance of the Reversible Skolem Problem. Thus the Reversible Skolem
Problem is also NP-hard.

Contributions

The main contribution in this note is an alternative proof of Theorem 1. By comparison
to the extensive case analysis employed in [19], we use results in number theory for Galois
conjugates that obey polynomial identities. In particular, we make repeated use of a result
due to Dubickas and Smyth [7] for algebraic integers that lie alongside all their Galois
conjugates on two (but not one) concentric circles centred at the origin.

For context, Dubickas and Smyth’s result is part of a large corpus of research on algebraic
numbers whose conjugates lie on a conic or a union of conics. Let α be an algebraic number
with Galois conjugates α = α1, . . . , αd. We call the set S(α) := {α1, . . . , αd} the conjugate
set of α. When S(α) is a subset of the unit circle, a result of Kronecker’s (a weaker version
of Theorem 5) proves that α is a root of unity. Number theorists have long-studied classes of
algebraic integers where one or more of the conjugates leaves the circle; for example, a real
algebraic integer α is a Salem number if α > 1, α−1 ∈ S(α), and the remaining conjugates
all lie on the unit circle, i.e., S(α) = {α±1, e±iθ2 , . . . , e±iθd}.

With regards to the Reversible Skolem Problem at order eight, we exhibit a family of
recurrence sequences that, as far as we know, are not amenable to standard techniques and
so decidability is very much open. The authors of [19] also demonstrated a concrete family of
examples in this regard. It is interesting to note that the techniques used and families obtained
are very different. Each member of our family is an octic palindromic polynomial (the same is
not true for the family of examples in [19]). The coefficients of a palindromic polynomial form
a palindromic string of integers. For example, two palindromes that are also family members
are x8 +x7−x6 +x5 +5x4 +x3−x2 +x+1 and x8 +x7−3x6 +x5 +9x4 +x3−3x2 +x+1. Using
any modern computer algebra system, it is easy to verify that the roots of each polynomial
satisfy the following. First, the roots lie on two (but not one) concentric circles centred at the
origin. Second, no ratio of any two of its roots is a root of unity. The calculations involved
in preparing these (and later) examples were performed in PARI/GP [34]. In Subsection 4.2,
we study the Galois groups of irreducible palindromic octics in the aforementioned family as
a further investigation into the symmetries between their roots.

MFCS 2022
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In Subsections 5.1 and 5.2, we prove new decidability results on restricted variants of the
Positivity and Skolem Problems using Dubickas and Smyth’s theorem and make suggestions
for further work in these directions. For brevity, we refer to the Positivity Problem for
the class of simple reversible integer linear recurrences as the Simple Reversible Positivity
Problem. Here a linear recurrence is simple if the associated characteristic polynomial has no
repeated roots. We have the following results:

▶ Corollary 3. The Simple Reversible Positivity Problem is decidable for integer-valued linear
recurrences of order at most ten.

▶ Corollary 4. The Skolem Problem is decidable for rational-valued linear recurrences that
satisfy a relation of the form Xn+5 = a4Xn+4 + a3Xn+3 + a2Xn+2 + a1Xn+1 ± Xn with
a1, a2, a3, a4 ∈ Q.

Structure

The remainder of this paper is structured as follows. In the next section we review necessary
preliminary material. In Section 3, we give a new and novel proof of Theorem 1. In Section 4,
we construct a family of octic palindromes that shows the current state of the art cannot
settle decidability of the Reversible Skolem Problem at order eight and then discuss the
Galois groups associated with the irreducible members of this family. In the final section,
Section 5, we discuss directions and motivate this discussion with the proofs of Corollaries 3
and 4.

2 Preliminaries

2.1 Recurrence Sequences

A sequence ⟨Xn⟩∞n=0 of integers satisfying a recurrence relation of the form (1) with fixed
integer constants a0, a1, . . . , ad−1 such that a0 ̸= 0 is a linear recurrence sequence. The
sequence ⟨Xn⟩n is then wholly determined by the recurrence relation and the initial values
X0, X1, . . . , Xd−1. The polynomial f(x) = xd−ad−1x

d−1−· · ·−a1x−a0 is the characteristic
polynomial associated with relation (1). From our earlier definition, it is clear that ⟨Xn⟩n
is reversible if and only if f(0) = ±1. There is a recurrence relation of minimal length
associated to ⟨Xn⟩n and we call the characteristic polynomial of this minimal length relation
the minimal polynomial of ⟨Xn⟩n. The order of a linear recurrence sequence is the degree of
its minimal polynomial.

Let f be the minimal polynomial of a linear recurrence sequence ⟨Xn⟩n and K the splitting
field of f . The polynomial f factorises as a product of powers of distinct linear factors
like so f(x) =

∏m
ℓ=1(x − λℓ)nℓ . The constants λ1, λ2, . . . , λm ∈ K are the characteristic

roots of ⟨Xn⟩n with multiplicities n1, n2, . . . , nm. One can realise the terms of a linear
recurrence sequence as an exponential polynomial Xn =

∑m
ℓ=1 pℓ(n)λnℓ where the λℓ are the

aforementioned characteristic roots of ⟨Xn⟩n and the polynomial coefficients pℓ ∈ K[x] are
determined by the initial values. We say a characteristic root of ⟨Xn⟩n is dominant if in
the set of characteristic roots of ⟨Xn⟩n it is maximal in modulus. Thus, by Theorem 2, the
Skolem Problem is decidable for the class of non-degenerate linear recurrence sequences with
at most three dominant characteristic roots [24, 35].
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2.2 Number Theory
We shall assume some familiarity with Galois theory and the theory of number fields. The
necessary background material can be found in a number of standard textbooks [5, 33].

Recall the following theorem due to Kronecker [16].

▶ Theorem 5. Let f ∈ Z[x] be a monic polynomial such that f(0) ̸= 0. Suppose that all
the roots of f have absolute value at most 1, then f is a product of cyclotomic polynomials.
Therefore all the roots of f are roots of unity.

Thus, if f ∈ Z[x] is the characteristic polynomial of a reversible linear recurrence sequence
such that the roots of f all lie in the unit disk {z ∈ C : |z| ≤ 1}. Then the roots of f are all
roots of unity. It follows that the associated recurrence sequence is either order one (and is
thus constant) or degenerate. In either case the Skolem Problem is decidable. Thus in the
sequel we shall always assume, without loss of generality, that the dominant roots of f lie on
a circle with radius strictly larger than 1.

In the sequel, our construction of an infinite family of octics uses the following corollary
of Vieta’s formulae.

▶ Lemma 6. Suppose that f ∈ Z[x] is a monic irreducible polynomial such that f(x) =∏d
i=1(x− λi). Let fn(x) :=

∏d
i=1(x− λni ). Then fn ∈ Z[x] for each n ∈ N.

Proof. The coefficients of the polynomial fn are determined by symmetric polynomials
in d variables. By the fundamental theorem of symmetric polynomials, each symmetric
polynomial is given by a Z-linear combination of elementary symmetric polynomials. The
result follows as a straightforward application of Vieta’s formulae and the evaluation of
elementary symmetric polynomials over conjugate algebraic integers. ◀

The roots of an irreducible polynomial are necessarily Galois conjugates. We use the
term conjugate ratios for the ratios between two distinct roots of an irreducible polynomial.
A non-zero algebraic number α is reciprocal if α is conjugate to α−1. Let τ be a Salem
number whose minimal polynomial has degree 2d or a reciprocal quadratic. In the former
case, S(τ) = {τ±1, τ±1

2 , . . . , τ±1
d } and in the latter, S(τ) = {τ±1}. An algebraic number ψ is

a Salem half-norm if ψ = τ ε1τ ε2
2 · · · τ

εd

d for some such τ and εj = ±1 for each j ∈ {1, . . . , d}.
The properties of Salem half-norms are discussed further in [7].

In the ring of algebraic integers of a given number field K, γ ∈ K is a unit (sometimes
an algebraic unit) if it has a multiplicative inverse δ so that γδ = δγ = 1. Let α ∈ K be an
algebraic integer. Then the constant coefficient of the minimal polynomial f ∈ Z[x] of α is
equal to ±1 if and only if α is a unit. This observation follows easily from norm considerations
and the fact that the constant coefficient of f (up to sign) is given by the product of α and
its Galois conjugates. Since the characteristic polynomial f ∈ Z[x] of a reversible sequence
⟨Xn⟩n has constant coefficient ±1, we deduce that each of the characteristic roots of ⟨Xn⟩n
is a unit. In the sequel we make frequent use of the following simple observation.

▶ Lemma 7. If α is an algebraic unit that lies on the circle |z| = R with R > 1, then a
conjugate of α lies in the interior of the unit disk.

Key to the proofs in the sequel is a powerful result due to Dubickas and Smyth [7]
concerning polynomial identities between the roots of irreducible polynomials. Theorem 8
gives necessary conditions for a unit in the algebraic integers and all its Galois conjugates to
lie on two (but not one) concentric circles centred at the origin [7]. In fact, Dubickas and
Smyth prove a far more general result [7, Theorem 2.1], but we need only the specialised
version for units below.

MFCS 2022
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▶ Theorem 8. Suppose that α is a unit in the algebraic integers of degree d lying, with all
its Galois conjugates, on two circles |z| = r and |z| = R, but not just one. Without loss
of generality assume that at most half of the conjugates lie on |z| = r. Then, one of the
following holds:
1. d = 3m, R = r−1/2 such that there are d/3 conjugates of α on |z| = r, and the remaining

2d/3 lie on |z| = r−1/2. Assume, without loss of generality, |α| = r. Then, in addition,
there exists an n ∈ N such that αn is a real, but non-totally real, cubic unit.

2. d = 2m, R = r−1 where R > 1 without loss of generality, and d/2 Galois conjugates of α
lie on each circle. Further, there exists an n ∈ N such that αn =: ψ is a Salem half-norm
defined by a Salem number or a reciprocal quadratic.

Let us explain the term totally real in the last theorem. An algebraic number α is totally
real if α and all its Galois conjugates are real. A number field K is totally real if K = Q[α]
such that α is totally real.

From this point to the end of the subsection, the terminology and results we recall are
used only in Section 4 (and so are not required for the proof of Theorem 1).

A field is Kroneckerian if it is either a totally real algebraic number field or a totally
imaginary quadratic extension of a totally real field. In the sequel, we make use of the
following observation about complex conjugation lying in the centre of the Galois group of a
Kroneckerian field (see [30, Chapter 6]).

▶ Corollary 9. A number field K is Kroneckerian if and only if for every α ∈ K one has
α ∈ K and for every embedding σ of K into C one has ασ = ασ.

A unit is unimodular if it lies on the unit circle in C. In [21], MacCluer and Parry prove
that a normal imaginary field contains unimodular units other than roots of unity exactly
when its real subfield is not normal over Q. Daileda [6] generalises this result and provides
the following classification of the number fields that have unimodular units that are not roots
of unity. Recall that a number field K is a CM-field if K is a totally complex quadratic
extension of a totally real field.

▶ Theorem 10. Let K be a number field closed under complex conjugation. Then K contains
unimodular units that are not roots of unity if and only if K is imaginary and not a CM-field.

2.3 Group Theory
In the sequel we employ the notation Sn for the symmetric group on n elements, An for the
alternating group on n elements, Dn for the Dihedral group of order 2n, Cn for the cyclic
group on n elements, and K4 for the Klein 4-group.

The action of G on a set X is transitive if for every pair x, y ∈ X there is a g ∈ G such
that gx = y; that is to say, there is a single group orbit. We note here (and again later) that
S4, A4, D4, C4, and K4 are the transitive subgroups of S4.

3 Proof of Theorem 1

We briefly outline our route to proving Theorem 1. We claim that if ⟨Xn⟩n is a non-degenerate
reversible integer recurrence sequence of order at most seven, then ⟨Xn⟩n has at most three
dominant characteristic roots. The decidability of the Skolem Problem for such instances
then follows from Theorem 2. The above claim follows as a corollary of the next theorem.
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▶ Theorem 11. No monic polynomial f ∈ Z[x] with constant coefficient ±1 of degree at
most seven satisfies the following two properties:
(H1) f has at least four distinct dominant roots; and
(H2) no quotient of two distinct roots of f is a root of unity.

Thus all that remains is to prove Theorem 11. This result is an immediate consequence of
the sequence of Propositions 12, 14, and 15 below. In each of the proofs of these propositions
we play a similar game: we assume, for a contradiction, that there exists a polynomial
f ∈ Z[x] (of degree five, six, or seven respectively) that satisfies hypotheses H1 and H2. We
show that such a candidate is necessarily irreducible. We then employ Theorem 8 to derive
a contradiction: such a candidate cannot satisfy both H1 and H2 and, at the same time,
satisfy the restrictive root identities prescribed by Theorem 8.

For the avoidance of doubt, this route to Theorem 1 is similar to that carved out by [19].
The contribution of this paper is the novel application of Theorem 8. Indeed, our assumption,
that each of the characteristic roots of a recurrence in our class of non-degenerate reversible
sequences is a unit, leads to (rather startling) restrictive polynomial relations between Galois
conjugates.

We begin our sequence of propositions.

▶ Proposition 12. No monic polynomial f ∈ Z[x] of degree at most five with constant term
±1 satisfies hypotheses H1 and H2.

Proof. Assume, for a contradiction, that such an f of degree d ≤ 5 exists. By Theorem 5,
the dominant roots lie on the circle |z| = R for some R > 1 for otherwise the roots of f
are necessarily all roots of unity, which is not permitted under hypothesis H2. Each of the
dominant roots of f is a unit in the algebraic integers and so, by Lemma 7, has a Galois
conjugate in the interior of the unit disk. In order that f satisfies hypothesis H1, we conclude
that f has four simple dominant roots and a single non-dominant root. Since f has degree
d = 5 and f(0) = ±1, all the dominant roots of f are (Galois) conjugate to the single
non-dominant root, f is irreducible.

Let α be a root of f . Then α is an algebraic integer of degree 5, a unit, and lies with all
its Galois conjugates on two circles. We apply Theorem 8 to the quintic f and find that 5 is
either even, or a multiple of 3, a contradiction. ◀

▶ Remark 13. The application of Theorem 8 in the proof of Proposition 12 is excessive (even
if the derived contradiction is rather satisfying). By comparison, the approach in Lipton
et al. [19] is direct. We reproduce the final part of those authors’ proof below as it gives a
gentle introduction to some of the techniques we apply in Proposition 14 and Proposition 15.

Proof of Proposition 12 (cf. [19]). Let α, α, β, β be the four dominant roots of f and ρ the
non-dominant root of f . Since f is irreducible, the Galois group G of f acts transitively
on the roots of f . Thus there exists a σ ∈ G such that σ(α) = ρ. The element σ must
preserve the equality αα = ββ and so we have ρσ(α) = σ(β)σ(β). We derive a contradiction:
|ρ||σ(α)| ̸= |σ(β)||σ(β)| since the two roots σ(β) and σ(β) on the right-hand side are
necessarily dominant. ◀

▶ Proposition 14. No monic polynomial f ∈ Z[x] of degree six with constant term ±1
satisfies hypotheses H1 and H2.

Proof. Assume, for a contradiction, that such an f exists. As in the proof of Proposition 12,
f has at least four simple dominant roots α, α, β, β that lie on a circle {z ∈ C : |z| = R} for
some R > 1 as complex-conjugate pairs. We note that the group G of automorphisms of
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the splitting field of f must preserve the equality αα = ββ. Because α is a unit on |z| = R,
by Lemma 7 there is both a root γ of f that lies in the unit disk and a permutation σ ∈ G
such that σ(α) = γ. Now consider σ(α)σ(α) = σ(β)σ(β). It is straightforward to elicit a
contradiction that breaks this equality if either σ(α) is non-dominant, or both σ(β) and σ(β)
are dominant. Thus we can assume that f has two non-dominant roots and further that
they are of equal modulus. Clearly these two roots γ, γ are a complex-conjugate pair by
H2. Combining these observations of the roots of f , we quickly deduce that f is necessarily
irreducible.

Because the roots of the irreducible polynomial f ∈ Z[x] lie on two concentric circles, we
can apply Theorem 8. Thus there is a non-dominant root, γ say, and m ∈ N such that γm is
a real cubic unit. It follows that γm/γm = 1 and so one of the conjugate ratios of f is a root
of unity, which contradicts hypothesis H2. ◀

▶ Proposition 15. No monic polynomial f ∈ Z[x] of degree seven with constant term ±1
satisfies hypotheses H1 and H2.

Proof. Assume, for a contradiction, that such an f exists. As in the proof of Proposition 12,
f has at least four simple dominant roots α, α, β, β that lie on a circle {z ∈ C : |z| = R}
for some R > 1 as complex-conjugate pairs. Mutatis mutandis, one can use the methods
in the proof of Proposition 14 to make the following two deductions. First, f is irreducible.
Second, f has precisely one real root δ and another complex-conjugate pair of roots γ, γ.
Additionally, we have that δ, γ, γ are all non-dominant roots of f such that |γ| ̸= |δ|. We
note that if one supposes, for a contradiction, that the septic polynomial f has |γ| = |δ| or
|α| = |δ|, then, by Theorem 8, it follows that 7 is either even, or a multiple of 3.

Because f is irreducible, the Galois group of f acts transitively on the roots of f . Thus
there is a permutation σ in the Galois group of f such that σ(α) = δ. We know that σ
must preserve the equality αα = ββ and so we have |δσ(α)| = |σ(β)σ(β)|. The left-hand
side is equal to one of |δ||γ| or |δ|R depending on σ(α). There are three cases to consider
for the right-hand side. The roots σ(β) and σ(β) are either both dominant, both non-
dominant, or one of each. It is clear that the modulus in each of these (respective) cases R2,
|γ|2, and |γ|R breaks the aforementioned equality between the left- and right-hand sides, a
contradiction. ◀

Hence we have proved Theorem 11, as required.

4 Palindromic Octics

A monic polynomial f ∈ Z[x] is palindromic if its coefficients string together to form a
palindrome. That is to say, for f(x) = xd + ad−1x

d−1 + · · ·+ a1x+ 1 we have that ak = ad−k
for each k ∈ {0, 1, . . . , d}. In other sources, the term self-reciprocal is sometimes used since
if α is a root of f then α−1 is also a root of f . If α ∈ C is a root of f , then so are ᾱ, 1/α,
and 1/ᾱ. Further, when α is neither real nor lies on the unit circle then these four roots
are distinct. The class of palindromic polynomials appear in areas across mathematics and
computer science in fields such as: coding theory, algebraic curves over finite fields, knot
theory, and linear feedback shift registers, to name but a few (see the survey [12]).

▶ Remark 16. Let us further motivate the study of the Palindromic Skolem Problem (the
Skolem Problem restricted to the study of sequences with palindromic characteristic polyno-
mials). From the viewpoint of dynamical systems, we observe that the equations of motion
(1) governing a recurrence sequence with palindromic characteristic polynomial (hereafter
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a palindromic recurrence sequence) possess a time-reversing symmetry; that is to say, the
recurrence relation is invariant under the time reversal map n 7→ −n. More concretely, let
⟨Xn⟩∞n=0 and ⟨Y−n⟩∞n=0 be recurrence sequences satisfying the palindromic relations

Xn+d = ad−1Xn+d−1 + · · ·+ ad−1Xn+1 +Xn and
Y−n−d = ad−1Y−n−d+1 + · · ·+ ad−1Y−n−1 + Y−n,

respectively. Then Y−n = Xn for each n ∈ N0 if Y−m = Xm for each m ∈ {0, 1, . . . , d− 1}.
For further information on the topic of time-reversing symmetries, we refer the interested

reader to the exposition in Lamb’s article [17] and the recent survey by Baake [2] (and the
references therein).

4.1 Hard instances of the Reversible Skolem Problem at order eight
In Proposition 17, we construct an infinite family of palindromic octics that satisfy both
H1 and H2. This result blocks any obvious attempt to settle decidability of the Reversible
Skolem Problem at order eight with current state-of-the-art techniques. Another family of
octics that satisfy both H1 and H2 is discussed in Lipton et al. [19]. The additional restriction
(palindromic coefficients) we require demonstrates a refinement in the discussion of hard
instances of the Reversible Skolem Problem at order eight.

▶ Proposition 17. There are infinitely many palindromic octics in Z[x] that satisfy both H1
and H2.

Proof. Let f ∈ Z[x] be such a palindromic octic with four simple dominant roots (that is,
two complex-conjugate pairs) that lie on a circle of radius r > 1. Write f(x) =

∏8
i=1(x− λi)

and for each n ∈ N, define fn(x) :=
∏8
i=1(x− λni ). By the symmetries in the roots λni , it is

straightforward to verify the following three observations. First, each octic fn in the sequence
⟨fn⟩∞n=1 is palindromic. Second, each octic fn satisfies both H1 and H2. Third, by Lemma 6,
fn ∈ Z[x] for each n ∈ N.

We finish the proof by showing that there are infinitely many distinct polynomials in
the sequence ⟨fn⟩∞n=1. Let re±iθ, re±iψ be the four dominant roots of f . Let fn(x) =
x8 + a7,nx

7 + · · ·+ 1. Then, by Vieta’s formulae, a7,n is given by the sum of the nth powers
of the roots of f ; that is,

a7,n = (rn + r−n)(eniθ + e−niθ + eniψ + e−niψ).

Assume, for a contradiction, that the non-degenerate integer linear recurrence sequence
⟨a7,n⟩n takes only finitely many values. By the Pigeonhole Principle, there is an a ∈ Z and an
infinite subsequence ⟨nk⟩k of natural numbers such that a7,nk

= a for each k ∈ N. We make
two observations. First, the integer linear recurrence sequence ⟨a7,n − a⟩n has characteristic
polynomial f(x)(x−1) (see [8, Theorem 1.1]) and so is non-degenerate. Second, the sequence
⟨a7,n − a⟩n vanishes infinitely often. We have a contradiction: a non-degenerate linear
recurrence sequence has only finitely many zero terms. It follows that there are infinitely
many distinct palindromic octics in the sequence ⟨fn⟩n, as desired. ◀

▶ Remark 18. A symplectic matrix M is a 2ℓ× 2ℓ matrix that preserves the symplectic form
J in 2ℓ dimensions; that is to say, M⊤JM = J where

J =
(

0 Iℓ
−Iℓ 0

)
.
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It is well-known that the characteristic polynomial of a symplectic matrix is a palindromic
polynomial. In fact, the following constructive result proves the converse. Rivin [28, Theorem
A.1] attributes the result to Kirby [15]1.

▶ Theorem 19. For each monic palindromic polynomial f ∈ Z[x] of degree 2ℓ, there is a
symplectic matrix M ∈ Z2ℓ×2ℓ such that det(xI2ℓ −M) = f(x).

Note the group of 2ℓ× 2ℓ symplectic matrices with entries in Z is closed under multiplication.
This observation leads to an alternative proof of Proposition 17 as follows. Let f ∈ Z[x] be
an octic palindrome satisfying H1 and H2. Now let M ∈ Z8×8 be a symplectic matrix with
characteristic polynomial f . Consider the sequence ⟨fn⟩n where fn(x) := det(xI2ℓ −Mn) ∈
Z[x]. As before, we need to verify that each polynomial in this sequence satisfies the root
assumptions H1 and H2. We then proceed in a similar fashion to the proof of Proposition 17,
in order to generate an infinite sequence of octic palindromes with the desired properties.

4.2 Galois theory of octic palindromes
It is interesting to consider the root symmetries of the characteristic polynomials of reversible
linear recurrence sequences. In this subsection we focus our attention on the Galois groups
of octic palindromes; in particular, those underlying hard instances of the Reversible Skolem
Problem. We present a new result (Theorem 20). The problem of root symmetries follows
naturally from our approach to Theorem 1 where we explored polynomial identities between
roots of certain irreducible polynomials. Such results are also motivated by hard open
problems such as (polynomial) invariant generation and loop synthesis in the field of program
verification.

The task of computing the Galois groups of irreducible polynomials in Z[x] is well-known.
Families of polynomials associated with reversible sequences include the cyclotomic and
Salem polynomials. The authors of [4] discuss ramifications to the Galois group of moving
two of the Galois conjugates off of the unit circle. For the interested reader, two accounts of
the Galois theory of palindromic polynomials are [36, 29]. ‘Generically’, the Galois group
of a palindromic polynomial of degree 2d is Sd ≀ C2 (the signed permutation group or the
hyperoctahedral group). In the case d = 4, the order of S4 ≀ C2 is 384.

Here we shall consider the Galois groups associated with irreducible octic palindromes of
the form constructed in Proposition 17. Recall that each polynomial in that family has roots
of the form r±1e±iθ, r±1e±iψ. When a polynomial with this root distribution is irreducible,
some of the powers of these roots are given by Salem half-norms (Theorem 8).

▶ Theorem 20. Suppose that f ∈ Z[x] is an irreducible and simple palindromic octic with
four dominant roots such that none of its conjugate ratios are roots of unity (so that H1
and H2 are satisfied). Then, the associated Galois group is isomorphic to either S4 × C2 or
A4 × C2.

Proof. Let α, α, β, β be the four dominant roots of f . As before, we can assume without
loss of generality that these roots lie on a circle |z| = R with R > 1. The Galois group of
the splitting field of f is necessarily a subgroup of the group of automorphisms G of the
set {α±1, α±1, β±1, β±1} ⊂ C. Further, the Galois group necessarily contains permutations

1 The author was unable to access Kirby’s article in order to verify this attribution.
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that fix the relations xx−1 = 1 for x in the set and αα−1 − ββ−1 = 0. We note that G also
contains the inversion map x 7→ x−1. The action of G on the roots induces an action of (a
subgroup of) S4 on the set of C2 orbits {x, x−1}, which we lift to an action of (a subgroup
of) S4 on the roots.

It is easily verified that the transposition (12) induces one of the maps

(α, α, β, β) 7→ (α, α, β, β), or (α, α, β, β) 7→ (α−1, α−1, β−1, β−1).

Both of these maps commute with inversion and we note the latter is obtained from the
former by applying the inversion map. Thus, without loss of generality, we take (12) as the
former map.

In fact, every transposition can be lifted and commutes with inversion. Hence G = S4×C2.
The transformations are as follows:

(12) : (α, α, β, β) 7→ (α, α, β, β)
(13) : (α, α, β, β) 7→ (β−1, α, α−1, β)
(14) : (α, α, β, β) 7→ (β−1, α, β, α−1)
(23) : (α, α, β, β) 7→ (α, β−1, α−1, β)
(24) : (α, α, β, β) 7→ (α, β−1, β, α−1)
(34) : (α, α, β, β) 7→ (α, α, β, β).

By way of explanation, these transformations are deduced as follows. First, when choosing a
lift of a transposition from the set of C2-orbits to the set of roots, one can invert an even
number of the orbit pairs {x, x−1}. Second, the choice of inverting none or all four orbit
pairs differs only by the inversion map. Similarly, the two options when inverting two of the
orbit pairs differ only by inversion. A transposition σ necessarily preserves αα − ββ = 0.
Some careful accounting shows that permutations such as σ(α) = β (or σ(α) = β) lead to
αβ − αβ = 0 (or αβ − αβ = 0) and so αβ ∈ R (or αβ ∈ R). Such conclusions contradict our
assumptions on the conjugate ratios of f . Similar arguments lead to the conclusion that
there is a unique (that is to say, unique up to inversion) automorphism of the roots that
preserves the aforementioned relations. Hence the Galois group is a subgroup of S4 × C2.

We make the following useful observations. Firstly, the Galois group is a transitive
subgroup of S4 × C2 because f is irreducible. Secondly, since the action of C2 on the roots
is free (given g, h ∈ C2 and a root x with gx = hx then necessarily g = h), the transitive
subgroups of S4 × C2 are precisely the direct product of C2 and a transitive subgroup of S4.
Finally, we note that (12)(34), representing complex conjugation, is certainly an element of
the Galois group.

The transitive subgroups of S4 are isomorphic to S4, A4, D4, C4, and K4. Because C4 and
K4 are Abelian groups, (12)(34) either lies in the centre of each group or the subgroup does
not contain (12)(34). In the former case we deduce that the splitting field is a Kroneckerian
field (by Corollary 9) and so the splitting field is either CM or totally real. The field cannot
be totally real by our assumption that f has non-real roots. The field is also not a CM-field
for otherwise the conjugate ratios are necessarily roots of unity by Theorem 10.

We now focus on eliminating the possibility that the Galois group of f is D4 ×C2. There
are three conjugate subgroups of S4 that are isomorphic to D4:

D4,0 = {e, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)} = ⟨(1324), (12)⟩,
D4,1 = {e, (13), (24), (13)(24), (12)(34), (14)(23), (1234), (1432)} = ⟨(1234), (13)⟩, and
D4,2 = {e, (14), (23), (14)(23), (12)(34), (13)(24), (1243), (1342)} = ⟨(1243), (14)⟩.

MFCS 2022
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Note (12)(34) lies in the centre of D4,0 and so we can once again employ Theorem 10 to
deduce that D4,0 × C2 cannot be the Galois group of the splitting field of f . Assume, for
a contradiction, that D4,1 × C2 is the Galois group of the splitting field of f . It is easily
verified that α/β + α/β is invariant under the action of D4,1 × C2. Hence α/β + α/β ∈ Q.
Since α/β /∈ Q, we deduce that

(x− α/β)(x− α/β) = x2 − (α/β + α/β)x+ 1 ∈ Q[x].

Thus α/β satisfies a quadratic monic polynomial; moreover, since α/β is an algebraic integer
it follows that α/β + α/β ∈ Z. Since |α/β| = 1, we find α/β + α/β ∈ {±2,±1, 0}. Each of
the roots of the five possible polynomials are roots of unity, which contradicts our assumption
on the conjugate ratios. Mutatis mutandis, one eliminates the possibility that the Galois
group is D4,2 × C2 by similar consideration of α/β + α/β.

Thus the Galois group of the splitting field of f is either S4×C2 or A4×C2, as required. ◀

▶ Remark 21. It is not possible to strengthen the above result: the Galois group of the
palindrome x8 +x7−x6 +x5 +5x4 +x3−x2 +x+1 is S4×C2, whilst the Galois group of the
palindrome x8 + x7− 3x6 + x5 + 9x4 + x3− 3x2 + x+ 1 is A4×C2. Both polynomials satisfy
the assumptions in Theorem 20. For the avoidance of doubt, the converse of the statement in
Theorem 20 is not true: the Galois group of the palindrome x8 +x6 +6x5 +9x4 +6x3 +x2 +1,
which possesses a single complex-conjugate pair of dominant roots, is S4 × C2.

5 Directions for Future Research

Our main contribution to the state of the art is a new proof of Theorem 1: the Skolem
Problem is decidable for the class of reversible integer linear recurrence sequences of order at
most seven. The benefit of our approach (by comparison to the case analysis in [19]) is the
potential for applications to related decision problems. In this section we suggest directions
for future research; in particular, variations on the Positivity and Skolem Problems for linear
recurrence sequences.

5.1 The Simple Reversible Positivity Problem
The Positivity Problem asks to decide whether the terms in an integer linear recurrence
sequence are all non-negative. Ouaknine and Worrell [26] demonstrated that the Positivity
Problem is decidable for simple linear recurrence sequences (those whose characteristic
polynomials have no repeated roots) of order at most nine. The proofs therein very much
depend on an approach via Baker’s Theorem for linear forms in logarithms. Those authors
identify the class of non-degenerate linear recurrence sequences of order ten that are not
amenable to said approach: the characteristic polynomials in this class have one dominant
real root, four complex-conjugate pairs of dominant roots, and one non-dominant root.

Consider the family of monic polynomials in Z[x] of degree ten, with constant coefficient
±1, and the above distribution of roots. Suppose that f ∈ Z[x] is a polynomial in this
class. We immediately find that f is irreducible since each dominant root of f is necessarily
conjugate to the single non-dominant root. The roots of f lie on two concentric circles
centred at the origin and so we can invoke Theorem 8 to derive a contradiction. Thus the
obstruction to decidability falls away under our extra assumptions and so we extend the
result in [26] in this restricted setting. In summary, the Simple Reversible Positivity Problem
is decidable for recurrences of order at most ten and so we have proved Corollary 3.
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▶ Remark 22. Let us give an alternative proof for Corollary 3; this alternative proof does
not invoke Theorem 8.

Observe that any candidate polynomial in our discussion is irreducible. We can invoke
standard results for irreducible polynomials with many dominant roots. For example, versions
of the following lemma are found in [32, 10].

▶ Lemma 23. Suppose that α is an algebraic number with Galois conjugates β and γ

satisfying α2 = βγ. Then the conjugate ratio α/β is a root of unity.

Now suppose that a polynomial f ∈ Z[x] of degree ten has the aforementioned distribution
of roots and is the characteristic polynomial of a non-degenerate linear recurrence sequence.
Since f is necessarily irreducible and has a dominant positive root, we can invoke Lemma 23.
We deduce that f is the characteristic polynomial of a degenerate recurrence sequence, a
contradiction. Thus the obstacle to deciding positivity of simple linear recurrence sequences
at order ten falls away under our additional assumption of reversibility: there are no sequences
in the aforementioned class. As an aside, Lemma 23 is used by Dubickas and Smyth [7] as a
stepping-stone towards Theorem 8.

We propose that such approaches as outlined above could lead to further decidability
results for variants of the Positivity Problem. The key observations on the characteristic
polynomials were: irreducibility and a dominant positive root. Here we can make the latter
assumption without loss of generality. Indeed, let us recall the following classical consequence
of Pringsheim’s Theorem in complex analysis that is pertinent to deciding positivity.

▶ Lemma 24. Suppose that a non-zero real-valued linear recurrence sequence ⟨Xn⟩n has no
positive dominant characteristic root. Then the cardinalities of the sets {n ∈ N : Xn > 0}
and {n ∈ N : Xn < 0} are both infinite.

5.2 The Skolem Problem and unit-norm roots
In this paper we invoke results such as Theorem 8 in order to reduce the reversible Skolem
Problem at orders five, six, and seven, to decidable instances of the Skolem Problem
(Theorem 2). It is interesting to speculate that techniques involving identities between roots
(the Galois theory underlying Theorem 8) have further applications in establishing decidability
results for linear recurrence sequences. Indeed, the general version of Theorem 8 (see [7,
Theorem 2.1]) considers not only algebraic integers that are units, but also algebraic numbers
that are unit-norms. An algebraic number α is a unit-norm if the minimal polynomial of α is
of the form adx

d − ad−1x
d−1 − · · · − a1x− a0 ∈ Z[x] such that |ad| = |a0|. So the unit-norm

algebraic integers are the units.
We can strengthen the statement in Proposition 12 by invoking [7, Theorem 2.1]: we

deduce there is no polynomial a5x
5 − a4x

4 − a3x
3 − a2x

2 − a1x ± a5 ∈ Z[x] that satisfies
hypotheses H1 and H2. Thus not only do we settle decidability of the reversible Skolem
Problem at order five, but also decidability of the Skolem Problem at order five for the class
of rational-valued linear recurrence sequences that satisfy a relation of the form

Xn+5 = a4Xn+4 + a3Xn+3 + a2Xn+2 + a1Xn+1 ±Xn

with a1, a2, a3, a4 ∈ Q. Thus we have established Corollary 4.
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A graph is temporally connected if there exists a strict temporal path, i.e., a path whose edges have
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design problems for undirected temporally connected graphs. The basic setting of these optimization
problems is as follows: given a connected undirected graph G, what is the smallest number |λ| of
time-labels that we need to add to the edges of G such that the resulting temporal graph (G, λ) is
temporally connected? As it turns out, this basic problem, called Minimum Labeling (ML), can
be optimally solved in polynomial time. However, exploiting the temporal dimension, the problem
becomes more interesting and meaningful in its following variations, which we investigate in this
paper. First we consider the problem Min. Aged Labeling (MAL) of temporally connecting the
graph when we are given an upper-bound on the allowed age (i.e., maximum label) of the obtained
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the aim is now to have a temporal path between any pair of “important” vertices which lie in a
subset R ⊆ V , which we call the terminals. This relaxed problem resembles the problem Steiner
Tree in static (i.e., non-temporal) graphs. However, due to the requirement of strictly increasing
labels in a temporal path, Steiner Tree is not a special case of MSL. Finally we consider the
age-restricted version of MSL, namely Min. Aged Steiner Labeling (MASL). Our main results
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becomes W[1]-hard with respect to the number |R| of terminals. On the other hand we prove that
(iii) although the age-unrestricted problem MSL remains NP-hard, it is in FPT with respect to the
number |R| of terminals. That is, adding the age restriction, makes the above problems strictly
harder (unless P=NP or W[1]=FPT).
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1 Introduction

A temporal (or dynamic) graph is a graph whose underlying topology is subject to discrete
changes over time. This paradigm reflects the structure and operation of a great variety of
modern networks; social networks, wired or wireless networks whose links change dynamically,
transportation networks, and several physical systems are only a few examples of networks
that change over time [23,33,35]. Inspired by the foundational work of Kempe et al. [25], we
adopt here a simple model for temporal graphs, in which the vertex set remains unchanged
while each edge is equipped with a set of integer time-labels.

▶ Definition 1 (temporal graph [25]). A temporal graph is a pair (G, λ), where G = (V, E)
is an underlying (static) graph and λ : E → 2N is a time-labeling function which assigns to
every edge of G a set of discrete time-labels.

Here, whenever t ∈ λ(e), we say that the edge e is active or available at time t. Throughout
the paper we may refer to “time-labels” simply as “labels” for brevity. Furthermore, the age
(or lifetime) α(G, λ) of the temporal graph (G, λ) is the largest time-label used in it, i.e.,
α(G, λ) = max{t ∈ λ(e) : e ∈ E}. One of the most central notions in temporal graphs is
that of a temporal path (or time-respecting path) which is motivated by the fact that, due to
causality, entities and information in temporal graphs can “flow” only along sequences of
edges whose time-labels are strictly increasing, or at least non-decreasing.

▶ Definition 2 (temporal path). Let (G, λ) be a temporal graph, where G = (V, E) is the
underlying static graph. A temporal path in (G, λ) is a sequence (e1, t1), (e2, t2), . . . , (ek, tk),
where (e1, e2, . . . , ek) is a path in G, ti ∈ λ(ei) for every i = 1, 2, . . . , k, and t1 < t2 < . . . < tk.

A vertex v is temporally reachable (or reachable) from vertex u in (G, λ) if there exists
a temporal path from u to v. If every vertex v is reachable by every other vertex u in
(G, λ), then (G, λ) is called temporally connected. Note that, for every temporally connected
temporal graph (G, λ), we have that its age is at least as large as the diameter dG of the
underlying graph G. Indeed, the largest label used in any temporal path between two
anti-diametrical vertices cannot be smaller than dG. Temporal paths have been introduced
by Kempe et al. [25] for temporal graphs which have only one label per edge, i.e., |λ(e)| = 1
for every edge e ∈ E, and this notion has later been extended by Mertzios et al. [28] to
temporal graphs with multiple labels per edge. Furthermore, depending on the particular
application, both variations of temporal paths with non-decreasing [6,25,26] and with strictly
increasing [15,28] labels have been studied. In this paper we focus on temporal paths with
strictly increasing labels. Due to the very natural use of temporal paths in various contexts,
several path-related notions, such as temporal analogues of distance, diameter, reachability,
exploration, and centrality have also been studied [1–3,6,8,10,11,13,15–18,20,26,28,32,34,36].

Furthermore, some non-path temporal graph problems have been recently introduced
too, including for example temporal variations of maximal cliques [7, 37], vertex cover [4, 21],
vertex coloring [31], matching [29], and transitive orientation [30]. Motivated by the need of
restricting the spread of epidemic, Enright et al. [15] studied the problem of removing the
smallest number of time-labels from a given temporal graph such that every vertex can only
temporally reach a limited number of other vertices. Deligkas et al. [12] studied the problem
of accelerating the spread of information for a set of sources to all vertices in a temporal
graph, by only using delaying operations, i.e., by shifting specific time-labels to a later time
slot. The problems studied in [12] are related but orthogonal to our temporal connectivity
problems. Various other temporal graph modification problems have been also studied, see
for example [6, 11,13,16,34].
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The time-labels of an edge e in a temporal graph indicate the discrete units of time (e.g.,
days, hours, or even seconds) in which e is active. However, in many real dynamic systems,
e.g., in synchronous mobile distributed systems that operate in discrete rounds, or in unstable
chemical or physical structures, maintaining an edge over time requires energy and thus
comes at a cost. One natural way to define the cost of the whole temporal graph (G, λ) is
the total number of time-labels used in it, i.e., the total cost of (G, λ) is |λ| =

∑
e∈E |λe|.

In this paper we study temporal design problems of undirected temporally connected
graphs. The basic setting of these optimization problems is as follows: given an undirected
graph G, what is the smallest number |λ| of time-labels that we need to add to the edges
of G such that (G, λ) is temporally connected? As it turns out, this basic problem can be
optimally solved in polynomial time, thus answering to a conjecture made in [2]. However,
exploiting the temporal dimension, the problem becomes more interesting and meaningful in
its following variations, which we investigate in this paper. First we consider the problem
variation where we are given along with the input also an upper bound of the allowed age
(i.e., maximum label) of the obtained temporal graph (G, λ). This age restriction is sensible
in more pragmatic cases, where delaying the latest arrival time of any temporal path incurs
further costs, e.g., when we demand that all agents in a safety-critical distributed network are
synchronized as quickly as possible, and with the smallest possible number of communications
among them. Second we consider problem variations where the aim is to have a temporal
path between any pair of “important” vertices which lie in a subset R ⊆ V , which we call
the terminals. For a detailed definition of our problems we refer to Section 2.

Here it is worth noting that the latter relaxation of temporal connectivity resembles the
problem Steiner Tree in static (i.e., non-temporal) graphs. Given a connected graph
G = (V, E) and a set R ⊆ V of terminals, Steiner Tree asks for a smallest-sized subgraph
of G which connects all terminals in R. Clearly, the smallest subgraph sought by Steiner
Tree is a tree. As it turns out, this property does not carry over to the temporal case.
Consider for example an arbitrary graph G and a terminal set R = {a, b, c, d} such that G

contains an induced cycle on four vertices a, b, c, d; that is, G contains the edges ab, bc, cd, da

but not the edges ac or bd. Then, it is not hard to check that only way to add the smallest
number of time-labels such that all vertices of R are temporally connected is to assign one
label to each edge of the cycle on a, b, c, d, e.g., λ(ab) = λ(cd) = 1 and λ(bc) = λ(cd) = 2.
The main underlying reason for this difference with the static problem Steiner Tree is that
temporal connectivity is not transitive and not symmetric: if there exists temporal paths
from u to v, and from v to w, it is not a priori guaranteed that a temporal path from v to u,
or from u to w exists.

Temporal network design problems have already been considered in previous works.
Mertzios et al. [28] proved that it is APX-hard to compute a minimum-cost labeling for
temporally connecting an input directed graph G, where the age of the graph is upper-
bounded by the diameter of G. This hardness reduction was strongly facilitated by the
careful placement of the edge directions in the constructed instance, in which every vertex
was reachable in the static graph by only constantly many vertices. Unfortunately this
cannot happen in an undirected connected graph, where every vertex is reachable by all
other vertices. Later, Akrida et al. [2] proved that it is also APX-hard to remove the largest
number of time-labels from a given temporally connected (undirected) graph (G, λ), while still
maintaining temporal connectivity. In this case, although there are no edge directions, the
hardness reduction was strongly facilitated by the careful placement of the initial time-labels
of λ in the input temporal graph, in which every pair of vertices could be connected by only
a few different temporal paths, among which the solution had to choose. Unfortunately
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this cannot happen when the goal is to add time-labels to an undirected connected graph,
where there are potentially multiple ways to temporally connect a pair of vertices (even if we
upper-bound the largest time-label by the diameter).

Summarizing, the above technical difficulties seem to be the reason why the problem of
adding the minimum number of time-labels with an age-restriction to an undirected graph to
achieve temporal connectivity remained open until now for the last decade. In this paper we
overcome these difficulties by developing a hardness reduction from a variation of the problem
Max XOR SAT (see Theorem 12 in Section 3) where we manage to add the appropriate
(undirected) edges among the variable-gadgets such that simultaneously (i) the distance
between any two vertices from different variable gadgets remains small (constant) and (ii)
there is no shortest path between two vertices of the same variable gadget that leaves this
gadget.

Our contribution and road-map. In the first part of our paper, in Section 3, we present
our results on Min. Aged Labeling (MAL). This problem is the same as ML, with the
additional restriction that we are given along with the input an upper bound on the allowed
age of the resulting temporal graph (G, λ). Using a technically involved reduction from a
variation of Max XOR SAT, we prove that MAL is NP-complete on undirected graphs,
even when the required maximum age is equal to the diameter dG of the input static graph G.

In the second part of our paper, in Section 4, we present our results on the Steiner-tree
versions of the problem, namely on Min. Steiner Labeling (MSL) and Min. Aged
Steiner Labeling (MASL). The difference of MSL from ML is that, here, the goal is to
have a temporal path between any pair of “important” vertices which lie in a given subset
R ⊆ V (the terminals). In Section 4.1 we prove that MSL is NP-complete by a reduction
from Vertex Cover, the correctness of which requires showing structural properties of
MSL. Here it is worth recalling that, as explained above, the classical problem Steiner
Tree on static graphs is not a special case of MSL, due to the requirement of strictly
increasing labels in a temporal path. Furthermore, we would like to emphasize here that, as
temporal connectivity is neither transitive nor symmetric, a straightforward NP-hardness
reduction from Steiner Tree to MSL does not seem to exist. For example, as explained
above, in a graph that contains a C4 with its four vertices as terminals, labeling a Steiner
tree is sub-optimal for MSL.

In Section 4.2 we provide a fixed-parameter tractable (FPT) algorithm for MSL with
respect to the number |R| of terminal vertices, by providing a parameterized reduction to
Steiner Tree. The proof of correctness of our reduction, which is technically quite involved,
is of independent interest, as it proves crucial graph-theoretical properties of minimum
temporal Steiner labelings. In particular, for our algorithm we prove (see Lemma 14)
that, for any undirected graph G with a set R of terminals, there always exists at least one
minimum temporal Steiner labeling (G, λ) which labels edges either from (i) a tree or from
(ii) a tree with one extra edge that builds a C4.

In Section 4.3 we prove that MASL is W[1]-hard with respect to the number |R| of
terminals. Our results actually imply the stronger statement that MASL is W[1]-hard even
with respect to the number of time-labels of the solution (which is a larger parameter than
the number |R| of terminals).

Finally, we complete the picture by providing some auxiliary results in our preliminary
Section 2. More specifically, in Section 2.1 we prove that ML can be solved in polynomial
time, and in Section 2.2 we prove that the analogue minimization versions of ML and MAL
on directed acyclic graphs are solvable in polynomial time.
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Due to space constraints, proofs of results marked with ⋆ are (partially) deferred to a full
version on arXiv [27].

2 Preliminaries and notation

Given a (static) undirected graph G = (V, E), an edge between two vertices u, v ∈ V

is denoted by uv, and in this case the vertices u, v are said to be adjacent in G. If the
graph is directed, we will use the ordered pair (u, v) (resp. (v, u)) to denote the oriented
edge from u to v (resp. from v to u). The age of a temporal graph (G, λ) is denoted by
α(G, λ) = max{t ∈ λ(e) : e ∈ E}. A temporal path (e1, t1), (e2, t2), . . . , (ek, tk) from vertex
u to vertex v is called foremost, if it has the smallest arrival time tk among all temporal
paths from u to v. Note that there might be another temporal path from u to v that uses
fewer edges than a foremost path. A temporal graph (G, λ) is temporally connected if, for
every pair of vertices u, v ∈ V , there exists a temporal path (see Definition 2) P1 from u

to v and a temporal path P2 from v to u. Furthermore, given a set of terminals R ⊆ V ,
the temporal graph (G, λ) is R-temporally connected if, for every pair of vertices u, v ∈ R,
there exists a temporal path from u to v and a temporal path from v to u; note that P1 and
P2 can also contain vertices from V \ R. Now we provide our formal definitions of our four
decision problems.

Min. Labeling (ML)

Input: A static graph G = (V, E) and
a k ∈ N.
Question: Does there exist a temporally
connected temporal graph (G, λ),
where |λ| ≤ k?

Min. Aged Labeling (MAL)

Input: A static graph G = (V, E)
and two integers a, k ∈ N.
Question: Does there exist a temporally
connected temporal graph (G, λ),
where |λ| ≤ k and α(λ) ≤ a?

Min. Steiner Labeling (MSL)

Input: A static graph G = (V, E),
a subset R ⊆ V and a k ∈ N.
Question: Does there exist a temporally
R-connected temporal graph (G, λ),
where |λ| ≤ k?

Min. Aged Steiner Labeling (MASL)

Input: A static graph G = (V, E),
a subset R ⊆ V , and two integers a, k ∈ N.
Question: Does there exist a temporally
R-connected temporal graph (G, λ),
where |λ| ≤ k and α(λ) ≤ a?

Note that, for both problems MAL and MASL, whenever the input age bound a is
strictly smaller than the diameter d of G, the answer is always NO. Thus, we always assume
in the remainder of the paper that a ≥ d, where d is the diameter of the input graph G. For
simplicity of the presentation, we denote next by κ(G, d) the smallest number k for which
(G, k, d) is a YES instance for MAL.

▶ Observation 3 (⋆). For every graph G with n vertices and diameter d, we have that
κ(G, d) ≤ n(n − 1).

The next lemma shows that the upper bound of Observation 3 is asymptotically tight as,
for cycle graphs Cn with diameter d, we have that κ(Cn, d) = Θ(n2).

▶ Lemma 4 (⋆). Let Cn be a cycle on n vertices, where n ̸= 4, and let d be its diameter.
Then

κ(Cn, d) =
{

d2, when n = 2d

2d2 + d, when n = 2d + 1.

MFCS 2022
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2.1 A polynomial-time algorithm for ML
As a first warm-up, we study the problem ML, where no restriction is imposed on the
maximum allowed age of the output temporal graph. It is already known by Akrida et al. [2]
that any undirected graph can be made temporally connected by adding at most 2n − 3
time-labels, while for trees 2n − 3 labels are also necessary. Moreover, it was conjectured
that every graph needs at least 2n − 4 time-labels [2]. Here we prove their conjecture true
by proving that, if G contains (resp. does not contain) the cycle C4 on four vertices as a
subgraph, then (G, k) is a YES instance of ML if and only if k ≥ 2n − 4 (resp. k ≥ 2n − 3).
The proof is done via a reduction to the gossip problem [9] (for a survey on gossiping see
also [22]).

The related problem of achieving temporal connectivity by assigning to every edge of the
graph at most one time-label, has been studied by Göbel et al. [19], where the relationship
with the gossip problem has also been drawn. Contrary to ML, this problem is NP-hard [19].
That is, the possibility of assigning two or more labels to an edge makes the problem
computationally much easier. Indeed, in a C4-free graph with n vertices, an optimal solution
to ML consists in assigning in total 2n − 3 time-labels to the n − 1 edges of a spanning
tree. In such a solution, one of these n − 1 edges receives one time-label, while each of the
remaining n − 2 edges receives two time-labels. Similarly, when the graph contains a C4, it
suffices to span the graph with four trees tooted at the vertices of the C4, where each of the
edges of the C4 receives one time-label and each edge of the four trees receives two labels.
That is, a graph containing a C4 can be temporally connected using 2n − 4 time-labels.

In the gossip problem we have n agents from a set A. At the beginning, every agent
x ∈ A holds its own secret. The goal is that each agent eventually learns the secret of every
other agent. This is done by producing a sequence of unordered pairs (x, y), where x, y ∈ A

and each such pair represents one phone call between the agents involved, during which the
two agents exchange all the secrets they currently know.

The above gossip problem is naturally connected to ML. The only difference between the
two problems is that, in gossip, all calls are non-concurrent, while in ML we allow concurrent
temporal edges, i.e., two or more edges can appear at the same time slot t. Therefore, in
order to transfer the known results from gossip to ML, it suffices to prove that in ML we
can equivalently consider solutions with non-concurrent edges.

▶ Theorem 5 (⋆). Let G = (V, E) be a connected graph. Then the smallest k ∈ N for which
(G, k) is a YES instance of ML is:

k =
{

2n − 4, if G contains C4 as a subgraph,
2n − 3, otherwise.

2.2 A polynomial-time algorithm for directed acyclic graphs
As a second warm-up, we show that the minimization analogues of ML and MAL on
directed acyclic graphs (DAGs) are solvable in polynomial time. More specifically, for the
minimization analogue of ML we provide an algorithm which, given a DAG G = (V, A) with
diameter dG, computes a temporal labeling function λ which assigns the smallest possible
number of time-labels on the arcs of G with the following property: for every two vertices
u, v ∈ V , there exists a directed temporal path from u to v in (G, λ) if and only if there
exists a directed path from u to v in G. Moreover, the age α(G, λ) of the resulting temporal
graph is equal to dG. Therefore, this immediately implies a polynomial-time algorithm
for the minimization analogue of MAL on DAGs. For notation uniformity, we call these
minimization problems MLdirected and MALdirected, respectively.
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▶ Theorem 6 (⋆). Let G = (V, E) be a DAG with n vertices and m arcs. Then MLdirected(G)
and MALdirected(G) can be both computed in O(n(n + m)) time.

3 MAL is NP-complete

In this section we prove that it is NP-hard to determine the number of labels in an optimal
labeling of a static, undirected graph G, where the age, i.e., the maximum label used, is not
larger than the diameter of the input graph.

To prove this we provide a reduction from the NP-hard problem Monotone Max
XOR(3) (or MonMaxXOR(3) for short). This is a special case of the classical Boolean
satisfiability problem, where the input formula ϕ consists of the conjunction of monotone
XOR clauses of the form (xi ⊕ xj), i.e., variables xi, xj are non-negated. If each variable
appears in exactly r clauses, then ϕ is called a monotone Max XOR(r) formula. A clause
(xi ⊕ xj) is XOR-satisfied (or simply satisfied) if and only if xi ̸= xj . In Monotone Max
XOR(r) we are trying to find a truth assignment τ of ϕ which satisfies the maximum number
of clauses. As it can be easily checked, MonMaxXOR(3) encodes the problem Max-Cut
on cubic graphs, which is known to be NP-hard [5]. Therefore we conclude the following.

▶ Theorem 7 ([5]). MonMaxXOR(3) is NP-hard.

Now we explain our reduction from MonMaxXOR(3) to the problem Minimum Aged
Labeling (MAL), where the input static graph G is undirected and the desired age of the
output temporal graph is the diameter d of G . Let ϕ be a monotone Max XOR(3) formula
with n variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm. Note that m = 3

2 n, since each
variable appears in exactly 3 clauses. From ϕ we construct a static undirected graph Gϕ with
diameter d = 10, and prove that there exists a truth assignment τ which satisfies at least
k clauses in ϕ, if and only if there exists a labeling λϕ of Gϕ, with |λϕ| ≤ 13

2 n2 + 99
2 n − 8k

labels and with age α(G, λ) ≤ 10.

High-level construction

For each variable xi, 1 ≤ i ≤ n, we construct a variable gadget Xi that consists of a “starting”
vertex si and three “ending” vertices tℓ

i (for ℓ ∈ {1, 2, 3}); these ending vertices correspond
to the appearances of xi in three clauses of ϕ. In an optimum labeling λ(ϕ), in each variable
gadget there are exactly two labelings that temporally connect starting and ending vertices,
which correspond to the True or False truth assignment of the variable in the input formula
ϕ. For every clause (xi ⊕ xj) we identifying corresponding ending vertices of Xi and Xj

(as well as some other auxiliary vertices and edges). Whenever (xi ⊕ xj) is satisfied by a
truth assignment of ϕ, the labels of the common edges of Xi and Xj in an optimum labeling
coincide (thus using few labels); otherwise we need additional labels for the common edges
of Xi and Xj .

Detailed construction of Gϕ

For each variable xi from ϕ we create a variable gadget Xi, that consists of a base BXi on 11
vertices, BXi = {si, ai, bi, ci, di, ei, ai, bi, ci, di, ei}, and three forks F 1Xi, F 2Xi, F 3Xi, each
on 9 vertices, F ℓXi = {tℓ

i , f ℓ
i , gℓ

i , hℓ
i , mℓ

i , fi
ℓ
, gi

ℓ, hi
ℓ
, mi

ℓ}, where ℓ ∈ {1, 2, 3}. Vertices in the
base BXi are connected in the following way: there are two paths of length 5: siaibicidiei

and siaibicidiei, and 5 extra edges of form yiyi, where y ∈ {a, b, c, d, e}. Vertices in each fork
F ℓXi (where ℓ ∈ {1, 2, 3}) are connected in the following way: there are two paths of length
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4: tℓ
im

ℓ
ih

ℓ
ig

ℓ
i f ℓ

i and tℓ
imi

ℓhi
ℓ
gi

ℓfi
ℓ, and 4 extra edges of form yiyi

ℓ, where y ∈ {m, h, g, f}.
The base BXi of the variable gadget Xi is connected to each of the three forks F ℓXi via two
edges eif

ℓ
i and eifi

ℓ, where ℓ ∈ {1, 2, 3}. For an illustration see Figure 1.
For an easier analysis we fix the following notation. The vertex si ∈ BXi is called

a start vertex of Xi, vertices tℓ
i (ℓ ∈ {1, 2, 3}) are called ending vertices of Xi, a path

connecting si, tℓ
i that passes through vertices aibicidieif

ℓ
i gℓ

i hℓ
im

ℓ
i (resp. aibi . . . mi

ℓ) is called
the left (resp. right) si, tℓ

i -path. The left (resp. right) si, tℓ
i -path is a disjoint union of the left

(resp. right) path on vertices of the base BXi of Xi, an edge of form eif
ℓ
i (resp. eifi

ℓ) called
the left (resp. right) bridge edge and the left (resp. right) path on vertices of the ℓ-th fork
F ℓXi of Xi. The edges yiyi, where y ∈ {a, b, c, d, e, f ℓ, gℓ, hℓ, mℓ}, ℓ ∈ {1, 2, 3}, are called
connecting edges.

Figure 1 An example of a variable gadget Xi in Gϕ, corresponding to the variable xi from ϕ.

Connecting variable gadgets

There are two ways in which we connect two variable gadgets, depending whether they
appear in the same clause in ϕ or not.
1. Two variables xi, xj do not appear in any clause together. In this case we add the following

edges between the variable gadgets Xi and Xj :

from ei (resp. ei) to f ℓ′

j and fj
ℓ′

, where ℓ′ ∈ {1, 2, 3},

from ej (resp. ej) to f ℓ
i and fi

ℓ, where ℓ ∈ {1, 2, 3},
from di (resp. di) to dj and dj .

We call these edges the variable edges. For an illustration see Figure 2.
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Figure 2 An example of two non-intersecting variable gadgets and variable edges among them.

2. Let C = (xi ⊕ xj) be a clause of ϕ, that contains the r-th appearance of the variable xi

and r′-th appearance of the variable xj . In this case we identify the r-th fork F rXi of
Xi with the r′-th fork F r′

Xj of Xj in the following way:
tr
i = tr′

j ,

{fr
i , gr

i , hr
i , mr

i } = {fj
r′

, gj
r′

, hj
r′

, mj
r′

} respectively, and
{fi

r
, gi

r, hi
r
, mi

r} = {fr′

j , gr′

j , hr′

j , mr′

j } respectively.
Besides that we add the following edges between the variable gadgets Xi and Xj :

from ei (resp. ei) to f ℓ′

j and fj
ℓ′

, where ℓ′ ∈ {1, 2, 3} \ {r′},
from ej (resp. ej) to f ℓ

i and fi
ℓ, where ℓ ∈ {1, 2, 3} \ {r},

from di (resp. di) to dj and dj .
For an illustration see Figure 3.

This finishes the construction of Gϕ. Before continuing with the reduction, we prove the
following structural property of Gϕ.

▶ Lemma 8 (⋆). The diameter dϕ of Gϕ is 10.

▶ Theorem 9 (⋆). If OPTMonMaxXOR(3)(ϕ) ≥ k then OPTMAL(Gϕ, dϕ) ≤ 13
2 n2 + 99

2 n − 8k,
where n is the number of variables in the formula ϕ.

Before proving the statement in the other direction, we have to show some structural
properties. Let us fix the following notation. If a labeling λϕ labels all left (resp. right)
paths of the variable gadget Xi (i.e., both bottom-up from si to t1

i , t2
i , t3

i and top-down from
t1
i , t2

i , t3
i to si with labels 1, 2 . . . , 10 in this order), then we say that the variable gadget Xi

is left-aligned (resp. right-aligned) in the labeling λϕ. Note, if at least one edge on any of
these left (resp. right) paths of Xi is not labeled with the appropriate label between 1 and
10, then the variable gadget is not left-aligned (resp. not right-aligned). Every temporal
path from si to tℓ

i (resp. from tℓ
i to si) of length 10 in Xi is called an upward path (resp. a

downward path) in Xi. Any part of an upward (resp. downward) path is called a partial
upward (resp. downward) path. Note that, for any ℓ, ℓ′ ∈ {1, 2, 3}, ℓ ̸= ℓ′, a temporal path
from tℓ

i to tℓ′

i of length 10 is the union of a partial downward path on the fork F ℓ
i and a

partial upward path on F ℓ′

i . Moreover, note that these two partial downward/upward paths

MFCS 2022
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Figure 3 An example of two intersecting variable gadgets Xi, Xj corresponding to variables
xi, xj , that appear together in some clause in ϕ, where it is the third appearance of xi and the first
appearance of xj .

must be either both parts of a left temporal path or both parts of a right temporal path
between si and tℓ

i , tℓ′

i . The following technical lemma will allow us to prove the correctness
of our reduction.

▶ Lemma 10 (⋆). Let λϕ be a minimum labeling of Gϕ. Then λϕ can be modified in
polynomial time to a minimum labeling of Gϕ in which each variable gadget Xi is either
left-aligned or right-aligned.

▶ Theorem 11 (⋆). If OPTMAL(Gϕ, dϕ) ≤ 13
2 n2 + 99

2 n − 8k then OPTMonMaxXOR(3)(ϕ) ≥ k,
where n is the number of variables in the formula ϕ.

Since MAL is clearly in NP, the next theorem follows directly by Theorems 7, 9, and 11.

▶ Theorem 12. MAL is NP-complete on undirected graphs, even when the required maximum
age is equal to the diameter of the input graph.

4 The Steiner-Tree variations of the problem

In this section we investigate the computational complexity of the Steiner-Tree variations
of the problem, namely MSL and MASL. First, we prove in Section 4.1 that the age-
unrestricted problem MSL remains NP-hard, using a reduction from Vertex Cover. In
Section 4.2 we prove that this problem is in FPT, when parameterized by the number |R| of
terminals. Finally, using a parameterized reduction from Multicolored Clique, we prove
in Section 4.3 that the age-restricted version MASL is W[1]-hard with respect to |R|, even if
the maximum allowed age is a constant.

4.1 MSL is NP-complete
▶ Theorem 13 (⋆). MSL is NP-complete.

Proof sketch. MSL is clearly contained in NP. To prove that the MSL is NP-hard we
provide a polynomial-time reduction from the NP-complete Vertex Cover problem [24].
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Figure 4 An example of construction of the input graph for MSL.

Vertex Cover
Input: A static graph G = (V, E), a positive integer k.
Question: Does there exist a subset of vertices S ⊆ V such that |S| = k and ∀e ∈ E, e∩S ̸= ∅.

Let (G, k) be an input of the Vertex Cover problem and denote |V (G)| = n, |E(G)| = m.
We assume w.l.o.g. that G does not admit a vertex cover of size k − 1. We construct
(G∗, R∗, k∗), the input of MSL using the following procedure. The vertex set V (G∗) consists
of the following vertices:

two starting vertices N = {n0, n1},
a “vertex-vertex” corresponding to every vertex of G: UV = {uv|v ∈ V (G)},
an “edge-vertex” corresponding to every edge of G: UE = {ue|e ∈ E(G)},
2n + 12m · k “dummy” vertices.

The edge set E(G∗) consists of the following edges:
an edge between starting vertices, i.e., n0n1,
a path of length 3 between a starting vertex n1 and every vertex-vertex uv ∈ UV using 2
dummy vertices, and
for every edge e = vw ∈ E(G) we connect the corresponding edge-vertex ue with the
vertex-vertices uv and uw, each with a path of length 6k + 1 using 6k dummy vertices.

We set R∗ = {n0}∪UE and k∗ = 6k +2m(6k +1)+1. This finishes the construction. It is not
hard to see that this construction can be performed in polynomial time. For an illustration
see Figure 4. Note that any two paths in G∗ can intersect only in vertices from N ∪ UV ∪ UE

and not in any of the dummy vertices. At the end G∗ is a graph with 3n + m(12k + 1) + 2
vertices and 1 + 3n + 2m(6k + 1) edges.

In the full proof we prove that (G, k) is a YES instance of the Vertex Cover if and
only if (G∗, R∗, k∗) is a YES instance of the MSL. ◀

4.2 An FPT-algorithm for MSL with respect to the number of terminals
In this section we provide an FPT-algorithm for MSL, parameterized by the number |R| of
terminals. The algorithm is based on a crucial structural property of minimum solutions for
MSL: there always exists a minimum labeling λ that labels the edges of a subtree of the
input graph (where every leaf is a terminal vertex), and potentially one further edge that
forms a C4 with three edges of the subtree.

MFCS 2022
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Intuitively speaking, we can use an FPT-algorithm for Steiner Tree parameterized by
the number of terminals [14] to reveal a subgraph of the MSL instance that we can optimally
label using Theorem 5. Since the number of terminals in the created Steiner Tree instance
is larger than the number of terminals in the MSL instance by at most a constant, we obtain
an FPT-algorithm for MSL parameterized by the number of terminals.

▶ Lemma 14 (⋆). Let G = (V, E) be a graph, R ⊆ V a set of terminals, and k be an integer
such that (G, R, k) is a YES instance of MSL and (G, R, k − 1) is a NO instance of MSL.

If k is odd, then there is a labeling λ of size k for G such that the edges labeled by λ form
a tree, and every leaf of this tree is a vertex in R.
If k is even, then there is a labeling λ of size k for G such that the edges labeled by λ

form a graph that is a tree with one additional edge that forms a C4, and every leaf of
the tree is a vertex in R.

The main idea for the proof of Lemma 14 is as follows. Given a solution labeling λ, we
fix one terminal r∗ and then (i) we consider the minimum subtree in which r∗ can reach all
other terminal vertices and (ii) we consider the minimum subtree in which all other terminal
vertices can reach r∗. Intuitively speaking, we want to label the smaller one of those subtrees
using Theorem 5 and potentially adding an extra edge to form a C4; we then argue that the
obtained labeling does not use more labels than λ. To do that, and to detect whether it is
possible to add an edge to create a C4, we make a number of modifications to the trees until
we reach a point where we can show that our solution is correct.

Having Lemma 14, we can now give our algorithm for MSL. As mentioned before, it uses
an FPT-algorithm for Steiner Tree parameterized by the number of terminals [14] as a
subroutine.

▶ Theorem 15 (⋆). MSL is in FPT when parameterized by the number of terminals.

4.3 Parameterized Hardness of MASL

Note that, since MASL generalizes both MSL and MAL, NP-hardness of MASL is already
implied by both Theorems 12 and 13. In this section, we prove that MASL is W[1]-hard
when parameterized by the number |R| of the terminals, even if the restriction a on the
age is a constant. To this end, we provide a parameterized reduction from Multicolored
Clique. This, together with Theorem 15, implies that MASL is strictly harder than MSL
(parameterized by the number |R| of terminals), unless FPT=W[1].

▶ Theorem 16 (⋆). MASL is W[1]-hard when parameterized by the number |R| of the
terminals, even if the restriction a on the age is a constant.

Note here that, in the constructed instance of MASL in the proof of Theorem 16, the
number of labels is also upper-bounded by a function of the number of colors in the instance
of Multicolored Clique. Therefore the proof of Theorem 16 implies also the next
result, which is even stronger (since in every solution of MASL the number of time-labels is
lower-bounded by a function of the number |R| of terminals).

▶ Corollary 17. MASL is W[1]-hard when parameterized by the number k of time-labels,
even if the restriction a on the age is a constant.
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5 Concluding remarks

Several open questions arise from our results. As we pointed out in Lemma 4, κ(Cn, d) =
Θ(n2), while κ(G, d) = O(n2) for every graph G by Observation 3. For which graph classes
G do we have κ(G, d) = o(n2) (resp. κ(G, d) = O(n)) for every G ∈ G?

As we proved in Theorem 12, MAL is NP-complete when the upper age bound is equal to
the diameter d of the input graph G. In other words, it is NP-hard to compute κ(G, d). On
the other hand, κ(G, 2r) can be easily computed in polynomial time, where r is the radius of
G. Indeed, using the results of Section 2.1, it easily follows that, if G contains (resp. does
not contain) a C4 then κ(G, 2r) = 2n − 4 (resp. κ(G, 2r) = 2n − 3). For which values of an
upper age bound a, where d ≤ a ≤ 2r, can κ(G, a) computed efficiently? In particular, can
κ(G, d + 1) or κ(G, 2r − 1) be computed in polynomial time for every undirected graph G?

With respect to parameterized algorithmics, is MAL FPT with respect to the number k

of time-labels?
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Abstract
Parity games have witnessed several new quasi-polynomial algorithms since the breakthrough result
of Calude et al. (STOC 2017). The combinatorial object underlying these approaches is a universal
tree, as identified by Czerwiński et al. (SODA 2019). By proving a quasi-polynomial lower bound on
the size of a universal tree, they have highlighted a barrier that must be overcome by all existing
approaches to attain polynomial running time. This is due to the existence of worst case instances
which force these algorithms to explore a large portion of the tree.

As an attempt to overcome this barrier, we propose a strategy iteration framework which can
be applied on any universal tree. It is at least as fast as its value iteration counterparts, while
allowing one to take bigger leaps in the universal tree. Our main technical contribution is an
efficient method for computing the least fixed point of 1-player games. This is achieved via a careful
adaptation of shortest path algorithms to the setting of ordered trees. By plugging in the universal
tree of Jurdziński and Lazić (LICS 2017), or the Strahler universal tree of Daviaud et al. (ICALP
2020), we obtain instantiations of the general framework that take time O(mn2 log n log d) and
O(mn2 log3 n log d) respectively per iteration.
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1 Introduction

A parity game is an infinite duration game between two players Even and Odd. It takes
place on a sinkless directed graph G = (V, E) equipped with a priority function π : V →
{1, 2, . . . , d}. Let n = |V | and m = |E|. The node set V is partitioned into V0 ⊔ V1 such that
nodes in V0 and V1 are owned by Even and Odd respectively. The game starts when a token
is placed on a node. In each turn, the owner of the current node moves the token along an
outgoing arc to the next node, resulting in an infinite walk. If the highest priority occurring
infinitely often in this walk is even, then Even wins. Otherwise, Odd wins.
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By the positional determinacy of parity games [8], there exists a partition of V into
two subsets from which Even and Odd can force a win respectively. The main algorithmic
problem of parity games is to determine this partition, or equivalently, to decide the winner
given a starting node. This is a notorious problem that lies in NP ∩ co-NP [9], and also in
UP ∩ co-UP [14], with no known polynomial algorithm to date.

Due to its intriguing complexity status, as well as its fundamental role in automata theory
and logic [9, 18], parity games have been intensely studied over the past three decades. Prior
to 2017, algorithms for solving parity games, e.g. [27, 15, 26, 4, 24, 17, 25, 20, 2], are either
exponential or subexponential. In a breakthrough result, Calude et al. [5] gave the first quasi-
polynomial algorithm. Since then, many other quasi-polynomial algorithms [10, 16, 19, 22, 3]
have been developed. Most of them have been unified by Czerwiński et al. [6] via the concept
of a universal tree. A universal tree is an ordered tree into which every ordered tree of a
certain size can be isomorphically embedded. They proved a quasi-polynomial lower bound
on the size of a universal tree.

Value iteration. The starting point of this paper is the classic progress measure algorithm
[15, 16] for solving parity games. It belongs to a broad class of algorithms called value
iteration – a well-known method for solving more general games on graphs such as mean
payoff games and stochastic games. In value iteration, every node v in G is assigned a
value µ(v) ∈ V from some totally ordered set V, and the values are locally improved until
we reach the least fixed point of a set of operators associated with the game. The set V is
called the value domain, which is usually a bounded set of real numbers or integers. For the
progress measure algorithm, its value domain is the set of leaves L(T ) in a universal tree
T . As the values are monotonically improved, the running time is proportional to |L(T )|.
The first progress measure algorithm of Jurdziński [15] uses a perfect n-ary tree, which
runs in exponential time. Its subsequent improvement by Jurdziński and Lazić [16] uses a
quasi-polynomial-sized tree, which runs in nlog(d/ log n)+O(1) time.

Despite having good theoretical efficiency, the progress measure algorithm is not robust
against its worst-case behaviour. In fact, it is known to realize its worst-case running time
on very simple instances. As an example, let (G, π) be an arbitrary instance with maximum
priority d, with d being even. For a small odd constant k, if we add two nodes of priority k

as shown in Figure 1, then the progress measure algorithm realizes its worst-case running
time. This is because the values of those nodes are updated superpolynomially many times.

(G, π) k kd

Figure 1 A worst-case construction for the progress measure algorithm. Nodes in V0 and V1 are
drawn as squares and circles, respectively.

Strategy iteration. A different but related method for solving games on graphs is strategy
iteration. For a parity game (G, π), a (positional) strategy τ for a player (say Odd) is a
choice of an outgoing arc from every node in V1. Removing the unchosen outgoing arcs from
every node in V1 results in a strategy subgraph Gτ ⊆ G. A general framework for strategy
iteration is given, e.g., in [12]. Following that exposition, to rank the strategies for Odd, one
fixes a suitable value domain V and associates a valuation µ : V → V to each strategy. This
induces a partial order over the set of strategies for Odd. Note that most valuations used
in the literature can be thought of as fixed points of a set of operators associated with the
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1-player game (Gτ , π) for Even. In every iteration, the algorithm maintains a strategy τ for
Odd and its corresponding valuation µ : V → V. Based on a pivot rule, it modifies τ to a
better strategy τ ′, and updates µ to the valuation µ′ of τ ′. Note that µ′ ≥ µ. This process is
repeated until we reach the optimal strategy for Odd.

Originally introduced by Hoffman and Karp for stochastic games [13], variants of strategy
iteration for parity games have been developed [23, 26, 4, 24]. They usually perform well
in practice, but tedious constructions of their worst case (sub)exponential complexity are
known [11]. Motivated by the construction of small universal trees [16, 7], a natural question
is whether there exists a strategy iteration algorithm with value domain L(T ) for a universal
tree T . It is not hard to see that with value domain L(T ), unfortunately, the fixed point
of a 1-player game (Gτ , π) may not be unique. Moreover, in a recent thesis [21], Ohlmann
showed that a valuation that is fit for strategy iteration cannot be defined using L(T ).

Our contribution. We show that an adaptation of strategy iteration with value domain
L(T ) is still possible. To circumvent the impossibility result of Ohlmann [21], we slightly alter
the strategy iteration framework as follows. After pivoting to a strategy τ ′ in an iteration,
we update the current node labeling µ to the least fixed point of (Gτ ′ , π) that is pointwise at
least µ. In other words, we force µ to increase (whereas this happens automatically in the
previous framework). Since the fixed point of a 1-player game may not be unique, this means
that we may encounter a strategy more than once during the course of the algorithm. The
motivation of our approach comes from tropical geometry, as discussed in the full version.

To carry out each iteration efficiently, we give a combinatorial method for computing
the least fixed point of 1-player games with value domain L(T ). It relies on adapting the
classic techniques of label-correcting and label-setting from the shortest path problem to the
setting of ordered trees. When T is instantiated as a specific universal tree constructed in
the literature, we obtain the following running times:

The universal tree of Jurdziński and Lazić [16] takes O(mn2 log n log d).
The Strahler universal tree of Daviaud et al. [7] takes O(mn2 log3 n log d).
The perfect n-ary tree of height d/2 takes O(d(m + n log n)).

The total number of strategy iterations is trivially bounded by n|L(T )|, the same bound
for the progress measure algorithm. Whereas we do not obtain a strict improvement over
previous running time bounds, it is conceivable that our algorithm would terminate in fewer
iterations than the progress measure algorithm on most examples. Moreover, our framework
provides large flexibility in the choice of pivot rules. Identifying a pivot rule that may provide
strictly improved (and possibly even polynomial) running time is left for future research.

Computing the least fixed point of 1-player games. Let (Gτ , π) be a 1-player game for
Even, and µ∗ be its least fixed point with value domain L(T ) for some universal tree T .
Starting from µ(v) = min L(T ) for all v ∈ V , the progress measure algorithm successively
lifts the label of a node based on the labels of its out-neighbours until µ∗ is reached. However,
this is not polynomial in general, even on 1-player games. So, instead of approaching µ∗ from
below, we approach it from above. This is reminiscent of shortest path algorithms, where
node labels form upper bounds on the shortest path distances throughout the algorithm.
In a label-correcting method like the Bellman–Ford algorithm, to compute shortest paths
to a target node t, the label at t is initialized to 0, while the label at all other nodes is
initialized to +∞. By iteratively checking if an arc violates feasibility, the node labels are
monotonically decreased. We refer to Ahuja et al. [1] for an overview on label-correcting and
label-setting techniques for computing shortest paths.
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In our setting, the role of the target node t is replaced by a (potentially empty) set of
even cycles in Gτ . A cycle is said to be even if its maximum priority is even. However, this
set is not known to us a priori. To overcome this issue, we define base nodes as candidate
target nodes. A node w ∈ V is a base node if it dominates an even cycle in Gτ , that is, it is
a node with the highest priority in the cycle. Note that π(w) is even.

To run a label-correcting method, we need to assign initial labels ν to the nodes in Gτ .
The presumably obvious choice is to set ν(w)← min L(T ) if w is a base node, and ν(w)← ⊤
otherwise, where ⊤ is bigger than every element in L(T ) (⊤ is analogous to +∞ for real
numbers). However, this only works when T is a perfect n-ary tree. For a more complicated
universal tree, the number of children at each internal vertex of T is not the same. Hence, it
is possible to have ν(w) < µ∗(w) for a base node w. We also cannot make ν(w) too large, as
otherwise we may converge to a fixed point that is not pointwise minimal.

To correctly initialize ν(w) for a base node w, let us consider the cycles dominated by w

in Gτ . Every such cycle C induces a subgame (C, π) on which Even wins because C is even.
The least fixed point of (C, π) consists of leaves of an ordered tree TC of height j := π(w)/2.
Initializing ν(w) essentially boils down to finding such a cycle C with the “narrowest” TC .
To this end, let Tj be the set of distinct subtrees of height j of our universal tree T . We
will exploit the fact that Tj is a poset with respect to the partial order of embeddability. In
particular, let Cj be a set of chains covering Tj , and fix a chain Ck

j in Cj . We define the width
of a cycle C as the “width” of the smallest tree in Ck

j into which TC is embeddable. Then,
we show that our problem reduces to finding a minimum width cycle dominated by w in Gτ .

To solve the latter problem, we construct an arc-weighted auxiliary digraph D on the set
of base nodes. Every arc uv in D represents a path from base node u to base node v in Gτ ,
in such a way that minimum bottleneck cycles in D correspond to minimum width cycles in
Gτ . It follows that the desired cycle C can be obtained by computing a minimum bottleneck
cycle in D containing w. After getting C, we locate the corresponding subtree T ′ of T into
which TC is embeddable. Then, the label at w is initialized as ν(w)← min L(T ′).

With these initial labels, we show that a generic label-correcting procedure returns the
desired least fixed point µ∗ in O(mn) time. The overall running time of this label-correcting
method is dominated by the initialization phase, whose running time is proportional to the
size of the chain cover Cj . We prove that the quasi-polynomial universal trees constructed
in the literature [16, 7] admit small chain covers. Using this result, we then give efficient
implementations of our method for these trees.

In the full version of the paper, we also develop a label-setting method for computing µ∗,
which is faster but only applicable when T is a perfect n-ary tree. Unlike the label-correcting
approach, in a label-setting method such as Dijkstra’s algorithm, the label of a node is fixed
in each iteration. In the shortest path problem, Dijkstra’s algorithm selects a node with the
smallest label to be fixed in every iteration. When working with labels given by the leaves
of a universal tree, this criterion does not work anymore. Let H be the subgraph of Gτ

obtained by deleting all the base nodes. For p ∈ N, let Hp be the subgraph of H induced by
the nodes with priority at most p. We construct a suitable potential function by interlacing
each node label with a tuple that encodes the topological orders in H2, H4, . . . . In every
iteration, a node with the smallest potential is selected, and its label is fixed.

Paper organization. In Section 2, we introduce notation and provide the necessary pre-
liminaries on parity games and universal trees. Section 3 contains our strategy iteration
framework based on universal trees. In Section 4, we give a label-correcting method for
computing the least fixed point of 1-player games. The label-setting method, on the other
hand, is given in the full version. Missing proofs can also be found in the full version.
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2 Preliminaries on Parity Games and Universal Trees

For d ∈ N, let [d] = {1, 2, . . . , d}. For a graph G, we use V (G) as its vertex set, and E(G) as
its edge set. A parity game instance is given by (G, π), where G = (V, E) is a sinkless directed
graph with V = V0 ⊔V1, and π : V → [d] is a priority function. Without loss of generality, we
may assume that d is even. In this paper, we are only concerned with positional strategies.
A strategy for Odd is a function τ : V1 → V such that vτ(v) ∈ E for all v ∈ V1. Its strategy
subgraph is Gτ = (V, Eτ ), where Eτ := {vw ∈ E : v ∈ V0} ∪ {vτ(v) : v ∈ V1}. A strategy for
Even and its strategy subgraph are defined analogously. We always denote a strategy for
Even as σ, and a strategy for Odd as τ . If we fix a strategy τ for Odd, the resulting instance
(Gτ , π) is a 1-player game for Even.

For the sake of brevity, we overload the priority function π as follows. Given a subgraph
H ⊆ G, let π(H) be the highest priority in H. The subgraph H is said to be even if π(H)
is even, and odd otherwise. For a fixed π, we denote by Π(H) the set of nodes with the
highest priority in H. If v ∈ Π(H), we say that v dominates H . For p ∈ [d], Hp refers to the
subgraph of H induced by nodes with priority at most p. For a node v, let δ−

H(v) and δ+
H(v)

be the incoming and outgoing arcs of v in H respectively. Similarly, let N−
H (v) and N+

H (v)
be the in-neighbors and out-neighbors of v in H respectively. When H is clear from context,
we will omit it from the subscripts.

The win of a player can be certified by node labels from a universal tree, as stated in
Theorem 3. We give the necessary background for this now.

2.1 Ordered Trees and Universal Trees
An ordered tree T is a prefix-closed set of tuples, whose elements are drawn from a linearly
ordered set M . The linear order of M lexicographically extends to T . Equivalently, T can be
thought of as a rooted tree, whose root we denote by r. Under this interpretation, elements
in M correspond to the branching directions at each vertex of T (see Figures 2 and 3 for
examples). Every tuple then corresponds to a vertex v ∈ V (T ). This is because the tuple
can be read by traversing the unique r-v path in T . Observe that v is an h-tuple if and only
if v is at depth h in T . In particular, r is the empty tuple.

In this paper, we always use the terms “vertex” and “edge” when referring to an ordered
tree T . The terms “node” and “arc” are reserved for the game graph G.

Given an ordered tree T of height h, let L(T ) be the set of leaves in T . For convenience,
we assume that every leaf in T is at depth h throughout. The tuple representing a leaf
ξ ∈ L(T ) is denoted as ξ = (ξ2h−1, ξ2h−3, . . . , ξ1), where ξi ∈M for all i. We refer to ξ2h−1
as the first component of ξ, even though it has index 2h − 1. For a fixed p ∈ [2h], the

p-truncation of ξ is ξ|p :=
{

(ξ2h−1, ξ2h−3, . . . , ξp+1), if p is even
(ξ2h−1, ξ2h−3, . . . , ξp), if p is odd.

In other words, the p-truncation of a tuple is obtained by deleting the components with
index less than p. Note that a truncated tuple is an ancestor of the untruncated tuple in T .

▶ Definition 1. Given ordered trees T and T ′, we say that T embeds into T ′ (denoted T ⊑ T ′)
if there exists an injective and order-preserving homomorphism from T to T ′ such that leaves
in T are mapped to leaves in T ′. Formally, this is an injective function f : V (T )→ V (T ′)
which satisfies the following properties:
1. For all u, v ∈ V (T ), uv ∈ E(T ) implies f(u)f(v) ∈ E(T ′);
2. For all u, v ∈ V (T ), u ≤ v implies f(u) ≤ f(v).
3. f(u) ∈ L(T ′) for all u ∈ L(T ).

We write T ≡ T ′ if T ⊑ T ′ and T ′ ⊑ T . Also, T ⊏ T ′ if T ⊑ T ′ and T ̸≡ T ′.
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In the definition above, since f is order-preserving, the children of every vertex in T are
mapped to the children of its image injectively such that their order is preserved. As an
example, the tree in Figure 3 embeds into the tree in Figure 2. It is easy to verify that ⊑ is
a partial order on the set of all ordered trees.

▶ Definition 2. An (ℓ, h)-universal tree is an ordered tree T ′ of height h such that T ⊑ T ′

for every ordered tree T of height h and with at most ℓ leaves, all at depth exactly h.

The simplest example of an (ℓ, h)-universal tree is the perfect ℓ-ary tree of height h, which
we call a perfect universal tree. The linearly ordered set M for this tree can be chosen as
{0, 1, . . . , ℓ− 1} (see Figure 2 for an example). It has ℓh leaves, which grows exponentially
with h. Jurdziński and Lazić [16] constructed an (ℓ, h)-universal tree with at most ℓlog h+O(1)

leaves, which we call a succinct universal tree. In this tree, every leaf ξ corresponds to an
h-tuple of binary strings with at most ⌊log(ℓ)⌋ bits in total1. We use |ξ| and |ξi| to denote the
total number of bits in ξ and ξi respectively. The linearly ordered set M for this tree consists
of finite binary strings, where ε ∈ M is the empty string (see Figure 3 for an example).
For any pair of binary strings s, s′ ∈ M and a bit b, the linear order on M is defined as
0s < ε < 1s′ and bs < bs′ ⇐⇒ s < s′.

0 1 2

0 1 2 0 1 2 0 1 2

Figure 2 The perfect (3,2)-universal tree.

0 ε 1

ε 0 ε 1 ε

Figure 3 The succinct (3,2)-universal tree.

2.2 Node Labelings from Universal Trees
Let (G, π) be a parity game instance and T be an ordered tree of height d/2. We augment
the set of leaves with an extra top element ⊤, denoted L̄(T ) := L(T )∪ {⊤}, such that ⊤ > v

for all v ∈ V (T ). We also set ⊤|p := ⊤ for all p ∈ [d]. A function µ : V → L̄(T ) which maps
the nodes in G to L̄(T ) is called a node labeling. For a subgraph H of G, we say that µ is
feasible in H if there exists a strategy σ : V0 → V for Even with vσ(v) ∈ E(H) whenever
δ+

H(v) ̸= ∅, such that the following condition holds for every arc vw in H ∩Gσ:
If π(v) is even, then µ(v)|π(v) ≥ µ(w)|π(v).
If π(v) is odd, then µ(v)|π(v) > µ(w)|π(v) or µ(v) = µ(w) = ⊤.

An arc vw which does not satisfy the condition above is called violated (with respect to µ).
On the other hand, if µ(v) is the smallest element in L̄(T ) such that vw is non-violated, then
vw is said to be tight. Any arc which is neither tight nor violated is called loose. We say
that a subgraph is tight if it consists of tight arcs.

In the literature, a node labeling which is feasible in G is also called a progress measure.
The node labeling given by µ(v) = ⊤ for all v ∈ V is trivially feasible in G. However, we are
primarily interested in progress measures with minimal top support, i.e. such that the set of
nodes having label ⊤ is inclusion-wise minimal.

1 A slightly looser bound of ⌈log ℓ⌉ was derived in [16, Lemma 1]. It can be strengthened to ⌊log ℓ⌋ with
virtually no change in the proof.
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▶ Theorem 3 ([15, Corollaries 7–8]). Given an (n, d/2)-universal tree T , let µ∗ : V → L̄(T )
be a node labeling which is feasible in G and has minimal top support. Then, Even wins from
v ∈ V if and only if µ∗(v) ̸= ⊤.

The above theorem formalizes the following intuition: nodes with smaller labels are more
advantageous for Even to play on. Note that if µ is a minimal node labeling which is feasible
in G, i.e. µ′ is infeasible in G for all µ′ < µ, then there exists a strategy σ for Even such that
vσ(v) is tight for all v ∈ V0. The next observation is well-known (see, e.g., [16, Lemma 2])
and follows directly from the definition of feasibility.

▶ Lemma 4 (Cycle Lemma). Let µ be a node labeling and C be a cycle such that µ(v) ̸= ⊤
for all v ∈ V (C). If µ is feasible in C, then C is even. If C is also tight, then µ(v) = µ(w)
for all v, w ∈ Π(C).

We assume to have access to the following algorithmic primitive, whose running time we
denote by γ(T ). Its implementation depends on the ordered tree T . For instance, γ(T ) = O(d)
if T is a perfect (n, d/2)-universal tree. If T is a succinct (n, d/2)-universal tree, Jurdziński
and Lazić [16, Theorem 7] showed that γ(T ) = O(log n log d).

Tighten(µ, vw)

Given a node labeling µ : V → L̄(T ) and an arc vw ∈ E, return the unique element
ξ ∈ L̄(T ) such that vw is tight after setting µ(v) to ξ.

Given a node labeling µ : V → L̄(T ) and an arc vw ∈ E, let lift(µ, vw) be the smallest
element ξ ∈ L̄(T ) such that ξ ≥ µ(v) and vw is not violated after setting µ(v) to ξ. Observe
that if vw is violated, lift(µ, vw) is given by Tighten(µ, vw). Otherwise, it is equal to µ(v).
Hence, it can be computed in γ(T ) time.

Let L be the finite lattice of node labelings mapping V to L̄(T ). For a sinkless subgraph
H ⊆ G, consider the following operators. For every node v ∈ V0, define Liftv : L×V → L̄(T )
as Liftv(µ, u) := minvw∈E(H) lift(µ, vw) if u = v, and µ(u) otherwise. For every arc vw ∈
E(H) where v ∈ V1, define Liftvw : L×V → L̄(T ) as Liftvw(µ, u) := lift(µ, vw) if u = v, and
µ(u) otherwise. We denote H↑ = {Liftv : v ∈ V0} ∪ {Liftvw : v ∈ V1} as the operators in H.
Since they are inflationary and monotone, for any µ ∈ L, the least simultaneous fixed point
of H↑ that is pointwise at least µ exists. It is denoted as µH↑ . Note that a node labeling
is a simultaneous fixed point of H↑ if and only if it is feasible in H. The progress measure
algorithm [15, 16] is an iterative application of the operators in G↑ to µ to obtain µG↑ .

3 Strategy Iteration with Tree Labels

In this section, we present a strategy iteration algorithm (Algorithm 1) whose pivots are
guided by a universal tree. It takes as input an instance (G, π), a universal tree T , and
an initial strategy τ1 for Odd. Throughout, it maintains a node labeling µ : V → L̄(T ),
initialized as the least simultaneous fixed point of G↑

τ1
. At the start of every iteration, the

algorithm maintains a strategy τ for Odd, and a node labeling µ : V → L̄(T ) which is feasible
in Gτ . Furthermore, there are no loose arcs in Gτ with respect to µ. So, every arc in Gτ is
either tight (usable by Even in her counterstrategy σ) or violated (not used by Even). Note
that our initial node labeling satisfies these conditions with respect to τ1.

For v ∈ V1, we call a violated arc vw ∈ E with respect to µ admissible (as it admits
Odd to perform an improvement). If there are no admissible arcs in G, then the algorithm
terminates. In this case, µ is feasible in G. Otherwise, Odd pivots to a new strategy τ ′ by
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Algorithm 1 Strategy iteration with tree labels: (G, π) instance, T universal tree, τ1 initial
strategy for Odd.

1: procedure StrategyIteration((G, π), T, τ1)
2: µ(v)← min L(T ) ∀v ∈ V

3: τ ← τ1, µ← µG↑
τ

4: while ∃ an admissible arc in G with respect to µ do
5: Pivot to a strategy τ ′ by selecting admissible arc(s) ▷ requires a pivot rule
6: τ ← τ ′, µ← µG↑

τ

7: return τ , µ

switching to admissible arc(s). The choice of which admissible arc(s) to pick is governed by
a pivot rule. Then, µ is updated to µG↑

τ′ . Due to the minimality of µG↑
τ′ , there are no loose

arcs in Gτ ′ with respect to µG↑
τ′ , so this invariant continues to hold in the next iteration.

The correctness of Algorithm 1 follows from the Knaster–Tarski Theorem. We remark
that a strategy τ may occur more than once during the course of the algorithm, as mentioned
in the description of strategy iteration in Section 1. This is because the fixed points of G↑

τ

are not necessarily unique. See Figure 4 for an example run with a succinct universal tree.
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Figure 4 An example run of Algorithm 1 with the succinct (3,2)-universal tree. The left figure
depicts a game instance (nodes in V0 and V1 are drawn as squares and circles respectively). The
next two figures show Odd’s strategy and the node labeling at the start of Iteration 1 and 2. Arcs
not selected by Odd are greyed out. In the right figure, e1 is loose, e2 is tight, and e3 is violated.

4 Computing the Least Fixed Point of 1-Player Games

Let (Gτ , π) be a 1-player game for Even, and let µ ∈ L be a node labeling such that there
are no loose arcs in Gτ . In this section, we develop an efficient method for computing µG↑

τ .
We know that applying the operators in G↑

τ to µ is not polynomial in general. So, we will
approach µG↑

τ from above instead.
Given a node labeling ν : V → L̄(T ) and an arc vw ∈ E, let drop(ν, vw) be the largest

element ξ ∈ L̄(T ) such that ξ ≤ ν(v) and vw is not loose after setting ν(v) to ξ. Observe
that if vw is loose, then drop(ν, vw) is given by Tighten(ν, vw). Otherwise, it is equal to
ν(v). Hence, it can be computed in γ(T ) time.

We are ready to define the deflationary counterpart of Liftvw. For every arc vw ∈ Eτ ,
define the operator Dropvw : L×V → L̄(T ) as Dropvw(ν, u) := drop(ν, vw) if u = v, and ν(v)
otherwise. For a subgraph H ⊆ Gτ , we denote H↓ = {Drope : e ∈ E(H)} as the operators
in H. Since they are deflationary and monotone, for any ν ∈ L, the greatest simultaneous
fixed point of H↓ that is pointwise at most ν exists. It is denoted as νH↓ . Note that a node
labeling is a simultaneous fixed point of H↓ if and only if there are no loose arcs in H with
respect to it.
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Our techniques are inspired by the methods of label-correcting and label-setting for the
shortest path problem. In the shortest path problem, we have a designated target node t

whose label is initialized to 0. For us, the role of t is replaced by a (potentially empty) set of
even cycles in Gτ , which we do not know a priori. So, we define a set of candidates nodes
called base nodes, whose labels need to be initialized properly.

▶ Definition 5. Given a 1-player game (Gτ , π) for Even, we call v ∈ V a base node if
v ∈ Π(C) for some even cycle C in Gτ . Denote B(Gτ ) as the set of base nodes in Gτ .

The base nodes can be found by recursively decomposing Gτ into strongly connected
components. Initially, for each strongly connected component K of Gτ , we delete Π(K). If
π(K) is even and |V (K)| > 1, then Π(K) are base nodes and we collect them. Otherwise,
we ignore them. Then, we are left with a smaller subgraph of G, so we repeat the process.
Using Tarjan’s strongly connected components algorithm, this procedure takes O(dm) time.

In the next subsection, we develop a label-correcting method for computing µG↑
τ , and

apply it to the quasi-polynomial universal trees constructed in the literature [16, 7]. The
label-setting method, which is faster but only applicable to perfect universal trees, is deferred
to the full version.

4.1 Label-Correcting Method
The Bellman–Ford algorithm for the shortest path problem is a well-known implementation
of the generic label-correcting method [1]. We start by giving its analogue for ordered
trees. Algorithm 2 takes as input a 1-player game (Gτ , π) for Even and a node labeling
ν : V → L̄(T ) from some ordered tree T . Like its classical version for shortest paths, the
algorithm runs for n− 1 iterations. In each iteration, it replaces the tail label of every arc
e ∈ Eτ by drop(ν, e). Clearly, the running time is O(mnγ(T )). Moreover, if ν′ is the returned
node labeling, then ν′ ≥ νG↓

τ .

Algorithm 2 Bellman–Ford: (Gτ , π) 1-player game for Even, ν : V → L̄(T ) node labeling from
an ordered tree T .

1: procedure BellmanFord((G, π), ν)
2: for i = 1 to n− 1 do
3: for all vw ∈ E do ▷ In any order
4: ν(v)← drop(ν, vw)
5: return ν

Recall that we have a node labeling µ ∈ L such that Gτ does not have loose arcs, and
our goal is to compute µG↑

τ . We first state a sufficient condition on the input node labeling
ν such that Algorithm 2 returns µG↑

τ . In the shortest path problem, we set ν(t) = 0 at the
target node t, and ν(v) =∞ for all v ∈ V \ {t}. When working with node labels given by
an ordered tree, one has to ensure that the algorithm does not terminate with a fixed point
larger than µG↑

τ , motivating the following definition.

▶ Definition 6. Given a node labeling µ ∈ L, the threshold label of a base node v is

µ̂(v) := min
µ̃∈L
{µ̃(v) : µ̃(v) ≥ µ(v) and µ̃ is feasible in a cycle dominated by v} .

The next lemma follows directly from the pointwise minimality of µG↑
τ (v).
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▶ Lemma 7. Let µ ∈ L be a node labeling such that Gτ does not have loose arcs. For every
base node v ∈ B(Gτ ), we have µ̂(v) ≥ µG↑

τ (v).

The next theorem shows that if we initialize the base nodes with their corresponding
threshold labels, then Algorithm 2 returns µG↑

τ . Even more, it suffices to have an initial
node labeling ν ∈ L such that µG↑

τ (v) ≤ ν(v) ≤ µ̂(v) for all v ∈ B(Gτ ). For the other nodes
v /∈ B(Gτ ), we can simply set ν(v)← ⊤.

▶ Theorem 8. Let µ ∈ L be a node labeling such that Gτ does not have loose arcs. Given
ν ∈ L where ν ≥ µG↑

τ and ν(v) ≤ µ̂(v) for all v ∈ B(Gτ ), Algorithm 2 returns µG↑
τ .

Our strategy for computing such a ν is to find the cycles in Definition 6. In particular,
for every base node v ∈ B(Gτ ), we aim to find a cycle C dominated by v such that µ̂(v)
can be extended to a node labeling that is feasible in C. To accomplish this goal, we first
introduce the notion of width in Section 4.1.1, which allows us to evaluate how “good” a
cycle is. It is defined using chains in the poset of subtrees of T , where the partial order is
given by ⊑. Then, in Section 4.1.2, we show how to obtain the desired cycles by computing
minimum bottleneck cycles on a suitably defined auxiliary digraph.

4.1.1 Width from a Chain of Subtrees in T

Two ordered trees T ′ and T ′′ are said to be distinct if T ′ ̸≡ T ′′ (not isomorphic in the sense
of Definition 1). Let h be the height of our universal tree T . For 0 ≤ j ≤ h, denote Tj as
the set of distinct (whole) subtrees rooted at the vertices of depth h− j in T . For example,
Th = {T}, while T0 contains the trivial tree with a single vertex. Since we assumed that all
the leaves in T are at the same depth, every tree in Tj has height j. We denote T = ∪h

j=0Tj

as the union of all these subtrees. The sets T and Tj form posets with respect to the partial
order ⊑. The next definition is the usual chain cover of a poset, where we additionally require
that the chains form an indexed tuple instead of a set.

▶ Definition 9. For 0 ≤ j ≤ h, let Cj = (C0
j , C1

j , . . . , Cℓ
j) be a tuple of chains in the poset

(Tj ,⊑). We call Cj a cover of Tj if ∪ℓ
k=0Ck

j = Tj . A cover of T is a tuple C = (C0, C1, . . . , Ch)
where Cj is a cover of Tj for all 0 ≤ j ≤ h. We refer to Cj as the jth-subcover of C. Given a
cover C of T , we denote the trees in the chain Ck

j as T k
0,j ⊏ T k

1,j ⊏ · · · ⊏ T k
|Ck

j
|−1,j

.

An example of an ordered tree with its cover is given in Figure 5. We are ready to
introduce the key concept of this subsection.

▶ Definition 10. Let C be a cover of T . Let H be a subgraph of Gτ and j = ⌈π(H)/2⌉. For
a fixed chain Ck

j in Cj , the kth-width of H, denoted αk
C(H), is the smallest integer i ≥ 0 such

that there exists a node labeling ν : V (H) → L(T k
i,j) which is feasible in H. If i does not

exist, then αk
C(H) =∞.

Note that T k
i,j is the (i + 1)-th smallest tree in the chain Ck

j . We are mainly interested
in the case when H is a cycle, and write αk(H) whenever the cover C is clear from context.
Observe that the definition above requires ν(v) ̸= ⊤ for all v ∈ V (H). Hence, an odd cycle
has infinite kth-width by the Cycle Lemma. As (Ck

j ,⊑) is a chain, for all finite i ≥ αk(H),
there exists a node labeling ν : V (H) → L(T k

i,j) which is feasible in H. The next lemma
illustrates the connection between the kth-width of an even cycle and its path decomposition.

▶ Lemma 11. Let C be a cover of T . For an even cycle C, let Π(C) = {v1, v2, . . . , vℓ} and
j = π(C)/2. Decompose C into arc-disjoint paths P1, P2, . . . , Pℓ such that each Pi ends at vi.
Then, αk(C) = maxi∈[ℓ] αk(Pi) for all 0 ≤ k < |Cj |.



Z. K. Koh and G. Loho 63:11

T1 = , , C0
1 = , ,

T2 =
, ,

C0
2 =

C1
2 =

,

Figure 5 An ordered tree T of height 3, and a cover Cj of Tj for all 0 < j < 3. Recall that Tj is
the set of distinct subtrees of T rooted at depth 3 − j, while Ck

j is the kth chain in Cj .

For a base node v ∈ B(Gτ ), let us consider the cycles in Gτ which are dominated by v.
Among them, we are interested in finding one with the smallest kth-width. So, we extend
the notion of kth-width to base nodes in the following way.

▶ Definition 12. Let C be a cover of T . Let v ∈ B(Gτ ) be a base node and j = π(v)/2. For 0 ≤
k < |Cj |, define the kth-width of v as αk

C(v) := min
{

αk
C(C) : C is a cycle dominated by v

}
.

Again, we write αk(v) whenever C is clear from context. Observe that T k
αk(v),π(v)/2 is the

smallest tree in the chain Ck
π(v)/2 which can encode a node labeling that is feasible on some

cycle dominated by v.
Given a leaf ξ ∈ L(T ) and integers i, j, k ∈ Z≥0, the following subroutine locates a subtree

of T that is a member of the chain Ck
j and into which T k

i,j is embeddable.
Raise(ξ, i, j, k)

Given a leaf ξ ∈ L(T ) and integers i, j, k ∈ Z≥0, return the smallest leaf ξ′ ∈ L(T )
such that (1) ξ′ ≥ ξ; and (2) ξ′ is the smallest leaf in the subtree T k

i′,j for some i′ ≥ i.
If ξ′ does not exist, then return ⊤.

Now, fix a base node v ∈ B(Gτ ). For any 0 ≤ k < |Cπ(v)/2|, notice that the label returned
by Raise(µ(v), αk(v), π(v)

2 , k) is an upper bound on the threshold label µ̂(v). The smallest
such label over all k is precisely the threshold label µ̂(v), as the next lemma shows.

▶ Lemma 13. Fix v ∈ B(Gτ ). Let ξk be the label returned by Raise(µ(v), αk(v), π(v)
2 , k) for

all 0 ≤ k < |Cπ(v)/2|. If there are no loose arcs in Gτ with respect to µ, then µ̂(v) = mink ξk.

The necessary number of chains in the subcover Cπ(v)/2 can be large if T is an arbitrary
ordered tree. Fortunately, the universal trees constructed in the literature admit covers with
small subcovers. In the full version, we prove that a succinct (n, h)-universal tree has a cover
with only 1 chain per subcover, whereas a succinct Strahler (n, h)-universal tree (introduced
by Daviaud et al. [7]) has a cover with at most log n chains per subcover.
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Let ρ(T, C) denote the running time of Raise. We provide efficient implementations of
Raise for succinct universal trees and succinct Strahler universal trees in the full version.
They have the same running time as Tighten, i.e., ρ(T, C) = O(log n log h).

4.1.2 Estimating the Width of Base Nodes
In light of the previous discussion, we can now focus on computing the kth-width of a
base node w ∈ B(Gτ ). Fix a 0 ≤ k < |Cπ(w)/2|. Since we ultimately need a label that
lies between µG↑

τ (w) and µ̂(w) in order to initialize Algorithm 2, it suffices to compute a
“good” under-estimation of αk(w). In this subsection, we reduce this problem to computing
a minimum bottleneck cycle in an auxiliary digraph D with nonnegative arc costs ck ≥ 0.

For a base node w ∈ B(Gτ ), let Kw denote the strongly connected component containing w

in (Gτ )π(w), the subgraph of Gτ induced by nodes with priority at most π(w). Let K ′
w ⊆ Kw

be the subgraph obtained by deleting the incoming arcs δ−(v) for all v ∈ Π(Kw) \ {w}.
Then, we define Jw as the subgraph of K ′

w induced by those nodes which can reach w in K ′
w.

These are the nodes which can reach w in Kw without encountering an intermediate node of
priority π(w).

1

4 w4

5

4

w2

2 1

2

w1

4w3

3

w1

w2

w3 w4

Figure 6 An example of a 1-player game (Gτ , π) for Even is given on the left, with its auxiliary
digraph D on the right. Nodes in V0 and V1 are drawn as squares and circles respectively. Base
nodes are labeled as w1, w2, w3, w4. The light gray region is Kw4 , while the dark gray region is Jw4 .

The auxiliary digraph D is constructed as follows. Its node set is B(Gτ ). For every
ordered pair (v, w) of base nodes where π(v) = π(w), add the arc vw if v has an outgoing
arc in Jw. Note that if (v, w) ∈ D, then v can reach w by only seeing smaller priorities
on the intermediate nodes. As ordered pairs of the form (v, v) are also considered, D may
contain self-loops. Observe that D is a disjoint union of strongly connected components,
each of which consists of base nodes with the same priority (see Figure 6 for an example).
For w ∈ B(Gτ ), we denote Dw as the component in D which contains w.

To finish the description of D, it is left to assign the arc costs ck. Note that the graph
structure of D is independent of k. We give a range in which the cost of each arc should lie. Fix
a base node w ∈ B(Gτ ) and let j = π(w)/2. Recall that J ↓

w = {Drope : e ∈ E(Jw)} is the set
of Drop operators in the subgraph Jw ⊆ Gτ . For each 0 ≤ i < |Ck

j |, let λk
i,w : V (Jw)→ L̄(T k

i,j)
be the greatest simultaneous fixed point of Jw subject to λk

i,w(w) = min L(T k
i,j). Then, for

each arc vw ∈ E(D), the lower and upper bounds of ck(vw) are given by

ck(vw) := min
{

i : λk
i,w(u) ̸= ⊤ for some u ∈ N+

Jw
(v)

}
ck(vw) := min

{
αk(P ) : P is a u-w path in Jw where u ∈ N+

Jw
(v)

} (1)

respectively. The lower bound ck(vw) is the smallest integer i ≥ 0 such that the greatest
simultaneous fixed point λk

i,w assigns a non-top label to an out-neighbor of v in Jw. On
the other hand, the upper bound ck(vw) is the minimum kth-width of a path from an
out-neighbor of v to w in Jw. Note that these quantities could be equal to +∞.
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▶ Lemma 14. For every arc vw ∈ E(D), we have ck(vw) ≤ ck(vw).

For a cycle C in D, its (bottleneck) ck-cost is defined as ck(C) := maxe∈E(C) ck(e). Note
that self-loops in D are considered cycles. The next theorem allows us to obtain the desired
initial node labeling ν for Algorithm 2 by computing minimum bottleneck cycles in D.

▶ Theorem 15. Let C be a cover of T . Let µ ∈ L be a node labeling such that Gτ does not
have loose arcs. For a base node w, let ck be arc costs in Dw such that ck ≤ ck ≤ ck for all
0 ≤ k < |Cπ(w)/2|. For each k, let ik be the minimum ck-cost of a cycle containing w in Dw,
and ξk be the label returned by Raise(µ(w), ik, π(w)

2 , k). Then, µG↑
τ (w) ≤ mink ξk ≤ µ̂(w).

4.1.3 The Label-Correcting Algorithm
The overall algorithm for computing µG↑

τ is given in Algorithm 3. The main idea is to initialize
the labels on base nodes via the recipe given in Theorem 15, before running Algorithm 2.
The labels on V \B(Gτ ) are initialized to ⊤. The auxiliary graph D serves as a condensed
representation of the “best” paths between base nodes. The arc costs are chosen such that
minimum bottleneck cycles in D give a good estimate on the width of base nodes.

Algorithm 3 Label-Correcting: (Gτ , π) 1-player game for Even, C cover of T for some universal
tree T , µ : V → L̄(T ) node labeling such that Gτ does not contain loose arcs.

1: procedure LabelCorrecting((Gτ , π), C, µ)
2: ν(v)← ⊤ for all v ∈ V

3: Construct auxiliary digraph D

4: for all components H in D do
5: for k = 0 to |Cπ(H)/2| − 1 do
6: Assign arc costs ck to H where ck ≤ ck ≤ ck

7: for all v ∈ V (H) do
8: ik ← minimum ck-cost of a cycle containing v in H

9: ν(v)← min(ν(v), Raise(µ(v), ik, π(v)
2 , k))

10: ν ← BellmanFord((Gτ , π), ν)
11: return ν

In Algorithm 3, the arc costs ck can be obtained using Algorithm 2. For each base node
w ∈ B(Gτ ), in order to compute ck(e) for all incoming arcs e ∈ δ−

D(w), we run Algorithm 2
on the subgraph Jw for |Ck

π(w)/2| times. If the chain Ck
π(w)/2 is too long, then this can be

sped up using binary search. For specific families of trees such as succinct universal trees,
one can compute ck even faster. More details are given in the full version. Overall, this
yields the following generic running time bound.

▶ Theorem 16. In O(mn2γ(T ) ·maxj,k |Cj |min{|Ck
j |, n log |Ck

j |}+ nρ(T, C) ·maxj |Cj |) time,
Algorithm 3 returns µG↑

τ .

As mentioned in Section 4.1.1, a succinct (n, d/2)-universal tree has a cover with 1 chain
per subcover, while a succinct Strahler (n, d/2)-universal tree has a cover with at most log n

chains per subcover. So, applying Algorithm 3 to these trees yields the following runtimes.

▶ Corollary 17. For a succinct universal tree, µG↑
τ is returned in O(mn2 log n log d).

▶ Corollary 18. For a succinct Strahler universal tree, µG↑
τ is returned in O(mn2 log3 n log d).
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Abstract
We introduce the countdown µ-calculus, an extension of the modal µ-calculus with ordinal approx-
imations of fixpoint operators. In addition to properties definable in the classical calculus, it can
express (un)boundedness properties such as the existence of arbitrarily long sequences of specific
actions. The standard correspondence with parity games and automata extends to suitably defined
countdown games and automata. However, unlike in the classical setting, the scalar fragment is
provably weaker than the full vectorial calculus and corresponds to automata satisfying a simple
syntactic condition. We establish some facts, in particular decidability of the model checking problem
and strictness of the hierarchy induced by the maximal allowed nesting of our new operators.
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1 Introduction

The modal µ-calculus [14] is a well-known logic for defining and verifying behavioural
properties of state-and-transition systems. It extends propositional logic with basic next-step
modalities and fixpoint operators to describe long-term behaviour. It is expressive enough to
include other temporal logics such as CTL* as fragments, but it has good computational
properties, and its simple syntax and semantics makes it a convenient formalism to study.

The µ-calculus has a straightforward inductively-defined semantics, but it is often useful
to consider an alternative (but equivalent) semantics based on parity games. A formula φ
together with a model M define a game between two players called ∀dam and ∃ve. Positions
in the game are of the form (m, ψ) where m is a point in M and ψ is a subformula of φ, and
moves are defined so that ∃ve has a winning strategy from (m, φ) if and only if φ holds in m.
Among other advantages, the game-based semantics provides more efficient algorithms for
model checking of µ-calculus formulas than an inductive computation of fixpoints [9].

The model component can be abstracted away from parity games. Indeed, a formula φ
itself gives rise to an alternating parity automaton Aφ that recognizes models. The behaviour
of an automaton on a model is defined in terms of a parity game, states of Aφ are subformulas
of φ, and the transition relation is defined so that it accepts a model M rooted in a point m
if and only if φ holds in m. The advantage of this is that Aφ, while conceptually closer to a
parity game, is a finite structure even if it is then applied to infinite models.

The modal µ-calculus is a rather expressive formalism: it can define all bisimulation-
invariant properties definable in monadic second-order logic (MSO) [13], such as “there is an
infinite path of τ -labeled edges”. However, there are some properties of interest which are not
definable even in MSO. Notable examples include (un)boundedness properties such as “for
every number n, there is a path with at least n consecutive τ -labeled edges”. An extension of
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MSO called MSO+U, aimed at defining such properties, has been considered [6]. However, the
satisfiability problem of MSO+U turned out to be undecidable even for word models [4]. Since
the modal µ-calculus is a fragment of MSO, it is worthwhile to extend it with a mechanism
for defining (un)boundedness properties, in the hope of retaining decidability.

In this paper we propose such an extension: the countdown µ-calculus µα-ML. In addition
to µ-calculus operators, it features countdown operators µα and να parametrized by ordinal
numbers α. Instead of least and greatest fixpoints, they define ordinal approximations of
those fixpoints. Intuitively, while the meaning of classical µ-calculus formulas µx.φ(x) and
νx.φ(x) is defined by infinite unfolding of the formula φ until a fixpoint is reached, for
µαx.φ(x) and ναx.φ(x) the unfolding stops after α steps (which makes a difference if α is
smaller than the closure ordinal of φ). The classical fixpoint operators are kept but renamed
to µ∞ and ν∞, to make clear the lack of any restrictions on the unfolding process.

An inductive definition of the semantics of countdown formulas is just as straightforward
as in the classical case. With some more effort, we are able to formulate game-based semantics
as well. We introduce countdown games and countdown automata, which are similar to
parity games and alternating automata known from the classical setting, but are additionally
equipped with counters that are decremented and reset by the two players according to
specific rules. Intuitively, the counters say how many more times various ranks can be visited,
in similar manner to the signatures introduced by Walukiewicz [17, Section 3]. A player
responsible for decrementing a counter may lose the game if the value of that counter is
zero, just as a player responsible for finding the next position in a game may lose if there
is no position to go to. The key mechanism of countdown games is implicit in [11], where
the authors investigate a nonstandard semantics for the scalar fragment of the µ-calculus
equivalent to replacing every µ and ν by our countdown operators µα and να, respectively.
However, the authors do not abstract from formulas in their definition of games, nor consider
the full vectorial calculus that corresponds to automata.

A correspondence between countdown formulas, automata and games is as tight as for
the classical µ-calculus. However, complications arise: the distinction between vectorial and
scalar formulas, which in the classical case disappears to a large extent due to the so-called
Bekić principle, now becomes pronounced. We prove that vectorial countdown calculus is
more expressive than its scalar fragment. We also prove that the countdown operator nesting
hierarchy of formulas is proper.

We conjecture that the satisfiability problem is decidable for µα-ML. Unfortunately, the
lack of positional determinacy in countdown games prevents us from using proof techniques
known from parity automata (where one can transform an alternating automaton into a
nondeterministic one that guesses the positional strategy). Nevertheless, the existence of
an automata model equivalent to logic is encouraging. Apart from allowing us to solve
some fragments of the logic, it implies that µα-ML does not share some of the troublesome
properties of MSO + U that result in undecidability. In particular, it can be used to show
that all languages definable in µ-ML have bounded topological complexity (i.e. at most Σ1

2, see
[15] for an introduction to topological methods in computer science). Since MSO + U defines
a Σ1

n-complete language for every n < ω [12, Theorem 2.1], [15, Theorem 7], it follows that
some MSO + U-definable languages are not expressible in µα-ML (whether µα-ML-definability
implies MSO + U-definability remains an open question). Since by [8, Theorem 1.3] every
logic closed under boolean combinations, projections and defining the language U from
Example 4 contains MSO + U, this means that our calculus is not closed under projections.
This is an arguably good news, as in the light of [3, Theorem 1.4], giving up closure under
projections is the only way to go if one wants to design a decidable extension of MSO closed
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under boolean operations. Decidability of the weak variant WMSO + U of MSO + U over
infinite words [2] and infinite (ranked) trees [5] shows that such extensions are possible. In
fact, both results are obtained by establishing a correspondence with equivalent automata
models, namely deterministic max-automata [2, Theorem 1] and nested limsup automata [5,
Theorem 2]. Since the existence of accepting runs for such automata can be expressed in
µα-ML, we get that µα-ML contains WMSO + U on infinite words and trees. The opposite
inclusion is false (due to topological reasons), at least for the trees. The relation between
µα-ML and the ωB-, ωS- and ωBS-automata of [7] remains unclear, as these models do not
admit determinization. Also, the relation between our logic and regular cost functions (see
e.g. [10]) is less immediate than it could seem at first glance and requires further research.

2 Preliminaries

Fixpoints. Let Ord be the class of all ordinals, and Ord∞ the class Ord extended with an
additional element ∞ greater than all ordinals.

Knaster-Tarski theorem says that every monotonic function F : A → A on a complete
lattice A has the least and the greatest fixpoint, which we denote F∞

µ and F∞
ν . Moreover:

F∞
µ is the limit of the increasing sequence Fαµ =

∨
β<α F (F βµ )

F∞
ν is the limit of the decreasing sequence Fαν =

∧
β<α F (F βν )

where α ∈ Ord and
∨
,
∧

are the join and meet operations in A.

Parity games. A parity game is played between two players ∃ve and ∀dam (or simply ∃
and ∀). It consists of a set of positions V = V∃ ⊔ V∀ divided between both players, an edge
relation E ⊆ V × V , and a labeling rank : V → R for some finite linear order R = R∃ ⊔ R∀
divided between the two players.

A play is a sequence of positions. After a play π = v1 . . . vn ∈ V ∗, the owner of vn
chooses (vn, vn+1) ∈ E and the game moves to vn+1. A player who has no legal moves loses
immediately. To determine the winner of an infinite play, we look at the highest r ∈ R such
that positions with rank r appear infinitely often in the play, and the owner of r loses.

A strategy for a player P ∈ {∃, ∀} is a partial map σ : V ∗VP → E that tells the player
how to move. A play v1v2 . . . is consistent with σ if for every n such that vn ∈ VP we have
σ(v1 . . . vn) = vn+1. A strategy σ is winning from a position v if every play that begins in
v and is consistent with σ is a win for P . A strategy is positional if σ(π) depends only on
the last position in π. Parity games are positionally determined: if a player has a winning
strategy from v then (s)he has a winning positional strategy.

Modal µ-calculus. A model M for a fixed set Act of atomic actions consists of a set of
points M ∋ m, n, · · · together with a binary relation τ→ ⊆ M ×M for every τ ∈ Act.

Formulas of the modal µ-calculus µ-ML are given by the grammar:

φ ::= x | ⊤ | ⊥ | φ1 ∨ φ2 | φ1 ∧ φ2 | µx.φ | νx.φ | ⟨τ⟩φ | [τ ]φ (1)

where x ranges over a fixed infinite set Var of variables and τ ∈ Act. Given a valuation
val : Var → P(M), the semantics JφKval ⊆ M for all formulas φ is defined inductively, with
µx.φ and νx.φ denoting the least and greatest fixpoints, respectively, of the monotonic
function H 7→ JφKval[x7→H] on the complete lattice P(M). More details can be found
e.g. in [1, 16], but they can also be discerned from Section 3 below, where the semantics of
countdown µ-calculus is presented in detail.

MFCS 2022



64:4 Countdown µ-Calculus

The above syntax does not include negation, but µ-calculus formulas are semantically
closed under negation. For every formula φ there is a formula φ̃ that acts as the negation of
φ on every model, defined by induction in a straightforward way:

φ̃1 ∨ φ2 = φ̃1 ∧ φ̃2, ⟨̃τ⟩φ = [τ ]φ̃, µ̃x.φ = νx.φ̃, etc. (2)

Vectorial µ-calculus. A syntactically richer version of the modal µ-calculus admits mu-
tual fixpoint definitions of multiple properties, in formulas such as µ1(x1, x2).(φ1, φ2),
where variables x1 and x2 may occur both in φ1 and φ2. Given a valuation val as before,
this formula is interpreted as the least fixpoint of the monotonic function (H1, H2) 7→
(Jφ1Kval[xi 7→Hi], Jφ1Kval[xi 7→Hi]) on the complete lattice P(M)2; the resulting pair of sets is
then projected to the first component as dictated by the subscript in µ1. Tuples of any size
are allowed. This vectorial calculus is expressively equivalent to the scalar version described
before, thanks to the so-called Bekić principle which says that the equality:

µ

(
x1
x2

)
.

(
f1(x1, x2)
f2(x1, x2)

)
=

(
µx1.f1(x1, µx2.f2(x1, x2))
µx2.f2(µx1.f1(x1, x2), x2)

)
(3)

holds for every pair of monotone operations fi : A1 ×A2 → Ai on complete lattices A1, A2,
and similarly for the greatest fixpoint operator ν in place of µ.

3 Countdown µ-calculus

We now introduce the countdown µ-calculus µα-ML. We begin with the scalar version.

3.1 The scalar fragment
As before, fix an infinite set Var of variables and a set Act of actions. The syntax of (scalar)
countdown µ-calculus is defined as follows:

φ ::= x | ⊤ | ⊥ | φ1 ∨ φ2 | φ1 ∧ φ2 | µαx.φ | ναx.φ | ⟨τ⟩φ | [τ ]φ (4)

for x ∈ Var, τ ∈ Act and α ∈ Ord∞; the presence of ordinal numbers α is the only syntactic
difference with (1). A formula with no free variables is called a sentence. In case |Act| = 1,
we may skip the labels and write 3 and 2 instead of ⟨τ⟩ and [τ ]. In statements that apply
both to least and greatest fixpoints, we will sometimes use ηα to denote either µα or να.

Given a model M, for every valuation val : Var → P(M), the semantics JφKval ⊆ M is
defined inductively as follows:

JxKval = val(x);
J⊤Kval = M and J⊥Kval = ∅

Jφ1 ∨ φ2Kval = Jφ1Kval ∪ Jφ2Kval and Jφ1 ∧ φ2Kval = Jφ1Kval ∩ Jφ2Kval;

J⟨τ⟩φKval = {m ∈ M | ∃n∈JφKval m τ→ n} and J[τ ]φKval = {m ∈ M | ∀n∈JφKval m τ→ n};
Jµαx.φKval = Fαµ and Jναx.φKval = Fαν

where in the last clause F (H) = JφKval[x7→H]. We will skip the index val if it is immaterial or
clear from the context.

This obviously contains the classical µ-calculus, but is capable of capturing boundedness
and unboundedness properties which are not expressible in the classical setting:

▶ Example 1. For |Act| = 1, consider the formula ναx.3x. In a model M, for α < ω the
set Jναx.3xK consists of the points from which there is a path of length at least α. Hence,
νωx.3x holds in a point if there are arbitrarily long finite paths starting from there.
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3.2 The vectorial calculus
The (full) countdown µ-calculus is defined as for its scalar fragment, except that fixpoint
operators act on tuples (vectors) of formulas rather than on single formulas.

▶ Definition 2. The syntax of countdown µ-calculus is given as follows:

φ ::= x | ⊤ | ⊥ | φ1 ∨ φ2 | φ1 ∧ φ2 | µαi x.φ | ναi x.φ | ⟨τ⟩φ | [τ ]φ

for 1 ≤ i ≤ n < ω, x = ⟨x1, ..., xn⟩ ∈ Varn, φ = ⟨φ1, ..., φn⟩ a tuple of formulas, τ ∈ Act and
α ∈ Ord∞.

▶ Definition 3. The meaning JφKval ⊆ M of a formula φ in a model M under valuation val
is defined by induction the same way as for the scalar formulas except for the operators µαi
and ναi , in which case:

Jµαi x.φKval = πi(Fαµ ) and Jναi x.φKval = πi(Fαν )

where the monotone map F : (P(M))n → (P(M))n is given as:

F (H1, ...,Hn) = (Jφ1Kval′ , ..., JφnKval′)

for val′ = val[x1 7→ H1, ..., xn 7→ Hn] and πi : (P(M))n → P(M) is the i-th projection.

Note that operators µ∞ and ν∞ are equivalent to µ and ν from the classical µ-calculus.
Furthermore, for every ordinal α, the formula µα+1

i x.ψ is equivalent to

ψi[x1 7→ µα1 x.ψ, . . . , xn 7→ µαnx.ψ]

and similarly for να+1. As a result, without loss of generality we may assume that in
countdown operators µα and να only limit ordinals α are used.

The countdown µ-calculus is semantically closed under negation in the same way as the
classical calculus, extending (2) with the straightforward µ̃αi x.φ = ναi x.φ̃ and ν̃αi x.φ = µαi x.φ̃.

In Section 6 we will compare the expressive power of the vectorial and scalar countdown
µ-calculus in detail. For now, let us show that Bekić principle (3) fails for countdown
operators:

▶ Example 4. An infinite word W ∈ Γω over the alphabet Γ = {a, b} can be seen as a model
for Act = Γ with ω as the set of points and with transition relations defined by:

n
τ→ m ⇐⇒ m = n+ 1 and Wn = τ.

For every regular language K ⊆ Γ∗ and x ∈ Var, it is straightforward to define a fixpoint
formula (in the classical µ-calculus, so without countdown operators) ⟨K⟩x that holds in a
point n, for a valuation val, if and only if there exists a word w ∈ K and a path in W labelled
with w that starts in n and ends in a point that belongs to val(x). Then, the formula:

φ = νω1 (x1, x2).(⟨Γ∗⟩x2, ⟨a⟩x2)

is true in a word W iff it contains arbitrarily long blocks of consecutive a’s. To see this,
observe that at the i-th step of approximation: (i) the second component (x2) contains a
point n iff the next i transitions are all labelled with a, and (ii) the first component (x1)
contains a point n iff the second component contains at least one point after n.

However, the following scalar formula constructed by analogy to the Bekić principle:

ψ = νωx1.⟨Γ∗⟩(νωx2.⟨a⟩x2)

is equivalent to ⟨Γ∗⟩(νωx2.⟨a⟩x2), and the formula under ⟨Γ∗⟩ holds in a point iff all the
future transitions from that point are labelled with a. Thus, ψ holds (in any point) iff the
word W is of the form Γ∗aω, and so ψ is not equivalent to φ.
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4 Countdown Games

The notion of a countdown game extends that of a parity game. As for parity games, it
assumes a fixed finite linear order of ranks R = R∃ ⊔ R∀. In addition, we fix a subset
D ⊆ R of nonstandard ranks; at positions with these ranks countdowns will occur. Denote
D∃ = D ∩ R∃ and D∀ = D ∩ R∀.

A countdown game consists of a set of positions V = V∃ ⊔ V∀ divided between players ∃ve
and ∀dam, an edge relation E ⊆ V × V , a labelling rank : V → R, and an initial counter
valuation ctrI : D → Ord. Each nonstandard rank has an associated counter.

Each game configuration consists of a position v ∈ V together with a counter valuation
ctr : D → Ord. We consider positional and countdown configurations, denoted respectively
⟨v, ctr⟩ and [v, ctr], with the following moves allowed:

From a positional configuration ⟨v, ctr⟩, the owner of v chooses an edge (v, w) ∈ E and
the game proceeds from the countdown configuration [w, ctr];
From a countdown configuration [v, ctr], the owner of r = rank(v) chooses a counter
valuation ctr′ such that:

ctr′(r′) = ctrI(r′) for r′ < r,
ctr′(r) < ctr(r) (if r is nonstandard),
ctr′(r′) = ctr(r′) for r′ > r,

and the game proceeds from the positional configuration ⟨v, ctr′⟩. In words: counters
for ranks lower than r are reset, the counter for r (if any) is decremented, and counters
for higher ranks are left unchanged. Note that if r is standard then there is no real
choice here: ctr′ is determined by ctr. And if r is nonstandard then the move amounts to
choosing an ordinal α < ctr(r).

Every play of the game alternates between positional and countdown configurations, and
in each move only one component of the configuration is modified. Therefore, although a
play is formally a sequence of configurations, it can be more succinctly represented as an
alternating sequence of positions and counter valuations:

π = v1ctr2v2ctr2v3ctr3 · · · (5)

This has the same length as the sequence of configurations, and we will call it the length
of the play. A phase of a game is a set of its finite plays that is convex with respect to the
prefix ordering.

In any configuration, if the player responsible for making the next move is stuck, (s)he
looses immediately. Otherwise, in an infinite play, the owner of the greatest rank appearing
infinitely often looses, as in parity games. Strategies and winning strategies are defined as
for classical parity games, as partial functions from finite plays to moves.

Given configuration γ, we denote the game initialized in the configuration γ by G, γ. The
default initial counter assignment is ctrI and the default initial mode is the positional one,
meaning that G, v stands for G, ⟨v, ctrI⟩.

Note that the only way the counters may interfere with a play is when a counter has
value 0 and so its owner cannot decrement it. It is therefore beneficial for a player to have
greater ordinals at his/her counters.

Countdown games are not positionally determined, in the sense that the players may
need to look at the counter values in order to choose a winning move (although they are
configurationally determined, since a countdown game G can be seen as a parity game with
configurations of G as its positions).
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5 Countdown Automata

Countdown automata are a stepping stone between formulas and games. A countdown
formula will define an automaton, which will then recognize a model in terms of a countdown
game. Since formulas can have free variables, for technical reasons we will also consider
automata with free variables. These variables resemble terminal states in that they can be
targets of transitions, but no transitions originate in them, and whether they accept or not
depends on an external valuation.

▶ Definition 5. A countdown automaton consists of:
a finite set of states Q = Q∃ ⊔Q∀ divided between two players;
an initial state qI ∈ Q;
a transition function δ : Q → P(Q ⊔ Var) ⊔ (Act × (Q ⊔ Var)) (we call the left part
ϵ-transitions and the right one modal transitions);
an assignment of ranks rank : Q → R and an assignment of initial counter values
ctrI : D → Ord, as in a countdown game.

The language of an automaton is defined in terms of a countdown game, analogously to
parity games and parity automata.

▶ Definition 6. Fix an automaton A = (Q, qI , δ, rank, ctrI). Given a model M, a valuation
val : Var → P(M) and a point mI ∈ M , we define the semantic game Gval(A) to be the
countdown game (V,E, rank′, ctrI) where positions are of the form V = M × (Q ⊔ Var) and
the edge relation E is defined as follows. In a position (m, q) for q ∈ Q:

if δ(q) ⊆ Q ⊔ Var, outgoing edges (called ϵ-edges, or ϵ-moves) are {((m, q), (m, z)) | z ∈
δ(q)},
if δ(q) = (τ, p), outgoing edges (modal edges, modal moves) are {((m, q), (n, p)) | m τ→ n}.

There are no outgoing edges from positions (m, x) for x ∈ Var.
For q ∈ Q, the owner of the position (m, q) is the owner of the state q, and rank′(m, q) =

rank(q). For x ∈ Var, the position (m, x) belongs to ∀dam if m ∈ val(x) and to ∃ve otherwise.
The rank rank′(m, x) can be set arbitrarily, as it does not affect the outcome of the game.
The initial counter assignment ctrI is kept the same.

The language JAKval ⊆ M of an automaton A is the set of all points m ∈ M for which
the configuration ⟨(m, qI), ctrI⟩ in the game Gval(A) is winning for ∃ve.

It is worth to mention that although in general countdown games are not positional,
one can show a much weaker but still useful fact: in the particular case of semantic games,
the winning player always has a strategy that does not look at the counters in the initial
pre-modal phase of the game (that is, before the first modal move).

The countdown calculus and countdown automata have the same expressive power, i.e.
there are language-preserving translations φ 7→ Aφ and A 7→ φA between formulas and
automata. As in the classical setting, the link between formulas and automata is very useful
in establishing facts about the logic. For example, one can use game semantics to show that
every formula of the standard µ-ML can be transformed into an equivalent guarded one.
Thanks to the equivalence between countdown formulas and countdown automata, the same
is true for µα-ML.

We will now explain the translations between logic and automata in turn.
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5.1 From formulas to automata – Game Semantics
Every countdown formula φ ∈ µα-ML gives rise to a countdown automaton Aφ such that
JφKval = JAφKval for every model M and valuation val. Specifically, given a formula φ (with
some free variables), we define an automaton Aφ = (Q, qI , δ, rank, ctrI) (over the same free
variables) as follows:

Q = SubFor(φ)−FreeVar(φ) is the set of all subformulas other than the free variables of φ
(without identifying different occurrences of identical subformulas, i.e., here a subformula
means a path in the syntactic tree of φ from the root of φ to the root node of the
subformula). Ownership of a state in Q depends on the topmost connective, with
∃ve owning ∨ and ⟨τ⟩ and ∀dam owning ∧ and [τ ]; ownership of fixpoint subformulas,
countdown subformulas and variables can be set arbitrarily as it will not matter;
qI = φ;
the transition function is defined by cases:
δ(θ1 ∨ θ2) = δ(θ1 ∧ θ2) = {θ1, θ2},
δ(⟨τ⟩θ) = δ([τ ]θ) = (τ, θ),
δ(ηαi x.θ) = {θi} (for η = µ or η = ν),
δ(x) = {θi}, where ηαj (x1, ..., xn).(θ1, ..., θn) is the (unique) subformula of φ binding x
with x = xi.

For the ranking function, assume that the lowest rank in R is standard and call it 0
(ownership of this rank does not matter). Then let rank assign 0 to all subformulas of φ
except for immediate subformulas of fixpoint operators. To those, assign ranks in such a
way that subformulas have strictly smaller ranks than their superformulas, and for every
subformula ηαi x.φ:

all formulas in the tuple φ have the same rank r,
r belongs to ∃ve if η = µ and to ∀dam if η = ν, and
if α = ∞ then r is standard, otherwise it is nonstandard and ctrI(r) = α.

We denote Gval(φ) = Gval(Aφ).

▶ Theorem 7 (Adequacy). For every model M and valuation val, JφKval = JAφKval.

Proof (sketch). As with the classical mu-calculus, the proof proceeds by induction on the
complexity of the formula. The only new cases of µαx.φ and ναx.φ are proven by transfinite
induction on α. ◀

▶ Example 8. For Act = {τ}, consider the formula φ = νωx.3x from Example 1. The
automaton Aφ has three states: Q = {φ,3x, x}, with φ the initial state, and the transition
function comprises two deterministic ϵ-transitions and one modal transition:

δ(φ) = {3x}, δ(3x) = (τ, x), δ(x) = {3x}.

The state 3x is owned by ∃ve; ownership of the other two states does not matter. The
automaton uses two ranks, 0 < 1, where 0 is standard and 1 is nonstandard, assigned to
states by: rank(φ) = rank(x) = 0 and rank(3x) = 1. Rank 1 is owned by ∀dam; ownership
of rank 0 does not matter. (Note how the state 3x is owned by ∃ve, but its rank is owned
by ∀dam). The initial counter value is ctrI(1) = ω.

Now consider any model M. Since Act has only one element, M is simply a directed
graph. The semantic game G(φ) on M (φ has no free variables, so neither has Aφ and we
need not consider valuations val) has positions of the form (m, q) where m ∈ M and q ∈ Q,
with ownership and rank inherited from q. Edges are of the form:

((m, φ), (m,3x)) and ((m, x), (m, φ)) – the ϵ-edges,
((m,3x), (n, x)) such that m → n is an edge in M – the modal edges.
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Configurations of the game arise from positions together with counter valuations; there is
only one nonstandard rank, so a counter valuation is simply an ordinal.

For a point m ∈ M, the default initial configuration of the game is the positional
configuration ⟨(m, φ), ω⟩. A play that begins in this configuration proceeds as follows:
1. The first move is deterministic, to the countdown configuration [(m,3x), ω].
2. ∀dam, as the owner of the rank of 3x, makes the next move: he chooses a number k < ω,

and the games moves to the positional configuration ⟨(m,3x), k⟩.
3. ∃ve owns the position, so she makes the next move: she chooses a point n ∈ M such that

m τ→ n, and the game moves to the countdown configuration [(n, x), k].
4. The rank of x is standard, so in the next move the counter does not change and the game

moves to ⟨(n, x), k⟩. The next move is also deterministic, to the countdown configuration
[(n,3x), k]. The game then goes back to step 2. above, with k in place of ω.

From this it is clear that ∃ve wins from ⟨(m, φ), ω⟩ if and only if M has arbitrarily long
paths that begin in m, as stated in Example 1.

5.2 From automata to formulas
▶ Theorem 9. For every countdown automaton A there exists a countdown formula φA s.t.
JAKval = JφAKval for every model M and valuation val.

Proof (sketch). We sketch the construction of φA. For an automaton A = (Q, qI , δ, rank, ctrI),
by induction on r ∈ R we build a formula ψr,q for each q ∈ Q. Then we put φA = ψrmax,qI

.
Thus for the base case of the lowest rank r = 0:

if δ(s) = (τ, p) then for ψ0,s we put ⟨τ⟩xp if q belongs to ∃ve and [τ ]xp if q belongs to
∀dam,
if δ(s) ⊆ Q then for ψ0,s we put

∨
p∈δ(s) xp if q belongs to ∃ve and

∧
p∈δ(s) xp if q belongs

to ∀dam.

For the inductive step, let q1, ..., qd be all states in Q with rank r. For every qi define the
vectorial formula:

θi = ηαqi
(xq1 , ..., xqd

).(ψr,q1 , ..., ψr,qd
)

with α = ctrI(r) and η = µ if r belongs to ∃ve and η = ν if r belongs to ∀dam. Then put
ψr+1,q = ψr,q[xq1 7→ θ1, ..., xqd

7→ θd]. ◀

6 Vectorial vs. scalar calculus

In this section we investigate the relation between scalar and vectorial formulas. We have
already seen with Example 4 that unlike with standard fixpoints, the Bekić principle is not
valid in the countdown setting. Interestingly, scalar formulas correspond to automata with a
simple syntactic restriction.

▶ Proposition 10. Scalar countdown formulas and automata where every two states have
different ranks have equal expressive power.

Proof (sketch). Inspecting the translations between formulas and automata from Sections 5.1
and 5.2, it is evident that injectively ranked automata are translated to scalar formulas, and
that, although in our translation the choice of the assignment of ranks is not deterministic,
every scalar formula can be translated to an injectively ranked automaton. ◀
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Since the Bekić principle fails, a natural question is whether there is another way of
transforming vectorial formulas to scalar form (or, equivalently, arbitrary countdown automata
to injectively ranked ones). We shall give a negative answer in Theorem 11. However, before
we proceed, let us analyse the following example, which shows that scalar formulas are more
expressive than they may seem, covering in particular the property from Example 4.

6.1 Languages of unbounded infixes
Fix a regular language of finite words L ⊆ Γ∗. Let U(L) ⊆ Γω be the language of all infinite
words that contain arbitrarily long infixes from L. For instance, the language from Example
4 is U(a∗). We shall now show that U(L) can be defined in the countdown µ-calculus, first
by a vectorial formula, then by a scalar one.

Consider a finite deterministic automaton A = (Q, δ, qI , F ) that recognizes L. Let
δ+ : Γ+ ×Q → Q be the unique inductive extension of the transition function δ : Γ ×Q → Q

to nonempty words. Define Kp,q = {w ∈ Γ+ | δ+(w, p) = q} the (regular) language of
nonempty words leading from p to q in A, and let Kp,F denote the union

⋃
q∈F Kp,q. By

the pigeonhole principle we have U(L) =
⋃
q∈Q Uq(L), where Uq(L) ⊆ Γω consists of words

such that for every n < ω, w has an infix wn = vIu1...unvF ∈ L s.t. (i) vI ∈ KqI ,q, (ii)
u1, ..., un ∈ Kq,q, and (iii) vF ∈ Kq,F . Then Uq(L) can be defined by a vectorial formula:

Uq(L) = Jνω1 (x1, x2).(⟨Γ∗KqI ,q⟩x2, ⟨Kq,q⟩x2 ∧ ⟨Kq,F ⟩⊤)K

where ⟨K⟩ψ is the formula as explained in Example 4. Indeed, the corresponding semantic
game on a word w proceeds as follows:
1. ∀dam chooses a number n < ω as the value of his only counter,
2. ∃ve skips a prefix v0vI ∈ Γ∗KqI ,q of w,
3. ∀dam decrements his counter;
4. ∃ve keeps moving through u1, u2, ... ∈ Kq,q so that after each step, some state in F is

reachable from q by some prefix of the remaining word. After each such choice of ui ∀dam
has to decrement his counter, and so ∃ve wins iff she can make at least n− 1 such steps.

The two different stages in which ∀dam’s counter is decremented reflect the two-phase
dynamics of the game: first ∀dam challenges ∃ve with a number, and then ∃ve shows that
she can provide an infix long enough.

It is more tricky to define the language Uq(L) with a scalar formula, but it turns out to
be possible. To this end, observe that without loss of generality we may restrict attention to
words w such that:
1. the infixes wn ∈ L start arbitrarily far in w;
2. each wn can be decomposed as vIu1...unvF ∈ L s.t. (i) vI ∈ KqI ,q, (ii) u1, ..., un ∈ Kq,q,

(iii) vF ∈ Kq,F , and additionally (iv) all ui begin with the same letter a ∈ Γ;
3. there are at least two distinct letters a, b ∈ Γ that appear infinitely often in w;
4. the first letter of w is b.
Indeed, for (1) note that otherwise wn start in the same position k for all n large enough.
But then even the stronger property “There exists a position k such that the run of A from
k visits q and F infinitely often” holds, and this is easily definable by a fixpoint formula.

Item (2) follows from the pigeonhole principle and the observation that in wn×|Γ| =
vIu1...un×|Γ|vF at least n ui’s begin with the same letter.

For (3) observe that otherwise w has a suffix aω for some a ∈ Γ, in which case membership
in Uq(L) is definable by a fixpoint formula. This is because an ultimately periodic word is
bisimilar to a finite model, and so every monotone map reaches its fixpoints in finitely many
steps, meaning that the countdown operator νω is equivalent to ν∞.
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m0m1m2···

n0n1n2···
Figure 1 The model M. Blue arrows represent edges labeled both with a and b, and pink arrows

are edges labeled only with b.

Finally, for (4) note that the language Uq(L) is closed under adding and removing finite
prefixes, and so if a formula φ defines Uq(L) ∩ bΓω, then the formula ⟨Γ∗⟩(⟨b⟩⊤ ∧ φ) defines
Uq(L).

With this in mind, define:

φ = νωx.(⟨b⟩⊤ ∧ ⟨Γ∗KqI ,q⟩(⟨a⟩⊤ ∧ x)) ∨ (⟨Kq,q⟩(⟨a⟩⊤ ∧ x) ∧ ⟨a⟩⊤ ∧ ⟨Kq,F ⟩⊤).

Note how ⟨b⟩⊤ ∧ x and ⟨a⟩⊤ ∧ x replace x1 and x2 from the vectorial formula. Consider
the corresponding semantic game on a word w. Consider configurations of the game with
the main disjunction as the formula component. Every infinite play of the game must visit
such configurations infinitely often. In such a configuration, if the next letter in the model is
either a or b then ∃ve must choose the right or left disjunct respectively. In particular, once
the game reaches a configuration where ⟨a⟩⊤ holds, it must also hold every time the variable
x in unraveled in the future. As a result, ∃ve wins from a configuration where ⟨a⟩⊤ holds
against ∀dam’s counter n < ω iff there is u1...un+1vF starting in the current position such
that u1, ..., un+1 ∈ Kq,q, each ui starts with a, and vF ∈ Kq,F . Moreover, ∃ve wins from a
position where ⟨b⟩⊤ holds, against ∀dam’s n+ 1 < ω, iff there is vI ∈ Γ∗KqI ,q starting in
the current position such that the next position after vI satisfies ⟨a⟩⊤ and ∃ve wins from
there against n. Putting this together, we get that ∃ve wins from a position satisfying ⟨b⟩⊤
against n iff there is vIu1...unvF = wn as in condition (2) above. Since the game starts with
∀dam choosing an arbitrary n < ω, it follows that indeed φ defines Uq(L).

6.2 Greater expressive power of the vectorial calculus
We now show an example of a property that is definable in the vectorial countdown calculus
but not in the scalar one.

Fixing Act = {a, b}, consider a model M = (M,
a→,

b→) with points M = {mi, ni | i < ω},
and with exactly the edges: mi

a→ mj , ni
a→ mj and ni

b→ mj for all i > j; and mi
b→ mj for

all i and j. Note that the relation a→ is a subset of b→. The model is shown in Fig. 1.
Consider the vectorial sentence νω1 (x1, x2).(⟨b⟩x2, ⟨a⟩x2). This describes the property

there are arbitrarily long paths with labels in ba∗, and so it is true in all points mi and false in
all points ni. The following result immediately implies that this property cannot be defined
in the scalar countdown calculus:
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▶ Theorem 11. For every scalar sentence φ, there exists i < ω s.t. ni ∈ JφK ⇐⇒ mi ∈ JφK.

Proof (sketch). The heart of the proof is Proposition 10 which says that scalar formulas
correspond to injectively ranked automata. In such an automaton, whenever the counter
corresponding to rank r is modified, the automaton must be in the same state, which allows
the players to copy their strategies between different positions of the semantic game. ◀

7 Strictness of the countdown nesting hierarchy

A natural question is whether greater coutdown nesting, i.e. the maximal nesting of µα and
να operators with α ̸= ∞, results in more expressive power. We give a positive answer:
under mild assumptions, the hierarchy is strict. From now on, focus on the monomodal case
(i.e. |Act| = 1) and we assume that the only ordinal used by formulas is ω.1

▶ Theorem 12. For every k < ω, formulas with countdown nesting k + 1 have strictly more
expressive power than those with nesting at most k.

In order to prove strictness, it suffices to prove it on a restricted class of models. We
will show that the hierarchy is strict already on the class of transitive, linear, well-founded
models – i.e. (up to isomorphism) ordinals.

More specifically, an ordinal κ ∈ Ord can be seen as a model with α → β iff α > β. Since
κ is an induced submodel of κ′ whenever κ ≤ κ′, we can consider a single ordinal model with
κ big enough. For our purposes, the first uncountable ordinal ω1 is be sufficient.

We call a subset S ⊆ ω1 stable above α if either [α, ω1) ⊆ S or [α, ω1) ∩ S = ∅. A
stabilization point of a valuation val : Var → P(ω1) is the least α ≤ ω1 such that interpretations
of all the variables are stable above α.

Observe that the set [ωk, ω1) ⊆ [0, ω1) can be defined by the following sentence with
countdown nesting k:

[ωk, ω1) = Jνωx1...ν
ωxk.3(

∧
i≤k xi)K. (6)

Indeed, the semantic game can be decomposed into two alternating phases: (i) ∀dam
chooses a tuple of finite ordinals (α1, ..., αk) ∈ ωk and (ii) ∃ve responds with a successor in
the model. Since at each step ∀dam has to pick a lexicographically smaller tuple (and he
starts by picking any tuple) it is easy to see that he wins iff the initial point is at least ωk.
We will show that for all k > 0, countdown nesting k is necessary to define this language.
The proof relies on the following lemma.

▶ Lemma 13. For every k < ω and a formula φ with countdown nesting k, there exists an
ordinal αφ < ωk+1 such that φ stabilizes αφ above the valuation, i.e. for every valuation val
stabilizing at β, JφKval is stable above β + αφ.

Proof (sketch). By induction on the complexity of the formula φ. The base case is immediate,
as for every x ∈ Var it suffices to take αx = 0. For propositional connectives and modal
operators we take αψ1∨ψ2 = αψ1∧ψ2 = max(αψ1 , αψ2) and α3ψ = α2ψ = αψ + 1. The most
interesting case are countdown and fixpoint operators. There the lemma follows from the
fact that for every formula φ there is a finite constant tφ < ω such that for every valuation
val stable above κ, in the part [κ, ω1) of the model above κ, φ changes its truth value at
most tφ times. ◀

1 This assumption could be replaced with a weaker requirement: there exists a maximal ordinal α that
we are allowed to use, and α is additively indecomposable.
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From this the theorem follows immediately, as the sentence φ has no free variables and
thus it stabilizes at αφ < ωk+1 regardless of the valuation.

8 Decidability issues

We briefly discuss decidability issues in the countdown µ-calculus. Note that in a finite
model every monotone map reaches its fixpoints in finitely many steps. Hence, if we replace
every ηα in φ with η∞ and denote the resulting formula by φ̂, then in every finite model
JφK = Jφ̂K. It immediately follows that:

▶ Proposition 14. The model checking problem for the µα-ML, i.e. the problem: “Given
φ ∈ µα-ML and a point m in a (finite) model M, does m |= φ?” is decidable.

Note that as a corollary we get that deciding the winner of a given (finite) countdown
game G is also decidable, as set of positions where ∃ve wins can be easily defined in µα-ML.

A more interesting problem is satisfiability: “Given φ ∈ µα-ML, is there a model M and
a point m s.t. m |= φ?”.

▶ Proposition 15. A formula φ ∈ µα-ML has positive countdown if it does not use να with
α ̸= ∞. The satisfiability problem is decidable for such formulas.

Proof. Observe that for φ with positive countdown, in every model we have JφK ⊆ Jφ̂K.
Hence, if φ is satisfiable, then so is φ̂ – but since µ-ML has a finite model property, this
means that φ̂ has a finite model, where φ̂ and φ are equivalent. Thus, φ is satisfiable iff φ̂ is,
and the problem reduces to µ-ML satisfiability. ◀

Dualizing the above we get that the validity problem is decidable for formulas with negative
countdown, i.e. with α = ∞ for every µα.
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Abstract
Valiant, in his seminal paper in 1979, showed an efficient simulation of algebraic formulas by
determinants, showing that VF, the class of polynomial families computable by polynomial-sized
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showed that the determinant of tridiagonal matrices cannot even compute simple polynomials like
x1x2 + x3x4 + · · · + x15x16.
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algebraic branching programs by Ben-Or and Cleve (SIAM Journal of Computing’92). The tetradi-
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of Bringmann, Ikenmeyer and Zuiddam (JACM’18) which showed that, if we allow approximations
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the breeding of rabbits. The determinants of our tetradiagonal matrices, in comparison, is closely
related to Narayana’s cows sequences, which was originally used to model the breeding of cows.
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1 Introduction

Valiant in his seminal work [20] laid the foundation for investigation of algebraic analog
of the P versus NP problem, the flagship problem of theoretical computer science. He
introduced algebraic formulas and determinants as models for computing polynomial fam-
ilies and identified them as notions of efficient computation, while the permanent family,
pern(x11, . . . , xnn) :=

∑
σ∈Sn

∏n
i=1 xi,σ(i) was identified as a family that is highly likely to be

hard to compute. He defined the complexity class VF as the set of polynomial families that
can be computed by formulas of polynomially-bounded size, and VDet as the set of families
that can be expressed as the determinant of a symbolic matrix of polynomially-bounded
dimension. He also showed, among other things, that a polynomial computable by an
algebraic formula of size s can be expressed as the determinant of a symbolic matrix of size
(s + 2) × (s + 2), thus showing the containment VF ⊆ VDet. Conversely, the smallest known
formulas for the determinant family, detn(x11, . . . , xnn) :=

∑
σ∈Sn

sgn(σ)
∏n

i=1 xi,σ(i), have
size nO(log n) [11, 6]. Thus the two notions of efficient computation are not known to be
equivalent. It is a long standing open problem whether algebraic formulas of polynomial size
exist for the determinant family.

▶ Problem 1. Is the determinant family strictly more expressive than algebraic formulas?
In other words, is VF ⊊ VDet?

An improved construction of a formula for the determinant family has resisted all attempts
for long, which can be interpreted as an evidence to an affirmative answer to Problem 1.
Though the relationship between the classes VF and VDet is poorly understood as of now,
they themselves are very natural otherwise. Not only they contain many natural examples of
polynomial families, there are many differing, but equivalent, ways to define them too.

For example, the class VDet is equivalently captured by the model of algebraic branching
programs of polynomial size, denoted VBP. Recall, an algebraic branching program (ABP)
is a directed acyclic graph G with two special nodes, say s (source node) and t (sink node),
and edges labeled with variables or constants. For every s-to-t path p in G we associate
a monomial mp obtained by multiplying the edge labels on this path. The polynomial
computed by the algebraic branching program G is defined to be the sum over all monomials
given by s-to-t paths, i.e.,

∑
p : s-to-t path p mp. Rephrasing the characterization, we know

VDet = VBP. We can assume, wlog, branching programs to be layered, i.e., the vertices
are topologically ordered in layers, from left to right, such that the edges only go between
consecutive layers. Then the width of a branching program is defined to be the maximum
number of vertices in any one layer.

In an influential work, Ben-Or and Cleve [5] showed that branching programs of constant
width characterize formulas. In other words, they showed VF = VBP3, where VBP3 denotes
the class of algebraic branching programs of width 3 and polynomial size. In light of this,
Problem 1 can be rephrased as asking whether VBP3 ⊊ VBP, that is, whether algebraic
branching programs of width 3 are computationally strictly weaker than algebraic branching
programs of arbitrary width. This seems even more likely when phrased this way!

In a recent work, Bringmann, Ikenmeyer and Zuiddam [8] took this one step further by
showing that the topological closure of VF is equivalent to the topological closure of VBP2,
i.e. VF = VBP2, where VBP2 is the class corresponding to algebraic branching programs of
width 2! Stated differently, they showed that algebraic branching programs of width 2 can
efficiently approximate all polynomials that are efficiently computed (or, approximated) by
algebraic formulas. In fact, the equivalent width 2 algebraic branching programs given by
the reduction have very special structure, which make them equivalent to the determinant of
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tridiagonal symbolic matrices of a very special form. These tridiagonal matrices have non-
trivial entries, variables and constants, on the main diagonal while the other two diagonals
are fixed to all ±1s. Determinant of such tridiagonal symbolic matrices is well-studied in
the literature and is known as the continuant, deriving its name from continued fractions
since continuants are used to represent the convergents of continued fractions. They are also
related to the Fibonacci sequence via the following recursive definition: F0 := 1, F1 := x1,
and Fn := xnFn−1 + Fn−2 for all n ≥ 2. Thus, for a positive resolution of Problem 1, it is
sufficient to show that the determinant of certain family of tridiagonal matrices, namely the
continuant family {Fn}, cannot efficiently approximate the determinant of general matrices.

The continuant is known to have rich algebraic structures [16, 10, 9, 17], which may be
helpful in separating VF from VDet. Although quite promising, an additional challenge this
formulation poses is that we now need to deal with approximations. In other words, we need
to show a stronger separation VF ⊊ VDet. It would be very pleasing if we could have the
result of Bringmann, Ikenmeyer and Zuiddam [8] without using approximations. That is, if
the following would be true – the continuant family {Fn} can efficiently exactly simulate
formulas. However, such a result is an impossibility! Allender and Wang [4] showed that the
simple polynomial, x1x2 + x3x4 + · · · + x15x16, cannot even be expressed by the continuant
family, irrespective of efficiency. Thus, one may wonder what is the simplest class of matrices
whose determinants can efficiently exactly simulate algebraic formulas?

Motivated by this question, we study the determinant of matrices with few diagonals,
also known as band matrices, and identify two polynomial families that are as simple as the
continuant family {Fn}, but unlike it they simulate formulas exactly and efficiently.

The Narayana’s cows polynomial. The m-th polynomial in this family, denoted Nm(x1,. . .

, xm), is defined by the recurrence N0 := 1, N1 := x1, N2 := x1x2, and Nm = xmNm−1 +
Nm−3 for all m ≥ 3. Just as the continuant polynomial is based on the Fibonacci sequence,
the Narayana’s cows polynomial is based on the Narayana’s cows sequence [1, 21]. This
sequence originated in the following problem studied by the 14-th century mathematician
Narayana Pandita in his book Ganita Kaumudi [18]: A cow produces a calf every year. Cows
start producing calves from the beginning of the fourth year. Then, starting from 1 cow
in the first year, how many cows are there after m years? This sequence is given by the
recurrence: Nm = Nm−1 + Nm−3 with N0 = N1 = N2 = 1, where Nm−1 gives the population
after m years. Thus, the sequence captures the growth in the population of cows in the
same way as the Fibonacci sequence captures the growth in the population of rabbits. The
Narayana’s cows sequence has wide applications in combinatorics. (See, e.g., [1, 14] and
references therein.)

The Padovan polynomial. The recurrences for Fibonacci and Narayana’s cows sequences
are similar. Exploring this similarity and considering the only remaining two-term recurrence:
Pn = Pn−2 +Pn−3, we obtain another lesser known cousin of Fibonacci, called as the Padovan
sequence [2, 23, 19]. Analogously, we can define the Padovan polynomial via the recurrence
P0 := 1, P1 := 0, P2 := x1, and Pn = xn−1Pn−2 + Pn−3 for all n ≥ 3. This generalizes the
univariate Padovan polynomial that is known in the literature [22].

Our results complement the results of Bringmann, Ikenmeyer and Zuiddam [8] by showing
that the aforementioned polynomial families, namely Narayana’s cows and Padovan, based
on the lesser known cousins of Fibonacci, are complete for the class VF. In other words, both
families can efficiently exactly simulate formulas.

MFCS 2022
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(a) Continuant polynomial
Fn := xnFn−1 + Fn−2.
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(b) Narayana’s cows polynomial
Nm := xmNm−1 + Nm−3.



0 −x1 1

1
1

−xn−1

1 0


(c) Padovan polynomial
Pn := xn−1Pn−2 + Pn−3.

Figure 1 Polynomial families defined by determinants of simple matrices and their recurrences.

1.1 Our findings
We discover the simplest class of matrices whose determinants characterize algebraic formulas.
We find that tetradiagonal matrices of a very special form suffice for this purpose.

▶ Theorem 2 (Informal, See Theorem 16 and Corollary 23). The determinant family of
tetradiagonal symbolic matrices is polynomially equivalent to algebraic formulas.

In fact, the tetradiagonal matrices (Figures 1b and 1c) that is sufficient for efficiently
simulating algebraic formulas are remarkably similar to the tridiagonal matrices (Figure 1a)
used by Bringmann, Ikenmeyer and Zuiddam [8] to efficiently approximate algebraic formulas.
It follows from the above theorem and Allender and Wang’s separation [4], that tetradiagonal
matrices are more expressive than tridiagonal matrices, but at the same time it can also
be seen (Figure 1) to be nearly as simple as tridiagonal matrices – having just one extra
diagonal whose entries are all 0s! We thus have the following equivalent reformulation of
Problem 1.

Is the minimum size of a tetradiagonal matrix whose determinant equals detn su-
perpolynomially large, where detn is the determinant of a general n × n symbolic
matrix?

This further motivated us to investigate matrices with few non-zero diagonals. Such
matrices are called band matrices in the literature. We say that a matrix M is a band
matrix of type (k1, k2) if all the non-zero entries of the matrix is concentrated between
k1 diagonals below the main diagonal and k2 diagonals above the main diagonal. That is,
Mij = 0 if j < i − k1 or j > i + k2. A band matrix of type (k1, k2) will also be referred as
(k1, k2)-diagonal matrix. The bandwidth of such matrices are defined to be k := max(k1, k2).

For example, diagonal matrices are (0, 0)-diagonal and has bandwidth 0, tridiagonal
matrices are (1, 1)-diagonal with bandwidth 1, tetradiagonal matrices are either (1, 2)-
diagonal or (2, 1)-diagonal with bandwidth 2, and pentadiagonal matrices are (2, 2)-diagonal
with bandwidth 2. Figures 1b and 1c are examples of (1, 2)-diagonal matrices.

If follows from Theorem 2 that (1, 2)-diagonal matrices can simulate formulas, and
hence any (k1, k2)-diagonal matrix can simulate formulas as long as min(k1, k2) ≥ 1 and
max(k1, k2) ≥ 2. It is then interesting to investigate the converse, i.e., for which (k1, k2)-
diagonal matrices their determinants have small formulas?

We observe that determinants of bandwidth k matrices can be computed by polynomial-
sized algebraic formulas when the bandwidth k is bounded by a constant. In fact, our
constructions give efficient (syntactic) multilinear ABPs and circuits for low bandwidth
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matrices. These are circuits for which every intermediate polynomial that is computed is
also multilinear. A polynomial is said to be multilinear if every monomial of the polynomial
is multilinear, and a monomial is called multilinear if every variable has degree at most
1 in it. In comparison, polynomial size circuits for the determinant of general matrices
given by Berkowitz [6] and polynomial size ABPs given by Mahajan and Vinay [15] are
non-multilinear.

▶ Theorem 3 (Informal, See Corollary 23). Determinants of symbolic band matrices are
computable by polynomial-sized algebraic formulas when bandwidth is bounded by a constant.

In fact, the above theorem holds for the permanent of a band matrix too. Combining
Theorems 2 and 3, we get a nice characterization of algebraic formulas in terms of determinants
(or, permanents) of band matrices of small bandwidth. In other words, determinants of
band matrices with bounded bandwidth yield polynomial families which are complete for the
complexity class VF.

▶ Theorem 4 (Informal, See Theorem 16, Theorem 19, and Corollary 23). For all constant
k ≥ 2, the determinant (or, permanent) family of symbolic matrices of bandwidth k is
VF-complete.

1.2 Proof methods
Ideas for Theorem 2 (Simulating formulas via determinant of tetradiagonal matrices).
We prove Theorem 2 in Section 3, where we begin with tetradiagonal matrices of type (1, 2).
That is, the non-zero entries are limited to one diagonal below the main diagonal, the main
diagonal, and two diagonals above the main diagonal. We first show that the symbolic
determinant of such tetradiagonal matrices can be written as a product of 3 × 3 matrices
whose entries are variables (or their negations), 0, and 1, where the number of matrices
in the product is linear in the size of the original matrix. This is obtained by exploiting a
simple recurrence revealed while computing the determinant of these (1, 2) tetradiagonal
matrices using Laplace expansion, see Lemma 12. Thus, to prove Theorem 2, it is sufficient
to show that algebraic formulas can be efficiently simulated by the matrix product of the
3 × 3 matrices obtained above. In fact, Ben-Or and Cleve, in their simulation of algebraic
formulas using width 3 algebraic branching programs, showed that algebraic formulas can be
efficiently simulated by the matrix product of 3 × 3 matrices. Thus, it might be tempting
to conclude that we are already done. However, it turns out that the 3 × 3 matrices whose
products equals the determinant of tetradiagonal matrices desire more structure than the
matrices used in the proof of Ben-Or and Cleve. This is where the core technical novelty
of our work lies – we show that algebraic formulas can indeed be efficiently simulated by
product of 3 × 3 matrices of the form whose products are equivalent to the determinant
of (1, 2)-tetradiagonal matrices. In fact, we are able to efficiently simulate formulas with
even more structure on the matrices, allowing us to conclude that formulas can be efficiently
simulated by tetradigonal matrices where the variable entries are only on the main diagonal,
the diagonal below the main diagonal is all 1s, whereas the two diagonals above the main
diagonal are all 0s and all 1s respectively, see Section 3.1 for details.

Ideas for Theorem 3 (Formulas for determinant of symbolic band matrices). Theorem 3
is relatively simpler to derive from the literature. We prove it in Section 4 taking two different
constructions for computing determinants of general matrices and carefully specializing those
constructions in the case of bandwidth k matrices, ensuring that the undesirable blowups
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are limited to parameter k, allowing us to get polynomial-sized formulas when k is bounded
by a constant. In our first construction, we modify the construction of Grenet for computing
permanent of an n×n matrix using algebraic branching programs. For bandwidth k matrices,
we are able to get syntactic multilinear ABPs of length linear in the size of matrix and
exponential in the bandwidth, see Theorem 22 for details. Applying standard conversion
from ABPs to formulas yield Theorem 3. This gives us a formula of depth O(k log(n))
and size nO(k). In our second construction, we adapt the generalized Laplace expansion to
low bandwidth matrices, see Theorem 26 for details. The construction yields a syntactic
multilinear arithmetic circuit of size O(exp(k)n) and depth O(poly(k) log(n)), which can be
converted to algebraic formulas using standard conversion from circuits to formulas, giving
an alternative proof of Theorem 3.

The rest of this paper is organized as follows: Section 3 gives efficient simulations of
algebraic formulas via determinant of tetradiagonal symbolic matrices. Subsections 3.1 and
3.2 show that Narayana’s cows polynomials and Padovan polynomials are complete for VF.
Section 4 shows that determinants of all matrices with constant bandwidth have polynomial
size formulas. See the full version [13] for omitted proofs.

2 Preliminaries

We define computational models that are of interest in this paper.

▶ Definition 5. An algebraic circuit C is a rooted directed acyclic graph where the source
nodes are labeled by elements of F or variables x1, . . . , xn, and the internal nodes have
in-degree 2 and are labeled by + or ×. It naturally computes a polynomial p ∈ F[x1, . . . , xn]
in a bottom-up fashion. An algebraic formula is a circuit whose underlying graph is a tree.
The size of a circuit is the number of nodes in the graph and the depth of a circuit is the
number of edges on the longest path from the root to some source node.

We recall the definition of ABPs.

▶ Definition 6. An ABP is a layered directed acyclic graph with source node s and sink node
t such that each edge is labeled by a variable or a constant. The polynomial computed by the
ABP is given by

∑
p mp, where p is an s to t path and mp is the product of edge labels on

the path p. The width of an ABP is the maximum number of nodes in any layer and the
length is the number of layers.

It is easy to see that width-w, length-ℓ ABPs are equivalent to product of a sequence of ℓ

matrices of order w × w.
We now define a notion of reduction that allows us to relate the complexity of polynomials

under the above model.

▶ Definition 7. A polynomial f(x) ∈ F[x1, . . . , xn] is a projection of a polynomial g(y) ∈
F[y1, . . . , ym], denoted f ≤ g, if and only if f(x1, . . . , xn) = g(a1, . . . , am), where ai ∈
F ∪ {x1, x2, . . . , xn}.

It is easy to see that if g is computed by a formula of size s and depth d and f ≤ g, then f

is also computed by a formula of size at most s and depth at most d.
As is usually the case in algorithms and complexity, formula size or depth for fixed

polynomials is rarely of interest. Instead, we look at families of polynomials and the
asymptotic growth of size and depth of formulas computing them.
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▶ Definition 8. A polynomial family over a field F is a sequence f = (fn)n∈N of polynomials
such that both the number of variables and the degree of fn are polynomially bounded functions
in n.

A sequence of formulas F = (Fn)n∈N is said to compute a polynomial family f = (fn) if
and only if Fn computes fn for all n. The size and depth of the sequence F is defined as
functions such that s(n) and d(n) are the size and depth of Fn.

We now extend the definition of reductions to families.

▶ Definition 9. A polynomial family (fn) is a p-projection of another family (gm), denoted
(fn) ≤p (gm) if and only if there exists a polynomially bounded function t : N 7→ N such that
fn ≤ gt(n) for all n.

Note that if (gn) is computed by polynomial size formulas and (fn) ≤p (gn), then (fn) is
also computed by polynomial size formulas.

▶ Definition 10. The algebraic class VF is defined as the set of all polynomial families that
have polynomial size formulas.

The class VDet (equivalently VBP) is defined as the set of all polynomial families f such
that f ≤p det, where det is the family of determinants over n × n symbolic matrices.

Using the above notion of reduction, we can define completeness for classes.

▶ Definition 11. A polynomial family f = (fn) is said to be complete for a class C w.r.t p-
projections if and only if f ∈ C and for all g ∈ C, we have g ≤p f .

Note that det is trivially complete for VDet. Ben-Or and Cleve [5] showed that the polynomial
family per3,n, the (1, 1) entry of the product of n 3 × 3 symbolic matrices is complete for VF.

3 Determinant of (1, 2)-diagonal matrix versus algebraic formulas

In this section, we show that the determinants of (1, 2)-diagonal symbolic matrices are
polynomially equivalent to algebraic formulas, thereby, proving Theorem 2. We begin with
the easier direction, that is, by showing that the determinant of (1, 2)-diagonal symbolic
matrix has polynomial-sized algebraic formulas. In fact, we give a polynomial-sized algebraic
branching programs for them of width-3, which can then be converted into a polynomial-sized
formula using a divide and conquer algorithm.

▶ Lemma 12. The determinant (or, permanent) of (1, 2)-diagonal symbolic matrix of
dimensions n × n can be computed by a width-3 syntactic multilinear ABP of length at most
3n − 2.

In particular, they can be computed by (syntactic) multilinear formulas of size poly(n).

Proof. Let M denote the following (1, 2)-diagonal symbolic matrix,

M =



x11 x12 x13

x21

xn−2,n

xn−1,n

xn,n−1 xn,n


. (1)

MFCS 2022



65:8 Rabbits Approximate, Cows Compute Exactly!

For 0 ≤ i ≤ n − 1, define K(n − i) to be the determinant of the principal submatrix of M

obtained by deleting both the first i rows and columns. Furthermore, set K(0) := 1 and
K(−1) := 0. Note that, by definition, K(n) = det(M) and K(1) = xnn. Then we have the
following recursive formula for K(n):

K(n) = x11K(n − 1) − x12x21K(n − 2) + x13x32x21K(n − 3). (2)

The correctness of the above formula easily follows from a backward induction on i. Rewriting
the recurrence in a matrix form we obtain K(n)

K(n − 1)
K(n − 2)

 =

x11 −x12x21 x13x32x21
1 0 0
0 1 0

 K(n − 1)
K(n − 2)
K(n − 3)

 (3)

=

x21 x11 0
0 1 0
0 0 1

 0 −x12 x13
1 0 0
0 1 0

 1 0 0
0 1 0
0 0 x32

 K(n − 1)
K(n − 2)
K(n − 3)

 (4)

Unrolling Eq. (4) and using K(1) = xnn, K(0) = 1, and K(−1) = 0 we obtain the claimed
width-3 ABP for K(n). ◀

We now consider a special kind of (1, 2)-diagonal symbolic matrices where entries in both
the lowermost and the uppermost diagonals are only 1. We show that the determinant (or,
permanent) of such a matrix is equivalent to a special kind of width-3 ABP. These matrices
would serve as the key building block in our main proofs. However, we first need a name for
the special kind of (1, 2)-diagonal matrices that we are going to be dealing with.

▶ Definition 13. Let (α, β, γ, δ) ∈ (F ∪ {∗})4. A (1, 2)-diagonal matrix is said to be of type
(α, β, γ, δ) if all entries on the lowermost diagonal, main diagonal, first upper diagonal and
second upper diagonal equals α, β, γ and δ respectively. Furthermore, if α, β, γ, or δ equals
∗ then the entries on the respective diagonals are not restricted.

For example, a general (1, 2)-diagonal symbolic matrix, shown in Equation 1, is of type
(∗, ∗, ∗, ∗) and a (1, 2)-diagonal matrix of type (α, β, γ, δ) ∈ F4 is also a Toeplitz matrix.
The special kind of (1, 2)-diagonal matrices that we consider are of type (1, ∗, ∗, 1). We
now characterize the determinant of such matrices by a restricted width-3 ABP where the
interconnections between layers are given by a special 3 × 3 matrix.

▶ Lemma 14. Let M denote the following (1, 2)-diagonal symbolic matrix of type (1, ∗, ∗, 1)
of dimension n × n:

M =



x11 x12 1

1

1

xn−1,n

1 xn,n


.

Then, det(M) is given by the (1, 1) entry of the following iterated matrix multiplication over
3 × 3 matrices,x11 −x12 1

1 0 0
0 1 0

 x22 −x23 1
1 0 0
0 1 0

 · · · · · ·

x(n−1)(n−1) −x(n−1)n 1
1 0 0
0 1 0

 xnn 0 1
1 0 0
0 1 0

 .
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Conversely, the (1, 1) entry of the following iterated matrix multiplication:α1 β1 1
1 0 0
0 1 0

 α2 β2 1
1 0 0
0 1 0

 · · · · · ·

α(n−1) β(n−1) 1
1 0 0
0 1 0

 αn βn 1
1 0 0
0 1 0

 ,

is given by the determinant of the following (1, 2)-diagonal matrix of type (1, ∗, ∗, 1),

M =



α1 −β1 1

1

1

−βn−1

1 αn


.

Proof. The equivalence follows from observing that in this special case the recurrence of (3)
becomes K(n)

K(n − 1)
K(n − 2)

 =

x11 −x12 1
1 0 0
0 1 0

 K(n − 1)
K(n − 2)
K(n − 3)

 ,

=

x11 −x12 1
1 0 0
0 1 0

 · · ·

x(n−1)(n−1) −x(n−1)n 1
1 0 0
0 1 0

  K(1)
K(0)

K(−1)

 ,

where K(i), −1 ≤ i ≤ n, as defined in the proof of Lemma 12, is the determinant of the
principal submatrix of M obtained by deleting both the first n − i rows and columns with
K(0) = 1 and K(−1) = 0. ◀

3.1 Narayana’s cows polynomial is VF-complete
In this section, we simulate algebraic formulas with tetradiagonal matrices of type (1,∗,0,1).
The determinant of such matrices follow the same recurrence as that of Narayana’s cows
polynomial described in Section 1. This simulation along with Lemma 12 finishes the proof
of completeness of Narayana’s cows polynomial families for the class VF.

We know from Lemma 14 that the determinant (or, permanent) of (1, 2)-diagonal matrices
of type (1, ∗, 0, 1) is equivalent to the (1, 1) entry of an iterated matrix multiplication where

the base matrices are of the form:

∗ 0 1
1 0 0
0 1 0

. For notational convenience, let us denote the

base matrix

z 0 1
1 0 0
0 1 0

 by A(z). In the following we will only work with iterated matrix

multiplication over the base matrix A(∗) and use the equivalence given by Lemma 14 to
represent the matrix product as the determinant (or, permanent) of (1, 2)-diagonal matrix of
type (1, ∗, 0, 1).

For a better understanding of the algorithm we will present the algorithm in a recursive
way. In particular we will have intermediate computations where the matrices will be of the

form

0 f 1
1 0 0
0 1 0

. We will denote such matrices by B(f). Note that A(0) = B(0). We now

state and prove our simulation of formulas as a product of base matrices A(z).

MFCS 2022



65:10 Rabbits Approximate, Cows Compute Exactly!

▶ Lemma 15. Let p be a polynomial computed by a formula of depth d. Then, both A(p) and
A(−p) can be expressed as an iterated matrix multiplication of length at most 30 · 4d − 29 over
the base matrices A(z), where z is either a field constant, a variable, or a negated variable.

Proof. The proof is by induction on depth.
Base case: d = 0. Then it computes either a field constant, a variable or a negated

variable which can be represented by a single base matrix A(z), where z is the label of the
node.

Induction step: d = m. There are two cases to be considered depending on whether the
node at depth m is an addition or a multiplication node.

Case 1: (Addition). Suppose p = f + g, where f and g are computable by depth
m − 1 formulas. By induction hypothesis, we can express both A(f) and A(g). Then,
A(p) = A(f) · A(0) · A(0) · A(g). In other words,f + g 0 1

1 0 0
0 1 0

 =

f 0 1
1 0 0
0 1 0

 0 0 1
1 0 0
0 1 0

 0 0 1
1 0 0
0 1 0

 g 0 1
1 0 0
0 1 0

 .

Similarly one can express A(−p).
Case 2: (Multiplication). Suppose p = f · g, where f and g are computable by depth

m − 1 formulas. We will use the following equation to compute f · g.

A(f · g) = A(0) · A(0) · B(−g) · B(f) · A(0) · B(g) · B(−f). (5)

We will now show how to compute B(f) using matrices of type A(·) which will complete
the recursive algorithm. Similar to Eq. (5), the following equation computes B(f · g) using
matrices of type A(·).

B(f · g) = A(0) · A(−f) · A(0) · A(g) · A(f) · A(0) · A(−g). (6)

We can thus use appropriate substitutions in Eq. (6) to get B(f), B(g), B(−f), and B(−g)
and complete the algorithm. However, note that to compute B(f) we need to make two calls
to f as A(−f) and A(f). This would result in a total length of O(8d). To bring down the
length to O(4d), we now show how to compute B(f) using a single call to A(f). Consider
the following equation:

B(f) = A(0) · B(−1) · A(0) · A(1) · A(f) · A(0) · A(−1) · B(1) · A(0) · A(0). (7)

We can use Eq. (6) to obtain B(−1) and B(1), thus completing the algorithm to compute
B(f) with a single call to A(f). We can now use equations (5) and (7) to compute A(f · g).
Similarly one can express A(−p).

The upper bound on the length of the iterated matrix multiplication follows from the
following recurrence: T (d) ≤ 4 · T (d − 1) + 87 and T (0) = 1. ◀

As a corollary to Lemmas 12 and 15, we obtain the following characterization of formulas.

▶ Theorem 16. Let Mn denote the following (1, 2)-diagonal symbolic matrix of type (1, ∗, 0, 1)
of dimension n × n:

Mn =



x1 0 1

1
1

0
1 xn

.

Then the sequences of polynomials {det(Mn)}n≥1 and {per(Mn)}n≥1 are VF-complete
with respect to p-projections.
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Proof. Follows from Lemmas 12 and 15, and depth reduction of formulas [7]. ◀

We are now all set to deduce the completeness of the Narayana’s Cows polynomial family
for class VF.

▶ Theorem 17. Narayana’s cows polynomial family is VF-complete.

Proof. We observe that the determinants of the sequence of (1, 2)-diagonal symbolic matrices
of type (1, ∗, 0, 1) follow the recurrence Nm = xmNm−1+Nm−3 for all m ≥ 3, which is precisely
the recurrence defining the Narayana’s cows polynomials as described in Section 1. ◀

3.2 Padovan polynomial is VF-complete
In this section, we simulate algebraic formulas with tetradiagonal matrices of type (1, 0, ∗, 1)
instead. This time, the determinant of such matrices follow the same recurrence as that of
Padovan polynomial described in Section 1. This simulation along with Lemma 12 finishes
the proof of completeness of Padovan polynomial families for the class VF.

Again from Lemma 14 we know that the determinant (or, permanent) of (1, 2)-diagonal
matrices of type (1, 0, ∗, 1) is equivalent to the (1, 1) entry of an iterated matrix multiplication

where the base matrices are of the form:

0 ∗ 1
1 0 0
0 1 0

. Recall we denote base matrices of

the form

0 z 1
1 0 0
0 1 0

 by B(z). In the following we will only work with iterated matrix

multiplication over the base matrix B(∗) and use the equivalence given by Lemma 14 to
represent the matrix product as the determinant (or, permanent) of (1, 2)-diagonal matrix of
type (1, 0, ∗, 1).

▶ Lemma 18. Let p be a polynomial computed by a formula of depth d. Then, both B(p) and
B(−p) can be expressed as an iterated matrix multiplication of length at most 30 · 4d − 29 over
the base matrices B(z), where z is either a field constant, a variable, or a negated variable.

The proof is analogous to the proof of Lemma 15. (See the full version [13].)
As a corollary to Lemmas 12 and 18, we obtain another characterization of formulas.

▶ Theorem 19. Let Mn denote the following (1, 2)-diagonal symbolic matrix of type (1, 0, ∗, 1)
of dimension n × n:

Mn =



0 x1 1

1
1

xn−1

1 0

.

Then the sequences of polynomials {det(Mn)}n≥2 and {per(Mn)}n≥2 are VF-complete
with respect to p-projections.

Proof. The containment in VF follows from Lemma 12. While the hardness follows by
translating the iterated product in Lemma 18 to a (1, 2)-diagonal symbolic matrix of type
(1, 0, ∗, 1) using Lemma 14. Note that to apply Lemma 14 one has to multiply the iterated
product on the right by B(0) (to move the polynomial to (1, 1) entry). However, this only
increases the length by 1. Finally using the depth reduction of formulas [7] completes the
proof. ◀
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We are now all set to deduce the completeness of Padovan polynomial family for class VF.

▶ Theorem 20. Padovan polynomial family is VF-complete.

Proof. We observe that the determinants of the sequence of (1, 2)-diagonal symbolic matrices
of type (1, 0, ∗, 1) in Theorem 19 follow the recurrence Pn = xn−1Pn−2 + Pn−3, for all n ≥ 3,
if we negate all variables in the matrix, which is precisely the recurrence for the Padovan
polynomials as described in Section 1. ◀

4 Matrices of small bandwidth

Our main goal in this section is to prove that for all fixed k, the determinant of matrices
of bandwidth k can be computed by polynomial sized formulas. Along with the results in
Section 3, this gives a complete characterization of the algebraic complexity of the determin-
ant of constant bandwidth matrices (Theorem 24). Following the spirit of parameterized
algorithms, we consider the bandwidth k as a parameter, and show that we can construct
efficient syntactic multilinear ABPs (Theorem 22) and circuits (Theorem 26) for computing
the determinant where the undesirable blowup (exponential for size, polynomial for depth) is
limited to the parameter k.

Our parameterized constructions are derived from Grenet’s syntactic multilinear ABP
construction for the n × n permanent [12] and the generalized Laplace expansion that
constructs syntactic multilinear circuits for the n × n determinant and permanent. We state
the bounds given by those constructions below:

▶ Lemma 21. The determinant (or, permanent) of an n×n symbolic matrix can be computed
by a syntactic multilinear circuit of size O(n2n) and depth O(n). Moreover, it can be computed
by a syntactic multilinear ABP of length at most n + 2 and width at most

(
n

n/2
)
.

Notice that the ABP in Lemma 21 has width that is exponential in n. Our construction
for matrices of bandwidth k shows that this exponential blowup can be limited to k.

▶ Theorem 22. The determinant (permanent) of a (k, k)-diagonal symbolic matrix of
dimension n × n can be computed using a syntactic multilinear ABP of length n + 2 and
width

(2k
k

)
.

Proof. We begin with a high-level recall of Grenet’s construction [12]. In his construction, the
start node is in layer 0. All monomials computed at layer i correspond to some permutation
that maps rows [i] to some set of i columns. Further, a node in a particular layer keeps track
of the subset of columns in the monomials computed at that node. This means that in layer
n/2, it has to keep track of

(
n

n/2
)

distinct sets resulting in exponential (in n) width. The
edges between layers are specified such that these invariants are preserved.

We now build a layered ABP for small bandwidth matrices that is a modification of
Grenet’s construction.

For matrices of bandwidth k, we can make use of the fact that rows that are separated by
at least 2k rows have no common non-zero columns. Therefore, instead of keeping track of a
subset of all columns, we can keep track of a subset of only a few columns. More specifically,
any monomial computed at layer i (assume k ≤ i ≤ n − k for simplicity, the rest of the rows
are handled similarly) must pick i columns from [i + k] since all columns further to the right
are zero for these rows. Moreover, the columns [i − k] have to be picked by the first i rows
since these columns are zero from row i + 1. Therefore, rows up to i must pick exactly k

columns from the 2k sized set of columns [i − k + 1, i + k]. In layer i, we have exactly one
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node for each k sized subset of this 2k sized set. This ABP has n + 2 layers and each layer
has at most

(2k
k

)
nodes. This is precisely where we improve over Grenet’s construction when

specialized to matrices of bandwidth k. We refer to the full version [13] for details. ◀

By using standard conversion from ABP to formula, we obtain the following corollary.

▶ Corollary 23. For all fixed k, the determinant (or, permanent) of symbolic matrices of
bandwidth k can be computed using polynomial sized formulas.

Along with the results in Section 3, the above corollary gives a complete characterization
of the algebraic complexity of determinant (or, permanent) of constant bandwidth matrices.

▶ Theorem 24. For all constant k ≥ 2, the determinant (or, permanent) family of symbolic
matrices of bandwidth k is VF-complete.

▶ Remark 25. For completeness, we add that for k = 0 (symbolic diagonal matrices), the
determinant (or, permanent) family is complete for width-1 ABPs, and for k = 1, the
determinant (or, permanent) family is complete for width-2 ABPs.

The ABP given by Theorem 22 has depth n. On the other hand, converting it to a
formula makes the depth O(k log(n)) but the size nO(k). If we are interested in arithmetic
circuits, we can eliminate the dependence of k in the exponent of n while keeping the depth
logarithmic in n. Compared to Lemma 21, our construction, which is an adaption of the
generalized Laplace expansion to low bandwidth matrices, limits the exponential blowup in
size and the polynomial blowup in depth to the parameter k.

▶ Theorem 26. The determinant (or, permanent) of an n × n (k, k)-diagonal symbolic
matrix can be computed using a syntactic multilinear circuit of size O(exp(k)n) and depth
O(k log(n)).

We refer to the full version [13] for details.
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Abstract
For PLS-complete local search problems, there is presumably no polynomial-time algorithm which
finds a locally optimal solution, even though determining whether a solution is locally optimal and
replacing it by a better one if this is not the case can be done in polynomial time.

We study local search for Weighted Independent Set and Weighted Dominating Set
with the 3-swap neighborhood. The 3-swap neighborhood of a vertex set S in G is the set of
vertex sets which can be obtained from S by exchanging at most three vertices. We prove the
following dichotomy: On the negative side, the problem of finding a 3-swap-optimal independent
set or dominating set is PLS-complete. On the positive side, locally optimal independent sets or
dominating sets can be found in polynomial time when allowing all 3-swaps except a) the swaps that
remove two vertices from the current solution and add one vertex to the solution or b) the swaps
that remove one vertex from the current solution and add two vertices to the solution.
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1 Introduction

Local search is one of the most successful paradigms for developing algorithms for NP-hard
optimization problems. In the most fundamental version of local search, the hill-climbing
algorithm, one starts by computing some feasible solution to the problem at hand. This
solution is then replaced by a better solution in its local neighborhood, as long as such a
better solution exists. The final output is a locally optimal solution. Even though such a
locally optimal solution might be arbitrarily bad in comparison to a globally optimal solution,
local search approaches turned out to find good solutions in practice [1, 3, 6]. A crucial aspect
in this approach is the definition of the local neighborhood of solutions. Intuitively, there
is the following trade-off: for more restricted neighborhoods, computing a local optimum
should be easier but the quality of the local optimum may be worse than for less restricted
neighborhoods. Note that the choice of the neighborhood may affect the computational
difficulty of each improvement step as well as the number of necessary improvement steps.
Naturally, in applications of hill-climbing, the neighborhoods are chosen in such a way that
each improvement step can be performed efficiently.
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To study the difficulty of computing locally optimal solutions in such a setting, Johnson
et al. [5] introduced the complexity class PLS. This class contains all local search problems
for which one can compute some starting solution and search the local neighborhood of a
feasible solution S in polynomial time. Thus, the local search problems in PLS are exactly
those that have a hill-climbing algorithm where each step only takes polynomial time.

For many unweighted problems, membership in PLS directly implies a polynomial-time
algorithm for computing locally optimal solutions, since the maximum objective value is
bounded by a polynomial of the input size. The situation is different for weighted problems,
where we may need a superpolynomial number of improvement steps to reach a local optimum.
To give evidence that for some local search problems in PLS it may be hard to compute
locally optimal solutions, Johnson et al. [5] introduced PLS-reductions and showed that there
are PLS-complete problems. These problems are as hard as any problem in PLS and none of
them is known to be solvable in polynomial time.

We study two famous graph problems, Weighted Independent Set and Weighted
Dominating Set through the lens of PLS-completeness. The solutions in both problems
are vertex sets and we consider the most fundamental neighborhoods for such solutions:
k-swap-neighborhoods, where we may add or remove up to k vertices from a solution.

Previous Work. PLS-completeness has been shown for a number of problems [4, 5, 11, 13, 14].
The initial PLS-complete problem is called Flip, where the input is a Boolean circuit [5].
Another prominent PLS-complete problem is Max Cut with the flip neighborhood, where
the neighbors of a partition (A, B) are the partitions that can be obtained by moving one
vertex from A to B or vice versa [13]. Max Cut with the flip neighborhood is PLS-complete
on graphs with maximum degree 5 [4] and polynomial-time solvable on 3-regular graphs [12].

Johnson et al. [5] already considered the Weighted Independent Set problem and
argued that one can show PLS-completeness for a neighborhood that is inspired by the
Kernighan-Lin algorithm for Max Cut [7]. Moreover, Johnson et al. [5] specifically called
for the study of simpler neighborhoods for the Weighted Independent Set problem.
Schäffer and Yannakakis [13] argued that Weighted Independent Set is PLS-complete
for a 2-step neighborhood which consists of an addition of a vertex v to the independent
set S and a removal of all its neighbors from S in the first step and a (maximal) series of
improving vertex additions in the second step. Note that the first step is not necessarily
improving. Further studies have shown PLS-completeness for Weighted Independent
Dominating Set with a k-swap neighborhood with constant but unspecified k [8] and
for Weighted Max-Π-Subgraph with hereditary properties Π and the above-described
2-step-neighborhood [14]. We are not aware of any results for the k-swap neighborhoods
with small constant k considered in this work.

From a more applied point of view, local search has been shown to give very good results
for Independent Set [1, 2, 3, 6, 9] and weighted Weighted Independent Set [10]. In
particular, for Independent Set, Andrade et al. [1] presented fast algorithms for finding
improving 5-swaps and showed that the subroutine of finding 5-swap optimal solutions gives
very good results when used in an iterative local search framework. Later, it was shown
that k-swap-optimal solutions for Independent Set can be efficiently computed for k up
to 25 and that, on a set of large sparse real-world networks globally optimal solutions can be
found via a simple hill-climbing algorithm for k ≥ 9 [6].
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Our Results. We provide a complexity analysis for Weighted Independent Set with
the k-swap neighborhood, denoted Weighted Independent Set/k-swap. Our main result
is the PLS-completeness of Weighted Independent Set/3-swap on graphs of constant1

maximum degree. We first show in Section 3 that Weighted Independent Set/7-swap
is PLS-complete on graphs of maximum degree at most 6. Then, in Section 4, we extend the
constructed instance of Weighted Independent Set/7-swap to obtain PLS-completeness
for Weighted Independent Set/3-swap. Next, we show that by a small modification
of the construction, the PLS-completeness for 3-swaps can be transferred to Weighted
Dominating Set. Finally, in Section 5, we show that if we allow all 3-swaps except either
a) the swaps that remove two vertices and add one or b) the swaps that remove one vertex
and add two, we can find locally optimal solutions for Weighted Independent Set
and Weighted Dominating Set in polynomial time. We extend this result to a slightly
more general neighborhood and a certain type of subset optimization problems. Proofs of
statements marked with a ”(*)” are deferred to the full version.

2 Preliminaries

For integers i and j with i ≤ j, we define [i, j] := {k ∈ N | i ≤ k ≤ j}. For two sets A and B,
we denote with A ⊕ B := (A \ B) ∪ (B \ A) the symmetric difference of A and B.

An (undirected) graph G = (V, E) consists of a set of vertices V and a set of edges E ⊆
{{u, v} | u ∈ V, v ∈ V, u ̸= v}. For vertex sets S ⊆ V and T ⊆ V we denote with EG(S, T ) :=
{{s, t} ∈ E | s ∈ S, t ∈ T} the edges between S and T . Moreover, we define G[S] :=
(S, EG(S, S)) as the subgraph of G induced by S. For a vertex v ∈ V , we denote with NG(v) :=
{w ∈ V | {v, w} ∈ E} the open neighborhood of v in G and with NG[v] := {v} ∪ NG(v) the
closed neighborhood of v in G. Analogously, for a vertex set S ⊆ V , we define NG[S] :=⋃

v∈S NG[v] and NG(S) :=
⋃

v∈S NG(v) \ S. If G is clear from the context, we may omit the
subscript.

A vertex set S ⊆ V is an independent set in G if there is no edge between any pair of
vertices of S in G and a clique in G if there is an edge between each pair of vertices of S

in G. A vertex set S ⊆ V is a dominating set in G if for each vertex v of G, at least one
vertex of N [v] is contained in S.

The two main problems considered here are now defined as follows.

Weighted Independent Set
Input: A graph G = (V, E) and a vertex-weight function ω : V → N.
Output: An independent set in G of maximum total weight.

Weighted Dominating Set
Input: A graph G = (V, E) and a vertex-weight function ω : V → N.
Output: A dominating set in G of minimum total weight.

An optimization problem L consists of a set DL of instances, for each instance I ∈ DL,
a set of feasible solutions SL(I) for I, an objective function valL which assigns a non-
negative rational number to each pair (I, s), and is specified to be either a minimization
or a maximization problem. An optimization problem L is an NP-optimization problem if
the encoding length of each solution s ∈ SL(I) of I is polynomially bounded by |I|, one
can determine in polynomial time for each pair (I, s) whether s ∈ SL(I), and the objective
function can be evaluated in polynomial time.

1 Our proof gives a degree bound of 3140.
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Let I be an instance and of an optimization problem L and let s and s′ be feasible solutions
for I. We say that s is better than s′ if a) L is a maximization problem and valL(I, s) >

valL(I, s′) or b) L is a minimization problem and valL(I, s) < valL(I, s′).

▶ Definition 2.1. An NP-optimization problem L is a subset-weight optimization problem
if it consists of

a polynomial-time computable function U that maps each instance I of L to a universe U(I)
and each feasible solution of I is a subset of U(I),
a polynomial-time computable function f which checks for an instance I of L and a
set S ⊆ U(I) if S is a feasible solution for I,
a polynomial-time computable function g which computes for an instance I of L some
feasible solution for I, and
a polynomial-time computable weight function ω which assigns a non-negative rational
weight to each pair (I, u), where I is an instance of L and u is an element of U(I)

and one wants to find a feasible solution S for I of either minimal or maximal weight, where
the weight of S is defined as ω(I, S) :=

∑
u∈S ω(I, u).

If one wants to find a feasible solution of maximal weight, L is a subset-weight maximization
problem; otherwise, L is a subset-weight minimization problem.

Weighted Independent Set is a subset-weight maximization problem: the feasible
solutions are the independent sets of G, these are all subsets of the vertex set V (the universe),
one can check in polynomial time if a vertex set S is an independent set, and the total
weight of S is defined as the sum of the weights of the vertices of S. Similarly, Weighted
Dominating Set is a subset-weight minimization problem.

Let L be a subset-weight optimization problem, let I be an instance of L, and let S ⊆ U(I)
be a feasible solution for I. A k-swap, for k ∈ N, is a subset W ⊆ U(I) of size at most k.
We say that W is valid for S in I if S ⊕ W is also a feasible solution for I. We say
that two feasible solutions S and S′ for I are k-neighbors in I if W := S ⊕ S′ has size at
most k. Additionally, we say that S′ is an improving k-neighbor of S in I and that W

is an improving k-swap if the total weight of S′ is better than the total weight of S. If
there is no improving k-neighbor of S in I, S is k-optimal in I. Let S be a subset of U(I)
and let k, kin, and kout be natural numbers such that kin + kout ≤ k. A k-swap W is
a (kin, kout)-swap for S in G, if |W \ S| ≤ kin and if |W ∩ S| ≤ kout. Similar to k-swaps,
we also define the notions of valid (kin, kout)-swaps, improving (kin, kout)-swaps, (kin, kout)-
neighbors, improving (kin, kout)-neighbors, and (kin, kout)-optimal.

A partition of a graph G = (V, E) is a pair (A, B), where A ∪ B = V and A ∩ B = ∅.
The cut of a partition (A, B) is the edge set EG(A, B), that is, the set of edges having
one endpoint in A and one endpoint in B. Let ω : E → N be an edge-weight function.
A flip of a vertex v ∈ V in a partition (A, B) is the partition (A′, B′), where A′ := A ⊕ {v}
and B′ := B ⊕ {v}. Moreover, we say that (A′, B′) is improving over (A, B) if the total
weight of cut EG(A′, B′) is larger than the total weight of the cut EG(A, B), that is,
if ω(EG(A′, B′)) > ω(EG(A, B)). Furthermore, we say that a partition (A, B) is flip-optimal
if there is no vertex v ∈ V such that the flip (A′, B′) of v in (A, B) is improving over (A, B).

In the corresponding minimization problem one wants to find a cut of maximal weight.

Max Cut
Input: A graph G = (V, E) and an edge-weight function ω : E → N.
Output: A partition (A, B) of G such that EG(A, B) has maximum total weight.
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A local search problem (L, N ) consists of
an optimization problem L and
a neighborhood structure N for L that maps for each instance I of L, each valid solution S

of I to a set N (I, S) ⊆ SL(I) of valid solutions for I, the neighbors of S with respect
to N .

The goal of (L, N ) is to find for a given instance I of L a locally optimal solution S with
respect to N , that is, a feasible solution for I such that no solution in N (I, S) is better
than S. We may write a local search problem (L, N ) as L/N . An example for a local search
problem is Weighted Independent Set/k-swap, where the neighbors of an independent
set S are the valid k-swap neighbors of S.

A local search problem (L, N ) is in the complexity class PLS, if
there is an algorithm which computes in polynomial time some feasible solution S for a
given instance I of L and
there is an algorithm which in polynomial time determines whether a given solution S

is locally optimal with respect to N for an instance I of L and, if this is not the case,
outputs a better neighbor for S.

Note that for each constant k, Weighted Independent Set/k-swap is contained in PLS.
Let (L1, N1) and (L2, N2) be local search problems. We say that (L1, N1) is PLS-

reducible to (L2, N2) if for each instance I1 of L1, one can compute in polynomial time
an instance I2 of L2 and a solution mapper f , that is, a polynomial-time computable
function f that maps each solution S2 of I2 to a solution f(S2) of I1 such that if S2 is
locally optimal for I2 with respect to N2, then f(S2) is locally optimal for I1 with respect
to N1. A local search problem (L, N ) is PLS-hard if for each local search problem (L′, N ′)
of PLS, there is a PLS-reduction from (L′, N ′) to (L, N ). Due to the transitivity of PLS-
reductions, this can be done by proving a PLS-reduction from any PLS-hard local search
problem (L′, N ′). Moreover, (L, N ) is PLS-complete if (L, N ) is contained in PLS and PLS-
hard. An example for a PLS-complete local search problem is Max Cut/flip, where the
neighbors of a partition (A, B) are the improving partitions of (A, B) one can obtain by
flipping some vertex of G [13]. This is the case even on graphs of degree at most 5 [4].

3 Hardness of Finding 7-optimal Independent Sets

To obtain the PLS-completeness of Weighted Independent Set/3-swap on graphs of con-
stant maximum degree, we first show PLS-completeness for Weighted Independent Set/7-
swap and use the obtained graph as starting point in a subsequent reduction to Weighted
Independent Set/3-swap.

▶ Theorem 3.1. Weighted Independent Set/7-swap is PLS-complete on graphs of
maximum degree 6.

As mentioned above, Weighted Independent Set/k-swap is contained in PLS for each
constant value of k. Hence, we only have to show that Weighted Independent Set/7-swap
is PLS-hard.

Construction. We present a PLS-reduction from Max Cut/flip to Weighted Indepen-
dent Set/7-swap. Let I = (G = (V, E), ω) be an instance of Max Cut/flip where G

has a maximum degree of five. For these instances Max Cut/flip is known to be PLS-
complete [4]. We describe how to obtain in polynomial time an instance I ′ = (G′ =
(V ′, E′), ω′) of Weighted Independent Set/7-swap and a polynomial-time computable
solution-mapper f for I and I ′ such that if an independent set S is 7-optimal in I ′, then f(S)
is flip-optimal in I.

MFCS 2022
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vB

vA

uB

uA

wB

wA
x(u,v)

x(v,u)

x(w,v)

x(v,w)

Figure 1 An example for the vertices and edges added to G′ for a vertex v ∈ V with two
neighbors u and w in G in the reduction from Max Cut/flip to Weighted Independent Set/7-
swap.

We start with an empty graph G′ and add, for each vertex v ∈ V , two new adjacent
vertices vA and vB to G′. Next, for each edge {u, v} ∈ E, we add two new vertices x(u,v)
and x(v,u) to G′ and make x(u,v) adjacent to uB and vA and x(v,u) adjacent to uA and vB.
This completes the construction of G′. Figure 1 shows an example for the vertices and edges
added to G′ for a vertex v ∈ V with two neighbors u and w in G. Note that G′ has a
maximum degree of six. In the following, let VA := {vA | v ∈ V } and VB := {vB | v ∈ V }.

Next, we define the weight function ω′ : V ′ → N. Let Z :=
∑

e∈E ω(e) denote the total
weight of all edges. We set for each vertex v ∈ V , ω′(vA) := ω′(vB) := 16 · Z and for each
edge {u, v} ∈ E, we set ω′(x(u,v)) := ω′(x(v,u)) := 8 · ω({u, v}). In principle, the factors of
8 can be omitted but they will come in handy later when we present the PLS-reduction
to Weighted Independent Set/3-swap.

This completes the construction of I ′. It remains to define the solution-mapper f . For an
independent set S, we define f(S) to be the partition (A, B) of G where A := {v ∈ V | vA ∈ S}
and B := V \ A. Recall that for vertex v ∈ V , the vertices vA and vB are adjacent in G′.

Correctness. To show the correctness of the reduction, we first analyze the structure
of 7-optimal independent sets in G′. To this end, we define a notion of nice independent
sets in G′ and show that all 7-optimal independent sets in G′ are nice. Recall that if some
vertex v of V is contained in A for f(S) = (A, B), then vB is not contained in S.

▶ Definition 3.2. Let S be an independent set in G′ and let A := {v ∈ V | vA ∈ S} and
let B := {v ∈ V | vB ∈ S}. We call S nice if (A, B) is a partition of G and for each
edge {u, v} ∈ E with (u, v) ∈ A × B, x(u,v) ∈ S.

▶ Lemma 3.3 (*). If an independent set S in G is not nice, then S is not 7-optimal in G′.

Hence, we only have to consider nice independent sets in G′ when considering 7-optimal
independent sets in G′. Now, to prove Theorem 3.1 it remains to show the following.

▶ Lemma 3.4. Let S be a nice independent set in G′. If f(S) is not flip-optimal in G,
then S is not 7-optimal in G′.

Proof. Let (A, B) := f(S). By definition of f and the fact that S is nice, A = {v ∈ V | vA ∈
S} and B = {v ∈ V | vB ∈ S}. Suppose that (A, B) is not flip-optimal in G. Then, there is
some vertex v ∈ V where the total weight of the edges that are incident with v and that are in
the cut EG(A, B) is less than the total weight of the edges that are incident with v and that
are not in the cut EG(A, B). That is, either a) v ∈ A and ω(EG({v}, A)) > ω(EG({v}, B))
or b) v ∈ B and ω(EG({v}, B)) > ω(EG({v}, A)).

Without loss of generality we may assume that v ∈ A and ω(EG({v}, A)) > ω(EG({v}, B)).
Let XA := NG(v) ∩ A denote the neighbors of v in A and let XB := NG(v) ∩ B denote the
neighbors of v in B. Since S is nice, we know that x(v,u) ∈ S for each u ∈ XB. Moreover,
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vB vA

x(a,v)x(v,a) x(b,v)x(v,b) x(c,v)x(v,c) x(d,v)x(v,d) x(e,v)x(v,e)

Figure 2 An example of an improving 7-swap W for a nice independent set S in G′ that simulates
the flip of a vertex v ∈ V from A to B in G, where NG(v) = {a, b, c, d, e} and NG(v) ∩ B = {b, d, e}.
The black vertices are the vertices of S and all vertices of W are highlighted by the blue shape.

for each w ∈ XA, x(v,w) /∈ S since wA ∈ S and x(w,v) /∈ S since vA ∈ S. We show that the
swap W := {vA, vB} ∪ {x(v,u) | u ∈ XB} ∪ {x(w,v) | w ∈ XA} is a valid improving 7-swap
for S in G′. An example of the swap W is illustrated in Figure 2. First of all, note that W

has size at most 7 since G has a maximum degree of 5 and thus |XA ∪ XB | ≤ 5. Moreover,
by the fact that ω′(x(y,z)) := ω′(x(z,y)) := 8 · ω({y, z}) for each edge {y, z} ∈ E,

ω′({x(w,v) | w ∈ XA}) = 8 · ω({{v, w} | w ∈ XA})
> 8 · ω({{v, u} | u ∈ XB}) = ω′({x(v,u) | u ∈ XB}).

Hence, W is improving, since ω′(vA) = ω′(vB). It remains to show that W is valid. Since W

removes all adjacent vertices of vB from S, S ⊕ W does not contain any neighbor of vB.
Moreover, since vA ∈ W and for each w ∈ XA, wA ∈ S ⊕ W and thus wB /∈ S ⊕ W , no
vertex x(w,v) is adjacent to any vertex in S ⊕ W . As a consequence, W is valid and thus S is
not 7-optimal. ◀

4 Hardness of Finding 3-optimal Independent Sets

The main result of this section is the following.

▶ Theorem 4.1. Weighted Independent Set/3-swap is PLS-complete on graphs of
constant maximum degree.

Construction. To show this, we extend the graph G′ by additional gadgets to simu-
late 7-swaps by a sequence of 3-swaps. We describe how to obtain in polynomial time
an instance I ′′ = (G′′ = (V ′′, E′′), ω′′) of Weighted Independent Set/3-swap and a
polynomial-time computable solution-mapper f for I and I ′′ such that if an independent
set S is 3-optimal in I ′′, then f(S) is flip-optimal in I. As described above, we extend the
graph G′ and the weight function ω′ of the instance I ′ = (G′ = (V ′, E′), ω′) of Weighted
Independent Set/7-swap described above. As above, let VA := {vA | v ∈ V } and
let VB := {vB | v ∈ V }. Moreover, we set for each v ∈ V , Xv := {x(v,w), x(w,v) | w ∈ N(v)},
that is, Xv is the set of vertices in G′ that were introduced for the incident edges of v in G.
We write NG(v) and NG[v] when considering the neighborhood of a vertex v of V in G

and N(v) or N [v] when considering the neighborhood of a vertex v of V ′′ in G′′.
Initially, we add edges such that for each vertex v ∈ V , u ∈ NG(v), and w ∈ NG(V ), the

vertices x(u,v) and x(v,w) are adjacent in G′′. Note that this includes edges between x(u,v)
and x(v,u) in G′′ for each edge {u, v} ∈ E. The idea is that in an independent set S in G′′,
for each vertex v ∈ V , there is no vertex x(u,v) ∈ S if S already contains a vertex x(v,w).
Hence, for each vertex v of G, at most one of vA and vB has neighbors in Xv ∩ S.

MFCS 2022
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vB vA

x(a,v)x(v,a) x(b,v)x(v,b) x(c,v)x(v,c) x(d,v)x(v,d) x(e,v)x(v,e)

upA,2
v,P

upA,1
v,P

turnA
v,P

downA,1
v,P

Figure 3 A sequence (W1, W2, W3, W4, W5) of improving 3-swaps (from left to right highlighted
alternating by either a blue or a red shape) for a nice independent set S in G′′ that simulates the
flip of a vertex v ∈ V from A to B in G, where NG(v) = {a, b, c, d, e} and P = NG(v) ∩ B = {b, d, e}
with P (1) = b, P (2) = d, and P (3) = e. The black vertices are the vertices of S. Note that not all
edges of this subgraph are shown but only the important ones for the sequence of improving 3-swaps.

Next, we add gadgets to allow us to simulate 7-swaps in G′ by a sequence of 3-swaps in G′′.
To this end, we first compute for each vertex v ∈ V the collection Pv of subsets P ⊆ NG(v)
fulfilling ω(EG({v}, P )) < ω(EG({v}, NG(v) \ P )). Intuitively, if in a partition (A, B) of G,
flipping a vertex v from A to B is improving, then the set NG(v) ∩ B is contained in Pv and
vice versa. Note that ∅ ∈ Pv and NG(v) /∈ Pv for each v ∈ V . Next, we add, for each P ∈ Pv

with P ̸= ∅, a set of |NG(v)| − 1 new vertices to G′′. Let Q := NG(v) \ P . Now, fix an
ordering on both P and Q and let P (i) denote the ith element of P and let Q(j) denote
the jth element of Q where i ∈ [1, |P |] and j ∈ [1, |Q|].

These vertices are of three types: up, turn, and down. To simulate a flip of v from A

to B, we have to remove the neighbors of vB from S, add vB to S and add the vertices
representing edges of (A ∩ NG(v)) × {v} to S. Intuitively, the up-vertices allow us – with
a sequence of improving 3-swaps – to remove all neighbors of vB from S except vA and
the up-vertex of highest level. Afterwards, the turn-vertex allows us – with two improving 3-
swaps – to remove vA from S and add vB and the down-vertex of highest level to S. Finally,
the down-vertices allow us – with a sequence of improving 3-swaps – to add the vertices
representing edges of (A ∩ NG(v)) × {v} to S such that at the end, none of these auxiliary
vertices remains in S. In total, this allows us to simulate improving 7-swaps in I ′ and thus
improving flips in I by a sequence of improving 3-swaps in I ′′. An example for a sequence of
improving 3-swaps in G′′ to simulate a flip in G is illustrated in Figure 3. This figure shows
only the edges that are important for the sequence of improving 3-swaps and not all edges of
this subgraph.

First, we add for each i ∈ [1, |P |−1], a new vertex upA,i
v,P to G such that the neighborhood

of upA,i
v,P is exactly Xv minus the vertices {x(v,P (j)) | j < i}. Hence, upA,1

v,P is adjacent to all
vertices of Xv. Furthermore, we add an edge between upA,i

v,P and each vertex of {wA | w ∈
P} ∪ {wB | w ∈ Q} and an edge between upA,i

v,P and vB . Moreover, we set

ω′′(upA,i
v,P ) := 4 − i + 8 ·

|P |∑
j=i

ω({v, P (j)}) = 4 − i +
|P |∑
j=i

ω′′(x(v,P (j))).

Intuitively, one can obtain an improving 3-neighbor for S in G as follows:
1. if wA /∈ S for any neighbor w ∈ NG(v) in P and uB /∈ S for any neighbor u ∈ NG(v)

in P , then we remove x(v,P (|P |−1)) and x(v,P (|P |)) and add upA,|P |−1
v,P , and

2. if upA,j
v,P ∈ S, where j ∈ [2, |P | − 1], then we remove upA,j

v,P and x(v,P (j)) and add upA,j−1
v,P .



C. Komusiewicz and N. Morawietz 66:9

Hence, during the simulation of an improving flip of a vertex v in a partition (A, B) from A

to B in G, we can replace all vertices of Xv by the vertex upA,1
v,P with a sequence of

improving 3-swaps, where P = NG(v) ∩ B.
Second, we add a vertex turnA

v,P to G′′ which is adjacent to all vertices of Xv, {vA, vB},
and to the vertices of {wA | w ∈ P} ∪ {wB | w ∈ Q}. Recall that ω′′(vA) = ω′′(vB) = 16 · Z

where Z =
∑

e∈E ω(e). We set

ω′′(turnA
v,P ) := 4 + ω′′(vA) + 8 ·

∑
w∈P

ω({v, w}) = 4 + 16 · Z +
∑
w∈P

ω′′(x(v,w)).

Intuitively, one can obtain an improving 3-neighbor for S in G if upA,1
v,P is contained in S, by

removing both upA,1
v,P and vA from S and adding turnA

v,P to S.
Third, we add, similar to upA,i

v,P , for each i ∈ [1, |Q| − 1] a new vertex downA,i
v,P to G

such that the neighborhood of downA,i
v,P is exactly Xv \ {x(Q(j),v) | j < i}. Hence, downA,1

v,P

is adjacent to all vertices of Xv. Furthermore, we add an edge between downA,i
v,P and each

vertex of {wA | w ∈ P} ∪ {wB | w ∈ Q} and we also an edge between downA,i
v,P and vA.

Moreover, we set

ω′′(downA,i
v,P ) := i − 4 + 8 ·

|Q|∑
j=i

ω({v, Q(j)}) = i − 4 +
|Q|∑
j=i

ω′′(x(v,Q(j))).

Note that ω′′(downA,i
v,P ) > 0 since Q ̸= ∅ and the images of ω are positive numbers. Intuitively,

one can obtain an improving 3-neighbor for S in G as follows:
1. if turnA

v,P ∈ S, then we remove turnA
v,P and add downA,1

v,P and vB ,
2. if downA,j

v,P ∈ S for some j < |Q| − 1, then we remove downA,j
v,P and add downA,j+1

v,P

and x(Q(j),v), and
3. if downA,|Q|−1

v,P ∈ S, then we remove downA,|Q|−1
v,P and add x(Q(|Q|−1),v) and x(Q(|Q|),v).

With the current graph, it is possible to simulate a flip of a vertex v from A to B. To
also simulate a flip of vertex v from B to A, we add symmetric vertices to G′′, that is, for
each vertex upA,j

v,P , we add a vertex upB,j
v,P , for each vertex turnA

v,P , we add a vertex turnB
v,P ,

and for each vertex downA,j
v,P , we add a vertex downB,j

v,P .
The formal definition of these symmetric vertices is deferred to the full version.
Note that we did not add any vertices for P = ∅ ∈ Pv to the graph G′′. In the correctness

proof, we show that a single improving 3-swap for S is sufficient to simulate the flip of a
vertex v of G if no edge incident with v is currently in the cut.

For each vertex v ∈ V , let Vv denote the set of the additional vertices associated with v:

Vv :=
⋃

P ∈Pv,P ̸=∅,C∈{A,B}

({upC,i
v,P | i < |P |} ∪ {turnC

v,P } ∪ {downC,i
v,P | i < |NG(v) \ P |}).

To complete the construction, for each v ∈ V , we make the set
⋃

w∈NG[v] Vw a clique in G′′.

▶ Lemma 4.2 (*). The graph G′′ has maximum degree at most 3140.

It remains to define the solution-mapper f . Analogously to the solution-mapper of the
presented PLS-reduction for Weighted Independent Set/7-swap, for an independent
set S, we define f(S) to be the partition (A, B) of G where A := {v ∈ V | vA ∈ S}
and B := V \ A.
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Correctness. To show the correctness of the PLS-reduction, we first analyze the structure
of 3-optimal independent sets in G′′. To this end, we show in the auxiliary Lemmas 4.3 –
4.5 that we can assume that each 3-optimal independent set in G′′ contains for each v ∈ V

either the vertex vA or the vertex vB . Recall that for vertex v ∈ V , the vertices vA and vB

are adjacent in G′′. As a consequence, this then implies that for f(S) = (A, B), B is exactly
the set {v ∈ V | vB ∈ S}. Finally, in Lemma 4.6, we then show that such an independent
set S is not 3-optimal in I ′′ if f(S) is not flip-optimal in G.

▶ Lemma 4.3. Let S be an independent set in G′′. If S contains a vertex upC,i
v,P for C ∈

{A, B}, then S is not 3-optimal.

Proof. First, we show the statement for i = 1. By construction, the closed neighbor-
hood N [turnC

v,P ] is exactly N [upC,1
v,P ] ∪ {vC} and ω′′(turnC

v,P ) = 1 + ω′′(upC,1
v,P ) + ω′′(vC).

Hence, S is not 3-optimal in G′′ since S′ := (S ∪ {turnC
v,P }) \ {upC,1

v,P , vC} is an improving 3-
neighbor of S in G′′. This holds even if vC is not in S.

Second, we show the statement for i > 1. Let r := x(v,P (i−1)) if C = A and r :=
x(P (i−1),v) if C = B. Note that by construction, the closed neighborhood N [upC,i−1

v,P ] is
exactly N [upC,i

v,P ] ∪ {r} and ω′′(upC,i−1
v,P ) = 1 + ω′′(upC,i

v,P ) + ω′′(r). Hence, if an independent
set S contains upC,i

v,P with i > 1, then S is not 3-optimal in G′′ since (S∪{upC,i−1
v,P })\{upC,i

v,P , r}
is an improving 3-neighbor of S in G′′. This holds even if r is not in S. ◀

▶ Lemma 4.4 (*). Let S be an independent set in G′′. If there is a vertex v ∈ V such that S

avoids vA, vB, and Tv := {turnA
v,P , turnB

v,P | P ∈ Pv, P ̸= ∅}, then S is not 3-optimal.

Hence, we can assume that each 3-optimal independent set S in G′′ contains for each
vertex v ∈ V either vA, vB , or exactly one vertex of Tv := {turnA

v,P , turnB
v,P | P ∈ Pv, P ≠ ∅},

and no vertex of {upA,i
v,P , upB,i

v,P | P ∈ Pv, P ̸= ∅, i < |P |}. In the following, we call
an independent set S of G′′ nice if S ⊆ V ′ = VA ∪ VB ∪

⋃
v∈V Xv and if S is a nice

independent set for the instance I ′ of Weighted Independent Set/7-swap. That is, if
for A := {v ∈ V | vA ∈ S} and B := {v ∈ V | vB ∈ S}, (A, B) is a partition of G and for
each edge {u, v} ∈ E with (u, v) ∈ A × B, the vertex x(u,v) is contained in S. Next, we show
similar to Lemma 3.4, that an independent set S in G′′ is not 3-optimal if S is not nice.

▶ Lemma 4.5. Let S be an independent set in G′′. If S is not nice, then S is not 3-optimal.

Proof. Let S be an independent set in G′′ which is not nice. Due to Lemma 4.3, we know
that S is not 3-optimal if some vertex upC,i

v,P for C ∈ A, B is contained in S. Hence, in
the following, we assume that none of these vertices is contained in S. Moreover, due
to Lemma 4.4, we also know that S is not 3-optimal if there is some vertex v ∈ V such
that S does not contain vA, vB , and no vertex of {turnA

v,P , turnB
v,P | P ∈ Pv, P ̸= ∅}. Hence,

in the following we further assume that S contains one of these vertices for some v ∈ V .
In a first step, we show that if for some v ∈ V , S contains some vertex of {turnA

v,P , turnB
v,P |

P ∈ Pv, P ̸= ∅}, then S is not 3-optimal. Assume without loss of generality that turnA
v,P ∈ S

and let Q := NG(v) \ P . Recall that
⋃

w∈NG[v] Vw is a clique in G′′ which implies that for
each w ∈ NG(v), S contains no vertex of {turnA

w,P ′ , turnB
w,P ′ | P ′ ∈ Pw, P ′ ̸= ∅} ⊆ Vw. Hence,

due to Lemma 4.4, to for each w ∈ NG(v), S contains either wA or wB . Moreover, turnA
v,P is

adjacent to all vertices of Xv, all vertices of {wA | w ∈ P}, and all vertices of {wB | w ∈ Q}.
As a consequence, for each w ∈ P , wB ∈ S, and wA /∈ S, and for each u ∈ Q, uA ∈ S

and uB /∈ S. Furthermore, S contains no other neighbor of vA or vB . Recall that P ̸= NG(v)
which implies Q = ∅. In the following, it suffices to distinguish between |Q| = 1 and |Q| > 1.
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First, suppose that |Q| = 1 and let w denote the unique vertex of Q. We show that S′ :=
(S ∪ {vB , x(w,v)}) \ {turnA

v,P } is an improving 3-neighbor of S in G′′. By construction, vB

and x(w,v) are non-adjacent in G′′ and

ω′′(vB) + ω′′(x(w,v)) = 16 · Z + 8 · ω({v, w}) = 16 · Z + 8 ·
∑
u∈Q

ω({v, u})

> 16 · Z + 4 + 8 ·
∑
u∈P

ω({v, u}) = ω′′(turnA
v,P )

since the images of ω are positive numbers and P ∈ Pv which implies
∑

u∈Q ω({v, u}) >∑
u∈P ω({v, u}). Hence, it remains to show that S is an independent set. Since by defini-

tion, N [vB] ⊆ N [turnA
v,P ], we only have to show that there is no other neighbor of x(w,v)

in S besides turnA
v,P . By construction, the neighborhood of x(w,v) in G′′ is a subset

of {vA, wB} ∪ Vv ∪ Vw ∪ Xv ∪ Xw. Now, turnA
v,P is adjacent to all vertices of this set

except for some vertices of Xw. Hence, we only have to consider the neighbors of x(w,v)
in Xw. By construction, these are the vertices x(u,w) where u ∈ NG(w). Since wA is contained
in S and each of these vertices x(u,w) is adjacent to wA in G′′, x(w,v) has no neighbor in S

besides turnA
v,P . As a consequence, S′ is an improving 3-neighbor of S.

Second, suppose that |Q| > 1. Then, the vertex downA,1
v,P exists. We show that S′ :=

(S ∪ {vB , downA,1
v,P }) \ {turnA

v,P } is an improving 3-neighbor of S in G′′. By construction,
vB and downA,1

v,P are non-adjacent in G′′ and

ω′′(vB) + ω′′(downA,1
v,P ) = 16 · Z − 3 + 8 ·

∑
w∈Q

ω({v, w})

> 16 · Z + 4 + 8 ·
∑
u∈P

ω({v, u}) = ω′′(turnA
v,P )

since the images of ω are positive numbers and P ∈ Pv which implies
∑

u∈Q ω({v, u}) >∑
u∈P ω({v, u}). Hence, it remains to show that S is an independent set. By defini-

tion, N [vB] ⊆ N [turnA
v,P ] and N [downA,1

v,P ] ⊆ N [turnA
v,P ], which implies that turnA

v,P is the
unique neighbor of both vB and turnA

v,P in S. As a consequence, S′ is an independent set
and thus an improving 3-neighbor of S. Hence, in the following, we can also assume that for
each v ∈ V , S contains either vA or vB .

Next, we show that if for some v ∈ V , there is some vertex r ∈ Vv contained in S, then S is
not 3-optimal. Note that we already showed that this is the case if r is upA,i

v,P , upB,i
v,P , turnA

v,P ,
or turnB

v,P . Hence, it remains to show the claim for r being downA,i
v,P or downB,i

v,P . Assume
without loss of generality that there is a nonempty set P ∈ Pv and some i < |Q| with Q :=
NG(v) \ P such that downA,i

v,P is contained in S. The proof of the fact that in this case S is
not 3-optimal is deferred to the full version.

Summarizing, we can assume in the following that S ⊆ V ′ = VA ∪ VB ∪
⋃

v∈V Xv and
that (A, B) is a partition of G, where A := {v ∈ V | vA ∈ S} and B := {v ∈ V | vB ∈ S}.
Note that for each edge {v, w} ∈ E with (v, w) /∈ A × B, the vertex x(v,w) is not contained
in S since vB ∈ S or wA ∈ S, and both these vertices are adjacent to x(v,w). Hence, it
remains to show that if there is some edge {v, w} ∈ E with (v, w) ∈ A × B such that x(v,w)
is not contained in S, then S is not 3-optimal in G′′. To this end, we show that S ∪ {x(v,w)}
is an independent set in G′′. By construction, x(v,w) is adjacent to vB, wA, some vertices
of Vv ∪ Vw, and the vertices {x(u,v) | u ∈ NG(v)} ∪ {x(w,u) | u ∈ NG(w)}. Recall that S

contains no vertex of Vv ∪ Vw. Moreover, since (v, w) ∈ A × B, vA and wB are contained
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in S which implies that vB and wA are not contained in S. Furthermore, since all vertices
of {x(u,v) | u ∈ NG(v)} are adjacent to vA, all vertices of {x(w,u) | u ∈ NG(w)} are adjacent
to wB , and vA and wB are contained in S, S ∪ {x(v,w)} is an independent set in G′′.

We conclude that if S is not nice in G′′, then S is not 3-optimal. ◀

Now the following implies the correctness of the PLS-reduction.

▶ Lemma 4.6 (*). Let S be a nice independent set in G′′ and let A := {v ∈ V | vA ∈ S}
and B := {v ∈ V | vB ∈ S}. If (A, B) is not flip-optimal in G, then S is not 3-optimal.

Next, we obtain similar results for Weighted Dominating Set.

▶ Theorem 4.7 (*). Let k ≥ 3. There is a PLS-reduction from Weighted Independent
Set/k-swap to Weighted Dominating Set/k-swap where the maximum degree of the
output graph is at most two times the maximum degree of the input graph.

Hence, we obtain the following due to Theorem 4.7, Theorem 3.1, and Theorem 4.1.

▶ Corollary 4.8. Weighted Dominating Set/7-swap is PLS-complete on graphs of
maximum degree at most 12 and Weighted Dominating Set/3-swap is PLS-complete on
graphs of constant maximum degree.

5 Finding Locally Optimal Solutions for Restricted 3-Swaps

We now show that we can find locally optimal solutions in polynomial time for Weighted
Independent Set and Weighted Dominating Set if we restrict the allowed 3-swaps as
follows: we either only allow swaps that add at most one vertex to the current solution or
we allow only swaps that remove at most one vertex from the solution. These are exactly
the (1, 2)-swaps and (2, 1)-swaps, respectively, since a 3-swap that removes three vertices
from the current solution or that adds three vertices to the solution is either not improving,
or the solution is not 1-optimal.

Recall that a (kin, kout)-swap W for a set S is a k-swap with kin + kout ≤ k such
that |W \ S| ≤ kin and |W ∩ S| ≤ kout.

First, we show that we can compute in O(n · log(n)+m) time a (1, 2)-optimal independent
set S. More precisely, we show that S is even (1, k)-optimal for every k ∈ N.

▶ Theorem 5.1 (*). One can compute in O(n · log(n) + m) time an independent set which
is (1, k)-optimal for every k ∈ N.

Second, we show that we can also compute in O(n · log(n) + m) time a (2, 1)-optimal
dominating set S. More precisely, we show that S is even (k, 1)-optimal for every k ∈ N.

▶ Theorem 5.2 (*). One can compute in O(n · log(n) + m) time a dominating set which
is (k, 1)-optimal for every k ∈ N.

▶ Theorem 5.3. Let L be a subset-weight maximization problem, let I be an instance of L,
and let k ∈ O(1). One can compute in polynomial time a (k, 1)-optimal solution S for I.

Proof. Recall that since L is a subset-weight maximization problem, L consists of func-
tions U , f , g, and ω, where for each instance I of L, U(I) is the universe of I, f(I, S) checks
if S is a solution for I, g(I) computes some feasible solution for I, and ω(I, u) assigns a weight
to each u ∈ U(I). Moreover, the functions U , f , g, and ω are polynomial-time computable.
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Let I be an instance of L and let k ≥ 0. Note that we can compute some feasible
solution S0 := g(I) in polynomial time. Since U(I) can be computed in polynomial time, U(I)
has polynomial size. Let n := |U(I)|. Since f and ω can be computed in polynomial time,
we can check for a given solution S in nO(k) time if there is an improving (k + 1)-swap W

such that W is a (k, 1)-swap for S by considering all subsets of size at most k + 1 of U(I).
Note that this is polynomial time since k is a constant. Hence, we can determine whether
a solution S is (k, 1)-optimal and, if this is not the case, replace S by a (k, 1)-neighbor,
both in polynomial time. Let Sx be a (k, 1)-optimal feasible solution in I which can be
obtained by a sequence (S0, S1, . . . , Sx) of consecutive improving (k, 1)-neighbors in I starting
from g(I) = S0. We show that x ∈ O(n3), which implies that a (k, 1)-optimal feasible solution
for I can be computed in polynomial time. Let ℓ ∈ [1, x]. To this end, we first show that Sℓ

is never smaller than Sℓ−1. Assume towards a contradiction that |Sℓ| < |Sℓ−1|. Then
there is some u ∈ Sℓ−1 such that Sℓ = Sℓ−1 \ {u} since Sℓ is a (k, 1)-neighbor of Sℓ−1 in I.
Since the weight of Sℓ is defined as the sum of weights of the elements of Sℓ and each
element u ∈ U(I) has a positive weight ω(I, u), the total weight of Sℓ is not larger than the
total weight of Sℓ−1, a contradiction. As a consequence, there are at most y ≤ |U(I)| distinct
indices ℓ1, . . . , ℓy such that Sℓi

is larger than Sℓi−1. To prove that x ∈ O(n3), we now show
that for each ℓ ∈ [1, x − n2], there is some z ∈ [ℓ, ℓ + n2] where Sz is larger than Sℓ−1. In
other words, after at most n2 improving swaps that do not increase the size of the solution,
the next improving swap increases the size of the solution.

Let ℓ ∈ [1, x − U(I)2], let σ = (u1, . . . , un) be a fixed increasing order of the elements
of U(I) according to their weight, and let for each j ∈ [ℓ, ℓ+n2], qj :=

∑
ui∈Sj

i denote the sum
of the indices of Sj in σ. Note that if Sj and Sj−1 have same size, Sj = (Sj−1 ∪ {u2}) \ {u1}
for two elements u1 ∈ U(I) and u2 ∈ U(I) where the weight of u2 is larger than the weight
of u1. Hence, qj is larger than qj−1 if Sj and Sj−1 have same size. Since the value qj can
never exceed n2, there is some z ∈ [ℓ, ℓ + n2] where the size of Sz is larger than the size
of Sℓ−1. We conclude that x ∈ O(n3) which implies that we can compute in polynomial time
a feasible solution S of I such that S is (k, 1)-optimal in I. ◀

▶ Corollary 5.4 (*). Let L be a subset-weight minimization problem, let I be an instance
of L and let k ∈ O(1). One can compute in polynomial time a (1, k)-optimal solution S for I.

By the fact that for a maximization problem there is no improving swap that only removes
elements from the solution and for a minimization problem there is no improving swap that
only adds elements to the solution, Theorem 5.3 and Corollary 5.4 imply that one can find
for each subset weight optimization problem L, a 2-optimal solution in polynomial time.

Since Weighted Independent Set is a subset-weight maximization problem and
since Weighted Dominating Set is a subset-weight minimization problem, we conclude
the following.

▶ Corollary 5.5. Let k be a constant. One can compute in polynomial time a (k, 1)-optimal
independent set and one can compute in polynomial time a (1, k)-optimal dominating set.

Consequently, if we allow only (1, 2)-swaps or only (2, 1)-swaps, we can find locally optimal
solutions for Weighted Independent Set and Weighted Dominating Set in polynomial
time. In contrast, if we allow (1, 2)-swaps and (2, 1)-swaps, then we allow all 3-swaps and
both problems become PLS-complete even on graphs of constant maximum degree.
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6 Conclusion

From a theoretical point of view, the most important open topic is to determine the
precise degree bounds that separate the polynomial-time solvable and PLS-complete cases
for Weighted Independent Set and Weighted Dominating Set for k-swaps with
small constant k-values. From a practical point of view, our findings motivate, for both
problems, the use of gap-variants of local search where we are searching for solutions that
improve the objective value by at least some threshold d, the hope being that this decreases
the number of necessary iterations while preserving solution quality.
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1 Boolean Circuits

A Boolean straight line program of size r for input variables (x1, . . . , xn) is a sequence
of r instructions where each instruction g ← h ◦ k applies a binary Boolean operation ◦ to
two operands h, k each of which is either an input bit or the result of a previous instruction.
If m instructions are designated as outputs, the straight line program computes a function
{0, 1}n → {0, 1}m in a natural way. We denote the set of all such functions by Bn,m and
we let Bn = Bn,1. For a Boolean function f : {0, 1}n → {0, 1}m, by size(f) we denote the
minimum size of a straight line program computing f . A Boolean circuit shows a graph of
a program: for every instruction g ← h ◦ k, there is a node g with two directed incoming
edges from nodes h and k.

Figure 1 gives an example for the SUMn : {0, 1}n → {0, 1}l function that computes the
binary representation of the sum of n bits:

SUMn(x1, . . . , xn) = (w0, w1, . . . , wl−1) :
n∑

i=1
xi =

l−1∑
i=0

2iwi, where l = ⌈log2(n + 1)⌉ .

This function transforms n bits of weight 0 into l bits of weights (0, 1, . . . , l − 1).
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def sum2(x1, x2):
w0 = x1 ^ x2
w1 = x1 * x2
return w0, w1

x1 x2

∧w1 ⊕ w0

def sum3(x1, x2, x3):
a = x1 ^ x2
b = x2 ^ x3
c = a | b
w0 = a ^ x3
w1 = c ^ w0
return w0, w1

x1 x2 x3

⊕a ⊕b

∨c ⊕ w0

⊕ w1

Figure 1 Optimal size straight line programs and circuits for SUM2 and SUM3. These two
circuits are known as half adder and full adder.

The straight line programs are given in Python so that it is particularly easy to verify their
correctness. For example, the program for SUM3 can be verified with just three lines of code:

from itertools import product

for x1, x2, x3 in product(range(2), repeat=3):
w0, w1 = sum3(x1, x2, x3)
assert x1 + x2 + x3 == w0 + 2 * w1

Determining size(f) requires proving lower bounds: to show that size(f) > α, one needs
to prove that every circuit of size at most α does not compute f . Known lower bounds are
far from being satisfactory: the strongest known lower bound for a function family in NP
is (3 + 1/86)n−o(n) [7]. Here, by a function family we mean an infinite sequence of functions
{fn}∞

n=1 where fn ∈ Bn. Even proving lower bounds for specific functions (rather than
function families) is difficult. Brute force approaches become impractical quickly: |Bn| = 22n ,
hence already for n = 6, one cannot just enumerate all functions from Bn; also, the number
of circuits of size s is sΘ(s), hence checking all circuits of size s takes reasonable time for small
values of s only. Knuth [11] found the exact circuit size of all functions from B4 and B5.

Finding the exact value of size(f) for f ∈ B6 is already a difficult computational task for
modern computers and techniques. One approach is to translate a statement “there exists
a circuit of size s computing f” to a Boolean formula and to pass it to a SAT solver. Then,
if the formula is satisfiable, one decodes a circuit from its satisfying assignment; otherwise,
one gets a (computer generated) proof of a lower bound size(f) > s. This circuit synthesis
approach was proposed by Kojevnikov et al. [13] and, since then, has been used in various
circuit synthesis programs (abc [1], mockturtle [24], sat-chains [10]).

State-of-the-art SAT solvers are surprisingly efficient and allow to handle various practi-
cally important problems (with millions of variables) and even help to resolve open problems
in mathematics [2]. Still, already for small values of n and s the problem of finding a circuit
of size s for a function from Bn is difficult for SAT solvers. We demonstrate the limits of this
approach on counting functions: MODm,r

n (x1, . . . , xn) = [x1 + · · ·+ xn ≡ r mod m] (here, [·]
is the Iverson bracket: [S] is equal to 1 if S is true and is equal to 0 otherwise). Using SAT
solvers, Knuth [12, solution to exercise 480] found size(MOD3,r

n ) for all 3 ≤ n ≤ 5 and all
0 ≤ r ≤ 2. Generalizing the found values, he made the following conjecture:

size(MOD3,r
n ) = 3n− 5− [(n + r) ≡ 0 mod 3] for all n ≥ 3 and r. (1)

He was also able to prove (using SAT solvers) that size(MOD3,0
6 ) = 12 and wrote: “The

case n = 6 and r ̸= 0, which lies tantalizingly close to the limits of today’s solvers, is still
unknown.”
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Knuth also describes various symmetry breaking heuristics and shows which of them give
a significant speedup. Haaswijk et al. [8] show another way of speeding up the SAT-based
approach for circuit synthesis: first, generate all possible circuit topologies, then, for each
topology check using SAT solvers whether one can assign Boolean operation to the gates
so that the resulting circuit computes a given function.

To summarize, our current abilities for checking whether there exists a Boolean circuit
of size s are roughly the following: for s ≤ 6, this can be done in a few seconds; for 7 ≤ s ≤ 12,
this can (sometimes) be done in a few days; for s ≥ 13, this is out of reach.

1.1 New Results
In this paper, we explore the limits of the following natural idea: given a circuit, try to improve
its size by improving (using SAT solvers, for example) the size of its subcircuit of size seven.
This is a kind of a local search approach: we have no possibility to go through the whole
space of all circuits, but we can at least search in a neighborhood of a given circuit. This
allows us to work with circuits consisting of many gates.

As the results of experiments, we show several circuits for which the approach described
above leads to improved upper bounds.

We support Knuth’s conjecture (1) for MOD3,r
n by proving the matching upper bound:

size(MOD3,r
n ) ≤ 3n− 5− [(n + r) ≡ 0 mod 3] for all n ≥ 3 and r.

This improves slightly the previously known upper bound size(MOD3,r
n ) ≤ 3n − 4

by Demenkov et al. [4]. To prove Knuth’s conjecture, one also needs to prove a lower
bound on size(MOD3,r

n ). The currently strongest known lower bound for size(MOD3,r
n )

is 2.5n−O(1) due to Stockmeyer [25].
We present improvements for size(SUMn) for various small n and show that some of these
circuits and their parts can be used as building blocks to design efficient circuits for other
functions in semiautomatic fashion. In particular, we show that a part of an optimal
circuit for SUM5 can be used to build optimal circuits of size 2.5n for MOD4,r

n [25] and
best known circuits of size 4.5n+o(n) for SUMn [4]. In turn, an efficient circuit for SUM5
can be found in a few seconds if one starts from a standard circuit for SUM5 composed
out of two full adders and one half adder.
We design new circuits for the threshold function defined as follows:

THRk
n(x1, . . . , xn) = [x1 + · · ·+ xn ≥ k] .

The best known upper bounds for THR are the following:

size(THRk
n) ≤ kn + o(n) for 2 ≤ k ≤ 4 [5] (see also [26, 6.2, Theorem 2.3]),

size(THRk
n) ≤ 4.5n + o(n) for 5 ≤ k [4].

We get the following improvement: size(THRk
n) ≤ (4.5 − 22−⌈log2 k⌉)n + o(n) for 4 ≤

k = O(1). In particular, size(THR4
n) ≤ 3.5n + o(n) and size(THRk

n) ≤ 4n + o(n) for
5 ≤ k ≤ 8.

The improved upper bounds are obtained in a semiautomatic fashion: first, we automatically
improve a given small circuit with a fixed number of inputs using SAT solvers; then,
we generalize it to every input size. For some function families, the second step is already
known (for example, given a small circuit for SUM5, it is not difficult to use it as a building
block to design an efficient circuit for SUMn for every n; see Section 3.1), though in general
this still needs to be done manually.

MFCS 2022
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1.2 Related work
The approach we use in this paper follows the SAT-based local improvement method (SLIM):
to improve an existing discrete structure one goes through all its substructures of size
accessible to a SAT solver. SLIM has been applied successfully to the following structures:
branchwidth [16], treewidth [6], treedepth [20], Bayesian network structure learning [21],
decision tree learning [22].

2 Program: Feature Overview and Evaluation

The program is implemented in Python. We give a high-level overview of its main features
below. All the code shown below can be found in the file tutorial.py at [3]. One may run it
after installing a few Python modules. Alternatively, one may run the Jupyter notebook
tutorial.ipynb in the cloud (without installing anything) by pressing the badge “Colab”
at the repository page [3].

2.1 Manipulating Circuits
This is done through the Circuit class. One can load and save circuits as well as print and
draw them. A nicely looking layout of a circuit is produced by the pygraphviz module [19].
The program also contains some built-in circuits that can be used as building blocks. The
following sample code constructs a circuit for SUM5 out of two full adders and one half
adder. This construction is shown in Figure 2(a). Then, the circuit is verified via the
check_sum_circuit method. Finally, the circuit is drawn. As a result, one gets a picture

similar to the one in Figure 2(b).

circuit = Circuit(input_labels=['x1', 'x2', 'x3', 'x4', 'x5'])
x1, x2, x3, x4, x5 = circuit.input_labels
a0, a1 = add_sum3(circuit, [x1, x2, x3])
b0, b1 = add_sum3(circuit, [a0, x4, x5])
w1, w2 = add_sum2(circuit, [a1, b1])
circuit.outputs = [b0, w1, w2]
check_sum_circuit(circuit)
circuit.draw('sum5')

2.2 Finding Efficient Circuits
The class CircuitFinder allows to check whether there exists a circuit of the required size
for a given Boolean function. For example, one may discover the full adder as follows. (The
function sum_n returns the list of ⌈log2(n + 1)⌉ bits of the binary representation of the sum
of n bits.)

def sum_n(x):
return [(sum(x) >> i) & 1 for i in range(ceil(log2(len(x) + 1)))]

circuit_finder = CircuitFinder(dimension=3, number_of_gates=5,
function=sum_n)

circuit = circuit_finder.solve_cnf_formula()
circuit.draw('sum3')
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x1 x2 x3 x4 x5

SUM3

SUM3

0

SUM2

1

1

w2 w1 w0

1 0

0

x1 x2 x3

x4 x5

⊕g1 ⊕g2

∨g3 ⊕g4

⊕g5

⊕g6 ⊕ g7

∨ g8 ⊕ w0

⊕ g9

⊕ w1∧w2

x1 x2 x3

x4 x5

⊕g1 ⊕g2

∨g3 ⊕g4

⊕g5 ⊕g6 ⊕ g7

> g8 ⊕ w0

⊕ w1

> w2

(a) (b) (c)

Figure 2 (a) A schematic circuit for SUM5 composed out of two full adders and one half adder.
(b) The corresponding circuit of size 12. (c) An improved circuit of size 11.

This is done by encoding the task as a CNF formula and invoking a SAT solver (via
the pysat module [9]). The reduction to SAT is described in [13]. Basically, one translates
a statement “there exists a circuit of size s comuting a given function f : {0, 1}n → {0, 1}m”
to CNF-SAT. To do this, one introduces many auxiliary variables: for example, for every
x ∈ {0, 1}n and every 1 ≤ i ≤ r, one uses a variable that is responsible for the value of the
i-th gate on the input x.

As mentioned in the introduction, the limits of applicability of this approach (for finding
a circuit of size s) are roughly the following: for s ≤ 6, it usually works in less than a minute;
for 7 ≤ s ≤ 12, it may already take up to several hours or days; for s ≥ 13, it becomes almost
impractical. The running time may vary a lot for inputs of the same length. In particular,
it usually takes much longer to prove that the required circuit does not exist (by proving
that the corresponding formula is unsatisfiable). Table 1 reports the running time of this
approach on several datasets.

2.3 Improving Circuits

The method improve_circuit goes through all subcircuits of a given size of a given circuit
and checks whether any of them can be replaced by a smaller subcircuit (computing the
same function) via find_circuit . For example, applying this method to the circuit from
Figure 2(b) gives the circuit from Figure 2(c) in a few seconds.

circuit = Circuit(input_labels=[f'x{i}' for i in range(1, 6)], gates={})
circuit.outputs = add_sum5_suboptimal(circuit, circuit.input_labels)
improved_circuit = improve_circuit(circuit, subcircuit_size=5,

connected=True)
print(improved_circuit)
improved_circuit.draw('sum5')

MFCS 2022
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Table 1 The running time of CircuitFinder on various Boolean functions.

function circuit size status time (sec.)

SUM5 12 SAT 141.4
SUM5 11 SAT 337.8
MOD3,0

4 7 SAT 0.2
MOD3,0

4 6 UNSAT 1178.8
MOD3,1

4 7 SAT 0.2
MOD3,1

4 6 UNSAT 1756.5
MOD3,2

4 6 SAT 0.2
MOD3,2

4 5 UNSAT 12.6
MOD3,0

5 10 SAT 90.1
MOD3,1

5 9 SAT 50.1
MOD3,2

5 10 SAT 74.3

Table 2 shows the time taken by improve_circuit to improve some of the known circuits
for SUM, MOD3, and THR4. For SUM, we start from known circuits of size about 5n

(composed out of full adders and half adders). For MOD3, we start from circuits of size
3n− 4 presented by Demenkov et al. [4]. For THR4, we start from circuits of size about 5n

(we start by computing SUMn and then compare the resulting log n-bit integer to 4).

Table 2 The running time of improve_circuit on various Boolean functions.

function circuit size time (sec.)

SUM5 12 → 11 6.7
SUM7 20 → 19 5.8

MOD3,0
6 15 → 14 17.0

MOD3,1
6 15 → 14 17.2

MOD3,2
6 14 → 13 16.7

MOD3,0
7 17 → 16 31.3

MOD3,1
7 17 → 16 33.6

MOD3,2
7 16 → 15 30.5

THR4
5 23 → 10 38.6

THR4
6 28 → 14 42.1

THR4
7 31 → 17 43.8

THR4
8 40 → 22 55.1

3 New Circuits

In this section, we present new circuits for symmetric functions found with the help of the
program. A function f(x1, . . . , xn) is called symmetric if its value depends on

∑n
i=1 xi only.

They are among the most basic Boolean functions:
to specify an arbitrary Boolean function from Bn, one needs to write down its truth table
of length 2n; symmetric functions allow for more compact representation: it is enough to
specify n + 1 bits (for each of n + 1 values of

∑n
i=1 xi);
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circuit complexity of almost all functions of n variables is exponential (Θ(2n/n)), whereas
any symmetric function can be computed by a linear size circuit (O(n)).

Despite simplicity of symmetric functions, we still do not know how optimal circuits look
like for most of them. Below, we present new circuits for some of these functions.

3.1 Sum Function

The SUM function is a fundamental symmetric function: for any symmetric f ∈ Bn, size(f) ≤
size(SUMn) + o(n). The reason for this is that any function from Bn can be computed
by a circuit of size O(2n/n) by the results of Muller [18] and Lupanov [17]. This allows
to compute any symmetric f(x1, . . . , xn) ∈ Bn as follows: first, compute SUMn(x1, . . . , xn)
using size(SUMn) gates; then, compute the resulting bit using at most O(2log n/ log n) = o(n)
gates. For the same reason, any lower bound size(f) ≥ α for a symmetric function f ∈ Bn

implies a lower bound size(SUMn) ≥ α− o(n). Currently, we know the following bounds for
SUMn: 2.5n−O(1) ≤ size(SUMn) ≤ 4.5n+o(n). The lower bound is due to Stockmeyer [25],
the upper bound is due to Demenkov et al. [4].

A circuit for SUMn can be constructed from circuits for SUMk for some small k. For
example, using full and half adders as building blocks, one can compute SUMn (for any n)
by a circuit of size 5n as follows. Start from n bits (x1, . . . , xn) of weight 0. While there are
three bits of the same weight k, replace them by two bits of weights k and k + 1 using a full
adder. This way, one gets at most two bits of each weight 0, 1, . . . , l − 1 (l = ⌈log2(n + 1)⌉)
in at most 5(n− l) gates (as each full adder reduces the number of bits). To leave exactly
one bit of each weight, it suffices to use at most l half or full adders (o(n) gates). Let us
denote the size of the resulting circuit by s(n). The first row of Table 3 shows the values
of s(n) for some n ≤ 15 (see (28) in [11]).

Table 3 The first row gives the size s(n) of a circuit for SUMn composed out of half and full
adders, the second row shows known upper bounds for size(SUMn) (all of them were known before
our work, see (28) in [11]).

n 2 3 4 5 6 7 8 9 10 15

s(n) 2 5 9 12 17 20 26 29 34 55
size(SUMn) 2 5 9 11 ≤ 16 ≤ 19 ≤ 25 ≤ 27 ≤ 32 ≤ 53

In a similar fashion, one can get an upper bound (see Theorem 1 in [14])

size(SUMn) ≤ size(SUMk)
k − ⌈log2(k + 1)⌉ · n + o(n) . (2)

This motivates the search for efficient circuits for SUMk for small values of k. The bottom
row of Table 3 gives upper bounds that we were able to find using the program. The table
shows that the first value where s(n) is not optimal is n = 5. The best upper bound for
SUMn given by (2) is 4.75n + o(n) for k = 7. The upper bound for k = 15 is 53n/11 + o(n)
which is worse than the previous upper bound. But if it turned out that size(SUM15) ≤ 52,
it would give a better upper bound.

The found circuits for SUMn for n ≤ 15 do not allow to improve the strongest known
upper bound size(SUMn) ≤ 4.5n+o(n) due to Demenkov et al. [4]. Below, we present several
interesting observations on the found circuits.

MFCS 2022
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SUM3 SUM3x3

x2 x1 x4 x5

a1 b1

b0(a)

MDFAx3

x2 x1 x4 x5

⊕ ⊕

a1 a1 ⊕ b1

b0(b)

x1 x2 x3

x4 x5

⊕ ⊕

∨ ⊕

⊕a1 ⊕ ⊕

> ⊕ b0

⊕ a1 ⊕ b1

>

(c)

Figure 3 (a) Two consecutive SUM3 blocks. (b) The MDFA block. (c) The highlighted part of
the optimal circuit for SUM5 computes MDFA.

3.1.1 Best Known Upper Bound for the SUM Function
The optimal circuit of size 11 for SUM5 shown in Figure 2(c) can be used to get an up-
per bound 4.5n + o(n) for size(SUMn) (though not through (2) directly). To do this,
consider two consecutive SUM3 circuits shown in Figure 3(a). They compute a func-
tion DFA(x1, x2, x3, x4, x5) = (b0, b1, a1) (for double full adder) such that, for every
x1, . . . , x5 ∈ {0, 1}, x1 + · · ·+ x5 = b0 + 2(b1 + a1). Figure 3(a) shows that size(DFA) ≤ 10.
One can construct a similar block, called MDFA (for modified double full adder), such that

MDFA(x1 ⊕ x2, x2, x3, x4, x4 ⊕ x5) = (b0, a1, a1 ⊕ b1) ,

see Figure 3(b).
The fact that MDFA uses the encoding (p, p⊕ q) for pairs of bits (p, q), allows to use it

recursively to compute SUMn. As the original construction is presented in [4], below we give
a sketch only.
1. Compute x2 ⊕ x3, x4 ⊕ x5, . . . , xn−1 ⊕ xn (n/2 gates).
2. Apply at most n/2 MDFA blocks (no more than 4n gates).
3. The last MDFA block outputs two bits: a and a ⊕ b. Instead of them, one needs

to compute a⊕ b and a∧ b. To achieve this, it suffices to apply x > y = (x∧ y) operation:
a ∧ b = a > (a⊕ b).

Figure 4 shows an example for n = 17.
The MDFA block was constructed by Demenkov et al. [4] in a semiautomatic manner.

And it turns out that MDFA is just a subcircuit of the optimal circuit for SUM5! See
Figure 3(c).

3.1.2 Best Known Circuits for SUM with New Structure
For many upper bounds from the bottom row of Table 3, we found circuits with the following
interesting structure: the first thing the circuit computes is x1 ⊕ x2 ⊕ · · · ⊕ xn; moreover
the variables x2, . . . , xn are used for this only. This is best illustrated by an example, see
Figure 5.
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x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

MDFA MDFA MDFA MDFA

MDFA MDFA

MDFA

x1 w0

0 w1

0 w2

w3

>

w4

Figure 4 A circuit computing SUM17 composed out of MDFA blocks.

x1 x2 x3

⊕ ⊕ w0

⊕
∨

⊕ w1

x1 x2 x3 x4

⊕ ⊕ ⊕ w0

⊕ >

∨
⊕

⊕ w1
>w2

x1 x2 x3 x4 x5

⊕ ⊕ ⊕ ⊕ w0

⊕ ⊕

∨ >

⊕ ⊕ w1

> w2

Figure 5 Optimal circuits computing SUMn for n = 3, 4, 5 with a specific structure: every input,
except for x1, has out-degree one.

These circuits can be found using the following code. It demonstrates two new useful
features: fixing gates and forbidding wires between some pairs of gates.

def sum_n(x):
return [(sum(x) >> i) & 1 for i in range(ceil(log2(len(x) + 1)))]

for n, size in ((3, 5), (4, 9), (5, 11)):
circuit_finder = CircuitFinder(dimension=n, number_of_gates=size,

function=sum_n)
circuit_finder.fix_gate(n, 0, 1, '0110')
for k in range(n - 2):

circuit_finder.fix_gate(n + k + 1, k + 2, n + k, '0110')
for i in range(1, n):

for j in range(n, n + size):
if i + n - 1 != j:

circuit_finder.forbid_wire(i, j)
circuit = circuit_finder.solve_cnf_formula(verbose=0)
circuit.draw(f'sum{n}')
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3.1.3 Optimal Circuits for Counting Modulo 4
The optimal circuit for SUM5 can be used to construct an optimal circuit of size 2.5n+O(1) for
MOD4,r

n due to Stockmeyer [25] (recall that MOD4,r
n (x1, . . . , xn) = [x1 + · · ·+xn ≡ r mod 4]).

To do this, note that there is a subcircuit (of the circuit in Figure 2(c)) of size 9 that
computes the two least significant bits (w0, w1) of x1 + · · ·+x5 (one removes the gates g5, w2).
To compute x1 + · · · + xn mod 4, one first applies n

4 such blocks and then computes the
parity of the resulting bits of weight 1 (every block takes four fresh inputs as well as one
bit of weight 0 from the previous block). The total size is 9 · n

4 + n
4 = 2.5n. Thus, block

that Stockmeyer constructed by hand in 1977 to compute MOD4
n nowadays can be found

automatically in a few seconds.

3.2 Modulo-3 Function
In [13], Kojevnikov et al. presented circuits of size 3n + O(1) for MOD3,r

n (for any r). Later,
Knuth [12, solution to exercise 480] analyzed their construction and proved an upper bound
3n−4. Also, by finding the exact values for size(MOD3,r

n ) for all 3 ≤ n ≤ 5 and all 0 ≤ r ≤ 2,
he made the conjecture (1). Using our program, we proved the conjectured upper bound for
all n.

▶ Theorem 1. For all n ≥ 3 and all r ∈ {0, 1, 2},

size(MOD3,r
n ) ≤ 3n− 5− [(n + r) ≡ 0 mod 3] .

Proof. As in [13], we construct the required circuit out of constant size blocks. Schematically,
the circuit looks as follows.

x1 xk xk+1 xk+2 xk+3 xn−l+1 xn

· · · · · ·

· · ·INk MID3 MID3 OUTr
l

Here, the n input bits are passed from above. What is passed from block to block (from left
to right) is the pair of bits (r0, r1) encoding the current remainder r modulo 3 as follows: if
r = 0, then (r0, r1) = (0, 0); if r = 1, then (r0, r1) = (0, 1); if r = 2, then r0 = 1. The first
block INk takes the first k input bits and computes the remainder of their sum modulo 3. It is
followed by a number of MID3 blocks each of which takes the current remainder and three new
input bits and computes the new remainder. Finally, the block OUTr

l takes the remainder
and the last l input bits and outputs MOD3,r

n . The integers k, l take values in {2, 3, 4} and
{1, 2, 3}, respectively. Their exact values depend on r and n mod 3 as described below.

The theorem follows from the following upper bounds on the circuit size of the just
introduced functions: size(IN2) ≤ 2, size(IN3) ≤ 5, size(IN4) ≤ 7, size(MID3) ≤ 9,
size(OUT0

2) ≤ 5, size(OUT1
1) ≤ 2, size(OUT2

3) ≤ 8. The corresponding circuits are presented
in [15] by a straightforward Python code that verifies their correctness. (The presented code
proves the mentioned upper bounds by providing explicit circuits. We have also verified that
no smaller circuits exist meaning that the inequalities above are in fact equalities.) Table 4
shows how to combine the blocks to get a circuit computing MOD3,r

n of the required size.
◀
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Table 4 Choosing parameters k, m, l depending on n mod 3 and r. The circuit is composed out
of blocks as follows: INk +m × MID3 + OUTl

r. For each pair (n mod 3, r) we show three things:
the triple (k, m, l); the sizes of two blocks: size(INk) and size(OUTl

r); the size of the resulting
circuit computed as s = size(INk) + 9m + size(OUTl

r). For example, the top left cell is read as
follows: when r = 0 and n = 3t, we set k = 4, m = t − 2, l = 2; the resulting circuit is then
IN4 +(t − 2) × MID3 + OUT2

0; since size(IN4) = 7 and size(OUT2
0) = 5, the size of the circuit is

7 + 9(t − 2) + 5 = 9t − 6 = 3n − 6. There are three corner cases that are not well-defined as they
require the number of MID blocks to be negative (k = t − 2): (n = 3, r = 0), (n = 3, r = 2), and
(n = 4, r = 2).

n = 3t n = 3t + 1 n = 3t + 2

r = 0 (4, t − 2, 2), (7, 5), 3n − 6 (2, t − 1, 2), (2, 5), 3n − 5 (3, t − 1, 2), (5, 5), 3n − 5
r = 1 (2, t − 1, 1), (2, 2), 3n − 5 (3, t − 1, 1), (5, 2), 3n − 5 (4, t − 1, 1), (7, 2), 3n − 6
r = 2 (3, t − 2, 3), (5, 8), 3n − 5 (4, t − 2, 3), (7, 8), 3n − 6 (2, t − 1, 3), (2, 8), 3n − 5

3.3 Threshold Function
Recall that THR2

n(x1, . . . , xn) = [x1 + · · ·+ xn ≥ 2].

▶ Theorem 2. For any k ≥ 4,

size(THRk
n) ≤ (4.5− 22−⌈log2 k⌉)(n + 2⌈log2 k⌉ − k) + o(n) .

Proof. For a sequence of 2m formal variables y1, z1, . . . , ym, zm, consider a function
g ∈ B2m that takes y1, y1 ⊕ z1, y2, y2 ⊕ z2, . . . , ym, ym ⊕ zm as input and outputs
THR2

2m(y1, z1, . . . , ym, zm). Note that THR2
2m(y1, z1, . . . , ym, zm) = 1 iff there is

a pair containing two 1’s or there are two pairs each containing at least one 1:
THR2

2m(y1, z1, . . . , ym, zm) = 1 iff there exists 1 ≤ i ≤ m such that yi = zi = 1 or
THR2

m(y1 ⊕ z1, . . . , ym ⊕ zm) = 1. The condition yi = zi = 1 can be computed through yi

and yi ⊕ zi using a single binary gate: (yi ∧ zi) = (yi ∧ (yi ⊕ zi)) . Thus,

g(y1, y1 ⊕ z1, . . . , ym, ym ⊕ zm) = THR2
m(y1 ⊕ z1, . . . , ym ⊕ zm) ∨

m∨
i=1

(yi ∧ (yi ⊕ zi)) .

Now, size(THR2
m) ≤ 2m + o(m) as shown by Dunne [5]. Also, clearly,

size
(

m∨
i=1

(yi ∧ (yi ⊕ zi))
)
≤ 2m− 1 .

Thus,

size(g) ≤ 4m + o(m) . (3)

To construct a circuit for THRk
n, first, consider the case k = 2t where t ≥ 2 is an integer.

Apply t− 1 layers of MDFA’s (as in Figure 4). It takes

n

2 + n
t−1∑
i=1

22−i = (4.5− 23−t)n

gates. As a result, we get bits w0, . . . , wt−2, a1, a1 ⊕ b1, . . . , am, am ⊕ bm , where m = n/2t,
such that

x1 + · · ·+ xn = w0 + 2w1 + · · ·+ 2t−2wt−2 + 2t−1(a1 + b1 + · · ·+ am + bm) .

MFCS 2022
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Note that w0 + 2w1 + · · ·+ 2t−2wt−2 < 2t−1. Hence,

[x1 + · · ·+ xn ≥ 2t] = [a1 + b1 + · · ·+ am + bm ≥ 2] .

Thus, it remains to compute the function g given 2m bits a1, a1⊕b1, . . . , am, am⊕bm. By (3),
it takes 4m + o(m) = 22−tn + o(n) gates. The total size of the constructed circuit is

(4.5− 23−t + 22−t)n + o(n) = (4.5− 22−t)n + o(n) .

Now, assume that 2t−1 < k < 2t (hence ⌈log2 k⌉ = t). Clearly,

[x1 + · · ·+ xn ≥ k] = [(2t − k) + x1 + · · ·+ xn ≥ 2t] .

By the previous argument, there exists a circuit C computing THR2t

n+(2t−k) of size

(4.5− 22−t)(n + (2t − k)) + o(n) = (4.5− 22−⌈log2 k⌉)(n + 2⌈log2 k⌉ − k) + o(n) .

By replacing arbitrary (2t − k) inputs of C by 1’s, one gets a circuit computing THRk
n. ◀

▶ Corollary 3. For 4 ≤ k = O(1), size(THRk
n) ≤ (4.5− 22−⌈log2 k⌉)n + o(n). In particular,

size(THR4
n) ≤ 3.5n + o(n) and size(THRk

n) ≤ 4n + o(n) for 5 ≤ k ≤ 8.

We conclude by presenting an example of a reasonably small circuit that our program
fails to improve though a better circuit is known. The reason is that these two circuits are
quite different. Figures 6 and 7 show circuits of size 31 and 29 for THR2

12. They are quite
different and our program is not able to find out that the circuit of size 31 is suboptimal.
The code below shows how one can construct the two circuits in the program.

c = Circuit(input_labels=[f'x{i}' for i in range(1, 13)], gates={})
c.outputs = add_naive_thr2_circuit(c, c.input_labels)
c.draw('thr2naive')

c = Circuit(input_labels=[f'x{i}' for i in range(1, 13)], gates={})
c.outputs = add_efficient_thr2_circuit(c, c.input_labels, 3, 4)
c.draw('thr2efficient')

x1

x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

∧

∨ output
x1

x2 x3 x4 x11 x12

· · ·so
rt

so
rt

so
rt

so
rt ∧

∨

Figure 6 A circuit of size 31 for THR2
12: (a) block structure and (b) gate structure. The SORT(u, v)

block sorts two input bits as follows: SORT(u, v) = (min{u, v}, max{u, v}) = (u ∧ v, u ∨ v). The
circuit performs one and a half iterations of the bubble sort algorithm: one first finds the maximum
bit among n input bits; then, it remains to compute the disjunction of the remaining n − 1 bits
to check whether there is at least one 1 among them. In general, this leads to a circuit of size 3n − 5.
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x5 x1 x6 x2

∨ x9 x10 ∨ ∨ x7 x3 ∨
∨c1 ∨ ∨

c2
x11 ∨ ∨ x8 x4 ∨

∧ ∨ ∨ ∨
c3

x12 ∨ r2 ∨ ∨ r1

∧ ∨ ∨r3 ∨
c4 ∨ ∧

∨ ∧ ∧
∨ ∨
∨ output

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

∨
r1

∨
r2

∨
r3

∨
c1 ∨

c2 ∨
c3 ∨

c4

THR4
2

T
H

R
3 2

∨

Figure 7 A circuit of size 29 for THR2
12: (a) block structure and (b) gate structure. It implements

a clever trick by Dunne [5]. Organize 12 input bits into a 3 × 4 table. Compute disjunctions r1, r2, r3

of the rows and disjunctions c1, c2, c3, c4 of the columns. Then, there are at least two 1’s among
x1, . . . , x12 if and only if there are at least two 1’s among either r1, r2, r3 or c1, c2, c3, c4. This allows
to proceed recursively. In general, it leads to a circuit of size 2n + o(n). (Sergeev [23] showed recently
that the monotone circuit size of THR2

n is 2n + Θ(
√

n).)

4 Further Directions

We focus mainly on proving asymptotic upper bounds for symmetric function families (that is,
upper bounds that hold for every input size). A natural further step is to apply the program
to specific circuits that are used in practice. It would also be interesting to extend the
program so that it is able to discover the circuit from Figure 7. Finally, it would be interesting
to generalize circuits for SUMn presented in Section 3.1.2.
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Complexity of the Cluster Vertex Deletion Problem
on H-Free Graphs
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Abstract
The well-known Cluster Vertex Deletion problem (cluster-vd) asks for a given graph G and an
integer k whether it is possible to delete at most k vertices of G such that the resulting graph is
a cluster graph (a disjoint union of cliques). We give a complete characterization of graphs H for
which cluster-vd on H-free graphs is polynomially solvable and for which it is NP-complete.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathematics
of computing → Graph theory; Mathematics of computing → Graph algorithms

Keywords and phrases Cluster vertex deletion, Vertex cover, Computational complexity, Complexity
dichotomy

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.68

1 Introduction and result

A very extensively studied version of graph modification problems asks to modify a given
graph to a graph that satisfies a certain property G by deleting a minimum number of
vertices. The case G being ‘edgeless’ is the well-known vertex cover problem, one of
the classical NP-hard problems. If G is a ‘cluster graph’, a graph in which every connected
component is a clique, the corresponding problem is another well-known NP-hard problem,
the cluster vertex deletion problem (cluster-vd for short). In this paper, we revisit
the computational complexity of cluster-vd, formally given below.

cluster-vd
Instance: A graph G = (V, E) and an integer k.
Question: Does there exist a vertex set S ⊆ V of size at most k such that G − S

is a cluster graph?

Being an hereditary property on induced subgraphs, cluster-vd is NP-complete [16], even
when restricted to planar graphs [20] and to bipartite graphs [21], and to bipartite graphs
of maximum degree 3 [13]. Most recent works on cluster-vd deal with exact, fpt and
approximation algorithms [1, 2, 14, 19].

It is noticeable that there are only a few known cases where the problem can be solved
efficiently: cluster-vd is polynomially solvable on block graphs and split graphs [3], and on
graphs of bounded treewidth [18]. On the other hand, the complexity status of cluster-vd
on many well-studied graph classes is still open, e.g., chordal graphs discussed in [3] and
planar bipartite graphs mentioned in [4].

In this paper we initiate studying the computational complexity of cluster-vd on graphs
defined by forbidding certain induced subgraphs. We remark that related approaches for other
problems are quite common in the literature, e.g., for vertex cover (aka independent
set) [9, 12] and coloring [10, 15], and that many popular graph classes are defined
or characterized by forbidding induced subgraphs, e.g., chordal and bipartite graphs (by
infinitely many forbidden subgraphs), and cographs and line graphs (by finitely many
forbidden subgraphs).
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68:2 Cluster Vertex Deletion on H-Free Graphs

All graphs considered are undirected and finite and have no multiple edges or self-loops.
Let H be a given graph. A graph G is H-free if no induced subgraph in G is isomorphic
to H. A path with n vertices and n − 1 edges is denoted by Pn. The main result of the
present paper is the following complexity dichotomy:

▶ Theorem 1. Let H be a fixed graph. cluster-vd is polynomially solvable on H-free
graphs if H is an induced subgraph of the 4-vertex path P4, and NP-complete otherwise.

Theorem 1 is remindful of the main result in [15] which characterizes all graphs H for
which coloring H-free graphs is easy and for which it is hard. In fact, the present paper was
motivated by this H-free coloring theorem.

For a set H of graphs, H-free graphs are those in which no induced subgraph is isomorphic
to a graph in H. We denote by K1,n the tree with n ≥ 3 vertices and n leaves, by Cn the
n-vertex cycle, and as usual, by G the complement of a graph G. The union G + H of two
vertex-disjoint graphs G and H is the graph with vertex set V (G) ∪ V (H) and edge set
E(G) ∪ E(H); we write pG for the union of p copies of G. For a subset S ⊆ V (G), we let
G[S] denote the subgraph of G induced by S; G− S stands for G[V (G) \ S]. By ‘G contains
an H’ we mean G contains H as an induced subgraph.

A graph G is a cluster graph if each of its connected components is a clique. Observe
that G is a cluster graph if and only if G is P3-free. If S ⊆ V (G) is a subset of vertices of G

such that G− S is P3-free, then S is called a cluster vertex deletion set of G. An optimal
cluster vertex deletion set is one of minimum size.

We first address the polynomial part of Theorem 1 in the next section. Then we present
two new NP-completeness results for cluster-vd in Sections 3 and 4. These hardness results
allow us to clear the NP-completeness part of Theorem 1 in Section 5. The last section
concludes the paper.

2 Polynomial cases

The polynomial part in Theorem 1 consists of six cases; see also Fig. 1 for all graphs H for
which cluster-vd is polynomially solvable on H-free graphs.

P1 2P1 P2 P2 + P1 P3 P4

Figure 1 The graphs H for which cluster-vd is polynomially solvable on H-free graphs.

Observe that H-freeness is hereditary, meaning if H ′ is an induced subgraph of H then
H ′-free graphs are H-free graphs. Thus, it suffices to prove the polynomial part only for the
case where H is the 4-vertex path P4.

We now are going to describe how to solve cluster-vd in polynomial time when
restricted to P4-free graphs. P4-free graphs are also called cographs [6]. More precisely, for
vertex-disjoint graphs Gi = (Vi, Ei), i = 1, 2, let G1 0⃝G2 be the union (or co-join) of G1
and G2,

G1 0⃝G2 = (V1 ∪ V2, E1 ∪ E2),

and let G1 1⃝G2 be the join of G1 and G2,

G1 1⃝G2 = (V1 ∪ V2, E1 ∪ E2 ∪ {uv | u ∈ V1, v ∈ V2}).
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With these notations, cographs are exactly those graphs that can be constructed from
the one-vertex graph by applying the join and co-join operations. Thus, a cograph is the
one-vertex graph or is the join of two smaller cographs or is the co-join of two smaller
cographs.

Recall that S ⊆ V (G) is a vertex cover if G−S is edgeless and is a cluster vertex deletion
set if G− S is a cluster graph. Let τ(G) and ς(G) denote the vertex cover number and the
cluster vertex deletion number of G, respectively,

τ(G) = min{|S| : S is a vertex cover of G},
ς(G) = min{|S| : S is a cluster vertex deletion set of G}.

We will see that τ(G) and ς(G) can be computed efficiently when restricted to cographs.
The calculation is based on the following fact:

▶ Lemma 2. For any (not necessarily P4-free) graphs G1 and G2, the following relations
hold:

τ(G1 0⃝G2) = τ(G1) + τ(G2); (1)
τ(G1 1⃝G2) = min{τ(G1) + |V (G2)|, τ(G2) + |V (G1)|}; (2)
ς(G1 0⃝G2) = ς(G1) + ς(G2); (3)
ς(G1 1⃝G2) = min{ς(G1) + |V (G2)|, ς(G2) + |V (G1)|, τ(G1) + τ(G2)}. (4)

Proof. (1) and (3) are trivial.
(2): Let Si be a vertex cover of Gi of optimal size τ(Gi), i = 1, 2. Then S1 ∪ V (G2) and
S2 ∪ V (G1) are vertex covers of G1 1⃝G2. Hence τ(G1 1⃝G2) ≤ min{|S1| + |V (G2)|, |S2| +
|V (G1)|} = min{τ(G1) + |V (G2)|, τ(G2) + |V (G1)|}.

For the other direction, let S be a vertex cover of G1 1⃝G2 of optimal size, and write
Si = S ∩ V (Gi). Then Si is a vertex cover of Gi, and moreover, S1 = V (G1) or else
S2 = V (G2). Hence τ(G1 1⃝G2) ≥ min{|S1| + |V (G2)|, |S2| + |V (G1)|} ≥ min{τ(G1) +
|V (G2)|, τ(G2) + |V (G1)|}.
(4): Let Si be a cluster vertex deletion set of Gi of optimal size ς(Gi), i = 1, 2. Then
S1 ∪ V (G2) and S2 ∪ V (G1) are cluster vertex deletion sets of G1 1⃝G2. Hence ς(G1 1⃝G2) ≤
min{|S1|+ |V (G2)|, |S2|+ |V (G1)|} = min{ς(G1) + |V (G2)|, ς(G2) + |V (G1)|}. Let Si be a
vertex cover of Gi of optimal size τ(Gi), i = 1, 2. Then S1 ∪ S2 is a cluster vertex deletion
set of G1 1⃝G2, hence ς(G1 1⃝G2) ≤ |S1|+ |S2| = τ(G1) + τ(G2).

For the other direction, let S be a cluster vertex deletion set of G1 1⃝G2 of optimal size,
and write Si = S ∩ V (Gi). Then Si is a cluster vertex deletion set of Gi, and moreover,

if G1 − S1 is not a clique then S2 = V (G2), likewise
if G2 − S2 is not a clique then S1 = V (G1).

In these two cases, |S| = ς(G1 1⃝G2) ≥ min{|S1|+ |V (G2)|, |S2|+ |V (G1)|} ≥ min{ς(G1)+
|V (G2)|, ς(G2)+ |V (G1)|}. In the third case where each of G1−S1 and G2−S2 is a clique, S1
and S2 are vertex covers of G1 and G2, respectively. Hence in this case, |S| = ς(G1 1⃝G2) =
|S1|+ |S2| ≥ τ(G1) + τ(G2). ◀

▶ Remark 3. For any integer r ≥ 2, Lemma 2 holds accordingly for G1 0⃝G2 0⃝ · · · 0⃝Gr =
G1 0⃝(G2 0⃝ · · · 0⃝Gr) and G1 1⃝G2 1⃝ · · · 1⃝Gr = G1 1⃝(G2 1⃝ · · · 1⃝Gr). We also note that Lemma 2
holds for the weighted version, too.

With each cograph G = (V, E), one can associate a so-called cotree T of G as follows.
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The leaves of T are the vertices of G;
Every internal node of T has a label 0⃝ or 1⃝, and has at least two children;
No two internal nodes of T with the same label are adjacent;
Two vertices u and v of G are (non-)adjacent if and only if the least common ancestor
of u and v in T has label 1⃝ (respectively, 0⃝).

In particular, the cotree of an n-vertex cograph has at most 2n− 1 nodes.
Note that, for any internal node v of T , the subtree Tv of T rooted at v is the cotree of

the subgraph of G induced by the leaves of Tv. The cograph corresponding to Tv where v

has label 0⃝ is the disjoint union of the cographs corresponding to the children of v. The
cograph corresponding to Tv where v has label 1⃝ is the join of the cographs corresponding
to the children of v.

In particular, the cotree of G can be obtained from the cotree of G by changing the
label 0⃝ to 1⃝ and 1⃝ to 0⃝.

In [7], a linear time algorithm is given for recognizing if a given graph is a cograph, and
if so, constructing its cotree. Note that the cotree can immediately be transformed to an
equivalent binary tree; see Fig. 2 for an example of a cograph G and the cotree of G and its
binary version. For simplification, we will use the binary cotree in our algorithm below.

1

2

3 4 5

6

78

9 1 2

3

4 5 6 7 8 9
0⃝

1⃝

0⃝ 0⃝ 0⃝

1⃝

1 2

3

4

5 6 7

8 9

0⃝

1⃝

0⃝

0⃝ 0⃝

1⃝ 0⃝

1⃝

Figure 2 A cograph G, the cotree of G and its binary version.

Now, given a cograph G together with its binary cotree T , the bottom-up Algorithm 1
below computes the cluster vertex deletion number ς(G) of G, as suggested by Lemma 2.
The algorithm uses the following notations. For a node v of T ,

if v is an internal node then ℓ(v) and r(v) stands for the left child and the right child
of v, respectively;
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n(v) denotes the size of the subgraph of G induced by the leaves of Tv. Thus, if v is a
leaf then n(v) = 1 and if v is the root of T then n(v) = |V (G)|;
ς(v) denotes the cluster vertex deletion number of the subgraph of G induced by the
leaves of Tv. Thus, if v is a leaf then ς(v) = 0 and if v is the root of T then ς(v) = ς(G);
τ(v) denotes the vertex cover number of the complement of the subgraph of G induced
by the leaves of Tv. Thus, if v is a leaf then τ(v) = 0 and if v is the root of T then
τ(v) = τ(G).

Algorithm 1 computing cluster vertex deletion number.

Input: A cograph G = (V, E) together with its (binary) cotree T .
Output: ς(G), the cluster vertex deletion number of G

1 Traverse T by post-order and let v be the current node
2 if v is a leaf then
3 n(v)← 1; τ(v)← 0; ς(v)← 0
4 end
5 else
6 n(v)← n(ℓ(v)) + n(r(v))
7 if v has label 0⃝ then
8 τ(v)← min{τ(ℓ(v)) + n(r(v)), τ(r(v)) + n(ℓ(v))}
9 ς(v)← ς(ℓ(v)) + ς(r(v))

10 end
11 if v has label 1⃝ then
12 τ(v)← τ(ℓ(v)) + τ(r(v))
13 ς(v)← min{ς(ℓ(v)) + n(r(v)), ς(r(v)) + n(ℓ(v)), τ(v)}
14 end
15 end

▶ Proposition 4. Given a P4-free n-vertex graph G together with its cotree, Algorithm 1
correctly computes the cluster deletion number ς(G) of G in O(n) time.

Proof. The correctness of Algorithm 1 directly follows from Lemma 2. Since per node in the
cotree a constant number of operations are performed, the algorithm runs in O(n) time. ◀

We remark that Algorithm 1 can be slightly modified for computing a minimum cluster
vertex deletion set. Also, since Lemma 2 holds accordingly for the weighted version, the
minimum weight cluster vertex deletion number of cographs can be computed in linear time,
too.

Another approach is based on the concept of clique-width of graphs in connection with the
so-called LinEMSOLτ1,p

problems (problems definable in monadic second-order logic and
allowed in searching optimal sets of vertices with respect to some linear objective function).
We refer to [8] for details. It is well known that cographs have clique-width at most 2 and a
corresponding 2-expression can be constructed in linear time. Hence, every LinEMSOLτ1,p

problem on cographs can be solved in linear time [8, Theorem 4].
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Observe that the optimization version of cluster-vd, minimum cluster-vd, is a
LinEMSOL(τ1, p) problem, since it can be expressed as follows:

minimize |S| with respect to
∀u, v, w

(
¬S(u) ∧ ¬S(v) ∧ ¬S(w) ∧ E(u, v) ∧ E(v, w) ∧ (u ̸= w)→ E(u, w)

)
,

where S(x) means x ∈ S and E(x, y) means xy ∈ E(G).
We remark that minimum weight cluster-vd is also a LinEMSOLτ1,p

problem, hence
it can be solved in linear time on cographs, too.

3 Cluster-VD on sparse graphs

Recall that cluster-vd is NP-complete on bipartite graphs [21], even when restricted to
bipartite graphs of maximum degree 3 [13]. In this section, we show that, for any given
tree T containing two vertices of degree 3, cluster-vd remains NP-complete when restricted
to T -free bipartite graphs of maximum degree 3 and with arbitrarily large girth. The girth
g(G) of a graph G is the smallest length of a cycle in G; we set g(G) =∞ if G is a forest.
Thus, for any fixed g ≥ 3, g(G) > g if and only if G is {C3, C4, . . . , Cg}-free.

▶ Theorem 5. For any given integer g ≥ 3 and any given tree T containing two degree-3
vertices, cluster-vd is NP-complete on T -free bipartite graphs of maximum degree 3 and
with girth > g.

In particular, cluster-vd is NP-complete on bipartite graphs of maximum degree 3 and
with girth > g.

Proof. We give a polynomial reduction from cluster-vd on bipartite graphs of maximum
degree 3 to cluster-vd on T -free bipartite graphs of maximum degree 3 and of girth > g.
(Note that NP-membership of cluster-vd restricted to these graphs is clear.)

First, given a bipartite graph G of maximum degree 3 with m edges, let G′ be obtained
from G by subdividing each edge e = xy in G with three new vertices ex, exy and ey, thus
obtaining the 5-vertex path xexexyeyy in G′ in which all new vertices are of degree 2. Note
that like G, G′ is bipartite. We claim that G has a cluster vertex deletion set of size at
most k if and only if G′ has a cluster vertex deletion set of size at most k + m. For one
direction, extend a cluster vertex deletion set S ⊆ V (G) to a cluster vertex deletion set
S′ ⊆ V (G′) of size |S|+ m as follows: initially, set S′ = S. Then, for each edge e = xy in G,

if both x and y are in S or outside S, put exy into S′;
if x ∈ S and y /∈ S, put ey into S′;
if x /∈ S and y ∈ S, put ex into S′.

To see that G′ − S′ is P3-free, notice that by construction, for each edge e = xy in G,
exactly one of ex, exy and ey is in S′, and if ex, exy /∈ S′ then x ∈ S, and if ex, x /∈ S′

then y ∈ S. Since each P3 in G′ has the form xexexy, exexyey or exxe′
x for some edge e = xy

and e′ = xz, it follows from these facts that G′ − S′ is P3-free.
For the other direction, suppose that G′ has a cluster deletion set of size at most

k + m, and consider such a set S′ of minimum size. Then, we may assume that, for
each edge e = xy in G, S′ contains exactly one of ex, exy and ey: note that exexyey is
a P3, hence |S′ ∩ {ex, exy, ey}| ≥ 1, and by minimality, |S′ ∩ {ex, exy, ey}| ≤ 2. Now, if
|S′ ∩ {ex, exy, ey}| = 2 for some edge e = xy in G, then S′ can be modified to a minimum
cluster vertex deletion set containing exactly one of ex, exy and ey as follows:
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suppose that ex, exy ∈ S′. Then x, y ̸∈ S′ (if x ∈ S′ then S′ − ex would be a cluster
vertex deletion set of G′, and if y ∈ S′ then S′ − exy would be a cluster vertex deletion
set of G′, contradicting the minimality of S′), and S′′ = S′ − exy + y is a desired cluster
vertex deletion set of minimum size;
suppose that ey, exy ∈ S′. Then similar to the above case, x, y ̸∈ S′, and S′′ = S′−exy +x

is a desired cluster vertex deletion set of minimum size;
suppose that ex, ey ∈ S′. Then x, y /∈ S′ (if x ∈ S′ or y ∈ S′ then S′′ = S′ − ex,
respectively S′ − ey, would be a cluster vertex deletion set of G′, contradicting the
minimality of S′), and S′′ = S′−ex +x is a desired cluster vertex deletion set of minimum
size.

Hence, S = S′ ∩ V (G) has at most k vertices, and G − S is P3-free: if there would be
an induced P3 xyz in G with edges e = xy and e′ = yz, then, as |S′ ∩ {ex, exy, ey}| = 1
= |S′ ∩ {e′

y, e′
yz, e′

z}|, one of the 3-paths xexexy, eyye′
y and e′

yze′
zz would be outside S′.

Thus, G has a cluster vertex deletion set of size at most k if and only if G′ has a cluster
vertex deletion set of size at most k + m, as claimed.

Now, given g > 0 and a tree T with two degree-3 vertices, repeating the construction
t = max{log4(g/g(G)) + 1, |V (T )|} times, the final bipartite graph has girth 4tg(G) > g and
maximum degree 3 and contains no induced subgraph isomorphic to T . ◀

4 Cluster-VD on dense graphs

In this section, we give a polynomial reduction from vertex cover to cluster-vd, showing
that cluster-vd remains NP-complete when restricted to {3P1, 2P2}-free graphs.

Recall that the vertex cover problem asks, for a given graph G and an integer k, if
one can delete a vertex set S of size at most k such that G− S is edgeless. Let (G, k) be an
instance for vertex cover. We may assume that

G is not perfect.1 This is because vertex cover is polynomially solvable on perfect
graphs (see [11]); notice that G is perfect if and only if G is perfect and perfect graphs
can be recognized in polynomial time [5]),
G has girth > g for any given integer g ≥ 3 (see, e.g., [17]), and
k ≤ |V (G)|/2. This fact is probably known and can be easily seen as follows: given G

with n vertices and an integer k, let G′ be obtained from G by adding p = max{0, 2k−n}
isolated vertices. Then k = |V (G′)|/2 and (G, k) ∈ vertex cover if and only if
(G′, k) ∈ vertex cover. Notice that like G, G′ satisfies the first two conditions, too.

From (G, k) we construct an equivalent instance (G′, k′) for cluster-vd as follows: G′

is obtained from two disjoint copies of G, G1 and G2, by adding all possible edges between
V (G1) and V (G2). Set k′ = 2k.

We argue that (G, k) ∈ vertex cover if and only (G′, k′) ∈ cluster-vd. First, let
S ⊂ V (G) with |S| ≤ k be such that G − S is edgeless. Let S1 and S2 be the copy of S

in G1 and G2, respectively. Then Gi − Si is a clique in Gi = G, hence G′ − S′ is a clique
in G′ where S′ = S1 ∪ S2 with |S′| = 2|S| ≤ 2k = k′. Conversely, let S′ ⊆ V (G′) be a cluster
vertex deletion set of G′ with |S′| ≤ k′ = 2k. Observe that S′ ∩ V (Gi) is a proper nonempty
subset of both V (G1) and V (G2): if for some i, S′ ∩ V (Gi) = ∅ then Gi (hence G) would be
perfect, and if V (Gi) ⊂ S′ then 2k ≥ |S′| > |V (Gi)| = |V (G)|, contradicting k ≤ |V (G)|/2.
It follows from the above that G′ − S′ is a single clique, implying for each i, Gi − Si is a

1 Actually, we will only use the fact that G contains at least one induced P3.
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clique in Gi where Si = S′ ∩ V (Gi). Since |S′| ≤ 2k, |S1| ≤ k or |S2| ≤ k. Let |S1| ≤ k, say,
and let S ⊆ V (G) be the set of the corresponding vertices in G. Then G− S is edgeless with
|S| ≤ k.

We have seen that G has a vertex cover of size at most k if and only if G′ has a cluster
vertex deletion set of size at most k′, as claimed.

Now, observe that, for any connected graph X, if G is X-free then G′ is X-free. Since G

has girth > g, we obtain:

▶ Theorem 6. For any fixed g ≥ 3, cluster-vd is NP-complete on {C3, C4, . . . , Cg}-free
graphs.

In particular, cluster-vd is NP-complete on {3P1, 2P2}-free graphs.

5 NP-completeness cases

In this section we give the proof of the NP-completeness part of Theorem 1.
Let H be a fixed graph. By Proposition 4, cluster-vd is polynomially solvable on

H-free graphs whenever H is an induced subgraph of the 4-vertex path P4. The following
fact is easy to see:

▶ Observation 7. A graph is an induced subgraph of the 4-path P4 if and only if it is a
{3P1, 2P2}-free forest.

Thus, it remains to consider the cases where H contains a cycle or a 3P1 or a 2P2 as an
induced subgraph.

Now, if H contains a cycle then graphs of girth > g = |V (H)| are H-free, hence Theorem 5
implies that cluster-vd is NP-complete on H-free graphs. If H contains a 3P1 or a 2P2
then {3P1, 2P2}-free graphs are H-free graphs, hence Theorem 6 implies that cluster-vd is
NP-complete on H-free graphs.

The proof of Theorem 1 is complete.

6 Conclusion

We have found a complete characterization of graphs H for which cluster-vd on H-free
graphs is polynomially solvable and for which it is NP-complete (Theorem 1).

We remark that a complexity dichotomy for vertex cover on H-free graphs, like
Theorem 1 for cluster-vd, seems very hard to achieve. Indeed, it is a long-standing open
problem whether there exists a constant t for which vertex cover is NP-complete on
Pt-free graphs. So far it is known that such a constant t, if any, must be at least 7 [12].

Let H be a set of (possibly infinitely many) graphs. A natural question generalizing the
case of one forbidden induced subgraph is: what is the complexity of cluster-vd on H-free
graphs? The case H = {H} is completely solved by Theorem 1. The case H = {Cℓ | ℓ ≥ 4}
addressed in [3] is still open. The next step may be the case of two-element sets H = {H1, H2}.
This case is more complex and currently we are investigating the case H = {H, H}. Another
interesting problem is to clear the complexity of cluster-vd on line graphs, a well-studied
graph class defined by excluding nine small induced subgraphs.
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Abstract
The Contraction(vc) problem takes as input a graph G on n vertices and two integers k and d,
and asks whether one can contract at most k edges to reduce the size of a minimum vertex cover
of G by at least d. Recently, Lima et al. [MFCS 2020, JCSS 2021] proved, among other results,
that unlike most of the so-called blocker problems, Contraction(vc) admits an XP algorithm
running in time f(d) · nO(d). They left open the question of whether this problem is FPT under this
parameterization. In this article, we continue this line of research and prove the following results:

Contraction(vc) is W[1]-hard parameterized by k + d. Moreover, unless the ETH fails, the
problem does not admit an algorithm running in time f(k + d) · no(k+d) for any function f . In
particular, this answers the open question stated in Lima et al. [MFCS 2020] in the negative.
It is NP-hard to decide whether an instance (G, k, d) of Contraction(vc) is a Yes-instance
even when k = d, hence enhancing our understanding of the classical complexity of the problem.
Contraction(vc) can be solved in time 2O(d) · nk−d+O(1). This XP algorithm improves the
one of Lima et al. [MFCS 2020], which uses Courcelle’s theorem as a subroutine and hence, the
f(d)-factor in the running time is non-explicit and probably very large. On the other hand, this
shows that when k = d, the problem is FPT parameterized by d (or by k).
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1 Introduction

Graph modification problems have been extensively studied in theoretical computer science,
in particular for their vast expressive power and their applicability in a number of scenarios.
Such problems can be generically defined as follows. For a fixed graph class F and a fixed
set M of allowed graph modification operations, such as vertex deletion, edge deletion, edge
addition, edge editing or edge contraction, the F -M-Modification problem takes as input
a graph G and a positive integer k, and the goal is to decide whether at most k operations
from M can be applied to G so that the resulting graph belongs to the class F . For most
natural graph classes F and modification operations M, the F -M-Modification problem
is NP-hard [15,16]. To cope up with this hardness, these problems have been examined via
the lens of parameterized complexity [1,3]. With an appropriate choice of F and the allowed
modification operations M, F-M-Modification can encapsulate well-studied problems
like Vertex Cover, Feedback Vertex Set (FVS), Odd Cycle Transversal (OCT),
Chordal Completion, or Cluster Editing, to name just a few.

The most natural and well-studied modification operations are, probably in this order,
vertex deletion, edge deletion, and edge addition. In recent years, the edge contraction
operation has begun to attract significant scientific attention. (When contracting an edge uv

in a graph G, we delete u and v from G, add a new vertex and make it adjacent to vertices
that were adjacent to u or v.) In parameterized complexity, F-Contraction problems,
i.e., F-M-Modification problems where the only modification operation in M is edge
contraction, are usually studied with the number of edges allowed to contract, k, as the
parameter. A series of more than 15 recent papers studied the parameterized complexity of
F -Contraction for various graph classes F (see [14] and the references therein, as well as
the full version of this article, for the precise list of these classes F).

For all the F-M-Modification problems mentioned above, a typical definition of the
problem contains a description of the target graph class F . For example, Vertex Cover,
FVS, and OCT are F-M-Modification problems where F is the collection of edgeless
graphs, forests, and bipartite graphs, respectively, and M contains only vertex deletion.
Recently, a different formulation of these graph modification problems, called blocker problems,
has been considered. In this formulation, the target graph class is defined in a parametric
way from the input graph. To make the statement of such problems precise, consider an
invariant π : G 7→ N, where G is the collection of all graphs. For a fixed invariant π, a
typical input of a blocker problem consists of a graph G, a budget k, and a threshold value
d, and the question is whether G can be converted into a graph G′ using at most k allowed
modifications such that π(G′) ≤ π(G) − d. This is the same as determining whether (G, k, d)
is a Yes-instance of Fπ

G,d-M-Modification where Fπ
G,d = {G′ ∈ G | π(G′) ≤ π(G) − d}.

Consider the following examples of this formulation. For the invariant π(G) = |E(G)|,
threshold d = |E(G)|, and vertex deletion as the modification operation in M, Fπ

G,d-M-
Modification is the same as Vertex Cover. Setting the threshold d to a fixed integer p

leads to Partial Vertex Cover. In a typical definition of this problem, the input is a
graph G and two integers k, p, and the objective is to decide whether there is a set of vertices
of size at most k that has at least p edges incident on it. Consider another example when
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π(G) = vc(G), the size of a minimum vertex cover of G, the threshold value d = vc(G) − 1,
and the allowed modification operation is edge contraction. To reduce the size of a minimum
vertex cover from vc(G) to 1 by k edge contractions, we need to find a connected vertex
cover of size k + 1. Hence, in this case Fπ

G,d-M-Modification is the same as Connected
Vertex Cover. In all these cases, we can think of the set of vertices or edges involved in
the modifications as “blocking” the invariant π, that is, preventing π from being smaller.

With “vertex deletion” or “edge deletion” as the allowed graph modification operation,
blocker problems have been investigated for numerous graph invariants (see the full version
of this article for an exhaustive list of these invariants, along with the appropriate references).
Blocker problems for edge contraction have already been studied with respect to the chromatic
number, clique number, independence number [6,13], the domination number [8,10], total
domination number [9], and the semitotal domination number [7].

This article is strongly motivated by the results in [12]. They proved, in particular, that
it is coNP-hard to test whether we can reduce the size of a minimum feedback vertex set
or of a minimum odd cycle transversal of a graph by one, i.e., d = 1, by performing one
edge contraction, i.e., k = 1. This is consistent with earlier results, as blocker problems are
generally very hard, and become polynomial-time solvable only restricted to specific graph
classes. However, the notable exception is when the invariant is the size of a minimum vertex
cover of the input graph. We define the problem before mentioning existing results and our
contribution (G/F denotes the graph obtained from G by contracting the edges in F ).

Contraction(vc)
Input: An undirected graph G and two non-negative integers k and d.
Question: Does there exist a set F ⊆ E(G) such that |F | ≤ k and vc(G/F ) ≤ vc(G)−d?

Our results. A simple reduction, briefly mentioned in [12], shows that the above problem is
NP-hard for some k in {d, d + 1, . . . , 2d}. In our first result, we enhance our understanding
of the classical complexity of the problem and prove that the problem is NP-hard even when
k = d. As any edge contraction can decrease vc(G) by at most one, if k < d then the input
instance is a trivial No-instance. To state our first result, we introduce the notation of
rank(G), which is the number of vertices of G minus its number of connected components
(or equivalently, the number of edges of a set of spanning trees of each of the connected
components of G). Note that it is sufficient to consider values of k that are at most rank(G),
as otherwise it is possible to transform G to an edgeless graph with at most k contractions,
and therefore in this case G is a yes-instance for Contraction(vc) if and only if vc(G) ≥ d.

▶ Theorem 1. To decide whether an instance (G, k, d) of Contraction(vc) is a Yes-
instance is

coNP-hard if k = rank(G),
coNP-hard if k < rank(G) and 2d ≤ k, and
NP-hard if k < rank(G) and k = d + ℓ−1

ℓ+3 · d for any integer ℓ ≥ 1 such that k is an integer.

As one needs to contract at least d edges to reduce the size of a minimum vertex cover by d,
the above theorem, for ℓ = 1, implies that the problem is para-NP-hard when parameterized
by the “excess over the lower bound”, i.e., by k − d. Since we can assume that d ≤ k,
d is a “stronger” parameter than k. One of the main results of [12] is an XP algorithm for
Contraction(vc) with running time f(d) · nO(d). Here, and in the rest of the article, we
denote by n the number of vertices of the input graph. The authors explicitly asked whether

MFCS 2022
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the problem admits an FPT algorithm parameterized by d. As our next result, we answer
this question in the negative by proving that such an algorithm is highly unlikely, even when
parameterized by the larger parameter d + k (or equivalently, just k, as discussed above).

▶ Theorem 2. Contraction(vc) is W[1]-hard parameterized by k + d. Moreover, unless
the ETH fails1, it does not admit an algorithm running in time f(k + d) · no(k+d) for any
computable function f : N 7→ N. The result holds even if we assume that the input (G, k, d) is
such that k < rank(G) and d ≤ k < 2d, and G is a bipartite graph with a bipartition ⟨X, Y ⟩
such that X is a minimum vertex cover of G.

For the XP algorithm in [12], the authors did not explicitly mention an upper bound on
the corresponding function f , but it is expected to be quite large since it uses Courcelle’s
theorem [2] as a subroutine. Our next result provides a concrete upper bound on the running
time, and distinguishes in a precise way the contribution of k and d.

▶ Theorem 3. There exists an algorithm that solves Contraction(vc) in time 2O(d) ·
nk−d+O(1). Moreover, for an input (G, k, d), the algorithm runs in time 2O(d) · nO(1) unless
k < rank(G) and d ≤ k < 2d.

Note that the above result implies, in particular, that the problem is FPT parameterized
by d when k − d is a constant.

Our methods. A central tool in both our negative and positive results is Lemma 6, which
allows us to reformulate the problem as follows. As discussed later, by applying appropriate
FPT reductions to the input graph G, it is possible to assume that we have at hand a
minimum vertex cover X of G. We say that a set of edges F is a solution of (G, k, d) if
|F | ≤ k and vc(G/F ) ≤ vc(G) − d. Lemma 6 implies that there exists such a solution (i.e.,
an edge set) if and only if there exist vertex subsets Xs ⊆ X and Ys ⊆ V (G) \ X such that
the pair ⟨Xs, Ys⟩, which we call a solution pair, satisfies the technical conditions mentioned in
its statement (and which we prefer to omit here). This reformulation allows us to convert the
problem of finding a subset F of edges to the problem of modifying the given minimum vertex
cover X to obtain another vertex cover Xel = (X \ Xs) ∪ Ys such that |Xel| ≤ |X| + (k − d)
and rank(Xel) ≥ k. Here, we define rank(Xel) := rank(G[Xel]). See the full version for an
illustration.

In our hardness reductions, another simple, yet critical, tool is Lemma 7, which states
that if there is a vertex which is adjacent to a pendant vertex (i.e., a vertex of degree one),
then there is a solution pair that does not contain this vertex. We present overviews of the
reductions in Section 3 and in the full version to demonstrate the usefulness of these two
lemmas in the respective hardness results. The reduction that we use to prove the third
item in the statement of Theorem 1 (which is the most interesting case) is from a variant of
Multicolored Independent Set, while the one in the proof of Theorem 2 is from Edge
Induced Forest, a problem that we define and that we prove to be W[1]-hard in Theorem 8,
by a parameter preserving reduction from, again, Multicolored Independent Set. It
is worth mentioning that the W[1]-hardness in Theorem 8 holds even if we assume that the
input graph G is a bipartite graph with a bipartition ⟨X, Y ⟩ such that X is a minimum
vertex cover of G, and such that k < rank(G) and d ≤ k < 2d. This case is the crux of the
difficulty of the problem. This becomes clear in the XP algorithm of Theorem 3 that we
proceed to discuss.

1 The Exponential Time Hypothesis (ETH) is a conjecture stating that N -variable 3-SAT cannot be solved
in time 2o(N). We refer the reader to [4, Chapter 14] for the formal definition and related literature.
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Instance (G, k, d)
of Contr.(vc)

Solve in O⋆(2O(d))
using Lemma 12

Solve in O⋆(2O(d))
using Lemma 13

Lemma 15
O⋆(2O(k))

(G, k, d) is a
Yes-instance

Min. vertex cover
X of G with
rank(X) < d

2O(d) instances
of Annotated

Contr.(vc)

G is bipartite
with bipartition
⟨X, Y ⟩ and X is

min. vertex cover

Instance
((G, k, d), ·)

of Constrained
MaxCut

Create 2O(d) ·nk−d

many instances
such that k = d

using Lemma 19

Simplify using
Lemma 20 to
get |X| = |Y |

Instance of
Constrained

Directed
MaxCut

Solve in O⋆(2O(k))
using Lemma 22

k = rank(G)

k < rank(G)

2d ≤ k

d ≤ k < 2d

Lemma 16

Lemma 17Lemma 18

k > d

k = d

k = d Lemma 21

Figure 1 Diagram of the algorithm for Contraction(vc) given by Theorem 3. Recall that
we can assume that d ≤ k ≤ rank(G), hence the case distinction considered in the beginning is
exhaustive. Note also that, in the case where d ≤ k < 2d, it holds that O⋆(2O(k)) = O⋆(2O(d)).

The algorithm for Contraction(vc), which is our main technical contribution, is
provided in Section 4 and summarized in the diagram of Figure 1. By a standard Knapsack-
type dynamic programming, mentioned in [12], we can assume that the input graph G is
connected. We distinguish three cases depending on the relation between k, d, and rank(G).
The first two cases are easy, and can be solved in time 2O(d) · nO(1), by essentially running
an FPT algorithm to determine whether vc(G) < d; see Lemma 12 and Lemma 13. We now
present an overview of the algorithm for the third case, namely when its input (G, k, d) is
with guarantees that k < rank(G) and d ≤ k < 2d (cf. Lemma 14). Inspired by Lemma 6, we
introduce an annotated version of the problem called Annotated Contraction(vc). We
first argue (cf. Lemma 15) that there is a 2O(k) ·nO(1) algorithm that either correctly concludes
that (G, k, d) is a Yes-instance of Contraction(vc) or finds a minimum vertex cover X of
G such that rank(X) < d. Using X, we can construct 2O(d) many instances of Annotated
Contraction(vc) such that (G, k, d) is a Yes-instance of Contraction(vc) if and only if
at least one of these new instances is a Yes-instance of Annotated Contraction(vc) (cf.
Lemma 16). Hence, it suffices to design an algorithm to solve Annotated Contraction(vc).
We show that we can apply a simple reduction rule (cf. Lemma 17) that allows us to assume
that the input graph G of Annotated Contraction(vc) is bipartite with bipartition
⟨X, Y ⟩ such that X is a minimum vertex cover of G, as mentioned above.

A solution of an instance of Annotated Contraction(vc) is a solution pair ⟨Xs, Ys⟩
as stated in Lemma 6. We find convenient to present an algorithm that finds a partition
⟨VL, VR⟩ of V (G) instead of a solution pair ⟨Xs, Ys⟩. To formalize this, we introduce the

MFCS 2022
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problem called Constrained MaxCut and we show it to be equivalent to Annotated
Contraction(vc) (cf. Lemma 18). We partition the input instances of Constrained
MaxCut into the following two types: (1) k = d, and (2) k > d. For the instances of the
second type, we construct 2O(d) · nk−d many instances of the first type such that the input
instance is a Yes-instance if and only if at least one of these newly created instances is a
Yes-instance (cf. Lemma 19). We remark that this is the only step in the whole algorithm
where an nk−d-factor appears (note that this is unavoidable by Theorem 8).

Finally, to handle the instances of the first type (i.e., with k = d), we apply a simplification
based on the existence of a matching saturating X (cf. Lemma 20), we introduce a directed
variation of the problem called Constrained Directed MaxCut, and we prove it to
be equivalent to its undirected version (cf. Lemma 21). We then present a dynamic
programming algorithm, with running time 2O(k) · nO(1), that critically uses the fact that
k = d (cf. Lemma 22), in particular to “merge” appropriately some directed cycles in order
to obtain a directed acyclic graph, whose topological ordering gives a natural way to process
the vertices of the input graph in a dynamic programming fashion. At the end of Section 4
we present an overview of this algorithm.

Organization. Due to space limitations, in this extended abstract most of the technical
contents of the paper can only be found in the full version, in particular the proofs of the
statements marked with “(⋆)”. In Section 2 we present some notations and preliminary
results about Contraction(vc). The proof of Theorem 1 can be found in the full version.
In Section 3 we present the proof of Theorem 2. Section 4 is the most technical part of the
paper, and contains the description of the algorithm to solve Contraction(vc) mentioned
in Theorem 3. We conclude the article in Section 5 with some open problems.

2 Preliminaries

We use standard graph-theoretic notation, and we refer the reader to [5] for any undefined
notation. Similarly, we use standard terminology of parameterized complexity, and we
refer the reader to [4]. For completeness, we present in the full version the required basic
preliminaries about graph theory and parameterized complexity, and we provide here some
non-standard definitions and useful properties of the Contraction(vc) problem.

For a positive integer q, we denote the set {1, 2, . . . , q} by [q]. We use N to denote the
collection of all non-negative integers. A spanning forest of a graph is a collection of spanning
trees of its connected components. As already mentioned in Section 1, the rank of a graph
G, denoted by rank(G), is the number of edges of a spanning forest of G. The rank of a set
X ⊆ V (G) of vertices, denoted by rank(X), is the rank of G[X]. The rank of a set F ⊆ V (G)
of edges, denoted by rank(F ), is the rank of V (F ). Note that an edge contraction decreases
the rank of a graph G by exactly one. We present a couple of observations regarding an
instance (G, k, d) of the Contraction(vc) problem. Later, we present a lemma that helps
us to characterize the problem as finding a vertex cover with special properties.

▶ Observation 4 (⋆). Consider an instance (G, k, d) of Contraction(vc) such that k =
rank(G). Then, (G, k, d) is a Yes-instance if and only if d ≤ vc(G).

▶ Observation 5 (⋆). Consider an instance (G, k, d) of Contraction(vc) such that G is a
connected graph, k < rank(G), and 2d ≤ k. Then, (G, k, d) is a Yes-instance if and only if
d < vc(G).
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Suppose that (G, k, d) is a Yes-instance of Contraction(vc). We say that a set
F ⊆ E(G) is a solution of (G, k, d) if |F | ≤ k and vc(G/F ) ≤ vc(G) − d. Fix a minimum
vertex cover X of G. As X is a vertex cover, for every edge in F , at least one of its endpoints
is in X. We argue that one can construct an enlarged vertex cover Xel of G such that for
every edge in F , both of its endpoints are in Xel. Also, Xel is not much larger than X. In
order to construct Xel from X, one needs to remove and add some vertices to X. We denote
the removed and added vertices by Xs and Ys, respectively, and call ⟨Xs, Ys⟩ a solution pair.
See the corresponding figure in the full version for an illustration. The following lemma
relates a solution (a set of edges) to a solution pair (a tuple of disjoint vertex sets).

▶ Lemma 6 (⋆). Consider a connected graph G, a minimum vertex cover X of G, a proper
subset F of edges of a spanning forest of G (i.e., |F | < rank(G)), and a non-negative integer d.
Then, vc(G/F ) ≤ vc(G) − d if and only if there exists subsets Xs ⊆ X and Ys ⊆ V (G) \ X

such that (i) Xel := (X \ Xs) ∪ Ys is a vertex cover of G, (ii) rank((X \ Xs) ∪ Ys) ≥ |F |, and
(iii) |Ys| − |Xs| ≤ |F | − d, i.e., |Xel| ≤ |X| + |F | − d.

In the following lemma, we argue that there exists a solution pair ⟨Xs, Ys⟩ such that Xs

does not contain any vertex in X which is adjacent to a pendant vertex. For example, in
the aforementioned figure in the full version, there exists a solution pair ⟨Xs, Ys⟩ such that
x1 ̸∈ Xs.

▶ Lemma 7 (⋆). Consider a connected graph G, a minimum vertex cover X of G, and two
integers ℓ and d. Suppose that there exists a vertex x◦ in X which is adjacent to a pendant
vertex. Suppose that there are subsets Xs ⊆ X and Ys ⊆ V (G)\X such that (i) (X \Xs)∪Ys

is a vertex cover of G, (ii) rank((X \ Xs) ∪ Ys) ≥ ℓ, and (iii) |Ys| − |Xs| ≤ ℓ − d. Then, there
are subsets X ′

s ⊆ X and Y ′
s ⊆ V (G) \ X that satisfy these three conditions and x◦ ̸∈ X ′

s.

3 W[1]-hardness results

In this section we prove Theorem 2. To do so, we introduce the Edge Induced Forest
problem, defined below, and present a parameter preserving reduction from Multicolored
Independent Set to it. This reduction, along with known results about Multicolored
Independent Set (cf. the preliminaries in the full version), imply the corresponding result
for Edge Induced Forest. We then present a parameter preserving reduction from Edge
Induced Forest to Contraction(vc). This reduction, along with Theorem 8, yield
Theorem 2.

Edge Induced Forest
Input: A graph G and an integer ℓ.
Question: Is there a set F of at least ℓ edges in G such that G[V (F )] is a forest?

We note that a similar problem called Induced Forest has already been studied. In
this problem, the input is the same but the objective is to find a subset X of vertices of G of
size at least ℓ such that G[X] is a forest. The general result of Khot and Raman [11] implies
that Induced Forest is W[1]-hard when parameterized by the size of the solution ℓ. As
expected, we can prove a similar result for Edge Induced Forest.

▶ Theorem 8 (⋆). Edge Induced Forest, parameterized by the size of the solution ℓ, is
W[1]-hard. Moreover, unless the ETH fails, it does not admit an algorithm running in time
f(ℓ) · no(ℓ) for any computable function f : N 7→ N.

MFCS 2022
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Figure 2 The top-left figure illustrates an encoding of edge uv in G while reducing from an
instance of Edge Induced Forest to an instance of Contraction(vc). The remaining five figures
correspond to the partition of Ys mentioned in the proof of Lemma 11.

We now present a parameter preserving reduction from Edge Induced Forest to
Contraction(vc), which takes an instance (G, ℓ) of Edge Induced Forest and returns
an instance (G′, k, d) of Contraction(vc). It constructs a graph G′ from G as follows:

Initialize V (G′) = E(G′) = ∅.
For every vertex u in V (G), add two vertices zu, pu to V (G′) and the edge zupu to E(G′).
For every edge uv in E(G), add the vertex set {ya

uv, yb
uv, yc

uv, w1
uv, w2

uv, p1
uv, p2

uv} to
V (G′). Add edges {zuyc

uv, zvyc
uv} to E(G′). These edges encode adjacency relations in G.

Add also the edges {ya
uvyb

uv, ya
uvyc

uv, yb
uvw1

uv, yb
uvw2

uv, w1
uvp1

uv, w2
uvp2

uv} to E(G′). These
edges are part of a gadget which is private to edge uv.

This completes the construction of G′. The reduction sets k = 4 · ℓ, d = 3 · ℓ, and returns
(G′, k, d) as the constructed instance. Note that, indeed, k < rank(G′) and d ≤ k < 2d (more
precisely, k − d = d

3 ). See Figure 2 for an illustration. Before proving the correctness of the
reduction, we first note some properties of the graph G′. We define the following sets:

Z := {zu ∈ V (G′) | u ∈ V (G)},
Y abc := Y a∪Y b∪Y c where Y a := {ya

uv ∈ V (G′) | uv ∈ E(G)}, Y b := {yb
uv ∈ V (G′) | uv ∈

E(G)}, and Y c := {yc
uv ∈ V (G′) | uv ∈ E(G)},

W := {w1
uv, w2

uv ∈ V (G′) | uv ∈ E(G)}, and
P := {pu ∈ V (G′) | u ∈ V (G)} ∪ {p1

uv, p2
uv | uv ∈ E(G)}.

Note that ⟨Z, Y abc, W, P ⟩ is a partition of V (G′) where each vertex in P is a pendant vertex
and each vertex in Z ∪ W is adjacent to a pendant vertex in P . Moreover, rank(G′) > k.
Note that X := Z ∪ W ∪ Y a is an independent set in G′. In the next lemma, we argue that
it is also a minimum vertex cover of G′, which implies that, as claimed in the statement
of Theorem 2, G′ is a bipartite graph with a bipartition ⟨X, Y ⟩ such that X is a minimum
vertex cover of G′.

▶ Lemma 9 (⋆). The set X = Z ∪ W ∪ Y a is a minimum vertex cover of G′.
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The following lemma corresponds to the “easy” direction of the reduction.

▶ Lemma 10 (⋆). If (G, ℓ) is a Yes-instance of Edge Induced Forest, then (G′, k, d) is
a Yes-instance of Contraction(vc).

We now present a brief overview of the proof of the correctness in the backward direction,
corresponding to Lemma 11, whose full proof can be found in the full version. By Lemma 6,
there is a solution F of (G′, k, d) if and only if there exists a solution pair ⟨Xs, Ys⟩ such
that (i) Xel = (X \ Xs) ∪ Ys is a vertex cover of G′, (ii) rank(Xel) ≥ |F | = k = 4 · ℓ, and
(iii) |Ys| − |Xs| ≤ k − d = ℓ. Note that as X and Y = V (G′) \ X are independent sets
in G′, every edge in E(Xel) is incident on exactly one vertex in Ys. We can interpret the
second condition as a value function and the third condition as a cost function. In other
words, our objective is to find sets Xs, Ys such that their cost, i.e., |Ys| − |Xs|, is at most
ℓ whereas their value, i.e., the rank of edges in E(Xel) that are incident on Ys, is at least
4 · ℓ. Lemma 7 implies that the vertices of the form zu, w1

uv, and w2
uv are in Xel. The first

condition implies that only the five configurations shown in Figure 2 are possible (the top-left
is not a configuration). Starting from top-middle and moving row-wise, the individual value
and cost of these configurations are (4, 1), (3, 1), (3, 1), (6, 2), and (1, 1), respectively. To
meet both the value and budget constraints, every vertex in Xs, Ys needs to be the of first
type. This implies there are ℓ vertices in Xs that are of the form ya

uv, and Ys contains the
corresponding vertices of the form yb

uv and yc
uv. We argue that the edges corresponding to

vertices in Y c
uv form a solution of (G, ℓ) and formalize these ideas in the next lemma.

▶ Lemma 11 (⋆). If (G′, k, d) is a Yes-instance of Contraction(vc), then (G, ℓ) is a
Yes-instance of Edge Induced Forest.

We are ready to present the proof of Theorem 2.

Proof of Theorem 2. Consider the reduction presented in this subsection. Lemma 10 and
Lemma 11 imply that the reduction is safe. By the description of the reduction, it outputs the
constructed instance in polynomial time. The W[1]-hardness of Contraction(vc) follows
from Theorem 8. As k = 4 · ℓ and d = 3 · ℓ, if Contraction(vc) admits an algorithm with
running time f(k + d) · no(k+d), then Edge Induced Forest also admits an algorithm with
running time f(ℓ) · no(ℓ), which contradicts Theorem 8. ◀

4 Algorithm for Contraction(vc)

In this section we present the main ideas of the proof of Theorem 3, following the sketch
provided in Section 1 and summarized in Figure 1. Due to space limitations, most of the
technical content can be found in the full version Namely, we present an algorithm that
takes as input an instance (G, k, d) of Contraction(vc) and returns either Yes or No,
and whose high-level description is as follows (cf. Figure 1):

If k = rank(G), then it uses the algorithm mentioned in Lemma 12.
If k < rank(G) and 2d ≤ k, then it uses the algorithm mentioned in Lemma 13.
If k < rank(G) and d ≤ k < 2d, then it uses the algorithm mentioned in Lemma 14.

Note that, since we can safely assume that d ≤ k ≤ rank(G), the above three cases are
exhaustive. The first two cases turn out to be quite easy to handle.

▶ Lemma 12 (⋆). There exists an algorithm that, given as input an instance (G, k, d) of
Contraction(vc) with a guarantee that k = rank(G), runs in time 1.2738d · nO(1), and
correctly determines whether it is a Yes-instance.
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▶ Lemma 13 (⋆). There exists an algorithm that, given as input an instance (G, k, d) of
Contraction(vc) with guarantees that k < rank(G) and 2d ≤ k, runs in time 1.2738d ·nO(1),
and correctly determines whether it is a Yes-instance.

We may assume that G is a connected graph; we justify this assumption in the full version.
In order to deal with the third case above, our objective is to prove the following lemma.

▶ Lemma 14. There exists an algorithm that, given as input an instance (G, k, d) of
Contraction(vc) with guarantees that k < rank(G) and d ≤ k < 2d, runs in time
2O(d) · nk−d+O(1), and correctly determines whether it is a Yes-instance.

We start with the following result, which will allow us to assume henceforth that we are
equipped with a minimum vertex cover of the input graph with small rank.

▶ Lemma 15 (⋆). There exists an algorithm that, given as input an instance (G, k, d)
of Contraction(vc) with guarantees that k < rank(G) and d ≤ k < 2d, runs in time
2.6181k · nO(1), and either correctly concludes that (G, k, d) is a Yes-instance, or computes a
minimum vertex cover X of G such that rank(X) < d.

Our next step is to provide an FPT-reduction from Contraction(vc) to the Annotated
Contraction(vc) problem, defined as follows.

Annotated Contraction(vc)
Input: An instance (G, k, d) of Contraction(vc), a minimum vertex cover X of G,
and a tuple ⟨XL, XR⟩ such that XL, XR are disjoint subsets of X.
Question: Do there exist sets Xs ⊆ X and Ys ⊆ Y (= V (G) \ X) such that (i)
(X \ Xs) ∪ Ys is a vertex cover of G, (ii) rank((X \ Xs) ∪ Ys) ≥ k, (iii) |Ys| − |Xs| ≤ k − d,
and (iv) XL ∩ Xs = ∅ and XR ⊆ Xs?

The first three conditions correspond to the three conditions mentioned in Lemma 6. We
remark that there is a small technical caveat while using Lemma 6. Consider an instance
(G, k, d) of Contraction(vc), and let F be a solution. Lemma 6 implies that there are
subsets Xs ⊆ X and Ys ⊆ V (G) \ X such that (i) (X \ Xs) ∪ Ys is a vertex cover of G,
(ii) rank((X \ Xs) ∪ Ys) ≥ |F |, and (iii) |Ys| − |Xs| ≤ |F | − d. However, the statement of
Annotated Contraction(vc) specifies the integer k and not the actual size of a minimum
solution F . For example, if there exists a solution F of size, say, k/2, then Lemma 6 ensures
that rank((X \ Xs) ∪ Ys) ≥ k/2, however rank((X \ Xs) ∪ Ys) can be smaller than k. To
overcome this, we assume that (G, k − 1, d) is a No-instance of Contraction(vc). This
implies that if there is a subset F of E(G) of size at most k such that vc(G/F ) ≤ vc(G) − d,
then F is of size exactly k. We summarize below all the assumptions on the input instance.

▶ Guarantee 4.1. Consider an instance (G, k, d) of Contraction(vc) that satisfies the
following conditions.

G is a connected graph, k < rank(G), and d ≤ k.
A minimum vertex cover X of G is provided as an additional part of the input.
rank(X) < d.
(G, k − 1, d) is a No-instance of Contraction(vc).

Unless stated otherwise, we denote the independent set V (G) \ X by Y .
Consider an instance (G, k, d) of Contraction(vc) with Guarantee 4.1. Using Lemma 6,

we construct 2O(d) many instances of Annotated Contraction(vc) such that (G, k, d) is
a Yes-instance if and only if at least one of these newly created instances is a Yes-instance.
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Informally, let F be the set of edges in a spanning forest of G[X]. As rank(X) < d, we have
|F | < d. We iterate over all “valid” partitions ⟨XL, XR⟩ of V (F ). We construct an instance
of Annotated Contraction(vc) for each such a partition. We formalize this intuition
and prove its correctness in the following lemma.

▶ Lemma 16 (⋆). Suppose that there is an algorithm that solves Annotated Contrac-
tion(vc) in time f(n, k, d). Then, there exists an algorithm that given as input an instance
(G, k, d) of Contraction(vc) with Guarantee 4.1, runs in time 3d · nO(1) · f(n, k, d), and
correctly determines whether it is a Yes-instance.

To solve an instance of Annotated Contraction(vc), we reduce it to an equivalent
instance of the Constrained MaxCut problem. To present such a reduction, it is convenient
to work with an instance ((G, k, d), X, ⟨XL, XR⟩) of Annotated Contraction(vc) where
X is an independent set. This is guaranteed by the following reduction rule.

▶ Reduction Rule 4.1. Let ((G, k, d), X, ⟨XL, XR⟩) be an instance of Annotated Con-
traction(vc), F1 = E(XL, XR), and F2 be the set of edges in a spanning forest of G[XL].

Delete the edges in F1.
Contract the edges in F2 and reduce both k and d by |F2|.

Return the instance ((G′, k′, d′), X ′, ⟨X ′
L, XR⟩) where G′ = (G − F1)/F2, k′ = k − |F2|,

d′ = d − |F2|, X ′ = V (G[X]/F2), and X ′
L = V (G[XL]/F2).

▶ Lemma 17 (⋆). Reduction Rule 4.1 is safe. Therefore, it is safe to assume that we are
given an instance ((G, k, d), X, ⟨XL, XR⟩) of Annotated Contraction(vc) such that X

is an independent set and a minimum vertex cover of G.

We find the following reformulation of Annotated Contraction(vc) convenient to
present an algorithm to solve it.

Constrained MaxCut
Input: An instance (G, k, d) of Contraction(vc), a minimum vertex cover X of G,
and a tuple ⟨XL, XR⟩ such that XL, XR are disjoint subsets of X.
Question: Does there exist a partition ⟨VL, VR⟩ of V (G) such that (i) E(VL∩Y, VR∩X) =
∅, (ii) rank(E(VL ∩ X, VR ∩ Y )) ≥ k, (iii) |VR ∩ Y | − |VR ∩ X| ≤ k − d, and (iv) XL ⊆ VL

and XR ⊆ VR?

Note that in Annotated Contraction(vc) we are seeking for a pair of subsets, whereas
in Constrained MaxCut we are looking for a partition of V (G). Such a formulation
allows us to handle vertices that we have decided to keep out of a solution pair. Note that
the input instances for both of these problems are the same. Hence, due to Lemma 17, it is
safe to assume that X is a minimum vertex cover and an independent set in G. In the next
lemma we show that both problems are in fact equivalent.

▶ Lemma 18 (⋆). An instance ((G, k, d), X, ⟨XL, XR⟩) is a Yes-instance of Annotated
Contraction(vc) if and only if it is a Yes-instance of Constrained MaxCut.

Consider an instance ((G, k, d), X, ⟨XL, XR⟩) of Constrained MaxCut. We consider
the following two cases: (1) k = d, and (2) d < k < 2d. (Recall that we are in the case
where k < 2d.) The first case, as we will see, allows us to impose additional restrictions on
the vertices that are in VR. It also helps us to set up some conditions such that, if they
are satisfied while running the algorithm, then it can terminate and safely conclude that
the input is a Yes-instance. In the second case, even for k = d + 1, we do not have these
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privileges. We deal with each of the two cases separately. Namely, Lemma 19 states that if
an input instance is of the second type, then we can construct a collection of 2O(d) · nk−d

many instances of the first type such that the input instance is a Yes-instance if and only
if at least one of these newly created instances is a Yes-instance. We remark that this is
the only place, in the whole algorithm, where an nk−d-factor appears in the running time.
Recall that Theorem 2 implies that this factor is unavoidable. After this lemma we present
an algorithm to solve the instances that are of the first type.

▶ Lemma 19 (⋆). Suppose that there is an algorithm that, given an instance
((G, k, d), X, ⟨XL, XR⟩) of Constrained MaxCut with a guarantee that k = d, runs
in time f(n, k, d) and correctly determines whether it is a Yes-instance. Then, there is an
algorithm that solves Constrained MaxCut in time f(n, k, d) · 2O(d) · nk−d+1.

We proceed to present an algorithm to solve an instance ((G, k, d), X, ⟨XL, XR⟩) of
Constrained MaxCut with a guarantee that k = d. We first present a reduction rule to
simplify these instances under the presence of a matching saturating X.

▶ Reduction Rule 4.2. Consider an instance ((G, k, d), X, ⟨XL, XR⟩) of Constrained
MaxCut such that k = d and X is an independent set in G. Let M be a matching in G

saturating X.
If there exists x ∈ X \ XL such that N(x) \ V (M) ̸= ∅, then add x to XL.
If there exists x ∈ XL such that N(x)\V (M) ̸= ∅, then delete all vertices in N(x)\V (M).

Return instance ((G′, k, d), X, ⟨X ′
L, XR⟩) where G′ = G−(N(x)\V (M)) and X ′

L = XL ∪{x}.

▶ Lemma 20 (⋆). Reduction Rule 4.2 is safe.

The full version contains an informal description of the algorithm for Constrained
MaxCut with a guarantee that k = d. We now briefly describe the algorithm formally.

We consider directed graphs that can have parallel arcs. We define the rank of a digraph,
and the rank of a subset of its vertices or arcs using its underlying undirected graph.

Constrained Digraph MaxCut
Input: A digraph D, a tuple ⟨XL, XR⟩ of disjoint subsets of X, and an integer k.
Question: Does there exist a partition (VL, VR) of V (G) such that (i) A(VR, VL) = ∅,
(ii) rank(A(VL, VR)) ≥ k, and (iii) XL ⊆ VL and XR ⊆ VR?

We say that a partition ⟨VL, VR⟩ is a solution of (D, ⟨XL, XR⟩, k) if it satisfies all
the three conditions in the statement of the problem. We present a reduction that,
given an instance ((G, k, d), X, ⟨XL, XR⟩) of Constrained MaxCut, returns an instance
(D, ⟨XL, XR⟩, k) of Constrained Directed MaxCut. The reduction takes as input an
instance ((G, k, d), X, ⟨XL, XR⟩) of Constrained MaxCut on which Reduction Rule 4.2
is not applicable. It starts with a copy of the graph G and constructs a digraph D. The
reduction finds (in polynomial time) a matching M in G that saturates all vertices in X.
For every xy ∈ E(G), where x ∈ X and y ∈ Y , it deletes edge xy and adds arc (x, y)
(i.e., it directs edges from X to Y ). For every arc (x, y) in M , it adds arc (x1, x) for every
in-neighbour x1 of y, and then deletes vertex y. This completes the construction of D. The
reduction returns (D, ⟨XL, XR⟩, k) as the instance of Constrained Digraph MaxCut.

▶ Lemma 21 (⋆). ((G, k, d), X, ⟨XL, XR⟩) is a Yes-instance of Constrained MaxCut if
and only if (D, ⟨XL, XR⟩, k) is a Yes-instance of Constrained Digraph MaxCut.

We present a dynamic programming algorithm for Constrained Directed MaxCut.
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▶ Lemma 22 (⋆). There is an algorithm that, given an instance (G, ⟨XL, XR⟩, k) of Con-
strained Directed MaxCut, runs in time 2O(k) · nO(1) and correctly determines whether
it is a Yes-instance.

We finally have all the ingredients to prove Lemma 14, and consequently Theorem 3 as
well. The proofs are provided in the full version.

5 Conclusion

In this article we considered the problem of reducing the size of a minimum vertex cover of a
graph G by at least d using at most k edge contractions. Note that the problem is trivial
when k < d. A few simple observations prove that when d ≤ 2k, the problem is coNP-hard
and FPT when parameterized by k + d. Almost all of our technical work is to handle the
case when d ≤ k < 2d. We proved that the problem is NP-hard when k = d + ℓ−1

ℓ+3 · d for any
integer ℓ ≥ 1 such that k is an integer (in particular, ℓ = 1). This implies that the problem
is hard for various values of k − d in the set {0, 1, . . . , d − 1}. We were able to prove that if
(k − d) is a constant then the problem is FPT when parameterized by k + d. However, if no
such a condition is imposed, then the problem is W[1]-hard. More precisely, we presented an
algorithm with running time 2d · nk−d+O(1) and proved that the problem is W[1]-hard when
parameterized by k + d in the case where k − d = d

3 (see the proof of Theorem 2).
We believe that it should be possible to prove that the problem is NP-hard for every

value of k − d in the set {0, 1, . . . , d − 1}. Such a reduction has the potential to sharpen
the distinction between FPT and W[1]-hard cases as k − d varies in this range. It might
also simplify the analysis of our XP algorithm or lead to a simpler algorithm. It would be
interesting to analyze the parameterized complexity of the problem with respect to structural
parameters like the vertex cover number or the treewidth of the input graph. Note that the
problem is trivially FPT when parameterized by the vertex cover number. Finally, it is worth
mentioning that we did not focus on optimizing the degree of the polynomial term nO(1) in
our XP algorithm, although it is reasonably small.
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1 Introduction

While propositional modal logic (ML) has had extensive applications in system verification
and artificial intelligence, and first-order logic (FOL) in finite model theory and database
theory, first-order modal logic (FOML) has been studied much less, as it seems to combine
the worst of both computationally, leading to undecidability. FOML is a natural specification
language for state transition systems where states are given by first-order descriptions of
computational domains, with applicability in the realm of database updates, in the control
of infinite-state systems, networks with unbounded parallelism and cryptographic protocols.
This motivates the study of decidable fragments of FOML.
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70:2 Generalized Bundled Fragments for FOML

This is a challenge, since even the two-variable fragment of FOML with one unary
predicate is undecidable over almost all useful model classes [15]. This situation is to be
contrasted against the robust decidability of propositional modal logics ([16, 1, 7]), and the
many decidable fragments of first-order logic ([4]).

Despite such discouragement, there have been a few successful attempts: for instance, the
monodic restriction, mandating only one free variable in the scope of any modal subformula,
yields decidability when combined with a decidable fragment of FOL ([8, 19]). This idea,
arising originally from description logics (cf. [9]) has led to applications in temporal and
epistemic logics ([6], [10], [2, 3]).

Rather than placing a restriction on variables, or on quantification scope as in the case of
guarded fragments [1], Wang ([17]) suggested a fragment in which the existential quantifier
and the box modality were always bundled together to appear as a single quantifier-modality
pair (∃x□). The resulting fragment of FOML enjoys many attractive properties: finite
tree model property, PSpace decision procedure and a simple axiom system, without any
restriction on predicates or the occurrences of variables. The new operator ∃x□ captures
the logical structure of various knowing-wh expressions such as knowing what, knowing how,
knowing why, and so on (cf. [18]), e.g., knowing how to achieve φ can be rendered as there is
a plan x such that the agent knows that x can be executed and will guarantee φ.

In [14], we took the next step by considering not only the combination ∃x□ but also its
companion ∀x□: the logic with both of these combinations continued to be decidable (over
increasing domain models). Such modal-quantifier combinations were thus called bundled
fragments of FOML. Over models where the domain remains the same in all states, the
fragment with both ∃x□ and ∀x□ is undecidable, while the ∃x□-fragment is still decidable.

Clearly, we can define more bundles such as □∀x, □∃x, etc., and indeed further combina-
tions such as ∀x∀y□, and combinations thereof. These (generalized) bundled fragments offer
us many interesting possibilities for system specification:

¬∃x□ (x < c): No element is guaranteed to be bounded by constant c (after update).

∃x□ □∃y (x > y): There is an element that dominates some element after every update.

□∃x □∀y (x ≤ y): All updates admit a local minimum.

∃x□ (∃y□ (x > y)∧∃y□ (x < y)): There is an element that dominates another no matter
the update and is dominated by another no matter the update.

Computationally this raises the natural question of what is the most general bundled fragment
that is decidable. This is the project taken up in this paper. We consider all possible
combinations of the bundled formulas and classify their decidability status. The classification
is described in Table 1. We provide a trichotomy: decidable fragments, undecidable fragments
and fragments that do not have a finite model property (but where decidability is open).

Towards proving the trichotomy, we first define the notion of loosely bundled fragment
which subsumes many decidable bundled fragments of FOML and prove its decidability via a
tableau method. We also prove the decidability of another combination of bundled operators
where we allow only formulas of the form ∀x□ + □∀x + □∃x (but is not included in the
loosely bundled fragment). This requires us to introduce a new proof technique that helps us
switch quantifiers in a specific context.

Due to space restrictions, we present only the main ideas and proof techniques of the
decidable fragments over increasing domain models in the paper. The proof details, as well
as undecidability and lack of finite model property for the other fragments can be found in
the detailed technical report in the arXiv [13].
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Table 1 Satisfiability problem classification for combinations of bundled fragments over increasing
domain models. A “∗” means no matter the corresponding bundle is included or not.

∀□ ∃□ □∀ □∃ Decidability

✓ ✗ ✗ ✗

✗ ✓ ✗ ✗

✗ ✗ ✓ ✗ Subsumed by the
✗ ✗ ✗ ✓ Loosely Bundled Fragment
✓ ✓ ✗ ✗

✗ ✗ ✓ ✓

* ✓ ✓ * Undecidable
✗ ✓ ✗ ✓ No Finite Model Property
✓ ✓ ✗ ✓ Undecidable
✓ ✗ ✓ ✓ ExpSpace

Loosely Bundled Fragment ExpSpace

2 Syntax and Semantics

The syntax of first-order modal logic is given by extending the first-order logic with modal
operators. Note that we exclude equality, constants and function symbols from the syntax.

▶ Definition 1 (FOML syntax). Given a countable set of predicates P and a countable set of
variables Var, the syntax of FOML is given by:

α ::= P (x1, . . . , xn) | ¬α | α ∧ α | ∃xα | □α

where P ∈ P has arity n and x, x1, . . . , xn ∈ Var.

The boolean connectives ∨,→, ↔, and the modal operator ♢ which is the dual of □, and
the quantifier ∀ are all defined in the standard way. The notion of free variables, denoted by
FV(α) is similar to what we have for first-order logic with FV(□α) = FV(α). We write α(x)
to mean that x occurs as a free variable of α. Also, α[y/x] denotes the formula obtained
from α by replacing every free occurrence of x by y.

▶ Definition 2 (FOML structure). An increasing domain model for FOML is a tuple M =
(W,D, δ,R, ρ) where W is a non-empty countable set called worlds;1 D is a non-empty
countable set called domain; R ⊆ (W ×W) is the accessibility relation. The map δ : W 7→ 2D

assigns to each w ∈ W a non-empty local domain set such that whenever (w, v) ∈ R we
have δ(w) ⊆ δ(v) and ρ : (W × P) 7→

⋃
n

2Dn is the valuation function, which specifies the

interpretation of predicates at every world over the local domain with appropriate arity. The
model M is said to be a constant domain model if for all w ∈ W we have δ(w) = D.

The monotonicity condition requiring δ(w) ⊆ δ(v) for (w, v) ∈ R is required for evaluating
the free variables present in the formula [11]. Because of this, the models are called increasing
domain models.

For a given model M we denote WM,RM etc to indicate the corresponding components.
We simply use W,R, δ etc when M is clear from the context.

1 Note that FOML can be translated into two-sorted FOL, and due to the Löwenheim–Skolem theorem
for countable languages, every model has an equivalent countable model, cf. [5].
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To evaluate formulas, we need an assignment function for variables. For a given model
M, an assignment function σ : Var 7→ D is relevant at w ∈ W if σ(x) ∈ δ(w) for all x ∈ Var.

▶ Definition 3 (FOML semantics). Given an FOML model M = (W,D, δ,R, ρ) and w ∈ W,
and σ relevant at w, for all FOML formulas α define M, w, σ |= α inductively as follows:

M, w, σ |= P (x1, . . . , xn) ⇔ (σ(x1), . . . , σ(xn)) ∈ ρ(w,P )
M, w, σ |= ¬α ⇔ M, w, σ ̸|= α

M, w, σ |= α ∧ β ⇔ M, w, σ |= α and M, w, σ |= β

M, w, σ |= ∃xα ⇔ there is some d ∈ δ(w) such that M, w, σ[x7→d] |= α

M, w, σ |= □α ⇔ for every u ∈ W if (w, u) ∈ R then M, u, σ |= α

We sometimes write M, w |= α(a) to mean M, w, [x 7→ a] |= α(x).
A formula α is satisfiable if there is some FOML structure M and w ∈ W and some

assignment σ relevant at w such that M, w, σ |= α. In the sequel, we will only talk about
the relevant σ for a given pointed model. Also, while evaluating α, it is enough to consider σ
to be a partial function that gives an interpretation for the free variables of α. A formula α
is valid if ¬α is not satisfiable.

2.1 Bundled fragments
The motivation for “bundling” is to restrict the occurrences of quantifiers using modalities.
For instance, allowing only formulas of the form ∀x□α is one such bundling. We could also
have ♢∃yα. Thus, there are many ways to “bundle” the quantifiers and modalities. We call
these the “bundled operators/modalities”. The following syntax defines all possible bundled
operators of one quantifier and one modality:

▶ Definition 4 (Bundled-FOML syntax). The bundled fragment of FOML is the set of all
formulas constructed by the following syntax:

α ::= P (x1, . . . , xn) | ¬α | α ∧ α | □α | ∃x□α | ∀x□α | □∃xα | □∀xα

where P ∈ P has arity n and x, x1, . . . , xn ∈ Var.

Note that the duals of the bundled operators give us the formulas of the form ∀x♢α, ∃x♢α,
♢∀xα, ♢∃xα. Also, note that □α can be defined using any one of the bundled operators
where the quantifier is applied to a variable that does not occur in α. However, we retain
□α in the syntax for technical convenience.

The following constant domain models may help to get familiar with bundles.

w1 //
))
v1 : Pa w2 //

))

v2 : Pc w3 // v3 : Pc

u1 : Pb u2

M1 M2 M3

Let DM1 = {a, b}, DM2 = DM3 = {c}. □∃xPx holds at w1 and w3 but not at w2; ∃x□Px
holds only at w3; ¬∀x□Px holds at w1 and w2; ¬□∀x¬Px holds at all the wi.

We denote ∀□-fragment to be the language that allows only atomic formulas, negation,
conjunction, □α and ∀x□α (dually ∃x♢α) formulas, similarly for ∃□-fragment and so on. In
general, these fragments are not equally expressive, e.g., as shown by [17], the ∃□-fragment
cannot express □∃, ∀□ and □∀ bundles over models with increasing (or constant) domains.

In [14, 12] we proved that the ∀□+∃□ and □∀+□∃ fragments are decidable over increasing
domain models, while ∀□-fragment and □∀-fragment are undecidable over constant domain
models. Since simple bundles become undecidable over constant domain models, in this
paper we focus on generalized bundles over increasing domain models.
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Note that we can have more general bundled operators of the form ∀x∀y□α etc. This
naturally raises the question of what is the most general fragment of this form that is
decidable. Towards this, we define a general fragment that subsumes all known decidable
bundled fragments so far.

2.2 The Loosely Bundled Fragment
Note that a bundled formula of the form ∃x□α imposes a restriction that there is exactly
one modal formula in the scope of ∃x. But this is a strong requirement. We weaken this
condition to allow formulas of the form ∃xβ where β is a boolean combination of atomic
formulas and modal formulas. Moreover, we can allow a quantifier alternation of the form
∃x1 · · · ∃xn ∀y1 · · · ∀ym β. As we will see, the fact that the existential quantifiers are outside
the scope of universal quantifiers can help us to obtain decidability results over increasing
domain models.

▶ Definition 5 (LBF syntax). The loosely bundled fragment of FOML is the set of all formulas
constructed by the following syntax:

ψ ::=P (z1, . . . zn) | ¬P (z1, . . . zn) | ψ ∧ ψ | ψ ∨ ψ | □α | ♢α
α ::=ψ | α ∧ α | α ∨ α | ∃x1 . . . ∃xk∀y1 . . . ∀yl ψ

where k, l, n ≥ 0 and P ∈ P has arity n and x1, . . . xk, y1, . . . yl, z1, . . . , zn ∈ Var.

Let LBF be the set of all formulas that can be obtained from the grammar of α above.
Note that the syntax does not allow a quantifier alternation of the form ∀x∃y α. Also, inside
the scope of quantifier prefix ∃∗∀∗, we can only have boolean combinations of atomic and
modal formulas. The ∃∗∀∗ fragment in FO, (Bernays-Schönfinkel-Ramsey class) has a similar
quantifier prefix structure but is different in spirit since there is no modality.

The loosely bundled fragment subsumes some of the combinations of bundled fragments.
Hence proving the decidability for LBF implies the decidability for these combinations as well.

▶ Proposition 6. The fragments ∀□ + ∃□ and □∀ + □∃ are subfragments of LBF.

Note that many combinations of bundled operators (for instance □∀ + ∃□) do not form a
subfragment of LBF.

3 Tableau Procedure

Note that the formulas of LBF are in negation normal form (where ¬ appears only in front of
atomic formulas). We first define some useful terms and notations.

▶ Definition 7. For any FOML formula φ:
φ is a literal if φ is of the form P (x1, . . . xn) or of the form ¬P (x1, . . . xn)
φ is a module if φ is a literal or φ is of the form ∆α where ∆ ∈ {□,♢}
The component of φ is defined inductively as follows:

If φ is a module then C(φ) = {φ}
If φ is of the form φ1 ∧ φ2 or φ1 ∨ φ2 then
C(φ) = C(φ1) ∪ C(φ2)
If φ is of the form ∀x φ1 or ∃x φ1 then
C(φ) = {φ} ∪ C(φ1)

A formula φ is called Existential-safe if every ψ ∈ C(φ) is a module or of the form ∀x ψ′.
A finite set of formulas Γ is Existential-safe if every φ ∈ Γ is Existential-safe.
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70:6 Generalized Bundled Fragments for FOML

Intuitively, C(φ) is the set of all subformulas of φ that are “to be evaluated” at the current
world. An Existential-safe formula φ does not need any witness from the current local domain
in order to make the formula true. The notions of components and existential-safeness will
play a role in the tableau-based decision procedure to be introduced below.

Before going into the specific tableau rules, we first explain the general method. A tableau
is a tree-like structure generated from a single formula α by repeatedly applying a few rules
with some auxiliary information as the root of the tree. Intuitively, a tableau for α is a
pseudo model which can be transformed into a real model of α under some simple consistency
conditions. We can then decide the satisfiability of a formula by trying to find a proper
tableau. As in [17], a tableau T in our setting is a tree structure such that each node is a
triple (w,Γ, σ) where w is a symbol or a finite sequence of symbols intended as the name of a
possible world in the real model, Γ is a finite set of FOML-formulas, and σ is an assignment
function for variables. Since we intend to use the set of variables as the domain in the
tableau-induced real model, σ is simply a partial identity function on Var, i.e., σ(x) = x for
all x ∈ Dom(σ) ⊆ Var, where the domain of σ, Dom(σ), is intended to be the local domain
of the real model. The intended meaning of the node (w,Γ, σ) is that all the formulas in Γ
are satisfied on w with the assignment σ, thus we also write (w : Γ, σ) for the triple.

A tableau rule specifies how the node in the premise of the rule is transformed to or
connected with one or more new nodes given by the conclusion of the rule. Applying the rules
can generate a tree-like structure, a tableau, which is saturated if every leaf node contains
only literals. For any formula α, we refer to a saturated tableau of α simply as a tableau of
α. Further, a saturated tableau is open if in every node (w : Γ, σ) of the tableau, Γ does not
contain both β and ¬β for any formula β.2

We call a formula clean if no variable occurs both bound and free in it and every use
of a quantifier quantifies a distinct variable. A finite set of formulas Γ is clean if

∧
Γ, the

conjunction of all formulas in Γ, is clean. Note that every FOML-formula can be rewritten into
an equivalent clean formula. For instance, the formulas ∃x□Px∨∀x♢Qx and Px∧□∃xQx are
not clean, whereas ∃x□Px∨ ∀y♢Qy and Px∧□∃yQy are their clean equivalents respectively.
Clean formulas help in handling the witnesses for existential formulas in the tableau in a
syntactic way.

Consider a finite set of formulas Γ that is clean. Suppose we want to expand Γ to
Γ ∪ {α1, . . . αk}, then even if each of αi is clean, it is possible that a bound variable of αi also
occurs in some φ ∈ Γ or another αj . To avoid this, first, we rewrite the bound variables in
each αi one by one by using the fresh variables that do not occur in Γ and other previously
rewritten αj .

Such a rewriting can be fixed by always using the first fresh variable in a fixed enumeration
of all the variables. When Γ and {α1, . . . αk} are clear from the context, we denote α∗

i to
be such a fixed rewriting of αi into a clean formula. It is not hard to see that the resulting
finite set Γ ∪ {α∗

1, . . . α
∗
k} is clean.

3.1 Tableaux for LBF

The tableau rules for the LBF fragment are described in Fig. 1. The (∧) and (∨) rules are
standard, where we make a non-deterministic choice of one of the branches for (∨). The
rule (END) says that if we are left with only modules and there are no ♢ formulas, then
the branch does not need to be explored further. The (♢) rule creates one successor world
for every ♢ formula at the current node and includes all the □ formulas that need to be

2 Refer [17] for an illustration of a similar tableau construction.
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w : φ1 ∨ φ2,Γ, σ
w : φ1,Γ, σ || w : φ2,Γ, σ

(∨) w : φ1 ∧ φ2,Γ, σ
w : φ1, φ2,Γ, σ

(∧) w : ∃xφ, Γ, σ
w : φ, Γ, σ′ (∃)

where σ′ = σ ∪ {(x, x)}

w : ∀yφ, Γ, σ
w : {φ∗[z/y] | z ∈ Dom(σ)}, Γ, σ (∀)

where Γ is Existential-safe and every φ∗[z/y] is a clean rewriting of φ[z/y]
with respect to Γ ∪ {φ[z/y] | z ∈ Dom(σ)}

Given n ≥ 1: and m, s ≥ 0 Given m ≥ 1, s ≥ 0:

w : ♢φ1, . . . ,♢φn

□β1, . . .□βm
l1, · · · , ls, σ

⟨wvi : φi, {βj | j ∈ [1,m]}, σ⟩ for all i ∈ [1, n] (♢) w : □β1, . . .□βm, l1, . . . , ls, σ

w : l1, · · · , ls, σ
(END)

Figure 1 Tableau rules for LBF, here every li is a literal.

satisfied along with the ♢ formula and σ is inherited in the successor worlds to preserve the
increasing domain property. The (∃) rule picks x itself as the witness to satisfy ∃xφ and (∀)
rule expands the set of formulas to include a clean version of φ[z/y] for every variable z in
the current local domain.

Note that only the (♢) rule can change (the name of) the possible world, thus creating a
new successor. It simply extends the name w by new symbols vi for each successor. Therefore
there can be many nodes in the tableau sharing the same world name but such nodes form a
path. Given w we use tw to denote the last node sharing the first component w. Given a
node t = (w : Γ, σ) in a tableau, we use Dom(t) to denote the domain of σ.

Also, there is an implicit ordering on how the rules are applied: (♢) rule can be applied
at a node (w,Γ, σ) only if all formulas of Γ are modules and hence may be applied only
after the (∧,∨, ∀, ∃) rules have been applied as many times as necessary at w. Similarly (∀)
rule can be applied only when Γ is Existential-safe which means that the (∃) rule cannot be
applied anymore at the current node.

▶ Proposition 8. For every tableau T and every node v = (w,Γ, σ) in T , if v is a leaf then
either Γ contains only literals or there is some rule that can be applied at v.

The proposition is true since the LBF ensures that if Γ is not Existential-safe and the
(∧,∨,♢, END) rules cannot be applied, then it has to be the case that there is some ∃xφ ∈ Γ,
for which we can apply the (∃) rule.

▶ Theorem 9. For any clean LBF formula θ, let σr be an identity mapping over FV(θ) ∪ {z}
where z does not occur in θ. There is an open tableau T with root (r : {θ}, σr) iff θ is
satisfiable in an increasing domain model.

Proof. First, we claim that the rules preserve the cleanliness of the formulas. To see this,
we verify that for every rule, if Γ in the antecedent of the rule is clean, then the Γ′ obtained
after the application of the rules is also clean. This is obvious for (∧), (∨), (♢) and (END)
rules. The (∃) rule preserves cleanliness because it frees variable x which is not bound by
any other quantifier in the antecedent. The (∀) rule preserves cleanliness by rewriting.

MFCS 2022



70:8 Generalized Bundled Fragments for FOML

(⇒): Let T be an open tableau rooted at (r : {θ}, σr). Define a model M = (W,D, δ,R, ρ)
as follows:

W = {w | (w : Γ, σ) is a node in T}
D = Var
R = {(w, v) | v is of the form wv′ for some v′}
For every w ∈ W , define δ(w) = Dom(tw) where tw is the last node of w in T

For every w ∈ W and p ∈ P , define ρ(w,P ) = {x | Px ∈ Γ where tw = (w,Γ, σ)}

Clearly, M is an increasing domain model, and since z ∈ Dom(σr), there is no empty
local domain. As T is an open tableau, ρ is well-defined.

Claim. For every node (w : Γ, σ) in T and for every LBF formula φ, if φ ∈ Γ then
M, w, σ |= φ.

The claim is proved using a standard argument by induction on the height of the nodes
of T from the leaves to the root (details in [13]). Thus, from the claim it follows that
M, r, σr |= θ since the label of the root of T is (r : {θ}, σr).

(⇐) From Proposition 8 it follows that we can always apply some rule until every leaf
node (w : Γ, σ) is such that Γ contains only literals. Thus every (partial) tableau can be
extended to a saturated tableau. To prove that such a tableau is open, it suffices to show
that all rules preserve satisfiability (details in [13]). ◀

Note that the depth of the tableau is linear in the size of the formula. However, as we
have to rewrite formulas using new variables when applying (∀) rule, the size of the domain
is exponential in the size of the formula. Hence, the tableau procedure can be implemented
in ExpSpace.

▶ Corollary 10. LBF is decidable in ExpSpace.

4 The (Un)decidability Border

Note that the fragment LBF cannot express formulas of the form ∀x∃y□ α and also
∀x□∀y□∀zα. There are many combinations of the bundled fragments that can express
thesse formulas (like ∃□ + □∀ and ∀□ + ∃□ + □∃ fragments). In fact, we can prove that
a bundled fragment is undecidable if we can assert both ∀x∃y□α and ∀x□∀y□∀z α in the
fragment.

To prove this, we can use tiling encoding where ∀x∃y□α can be used to assert that every
“grid point” x has a horizontal/vertical successor y. In this case, it is important that both
quantifiers are applicable over the same local domain and □α in ∀x∃y□α ensures that the
witness y acts uniformly across all the descendants. The second formula ∀x□∀y□∀z α is
used to verify the “diagonal property” of the grid. In the companion technical report of this
paper [13] we prove these results formally.

Also, note that there are fragments like ∃□ + □∃ where ∀x∃y□α is expressible but not
∀x□∀y□∀z α. In these cases, we can prove that such fragments do not have a finite model
property. This is also proved in the companion technical report [13] where we show that this
fragment gives a formula that can induce a linear order on the local domain of some world in
the model and assert that this linear order does not have a maximal element.

This leaves us with the fragments that cannot express ∀x∃y□α formulas and LBF is one
such fragment which we proved to be decidable. The fragments ∀□ + ∃□ and □∀ + □∃ also
fall in this category and since they are subfragments of LBF, decidability follows. So we only
need to consider the fragment ∀□ + ∃□ + □∀ to complete the terrain (cf. Table. 1).
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5 The ∀□ + □∀ + □∃ Fragment

In this fragment, we are allowed to express ∀x□α, □∀xα and □∃xα and their duals. Note
that this fragment is not closed under subformulas. For instance, φ := ∀x

(
∃y♢α ∨ ∀z□β

)
is a subformula of φ′ := ♢∀x

(
∃y♢α ∨ ∀z□β

)
. But φ′ is in the fragment and φ is not in

the fragment. We say that φ is a subformula of ∀□ + □∀ + □∃ if there is some formula
φ′ ∈ ∀□ + □∀ + □∃ such that φ is a subformula of φ′.

Note that even though we cannot express formulas of the form ∀x∃y□φ in the fragment,
∀x∃y♢φ is still allowed. For instance, the formula ♢∀x

(
∃y♢α

)
is in the fragment. Thus, we

can have ∀x∃y♢φ but not ∀x∃y□φ. Intuitively this means that the different witnesses y for
each x can work on different successor worlds. The fragment cannot enforce the interaction
between x and y at all successors. This property can be used to prove that we can reuse the
witnesses by creating new successor subtrees as required.

To get the decidability for ∀□ + □∀ + □∃ fragment, the main idea is to prove that the
formulas of the form ∀x∃y♢φ can be satisfied by picking some boundedly many witnesses
y that will work for all x. This is the same as proving that if ∀x∃y♢φ is satisfiable then
∃y1, . . . ∃yl∀x

( ∨
♢φ[y/yi]

)
is satisfiable (where l is bounded). We illustrate the proof idea

with an example.

▶ Example 11. Consider the formula α := ∀x
(
□¬Pxx ∧ ∃y♢Pxy

)
which is a subformula

of the fragment. Let T , r |= α where T is a tree model rooted at r. Now we will modify T
to obtain M which is also a tree model rooted at r such that M, r |= ∃y1∃y2∀x

(
□¬Pxx ∧(

♢Pxy1 ∨ ♢Pxy2
))

.
The model M is obtained by extending T in the following way. Let δT (r) = Dr. To

obtain M, first we extend the local domain of r by adding a fresh element a. The idea is
that for every d ∈ Dr (when assigned to x) we will ensure that the new element a can be
picked as the y-witness. To achieve this, we do the following: For every d ∈ Dr let d′ ∈ Dr

and (r, sd) ∈ RT such that T , sd |= Pdd′. Let T d be the subtree of T rooted at sd. We will
create a new copy of T d and call its root ud. Now, in the new subtree rooted at ud, we make
the new element a “behave” like d′ and we add an edge from r to ud. So, in particular, M
will have (r, ud) ∈ RM such that M, ud |= Pda. Since we do this construction for every
d ∈ Dr we obtain that for all d ∈ Dr we have M, r |= ♢Pda.

Now note that while evaluating α at (M, r) the ∀x quantification will now also apply
to a (since a is added to the local domain at r in M). But then, we cannot use a itself as
the witness for a since we also need to ensure that M, r |= ∀x□¬Pxx. Hence we will add
another element b that acts as a witness for a. Further, b also needs a witness. But now we
can choose a to be the witness for b since that does not violate the formula ∀x□¬Pxx.

So to complete the construction, we pick some arbitrary d ∈ Dr for which we have some
d′ ∈ Dr and (r, sd) ∈ RT such that T , sd |= Pdd′. We create two copies of T d (subtree
rooted at sd) and call their roots as vd and wd respectively. In the subtree rooted at vd

we ensure that a and b “behave” like d, d′ respectively and in the subtree rooted at wd we
ensure that a and b “behave” like d′, d respectively. In particular, we have M, vd |= Pab and
M, wd |= Pba. Finally we add edges from r to vd and from r to wd in M.

Thus, we have: δM(r) = δT (r) ∪ {a, b} and M, r |= ∃y1∃y2∀x
(
□¬Pxx ∧

(
♢Pxy1 ∨

♢Pxy2
))

. With the above construction, this assertion can be verified by assigning y1 and
y2 to a and b respectively.
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Note that in principle, it is possible for an ∃ quantified formula to occur in the scope
of a ∀ quantifier as a boolean combination with other ∃ quantified formulas and modules.
Moreover, these additional formulas can assert some “type” information that may force us to
pick additional witnesses. For example, if the formula is

∀x
[(

□(¬Pxx∧Rx)∨□(¬Pxx∧¬Rx)
)

∧∃y♢
(
Rx → (Pxy∧¬Ry) ∧ ¬Rx → (Pxy∧Ry)

)]
then we need two initial y-witnesses a1, a2 where one is used for witness whose “type” is
□(¬Pyy ∧ Ry) and other for witness whose “type” is □(¬Pyy ∧ ¬Ry) and we also need
the corresponding additional witnesses b1, b2. In general, the formula can force us to pick
witnesses of a particular “1-type” which means we might need exponentially many witnesses.

Thus, we need to replace one ∃ inside the scope of ∀ by 2l many ∃ quantifiers outside the
scope of ∀ where l is bounded exponentially in the size of the given formulas. We now prove
this formally.

For any formula φ if α ∈ C(φ) we denote this by φ[α]. This means that α does not occur
inside the scope of any modality in φ. Further, for every α ∈ C(φ) and a formula β, we
denote φ[β/α] obtained by rewriting φ where every occurrence of α in φ is replaced by β.
In particular, we are interested in the case where α is of the form ∃y♢ψ. Thus we always
consider φ[∃y♢ψ].

For every l ≥ 0 if y = y1, y
′
1 . . . yl, y

′
l are fresh variables, we denote y♢ψ to be the formula∨

i≤l

(
♢ψ[yi/y] ∨ ♢ψ[y′

i/y]
)

which is a big disjunction where each disjunct replaces y in ψ with

one of yi or y′
i. Further, we denote φ[y♢ψ/∃y♢ψ] as simply φ[y♢ψ].

For instance, for the formula φ :=
(
Px ∨ ∃y♢Qxy

)
where ψ := ∃y♢Qxy, for l = 2

and y = y1, y
′
1, y2, y

′
2 being fresh variables, φ[y♢ψ] is given by:

(
Px ∨

(
♢Qxy1 ∨ ♢Qxy′

1 ∨

♢Qxy2 ∨ ♢Qxy′
2
))

.
The size of a formula, denoted by |φ|, is the number of symbols occurring in φ and for a

finite set of formulas Γ, let |Γ| =
∑

φ∈Γ
|φ|.

▶ Lemma 12. Let Γ′ be a clean finite set of formulas such that every α ∈ Γ is a subformula
of ∀□ + □∀ + □∃ where Γ′ = Γ ∪ {∀xφ[∃y♢ψ]}. If

∧
Γ ∧ ∀xφ[∃y♢ψ] is satisfiable then

there exists l ≤ 2|Γ′| such that
∧

Γ ∧ ∃y1∃y′
1∃y2∃y′

2 . . . ∃yl∃y′
l ∀x φ[y♢ψ] is satisfiable, where

y = y1, y
′
1, . . . yl, y

′
l are fresh variables.

Note that the ∃y quantifier is pulled outside the scope of the ∀x quantifier and replaced
with a bounded number of witnesses y1, y

′
1, y

′
2, y

′
2 . . . yl, y

′
l. Consequently ♢ ψ is replaced with

a disjunction each replacing y with one of yi or y′
i for every i ≤ l.

To prove the lemma first we formally define the tree editing operation described in the
example. Given a tree model T rooted at r, let d ̸∈ DT . To add the new domain element d
to a local domain of r, we also need to specify the “type” of the new element d at r and its
descendants. Towards this, we pick some domain element c that is already present in δ(r)
and assign the type of d to the type of c at every world.

▶ Definition 13. Given a tree model T = (W,D,R, δ, ρ) rooted at r, let d ̸∈ D and c ∈ δ(r).
Define the operation of “adding d to δ(r) by mimicking c”, denoted by Td7→c = (W,D′,R, δ′, ρ′)
where:

D′ = D ∪ {d}
for all w ∈ W we have δ′(w) = δ(w) ∪ {d}
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For every w ∈ W and predicate P define
ρ′(w,P ) = {e′ | there is some e ∈ ρ(w,P ) and e′ is obtained from e by replacing zero or
more occurrences of c in e by d}.

Suppose that we want to extend the domain with d = d1 · · · dn which are fresh. Let
ω : d 7→ D′ where D′ ⊆ δT (r) and we want each di to mimic ω(di). Then we denote Tω to be
the tree obtained by

((
Td1 7→ω(d1)

)
d2 7→ω(d2)...

)
dn 7→ω(dn)

.

▶ Proposition 14. Let T = (W,D,R, δ, ρ) be a tree model rooted at r with Td7→c being an
extended tree where d ̸∈ D and c ∈ δ(r). Then for all interpretations σ and for all FOML
formulas φ and for all w ∈ W we have:
T , w, σ[x7→c] |= φ iff Td7→c, w, σ[x7→c] |= φ iff Td7→c, w, σ[x7→d] |= φ.

The proposition holds since there is no equality in the syntax and at every world in the
extended model, the new element d “behaves” like c and the old elements “behave” like
themselves (details in [13]). Now we are ready to prove Lemma 12.

Proof of Lemma 12. Let T be a tree model rooted at r such that T , r, σ |=
∧

Γ∧∀xφ[∃y♢ψ].
For every domain element a ∈ δT (r) define:

Π(r, a) =
⋃

∀x′α∈Γ′

{λ | λ ∈ C(α) and T, r, σ[x′ 7→a] |= λ}

Note that Π(r, a) formalizes the notion of “type” of a at the world r. This includes
the information of all subformulas that are true at the current world, when a universal
variable is instantiated with a. Also, since the size of |C(α)| is at most the size of Γ′,
the set Π(r) = {Π(r, a) | a ∈ δT (r)} has size |Π(r)| = l where l ≤ 2|Γ′|. Enumerate
Π(r) = {Λ1, . . .Λl} and for every i ≤ l pick ai ∈ δT (r) such that Π(r, ai) = Λi. Now let
d = d1, d

′
1, d2, d

′
2, . . . dl, d

′
l be fresh domain elements and let ω : d 7→ {a1, a2, . . . al} where for

all i ≤ l we have ω(di) = ω(d′
i) = ai. We define the required model M = (W ′,D′,R′, δ′, ρ′)

as follows:
Let M0 = Tω be the new tree model rooted at r obtained by adding d1, d

′
1, . . . , dl, d

′
l to

δT (r) where each di and d′
i mimics ai. Now M is obtained by extending M0 as follows:

For every c ∈ δ(r) such that T , r, [x 7→ c] |= ∃y♢ψ we pick c′ ∈ δT (r) and r → sc be such
that T , sc, [xy 7→ cc′] |= ψ. Let T c be the sub-tree of T rooted at sc and Π(r, c′) = Λj .
Create a new subtree T c

0 = T c
ω′ where for all h ̸= j we have ω′(dh) = ω′(d′

h) = ah and
ω′(dj) = ω′(d′

j) = c′. Let uc be the root of T c
0 . Add an edge from r to uc in M.

Further, for every i ≤ l if T , r, σ[x7→ai] |= ∃y♢ψ then let b ∈ δT (r) and r → si ∈ RT be such
that T , si, σ[xy 7→aib] |= ψ. Let Π(r, b) = Λj . Then create T i

1 = T i
ω1

and T i
2 = T i

ω2
where ω1

and ω2 are defined as follows:
For all h ̸= j, ω1(dh) = ω1(d′

h) = ω2(dh) = ω2(d′
h) = ah

ω1(dj) = aj and ω1(d′
j) = b

ω2(dj) = b and ω2(d′
j) = aj

Let vi and wi be the root of T i
1 and T i

2 respectively. Add the edges from r to vi and from r

to wi in M. The two copies of subtrees are intended to provide witnesses for ∃y♢ψ for dj

and d′
j respectively. We need the two copies to ensure that ω1 and ω2 are well defined in the

case when i = j and aj ̸= b.

We now explain the idea behind the construction. Note that T c
0 rooted at uc is created

for every c ∈ δT (r) such that T , r, σ[x7→c] |= ∃y♢ψ. If c′ is the picked witness for c with
(r, sc) ∈ RT such that T , sc, σ[xy 7→cc′] |= ψ and Π(r, c′) = Λj then by construction, T c

0 is
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rooted uc where dj mimics c′ in the subtree rooted at uc. All these together indicate that we
can use dj and the subtree rooted at uc in M to verify that M, uc, σ[xy 7→cdj ] |= ψ. Also note
that for all h ̸= j the fresh elements dh and d′

h mimic ah in the subtree T c
0 (i.e, we have not

added any extra “types”).
Further, we want the type of di and d′

i at r in M to mimic the type of ai at r in T . All
type information is taken care of in M0 where both di and d′

i mimic ai except the formula
∃y♢ψ. So if T , r, σ[x7→ai] |= ∃y♢ψ then we need a witness to verify M, r, σ[x7→di] |= ∃y♢ψ
and M, r, σ[x7→d′

i
] |= ∃y♢ψ. If the witness for y for ai is b and Π(r, b) = Λj then we want d′

j

to be the witness for di and dj to be the witness for d′
i.

Consequently if si is the world such that a → si ∈ RT and T , si, [xy 7→ aib] |= ψ then we
create two new copies of subtree T i rooted at si and call it T i

1 and T i
2 . By construction, in

particular, the new element di mimics ai and d′
j mimics b in T i

1 . Similarly d′
i mimics ai and

dj mimics b in T i
2 . Thus, we can pick d′

j to be the witness for di (and consider T i
1 ) and pick

dj to be the witness for d′
i (and consider T i

2 ).
Also, it is important to note that for every r → v ∈ RM , if di mimics c and d′

i mimics c′

at v then we will always have Π(r, c) = Π(r, c′) = Λi = Π(r, ai). Now it can be verified that
M, r, σ |=

∧
Γ ∧ ∃y1∃y′

1 . . . ∃yl∃y′
l ∀xφ[y♢ψ].

The details are provided in [13]. ◀

▶ Corollary 15. Let Γ′ be a clean finite set of formulas such that every α ∈ Γ is a subformula
of ∀□ + □∀ + □∃ where Γ′ = Γ ∪ {∀xφ[∃y♢ψ]}. If

∧
Γ ∧ ∀xφ[∃y♢ψ] is satisfiable then∧

Γ ∧ ∃y1∃y′
1∃y2∃y′

2 . . . ∃yl∃y′
l ∀x φ[y♢ψ] is satisfiable, where l = 2|Γ′| and y = y1, y

′
1, . . . yl, y

′
l

are fresh variables.

To see why the corollary is true, by Lemma 12 we get some l ≤ 2|Γ′|, and we can pad
sufficiently many dummy variables to get a strict equality. This gives us a useful tableau
rule which we call (∀∃♢) rule for ∀□ + □∀ + □∃ fragment, described in Fig. 2. The full
tableau rules for ∀□ + □∀ + □∃ is given by the tableau rules of LBF (Fig. 1) along with the
(∀∃♢)-rule.

w : ∀x φ[∃y♢ψ], Γ, σ
w : ∀x φ[y♢ψ], Γ, σ′ (∀∃♢)

where l = 2|Γ|+|φ| and y = y1, y
′
1, . . . yl, y

′
l

are fresh variables and σ′ = σ ∪ {(yi, yi) , (y′
i, y

′
i) | i ≤ l}

Figure 2 (The ∀∃♢) rule for ∀□ + □∀ + □∃ fragment.

▶ Theorem 16. For any clean ∀□ + □∀ + □∃ formula θ, let σr be an identity mapping over
FV(θ) ∪ {z} where z does not occur in θ. There is an open tableau with (r : {θ}, σr) as the
root iff θ is satisfiable in an increasing domain model.

The proof follows along the lines of Theorem 9. The only interesting part of the proof is
to show that the (∀∃♢) rule preserves satisfiability and this is by Lemma 12(details in [13]).

Note that at if we start with a formula of length n then the application of (∀∃♢) rule will
blow up the formula to size 2n. So we have a tableau procedure that can be implemented as
an algorithm in ExpSpace.

▶ Corollary 17. The fragment ∀□ + □∀ + □∃ is decidable in ExpSpace.
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6 Conclusion

In this paper, we have studied the decidability of bundled fragments of FOML, where we
have no restrictions on the use of variables or arity of relations. Specifically, we proved the
decidability of the loosely bundled fragment LBF and the ∀□ + □∀ + □∃ fragment. The
decidability of these fragments hinges on the observation that ∀x∃y□α is not expressible. A
NexpTime lower bound follows for ∀□ + ∃□ and □∀ + □∃ (via encoding the corresponding
version of the tiling problem [13]), which implies the same lower bound for LBF and ∀□ +
□∀ + □∃. There is a significant gap between the upper and lower complexity bounds and we
need sharper technical tools for investigating lower bounds for bundled fragments.

Note that the quantifier prefix in LBF is of the form ∃∗∀∗ and hence any extension of this
quantifier prefix or extending LBF with negation closure will result in a fragment that will be
able to express ∀x∃y□ α (and hence will not have the finite model property, [13]). In this
sense, LBF is the largest fragment in which ∀x∃y□α is not (syntactically) expressible. For
the fragment ∀□ + □∀ + □∃ we introduced a technique to pull out ∃ quantifiers outside the
immediate scope of ∀ and obtain a finite model property. This technique may be useful in
studying other fragments of first-order modal logic.

The results in the paper, along with those in [13], provide a trichotomy classification of
combinations of bundled operators over increasing domain models (Table 1). The fragments
in which we can express both ∀x∃y□α and ∀x□∀y□∀zβ are undecidable, fragments in which
we can express the former but not the latter lack finite model property (but decidability is
open) and fragments where we cannot express the former are decidable. Similar trichotomy
can also be proved for satisfiability over constant domain models [13].

We have considered only the “pure” fragments, without constants, function symbols,
or equality. The addition of constants is by itself simple, but equality complicates things
considerably. Since equality is extensively used in specifications, mapping fragments with
equality is an important direction. The study of bundles over models with various frame
conditions is also relevant for applications. Unfortunately, while it is clear that equivalence
frames lead to undecidability [17], even with transitive frames the situation is unclear.
Obtaining good decidable fragments over linear frames is an important challenge.

In the context of verification of infinite-state systems, we are often more interested in the
model checking problem than in satisfiability. If the domain is finite, the problem is no
different from model checking of first-order modal logic. However, we are usually interested
in the specification being checked against a finitely specified (potentially infinite) model, e.g.,
when the domain elements form a regular infinite set. This is a direction to be pursued in
the context of bundled fragments.

We have presented tableau-based decision procedures that are easily implementable, but
inference systems for reasoning in these logics require further study.
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1 Introduction

Membership problems in groups. The general problem that we study in this paper is the
following: Fix a class C of formal languages. We assume that members of C have a finite
description; typical choices are the class of regular or context-free languages, or a singleton
class C = {L}. We are given a language L ∈ C with L ⊆ Σ∗, a group G together with a
morphism h : Σ∗ → G from the free monoid Σ∗ to the group G, and a word w ∈ Σ∗. The
question that we want to answer is whether w ∈ h−1(h(L)), i.e., whether the group element
h(w) belongs to h(L). One can study this problem under several settings, and each of these
settings has a different motivation. First of all, one can consider the case where G is a
fixed finitely generated group that is finitely generated by Σ. One could call this problem
the C-membership problem for the group G. The best studied case is the rational subset
membership problem, where C is the class of regular languages. It generalizes the subgroup
membership problem for G, a classical decision problem in group theory. Other special
cases of the rational subset membership problem that have been studied in the past are the
submonoid membership problem, the knapsack problem and the subset sum problem, see
e.g. [31, 37]. It is a simple observation that for the rational subset membership problem, the
word w (which is tested for membership in h−1(h(L)) can be assumed to be the empty word,
see [28, Theorem 3.1].

In this paper, we study another setting of the above generic problem, where G is a finite
group that is part of the input (and L still comes from a languages class C). For the rest of
the introduction we restrict to the case where G is a finite symmetric group Sm (the set of
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all permutations on {1, . . . , m}) that is represented in the input by the integer m in unary
representation, i.e., by the word $m.1 Our applications only make use of this case, but we
remark that our upper complexity bounds can be proven in the more general black box
setting [6] (in particular, one could replace symmetric groups by matrix groups over a finite
field and still obtain the same complexity bounds). Note that |Sm| = m!, hence the order of
the group is exponential in the input length.

Membership problems for permutation groups. One of the best studied membership
problems for permutation groups is the subgroup membership problem: the input is a unary
encoded number m and a list of permutations a, a1, . . . , an ∈ Sm, and it is asked whether a

belongs to the subgroup of Sm generated by a1, . . . , an. The famous Schreier-Sims algorithm
solves this problem in polynomial time [39], and the problem is known to be in NC [5].

Several generalizations of the subgroup membership problem have been studied. Luks
defined the k-membership problem (k ≥ 1) as follows: The input is a unary encoded number
m, a permutation a ∈ Sm and a list of k permutation groups G1, G2, . . . , Gk ≤ Sm (every Gi is
given by a list of generators). The question is whether a belongs to the product G1 ·G2 · · · Gk.
It is a famous open problem whether 2-membership can be solved in polynomial time. This
problem is equivalent to several other important algorithmic problems in permutation groups:
computing the intersection of permutation groups, computing set stabilizers or centralizers,
checking equality of double cosets, see [36] for details. On the other hand, Luks has shown in
[36] that k-membership is NP-complete for every k ≥ 3. In fact, NP-hardness of 3-membership
holds for the special case where G1 = G3 and G1 and G2 are both abelian.

Note that the k-membership problem is a special case of rational subset membership
for symmetric groups. Let us define this problem again for the setting of symmetric groups
(here, 1 denotes the identity permutation and we identify a word over the alphabet Sm with
the permutation to which it evaluates):

▶ Problem 1.1 (rational subset membership problem for symmetric groups).
Input: a unary encoded number m and a nondeterministic finite automaton (NFA) A over
the alphabet Sm.
Question: Does 1 ∈ L(A) hold?

An obvious generalization of the rational subset membership problem for symmetric groups is
the context-free subset membership problem for symmetric groups; it is obtained by replacing
the NFA A in Problem 1.1 by a context-free grammar G.

Two restrictions of the rational subset membership problem that have been intensively
studied for infinite groups in recent years are the knapsack problem and subset sum problem,
see e.g. [4, 8, 9, 21, 22, 29, 32, 34, 37]. For symmetric groups, these problems are defined as
follows (note that the number n + 1 of permutations is part of the input):

▶ Problem 1.2 (subset sum problem for symmetric groups).
Input: a unary encoded number m and permutations a, a1, . . . , an ∈ Sm.
Question: Are there i1, . . . , in ∈ {0, 1} such that a = ai1

1 · · · ain
n ?

Note that the subset sum problem is the membership problem for cubes, which are subsets of
the form {ai1

1 · · · ain
n | i1, . . . , in ∈ {0, 1}} [6].

1 We could also consider the case where G is a subgroup of Sm that is given by a list of generators (i.e.,
G is a permutation group), but this makes no difference for our problems.
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▶ Problem 1.3 (knapsack problem for symmetric groups).
Input: a unary encoded number m and permutations a, a1, . . . , an ∈ Sm.
Question: Are there i1, . . . , in ∈ N such that a = ai1

1 · · · ain
n ?

We will also consider the following restrictions of these problems.

▶ Problem 1.4 (abelian subset sum problem for symmetric groups).
Input: a unary encoded number m and pairwise commuting permutations a, a1, . . . , an ∈ Sm.
Question: Are there i1, . . . , in ∈ {0, 1} such that a = ai1

1 · · · ain
n ?

The following problem is the special case of Luks’ k-membership problem for cyclic groups.
Note that k is a fixed constant here.

▶ Problem 1.5 (k-knapsack problem for symmetric groups).
Input: a unary encoded number m and k + 1 permutations a, a1, . . . , ak ∈ Sm.
Question: Are there i1, . . . , ik ∈ N such that a = ai1

1 · · · aik

k ?

Main results. Our main result for rational subset membership in symmetric groups is:

▶ Theorem 1.6. Problems 1.1–1.4 and Problem 1.5 for k ≥ 3 are NP-complete.

In contrast, we will show that the 2-knapsack problem can be solved in polynomial time
(Theorem 5.7). The NP upper bound for the rational subset membership problem will be
shown for black-box groups.
▶ Remark 1.7. The abelian variant of the knapsack problem, i.e., Problem 1.3 with the
additional restriction that the permutations s1, . . . , sn pairwise commute is of course the
abelian subgroup membership problem and hence belongs to NC.
▶ Remark 1.8. Analogously to the k-knapsack problem one might consider the k-subset sum
problem, where the number n in Problem 1.2 is fixed to k and not part of the input. This
problem can be solved in time 2k · mO(1) (check all 2k assignments for exponents i1, . . . , ik)
and hence in polynomial time for every fixed k.

Finally, for the context-free subset membership problem for symmetric groups we show:

▶ Theorem 1.9. The context-free membership problem for symmetric groups is PSPACE-
complete.

If we restrict the class of context-free grammars in Theorem 1.9 we can improve the complexity
to NP: A derivation tree of a context-free grammar is called acyclic if no nonterminal appears
twice on a path from the root to a leaf. Hence, the height of an acyclic derivation tree
is bounded by the number of nonterminals of the grammar. The Horton-Strahler number
hs(t) of a binary tree t (introduced by Horton and Strahler in the context of hydrology
[25, 40]; see [19] for a good survey emphasizing the importance of Horton-Strahler numbers in
computer science) is recursively defined as follows: If t consists of a single node then hs(t) = 0.
Otherwise, assume that t1 and t2 are the subtrees rooted in the two children of the node. If
hs(t1) = hs(t2) then hs(t) = 1+hs(t1), and if hs(t1) ̸= hs(t2) then hs(t) = max{hs(t1), hs(t2)}.
For k ≥ 1 let CFG(k) be the set of all context-free grammars in Chomsky normal form (hence,
derivation trees are binary trees if we ignore the leaves labelled with terminal symbols) such
that every acyclic derivation tree has Horton-Strahler number at most k.

▶ Theorem 1.10. For every k ≥ 1, the context-free membership problem for symmetric
groups restricted to context-free grammars from CFG(k) is NP-complete.

MFCS 2022
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Table 1 Complexity of various intersection non-emptiness problems.

no CFG one CFG(k) one CFG
DFAs PSPACE-c. [30] EXPTIME-c. for k large enough EXPTIME-c. [41]

group DFAs NP-c. [11] NP-c. for all k ≥ 1 PSPACE-c.

Theorem 1.10 generalizes the statement for rational subsets in Theorem 1.6: Every regular
grammar (when brought into Chomsky normal form) belongs to CFG(1). Linear context-free
grammars belong to CFG(1) as well. Note that Theorem 1.10 is a promise problem in the
sense that coNP is the best upper bound for testing whether a given context-free grammar
belongs to CFG(k) that we are aware of; see [33, Theorem A.2]. The upper bounds in
Theorems 1.6, 1.9, and 1.10 will actually be shown for black box groups.

Application to intersection non-emptiness problems. We can apply Theorems 1.9 and
1.10 to intersection non-emptiness problems. The intersection non-emptiness problem for
deterministic finite automata (DFAs) is the following problem:

▶ Problem 1.11 (intersection non-emptiness problem for DFAs).
Input: DFAs A1, A2, . . . , An

Question: Is
⋂

1≤i≤n L(Ai) non-empty?

Kozen [30] has shown that this problem is PSPACE-complete. When restricted to group
DFAs (see Section 2) the intersection non-emptiness problem was shown to be NP-complete
by Blondin et al. [11]. Based on Cook’s characterization of EXPTIME by polynomially
space bounded AuxPDAs [13], Swernofsky and Wehar [41] showed that the intersection non-
emptiness problem is EXPTIME-complete for a list of general DFAs and a single context-free
grammar; see also [24, p. 275] and see [18] for a related EXPTIME-complete problem. Using
Theorems 1.9 and 1.10 we can easily show the following new results:

▶ Theorem 1.12. The following problem is NP-complete for every k ≥ 1:

Input: A list of group DFAs A1, A2, . . . , An and a context-free grammar G ∈ CFG(k).
Question: Is L(G) ∩

⋂
1≤i≤n L(Ai) non-empty?

▶ Theorem 1.13. The following problem is PSPACE-complete:

Input: A list of group DFAs A1, A2, . . . , An and a context-free grammar G.
Question: Is L(G) ∩

⋂
1≤i≤n L(Ai) non-empty?

Table 1 gives an overview on the complexity of intersection non-emptiness problems. For
the intersection non-emptiness problem for arbitrary DFAs and one grammar from CFG(k)
one has to notice that the EXPTIME-hardness proof from [41] works for a fixed context-free
grammar. Moreover, every fixed context-free grammar belongs to CFG(k) for some k ≥ 1.

Related work. Computationally problems for permutation groups have a long history (see
e.g. the text book [38]), and have applications, e.g. for graph isomorphism testing [3, 35]. A
problem that is similar to subset sum is the minimum generator sequence problem (MGS) [20]:
The input consists of unary encoded numbers m, ℓ and a list of permutations a, a1, . . . , an ∈
Sm. The question is, whether a can be written as a product b1b2 · · · bk with k ≤ ℓ and
b1, . . . , bk ∈ {a1, . . . , an}. The problem MGS was shown to be NP-complete in [20]. For
the case, where the number ℓ is given in binary representation, the problem is PSPACE-
complete [27]. This yields in fact the PSPACE-hardness in Theorem 1.9.
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Intersection nonemptiness problems have been studied intensively in recent years, see
e.g. [1, 14]. The papers [10, 26] prove PSPACE-hardness of the intersection nonemptiness
problem for inverse automata (DFAs, where the transition monoid is an inverse monoid).

There are several algorithms for context-free (and other) grammars that exploit that an
input grammar is index-m, meaning that all derivation trees have Horton-Strahler number
≤ m, where m is part of the input in unary notation [17, 12, 16, 15, 7, 2] (see [19] for a
survey). This assumption, called finite-index, is incomparable to our CFG(k)-assumption: In
CFG(k), the k is fixed but one only considers acyclic derivation trees.

2 Preliminaries

Groups. Let G be a finite group and let G∗ be the free monoid of all finite words over the
alphabet G. There is a canonical morphism ϕG : G∗ → G that is the identity mapping on
G ⊆ G∗. Throughout this paper we suppress applications of ϕG and identify words over the
alphabet G with the corresponding group elements. For a subset S ⊆ G we denote with ⟨S⟩
the subgroup generated by S. The following folklore lemma is a straightforward consequence
of Lagrange’s theorem (if A and B are subgroups of G with A < B, then |B| ≥ 2 · |A|).

▶ Lemma 2.1. Let G be a finite group and S ⊆ G a generating set for G. Then, there exists
a subset S′ ⊆ S such that ⟨S′⟩ = G and |S′| ≤ log2 |G|.

Assume that G = ⟨S⟩. A straight-line program over the generating set S is a sequence of
definitions S = (xi := ri)1≤i≤n where the xi are variables and every right-hand side ri is
either from S or of the form xjxk with 1 ≤ j, k < i. Every variable xi evaluates to a group
element gi ∈ G in the obvious way: if ri ∈ S then gi = ri and if ri = xjxk then gi = gjgk.
Then, S is said to produce gn. The size of S is n. The following result is known as the
reachability theorem [6, Theorem 3.1].

▶ Theorem 2.2 (reachability theorem). Let G be a finite group, S ⊆ G a generating set for G,
and g ∈ G. Then there exists a straight-line program over S of size at most (1 + log2 |G|)2

that produces the element g.

For a set Q let SQ be the symmetric group on Q, i.e., the set of all permutations on Q with
composition of permutations as the group operation. If Q = {1, . . . , m} we also write Sm for
SQ. Let a ∈ SQ be a permutation and let q ∈ Q. We also write qa for a(q). We multiply
permutations from left to right, i.e., for a, b ∈ SQ, ab is the permutation with qab = (qa)b for
all q ∈ Q. A permutation group is a subgroup of some SQ.

Quite often, the permutation groups we consider are actually direct products
∏

1≤i≤d Smi

for small numbers mi. Clearly, we have
∏

1≤i≤d Smi ≤ Sm for m =
∑

1≤i≤d mi and an
embedding of

∏
1≤i≤d Smi

into Sm can be computed in polynomial time.

Horton-Strahler number. Recall the definition of the Horton-Strahler number hs(t) of
binary trees t from the introduction. We need the following simple fact; see [33, Lemma 2.3].
Here, the height of a tree is the maximal number of edges on a path from the root to a leaf.

▶ Lemma 2.3. Let t be a binary tree of height d and let s = hs(t). Then, t has at most ds

many leaves and therefore at most 2 · ds many nodes.

Formal languages. We assume that the reader is familiar with basic definitions from
automata theory. Our definitions of deterministic finite automata (DFA), nondeterministic
finite automata (NFA), and context-free grammars are the standard ones.

MFCS 2022
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Consider a DFA A = (Q, Σ, q0, δ, F ), where q0 ∈ Q is the initial state, δ : Q × Σ → Q is
the transition mapping and F ⊆ Q is the set of final states. The transformation monoid of
A is the submonoid of QQ (the set of all mappings on Q and composition of functions as the
monoid operation) generated by all mappings q 7→ δ(q, a) for a ∈ Σ. A group DFA is a DFA
whose transformation monoid is a group.

Context-free grammars will be always in Chomsky normal form. When we speak of a
derivation tree of a context-free grammar, we always assume that the root of the tree is
labelled with the start nonterminal and every leaf is labelled with a terminal symbol. When
we talk about the Horton-Strahler number of such a tree, we remove all terminal-labelled
leaves so that the resulting tree is a binary tree (due to the Chomsky normal form). In a
partial derivation tree, we also allow leaves labelled with nonterminals (but we still assume
that the root is labelled with the start nonterminal).

3 Black box groups

More details on black box groups can be found in [6, 38]. Roughly speaking, in the black box
setting group elements are encoded by bit strings of a certain length b and there exist oracles
for multiplying two group elements, computing the inverse of a group element, checking
whether a given group element is the identity, and checking whether a given bit string of
length b is a valid encoding of a group element (the latter operation is not allowed in [6]).
As usual, each execution of an oracle operation counts one time unit, but the parameter b

enters the input length additively.
Formally, a black box is a tuple B = (b, c, valid, inv, prod, id, G, f) such that G is a finite

group (the group in the box), b, c ∈ N, and the following properties hold:
f : {0, 1}b → G ⊎ {∗} satisfies G ⊆ f({0, 1}b). Here, f−1(g) is the set of names of g ∈ G.
valid : {0, 1}b → {yes, no} is such that ∀x ∈ {0, 1}b : f(x) ∈ G ⇐⇒ valid(x) = yes.
inv : {0, 1}b → {0, 1}b is such that ∀x ∈ f−1(G) : f(inv(x)) = f(x)−1.
prod : {0, 1}b × {0, 1}b → {0, 1}b is such that ∀x, y ∈ f−1(G) : f(prod(x, y)) = f(x)f(y).
id : {0, 1}b × {0, 1}c → {yes, no} is such that for all x ∈ f−1(G): f(x) = 1 iff there exists
y ∈ {0, 1}c with id(x, y) = yes (such a y is called a witness for f(x) = 1).

We call b the code length of the black box.
A black box Turing machine is a deterministic or nondeterministic oracle Turing machine

T that is equipped with oracles for the four operations valid, inv, prod, and id. The input
for T consists of two unary encoded numbers b and c and some additional problem specific
input. In order to determine the behavior of T , it must be coupled with a black box
B = (b, c, valid, inv, prod, id, G, f) (where b and c must match the first part of the input of T ).
Then, given bit strings x, y ∈ {0, 1}b on a special tape of T , it can compute instantaneously
in a single computation step the bit string prod(x, y). Analogous instantaneous computations
can be done for the operations valid, inv, and id. We denote with TB the machine T coupled
with the black box B. Note that the black box B = (b, c, valid, inv, prod, id, G, f) is not part
of the input of T , only the unary encoded numbers b and c are part of the input.

Assume that P is an algorithmic problem for finite groups. The input for P is a finite
group G and some additional data X (e.g. a context-free grammar with terminal alphabet G

in the next section). We do not specify exactly, how G is represented. The additional input X

may contain elements of G. We will say that P belongs to NP for black box groups if there is
a nondeterministic black box Turing machine T , whose input is of the form b, c, X with unary
encoded numbers b and c, such that for every black box B = (b, c, valid, inv, prod, id, G, f)
the following holds: TB accepts the input b, c, X (where X denotes the additional input
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for P and group elements in X are represented by bit strings from f−1(G)) if and only if
(G, X) belongs to P. The running time of TB is polynomial in b + c + |X|. Note that since
G may have order 2b, the order of G may be exponential in the input length. We will use
the analogous definition for other complexity classes, in particular for PSPACE.

In the rest of the paper we handle black box groups in a slightly more casual way. We
identify bits strings from x ∈ f−1(G) with the corresponding group elements. So, we will
never talk about bit strings x ∈ f−1(G), but instead directly deal with elements of G. The
reader should notice that we cannot directly verify whether a given element g ∈ G is the
identity. This is only possible in a nondeterministic way by guessing a witness y ∈ {0, 1}c.
The same applies to the verification of an identity g = h, which is equivalent to gh−1 = 1.
This allows to cover also quotient groups by the black box setting; see [6].

We need the following well-known fact from [6]:

▶ Lemma 3.1. The subgroup membership problem for black box groups (given group elements
g, g1, . . . , gn, does g ∈ ⟨g1, . . . , gn⟩ hold?) belongs to NP.

This is a consequence of the reachability theorem: Let b be the code length of the black box.
Hence there are at most 2b group elements. By the reachability theorem (Theorem 2.2) it
suffices to guess a straight-line program over {g1, . . . , gn} of size at most (1 + log2 2b)2 =
(b + 1)2, evaluate it using the oracle for prod (let g′ be the result of the evaluation) and check
whether g′g−1 = 1. The later can be done nondeterministically using the oracle for id.

4 Context-free membership in black box groups

In this section, we sketch the proofs for the following two results.

▶ Theorem 4.1. The context-free membership problem for black box groups is in PSPACE.

▶ Theorem 4.2. For every k ≥ 1, the context-free membership problem for black box groups
restricted to context-free grammars from CFG(k) is in NP.

Recall the definition of the class CFG(k) from the introduction. Let us first derive some
corollaries. Theorem 4.2 directly implies Theorem 1.10. Applied to regular grammars (which
are in CFG(1) after bringing them to Chomsky normal form), it yields:

▶ Corollary 4.3. The rational subset membership problem for black box groups is in NP. In
particular, the rational subset membership problem for symmetric groups is in NP.

Also Theorem 1.9 can be easily obtained now: The upper bound follows directly from
Theorem 4.1. The lower bound can be obtained from a result of Jerrum [27]. In the
introduction we mentioned that Jerrum proved the PSPACE-completeness of the MGS
problem for the case where the number ℓ is given in binary notation. Given permutations
a1, . . . , an ∈ Sm and a binary encoded number ℓ one can easily construct a context-free
grammar for {1, a1, . . . , an}ℓ ⊆ Sm. Hence, the PSPACE-hard MGS problem with ℓ given in
binary notation reduces to the context-free membership problem for symmetric groups. This
reduction shows that Theorem 1.9 still holds if the input grammar is index-m (see the end of
the introduction) with m being part of the input in unary notation.

The rest of the section is devoted to the upper bounds in Theorems 4.1 and 4.2. Detailed
proofs of all lemmas can be found in the long version [33].
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Outline. A straightforward algorithm for the context-free membership problem constructs
an exponential-sized pushdown automaton and check the latter for emptiness. This would
yield an EXPTIME upper bound. Hence, the difficulty is to achieve this in PSPACE. To this
end, we exploit the fact that every subgroup of a black box group can be stored in polynomial
space. Since context-free subsets of a finite group G are not necessarily subgroups, we need
to find a way to encode information about derivations, as subgroups. We do this as follows.
Recall that ϕG : G∗ → G is the canonical morphism from Section 2. For a context-free
grammar G with terminal alphabet G and a nonterminal A we define

GA = {(ϕG(u), ϕG(v)) | u, v ∈ G∗, A ⇒∗
G uAv}.

This is a subgroup of G × Ĝ, where Ĝ is the dual group of G: It has the same underlying
set as G and if g · h is the product in G then the multiplication ◦ in Ĝ is defined by
g ◦ h = h · g. A black box for G easily yields a black box for G × Ĝ. Thus, GA and its
subgroups have polynomial-size generating sets. When given generating sets for all GA,
one can check membership in L(G) in PSPACE. Therefore, the idea is to compute GA by
saturating underapproximating subgroups HA of GA: Initially, HA is the trivial subgroup of
G × Ĝ for each A. At each step, the groups HA yield underapproximations of the sets L(A)
of all w ∈ G∗ derivable from a nonterminal A (as usual, we identify L(A) with ϕG(L(A))).
The underapproximation of L(A), in turn, is used to enlarge the subgroups HA, yielding a
better underapproximation of the GA. Finally, we obtain the entire groups GA.

The operations ∆ and Γ. We fix a finite group G that is only accessed via a black
box. We now define the operations ∆ and Γ, which turn underapproximations of GA into
underapproximations of L(A) (or vice versa, resp.). Let G = (N, G, P, S) be a context-free
grammar in Chomsky normal form that is part of the input, whose terminal alphabet is the
finite group G. When we speak of the input size in the following, we refer to |G| + b + c,
where b and c are the two unary encoded numbers from the black box for G and the size |G|
is defined as the number of productions of the grammar.

Recall from the introduction that a derivation tree T is acyclic if a nonterminal does
not occur twice on a path from the root to a leaf of T . The height of an acyclic derivation
tree is at most |N |. We now define two operations ∆ and Γ. The operation ∆ maps a tuple
s = (HA)A∈N of subgroups HA ≤ G × Ĝ to a tuple ∆(s) = (LA)A∈N of subsets LA ⊆ G

(not necessarily subgroups), whereas Γ maps a tuple t = (LA)A∈N of subsets LA ⊆ G to a
tuple Γ(t) = (HA)A∈N of subgroups HA ≤ G × Ĝ.

We start with ∆. Let s = (HA)A∈N be a tuple of subgroups HA ≤ G × Ĝ. The tuple
∆(s) = (LA)A∈N of subsets LA ⊆ G is obtained as follows: Let T be an acyclic derivation
tree with root r labelled by A ∈ N . We assign inductively a set Lv ⊆ G to every inner node v:
Let B the label of v. If v has only one child it must be a leaf since our grammar is in Chomsky
normal form. Let g ∈ G be the label of this leaf. Then we set Lv = {h1gh2 | (h1, h2) ∈ HB}.
If v has two children v1, v2 (where v1 is the left child and v2 the right child), then the sets
Lv1 ⊆ G and Lv2 ⊆ G are already determined and we set

Lv = {h1g1g2h2 | (h1, h2) ∈ HB , g1 ∈ Lv1 , g2 ∈ Lv2}.

We set L(T ) = Lr and finally define LA as the union of all sets L(T ) where T is an acyclic
derivation whose root is labelled with A.

The second operation Γ is defined as follows: Let t = (LA)A∈N be a tuple of subsets
LA ⊆ G. Then we define the tuple Γ(t) = (HA)A∈N with HA ≤ G × Ĝ as follows: Fix
a nonterminal A ∈ N . Consider a sequence p = (Ai → Ai,0Ai,1)1≤i≤m of productions
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(Ai → Ai,0Ai,1) ∈ P and a sequence d = (di)1≤i≤m of directions di ∈ {0, 1} such that
Ai+1 = Ai,di

for all 1 ≤ i ≤ m, A1 = A = Am,dm
. Basically, p and d define a path from A

back to A. For every 1 ≤ i ≤ m we define the sets

Mi =
{

LAi,0 × {1} if di = 1
{1} × LAi,1 if di = 0

We view Mi as a subset of G × Ĝ and define M(p, d) = M1 · . . . · Mm, in which · refers to the
product in G×Ĝ. If p and d are the empty sequences (m = 0) then M(p, d) = {(1, 1)}. Finally
we define HA as the set of all M(p, d), where p = (Ai → Ai,0Ai,1)1≤i≤m and d = (di)1≤i≤m

are as above (including the empty sequences). This set HA is a subgroup of G × Ĝ. To see
this, it suffices to argue that HA is a monoid. The latter follows from the fact that two pairs
of sequences (p, d) and (p′, d′) of the above form can be composed to a single pair (pp′, dd′).

In the following, we will speak of NP algorithms with oracles. Here, we mean non-
deterministic polynomial-time Turing machines with oracles. However, the oracle can only
be queried positively: There is an instruction that succeeds if the oracle answers “yes”, but
cannot be executed if the oracle would answer “no”. This implies that if there is an NP (resp.
PSPACE algorithm) for the oracle queries, there exists an NP (resp. PSPACE) algorithm for
the entire problem. Likewise, we will use the notion of oracle PSPACE algorithms.

▶ Lemma 4.4. For tuples t = (LA)A∈N , there is an NP algorithm for membership to the
entries of Γ(t), with access to an oracle for the entries of t.

The main idea for the proof is to represent the entries of Γ(t) (which are subgroups of G × Ĝ)
by NFAs over the alphabet G × Ĝ (the NFA will not be given explicitly to us) and to guess
generating sets for the subgroups in Γ(t) using the so-called spanning tree approach. Finally,
one checks membership in the entries of Γ(t) using Lemma 3.1.

▶ Lemma 4.5. Assume that the input grammar G is restricted to the class CFG(k) for some
fixed k. For tuples s = (HA)A∈N of subgroups HA ≤ G × Ĝ, there exists an NP algorithm for
membership to entries in ∆(s), with access to an oracle for membership to each entry of s.

To prove this lemma, we guess an acyclic derivation tree of G; by Lemma 2.3 its size is
bounded by 2|N |k. Moreover, for every internal B-labelled node v (with B ∈ N) we guess
a pair (hv,1, hv,2) ∈ G × Ĝ and verify in NP that (hv,1, hv,2) ∈ HA. Then we evaluate the
derivation tree in the right way (following the definition of ∆(s)) and check that we obtain
the the input group element that we want to test for membership.

If the input grammar G is not restricted to a class CFG(k) for some k then we can still
prove the following PSPACE-version of Lemma 4.5.

▶ Lemma 4.6. For tuples s = (HA)A∈N of subgroups HA ≤ G × Ĝ, there is a PSPACE
algorithm for membership to ∆(s), using an oracle for membership to the entries of s.

For the proof we can no longer guess an acyclic derivation tree, since it may have exponential
size. Instead, we guess the derivation tree in an incremental way and store on a stack of size
at most |N | (the maximal height of an acyclic derivation tree) the information that is needed
in order to evaluate the derivation tree.

The following lemma is a straightforward consequence of Lemma 2.1:

▶ Lemma 4.7. For tuples s = (HA)A∈N subgroups HA ≤ G×Ĝ, there exists an NP algorithm,
with access to an oracle for membership to each entry of s, with the following properties:

On every computation path the machine outputs a tuple (SA)A∈N of subsets SA ⊆ HA.
There is at least one computation path on which the machine outputs a tuple (SA)A∈N

such that every SA generates HA.
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▶ Lemma 4.8. ∆((GA)A∈N ) = (L(A))A∈N .

Let s0 = (HA)A∈N with HA = {(1, 1)} for all A ∈ N be the tuple of trivial subgroups of
G × Ĝ. For two tuples s1 = (HA,1)A∈N and s2 = (HA,2)A∈N of subgroups of G × Ĝ we write
s1 ≤ s2 if HA,1 ≤ HA,2 for every A ∈ N . Since Γ and ∆ are monotone w.r.t. component-wise
inclusion, we have (Γ∆)i(s0) ≤ (Γ∆)i+1(s0) for all i. We can thus define limi→∞(Γ∆)i(s0).

▶ Lemma 4.9. (GA)A∈N = lim
i→∞

(Γ∆)i(s0) = (Γ∆)j(s0) where j = 2 · |N | · ⌊log2 |G|⌋.

Let us briefly sketch the proof of this lemma. From the definition of Γ and ∆ we easily
obtain (Γ∆)i(s0) ≤ (GA)A∈N by induction on i ≥ 0. To show (GA)A∈N ≤ limi→∞(Γ∆)i(s0),
we define (HA)A∈N = limi→∞(Γ∆)i(s0) and take a pair (g, h) ∈ GA. Hence, there exists a
derivation A ⇒∗

G uAv such that g = ϕG(u) and h = ϕG(v). One can prove (g, h) ∈ HA by an
induction on the length of this derivation. This shows the identity (GA)A∈N = lim

i→∞
(Γ∆)i(s0).

For the second identity in Lemma 4.8 note that since all GA are finite groups there is
a smallest number j ≥ 0 such that (Γ∆)j(s0) = (Γ∆)j+1(s0). We then have (Γ∆)j(s0) =
limi→∞(Γ∆)i(s0). It remains to show that j ≤ 2 · |N | · log2 |G|. In each component of the
|N |-tuples (Γ∆)i(s0) (0 ≤ i ≤ j) we have a chain of subgroups of G × Ĝ. By Lagrange’s
theorem, any chain {(1, 1)} = H0 < H1 < · · · < Hk−1 < Hk ≤ G × Ĝ satisfies k ≤ 2 · log2 |G|.
This shows that j ≤ 2 · |N | · log2 |G|.

Proofs of Theorem 4.1 and 4.2. We start with Theorem 4.2. By Lemmas 4.5 and 4.8 it
suffices to decide membership to GA in NP. For this, we construct a nondeterministic
polynomial time machine that computes on every computation path a subset SA ⊆ GA for
every A ∈ N such that on at least one computation path it computes a generating set for
groups GA for all A ∈ N . Then, by Lemma 3.1, membership for each ⟨SA⟩ is in NP.

We compute SA by initializing SA = {(1, 1)} for every A ∈ N and then performing
2 · |N | · log2 |G| iterations of the following procedure: Suppose we have already produced
the subsets (SA)A∈N . Membership in ⟨SA⟩ can be decided in NP by Lemma 3.1. Hence, by
Lemmas 4.4 and 4.5 one can decide membership in every entry of the tuple Γ(∆((⟨SA⟩)A∈N ))
in NP. Finally, by Lemma 4.7 we can produce nondeterministically in polynomial time a subset
S′

A ⊆ G × Ĝ for every A ∈ N such that for every computation path we have (⟨S′
A⟩)A∈N ≤

Γ(∆((⟨SA⟩)A∈N )) and for at least one computation path the machine produces subsets S′
A

with (⟨S′
A⟩)A∈N = Γ(∆((⟨SA⟩)A∈N )). With the sets S′

A we go into the next iteration. By
Lemma 4.9 there will be at least one computation path on which after 2 · |N | · log2 |G|
iterations we get a generating set for the entire groups GA. This concludes Theorem 4.2.
The proof of Theorem 4.1 only differs by using Lemma 4.6 instead of Lemma 4.5. ◀

5 Subset sum and knapsack in symmetric groups

In this section, we want to contrast the general upper bounds from the previous sections with
lower bounds for symmetric groups and restricted versions of the rational subset membership
problem. We start with the subset sum problem. The following result refers to the abelian
group Zm

3 , for which we use the additive notation.

▶ Theorem 5.1. The following problem is NP-hard:
Input: unary encoded number m and a list of group elements g, g1, . . . , gn ∈ Zm

3 .
Question: Are there i1, . . . , in ∈ {0, 1} such that g =

∑
1≤k≤n ik · gk?

The proof uses a straightforward reduction from the exact 3-hitting set problem (X3HS):



M. Lohrey, A. Rosowski, and G. Zetzsche 71:11

▶ Problem 5.2 (X3HS).
Input: a finite set A and a set B ⊆ 2A of subsets of A, all of size 3.
Question: Is there a subset A′ ⊆ A such that |A′ ∩ C| = 1 for all C ∈ B?

X3HS is the same problem as positive 1-in-3-SAT, which is NP-complete [23, Problem LO4].
The reduction of X3HS to the problem from Theorem 5.1 can be found in [33, Theorem 5.1].
Since Zm

3 ≤ S3m we obtain the following corollary:

▶ Corollary 5.3. The abelian subset sum problem for symmetric groups is NP-hard.

Let us remark that the subset sum problem for Zm
2 (with m part of the input) is equivalent

to the subgroup membership problem for Zm
2 (since every element of Zm

2 has order two) and
therefore can be solved in polynomial time.

We now come to the knapsack problem in permutation groups. NP-hardness of the general
version of knapsack can be easily deduced from a result of Luks: Recall from the introduction
that Luks [36] proved NP-completeness of 3-membership for the special case of membership
in a product GHG where G and H are abelian subgroups of Sm. Let g1, g2, . . . , gk be the
given generators of G and let h1, h2, . . . , hl be the given generators of H. Then s ∈ GHG is
equivalent to the solvability of the following knapsack equation:

s = gx1
1 gx2

2 · · · gxk

k hy1
1 hy2

2 · · · hyl

l gz1
1 gz2

2 · · · gzk

k .

We next want to prove that already 3-knapsack is NP-hard. In other words: the k-membership
problem is NP-hard for every k ≥ 3 even if the groups are cyclic.

Let p > 0 be an integer. For the rest of the section we write [p] for the cycle (1, 2, . . . , p)
mapping p to 1 and i to i + 1 for 1 ≤ i ≤ p − 1. The proofs for the following two lemmas are
available in the full version [33].

▶ Lemma 5.4. Let p, q ∈ N such that q is odd and p > q > 0 holds. Then the products [p][q]
and [q][p] are cycles of length p.

▶ Lemma 5.5. Let p, q ∈ N be primes such that 2 < q < p holds. Then

[p]−x2 [q]x1([p][q])x2 = [q] = [q]x1 [p]−x2([p][q])x2 (1)

if and only if (x1 ≡ 1 mod q and x2 ≡ 0 mod p) or (x1 ≡ 0 mod q and x2 ≡ 1 mod p).

We now come to our main result for the knapsack problem:

▶ Theorem 5.6. The problem 3-knapsack for symmetric groups is NP-hard.

Proof. To prove the theorem we give a log-space reduction from the NP-complete problem
X3HS (Problem 5.2) to 3-knapsack. Let A be a finite set and B ⊆ 2A such that every
C ∈ B has size 3. W.l.o.g.let A = {1, . . . , m} and let B = {C1, C2, . . . , Cd} where Ci =
{α(i, 1), α(i, 2), α(i, 3)} for a mapping α : {1, . . . , d} × {1, 2, 3} → {1, . . . , m}.

Let p1, . . . , pm, r1, . . . , rm, q1, . . . , qd be the first 2m + d odd primes such that pj > rj > 2
and pj > qi > 2 for 1 ≤ i ≤ d and 1 ≤ j ≤ m hold. Moreover let P = max1≤j≤m pj .
Intuitively, the primes pj and rj (1 ≤ j ≤ m) belong to j ∈ A and the prime qi (1 ≤ i ≤ d)
belongs to the set Ci. We will work in the group

G =
m∏

j=1
Vj ×

d∏
i=1

Ci,
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where Vj ≤ S4pj+rj
and Ci ≤ Sqi+3P . More precisely we have

Vj = Spj
× Spj

× Zpj
× Zpj

× Zrj
and Ci = Zqi

× SP × SP × SP .

In the following, we denote the identity element of a symmetric group Sm with id in order to
not confuse it with the generator of a cyclic group Zm.

We now define four group elements g, g1, g2, g3 ∈ G. We write g = (v1, . . . , vm, c1, . . . cd)
and gk = (vk,1, . . . , vk,m, ck,1, . . . , ck,d) with vj , vk,j ∈ Vj and ci, ck,i ∈ Ci. These elements
are defined as follows:

vj = ([rj ], [rj ], 0, 0, 0) ci = (1, id, id, id)
v1,j = ([rj ], [pj ]−1, 1, 1, 1) c1,i = (1, [qi]−1, [pα(i,2)]−1, [qi][pα(i,3)])
v2,j = ([pj ]−1, [rj ], −1, 0, −1) c2,i = (1, [qi][pα(i,1)], [qi]−1, [pα(i,3)]−1)
v3,j = ([pj ][rj ], [pj ][rj ], 0, −1, 0) c3,i = (1, [pα(i,1)]−1, [qi][pα(i,2)], [qi]−1)

We claim that there is a subset A′ ⊆ A such that |A′ ∩ Ci| = 1 for every 1 ≤ i ≤ d if and
only if there are z1, z2, z3 ∈ Z with g = gz1

1 gz2
2 gz3

3 in the group G. Due to the direct product
decomposition of G and the above definition of g, g1, g2, g3, the statement g = gz1

1 gz2
2 gz3

3 is
equivalent to the conjunctions of the following statements (read the above definitions of the
vj , vk,j , ci, ck,i columnwise) for all 1 ≤ j ≤ m and 1 ≤ i ≤ d:
(a) [rj ] = [rj ]z1 [pj ]−z2([pj ][rj ])z3

(b) [rj ] = [pj ]−z1 [rj ]z2([pj ][rj ])z3

(c) z1 ≡ z2 mod pj

(d) z1 ≡ z3 mod pj

(e) z1 ≡ z2 mod rj

(f) 1 ≡ z1 + z2 + z3 mod qi

(g) id = [qi]−z1([qi][pα(i,1)])z2 [pα(i,1)]−z3

(h) id = [pα(i,2)]−z1 [qi]−z2([qi][pα(i,2)])z3

(i) id = ([qi][pα(i,3)])z1 [pα(i,3)]−z2 [qi]−z3

Recall that by Lemma 5.4, [pj ][rj ] and [qi][pj ] are cycles of length pj . Due to the congruences
in (c), (d), and (e), the conjunction of (a)–(i) is equivalent to the conjunction of (j)–(p):
(j) z1 ≡ z2 ≡ z3 mod pj

(k) z1 ≡ z2 mod rj

(l) [pj ]−z1 [rj ]z2([pj ][rj ])z1 = [rj ] = [rj ]z2 [pj ]−z1([pj ][rj ])z1

(m) 1 ≡ z1 + z2 + z3 mod qi

(n) id = [qi]−z1([qi][pα(i,1)])z1 [pα(i,1)]−z1

(o) id = [pα(i,2)]−z1 [qi]−z2([qi][pα(i,2)])z1

(p) id = ([qi][pα(i,3)])z1 [pα(i,3)]−z1 [qi]−z3

By Lemma 5.5, the conjunction of (j)–(p) is equivalent to the conjunction of (q)–(u):
(q) (z1 ≡ z2 ≡ z3 ≡ 0 mod pj and z1 ≡ z2 ≡ 1 mod rj) or

(z1 ≡ z2 ≡ z3 ≡ 1 mod pj and z1 ≡ z2 ≡ 0 mod rj)
(r) 1 ≡ z1 + z2 + z3 mod qi

(s) id = [qi]−z1([qi][pα(i,1)])z1 [pα(i,1)]−z1

(t) id = [pα(i,2)]−z1 [qi]−z2([qi][pα(i,2)])z1

(u) id = ([qi][pα(i,3)])z1 [pα(i,3)]−z1 [qi]−z3

Let us now assume that A′ ⊆ A is such that |A′ ∩ Ci| = 1 for every 1 ≤ i ≤ d. Let
σ : {1, . . . , m} → {0, 1} such that σ(j) = 1 iff j ∈ S′. Thus, α(i, 1) + α(i, 2) + α(i, 3) = 1 for
all 1 ≤ i ≤ d. By the Chinese remainder theorem, we can set z1, z2, z3 ∈ Z such that

z1 ≡ z2 ≡ z3 ≡ σ(j) mod pj and z1 ≡ z2 ≡ 1 − σ(j) mod rj for 1 ≤ j ≤ m,
zk ≡ σ(α(i, k)) mod qi for 1 ≤ i ≤ d and 1 ≤ k ≤ 3.
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Then (q) and (r) hold. For (s), one has to consider two cases: if σ(α(i, 1)) = 0, then
z1 ≡ 0 mod qi and z1 ≡ 0 mod pα(i,1). Hence, the right-hand side of (s) evaluates to

[qi]−0([qi][pα(i,1)])0[pα(i,1)]−0 = id.

On the other hand, if σ(α(i, 1)) = 1, then z1 ≡ 1 mod qi and z1 ≡ 1 mod pα(i,1) and the
right-hand side of (s) evaluates again to

[qi]−1[qi][pα(i,1)][pα(i,1)]−1 = id.

In the same way, one can show that also (t) and (u) hold.
For the other direction, assume that z1, z2, z3 ∈ Z are such that (q)–(u) hold. We define

A′ ⊆ {1, . . . , m} such that for every 1 ≤ j ≤ m:
j /∈ S′ if z1 ≡ z2 ≡ z3 ≡ 0 mod pj and z1 ≡ z2 ≡ 1 mod rj , and
j ∈ S′ if z1 ≡ z2 ≡ z3 ≡ 1 mod pj and z1 ≡ z2 ≡ 0 mod rj .

Consider a set Ci = {α(i, 1), α(i, 2), α(i, 3)}. From the equations (s), (t), and (u) we get for
every 1 ≤ i ≤ d and 1 ≤ k ≤ 3:

if z1 ≡ 0 mod pα(i,k) then zk ≡ 0 mod qi

if z1 ≡ 1 mod pα(i,k) then zk ≡ 1 mod qi

Together with 1 ≡ z1 + z2 + z3 mod qi and qi ≥ 3, this implies that there must be exactly
one k ∈ {1, 2, 3} such that z1 ≡ 1 mod pα(i,k). Hence, for every 1 ≤ i ≤ d there is exactly
one k ∈ {1, 2, 3} such that α(i, k) ∈ A′. ◀

Theorem 1.6 is an immediate consequence of Corollaries 4.3 and 5.3 and Theorem 5.6.
Theorem 5.6 leads to the question what the exact complexity of the 2-knapsack problem

for symmetric groups is. Recall that the complexity of Luks’ 2-membership problem is a
famous open problem in the algorithmic theory of permutation groups. The restriction of
the 2-membership problem to cyclic groups is easier. The proof of the following theorem
uses a reduction to the membership problem for commutative subgroups of matrix groups [8]
and then applies [4, Theorem 1.4]; see [33, Theorem 5.8].

▶ Theorem 5.7. The 2-knapsack problem for symmetric groups belongs to P.

6 Application to intersection problems

It remains to show Theorems 1.12 and 1.13. We obtain the upper bound in Theorem 1.12
from Theorem 1.10: Let G be a grammar from CFG(k) and let Ai = (Qi, Σ, qi,0, δi, Fi)
be be a group DFA for 1 ≤ i ≤ n. W.l.o.g. assume that the Qi are pairwise disjoint and
let Q =

⋃
1≤i≤n Qi. To every a ∈ Σ we can associate a permutation πa ∈ SQ by setting

πa(q) = δi(q, a) if q ∈ Qi. Let G′ ∈ CFG(k) be the context-free grammar over the terminal
alphabet SQ obtained by replacing in G every occurence of a ∈ Σ by πa. Then, we have
L(G) ∩

⋂
1≤i≤n L(Ai) ̸= ∅ if and only if there exists a permutation π ∈ L(G′) such that

π(qi,0) ∈ Fi for every 1 ≤ i ≤ n. We can nondeterministically guess such a permutation and
check π ∈ L(G′) in NP using Theorem 1.10. This proves the upper bound from Theorem 1.12.

The upper bound from Theorem 1.13 can be obtained in the same way from Theorem 1.9.
For the lower bounds in Theorems 1.12 and 1.13, a simple reduction from the lower bounds
in Theorems 1.10 and 1.9 can be employed; see [33, Section 6] for details.
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We study deterministic and randomized streaming algorithms for word problems of finitely generated
groups. For finitely generated linear groups, metabelian groups and free solvable groups we show
the existence of randomized streaming algorithms with logarithmic space complexity for their word
problems. We also show that the class of finitely generated groups with a logspace randomized
streaming algorithm for the word problem is closed under several group theoretical constructions:
finite extensions, direct products, free products and wreath products by free abelian groups. We
contrast these results with several lower bound. An example of a finitely presented group, where the
word problem has only a linear space randomized streaming algorithm, is Thompson’s group F .
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1 Introduction

The word problem for a finitely generated group G is the following computational problem:
Fix a finite set of generators Σ for G (which means that every element of G can be written
as a finite product of elements from Σ. The input for the word problem is a finite word
a1a2 · · · an over the alphabet Σ and the question is whether this word evaluates to the group
identity of G. The word problem was introduced by Dehn in 1911 [10]. It is arguably the
most important computational problem in group theory and has been studied by group
theorists as well as computer scientists; see [29] for a good survey. In recent years, complexity
theoretic investigations of word problems moved into the focus. For many important classes
of groups it turned out that the word problem belongs to low-level complexity classes. The
first result in this direction was proved by Lipton and Zalcstein [23] (if the field F has
characteristic zero) and Simon [36] (if the field F has prime characteristic): if G is a finitely
generated linear group over an arbitrary field F (i.e., a finitely generated group of invertible
matrices over F ), then the word problem for G can be solved in deterministic logarithmic
space. Related results can be found in [20, 41].

The word problem of a group G with a finite generating set Σ can be identified with
a formal language WP(G, Σ) consisting of all words over the alphabet Σ that evaluate to
the group identity of G. Language theoretic aspects of the word problem have been studied
intensively in the past. For instance, Anissimov and Seifert [2] showed that WP(G, Σ) is
regular if and only if G is finite, and Muller and Schupp showed that WP(G, Σ) is context-
free [31] if and only if G is virtually free,1 see [18] for an overview.

1 If C is a property or class of groups, then a group is virtually C if it is a finite extension of a C-group.
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72:2 Streaming Word Problems

In this paper we initiate the study of streaming algorithms for word problems. These
are algorithms that do not have random access on the whole input. Instead, the k-th input
symbol is only available at time k [1]. Typically, streaming algorithms are randomized and
have a bounded error probability. Usually, one is interested in the space used by a streaming
symbol, but also update times have been investigated. Clearly, every regular language has a
streaming algorithm with constant space. Randomized streaming algorithms for context-free
languages have been studied in [4, 7, 12, 26].

Let us now explain the main results of this paper. For a finitely generated group G

with generating set Σ, the deterministic (resp., randomized) streaming space complexity of
WP(G, Σ) is the space complexity of the best deterministic (resp., randomized) streaming
algorithm for WP(G, Σ). The concrete choice of the generating set has only a minor influence
on the deterministic (resp., randomized) streaming space complexity of WP(G, Σ); see
Lemma 2 for a precise statement. In statements where the influence of the generating set
on the streaming space complexity is blurred by the Landau notation, we speak of the
deterministic/randomized streaming space complexity of the word problem of G or simply
the deterministic/randomized streaming space complexity of G.

The deterministic streaming space complexity of WP(G, Σ) is directly linked to the growth
function γG,Σ(n) of the group G. The latter is the number of different group elements of
G that can be represented by words over the generating set Σ of length at most n (also
here the generating set Σ only has a minor influence). The deterministic streaming space
complexity of the word problem for G turns out to be log2 γG,Σ(n/2) up to a small additive
constant (Theorem 3). The growth of finitely generated groups is a well investigated topic in
geometric group theory. A famous theorem of Gromov says that a finitely generated group
has polynomial growth if and only if it is virtually nilpotent; see [9, 28] for a discussion.
Theorem 3 reduces all questions about the deterministic streaming space complexity of word
problems to questions about growth functions. Due to this, we mainly study randomized
streaming algorithms for word problems in this paper.

In the randomized setting, the growth of G still yields a lower bound: The randomized
streaming space complexity of the word problem of G is lower bounded by Ω(log log γG,Σ(n/2))
(Theorem 4). A large class of groups, where this lower bound can be exactly matched by
an upper bound are finitely generated linear groups. Recall that Lipton and Zalcstein [23]
and Simon [36] showed that the word problem of a finitely generated linear group can be
solved in logarithmic space. Their algorithm can be turned into a randomized streaming
algorithm with logarithmic space complexity. In order to plug these streaming algorithms
into closure results for randomized streaming space complexity (that are discussed below)
we need an additional property that we call ϵ-injectivity. Roughly speaking, a randomized
streaming algorithm for a finitely generated group G with generating set Σ is ϵ-injective
if for all words u, v ∈ Σ∗ of length at most n we have that: (i) if u and v evaluate to the
same element of G then with probability at least 1 − ϵ, u and v lead to the same memory
state of the streaming algorithm, and (ii) if u and v evaluate to different elements of G then
with probability at least 1 − ϵ, u and v lead to different memory states of the streaming
algorithm; see Section 5. We then show that for every finitely generated linear group G there
is a randomized ϵ-injective streaming algorithm with space complexity O(log n) (Theorem 8).
If G is moreover virtually nilpotent, then the space complexity can be further reduced to
O(log log n). In fact, using a known gap theorem for the growth of linear groups [30, 42], it
turns out that the randomized streaming space complexity of the word problem for a finitely
generated linear group G is either Θ(log log n) (if G is virtually nilpotent) or Θ(log n) (if G

is not virtually nilpotent), see Theorem 11.
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For non-linear groups the situation turns out to be more difficult. We show that the
randomized streaming space complexity of word problems is preserved by certain group
constructions including finite extensions (Theorem 10), direct products (Lemma 12), free
products (Theorem 20) and wreath products by free abelian groups (Theorem 17). For
the latter two constructions we also get an additional additive term Θ(log n) in the space
bounds. For a wreath product A ≀ G with A free abelian (resp., a free product G ∗ H) it
is also important that we start with an ϵ-injective randomized streaming algorithm for G

(and H). Using these transfer results we obtain also non-linear groups with a logarithmic
randomized streaming space complexity, e.g., metabelian groups (Corollary 13) and free
solvable groups (Corollary 18).

In the last section of the paper, we prove lower bounds for the randomized streaming
space complexity of word problems. For wreath products of the form G ≀ S such that G is
non-abelian and S is infinite, we can show that the randomized streaming space complexity
is Θ(n) by a reduction from the randomized communication complexity of disjointness
(Theorem 21). A concrete finitely presented group with randomized streaming space
complexity Θ(n) is Thompson’s group F (Corollary 22). Thompson’s groups F (introduced
by Richard Thompson in 1965) belongs due to its unusual properties to the most intensively
studied infinite groups; see e.g. [8]. From a computational perspective it is interesting to note
that F is co-context-free (i.e., the set of all non-trivial words over any set of generators is a
context-free language) [22]. This implies that the word problem for Thompson’s group is in
LogCFL. To the best of our knowledge no better upper complexity bound is known. Finally,
we consider the famous Grigorchuk group G [14], which was the first example of a group with
intermediate word growth as well as the first example of a group that is amenable but not
elementary amenable. We show that the deterministic streaming space complexity of G is
O(n0.768), whereas the randomized streaming space complexity of G is Ω(n0.5) (Theorem 23).

Related results. In this paper, we are only interested in streaming algorithms for a fixed
infinite group. Implicitly, streaming algorithms for finite groups are studied in [13]. Obviously,
every finite group has a deterministic streaming space complexity O(log |G|).2 In [13], it
is shown that for the group G = SL(2,Fp) this upper bound is matched by a lower bound,
which even holds for the randomized streaming space complexity. More precisely, Gowers
and Viola study the communication cost of the following problem: Alice receives a sequence
of elements a1, . . . , an ∈ G, Bob receives a sequence of elements b1, . . . , bn ∈ G and they
are promised that the interleaved product a1b1 · · · anbn is either 1 or some fixed element
g ∈ G \ {1} and their job is to determine which of these two cases holds. For G = SL(2,Fp)
it is shown that the randomized communication complexity of this problem is Θ(log |G| · n)
(the upper bound is trivial). From this it follows easily that the randomized streaming space
complexity of SL(2,Fp) is Ω(log |G|).

2 Streaming algorithms

For integers a < b let [a, b] = {a, a + 1, . . . , b}. Fix a finite alphabet Σ. For a word w ∈ Σ∗ let
|w| be its length and let Σ≤n = {w ∈ Σ∗ : |w| ≤ n} be the set of words of length at most n.

In the following we introduce probabilistic finite automata [33, 34] as a model for
randomized streaming algorithms. A probabilistic finite automaton (PFA) A = (Q, Σ, ι, ρ, F )
consists of a finite set of states Q, an alphabet Σ, an initial state distribution ι : Q → {r ∈

2 In our setting, |G| would be a constant, but for the moment let us make the dependence on the finite
group G explicit.
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R : 0 ≤ r ≤ 1}, a transition probability function ρ : Q×Σ×Q → {r ∈ R : 0 ≤ r ≤ 1} and a set
of final states F ⊆ Q such that

∑
q∈Q ι(q) = 1 and

∑
q∈Q ρ(p, a, q) = 1 for all p ∈ Q, a ∈ Σ. If

ι and ρ map into {0, 1}, then A is a deterministic finite automaton (DFA). If only ρ is required
to map into {0, 1}, then A is called semi-probabilitistic. A run on a word a1 · · · am ∈ Σ∗ in A
is a sequence π = (q0, a1, q1, a2, . . . , am, qm) where q0, . . . , qm ∈ Q. Given such a run π in A
we define ρι(π) = ι(q0) ·

∏n
i=1 ρ(qi−1, ai, qi). For each w ∈ Σ∗ the function ρι is a probability

distribution on the set Runs(w) of all runs of A on w. A run π = (q0, a1, . . . , am, qm) is
correct with respect to a language L ⊆ Σ∗ if qm ∈ F ⇔ a1 · · · am ∈ L holds. The error
probability of A on w for L is

ϵ(A, w, L) =
∑

{ρι(π) : π ∈ Runs(w) is not correct w.r.t. L}.

If A is semi-probabilitistic then we can identify ρ with a mapping ρ : Q × Σ → Q, where
ρ(p, a) is the unique state q with ρ(p, a, q) = 1. This mapping ρ is extended to a mapping
ρ : Q × Σ∗ → Q in the usual way: ρ(p, ε) = p and ρ(p, aw) = ρ(ρ(p, a), w). We then obtain

ϵ(A, w, L) = 1 −
∑

{ι(q) : q ∈ Q, δ(q, w) ∈ F ⇔ w ∈ L}.

A (non-uniform) randomized streaming algorithm is a sequence R = (An)n≥0 of PFA An

over the same alphabet Σ. If every An is deterministic (resp., semi-probabilitistic), we speak
of a deterministic (resp., semi-randomized) streaming algorithm.

Let 0 ≤ ϵ ≤ 1 be an error probability. A randomized streaming algorithm R = (An)n≥0
is ϵ-correct for a language L ⊆ Σ∗ if for every n ≥ 0 and every word w ∈ Σ≤n we have
ϵ(An, w, L) ≤ ϵ. We say that R is a randomized streaming algorithm for L if it is 1/3-correct
for L. The choice of 1/3 for the error probability is not important. Using a standard
application of the Chernoff bound one can reduce the error probability from 1/3 to every
constant. If R is deterministic and 0-correct for L then we say that R is a deterministic
streaming algorithm for L. The space complexity of the randomized streaming algorithm
R = (An)n≥0 is the function s(R, n) = ⌈log2 |Qn|⌉, where Qn is the state set of An. The
motivation for this definition is that states of Qn can be encoded by bit strings of length at
most ⌈log2 |Qn|⌉. The deterministic/randomized streaming space complexity of the language
L is the smallest possible function s(R, n), where R is a deterministic/randomized streaming
algorithm for L. By a result of Rabin [34, Theorem 3], the deterministic streaming space
complexity of a language L is bounded by 2O(S(n)), where S(n) is the randomized streaming
space complexity of L.

The deterministic streaming space complexity of a language L is directly linked to the
automaticity of L. The automaticity of L ⊆ Σ∗ is the the function AL(n) that maps n

to the number of states of a smallest DFA An such that for all words w ∈ Σ≤n we have:
w ∈ L if and only if w is accepted by An. Hence, the deterministic streaming space
complexity of L is exactly ⌈log2 AL(n)⌉. The automaticity of languages was studied in [35].
Interesting in our context is the following result of Karp [19]: if L is a non-regular language
then AL(n) ≥ (n + 3)/2 for infinitely many n. Hence, for every non-regular language the
deterministic streaming space complexity of L is at least log2(n) − c for a constant c and
infinitely many n. Another related measure is the online space complexity from [11], which
is defined by the growth function of an infinite automaton for a language L.

Note that our concept of streaming algorithms is non-uniform in the sense that for every
input length n we have a separate streaming algorithm An. This makes lower bounds stronger.
On the other hand, the streaming algorithms that we construct for concrete groups will
be uniform in the sense that the streaming algorithms An follow a common pattern. The
following result uses non-uniformity in a crucial way; its proof (see [25, Theorem 3.1]) is
similar to Newman’s theorem on public versus private coins in communication complexity,
see e.g. [21].
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▶ Theorem 1. Let R be a randomized streaming algorithm such that s(R, n) ≥ Ω(log n) and
R is ϵ-correct for a language L. Then there exists a semi-randomized streaming algorithm S
such that s(S, n) = Θ(s(R, n)) and S is 2ϵ-correct for the language L.

3 Groups and word problems

For a group G and a subset Σ ⊆ G, we denote with ⟨Σ⟩ the subgroup of G generated by Σ.
It is the set of all products of elements from Σ ∪ Σ−1. We only consider finitely generated
(f.g.) groups G, for which there is a finite set Σ ⊆ G such that G = ⟨Σ⟩; such a set Σ is called
a finite generating set for G. If Σ = Σ−1 then we say that Σ is a finite symmetric generating
set for G. In the following we assume that all finite generating sets are symmetric. Every
word w ∈ Σ∗ evaluates to a group element πG(w) in the natural way; here πG : Σ∗ → G is
the canonical morphism from the free monoid Σ∗ to G. Instead of πG(u) = πG(v) we also
write u ≡G v.

Let C(G, Σ) be the Cayley graph of G with respect to the finite symmetric generating
set Σ. It is the edge-labelled graph whose vertex set is G and that has an a-labelled edge
from πG(u) to πG(ua) for all u ∈ Σ∗ and a ∈ Σ. Let WP(G, Σ) = {w ∈ Σ∗ | πG(w) = 1} be
the word problem for G with respect to the generating set Σ.

We are interested in streaming algorithms for words problems WP(G, Σ). The following
lemma is easy to prove; see [25, Lemma 4.1].

▶ Lemma 2. Let Σ1 and Σ2 be finite symmetric generating sets for the group G and let si(n)
be the deterministic/randomized streaming space complexity of WP(G, Σi). Then there exists
a constant c that depends on G, Σ1 and Σ2 such that s1(n) ≤ s2(c · n).

By Lemma 2, the dependence of the streaming space complexity from the generating
set is often blurred by the use of the O-notation. In such situations we will speak of
the deterministic/randomized streaming space complexity for the group G (instead of the
deterministic/randomized streaming space complexity of the language WP(G, Σ)).

4 Streaming algorithms for word problems and growth

Let G be a finitely generated group and let Σ be a finite symmetric generating set for G. For
n ∈ N let BG,Σ(n) = πG(Σ≤n) ⊆ G be the ball of radius n in the Cayley-graph of G with
center 1. The growth function γG,Σ : N → N is the function with γG,Σ(n) = |BG,Σ(n)|. The
deterministic streaming space complexity of G is completely determined by the growth of G:

▶ Theorem 3. Let G be a finitely generated infinite group and let Σ be a finite symmetric
generating set for G. Define the function S(n) by S(n) = γG,Σ(⌊n/2⌋) + (n mod 2). Then,
the deterministic streaming space complexity of WP(G, Σ) is ⌈log2 S(n)⌉.

Proof. We start with the upper bound in case n is even. In the following we identify
the ball BG,Σ(n/2) with its induced subgraph of the Cayley graph C(G, Σ). We define a
deterministic finite automaton An by taking the edge-labelled graph BG,Σ(n/2) with the
initial and unique final state 1. It can be viewed as a partial DFA in the sense that for
every g ∈ BG,Σ(n/2) and every a ∈ Σ, g has at most one outgoing edge labelled with a (that
leads to g · a if g · a ∈ BG,Σ(n/2)). In order to add the missing transitions we choose an
element gf ∈ BG,Σ(n/2) \ BG,Σ(n/2 − 1) (here, we set BG,Σ(−1) = ∅). Such an element
exists because G is infinite. If g ∈ BG,Σ(n/2) has not outgoing a-labelled edge in BG,Σ(n/2)
then we add an a-labelled edge from g to gf . We call those edges spurious. The resulting
DFA is An.
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We claim that for every word w ∈ Σ≤n, w is accepted by An if and only if w ∈ WP(G, Σ).
This is clear, if no spurious edge is traversed while reading w into An. In this case, after
reading w, we end up in state πG(w). Now assume that a spurious edge is traversed while
reading w into An and let x be the shortest prefix of w such that a spurious edge is traversed
while reading the last symbol of x. Let us write w = xy. We must have |x| > n/2 and
πG(x) /∈ BG,Σ(n/2). Moreover, |y| < n − n/2 = n/2. Since πG(x) /∈ BG,Σ(n/2), we have
w = xy /∈ WP(G, Σ). Moreover, w is rejected by An, because x leads in An from the initial
state 1 to state gf and there is no path of length at most n/2 − 1 from gf back to the final
state 1.

For the case that n is odd, we take the ball BG,Σ(⌊n/2⌋). Instead of adding spurious edges
we add a failure state f . If g ∈ BG,Σ(⌊n/2⌋) has no outgoing a-labelled edge in BG,Σ(⌊n/2⌋),
then we add an a-labelled edge from g to f . Moreover, for every a ∈ Σ we add an a-labelled
loop at state f . As for the case n even, one can show that the resulting DFA accepts a word
w ∈ Σ≤n if and only if w ∈ WP(G, Σ).

For the lower bound, let A = (Q, Σ, q0, δ, F ) be a smallest DFA such that for every
word w ∈ Σ≤n, w is accepted by A if and only if w ∈ WP(G, Σ). We have to show
that |Q| ≥ S(n). Let us consider two words u, v ∈ Σ∗ of length at most ⌊n/2⌋ such that
u ̸≡G v and δ(q0, u) = δ(q0, v). We then have uv−1 ̸∈ WP(G, Σ) and vv−1 ∈ WP(G, Σ).
On the other hand, we have δ(q0, uv−1) = δ(q0, vv−1), which is a contradiction (note that
|uv−1|, |vv−1| ≤ n). Hence, if δ(q0, u) = δ(q0, v) for two words u, v ∈ Σ∗ of length at most
⌊n/2⌋, then u ≡G v.

Let Q′ = {δ(q0, w) | w ∈ Σ∗, |w| ≤ ⌊n/2⌋} ⊆ Q. The previous paragraph shows that
|Q′| ≥ γG,Σ(⌊n/2⌋). If n is even then ⌊n/2⌋ = n/2 and we are done. So, let us assume that
n is odd.

If |Q| > γG,Σ(⌊n/2⌋) then we are again done. So, let us assume that Q = Q′ and
|Q| = γG,Σ(⌊n/2⌋). Then, to every state q ∈ Q we can assign a unique group element
gq ∈ BG,Σ(⌊n/2⌋) such that for every word w ∈ Σ∗ with |w| ≤ ⌊n/2⌋ we have δ(q0, w) = q if
and only if πG(w) = gq. The mapping q 7→ gq is a bijection between Q and BG,Σ(⌊n/2⌋).

Let us now take a state q ∈ Q and a generator a ∈ Σ such that gq · a /∈ BG,Σ(⌊n/2⌋).
Such a state and generator must exist since G is infinite. Let u, v ∈ Σ∗ be words of length at
most ⌊n/2⌋ such that δ(q0, u) = q and δ(q0, v) = δ(q, a) = δ(q0, ua). We obtain δ(q0, vv−1) =
δ(q0, uav−1). But vv−1 ∈ WP(G, Σ) and uav−1 /∈ WP(G, Σ) since πG(uav−1) = gq ·a·πG(v−1)
and gq · a /∈ BG,Σ(⌊n/2⌋), πG(v−1) ∈ BG,Σ(⌊n/2⌋). This is a contradiction since vv−1 and
uav−1 both have length at most n. ◀

The growth of f.g. groups is well-studied and Theorem 3 basically closes the chapter on
deterministic streaming algorithms for word problems. Hence, in the rest of the paper we
focus on randomized streaming algorithms. Here, we can still prove a lower bound (that
will turn out to be sharp in some cases but not always) using the randomized one-way
communication complexity of the equality problem; see [25, Theorem 5.2] for details.

▶ Theorem 4. Let G be a finitely generated group and let Σ be a finite symmetric generating
set for G. The randomized streaming space complexity of WP(G, Σ) is Ω(log log γG,Σ(⌊n/2⌋)).

▶ Remark 5. Since every f.g. infinite group has growth at least n, Theorem 4 has the following
consequence: If G is a f.g. infinite group, then the randomized streaming space complexity of
G is Ω(log log n).
▶ Remark 6. Later in this paper, we will make use of the following two famous results on the
growth of groups, see also [9, 28]:

Gromov’s theorem [16]: A f.g. group has polynomial growth iff it is virtually nilpotent.
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Wolf-Milnor theorem [30, 42]; see also [9, p. 202]: A f.g. solvable group G is either virtually
nilpotent (and hence has polynomial growth) or there is a constant c > 1 such that G has
growth cn (i.e., G has exponential growth). It is well known that the same dichotomy also
holds for f.g. linear groups. This is a consequence of Tits alternative [37]: A f.g. linear
group G is either virtually solvable or contains a free group of rank at least two (in which
case G has exponential growth).

The dichotomy theorem of Milnor and Wolf does not generalize to all f.g. groups. Grig-
orchuk [14] constructed a f.g.group whose growth is lower bounded by exp(n0.515) [6] and
upper bounded by exp(n0.768) [5]. The streaming space complexity of this remarkable group
will be studied in Theorem 23.

5 Injective randomized streaming algorithms

For a semi-probabilistic finite automaton A = (Q, Σ, ι, ρ, F ) and some boolean condition E(q)
that depends on the state q ∈ Q, we define the probability

Prob
q∈Q

[E(q)] =
∑

q∈Q,E(q)=1

ι(q).

Let G be a f.g. group G with the finite generating set Σ. A randomized streaming algorithm
(An)n≥0 with An = (Qn, Σ, ιn, ρn, Fn) is called ϵ-injective for G (with respect to Σ) if the
following properties hold for all n ≥ 0 and all words u, v ∈ Σ≤n:

An is semi-randomized.
If u ≡G v then Probq∈Qn

[ρn(q, u) = ρn(q, v)] ≥ 1 − ϵ.
If u ̸≡G v then Probq∈Qn [ρn(q, u) ̸= ρn(q, v)] ≥ 1 − ϵ.

Note that the set Fn of final states of An is not important and we will just write An =
(Qn, Σ, ιn, ρn) in the following if we talk about an ϵ-injective randomized streaming algorithm
(An)n≥0. The easy proof of the following lemma can be found in [25, Lemma 6.1].

▶ Lemma 7. If R is an ϵ-injective randomized streaming algorithm for G w.r.t. Σ, then
WP(G, Σ) has an ϵ-correct semi-randomized streaming algorithm with space complexity
2 · s(R, n).

Due to Lemma 7, our goal in the rest of the paper will the construction of space efficient
ϵ-injective randomized streaming algorithms for groups. We will need ϵ-injectivity for wreath
products and free products; see Sections 7.2 and 7.3.

6 Randomized streaming algorithms for linear groups

For every f.g. linear group, the word problem can be solved in logarithmic space. This
was shown by Lipton and Zalcstein [23] (if the underlying field has characteristic zero) and
Simon [36] (if the underlying field has prime characteristic). The idea is to carry out all
computations modulo sufficiently many small prime numbers. This idea can be easily turned
into a randomized streaming algorithm by randomly choosing a small prime number. With
some care, one can turn their idea into an ϵ(n)-injective randomized streaming algorithm
with ϵ(n) = 1/nc for a constant c and space complexity O(log n); see [25, Theorem 7.1] for
details.

▶ Theorem 8. For every f.g. linear group G and every c > 0 there exists an ϵ(n)-injective
randomized streaming algorithm with ϵ(n) = 1/nc and space complexity O(log n).

MFCS 2022



72:8 Streaming Word Problems

Every nilpotent group is linear. For nilpotent groups we can improve the algorithm from
the proof of Theorem 8, at least if we sacrifice the inverse polynomial error probability. The
proof of the following theorem (see [25, Theorem 7.2]) uses the fact that every f.g. nilpotent
group is a finite extension of a nilpotent group that can be embedded in the group UTd(Z)
of d-dimensional unitriangular matrices over Z. The entries in a product of n such matrices
A1, . . . , An can be bounded by O(nd−1), provided all entries in the Ai are of size O(1) (in
absolute value). This allows to compute modulo a random prime number with O(log log n)
bits.

▶ Theorem 9. For every f.g. nilpotent group G and every constant c > 0 there exists an
ϵ(n)-injective randomized streaming algorithm with ϵ(n) = 1/ logc n and space complexity
O(log log n).

Note that if G is infinite, the upper bound from Theorem 9 is sharp up to constant factors
even if we allow a constant error probability; see Remark 5.

7 Closure properties for streaming space complexity

In this section, we will show that many group theoretical constructions preserve randomized
streaming space complexity.

7.1 Easy cases: finite extensions and direct products
For many algorithmic problems in group theory, the complexity is preserved by finite
extensions. This is also true for the streaming space complexity of the word problem; see
also [25, Theorem 8.1]:

▶ Theorem 10. Assume that H is a f.g. group and G is a subgroup of H of finite index
(hence, also G must be finitely generated). Assume that R is an ϵ-injective randomized
streaming algorithm for G. Then H has an ϵ-injective randomized streaming algorithm with
space complexity s(R, c · n) + O(1) for some constant c.

Recall that Gromov proved that a finitely generated group has polynomial growth if and
only if it is virtually nilpotent.

▶ Corollary 11. Let G be an infinite finitely generated linear group.
If G is virtually nilpotent then the randomized streaming space complexity of G is
Θ(log log n).
If G is not virtually nilpotent then the randomized streaming space complexity of G is
Θ(log n).

Proof. The upper bounds follow from Theorems 8 and 9. Since G is infinite, the randomized
streaming space complexity of the word problem of G is Ω(log log n) (see Remark 5), which
yields the lower bound for the virtually nilpotent case. If G is not virtually nilpotent, then
G has growth cn for some constant c > 1 (see Remark 6), which yields the lower bound
Θ(log n) by Theorem 4. ◀

It is conjectured that for every f.g. group G that is not virtually nilpotent the growth is lower
bounded by exp(n0.5). This is known as the gap conjecture [15]. It would imply that for
every f.g. group that is not virtually nilpotent the randomized streaming space complexity is
lower bounded by Ω(log n).

Also direct products preserve the streaming space complexity of the word problem (simply
run the streaming algorithms for the two factor groups in parallel):
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▶ Lemma 12. Let G and H be f.g. groups for which there exist ϵ(n)-injective randomized
streaming algorithms R and S, respectively. Then there exists a 2ϵ(n)-injective randomized
streaming algorithm for G × H with space complexity s(R, n) + s(S, n).

Recall that a group G is metabelian if it has an abelian normal subgroup A ≤ G such that
the quotient G/A is abelian as well. Every f.g. metabelian group can be embedded into a
direct product of linear groups (over fields of different characteristics) [40]. Hence, with
Lemma 12 and Theorem 8 we obtain:

▶ Corollary 13. For every f.g. metabelian group and every c > 0 there exists an ϵ(n)-injective
randomized streaming algorithm with ϵ(n) = 1/nc and space complexity O(log n).

7.2 Randomized streaming algorithms for wreath products
Let G and H be groups. Consider the direct sum K =

⊕
g∈G Hg, where Hg is a copy of H. We

view K as the set H(G) of all mappings f : G → H such that supp(f) := {g ∈ G | f(g) ̸= 1}
is finite, together with pointwise multiplication in H as the group operation. The set
supp(f) ⊆ G is called the support of f . The group G has a natural left action on H(G) given
by gf(a) = f(g−1a), where f ∈ H(G) and g, a ∈ G. The corresponding semidirect product
H(G) ⋊ G is the (restricted) wreath product H ≀ G. In other words:

Elements of H ≀ G are pairs (f, g), where g ∈ G and f ∈ H(G).
The multiplication in H ≀ G is defined as follows: Let (f1, g1), (f2, g2) ∈ H ≀ G. Then
(f1, g1)(f2, g2) = (f, g1g2), where f(a) = f1(a)f2(g−1

1 a) for all a ∈ G.
Intuitively, the mapping a 7→ f2(g−1

1 a) is the mapping f2 shifted by g1.
Clearly, G is a subgroup of H ≀ G. We also regard H as a subgroup of H ≀ G by identifying

H with the set of all f ∈ H(G) with supp(f) ⊆ {1}. This copy of H together with G generates
H ≀ G. In particular, if G = ⟨Σ⟩ and H = ⟨Γ⟩ with Σ ∩ Γ = ∅ then H ≀ G is generated by Σ ∪ Γ.
In [32] it was shown that the word problem of a wreath product H ≀ G is TC0-reducible to
the word problems for G and H.

In this section, we study streaming algorithms for wreath products. The case of a wreath
product H ≀ G with G finite is easy:

▶ Proposition 14. Let H be a f.g. group for which there exists an ϵ-injective randomized
streaming algorithm R = (An)n≥0 and let G be a finite group of size c. Then, there exists an
(c · ϵ)-injective randomized streaming algorithm for H ≀ G with space complexity O(s(R, n)).

Proof. We run c independent copies of An (for the direct product of c copies of H). In
addition we have to store an element of G. ◀

The case of a wreath product H ≀ G with G infinite turns out to be more interesting. In
Section 8 we will prove a lower bound for the case that H is non-abelian. In this section, we
consider the case where H is abelian. Our construction will start with ϵ-injective randomized
streaming algorithms for G and uses the following simple fact.

▶ Lemma 15. Let (An)n≥0 be an ϵ-injective randomized streaming algorithm for the finitely
generated group G with respect to the generating set Σ. Let An = (Qn, Σ, ι, ρ). Consider a
set S ⊆ Σ≤n. For every state q of An consider the equivalence relation ≡q on S with u ≡q v

if and only if ρn(q, u) = ρn(q, v). Then

Prob
q∈Qn

[≡q coincides with ≡G on S] ≥ 1 − ϵ ·
(

|S|
2

)
.
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Proof. For all u, v ∈ S, the probability that either u ≡G v and u ̸≡q v or u ̸≡G v and
u ≡q v is bounded by ϵ. The lemma follows from the union bound since there are

(|S|
2

)
many

unordered pairs. ◀

We start with the case of a wreath product Z ≀ G. Note that the following theorem makes
only sense if ϵ < 1/2n2. On the other hand, such an inverse polynomial error probability can
be achieved for linear groups by Theorem 8.

▶ Theorem 16. Let G be a f.g. infinite group and R = (An)n≥0 an ϵ-injective randomized
streaming algorithm for G. Let d be a fixed constant and ζ = 2ϵn2 + max{ϵ, 1/nd}. Then
there exists an ζ-injective randomized streaming algorithm S = (Bn)n≥0 for Z ≀ G with space
complexity 2 · s(R, n) + Θ(log n).

Proof sketch. A complete proof of the theorem can be found in [25, Theorem 8.9]. Fix a
symmetric generating set Σ for G and let a be a generator of Z. Let An = (Qn, Σ, ιn, ρn).
W.l.o.g. we can assume that Qn = [0, |Qn| − 1]. Fix an input length n. For an input word
w ∈ (Σ∪{a, a−1})≤n our randomized streaming algorithm for Z ≀G runs An on the projection
πΣ(w) of the word w to the subalphabet Σ. Initially, the algorithm guesses a state q ∈ Qn

according to the initial state distribution ιn and (independently from q) a prime number
p ∈ [2, α]. The number α will be fixed latter. For the moment, let us only mention that p

will have at most s(R, n) + Θ(log n) bits. Apart from the current state of An the algorithm
also stores a number z ∈ [0, p − 1] which initially is set to zero.

Assume that at some time instant the algorithm reads the letter aγ , where γ ∈ {−1, 1}.
Let q be the current An-state, which is a number in the range [0, |Qn| − 1]. The above prime
number p has to be chosen uniformly from the set of all primes of size Θ(|Qn| · nd+1). Then
the algorithm updates z ∈ [0, p − 1] as follows:

z := (z + γ · (n + 1)q) mod p.

With our input word w and a state q of An we associate a polynomial Pq,w(x) ∈ Z[x] as
follows: Let Rw be the set of all prefixes of w that end with a letter aγ and for s ∈ Rw define
σ(s) = γ ∈ {−1, 1} if s ends with aγ . Moreover, for every s ∈ Rw consider the An-state
qs = ρn(q, πΣ(s)) ∈ [0, |Qn| − 1]. We then define the polynomial

Pq,w(x) :=
∑

s∈Rw

σ(s) · xqs .

Note that this polynomial has degree at most |Qn| − 1 and all its coefficients have absolute
value at most n. Moreover, the number z = z(p, q, w) computed by the algorithm on input
w for the random choice p ∈ [2, α], q ∈ [0, |Qn| − 1] is

z(p, q, w) = Pq,w(n + 1) mod p. (1)

This concludes the description of the streaming algorithm. It remains to show for all words
u, v ∈ (Σ ∪ {a, a−1})≤n the following:
(a) If u ≡Z≀G v then Prob

p∈[2,α],q∈Qn

[ρn(q, πΣ(u)) = ρn(q, πΣ(v)) ∧ z(p, q, u) = z(p, q, v)] ≥ 1 − ζ.

(b) If u ̸≡Z≀G v then Prob
p∈[2,α],q∈Qn

[ρn(q, πΣ(u)) ̸= ρn(q, πΣ(v)) ∨ z(p, q, u) ̸= z(p, q, v)] ≥ 1 − ζ.

Let (fu, gu) ∈ Z ≀ G (resp., (fv, gv) ∈ Z ≀ G) be the group element represented by the word u

(resp., v). First assume that u ≡Z≀G v, i.e., fu = fv and gu = gv. From gu = gv we get

Prob
q∈Qn

[ρn(q, πΣ(u)) = ρn(q, πΣ(v))] ≥ 1 − ϵ. (2)



M. Lohrey and L. Lück 72:11

Moreover, from fu = fv and Lemma 15 one can deduce

Prob
p∈[2,α],q∈Qn

[z(p, q, u) = z(p, q, v)] ≥ Prob
q∈Qn

[Pq,u(x) = Pq,v(x)] ≥ 1 − 2ϵn2. (3)

Finally, (2) and (3) easily yield the conclusion of point (a). Now assume that u ̸≡Z≀G v. If
gu ̸= gv, i.e., then we get

Prob
q∈Qn

[ρn(q, πΣ(u)) ̸= ρn(q, πΣ(v))] ≥ 1 − ϵ ≥ 1 − ζ.

On the other hand, if the mappings fu and fv differ, then from Lemma 15 we obtain

Prob
q∈Qn

[Pq,u(n + 1) ̸= Pq,v(n + 1)] ≥ Prob
q∈Qn

[Pq,u(x) ̸= Pq,v(x)] ≥ 1 − 2ϵn2.

The first inequality follows from Cauchy’s bound. This, together with (1) and some stand-
ard bounds on the number of different prime factors of |Pq,u(n + 1) − Pq,v(n + 1)| yields
Probp∈[2,α],q∈Qn

[z(p, q, u) ̸= z(p, q, v)] ≥ 1 − ζ and finally the conclusion of point (b). ◀

It is easy to extend Theorem 16 to a wreath product Zp ≀ G with p prime. For a wreath
product Zpk ≀ G with p a prime and k ≥ 2 we can only prove the following weaker statement
using a polynomial identity testing algorithm for local rings from [3]. Putting it all together
we can show the following result; see [25, Section 8.3] for details.

▶ Theorem 17. Let G be a f.g. group for which there exists an ϵ-injective randomized
streaming algorithm R. Let A be a finitely generated abelian group. Then for all constants
ϵ ≤ ϵ′ < 1 and d ≥ 1 there exists a ζ-injective randomized streaming algorithm S for A ≀ G

with the following properties:
ζ ≤ O(ϵ′ + ϵn2) and s(S, n) ≤ O(s(R, n)2 + log n)
ζ ≤ O(1/nd + ϵn2) and s(S, n) ≤ O(s(R, n) + log n) if A is a direct product of copies of
Z and Zp with p prime.

▶ Corollary 18. Every free solvable group has randomized streaming space complexity Θ(log n).

Proof. Magnus’ embedding theorem [27] says that every free solvable group can be embedded
into an iterated wreath product Zm ≀ (Zm ≀ (Zm ≀ · · · )). Since Zm is linear, we can, using
Theorem 8, obtain an ϵ(n)-injective randomized streaming algorithm for Zm with space
complexity O(log n) for every inverse polynomial ϵ(n). We then apply the second statement
of Theorem 17 a constant number of times and obtain a randomized streaming algorithm with
space complexity O(log n). The lower bound follows from Theorem 4 and the Milnor-Wolf
theorem (see Remark 6). ◀

In [38] it is shown that the word problem of a free solvable group can be solved with a
randomized algorithm running in time O(n · logk n) for some constant k. Our algorithm
achieves the same running time (because for every new input symbol, only numbers of bit
length O(log n) have to be manipulated). In contrast to our algorithm, the algorithm from
[38] is non-streaming and does not work in logarithmic space.

7.3 Randomized streaming algorithms for free products
In [39], Waack proved that the word problem of a free product G ∗ H of two f.g. groups G

and H can be solved in logspace if the word problems of G and H can be solved in logspace.
Here, we show that Waack’s reduction can be also used for randomized streaming algorithms.
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For a group G and two subgroups A, B ≤ G, the commutator subgroup [A, B] ≤ G is the
group generated by all commutators [a, b] = a−1b−1ab with a ∈ A and b ∈ B. Let us denote
with F (Σ) the free group generated by the set Σ. A free group F is freely generated by the
set A ⊆ F if F is isomorphic to F (A). It is well known that the free group F2 = F ({a, b}) of
rank 2 contains a copy of the free group F (N) of countable infinite rank. For instance, the
mapping ϕ : N → F2 with ϕ(n) = a−nban defines an injective homomorphism ϕ : F (N) → F2.
The following group theoretic lemma underlies Waack’s reduction:

▶ Lemma 19 (c.f. [39, Proposition 4.2]). Let G and H be groups. Then [G, H] is a normal
subgroup of the free product G ∗ H such that (G ∗ H)/[G, H ] ∼= G × H. Moreover, [G, H ] is a
free group that is freely generated by the set of commutators {[g, h] | g ∈ G\{1}, h ∈ H \{1}}.

▶ Theorem 20. Let G and H be a f.g. groups for which there exist ϵ-injective randomized
streaming algorithms R = (An)n≥0 and S = (Bn)n≥0, respectively. Then, there exists a
(4n2 + 1)ϵ-injective randomized streaming algorithm (Cn)n≥0 for G ∗ H with space complexity
s(R, n) + s(S, n) + O(log n).

The proof of Theorem 20 is a bit technical and can be found in [25, Section 8.2]. In order
to test whether a word w is trivial in G ∗ H, Waack checks whether the image of w in the
quotient (G ∗ H)/[G, H ] ∼= G × H is trivial (for which algorithms for G and H can be used).
If this holds, then w represents an element of the free group [G, H], which by the above
remark can be embedded into F2. Waack then computes from w the corresponding image
in F2. Basically, we follow the same strategy but only obtain the image in F2 with high
probability using Lemma 15. For F2 (a linear group) we can then apply Theorem 8.

8 Lower bounds

In this section, we will construct groups with a large randomized streaming space complexity.
We will make use of the disjointness problem from communication complexity. The disjoint-
ness problem is defined as follows: Alice (resp., Bob) has a bit string u ∈ {0, 1}n (resp.,
v ∈ {0, 1}n) and their goal is to determine whether there is a position 1 ≤ i ≤ n such that
u[i] = v[i] = 1 (u[i] and v[i] are the bits at position i). It is well known that the randomized
communication complexity for the disjointness problem is Θ(n), see e.g. [21, Section 4.6].

▶ Theorem 21. Let H be a f.g. non-abelian group and G be a f.g. infinite group. The
randomized streaming space complexity of H ≀ G is Θ(n).

Proof. Let R = (An)n≥0 be a randomized streaming algorithm for the word problem of
H ≀ G. We show that we obtain a randomized communication protocol for the disjointness
problem with communication cost 3 · s(R, 12n − 8).

Fix n ≥ 1 and two elements g, h ∈ H with [g, h] ̸= 1. We can assume that g and h

are generators of H. We also fix a finite generating set for G. Let s := t1t2 · · · tn−1 be a
word over the generators of G such that t1t2 · · · ti and t1t2 · · · tj represent different elements
whenever i ̸= j. Such a word exists since the Cayley graph of G is an infinite locally finite
graph and hence contains an infinite ray. For a word w = a0a1 · · · an−1 ∈ {0, 1}n and an
element x ∈ {g, h, g−1, h−1} define the word w[x] = xa0t1xa1t2 · · · xan−2tn−1xan−1s−1. It
represents the element (fw,x, 1) ∈ H ≀ G with supp(fw,x) = {t1 . . . ti | i ∈ [0, n − 1], w[i] = 1}
and fw,x(t) = x for all t ∈ supp(fw,x). Therefore, for two words u, v ∈ {0, 1}n we have
u[g]v[h]u[g−1]v[h−1] = 1 in H ≀ G if and only if there is a position i ∈ [0, n − 1] with
u[i] = v[i] = 1. Note that the length of the word u[g]v[h]u[g−1]v[h−1] is 4(3n − 2) = 12n − 8.

Our randomized communication protocol for the disjointness problem works as follows,
where u ∈ {0, 1}n is the input for Alice and v ∈ {0, 1}n is the input for Bob.
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Alice reads the word u[g] into A12n−8 and sends the resulting state to Bob.
Bob continues the run in the state he received from Alice, reads the word v[h] into the
automaton and sends the resulting state back to Alice.
Alice continues the run with the word u[g−1] and sends the resulting state of Bob.
Bob continues the run with v[h−1] and finally accepts if the resulting state is accepting.

Both Alice and Bob use their random coins in order to make the random decisions in the
PFA A12n−8. Clearly, the protocol is correct and its communication cost is 3 · s(R, 12n − 8).
We hence must have 3 · s(R, 12n − 8) ∈ Ω(n) which implies s(R, m) ∈ Ω(m). ◀

In 1965, Thompson introduced three finitely presented groups F < T < V acting on the unit-
interval, the unit-circle and the Cantor set, respectively. Of these three groups, F received
most attention (the reader should not confuse F with a free group). This is mainly due to the
still open conjecture that F is not amenable. The group F consists of all homeomorphisms
of the unit interval that are piecewise affine, with slopes a power of 2 and dyadic breakpoints.
It is a finitely presented group. Important for us is the fact that F contains a copy of F ≀ Z
[17, Lemma 20]. Since F is non-abelian, Theorem 21 implies:

▶ Corollary 22. The randomized streaming space complexity of Thompson’s group F is Θ(n).

Grigorchuk’s group was introduced by Grigorchuk in [14]. It is a f.g. group of automorphisms
of the infinite binary tree; the generators are usually denoted a, b, c, d and satisfy the identities
a2 = b2 = c2 = d2 = 1 and bc = cb = d, bd = db = c, dc = cd = b. Grigorchuk’s group is a f.g.
infinite torsion group and was the first example of a group with intermediate growth and the
first example of a group that is amenable but not elementary amenable.

▶ Theorem 23. Let G be the Grigorchuk group. Then the following hold:
The deterministic streaming space complexity of G is O(n0.768).
The randomized streaming space complexity of G is Ω(n0.5).

Proof sketch. The first statement follows from Theorem 3 and the upper growth bound
exp(n0.768) for the Grigorchuk group; see [5]. For the second statement we use a non-abelian
subgroup K ≤ G such that K contains a copy of K × K, see [9, p. 262]. This allows a similar
reduction from the disjointness problem as in the proof of Theorem 21; see [25, Theorem 9.3]
for details. ◀

9 Open problems

We conclude with some open problems.
Can the space bound O(s(R, n)2 +log n) in Theorem 17 be reduced to O(s(R, n)+log n)?
What is the space complexity of randomized streaming algorithms for hyperbolic groups?
The best complexity bound for the word problem for a hyperbolic group is LogCFL, which
is contained in DSPACE(log2 n) [24].
Is there a group that is not residually finite and for which there exists a randomized
streaming algorithm with space complexity o(n)? An example of group that is not
residually finite is the Baumslag-Solitar group BS(2, 3). The word problem for every
Baumslag-Solitar group BS(p, q) can be solved in logarithmic space [41].
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Abstract
The Skolem Problem asks to decide whether a given integer linear recurrence sequence (LRS) has a
zero term. Decidability of this problem has been open for many decades, with little progress since
the 1980s. Recently, a new approach was initiated via the notion of a Skolem set – a set of positive
integers relative to which the Skolem Problem is decidable. More precisely, S is a Skolem set for a
class L of integer LRS if there is an effective procedure that, given an LRS in L, decides whether
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while infinite, had density zero. In the present work we construct a Skolem set of positive lower
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1 Introduction

An (integer) linear recurrence sequence (LRS) ⟨un⟩∞
n=0 is a sequence of integers satisfying a

recurrence of the form

un+k = a1un+k−1 + · · · + akun (n ∈ N) , (1)

where the coefficients a1, . . . , ak are integers. The celebrated theorem of Skolem, Mahler,
and Lech [23, 16, 14] describes the set of zero terms of such a recurrence:

▶ Theorem 1. Given an integer linear recurrence sequence ⟨un⟩∞
n=0, the set {n ∈ N : un = 0}

is a union of finitely many arithmetic progressions together with a finite set.

The statement of Theorem 1 can be refined by considering the notion of non-degeneracy of
an LRS. An LRS is non-degenerate if in its minimal recurrence the quotient of no two distinct
roots of the characteristic polynomial is a root of unity. A given LRS can be effectively
decomposed as the merge of finitely many non-degenerate sequences, some of which may be
identically zero. The core of the Skolem-Mahler-Lech Theorem is the fact that a non-zero
non-degenerate linear recurrence sequence has finitely many zero terms. Unfortunately, all
known proofs of this last result are ineffective: it is not known how to compute the finite set
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of zeros of a given non-degenerate linear recurrence sequence. It is readily seen that existence
of a procedure to do so is equivalent to the existence of a procedure to decide whether an
arbitrary given LRS has a zero term. The problem of deciding whether an LRS has a zero
term is variously known as Skolem’s Problem or the Skolem-Pisot Problem. We refer to [5,
Chapter 6] and [24, Chapter X] for expository accounts of the Skolem-Mahler-Lech Theorem
and discussion of the ineffectiveness of known proofs.

Decidability of Skolem’s Problem is known only for certain special cases, based on the
relative order of the absolute values of the characteristic roots. Say that a characteristic root
λ is dominant if its absolute value is maximal among all the characteristic roots. Decidability
is known in case there are at most 3 dominant characteristic roots, and also for recurrences
of order at most 4 [18, 26]. However for LRS of order 5 it is not currently known how to
decide Skolem’s Problem. For a (highly restricted) subclass of LRS, the paper [1] obtains
nearly matching complexity lower and upper bounds for the problem.

In computer science, Skolem’s Problem lies at the heart of key decision problems in
formal power series [21, 4], stochastic model checking [20], control theory [6, 10], and loop
termination [19]. The problem is also closely related to membership problems on commutative
matrix groups and semigroups, as considered in [7, 13]. We note that in several of the above-
mentioned citations, the Skolem Problem is used as a reference to show hardness of other
open decision problems.

A recent paper [15] initiated a new approach to the decidability of Skolem’s Problem.
Rather than place syntactic restrictions on sequences (e.g., on the order of the recurrence or
dominance pattern of the characteristic roots), the idea is to restrict the domain in which to
search for zeros. To this end, [15] introduced the following definition.

▶ Definition 2. An infinite set S ⊆ N is a Skolem set for a class L of LRS if there is an
effective procedure that, given an LRS ⟨un⟩∞

n=0 in L, determines whether there exists n ∈ S
with un = 0.

The main technical contribution of [15] was to exhibit a Skolem set for the class of all
LRS. Such sets are called Universal Skolem sets. Specifically, define f : N \ {0} → N by
f(n) = ⌊

√
log n⌋, and inductively define the sequence ⟨sn⟩∞

n=0 by s0 = 1 and sn = n! + sf(n)
for n > 0. Then {sn : n ∈ N} is a Universal Skolem set. This construction yields a very sparse
set, which has density zero. This leads to the question of whether one can construct Skolem
sets of positive lower density. Decidability of the Skolem Problem is, by definition, equivalent
to the assertion that N is a Universal Skolem set (in fact, decidability follows already from
the existence of Universal Skolem set that contains an infinite arithmetic progression). Hence
seeking Skolem sets of increasingly higher density is a natural direction in which to make
progress on the Skolem Problem.

The main result of the present paper exhibits a set S of positive lower density, i.e., having

lim inf
n→∞

|S ∩ {1, . . . , n}|
n

> 0 ,

such that S is a Skolem set for the class of simple LRS. For short we call S a Simple
Universal Skolem set. Recall that a simple LRS is one for which the characteristic roots of its
minimal-order recurrence are simple. The Skolem Problem for simple LRS is open already
for LRS of order 5.

The construction of S is fundamentally different from the example in [15]. Roughly
speaking, our set consists of positive integers n that admit many representations of the
form n = Pq + a, with P, q prime and q, a logarithmic in n. The formal definition of the
set is given in Section 3. In Section 4 we show that one can decide, given a simple LRS
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⟨un⟩∞
n=0, whether there exists n ∈ S with un = 0. The crucial ingredients here are results

of Schlickewei and Schmidt [22] that give explicit upper bounds on the number of solutions
of certain exponential Diophantine equations. Such results have previously been used to
give effective upper bounds on the number of zeros of a given non-degenerate LRS (see [8,
Theorem 2.7]), thereby strengthening the statement of the Skolem-Mahler-Lech Theorem
(which, recall, asserts mere finiteness of the number of zeros). However such bounds do not
obviously yield a solution to the Skolem Problem itself, which would instead require effective
bounds on the magnitude of the zeros of an LRS. The essential novelty of our approach is,
via the notion of representation, to leverage bounds on the number of solutions of exponential
Diophantine equations to obtain bounds on the magnitude of the zeros of a simple LRS that
lie in S. In Section 5, we show that the set S has positive lower density. Here, classical
number-theoretic techniques for upper bounding the number of pairs of primes in certain
linear relations (such as twin primes) play the main role.

As discussed in the Conclusion, an extended version of this paper will show that for the
set S introduced in this paper, the Skolem Problem is decidable relative to S for the class of
all LRS, not just the simple ones. In the Conclusion we also briefly discuss the prospects of
refining our analysis of the density of S.

2 Background

In this section we briefly recall some relevant notation and definitions concerning number
fields. We also recall a result from [9, 25] on unit equations that is derived from the Subspace
Theorem and that will play a crucial role in our construction of a Simple Universal Skolem set.

Throughout we use the Vinogradov notation f ≪ g for f ∈ O(g).
Recall that a number field K is a subfield of C that is finite dimensional as a vector space

over Q. The subring of algebraic integers in K is denoted OK. For such a field K, we denote
by Gal(K/Q) the group of automorphisms of K. Given α ∈ K, the norm of α is defined by

NK/Q(α) =
∏

σ∈Gal(K/Q)

σ(α) .

The norm NK/Q(α) is rational for all α ∈ K; moreover NK/Q(α) is an integer if α ∈ OK.
Clearly we have |N(α)| < MdK , where dK is the degree of K and

M := max
σ∈Gal(K/Q)

|σ(α)|

is the house of α.
We say that α, β ∈ K are multiplicatively dependent if there exist integers k, ℓ, not

both zero, such that αk = βℓ. Observe that if α ∈ K is not a root of unity then given
σ ∈ Gal(K/Q), every multiplicative relations αk = σ(α)ℓ is such that k = ±ℓ. Indeed,
repeatedly applying σ to this relation we deduce that αkd = (σd(α))ℓd for all d ≥ 1. In
particular, choosing d to be the order of σ we get that αkd = αℓd and hence k = ±ℓ.

We recall that every ideal in OK can be written uniquely as the product of prime ideals.
Given a rational prime p ∈ Z, we say that a prime ideal p lies above p if p is a factor of pOK.
In this case we have that p | NK/Q(α) for all α ∈ p.

We will need a result of Schlickewei and Schmidt [22] that gives upper bounds on the
number of integer solutions of certain exponential Diophantine equations. The result (which
we have specialised to our setting) is as follows:

MFCS 2022
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▶ Theorem 3 ([22, Theorem 1]). For i = 1, . . . , ℓ, let αi, βi, Ci be non-zero and lie in a
number field of degree d over Q. Suppose that the system of equations

αz1
i βz2

i = αz1
j βz2

j i, j ∈ {1, . . . , ℓ}

has no non-zero solution in integers z1, z2. Then the number of solutions of the equation

ℓ∑
i=1

Ciα
x1
i βx2

i = 0 (2)

in integers x1, x2 for which no proper sub-sum of the left-hand side vanishes is at most
235ℓ2

d6ℓ2 .

3 The Definition of the Set S

In this section we give the definition of our Simple Universal Skolem set S.
For a positive real number x > 0, denote by log x the natural logarithm of x. For a

positive integer k ≥ 1, we inductively define the iterated logarithm function logk x as follows:
log1 x := log x, and for k ≥ 2 we set logk x := max{1, logk−1(log x)}. Thus, for x sufficiently
large, logk x is the k-fold iterate of log applied to x. We omit the subscript when k = 1.

Fix a positive integer parameter X. We define disjoint intervals

A(X) :=
[
log2 X,

√
log X

]
and B(X) :=

[
log X√
log3 X

,
2 log X√

log3 X

]
.

We further define a representation of an integer n ∈ [X, 2X] to be a triple (q, P, a) such that
q ∈ A(X), a ∈ B(X), P and q are prime, and n = Pq + a. We say that two representations
(q, P, a) and (q′, P ′, a′) of the same number overlap if either a + q = a′ + q′ or a − q = a′ − q′.
It is clear that two overlapping representations (q, P, a) ̸= (q′, P ′, a′) must have both a ̸= a′

and q ̸= q′.
We denote by r(n) the number of representations of n. Finally we put

S(X) := {n ∈ [X, 2X] : r(n) > log4 X and no two representations of n overlap}

and we define

S :=
⋃

X≥1
S(X) .

This completes the definition of the set S. The rest of the paper is devoted to showing
that S is a Simple Universal Skolem set and that it has positive lower density.

4 Solving the Simple Skolem Problem Relative to S

The following result is the first half of the argument that the set S, defined in Section 3, is a
Simple Universal Skolem set. We use the bounds on the solutions of exponential Diophantine
equations stated in Section 2 to show that the Skolem Problem for simple LRS is decidable
relative to S.

▶ Proposition 4. Given a non-degenerate simple linear recurrence sequence ⟨un⟩∞
n=0, there

is an effectively computable upper bound on the set {n ∈ S : u(n) = 0}.
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Proof. Fix a non-degenerate simple linear recurrence sequence ⟨un⟩∞
n=0 with distinct charac-

teristic roots α1, . . . , αℓ. Recall that non-degeneracy is the condition that αi/αj is not a root
of unity for all i ̸= j. It is well-known that un admits an exponential-sum representation

un =
ℓ∑

i=1
Ciα

n
i ,

where the constants Ci lie in the number field K := Q(α1, . . . , αℓ). Multiplying the sequence
⟨un⟩∞

n=0 by a suitable integer, we may assume without loss of generality that the Ci lie in
the ring of integers OK.

Suppose that n ∈ S is such that un = 0. By the definition of S we have that n ∈ S(X)
for some positive integer X. We show that there is an upper bound on X that is effectively
computable from the description of the sequence ⟨un⟩∞

n=0. Since n ≤ 2X this gives the
desired effective upper bound on n.

Fix n ∈ S(X) such that un = 0 and consider a representation (q, P, a) of n. Then
n = qP + a ≥ X, and so

P ≥ X − a

q
≥ X − log X√

log X
>

√
X (3)

for X sufficiently large.
Let p be a prime ideal of OK lying above P and let σ ∈ Gal(K/Q) be a Frobenius

automorphism corresponding to p, that is, such that σ(α) ≡ αP mod p for all α ∈ OK. From
un = 0 and n = qP + a we have

ℓ∑
i=1

Ciα
qP +a
i = 0 .

Since σ(αi) ≡ αP
i mod p for all i ∈ {1, . . . , ℓ}, we can write

ℓ∑
i=1

Ciσ(αi)qαa
i ≡ 0 mod p . (4)

Taking norms, we see that P divides

N := NK/Q

(
ℓ∑

i=1
Ciσ(αi)qαa

i

)
.

Moreover, we have the inequality

|N | ≤ M (1+q+a)dK , (5)

where M = max {|αi|, |βi|, |Ci| : 1 ≤ i ≤ ℓ} and dK is the degree of K over Q.
From the fact that q ∈ A(X) and a ∈ B(X), we see that for X sufficiently large we have

a, q < log X
8dK log M . In this case, Equation (5) yields N ≪ X1/4. Hence for X large enough,

using Equation (3), we have N < X1/2 < P . But N is an integer that is divisible by P , so it
must be zero. We conclude that, for sufficiently large X, the left-hand side of (4) is zero;
that is,

ℓ∑
i=1

Ciσ(αi)qαa
i = 0 . (6)
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Carrying over the terminology for representations, let us say that two different solutions
q, a and q′, a′ of Equation (6) overlap if either a + q = a′ + q′ or a − q = a′ − q′. Our goal is to
give an explicit upper bound on the size of any collection of pairwise non-overlapping solutions
of (6). For this, it is enough to give an upper bound under the additional assumption that
no vanishing proper sub-sum of the left-hand side of (6) vanishes. Multiplying the latter
quantity by the number (at most 2ℓ) of possible sub-sums gives the desired upper bound on
the total number of non-overlapping solutions.

Consider an instance of Equation (6) for which no proper sub-sum vanishes. Let G be
the additive group of vectors (z1, z2) ∈ Z2 such that

σ(αi)z1αz2
i = σ(αj)z1αz2

j

for all 1 ≤ i < j ≤ ℓ. Note that there exist effective upper bounds on the magnitude of the
entries a basis of G [17].

For (z1, z2) ∈ G we have σ(αi/αj)z1 = (αi/αj)−z2 . As shown in Section 2, since αi/αj is
not a root of unity we must have either z1 = z2 or z1 = −z2. We thus have the following
three possibilities for the form of the group G – either G = {0}, G = {(z, z) : z ∈ mZ}, or
G = {(z, −z) : z ∈ mZ}, where m ∈ Z. We consider three cases according to these three
eventualities.

Case (i): G = {0}. Applying Theorem 3, the total number of solutions (overlapping or
not) of Equation (6) in this case is at most 235ℓ2(dK)6ℓ2 .

Case (ii): G = {(z, z) : z ∈ mZ} for some m ∈ Z. In this case we have that σ(αi)mαm
i

takes the same value for all i ∈ {1, . . . , ℓ}. Dividing Equation (6) by the ⌊q/m⌋-th power of
this common value we get

ℓ∑
i=1

C̃iα
a−q
i = 0 ,

where each constant C̃i is uniquely determined by Ci and the residue of q modulo m.
In other words, for every solution (q, a) of Equation (6), we have that q − a is a zero of

one of a finite number (at most mℓ) of non-degenerate LRS, each of which takes values in K
and has order at most k. Applying Theorem 3, the number of different values of q − a over
all solutions (q, a) is at most (2k)35k2(dK)6k2

mℓ. But the latter quantity is then a bound on
the cardinality of a set of pairwise non-overlapping solutions of Equation (6).

Case (iii): G = {(z, −z) : z ∈ mZ} for some m ∈ Z. The argumentation is almost exactly
as in Case (ii). We have that σ(αi)mα−m

i takes the same value for all i ∈ {1, . . . , ℓ}. Dividing
Equation (6) by the ⌊q/m⌋-th power of this common value we get

ℓ∑
i=1

C̃iα
a+q
i = 0

where each constant C̃i is uniquely determined by Ci and the residue of q modulo m. The
argument now follows exactly as in Case (ii). In particular, we get the same upper bound on
the number of solutions under Case (iii) as under Case (ii).

We can now summarise and wrap up. If n ∈ S(X) is a zero of un then for every
representation n = qP + a it holds that (q, a) is a solution of Equation (6). Moreover, since
n ∈ S(X), no two representations of n are overlapping. Since we have an effective upper
bound on the cardinality of a set of pairwise non-overlapping solutions of (6), we get an
effective upper bound (that does not depend on n) for the number of representations of n.
Finally, since by the definition of S(X) the number of representations is at least log4 X, we
obtain the desired upper bound on X. ◀
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5 The Set S has Positive Lower Density

Our goal in this section is to show that the set S has positive lower density. The key tool is the
following result, (see [11, Chapter 2.6, Theorem 2.3]), derived using Selburg’s upper-bound
sieve, that bounds from above the number of times that two linear forms simultaneously take
prime values.

▶ Theorem 5. Let a1, a2, b1, b2 be integers such that

E := |a1a2(a1b2 − a2b1)|

is non-zero. Then

|{t ≤ X : a1t + b1, a2t + b2 both prime}| ≪ X

(log X)2
E

φ(E) ,

where the implied constant is independent of a1, a2, b1, b2, and φ denotes Euler’s totient
function.

To help illustrate this result, observe that in case a1 = a2 = 1, b1 = 0, and b2 = 2, Theorem 5
gives an upper bound on the number of twin primes less than X.

We will also need the following straightforward proposition. (Note that here and in the
rest of this section, variables p and q always range over prime numbers.)

▶ Proposition 6.
∑

q∈A(X)
1
q ∼ log3 X

Proof. We use the fact (see [3, Theorem 13.6]) that there exists an absolute constant c such
that∑

p≤t

1
p

= log log t + c + O

(
1

log t

)
for all t ≥ 2. Using this fact, we have∑

q∈A(X)

1
q

= log log
√

log X − log log log2 X + o(1)

= log3 X − log4 X + o(1)
∼ log3 X

for large enough X. ◀

We further note the following useful fact concerning the Euler function (see [3, Exercise
2.10(xii)]):

n∑
k=1

k

φ(k) ≪ n . (7)

The rest of this section is devoted to a proof of the following result:

▶ Theorem 7. The set S, defined in Section 3, has strictly positive lower density.

Recall from Section 3 that S :=
⋃

X≥1 S(X), where S(X) ⊆ [X, 2X]. Hence, to prove that S
has positive lower density, it suffices to show that |S(X)| ≫ X for X sufficiently large. We
first argue that for sufficiently large X we have

|{n ∈ [X, 2X] : r(n) > log4 X}| ≫ X . (8)
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After that, we deal with those n that have overlapping representations (cf. the definition of
S(X) in Section 3).

To prove (8) we use the moment method. To set this up, let

Si :=
∑

n∈[X,2X]
r(n)>log4 X

r(n)i for i ∈ {0, 1, 2} .

The inequality (8) is equivalent to the assertion that S0 ≫ X. Thinking of S1 as the inner
product of the vector

⟨r(n) : n ∈ [X, 2X], r(n) > log4 X⟩

and the constant all 1’s vector, applying the Cauchy-Schwartz inequality we get that

S2S0 ≥ S2
1 .

To show that S0 ≫ X we will use a lower bound on S1 and an upper bound on S2.

5.1 Lower bound on S1

In this section we show that S1 ≫ X
√

log3 X.
Fix q ∈ A(X). Then for P ∈

[
X
q , 1.5X

q

]
we have that qP ∈ [X, 1.5X]. Furthermore, if

a ∈ B(X), then for sufficiently large X we have a < log X < 0.5X, so that qP + a ∈ [X, 2X].
Thus, for large X and each fixed prime q ∈ A(X), the number of representations (q, P, a)
with qP + a ∈ [X, 2X] is at least the product of the number of primes P ∈

[
X
q , 1.5X

q

]
and the

cardinality of the set B(X). But, for large enough X, the number of primes P ∈
[

X
q , 1.5X

q

]
is

π

(
1.5X

q

)
− π

(
X

q

)
>

0.3X

q log X
.

Thus, for fixed q, the number of representations (q, P, a) with qP + a ∈ [X, 2X] is at least

0.3X

q log X

log X√
log3 X

≫ X

q
√

log3 X
, (9)

where the implied constant is independent of q.
Summing the lower bound (9) over q ∈ A(X), we have

∑
n∈[X,2X]

r(n) ≫ X√
log3 X

 ∑
q∈A(X)

1
q


≫ X

√
log3 X (by Proposition 6).

Finally, in order to get a lower bound on S1 we must remove from the left-hand side
above, the summands r(n) for which r(n) ≤ log4 X. But the contribution of these to the
total sum is O(X log4 X) = o(X

√
log3 X), and so we conclude that S1 ≫ X

√
log3 X.

For future reference, we observe that essentially the same argument shows that S1 ≪
X
√

log3 X. Indeed, for each fixed q ∈ A(X), the number of primes P such that qP ∈ [X, 2X]
is ≪ X

q log X . Since the number of a ∈ B(X) is at most log X√
log3 X

, the number of representations

(q, P, a) such that qP + a ∈ [X, 2X] is ≪ X

q
√

log3 X
. Now, summing over q ∈ A(X) and using

Proposition 6, we obtain the bound S1 ≪ X
√

log3 X.
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5.2 Upper bound on S2

Our goal is to show that S2 ≪ X log3 X. To this end we consider S2 as the number of pairs
of representations (q, P, a), (q′, P ′, a′) such that qP + a = q′P ′ + a′, with the common sum
lying in the interval [X, 2X]. We break the count down into three cases.
Case (i). Let us first consider the number of such pairs with a = a′. In this case we have

qP = q′P ′. But then, since q and q′ are small and P and P ′ are large, we get that q = q′

and P = P ′, and hence (q, P, a) = (q′, P ′, a′). Thus the number of such pairs is equal to
S1. But, as noted at the conclusion of Section 5.1, we have S1 ≪ X

√
log3 X.

Case (ii). We next consider the number of pairs of representations with a ̸= a′ and q = q′.
In this case we have

P − P ′ = m, where m := a − a′

q
.

By Theorem 5, for each fixed m the number of primes P ≤ X/q such that P + m is also
prime is

≪ X

q(log X)2
m

φ(m) .

Furthermore, for fixed q and m, the number of choices of a, a′ with m = a−a′

q is at most
the number of choices of a, that is, at most 2 log X√

log3 X
. Thus, for fixed q and m, the total

number of pairs of representations (q, P, a), (q′, P ′, a′) with qP + a = q′P ′ + a′ ∈ [X, 2X]
and m = a−a′

q is

≪ X

q(log X)2
m

φ(m)
2 log X√

log3 X

= 2X

q(log X)
√

log3 X

m

φ(m) .

From the fact that a, a′ ∈ A(X) we have m ≤ 2 log X

q
√

log3 X
. Summing up over all values of

m, we get that the total number of solutions for fixed q is

≪ 2X

q(log X)
√

log3 X

 ∑
m≤ 2 log X

q
√

log3 X

m

φ(m)


≪ X

q2 log3 X
.

In the above, we used the fact (see Equation (7)) that
∑

m≤t m/φ(m) ≪ t.
Now we sum up over q > log2 X, getting that the number of such solutions is at most

X

log3 X

∑
q>log2 X

1
q2 ≪ X

(log2 X)log3 X
= o(X) .

Case (iii). Finally, let us count the rest of the solutions; namely the ones for which a ̸= a′

and q ̸= q′. Fixing a, a′, q, q′ we have

qP − q′P ′ = a′ − a .

The general solution of the above equation in integers P and P ′ can be written in the form
P = p0 + q′t and P ′ = p′

0 + qt, where t is an integer parameter and p0, p′
0 is a particular

solution, chosen to be minimal among positive integer solutions (simultaneously, in both
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coordinates). The condition that Pq + a ≤ 2X implies that P ≤ 2X/q and hence that
t ≤ 2X

qq′ .
Using the assumption a ̸= a′, we can apply Theorem 5 to deduce that the number of
t ≤ 2X

qq′ such that both p0 + q′t and p′
0 + qt are prime is

≪ X

qq′(log X)2
|a − a′|

φ(|a − a′|) .

We keep a and q fixed and sum up over q′ ̸= q and a′ ̸= a, getting a bound of

≪ X

q(log X)2

 ∑
q′∈A(X)

1
q′

 ∑
a′∈B(X)

a̸=a

|a − a′|
φ(|a − a′|)

≪ X

q(log X)2 · log3 X · 2 log X√
log3 X

(by Proposition 6 and Equation 7)

=
X
√

log3 X

q log X
.

To conclude the argument, we sum up over all a’s and all q’s, getting an upper bound

≪
X
√

log3 X

log X

2 log X√
log3 X

 ∑
q∈A(X)

1
q


≪ X log3 X (by Proposition 6).

Combining the bounds in the above three cases, we conclude that S2 ≪ X log3 X.

5.3 Putting Things Together
From the Cauchy-Schwarz inequality S0S2 ≥ S2

1 and the above-established bounds S1 ≫
X
√

log3 X and S2 ≪ X log3 X, we get that S0 ≫ X.
To transform the lower bound on S0 to one on S(X), it remains to estimate the number

of n ∈ [X, 2X] that admit two overlapping representations. We claim that the total number
of such n is o(X). From this we conclude that |S(X)| ≫ X, which was our ultimate goal.

We conclude by justifying the preceding claim. For this it suffices to show that the
number of pairs of overlapping representations in the interval [X, 2X] is o(X). To this end,
consider two representations (q, P, a) ̸= (q′, P ′, a′) of the same number n ∈ [X, 2X]. Assume
that q + a = q′ + a′ (the argument in case q − a = q′ − a′ requires only minor changes).

Now n − (q + a) = q(P − 1) = q′(P ′ − 1), and so qP − q′P ′ = (q′ − q). Furthermore,
as noted in Section 3, for two such overlapping representations, we have q ̸= q′. Thus the
general solution of the equation qP − q′P ′ = (q′ − q) in positive integers P and P ′ has the
form P = 1 + tq′ and P ′ = 1 + qt for a nonnegative integer parameter t ≪ X/qq′. By
Theorem 5, the number of t such that both 1 + tq and 1 + tq′ are prime is

≪ X

qq′(log X)2
|q − q′|

φ(|q − q′|)

≪ X log3 X

qq′(log X)2 .

In the above we have used the inequality m/φ(m) ≪ log2 m [12, Theorem 328], with
m = |q − q′| < log X for large X.

The argument above shows that for q ̸= q′, the number of pairs of primes P, P ′ for which
there exist pairs of overlapping representations (q, P, a), (q′, P, a′) of some n ∈ [X, 2X] is at
most X log3 X

qq′(log X)2 . Summing up over the at most log X possible values of a ∈ B(X), we see
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that for fixed q ̸= q′ the total number of such pairs of overlapping representations is

≪ X log3 X

qq′ log X
.

Here we used the fact that, thanks to the equation q + a = q′ + a′, the choice of q, q′, a

uniquely determines a′.
Summing up over q, q′, we get that the number of such possibilities is

≪ X log3 X

log X

 ∑
q∈A(X)

1
q

2

≪ X(log3 X)3

log X
(by Proposition 6)

= o(X) .

This concludes the proof of the claim.

6 Conclusion

We have defined a set S ⊆ N of positive lower density relative to which the Skolem Problem
for simple LRS is decidable. In an extended version of this paper we will show that we
can solve the Skolem Problem relative to (a slight variant of) S for all LRS, not just the
simple ones. For this we use methodology of Amoroso and Viada [2] to give effective upper
bounds on the number of solutions of a class of bivariate polynomial-exponential Diophantine
equations, generalising the analysis in Section 4. We are also continuing to study the lower
density of S. In particular, a future work will show that the set has lower density one, under
certain heuristic assumptions on the distributions of primes, similar to the Cramér heuristic
(as used to justify Cramér’s conjecture on prime gaps).
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Abstract
We study the problem of active learning deterministic visibly pushdown automata. We show that
in the classical L∗-setting, efficient active learning algorithms are not possible. To overcome this
difficulty, we propose the accessible stack setting, where the algorithm has the read and write access
to the stack. In this setting, we show that active learning can be done in polynomial time in the
size of the target automaton and the counterexamples provided by the teacher. As counterexamples
of exponential size are inevitable, we consider an algorithm working with words in a compressed
representation via (visibly) Straight-Line Programs. Employing compression allows us to obtain
an algorithm where the teacher and the learner work in time polynomial in the size of the target
automaton alone.
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1 Introduction

Visibly pushdown automata (VPA), also known as input-driven pushdown automata, are a
subclass of pushdown automata, in which the type of stack operation is determined by the
input letter [33, 4]. This implies that the stack height, but not its content, is determined
by the input word. This enables the construction of the product VPA from two given VPA.
In consequence, the class of visibly pushdown languages recognized by VPA is closed under
intersection, union and complement, which makes the universality problem decidable.

Even though VPA can be determinized, deterministic VPA (DVPA) enjoy better com-
plexity properties: DVPA recognizing the union, the intersection or the complement of other
DVPAs can be computed in polynomial time. In consequence, inclusion, equivalence and
universality for DVPA can be decided in polynomial time. In contrast, the universality
problem for VPA is ExpTime-complete, which implies that the exponential blow-up in the
complementation (resp., determinization) of VPA is unavoidable. These properties render
DVPA attractive for verification [16, 2, 28, 15], XML processing [31], approximating recurrent
neural networks [12] and others [22].

For successful applications of DVPA, elimination of redundancy is essential. Furthermore,
beyond minimization of a given DVPA [17], the automaton can be given implicitly, or before
the minimization it can be too big to be constructed. The problem of minimization without
explicit construction of the input DVPA can be addressed with active learning.

Active learning of automata has been originally proposed for deterministic finite-state
automata (DFA) [6] with a minimally adequate teacher, which is an oracle for a hidden
regular language L. The teacher answers membership queries whether a given word belongs
to L, and equivalence queries whether a proposed automaton recognizes L, and if not it
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returns a counterexample. There is a polynomial-time algorithm, called the L∗ algorithm,
which only asks membership and equivalence queries and returns the minimal DFA AL

recognizing L. Therefore, to construct the minimal DFA AL, we only need to be able to
answer the above queries; the explicit construction of the input automaton can be avoided.

While the L∗ algorithm is versatile and has been generalized to various types of automata,
extensions of the L∗ algorithm to pushdown languages are elusive [7]. The main problems are
the lack of the counterpart of the Myhill-Nerode theorem for pushdown languages (despite
some attempts [13]) and the complexity of equivalence checking for DPDA, which is decidable
but currently the only upper bound is primitive recursive [41, 24]. However, there is a
counterpart of Myhill-Nerode theorem for visibly pushdown languages [3] and equivalence
checking for DVPA is decidable in polynomial time. Thus, we focus our research on DVPA.

Still, active learning visibly pushdown languages is elusive. First, the canonical DVPA
defined based on the right congruence relation from [3] is not a minimal-size DVPA recognizing
a given language; it can be even exponentially larger than a minimal equivalent DVPA [3].
Second, a minimal-size DVPA recognizing a given visibly pushdown language is not unique,
which indicates difficulty in improving the definition of the canonical DVPA. Finally, the
minimization problem for DVPA is NP-complete, which rules out possible generalizations of
the L∗ algorithm, which would return any minimal-size DVPA (unless P=NP). For these
reasons, we adapt the active learning framework to learn DVPA rather than their languages,
i.e., we consider queries, which depend on the automaton structure.

1.1 Our framework
In our framework, we consider a hidden DVPA, which we call the target automaton, and the
teacher answering queries about it. The learning algorithm is expected to return a DVPA
equivalent to the target DVPA. We assume that we can observe the stack content. To model
this, we introduce a third type of queries, called stack content queries, which return the stack
content of the hidden automaton upon reading a given input.

This alone is insufficient to circumvent the hardness inherited from minimization of DVPA
(see Proposition 1). Thus, we additionally assume that we can change the stack content
during the computation. To model writing, we employ control words consisting of standard
letters and special control letters. A control letter is of the form u, where u is the stack
content. Upon reading u, the automaton swaps its stack content to u, while retaining the
current state. Control words can be sent by the algorithm as parameters for appropriate
queries. The ability to swap the stack content to the one provided in the word makes it
possible to reveal behavior of the target automaton under certain stack contents.

We first discuss the framework, in which there may be an arbitrary number of control
letters altering the stack content. Such an approach directly reduces active learning of DVPA
to active learning of regular languages. This technique can be employed for minimization
of the product of DVPA while avoiding the need of the construction of the whole product
in the first place (Section 5.1). The drawback is that the returned automata may contain
states unreachable with any path that obeys stack operations (i.e., the usual runs in DVPA).

To avoid unreachable states, we propose another framework, in which all words contain
at most one control letter (Section 6). In this setting, active learning can be done in
polynomial time in the size of the target automaton and the counterexamples provided by the
teacher. Unfortunately, the length of counterexamples may be exponential, making the whole
learning process intractable. We consider two solutions: bounding the length of considered
counterexamples (Section 7) and employing grammar-based compression (Section 8). This
leads us to a scenario where the teacher and the learning algorithm work in time polynomial
in the size of the target automaton alone, learning a DVPA equivalent to the target one.
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1.2 Related work

Learning context-free languages has been intensively studied. Typically, the context-free
grammars (CFGs) have been considered as the representation of a language rather than
pushdown automata. On the negative side, it has been shown that learning a CFG from mem-
bership and equivalence queries is intractable under reasonable cryptographic assumptions [7].
To overcome this difficulty, as well as to learn grammars more humanly understandable,
learning structurally equivalent grammars has been considered [40, 12]. Two grammars are
strongly equivalent [37] if their sets of derivation trees with erased names of non-terminals are
the same. The problem with that approach is the complexity of checking strong equivalence,
which is in ExpTime, but PSpace-hard [39]. Furthermore, some grammar-based learning
algorithms [40] are based on the L∗ algorithm for regular tree languages. Basically, for a
CFG G, one can learn a tree language of derivations in G of all words from L(G). However,
the minimal deterministic bottom-up tree automaton recognizing all derivation trees in G

can be exponentially larger than G. This extends to visibly pushdown languages and such a
tree automaton can be exponentially larger than a DVPA recognizing the visibly pushdown
language.

Besides [40], there is a large body of work on learning CFGs [26, 43, 5, 42, 19]. Among
them, [5] shares some similarities to our approach. However, the framework from [5] can be
considered as learning the transitions of a pushdown automaton with known states, while in
our approach we learn the set of states and the transitions.

While CFGs fit well into the active learning setting, pushdown automata are better suited
and more popular in verification [1]. The above-mentioned algorithms cannot be used to
learn automata. Active learning of automata is an active research topic. Initially, active
learning has been developed for DFA in the seminal paper by Angluin [6]. Recently, there
has been a renewed interest in learning various types of automata [11, 32, 9, 8, 10, 36, 34].
Learning based on syntactic properties of the target automaton has been recently proposed
in [35], where a syntactic property called the loop index has been employed to overcome the
difficulty of learning automata on infinite words.

Learning DVPA is studied in [23]. The algorithm provided there learns the canonical
DVPA defined by the congruence relation introduced in [3]. It uses only membership and
equivalence queries and works in polynomial time in the size of the canonical automaton.
However, the size of the canonical DVPA can be exponential in the size of a minimal DVPA [3].
Therefore, the time and space complexity of the algorithm presented in [23] is exponential.

Another approach to learning VPA from [27] considers VPA with significant stack
limitations so that every VPA has a unique minimal equivalent DVPA, computable in
polynomial time. For this restricted class, polynomial-time learning using only membership
and equivalence queries is possible.

A comprehensive survey of related work has been presented in [23, Chapter 7].

2 Preliminaries

Given a finite alphabet Σ of letters, a word w is a finite sequence of letters. For a word w,
we define w[i] as the i-th letter of w and |w| as its length. We denote the set of all words
over Σ by Σ∗. We use ϵ to denote the empty word.

The index of an equivalence relation is the number of its equivalence classes. An
equivalence relation ≡ on words Σ∗ is a right congruence relation if and only if for all words
w1, w2 ∈ Σ∗ and all a ∈ Σ, if w1 ≡ w2, then w1a ≡ w2a.

MFCS 2022
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Real-time Pushdown automata. A (non-deterministic) real-time pushdown automaton (rt-
PDA) is a tuple consisting of: (1) Σ, an input alphabet, (2) Γ, a finite stack alphabet, (3) Q,
a finite set of states, (4) Q0 ⊆ Q, a set of initial states, (5) δ ⊆ Q × Σ × (Γ ∪ {⊥}) × Q × Γ∗,
a finite transition relation, and (6) F ⊆ Q, a set of accepting states. We assume that ⊥
is never popped from the stack, i.e., for every (q, a, ⊥, q′, u) ∈ δ, the stack update u starts
with ⊥. The size of an rt-PDA A, denoted by |A|, is defined as the number of states plus
the number of transitions, i.e., |Q| + |δ|. An rt-PDA is deterministic if |Q0| = 1 and δ is a
function from Q × Σ × (Γ ∪ {⊥}) to Q × Γ∗. Deterministic rt-PDA are denoted as rt-DPDA.

Semantics of rt-PDA. Consider an rt-PDA A = (Σ, Γ, Q, Q0, δ, F ). A configuration of A is
a pair consisting of the current state q ∈ Q of A and its current stack content u ∈ (⊥ · Γ∗).
An rt-PDA defines an infinite-state transition system over its configurations Q × (⊥ · Γ∗),
where configurations Q0 × {⊥} are initial. For a ∈ Σ, let →a

A be an auxiliary relation
defined such that (q, uB) →a

A (q′, uv) if (q, a, B, q′, v) ∈ δ, where q, q′ are states, uB, uv are
stack contents with B being a single (top) symbol. For a word w = a1 . . . an, we define
→w

A as the composition of relation →a1
A . . . →an

A , i.e., (q, u0) →w
A (q′, un) if there exist

intermediate configurations (q1, u1), . . . , (qn−1, un−1) such that for each 1 ≤ i ≤ n we have
(qi−1, ui−1) →ai

A (qi, ui).
A word w is accepted by A if there are q0 ∈ Q0, q ∈ F and u ∈ ⊥ · Γ∗ such that

(q0, ⊥) →w
A (q, u). The language recognized by A, denoted L(A), is the set of words accepted

by A. For an rt-DPDA A, we define the stack content upon reading w, denoted by SCA(w),
as the unique u such that (q0, ⊥) →w

A (q′, u) for some q′.

Visibly pushdown automata. Consider a partition of the alphabet Σ into three sets
(Σc, Σl, Σr) called, respectively, the sets of call, local and return letters. We say that a
rt-PDA A = (Σ, Γ, Q, Q0, δ, F ) is a visibly pushdown automaton (VPA) (with respect to the
partition (Σc, Σl, Σr)) if the following conditions hold:

transitions over letters from Σc (call transitions) push a single symbol on the stack and
do not depend on the stack content, i.e., if (q, a, B, q′, v) ∈ δ, then v = BG, where G ∈ Γ
and for all B′ ∈ Γ ∪ {⊥} we have (q, a, B′, q′, B′G) ∈ δ,
transitions over letters from Σl (local transitions) neither change nor depend on the
stack content, i.e., if (q, a, B, q′, v) ∈ δ, then v = B and for all B′ ∈ Γ ∪ {⊥} we have
(q, a, B′, q′, B′) ∈ δ,
transitions over letters from Σr (return transitions) pop a single symbol from a nonempty
stack; if the stack is empty they leave ⊥ on the stack.

Since VPA are a subclass of rt-PDA, the definitions of size, determinacy, and semantics carry
over from rt-PDA to VPA. Since DVPA are a subclass of rt-DPDA, the stack content upon
reading w, SCA(w), is well defined.

3 The L∗ algorithm

We briefly describe a variant of the L∗ algorithm for active learning of a hidden regular
language L [6], which is similar to the algorithms we propose later on. To learn the language
L, the algorithm asks the following queries to an oracle called the teacher :

membership queries: given w ∈ Σ∗, is w ∈ L?, and
equivalence queries: given a DFA A, is L(A) = L? If not, return a counterexample, which
is a word distinguishing A and L (i.e., from the symmetric difference of L(A) and L).
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The L∗ algorithm constructs the minimal DFA AL recognizing L by refining approxima-
tions of the right congruence relation ∼L⊆ Σ∗ × Σ∗ defined such that u ∼L v if and only
if ∀w(uw ∈ L ⇐⇒ vw ∈ L). Due to the Myhill–Nerode theorem, the right congruence
relation ∼L defines AL.

The algorithm maintains two sets of words: the set of selectors S containing ϵ, and the
set of test words C. The set C defines an approximation ∼C

L of the right congruence relation
defined such that u ∼C

L v if and only if ∀w ∈ C(uw ∈ L ⇐⇒ vw ∈ L). The set S contains
exactly one selector of each equivalence class of ∼C

L . More precisely, the algorithm maintains
two properties: separability: different words from S are not ∼C

L -equivalent, and closedness:
for every s ∈ S and a ∈ Σ, there is some word s′ ∈ S such that sa ∼C

L s′. Note that if the
pair S, C satisfies the above properties, we can construct a DFA corresponding to S, C, i.e., a
DFA whose states are S and the transition relation is defined based on ∼C

L , i.e., the successor
of s ∈ S over a is s′ ∈ S′ such that sa ∼C

L s′.
The algorithm starts with S = {ϵ} and C = ∅ and it iterates the following steps in the

loop until it terminates in Step 2.
Step 1. Starting with separable S, C, close S, C, i.e., construct S′ ⊇ S and C ′ ⊇ C that are

closed and remain separable.
Step 2. Construct the DFA A corresponding to the separable and closed pair S′, C ′. Check

whether A recognizes L; if yes, return A (and terminate).
Step 3. Otherwise, take the counterexample w and find s ∈ S, a ∈ Σ and a suffix w′ of w

such that S ∪ {sa}, C ∪ {w′} is separable, i.e., sa is a new selector for ∼C∪{w′}
L .

The L∗ algorithm returns the minimal DFA recognizing AL and it works in polynomial
time in |AL| and the total length of returned counterexamples.

3.1 Difficulty of adapting L* to visibly pushdown languages

We discuss the difficulty of learning visibly pushdown languages, which motivates our learning
framework presented in the following sections.

The key property used by the L∗-algorithm is that for every regular language there is the
canonical DFA recognizing it, which is also the minimal-size DFA for that language. Visibly
pushdown languages do not have this property [3]. First, minimal-size DVPA are not unique;
for a given visibly pushdown language L there can be multiple non-isomorphic minimal-size
DVPA recognizing L [3, Proposition 1]. Second, a notion of canonical automaton for visibly
pushdown languages was proposed in [3], but the canonical automaton can be exponentially
larger than a minimal-size DVPA.

Furthermore, assuming that P ̸= NP, there is no polynomial-time L∗-type learning
algorithm for visibly pushdown languages. L∗-type algorithms learn a minimal-size automaton
and run in polynomial time, and hence such an algorithm for DVPA can be used to minimize
DVPA in polynomial time by running the learning algorithm as a black-box and computing
answers to all its queries in polynomial time. The automaton returned by the algorithm would
be a minimal-size DVPA language-equivalent to the input one T . However, the minimization
problem for DVPA (its decision version) is NP-complete [20]. For these reasons, we settle
for learning automata rather than languages.

One may suspect that there is an L∗-type learning algorithm, which only queries the
stack content along the run on the input word. We show, however, that the NP-hardness
proof from [20] can be adjusted to DVPA with singleton stack alphabets (i.e., where |Γ| = 1):

MFCS 2022
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▶ Proposition 1. The following problem is NP-complete: given a DVPA T with a singleton
stack alphabet (a deterministic visibly counter automaton) and N > 0, decide whether there is
a DVPA with a singleton stack alphabet language-equivalent to T that has at most N states.

For DVPA over a singleton stack alphabet, the stack height, which is the only information
the stack provides, can be deduced from the input word. Therefore, allowing for stack
observation alone does not lead to a polynomial-time learning algorithm.

4 Theoretical underpinnings

We introduce control words, which are words able to alter automata stack content. Then, we
state and prove a Myhill-Nerode type theorem for DVPA using control words.

Control words. For a stack alphabet Γ, let Γ be defined as the infinite set {⊥ · u | u ∈ Γ∗},
consisting of control letters. The intuitive meaning of the letter ⊥ · u is “set the stack to
⊥ · u”. Given an alphabet Σ, a control word is a word over Σ ∪ Γ. The size of a control word
w, denoted by size(w), is the sum of the number of letters from Σ and the sum of lengths of
control letters from Γ. We will sometimes use the term standard word to emphasize that the
considered word does not contain control letters, i.e., it belongs to Σ∗.

Restricted control words. Let Σ be a finite alphabet and Γ be a finite stack alphabet. We
define the set of initializing words InitΣ,Γ = Γ ·(Σ ∪ Γ)∗, the set of control words, in which the
first letter is a control letter. Furthermore, we define single-reset words Reset1

Σ,Γ = Σ∗ ·Γ ·Σ∗

to be the set of control words with exactly one control letter, and the set of single-reset
initializing words Init1

Σ,Γ = Γ · Σ∗, in which the first letter is a control letter and the
remaining letters are standard. We will omit the superscript Σ, Γ for readability.

Automata processing control words. Let T be a DVPA over the alphabet Σ and the stack
alphabet Γ. We extend the relation →w

T defined over words to control words as follows: let
v ∈ ⊥ · Γ∗, for every configuration (q, u) we have (q, u) →[ v ]

T (q′, u′) if and only if q = q′ and
u′ = v, i.e., a control letter v resets the stack content of the automaton to v, while it retains
the state. We straightforwardly generalize acceptance to control words. A control word w is
accepted by T if there are q0 ∈ Q0, q ∈ F and u ∈ ⊥ · Γ∗ such that (q0, ⊥) →w

T (q, u). The
language of control words accepted by T is denoted by L(T ).

We define a counterpart of the right congruence of a regular language.

▶ Definition 2. Let C ⊆ Init be a set of initializing words. We define the relation ≡C
T on

control words as follows: we have w1 ≡C
T w2 if and only if (1) for each v ∈ C we have

w1v ∈ L(T ) ⇐⇒ w2v ∈ L(T ) and (2) for each v ∈ C we have SCT (w1v) = SCT (w2v).

For every C, the relation ≡C
T is an equivalence relation. The definition of ≡C

T is monotonic
w.r.t. C, i.e., for all sets C1 ⊆ C2, the relation ≡C2

T is a refinement of ≡C1
T . In particular, the

index of ≡C1
T does not exceed the index of ≡C2

T .
We require C ⊆ Init, because otherwise the relation ≡C

T may have infinitely many
equivalence classes, which correspond to configurations rather than states of T .

For C being a strict subset of control words, ≡C
T need not be a right congruence; w1 ≡C

T w2
does not imply w1a ≡C

T w2a. Intuitively, words w1, w2 may lead to the same state in the
automaton, but different configurations and after a single transition over letter a we obtain
two configurations with different states. Thus, the right-congruence notion is incompatible
with DVPA. We solve these problems by introducing another notion of congruence and
restricting considered sets of control words.
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Control right congruence. A relation ≃ is a control right congruence if and only if for all
words w1, w2 ∈ (Σ ∪ Γ)∗ and α ∈ Γ · Σ we have w1 ≃ w2 implies w1α ≃ w2α.

▶ Example 3. Consider the equal-state relation ≃T : for all w1, w2 ∈ Σ∗, we have w1 ≃T w2
if and only if configurations reached by the DVPA T over w1 and w2 respectively, have the
same state, i.e., there are a state q and stack contents u1, u2 such that (q0, ⊥) →w1

T (q, u1)
and (q0, ⊥) →w2

T (q, u2). The relation ≃T need not be a right congruence relation as w1 and
w2 can reach the same state with different symbols on the tops of stacks, and hence the
states reached over w1a and w2a may differ, i.e., w1a ̸≃T w2a. However, the relation ≃T is
a control right congruence as the first control letter of α = ca resets the stack to the same
value in w1c and w2c, and hence these words lead to the same configuration and the next
transition over a leads to the same configuration. In consequence, w1ca ≃T w2ca.

We show that ≡Init
T is a control right congruence with the index bounded by the number

of states of T . Therefore, there is a finite C such that ≡C
T and ≡Init

T coincide. We also show
that ≡Init

T allows us to construct the transition relation of a DVPA corresponding to ≡Init
T .

▶ Lemma 4. Let T be a DVPA. (1) The relation ≡Init
T is a control right congruence, (2) the

index of ≡Init
T is bounded by |T |, and (3) the relation ≡Init

T defines a unique DVPA A, which
is language-equivalent to T .

▶ Example 5. We discuss why the second condition of the definition of ≡C
T is needed.

Consider Σ = Σc ∪ Σl ∪ Σr and a DVPA A = (Σ, Γ, Q, q0, δ, F ). We assume that the sets Q,
Σ, Γ and {#, $} are pairwise disjoint. Let Σ′

c = Σc ∪ Q, Σ′
r = Σr ∪ {$}, Σ′

l = Σl ∪ {#} and
Σ′ = Σ′

c ∪ Σ′
r ∪ Σ′

l.
We consider a language L over the alphabet Σ′ that consists of the words of the form

wq#w#w$, where wq ∈ Q∗ and w$ ∈ {$}∗. The idea is as follows: we want to accept words
that make the stack empty (hence we use $ at the end, to remove remaining stack elements)
such that A after reading w is in one of the states listed in wq.

The language L can be recognized by the automaton A′ that works in three stages. First,
it pushes all the symbols from wq on the stack. Then, it emulates A on w. Finally, it pops
stack symbols and checks whether the state of A after reading w is on the stack.

We argue that the automaton A′ has the following property: its behaviour on the wq

part has no impact on its behaviour on the w part, but is crucial for the acceptance. Thus,
the symbols that are put on the stack in the wq part are significant only in processing the
w$ part. This shows non-locality: the behaviour of A′ on w$ is defined by wq, which are
separated by an arbitrary long word w.

Such non-locality is what often makes the learning problems intractable. To avoid this,
we allow the learning algorithm to read the stack content, and we use the definition of the
relation ≡C

T . There, we require that for each a ∈ Σ and for each c ∈ {⊥γ | γ ∈ Γ ∪ {ϵ}} we
have SCT (w1ca) = SCT (w2ca). In this way, the parts of the automaton reading wq and w$
can be learned independently, as the results of reading letters on the stack are immediate.

If control letters are applied after each transition, DVPA behaves essentially as a DFA
(see Section 5) and hence we attempt to minimize the use of control letters. In particular,
we argue that considering C = Init1 instead of Init is sufficient, i.e., single-reset initializing
words are sufficient. We formalize it below.

We say that a DVPA A is constructed from the equivalence relation ≡Init1
T if its states are

selectors of the equivalence classes of ≡Init1
T and if A has a transition δ(s, a, α, s′, γ), then

either s⊥αa ≡Init1
T s′, or α = ⊥ and a is a return letter, and s⊥αa and s′ are equivalent over

words ⊥w′ only. The stack content after reading s⊥αa is updated according to γ. Such an
automaton is not necessarily unique as ≡Init1

T is not a control right congruence in general.
However, we show that any such DVPA is admissible:

MFCS 2022
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Table 1 Queries for learning with control words.

Query membership query stack-content query equivalence query
Input a control word w a control word w a DVPA A

Output whether T accepts w SCT (w)
YES if A and T are language-
equivalent, otherwise a control
word w distinguishing A and T

▶ Lemma 6. Any DVPA constructed from ≡Init1
T restricted to standard words is language-

equivalent with T .

All equivalence classes of ≡Init
T , which do not contain standard words are irrelevant for

language-equivalence as they correspond to unreachable states. Thus, Lemma 6 implies that
in order to learn a DVPA language-equivalent to T , we can construct ≡Init1

T restricted to
standard words. This observation is the backbone of the learning algorithm presented in
Section 6.

5 Learning with resets

We present the first active learning algorithm for DVPA based on control words and discuss
its applications. We consider a learning framework with three types of queries: (modified)
membership and equivalence queries and a new type called stack-content queries, which
return the content of the stack upon reading a given word. The queries involve control letters,
as we showed that using only standard words is insufficient (Section 3.1). Here, control
words can have any number of control letters. In such a case, learning DVPA boils down to
the standard learning of DFA. Indeed, with arbitrarily many control letters every path in a
DVPA can be realized. Furthermore, we can address each transition and learn how the stack
changes with stack-content queries. The solution for learning with unlimited control letters
is a simple adaptation of the original L∗ algorithm.

We consider an oracle, called the teacher, which has access to the target DVPA T and
answers the following three types of queries detailed in Table 1. Note that the counterexample
can contain control letters as well.

We reduce active learning of DVPA to active learning of regular languages. Consider
Σlab = (Σc × Γ) ∪ Σl ∪ (Σr × (Γ ∪ {⊥})), which characterizes labels of transitions of T :
(1) call transitions are characterized by a call letter a ∈ Σc and a stack symbol B ∈ Γ
pushed to the stack, (2) local transitions are characterized by a local letter alone a ∈ Σl,
and (3) return transitions are characterized by a call letter a ∈ Σr and the top of the stack
symbol γ ∈ Γ ∪ {⊥}.

Let Llab(T ) be the language of words w over Σlab, which correspond to paths in T
terminating in an accepting state. Note that paths need not obey the stack; for instance
pushing a symbol A can be followed by pulling a symbol B, and hence not all paths correspond
to runs of T . However, the language Llab(T ) is regular and hence can be learned with the
L∗-algorithm for DFA. The detailed constructions have been relegated to the appendix.

▶ Theorem 7. Assume that the teacher returns minimal-size counterexamples. Then, active
learning of DVPA with a teacher answering queries detailed in Table 1 can be done in time
polynomial in the size of the target automaton.



J. Michaliszyn and J. Otop 74:9

Table 2 Queries for learning with single resets.

Query membership query stack-content query equivalence query
Input a single-reset word w a single-reset word w a DVPA A

Output whether T accepts w SCT (w)

YES if A and T are language-
equivalent, otherwise, a (stand-
ard) word w distinguishing A
and T

5.1 Applications
The active learning of DVPA can be used for reducing the number of states of DVPA given
implicitly. For instance, consider a model M consisting of k components A1, . . . , Ak being
DVPA. Models that are products of smaller components occur frequently in verification tasks
(e.g., to express union or intersection of languages) and there is a large body of work on
efficient model checking on such models [38, 21]. Even though the size of M is the product
of sizes of A1, . . . , Ak, the number of reachable states may be considerably smaller, so it can
be explicitly represented.

We can use the above active learning algorithm for DVPA to construct a reduced model
of A1 × . . . × Ak without the need of constructing the whole product. Now having DVPA
A1, . . . , Ak, we can compute the values of membership and stack-content queries. For the
equivalence queries with a given A, we can check whether for all i we have L(Ai) ⊇ L(A),
which implies that the language of the product of automata contains the language of A.
The opposite inclusion can be approximated with queries over random words, guided by
various heuristics as is often the case with equivalence queries [12, 18]. It is difficult to answer
equivalence queries for the product of automata as it subsumes the emptiness problem for
intersections of regular languages, which is PSpace-complete.

Note that the constructed automaton can have states that are not reachable by any run
(see Example 8). This is an inherent problem of considered words with multiple control
letters; it diminishes the influence of the stack on reachability. To solve this problem, we
focus on the single-reset approach presented in the following Section 6.

▶ Example 8 (Automaton with redundant states). Consider a DVPA T and its state q, which
is reachable only with call transitions pushing A on the stack. Suppose that q has an outgoing
return transition over A′ ̸= A, which leads to a component B of T not reachable with any
other transition. Then, the algorithm from Theorem 7 explores the component B of T as it
is reachable over words with multiple control letters and hence the returned DVPA contains
redundant states.

6 Learning with a single reset

Here we study a learning framework with three types of queries as in Section 5, but restricted
to words with one control letter. Those queries are detailed in Table 2. For a finite C ⊆ Init1,
these queries are sufficient to decide whether w1 ≡C

T w2 holds over w1, w2 ∈ Σ∗; the first
condition from the definition of ≡C

T (Definition 2) can be implemented with membership
queries, and the second one with stack-content queries.

We present an active learning algorithm for DVPA, which works in polynomial time in
size of the target automaton and the size of counterexamples provided by the teacher. The
algorithm is a modification of the L∗ algorithm, so we discuss only the differences with the
vanilla L∗ algorithm. The main difference is that while L∗ constructs the right congruence
relation of the target language L, our algorithm constructs ≡Init1

T over standard words.
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Our algorithm, similarly to L∗, maintains two sets of words: a set of selectors S and a set
of test words C such that S are selectors of equivalence classes of ≡C

T . Selectors in S ⊂ Σ∗

are standard words over Σ and test words in C ⊂ Init1 are single-reset initializing words. We
start with S = {ϵ} and C = {⊥ϵ}.

We adjust the terminology to the current setting as follows. Separability means that
different words from S are not ≡C

T -equivalent. Closedness means that for every s ∈ S, a ∈ Σ
and B ∈ Γ ∪ {ϵ}, there is some word s′ ∈ S such that s · ⊥ · B · a ≡C

T s′. The algorithm
maintains separability and some restricted form of closedness. The latter is due to the fact
that some transitions may be unreachable in a DVPA. For example, if the only way to reach
some state is to push B on the stack, then all the transitions assuming that the top of
the stack is not B are unreachable and thus irrelevant. For that reason, two steps in the
L∗ algorithm: computing closure of S, C and generating the corresponding automaton, are
interleaved and encapsulated in a single procedure generate automaton.

Generating automata. Given S, C and access to the teacher for T , we construct a (partial)
DVPA whose set of states is S ⊂ Σ∗, possibly extended with some additional states as
discussed below. The initial state is ϵ ∈ S. The accepting states are those states w ∈ S

such that the membership query on w returns true, i.e., w is accepted by T . It remains to
compute the transition function δ.

Consider a state s ∈ S, a letter a ∈ Σ and γ ∈ Γ ∪ {⊥}. To find δ(s, a, γ), we feed s to
the target automaton T , implant γ on the top of its stack and take the transition over a.
Next, we identify the state from S equivalent to the current state of T or create a new one,
if there is no fitting one in S. The details are in the appendix.

Equivalence and processing a counterexample. Given a partial DVPA A, we complete it
to a DVPA Ac by setting all undefined transitions so that their destination is ϵ and putting
some designated B0 ∈ Γ on the stack over call transitions. Next, we test for equivalence and if
it happens to be language-equivalent to T we return Ac. Otherwise, we get a counterexample
that distinguishes Ac and T . We show how to use it to ensure progress of the algorithm.
There are two possible cases of counterexamples: either the stack content diverges at some
point, or the values of some suffixes mismatch. In both cases, we can modify S and C to
ensure the progress. The details are in the appendix.

Irredundancy. Observe that all states in the returned automaton are reachable by some
run (in contrast to the automaton from Example 8). To see this, note that we start with
the initial state ϵ. Next, new successors are added either in the automata construction or
in processing of a counterexample. In the former case, the new state is a successor of some
reachable state over a consistent transition. That is, it is a call or local transition, which can
be always executed, or it is a return transition and the stack content over ws reaching s ∈ S

in the constructed automaton is consistent with the expected stack content in the transition.
In the latter case, the successor va is added because the values of suffixes mismatch. There va

is not ≡C′

T -equivalent to any state from S and hence upon reading va the automaton reaches
the new state va. Therefore, the algorithm with single-reset words avoids computation of
redundant states in contrast to the algorithm from Section 5.

Complexity. The algorithm always terminates and works in polynomial time in the size of
the target automaton and the size of teachers’ responses. The details are in the appendix.
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▶ Theorem 9. Active learning of DVPA with teacher answering queries detailed in Table 2
can be done in time polynomial in the sizes of the target automaton and teachers’ responses.

For L∗, if we assume that the teacher always returns a minimal-length counterexample,
the algorithm works in polynomial time in the size of the target automaton alone. For DVPA,
the shortest counterexample for language-equivalence can be of exponential-size in |T |. In
the following sections we propose two approaches to solve this problem: the first one is based
on relaxed equivalence and the second one on employing grammar-based compression.

7 Active learning with bounded counterexamples

To avoid processing exponentially-long counterexamples, we can impose a bound on the
length of admissible counterexamples. In some scenarios we may be interested in trading
accuracy for performance and focus on words of length bounded by some fixed value t. A
similar approach led to the development of bounded model checking methods, which are highly
efficient [14, 25]. Furthermore, in applications of active learning of automata, equivalence
queries, which are often costly to implement, are only approximated by equivalence over
bounded-length words [12, 18].

Two DVPA A1, A2 are t-equivalent, where t ∈ N, if and only if their languages agree
on all words of the length bounded by t. We adjust the framework in a natural way: we
replace equivalence queries with t-equivalence queries, which say whether a given DVPA A is
t-equivalent to T . If it is not, then we require a counterexample of length bounded by t.

Under the modified framework, we can run the algorithm described in Section 6. Note
that each counterexample there is bounded by t and the algorithm terminates when A is
t-equivalent to T . Furthermore, each counterexample can be used to increase the size of S,
which is bounded by the number of states of T . In consequence, we have:

▶ Theorem 10. Active learning of DVPA with teacher answering membership and stack-
content queries defined in Table 2 and t-equivalence queries can be done in time polynomial
in the size of the target automaton and t.

Finally, observe that the teacher can answer t-equivalence queries in polynomial time in
|A| + |T | + t. It suffices to construct a DFA At accepting all words of the length at most t

and compute the emptiness of the intersection of the languages A, At and T C , where T C is
the complemented T .

8 Active learning with compressed representation

Here we propose to solve the problem of exponential counterexamples using compression by
means of visibly context-free grammars to represent counterexamples as well as selectors and
test words. We show that in this setting the teacher can always provide a counterexample
of polynomial size in the size of the target automaton and a candidate automaton sent in
the equivalence query. If the teacher does so, the algorithm we propose works in polynomial
time in size of the target automaton.

Context-free grammars (which are equivalent to pushdown automata) can generate
finite languages with exponential-length words. This observation led to the development of
grammar-based compression, where a word w is represented through a context-free grammar
(called Straight-Line Programs or SLPs) generating exactly one word w. Equivalence of SLPs
with other compression methods and algorithmic problems are discussed in [30].
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Table 3 Queries for learning with vSLP.

Query membership query stack-content query equivalence query

Input a vSLP representing
a single-reset word w

a vSLP representing
a single-reset word w

a DVPA A

Output whether T accepts w SCT (w)

YES if A and T are language-
equivalent, otherwise, a vSLP
representing a standard word w

distinguishing A and T

We use polynomial-size SLPs to represent counterexamples as well as selectors. Note
that processing SLPs can be expensive in general. There is a visibly pushdown language
Lh such that the membership problem for this language over words given by SLPs is
PSpace-complete [29]. However, if we restrict SLPs to those that are represented by visibly
pushdown grammars G (over the same alphabet partition as the visibly pushdown language
Lh) defined below, then the membership problem is equivalent to the emptiness problem for
the intersection of Lh and L(G), and hence it can be decided in polynomial time.

Visibly pushdown grammars. A visibly pushdown grammar (VPG) is a syntactically restric-
ted pushdown grammar (see [4] for details). Consider a partition of Σ into (Σc, Σl, Σr). A
VPG is a triple G = (V, S, P ), where V = V0 ∪ V1 is a set of non-terminal symbols partitioned
into V0 and V1, I ∈ V is the start symbol, and P is the set of productions of the following
form:

X → ϵ, where X ∈ V

X → aY , where X, Y ∈ V , and if X ∈ V0, then a ∈ Σl and Y ∈ V0

X → aY bZ, where X ∈ V , Y ∈ V0, a ∈ Σc, b ∈ Σr, and if X ∈ V0, then Z ∈ V0.

X → Y Z, where X, Y ∈ V , and if X ∈ V0, then Y, Z ∈ V0.
The last rule is not present in the original definition, but it can be safely added as VPL are
closed under concatenation.

VPA and VPG are language-wise polynomially equivalent [4] (i.e., there is a polynomial-
time procedure that, given a PDA, outputs a CFG of the same language and vice versa).

For a VPG G, we define derivation →G as a relation on (Σ ∪ V )∗ × (Σ ∪ V )∗ as follows:
w →G w′ if and only if w = w1Xw2, with X ∈ V , and w′ = w1uw2 for some u ∈ (Σ ∪ V )∗

such that X → u is a production from G. We define →∗
G as the transitive closure of →G.

The language generated by G, denoted by L(G) = {w ∈ Σ∗ | s →∗
G w} is the set of words

that can be derived from I. VPA and VPG are language-wise polynomially equivalent [4]
(i.e., there is a polynomial-time procedure that, given a PDA, outputs a CFG of the same
language and vice versa). The size of a VPG G = (V, I, P ), denoted by |G|, is |V | + |P |.

A visibly Straight Line Program (vSLP) is a visibly pushdown grammar G, which generates
a single word denoted by wG.

Now, selectors in S and test words in C will be represented by vSLPs. We introduce the
framework and assume that words are represented as vSLPs, as detailed in Table 3. Import-
antly, the teacher can always return a polynomial size vSLP representing a counterexample.

▶ Lemma 11. Given two DVPA A1, A2 such that L(A1) ̸= L(A2), there exists a polyno-
mial size vSLP G such that wG belongs to the symmetric difference of L(A1) and L(A2).
Furthermore, this vSLP can be computed in polynomial time in |A1| + |A2|.
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The words represented by vSLPs can be efficiently processed. The procedure generating
a DVPA from S, C requires efficient computation of concatenation of vSLPs and compressed
membership and stack-content queries. Observe that for a polynomial-size vSLP G, the
length of SCT (wG) is polynomial in |T | even though |wG| can be exponential and hence the
answers to these queries have polynomial size. Processing counterexamples is more difficult
as it involves finding the prefixes of the counterexample wG with certain properties. Note
that these prefixes can be identified with binary search and hence only polynomially many
candidates need to be considered. It suffices to compute, for a given vSLP G, the prefix of
the first i letters of wG, which is possible in polynomial time in |G|. In consequence, we have
the following:

▶ Theorem 12.
(i) The teacher can answer membership and equivalence queries with vSLP input in poly-

nomial time in the input size and |T |.
(ii) The teacher can answer equivalence queries with polynomial size vSLP encoding a

counterexample in polynomial time (in the input size and |T |).
(iii) For the teacher as in (i) and (ii), active learning of DVPA with teacher answering

queries detailed in Table 3 can be done in time polynomial in the size of the target
automaton alone.

9 Future work

We have presented the first work on polynomial-time learning DVPA. The queries we use
depend not only on the language of the automaton, but its structure as well. It allows us to
bypass problems arising from the difficulty of minimizing DVPA.

There is an open field of possible future directions, which we discuss below.

Dropping the stack content queries. Control words are crucial in our solution, i.e, the
ability to alter the stack. We also assume that the stack can be observed, using the stack
content queries. While this is a reasonable assumption, we have not shown whether it is
necessary. In particular, we may explore the scenario from Section 5.1, in which we attempt
to minimize both the state space and the stack alphabet and hence we consider the stack
alphabet as unknown. We leave this as an open question.

Queries with registers. Another interesting scenario, but closely related to the previous one,
is where we cannot read and write the stack directly, but we can save its value to a register
and then use it. This corresponds to the case when we have access to the device memory, but
the stack is represented in a way that we cannot manipulate it (e.g. it is encrypted). Note
that in Section 6, we either use the stack contents that have been produced by some runs
with at most one symbol pushed on the top. Is active learning in polynomial time possible if
the stack content can be only copied between runs?

Learning all rt-DPDA. In the algorithm presented in Section 6, we rely on the fact that call
and local letters do not depend on the stack content. We can possibly improve the algorithm
to omit that assumption at the cost of more complex algorithm. We leave this problem for
further investigation.

MFCS 2022



74:14 Learning Deterministic Visibly Pushdown Automata Under Accessible Stack

Learning all DPDA. Another challenging area is learning DPDA. One of the key challenges
is to deal with ϵ-transitions. The problem there is that for some DPDA there can be states
that are reachable with only ϵ-transitions, i.e., states without selectors. A solution to this
problem would require a new insight into the representation of states.
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Abstract
Constraint satisfaction (CSP) and structure isomorphism (SI) are among the most well-studied
computational problems in Computer Science. While neither problem is thought to be in PTIME,
much work is done on PTIME approximations to both problems. Two such historically important
approximations are the k-consistency algorithm for CSP and the k-Weisfeiler-Leman algorithm
for SI, both of which are based on propagating local partial solutions. The limitations of these
algorithms are well-known – k-consistency can solve precisely those CSPs of bounded width and
k-Weisfeiler-Leman can only distinguish structures which differ on properties definable in Ck. In
this paper, we introduce a novel sheaf-theoretic approach to CSP and SI and their approximations.
We show that both problems can be viewed as deciding the existence of global sections of presheaves,
Hk(A, B) and Ik(A, B) and that the success of the k-consistency and k-Weisfeiler-Leman algorithms
correspond to the existence of certain efficiently computable subpresheaves of these. Furthermore,
building on work of Abramsky and others in quantum foundations, we show how to use Čech
cohomology in Hk(A, B) and Ik(A, B) to detect obstructions to the existence of the desired global
sections and derive new efficient cohomological algorithms extending k-consistency and k-Weisfeiler-
Leman. We show that cohomological k-consistency can solve systems of equations over all finite
rings and that cohomological Weisfeiler-Leman can distinguish positive and negative instances of
the Cai-Fürer-Immerman property over several important classes of structures.
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1 Introduction

Constraint satisfaction problems (CSP) and structure isomorphism (SI) are two of the most
well-studied problems in complexity theory. Mathematically speaking, an instance of one
of these problems takes a pair of structures (A, B) as input and asks whether there is a
homomorphism A → B for CSP or an isomorphism A ∼= B for SI. These problems are
not in general thought to be tractable. Indeed the general case of CSP is NP-Complete
and restricting our structures to graphs the best known algorithm for SI is Babai’s quasi-
polynomial time algorithm [8]. As a result, it is common in complexity and finite model
theory to study approximations of the relations → and ∼=.
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The k-consistency and k-Weisfeiler-Leman1 algorithms efficiently determine two such
approximations to → and ∼= which we call →k and ≡k. These relations have many char-
acterisations in logic and finite model theory, for example in [18] and [13]. One that is
particularly useful is that of the existence of winning strategies for Duplicator in certain
Spoiler-Duplicator games with k pebbles [28, 25]. For both of these games Duplicator’s
winning strategies can be represented as non-empty sets S ⊂ Homk(A, B) of k-local partial
homomorphisms which satisfy some extension properties and connections between these
games have been studied before. For example, a joint comonadic semantics is given by the
pebbling comonad of Abramsky, Dawar and Wang [4].

The limitations of these approximations are well-known. In particular, it is known that
k-consistency only solves CSPs of bounded width and k-Weisfeiler-Leman can only distinguish
structures which differ on properties expressible in the infinitary counting logic Ck. Feder
and Vardi [18] showed that CSP encoding linear equations over the finite fields do not have
bounded width, while Cai, Fürer, and Immerman [13] demonstrated an efficiently decidable
graph property which is not expressible in Ck for any k.

In the present paper, we introduce a novel approach to the CSP and SI problems based on
presheaves of k-local partial homomorphisms and isomorphisms, showing that the problems
can be reframed as deciding whether certain presheaves admit global sections. We show that
the classic k-consistency and k-Weisfeiler-Leman algorithms can be derived by computing
greatest fixpoints of presheaf operators which remove some efficiently computable obstacles
to global sections. Furthermore, we show how invariants from sheaf cohomology can be
used to find further obstacles to combining local homomorphisms and isomorphisms into
global ones. We use these to construct new efficient extensions to the k-consistency and
k-Weisfeiler-Leman algorithms computing relations →Z

k and ≡Z
k which refine →k and ≡k.

The application of presheaves has been particularly successful in computer science in
recent decades with applications in semantics [32, 19], information theory [33] and quantum
contextuality [3, 5, 2]. This work draws in particular on the application of sheaf theory to
quantum contextuality, pioneered by Abramsky and Brandenburger [3] and developed by
Abramsky and others for example in [5] and [2].

Using this work, we prove that these new cohomological algorithms are strictly stronger
than k-consistency and k-Weisfeiler-Leman. In particular, we show that cohomological
k-consistency decides solvability of linear equations with k variables per equation over all
finite rings and that there is a fixed k such that ≡Z

k distinguishes structures which differ on
Cai, Fürer and Immerman’s property.

It is also interesting to compare →Z
k and ≡Z

k with other well-studied refinements of →k

and ≡k. For →k, such refinements include the algorithms of Bulatov [12] and Zhuk [35]
which decide all tractable CSPs and the algorithms of Brakensiek, Guruswami, Wrochna and
Živný [11] and Ciardo and Živný [14] for Promise CSPs. For ≡k, comparable approximations
to ∼= include linear Diophantine equation methods employed by Berkholz and Grohe [9] and
the invertible-map equivalence of Dawar and Holm [17] which bounds the expressive power
of rank logic. The latter was recently used by Lichter [30] to demonstrate a property which
is decidable in PTIME but not expressible in rank logic. In our paper, we show that ≡Z

k , for
some fixed k, can distinguish structures which differ on this property. Comparing →Z

k to the
Bulatov-Zhuk algorithm and algorithms for PCSPs remains a direction for future work.

1 The algorithm we call “k-Weisfeiler-Leman” is more commonly called “(k − 1)-Weisfeiler-Leman” in
the literature, see for example [13]. We prefer “k-Weisfeiler-Leman” to emphasise its relationship to
k-variable logic and sets of k-local isomorphisms.
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The rest of the paper proceeds as follows. Section 2 establishes some background and
notation. Section 3 introduces the presheaf formulation of CSP and SI and new formulations
of k-consistency and k-Weisfeiler-Leman in this framework. Section 4 demonstrates how
to apply aspects of sheaf cohomology to CSP and SI and defines new algorithms along
these lines. Section 5 surveys the strength of these new cohomological algorithms. Section
6 concludes with some open questions and directions for future work. Major proofs and
additional background are left to the full version.

2 Background and definitions

In this section, we record some definitions and background which are necessary for our work.

2.1 Relational structures & finite model theory

Throughout this paper we use the word structure to mean a relational structure over some
finite relational signature σ. A structure A consists of an underlying set (which we also call
A) and for each relational symbol R of arity r in σ a subset RA ⊂ Ar or tuples related by
R. A homomorphism of structures A, B over a common signature is a function between the
underlying sets f : A → B which preserves related tuples. An isomorphism of structures
is a bijection between the underlying sets which both preserves and reflects related tuples.
A partial function s : A ⇀ B (seen as a set s ⊂ A × B) is a partial homomorphisms if
it preserves the related tuples in dom(s). s is a partial isomorphism if it is a bijection
onto its image and both preserves and reflects related tuples. A partial homomorphism or
isomorphism is said to be k-local if |dom(s)| ≤ k. For two structures over the same signature
we write Homk(A, B) and Isomk(A, B) respectively for the sets of k-local homomorphisms
and isomorphisms from A to B.

In the paper, we make reference to several important logics from finite model theory and
descriptive complexity theory. The logics we make reference to in this paper are as follows.

Fixed-point logic with counting (written FPC) is first-order logic extended with operators
for inflationary fixed-points and counting, for example see [20].
For any natural number k, Ck is infinitary first-order logic extended with counting
quantifiers with at most k variables. This logic bounds the expressive power of FPC in
the sense that, for each k′ there exists k such that any FPC formula in k′ variables is
equivalent to one in Ck. We write Cω for the union of these logics.
Rank logic is first-order logic extended with operators for inflationary fixed-points and
computing ranks of matrices over finite fields, see [34].
Linear algebraic logic is first-order infinitary logic extended with quantifiers for computing
all linear algebraic functions over finite fields, see [15]. This logic bounds rank logic in
the sense described above.

At different points in the history of descriptive complexity theory, both FPC and rank
logic were considered as candidates for “capturing PTIME” and thus refuting a well-known
conjecture of Gurevich [23]. Each has since been proven not to capture PTIME, for FPC see
Cai, Fürer and Immerman [13], for rank logic see Lichter [30]. Infinitary logics such as Cω

and linear algebraic logic are capable of expressing properties which are not decidable in
PTIME but have been shown not to contain any logic which does not capture PTIME. For Cω,
see Cai, Fürer and Immerman [13] and for linear algebraic logic, see Dawar, Grädel, and
Lichter [16].
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2.2 Constraint satisfaction problems & Structure Isomorphism
Assuming a fixed relational signature σ, we write CSP for the set of all pairs of σ-structures
(A, B) such that there is a homomorphism witnessing A → B. We use CSP (B) to denote
the set of relational structures A such that (A, B) ∈ CSP . We also use CSP and CSP (B)
to denote the decision problem on these sets. For general B, CSP (B) is well-known to
be NP-complete. However for certain structures B the problem is in PTIME. Indeed, the
Bulatov-Zhuk Dichotomy Theorem (formerly the Feder-Vardi Dichotomy Conjecture) states
that, for any B, CSP (B) is either NP-complete or it is PTIME. Working out efficient algorithms
which decide CSP (B) for larger and larger classes of B was an active area of research which
culminated in Bulatov and Zhuk’s exhaustive classes of algorithms [12, 35].

Similarly, we write SI for the set of all pairs of σ-structures (A, B) such that there is
an isomorphism witnessing A ∼= B. The decision problem for this set is also thought not
to be in PTIME however there are no general hardness results known for this. The best
known algorithm (in the case where σ is the signature of graphs) is Babai’s [8] which is
quasi-polynomial.

There are many efficient algorithms which approximate the decision problems of CSP and
SI. Two such examples, which are of particular importance to this paper, are the k-consistency
and k-Weisfeiler-Leman algorithms. Explicit modern presentations of these algorithms can
be seen, for example, in [7] and [27]. We instead focus on equivalent formulations in terms
of positional Duplicator winning strategies. These are given by Kolaitis and Vardi [28] for
k-consistency and Hella [24] for k-Weisfeiler-Leman. In the case of k-consistency, a pair (A, B)
is accepted by the algorithm if and only if there is a non-empty subset S ⊂ Homk(A, B)
which is downward-closed and satisfies the so-called forth property. This means any s ∈ S

with |dom(s)| < k satisfies the property Forth(S, s) which is defined as

∀a ∈ A, ∃b ∈ B s.t. s ∪ {(a, b)} ∈ S.

If such an S exists we write A →k B. The similar strategy-based characterisation of k-
Weisfeiler-Leman is captured by non-empty downward-closed sets S ⊂ Isomk(A, B) where
each element satisfies the bijective forth property BijForth(S, s) defined by

∃bs : A → B a bijection s.t. ∀a ∈ A s ∪ {(a, bs(a))} ∈ S.

If such an S exists we write A ≡k B. For more details, see the full version of this paper.

2.3 Presheaves & cohomology
Here we give a brief account of the category-theoretic preliminaries for this paper. For a
more comprehensive introduction to category theory we refer to Chapter 1 of Leinster’s
textbook [29] and for a complete account of presheaves we refer to Chapter 2 of MacLane
and Moerdijk [31].

Given two categories C and S, an S-valued presheaf over C is a contravariant functor
F : Cop → S. We will assume that C is some subset of the powerset of some set X with
subset inclusion as the morphisms. We call X the underlying space of C. For this reason,
when U ′ ⊂ U in C we write (·)|U′ for the restriction map F(U ′ ⊂ U) : F(U) → F(U ′). We
assume S is either the category Set of sets or the category AbGrp of abelian groups. We
call AbGrp-valued presheaves, abelian presheaves. Set-valued presheaves are just called
presheaves or presheaves of sets where there is ambiguity.
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For any C and S as above, the category of presheaves PrSh(C, S) has as objects
the presheaves F : Cop → S and, as morphisms, natural transformations between these
functors. If S has a terminal object 1 (as both Set and AbGp do) then the presheaf
I ∈ PrSh(C, S) which sends all elements of C to 1 is a terminal object in PrSh(C, S). For
any F ∈ PrSh(C, S), a global section of F is a natural transformation S : I =⇒ F .

3 Presheaves of local homomorphisms and isomorphisms

Some important efficient algorithms for CSP and SI involve working with sets of k-local
homomorphisms between the two structures in a given instance. These sets of partial
homomorphisms of domain size ≤ k are useful for constructing efficient algorithms because
computing the sets Homk(A, B) and Isomk(A, B) can be done in polynomial time in |A| · |B|.
In this section, we see that these sets can naturally be given the structure of sheaves, that
the CSP and SI problems can be seen as the search for global sections of these sheaves and
that the k-consistency and k-Weisfeiler-Leman algorithms can both be seen as determining
the existence of certain special subpresheaves. The framework of considering sheaves of
local homomorphisms and isomorphisms is novel in this work and essential for the main
cohomological algorithms later. The results in Section 3.3 are from a technical report of
Samson Abramsky [1] and we thank him for his permission to include them here.

3.1 Defining presheaves of homomorphisms and isomorphisms
Let A and B be relational structures over the same signature. A partial homomorphism is a
partial function s : A ⇀ B that preserves related tuples in dom(s). A partial isomorphism
is a partial homomorphism s : A ⇀ B which is injective and reflects related tuples from
im(s). A k-local homomorphism (resp. isomorphism) is a partial homomorphism (resp.
isomorphism) s such that |dom(s)| ≤ k. We write Homk(A, B) (resp. Isomk(A, B)) for the
sets of k-local homomorphisms (resp. isomorphisms). We write Hom(A, B) for the union⋃

1≤k≤|A| Homk(A, B) and Isom(A, B) for the union
⋃

1≤k≤|A| Isomk(A, B).

It is not hard to see that these sets can be given the structure of presheaves on the
underlying space A. Indeed, we define the presheaf of homomorphisms from A to B

H(A, B) : P(A)op → Set as H(A, B)(U) = {s ∈ Hom(A, B) | dom(s) = U} with re-
striction maps H(A, B)(U ′ ⊂ U) given by the restriction of partial homomorphisms (·)|U′ .
Similarly, let I(A, B) be the subpresheaf of H(A, B) containing only partial isomorphisms.
Now, consider the cover of A by subsets of size at most k, written A≤k ⊂ P (A). We define
the presheaves of k-local homomorphisms and isomorphisms Hk(A, B) and Ik(A, B) as the
functors H(A, B) and I(A, B) restricted to the subcategory (A≤k)op ⊂ P(A)op.

We now see how these presheaves and their global sections encode the CSP and SI
problems for the instance (A, B).

3.2 CSP and SI as search for global sections
Fix an instance (A, B) for the CSP or SI problem and let H and I stand for the presheaves of
all partial homomorphisms and isomorphisms between A and B defined in the last section. For
either of these presheaves S a global section s : I =⇒ S is a collection {sU ∈ S(U)}U∈P (A)
where naturality implies that for any subsets U and U ′ of A (sU )|U∩U′ = (sU ′)|U∩U′ . As the
poset P (A) has a maximal element, namely A, any such global section is determined by a
choice of sA ∈ S(A). This leads us to the following observation.
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▶ Observation 1. Given a pair (A, B) relational structures over the same signature then

(A, B) ∈ CSP ⇐⇒ H has a global section

and if |A| = |B| then

(A, B) ∈ SI ⇐⇒ I has a global section.

This observation reframes the CSP and SI problems in terms of presheaves but algorith-
mically this not a particularly useful restating as computing the full objects H and I requires
solving the CSP and SI problems for all subsets of A and B. A much more interesting
equivalent condition is that for large enough k, whether or not a particular instance (A, B) is
in CSP or SI is determined by the global sections of the presheaves of k-local homomorphisms
and isomorphisms.

▶ Lemma 2. For a pair (A, B) relational structures over the same signature, σ, and k at
least the arity of sigma then

(A, B) ∈ CSP ⇐⇒ Hk has a global section

and if |A| = |B| then

(A, B) ∈ SI ⇐⇒ Ik has a global section.

Proof. See full version. ◀

This is more interesting than the previous observation as Hk and Ik can be computed
for any relational structures A and B in O(poly(|A| · |B|)). Indeed, we can just list all
O(|A|k · |B|k) possible k-local functions and check which ones preserve (and reflect) related
tuples. This also gives us an interesting starting point for designing efficient algorithms for
approximating CSP and SI. In particular, any efficient algorithms which finds obstacles to
the existence of global sections in Hk and Ik will provide a tractable approximation to CSP
and SI. We now see how this approach can be used to capture some classical approximations
of these problems.

3.3 Algorithms and games in terms of presheaves
In this section, we consider the approximations A →k B and A ≡k B to CSP and SI which are
computed respectively by the k-consistency and k-Weisfeiler-Leman algorithms and we show
that these algorithms can be seen as searching for certain obstructions to global sections in
Hk(A, B) and Ik(A, B). In particular, we define efficiently computable monotone operators
on subpresheaves of Hk and Ik and show that they have non-empty greatest fixpoints if and
only if (A, B) are accepted by k-consistency and k-Weisfeiler-Leman respectively. Proposition
3 is reproduced with permission from an unpublished technical report of Samson Abramsky
and the formulation of the fixpoint operators is inspired by the same report.

3.3.1 Flasque presheaves and k-consistency
Recall that A →k B if and only if there is a positional winning strategy for Duplicator in the
existential k-pebble game [18] and that a presheaf F is flasque if all of the restriction maps
F(U ⊂ U ′) are surjective. In a recent technical report, Abramsky [1] proves the following
characterisation of these strategies in our presheaf setting.
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▶ Proposition 3. For A, B relational structures and any k there is a bijection between:
positional strategies in the existential k-pebble game from A to B, and
non-empty flasque subpresheaves S ⊂ Hk(A, B).

This gives an alternative description of the k-consistency algorithm as constructing
the largest flasque subpresheaf Hk of Hk and checking if it is empty. As pointed out by
Abramsky [1], this is the process of coflasquification of the presheaf Hk and can be seen
as dual to the Godement construction [21], an important early construction in homological
algebra. Hk can be computed efficiently as the greatest fixpoint of the presheaf operator (·)↑↓

which computes the largest subpresheaf of a presheaf S ⊂ Hk such that every s ∈ S↑↓(C)
satisfies the forth property Forth(S, s). For further details see the full version of this paper.

3.3.2 Greatest fixpoints and k-Weisfeiler-Leman
In a similar way to the k-consistency algorithm, k-Weisfeiler-Leman can be formulated as
determining the existence of a positional strategy for Duplicator in the k-pebble bijection
game between A and B. This inspires the definition of another efficiently computable presheaf
operator (·)#↓ which computes the largest subpresheaf of a presheaf S ⊂ Ik such that for
every s ∈ S#↓(C) satisfies the bijective forth property BijForth(S, s). We call the greatest
fixpoint of this operator S and we have that A ≡k B if and only if Ik is non-empty. For
more details, see the full version of this paper.

To conclude, in this section, we have seen how to reformulate the search for homomorph-
isms and isomorphisms between relational structures A and B as the search for global sections
in the presheaves Hk(A, B) and Ik(A, B). We have also seen that well-known approximations
of homomorphism and isomorphism, →k and ≡k, can be computed as greatest fixpoints of
presheaf operators which remove elements which cannot form part of any global section. In
the next section, we look at sheaf-theoretic obstructions to forming a global section which
come from cohomology and see how these can be used to define stronger approximations of
homomorphism and isomorphism.

4 Cohomology of local homomorphisms and isomorphisms

As we showed in the previous section, an instance of CSP and SI with input (A, B) can be
seen as determining the existence of a global section for the presheaf Hk(A, B) or Ik(A, B)
respectively and that the classic k-consistency and k-Weisfeiler-Leman algorithms can be
reformulated as computing greatest fixed points of presheaf operations which successively
remove sections which are obstructed from being part of some global section. In this section,
we extend these algorithms by considering further efficiently computable obstructions which
arise naturally from presheaf cohomology. From this we derive new cohomological algorithms
for CSP and SI.

4.1 Cohomology and local vs. global problems
The notion of computing cohomology valued in an AbGp-valued presheaf F on a topological
space X has a long history in algebraic geometry and algebraic topology which dates back
to Grothendieck’s seminal paper on the topic [22]. The cohomology valued in F consists
of a sequence of abelian groups Hi(X, F) where H0(X, F) is the free Z-module over global
sections of F . As seen in the previous section we may be interested in such global sections
but their existence may be difficult to determine. This is where the functorial nature of
cohomology is extremely useful. Indeed, any short exact sequence of presheaves

0 → FL → F → FR → 0
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lifts to a long exact sequence of cohomology groups

0 → H0(X, FL) → H0(X, F) → H0(X, FR) → H1(X, FL) → . . . .

This tells us that the global sections of FR which are not images of global sections of F are
mapped to non-trivial elements of the group H1(X, FL) by the maps in this sequence. This
means that these higher cohomology groups can be seen as a source of obstacles to lifting
“local” solutions in FR to “global” solutions in F .

An important recent example of such an application of cohomology to finite structures
can be found in the work of Abramsky, Barbosa, Kishida, Lal and Mansfield [2] in quantum
foundations. They show that cohomological obstructions of the type described above
can be used to detect contextuality (locally consistent measurements which are globally
inconsistent) in quantum systems which were earlier given a presheaf semantics by Abramsky
and Brandenburger [3]. In the full version of this paper, we describe these obstructions in
general and show how the presheaves we constructed in the last section admit the same
cohomological obstructions. This similarity inspires the definitions and algorithms which
follow in the next two sections.

4.2 Z-local sections and Z-extendability
Returning to presheaves of local homomorphisms and isomorphisms let S be a subpresheaf of
Hk. Then we define the presheaf of Z-linear local sections of S to be the presheaf of formal
Z-linear sums of local sections of S. This means that for any C ∈ A≤k

ZS(C) :=

 ∑
s∈S(C)

αss | αs ∈ Z

 .

This is an abelian presheaf on A≤k and we call the global sections {rU ∈ ZS(U)}U∈A≤k

Z-linear global sections of S. We say that a local section s ∈ S(C) is Z-extendable if there is
a Z-linear global section {rU ∈ ZS(U)}U∈A≤k such that rC = s. We write this condition as
Zext(S, s). As outlined by Abramsky, Barbosa and Mansfield [5], this condition corresponds
to the absence of a cohomological obstruction to S containing a global section involving s.

Importantly for our purposes, deciding the condition Zext(S, s) for any S ⊂ Hk(A, B) is
computable in polynomial time in the sizes of A and B. This is because the compatibility
conditions for a collection {rU ∈ ZS(U)}U∈A≤k being a global section of ZS can be expressed
as a system of polynomially many linear equations in polynomially many variables. Indeed,
we write each rU as

∑
s∈S(U) αss where αs is a variable for each s ∈ S(U). This gives a total

number of variables bounded by O(|A|k · |B|k), the size of Homk(A, B). For each of the
O(|A|2k) pairs of contexts U, U ′ ∈ A≤k, the compatibility condition (rU )|U∩U′ = (rU ′)|U∩U′

yields a linear equation in the αs variables for each s′ ∈ S(U ∩ U ′), leading to a total number
of equations bounded by O(|A|2k · |B|k). By an algorithm of Kannan and Bachem [26] can
be solved in polynomial time in the sizes of A and B. This allows us to define the following
efficient algorithms for CSP and SI based on removing cohomological obstructions.

4.3 Cohomological algorithms for CSP and SI
We saw in Section 3 that the k-consistency and k-Weisfeiler-Leman algorithms can be
recovered as greatest fixpoints of presheaf operators removing local sections which fail the
forth and bijective-forth properties respectively. Now that we have from cohomological
considerations a new necessary condition Zext(S, s) for a local section to feature in a global
section of S, we can define natural extensions to the k-consistency and k-Weisfeiler-Leman
algorithms as follows.
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4.3.1 Cohomological k-consistency
To define the cohomological k-consistency algorithm, we first define an operator which removes
those local sections which admit a cohomological obstruction. Let (·)Z↓ be the operator
which computes for a given presheaf S ⊂ Hk the subpresheaf SZ↓ where SZ↓(C) contains
exactly those local sections s ∈ S(C) which satisfy both the forth property Forth(S, s) and
the Z-extendability property Zext(S, s). As this process may remove the local sections in
S which witness the extendability of other local sections we need to take a fixpoint of this
operator to get a presheaf with the right extendability properties at every local section. So,
we write SZ for the greatest fixpoint of this operator starting from S. As both Forth(S, s)
and Zext(S, s) are both computable in polynomial time in the size of S and SZ has a global
section if and only if S has a global section, this allows us to define the following efficient
algorithm for approximating CSP.

▶ Definition 4. The cohomological k-consistency algorithm accepts an instance (A, B) if
the greatest fixpoint Hk(A, B)

Z
is non-empty and otherwise rejects.

If (A, B) is accepted by this algorithm we write A →Z
k B and say that the instance (A, B) is

cohomologically k-consistent.

We conclude this section by showing that the relation →Z
k is transitive.

▶ Proposition 5. For all k, given A, B and C structures over a common finite signature

A →Z
k B →Z

k C =⇒ A →Z
k C.

Proof. See full version. ◀

4.3.2 Cohomological k-Weisfeiler-Leman
We now define cohomological k-equivalence to generalise k-WL-equivalence in the same way as
we did for cohomological k-consistency, by removing local sections which are not Z-extendable.
As Z-extendability in S ⊂ Isomk(A, B) is not a priori symmetric in A and B we need to
check that both s is Z-extendable in S and s−1 is Z-extendable in S−1 = {t−1 | t ∈ S}.
We call this s being Z-bi-extendable in S and write it as Zbext(S, s). We incorporate
this into a new presheaf operator (·)Z# as follows. Given a presheaf S ⊂ Ik let SZ# be
the largest subpresheaf of S such that every s ∈ SZ#(C) satisfies both the bijective forth
property BijForth(S, s) and the Z-bi-extendability property Zbext(S, s). We write S

Z

for the greatest fixpoint of this operator starting from S. As both BijForth(S, s) and
Zbext(S, s) are computable in polynomial time in the size of S and S

Z
has a global section

if and only if S has a global section, this allows us to define the following efficient algorithm
for approximating SI.

▶ Definition 6. The cohomological k-Weisfeiler-Leman accepts an instance (A, B) if the

greatest fixpoint Ik(A, B)
Z

is non-empty and otherwise rejects.
If (A, B) is accepted by this algorithm we write A ≡Z

k B and say that the instance (A, B) is
cohomologically k-equivalent.

Finally, we observe that the existence of a non-empty subpresheaf of Ik satisfying the
BijForth and Zbext properties also satisfies the conditions for witnessing cohomological
k-consistency of the pairs (A, B) and (B, A). Formally we have
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▶ Observation 7. For any two structures A and B, A ≡Z
k B implies that A →Z

k B and
B →Z

k A.

In Section 5, we will demonstrate the power of these new algorithms by showing that both
cohomological k-consistency and cohomological k-Weisfeiler-Leman can solve instances of
CSP and SI on which the non-cohomological versions fail. Before doing this, we briefly review
some other algorithms for CSP and SI which involve solving systems of linear equations and
establish a possible connection to be explored in future work.

4.4 Other algorithms for CSP and SI
While the connections to cohomology in approximating CSP and SI are novel in this paper,
the algorithms introduced here are not the first to use solving systems of linear equations to
approximate these problems.

On the CSP side, some examples of such algorithms include the BLP+AIP [11] and
CLAP [14] algorithms studied in the Promise CSP community. One difference here is that for
an instance (A, B) the variables in BLP and AIP are indexed by valid assignments to each
variable and to each related tuple instead of being indexed by valid k-local homomorphisms
as in the algorithm derived above. This means that directly comparing these algorithms
as stated is not straightforward and is beyond the scope of this paper. However, it seems
likely that these algorithms can also be expressed in terms of appropriate presheaves. For
example, let C(A) be the category whose objects are the elements of A and the related
tuples of A and with maps for each projection from a related tuple to an element, and let
the Set-valued presheaf HC(A, B) on C(A) map any a ∈ A to the set of all elements in B

and any a ∈ RA to the set of all related tuples RB . Then, in a similar way to above, we can
see that global sections of HC are homomorphisms from A to B. In future work, we will
compare the fixpoints HC and HC

Z with solutions to the BLP and AIP systems of equations
and we will explore a possible presheaf representation for CLAP.

On the SI side, Berkholz and Grohe [9] have studied Z-linear versions of the Sherali-Adams
hierarchy of relaxations of the graph isomorphism problem. They establish that no level of
this hierarchy decides the full isomorphism relation on graphs. Their algorithm for the kth

level of the hierarchy appears similar to checking the Z-extendability in HA,B
k of the empty

solution ϵ ∈ HA,B
k (∅). A full comparison of this algorithm and the algorithm described above

is an interesting direction for future work.

5 The (unreasonable) effectiveness of cohomology in CSP and SI

In this section, we prove that the new algorithms arising from this cohomological approach to
CSP and SI are substantially more powerful than the k-consistency and k-Weisfeiler-Leman
algorithms. In particular, we show that cohomological k-consistency resolves CSP over all
domains of arity less than or equal to k which admit a ring representation and that for
a fixed small k cohomological k-Weisfeiler-Leman can distinguish structures which differ
on a very general form of the CFI property, in particular, showing that cohomological
k-Weisfeiler-Leman can distinguish a property which Lichter [30] claims not to be expressible
in rank logic.

5.1 Cohomological k-consistency solves all affine CSPs
In this section, we demonstrate the power of the cohomological k-consistency algorithm by
proving that it can decide the solvability of systems of equations over finite rings.
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To express the main theorem of this section in terms of the finite relational structures
on which our algorithm is defined, we first need to fix a notion of ring representation of a
relational structure. Let A be a relational structure over signature σ with relations given by
{RA}R∈σ. We say that A has a ring representation if we can give the set A a ring structure
(A, +, ·, 0, 1) such that for every relational symbol R ∈ σ the set RA ⊂ Am is an affine subset
of the ring (A, +, ·, 0, 1), meaning that there exists bR

1 , . . . , bR
m, aR ∈ A such that

RA =
{

x ∈ Am |
∑

i∈[m]

bR
i · xi = aR

}
With this necessary background we state the main theorem of this section.

▶ Theorem 8. For any structure B with a ring representation, there is a k such that the
cohomological k-consistency algorithm decides CSP(B).
Alternatively stated, there exists a k such that for all σ-structures A

A →Z
k B ⇐⇒ A → B

Proof. See full version. ◀

This theorem is notable because there are relational structures B with ring representations
for which there are families of structures Ak such that Ak →k B but Ak ̸→ B, see for example
the examples given by Feder and Vardi [18]. Furthermore, there exist pairs (Ak, Bk) where
Ak ≡k Bk, Bk → B and Ak →k B but Ak ̸→ B, see for example the work of Atserias,
Bulatov and Dawar [6]. As the sequence of relations ≡k bounds the expressive power of FPC,
this effectively proves that the solvability of systems of linear equations over Z, which is
central to the cohomological k-consistency algorithm, is not expressible in FPC. This result
was not previously known to the author.

5.2 Cohomological k-Weisfeiler-Leman decides the CFI property
The Cai-Fürer-Immerman construction [13] on ordered finite graphs is a very powerful tool for
proving expressiveness lower bounds in descriptive complexity theory. While it was originally
used to separate the infinitary k variable logic with counting from PTIME, it has since been
used in adapted forms to prove bounds on invertible maps equivalence [15], computation
on Turing machines with atoms [10] and rank logic [30]. In this section, we show that ≡Z

k

separates a very general form of this
The version we consider in this paper is parameterised by a prime power q and takes

any totally ordered graph (G, <) and any map g : E(G) → Zq to a relational structure
CFIq(G, g). The construction effectively encodes a system of linear equations over Zq based
on the edges of G and the “twists” introduced by the labels g. The result is the following
well-known fact.

▶ Fact 9. For any prime power, q, ordered graph G, and functions g, h : E(G) → Zq,

CFIq(G, g) ∼= CFIq(G, h) ⇐⇒
∑

g =
∑

h

We say that the structure CFIq(G, g) has the CFI property if
∑

g = 0. For more details
on this construction we refer to the recent paper of Lichter [30] whose presentation we follow
in the full version of this paper.

We now recall the two major separation results based on this construction. The first is a
landmark result of descriptive complexity from the early 1990’s.

MFCS 2022
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▶ Theorem 10 (Cai, Fürer, Immerman [13]). There is a class of ordered (3-regular) graphs
G = {Gn}n∈N such that in the respective class of CFI structures

K = {CFI2(G, g) | G ∈ G, g : V (G) → Z2}

the CFI property is decidable in polynomial-time but cannot be expressed in FPC.

The second is a recent breakthrough due to Moritz Lichter.

▶ Theorem 11 (Lichter [30]). There is a class of ordered graphs G = {Gn}n∈N such that in
the respective class of CFI structures

K = {CFI2k (G, g) | G ∈ G}

the CFI property is decidable in polynomial-time (indeed, expressible in choiceless polynomial
time) but cannot be expressed in rank logic.

Despite this CFI property proving to be inexpressible in both FPC and rank logic, we show
that (perhaps surprisingly) there is a fixed k such that cohomological k-Weisfeiler-Leman
algorithm can separate structures which differ on this property in the following general
way. The proof of this theorem relies the on showing that ≡Z

k behaves well with logical
interpretations and the details are left to the full version of this paper.

▶ Theorem 12. There is a fixed k such that for any q given CFIq(G, g) and CFIq(G, h)
with

∑
g = 0 we have

CFIq(G, g) ≡Z
k CFIq(G, h) ⇐⇒ CFIq(G, g) ∼= CFIq(G, h)

Proof. See full version. ◀

As a direct consequence of this result, there is some k such that the set of structures
with the CFI property in Lichter’s class K from Theorem 11 is closed under ≡Z

k . This means
that, by the conclusion of Theorem 11, the equivalence relation ≡Z

k can distinguish structures
which disagree on a property that is not expressible in rank logic. Indeed, Dawar, Grädel
and Lichter [16] show further that this property is also inexpressible in linear algebraic logic.
By the definition of our algorithm for ≡Z

k this implies that solvability of systems of Z-linear
equations is not definable in linear algebraic logic.

6 Conclusions & future work

In this paper, we have presented novel approach to CSP and SI in terms of presheaves
and have used this to derive efficient generalisations of the k-consistency and k-Weisfeiler-
Leman algorithms, based on natural considerations of presheaf cohomology. We have shown
that the relations, →Z

k and ≡Z
k , computed by these new algorithms are strict refinements

of their well-studied classical counterparts →k and ≡k. In particular, we have shown
in Theorem 8 that cohomological k-consistency suffices to solve linear equations over all
finite rings and in Theorem 12 that cohomological k-Weisfeiler-Leman distinguishes positive
and negative instances of the CFI property on the classes of structures studied by Cai,
Fürer and Immerman [13] and more recently by Lichter [30]. These results have important
consequences for descriptive complexity theory showing, in particular, that the solvability of
systems of linear equations over Z is not expressible in FPC, rank logic or linear algebraic
logic. Furthermore, the results of this paper demonstrate the unexpected effectiveness of a
cohomological approach to constraint satisfaction and structure isomorphism, analogous to
that pioneered by Abramsky and others for the study of quantum contextuality.
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The results of this paper suggest several directions for future work to establish the extent
and limits of this cohomological approach. We ask the following questions which connect it
to important themes in algorithms, logic and finite model theory.

Cohomology and constraint satisfaction. Firstly, Bulatov and Zhuk’s recent independent
resolutions of the Feder-Vardi conjecture [12, 35], show that for all domains B either
CSP(B) is NP-Complete or B admits a weak near-unanimity polymorphism and CSP(B)
is tractable. As the cohomological k-consistency algorithm expands the power of the k-
consistency algorithm which features as one case of Bulatov and Zhuk’s general efficient
algorithms, we ask if it is sufficient to decide all tractable CSPs.

▶ Question 13. For all domains B which admit a weak near-unanimity polymorphism, does
there exists a k such that for all A

A → B ⇐⇒ A →Z
k B?

Cohomology and structure isomorphism. Secondly, as cohomological k-Weisfeiler-Leman
is an efficient algorithm for distinguishing some non-isomorphic relational structures we ask
if it distinguishes all non-isomorphic structures. As the best known structure isomorphism
algorithm is quasi-polynomial [8], we do not expect a positive answer to this question but
expect that negative answers would aid our understanding of the hard cases of structure
isomorphism in general.

▶ Question 14. For every signature σ does there exists a k such that for all σ-structures
A, B

A ∼= B ⇐⇒ A ≡Z
k B?

Cohomology and game comonads. Thirdly, as →k and ≡k have been shown by Abramsky,
Dawar, and Wang [4] to be correspond to the coKleisli morphisms and isomorphisms of a
comonad Pk, we ask whether a similar account can be given to →Z

k and ≡Z
k . As the coalgebras

of the Pk comonad relate to the combinatorial notion of treewidth, an answer to this question
could provide a new notion of “cohomological” treewidth.

▶ Question 15. Does there exist a comonad Ck for which the notion of morphism and
isomorphism in the coKleisli category are →Z

k and ≡Z
k?

The search for a logic for PTIME. Finally, as the algorithms for →Z
k and ≡Z

k are likely
expressible in rank logic extended with a quantifier for solving systems of linear equations
over Z and as ≡Z

k distinguishes all the best known family separating rank logic from PTIME,
we ask if solving systems of equations over Z is enough to capture all PTIME queries.

▶ Question 16. Is there a logic FPC+rk+Z incorporating solvability of Z-linear equations
into rank logic which captures PTIME?
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Abstract
We study constraint automata that accept data languages on finite string values. Each transition
of the automaton is labelled with a constraint restricting the string value at the current and the
next position of the data word in terms of the prefix and the suffix order. We prove that the
emptiness problem for such constraint automata with Büchi acceptance condition is NL-complete.
We remark that since the constraints are formed by two partial orders, prefix and suffix, we cannot
exploit existing techniques for similar formalisms. Our decision procedure relies on a decidable
characterization for those infinite paths in the graph underlying the automaton that can be completed
with string values to yield a Büchi-accepting run. Our result is - to the best of our knowledge - the
first work in this context that considers both prefix and suffix, and it is a first step into answering
an open question posed by Demri and Deters.
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1 Introduction

Motivated by applications in formal verification, automated reasoning and databases, logics
and automata over infinite alphabets are in the focus of active and broad research activities in
theoretical computer science. A typical example for logics over infinite alphabets is constraint
linear temporal logic, CLTL for short [2, 10, 11, 9, 6, 5, 14]. CLTL extends classical LTL
with a finite set of variables ranging over the domain of some infinite relational structure
like (N; =) or (Q;<). Atomic formulas in CLTL are constraints in terms of the variables and
the relation symbols from the structure; atomic formulas can be combined with Boolean
operations and the usual temporal modalities. Models of CLTL formulas are data words, that
is, infinite sequences of data values coming from the domain of the relational structure. For
instance, the CLTL formula G(Xx < x) over the relational structure (Z;<) states: “globally,
the value of the variable x at the next position is smaller than the value of x at the current
position”. The data word 4, 3, 2, 1, 0,−1,−2, . . . is a model of this formula. Note that the
same formula has no model if instead of (Z;<) we evaluate the formula over the relational
structure (N;<) – this to illustrate that deciding the satisfiability of a given formula in this
logic heavily relies on the considered relational structure.

A natural counterpart to CLTL are constraint automata [7, 15, 28, 19]. Like CLTL,
constraint automata are parameterized over a relational structure. Transitions are labelled
with constraints in terms of the variables of the automaton and the relation symbols from the
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structure; the satisfaction of the constraints along a transition determines the behaviour of
the automaton. Constraint automata generalize Büchi automata and accept data languages,
that is sets of data words. Following the classical automata-theoretic approach by Vardi and
Wolper, one can reduce the satisfiability problem for CLTL to the non-emptiness problem
for constraint automata (cf. [29, 14]). We remark that constraint automata are very much
related to the well known class of register automata [17, 24, 13, 4, 8].

For CLTL, constraint automata, and other formalisms parameterized over relational
structures, a lot of remarkable results concerning satisfiability, model-checking, and the
emptiness problem have been achieved, see [14] for a recent survey. This includes results for
specific relational structures – for instance, the satisfiability problem for CLTL over (Z;<) is
PSPACE-complete [2, 10] – but there are also noteworthy unifying approaches that capture
logics and automata over certain classes of, e.g., linear orders [28, 6, 5] or oligomorphic data
domains [3].

In contrast to linear orders, relatively little is known about relational structures where the
domain equals the set of strings A∗ over some fixed (finite or countably infinite) alphabet A,
and relations defined over A∗, like the prefix order or the subsequence order. While relational
structures over linear orders are useful for analysing systems that manipulate counters or
constrain real-timed variables, relational structures over strings are interesting for reasoning
about systems that manipulate pushdown stacks, queues, or other data structures that
involve strings. Reasoning on string variables has a long tradition in theoretical computer
science, with roots in algebra and combinatorics on words, and recent developments in the
area of string constraint solving (see [1] for a recent survey). Several works concern first-order
(FO) logics over finite strings [20, 18, 16, 21]. Thereof, a recent undecidability result [16]
for the Σ1-fragment of FO logic over (Σ∗;≤sub, (=w)w∈Σ∗), where Σ is a finite alphabet
and ≤sub denotes the subsequence order over Σ∗, immediately implies the undecidability of
the satisfiability problem for CLTL over that structure. Regarding the relational structure
(A∗;<p,=, (=w)w∈A∗), where <p is the prefix order over A∗, we know: the satisfiability
problem for constraint LTL is PSPACE-complete (by an interesting reduction to the same
problem for (N;<,=, (=n)n∈N)) [9]. The emptiness problem for constraint automata is
PSPACE-complete [19]. On the other hand, a unifying, model-theoretic approach for a large
family of temporal logics, including ECTL∗, which is applicable to linear orders, fails for the
prefix order over finite strings [5].

Demri and Deters proposed to study the satisfiability problem for CLTL when evaluated
over the structure (A∗;<p, <s,=, (=w)w∈A∗) with both the prefix and the suffix order [9].
This enables us to express properties like “the beginning of the content of a string is equal
to the end of some other string”. Using the obvious symmetry between the prefix order
and the suffix order, one can conclude that the above mentioned results for the prefix order
hold for the relational structure where <p is replaced by <s [9]. However, the situation
changes drastically when both <p and <s are in the relational structure. For instance,
the FO theory on the prefix order alone is decidable [27], but becomes undecidable for the
relational structure containing both prefix and suffix (this follows from the undecidability
result for the FO theory for the substring (infix) order [20], and the fact that the substring
order is FO-definable using prefix and suffix). For finite strings over a finite alphabet, it
has been remarked in [9] that the Σ1-fragment of FO logics is decidable, using an algorithm
based on the word equation approach by Makanin [22, 26]. It is thus far from clear whether
satisfiability for CLTL, or, equivalently, the emptiness problem for constraint automata, is
decidable or not. The techniques used in other works for, e.g. the prefix order alone, or
linear orders, turn out to be not applicable at all.
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In this paper, we prove that the emptiness problem for constraint automata over prefix
and suffix is decidable in NL if the automaton uses only a single variable. This is a standard
restriction, comparable to one-counter automata [12] or single-clock timed automata [25].
Our decision procedure relies on a reduction to reachability queries on the finite graph
underlying the automaton, and it applies to finite strings over both finite and countably
infinite alphabets. We may also test whether the string equals the empty string (similar to a
zero test in one-counter automata). We further obtain NL-completeness for the emptiness
problem for single-register automata over this relational structure. Last but not least, our
result implies PSPACE-completeness for the satisfiability of CLTL for the case that the
formulas in CLTL only use a single variable.

We leave open the decidability status for the case where equality with arbitrary finite
strings over A and/or constraints involving more than one variable are allowed, that is, by
now we cannot fully answer the question raised by Demri and Deters. We remark that
both extensions may be harmful: for instance, while emptiness is decidable for one-counter
automata [12], it is undecidable for two-counter automata [23]; while the Σ1-fragment of FO
logic for finite strings over a finite alphabet with the subsequence order without constants is
decidable [20], it is undecidable as soon as we allow constants in the relational structure [16].

2 Preliminaries

A relational signature σ = {R1, R2, . . . } is a countable set of relation symbols. Each symbol
Ri is associated with some non-negative arity ki. A relational structure over σ, or σ-structure
for short, is a tuple D = (D;RD

1 , R
D
2 , . . . ), where D is the domain of the structure, and

RD
i ⊆ Dki is the interpretation of the symbol Ri in D. We will often omit the symbol D in

RD
i and simply write Ri instead.

We use Σ to denote a finite alphabet, N as a countably infinite alphabet, and A as finite
or countably infinite alphabet. We use A∗ to denote the set of finite strings over A. The
symbol ε denotes the empty string, and we use A+ to denote the set A∗ \ {ε} of non-empty
strings over A. Given u, v ∈ A∗, we say that u is a strict prefix (strict suffix, respectively)
of v, written u <p v (u <s v, respectively), if v = u · u′ (v = u′ · u, respectively) for some
u′ ∈ A+. We say that u and v are incomparable with respect to the prefix order, written u⊥pv,
if u = w · a · u′ and v = w · b · v′ for some w ∈ A∗, a, b ∈ A such that a ̸= b, and u′, v′ ∈ A∗.
Incomparability with respect to the suffix order, written u⊥sv, is defined analogously.

Let σps be the signature consisting of the binary symbols <p, <s, and =. In this paper,
we are interested in the σps-structures (Σ∗;<p, <s,=) and (N∗;<p, <s,=), where, in both
structures, <p and <s are interpreted as the prefix and the suffix order over the set of strings
over Σ and N, respectively, and = is interpreted as the identity. If the context is clear, we
may write Σ∗ and N∗ to denote the respective structures, and A∗ to denote any of these
structures.

Constraint automata are generalizations of Büchi automata that are parameterized by
σ-structures, where σ is a relational signature. The transitions are labelled with Boolean
combinations of atomic formulas, called constraints, in terms of the relations of the σ-structure.
A constraint automaton processes data words. A data word is a finite or infinite sequence
d1, d2, d3 . . . , where di ∈ D is a data value from the domain of the σ-structure. A transition
of a constraint automaton can be taken if the current and the next data value of the processed
data word satisfy the constraint labelling the transition.

In the following, we assume that constraint automata are parameterized by the σps-
structures Σ∗ or N∗, and the transitions are labelled by Boolean combinations of atomic
formulas of the form z ▷◁ z′, where z, z′ ∈ {x, y} and ▷◁∈ σps. Intuitively, x stands for
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ℓ0 ℓ1 ℓ2 ℓ3
x⊥py ∧ x⊥sy

y <p x ∧ y⊥sx

x = y

y <p x ∧ y <s x

y <p x ∧ y⊥sx

x⊥py ∧ x <s y

Figure 1 Example of a constraint automaton over A∗

the string at the current position, and y stands for the string at the next position of the
processed data word. For the sake of readability we will restrict the labels of the transitions
to be maximally consistent. Formally, we define Ψ to be the set of formulas ψ(x, y) of the
following form:

x = y, x <p y ∧ x <s y, x <p y ∧ x⊥sy, x⊥py ∧ x <s y
y <p x ∧ y <s x, y <p x ∧ y⊥sx, y⊥px ∧ y <s x, x⊥py ∧ x⊥sy.

Each of these formulas is called constraint. Constraints that contain the formula y <p x

or y <s x are called reducing as they reduce the length of the string at the next position
with regard to the string at the current position. All other constraints except for x = y are
called generous, because they allow for infinitely many choices of the string value at the next
position. The satisfaction relation |= is defined in the obvious way. For instance, if ψ is of
the form x <p y ∧ x <s y, then we have N∗ |= ψ(0, 01210) and Σ∗ ̸|= ψ(a, abab).

A constraint automaton over a σps-structure A∗ is a tuple A = (L, ℓin,Lacc, E), where

L is a finite set of locations (control states);

ℓin ∈ L is the initial location;

Lacc ⊆ L is the set of accepting locations; and

E ⊆ L×Ψ× L is the set of edges.
A path of A is a finite or infinite sequence ℓ0, ℓ1, ℓ2, . . . of locations satisfying, for all i ≥ 1,
(ℓi−1, ψi, ℓi) ∈ E for some constraint ψi ∈ Ψ. We may sometimes also write ℓ0

ψ1−−→ ℓ1
ψ2−−→

ℓ2, . . . to indicate the precise edges that are used. A finite path ℓ0
ψ1−−→ ℓ1

ψ2−−→ ℓ2 . . .
ψn−−→ ℓn is

stable if ψi is of the form x = y for all 1 ≤ i ≤ n; it is generous if there exists some 1 ≤ i ≤ n
such that ψi is generous. A path as above is a cycle starting in ℓ0 if ℓ0 = ℓn.

A state of A is a pair (ℓ, w), where ℓ ∈ L and w ∈ A∗ is the current value of the
string variable. We postulate a labelled transition relation → over the set L ×A∗ of states
of A, as follows: (ℓ, w) → (ℓ, w′) if there exists a transition (ℓ, ψ(x, y), ℓ′) ∈ E such that
A∗ |= ψ(w,w′). A run of A is a finite or infinite sequence of transitions of A. A run
(ℓ0, w0) −→ (ℓ1, w1) −→ (ℓ2, w2) . . . is initialized if ℓ0 = ℓin. A run is Büchi-accepting if it is
initialized and it contains infinitely many locations in Lacc. We define the language of A by
L(A) = {(w0w1w2 · · · | (ℓ0, w0) −→ (ℓ1, w1) −→ (ℓ2, w2) . . . is a Büchi-accepting run of A}.

For an example, consider the constraint automaton A = ({ℓ0, ℓ1, ℓ2, ℓ3}, ℓ0, E, {ℓ1}) over
N∗, where E is as depicted in Figure 1. A finite initialized run of this automaton is
(ℓ0, 20) −→ (ℓ1, 346345346343) −→ (ℓ2, 34634534634)→ (ℓ3, 34634)→ (ℓ2, 346) (cf. Example 6).

The emptiness problem for constraint automata is to decide, given a constraint automaton
A, whether L(A) = ∅. In section 4, we prove that this problem is NL-complete.
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3 Rewriting Operation

For deciding the emptiness problem, we will prove the existence of string values that satisfy
the constraints that occur in a given path. During the process of defining such string values,
we will need to change already defined string values using a rewriting operation. In this
section, we define this operation and prove some important properties.

Recall that A denotes a finite or countably infinite alphabet. Given w ∈ A∗ and two
non-empty strings u, u′ ∈ A+, we define the left-to-right rewriting operation of u to u′ in
w, denoted by w[u ← u′]▷, to be the string that is obtained from w by replacing, from
left to right, every occurrence of u in w by u′. Formally, assume w = a1a2 . . . an and
define, recursively, w[u ← u′]▷ := w if aiai+1 . . . ai+|u|−1 ̸= u for all 1 ≤ i ≤ n (that
is, u does not occur in w), w[u ← u′]▷ := a1 . . . ai−1 · u′ · ((ai+|u| . . . an)[u ← u′]▷) if
1 ≤ i ≤ n is the minimal index such that aiai+1 . . . ai+|u|−1 = u. Note that if u occurs
in a1 . . . ai−1 · u′, then u is not replaced in any further steps of the recursive definition.
For instance, 1100210[10 ← 1]▷ = 11021. We define completely analogously the right-
to-left version of this operation, that is, w[u ← v]◁ := w if u does not occur in w, and
w[u ← v]◁ := ((a1 . . . ai−1)[u ← u′]▷) · u′ · ai+|u| . . . an, if i ≥ 1 is the maximal index
such that ai . . . ai+|u|−1 = u. Note that w[u ← v]▷ may be different from w[u ← v]◁; for
instance, w = 111, u = 11 and v = 0 yields w[u ← v]▷ = 01 and w[u ← v]◁ = 10. It
is easy to see that this is the case if there exist two overlapping occurrences of u in w.
Formally, we say that u is overlapping in w if there exist 1 ≤ i < j < i+ |u| ≤ n such that
aiai+1 . . . ai+|u|−1 = ajaj+1 . . . aj+|u|−1 = u. The proof of the following lemma is simple.

▶ Lemma 1. For all w ∈ A∗ and u, u′ ∈ A+, if u is not overlapping in w, then we have
w[u← u′]▷ = w[u← u′]◁.

In Subsection 4.1 we will guarantee that the rewriting operation is only applied to strings
w and u such that u is not overlapping in w, so that the left and right versions of rewriting
yield the same string. The reason why we still define both the left and right version of
rewriting is that certain properties of the prefix order – stated in the next lemma – can be
proved very conveniently using the left-to-right rewriting operation, and the same properties
can be proved symmetrically for the suffix order using the right-to-left rewriting operation
(Lemma 3).

▶ Lemma 2. For all u, u′ ∈ A+ with u <p u′, for all w,w′ ∈ A∗, and for all ▷◁∈ {=, <p,⊥p}
we have

w ▷◁ w′ ⇐⇒ w[u← u′]▷ ▷◁ w′[u← u′]▷.

Proof. Let u, u′ ∈ A+ be such that u <p u′, that is, there exists some u′′ ∈ A+ such that
u′ = u · u′′. Let w,w′ ∈ A∗ be of the form w = a1a2 . . . am and w′ = a′

1a
′
2 . . . a

′
n. Let N

and N ′, respectively, be the number of (non-overlapping, from left to right) occurrences of
u in w and w′, respectively. The proof is by induction on the sum i := N + N ′. For the
induction base, assume i = 0. But then w[u← u′]▷ = w and w′[u← u′]▷ = w′, so that the
claim clearly holds. For the induction step, suppose that the claim holds for all 0 ≤ j < i.
We prove the claim for i. We distinguish three cases:
1. N = i and N ′ = 0. By N = i > 0, w contains u. Since u <p u′, also w[u← u′]▷ contains

u. By N ′ = 0, w′ does not contain u and w′[u ← u′]▷ = w′, so that w′[u ← u′]▷ does
not contain u either. Using this, it is easy to see that none of the following cases can
hold: w = w′, w <p w

′, w[u ← u′]▷ = w′[u ← u′]▷ and w[u ← u′]▷ <p w′[u ← u′]▷. So
let us prove w⊥pw′ ⇐⇒ w[u ← u′]▷⊥pw′. For this suppose w[u ← u′]▷ is of the form
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b1b2 . . . bq. Let 1 ≤ d ≤ e ≤ m be such that ad . . . ae = u is the first occurrence of u in
w. By u <p u

′, bd . . . be = u is also the first occurrence of u in w[u ← u′]▷, and hence
a1 . . . ae = b1 . . . be. We hence obtain

w⊥pw′

⇐⇒ ∃k ≤ e such that a1 . . . ak−1 = a′
1 . . . a

′
k−1 and ak ̸= a′

k

⇐⇒ ∃k ≤ e such that b1 . . . bk−1 = a′
1 . . . a

′
k−1 and bk ̸= a′

k

⇐⇒ w[u← u′]▷⊥pw′

where k ≤ e holds by the fact that u is not contained in w′.
2. N = 0 and N ′ = i. By N = 0, w does not contain u and hence neither does w[u← u′]▷

as w[u← u′]▷ = w. By N ′ = i > 0, w′ contains u. Using this, it is easy to see that the
following two cases cannot hold: w = w′ and w[u← u′]▷ = w′[u← u′]▷. The proof for
w⊥pw′ ⇐⇒ w⊥pw′[u← u′]▷ is symmetric to the proof in the previous case. So let us
prove w <p w

′ ⇐⇒ w <p w
′[u← u′]▷. For this let w′[u← u′]▷ be of the form b′

1 . . . b
′
q.

Let 1 ≤ d ≤ e ≤ n be such that a′
d . . . a

′
e = u is the first occurrence of u in w′. By u <p u′,

b′
d . . . b

′
e = u is also the first occurrence of u in w′[u← u′]▷, and hence a′

1 . . . a
′
e = b′

1 . . . b
′
e.

We hence obtain
w <p w

′

⇐⇒ a1 . . . am = a′
1 . . . a

′
m

⇐⇒ a1 . . . am = b′
1 . . . b

′
m

⇐⇒ w <p w
′[u← u′]▷

where the second equivalence holds because m < e (as otherwise u would be contained
in w).

3. N > 0 and N ′ > 0. Let 1 ≤ d ≤ e ≤ m be such that ad . . . ae = u is the first occurrence
of u in w, and similarly, let 1 ≤ d′ ≤ e′ ≤ n be such that a′

d′ . . . a′
e′ = u is the first

occurrence of u in w′. In other words, we can write

w = a1 . . . ad−1 · u · v and w′ = a′
1 . . . a

′
d′−1 · u · v′,

where v = ae . . . am and v′ = a′
e′ . . . a′

n. By definition and u′ = u · u′′, we have

w[u← u′]▷ = a1 . . . ad−1 · u · u′′ · (v[u← u′]▷)

and

w′[u← u′]▷ = a′
1 . . . a

′
d′−1 · u · u′′ · (v′[u← u′]▷).

We distinguish four cases:
a. a1 . . . ad−1 · u = a′

1 . . . a
′
d′−1 · u. This implies

w ▷◁ w′ ⇐⇒ v ▷◁ v′ and w[u← u′]▷ ▷◁ w′[u← u′]▷ ⇐⇒ v[u← u′]▷ ▷◁ v′[u← u′]▷

for ▷◁∈ {<p,=,⊥p}. The sum M + M ′ of the occurrences of u in v and v′ must be
strictly smaller than i. By induction hypothesis,

v ▷◁ v′ ⇐⇒ v[u← u′]▷ ▷◁ v′[u← u′]▷.

Hence the result.
b. a1 . . . ad−1 · u <p a′

1 . . . a
′
d′−1 · u. This contradicts the minimality of d′, and hence this

case cannot happen.
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c. a′
1 . . . a

′
d′−1 · u <p a1 . . . ad−1 · u. This contradicts the minimality of d, and hence this

case cannot happen.
d. a1 . . . ad−1 · u⊥p a′

1 . . . a
′
d′−1 · u. Hence there exists some 1 ≤ j ≤ min(d − 1, d′ − 1)

such that a1 . . . aj−1 = a′
1 . . . a

′
j−1 and aj ̸= a′

j . This immediately implies w⊥pw′ and
also w[u← u′]▷⊥p w′[u← u′]▷, hence the result. ◀

A proof for the following lemma can be done symmetrically to the proof of Lemma 2.

▶ Lemma 3. For all u, u′ ∈ A+ and w,w′ ∈ A∗, if u <s u′, then w ▷◁ w′ if, and only if,
w[u← u′]◁ ▷◁ w′[u← u′]◁ for all ▷◁∈ {=, <s,⊥s}.

The following lemma will be crucial in Subsection 4.1.

▶ Lemma 4. For all v, w ∈ A∗ and u, u′ ∈ A+, if u is not overlapping in v, u is not
overlapping in w, u <p u′, and u <s u

′, then A∗ |= ψ(v, w) if, and only if, A∗ |= ψ(v[u ←
u′]▷, w[u← u′]▷) for all ψ ∈ Ψ.

Proof. The proof is an easy case distinction depending on the form of ψ. We give the proof
for ψ being of the form x <p y ∧ x⊥sy.

N∗ |= ψ(v, w)
⇐⇒ v <p w and v⊥sw (by definition)
⇐⇒ v[u← u′]▷ <p w[u← u′]▷ and v⊥sw (by Lemma 2)
⇐⇒ v[u← u′]▷ <p w[u← u′]▷ and v[u← u′]◁⊥sw[u← u′]◁ (by Lemma 3)
⇐⇒ v[u← u′]▷ <p w[u← u′]▷ and v[u← u′]▷⊥sw[u← u′]▷ (by Lemma 1)
⇐⇒ N∗ |= ψ(v[u← u′]▷, w[u← u′]▷) (by definition)

The proofs for the other cases are completely analogous. ◀

4 Deciding Emptiness for Constraint Automata over N∗

In this section, we solve the emptiness problem for constraint automata over N∗. We start in
the next subsection with presenting an algorithm that returns for every finite sequence of
constraints ψ1, . . . , ψn a sequence of string values w0, w1, . . . , wn such that N∗ |= ψi(wi−1, wi)
for all 1 ≤ i ≤ n. The sequence ψ1, . . . , ψn may correspond to the sequence of constraints
occurring in a finite path π = ℓ0

ψ1−−→ . . .
ψn−−→ ℓn of a constraint automaton A, and by

constructing string values w0, w1, . . . , wn we actually prove that π can be completed to a
finite run (ℓ0, w0) ψ1−−→ . . .

ψn−−→ (ℓn, wn) of A. This already implies NL-membership of the
reachability problem for constraint automata (Corollary 8).

We remark that for infinite sequences of constraints ψ1, ψ2, . . . it is not the case that we
can always find string values w0, w1, . . . satisfying N∗ |= ψi(wi−1, wi). Consider for instance
the sequence (x⊥py ∧ x⊥sy) (y <p x ∧ y⊥sx)ω (cf. Figure 1). The constraint y <p x ∧ y⊥sx
is reducing and requires the strings in the ω-sequence to become shorter infinitely often,
which is impossible. In Subsection 4.2 we give a characterization for when infinite paths
can be extended to infinite runs, which, together with the results obtained before, yields a
decision procedure for the emptiness problem.

For the rest of this section, let A = (L, ℓin,Lacc, E) be a constraint automaton over N∗.
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4.1 Extending Finite Paths to Finite Runs
The main part of this subsection is dedicated to prove the following result.

▶ Proposition 5. For every sequence ψ1, . . . , ψn of constraints in Ψ and non-empty string
win ∈ N+, we can define non-empty strings w0, w1, . . . , wn ∈ N+ such that N∗ |= ψi(wi−1, wi)
for all 1 ≤ i ≤ n. Moreover, if ψ1 is generous, then w0 = win.

Let ψ1, . . . , ψn be a finite sequence of constraints in Ψ, and let win be an initial non-empty
string value. The idea is to construct, one after the other, string values that satisfy the
constraints. During the process, formerly defined string values may need to be rewritten
using the left-to-right-rewriting operation defined in Section 3 (so that w0 may not be equal
to the input string win). We take advantage of the fact that we have an unbounded supply of
“fresh” letters as we operate on the infinite alphabet N: we can assign string values in such
a way that constraints that are satisfied before a rewriting still hold true after a rewriting.
Given a string w ∈ N∗, we let max(w) be the maximal number occurring as a letter in w if
w ̸= ε and max(w) = 0 otherwise.

For 1 ≤ i ≤ n, suppose we have already defined string values wi−1
0 , wi−1

1 , . . . , wi−1
i−1

such that N∗ |= ψj(wi−1
j−1, w

i−1
j ) for all 1 ≤ j < i, where w0

0 = win. Define Mi =
max{wi−1

0 , . . . , wi−1
i−1}+ 1, so that Mi is a “fresh” letter not occurring in any of the already

defined string values. Depending on the form of ψi, we define wi0, w
i
1, . . . , w

i
i such that

N∗ |= ψj(wij−1, w
i
j) for all 1 ≤ j ≤ i. We consider the following cases:

1. ψi is of the form x = y. Define wii = wi−1
i−1, and wij = wi−1

j for all 0 ≤ j < i.
2. ψi is of the form x <p y ∧ x <s y. Define wii = wi−1

i−1 ·Mi · wi−1
i−1, and wij = wi−1

j for all
0 ≤ j < i.

3. ψi is of the form x <p y ∧ x⊥sy. Define wii = wi−1
i−1 ·Mi, and wij = wi−1

j for all 0 ≤ j < i.
4. ψi is of the form x⊥py ∧ x <s y. Define wii = Mi ·wi−1

i−1, and wij = wi−1
j for all 0 ≤ j < i.

5. ψi is of the form y <p x ∧ y <s x. Define wii = wi−1
i−1, and for all 0 ≤ j < i define

wij = wi−1
j [wi−1

i−1 ← wi−1
i−1 ·Mi · wi−1

i−1]▷.
6. ψi is of the form y <p x ∧ y⊥sx. Define wii = wi−1

i−1 ·Mi, and for all 0 ≤ j < i define
wij = wi−1

j [wi−1
i−1 ← wi−1

i−1 ·Mi · wi−1
i−1]▷.

7. ψi is of the form y⊥px ∧ y <s x. Define wii = Mi · wi−1
i−1, and for all 0 ≤ j < i define

wij = wi−1
j [wi−1

i−1 ← wi−1
i−1 ·Mi · wi−1

i−1]▷.
8. ψi is of the form x⊥py ∧ x⊥sy. Define wii = Mi and wij = wi−1

j for all 0 ≤ j < i.

▶ Example 6. Let us illustrate the construction with the sequence ψ1, ψ2, ψ3 and win = 3,
where ψ1 = ψ3 = (y <p x ∧ y⊥sx), and ψ2 = (y <p x ∧ y <s x). For i = 1, we are in
case 6. We have M1 = 4 and obtain w1

1 = w0
0 ·M1 = 34 and w1

0 = w0
0[3 ← 343]▷ = 343.

Clearly N∗ |= ψ1(w1
0, w

1
1). For i = 2, we are in case 5 and define w2

2 = w1
1 = 34. We further

rewrite w2
1 = w1

1[34 ← 34534]▷ = 34534, and w2
0 = w1

0[34 ← 34534]▷ = 345343. So even
after rewriting, we have N∗ |= ψi(w2

i−1, w
2
i ) for i = 1, 2. For i = 3, we are again in case 6.

We obtain w3
3 = 346; w3

2, w3
1 and w3

0, respectively, are rewritten to 34634, 34634534634 and
346345346343, respectively. All constraints are indeed satisfied.

Let us state an important property of the construction, which will be key for the correctness
of the construction.

▶ Invariant 7. For every 0 ≤ i ≤ n and every 0 ≤ j ≤ i, wii is not overlapping in wij.

Proof. The proof is by induction on i. The induction base, i = 0, is trivial. So assume that
the claim holds for all 0 ≤ k < i. We prove it for i. We consider different cases, based on the
form of ψi. Let 0 ≤ j < i (the case j = i is trivial).
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1. Suppose we are in cases 1, 2, 3, 4, or 8, that is, wij = wi−1
j (no rewriting happens). In

case 1, wii = wi−1
i−1, we can apply the induction hypothesis to obtain the result. In the

remaining four cases, the string wii contains the letter Mi, which, by definition, does not
occur in wi−1

j . Hence wii cannot occur at all in wi−1
j .

2. Suppose we are in cases 5, 6, or 7, that is, wij = wi−1
j [wi−1

i−1 ← wi−1
i−1 ·Mi ·wi−1

i−1] (rewriting
happens). By induction hypothesis, wi−1

i−1 is not overlapping in wi−1
j . If N is the number

of occurrences of wi−1
i−1 in wi−1

j , we can hence write

wi−1
j = u0 · wi−1

i−1 · u1 · wi−1
i−1 · u2 . . . uN−1 · wi−1

i−1 · uN

for some u0, . . . , uN ∈ N∗. By definition,

wij = u0 · wi−1
i−1 ·Mi · wi−1

i−1 · u1 · wi−1
i−1 ·Mi · wi−1

i−1 · u2 . . . uN−1 · wi−1
i−1 ·Mi · wi−1

i−1 · uN .

In case 5, wii = wi−1
i−1, so that wii does not contain Mi by definition. The only way for

wii to be overlapping in wij is in u0 · wi−1
i−1, in wi−1

i−1 · uk · w
i−1
i−1 for some 1 ≤ k < N , or in

wi−1
i−1 · uN . But this would contradict that wi−1

i−1 is not overlapping in wi−1
j . In case 6,

wii = wi−1
i−1 ·Mi. By definition, wi−1

j does not contain Mi. Hence the only way for wii to
be contained at all in wij is so that no overlap can occur. The reasoning for case 7, where
wii = Mi · wi−1

i−1, is analogous. ◀

Let us finally prove the correctness of the construction, that is, for all 1 ≤ i ≤ n, we
have N∗ |= ψj(wij−1, w

i
j) for all 1 ≤ j ≤ i. The proof is by induction on i. For the base

case i = 1 observe that w1
0 and w1

1 are defined such that N∗ |= ψ1(w1
0, w

1
1). So suppose that

the claim holds for all 1 ≤ k < i. We prove it for i. For j = i, it is again easy to see that
N∗ |= ψi(wii−1, w

i
i). So let 1 ≤ j < i. By induction hypothesis, we have N∗ |= ψj(wi−1

j−1, w
i−1
j ).

Depending on the form of ψi, we either have
wij−1 = wi−1

j−1 and wij = wi−1
j , so that we have N∗ |= ψj(wij−1, w

i
j); or

wij−1 = wi−1
j−1[wi−1

i−1 ← wi−1
i−1 · Mi · wi−1

i−1]▷ and wij = wi−1
j [wi−1

i−1 ← wi−1
i−1 · Mi · wi−1

i−1]▷.
By Invariant 7, wi−1

i−1 is not overlapping in wi−1
j−1, wi−1

i−1 is not overlapping in wi−1
j , and

wi−1
i−1 <p wi−1

i−1 · Mi · wi−1
i−1, and wi−1

i−1 <s w
i−1
i−1 · Mi · wi−1

i−1. By Lemma 4 we obtain
N∗ |= ψj(wij−1, w

i
j).

Setting wi = wni for all 0 ≤ i ≤ n, we are done with the proof of the first claim of
Proposition 5.

Let us prove the second claim and suppose that ψ1 is generous. We prove below that
for all 1 ≤ i ≤ n, wii contains some letter not occurring in wi0. Note that this implies
w0

0 = w1
0 = · · · = wn0 . The proof is by induction on i. For the induction base, set i = 1.

Since ψ1 is generous, we are in one of the cases 2, 3, 4, or 8. Here, w1
1 contains M1,

which, by definition, is not occurring in w0
0, and w1

0 = w0
0. Hence w1

1 contains a letter
not occurring in w1

0. For the induction step, suppose the claim holds for all 1 ≤ j < i.
We prove it for i. Note that depending on the form of ψi, wii is defined as wi−1

i−1, a fresh
letter Mi, or a composition of these two. For wi0, we either have wi0 = wi−1

0 , in which
case the induction hypothesis and/or freshness of Mi immediately establishes the claim,
or we have wi0 = wi−1

0 [wi−1
i−1 ← wi−1

i−1 · Mi · wi−1
i−1]. But by induction hypothesis, wi−1

i−1
contains some letter not occurring in wi−1

0 , so that wi−1
i−1 cannot occur in wi−1

0 and thus
wi−1

0 [wi−1
i−1 ← wi−1

i−1 ·Mi · wi−1
i−1] = wi−1

0 . Hence wii contains some letter not occurring in wi0.
This finishes the proof of Proposition 5.

The (control-state) reachability problem for constraint automata is the problem to decide,
given a constraint automaton A = (L, ℓin,Lacc, E) over N∗ and some target location ℓ ∈ L,
whether there exists a run from (ℓin, w0) to (ℓ, w), for some w0, w ∈ N∗.

MFCS 2022
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▶ Corollary 8. The reachability problem for constraint automata is NL-complete.

Proof. For the upper bound, it suffices to decide whether there exists a path from ℓin to ℓ,
which can be done in NL. If no such path exists, then there exists no run from (ℓin, w0) to (ℓ, w)
for some w0, w ∈ N∗. If such a path, say ℓ0

ψ1−−→ . . .
ψn−−→ ℓn, exists, we use Proposition 5 with

ψ1, . . . , ψn and some win ∈ N+ to obtain w0, w1, . . . , wn ∈ N+ such that N∗ |= ψi(wi−1, wi)
for all 1 ≤ i ≤ n. Then (ℓ0, w0) ψ1−−→ . . .

ψn−−→ (ℓn, wn) is a finite run of A. A reduction from
the reachability problem for finite directed graphs yields the lower bound. ◀

4.2 Characterization for Büchi-accepting Runs
As mentioned above, there are infinite sequences of constraints ψ1, ψ2, . . . for which it may
not be possible to find w0, w1, w2 . . . such that N∗ |= ψ(wi−1, wi) for all i ≥ 1. In the
following proposition, we give a decidable characterization for when an infinite path of A
can be completed with string values to obtain an infinite run of A.

▶ Proposition 9. The following three statements are equivalent:
1. There exists a Büchi-accepting run of A.
2. There exists an infinite path π of A satisfying the following conditions:

a. π starts in ℓin,
b. π contains infinitely many occurrences of ℓacc, for some ℓacc ∈ Lacc, and
c. if π contains only finitely many generous constraints, then π contains only finitely

many reducing constraints.
3. There exists a path from ℓin to ℓacc, for some ℓacc ∈ Lacc, and one of the following holds:

a. there exists some stable cycle starting in ℓacc, or
b. there exists some generous cycle starting in ℓacc.

Proof. For the proof from 1. to 2., let (ℓ0, w0) ψ1−−→ (ℓ1, w1) ψ2−−→ . . . be a Büchi-accepting
run of A. Define π to be the infinite path ℓ0

ψ1−−→ ℓ1
ψ2−−→ . . . . Clearly, π satisfies conditions

2.a and 2.b; we prove that condition 2.c also holds. Towards contradiction, suppose that π
contains finitely many generous constraints but infinitely many reducing constraints. Then
there exists some i ≥ 1 such that ψj is reducing or of the form x = y, for all j ≥ i. Note that
this implies |wj | ≥ |wj+1| for all j ≥ i. Moreover, since there are infinitely many reducing
constraints, there exists an infinite sequence i ≤ i1 < i2 < i3 . . . of indices such that ψij is
reducing and hence |wij | > |wij+1|. Since |wj | is finite, this leads to a contradiction.

For the proof from 2. to 1., let π = ℓ0
ψ1−−→ ℓ1

ψ2−−→ . . . be an infinite path of A satisfying
the three conditions stated in 2. Using condition 2.c, we prove that we can complete π
with string values to yield an infinite run of A; that this run is Büchi-accepting, follows by
conditions 2.a and 2.b. We distinguish two cases.

Suppose π contains only finitely many generous constraints. By condition 2.c, π contains
only finitely many reducing constraints. Then there exists some i ≥ 0 such that ψj is of
the form x = y for all j > i. Use Proposition 5 with the sequence ψ1, . . . , ψi and win = 0
to obtain string values w0, w1, . . . , wi ∈ N+ such that N∗ |= ψj(wj−1, wj) for all 1 ≤ j < i.
Then (ℓ0, w0) ψ1−−→ (ℓ1, w1) ψ2−−→ . . .

ψi−→ (ℓi, wi)
ψi+1−−−→ (ℓi+1, wi)

ψi+2−−−→ (ℓi+2, wi)
ψi+3−−−→ . . .

is an infinite run of A.
Suppose that π contains infinitely many generous constraints. Let i1, i2, i3 . . . be the
sequence of all j ≥ 1 such that ψij is generous. Use Proposition 5 with the sequence
ψ1, . . . , ψi1−1 and win = 0 to obtain string values w0, w1, . . . , wi1−1 ∈ N+ such that
N∗ |= ψk(wk−1, wk) for all 1 ≤ k < wi1−1. For every j ≥ 1, use Proposition 5 with the
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sequence ψij , . . . , ψij+1−1 and the initial string value wjin := wij−1 to obtain string values
wij−1, wij , . . . , wij+1−1 ∈ N+ such that N∗ |= ψk(wk−1, wk) for all ij ≤ k < ij+1 − 1. By
the second claim of Proposition 5, since ψij in πj is generous, the initial string value
wij−1 is never rewritten. Hence Πi≥0ρi is an infinite run of A, where ρ0 := (ℓ0, w0) ψ1−−→

(ℓ1, w1) ψ2−−→ . . .
ψi1−1−−−−→ (ℓi1−1, wi1−1), and ρj := (ℓij−1, wij−1)

ψij−−→ (ℓij , wij )
ψij +1
−−−−→

. . .
ψij+1−1
−−−−−→ (ℓij+1−1, wij+1−1) for all j ≥ 1.

For the proof from 2. to 3., let π = ℓ0
ψ1−−→ ℓ1

ψ2−−→ . . . be an infinite path of A satisfying
the three conditions stated in 2. We distinguish two cases:

Suppose π contains only finitely many generous constraints. By condition 2.c, π contains
only finitely many reducing constraints. Then there exists some i ≥ 0 such that ψj is of
the form x = y for all j > i. By condition 2.b, there are infinitely many indices j > i such
that ℓj = ℓacc. Pick two such indices j < k satisfying ℓj = ℓk = ℓacc. We have ℓ0 = ℓin by
condition 2.a, so that clearly, the path ℓ0

ψ1−−→ . . .
ψj−→ ℓj is a path from ℓin to ℓacc, and

the path ℓj
ψj+1−−−→ . . .

ψk−1−−−→ ℓk is a stable cycle starting in ℓacc.
Suppose π contains infinitely many generous constraints. By condition 2.b, there are
infinitely many indices i ≥ 0 such that ℓi = ℓacc, so that we can clearly pick three indices
j, k, n such that 0 ≤ j < k ≤ n, ℓj = ℓn = ℓacc, and ψk is generous. We have ℓ0 = ℓin by
condition 2.a, so that clearly, the path ℓ0

ψ1−−→ . . .
ψj−→ ℓj is a path from ℓin to ℓacc, and

the path ℓj
ψj+1−−−→ . . .

ψk−1−−−→ ℓk is a generous cycle starting in ℓacc.

For the proof from 3. to 2., suppose πin is a path from ℓin to ℓacc for some accepting
location ℓacc ∈ Lacc, and πcyc is a cycle starting in ℓacc. Clearly πin · (πcyc)ω is an infinite
path of A satisfying conditions 2.a and 2.b. If πcyc is stable, then this path contains only
finitely many reducing constraints. If πcyc is generous, then this path contains infinitely
many generous constraints. Hence, condition 2.c holds, too. ◀

▶ Theorem 10. The emptiness problem for constraint automata over N∗ is NL-complete.

Proof. For the upper bound, by Proposition 9, it suffices to decide whether there exists
some ℓacc ∈ Lacc such that there exists a path from ℓin to ℓacc, and one of the following two
conditions hold:

there exists a stable cycle starting in ℓacc, or
there exists some genereous transition (ℓ, ψ(x, y), ℓ′) ∈ E such that there exists a path
from ℓacc to ℓ, and there exists a path from ℓ′ to ℓacc.

All conditions can be checked in NL. A reduction from the emptiness problem for Büchi
automata yields the lower bound. ◀

5 Further Results

5.1 Testing Equality with the Empty String
We extend the signature σps by a new symbol =ε, which is interpreted as equality with the
empty string. This enables us to test whether the string value equals the empty string – very
similar to testing whether the value of a counter in a counter automaton is equal to zero,
or whether the stack of a pushdown automaton is empty. Let us use σpsε to denote this
signature. We can give a decidable characterization for Büchi-accepting runs of A and hence
obtain:
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▶ Theorem 11. The emptiness problem for constraint automata over the extended signature
σpsε with domain N∗ is NL-complete.

5.2 Emptiness for Constraint Automata over Σ∗

The decision procedure for solving the emptiness problem for constraint automata over N∗

relies heavily on the existence of “fresh” letters, of which there are unboundedly many in N.
We can clearly not apply this algorithm if the constraint automaton is over the structure Σ∗,
where Σ is a finite alphabet.

Let σ be a relational signature, and let D1 and D2 be two σ-structures. A mapping
h : D1 → D2 is a σ-embedding if h is injective, and for all symbols R of arity k, and all
a1, . . . , ak ∈ D1, RD1(a1, . . . , ak) holds if, and only if, RD2(h(a1), . . . , h(ak)).

Let Σ = {a, b}. Define the mapping g : N → Σ by n 7→ abna for all n ∈ N, and let
h : N∗ → Σ∗ be its homomorphic extension, that is, h(n1 . . . nk) = g(n1) . . . g(nk) for all
n1, . . . , nk ∈ N, and h(ε) = ε. One can easily see that h is a σpsε-embedding. We can
conclude that a constraint automaton over Σ∗ is a positive instance of the emptiness problem
iff the same constraint automaton over N∗ is a positive instance; thus:

▶ Theorem 12. The emptiness problem for constraint automata over the extended signature
σpsε with domain Σ∗ is NL-complete.

5.3 Emptiness for Single-Register Automata over A∗

Register automata (also known as finite-memory automata) [17, 13, 24] are a very popular
computational model for the analysis of data languages. Like constraint automata, register
automata are parameterized by a σ-structure; in contrast to constraint automata, register
automata are “fed” with some input data word, that is a finite or infinite sequence of data
values in the domain of the σ-structure. The data language accepted by such an automaton
is the set of input data words for which there is an accepting run. Different to the transitions
in constraint automata, the transitions of register automata are labelled with constraints of
the form r ▷◁ d, where r corresponds to one of finitely many registers of the automaton, d
corresponds to the current datum of the input data word, and ▷◁ is a binary relation in σ.
Further, the current input data value can be stored into one of the registers of the automaton
after a transition has been taken.

So far, register automata have mostly been studied for the structure (N; =) and linear
dense orders like (Q;<,=) [17, 24, 13, 4, 8]. The emptiness problem for register automata is
decidable and PSPACE-complete (NL-complete if only one register is used) [13]; the decision
procedure relies on a finite abstraction of the infinite state space induced by the input register
automaton. This abstraction cannot be applied to register automata over σpsε-structures Σ∗

and N∗.
A register automaton with a single register that stores the current input datum in every

transition into the register can actually be regarded as a constraint automaton as defined in
Section 2: the current value of the register r corresponds to the value of the variable x, and
the input datum d corresponds to the value of the variable y at the next position in a run.
However, it might be the case that some of the transitions in the register automaton may
compare the value of the register without storing the input datum into the register. There is
no direct way to translate this into constraint automata as defined above. However, an easy
extension of our model where we compare x with y, but then set the value of y to x, would
make such a translation possible. It can be easily seen that this extension does not cause any
problems when applying the developed decision procedure for solving the emptiness problem,
so that we can conclude:
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▶ Theorem 13. The emptiness problem for single-register automata over the extended
signature σpsε (with domains N∗ or Σ∗) is NL-complete.

5.4 Constraint LTL with a Single Variable over A∗

Our result for constraint automata can be used to partially answer the question raised by
Demri and Deters [9] concerning the decidability status for CLTL over σpsε. More detailed,
we can prove PSPACE-completeness for the fragment of CLTL that only uses a single variable.

Let P be a countably infinite set of propositional variables. The set of formulas in CLTL1
is defined by the following grammar

φ ::= p | ψ | ¬φ | φ ∨ φ | Xφ | φUφ,

where p ∈ P and ψ ∈ Ψ. CLTL1 formulas are evaluated over data words over 2P and A∗.
Formally, let u = (a1, w1)(a2, w2) . . . and i ≥ 1. The satisfaction relation |= is defined as
follows:

(u, i) |= p ⇔ p ∈ ai
(u, i) |= ψ ⇔ A∗ |= ψ(wi, wi+1)

(u, i) |= ¬φ ⇔ not(u, i) |= φ

(u, i) |= φ1 ∨ φ2 ⇔ (u, i) |= φ1 or (u, i) |= φ2

(u, i) |= Xφ ⇔ (u, i+ 1) |= φ

(u, i) |= φ1Uφ2 ⇔ ∃j ≥ i(u, j) |= φ2, ∀i ≤ k < j(u, k) |= φ1

We define L(φ) = {u ∈ (2P × A∗)ω | (u, 1) |= φ}. Following the standard translation from
LTL to Büchi automata by Vardi and Wolper [29], one can construct from every formula φ a
constraint automaton Aφ such that L(Aφ) corresponds to L(φ) (cf. [14]). In other words,
deciding the satisfiability of φ can be reduced to deciding the non-emptiness of L(Aφ), so
that we obtain the following result.

▶ Theorem 14. The satisfiability problem for CLTL1 over the extended signature σpsε (with
domains N∗ or Σ∗) is PSPACE-complete.
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On Uniformization in the Full Binary Tree
Alexander Rabinovich ! Ï
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Abstract
A function f uniformizes a relation R(X,Y) if R(X,f(X)) holds for every X in the domain of R.
The uniformization problem for a logic L asks whether for every L-definable relation there is an
L-definable function that uniformizes it. Gurevich and Shelah proved that no Monadic Second-Order
(MSO) definable function uniformizes relation “Y is a one element subset of X” in the full binary
tree. In other words, there is no MSO definable choice function in the full binary tree.

The cross-section of a relation R(X,Y) at D is the set of all E such that R(D,E) holds. Hence, a
function that uniformizes R chooses one element from every non-empty cross-section. The relation
“Y is a one element subset of X” has finite and countable cross-sections.

We prove that in the full binary tree the following theorems hold:

▶ Theorem (Finite cross-sections). If every cross-section of an MSO definable relation is finite, then
it has an MSO definable uniformizer.

▶ Theorem (Uncountable cross-section). There is an MSO definable relation R such that every MSO
definable relation included in R and with the same domain as R has an uncountable cross-section.
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1 Introduction

Let R ⊆ D1 ×D2 be a binary relation. For d1 ∈ D1 the cross-section of R at d1 is the set
Rd1 := {d ∈ D2 | (d1, d) ∈ R}. The domain of R is the set {d1 ∈ D1 | ∃d2(d1, d2) ∈ R}.

A uniformizer of R is a subset R∗ of R such that for all x: ∃yR(x, y) ⇔ ∃!yR∗(x, y)
(where ∃! stands for “there exists unique”). Hence, a uniformizer for R is a partial function
that chooses an element from each non-empty cross-section of R and has the same domain
as R (see Fig. 1).

In other words, given an input x for which the original relation R has a non-empty
cross-section, a uniformizer returns a single value from the cross-section at x. This is a
special case of a choice function.

The axiom of choice implies that a uniformizer always exists; however, it is often important
that a uniformizer has some “nice” properties. This is where the uniformization theorems
come into action. They guarantee that, if R satisfies certain properties, then it has a
uniformizer that has other desirable properties.

A set of relations R has the uniformization property if every R ∈ R has a uniformizer
in R.

We consider the set of relations over the full binary tree definable in the Monadic Second-
Order Logic (MSO). The seminal Rabin’s theorem states that the Monadic Second-Order
Logic is decidable over the full binary tree [8].

The monadic second-order logic is an extension of first-order logic by set variables (which
range over the subsets of the domain of a structure), and the quantifiers over the set variables
(see Section 2.1).
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Figure 1 R∗ uniformizes R.

An MSO formula α(X,Y ) with free set (second-order) variables X and Y defines a binary
relation on the subsets of the full binary tree. Rabin [8] proved the basis theorem that states:
every non-empty relation definable by an MSO formula α(Y ) contains an MSO definable set.
The basis theorem is a simple (degenerate) instance of the uniformization property. Rabin
asked whether the class of relations definable in the monadic second-order logic over the
full binary tree has the uniformization property. Gurevich and Shelah [6] gave a negative
solution to Rabin’s question with the formula α(X,Y ) saying “if X is non-empty, then Y is
a one element subset of X” as a counter-example. A function that uniformizes “Y is a one
element subset of X” is a choice function; it chooses one element from every non-empty set
X. The Gurevich-Shelah Theorem states that there is no MSO definable choice function in
the full binary tree.

Since MSO definable relations over the tree do not have the uniformization property,
a natural task is to decide whether an MSO definable relation has a (MSO-definable)
uniformizer; another natural task is to provide a characterization of those relations which
have a uniformizer. The decidability whether a relation has a uniformizer is open. However,
we provide a sufficient condition for a relation to have a uniformizer.

▶ Theorem (Finite cross-sections). If the cross-sections of an MSO definable relation over
the full binary tree are finite, then it has an MSO definable uniformizer.

Note that the Gurevich-Shelah Theorem and the above Theorem imply that there are MSO
definable relations that do not include MSO definable relations with the same domain and
only finite cross-sections.

A natural question is whether an MSO definable relation always includes an MSO definable
relation with the same domain and at most countable cross-sections. We provide a negative
answer to this question.

▶ Theorem (Uncountable cross-section). There is an MSO definable relation R such that
any MSO definable relation which is included in R and has the same domain as R has an
uncountable cross-section.

Hence, it is even impossible to choose in a definable way a countable subset from every
non-empty cross-section.

The paper is organized as follows. Section 2 recalls standard definitions about monadic
second-order logics, trees, and presents elements of composition method which are used in
our proofs. Section 4 provides a proof of Finite cross-section theorem. Section 5 discusses
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the consequences of undefinability of choice function; it also introduces some notions which
are helpful for the proof of Uncountable cross-section theorem given in Section 6. Section 7
contains conclusions and further results.

2 Preliminaries

We use standard notations and terminology. We use n, k,m, l for natural numbers. We
use capital letters A,B,C for sets, and lower case letters a, b, c for elements of sets. The
powerset of a set D is denoted by P(D). We use the expressions “chain” and “linear order”
interchangeably; we use ω for the order type of the natural numbers.

2.1 Monadic Second-Order Logic
We use standard notations and terminology about Monadic Second-Order logic (MSO)
[8, 12, 10].

Let σ be a relational signature. A structure (for σ) is a tuple M = (D, {RM | R ∈ σ})
where D is a domain, and each symbol R ∈ σ is interpreted as a relation RM on D.

MSO formulas use first-order variables, which are interpreted as elements of the structure,
and monadic second-order variables, which are interpreted as sets of elements. Atomic MSO
formulas are of the following form:

R(x1, . . . , xn) for an n-ary relational symbol R and first-order variables x1, . . . , xn

x = y for two first-order variables x and y

x ∈ X for a first-order variable x and a second-order variable X
MSO formulas are constructed from the atomic formulas, using boolean connectives, the
first-order quantifiers, and the second-order quantifiers.

We write ψ(X1, . . . , Xn, x1, . . . , xm) to indicate that the free variables of the formula
ψ are X1, . . . , Xn (second-order variables) and x1, . . . , xm (first-order variables). We write
M, A1, . . . , An, a1, . . . , am |= ψ or M |= ψ(A1, . . . , An, a1, . . . am) if ψ holds in M when
subsets Ai are assigned to Xi for i = 1, . . . , n and elements ai are assigned to variables
x1, . . . , xm for i = 1, . . . ,m. WheneverM is clear from the context we will further abbreviate
this to ψ(A1, . . . , An, a1, . . . am). Sometimes, we abuse notations and use X for a variable
and for the set assigned to it.

▶ Definition 2.1 (Definability). Let ψ(X1, . . . , Xn) be an MSO formula and M a structure.
The relation defined by ψ in M is the set

ψM := {(D1, . . . , Dn) ∈ P(D)n | M |= ψ(D1 . . . , Dn)}.

A relation is MSO-definable in M if it is equal to ψM for an MSO formula ψ. A set U ⊆ D
is MSO-definable in M if there is a formula ψ(X) such that ψM = {U}. A function is
MSO-definable in M if its graph is.

Let ψ(X1, . . . , Xn, Y1, . . . Yl) be an MSO formula and M a structure. Let C be an l-tuple
of subsets of the domain D of M. The relation defined by ψ in M with parameters C is the
set

ψ(M, C) := {(D1, . . . , Dn) ∈ P(D)n | M |= ψ(D1 . . . , Dn, C}.

The definability of a subset and of a function in M with parameters is defined in a similar
way.

MFCS 2022
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2.2 Trees
We view the set {l, r}∗ of finite words over the alphabet {l, r} as the domain of the full
binary tree, where the empty word ϵ is the root of the tree, and for each node v ∈ {l, r}∗, we
call v · l the left child of v, and v · r the right child of v.

We define a tree order “≤” as a partial order such that ∀u, v ∈ {l, r}∗ : u ≤ v iff u is a
prefix of v.

Nodes u and v are incomparable - denoted by u ⊥ v - if neither u ≤ v nor v ≤ u; a set U
of nodes is an antichain, if its elements are incomparable with each other.

We say that an infinite sequence π = v0, v1, . . . is a tree branch if v0 = ϵ and ∀i ∈ N :
vi+1 = vi · l or vi+1 = vi · r.

A path is a finite or infinite sequence v0 . . . vi . . . such that if vi is not the last node, then
vi+1 = vi · l or vi+1 = vi · r.

We consider the full binary tree as a structure for a signature {≤, left, right} where unary
relation symbols left and right are interpreted as {wl|w ∈ {l, r}∗} and {wr|w ∈ {l, r}∗},
respectively; ≤ is interpreted as the prefix relation.

A k-tree is an expansion of the full binary tree by k unary predicates. Whenever k is
clear from the context or unimportant we will use “labelled tree” for “k-tree.”

Given a k-tree T := (T, P1, . . . , Pk) and a node v in T, the k-tree T≥v := (T≥v, P
′
1, . . . , P

′
k)

(called the subtree of T, rooted at v) is defined by T≥v is the full binary tree, and u ∈ P ′
i iff

vu ∈ Pi for i = 1, . . . , k.
Let F be an antichain in a k-tree T and let T1 be a k-tree. The grafting of T1 at F in

T is denoted by T{T1/F} and is the k-tree obtained from T when the subtrees rooted at F
are replaced by T1.

Formally, T′ := T{T1/F} is defined as follows: let u ∈ {l, r}∗ be a node. (i) if ¬∃f ∈
F (f ≤ u) then PT′

i (u) iff PT
i (u); else (ii) u = fv for a unique f ∈ F , and PT′

i (u) iff PT1
i (v).

2.3 Composition Method
The proofs presented in this paper make use of the technique known as the “composition
method.” To fix notations and to aid the reader not familiar with this technique, we briefly
review those definitions and results that we need. A more detailed presentation can be found
in [11] or [5, 7].1

Let σ be a finite relational signature. Write σk for the signature σ with k (fresh) unary
predicate P1, · · · , Pk symbols. Thus, a σk-structure A has the form (A,PA

1 , · · · , PA
k ), where

A is a σ-structure. The quantifier rank of a formula φ, denoted qr(φ), is the maximum
depth of the nesting of quantifiers in φ. For example, if ψ and φ are quantifier-free, then the
quantifier rank of (∃x∀Y ∀Zψ) ∧ (∀Y ∃uφ) is 3. For r, k ∈ N we denote by Formr

k the set of
formulas of quantifier rank ≤ r and with free variables among X1, . . . , Xk in signature σ.

For σk-structures A,B write A ≡r
k B if for every φ ∈ Formr

k,

A |= φ(PA
1 , · · · , PA

k ) if and only if B |= φ(PB
1 , · · · , PB

k ).

Clearly, ≡r
k is an equivalence relation and the set Formr

k is infinite. Since the signature σk is
finite and relational, the set Formr

k contains only finitely many semantically distinct formulas,
so there are only finitely many ≡r

k-classes of σk-structures. The following lemma isolates
maximally consistent formulas.

1 In [9], [6], and several other papers, the technique is further developed and a much deeper application
of it is made than will be made here.
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▶ Lemma 2.2 (Hintikka lemma). Let σ be a finite relational signature. For r, k ∈ N, there is
a finite set Hr

k ⊆ Formr
k such that:

1. For every σk-structure A there is a unique τ ∈ Hr
k with A |= τ(PA

1 , · · · , PA
k ).

2. If τ ∈ Hr
k and φ ∈ Formr

k, then τ |= φ or τ |= ¬φ.2
Elements of Hr

k are called (r, k)-Hintikka formulas.

▶ Definition 2.3 (type of a structure). For a σk-structure A, write typer
k(A) for the unique

τ(X1, · · · , Xk) ∈ Hr
k such that A |= τ(PA

1 , · · · , PA
k ), and call it the (r, k)-type of A.

Thus, typer
k(A) determines for which formulas φ ∈ Formr

k it holds that A |= φ(PA
1 , · · · , PA

k ).
Since k is often clear, we may drop it, and write typer(A) and call it the r-type of A.

We now state weak versions of the composition theorem for MSO over chains and trees,
see [9] or [6, 5] for details. The first deals with a representation of ω-chains as a concatenation
of finite chains; the second considers a branch in a tree.

▶ Lemma 2.4 (Weak Composition Theorem for ω-chains). Let (L,<) be a linear order
isomorphic to ω. Let v1 < v2 < · · · < vn < · · · be a sequence of elements in L, where v1 is
the minimal element of L. Let L := (L,<, P1, · · · , Pk) be an expansion of (L,<) by unary
predicates, and let Li be the substructure of L over {v | vi ≤ v < vi+1}. Then, typem(L) is
determined by the sequence typem(Li) (i = 1, . . . ).

▶ Lemma 2.5 (Weak Composition Theorem for a Tree Branch). Let T be the full binary tree and
let P1, P2, Q1, Q2 be subsets of the nodes of T . Let T 1 := (T, P1, Q1) and T 2 := (T, P2, Q2)
be the expansion of T by the unary predicates. Let π := v1v2 . . . be a branch in T . Let ui be
a child of vi−1 different from vi. Let τ i

1 := typen(T 1
≥ui

) and τ i
2 := typen(T 2

≥ui
). Assume that

∀i.τ i
1 = τ i

2 and π ∩ P1 = π ∩ P2 and π ∩Q1 = π ∩Q2. Then typen(T 1) = typen(T 2).

A lemma similar to Lemma 2.5 holds when pairs ⟨Pi, Qi⟩ are replaced by tuples
⟨Pi, Qi, Ri, · · · ⟩.

3 Uniformization

▶ Definition 3.1 (Uniformization). Let φ(X,Y ), ψ(X,Y ) be formulas and C a class of
structures. We say that ψ uniformizes (or is a uniformizer for) φ over C iff for all M∈ C:
1. M |= ∀X∃≤1Y ψ(X,Y ),
2. M |= ∀X∀Y (ψ(X,Y )→ φ(X,Y )), and
3. M |= ∀X

(
∃Y φ(X,Y )→ ∃Y ψ(X,Y )

)
.

Here, X,Y are tuples of distinct variables and “∃≤1Y . . .” stands for “there exists at most
one . . .”. Hence, the first item says that ψ is a graph of a partial function.

The class C is said to have the uniformization property iff every formula φ has a
uniformizer ψ over C.
If C = {M} consists of a single structure, we speak of uniformization in M rather than
over C.

First, note that, strictly speaking, the question whether φ uniformizes ψ over C depends
not only on formulas φ and ψ, but on the formulas together with a partition of their free-
variables into domain variables X and image variables Y . In the few cases where we use

2 Furthermore, Hr
k is computable from r, k, and there is an algorithm that given τ and φ decides between

τ |= φ and τ |= ¬φ. We do not use these facts.

MFCS 2022
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letters other than X and Y , we shall state explicitly which variables are to be taken as
domain variables and which as image variables and say that φ uniformizes ψ for (U ;V ) over
C if U is the set of domain variables and V is the set of image variables.

If the cross-sections of a relation R are finite, we say that R is a finitary relation.

▶ Lemma 3.2 (Reducing image variables). Assume that every finitary relation in M definable
by an MSO formula with one image variable has an MSO definable uniformizer. Then, every
MSO definable finitary relation in M has an MSO definable uniformizer.

4 Finite Cross-sections

▶ Theorem 4.1 (Finite cross-sections). If the cross-sections of an MSO definable relation
over the full binary tree are finite, then it has an MSO definable uniformizer.

▶ Remark 4.2 (On computability). It is decidable whether the cross sections of the relation
definable by an MSO formula are finite. Our proof of Theorem 4.1 is constructive, and an
algorithm which provides an MSO formula that defines a uniformizer can be easily extracted
from the proof.
By Lemma 3.2, it is sufficient to prove Theorem 4.1 for the relations definable by formulas
with one image variable. To simplify notations we consider formulas with one domain and
one image variables. However, everywhere in the proof a domain variable can be replaced by
a tuple of domain variables.

▶ Notations 4.3. For a formula α(X,Y ) and a subset P of the full binary tree we denote
1. ℑα(P ) := {Q | α(P,Q)} - the α-image of P (this is the cross-section of the relation

defined by α at P ).
2. max⊆ ℑα(P ) := {Q ∈ ℑα(P ) | ¬∃Y ′ ∈ ℑα(P )(Q ⊊ Y ′) - ⊆-maximal elements of
ℑα(P )}. This set is non-empty when ℑα(P ) is finite and non-empty.

It is clear that ℑα(P ) and max⊆ ℑα(P ) are MSO-definable with parameter P .

▶ Open Question. Does there exist an MSO definable linear order on the subsets of the full
binary tree?

If the answer to the question is positive, we can define a uniformizer for α which for every
X returns a minimal element in ℑα(X). We have not succeeded to answer the question.
However, we still can construct an MSO-definable uniformizer for α. If max⊆ ℑα(P ) has
only one element, the uniformizer chooses it. In Subsection 4.1 we will show how to choose in
a definable way between two elements. Relying on this construction, we show in Subsection
4.2 how to choose in a definable way from a finite max⊆ ℑα(P ), and therefore, from any
finite cross-section.

4.1 Choose one Set from two Sets
Here, we are going to show how to choose in a definable way between two elements Q1, Q2 ∈
max⊆ ℑα(P ).

Let U1 := Q1 \Q2 and U2 := Q2 \Q1. U1 and U2 are non-empty and disjoint. We will
use v↑ for {u | v ≤ u}.

Generate a path π as described in Procedure Generate π on page 7. We start from
the root and at every iteration extend the path by one node. The procedure maintains the
invariant: if u is not the last node on the path, then u↑ ∩ U1 ̸= ∅ ≠ u↑ ∩ U2 holds. The
generated path might be finite (in this case the procedure returns from line 4, 7 or 10) or
infinite.
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Procedure Generate π.

u← root; π ← {u}
while true do

if u ∈ U1 ∪ U2 then
return // (a)

else if ul↑ has a non-empty intersection exactly with one of U1, U2 then
π ← π ∪ {ul}
return // (b)

else if ur↑ has a non-empty intersection exactly with one of U1, U2 then
π ← π ∪ {ur}
return // (b)

else if ul↑ ∩ U1 ̸= ∅ ̸= ul↑ ∩ U2 then
u← ul

π ← π ∪ {u}
else

/* in this case ur↑ ∩ U1 ̸= ∅ ̸= ur↑ ∩ U2 */
u← ur

π ← π ∪ {u}

It is clear that π is MSO-definable with parameters U1 and U2, i.e., there is an MSO
formula µ(X1, X2, Z) such that µ(U1, U2, π) holds iff π is generated by this procedure.
Moreover, the formula is symmetrical in the parameters, i.e., µ(U1, U2, π)↔ µ(U2, U1, π).

Abbreviations. Below we will abbreviate typen(T, P,Q) as typen(P,Q) and
typen(T, P,Q)≥v as typen(P,Q)≥v.

Let us analyse what happens if π := u1u2 . . . is infinite. In this case for every i:
ui ̸∈ (U1 ∪ U2) and ui↑ ∩ U1 ̸= ∅ ̸= ui↑ ∩ U2.

Let vi be a child of ui−1 different from ui. Let n be the quantifier rank of α. Let
τ i

1 := typen(P,Q1)≥vi and τ i
2 := typen(P,Q2)≥vi .

▷ Claim 4.4. If π is infinite, then ∃i(τ i
1 ̸= τ i

2).

Proof. Toward a contradiction we assume ∀i(τ i
1 = τ i

2), and derive that ∃2ℵ0
Y α(P, Y ).

Indeed, let D := {i ∈ N | U1 ∩ (vi↑) ̸= ∅}. First, we observe that D is infinite. Indeed,
assume that D is finite and i0 is its maximal element. Note that (ui↑ ∩ U1) = {u ∈ π ∩ U1 |
u ≥ ui} ∪

⋃
j>i(vj↑ ∩ U1). Since π ∩ U1 = ∅ and vj↑ ∩ U1 = ∅ for i > i0, we conclude that

ui↑ ∩ U1 = ∅ for i > i0. A contradiction.
Now, for every I ⊆ D, define QI :=

⋃
i∈I(vi↑ ∩Q1) ∪

⋃
i/∈I(vi↑ ∩Q2). For every i ∈ N:

τ i
1 = typen(P,Q1)≥vi

= τ i
2 = typen(P,Q2)≥vi

= typen(P,QI)≥vi
.

Therefore, by Lemma 2.5

typen(P,Q1) = typen(P,QI ∪ (Q1 ∩ π)) for every I.

Since α(P,Q1) and the quantifier rank of α is n, we obtain that

α(P,QI ∪ (Q1 ∩ π)) for every I.

MFCS 2022
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For I1 ̸= I2 ⊆ D we have QI1 ̸= QI2 ; moreover, both QI1 and QI2 have the empty
intersection with π. Therefore, (QI1 ∪ (Q1 ∩ π)) ̸= (QI2 ∪ (Q1 ∩ π)), for I1 ̸= I2 ⊆ D. Hence,
|ℑα(P )| ≥ |{I | I ⊆ D}| = 2ℵ0 . This contradicts our assumption that the cross-sections are
finite.

Hence, if π is infinite, then there is vi ∈ π such that τ i
1 ̸= τ i

2. ◁

For every P and Q1 ̸= Q2 ∈ max⊆ ℑα(P ) let π be the corresponding path. Define

G(P,Q1, Q2) =
{

the last element on π if π is finite
the minimal ui ∈ π with τ i

1 ̸= τ i
2 otherwise

From Claim 4.4 and definability of π, we derive that G is total and an MSO definable
function.

The next Lemma summarizes properties of a formula which defines G.

▶ Lemma 4.5. There is ψ(X,Y1, Y2, z) such that
1. ψ(X,Y1, Y2, z)↔ ψ(X,Y2, Y1, z)
2. (ψ(X,Y1, Y2, z) ∧ Y1, Y2 ∈ max⊆ ℑα(X) ∧ Y1 ̸= Y2)→ ∃!zψ(X,Y1, Y2, z)
3. if ψ(X,Y1, Y2, z) ∧ Y1, Y2 ∈ max⊆ ℑα(X) ∧ Y1 ̸= Y2, then one of the following conditions

holds:
a. z ∈ Y1∆Y2 (z in the symmetric difference of Y1 and Y2),
b. let U1 := Y1 \ Y2 and U2 := Y2 \ Y1, then U1 ∩ z↑ ̸= ∅ ∧ U2 ∩ z↑ = ∅, or U1 ∩ z↑ =
∅ ∧ U2 ∩ z↑ ̸= ∅,

c. typen(X,Y1)≥z ̸= typen(X,Y2)≥z.
Now, we are ready to explain how to choose in a definable way between two elements
Y1, Y2 ∈ max⊆ ℑα(X). We are going to choose according to the cases (a)-(c) of Lemma
4.5(3). If 3(a) holds, then if z ∈ Y1 choose Y1 else choose Y2. If 3(a) fails, but 3(b) holds, then
if U1 ∩ z↑ ≠ ∅ choose Y1 else choose Y2. Let ≤n be any linear order on a finite set of n-types.
If 3(a) and 3(b) fail, then 3(c) holds. In this case, if typen(X,Y1)≥z <n typen(X,Y2)≥z

choose Y1 else Y2.

4.2 Choose a Set from Finitely Many Sets
Below we explain how to choose from max⊆ ℑα(P ) when its cardinality is finite and > 2.

Let F (X,Y ) := {z | (∃Y ′ ∈ max⊆ ℑα(X))ψ(X,Y, Y ′, z)}.
F is an MSO-definable function. F (X,Y ) maps max⊆ ℑα(P ) to finite non-empty sets.
Recall that the lexicographical order <lex is an MSO-definable linear order on the nodes

of the full binary tree. Define a linear order ≺lex on the finite sets as: Z ′ ≺lex Z if there is
z ∈ Z \ Z ′ such that ∀y <lex z(y ∈ Z ↔ y ∈ Z ′). It is clear that ≺lex is MSO-definable.

Assume Y1 ̸= Y2 ∈ max⊆ ℑα(X) and F (X,Y1) = F (X,Y2) = Z. Let z := G(X,Y1, Y2).
Then, z ∈ Z and one of the conditions 3(a)-3(c) of Lemma 4.5 holds.

Now let us explain how to choose Y from max⊆ ℑα(X). It will be easy to see that all
the sets and relations described below are MSO-definable. (We will give a verbal description
of the relation, leaving it to the reader to check that this verbal description is expressible by
an MSO formula.)
1. Let Zmin := min≺lex

{Z = F (X,Y ) | Y ∈ max⊆ ℑα(X)}. We will choose Y from
Γ := {Y ∈ max⊆ ℑα(X) | F (X,Y ) = Zmin}.

2. Define (linear) pre-orders <A, <B and <C on Γ (these correspond to items 3(a), 3(b)
and 3(c) of Lemma 4.5).

Y1 <A Y2 if (Y1 ∩ Zmin) ≺lex (Y2 ∩ Zmin)



A. Rabinovich 77:9

Let ΓA := the set of <A minimal elements of Γ. It is easy to see that if Y1, Y2 ∈ ΓA,
Y1 ̸= Y2 and ψ(X,Y1, Y2, z), then condition 3(a) of Lemma 4.5 fails. Indeed, if 3(a)
holds, then z ∈ Zmin and z ∈ Y1∆Y2. However, the minimality of ΓA implies that
(Y1 ∩ Zmin) = (Y2 ∩ Zmin) for every Y1, Y2 ∈ ΓA. Contradiction.
Now define <B on ΓA. Let U1 := Y1 \ Y2 and U2 := Y2 \ Y1,

Y1 <B Y2 if ∃z ∈ Zmin such that U2 ∩ z↑ ̸= ∅ ∧ U1 ∩ z↑ = ∅∧
∀z′ ∈ Zmin z

′ <lex z → (U1 ∩ z′↑ = ∅) ↔ (U2 ∩ z′↑ = ∅)

Let ΓB := the set of <B minimal elements of ΓA. It is easy to see that if Y1, Y2 ∈ ΓB,
and Y1 ̸= Y2 and ψ(X,Y1, Y2, z), then condition 3(b) of Lemma 4.5 fails.
Recall that ≤n is a linear order on a finite set of n-types. Define <C on ΓB .

Y1 <C Y2 if ∃z ∈ Zmin such that
typen(X,Y1)≥z <n typen(X,Y2)≥z∧

∀z′ ∈ Zmin z
′ <lex z → (typen(X,Y1)≥z′ = typen(X,Y2)≥z′)

Observe

▷ Claim 4.6. <C is a linear order on ΓB .

Proof. It is clear that <C is irreflexive. We will prove that (1) <C is transitive and (2) If
Y1 ̸= Y2 then Y1 <C Y2 or Y2 <C Y1. These imply that <C is a linear order.

(1) <C is transitive. Indeed, let Y1, Y2, Y3 ∈ ΓB and Y1 <C Y2 <C Y3. Assume that z1,2 is
a witness that Y1 <C Y2, i.e., typen(X,Y1)≥z1,2 <n typen(X,Y2)≥z1,2 and ∀z′ ∈ Zmin z

′ <lex

z1,2 → (typen(X,Y1)≥z′ = typen(X,Y2)≥z′ . Assume that z2,3 is a witness that Y2 <C Y3.
If z1,2 <lex z2,3, then z1,2 is a witness that Y1 <C Y3; otherwise z2,3 is a witness that

Y1 <C Y3. Hence, <C is transitive.
(2) Now, we prove that If Y1 ̸= Y2 then Y1 <C Y2 or Y2 <C Y1.
Since, Y1, Y2 ∈ ΓB , we know that
if ψ(X,Y1, Y2, z), then 3(a) and 3(b) of Lemma 4.5 fail. Hence, 3(c) holds, i.e.,

typen(X,Y1)≥z ̸= typen(X,Y2)≥z Therefore,

∃z ∈ Zmin such that typen(X,Y1)≥z ̸= typen(X,Y2)≥z∧
∀z′ ∈ Zmin z

′ <lex z → (typen(X,Y1)≥z′ = typen(X,Y2)≥z′

Hence, Y1 <C Y2 or Y2 <C Y1. ◁

Now, we choose (a unique) <C-minimal element of ΓB .
Below is the summary of our choice of Y ∈ max⊆ ℑα(X):

1. Zmin := min≺lex
{Z = F (X,Y ) | Y ∈ max⊆ ℑα(X)} and Γ := {Y ∈ max⊆ ℑα(X) |

F (X,Y ) = Zmin}.
2. ΓA := the set of <A minimal elements of Γ.
3. ΓB := the set of <B minimal elements of ΓA.
4. We choose a unique <C minimal elements of ΓB .
It is clear that the above choice can be formalized in MSO.

MFCS 2022
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5 Choice Function and Fooling Sets

A choice function is a mapping which assigns to each non-empty set of nodes one element
from the set.

Gurevich and Shelah [6] proved:

▶ Theorem 5.1 (Gurevich and Shelah [6]). There is no MSO-definable choice function in the
full-binary tree.

A simplified combinatorial proof of Theorem 5.1 was given in [2, 3].
In the rest of this section we introduce some notions and prove lemmas which will be

used in the next section to prove uncountable cross-section theorem.

Choice Function on antichains. A choice function on antichains is a mapping which assigns
to each non-empty antichain in the full binary tree one element from the antichain.

▶ Corollary 5.2. There is no MSO-definable choice function on antichains.

Proof. If β(X, y) defines a choice function on antichains then α(X, y) := ∃Z “Z is the set of
≤ minimal elements of X”∧β(Z, y) defines a choice function - a contradiction. ◀

▶ Definition 5.3 (Fooling set). Assume α(X, y) → y ∈ X. A set P is fooling for α(X, y)
(wrt choice) if P ̸= ∅ and ¬∃!yα(P, y). P is a fooling set for a set Φ of formulas if it is a
fooling set for each formula in Φ. If, in addition, P is an antichain, we say that P is a
fooling antichain.

It is helpful to use the following convention: If α(X, y) does not imply y ∈ X, then every
set is fooling for α. As a consequence: P is fooling for a set Φ of formulas iff P is fooling
for {φ ∈ Φ | φ → y ∈ X}. Theorem 5.1 and Corollary 5.2 imply that every formula has a
fooling set and a fooling antichain.

▶ Lemma 5.4. The following statements hold in the full binary tree:
1. There is no MSO-definable choice function.
2. Every α(X, y) has a fooling set.
3. Every finite set of formulas has a fooling set.
4. There is no MSO-definable choice function on antichains.
5. Every formula has a fooling antichain.
6. Every finite set of formulas has a fooling antichain.

Proof. First we prove that implications (1)⇒ (2)⇒ (3)⇒(1) hold in every structure. These
and Theorem 5.1 imply that (1)-(3) are true in the full binary tree.

(1)⇒(2). If α(X, y) does not define a choice function and α(X, y)→ y ∈ X, then there is
a fooling set for α.

(2)⇒(3). Let α1(X, y), . . . , αn(X, y) be a finite sequence of formulas such that αi(X, y)→
y ∈ X.

Define

Fooli(X) := X ̸= ∅ ∧ ¬∃!yαi(X, y)

Fooli(X) holds iff X is a fooling set for αi.
If

∧n
i=1 Fooli(X) is satisfiable, then there is a fooling set for {αi | i = 1, . . . n}.

Toward a contradiction we assume that
∧n

i=1 Fooli(X) is unsatisfiable, and construct a
formula that has no fooling set.
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For I ⊆ {1, . . . , n} define FOOLI(X) :=
∧

i∈I Fooli(X) ∧
∧

j ̸∈I ¬Foolj(X).
Observe that FOOLI(X) for I ⊊ {1, . . . , n} defines a partition, i.e., if I1 ̸= I2, then

FOOLI1(X) ∧ FOOLI2(X) is unsatisfiable, and
∨

I⊊{1,...,n} FOOLI(X) holds for every X.
Let c be a function which assigns to every proper subset of {1, . . . , n} an element in its

complement. For I ⊊ {1, . . . , n} define

βI(X, y) := FOOLI(X) ∧ αj(X, y) for j = c(I) ̸∈ I

and

γ(X, y) :=
∨

I⊊{1,...,n}

βI

For every P there is a unique I ⊊ {1, . . . , n} such that FOOLI(P ). Hence, by the definition
of γ: γ(P, y) iff FOOLI(P ) ∧ αj(P, y) for j = c(I). Now, FOOLI(P ) implies ¬Foolj(P ) for
j = c(I). Therefore, if P ̸= ∅ then ∃!yαj(P, y), and therefore, ∃!yβI(P, y), and ∃!yγ(P, y). A
contradiction to “γ has a fooling set.”

Hence, there is a fooling set for {αi | i = 1, . . . n}.
(3)⇒(1) trivial.
(4) - this is Corollary 5.2.
Finally, the proof of the equivalences between (4),(5) and (6) is obtained by replacing

“fooling set” by “fooling antichain” in the proof of the equivalences between (1),(2) and
(3). ◀

Recall that there are finitely many (semantically distinct) formulas of qr ≤ n with free
variables X and y. We say that P is n-fooling if it is fooling for the formulas of qr ≤ n.
Hence, by Lemma 5.4,

▶ Corollary 5.5. For every n there is an n-fooling set.

6 Uncountable Cross-section Theorem

In this section we prove Uncountable Cross-section Theorem which is stated in the Introduc-
tion. The idea is to force infinitely many choices from a fooling set. Since every choice leads
to at least two possibilities, infinitely many choices lead to uncountable many possibilities.
Below are details.

Consider a relation R∞
choice(X,Y ) defined as: “Y is a subset of X such that for every n:

rnl↑ ∩ Y is a one element set.” It is clear that R∞
choice(X,Y ) is MSO definable.

Let P be a subset of {l, r}∗ and let r∗lP := {u | u = rnlv for v ∈ P and n ≥ 0}. Below
“∃2ℵ0

Y ” stands for “there are at least 2ℵ0 different Y .”

▶ Proposition 6.1.
1. Assume that α(X,Y ) has qr ≤ n and P is an n + 1-fooling set. If the cross-section of

α(X,Y ) at r∗lP is included in the cross-section of R∞
choice(X,Y ) at r∗lP , then T, r∗lP |=

∃Y α(X,Y )→ ∃2ℵ0
Y α(X,Y ).

2. The relation R∞
choice(X,Y ) contains no MSO-definable relation with the same domain and

only cross-sections of cardinality less than 2ℵ0 .

Proof. (2) immediately follows from (1).
(1) First, observe that if P is an n+ 1-fooling set, then no β(X,Y ) of qr ≤ n can choose

a unique one element subset of P , i.e., ¬
(
∃!Y β(P, Y ) ∧ ∃Y (β(X,Y ) ∧ ∃yY = {y})

)
. Indeed,

if β chooses a one element subset of P , then ∃Y β(X,Y ) ∧ y ∈ Y chooses a unique element
from P . This contradicts that P is n+ 1-fooling.

MFCS 2022
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Second, observe that (T, P ) is isomorphic to (T, r∗lP )≥rnl for every n, and (T, r∗lP ) is
obtained from (T, ∅) by grafting (T, P ) at an antichain {ril | i ∈ N}.

Let Q be such that T, r∗lP,Q |= α(X,Y ). Since ∀Y (α(r∗lP, Y ) → R∞
choice(r∗lP, Y )),

there are wi ∈ P such that (ril↑ ∩Q) = {rilwi}. Let τi(X,Y ) be the n-type of the subtree
rooted at ril in (T, r∗lP,Q). Then T, P, {wi} |= τi(X,Y ). Since P is an n+ 1-fooling set, by
the first observation above, there is W ′

i ̸= {wi} such that T, P,W ′
i |= τi(X,Y ).

Let πr := v1v2 . . . be the rightmost branch in the full binary tree T , i.e., vi = ri for
i ∈ N. For I ⊆ N define QI := {rilwi | i ∈ I} ∪

⋃
i̸∈I r

ilW ′
i . Then the assumptions of

Lemma 2.5 hold for π := πr, T 1 := (T, r∗lP,Q) and T 2 := (T, r∗lP,QI). Therefore, by
Lemma 2.5, T, r∗lP,QI |= α for every I ⊆ N. Since QI ̸= QI′ for I ̸= I ′, we obtain
T, r∗lP |= ∃2ℵ0

Y α(X,Y ). ◀

The next proposition describes a property that is more natural than R∞
choice, and which also

implies Uncountable Cross-section Theorem.

▶ Proposition 6.2. The relation “Y is a branch such that X ∩ Y is infinite” contains no
MSO-definable relation with the same domain and only cross-sections of cardinality < 2ℵ0 .

7 Conclusions and Further Results

Let us introduce some weaker variants of uniformization. Let R∗ ⊆ R be two relations
with the same domain. If the cross-sections of a relation R∗ are at most l for some l ∈ N
(respectively, finite, countable), we say that R∗ is an l-relation (respectively, a finitary relation,
an ℵ0-relation).

If R∗ is an l-relation for some l ∈ N (respectively, a finitary or an ℵ0-relation) we say
that R∗ is an l-uniformizer of R (respectively, finitary uniformizer, ℵ0-uniformizer).

We say that ψ is an l-uniformizer of φ in a structure M, if the relation definable by ψ in
M is an l-uniformizer of the relation definable by φ in M.
M has the l-uniformization property if for every MSO formula φ there is an MSO formula

ψ that is an l-uniformizer of φ in M. Finitary (and ℵ0) uniformizers and the finitary (and
ℵ0) uniformization property are defined similarly.

For l ∈ N, we say that the uniformization rank of R is l if R has an MSO-definable
l-uniformizer and either l = 1 or R has no MSO-definable (l − 1)-uniformizer. We say that
the uniformization rank of R is finitary if R has an MSO-definable finitary uniformizer and
has no MSO-definable l-uniformizer for l ≥ 1. We say that the uniformization rank of R
is ℵ0 if R has an MSO-definable ℵ0-uniformizer and has no finitary uniformizer. We say
that the uniformization rank of R is 2ℵ0 if R has no uniformizer with the cross-section of
cardinality < 2ℵ0 .

Our result can be restated as:

▶ Corollary 7.1. The only ranks for MSO-definable relations in the full binary tree are one,
ℵ0 and 2ℵ0 .

Indeed, the finite cross-section theorem implies that the rank is one or infinite. The relation
y ∈ X has rank ℵ0. The relations R∞

choice(X,Y ) and “Y is a branch such that X ∩ Y is
infinite” have rank 2ℵ0 . For the MSO-definable (with parameters) relation the continuum
hypothesis holds [1]. Therefore, the infinite cross-sections of MSO-definable relations are
either countable or have cardinality 2ℵ0 . Hence, Corollary 7.1 holds.
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7.1 Ranks over Integers
In [4] the uniformization of MSO over the integers with the successor function was investigated.
Consider, φ2(X,Y ) := ∀t(Y (t)↔ ¬Y (t+ 1)). Note that φ2 does not depend on X and there
are exactly two sets Yeven := “the set of even integers” and Yodd :=“the set of odd integers”
that satisfy φ2. Note also that there is an order preserving automorphism of integers that
maps Yeven onto Yodd. Therefore, no MSO formula distinguishes between Yeven and Yodd.
Hence, the uniformization rank of φ2 is two. Similarly, for every l one can define an MSO
formula φl which has the uniformization rank l over the integers. It was proved in [4] that
the uniformization rank of an MSO formula over integers is computable.

It is open whether the uniformization rank of an MSO formula over the full binary tree
is computable.

7.2 Ranks over Ordinals
Lifsches and Shelah [7] considered the uniformization problem over the class of trees and
the class of ordinals. Recall that a structure M is said to have the uniformization property
if every MSO definable relation (in M) has an MSO definable uniformizer. Lifsches and
Shelah proved that an ordinal α has the uniformization property iff α < ωω.

In the full paper we consider uniformization over ordinals. We have not provided an
algorithm to decide the uniformization rank of a formula. However, we prove that if an MSO
definable relation over an ordinal has only countable cross-sections, then it has a uniformizer.
Moreover, the only ranks for the MSO-definable relations over a countable ordinal are one
and 2ℵ0 .

7.3 Uniformization Degrees
We know that the formula ψ1 := y ∈ X has no MSO uniformizer in the full binary tree. Now,
let us look at the formula ψ2 stating that“Y is a branch such that Y ∩X is infinite.”

This formula has no MSO uniformizer. But are there any other interesting relations
between these two formulas? Can we say, for instance, that ψ2 is even “harder” to uniformize
than ψ1 (whatever this might mean)? Or, perhaps the other way round? Do we feel that
the example of ψ2 “contains a new idea” when it comes to our discussion of uniformization?
To turn these admittedly vague questions into mathematical ones, we require a notion of
comparing formulas and perhaps an equivalence relation on them. However, as our example
shows, the semantical equivalence seems not to be the right notion. Note, however, the
following. For any set X let X↑ := {z | ∃x ∈ X(z ≥ x)} be the upward closure of X. X is
non-empty iff there is a branch Y such that |Y ∩X↑| is infinite. Moreover, if Y ∩X ̸= ∅ ,
then Y ∩X↑ has a minimal point y which is in X. Hence, by using any uniformizer for ψ2
we succeeded to define (in MSO) a uniformizer for ψ1.

This suggests the following definition.
LetM be a structure in a signature Σ and ψ(X,Y ) and ψ2(U, V ) be formulas in Σ. ψ1 is

easier to uniformize (in M) than ψ2 if there is an MSO formula φ(X,Y ) (reduction formula)
in an expansion of Σ by a relational symbol c such that:

ifM[c] is an expansion of M, where c is interpreted as a uniformizer of ψ2, then φ(X,Y )
is a uniformizer of ψ1.

We write ψ1 ⪯un ψ2 if ψ1 is easier to uniformize than ψ2. The relation ⪯un is a preorder
relation and its equivalence classes can be called (uniformization) degrees.

We can show that “y ∈ X,” R∞
choice(X,Y ), “Y is a branch such that Y ∩X is infinite,”

“Y is a branch such that Y ∩X is finite” and “Y is a finite non-empty subset of an antichain
X” have the same degree. It is interesting to study the structure of degrees. In particular,
we do not know whether there is a maximal degree.

MFCS 2022
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Abstract
The study of the Knot-Free Vertex Deletion problem emerges from its application in the
resolution of deadlocks called knots, detected in a classical distributed computation model, that is,
the OR-model. A strongly connected subgraph Q of a digraph D with at least two vertices is said
to be a knot if there is no arc (u, v) of D with u ∈ V (Q) and v /∈ V (Q) (no-out neighbors of the
vertices in Q). Given a directed graph D, the Knot-Free Vertex Deletion (KFVD) problem
asks to compute a minimum-size subset S ⊂ V (D) such that D[V \ S] contains no knots. There
is no exact algorithm known for the KFVD problem in the literature that is faster than the trivial
O⋆(2n) brute-force algorithm. In this paper, we obtain the first non-trivial upper bound for KFVD
by designing an exact algorithm running in time O⋆(1.576n), where n is the size of the vertex set
in D.
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1 Introduction

In concurrent computing, a deadlock [6] is a state in which each group member waits for
another member, including itself, to take action such as sending a message or, more commonly,
releasing a lock. Deadlocks are a common problem in multiprocessing systems, parallel
computing, and distributed systems. Resolving these deadlocks is a fundamental problem
in distributed settings with no efficient (known) algorithms. Note that while distributed
systems are dynamic, a deadlock is a stable property. In other words, once a deadlock occurs
in the system, it would remain there until it is resolved. Two of the main classic deadlock
models are the AND-model and the OR-model [1, 2, 14,17]. Deadlocks are characterized by
the existence of cycles in the AND-model and by the existence of knots in the OR-model.
Hence the problem of preventing deadlocks in the AND-model is equivalent to the Directed
Feedback Vertex Set (DFVS) problem and in the OR-model, it is equivalent to the
Knot-Free Vertex Deletion (KFVD) problem [13].

A wait-for graph is useful to analyze deadlock situations. In a wait-for graph, D = (V ; E),
the vertex set V represents processes, and the set E of directed arcs represents wait-conditions.
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78:2 An Exact Algorithm for Knot-Free Vertex Deletion

A knot in a directed graph D is a strongly connected subgraph Q of D with at least two
vertices, such that no vertex in V (Q) has an out-neighbor in V (D) \ V (Q). The number of
processes needed to be preempted to prevent a deadlock in the OR-model is essentially the
same as solving the KFVD problem in wait-for graphs. Formally, the problem of finding a
vertex subset S ⊆ V of minimum cardinality such that D[V \ S] does not contain any knots
is known as the KFVD problem.

Recently, KFVD has been studied extensively from algorithmic perspectives. In particular,
the problem has been studied on graph classes satisfying some structural properties and
from the viewpoint of parameterized complexity [4]. In this paper, we study KFVD from yet
another algorithmic paradigm, that is, exact exponential-time algorithms. There has been
immense progress in this area in the last two decades, resulting in non-trivial exact exponential
algorithms for numerous problems, including Chromatic Number, Hamiltonian Cycle
and Satisfiability [3, 9, 12, 16] We refer to the monograph of Fomin and Kratsch for a
detailed exposition of the field [11].

1.1 Our contribution
In this paper, using the powerful method of Measure & Conquer, pioneered by Fomin, Kratsch,
and Woeginger [10], we design the first non-trivial exact algorithm for the KFVD problem.
In particular, we obtain the following result.

▶ Theorem 1. There exists an algorithm for Knot-free vertex deletion running in
O∗(1.576n) time.

The starting point of our algorithm is the following simple observation: a graph is knot-free
if and only if every vertex has a path to a sink. Moreover, finding a minimum size knot-free
deletion set is equivalent to finding a subset Z of sinks (vertices with no out-neighbors) such
that N+(Z) is exactly the deletion set [2], that is N+(Z) = S. Our algorithm utilizes this
observation, and rather than obtaining a minimum deletion set S; it constructs a sink set Z

such that every vertex in D − N+(Z) has a path in D − N+(Z) to some vertex in Z. Note
that Z does not complement S The measure associated with the instance I = (D, V1, V2), is
given by ϕ(I) = |V1| + |V2|

2 . We select a vertex u ∈ V1 to branch, which means that either
u is a sink, or it is not. If u is going to be a sink, then observe that all its out-neighbors,
N+(u), must be in the deletion set and be safely deleted. Further, every vertex that can
reach u in D − N+(u), say in-reachable vertices, must not go to the deletion set. However,
we can remove them and work on a smaller graph. Thus removing in-reachable vertices
is a prepossessing step that reduces the size of the graph. In the branch where we decide
that u is not part of the sink set, we cannot delete this vertex, and thus, to capture our
progress, we move the vertex u from V1 to V2, resulting in ϕ decreasing by 0.5. To show the
desired running time, we first do “potential sensitive” branching and then do an extensive
case analysis based on the degree of the vertex in V1.

1.2 Previous Work
Observe that any directed feedback vertex set (a set of vertices that intersect every cycle in
the digraph) is a knot-free deletion set as it removes any strongly connected component of
size at least 2. Hence, the size of the smallest directed feedback vertex set gives an upper
bound on the size of the smallest knot-free vertex deletion set. One way of eliminating knots
in a graph could be to use known algorithms for the Directed Feedback Vertex Set
(DFVS) problem. While DFVS has been extensively studied [7, 15], the KFVD problem is yet
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to receive the same scale of attention. Notice that the optimal solution for KFVD could be
significantly smaller than the solution returned by invoking an existing algorithm for DFVS,
which motivated a closer look at the KFVD problem itself.

Carneiro, Souza, and Protti [5] first studied the problem and showed that KFVD is NP-
complete even when restricted to planar bipartite graphs with the maximum degree 4. They
also presented a polynomial-time algorithm for graphs with the maximum degree 3. Recently,
KFVD was studied in the parameterized framework. Carneiro et al. [4] showed that KFVD is
W[1]-hard when parameterized by the size of the solution, but it can be solved in 2k log ϕnO(1)

time, where ϕ is the size of the largest strongly connected subgraph. KFVD parameterized by
the size of the solution k, is W[1]-hard even when the length of a longest directed path of the
input graph, as well as its Kenny-width, are bounded by constants [2]. However, the problem
is known to be in FPT parameterized by either clique-width or treewidth of the underlying
undirected graph. Moreover, the KFVD problem is known to admit FPT algorithms when
parameterized by dfvs+maximum path length or dfvs+Kenny-width where, dfvs denotes the
size of the smallest directed feedback vertex set in the graph.

Organization of the paper: In Section 3, we start by providing our algorithm, and we
verify the correctness of each of its steps in Section 4. The running time is analyzed in
Section 5, while Section 6 provides a lower bound on the worst-case performance of our
algorithm.

2 Preliminaries and Auxiliary Results

In this section, we first state some notations, definitions, and useful auxiliary results. We also
formalize an appropriate potential function based on which we later design our algorithm. A
few reduction rules are proved towards the end of this section which are used throughout the
paper.

Standard Notation. For a digraph D, V (D) and E(D) denote the set of vertices and arcs,
respectively. We denote an arc from u to v by the ordered pair (u, v). For a vertex v of
D, the out-neighborhood of v is denoted by N+(v) = {u | (v, u) ∈ E(D)}. Similarly, we
denote its in-neighborhood by N−(v) = {u | (u, v) ∈ E(D)} and N(v) = N+(v) ∪ N−(v).
A vertex v is called a source vertex, if N−(v) = ∅. Similarly it is called a sink vertex, if
N+(v) = ∅. We define the in-reachability set of a vertex v as the set of vertices that can
reach the vertex v via some directed path in D − N+(v) and we denote it by R−(v). Notice
that v ∈ R−(v). We define, R(v) = N+(v) ∪ R−(v). For a set S ⊆ V (D), D − S denotes
the digraph obtained by deleting the vertices S and the edges incident on the vertices of
S and D[S] denotes the subgraph of D induced on S. A path P of length ℓ is a sequence
of distinct vertices v1, v2, . . . , vℓ such that (vi, vi+1) is an arc, for each i, i ∈ [ℓ − 1]. In our
algorithm, branching vector (a, b) means a branching where in the first branch, the potential
(measure) drops by a while in the second branch, the potential drops by b. It is a measure of
the effectiveness of any branching step. Later we provide a detailed description of such a
potential function and how it relates to the hardness of our instance. For graph-theoretic
terms and definitions not stated explicitly here, we refer to [8].

2.1 Auxiliary Results
In this subsection, we first state some of the known reduction rules and some new reduction
rules for the problem that we use in our branching algorithm.

MFCS 2022
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▶ Reduction Rule 2 ( [2]). Let v ∈ D be such that N−(v) = ∅, Then (D, k) is a yes-instance
if and only if (D − v, k) is a yes-instance.

▶ Reduction Rule 3 ( [2]). Let v ∈ D be such that N+(v) = ∅, Then (D, k) is a yes-instance
if and only if (D − R−(v), k) is a yes-instance.

▶ Proposition 4 ( [2]). A digraph D is knot-free if and only if for every vertex v of D, v has
a path to a sink.

▶ Corollary 5 ( [2]). For any optimal solution S ⊆ V (D) with the set of sink vertices Z in
D − S, we have N+(Z) = S.

Proposition 4 and Corollary 5 imply that given a digraph D, the problem of finding a set
of sink vertices Z such that every vertex in V (D) \ N+(Z) has a directed path to a vertex in
Z and |N+(Z)| is minimum; is equivalent to the Knot-free Vertex Deletion (KFVD)
problem. Therefore, our algorithm aims to identify a set of (eventually, to be) sink vertices
Z while minimizing |N+(Z)| instead of directly looking for the deletion set.

Strategy of our Algorithm. We design a branching algorithm for KFVD in general digraphs.
At any iteration in our algorithm, we branch on a potential vertex v ∈ V (D) based on the two
possibilities that either v is a sink vertex or a non-sink vertex in an optimal solution. Observe
that even if a vertex becomes a non-sink vertex corresponding to an optimal solution, there
are two possibilities: it belongs to the deletion set or does not. So we can not simply forget
about this vertex, which means its behavior in the final knot-free graph remains inconclusive.
To track the possible vertices that become the sink or non-sink, we use a potential function
(ϕ) for V (D) defined as follows.

▶ Definition 6 (Potential function). Given a digraph D = (V, E), we define a potential
function on V (D), ϕ : V (D) → {0.5, 1} such that ϕ(v) = 1, if v is a potential vertex to
become a sink in an optimal solution and ϕ(v) = 0.5, if v is a non-sink vertex. For any subset
V ′ ⊆ V (D), ϕ(V ′) =

∑
x∈V ′ ϕ(x). We call a vertex v as an undecided vertex if ϕ(v) = 1

and a semi-decided vertex if ϕ(v) = 0.5.

To solve the Knot-free Vertex Deletion problem on a digraph D, we initialize the
potential values of all vertices to 1. As soon as we decide a vertex to be a non-sink vertex,
we drop its potential by 0.5. Any vertex whose potential is 0.5 can not become a sink in the
final knot-free graph resulting from removing an optimal vertex deletion set from D.

▶ Definition 7 (Feasible solution). A set S ⊆ V (D) is called a feasible solution for (D, ϕ) if
D − S is knot-free and for any sink vertex s in D − S, ϕ(s) = 1. KFVD(D, ϕ) is the size of
an optimal solution for (D, ϕ).

▶ Reduction Rule 8. If all the vertices in D are semi-decided and D has no source or sink
vertices, then V (D) is contained inside any feasible solution for (D, ϕ).

Proof. If S is a solution for (D, ϕ), then D − S is knot-free. Since all vertices of D are
semi-decided, D − S has no sink vertices. Therefore, D − S is an empty graph. In other
words, S = V (D). ◀

Let Sopt and Zopt be the set of deleted vertices and the set of sink vertices with respect
to some optimal solution KFVD(D, ϕ).

▷ Claim 9. If x ∈ Zopt, then N+(x) is in Sopt and Sopt ∩ R−(x) = ∅.
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Proof. By the definition of a sink vertex, if x ∈ Zopt then N+(x) is in Sopt. Let Y =
Sopt ∩ R−(x). We claim S′ = Sopt \ Y is also a solution which will contradict the fact that
Sopt is an optimal solution. Suppose S′ is not a solution, then there exists a vertex v in
G \ S′, that do not reach to a sink s in G \ S′ but v reaches to some sink s in G \ Sopt. Since
every vertex in Y reaches to some sink x in G \ S′, v /∈ Y . If s is not a sink vertex in G \ S′,
then some vertex y ∈ Y is an out-neighbor of s. But then v can reach the sink x in G \ S′

via y. Hence, S′ is a solution of strictly smaller size than Sopt, which is a contradiction. ◁

▷ Claim 10. If x ∈ Zopt, then |Sopt| = |N+(x)| + KFVD(D − R(x), ϕ).

Proof. First, we prove that S′ = Sopt \ N+(x) is a solution to (D − R(x), ϕ). If this is not
true, then there exists a vertex v in D − (R(x) ∪ S′) that do not reach any sink. Since
Sopt ⊆ R(x) ∪ S′, v /∈ Sopt. But Sopt is a solution to (D, ϕ) and v can reach some sink
s ∈ Zopt in D − Sopt. First we claim that s ≠ x. Note that v is not in R(x) and it can only
reach x via some vertex in N+(x). So v can not reach x in D − Sopt as N+(x) ⊆ Sopt. Hence
s ̸= x. Then v has a path to s which is disjoint from Sopt ⊇ N+(x). Moreover this path is
also disjoint from the set R(x) \ N+(x), since v /∈ (R(x). Hence this path is disjoint from
R(x) and Sopt. Therefore, v can reach s via the same path in D − (R(x) ∪ S′). If s is a sink
in D − Sopt, then s is also a sink in (D − R(x)) \ S′. Hence, v has a path to a sink in D,
which is a contradiction. It implies that S′ = Sopt \ N+(x) is a solution to (D − R(x)) and
therefore, |Sopt| − |N+(x)| ≥ KFVD(D − R(x), ϕ).

To prove the other direction, assume that S′′ is an optimal solution to (D − R(x), ϕ). We
claim that S′ = S′′ ∪ N+(x) is a solution for (D, ϕ). Suppose not, then there exists a vertex
v that does not reach a sink in D − S′. Note that v /∈ R(x) as all vertices in R(x) can reach
sink x in D − S′. Then v /∈ R(x) ∪ S′ and hence it is also in D − (R(x) ∪ S′′) and it reaches
a sink s. Since this path is disjoint from S′′ ∪ R(x), v still can reach s via the same path in
D − S′. Note that s is not a sink in D − S′ only if it has an out-neighbor in R(x) \ N+(x).
But then s and v are in R(x) which is not possible. Hence, v can still reach the same sink s

and S′ = S′′ ∪ N+(x) is a solution to D. Thus, Sopt ≤ |N+(x)| + KFVD(D − R(x)). ◁

3 An algorithm to compute minimum knot-free vertex deletion set

In this section, we design an exact algorithm to compute a minimum knot-free vertex deletion
set. As mentioned earlier, we start by initializing the potential values of all vertices to 1.
As soon as we decide a vertex is a non-sink vertex, we drop its potential by 0.5. In the
following algorithm, at any step, if there are vertices with no out-neighbors (sinks) or no
in-neighbors (sources), we remove such vertices with the help of Reduction Rules 2 and
3. If all the vertices are semi-decided, we apply Reduction Rule 8 to solve the instance in
polynomial time. At any step, if there is an undecided vertex x with ϕ(R(x)) ≥ 3.5), we
branch on the possibility of x being a sink or non-sink in the optimal solution. Here we use
the large potential drop in the branch where x is chosen to be a sink to our advantage and
obtain a (3.5, 0.5) branching. If there are no such vertices, we look for an undecided vertex
x such that all its neighbors are semi-decided, and we branch on x. If there are no such
vertices, we branch on undecided vertices of degrees 2 and 3. Notice that in these branching
steps, even if there is not a large potential drop when x is a sink, in the other branch when
x is a non-sink vertex, we still find an undecided vertex s close to x, which is forced to be a
sink. Hence the potential drop together in both the branches ensure good running time for
our algorithm. If all undecided vertices have only one neighbor each, then we remove such
vertices with the help of Reduction Rules 2 and 3.

MFCS 2022
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Algorithm 1 KFVD (D, ϕ).
Input: A directed graph D and a potential function ϕ

Output: Size of a minimum knot-free vertex deletion set

1 if ∃ x such that N−(x) = ∅ then
2 return KFVD(D − {x}, ϕ);
3 if ∃ x such that N+(x) = ∅ then
4 return KFVD(D − R(x), ϕ);
5 if ∀v ∈ D, ϕ(v) = 0.5 then
6 return |V (D)|;
7 if ∃ x ∈ D such that ϕ(x) = 1 & ϕ(R(x)) ≥ 3.5 then
8 D1 = D − R(x);
9 D2 = D;

10 ϕ1 = ϕ;
11 ϕ2 = ϕ;
12 ϕ2(x) = 0.5;
13 return min{KFVD(D1, ϕ1) + |N+(x)|, KFVD(D2, ϕ2)};
14 if ∃ x ∈ D such that ϕ(x) = 1 & ∀v ∈ N(x), ϕ(v) = 0.5 then
15 for y ∈ N−(x) & z ∈ N+(x) do
16 if ∃ s such that s ∈ N−(y) ∩ N+(z) & ϕ(s) = 1 then
17 D1 = D − R(x);
18 ϕ1 = ϕ;
19 D2 = D − R(s);
20 ϕ2 = ϕ;
21 return min{KFVD(D1, ϕ1) + |N+(x)|, KFVD(D2, ϕ2) + |N+(s)|};
22 else
23 D1 = D − R(x);
24 ϕ1 = ϕ;
25 return KFVD(D1, ϕ1) + |N+(x)|;
26 if ∃x ∈ D such that |N(x)| ∈ {2, 3}, ϕ(x) = 1 & ∃ a unique s ∈ N(x) with ϕ(s) = 1 then
27 D1 = D − R(x);
28 ϕ1 = ϕ;
29 D2 = D − R(s);
30 ϕ2 = ϕ;
31 return min{KFVD(D1, ϕ1) + |N+(x)|, KFVD(D2, ϕ2) + |N+(s)|};
32 if ∃ x ∈ D with N−(x) = {y}, N+(x) = {z} and ϕ(x) = ϕ(y) = ϕ(z) = 1 then
33 D1 = D − R(x);
34 ϕ1 = ϕ;
35 D2 = D − R(y);
36 ϕ2 = ϕ;
37 D3 = D − R(z);
38 ϕ3 = ϕ;
39 return

min{KFVD(D1, ϕ1) + |N+(x)|, KFVD(D2, ϕ2) + |N+(y)|, KFVD(D3, ϕ3) + |N+(z)|};

4 Correctness of the Algorithm

In this section, we prove that the Algorithm KFVD returns a knot-free vertex deletion set of
minimum size. We denote the steps from the lines 1-6 of the algorithm as Subroutine 0. The
correctness of the lines 1-4 follows from the Reduction Rules 2, and 3 and the correctness of
the lines 5-6 follows from the Reduction Rule 8. We call the steps from the lines 7-13, 14-25
and 26-39 of Algorithm KFVD as Subroutine 1, Subroutine 2, and Subroutine 3, respectively.
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In the subsequent subsections, we will prove the correctness of Subroutines 1, 2, and 3.
Below we provide a flowchart for Algorithm KFVD.

If the digraph has a source/
sink or all semidecided
vertices, apply Reduction
Rules 1, 2, 3.

poly-time reduction rules

Initialize all vertices to be
undecided.

Is there an undecided
vertex v with ϕ(v) ≥ 3.5?

Yes
Branch on v

No

Is there an undecided
vertex v with all neighbors

semidecided?

Yes

Branch on v

Is there an undecided
vertex v of degree 3?

Yes
Branch on v

No

Yes
Branch on v

No

Is there an undecided
vertex v of degree 2?

Return answer

Flow chart for Algorithm KFVD
denotes the following set of

Multiple instances

Subroutine 0

Subroutine 1

Subroutine 2

No

Subroutine 3

4.1 Correctness of Subroutine 1
Subroutine 1 branches on an undecided vertex x ∈ V (D), if ϕ(R(x)) ≥ 3.5. Notice that
for any solution S in polynomial time we can determine the set of sink vertices, say ZS ,
corresponding to set S.

▶ Lemma 11. If x ∈ V (D) such that ϕ(x) = 1 and ϕ(R(x)) ≥ 3.5, then KFVD(D, ϕ) =
min{KFVD(D1, ϕ1) + |N+(x)|, KFVD(D2, ϕ2)} where D1 = D − R(x), D2 = D and ϕ1 = ϕ,
ϕ2(v) = ϕ(v), for all v ∈ V (D) \ {x} and ϕ2(x) = 0.5.

Proof. We use induction on the total potential ϕ(V (D)) of the digraph D to prove the lemma.
For the base case, assume that ϕ(V (D)) = 1 and there exists exactly one undecided vertex x.
Note that the given recurrence relation holds in this case. Next assume that KFVD(D1, ϕ1)
and KFVD(D2, ϕ2) compute the optimal solution correctly, say S1 and S2, respectively. Let
S be an optimal solution for KFVD(D, ϕ). We consider the following two cases:

Case 1: x ∈ ZS .

MFCS 2022
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Here we claim that S1∪N+(x) is an optimal solution for KFVD(D, ϕ) if and only if S1 is an
optimal solution for KFVD(D1, ϕ1). The arguments are exactly the same as that in Claim
6. And by construction, ZS ∈ ϕ−1(1) if and only if ZS ∈ ϕ−1

1 (1) where S′ = S \ N+(x).
We also claim that KFVD(D2, ϕ2) ≥ KFVD(D1, ϕ1) + |N+(x)|. For contradiction suppose
KFVD (D2, ϕ2) < KFVD(D1, ϕ1) + |N+(x)|. Then any optimal solution S2 for (D2, ϕ2) is
also a feasible solution for KFVD(D, ϕ). But S2 has size strictly smaller than S, which is
a contradiction. Hence, KFVD(D, ϕ) = min{KFVD (D1, ϕ) + |N+(x)|, KFVD(D, ϕ2)}.

Case 2: x /∈ ZS .
In this case, KFVD(D2, ϕ2) = KFVD(D, ϕ), by definition. Also KFVD(D2, ϕ2) ≤
KFVD(D1, ϕ1) + |N+(x)|, otherwise we have S′ = S1 ∪ N+(x) as a solution with size
strictly smaller than S for KFVD(D, ϕ), where x ∈ ZS′ , and that is a contradiction.
Hence, KFVD(D, ϕ) = min{KFVD(D1, ϕ) + |N+(x)|, KFVD(D, ϕ2)}. ◀

In Subroutine 1, we get a (3.5, 0.5) branching. If Subroutine 1 is no longer applicable on the
instance, the digraph has no undecided vertices with ϕ(R(x)) ≥ 3.5. This fact is crucial to
obtaining desirable branching vectors for Subroutine 2 and Subroutine 3.
▶ Remark 12. After Subroutine 1 completion, there are no undecided vertices with degree
more than 4.

4.2 Correctness of Subroutine 2
Subroutine 2 branches on any undecided vertex x who has semi-decided neighbors only. Note
that x has at least one out-neighbor and at least one in-neighbor; otherwise, reduction rules
2 or 3 would have been applied.

▷ Claim 13. Let D be a digraph such that ϕ(R(v)) < 3.5, for every vertex v ∈ V (D) and x

be an undecided vertex in D such that for all v ∈ N(x), ϕ(v) = 0.5. If x is a non-sink vertex
in an optimal solution S for (D, ϕ), then there exist vertices y ∈ N−(x) and z ∈ N+(x) such
that there exists a unique s ∈ N−(y) ∩ N+(z) with ϕ(s) = 1 and s is a sink vertex in D − S.

Proof. If x is not a sink vertex, then there exists a vertex z ∈ N+(x) such that it does not
belong to S. Therefore, in digraph D − S the vertex z must reach to a sink s i.e., there exists
a path between z and the undecided vertex s. It implies that the vertices x, z, s belong to
R(s). Therefore, ϕ(R(s)) ≥ 3.5 as ϕ(x) = ϕ(s) = 1, which is not possible. It implies that
s ∈ N+(z) with ϕ(s) = 1. Since vertex x must have one in-neighbor, say y ∈ N−(x). Next,
s can not have an out-neighbor outside the set {x, y, z}, otherwise ϕ(R(x)) ≥ 3.5 which
is not possible. Moreover, x or z cannot be an out-neighbor of s as x has no undecided
out-neighbor and z does not belong to Sopt. Hence, y ∈ N+(s) which implies that s ∈ R(x).
Since ϕ(R(x)) < 3.5, there does not exist any vertex u ∈ N−(y) except s such that ϕ(u) = 1.
Hence, s is a unique vertex such that s ∈ N−(y) ∩ N+(z) with ϕ(s) = 1. ◁

Next, we prove the correctness of Subroutine 2.

▶ Lemma 14. Let D be a digraph such that ϕ(R(v)) < 3.5, for every vertex v ∈ V (D) and
x ∈ V (D) be such that ϕ(x) = 1 and for all v ∈ N(x), ϕ(v) = 0.5. If y ∈ N−(x) and
z ∈ N+(x), then

KFVD(D, ϕ) =



min
{

KFVD(D1, ϕ1) + |N+(x)|,

KFVD(D2, ϕ2) + |N+(s)|
}

if ∃ s ∈ N−(y) ∩ N+(z) with ϕ(s) = 1,

KFVD(D1, ϕ1) + |N+(x)| otherwise,
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where D1 = D − R(x), D2 = D − R(s) and ϕ1 = ϕ2 = ϕ.

Proof. Let S, S1 ans S2 be the optimal solutions for KFVD(D, ϕ), KFVD(D1, ϕ1) and
KFVD(D2, ϕ2), respectively. We use induction on the total potential ϕ(V (D)) of the digraph
to prove the correctness of the above claim. Let y ∈ N−(x) and z ∈ N (x). Now, we consider
the following two cases:
Case 1: ∃s ∈ N−(y) ∩ N+(z) such that ϕ(s) = 1.

Assume that there exists s ∈ N−(y) ∩ N+(z) with ϕ(s) = 1. From Claim 13, we know
that either x or s will be a sink in an optimal solution. Let x ∈ ZS , then from Claim
10, |S| = KFVD(D1, ϕ1) + |N+(x)|. And S2 ∪ N+(s) is a feasible solution to KFVD(D, ϕ)
and hence KFVD(D2, ϕ2) + |N+(s)| ≥ |S| = KFVD(D1, ϕ1) + |N+(x)|. Similarly, if
s ∈ Z(S) then from Claim 10, |S| = KFVD(D2, ϕ2) + |N+(s)|. Note that S1 ∪ N+(x)
is also a feasible solution to KFVD(D, ϕ) and therefore, KFVD(D1, ϕ1) + |N+(x)| ≥
|S| = KFVD(D2, ϕ2) + |N+(s)|. Hence, we have KFVD(D, ϕ) = min{KFVD(D1, ϕ1) +
|N+(x)|, KFVD(D2, ϕ2) + |N+(s)|}.

Case 2: ∄s ∈ N−(y) ∩ N+(z) such that ϕ(s) = 1.
Suppose there does not exist any vertex s ∈ N−(y) ∩ N+(z) such that ϕ(s) = 1. Observe
that in this case, the vertex x has to be a sink; otherwise, by Claim 13 there exists a
vertex s ∈ N−(y) ∩ N+(z) with ϕ(s) = 1, which is a contradiction. Therefore, the vertex
x has to be a sink. Hence, KFVD(D, ϕ) = KFVD(D1, ϕ1) + N+(x) by Claim 10, where
D1 = D − R(x). ◀

▶ Remark 15. If Subroutine 2 is no longer applicable, the instance has no undecided vertices
with a degree more than 3.

4.3 Correctness of Subroutine 3
Subroutine 3 branches on undecided vertices with degrees 2 and 3. When Subroutine 0, 1,
and 2 are no longer applicable, there are no vertices with all semi-decided neighbors. Also
there is no undecided vertex x with degree 4 as ϕ(R(x)) ≥ 3.5. So any undecided vertex has
degree at most 3. Moreover, any undecided vertex x of degree 3 has exactly one undecided
vertex. We will prove the correctness of branching in Subroutine 3 in two parts. First, we
analyze the branching vector for degree 3 undecided vertices and then for degree 2 undecided
vertices.

Branching on a degree 3 vertex
Given an undecided vertex x of degree 3, there are two cases; either x has one in-neighbor
and two out-neighbors or x has two in-neighbors and one out-neighbor.

Case 1: x has one in-neighbor y1 and two out-neighbors z1, z2

Out of three neighbors, x has exactly one neighbor which is undecided. So we have the
following 3 three subcases.
Subcase 1: ϕ(y1) = 1 and ϕ(z1) = ϕ(z2) = 0.5.

If x is a sink, there is a potential drop of at least 3 since {y1, z1, z2, x} ∈ R(x) .
If x is not a sink, then x and some z ∈ N+(x) are not in the deletion set.Without loss
of generality, let z = z1. Now z1 reaches a sink s ∈ Zopt in D − Sopt. If z1 can reach a
sink s ( ̸= y1), then {y1, x, z1, s} ⊆ R(s). This is true since s can not have x or z1 as
its out-neighbor and either y1 is an out-neighbor of s or y1 ∈ R−(x). It implies that
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ϕ(R(s)) ≥ 3.5, which is a contradiction. Hence y1 is the only sink that z1 must reach.
Note that ϕ(R(y1)) ≥ 2.5.

This gives us a (3, 2.5) branching vector.
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Subcase 2: ϕ(y1) = 0.5, ϕ(z1) = 1 and ϕ(z2) = 0.5.
If x is a sink, the potential drops by at least 3.
If x is not a sink and z1 is not in the deletion set, then z1 reaches a sink say, s in Zopt

in D −Sopt. If z1 can reach a sink s ( ̸= z1), then {y1, x, z1, s} ⊆ R(s) as s can not have
x , z1 or y1 as its out-neighbors. Therefore, ϕ(R(s)) ≥ 3.5 which is a contradiction.
Therefore z1 has to be a sink when x is not a sink. Note that ϕ(R(z1)) ≥ 2.5.

This gives us a (3, 2.5) branching vector.

Subcase 3: ϕ(y1) = ϕ(z1) = 0.5 and ϕ(z2) = 1.
if x is a sink, again the potential drops by at least 3 in (D1, ϕ1).
If x is not a sink and z1 is not in the deletion set, then z1 reaches s in Zopt in D − Sopt.
Suppose z1 can reach a sink, say s ( ̸= z2). If z1 has an out-neighbor outside {y1, x, z1}
then ϕ(R(s)) ≥ 3.5, which is a contradiction. Otherwise y1 is its only out-neighbor.
But then {s, y1, x, z1, x, z2} ⊆ R(x) and ϕ(R(s)) ≥ 4, which is not possible. Therefore,
the only possibility for z2 is to be the sink for z1 when x is not a sink. Note that
ϕ(R(z2)) ≥ 2.5.

Hence we have a (3, 2.5) branching vector.

Case 2: x has two in-neighbors y1, y2 and one out-neighbor z1

Subcase 1: ϕ(y1) = ϕ(y2) = 0.5 and ϕ(z) = 1.
If x is a sink, there is a potential drop of at least 3.
If x is not a sink, then z1 is not in the deletion set. Note that z1 reaches a sink, say
s ∈ Zopt in D − Sopt. If z1 can reach a sink s ( ̸= z1), then {y1, x, z1, s} ⊆ R(s). But
then ϕ(R(s)) ≥ 3.5 which is a contradiction. The only possibility is for z1 itself to be
a sink when x is not a sink. Note that ϕ(R(z1)) ≥ 2.5.

Hence we have a (3, 2.5) branching vector.

Subcase 2: ϕ(y1) = 1 and ϕ(y2) = ϕ(z1) = 0.5.
If x is a sink, the potential drops by 3.
If x is not a sink, then z1 is not in the deletion set. Therefore, z1 reaches a sink s. If
there is a path from z1 to s not using y1, y2, then ϕ(R(s)) ≥ 4, which is not possible.
Otherwise if there is a path from z1 to s via y1 or y2, then ϕ(R(s)) ≥ 4, which is again
not possible. Hence, the only possibility is that y1 becomes a sink such that z1 reaches
y1. Note that in this case, the potential drops by at least 2.5.

Hence we have a (3, 2.5) branching vector in this case.

Branching on a degree 2 vertex
This subsection analyzes the potential drop while branching on a degree 2 undecided vertex
x, which has an undecided neighbor. An undecided vertex x of degree 2 has exactly one
in-neighbor and one out-neighbor. Let y ∈ N−(x) and z ∈ N+(x). We consider the following
three cases.

Case 1: ϕ(y) = 1 and ϕ(z) = 0.5.
If x is a sink, the potential drops by 2.5.
If x is not a sink, then z is not in the deletion set and it reaches a sink s. If s ̸= y,
then {y, x, z, s} ⊆ R(s) and ϕ(R(s)) ≥ 3.5, which is not possible. Hence, the only
possibility is that y is a sink that z reaches. Note that here the potential drops by 2.5.

Hence, we get a (2.5, 2.5) branching vector.
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Case 2: ϕ(y) = 0.5 and ϕ(z) = 1.
If x is a sink, the potential drops by 2.5.
If x is not a sink, then z is not in the deletion set. Therefore, z reaches a sink, say s.
If s ̸= y then {y, x, z, s} ⊆ R(s) and ϕ(R(s)) ≥ 3.5, which is not possible. Hence, the
only possibility is for z to be a sink itself. Note that in this case, the potential drops
by 2.5

Hence we have a (2.5, 2.5) branching vector.
Case 3: ϕ(y) = 1 and ϕ(z) = 1.

If x is a sink, potential drops by 3.
If x is not a sink, then z is not in the deletion set. Therefore, z reaches a sink, say s.
If s ̸= y and s ̸= z, then {y, x, z, s} ⊆ R(s) and ϕ(R(s)) ≥ 3.5, which is not possible.
Hence, the only possibility is for z to be a sink itself or to reach sink y. Note both in
these cases, the potential drops by at least 3.

Hence we have a (3, 3, 3) branching vector.
Next, we give a formal proof of the correctness for Subroutine 3.

▶ Lemma 16. Let D be a digraph such that ϕ(R(v)) < 3.5, for every vertex v ∈ V (D) and
x ∈ V (D) be such that d(x) ∈ {2, 3}, ϕ(x) = 1 and there exists some vertex s ∈ N(x) such
that ϕ(s) = 1. Then KFVD(D, ϕ) = min{KFVD(D1, ϕ) + |N+(x)|, KFVD(D2, ϕ) + N+(s)}
where D1 = D − R(x), D2 = D − R(s) and ϕ1 = ϕ2 = ϕ.

Proof. Notice that there is no vertex v with ϕ(v) ≥ 3.5 and no vertex v that has all its
neighbors with potential 0.5. We use induction on the potential function to prove the
correctness of the claim. Let KFVD(D1, ϕ1) and KFVD(D2, ϕ2) correctly compute optimal
solution (S1, Z1) and (S2, Z2), where Zi ⊆ ϕ−1(1). Let (S, Z) be an optimal solution for
KFVD(D, ϕ).
Case 1: x ∈ Z.

In this case, we know that S1 ∪ N+(x) is an optimal solution for KFVD(D, ϕ) if and
only if S1 is an optimal solution for KFVD(D1, ϕ1) and |S2 ∪ N+(s)| ≥ |S1 ∪ N+(x)|,
since it is also a solution to KFVD(D, ϕ) that does not contain x ∈ z. Hence
KFVD(D, ϕ)=min{KFVD(D2, ϕ2) + |N+(x)|, KFVD(D1, ϕ1) + |N+(s)|}.

Case 2: x /∈ Z.
By arguments made in the branching steps for degree 3 and 2 vertices, we can always
find an s that must be a sink in Z. And hence S2 ∪ N+(s) is an optimal solution for for
KFVD(D, ϕ) if and only if S1 is an optimal solution for KFVD(D2, ϕ2). |S1 ∪ N+(x)| ≥
|S2 ∪ N+(s)| since it is also a solution to KFVD(D, ϕ) that does contain x ∈ z. Hence
KFVD(D, ϕ)=min{KFVD(D2, ϕ2) + |N+(x)|, KFVD(D1, ϕ1) + |N+(s)|}. ◀

5 Running time analysis

Reduction Rules 1, 2 and 3 are applied on the instance (D, ϕ) in nO(1) time. In Subroutine 1,
while branching we get a potential drop of at least 3.5 in one branch, while in the other branch
the potential drop is at least 0.5. Hence, we get the recurrence f(µ) ≤ f(µ − 3.5) + f(µ − .5),
which solves to f(µ) = O(1.576µ). Similarly for Subroutine 2, we have a branching vector
(2, 3). Therefore, we have the recurrence f(µ) ≤ f(µ − 2) + f(µ − 3), which solves to
f(µ) = O(1.324µ). For Subroutine 3, we have branching vectors (3, 2.5), (2.5, 2.5), and
(3, 3, 3), out of which (3, 3, 3) gives the worst running time. This solves to f(µ) = O(1.442µ).
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To solve the Knot-free Vertex Deletion, when we call KFVD(D, ϕ), potentials of all
the vertices of D are initialized to 1 and ϕ(V (D)) = |V (D)| = n. Moreover, in the recursive
calls to the algorithm, the potential of the input graph never drops below 0. Hence we can
upper bound the running time of Algorithm KFVD by the worst-case running subroutine
(Subroutine 1). Thus we obtain the following theorem.

▶ Theorem 17. Algorithm KFVD solves Knot-free vertex deletion in O∗(1.576n) time.

6 A lower bound on the worst case running time of our algorithm

In this section, we give a lower bound on the worst-case running time of our algorithm.

a1

b1

c1 d1 a2

b2

c2 d2 an/4

bn/4

cn/4 dn/4

Figure 1 Illustration of a worst-case instance for our algorithm.

We run our algorithm KFVD on the graph D (shown in Figure 1), where V (D) =
∪n/4

i=1{ai, bi, ci, di} and E(D) = ∪n/4
i=1{(ai, bi), (bi, ci), (ci, ai), (ai, di), (di, ci)}. We claim that

in the worst case, our algorithm takes O ∗ (2n/2) time to solve KFVD on D. We will give this
lower bound via adversarial arguments.

Let Vi = {ai, bi, ci, di} where i ∈ [1, n/4]. Since the potentials of all the vertices are
initialized to 1, we have ϕ(R(ai)) = 4, ϕ(R(bi)) = 3, ϕ(R(ci)) = 4, ϕ(R(di)) = 3. The
adversary chooses the vertex ai for KFVD to branch on. If ai is a sink, all the four vertices are
deleted. If ai is a non-sink vertex, its potential drops by 0.5 while all other vertices’ potentials
remain unchanged. In the next iteration, ϕ(R(ci)) = 3.5, so we branch on ci. Again, if ci

is a sink then all four vertices get deleted. If ci is not a sink, then its potential drops by
0.5. In the next step, bi and di are vertices where all their neighbors are semi-decided. The
adversary chooses bi to branch on. If bi becomes a sink all the vertices are again removed.
Else, when bi is a non-sink di has to be a sink and all vertices are removed. There are four
leaves of the branching tree while branching on the set of vertices {ai, bi, ci, di}. This gives
us a recurrence equation: T (n) = 4T (n − 4) which solves to 4n/4 = 1.414n.

▶ Theorem 18. Algorithm KFVD runs in time Ω(1.414n).

7 Conclusion

We obtain a O(1.576n) time and polynomial space algorithm for KFVD problem. Notice that
our algorithm is not optimal and its improvement is a suggested direction for future work.
Also exact algorithms for KFVD with dependency on number of edges instead of vertices can
be an interesting research topic.
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ai is a sink ai is a non-sink

ci is a sink ci is a non-sink

bi is a sink bi is a non-sink
and di is a sink

G = G− Vi

Vi = {ai, bi, ci, di}

G = G− Vi

G = G− Vi

G = G− Vi

Branching on Vi

Figure 2 Branching steps on Vi.
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Abstract
Generalizing the notion of the boundary sequence introduced by Chen and Wen, the nth term of
the ℓ-boundary sequence of an infinite word is the finite set of pairs (u, v) of prefixes and suffixes
of length ℓ appearing in factors uyv of length n + ℓ (n ≥ ℓ ≥ 1). Otherwise stated, for increasing
values of n, one looks for all pairs of factors of length ℓ separated by n − ℓ symbols.

For the large class of addable numeration systems U , we show that if an infinite word is U -
automatic, then the same holds for its ℓ-boundary sequence. In particular, they are both morphic (or
generated by an HD0L system). We also provide examples of numeration systems and U -automatic
words with a boundary sequence that is not U -automatic. In the second part of the paper, we study
the ℓ-boundary sequence of a Sturmian word. We show that it is obtained through a sliding block
code from the characteristic Sturmian word of the same slope. We also show that it is the image
under a morphism of some other characteristic Sturmian word.
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1 Introduction

Let x be an infinite word, i.e., a sequence of letters belonging to a finite alphabet. Imagine
a window of size n moving along x. Such a reading frame permits to detect all factors of
length n occurring in x. For instance, the factor complexity function of x mapping n ∈ N to
the number of distinct factors of length n is extensively studied in combinatorics on words.
Now let n, ℓ be such that n ≥ ℓ. Assume that within the sliding window, we only focus on
its first and last ℓ symbols. Otherwise stated, for a factor uyv of length n, we only consider
its borders u and v of length ℓ.

For any given window length n, we would like to determine what are the pairs of length-ℓ
borders that may occur. This leads to the following definition, where, to simplify notation,
we consider borders of factors of length n+ ℓ rather than n.
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u vy

n ℓℓ

Figure 1 A sliding window where we focus on two regions of a fixed length.

▶ Definition 1.1. Let ℓ ∈ N>0 and x ∈ AN. For n ≥ ℓ, we define the nth boundary set by

∂x,ℓ[n] := {(u, v) ∈ Aℓ ×Aℓ | uyv is a factor of x for some y ∈ An−ℓ}

and call the sequence ∂x,ℓ := (∂x,ℓ[n])n≥ℓ the ℓ-boundary sequence of x. When ℓ = 1, we
write ∂x,1 = ∂x and simply talk about the boundary sequence.

The ℓ-boundary sequence takes values in 2Aℓ×Aℓ , and hence itself can be seen as an
infinite word over a finite alphabet. We give an introductory example.

▶ Example 1.2. Consider the Fibonacci word f = 0100101001 · · · ; the fixed point of the
morphism 0 7→ 01, 1 7→ 0. We have ∂f = a b b a b b b b a b b a b b b b a b b b b a b b a b b b b · · · , where
a := {(0, 0), (0, 1), (1, 0)} and b := {0, 1} × {0, 1}. For instance, ∂f [1] = a because the
length-2 factors of f are 00, 01, 10, while ∂f [2] = b because its length-3 factors are of the form
0_0, 0_1, 1_0, 1_1 (they are in fact 010, 001, 100, 101). The 2-boundary sequence starts with

∂f ,2 = a0 a1 a2 a3 a4 a5 a1 a2 a3 a1 a2 a3 a4 a5 a1 a2 a3 a4 a5 a1 a2 a3 a1 a2 a3 · · ·

where

a0 := {(00, 10), (01, 00), (01, 01), (10, 01), (10, 10)},
a1 := {(00, 00), (00, 01), (01, 01), (01, 10), (10, 00), (10, 10)},
a2 := {(00, 01), (00, 10), (01, 00), (01, 10), (10, 00), (10, 01)},
a3 := {(00, 00), (00, 10), (01, 00), (01, 01), (10, 01), (10, 10)},
a4 := {(00, 01), (01, 01), (01, 10), (10, 00), (10, 01), (10, 10)},
a5 := {(00, 10), (01, 00), (01, 01), (01, 10), (10, 01), (10, 10)}.

The first element ∂f ,2[2] = a0 is peculiar; it corresponds exactly to the five length-4
factors occurring in f . Our Proposition 4.8 shows that a0 appears only once in ∂f . Then,
e.g., ∂f ,2[3] = a1 because the length-5 factors of f are of the form 00_00, 00_01, 01_01,
01_10, 10_00 and 10_10 (the factors are 00100, 00101, 01001, 10100, 10010, and 01010).
For length-6 factors, note that two are of the form 10u01 for some u ∈ {0, 1} × {0, 1}. For
i ≥ 1, the letter ai appears infinitely often in ∂f ,2: see Theorem 4.1.

1.1 Motivation and related work
In combinatorics on words, borders and boundary sets are related to important concepts. For
instance, a word v is bordered if there exist u, x, y such that v = ux = yu and 0 < |u| < |v|.
One reason to study bordered words is Duval’s theorem: for a sufficiently long word v, the
maximum length of unbordered factors of v is equal to the period of v [14]. In formal language
theory, a language L is locally ℓ-testable (LT) if the membership of a word w in L only
depends on the prefix, suffix and factors of length ℓ of w. In [35], the authors consider the
so-called separating problem of languages by LT languages; they utilize ℓ-profiles of a word,
which can again be related to boundary sets. Let us also mention that, in bioinformatics and
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computational biology, one of the aims is to reconstruct sequences from subsequences [26].
To determine DNA segments by bottom-up analysis, paired-end sequencing is used. In this
case both ends of DNA fragments of known length are sequenced. See, for instance, [18].
This is quite similar to the theoretical concept we discuss here.

The notion of a (1-)boundary sequence was introduced by Chen and Wen in [8] and
was further studied in [19], where it is shown that the boundary sequence of a k-automatic
word (in the sense of Allouche and Shallit [1]: see Definition 2.2) is k-automatic. It is
well-known that a k-automatic word x is morphic, i.e., there exist morphisms f : A → A∗

and g : A → B and a letter a ∈ A such that x = g(fω(a)), where fω(a) = limn→∞ fn(a).
However, k-automatic words (with k ranging over the integers) do not capture all morphic
words: a well-known characterization of k-automatic words is given by Cobham [9] (the
generating morphism f maps each letter to a length-k word). This paper is driven by the
natural question whether, in general, the ℓ-boundary sequence of a morphic word is morphic.
In case such generating morphisms can be constructed, we have at our disposal a simple
algorithm providing the set of length-ℓ borders in factors of all lengths.

We briefly present several situations in which the notion of boundary sets is explicitly
or implicitly used. In [12, Thm. 4], the authors study the boundary sequence to exhibit a
squarefree word for which each subsequence arising from an arithmetic progression contains
a square. Boundary sets play an important role in the study of so-called k-abelian and
k-binomial complexities of infinite words (for definitions, see [37]). For instance, computing
the 2-binomial complexity of generalized Thue–Morse words [25] requires inspecting pairs of
prefixes and suffixes of factors, which is again related to the boundary sequence when these
prefixes and suffixes have equal length. The k-binomial complexities of images of binary
words under powers of the Thue–Morse morphism are studied in [39]; there some general
properties of boundary sequences of binary words are required. Moreover, if ∂x is automatic,
then the abelian complexity of the image of x under a so-called Parikh-constant morphism is
automatic [8]. Guo, Lü, and Wen combine this result with theirs in [19] to establish a large
family of infinite words with automatic abelian complexity.

Let k ≥ 1. We let ≡k denote the k-abelian equivalence, i.e., u ≡k v if the words u and v

share the same set of factors of length at most k with the same multiplicities [22]. For u
and v equal length factors of a Sturmian word s, we have u ≡k v if and only if they share
a common prefix and a common suffix of length min{|u|, k − 1} and u ≡1 v [22, Prop. 2.8].
Under the assumption that the largest power of a letter appearing in s is less than 2k − 2,
the requirement u ≡1 v in the previous result may be omitted [33, Thm. 3.6] (compare to
Proposition 4.8). Thus the quotient of the set of factors of length n occurring in a Sturmian
word by the relation ≡k is completely determined by ∂s,k−1[n− k + 1] for large enough k

(depending on s). Other families of words with k-abelian equivalence determined by the
boundary sets are given in [33, Prop. 4.2].

1.2 Our contributions
Up to our knowledge, we are the first to propose a systematic study of the ℓ-boundary
sequences of infinite words. It is therefore natural to consider the notion on well-known
classes of words. In this paper, we consider morphic words and Sturmian words.

Any morphic word is S-automatic for some abstract numeration system S [38]. With
Theorem 3.1, we prove that for a large class of numeration systems U , if x is a U -automatic
word, then the boundary sequence ∂x is again U -automatic. Our approach generalizes
the arguments provided by [19]. Considering exotic numeration systems allows a better
understanding of underlying mechanisms, which do not arise in the ordinary integer base
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systems. In particular, we deal with addition within the numeration system; in integer base
systems, the carry propagation is easy to handle (by a two-state finite automaton). Our
arguments apply to so-called addable numeration systems (see Definition 2.1).

As an alternative, we observe that the Büchi–Bruyère theorem [5] can be extended
to addable positional numeration systems U (Theorem 2.6). The U -automaticity of the
ℓ-boundary sequence then follows from the fact that it is definable by a first-order formula
of the structure ⟨N,+⟩ extended with a unary function relating an integer with the least
element of U properly appearing in its representation.

This alternative proof however hides the important details that might help identifying the
technical limits of the result: not all morphic words allow an addable system to work with.
However, the framework we consider captures all morphic words (see Theorem 2.4). Also,
one practical difficulty when one wants to use automatic provers (such as Walnut [28]) is to
be able to provide the relevant automaton for addition. To identify the contours of our result,
we also discuss the case where x is U -automatic and ∂x is not U -automatic. To construct
such examples, we have to consider non-addable numeration systems in Section 3.2.

We then turn to the other class of words under study. Letting s be a Sturmian word with
slope α, with Theorem 4.1 we show that the ℓ-boundary sequence of s is obtained through
a sliding block code from the characteristic Sturmian word of slope α (see Section 4 for a
definition) up to the first letter. This result holds even for non-morphic Sturmian words,
so for an arbitrary irrational α. Where the techniques used in the first part of the paper
have an automata-theoretic flavor, the second part relies on the geometric characterization
of Sturmian words as codings of rotations. We provide another description of the ℓ-boundary
sequence of a Sturmian word as the morphic image of some characteristic Sturmian word in
Proposition 4.10. We remark that it is unclear to us whether some of the results in Section 4
can be proved automatically using the very recent tool developed in [21].

2 Preliminaries

Throughout this paper we let A denote a finite alphabet. Then An denotes the set of length-n
words. For an infinite word x, we let x[n] denote its nth letter, for all n ≥ 0. For general
references on numeration systems, see [16] and [4, Chap. 1–3]. We assume that the reader
has some knowledge in automata theory. For a reference see [40] or [36, Chap. 1].

2.1 Numeration systems and automatic words

Let U = (Un)n≥0 be an increasing sequence of integers such that U0 = 1. Any integer n can be
decomposed (not necessarily uniquely) as n =

∑t
i=0 ci Ui with non-negative integer coefficients

ci. The finite word ct · · · c0 ∈ N∗ is a U -representation of n. If this representation is computed
greedily [16, 36], then for all j ≤ t we have

∑j
i=0 ci Ui < Uj+1 and repU (n) = ct · · · c0 is said

to be the greedy (or normal) U -representation of n. By convention, the greedy representation
of 0 is the empty word ε and the greedy representation of n > 0 starts with a non-zero digit.
An extra condition on the boundedness of supi≥0(Ui+1/Ui) implies that the digit-set for
greedy representations is finite. For any ct · · · c0 ∈ N∗, we let valU (ct · · · c0) denote the integer∑t

i=0 ci Ui. A sequence U satisfying all the above conditions is said to define a positional
numeration system. For the following, we refer to the terminology in [32] (addable systems
are called regular in [41]).
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▶ Definition 2.1. A positional numeration system U with digit-set A is addable if the
following graph of addition, denoted by L+, is regular:{(

u
v
w

)
∈ (0∗ repU (N))3 ∩ (A×A×A)∗ | valU (u) + valU (v) = valU (w)

}
\

(
0
0
0

)
(A×A×A)∗.

Notice that words in repU (N) do not start with 0; however, when dealing with tuples of
such words, shorter U -representations are padded with leading zeroes to get words of equal
length (so they can be processed by an automaton over tuples of letters).

For general references about automatic words and abstract numeration systems, see [1]
and [38] or [4, Chap. 3]. An abstract numeration system is a triple S = (L,A,<) with L an
infinite regular language over the totally ordered alphabet A (with <). Genealogically (i.e.,
radix or length-lexicographic) ordering L gives a one-to-one correspondence repS between N
and L; the S-representation of n is the (n+ 1)st word of L, and the inverse map is denoted
by valS . A deterministic finite automaton with output (DFAO) A is a DFA (with state set Q)
equipped with a mapping τ : Q → A (with A an alphabet). The output A(w) of A on a word
w is τ(q), where q is the state reached by reading w from the initial state.

▶ Definition 2.2. An infinite word x is S-automatic if there exists a DFAO A such that
x[n] = A(repS(n)). In particular, for k ≥ 2 an integer, if A is fed with the genealogically
ordered language L = {ε} ∪ {1, . . . , k − 1}{0, . . . , k − 1}∗, then x is said to be k-automatic.

We introduce abstract numeration systems due to the following theorem:

▶ Theorem 2.3 ([38]). A word x is morphic if and only if it is S-automatic for some abstract
numeration system S.

Fix s ∈ A∗. For a word x, define the subsequence x ◦ s by (x ◦ s)[n] := x[valS(ps,n s)],
where ps,n is the nth word in the genealogically ordered language Ls−1 = {u ∈ A∗ | us ∈ L}.
The S-kernel of the word x is defined as the set of words {x ◦ s | s ∈ A∗}. The following
theorem is critical to our arguments. Details are given in [4, Prop. 3.4.12–16].

▶ Theorem 2.4 ([38]). A word x is S-automatic if and only if its S-kernel is finite.

▶ Example 2.5. Consider the Fibonacci numeration system based on the sequence (Fn)n≥0
with F0 = 1, F1 = 2, and Fn+1 = Fn + Fn−1 for n ≥ 1. The first few terms of the associated
subsequences µs : N → N, such that (x ◦ s)[n] = x[µs(n)], are given in Table 1. One simply
computes the numerical value of all the Fibonacci representations with the suffix s.

Table 1 The first few terms of some subsequences µs for the Fibonacci numeration system.

s (µs(n))n≥0 s (µs(n))n≥0

ε 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, . . . 01 4, 6, 9, 12, 14, 17, 19, 22, 25, . . .
0 2, 3, 5, 7, 8, 10, 11, 13, 15, . . . 00 3, 5, 8, 11, 13, 16, 18, 21, 24, . . .
1 1, 4, 6, 9, 12, 14, 17, 19, 22, 25, . . . 10 2, 7, 10, 15, 20, 23, 28, 31, 36, 41, . . .

Notice that some kernel elements x ◦ s may be finite; more precisely, this occurs exactly
when the language Ls−1 is finite. Our reasoning will not be affected by such particular cases,
and we let the reader adapt it to such situations.

We now set our general assumptions. From now on we let U be a positional numeration
system with digit-set A such that repU (N) is regular, and thus it is an abstract numeration
system (repU (N), A,<) for the natural ordering of the digits; this is because for all m,n ∈ N
we have m < n if and only if repU (m)<gen repU (n) for the genealogical order.
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In Section 3.1, we further require U to be addable. All these assumptions are shared
by many systems. For instance, classical integer base systems or the Fibonacci numeration
system have all the assumed properties including being addable. For the latter system, the
minimal automaton (reading most significant digits first) of L+ has 17 states (its transition
table is given in [29]). The one reading least significant digits first has 22 states. The
largest known family of positional systems with all these properties (addable with repU (N)
being regular) is the one of those based on a linear recurrence sequence whose characteristic
polynomial is the minimal polynomial of a Pisot number [5, 36].

2.2 Link with first-order logic
The result stated below is nothing else but the Büchi–Bruyère theorem [5, Thm. 16], originally
given in the context of Pisot numeration systems. Its proof can be straightforwardly adapted
to the case where U is addable, as the key ingredients are that repU (N) and the graph of
addition L+ are regular languages. For a positional numeration system U , we define the map
VU by VU (n) = Uj whenever n ∈ N and repU (n) = ct · · · cj0j and cj ̸= 0.

▶ Theorem 2.6. Let U be an addable positional numeration system. A word x over B is
U -automatic if and only if for each symbol b ∈ B, the set {n ≥ 0 | x[n] = b} can be defined
by a first-order formula φb(n) of the structure ⟨N,+, VU ⟩.

As already mentioned in [19], the boundary sequence of a k-automatic word x may be
defined by means of a first-order formula and therefore automaticity readily follows. This
extends to addable systems: let x ∈ BN be U -automatic for an addable system U . The above
theorem implies that, for all b ∈ B, we have a formula φb(n) which is true if and only if
x[n] = b. We have (u1 · · ·uℓ, v1 · · · vℓ) ∈ ∂x,ℓ[m] if and only if

(∃i)
ℓ∧

j=1
φuj

(i+ j − 1) ∧
ℓ∧

j=1
φvj

(i+m+ j − 1).

For each subset R of Aℓ × Aℓ there is thus a formula ψR(m) which is true if and only if
∂x,ℓ[m] = R. We may now apply Theorem 2.6 to conclude that ∂x,ℓ is U -automatic. We
remark that a similar proof of our Theorem 3.1 as sketched above is given in a forthcoming
book of Shallit [41]. Also, this proof works for U not necessarily positional using [7, Lem. 37
and Thm. 55]. In particular, they show the following: Let x be an S-automatic sequence,
where S is an addable abstract numeration system. Any first-order formula involving the
predicates defined by the letters of x leads to an automaton accepting the S-representations
of integers for which the formula holds.

3 On the boundary sequences of automatic words

In this section we provide the first of our main contributions, an alternative proof (not relying
on Theorem 2.6) to the fact that a U -automatic word has a U -automatic boundary sequence
whenever U is addable and satisfies the assumptions laid down in Section 2.1. We then show
that this result does not necessarily hold for non-addable U .

3.1 Addable systems: automatic boundary sequences
For the sake of presentation, we only consider the case of the 1-boundary sequence. Our
proof provides a precise description of a set containing the U -kernel of ∂x in terms of three
equivalence relations based on the kernel of x, the graph of addition, and the numeration
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language; see (2). This set is finite, and so Theorem 2.3 gives the claim. In particular, one is
the Myhill–Nerode congruence associated with the graph of addition since we have to consider
the elements x[i] and x[i+m] for some m > 0. For ℓ > 1, the only technical difference is
that we have to consider longer factors x[i] · · · x[i+ ℓ− 1] and x[i+m] · · · x[i+m+ ℓ− 1].

▶ Theorem 3.1. Let U be an addable numeration system with digit-set A and x be a
U -automatic word. The boundary sequence ∂x is U -automatic.

Proof. Thanks to Theorem 2.4, the U -kernel of x is finite, say of cardinality m. Moreover,
since L = repU (N) and L+ are regular, the following two sets of languages are finite by the
Myhill–Nerode theorem [40, Sec. 3.9], say of cardinality k and ℓ, respectively:

{Ls−1 | s ∈ A∗} and
{

L+

(
s
t
r

)−1 ∣∣∣ (
s
t
r

)
∈ (A×A×A)∗

}
.

Let ∂x be the boundary sequence of x. An element of the U -kernel of ∂x is given by
∂x ◦ s = ∂x[valU (ps,0s)] ∂x[valU (ps,1s)] ∂x[valU (ps,2s)] · · · where ps,n is the nth word in the
language Ls−1, n ≥ 0. Let us inspect the nth term of such an element of the kernel: it is
precisely the set

∂x[valU (ps,ns)] = {(x[i], x[i+ valU (ps,ns)]) | i ≥ 0} (1)

of pairs of letters. Let t, r be length-|s| suffixes of words in L for which L+(s, t, r)−1 is
non-empty. There exist words w, x, y such that ws, xt, yr ∈ 0∗L and valU (ws) + valU (xt) =
valU (yr). We let P(s) denote the set of such pairs (t, r) ∈ (A × A)|s|. Now partition (1)
depending on the suffixes of length |s| of repU (i) and repU (i+ valU (ps,ns)): we may write

∂x[valU (ps,ns)] =
⋃

(t,r)∈P(s)

{
(x[valU (xt)], x[valU (yr)])

∣∣∣ ( w
x
y

)
∈ L+

(
s
t
r

)−1
∧ w ∈ 0∗ps,n

}
.

Roughly speaking, we look at all pairs of positions such that the first one is represented by
a word ending with t, the second position is a shift of the first one by valU (ps,ns) and is
represented by a word ending with r.

For convenience, we set L(s, t, r, n) := L+

(
s
t
r

)−1
∩ (0∗ps,n ×A∗ ×A∗) for all n ≥ 0.

Note that if L+(s, t, r)−1 = L+(s′, t′, r′)−1 and Ls−1 = Ls′−1 then, for all n, L(s, t, r, n) =
L(s′, t′, r′, n). Indeed, the second condition means that ps,n = ps′,n for all n.

Ordering L(s, t, r, n). For each w, x of the same length, there is at most one y not starting
with 0 such that (w, x, y) belongs to L+(s, t, r)−1. Similarly if y does not start with 0, for
each w ∈ A|y| (resp., x ∈ A|y|) there is at most one x (resp., w) such that (w, x, y) belongs
to L+(s, t, r)−1.

Now let (w, x, y) and (w′, x′, y′) in L(s, t, r, n). We will always assume (this is not a
restriction) that triplets do not start with (0, 0, 0) – otherwise, different triplets may have
the same numerical value. Note that valU (x) < valU (x′) if and only if valU (y) < valU (y′).
Indeed, w,w′ both belong to 0∗ps,n thus valU (ws) = valU (ps,ns) = valU (w′s). We have

valU (yr) − valU (xt) = valU (ws) = valU (w′s) = valU (y′r) − valU (x′t),

so, since U is positional, valU (y0|r|) − valU (y′0|r|) = valU (x0|r|) − valU (x′0|r|). Without loss
of generality, we may assume that x and x′ (resp., y and y′) have the same length (indeed
one can pad shorter representations with leading 0’s). Then the above equation means that x
is lexicographically less than x′ if and only if the same holds for y and y′. We can thus order
L(s, t, r, n) by the numerical value of the second component of an element, and therefore the
jth element of L(s, t, r, n) is well-defined.
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Defining two subsequences by the maps λs,t,r,n : N → N and µs,t,r,n : N → N. Let
(wj , xj , yj) be the jth element in L(s, t, r, n) with j ≥ 0. After removing the leading 0’s,
the word xj belongs to Lt−1 ∪ {ε}, which can also be ordered by genealogical order. We
let λs,t,r,n(j) denote the index (i.e., position counting from 0) of xj within this language.
Similarly, the word yj belongs to Lr−1 ∪ {ε} and has an index µs,t,r,n(j) within this language.

Note that if L+(s, t, r)−1 = L+(s′, t′, r′)−1, Ls−1 = Ls′−1, and Lt−1 = Lt′−1 then, for
all n, the maps λs,t,r,n and λs′,t′,r′,n are the same. Indeed, the first two conditions imply
that L(s, t, r, n) = L(s′, t′, r′, n). Similarly, if L+(s, t, r)−1 = L+(s′, t′, r′)−1, Ls−1 = Ls′−1,
and Lr−1 = Lr′−1 then, for all n, the maps µs,t,r,n and µs′,t′,r′,n are the same.

We now obtain

∂x[valU (ps,ns)] =
⋃

(t,r)∈P(s)

{
(x[valU (xt)], x[valU (yr)])

∣∣∣ ( w
x
y

)
∈ L+

(
s
t
r

)−1
∧ w ∈ 0∗ps,n

}
=

⋃
(t,r)∈P(s)

{
(x[valU (xjt)], x[valU (yjr)])

∣∣∣ ( wj
xj
yj

)
∈ L(s, t, r, n), j ≥ 0

}
=

⋃
(t,r)∈P(s)

{((x ◦ t)[λs,t,r,n(j)], (x ◦ r)[µs,t,r,n(j)]) | j ≥ 0} .

Let us define an equivalence relation on triplets by (s, t, r) ∼ (s′, t′, r′) if and only if all
the following hold:

L+

(
s
t
r

)−1
= L+

(
s′

t′

r′

)−1
, Ls−1 = Ls′−1, Lt−1 = Lt′−1, Lr−1 = Lr′−1, (2)

x ◦ t = x ◦ t′, and x ◦ r = x ◦ r′.

Since we have regular languages and the kernel of x is finite by assumption, this relation
has a finite index (bounded by ℓk3m2). Given s, the set {(s, t, r) | (t, r) ∈ P(s)} can be
replaced by a set Λ(s) of representatives of the equivalence classes for ∼. Since ∼ has a finite
index, there are finitely many possible subsets of the form Λ(s). So, we can write

∂x[valU (ps,ns)] =
⋃

(b,c,a)∈Λ(s)

{((x ◦ c)[λb,c,a,n(j)], (x ◦ a)[µb,c,a,n(j)]) | j ≥ 0} .

Now if s and s′ are such that Ls−1 = Ls′−1 and Λ(s) = Λ(s′), then ∂x ◦ s = ∂x ◦ s′. This
proves that the kernel of ∂x is finite (of size bounded by k · 2ℓk3m2). ◀

3.2 Non-addable systems: counterexamples
Our aim is to show that the boundary sequence of a U -automatic word is not always U -
automatic. We give two such examples. The numeration system defined first is a variant of
the base-2 system.

▶ Example 3.2. Take the numeration system (Un)n≥0 defined by Un = 2n+1 − 1 for all
n ≥ 0. We have 0∗ repU (N) = (0 + 1)∗(ε + 20∗). Consider the characteristic word u of U ,
i.e., u[n] = 1 if and only if n ∈ {Uj | j ≥ 0}. The boundary sequence ∂u starts with

a b a b a b a b a a a b a b a b a a a a a a a b a a a b a b a b a a a a a a a a a a a a a a a b a a a · · ·

where a := {(0, 0), (0, 1), (1, 0)} and b := {0, 1} × {0, 1}.

One can show that the language {repU (n) : ∂u[n] = b} is not regular, hence:
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▶ Proposition 3.3. Let U = (2n+1 − 1)n≥0. The word u from Example 3.2 is U -automatic
but its boundary sequence ∂u is not U -automatic.

As a consequence of the previous proposition and Theorem 3.1, U is non-addable.
▶ Remark 3.4. One may notice that both u and ∂u are 2-automatic: this follows by Theo-
rem 2.6 from the set X := {Um+r − Um | m ≥ 0, r > 0} (which equals {n ∈ N : ∂u[n] = b})
being 2-definable by the formula φ(n) := (∃x) (∃y) (x < y∧V2(x) = x∧V2(y) = y∧n = y−x),
where V2(y) is the smallest power of 2 occurring with a non-zero coefficient in the binary
expansion of y.

In view of the above remark, Example 3.2 could be considered as unsatisfactory. We now
make use of a similar strategy but with a more complicated numeration system, for which we
do not know any analogue of Remark 3.4. To this end, consider the non-addable numeration
system from [17, Ex. 3] or [27, Ex. 2] defined by

V0 = 1, V1 = 4, V2 = 15, V3 = 54 and Vn = 3Vn−1 + 2Vn−2 + 3Vn−4, ∀n ≥ 4. (3)

▶ Example 3.5. Consider the characteristic word v of V , i.e., v[n] = 1 if and only if
n ∈ {Vj | j ≥ 0}. This word is trivially V -automatic. The boundary sequence ∂v starts with

a a b a a a a a a a b a a b a a a a a a a a a a a a a a a a a a a a a a a a b a a a a a a a a a a b · · ·

where again a := {(0, 0), (0, 1), (1, 0)} and b := {0, 1} × {0, 1}.

Similar to the above, {repV (n) : ∂v[n] = b} is not regular, whence

▶ Proposition 3.6. Let V be the numeration system given by (3). The word v from
Example 3.5 is V -automatic but its boundary sequence ∂v is not V -automatic.

▶ Remark 3.7. We do not know whether v and ∂v are both V ′-automatic for some numeration
system V ′.

4 The extended boundary sequences of Sturmian words

We give two descriptions of the ℓ-boundary sequences of Sturmian words (Theorem 4.1
and Proposition 4.10) and discuss some of their word combinatorial properties. We first
recap minimal background on Sturmian words seen as codings of rotations. For a general
reference, see [24, §2]. Let α, ρ ∈ T := [0, 1) with α irrational. Define the rotation of the
1-dimensional torus Rα : T → T by Rα(x) = {x+ α}, where { · } denotes the fractional part.
Let I0 = [0, 1 − α) (or I0 = (0, 1 − α]) and I1 = T \ I0. (The endpoints of I0 will not matter
in the forthcoming arguments.) Define the coding ν : T → {0, 1} by ν(x) = 0 if x ∈ I0,
otherwise ν(x) = 1. We define the word sα,ρ by sα,ρ[n] = ν(Rn

α(ρ)), for all n ≥ 0. We call α
the slope and ρ the intercept of sα,ρ. The characteristic Sturmian word of slope α is sα,α.

4.1 A description of the extended boundary sequence
In the following, a sliding block code of length r is a mapping B : AN → BN defined by
B(x)[n] = B(x[n] · · · x[n + r − 1]) for all n ≥ 0 and some B : Ar → B. Let T : AN → AN

denote the shift map Tx0x1x2 · · · = x1x2 · · · .

▶ Theorem 4.1. For a Sturmian word s of slope α (and intercept ρ) and ℓ ≥ 1, the (shifted)
ℓ-boundary sequence T∂s,ℓ is obtained by a sliding block code of length 2ℓ applied to the
characteristic Sturmian word of slope α.
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To prove the theorem we develop the required machinery. For a word u = u0 · · ·uℓ−1,
we let Iu =

⋂ℓ−1
i=0 R

−i
α (Iui

). It is well-known that u occurs at position i in sα,ρ if and only
if Ri

α(ρ) ∈ Iu. These intervals of factors of length ℓ can also be described as follows: order
the set

{
{−jα}

}ℓ

j=0 as 0 = i0 < i1 < i2 < · · · < iℓ. For convenience, we set iℓ+1 = 1. If
the ℓ + 1 factors of length ℓ of the Sturmian word sα,ρ are lexicographically ordered as
w0 < w1 < · · · < wℓ, then Iwj

= [ij , ij+1) for each j ∈ {0, . . . , ℓ}. From the following claim it
is evident that the intercept ρ plays no further role in our considerations. (This also follows
from the fact that two Sturmian words have the same set of factors if and only if they have
the same slope.)

▷ Claim 4.2. Let n ≥ ℓ and u, v be length-ℓ factors of sα,ρ. Then (u, v) ∈ ∂x,ℓ[n] if and only
if Rn

α(Iu) ∩ Iv ̸= ∅.

The endpoints of Iu are of the form ij and ij+1 for some j ∈ {0, . . . , ℓ}. Hence, for n ≥ ℓ,
the set of pairs belonging to ∂x,ℓ[n] is determined by the positions of the rotated endpoints
Rn

α(ij) within the intervals Iwk
. Notice that each rotated endpoint Rn

α(ij) always lies in the
interior of some Iwk

whenever n > ℓ. When n = ℓ, we have Rn
α({−ℓα}) = 0, which is an

endpoint of one of the intervals Iwk
. For the time being we assume n > ℓ, and return to

the case n = ℓ in Proposition 4.8. Now, for example, if Rn
α(ij) ∈ Iwk

then we have (wj , wk),
(wj−1, wk) ∈ ∂x,ℓ[n] (if j = 0, wj−1 is replaced with wℓ). Determining the boundary sets can
be quite an intricate exercise; see Example 4.4.

An alternative to considering the positions of the points Rn
α(ij) within the intervals Iwk

is to consider the positions of the points Rn
α({−jα}) within the intervals Iwk

– the only
difference is the order of enumeration. For each n > ℓ, there is a map σ = σn ∈ Tℓ, where Tℓ

is the set of mappings from {0, . . . , ℓ} to itself, such that

Rn
α({−jα}) ∈ Iwσ(j) ∀ j ∈ {0, . . . , ℓ}. (4)

The realizable such configurations in (4) are called constellations. These points, when ordered
according to the ij ’s, determine the boundary set ∂s,ℓ[n] as described above. See Example 4.4
for an illustration of the construction.

▶ Definition 4.3. Let σ ∈ Tℓ be such that (4) holds for some n ∈ N. We define ∂σ ∈ 2Aℓ×Aℓ

as the boundary set corresponding to any constellation inducing σ.

It is now evident that if σn = σm =: σ, then ∂s,ℓ[n] = ∂σ = ∂s,ℓ[m].

▶ Example 4.4. The Fibonacci word f is sα,α for α = (3 −
√

5)/2 ≃ 0.382. In Figure 2, the
outer circle shows the partition with the interval Iw0 , . . . , Iwℓ

and the inner circle shows the
positions of the points Rn

α({−jα}) for ℓ = 4 and n = 17. The corresponding words w0, . . . , wℓ

are written next to their interval. Here σn is defined by (0, 1, 2, 3, 4) 7→ (2, 0, 3, 1, 4). For any
constellation inducing σn, we see the pairs belonging to ∂σn = ∂f ,4[17] from Figure 2: the
inner intervals (obtained from the outer intervals by applying R17

α ) give the prefix matching
the suffix of the overlapping outer intervals, in clockwise order:

( 0010
0101 ) , ( 0010

1001 ) , ( 0100
1001 ) , ( 0100

1010 ) , ( 0101
1010 ) , ( 0101

0010 ) , ( 1001
0010 ) , ( 1001

0100 ) , ( 1010
0100 ) , ( 1010

0101 ) .

Coming back to the introductory Example 1.2, the five sets a1, . . . , a5 correspond to the
situations depicted from left to right in Figure 3. For instance, in the fourth picture, we
understand why 10 is a prefix belonging to three pairs in a4: the red inner interval intersects
the three outer intervals of the partition. The situation is similar in the fifth picture where 01
is the prefix of three pairs in a5. It is however not the case with the first three sets/pictures.
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-3α
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17(-4α)
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Figure 2 A constellation for
α = (3 −

√
5)/2, ℓ = 4 and n = 17.

0

-α

-2α

0

-α

-2α

0
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-2α

0

-α

-2α

0

-α

-2α

Figure 3 Some constellations for α = (3−
√

5)/2 and ℓ = 2
inducing the five maps σn sending (0, 1, 2), resp., to
(0, 2, 1), (1, 0, 2), (2, 1, 0), (1, 2, 1), (2, 1, 2).

▶ Remark 4.5. It is possible that ∂σ = ∂σ′ for distinct maps σ, σ′ ∈ Tℓ. Indeed, for the
Fibonacci word and ℓ = 1, we have equality for the identity mapping id and σ : (0, 1) 7→ (1, 0);
in this case ∂id = ∂σ = {0, 1} × {0, 1}. So two constellations inducing different maps in Tℓ

lead to the same set of boundary pairs. (See however Lemma 4.15.)

▶ Definition 4.6. Let r be the rotation word defined by r[n] = η(Rn
α(α)) for all n ≥ 0, where

η : T → {0, . . . , ℓ} is defined by η(x) = j when x ∈ Iwj
(recall Iwi

corresponds to the ith
factor of length ℓ).

We have that r[n] = j if and only if the characteristic Sturmian word sα,α has the length-ℓ
factor wj occurring at position n.

Proof sketch of Theorem 4.1. It can be shown that the boundary sequence of s can be
obtained from r constructed above using a sliding block code of length ℓ+ 1. Notice that by
definition r is obtained by a sliding block code of length ℓ of the characteristic Sturmian word
sα,α. The claim follows as composing sliding block codes of length r and r′, respectively,
yields a sliding block code of length r + r′ − 1. ◀

▶ Example 4.7. We apply Theorem 4.1 to the Fibonacci word f . Take α = (3−
√

5)/2, ℓ = 1,
I0 = [0, 1 − α) and I1 = [1 − α, 1). Then the rotation word r associated with the partition
{I0, I1}, slope α, and intercept α is sα,α by definition, which happens to be the Fibonacci
word f . We have f = 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 · · · . Recall
from the construction that the length-2 factors of the rotation word determine the boundary
sets. The three length-2 factors of f are 01, 10, and 00 occurring at positions m = 0, 1, and
2, respectively. We get the three maps σm+2 ∈ T1 defined by (0, 1) 7→ (1, 0), (0, 1) 7→ (0, 1),
and (0, 1) 7→ (0, 0), respectively. We deduce that an occurrence of 01 or 10 corresponds to
the boundary set b := {0, 1} × {0, 1}, and 00 to a := {(0, 0), (0, 1), (1, 0)}. We may therefore
define B : 01, 10 7→ b, 00 7→ a and the associated sliding block code B of length 2; applying
B to f , we get

B((01)(10)(00)(01)(10)(01)(10)(00)(01)(10)(00)(01)(10)(01)(10)(00)(01)(10)(01) · · · )
= b b a b b b b a b b a b b b b a b b b · · · ,

which indeed gives back Example 1.2 after prepending the letter a.

MFCS 2022
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We next discuss the first element ∂s,ℓ[ℓ] of the (extended) boundary sequence. Notice that
the set is in one-to-one correspondence with the factors of length 2ℓ, and thus has cardinality
2ℓ+ 1. The points {−jα} and Rℓ

α({−jα}), j ∈ {0, . . . , ℓ}, on the torus still determine the
boundary set, but notice that there are only 2ℓ+ 1 distinct pairs. The following proposition
describes rather precisely how the first element appears in the boundary sequence.

▶ Proposition 4.8. For a Sturmian word s, the boundary set ∂s,ℓ[ℓ] appears infinitely often
in ∂s,ℓ if and only if 02ℓ or 12ℓ appears in s. Otherwise it appears exactly once.

Notice that either 00 or 11 appears in a Sturmian word s, so the above implies that the
first letter of the (1-)boundary sequence ∂s always appears infinitely often in the sequence.
Returning to Example 1.2, since 04 does not appear in the Fibonacci word, the letter a0
appears only once in ∂f ,2.

We conclude with the immediate corollary of Theorem 4.1 and Proposition 4.8; here we
say that a word w is uniformly recurrent if each of its factors occurs infinitely often within
bounded gaps (the distance between two consecutive occurrences depends on the factor). It
is known that, e.g., Sturmian words are uniformly recurrent.

▶ Corollary 4.9. For any Sturmian word s, the shifted sequence T∂s,ℓ[n] is uniformly recurrent.
The sequence ∂s,ℓ is uniformly recurrent if and only if 02ℓ or 12ℓ appears in s.

4.2 Another description of the extended boundary sequence
We give another description of the ℓ-boundary sequences of Sturmian words when ℓ ≥ 2. For
any irrational number α ∈ (0, 1) there is a unique infinite continued fraction expansion (CFE)

α = [0; a1, a2, a3, . . .] := 1

a1 + 1

a2 + 1
a3 + . . .

,

where an ≥ 1 are integers for all n ≥ 1. Then the characteristic Sturmian word sα,α of slope
α equals limk→∞ Sk, where S−1 = 1, S0 = 0, S1 = Sa1−1

0 S−1, and Sk+1 = S
ak+1
k Sk−1 for all

k ≥ 1 [1, Chap. 9]. The main result of this part is the following.

▶ Proposition 4.10. Let s be a Sturmian word of slope α = [0; a1 + 1, a2, . . .]. For each
ℓ ≥ 2, there exists kℓ ∈ N such that for any k ≥ kℓ there is a morphism hk,ℓ such that
T∂s,ℓ = hk,ℓ(sβk,βk

), where βk = [0; ak+1 + 1, ak+2, . . .].

▶ Example 4.11. Take the slope α = (3 −
√

5)/2; its CFE is [0; 2, 1, 1, 1, . . .]. Using the
previous notation, S−1 = 1, S0 = 0, and Sk+1 = SkSk−1 for all k ≥ 0. Then the sequence
(Sk)k≥0 converges to the Fibonacci word; the first few words in the sequence (Sk)k≥0 are
0, 01, 010, 01001, 01001010.

Now for any ℓ ≥ 2, the above proposition thus gives that ∂f ,ℓ is the morphic image of the
characteristic Sturmian word of slope β = α. In other words, the ℓ-boundary sequence is
always a morphic image of f .

We generalize the last observation made in the above example.

▶ Corollary 4.12. Let s be a Sturmian word with quadratic slope. Then ∂s,ℓ is morphic. In
particular, the ℓ-boundary sequence of a Sturmian word fixed by a non-trivial morphism is
morphic.
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Proof. A remarkable result of Yasutomi [43] (see also [3]), characterizing those Sturmian
words that are fixed by some non-trivial morphism, implies that if a Sturmian word is
fixed by a non-trivial morphism, then so is the characteristic Sturmian word of the same
slope. Furthermore, the slope is characterized by the property that its CFE is of the form
[0; 1, a2, a3, . . . , ar] with ar ≥ a2 or [0; 1 + a1, a2, . . . , ar] with ar ≥ a1 ≥ 1 [11, 30] (see also
[24, Thm. 2.3.25]). Here x1, . . . , xt indicates the periodic tail of the infinite CFE. Let s have
slope α; since α is quadratic, it has an eventually periodic CFE. There thus exist arbitrarily
large k for which the characteristic Sturmian word of slope βk := [0; ak + 1, ak+1, . . .] is a
fixed point of a non-trivial morphism (it is of the latter form). Proposition 4.10 then posits
that T∂s,ℓ is the morphic image of such a word, and the claim follows (because prepending
the letter ∂s,ℓ[ℓ] preserves morphicity [1, Thm. 7.6.3]). ◀

Notice that given the morphism fixing a Sturmian word s, one can compute (the CFE of) its
quadratic slope (and intercept) [42, 34, 23].

The above corollary has an alternative proof via the logical approach as well. For the
definitions of notions that follow, we refer to the cited papers. From the work of Hieronymi
and Terry [20], it is known that addition in the Ostrowski-numeration system based on an
irrational quadratic number α is recognizable by a finite automaton. This motivated Baranwal,
Schaeffer, and Shallit to introduce Ostrowski-automatic sequences in [2]. For example, they
showed that the characteristic Sturmian word of slope α is Ostrowski α-automatic. Since
the numeration system is addable, the above corollary follows by the same arguments as in
Section 2.2.

4.3 Factor complexities of the extended boundary sequences

▶ Definition 4.13. An infinite word over an alphabet A is of minimal complexity if its factor
complexity is n+ |A| − 1 for all n ≥ 1.

Minimal complexity words can be seen as a generalization of Sturmian words to larger
alphabets: if a word (containing all letters of A) has less than n+ |A| − 1 factors of length n
for some n, then it is ultimately periodic. Otherwise it is aperiodic (a consequence of the
Morse–Hedlund theorem). See [10, 31, 15, 6, 13] for characterizations and generalizations.

The following proposition is almost immediate after the key Lemma 4.15.

▶ Proposition 4.14. Let ℓ ≥ 2. The ℓ-boundary sequence of a Sturmian word is a minimal
complexity word (of complexity n 7→ n+ 2ℓ, n ≥ 1).

▶ Lemma 4.15. Let σ and σ′ ∈ Tℓ, ℓ ≥ 2, be distinct mappings both satisfying (4) (for
different n). Then ∂σ ̸= ∂σ′ .

We conclude with a formula for the factor complexity of the 1-boundary sequence of
Sturmian words.

▶ Proposition 4.16. Let r be the maximal integer such that (01)r appears in the Sturmian

word s. The boundary sequence ∂s has factor complexity n 7→

{
n+ 1, if n < 2r;
n+ 2, otherwise.

As an immediate corollary, we see that the ℓ-boundary sequence is aperiodic for all ℓ ≥ 1.

MFCS 2022



79:14 On Extended Boundary Sequences of Morphic and Sturmian Words

References
1 Jean-Paul Allouche and Jeffrey Shallit. Automatic sequences: Theory, applications, generaliza-

tions. Cambridge University Press, Cambridge, 2003.
2 Aseem Baranwal, Luke Schaeffer, and Jeffrey Shallit. Ostrowski-automatic sequences: Theory

and applications. Theoretical Computer Science, 858:122–142, 2021. doi:10.1016/j.tcs.
2021.01.018.

3 Valérie Berthé, Hiromi Ei, Shunji Ito, and Hui Rao. On substitution invariant Sturmian
words: an application of Rauzy fractals. RAIRO Theoretical Informatics and Applications,
41(3):329–349, 2007. doi:10.1051/ita:2007026.

4 Valérie Berthé and Michel Rigo, editors. Combinatorics, Automata, and Number Theory,
volume 135 of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
2010. doi:10.1017/CBO9780511777653.

5 Véronique Bruyère and Georges Hansel. Bertrand numeration systems and recognizability.
Theoretical Computer Science, 181(1):17–43, 1997. doi:10.1016/S0304-3975(96)00260-5.

6 Julien Cassaigne. Sequences with grouped factors. In Symeon Bozapalidis, editor, Proceedings
of the 3rd International Conference Developments in Language Theory, pages 211–222. Aristotle
University of Thessaloniki, 1997.

7 Émilie Charlier, Célia Cisternino, and Manon Stipulanti. Regular sequences and synchronized
sequences in abstract numeration systems. European Journal of Combinatorics, 101:103475,
2022. doi:10.1016/j.ejc.2021.103475.

8 Jin Chen and Zhi-Xiong Wen. On the abelian complexity of generalized Thue–Morse sequences.
Theoretical Computer Science, 780:66–73, 2019. doi:10.1016/j.tcs.2019.02.014.

9 Alan Cobham. Uniform tag seqences. Mathematical Systems Theory, 6(3):164–192, 1972.
doi:10.1007/BF01706087.

10 Ethan M. Coven. Sequences with minimal block growth ii. Mathematical systems theory,
8:376–382, 1974. doi:10.1007/BF01780584.

11 David Crisp, William Moran, Andrew Pollington, and Peter Shiue. Substitution invariant
cutting sequences. Journal de Théorie des Nombres de Bordeaux, 5(1):123–137, 1993. doi:
10.2307/26273915.

12 James Currie, Tero Harju, Pascal Ochem, and Narad Rampersad. Some further results on
squarefree arithmetic progressions in infinite words. Theoretical Computer Science, 799:140–148,
2019. doi:10.1016/j.tcs.2019.10.006.

13 Gilles Didier. Caractérisation des N -écritures et application à l’étude des suites de complexité
ultimement n+cste . Theoretical Computer Science, 215(1–2):31–49, 1999. doi:10.1016/
S0304-3975(97)00122-9.

14 Jean-Pierre Duval. Relationship between the period of a finite word and the length of its
unbordered segments. Discrete Mathematics, 40:31–44, 1982. doi:10.1016/0012-365X(82)
90186-8.

15 Sébastien Ferenczi and Christian Mauduit. Transcendence of numbers with a low complexity
expansion. Journal of Number Theory, 67(2):146–161, 1997. doi:10.1006/jnth.1997.2175.

16 Aviezri S. Fraenkel. Systems of numeration. The American Mathematical Monthly, 92:105–114,
1985. doi:10.2307/2322638.

17 Christiane Frougny. On the sequentiality of the successor function. Information and Compu-
tation, 139(1):17–38, 1997. doi:10.1006/inco.1997.2650.

18 Melissa J. Fullwood, Chia-Lin Wei, Edison T. Liu, and Yijun Ruan. Next-generation DNA
sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome research,
19(4):521–532, 2009. doi:10.1101/gr.074906.107.

19 Ying-Jun Guo, Xiao-Tao Lü, and Zhi-Xiong Wen. On the boundary sequence of an automatic
sequence. Discrete Mathematics, 345(1):9, 2022. Id/No 112632. doi:10.1016/j.disc.2021.
112632.

https://doi.org/10.1016/j.tcs.2021.01.018
https://doi.org/10.1016/j.tcs.2021.01.018
https://doi.org/10.1051/ita:2007026
https://doi.org/10.1017/CBO9780511777653
https://doi.org/10.1016/S0304-3975(96)00260-5
https://doi.org/10.1016/j.ejc.2021.103475
https://doi.org/10.1016/j.tcs.2019.02.014
https://doi.org/10.1007/BF01706087
https://doi.org/10.1007/BF01780584
https://doi.org/10.2307/26273915
https://doi.org/10.2307/26273915
https://doi.org/10.1016/j.tcs.2019.10.006
https://doi.org/10.1016/S0304-3975(97)00122-9
https://doi.org/10.1016/S0304-3975(97)00122-9
https://doi.org/10.1016/0012-365X(82)90186-8
https://doi.org/10.1016/0012-365X(82)90186-8
https://doi.org/10.1006/jnth.1997.2175
https://doi.org/10.2307/2322638
https://doi.org/10.1006/inco.1997.2650
https://doi.org/10.1101/gr.074906.107
https://doi.org/10.1016/j.disc.2021.112632
https://doi.org/10.1016/j.disc.2021.112632


M. Rigo, M. Stipulanti, and M. A. Whiteland 79:15

20 Philipp Hieronymi and Alonza Terry Jr. Ostrowski Numeration Systems, Addition, and
Finite Automata. Notre Dame Journal of Formal Logic, 59(2):215–232, 2018. doi:10.1215/
00294527-2017-0027.

21 Philipp Hieronymi, Dun Ma, Reed Oei, Luke Schaeffer, Christian Schulz, and Jeffrey Shallit.
Decidability for Sturmian Words. In Florin Manea and Alex Simpson, editors, 30th EACSL
Annual Conference on Computer Science Logic (CSL 2022), volume 216 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 24:1–24:23, Dagstuhl, Germany, 2022. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CSL.2022.24.

22 Juhani Karhumäki, Aleksi Saarela, and Luca Q. Zamboni. On a generalization of abelian
equivalence and complexity of infinite words. Journal of Combinatorial Theory, Series A,
120(8):2189–2206, 2013. doi:10.1016/j.jcta.2013.08.008.

23 Jana Lepšová, Edita Pelantová, and Štěpán Starosta. On a faithful representation of Sturmian
morphisms, 2022. Preprint. doi:10.48550/ARXIV.2203.00373.

24 M. Lothaire. Algebraic combinatorics on words, volume 90 of Encyclopedia of Mathematics
and its Applications. Cambridge: Cambridge University Press, 2002.

25 Xiao-Tao Lü, Jin Chen, Zhi-Xiong Wen, and Wen Wu. On the 2-binomial complexity of the
generalized Thue-Morse words, 2021. Preprint. doi:10.48550/ARXIV.2112.05347.

26 Dimitris Margaritis and Steven S. Skiena. Reconstructing strings from substrings in rounds.
In 36th Annual symposium on Foundations of computer science. Held in Milwaukee, WI, USA,
October 23–25, 1995, pages 613–620. Los Alamitos, CA: IEEE Computer Society Press, 1995.

27 Adeline Massuir, Jarkko Peltomäki, and Michel Rigo. Automatic sequences based on Parry
or Bertrand numeration systems. Advances in Applied Mathematics, 108:11–30, 2019. doi:
10.1016/j.aam.2019.03.003.

28 Hamoon Mousavi. Walnut prover, 2016. , https://cs.uwaterloo.ca/~shallit/walnut.html.
URL: https://github.com/hamousavi/Walnut.

29 Hamoon Mousavi, Luke Schaeffer, and Jeffrey Shallit. Decision algorithms for Fibonacci-
automatic words. I: Basic results. RAIRO Theoretical Informatics and Applications, 50(1):39–66,
2016. doi:10.1051/ita/2016010.

30 Bruno Parvaix. Propriétés d’invariance des mots sturmiens. Journal de Théorie des Nombres
de Bordeaux, 9(2):351–369, 1997. doi:10.5802/jtnb.207.

31 Michael E. Paul. Minimal symbolic flows having minimal block growth. Mathematical systems
theory, 8:309–315, 1974. doi:10.1007/BF01780578.

32 Jarkko Peltomäki and Ville Salo. Automatic winning shifts. Information and Computation,
285:104883, 2022. doi:10.1016/j.ic.2022.104883.

33 Jarkko Peltomäki and Markus A. Whiteland. On k-abelian equivalence and generalized
Lagrange spectra. Acta Arithmetica, 194(2):135–154, 2020. doi:10.4064/aa180927-10-9.

34 Li Peng and Bo Tan. Sturmian Sequences and Invertible Substitutions. Discrete Mathematics
& Theoretical Computer Science, 13(2), 2011. doi:10.46298/dmtcs.554.

35 Thomas Place, Lorijn Van Rooijen, and Marc Zeitoun. Separating regular languages by
locally testable and locally threshold testable languages. In 33nd international conference on
foundations of software technology and theoretical computer science, FSTTCS 2013, Guwahati,
India, December 12–14, 2013. Proceedings, pages 363–375. Wadern: Schloss Dagstuhl – Leibniz
Zentrum für Informatik, 2013. doi:10.4230/LIPIcs.FSTTCS.2013.363.

36 Michel Rigo. Formal languages, automata and numeration systems. 2. Networks and Telecom-
munications Series. ISTE, London; John Wiley & Sons, Inc., Hoboken, NJ, 2014. Applications
to recognizability and decidability, With a foreword by Valérie Berthé.

37 Michel Rigo. Relations on words. Indagationes Mathematicae, 28(1):183–204, 2017. doi:
10.1016/j.indag.2016.11.018.

38 Michel Rigo and Arnaud Maes. More on generalized automatic sequences. Journal of Automata,
Languages, and Combinatorics, 7(3):351–376, 2002. doi:10.25596/jalc-2002-351.

39 Michel Rigo, Manon Stipulanti, and Markus A. Whiteland. Binomial complexities and
Parikh-collinear morphisms. In Volker Diekert and Mikhail Volkov, editors, Developments
in Language Theory, pages 251–262, Cham, 2022. Springer International Publishing. doi:
10.1007/978-3-031-05578-2_20.

MFCS 2022

https://doi.org/10.1215/00294527-2017-0027
https://doi.org/10.1215/00294527-2017-0027
https://doi.org/10.4230/LIPIcs.CSL.2022.24
https://doi.org/10.1016/j.jcta.2013.08.008
https://doi.org/10.48550/ARXIV.2203.00373
https://doi.org/10.48550/ARXIV.2112.05347
https://doi.org/10.1016/j.aam.2019.03.003
https://doi.org/10.1016/j.aam.2019.03.003
https://cs.uwaterloo.ca/~shallit/walnut.html
https://github.com/hamousavi/Walnut
https://doi.org/10.1051/ita/2016010
https://doi.org/10.5802/jtnb.207
https://doi.org/10.1007/BF01780578
https://doi.org/10.1016/j.ic.2022.104883
https://doi.org/10.4064/aa180927-10-9
https://doi.org/10.46298/dmtcs.554
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.363
https://doi.org/10.1016/j.indag.2016.11.018
https://doi.org/10.1016/j.indag.2016.11.018
https://doi.org/10.25596/jalc-2002-351
https://doi.org/10.1007/978-3-031-05578-2_20
https://doi.org/10.1007/978-3-031-05578-2_20


79:16 On Extended Boundary Sequences of Morphic and Sturmian Words

40 Jeffrey Shallit. A second course in formal languages and automata theory. Cambridge:
Cambridge University Press, 2009. doi:10.1017/CBO9780511808876.

41 Jeffrey Shallit. The Logical Approach to Automatic Sequences: Exploring Combinatorics on
Words with Walnut. London Mathematical Society Lecture Note Series. Cambridge University
Press, 2022. To appear.

42 Bo Tan and Zhi-Ying Wen. Invertible substitutions and Sturmian sequences. European Journal
of Combinatorics, 24(8):983–1002, 2003. doi:10.1016/S0195-6698(03)00105-7.

43 Shin-Ichi Yasutomi. On Sturmian sequences which are invariant under some substitution. In
Number Theory and Its Applications (Kyoto, 1997), volume 2 of Dev. Math., pages 347–373.
Kluwer Academic Publishers, Dordrecht, 1999.

https://doi.org/10.1017/CBO9780511808876
https://doi.org/10.1016/S0195-6698(03)00105-7


Higher-Order Causal Theories Are Models of
BV-Logic
Will Simmons !

Department of Computer Science, University of Oxford, Oxford, UK
Cambridge Quantum, Terrington House, 13–15 Hills Road, Cambridge, UK

Aleks Kissinger !

Department of Computer Science, University of Oxford, Oxford, UK

Abstract
The Caus[−] construction takes a compact closed category of basic processes and yields a *-
autonomous category of higher-order processes obeying certain signalling/causality constraints, as
dictated by the type system in the resulting category. This paper looks at instances where the
base category C satisfies additional properties yielding an affine-linear structure on Caus[C] and a
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completely positive maps gives an entirely new model of BV consisting of higher order quantum
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1 Introduction

The causality condition [8] is a simple equation one can impose on a family of processes
that states essentially that “discarding the output of f is the same as discarding its input.”
Pictorially:1

f =
A

B

A

(1)

1 We will use string diagram notation for monoidal categories throughout, depicting morphisms as boxes,
composition as “plugging” boxes from bottom-to-top and ⊗ as placing boxes side-by-side. See e.g. [25].
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for some fixed family of “discarding” processes A. While this seems to be a simple equation,
and reasonable to impose on most sane collections of physical processes, it deserves the
somewhat lofty name of causality because it really seems to capture the essence of influences
moving in a single direction: forward in time. In particular, it guarantees that distant
agents cannot send messages to one another without their existing a forward-directed path
in the diagram of their processes. Without referring explicitly to spacetime, this serves as an
abstract stand-in for what a relativity theorist would also call causality, namely the limitation
that influences cannot propagate faster than the speed of light [17].

In concrete categories of interest, namely those of probabilistic and quantum maps,
equation (1) simply imposes that processes should preserve normalised states. Iterating
this, we might wish to consider second-order processes that preserve processes that preserve
normalised states, and so on. This turns out to provide a rich landscape for modelling
causal relationships between events, enabling for example chains [6, 13] (or directed acyclic
graphs [19]) of events in a definite causal order, probabilistic mixtures of causal orderings, or
even exotic indefinite causal structures [1, 9, 22].

There are several routes to constructing a framework for characterising and composing
such higher-order processes, including describing acyclic graphs of interactions between
discrete first-order channels [4, 7] or building an infinite hierarchy of types recursively out of
constructors describing a kind of causal relationship [2].

The Caus[−] construction of Kissinger and Uijlen [19] fits the latter style through a
category where morphisms map normalised states of the source type to normalised states of
the target type. For example, Caus[CP∗] describes higher-order generalisations of CPTP-
maps, containing quantum combs [7], process matrices [22], and bipartite second-order
maps [18] which include the quantum switch [9], which have collectively been critical in
the formulation and study of indefinite causal structures. The typing of a morphism is a
judgement about externally-observable properties of normalisation and information flow as
opposed to any assumed internal structure or spacetime geometry. The type constructors
model the operators of Multiplicative Linear Logic (MLL), i.e. it forms a ∗-autonomous
category. MLL features two logical connectives, tensor and par, which serve as two extremes
in the Caus[−] construction. Tensor yields a non-signalling composition of processes, where
causal influences are not allowed to pass from one side to the other, whereas par gives a
fully-signalling composition, i.e. one that imposes no signalling constraints.

In between this lies the one-way signalling processes, where causal influences can flow
from one agent (say, Alice in the past) to another (say, Bob in the future). While special
cases of such processes were treated in an ad hoc way in [19], here we will show that one-way
signalling can in fact be treated as a fully-fledged connective in its own right, yielding a
substantially richer logical structure.

BV-logic [11] adds a third logical connective that is non-commutative to capture sequen-
tiality in a similar way to Retoré’s pomset logic [24]. It admits a categorical characterisation
via BV-categories, and has previously been applied to the study of (probabilistic) coherence
spaces [3] and a certain graph-based model of quantum causal structures called discrete
quantum causal dynamics [4].

In this paper, we will adapt the Caus[−] construction by modifying some of the as-
sumptions on the base category, requiring it to be additive precausal. The extra structure
allows us to consider new ways of combining processes and types to describe operational
constructions such as binary tests, probability distributions, and one-way signalling processes.
These correspond to extending the logical structure of Caus[C] with the additive connectives
(sometimes called “with” and “plus”) of linear logic, as well as the sequential connective of
BV. We show that the main classical and quantum examples of precausal categories are
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furthermore additive precausal, enabling Caus[C] to model higher-order theories and classical
and quantum causal structures, respectively. We also note the existence of non-standard
models, such as higher-order affine (a.k.a. quasi-probabilistic) processes.

During the development of this paper, independent work by Hoffreumon and Oreshkov [14]
investigated the same spaces of higher-order one-way signalling processes specifically in
quantum theory and identified the same self-duality along with some additional results on
decompositions into intersections and unions of spaces. Additionally, Cavalcanti et al. [5]
obtained the same characterisation of non-signalling spaces as the affine closure of separable
processes for multi-partite first-order channels in any generalised probabilistic theory with
local tomography.

We refer the reader to the arXiv version of this paper [26] for full proofs of all the results
presented here.

2 Higher-Order Causal Structure

We use “process theory” style terminology (see e.g. [10]) for monoidal categories throughout.
Namely, we use the terms type or system interchangeably to refer to objects of a symmetric
monoidal category, process to refer to a generic morphism f : A → B, state to refer to a
morphism ρ : I → A from the tensor unit, effect to refer to a morphism π : A → I to the
tensor unit, and scalar to refer to a morphism λ : I → I. In categories admitting higher-order
structure, we think of first-order types as state spaces and first-order processes as maps that
transform first-order states to first-order states. Higher-order processes are transformations
where the input or output system is itself a map. The main example used in causality
literature is a quantum 2-comb which is a process taking a channel over first-order types
as an input and transforms it into a new channel, typically by composing with some pre-
and post-processing which may share some memory channel. One can extend this to an
infinite hierarchy of higher-order processes where an (n + 1)-comb transforms an n-comb
into a 1-comb (a channel) [7]. A higher-order process theory is one which describes processes
in such an infinite hierarchy uniformly.

Higher-order theories are commonly achieved by providing a mechanism to encode
transformations into states of some function type. In category theory, this corresponds to
an internal hom in monoidal closed categories, i.e. a bifunctor ⊸: Cop × C → C such that
C(C ⊗A,B) ≃ C(C,A⊸ B) and this is natural in all arguments. Wilson and Chiribella [27]
demonstrate that adding basic manipulations (morphisms that capture sequential and parallel
composition of such encoded functions) is sufficient to permit the inductive generation of
comb types. However, with higher-order theories, there are more ways of composing processes
that need not be obtainable in this way.

To solve this, we may further ask that C be a compact closed category, i.e. we require
every object A has a “cup” state ηA : I → A∗ ⊗A and a “cap” effect satisfying the so-called
“yanking equations”: (idA ⊗ ηA) # (ϵA ⊗ idA) = idA and (ηA ⊗ idA∗) # (idA∗ ⊗ ϵA) = idA∗ .
These enable us to convert inputs to outputs at will, which in turn lets us “wire up” processes
in arbitrary ways to each other. Namely, we can treat all higher order processes as states,
and use “caps” to connect them to each other in arbitrary ways. See Figure 1 for an example
and [19, Section 2.1] for more details.

The causality condition in equation (1) specialises to states as the requirement that
ρ # A = idI =: 1 for any state ρ, i.e. it imposes that states be normalised with respect to
the discarding effect. Discarding is unique in the sense that it is the only effect normalised
for all states. However, for the higher-order analogue of state spaces, there might be more
such effects, motivating the following definition.

MFCS 2022
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=

Figure 1 Example of embedding higher-order processes and composition via compact closure.

▶ Definition 1. For c ⊆ C(I, A), the dual set is c∗ := {π ∈ C(A, I) | ∀ρ ∈ c.ρ # π = idI}.

▶ Remark 2. In this paper, we will freely mix between treating c/c∗ as a set of states in
C(I, A)/C(I, A∗) and a set of effects in C(A∗, I)/C(A, I), depending on the context. They are
equivalent through the transpose isomorphism induced by compact closure.

From this we can recover the space of first-order/causal states for a system A as
{

A

}∗.
For example, in quantum theory we take A ∈ C(A, I) to represent the partial trace over
the system A, so this set describes the space of trace-1 density matrices. First-order/causal
processes from A to B are those that map every state in

{
A

}∗ to a state in
{

B

}∗

(equivalent to mapping the effect B to A when our category has enough states/well-
pointedness), which we can encode as

{{
A

}∗ ⊗ B

}∗
⊆ C(I, A∗ ⊗B). These concepts are

used to define a precausal category, which specifies one possible set of conditions to enable
discussions of higher-order causal structures.

▶ Definition 3. A compact closed category C is a precausal category if:

PC1. C has a discarding process A ∈ C(A, I) for every system A, compatible with the
monoidal structure as below;

A⊗B = A ⊗ B (2)

I = idI (3)

PC2. The dimension dA := A # A is invertible for all non-zero A;
PC3. C has enough causal states: ∀f, g : A → B.

(
∀ρ ∈

{
A

}∗
.ρ # f = ρ # g

)
⇒ f = g;

PC4. Causal one-way signalling processes on first-order types factorise: for any causal
Φ : A⊗B → C ⊗D,

 ∃Φ′ : A → C causal.

Φ = Φ′

 ⇒


∃Z,Φ1 : A → C ⊗ Z causal,

Φ2 : Z ⊗B → D causal.

Φ =
Φ1

Φ2

 (4)

PC5. For all w : I → A⊗B∗:
∀Φ : A → B causal.

w

Φ = 1

 ⇒

(
∃ρ : I → A causal.

w = ρ

)
(5)
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Note that in [19], PC4 and PC5 are rolled into a single axiom (C4), which is then proven
equivalent to PC4 and PC5.

▶ Example 4. Mat[R+] is a precausal category, whose objects are natural numbers and
whose morphisms M : m → n are n×m matrices. Then, ⊗ is given by tensor product (a.k.a.
Kronecker product) of matrices and consequently the tensor unit is the natural number 1.
Hence states are column vectors, discarding maps m : m → 1 are given by row vectors of all
1’s, and the causality condition for states ρ # = id1 imposes the condition that the entries
of ρ sum to 1. The conditions PC1, PC2, and PC3 are easily checked, whereas PC4 and PC5
follow from the product rule for conditional probability distributions (see [19]).

▶ Example 5. CP is a precausal category, whose objects are algebras L(H) of linear operators
from a finite-dimensional Hilbert space to itself, and whose morphisms are completely positive
maps (CP-maps). ⊗ is given by tensor product and consequently the tensor unit is the 1D
algebra L(C) ∼= C. States are CP-maps C → L(H), which correspond to positive semidefinite
operators ρ ∈ L(H). Discarding is given by the trace, hence causal states are the trace-1
positive semidefinite operators, a.k.a. quantum (mixed) states. Again the conditions PC1,
PC2, and PC3 are easily checked, whereas PC4 and PC5 follow from the essential uniqueness
of purification for CP-maps (see [19]).

Given a precausal category C, we can refine to a category Caus[C] which equips each
object with a nice set of states that should be considered “normalised” (or “causal”) and
restricts to the morphisms that preserve them. First, we’ll define what it means for a set of
states to be suitably nice.

▶ Definition 6. A set c ⊆ C(I, A) is closed if c = c∗∗ and flat if either there exist invertible
scalars λ, µ such that λ · A ∈ c and µ · A ∈ c∗ or A is a zero system.

▶ Definition 7. Given a precausal category C, the category Caus[C] has as objects pairs
A = (A, cA ⊆ C(I, A)) where cA is closed and flat. A morphism f : A → B is a morphism
f : A → B in C such that ∀ρ ∈ cA.ρ # f ∈ cB.

Caus[C] inherits a monoidal structure and monoidal closure from C, from which one can
show that it is ∗-autonomous [19]. This is in fact a full subcategory of a particular double
gluing construction (specifically the tight orthogonality subcategory of the double glueing
construction using the {1}-focussed orthogonality [16]). Aside from the flatness restriction,
this is therefore a relatively well-known means of constructing models of linear logic.

First-order states A1 :=
(
A,
{

A

}∗)
Dual A∗ := (A∗, c∗

A)
Tensor product A ⊗ B := (A ⊗ B, {ρA ⊗ ρB |ρA ∈ cA, ρB ∈ cB}∗∗)
Par A ` B := (A∗ ⊗ B∗)∗

Internal hom A ⊸ B := A∗ ` B
Monoidal unit I := (I, {1})

The intuition between the two monoidal products is that A ⊗ B is the closure of the space
of local processes and hence we can compose the A and B components however we choose,
whereas A ` B is the space of bipartite processes that are normalised in local contexts so
we generally cannot compose the components, just act locally on each side. Both share the
same unit I = I∗ and there is a canonical inclusion A ⊗ B ↪→ A ` B making Caus[C] into
an isomix category.

From these operators, we can build objects capturing the set of processes compatible
with some common causal structures. For example, (A1 ⊸ B1) ` (C1 ⊸ D1) includes all
causal bipartite first-order processes, (A1 ⊸ B1) ⊗ (C1 ⊸ D1) is the subset of those that
are non-signalling [19, Theorem 6.2], and (A1 ⊸ B1) ⊸ (C1 ⊸ D1) includes all 2-combs
that map causal channels A1 ⊸ B1 to causal channels C1 ⊸ D1.

MFCS 2022
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3 Additive Precausal Categories

When investigating higher order causal theories, it is useful to strengthen the definition of a
precausal category in a handful of ways. For the remainder of this paper, we will adapt the
definition of Caus[C] to be built from an additive precausal category C.

▶ Definition 8. Let C be a compact closed category with products (and hence biproducts and
additive enrichment [15]). C is an additive precausal category if:

APC1. C has a discarding process A ∈ C(A, I) for every system A, compatible with the
monoidal and biproduct structures as below;

A⊗B = A ⊗ B (6)

I = idI (7)

A⊕B =
[

A, B

]
(8)

APC2. The dimension dA := A # A is invertible for all non-zero A;
APC3. Each object A ∈ Ob(C) has a finite causal basis: some {ρi}i ⊆

{
A

}∗ such that
∀B.∀f, g ∈ C(A,B).(∀i. ρi # f = ρi # g) ⇒ f = g.

APC4. Addition of scalars is cancellative (∀x, y, z. x+z = y+z ⇒ x = y), totally pre-ordered
(∀x, y.∃z. x + z = y ∨ x = y + z), and all non-zero scalars have a multiplicative
inverse.

APC5. All effects have a complement with respect to discarding: for any π ∈ C(A, I), there
exists some π′ ∈ C(A, I) and scalar λ such that π + π′ = λ · A.

The first 3 axioms relate closely to the corresponding ones in Definition 3, whereas the
last two are quite different in flavour, and are in some sense more elementary, as their proofs
don’t rely on any particularly deep facts about our main classical and quantum examples
(see Examples 13 and 15 below).

The axioms APC1 and APC2 above are essentially identical to the corresponding axioms
in Definition 3 of precausal categories, with the additional requirement that discarding be
compatible with biproducts as well as tensor products.

APC3 is a strengthening of condition PC3. Rather than requiring us to check a pair of
processes agree on all causal states to be equal, we only require agreement on some fixed
finite set of states. In other other words, each system has a set of states that behaves like a
basis spanning all of the others, for the purposes of distinguishing maps. In the quantum
foundations literature, this is sometimes called a fiducial set of states.

APC4 says that the semiring of scalars C(I, I) behaves somewhat like the set of non-
negative real numbers R+. While the scalars need not be a field (indeed our main example
R+ is not), any field satisfies this axiom as well. We do however exclude categories of
non-determinstic processes such as Rel, since the scalars are boolean values with addition
given by the (non-cancellative) operation of disjunction.

Note that, with the help of bases (APC3), we can promote additive cancellativity of
scalars to additive cancellativity for all processes.

▶ Proposition 9. In an additive precausal category:

∀f, g, h ∈ C(A,B). f + h = g + h ⇒ f = g (APC5a)

This condition allows us to define the free subtractive closure Sub(C) which extends C
with all negatives and prove that there exists a faithful embedding [−] : C → Sub(C). More
details on the explicit construction of Sub(C), its properties, and the embedding functor are
given in the full version of this paper [26].



W. Simmons and A. Kissinger 80:7

The utility of freely introducing negatives is summarised in the following proposition.

▶ Proposition 10. For a precausal category C, the scalars K := Sub(C)(I, I) are a field, and
hence Sub(C) is enriched over K-vector spaces.

In particular, we can therefore treat processes in C(A,B) as being embedded in an
ambient vector space Sub(C)(A,B). So, while we might not be able to make all linear
algebraic constructions directly in C, we can do so in Sub(C). An important example of this
is the ability to extend any independent set of states to a basis of states in C as well as its
corresponding dual basis of effects in Sub(C).

▶ Lemma 11. Given any set of morphisms in C(A,B) that are linearly independent in
Sub(C), they can be extended to a basis in C with a dual basis in Sub(C).

While the dual basis in Sub(C) may not be physically meaningful (e.g. in the classical
case it will contain vectors with negative probabilities), it will be a useful mathematical tool
for working with the morphisms in C.

APC5 allows us to interpret effects (up to some renormalisation) as testing some predicate.
To see how this works, first assume for simplicity that λ = idI . For a type A, we can think of
π : A → I as some predicate over A, and π′ as its negation. For some causal state ρ, we can
think of the composition p1 := ρ # π as the probability that π is true for ρ and p2 := ρ # π′

as the probability that π is false. The fact that π + π′ = lets us conclude that those
probabilities sum to 1:

p1 + p2 = ρ # π + ρ # π′ = ρ # (π + π′) = ρ # = idI

If λ ̸= idI , the previous reasoning holds after re-normalising, i.e. replacing π and π′ with
λ−1 · π and λ−1 · π′.

Thanks to compact closure, we can promote APC5 to a property about all processes.
Namely, any process f : A → B has a complement f ′ where, up to re-normalisation, f + f ′

gives the uniform noise process.

▶ Proposition 12. For any f : A → B in an additive precausal category, there exists
f ′ : A → B and a scalar λ such that:

f + f ′ = λ · A # B (APC5a)

▶ Example 13. Mat[R+] defined as in Example 4 is also an additive precausal category,
where ⊕ is given by the direct sum of matrices. The standard basis of unit vectors gives a
basis for APC3, the semiring of scalars Mat[R+](I, I) ∼= R+ satisfies APC4, and for APC5,
we just need to choose a suitably large λ such that π′ := λ · A − π contains all positive
numbers.

▶ Example 14. In addition to R+, we can construct an additive precausal category Mat[K]
for any field of characteristic 0. In particular, Mat[R] is an additive precausal category that
is identical to Mat[R+] but without any positivity constraint, describing affine or “quasi-
probabilistic” maps where negative probabilities are permitted. In this case, the subtractive
closure gives an equivalent category to Mat[R] itself.

▶ Example 15. The quantum example is very nearly the category CP, as defined in Example 5,
but CP doesn’t have biproducts. If we freely add biproducts, we obtain a category CP∗

whose objects are all finite-dimensional C*-algebras (or equivalently, algebras of the form
L(H1) ⊕ . . . ⊕ L(Hk)) and completely positive maps. Discarding is again given by the

MFCS 2022
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trace operator, so APC1 and APC2 are straightforward to verify. For APC3, we can fix a
(non-orthogonal) basis of states for each type. As in the classical case, the scalars are R+, so
APC4 is immediate and since A is an interior point in the cone of positive effects, π′ can
defined as λ · A − π for suitably large λ.

Given an additive precausal category, we can apply the Caus construction in the same
way as before. However, it may now be easier to devise interesting closed sets or interpret the
impact of the closure operator since it just corresponds to taking affine combinations of states.
For this to make sense, we should say precisely what we mean to take affine combinations of
states in C.

▶ Definition 16. For a set of states c ⊆ C(I, A), we define sets aff(c) ⊆ Sub(C)(I, A) and
aff+(c) ⊆ C(I,A) as follows, for K := Sub(C)(I, I):

aff(c) :=
{
ρ

∣∣∣∣∣ ∃{ρi}i ⊆ C(I,A), {λi}i ⊆ K.
∑

i

λi = idI , ρ =
∑

i

λi · [ρi]
}

aff+(c) := {ρ | ∃ρ′ ∈ aff(c). ρ′ = [ρ]}

If we identify the set C(I, A) with its image under [−], we can think if aff+(c) as the
intersection of the affine closure of c with the set C(I, A) ⊆ Sub(C)(I,A) of “positive” states
embedded in the subtractive closure. In the classical and quantum case, aff+(−) arises from
taking all of the affine combinations of elements of c, then intersecting the resulting set with
the positive cone of (unnormalised) probability distributions or quantum states, respectively.

▶ Theorem 17. Given any flat set c ⊆ C(I, A) for a non-zero A, c∗∗ = aff+(c).

This characterises the tensor space cA⊗B = {ρA ⊗ ρB |ρA ∈ cA, ρB ∈ cB}∗∗ in Caus[C] as
the affine closure of the separable states, from which we can prove the following property.

▶ Theorem 18. If A = (A, cA) with cA = {µ · A} for any non-zero A, then every h ∈ cA⊗B
is a product morphism of the form µ · A ⊗ g for some g ∈ cB.

This captures what [27] refers to as the principle of “no interaction with trivial degrees of
freedom”. In particular, it recovers the precausal category axiom PC5 by showing that every
state of (A1 ⊸ B1)∗ = (A1∗ ` B1)∗ = A1 ⊗ B1∗ decomposes into a product of a state of
A1 (i.e. a causal state) and B∗ .

It should be noted that we have completely dropped condition PC4 on our underlying
category of basic processes. In Section 5 we will recover a slightly weaker version of this
condition by the equivalence of one-way signalling and the affine closure of semi-localisability
(Theorem 30). Fortunately, we can still reuse the same proof to show that Caus[C] is
∗-autonomous for additive precausal C since it doesn’t rely on PC4.

4 Additive Types

We may also lean on the relation to the double glueing construction to add type constructors
corresponding to the additives of linear logic. In categorical models of linear logic, additive
conjunction of types is captured by cartesian product and additive disjunction by coproduct,
satisfying a De Morgan duality with one another [20]. In terms of resources, these represent
a classical choice: an instance of A×B is a single resource unit that we can choose to be
used either as an instance of A or an instance of B, whereas an instance of A+B is a single
resource unit which is fixed on creation as either a unit of A or a unit of B.
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The concept of classical choice is often built into operational theories in the form of
probability distributions, classical outcomes of tests, and conditional tests. This is typically
deemed essential for any experimentalist who is bound to classical data to interact with and
make inference from an experiment. On the other hand, the Caus construction concerns
the underlying systems present in the physical theory without consideration of any classical
agent. We can recover finite-outcome random variables by incorporating binary classical
choice through new additive type constructors, i.e. finding constructions for products and
coproducts in Caus[C].

▶ Definition 19. Given types A = (A, cA),B = (B, cB) in Caus[C], we define A × B :=
(A⊕B, cA×B) and A ⊕ B := (A⊕B, cA⊕B) where:

cA×B = ({pA # πA|πA ∈ c∗
A ⊆ C(A, I)} ∪ {pB # πB |πB ∈ c∗

B ⊆ C(B, I)})∗

= {⟨ρA, ρB⟩|ρA ∈ cA, ρB ∈ cB} (9)

cA⊕B = ({ρA # ιA|ρA ∈ cA} ∪ {ρB # ιB |ρB ∈ cB})∗∗

= {[πA, πB ] |πA ∈ c∗
A ⊆ C(A, I), πB ∈ c∗

B ⊆ C(B, I)}∗ (10)

▶ Lemma 20. The alternative definitions of cA×B and cA⊕B are equivalent; that is, Equations
9 and 10 hold.

▶ Corollary 21. The operators × and ⊕ are De Morgan duals under (−)∗.

▶ Proposition 22. A × B is a categorical product in Caus[C].

▶ Proposition 23. A ⊕ B is a categorical coproduct in Caus[C].

The zero object 0 has a unique state 0I,0 ∈ C(I, 0) by terminality and a unique effect
00,I ∈ C(0, I) by initiality. There are only two candidates for causal sets: the empty set ∅
and the singleton {0I,0}. These have roles in our causal category as the additive units.

▶ Proposition 24. The initial object in Caus[C] is 0 := (0, ∅) and the terminal object is
1 := (0, {0I,0}). Furthermore, they are duals of each other and are units for ⊕ and ×
respectively.

▶ Remark 25. The product and coproduct constructions are only partially-defined as they
may not always yield flat sets of states when incorporating the initial or terminal. Specifically,
given any A on a non-zero system, we have

cA×0 = ∅ c∗
A×0 ≃ C(A, I)

cA⊕1 ≃ C(I, A) c∗
A⊕1 = ∅ (11)

though it may be possible that a careful weakening of the flatness condition may permit this
more generally without sacrificing some of the other results of this paper.

Thinking of first-order types as describing systems with no input (i.e. no choice in how to
consume them), both the product and coproduct have interesting interactions with first-order
types because of where the classical choice happens. For coproducts, the choice is already
fixed in the creation of a state so we expect it to preserve the first-order property. However,
products introduce freedom of choice in effects allowing us to view the projectors as inputs
to the system dictating whether it should prepare the left or the right state.

MFCS 2022
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▶ Proposition 26. If A and B are both first-order types, then so is A ⊕ B.

▶ Proposition 27. If A and B are non-zero, then A × B is never a first-order type.

We have both ∗-autonomy and all finite products and coproducts, which is all the
evidence required to show that Caus[C] is a model of linear logic with additives. For both
the multiplicative and additive structures, we found that the Caus construction took a
degenerative categorical structure and generated non-degenerate structures from them. For
example, the compact closure of C means that it is a ∗-autonomous category in which the
two monoidal products are the same, but Caus[C] is ∗-autonomous with distinct ⊗ and `.
Similarly, the construction for the additives takes biproducts/the zero object and yields
distinct products and coproducts/initial and terminal objects. The degenerate exception
here is that I is still the unit for both ⊗ and `.

5 One-Way Signalling Types

When examining multi-partite systems, causal structures can be investigated from the
perspective of information signalling (which parties can observe changes to another party’s
inputs) or decompositions (does the channel admit a decomposition into local channels
compatible with some configuration of time- and space-like separations between the parties).
In the bipartite case, we can compare these perspectives with the examples of one-way
signalling and semi-localisable channels.

The one-way signalling causal structure refers to a bipartite system (say, between Alice
and Bob) in which causal influence may only exist in one direction. There is a standard
definition given in causality literature for one-way signalling for quantum channels.

▶ Definition 28. A bipartite process is one-way signalling (Alice to Bob) if discarding Bob’s
output admits a decomposition into local processes.

ψ = ψA

Semi-localisability is an alternative to one-way signalling for expressing compatibility
with a time-like separation of parties, giving a constructive example of how the combined
channel can be decomposed into local operations.

▶ Definition 29. A bipartite channel between Alice and Bob is semi-localisable (with Alice
before Bob) if it decomposes into local processes with a channel from Alice to Bob.

ψA

ψB

Both of these properties state that the channel is compatible with the setting where Bob is
in Alice’s future light cone. It is important to note that both are judgements of compatibility
with a causal structure rather than inference of any necessary causal relationship between
Alice and Bob - completely local processes trivially satisfy these properties but obviously
have no causal influence between the parties.

These definitions are specific to first-order channels, but we can consider situations
where Alice and Bob have higher-order systems A,B ∈ Ob(Caus[C]) representing some
more complex interaction with their environments. We will describe these properties as
constructions on the causal sets.
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The essence of one-way signalling is that Alice’s local effect is independent of any input
given to Bob by his context:

cA < cB :=
{
h ∈ cA`B

∣∣∣∣∣∃m ∈ cA.∀π ∈ cB∗ .
h π

B∗BA =
m
A

}
(12)

When this property holds, we refer to m as the (left-)residual of h (with right-residual for the
corresponding component in the symmetrically-defined cA > cB). The residual represents
the constant local effect Alice observes regardless of inputs provided to Bob. In the case
where A and B both describe first-order channels, this exactly reduces to Definition 28, since
the only causal contexts for a causal channel is to provide an arbitrary state at the input
and discard the output.

For semi-localisability, it is not enough to consider a factorisation by any system, but
specifically by a first-order system:

cA ◁ cB :=

h ∈ cA`B

∣∣∣∣∣∣∣
∃Z =

(
Z,
{

Z

}∗)
,m ∈ cA`Z, n ∈ cZ∗`B.

h

BA =
m n

Z∗ZA B

 (13)

This is because using a higher-order system (e.g. the dual of a first-order system) may allow
information to flow in the opposite direction. Again, we recover the original definition of
semi-localisability if we fix A and B to types of first-order channels (up to our encoding of
channels via the Choi-Jamiołkowski isomorphism).

Intuitively, based on the interpretation of the sequence operator in a BV-category as
representing an ordered combination of systems, both of these would be good candidates for
sequence operator in Caus[C]. It is also interesting to compare them to sequence operators
from other BV-categories. The following construction is inspired by that of the BV-category
of probabilistic coherence spaces [3]:

cA ; cB :=
{
h ∈ cA`B

∣∣∣∣ ∃I, {fi}i∈I ⊆ Sub(C)(I, A⊗B), {gi}i∈I ⊆ cB, f ∈ cA.

[h] ∼
∑

i∈I fi ⊗ [gi] ∧ [f ] ∼
∑

i∈I fi

}
(14)

Note this definition refers to maps in the subtractive closure Sub(C) to make use of the
affine-linear structure.

A core result in the field of causal structures is the equivalence of one-way signalling
and semi-localisability for first-order channels [8]. In the setting provided by the Caus
construction, we find a higher-order generalisation of this, where all three of these definitions
coincide up to affine closure, as well as a proof that they are self-dual properties.

▶ Theorem 30. cA < cB = (c∗
A < c∗

B)∗ = (cA ◁ cB)∗∗ = cA ; cB

cA < cB is closed, since it the dual of another set, and flat, since cA⊗B ⊆ cA < cB gives
the uniform state and c∗

A`B ⊆ (cA < cB)∗ gives discarding. We can therefore elevate it to a
genuine object A < B := (A⊗B, cA < cB) in Caus[C].

We can go further into the categorical structure induced by this type constructor and
show that it adds another monoidal structure with a weak interchange with both ⊗ and `,
turning Caus[C] into a model of BV-logic.

▶ Definition 31. Given a symmetric, linearly distributive category D, a weak interchange is
an additional monoidal structure (D,;, I;) with natural transformations

w⊗ : (R; U) ⊗ (T ; V ) → (R⊗ T ) ; (U ⊗ V ) wI⊗ : I⊗ → I⊗ ; I⊗
w` : (C ` E) ; (D ` F ) → (C ;D) ` (E ; F ) wI` : I` ; I` → I`

MFCS 2022
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which are compatible with the structure isomorphisms of (D,⊗, I⊗) and (D,`, I`) and the
distributive structure (we refer the reader to Blute, Panangaden, and Slavnov [3, Definition
4.1] for the full set of conditions).

A BV-category is a symmetric linearly distributive category with a weak interchange and
an isomorphism m : I; → I⊗ such that m is an isomix map and m−1 is a counit for wI⊗ :

(idI; ⊗m) # ρ⊗
I;

= (m⊗ idI;) # λ⊗
I;

: I; ⊗ I; → I;

wI⊗ # (m−1 ; idI⊗) # λ;
I⊗

= idI⊗ = wI⊗ # (idI⊗ ;m−1) # ρ;
I⊗

: I⊗ → I⊗

▶ Theorem 32. Caus[C] is a BV-category.

The equivalence of one-way signalling and (the affine closure of) semi-localisability show
that any directed information signalling will always exhibit an equivalent construction where
the information transfer is mediated by first-order types. Moreover, first-order types (or
scaled versions thereof) are exactly those that can carry information in one direction.

▶ Theorem 33. A∗ ` A = A∗ < A ⇔ |c∗
A| = 1.

This result presents a characterisation of first-order system types that can be interpreted
in any BV-category, which may be a useful lemma in characterising which categories arise as
Caus[C] for some additive precausal C.

6 Non-Signalling Systems

The one-way signalling structure is not the only interesting causal structure on a bipartite
system. For example, the non-signalling causal structure is a symmetric property about the
statistical independence of the different parties.

▶ Definition 34. A bipartite process is non-signalling if it satisfies the one-way signalling
condition in both directions.

This is a necessary condition for compatibility with the setting where Alice and Bob are
space-like separated. However, this is not a sufficient condition since there exist non-signalling
processes, such as a quantum implementation of a PR box, that cannot be factorised into
local processes with a shared history [23].

In [19], the tensor product of first-order channel types (A1 ⊸ B1) ⊗ (C1 ⊸ D1) was
shown to exactly contain those bipartite channels that are non-signalling [19]. This proof
relied on some properties that do not generalise beyond first-order channels, such as the
ability to apply PC5 to decompose causal contexts for channels into a causal input state and
discarding the output. Between Gutoski [12] and Chiribella et al. [9], it was shown that the
space of non-signalling channels in quantum theory can be characterised as the affine closure
of product channels. By translating this proof into categorical terms, we can generalise the
result to hold for arbitrary higher-order systems in Caus[C] for any additive precausal C.

▶ Theorem 35. (cA < cB) ∩ (cA > cB) = cA⊗B.

7 Conclusion

By extending the assumptions on the base category with additive structure, the Caus
construction yields a BV-category with additives within which the characterisation of first-
order types resembles the causality condition expressed as an equation of types. We also
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obtain general characterisations of (−)∗∗ as affine closure and the tensor product as the space
of non-signalling bipartite processes. A number of the proofs are similar to those used to
show that probabilistic coherence spaces form a BV-category [3], and the characterisation of
non-signalling processes as affine closure of local processes for first-order channels in quantum
theory [12]. As BV-logic is known to prove a strict subset of the theorems of pomset logic [21],
it remains for future work to investigate whether the Caus construction yields models of the
latter or if it is limited to BV-logic.

We recover almost all of the precausal conditions from an additive precausal category.
Instead of the equivalence of one-way signalling and semi-localisability for first-order channels
(Condition PC4), we obtained equivalence with the affine closure of semi-localisability for
arbitrary higher-order systems (Theorem 30). Since existing proofs of PC4 for precausal
categories rely on the essential uniqueness of purification, it may be possible to strengthen this
result in future work by incorporating notions of purity and purification into this framework.

There are still other interesting process theories that cannot be considered as either the
base category or the result of the Caus construction in which it would be interesting to
analyse constructions for one-way signalling and their logical role. For example, settings
with infinite-dimensional systems are rarely compact closed, real quantum mechanics doesn’t
have enough causal states (since it is compact closed but doesn’t admit local discrimination),
and Rel fails Condition PC5. We needn’t expect the results of this paper to generalise to
other theories since (non-deterministic) coherence spaces form a BV-category using a similar
construction to A ; B for the non-commutative operator [3], but this is distinct from the
naive adaptation of A < B (instead of a constant residual, every local effect must be a subset
of some constant clique) which is not self-dual in this category.
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Abstract
Space-bounded computation has been a central topic in classical and quantum complexity theory. In
the quantum case, every elementary gate must be unitary. This restriction makes it unclear whether
the power of space-bounded computation changes by allowing intermediate measurement. In the
bounded error case, Fefferman and Remscrim [STOC 2021, pp.1343–1356] and Girish, Raz and
Zhan [ICALP 2021, pp.73:1–73:20] recently provided the break-through results that the power does
not change. This paper shows that a similar result holds for space-bounded quantum computation
with postselection. Namely, it is proved possible to eliminate intermediate postselections and
measurements in the space-bounded quantum computation in the bounded-error setting. Our
result strengthens the recent result by Le Gall, Nishimura and Yakaryilmaz [TQC 2021, pp.10:1–
10:17] that logarithmic-space bounded-error quantum computation with intermediate postselections
and measurements is equivalent in computational power to logarithmic-space unbounded-error
probabilistic computation. As an application, it is shown that bounded-error space-bounded
one-clean qubit computation (DQC1) with postselection is equivalent in computational power to
unbounded-error space-bounded probabilistic computation, and the computational supremacy of the
bounded-error space-bounded DQC1 is interpreted in complexity-theoretic terms.
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1 Introduction

1.1 Background
Space-bounded computation is one of the most fundamental topics in complexity theory that
have been studied in the classical and quantum settings, since it reflects common practical
situations where available memory space is much less than input size. Watrous [25, 26]
initiated the study of space-bounded quantum computation based on quantum Turing
machines and proved that, in the unbounded-error setting, space-bounded quantum com-
putation is equivalent in computational power to space-bounded probabilistic computation:
PrQSPACE(s) = PrSPACE(s) for any space-constructible s with s(n) ∈ Ω(log n). This and
the classical results [5, 13] imply that unbounded-error space-bounded quantum computation
can be simulated by deterministic computation with the squared amount of the space used
by the former model.

There are some subtleties (see [16] for the details) in considering space-bounded quantum
computation. The most relevant one is whether we allow intermediate measurements, that
is, the measurements made during computation, which are allowed in, e.g., [25, 26, 24]. In
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the case of polynomial-time quantum computation, it is well-known that all intermediate
measurements can be deferred to the end of computation by coherently copying the state of
the qubits to be measured to ancilla qubits, and keeping their contents unchanged through
the computation. This may require a polynomial number of ancilla qubits to store the copies,
since there may exist a polynomial number of intermediate measurements in the original
computation. This is acceptable in the polynomial-time quantum computation. However, this
method is not applicable in general in the case of space-bounded quantum computation. For
instance, if we consider a logarithmic-space quantum computation that runs in polynomial
time, the above transformation may require a polynomial number of ancilla qubits, much
more than the available space. Thus, it is a fundamental question in space-bounded quantum
computation whether it is possible to space-efficiently eliminate intermediate measurements.
Recently, Fefferman and Remscrim [7] and Girish, Raz and Zhan [12] independently provided
the breakthrough results that it is possible in the bounded error setting.

Postselection is a fictitious function that projects a quantum state on a single qubit
to the prespecified state (say, |1⟩) with certainty, as far as the former state has a non-
zero overlap with the latter. Since Aaronson [1] introduced postselection to the quantum
complexity theory field, it has turned out to be very effective concept in the field although it
is unrealistic. In particular, Aaronson succeeded in characterizing a classical complexity class
in a quantum way by introducing postselection: PP = PostBQP [1]. This characterization
gives one-line proofs of the classical results [4, 8], for which only involved classical proofs
had been known, and has been a foundation for establishing the quantum computational
supremacy of subuniversal quantum computation models (e.g., [6, 2, 17]) under complexity-
theoretic assumptions. Another example of characterizing classical complexity classes with
postselection is that PSPACE is equal to PostQMA [19], the class of languages that can be
recognized by quantum Merlin-Arthur proof systems with polynomial-time quantum verifier
with the ability of postselection. Along this line of work, Le Gall et al. [11] recently considered
logarithmic-space quantum computation with postselection in the bounded-error setting
and proved that its associated complexity class PostBQL is equivalent to PL, the class of
languages that can be recognized with unbounded error by logarithmic-space probabilistic
computation. This beautiful result can be regarded as the equivalent of PP = PostBQP in the
logarithmic-space quantum computation. Their model allows intermediate postselections as
well as intermediate measurements, which play a key role for space-efficiency since the qubits
on which intermediate postselections or measurements are made can be reused as initialized
ancilla qubits for subsequent computation. Thus, a straightforward question is whether it is
possible to space-efficiently eliminate intermediate postselections and measurements. Our
main result answers this question affirmatively.

1.2 Our Contribution
We consider the space-bounded quantum computation that allows postselections and mea-
surements only at the end of computation, which we call space-bounded unitary quantum
computation with postselection. Our result informally says that such quantum compu-
tation is equivalent in computational power to the space-bounded quantum computation
that allows intermediate postselections and measurements. More concretely, for a space-
constructible function s with s(n) ∈ Ω(log n), let PostBQSPACE(s) be the class of languages
that can be recognized with bounded-error by quantum computation with (intermediate)
postselections and measurements that uses O(s) qubits and runs in 2O(s) time, and let
PostBQuSPACE(s) be the unitary version of PostBQSPACE(s). By the definition, it holds
PostBQuSPACE(s) ⊆ PostBQSPACE(s). We show the converse is also true.
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▶ Theorem 1. For any space-constructible function s with s(n) ∈ Ω(log n), it holds that

PostBQuSPACE(s) = PostBQSPACE(s) = PrSPACE(s).

This strengthens the result of PostBQSPACE(s) = PrSPACE(s), which can be derived straight-
forwardly from the proof of PostBQL = PL in [11, 21]. A special case of Theorem 1 with
s = log n is the following corollary, where we define PostBQL ≡ PostBQSPACE(log) and
PostBQuL ≡ PostBQuSPACE(log).

▶ Corollary 2. PostBQuL = PostBQL = PL.

Theorem 1 holds even when the completeness and soundness errors are 2−2O(s) (see Theorem 10
for a more precise statement). This justifies defining the bounded-error class PostBQuSPACE
(note that it is non-trivial to reduce errors in the space-bounded unitary computation).

As an application, we characterize the power of space-bounded computation with post-
selection on a quantum model that is inherently unitary. The deterministic quantum
computation with one quantum bit (DQC1)[15], often mentioned as the one-clean-qubit
model, is one of well-studied quantum computation models with limited computational re-
sources (e.g., [3, 23, 17, 9, 18, 10]). This model was originally motivated by nuclear magnetic
resonance (NMR) quantum information processing, where it is difficult to initialize qubits to
a pure state. In the DQC1 model, the initial state is thus the completely mixed state except
for a single qubit, i.e., |0⟩⟨0| ⊗ (I/2)⊗m, if the total number of qubits is m+ 1. This model is
inherently unitary, since if intermediate measurements or postselections were allowed, the
completely mixed state could be projected to the all-zero state |0m⟩ and thus the DQC1
model would become the ordinary quantum computation model, which is supplied with the
all-zero state as the initial state.

Although DQC1 is considered very weak, a polynomial-size DQC1 circuit followed by
postselection is surprisingly powerful: The corresponding bounded-error class PostBQ[1]P is
equal to PostBQP (= PP) [17, 10]. Although this class is unrealistic, it plays an essential
role in giving a strong evidence of computational supremacy of the DQC1 computation
over classical computation: If any polynomial-size DQC1 circuit is classically simulatable in
polynomial time, then the polynomial hierarchy (PH) collapses [17, 10].

Let us consider the space-bounded version of PostBQ[1]P. For a space-constructible
function s with s(n) ∈ Ω(log n), let PostBQ[1]SPACE(s) be the class of languages that can
be recognized with bounded-error by DQC1 computation with postselection that uses O(s)
qubits and runs in 2O(s) time, where all postselections and measurements are made at the
the end of computation.

▶ Theorem 3. For any space-constructible function s with s(n) ∈ Ω(log n), it holds that

PostBQ[1]SPACE(s) = PostBQuSPACE(s) = PrSPACE(s).

In particular, PostBQ[1]L = PostBQuL = PL.

This result relates quantum computational supremacy of space-bounded DQC1 computa-
tion with complexity theory as in the time-bounded case. Namely, if any s-space DQC1
computation can be classically simulated with space bound s, then it must hold that
PrSPACE(s) ⊆ PostBSPACE(s) by Theorem 3, where PostBSPACE(s) is the classical counter-
part of PostBQuSPACE(s). This relation is the space-bounded equivalent of PP ⊆ PostBPP.
Note that PP ⊆ PostBPP leads to the collapse of PH [6], since PostBPP is in the third
level of PH. However, it is open whether PrSPACE(s) ⊆ PostBSPACE(s) implies implausible
consequences.

MFCS 2022
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1.3 Technical Outline
Since space-bounded quantum computation with postselection can trivially simulate the
unitary counterpart by the definition, our main technical contribution is to show that
the unitary counterpart can simulate unbounded-error probabilistic computation. Our
starting point is the simulation of unbounded-error probabilistic computation by the space-
bounded quantum computation with postselection [11]. The simulation [11] consists of two
components: the first one, Qx, simulates the unbounded-error probabilistic computation
with acceptance probability pa on input x to output the state (up to a normalizing factor)
|Ψδ⟩ = (1/2 + pa) |0⟩ + δ (1/2 − pa) |1⟩ for a given positive parameter δ; the second one
decides whether pa > 1/2 or pa < 1/2 with bounded error by repeatedly running Qx to
prepare the states |Ψδ⟩ for various values of δ and measuring them in the basis {|+⟩, |−⟩}
(based on a modification of the idea [1]). We eliminate the intermediate postselection in
Qx space-efficiently by, every time postselection is made in Qx, incrementing a counter
coherently if the postselection qubit is in the non-postselecting state. It is not difficult to
see that this works since Qx includes only intermediate postselections (and does not include
intermediate measurements). This gives a unitary version Vx of Qx. However, the second
component includes both intermediate postselections and measurements, and needs run Qx

sequentially (because running Qx in parallel is not space-efficient). We then construct two
subroutines U+ and U−, which accumulate the amplitudes of |+⟩ and |−⟩, respectively, in
the states obtained by repeatedly running Vx for various values of δ, as the amplitude of the
all-zero state. Finally, we run U+ and U− in orthogonal spaces, respectively, followed by
postselecting the all-zero state on the qubits that U+ and U− act on. The resulting state is
significantly supported by one of the spaces, which determines whether pa > 1/2 or pa < 1/2
with high probability.

1.4 Organization
Sec. 2 introduces definitions, basic claims and known theorems. Sec. 3 provides the formal
statement of our main result and proves it by using a lemma, which is proved in Sec. 4.
Sec. 5 provides an application of the result.

2 Prelimiaries

Let N,Z,R be the sets of natural numbers, integers, and real numbers, respectively. For
m ∈ N, let [m] be the set of {1, . . . ,m}. Assume that Σ is the set {0, 1}. A promise problem
L = (LY , LN ) is a pair of disjoint subsets of Σ∗. In the special case of promise problems
such that LY ∪ LN = Σ∗, we say that LY is a language.

Classical Space-Bounded Computation

We say that a function s : N → N is space-constructible if there exists a deterministic Turing
machine (DTM) that compute s (|x|) in space O (s (|x|)) on input x. Suppose that s is a
space constructible function. Then, we say that a function f : N → R is s-space computable
if there exists a DTM that computes f (|x|) in space O (s (|x|)) on input x. For s ∈ Ω (log n),
PrSPACE(s) is the class of promise problems L such that there exists a probabilistic Turing
machine (PTM) M running with space O (s) that satisfies the following: For every input
x ∈ LY , the probability that M accepts x is greater than 1/2, and for every input x ∈ LN ,
the probability that M accepts x is at most 1/2. We can replace the condition in the case
of x ∈ LN with “the probability that M accepts x is less than 1/2” without changing the
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class PrSPACE (s). In this paper, we adopt the latter definition. It is known that the class
PrSPACE(s) does not change even if we impose the time bound 2O(s) on the corresponding
PTM with space bound s [13] (see also [22]). We define PL ≡ PrSPACE (log).

Quantum Circuits

We below introduce just notations and terminologies relevant to this paper. For the basics of
quantum computing, see standard textbooks (e.g., [20, 14]). Let |+⟩ = (|0⟩ + |1⟩)/

√
2 and

|−⟩ = (|0⟩ + |1⟩)/
√

2.
A quantum gate implements a unitary operator. We say that a quantum gate is elementary

if it acts on a constant number of qubits. We may use a quantum gate and its unitary
operator that the gate implements interchangeably. Examples of elementary gates are H ≡
|+⟩⟨0|+|−⟩⟨1|, X ≡ |0⟩⟨1|+|1⟩⟨0|, T ≡ |0⟩⟨0|+eiπ/4|1⟩⟨1|, and CNOT ≡ |0⟩⟨0|⊗I+|1⟩⟨1|⊗X.
For unitary gate g, ∧k(g) denotes the unitary gate acting on k+ 1 qubits such that it applies
g to the last qubit if the contents of the first k qubits are all 1, and it applies the identity
otherwise. We may simply say that ∧k(g) is a k-qubit-controlled g. In the case of k = 1, we
may use ∧(g) to denote ∧1(g). For instance, ∧2(X) is the Toffoli gate and ∧(X) is the CNOT
gate. We also define ∨k(g) as the unitary gate acting on k + 1 qubits such that it applies
g to the last qubit if the contents of the first k qubits are not all-zero, and it applies the
identity otherwise. Gate set G is defined as G1 ∪G2 ∪G3 for G1 ≡ {H,T,CNOT}, the set
G2 of a constant number of additional elementary gates used for block encoding in [11], and
the set G3 of ∧(g) for all g ∈ G1 ∪G2. This choice of gates is not essential for our results
when completeness and soundness errors are allowed to be 2−O(s) for space bound s, because
of space-efficient version of Solovay-Kitaev theorem (see [16, Theorem 4.3]), which says that
it is possible to ϵ-approximate every unitary gate with a sequence of gates in any fixed
gate set that is finite and universal in O(polylog (1/ϵ)) deterministic time and O(log (1/ϵ))
deterministic space.

For simple descriptions, we will also use k-qubit-controlled gates ∧k (g) for g ∈ G1 ∪G2
and k ≥ 2 in the following section, since ∧k (g) can be implemented with gate set G together
with O(1) reusable ancilla qubits with negligible gate overhead:

▷ Claim 4. For every gate g, ∧k(g) can be implemented with ∧(g), and O(k) CNOT and T
gates together with O(1) ancilla qubits initialized to |0⟩. Similarly, ∨k(g) can be implemented
with ∧(g), and O(k) CNOT, T and X gates together with O(1) ancilla qubits initialized to
|0⟩. Moreover, the states of the ancilla qubits return to |0⟩ after applying ∧k(g) (∨k(g)).

Since the overhead of O(k) gates can be ignored in our setting of O(s) space and 2O(s) time
computation, we can effectively use ∧k(g) freely. The proofs of Claim 4 and the following
Claim 5 are provided in the full version.

Next, we define a special gate that will be used many time in this paper. Let INC2n be
the unitary gate acting on n qubits that transforms INC2n : |j⟩ 7→ |(j + 1) mod 2n⟩ for all
j ∈ {0, . . . , 2n − 1}. Intuitively, INC2n increments a counter over Z2n .

▷ Claim 5. ∧k(INC2n) can be implemented with O(k + n2) CNOT and T gates with the
help of O(1) ancilla qubits initialized to |0⟩. Similarly, ∨k(INC2n) can be implemented with
O(k + n2) CNOT, T, and X gates with the help of O(1) ancilla qubits initialized to |0⟩. The
states of the ancilla qubits return to |0⟩ after applying ∧k(INC2n) (∨k(INC2n)) .

Since the overhead of O(k + n2) gates with n, k ∈ O(s) can be ignored in our setting of O(s)
space and 2O(s) time computation, we can effectively use ∧k(INC2n) freely.

MFCS 2022



81:6 Space-Bounded Unitary Quantum Computation with Postselection

A quantum circuit consists of quantum gates in a fixed universal set of a constant number
of unitary gates, and (intermediate) measurements. A quantum circuit with postselection
is a quantum circuit with the ability of postselection even at intermediate points in the
circuit. Here, the postselection [1] is a fictitious function that projects a quantum state on a
single qubit to the state |1⟩ with certainty, as far as there exists a non-zero overlap between
the state and |1⟩. For instance, if we make postselection on the first qubit of quantum
state α |0⟩ |ψ0⟩ + β |1⟩ |ψ1⟩ with β ̸= 0, resulting state is |1⟩ |ψ1⟩. Since the qubit on which
postselection has been made is in the state |1⟩ by the definition, we can reuse them as
initialized qubits for subsequent computation. This can greatly save the space (i.e., the
number of ancilla qubits) as in the case of intermediate measurements. We say that |1⟩
is the postselecting state, and the state orthogonal to the postselecting state, |0⟩, is the
non-postselecting state. To simplify descriptions, we may say “postselect |ϕ⟩” to mean that
we first apply a single-qubit unitary U such that |1⟩ = U |ϕ⟩ and then postselect |1⟩. We may
also say “postselect |ϕ1⟩ ⊗ · · · ⊗ |ϕm⟩,” where |ϕi⟩ is a single-qubit pure state for every i, to
mean postselecting |ϕi⟩ on the ith qubit for each i = 1, . . . , m. For instance, we may say
“postselecting the all-zero state” (i.e., postselecting |0m⟩). A unitary quantum circuit consists
of only (unitary) quantum gates and does not include any measurement or postselection. To
perform computational tasks, a unitary quantum circuit will be followed by measurements
(and postselections).

We say that, for a promise problem L, a family of quantum circuits {Qx : x ∈ L} with
postselections (a family of unitary quantum circuits {Ux : x ∈ L}) is s-space uniform if there
exists a DTM that, on input x ∈ L, outputs a description of Qx (Ux, respectively) with the
use of space O(s(|x|)) (and hence in 2O(s(|x|)) time).

Let s : N → N be a space-constructible function with s(n) = Ω(log n). Assume that
functions c, d : N → [0, 1] are s-space computable, and c(n) > d(n) for sufficiently large n ∈ N.

▶ Definition 6 (PostQSPACE). Let PostQSPACE (s) [c, d] be the class of promise problems
L = (LY , LN ) for which there exists an s-space uniform family of quantum circuits with
postselection, {Qx : x ∈ L}, that act on m = O(s (|x|)) qubits and consist of 2O(s(|x|))

elementary gates such that, when applying Qx to |0⟩⊗m, (1) the probability ppost of measuring
|1⟩ on every postselection qubit is strictly positive; (2) for x ∈ LY , conditioned on all the
postselection qubits being |1⟩, the probability that Qx accepts is at least c (|x|); (3) for x ∈ LN ,
conditioned on all the postselection qubits being |1⟩, the probability that Qx accepts is at most
d (|x|).

▶ Definition 7 (PostQuSPACE). Let PostQuSPACE(s)[c.d] be the class of promise problems
L = (LY , LN ) for which there exists an s-space uniform family of unitary quantum circuits,
{Ux : x ∈ L}, that act on m ∈ O(s(|x|)) qubits and consist of 2O(s(|x|)) elementary gates,
followed by postselection on the first qubit and measurement on the output qubit (say, the
second qubit) in the computational basis, such that, when applying Ux to |0⟩⊗m, (1) the
probability ppost of measuring |1⟩ on the first qubits is strictly positive; (2) for x ∈ LY ,
conditioned on the first qubit being |1⟩, the probability that Ux accepts is at least c(|x|); (3)
for x ∈ LN , conditioned on the first qubit being |1⟩, the probability that Ux accepts is at most
d(|x|).

Definition 7 assumes that postselection is made only on a single qubit. This is general
enough since, if there are k postselection qubits, then we can aggregate them into a single
postselection qubit by using ∧k(X) and O(1) ancilla qubits. Obviously, this aggregation does
not change ppost and the acceptance probability.
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Define PostBQSPACE(s) ≡ PostQSPACE(s)[2/3, 1/3] and PostBQL ≡ PostBQSPACE(log).
Similarly, define PostBQuSPACE(s) ≡ PostQuSPACE(s)[2/3, 1/3] and PostBQuL ≡
PostBQuSPACE(log). Le Gall, Nishimura and Yakaryilmaz [11] proved the following.

▶ Theorem 8 ([11]). PostBQL = PL.

Moreover, it is straightforward to extend the result to the general space bound.

▶ Theorem 9 ([11]). For any space-constructible function s : N → N with s(n) ∈ Ω(log n), it
holds that PrSPACE(s) = PostQSPACE(s)[1 − 2−2O(s)

, 2−2O(s) ] = PostBQSPACE(s).

In [11], PostBQL is defined based on the space-bounded quantum Turing machine (QTM),
following the definition provided in [26]. It is not difficult to see that their proof works for
the circuit-based definition. Consequently, the QTM-based definition and the circuit-based
definition are equivalent in computational power.

3 Main Results

Theorem 10 provides a formal statement of our main result, which shows that the class of
promise problems that can be solved with an s-space uniform family of unitary quantum
circuits with postselection by using O(s) space and 2O(s) time in the bounded-error setting
is equal to the class of promise problems by unbounded-error probabilistic computation with
space bound s.

▶ Theorem 10. For any space-constructible function s : N → N with s (n) = Ω (log n),

PrSPACE (s) = PostQuSPACE (s)
[
1 − 2−2O(s)

, 2−2O(s)
]

= PostBQuSPACE (s) .

In particular, PostBQuL = PL.

Theorems 9 and 10 imply that intermediate postselections and measurements add no extra
computational power, as stated formally in the following corollary.

▶ Corollary 11 (Restatement of Theorem 1). For any space-constructible function s : N → N
with s (n) = Ω (log n),

PostBQuSPACE (s) = PostBQSPACE (s) = PrSPACE (s) .

In particular, PostBQL = PostBQuL.

Proof of Theorem 10. By the definition, we have PostQuSPACE (s)
[
1 − 2−2O(s)

, 2−2O(s)
]

⊆
PostBQuSPACE (s). Then, the theorem follows from Lemmas 12 and 13, stated as follows. ◀

▶ Lemma 12. For any space-constructible function s : N → N with s (n) = Ω (log n),

PostBQuSPACE (s) ⊆ PrSPACE (s) .

Proof. By the definition, we have PostBQuSPACE (s) ⊆ PostBQSPACE (s). Since
PostBQSPACE (s) = PrSPACE (s) by Theorem 9, the lemma follows. ◀

▶ Lemma 13. For any space-constructible function s : N → N with s (n) = Ω (log n),

PrSPACE(s) ⊆ PostQuSPACE(s)
[
1 − 2−2O(s)

, 2−2O(s)
]
.

The proof is provided in the following section.

MFCS 2022
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4 Proof of Lemma 13

To prove Lemma 13, we use the fact proved in [11].

▶ Lemma 14 ([11]). Suppose that, for any input x, a PTM with space bound s = s (|x|)
accepts with probability pa = pa(x) and rejects with probability 1 − pa after running in a
prespecified time T (|x|) ∈ 2O(s). There exists an s-space uniform family of quantum circuits
Qx on m+ ⌈log2 (T + 1)⌉ qubits for m ∈ O(s) that consist of 2O(s) elementary gates in the
gate set G and intermediate postselections such that, for every k ∈ {0, . . . , T}, it holds that

Qx|0m⟩|k⟩ = |Ψk⟩|0m−1⟩|k⟩
∥|Ψk⟩|0m−1⟩|k⟩∥

,

where |Ψk⟩ ≡ (1/2 + pa) |0⟩ + 2T −k (1/2 − pa) |1⟩.

Let L be a promise problem in PrSPACE(s). Then, there exists a PTM M that recognizes
L with unbounded error in space O(s (|x|)) on input x. By the result by Jung [13] (see
also [22]), we assume without loss of generality that M runs in time T (|x|) ∈ 2O(s(|x|))).
Since the computation path is split into two paths in each step with equal probability,
the accepting probability pa is of the form a/2T for some integer a ∈ {0, · · · , 2T } \ 2T −1

(assuming pa ̸= 1/2 without loss of generality). There exist an s-space uniform family of
quantum circuits Qx defined in Lemma 14. Note that Qx makes intermediate postselections
and thus Qx is not unitary. Since we have assumed pa ̸= 1/2, we can decide whether pa is
larger or smaller than 1/2 with unbounded error by measuring |ΨT ⟩ in the basis {|+⟩ , |−⟩}.
To distinguish the two cases with bounded error, we need to reduce error probability. For
this, Le Gall et al. [11] uses essentially the same idea as is used in [1], repeating the following
operations for every k: prepare |Ψk⟩ and measure it in the basis {|+⟩ , |−⟩}. Since the qubits
on which measurements or postselections have been made can be reused by initializing them
using block encoding with postselection, the space requirement is bounded by O (s). Thus,
intermediate postselections and measurements play a key role in space efficiency.

4.1 Base Unitary Circuit Vx

Our goal is to move every postselection and measurement down to the end of computation
while increasing the space requirement by at most a constant factor.

This is not difficult for the Qx part. The following modification can make Qx unitary: We
prepare an N ∈ O(s) bit counter C initialized to the all-zero state

∣∣0N
〉

in a quantum register
C. Here, we take a sufficiently large integer in O(s) as N . Then, every time postselection
is made in Qx, we instead increment the counter C coherently if the postselection qubit
is in the non-postselecting state, and perform the other operations (i.e., unitary gates) in
the same way as in the original circuit Qx. If we assume without loss of generality that
non-postselecting state is |0⟩, then the counter C is incremented by applying the X gate to
the postselection qubit, applying ∧(INC2N ) gate controlled by that qubit, and then applying
the X gate to that qubit, namely, (X ⊗ I) (∧ (INC2N )) (X ⊗ I). Let Vx denote the modified
circuit.

By the above construction and the standard analysis (e.g., [25]), if we measure the
counter C and postselect the all-zero state after applying Vx to |0m⟩|k⟩, the output state is
|Ψk⟩|0m−1⟩|k⟩ up to a normalizing factor. More concretely, every time postselection is made
in Qx, the modified circuit Vx moves the non-postselecting state into the space associated
with the counter value being non-zero, that is, the space orthogonal to the space where the
postselecting state lies. By setting N so that the maximum counter value 2N − 1 is larger
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than the number of postselections in Qx, it holds that, once the counter C is incremented,
the counter value never returns to zero. Thus, the quantum interference between the states
associated with the counter-values being zero and non-zero never occurs. This implies that, if
the content of counter register C is zero, the state must be projected to the postselecting state
in every postselection points in Qx, and thus the entire register except C is in the state that is
equal to Qx|0m⟩|k⟩. Thus, for certain normalized states |badk(j)⟩ and ℓ = m+O(1) ∈ O(s),
we can write

Vx|0ℓ⟩R|0N ⟩C|k⟩K =

γk|Ψk⟩R1|0ℓ−1⟩R2|0N ⟩C +
√

1 − ∥γk|Ψk⟩∥2
∑
j≥1

|badk(j)⟩R|j⟩C

 |k⟩K,

(1)

where 0 < γk < 1, and

|Ψk⟩ ≡ (1/2 + pa) |0⟩ + 2T −k (1/2 − pa) |1⟩ = αk|+⟩ + βk|−⟩, (2)

for αk = ⟨+|Ψk⟩ and βk = ⟨−|Ψk⟩. Here, register K consists of ⌈log2(T + 1)⌉ qubits and
stores the argument k ∈ {0, . . . , T}. The first register R ≡ (R1,R2) is the working register
except registers C and K, where R1 is the subregister of R corresponding to the first qubit and
R2 consists of the remaining qubits. Note that Vx uses the register C in addition to registers
(R,K) of O(s) qubits, and applies ∧(INC2N ) instead of every intermediate postselection made
in Qx. Since Qx consists of 2O(s) unitary gates and intermediate postselections on O(s)
qubits, and since Claim 5 implies that ∧(INC2N ) is implementable with O(N2) (= O(s))
CNOT and T gates with O(1) ancilla qubits, which are reusable for other ∧(INC2N ), it holds
that Vx consists of 2O(s) gates in G and acts on O(s) qubits.

4.2 Subroutine Unitary Circuits U+ and U−

In the following subsections, we will describe the entire algorithm, which includes the error-
reduction step. For this, we first provide two unitary subroutines U+ and U− in Figure 1.
They use Vx and act on registers (R,C,D,K), where D is an O(s)-qubit quantum register
used as another O (s)-bit counter D. We assume without loss of generality that the two
registers C and D consist of N qubits for sufficiently large N ∈ O (s). The following lemmas
tell us about the actions of U+ and U−.

▶ Lemma 15. For every k ∈ {0, . . . , T}, let αk and γk be the coefficients appearing in
Eqs. (1) and (2). Then, U+ given in Figure 1 acts on O(s) qubits, consists of 2O(s) gates in
the gate set G, and satisfies

U+|0⟩R|0⟩C|0⟩D|0⟩K =

γ|αT |2 · · · |α0|2|0⟩R,C|0⟩D +
∑
j≥1

|ϕT (j)⟩R,C|j⟩D

 |0⟩K

for certain unnormalized quantum states |ϕT (j)⟩ on registers (R,C) for each j ≥ 1, where
γ = |γT |2 · · · |γ0|2. Moreover, for every r ∈ N ∩ 2O(s), (U+)r acts on O(s) qubits, consists of
2O(s) gates in the gate set G, and satisfies

(U+)r|0⟩R|0⟩C|0⟩D|0⟩K =

(
γ|αT |2 · · · |α0|2

)r |0⟩R,C|0⟩D +
∑
j≥1

|ϕ(r)
T (j)⟩R,C|j⟩D

 |0⟩K,

where |ϕ(r)
T (j)⟩ is a certain unnormalized quantum state on registers (R,C) for each j ≥ 1.
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Subroutine U+ associated with Vx

Repeat the following steps T + 1 times.
1. Perform Vx on (R,C,K).
2. If the content of C is non-zero or the first qubit in R is in state |−⟩, then apply INC2N to

register D to increment the counter D.
3. If the content of D is zero, then invert the Step1 on (R,C,K), i.e, apply V †

x .
4. If the content of (R,C) is not all-zero, then apply INC2N to register D to increment the

counter D.
5. Apply INCT +1 to register K to increment the content in register K.

Apply INC†
T +1 T + 1 times to initialize register K to the all-zero state.

Subroutine U− associated with Vx

Same as U+ except that Step 2 is replaced with the following operation.
2. If the content of C is non-zero or the first qubit in R is in state |+⟩, then apply INC2N to

register D to increment the counter D.

Figure 1 Subroutines U+ and U− associated with Vx.

Proof. We first give the analysis of the first repetition on registers (R,C,D,K) initialized to
the all-zero state. Step 1 applies Vx to |0ℓ⟩R|0N ⟩C|k⟩K with k = 0. By Eq (1), the resulting
state in (R,C) is

γk(αk|+⟩ + βk|−⟩)R1|0ℓ−1⟩R2|0⟩C +
√

1 − ∥γk|Ψk⟩∥2
∑
j≥1

|badk(j)⟩R|j⟩C,

where we omit the register K for simplicity. Then, Step 2 appends register D and increments
the counter D if the content of the register C is not zero or the register R1 is in the state
|−⟩ . Thus, the resulting state is

7→ γkαk|+⟩R1|0ℓ−1⟩R2|0⟩C|0⟩D

+

γkβk|−⟩R1|0ℓ−1⟩R2|0⟩C +
√

1 − ∥γk|Ψk⟩∥2
∑
j≥1

|badk(j)⟩R|j⟩C

 |1⟩D

= γkαk|+⟩R1|0ℓ−1⟩R2|0⟩C|0⟩D + |ϕ⟩R,C|1⟩D,

where |ϕ⟩R,C = γkβk|−⟩R1|0ℓ−1⟩R2|0⟩C +
√

1 − ∥γk|Ψk⟩∥2 ∑
j≥1 |badk(j)⟩R|j⟩C. Step 3

then inverts the Step1 on (R,C,K), i.e, applies V †
x , if the content of D is zero. Since

⟨+|R1⟨0ℓ−1|R2⟨0|C⟨k|KVx|0ℓ⟩R|0N ⟩C|k⟩K = γkαk, the resulting state is

7→ γkαk

(
(γkαk)∗|0⟩R|0⟩C +

√
1 − |γkαk|2|0⊥⟩R,C

)
|0⟩D + |ϕ⟩R,C|1⟩D,

where |0⊥⟩ is a certain state orthogonal to the all-zero state. Step 4 then increments the
counter D if the content of (R,C) is not all-zero; we have

7→ |γkαk|2|0⟩R|0⟩C|0⟩D +
2∑

j=1
|ϕk(j)⟩R,C|j⟩D,
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for certain states |ϕk(j)⟩ for j = 1, 2. Step 5 increments the content in register K to get the
state on (R,C,D,K):|γkαk|2 |0⟩R |0⟩C |0⟩D +

2∑
j=1

|ϕk(j)⟩R,C |j⟩D

 |k + 1⟩K .

Then, we repeat the same procedure. A simple induction on k shows that the final state
after applying U+ to |0ℓ⟩R|0N ⟩C|0N ⟩D|0⟩K is

U+|0ℓ⟩R|0N ⟩C|0N ⟩D|0⟩K =

γ|αT |2 · · · |α0|2|0⟩R,C|0⟩D +
∑
j≥1

|ϕT (j)⟩R,C|j⟩D

 |0⟩K,

where γ = |γT |2 · · · |γ0|2. Thus, if we repeat U+ r times, the resulting state is

(U+)r|0ℓ⟩R|0N ⟩C|0N ⟩D|0⟩K =

(
γ|αT |2 · · · |α0|2

)r |0⟩R,C|0⟩D +
∑
j≥1

|ϕ(r)
T (j)⟩R,C|j⟩D

 |0⟩K,

for some unnormalized states |ϕ(r)
T (j)⟩.

Next, we consider the space and gate complexities of U+ (see the full version for a rigorous
analysis). Recall that Vx can be implemented with 2O(s) gates in G by using O(1) reusable
ancilla qubits. One can show by using Claims 4 and 5 that every other step in U+ can also
be implemented with 2O(s) gates in G by using O(1) reusable ancilla qubits. Consequently,
U+ can be implemented with 2O(s) gates in G and requires O(1) ancilla qubits in addition to
(R,C,D,K), which is O(s) qubits in total. Since the ancilla qubits are reusable, (U+)r is also
implementable with r · 2O(s) = 2O(s) gates in G and acts on O(s) qubits. ◀

We can prove the following lemma for U− in almost the same way.

▶ Lemma 16. For every k ∈ {0, . . . , T}, let βk and γk be the coefficients appearing in
Eqs. (1) and (2). Then, U− given in Figure 1 acts on O(s) qubits, consists of 2O(s) gates in
the gate set G, and satisfies

U−|0⟩R|0⟩C|0⟩D|0⟩K =

γ|βT |2 · · · |β0|2|0⟩R,C|0⟩D +
∑
j≥1

|ψT (j)⟩R,C|j⟩D

 |0⟩K

for certain unnormalized quantum states |ψT (j)⟩ on registers (R,C) for each j ≥ 1, where
γ = |γT |2 · · · |γ0|2. Moreover, for every r ∈ N ∩ 2O(s), (U−)r acts on O(s) qubits, consists of
2O(s) gates in the gate set G, and satisfies

(U−)r|0⟩R|0⟩C|0⟩D|0⟩K =

(
γ|βT |2 · · · |β0|2

)r |0⟩R,C|0⟩D +
∑
j≥1

|ψ(r)
T (j)⟩R,C|j⟩D

 |0⟩K,

where |ψ(r)
T (j)⟩ is a certain unnormalized quantum state on registers (R,C) for each j ≥ 1.

4.3 Final Unitary Circuit
Figure 2 shows a unitary quantum circuit with postselection acting on five registers
(W,R,C,D,K), where W is a single-qubit register. Now, we finalize the proof of Lemma 13
with this circuit.
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Unitary Quantum Circuit with Postselection for PrSPACE(s) problems

Initialize registers (W,R,C,D,K) to the all-zero state.
1. Apply the Hadamard gate H to register W.
2. If the content of W is 0, then apply (U+)r to registers (R,C,D,K); otherwise, apply (U−)r

to registers (R,C,D,K).
3. Postselect the all-zero state on register D.
4. Measure register W in the basis {|0⟩, |1⟩}. If the outcome 0, then accept (pa > 1/2);

otherwise reject (i.e., pa < 1/2).

Figure 2 Unitary Quantum Circuit with Postselection for PrSPACE(s) problems.

For simplicity, we first assume that r = 1. It is straightforward to extend the proof to
the general r. It follows from Lemmas 15 and 16 that after Step 2, the state in the register
(W,R,C,D,K)) is

1√
2

|0⟩W

γ|αT |2 · · · |α0|2|0⟩R,C|0⟩D +
∑
j≥1

|ϕT (j)⟩R,C|j⟩D

 |0⟩K

+ 1√
2

|1⟩W

γ|βT |2 · · · |β0|2|0⟩R,C|0⟩D +
∑
j≥1

|ψT (j)⟩R,C|j⟩D

 |0⟩K . (3)

Step 3 postselects the all-zero state in register D. Thus, the resulting state in the register
(W,R,C) is

γ′ (
|αT |2 · · · |α0|2|0⟩W + |βT |2 · · · |β0|2|1⟩W

)
|0⟩R,C (4)

where γ′ is the normalizing factor. Here, the probability of measuring postselecting state is

ppost = 1
2

((
γ|αT |2 · · · |α0|2

)2 +
(
γ|βT |2 · · · |β0|2

)2
)
.

Recall that αk = ⟨+|Ψk⟩ and βk = ⟨−|Ψk⟩, where |Ψk⟩ is defined as Eq. (2). If pa > 1/2,
then βk > 0 for all k. If pa < 1/2, then αk > 0 for all k. Since γ ̸= 0, ppost is strictly positive
in both cases.

If pa < 1/2, then |αk|2 > |βk|2 ≥ 0 for all k, and |αk|2 > (1 + δ) |βk|2 for some k and
some constant δ, say, 16/9. Since |βT |2···|β0|2

|αT |2···|α0|2 < 1
1+δ = 9

25 , the probability that |0⟩W is
measured in Step 4, that is, the probability of obtaining the outcome 0 when measuring
register W in Eq. (4) in the basis {|0⟩, |1⟩}, is

|αT |4 · · · |α0|4

|αT |4 · · · |α0|4 + |βT |4 · · · |β0|4 = 1
1 + (|βT |4 · · · |β0|4) / (|αT |4 · · · |α0|4) >

1
1 + (9/25)2 = 625

706 .

If pa > 1/2, then 0 ≤ |αk|2 < |βk|2 for all k, and (1 + δ)|αk|2 < |βk|2 for some k and a
constant δ = 16/9. Thus, the probability that |1⟩W is measured in Step 4 is at least 625

706 in
the same analysis as in the case of pa < 1/2.

For a general r ∈ 2O(s), the state in the register (W,R,C) after Step 3 is

γ′′
((

|αT |2 · · · |α0|2
)r |0⟩W +

(
|βT |2 · · · |β0|2

)r |1⟩W

)
|0⟩R,C ,
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where γ′′ is the normalizing factor. For pa < 1/2, thus, the probability that |0⟩ is measured
in Step 4 is (

|αT |4 · · · |α0|4
)r

(|αT |4 · · · |α0|4)r + (|βT |4 · · · |β0|4)r >
1

1 + (9/25)2r
> 1 − 81r

625r + 81r
> 1 − 1

2r
.

Similarly, for pa > 1/2, the probability that |1⟩ is measured in Step 4 is at least 1 − 1
2r .

Finally, we consider the space and gate complexities. The quantum circuit in Figure 2
acts on a single-qubit register W in addition to (R,C,D,K). In this circuit, every gate g ∈ G

used in (U+)r and (U−)r is replaced with ∧(g), which can be implemented with O(1) gates
in G with O(1) resuable ancilla qubits by Claim 4. Since Step 2 is dominant, and (U+)r and
(U−)r use O(s) qubits and 2O(s) gates in G by Lemmas 15 and 16, the entire circuit uses
O(s) qubits and 2O(s) gates in G.

5 Application to One-Clean Qubit Model

As introduced in Section 1, DQC1 is a model of quantum computing such that the input
state is completely mixed except for one qubit, which is initialized to |0⟩.

▶ Definition 17 (PostQ[1]SPACE). Let s be any space-constructible function with s(n) ∈
Ω(log n), and let c, d be s-space computable functions. PostQ[1]SPACE(s)[c, d] is the class
of promised problems L = (LY , LN ) for which there exists an s-space uniform family of
unitary quantum circuits {Ux : x ∈ L} consisting of 2O(s) elementary gates on m+ 1 qubits
for m ∈ O(s) such that, when applying Ux to the m + 1 qubits in state |0⟩⟨0| ⊗ (I/2)⊗m,
followed by postselections and measurements, (1) the probability ppost of measuring |1⟩ on all
postselection qubits is strictly positive; (2) for x ∈ LY , conditioned on all the postselection
qubits being |1⟩, the probability that Ux accepts is at least c(|x|); (3) for x ∈ LN , conditioned
on all the postselection qubits being |1⟩, the probability that Ux accepts is at most d(|x|).
In particular, define PostBQ[1]SPACE(s) ≡ PostQ[1]SPACE(s)[2/3, 1/3], and PostBQ[1]L ≡
PostBQ[1]SPACE(log).

In the above definition, we allow postselection to be made on multiple qubits, since it does
not seem possible in general to aggregate multiple postselection qubits to a single qubit due
to the lack of initialized qubits. Theorem 3 follows from Theorems 10 and 18.

▶ Theorem 18. For any space-constructible function s with s(n) ∈ Ω(log n) and any s-space
computable functions c and d such that c(n) > d(n) for sufficiently large n ∈ N,

PostQ[1]SPACE(s)[c, d] = PostQuSPACE(s)[c, d].

In particular, PostBQ[1]SPACE(s) = PostBQuSPACE(s) and PostBQ[1]L = PostBQuL.

The proof is provided in the full version.
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Abstract
Given a set P of n points that are moving in the plane, we consider the problem of computing a
spanning tree for these moving points that does not change its combinatorial structure during the
point movement. The objective is to minimize the bottleneck weight of the spanning tree (i.e., the
largest Euclidean length of all edges) during the whole movement. The problem was solved in O(n2)
time previously [Akitaya, Biniaz, Bose, De Carufel, Maheshwari, Silveira, and Smid, WADS 2021].
In this paper, we present a new algorithm of O(n4/3 log3 n) time.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases minimum spanning tree, moving points, unit-disk range emptiness query,
dynamic data structure

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.82

Related Version Full Version: https://arxiv.org/abs/2206.12500

Funding This research was supported in part by NSF under Grant CCF-2005323.

1 Introduction

Given a set P of n points in the plane, let GP be the complete graph whose vertex set is P

such that the weight of each edge connecting two points p and q of P is the Euclidean distance
between p and q. The Euclidean minimum spanning tree (EMST) of P is the spanning tree
of GP with minimum sum of edge weights. The Euclidean minimum bottleneck spanning tree
(EMBST) of P is the spanning tree of GP whose largest edge weight is minimized. It is well
known that a Delaunay triangulation of P contains an EMST of P [24] and thus an EMST
of P can be computed in O(n log n) time by constructing a Delaunay triangulation of P first.
This is also the case for the bottleneck problem.

In this paper, motivated by visualizations of time-varying spatial data [2], we consider
a moving version of the EMBST problem where every point of P is moving during a time
interval. Without loss of generality, we assume that the time interval is [0, 1]. A moving
point p ∈ P is a continuous function p : [0, 1] → R2. Let p(t) denote the location of p at
time t ∈ [0, 1]. We assume that p moves on a straight line segment with a constant velocity,
i.e., p(t) is linear in t and points of {p(t)| t ∈ [0, 1]} form a straight line segment in the
plane (see Fig. 1; different points may have different velocities). A moving spanning tree
T of P connects all points of P and does not change its connection during the whole time
interval (i.e., for any two points p, q ∈ P , the path connecting p and q in T always contains
the same set of edges). We use T (t) to denote the tree at the time t. The instantaneous
bottleneck bT (t) at time t is the maximum length of all edges in T (t). The bottleneck b(T ) of
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Figure 1 Each pair of red and blue points
connected by an arrow represents a moving point.
Blue points denote locations at t = 0 and red
points are locations at t = 1. Black boxes are
locations of these moving points at certain time
and the dashed segments form a spanning tree.

λ/2

Figure 2 Illustrating a unit-disk graph. Two
points are connected (by a blue segment) if their
distance is less than or equal to λ. In other
words, two points are connected if congruent
disks centered at them with radius λ/2 intersect.

the moving spanning tree T is defined to be the maximum instantaneous bottleneck during
the whole time interval, i.e., b(T ) = maxt∈[0,1] bT (t). The Euclidean minimum bottleneck
moving spanning tree (or moving-EMBST for short) T ∗ refers to the moving spanning tree of
P with minimum bottleneck.

In this paper, we study the problem of computing the moving-EMBST T ∗ for a set P

of n moving points in the plane as defined above. Previously, this problem was solved in
O(n2) time by Akitaya, Biniaz, Bose, De Carufel, Maheshwari, Silveira, and Smid [2]. To
solve the problem, the authors of [2] first proved the following key property: The function
of the distance between two moving points over time is convex (this is because each point
moves linearly with constant velocity), implying that the maximum distance between two
moving points is achieved at t = 0 or t = 1 (note that this does not mean T ∗ is attained
at either t = 0 or t = 1; a counterexample is provided in [2]). Using the above property,
the authors of [2] proposed the following simple algorithm to compute T ∗. First, compute a
complete graph G with P as the vertex set such that the weight of each edge connecting
two points p and q of P is defined as the maximum length of their distances at t = 0 and at
t = 1. Then the authors [2] showed that a minimum bottleneck spanning tree (MBST) of
G is also a moving-EMBST of P and thus it suffices to compute an MBST in G. Since an
MBST of a graph can be computed in linear time in the graph size [7], the entire algorithm
for computing T ∗ runs in O(n2) time in total [2].

1.1 Our result
We present an algorithm of O(n4/3 log3 n) time to compute T ∗. We sketch the main idea
below.

For any two points p and q in the plane, let |pq| denote their Euclidean distance. Due
to the above key property from [2], we observe that b(T ∗) must be equal to |pq|max for
two moving points p and q of P , where |pq|max = max{|p(0)q(0)|, |p(1)q(1)|}, i.e., b(T ∗) ∈
{|pq|max | p, q ∈ P}. As such, our main idea is to find b(T ∗) in {|pq|max | p, q ∈ P} by binary
search. To this end, we first solve a decision problem: Given any value λ > 0, decide whether
b(T ∗) ≤ λ. We reduce the decision problem to the problem of finding a common spanning tree
in two unit-disk graphs. Specifically, the unit-disk graph Gλ(Q) for a set Q of points in the
plane with respect to a parameter λ is an undirected graph whose vertex set is Q such that
an edge connects two points p, q ∈ Q if |pq| ≤ λ (alternatively, Gλ(Q) can be viewed as the
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intersection graph of the set of congruous disks centered at the points of Q with radius λ/2,
i.e., two vertices are connected if their disks intersect; see Fig. 2). Observe that b(T ∗) ≤ λ if
and only if the unit-disk graph Gλ(P ) for P at time t = 0 and the unit-disk graph Gλ(P )
for P at time t = 1 share a common spanning tree. To determine whether the two unit-disk
graphs share a common spanning tree, we apply breadth-first-search (BFS) on the two graphs
simultaneously. To avoid quadratic time, we do not compute these unit-disk graphs explicitly.
Instead, we use a batched range searching technique of Katz and Sharir [19] to obtain a
compact representation for searching one graph. For searching the other graph, we derive a
semi-dynamic data structure for the following deletion-only unit-disk range emptiness query
problem: Preprocess a set Q of n points in the plane with respect to λ so that the following
two operations can be performed efficiently: (1) given a query point p, determine whether Q

has a point q such that |pq| ≤ λ, and if yes, return such a point q; (2) delete a point from
Q. We refer to the first operation as unit-disk range emptiness query (or UDRE query for
short). We build a data structure of O(n) space in O(n log n) time such that each UDRE
query can be answered in O(log n) time while each deletion can be performed in O(log n)
amortized time. This result might be interesting in its own right. Combining this result with
the batched range searching [19], we implement the BFS simultaneously on the two unit-disk
graphs in O(n4/3 log2 n) time, which solves the decision problem.

Next, equipped with the above decision algorithm, we find b(T ∗) from the set
{|pq|max | p, q ∈ P} by binary search. Computing the set explicitly would take Ω(n2)
time. We avoid doing so by resorting to the distance selection algorithm of Katz and
Sharir [19], which can compute the k-th smallest distance among all interpoint distances of a
set of n points in the plane in O(n4/3 log2 n) time for any k with 1 ≤ k ≤

(
n
2
)
. Combining

with our decision algorithm, b(T ∗) can be computed in O(n4/3 log3 n) time. Applying the
value λ = b(T ∗) to the decision algorithm can produce the optimal spanning tree T ∗ in
additional O(n4/3 log2 n) time.

1.2 Related work
Similar to the moving-EMBST problem, one can consider the Euclidean minimum moving
spanning tree (moving-EMST) for a set of moving points (i.e., minimizing the total sum
of the edge weights instead). The authors of [2] proved that the moving-EMST problem is
NP-hard and they gave an O(n2) time 2-approximation algorithm and another O(n log n)
time (2+ ϵ)-approximation algorithm for any ϵ > 0. These spanning tree problems for moving
points are relevant in the realm of moving networks that is motivated by the increase in
mobile data consumption and the network architecture containing mobile nodes [2].

Geometric problems for moving objects have been studied extensively in the literature,
e.g., [3, 4]. In particular, kinetic data structures were proposed to maintain the minimum
spanning tree for moving points in the plane [3, 25]. Different from our problem, research
in this domain focuses on bounds of the number of combinatorial changes in the minimum
spanning tree during the point movement [4].

For solving the deletion-only UDRE query problem, by the standard lifting transformation,
one can reduce the problem to maintaining the lower envelope of a dynamic set of planes
in R3, which has been extensively studied [1, 9, 15, 18]. Applying Chan’s recent work [11]
for the problem can achieve the following result: With O(n log n) preprocessing time, each
UDRE query can be answered in O(log2 n) time and each point deletion can be handled in
O(log4 n) amortized time (the data structure is actually fully-dynamic and can also handle
each point insertion in O(log2 n) amortized time). The same problem in 2D (whose dual
problem becomes maintaining the convex hull for a dynamic set of points) is easier and
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has also been studied extensively, e.g., [5, 8, 17, 23]. In addition, Wang [26] studied the
unit-disk range counting query problem for a static set of points in the plane, by extending
the techniques for half-plane range counting query problem [10,20,21].

Our algorithm for the decision problem uses some techniques for unit-disk graphs. Many
problems on unit-disk graphs have been studied, i.e., shortest paths and reverse shortest
paths [6, 12,13,27–30], clique [14], independent set [22], diameter [12,13,16], etc. Although
a unit-disk graph of n vertices may have Ω(n2) edges, many problems can be solved in
subquadratic time by exploiting its underlying geometric structures, e.g., computing shortest
paths [6, 27]. Our O(n4/3 log2 n) time algorithm for finding a common spanning tree in two
unit-disk graphs adds one more problem to this category.

Outline. In the following, we present our algorithm for the moving-EMBST problem in
Section 2. The algorithm uses our data structure for the deletion-only unit-disk range
emptiness query problem, which is given in Section 3. Section 4 concludes. Due to the space
limit, some proofs are omitted but can be found in the full paper.

2 Algorithm for moving-EMBST

We follow the notation in Section 1, e.g., P , t, b(T ), bT (t), T ∗, |pq|, |pq|max, Gλ(P ), etc. Given
a set P of n points in the plane, our goal is to compute b(T ∗). As discussed in Section 1.1,
we first consider the decision problem: Given any λ > 0, decide whether b(T ∗) ≤ λ. We refer
to the original problem for computing b(T ∗) as the optimization problem. In what follows,
we solve the decision problem in Section 2.1 and the algorithm for the optimization problem
is described in Section 2.2.

2.1 The decision problem
Given any λ > 0, the decision problem is to decide whether b(T ∗) ≤ λ.

For any time t ∈ [0, 1], we use P (t) to denote the set of points of P at their locations
at time t, i.e., P (t) = {p(t) | p ∈ P}. Consider the two unit-disk graphs Gλ(P (0)) and
Gλ(P (1)). To simplify the notation, we use Gλ(t) to refer to Gλ(P (t)) for any t ∈ [0, 1]. For
every point p ∈ P , we consider p(0) in Gλ(0) and p(1) in Gλ(1) as the same vertex p, and
thus define Gλ = Gλ(0) ∩ Gλ(1) as the intersection graph of Gλ(0) and Gλ(1), i.e., the vertex
set of Gλ is P and Gλ has an edge connecting two vertices p and q if and only Gλ(0) has an
edge connecting p(0) and q(0) and Gλ(1) has an edge connecting p(1) and q(1). A spanning
tree of Gλ is called a common spanning tree of Gλ(0) and Gλ(1).

The following observation has been proved in [2].

▶ Observation 1 ([2]). maxt∈[0,1] |p(t)q(t)| = max{|p(0)q(0)|, |p(1)q(1)|} holds for every pair
of points p, q ∈ P .

Using the above observation, the following lemma reduces the decision problem to the
problem of finding a common spanning tree of Gλ(0) and Gλ(1). The proof can be found in
the full paper.

▶ Lemma 2. Given any λ > 0, b(T ∗) ≤ λ if and only if Gλ(0) and Gλ(1) have a common
spanning tree.

In light of Lemma 2, to solve the decision problem, it suffices to determine whether Gλ(0)
and Gλ(1) have a common spanning tree, or alternatively, whether the intersection graph
Gλ has a spanning tree, which is true if and only if the graph is connected. To determine
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whether Gλ is connected, we perform a breadth-first search (BFS) in Gλ, or equivalently, we
perform a BFS on Gλ(0) and Gλ(1) simultaneously; we do so without computing the two
unit-disk graphs explicitly to avoid the quadratic time. Our algorithm relies on the following
lemma for the deletion-only UDRE query problem, which will be proved in Section 3.

▶ Theorem 3. Given a value λ and a set Q of n points in the plane, we can build a
data structure of O(n) space in O(n log n) time such that the following first operation can
be performed in O(log n) worst case time while the second operation can be performed in
O(log n) amortized time.
1. Unit-disk range emptiness (UDRE) query: Given a point p, determine whether there

exists a point q ∈ Q such that |pq| ≤ λ, and if yes, return such a point q.
2. Deletion: delete a point from Q.

In the following, we begin with an algorithm overview and then flesh out the details.

Algorithm overview. Starting from an arbitrary point s ∈ P , we run BFS in the graph
Gλ. For each i = 0, 1, 2, . . ., let Pi be the set of points whose shortest path lengths from s

in Gλ are equal to i. In each i-th iteration, the algorithm computes Pi. Initially, P0 = {s}.
The algorithm stops once we have Pi = ∅, after which we check whether all points of P

have been discovered. If yes, then the BFS tree is a spanning tree of Gλ; otherwise, Gλ

is not connected. Consider the i-th iteration. Suppose Pi−1 is already known. For each
point p ∈ Pi−1, we wish to find the set S(p) of all points q ∈ P such that (1) q has not been
discovered yet, i.e., q ̸∈

⋃i−1
j=0 Pj ; (2) |p(0)q(0)| ≤ λ; (3) |p(1)q(1)| ≤ λ. To implement this

step efficiently, we use two techniques. First, we use a batched range searching technique of
Katz and Sharir [19] to obtain a compact representation of all points of P (0). The compact
representation can provide us with a collection N (p) of canonical subsets of P whose union
is exactly the subset of points q of P such that |p(0)q(0)| ≤ λ. Second, for each subset Q of
N (p), a data structure of Theorem 3 is constructed for Q(1) = {q(1) | q ∈ Q}, i.e., the set of
points of Q at their locations at time t = 1. Then, we apply the UDRE query with p(1) as
the query point; if the query returns a point q(1), then we know that q is in S(p) and we
delete q from Q (we also delete q from other canonical subsets of the compact representation
that contain q; the deletion guarantees that points of P already discovered by the BFS have
been removed from the canonical subsets of the compact representation) and applying the
UDRE query with p(1) again. We keep doing this until the UDRE query does not return any
point, and then we process the next subset of N (p) in the same way. In this way, S(p) will
be computed, which is a subset of Pi. Processing every point p ∈ Pi−1 as above will produce
Pi. The details of the algorithm are given below.

Preprocessing. Before running BFS, we conduct some preprocessing work.
First, using a batched range searching technique [19], we have the following lemma (which

is essentially Theorem 3.3 in [19]) for computing a compact representation of all pairs (p, q)
of points of P with |p(0)q(0)| ≤ λ.

▶ Lemma 4 (Theorem 3.3 [19]). We can compute a collection {Xr × Yr}r of complete
edge-disjoint bipartite graphs in O(n4/3 log n) time and space, where Xr, Yr ⊆ P , with the
following properties.
1. For any r, |p(0)q(0)| ≤ λ holds for any point p ∈ Xr and any point q ∈ Yr.
2. The number of these complete edge-disjoint bipartite graphs is O(n4/3), and both

∑
r |Xr|

and
∑

r |Yr| are bounded by O(n4/3 log n).
3. For any two points p, q ∈ P with |p(0)q(0)| ≤ λ, there exists a unique r such that p ∈ Xr

and q ∈ Yr.
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We refer to each Xr (resp., Yr) as a canonical subset of P . After the collection {Xr ×Yr}r

is computed, we further do the following. For each point p ∈ P , if p is in Xr, then we add
(the index of) Yr to N (p). By Lemma 4(3), subsets of N (p) are pairwise disjoint and the
union of them is exactly the subset of points q ∈ P with |p(0)q(0)| ≤ λ. Similarly, for each
point p ∈ P , if p is in Yr, then we add (the index of) Yr to M(p). The purpose of having
M(p) is that after a point p is identified in Pi, we will need to remove p from all subsets
Yr that contain p (so M(p) helps us to keep track of these subsets Yr). We can compute
N (p) and M(p) for all points p ∈ P in O(n4/3 log n) time since both

∑
r |Xr| and

∑
r |Yr|

are O(n4/3 log n) by Lemma 4(2). For the same reason, both
∑

p∈P |N (p)| and
∑

p∈P |M(p)|
are bounded by O(n4/3 log n).

In addition, for each canonical subset Yr, we construct the data structure of Theorem 3
for Yr(1) = {q(1) | q ∈ Yr}, denoted by D(Yr). Since

∑
r |Yr| = O(n4/3 log n), constructing

the data structures for all Yr can be done in O(n4/3 log2 n) time and O(n4/3 log n) space.
This finishes our preprocessing work, which takes O(n4/3 log2 n) time in total.

Implementing the BFS algorithm. We next implement the BFS algorithm as overviewed
above (we follow the same notation).

For each point p ∈ Pi−1, the key step is to compute the subset S(p) of P . We implement
this step as follows. For each Yr ∈ N (p), we perform a UDRE query with p(1) on the data
structure D(Yr). If the query returns a point q(1), then we add q to S(p) and delete q(1)
from the data structure D(Y ′

r ) for every Y ′
r ∈ M(q). Next, we perform a UDRE query with

p(1) on D(Yr) again and repeat the same process as above until the query does not return
any point. According to the definitions of N (p) and M(p) and also due to the deletions on
D(Y ′

r ) for all Y ′
r ∈ M(q), the union of S(p) thus computed for all p ∈ Pi−1 is exactly Pi.

This finishes the i-th iteration of the BFS algorithm.
For the time analysis, since both

∑
p∈P |N (p)| and

∑
p∈P M(p) are O(n4/3 log n), the

total number of UDRE queries and deletions on the data structures D(Yr) in the entire
algorithm is O(n4/3 log n), which together take O(n4/3 log2 n) time. Therefore, the BFS
algorithm runs in O(n4/3 log2 n) time.

The following theorem summarizes our result for the decision problem.

▶ Theorem 5. Given a value λ > 0, we can decide whether b(T ∗) ≤ λ in O(n4/3 log2 n) time,
and if yes, a moving spanning tree T of P with b(T ) ≤ λ can be found in O(n4/3 log2 n) time.

2.2 The optimization problem
As discussed in Section 1, by Observation 1, b(T ∗) is equal to |p(0)q(0)| or |p(1)q(1)| for two
moving points p, q ∈ P . As such, we can compute b(T ∗) by searching the two sets S(0) and
S(1) using our decision algorithm in Theorem 5, where S(t) is defined as {|p(t)q(t)| | p, q ∈ P}
for any t ∈ [0, 1]. To avoid explicitly computing S(0) and S(1), which would take Ω(n2) time,
we resort to the distance selection algorithm of Katz and Sharir [19], which can compute
the k-th smallest distance among all interpoint distances of a set of n points in the plane in
O(n4/3 log2 n) time for any k with 1 ≤ k ≤

(
n
2
)
. Combining the distance selection algorithm

and our decision algorithm, we can compute b(T ∗) in O(n4/3 log3 n) time by doing binary
search on the values of S(0) and S(1). The details are given in the proof of the following
theorem, which can be found in the full paper.

▶ Theorem 6. Given a set P of n moving points in the plane, we can compute a Euclidean
minimum bottleneck moving spanning tree for them in O(n4/3 log3 n) time.
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C

Figure 3 The cells in the gray region bounded by the blue curve are all neighbors of the red cell.

3 Deletion-only unit-disk range emptiness query data structure

In this section, we prove Theorem 3. We follow the notation in the theorem, e.g., Q, λ.
We use a unit-disk to refer to a disk with radius λ. For any point p in the plane, we use

Ap to denote the unit-disk centered at p. With this notation, a unit-disk range emptiness
(UDRE) query with query point p becomes the following: Determine whether Ap ∩ Q is
empty, and if not, return a point from Ap ∩ Q.

We use a grid Ψλ to capture the neighboring information of the points of Q, which
partitions the plane into square cells of side length λ/

√
2 by horizontal and vertical lines,

so that the distance of any two points in each cell is at most λ. For ease of discussion, we
assume that each point of Q is in the interior of a cell of Ψλ. Define Q(C) as the subset of
points of Q lying in a cell C. A cell C ′ of Ψλ is a neighbor of another cell C if the minimum
distance between a point of C and a point of C ′ is at most λ (see Fig. 3). For each cell C, we
use N(C) to denote the set of neighbors of C in Ψλ; for convenience, we let N(C) include
C itself. Note that the number of neighbors of each cell of Ψλ is O(1) and each cell is a
neighbor of O(1) cells (since C ′ ∈ N(C) if and only if C ∈ N(C ′)). Let C denote the set of
cells of Ψλ that contain at least one point of Q as well as their neighbors. Note that C has
O(n) cells. By the definition of C, the following observation is self-evident.

▶ Observation 7. For any point p in the plane, if p is not in any cell of C, then Ap ∩ Q = ∅.

The grid technique was widely used in algorithms for unit-disk graphs [12,27,29,30]. The
following lemma has been proved in [26].

▶ Lemma 8 ([26]).
1. The set C, along with the subsets Q(C) and N(C) for all cells C ∈ C, can be computed in

O(n log n) time and O(n) space.
2. With O(n log n) time and O(n) space preprocessing, given any point p in the plane, we

can do the following in O(log n) time: Determine whether p is in a cell C of C, and if
yes, return C and the set N(C).

Note that we do not compute the entire grid Ψλ but only compute the information in
Lemma 8. We next prove Theorem 3 using the information computed in Lemma 8.

Consider a UDRE query with a query point p. By Lemma 8(2), we can determine whether
p is in a cell C ∈ C. If not, by Observation 7, we are done with the query. Below we assume
that p is in a cell C ∈ C. In this case, Ap ∩ Q ̸= ∅ if and only if Ap ∩ Q(C ′) ̸= ∅ for a cell
C ′ ∈ N(C). As such, as |N(C)| = O(1), it suffices to check for each cell C ′ ∈ N(C), whether
Ap ∩ Q(C ′) = ∅. In this way, we reduce our original problem for Q to Q(C ′). As such, below
we construct a data structure DC(C ′) for Q(C ′) with respect to C. Note that we also need
to handle deletions for Q(C ′). Depending on whether C ′ = C, there are two cases.
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If C ′ = C, then all points of Q(C ′) are in the disk Ap and thus we can return an arbitrary
point of Q(C ′) as the answer to the UDRE query. To support the deletions on Q(C ′), we
build a balanced binary search tree T (C ′) for all points of Q(C ′) sorted by their indices (we
can arbitrarily assign indices to points of Q) as our data structure DC(C ′). In this way,
deleting a point from DC(C ′) can be done in O(log n) time. Therefore, in the case where
C ′ = C, we can perform each UDRE query and each deletion in O(log n) time.

In what follows, we assume that C ′ ≠ C, which is our main focus. In this case, C ′ and
C are separated by an axis-parallel line. Without loss of generality, we assume that they
are separated by a horizontal line ℓ such that C ′ is above ℓ and C is below ℓ. We further
assume that ℓ contains the upper edge of C. The rest of this section is organized as follows.
In Section 3.1, we first present some observations which our approach is based on. We
describe our preprocessing algorithm for Q(C ′) in Section 3.2 while handling the UDRE
queries and deletions is discussed in Section 3.3. Section 3.4 finally summarizes everything.
In the following, we let m = |Q(C ′)|.

3.1 Observations
Our basic idea is to maintain the portion U inside C of the lower envelope of the unit-disks
centered at points of Q(C ′). Then, Ap ∩ Q(C ′) ̸= ∅ if and only if p is above U . Determining
whether p is above U can be easily done by binary search because U is x-monotone. To handle
deletions, we borrow an idea from Hershberger and Suri [17] for maintaining the convex hull
of a semi-dynamic (deletion-only) set of points in the plane. To make our approach work, we
first present some observations in this subsection.

Recall that Aq denotes a unit-disk centered at point q. We use ∂Aq to denote the
boundary of Aq, which is a unit-circle. Let ξq = ∂Aq ∩ C, i.e., the portion of the circle ∂Aq

inside C. Note that it is possible that ξq = ∅, in which case either Aq ∩ C = ∅ or C ⊆ Aq.
If Aq ∩ C = ∅, then |pq| > λ holds for all points p ∈ C and thus q can be ignored from
constructing our data structure DC(C ′). If C ⊆ Aq, then |pq| ≤ λ always holds for all points
p ∈ C and thus we can process all such points q in the same way as the above case C ′ = C.
As such, in the following we assume that ξq ̸= ∅ for every point q ∈ Q(C ′). Because the
radius of Aq is λ while the side-length of C is λ/

√
2, ξq consists of at most two arcs of ∂Aq.

Further, ξq has exactly two arcs only if ∂Aq intersects the lower edge of C. For simplicity of
discussion, we remove the lower edge from C and make C a bottom-unbounded rectangle
(i.e., C’s upper edge does not change, its two vertical edges extend downwards to the infinity,
and its lower edge is removed); so now C has three edges. In this way, ξq = ∂Aq ∩ C is
always a single arc.

Since q is above the horizontal line ℓ, which contains the upper edge of C, ξq must be
x-monotone. This means the lower envelope U of Ξ = {ξq | q ∈ Q(C ′)} is also x-monotone
(see Fig. 4). We will show that U can be computed in linear time by a Graham’s scan style
algorithm once the arcs of Ξ are ordered in a certain way. To define this special order, we
first introduce some notation below.

Recall that the boundary ∂C consists of three edges. Let l∗ denote the lower endpoint
of the left edge of C at −∞; similarly, let r∗ denote the lower endpoint of the right edge
of C (see Fig. 4). For any two points a and b on ∂C, we say that a is left of b if a is
counterclockwise from b around C (i.e., if we traverse from l∗ to r∗ along ∂C, a will be
encountered earlier than b). For each arc ξq, if a and b are its two endpoints and a is left
of b (see Fig. 4), then we call a the left endpoint of ξq and b the right endpoint. For ease of
exposition, we make a general position assumption that no two arcs of Ξ share a common
endpoint. The special order mentioned above for the Graham’s scan style algorithm is the
order of arcs of Ξ by their right endpoints on ∂C, called right-endpoint left-to-right order.
To justify the correctness, we prove some properties for the lower envelope U below.
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ℓ

C

l∗ r∗

a

b

Figure 4 Illustrating the lower envelope (the
red curve).

ℓ

C

l∗ r∗

Figure 5 Illustrating a lower envelope (the red
curve) that has two connected components.

Suppose we traverse on ∂C from l∗ until we meet U , and then we traverse on U until
we come back on ∂C again. We keep traversing. We may meet U again if U has multiple
connected components (see Fig. 5). We continue in this way until we arrive at r∗. The
order of the arcs of Ξ that appear on U encountered during the above traversal is called the
traversal order of U . The following is a crucial lemma that our algorithm relies on. The proof
can be found in the full paper.

▶ Lemma 9. Every arc of Ξ has at most one portion on U and the traversal order of U is
consistent with the right-endpoint left-to-right order of Ξ (i.e., if an arc ξ appears in the front
of another arc ξ′ in the traversal order of U , then the right endpoint of ξ is to the left of that
of ξ′).

3.2 Preprocessing
We perform the following preprocessing algorithm for Q(C ′). Due to Lemma 9, we are able
to extend to our problem a technique from Hershberger and Suri [17] for maintaining the
convex hull for a semi-dynamic (deletion-only) set of points in the plane (in the dual plane,
the problem is to maintain the lower/upper envelope for a semi-dynamic set of lines). Recall
that m = |Q(C ′)|.

We first compute the arcs of Ξ and sort them by their right endpoints from left to right
on ∂C. Let T be a complete binary tree whose leaves correspond to arcs in the above order.
For each node v, let Ξ(v) denote the subset of arcs in the leaves of the subtree of T rooted
at v.

For any subset Ξ′ of Ξ, let U(Ξ′) denote the lower envelope of the arcs of Ξ′. We use
a tree T (Ξ′) (which can be considered as a subtree of T ) to represent U(Ξ′). Initially, we
have the tree T (Ξ), and later T (Ξ) is modified due to point deletions from Q(C ′) (and
correspondingly arc deletions from Ξ). The tree T (Ξ′) is defined as follows. For each arc
ξ ∈ Ξ′, we copy the leaf of T storing ξ along with all ancestors of the leaf into T (Ξ′). If
we define Ξ′(v) = Ξ(v) ∩ Ξ′ for any node v of T , then v is copied into T (Ξ′) if and only if
Ξ′(v) ̸= ∅. Later we will add some additional node-fields to T (Ξ′) to represent the lower
envelope U(Ξ′). We call T (Ξ′) an envelope tree.

We wish to have each node v of T (Ξ′) represent the lower envelope U(Ξ′(v)) of arcs of
Ξ′(v), i.e., arcs stored in the leaves of the subtree of T (Ξ′) rooted at v. We add a node-field
arcs(v) for that purpose. Storing the entire lower envelope U(Ξ′(v)) at each arcs(v) of T (Ξ′)
leads to superlinear total space. To achieve O(m) space, we use the following standard
approach (which has been used elsewhere, e.g., [17, 23]): For each arc ξ stored in a leave
v ∈ T (Ξ′), ξ is stored only at arcs(u) for the highest ancestor u of v in T (Ξ′) such that ξ
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ℓ

C

U(Ξ′(u)) U(Ξ′(w))

Figure 6 Illustrating Lemma 10: The red (resp., blue) arcs are those from Ξ′(u) (resp., Ξ′(w)).
There is only one intersection between U(Ξ′(u)) and U(Ξ′(w)).

contributes an arc in the lower envelope U(Ξ′(u)). Arcs of arcs(v) in each node v of T (Ξ′)
are stored in a doubly linked list. Note that if v is the root of T (Ξ′), then arcs(v) stores the
whole lower envelope U(Ξ′) of Ξ′.

The following lemma, which can be easily obtained from Lemma 9, is crucial to the
success of our approach. The proof can be found in the full paper.

▶ Lemma 10. For each node v ∈ T (Ξ′), the lower envelopes U(Ξ′(u)) and U(Ξ′(w)) have at
most one intersection, where u and w are the left and right children of v, respectively (see
Fig. 6).

By Lemma 10, we add another node-field X(v) for each node v ∈ T (Ξ′) to store the two
arcs that define the intersection of U(Ξ′(u)) and U(Ξ′(w)), where u and w are the left and
right children of v in T (Ξ′), respectively. If U(Ξ′(u)) and U(Ξ′(w)) do not intersect, then
X(v) stores the rightmost arc of U(Ξ′(u)) and the leftmost arc of U(Ξ′(w)). As will be seen
later in Section 3.3, the two node-fields X(v) and arcs(v) in T (Ξ′) allow us to efficiently
maintain the envelope tree T (Ξ′) subject to deletions of arcs. We next have the following
lemma for constructing T (Ξ) initially.

▶ Lemma 11. Given the set Ξ of m arcs, we can build the envelope tree T (Ξ) in O(m log m)
time.

Proof. First of all, we can construct the tree T in O(m log m) time by sorting the arcs of Ξ
by their right endpoints on ∂C. The rest of the work is thus to compute the fields arcs(v)
and X(v) for all nodes v of T . This can be done in a bottom-up manner as follows.

At the outset, we have arcs(v) = Ξ(v) = {ξ} for each leaf node v ∈ T , where ξ is the arc
stored at v. We also set X(v) to null. Next, we compute arcs(·) and X(·) for other nodes
by merging the lower envelopes of their children. Specifically, consider a node v whose left
and right children are u and w, respectively. We assume that arcs(u) and arcs(w) store
the lower envelopes U(Ξ(u)) and U(Ξ(w)) in their traversal orders, respectively. The first
thing is to compute the lower envelope U(Ξ(v)). By Lemma 10, U(Ξ(u)) and U(Ξ(w)) have
at most one intersection. Since each lower envelope is x-monotone, U(Ξ(v)), which is also
the lower envelope of U(Ξ(u)) and U(Ξ(w)), can be computed by a standard line sweep
procedure. Specifically, a vertical sweeping line ℓ′ sweeps the plane from left to right. During
the sweeping, we maintain the two arcs of U(Ξ(u)) and U(Ξ(w)) intersecting ℓ′, respectively.
An event happens if ℓ′ hits a vertex of either U(Ξ(u)) or U(Ξ(w)). The sweeping procedure
takes O(|Ξ(v)|) time (note that Ξ(v) = Ξ(u) ∪ Ξ(w)).

If U(Ξ(u)) and U(Ξ(w)) do not have any intersection, then U(Ξ(v)) is just the concate-
nation of U(Ξ(u)) and U(Ξ(w)), i.e., we concatenate arcs(u) and arcs(w) and store the
result at arcs(v); we also need to reset both arcs(u) and arcs(w) to null. In addition,
X(v) is set to including the rightmost arc of U(Ξ(u)) and the leftmost arc of U(Ξ(w)).
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If U(Ξ(u)) and U(Ξ(w)) have an intersection, say, a∗, then let ξu ∈ U(Ξ(u)) and ξv ∈
U(Ξ(v)) be the two arcs that intersect at a∗. We concatenate the part of U(Ξ(u)) left
to a∗ and the part of U(Ξ(w)) right to a∗ (ξu and ξw are cut off at a∗); the result is
U(Ξ(v)) and we store it into arcs(v). Further, arcs left to a∗ (including ξu) in U(Ξ(u))
and arcs right to a∗ (including ξw) in U(Ξ(w)) are removed from arcs(u) and arcs(w),
respectively. In addition, X(v) is set to {ξu, ξw}.

As such, computing the node-fields of v takes O(|Ξ(v)|) time. Doing this for all nodes
v in the same level of the tree takes O(m) time as the union of Ξ(v) of all nodes v in the
same level is exactly Ξ. Therefore, the construction of the envelope tree T (Ξ) can be done in
O(m log m) time in total. ◀

The above finishes our preprocessing for the points Q(C ′), which takes O(m log m) time
and O(m) space. Our preprocessing builds the envelope tree T (Ξ), which is our data structure
DC(C ′). Once points from Q(C ′) are deleted we use Ξ′ to refer to the subset of Ξ defined by
the remaining points and use T (Ξ′) to refer to the corresponding envelope tree.

3.3 Handling UDRE queries and point deletions
We now discuss how to handle the UDRE queries and point deletions.

UDRE queries. Handling the UDRE queries is relatively easy. Consider a query point p

in the cell C. We wish to determine whether Ap ∩ Q(C ′) = ∅, and if not, return a point
q ∈ Ap ∩ Q(C ′). Let Ξ′ be the set of arcs defined by the points in the current set Q(C ′). As
discussed before, it suffices to determine whether p is above the lower envelope U(Ξ′). To
this end, since U(Ξ′) is x-monotone, let a and b be the two adjacent vertices of U(Ξ′) such
that p’s x-coordinate is between those of a and b. Let ξq be the arc that contains the portion
of U(Ξ′) between a and b, where q is the center of the arc (and thus q ∈ Q(C ′)). As such,
p is above U(Ξ′) if and only if p is above ξq (i.e., p is inside the unit-disk Aq). If yes, then
q ∈ Ap ∩ Q(C ′) and thus we can return q as the answer to the query. Therefore, it suffices to
compute the arc ξq. To this end, one may attempt to perform binary search on the vertices
of U(Ξ′) to find a and b first. However, although the whole U(Ξ′) is stored in arcs(v) at
the root v, arcs of arcs(v) are stored in a doubly linked list, which does not support binary
search. To circumvent the issue, we can actually perform binary search using the node-fields
X(·) of T (Ξ′) as follows.

Observe that each vertex of U(Ξ′) appears as the intersection of the two arcs of X(v) for
some node v ∈ T (Ξ′). The subtree of T (Ξ′) rooted at any node v represents U(Ξ′(v)) by the
intersections of the arcs of X(·) stored at its nodes. To find ξq, starting from the root, for
each node v of T (Ξ′), we compute the intersection a∗ of the arcs of X(v). If the x-coordinate
of p is smaller or equal to that of a∗, we proceed on the left subtree of v recursively; otherwise,
we proceed on the right subtree. At the end we will reach a leaf and the arc stored at the
leaf is ξq. As such, ξq can be found in O(log m) time.

Therefore, each UDRE query can be answered in O(log m) time.

Deletions. Next, we discuss point deletions. To delete a point q from Q(C ′), it boils down
to deleting the arc ξq defined by q from the envelope tree T (Ξ′). The next lemma provides
an algorithm for this.

▶ Lemma 12. Deleting an arc from the envelope tree T (Ξ′) can be done in O(log m) amortized
time.

MFCS 2022



82:12 Computing the Minimum Bottleneck Moving Spanning Tree

ξu ξw ξu ξw

ξ′u

ξ′w

Before deleting ξ = ξw After deleting ξ = ξw

Figure 7 Illustrating the deletion of ξ = ξw. The red (resp., blue) arcs are those from Ξ′(u)
(resp., Ξ′(w)).

Proof. Let ξ be the arc we wish to delete from T (Ξ′) and let z be the leaf node of the tree
storing ξ. To delete ξ, we need to update arcs(·) and X(·) for all ancestors of z.

The algorithm is recursive. Starting from the root, for each node v, we process it by
calling Delete(ξ, v) as follows. We assume that arcs(v) now stores the whole lower envelope
U(Ξ′(v)), which is true initially when v is the root. Let u and w denote the left and right
children of v, respectively. We assume that the leaf z is in the right subtree of v since
the other case is symmetric. Let X(v) = {ξu, ξw}, with ξu ∈ U(Ξ′(u)) and ξw ∈ U(Ξ′(w)),
i.e., the intersection of ξu and ξw, denoted by a∗, is the intersection between U(Ξ′(u)) and
U(Ξ′(w)). We first restore U(Ξ′(u)), by concatenating the part of arcs(v) left to a∗ and
arcs(u). Restoring U(Ξ′(w)) can be done in a similar way. Depending on whether w = z,
there are two cases.

If w is the leaf z (which is the base case of our recursive algorithm), then arcs(w) = {ξ}
and we reset the right child of v and field X(v) to null. We also reset arcs(v) = arcs(u) and
arcs(u) = null.

If w is not z, then to update arcs(v) and X(v), observe that if ξ ̸∈ X(v), then deleting ξ

does not affect the intersection between U(Ξ′(u)) and the new lower envelope U(Ξ′(w) \ {ξ}),
i.e., X(v) does not change. Hence, if ξ ̸∈ X(v), we proceed on w by calling Delete(ξ, w). After
Delete(ξ, w) is returned, the new U(Ξ′(w) \ {ξ}) is stored in arcs(w) and we cut U(Ξ′(u))
and U(Ξ′(w) \ {ξ}) using X(v) to obtain arcs(v) in the same way as the tree construction
algorithm in Lemma 11, which takes O(1) time as each arcs(·) is stored by a doubly linked
list. In the following, we discuss the case where ξ ∈ X(v) = {ξu, ξw}.

Since ξ is in the right subtree of v, ξ must be ξw. In this case, X(v) will be changed after
the deletion of ξ and thus we need to compute the new arcs that define the intersection of
U(Ξ′(u)) and the new lower envelope U(Ξ′(w) \ {ξ}) (see Fig. 7). We proceed on w by calling
Delete(ξ, w). After Delete(ξ, w) is returned, the new U(Ξ′(w) \ {ξ}) is stored in arcs(w). Let
{ξ′

u, ξ′
w} be the new X(v) to be computed, with ξ′

v and ξ′
w in U(Ξ′(u)) and U(Ξ′(w) \ {ξ}),

respectively. Observe that ξ′
u cannot lie to the left of ξu in arcs(u) while ξ′

w must lie on the
part of the new U(Ξ′(w) \ {ξ}) between the two old neighbors of ξ (=ξw) on U(Ξ′(w)) (see
Fig. 7). As such, we compute ξ′

u and ξ′
w using a line sweep procedure that is similar to the

algorithm in Lemma 11, but to make the algorithm faster, due to the above observation
it suffices to start the sweeping line from the left of the following two arcs: ξu and the
left neighbor of ξ in the original lower envelope U(Ξ′(w)). We stop the sweeping once the
intersection of U(Ξ′(u)) and U(Ξ′(w) \ {ξ}) is found, after which, we reset arcs(v) as well as
arcs(u) and arcs(w) in constant time in a way similar to the algorithm in Lemma 11.

The pseudocode summarizing the algorithm can be found in the full paper.
For the time analysis, the time we spend on each node v is O(1) except the line sweep

procedure for computing ξ′
u and ξ′

w in the case where ξ ∈ X(v). The procedure takes time
O(1 + ku + kw), where ku is the number of arcs between ξu and ξ′

u in U(Ξ′(u)) and kw is
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the number of arcs between ξw and ξ′
w in U(Ξ′(w)). Observe that the arcs between ξu and

ξ′
u in U(Ξ′(u)) are moved up from node u to node v after the deletion of ξ (i.e., they were

originally stored at arcs(u) but are stored at arcs(v) after the deletion). Similarly, the arcs
between ξw and ξ′

w in U(Ξ′(w)) are moved up to w from some lower levels after the deletion
(see Fig. 7). Because each arc can be moved up at most O(log m) times for all m point
deletions of Q(C ′), the total sum of ku + kw for all deletions is bounded by O(m log m). As
such, each deletion takes O(log m) amortized time. ◀

3.4 Putting everything together
The above shows that we can build a data structure DC(C ′) for the points of Q(C ′) with
respect to C in O(m log m) time and O(m) space, such that each UDRE query with a query
point in C can be answered in O(log m) time and deleting a point from Q(C ′) can be handled
in O(log m) amortized time.

To solve our original problem on Q, i.e., proving Theorem 3, for each cell C ∈ C, we build
data structures DC(C ′) for all cells C ′ ∈ N(C). Because |N(C)| = O(1) for every C ∈ C and
each cell C ′ is in N(C) for a constant number of cells C ∈ C, the total space for all these
data structures DC(C ′) is O(n) and the total preprocessing time is O(n log n).

For each UDRE query with a query point p, we first use Lemma 8(2) to determine whether
p is in a cell of C. If not, then by Observation 7, Ap ∩ Q = ∅ and thus we are done with the
query. Otherwise, Lemma 8(2) will return the cell C that contains p as well as N(C). Then,
for each C ′ ∈ N(C), we solve the query using the data structure DC(C ′). The total query
time is O(log n) as |N(C)| = O(1).

To delete a point q from Q, using Lemma 8(2) we first find the cell C ′ that contains q

as well as N(C ′). Notice that N(C ′) exactly consists of those cells C with C ′ ∈ N(C). We
then delete q from the data structure DC(C ′) for each C ∈ N(C ′). As |N(C ′)| = O(1), the
total deletion time is O(log n) amortized time. This proves Theorem 3.

4 Conclusion

In this paper, we presented an O(n4/3 log3 n) time algorithm for computing a Euclidean
minimum bottleneck moving spanning tree for a set of n moving points in the plane, which
significantly improves the previous O(n2) time solution [2]. To solve the problem, we first
solved the decision problem in O(n4/3 log2 n) time. This is done by reducing it to the problem
of computing a common spanning tree in two unit-disk graphs. To avoid computing the
unit-disk graphs explicitly, which would cost Ω(n2) time, we used a batched range searching
technique [19] to obtain a compact representation for searching one graph, and derived a
semi-dynamic (deletion-only) unit-disk range emptiness query data structure for searching
the other graph. We believe our data structure is interesting in its own right and will certainly
find applications elsewhere. We finally remark that although in our problem each moving
point is required to move linearly with constant velocity, our algorithm still works for other
types of point movements as long as Observation 1 holds.
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Abstract
The Traveling Tournament Problem (TTP) is a well-known benchmark problem in the field of
tournament timetabling, which asks us to design a double round-robin schedule such that each pair
of teams plays one game in each other’s home venue, minimizing the total distance traveled by all
n teams (n is even). TTP-k is the problem with one more constraint that each team can have at
most k consecutive home games or away games. The case where k = 3, TTP-3, is one of the most
investigated cases. In this paper, we improve the approximation ratio of TTP-3 from (1.667 + ε) to
(1.598 + ε), for any ε > 0. Previous schedules were constructed based on a Hamiltonian cycle of the
graph. We propose a novel construction based on triangle packing. Then, by combining our triangle
packing schedule with the Hamiltonian cycle schedule, we obtain the improved approximation ratio.
The idea of our construction can also be extended to k ≥ 4. We demonstrate that the approximation
ratio of TTP-4 can be improved from (1.750+ε) to (1.700+ε) by the same method. As an additional
product, we also improve the approximation ratio of LDTTP-3 (TTP-3 where all teams are allocated
on a straight line) from 4/3 to (6/5 + ε).
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1 Introduction

In the field of the tournament schedule, the traveling tournament problem (TTP) is a widely
known benchmark problem that was first systematically introduced in [10]. This problem
aims to find a double round-robin tournament satisfying some constraints, minimizing the
total distance traveled by all participant teams. In a double round-robin tournament of n
teams, each team will play 2 games against each of the other n− 1 teams, one at its home
venue and one at its opponent’s home venue. Additionally, each team should play one game
a day, all games need to be scheduled on 2(n− 1) consecutive days, and so there are exactly
n/2 games on each day. According to the definition, we know that n is always even. For
TTP, we have the following two basic constraints or assumptions on the double round-robin
tournament.
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Traveling Tournament Problem (TTP).
No-repeat: Two teams cannot play against each other on two consecutive days.
Direct-traveling: Before the first game, all teams are at home, and they will return home
after the last game. Furthermore, a team travels directly from its game venue on ith day
to its game venue on (i+ 1)th day.

TTP-k, a well-known variant of TTP, is to add the following constraint on the maximum
number of consecutive home games and away games.

Bounded-by-k: Each team can have at most k consecutive home games or away games.

The smaller the value of k, the more frequently a team has to return home. By contrast,
if k is very large, say k = n− 1, then this constraint loses meaning, and TTP-k becomes TTP
where a team can schedule their travel distance as short as that in the traveling salesman
problem (TSP).

A weight function w on the complete undirected graph is called a metric if it satisfies the
symmetry and triangle inequality properties: w(a, b) = w(b, a) and w(a, c) ≤ w(a, b) +w(b, c)
for all a, b, c ∈ V .

The input of TTP-k contains a complete graph where each vertex is a team, and the
weight between two vertices u and v is the distance from the home of team u to the home
of team v. In this paper, we only consider the case when the weight function w is a metric.
Due to page limitations, the proofs of some lemmas and theorems marked with ‘*’ may be
omitted or incomplete. The full proofs can be found in the full version of this paper.

1.1 Related Work
TTP and TTP-k are difficult optimization problems. The NP-hardness of TTP and TTP-k
with k ≥ 3 has been established [2, 24, 5]. Although the hardness of TTP-2 is still not formally
proved, it is believed that TTP-2 is also hard since it is also not easy to construct a feasible
solution to it. In the literature there is a large number of contributions on approximation
algorithms [25, 28, 31, 30, 6, 21, 29, 18, 27, 16, 17] and heuristic algorithms [11, 20, 1, 9, 13, 14].

For heuristic algorithms, most known works are concerned with the case of k = 3. Since
the search spaces of TTP and TTP-k are usually very large, many instances of TTP-3 with
more than 10 teams in the online benchmark [26, 3] have not been completely solved even by
using high-performance machines.

In terms of approximation algorithms, most results are based on the assumption that
the distance holds the symmetry and triangle inequality properties. This is natural and
practical in the sports schedule. For k = 2, one significant contribution to TTP-2 was done
by Thielen and Westphal [25]. They proposed a (1 + 16/n)-approximation algorithm for n/2
being even and a (3/2 + O(1/n))-approximation algorithm for n/2 being odd. Currently,
approximation ratios for these two cases have been improved to (1 + 3/n) and (1 + 12/n),
respectively [30, 31]. For k = 3, the first approximation algorithm, proposed by Miyashiro et
al., admits a 2 +O(1/n) approximation ratio using the Modified Circle Method [21]. Then,
the approximation ratio was improved to 5/3 + O(1/n) by Yamaguchi et al. [29]. Their
approximation algorithm also works for 3 < k ≪ n. For k = 4, the ratio is 1.750 +O(1/n)
and for 4 < k ≪ n, the ratio is (5k − 7)/(2k) + O(k/n) [29]. For k = Θ(n), Westphal and
Noparlik proposed a 5.875 approximation algorithm for any choice of k ≥ 4 and n ≥ 6 [27],
and Imahori et al. gave a 2.75 approximation algorithm for k = n− 1 where they also proved
the approximation ratio can be further improved to 2.25 if the optimal TSP is given [18].
The current best approximation ratio for k = 3 is still 5/3 +O(1/n) [29].
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We refer the readers to [3] for more variants of TTP (including the traveling tournament
problem with predefined venues, the time-relaxed traveling tournament problem, etc.) with
detailed benchmarks for each.

1.2 Our Results

In this paper, we consider TTP-k with the cases of k = 3 and k = 4. Our contributions can
be summarized as follows.

We mainly focus on TTP-3. Firstly, we analyze the structural properties in more detail,
which leads us to strengthen some of the current-known lower bounds and propose several
new ones. Secondly, we design an approximation algorithm that improves the approximation
ratio from (5/3 + ε) to (139/87 + ε). Our algorithm consists of two constructions. The
first construction is based on the Hamiltonian cycle, which is a well-known method. The
Hamiltonian cycle used is commonly generated by the Christofides-Serdyukov algorithm,
while we propose a new Hamiltonian cycle that uses the minimum weight perfect matching.
The second construction proposed by us is based on triangle packing which can be seen as a
generalization of the matching packing schedule in TTP-2.

For a special case of TTP-3 where all teams are located on a line, Linear Distance TTP-3
(LDTTP-3), we prove that the approximation ratio of our triangle packing construction can
achieve (6/5 + ε), which improves the previous approximation ratio of 4/3 [15].

Finally, we extend our method to TTP-4 and show that we can improve the approximation
ratio from (7/4 + ε) to (17/10 + ε).

2 Preliminaries

We will always use n to denote the total number of teams in the problem. The set of n teams
is denoted by V = {t1, t2, . . . , tn}. Recall that n is even. For TTP-3, there are three cases
of n we consider: n ≡ 0 (mod 6), n ≡ 2 (mod 6) and n ≡ 4 (mod 6). Due to the different
structural properties, these three cases have to be handled separately. We mainly describe
the case of n ≡ 0 (mod 6) due to page limitations. So from here on, we assume that n is a
number divisible by 6.

We use G = (V,E) to denote the complete graph on the n vertices representing the n
teams. There is a positive weight function w : E → R≥0 on the edges of G. We often write
w(u, v) to mean the weight of the edge uv, instead of w(uv). Note that w(u, v) would be the
same as the distance between the home of team u and the home of team v. For any weight
function w : X → R≥0, we extend it to subsets of X. Define w(Y ) =

∑
x∈Y w(x) for Y ⊆ X.

The weight of a minimum weight spanning tree in G is denoted by MST(G). We use δ(u)
to denote the set of edges incident on u in G. We also use deg(u) to denote the weighted degree
of a vertex. That is the total weight of all edges incident on u in G, i.e., deg(u) = w(δ(u)).
We also let ∆ to be the sum of the weighted degrees, i.e., ∆ =

∑
u∈V deg(u) = 2w(E).

A cycle on k vertices is called a k-cycle. A triangle uvw is a 3-cycle on three different
vertices {u, v, w}. Two subgraphs or sets of edges are vertex-disjoint if they do not share
a common vertex. A triangle packing in G, denoted by T , is a set of edges such that each
component is a triangle, and all vertices are covered. Equivalently, it can be seen as the edges
of m vertex-disjoint triangles. Similarly, a P3 path is a simple path on three different vertices
{u, v, w}, which can be represented by u-v-w. A P3 path packing in G is a set of edges such
that every component is a P3 path, and each vertex is covered. We can obtain a triangle
packing from a P3 packing by connecting the two non-adjacent vertices in each component.
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Let m = n
3 , and then m is an even number. For a fixed triangle packing T of G, let the

components be u1, . . . , um. U = {u1, . . . , um} is a partition of V . Each u ∈ U is referred
as a super-team. We define a complete graph H = (U,F ) on U . We will also have a cost
function c(u, v) defined on vertices in U . It is c(u, v) =

∑
u′∈u,v′∈v w(u′, v′) for each edge

uv ∈ F . For simplicity we also define c(u, u) = 0. Despite not using this property, it is worth
noting that the cost function c is also a metric.

We also define c(u) for u ∈ U to be the same as w(a, b) + w(b, c) + w(c, a) for a, b, c ∈ u.
Note that c(U) =

∑
u∈U c(u) = w(T ). We can easily get

1
2∆ = w(E) = c(F ) + c(U) = c(F ) + w(T ). (1)

The remaining parts of the paper are organized as follows. In Section 3, we focus on
TTP-3. Specifically, in Section 3.1, we introduce some basic notations and propose several
new lower bounds. In Section 3.2, we give a brief introduction to the well-known construction
based on the Hamiltonian cycle. In Section 3.3, we propose a novel construction based on
triangle packing. Although these two constructions cannot make any improvement separately,
in Section 3.4, we show that together they can guarantee an improved approximation ratio
for TTP-3. In Section 4, we analyze the approximation ratio of our algorithm for LDTTP-3.
In Section 5, we extend our methods and prove that we can also improve the approximation
ratio for TTP-4.

3 TTP-3

3.1 The Independent Lower Bounds
For TTP and TTP-k, a well-known method to obtain the lower bounds is to use an independent
relaxation [4, 10]. The basic idea is to obtain a lower bound on the traveling distance of each
team independently without considering the feasibility of other teams and then sum them
together. Although there exist many independent lower bounds for TTP-3 [21, 29, 27], we
can not use them directly to get our result. We are interested in a stronger bound. Before
we make some observations on the independent lower bounds, we first need to explore some
properties of TTP-k.

For TTP-k, each team needs to visit each other team’s home once in the tournament.
A road trip of a team v is a simple cycle starting and ending at v. A k-itinerary of v, is a
connected subgraph of G that consists of road trips with each simple cycle of length at most
k + 1, and each vertex other than v in V has degree 2.

For TTP-3, the length of each road trip is at most 4. For simplicity, we omit k when k is
implicit. In the remainder of this section, k = 3.

An itinerary is optimal for a team if it is the itinerary of minimum weight.
Considering an optimal itinerary Iv for team v, we will use w(Iv) to denote the weight

of the optimal itinerary for team v. Then, ψ =
∑

v∈V w(Iv) is a simple independent lower
bound for the minimum weight solution of TTP-3. Note that this lower bound was also used
in the experiment [10]. However, it is NP-hard to compute w(Iv). Hence, we want to find an
alternative lower bound for each team’s optimal itinerary.

When n ≡ 0 (mod 6) and n ≡ 4 (mod 6), we can prove that there always exists an
optimal itinerary with no 2-cycles.

▶ Lemma 1. For TTP-3 with the cases of n ≡ 0 (mod 3) and n ≡ 1 (mod 3), there exists
an optimal itinerary with no 2-cycles for each team.
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Proof. Consider an optimal itinerary Iv of team v with the minimum number of 2-cycles.
Assume Iv contains a 2-cycle. Since all cycles share the vertex v, by the triangle inequality,
we can get a 3-cycle by shortcutting two 2-cycles, and the 3-cycle has a weight no greater
than the sum weight of the two 2-cycles. This shows that Iv contains exactly one 2-cycle.
Similarly, by the triangle inequality, a 4-cycle can be obtained by shortcutting one 2-cycle
and one 3-cycle without increasing the total weight. This shows there cannot be any 3-cycle.
Thus, there exists only one 2-cycle, and the rest of the cycles are all 4-cycles. Thus, we will
get n ≡ 2 (mod 3), a contradiction to n ≡ 0 (mod 3) or n ≡ 1 (mod 3). ◀

3.1.1 Bounds on optimal itinerary
For this subsection, we fix a single team v and start to consider the optimal itinerary Iv for
this team. We will write I as Iv to simplify the notation within this subsection. We will give
a more refined analysis than previous results [29].

Recall that we consider the case of n ≡ 0 (mod 6) here. By Lemma 1, there exists
an optimal itinerary I with no 2-cycles, and it consists of a set of 4-cycles and a set of
3-cycles. Hence we will partition I into two sets of edges I3 and I4, where I3 consists of all
3-cycles and I4 consists of all 4-cycles. Define 0 ≤ γ ≤ 1, such that w(I4) = γw(I), and so
w(I3) = (1 − γ)w(I). Hence γ measures the proportion of weights of the 4-cycles compared
to the entire itinerary. The edges in G incident to v in I are called home-edges, which is
the same as δ(v) ∩ I. Let a and b be the proportion of weights of the home-edges in I4 and
I3, respectively. Namely, aw(I4) = w(I4 ∩ δ(v)) is the weight of all home-edges in I4, and
bw(I3) = w(I3 ∩ δ(v)) is the weight of all home-edges in I3.

Now, we are ready to give some stronger bounds for the optimal itinerary.

▶ Lemma 2. Let C be a minimum weight Hamiltonian cycle in G. Then w(I) ≥ w(C).

Proof. According to the definition of the itinerary, we know that each vertex in I has an
even degree. Then, we can get an Euler tour in I and obtain a Hamiltonian cycle in graph G
by shortcutting I. Hence w(I) ≥ w(C). ◀

We also recall the following result.

▶ Lemma 3 ([7, 23]). For a graph G, let C be a minimum weight Hamiltonian cycle,
and C ′ be a Hamiltonian cycle obtained by the Christofides-Serdyukov algorithm. Then
w(C ′) ≤ MST(G) + 1

2w(C).

For ease of proofs in the rest of the section, we also define V3 and V4 that partition the
vertices in V \ {v}, where V3 consists of all vertices in I3 except v, and V4 consists of all
vertices in I4 except v. Our results are mostly simple counting arguments.

▶ Lemma 4. (1 − 1
2γ + aγ)w(I) ≥ ( 1

2 + a)γw(I) + b(1 − γ)w(I) ≥ deg(v).

Proof. By the definition of b, we have b ≤ 1. So, we have (1− 1
2γ+aγ)w(I) = ( 1

2 +a)γw(I)+
(1 − γ)w(I) ≥ ( 1

2 + a)γw(I) + b(1 − γ)w(I). The left inequality holds. Now we show the
right inequality.

First, one can see deg(v) =
∑

u∈V3
w(u, v) +

∑
u∈V4

w(u, v).
Next, recall that b(1 − γ)w(I) = w(I3 ∩ δ(v)) is the total weight of all home-edges in

3-cycles. Thus, we have
∑

u∈V3
w(u, v) = b(1 − γ)w(I). Similarly aγw(I) = w(I4 ∩ δ(v)).

For any 4-cycle vv1v2v3 in I4, we note that the edges v1v and v3v are home-edges which
can be counted by w(I4 ∩ δ(v)), but the edge v2v is not a home-edge. By the triangle
inequality, we know that w(v, v2) ≤ 1

2 (w(v, v1) +w(v1, v2) +w(v2, v3) +w(v3, v)). Therefore,
the weight of the uncounted edge is at most half that of the 4-cycle.
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Thus, we have ( 1
2 +a)γw(I) ≥

∑
u∈V4

w(u, v). Then, we have ( 1
2 +a)γw(I)+b(1−γ)w(I) ≥∑

u∈V3
w(u, v) +

∑
u∈V4

w(u, v) = deg(v). ◀

▶ Lemma 5. (1 − 1
2a)γw(I) + (1 − 1

2b)(1 − γ)w(I) ≥ MST(G).

Proof. In the optimal itinerary of v, we note that the total weight of all home-edges is
aγw(I) + b(1 − γ)w(I). For each cycle, there are exactly two home-edges. We can delete the
longer edge from each cycle from I, and we can get a spanning tree with the total weight
less than (1 − 1

2a)γw(I) + (1 − 1
2b)(1 − γ)w(I). Since the weight of a minimum spanning

tree is MST(G), we have that (1 − 1
2a)γw(I) + (1 − 1

2b)(1 − γ)w(I) ≥ MST(G). ◀

Note that our bounds in Lemmas 4 and 5 are stronger than that in [29]. Next, we will
propose two new lower bounds on minimum weight matching and triangle packing.

▶ Lemma 6. Let M be a minimum weight perfect matching in G. Then 1
2γw(I) + (1 − b)(1 −

γ)w(I) ≥ w(M).

Proof. We note that the number of vertices in V3 is even but odd in V4. Since any pair of
3-cycles only share one common vertex v, after we delete both of home-edges for each 3-cycle,
we can get a perfect matching M1 in graph G[V3] with a total weight of (1 − b)(1 − γ)w(I).

Then, by a similar argument with the proof of Lemma 2, we know that γw(I) = w(I4),
is greater than the weight of the minimum weight Hamiltonian cycle in graph G[V4 ∪ {v}].
Since the number of vertices in this graph is even, any Hamiltonian cycle in this graph can
be decomposed into two perfect matching. Thus, we can get a perfect matching M2 in this
graph with a total weight less than 1

2γw(I). Therefore, M1 ∪M2 is a perfect matching, and
w(M) ≤ w(M1 ∪M2) ≤ 1

2γw(I) + (1 − b)(1 − γ)w(I). ◀

▶ Lemma 7. For a graph G, let P ∗ be a minimum weight P3 packing, and T ∗ be a minimum
weight triangle packing. Then ( 2

3 + 1
3γ − aγ)w(I) = (1 − a)γw(I) + 2

3 (1 − γ)w(I) ≥ w(P ∗) ≥
1
2w(T ∗).

Proof. First, we show w(P ∗) ≥ 1
2w(T ∗). Let T ′ be the triangle packing obtained by

completing the P3 packing. For any P3 path in P ∗, saying uvw, we obtain w(u, v)+w(v, w) ≥
w(u,w) by the triangle inequality. This shows 2w(P ∗) ≥ w(T ′) ≥ w(T ∗), and we are done.

We note that the number of vertices is divisible by 3 in V4 but not in V3. Since any pair
of 4-cycles only share one common vertex v, after we delete both of home-edges for each
4-cycle, we can get a P3 path packing P ′ in graph G[V4] such that w(P ′) = (1 − a)γw(I).

Then, by a similar argument with the proof of Lemma 2, we know that (1 − γ)w(I) =
w(I3) ≥ w(C) where C is the minimum weight Hamiltonian cycle in graph G[V3 ∪ {v}].
Since the number of vertices in this graph equals n minus the number of vertices in V4,
which is divisible by 3, we can delete some edges in C to get a vertex disjoint P3 path
packing P ′′ such that w(P ′′) ≤ 2

3w(C). P ′ ∪P ′′ is a P3 packing in G[V ]. Thus, we have that
(1 − a)γw(I) + 2

3 (1 − γ)w(I) ≥ w(P ′ ∪ P ′′) ≥ w(P ∗). ◀

3.1.2 Independent lower bounds
Now, we are ready for the independent lower bounds, which are found by summing the
individual optimal itineraries. Note that the notations I, I3, I4, V3, V4, γ, a and b in the
previous subsection refer to Iv, Iv,3, Iv,4, Vv,3, Vv,4, γv, av and bv. We omitted the subscripts
for the simplification.

For each team v, Iv is the optimal itinerary of v. Recall that ψ =
∑

v∈V w(Iv). Iv,3 and
Iv,4 consist of all 3-cycles and all 4-cycles of Iv, respectively.
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Define γ, a and b so that γψ =
∑

v∈V w(Iv,4) =
∑

v∈V γvw(Iv), aγψ =
∑

v∈V w(δ(v) ∩
Iv,4) =

∑
v∈V avγvw(Iv), and b(1 − γ)ψ =

∑
v∈V w(δ(v) ∩ Iv,3) =

∑
v∈V bv(1 − γv)w(Iv)

hold. Then, we have 0 ≤ γ, a, b ≤ 1.
The lemmas we proved previously can be summed together to obtain different independent

lower bounds.

▶ Lemma 8. Let C be a minimum weight Hamiltonian cycle in G. Then ψ ≥ nw(C).

Proof. Recall that ψ =
∑

v∈V ψv. By Lemma 2, we have that ψ =
∑

v∈V w(Iv) ≥ nw(C). ◀

▶ Lemma 9. (1 − 1
2γ + aγ)ψ ≥ ( 1

2 + a)γψ + b(1 − γ)ψ ≥ ∆.

Proof. By the definitions of γ, a and b, we know that (1 − 1
2γ + aγ)ψ =

∑
v∈V (1 − 1

2γv +
avγv)w(Iv) and ( 1

2 + a)γψ + b(1 − γ)ψ =
∑

v∈V (( 1
2 + av)γvw(Iv) + bv(1 − γv)w(Iv)).

Recall that ∆ =
∑

v∈V deg(v). By Lemma 4, it holds that
∑

v∈V (1 − 1
2γv +avγv)w(Iv) ≥∑

v∈V (( 1
2 + av)γvw(Iv) + bv(1 − γv)w(Iv)) ≥

∑
v∈V deg(v) = ∆. Therefore, we have that

(1 − 1
2γ + aγ)ψ ≥ ( 1

2 + a)γψ + b(1 − γ)ψ ≥ ∆. ◀

We note that (1 − 1
2γ + aγ) ≤ 3

2 . Thus, we have that ∆ = O(1)ψ.

▶ Lemma 10. (1 − 1
2a)γψ + (1 − 1

2b)(1 − γ)ψ ≥ nMST(G).

Proof. Note that (1 − 1
2a)γψ + (1 − 1

2b)(1 − γ)ψ =
∑

v∈V ((1 − 1
2av)γvw(Iv) + (1 − 1

2bv)(1 −
γv)w(Iv)).

By Lemma 5, we know that (1 − 1
2a)γψ + (1 − 1

2b)(1 − γ)ψ =
∑

v∈V ((1 − 1
2av)γvw(Iv) +

(1 − 1
2bv)(1 − γv)w(Iv)) ≥ nMST(G). ◀

By Lemmas 9 and 10, we have that

(1 + 1
4γ)ψ ≥ 1

2∆+ nMST(G). (2)

▶ Lemma 11. Let M be a minimum weight perfect matching in G. Then 1
2γψ + (1 − b)(1 −

γ)ψ ≥ nw(M).

Proof. Note that 1
2γψ + (1 − b)(1 − γ)ψ =

∑
v∈V ( 1

2γvw(Iv) + (1 − bv)(1 − γv)w(Iv)).
By Lemma 6, we know that 1

2γψ + (1 − b)(1 − γ)ψ =
∑

v∈V ( 1
2γvw(Iv) + (1 − bv)(1 −

γv)w(Iv)) ≥ nw(M). ◀

By Lemmas 9 and 11, we have that

(1 + aγ)ψ ≥ ∆+ nw(M) (3)

for a minimum weight matching M .

▶ Lemma 12. For a graph G, let P ∗ be a minimum weight P3 packing, and T ∗ be a minimum
weight triangle packing. Then ( 2

3 + 1
3γ−aγ)ψ = (1−a)γψ+ 2

3 (1−γ)ψ ≥ nw(P ∗) ≥ 1
2nw(T ∗).

Proof. Note that ( 2
3 + 1

3γ−aγ)ψ =
∑

v∈V ( 2
3 + 1

3γv −avγv)w(Iv) and (1−a)γψ+ 2
3 (1−γ)ψ =∑

v∈V ((1 − av)γvw(Iv) + 2
3 (1 − γv)w(Iv)).

By Lemma 7, it holds that
∑

v∈V ( 2
3 + 1

3γv − avγv)w(Iv) ≥
∑

v∈V ((1 − av)γvw(Iv) +
2
3 (1 − γv)w(Iv)) ≥ nw(P ∗) ≥ 1

2nw(T ∗). Therefore, we have that ( 2
3 + 1

3γ − aγ)ψ =
(1 − a)γψ + 2

3 (1 − γ)ψ ≥ nw(P ∗) ≥ 1
2nw(T ∗). ◀

Next, we will describe our algorithm. Our algorithm consists of two constructions, where
the first is based on the Hamiltonian cycle and the second is based on the triangle packing.
The approximation quality of each will be analyzed after showing the construction. Finally,
we will make a trade-off between them and get the final approximation ratio.
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3.2 The Hamiltonian Cycle Construction
In our algorithm, the idea of Hamiltonian cycle construction is to make use of the canonical
schedule [19, 8] and a Hamiltonian cycle. For TTP-k, there are many approximation
algorithms using this method [29, 27, 18], and hence we will directly use the well-analyzed
schedule in [29]. However, we will give a tighter analysis. Next, we give a brief introduction
to this construction.

Roughly speaking, this schedule is generated by a rotation scheme that can make sure
that almost all road trips of each team ti are 4-cycles and in each road trip, team ti visits a
set of consecutive teams along the Hamiltonian cycle.

▶ Lemma 13 ([29]). Let C be a Hamiltonian cycle in graph G. For TTP-3, there is
a polynomial-time algorithm that can generate a solution with a total weight of at most
2
3nw(C) + 2

3∆+O( 1
n )ψ.

Note that the Hamiltonian cycle used in [29] is generated by the Christofides-Serdyukov
algorithm. In our algorithm, we also consider another Hamiltonian cycle that uses the
minimum weight perfect matching. We will select the better one between these two cycles.

▶ Lemma 14 (*). Let M be a perfect matching in graph G. Then there is a polynomial-time
algorithm that can generate a Hamiltonian cycle C such that w(C) = w(M) + 1

nw(E) +
O( 1

n2 )w(E).

Note that Lemma 14 holds for any perfect matching. We will consider the Hamiltonian
cycle that uses a minimum weight perfect matching.

▶ Theorem 15. For any ε > 0, there is a polynomial-time algorithm that can generate a
feasible schedule for TTP-3 with an approximation ratio of min{ 4

3 + 1
3aγ, 1 − 1

6γ + aγ} + ε.

Proof. Here we use C to denote a minimum weight Hamiltonian cycle in G. If we use the
Hamiltonian cycle C ′ obtained by the Christofides-Serdyukov algorithm, we can construct
a feasible schedule with a total weight of at most 2

3nw(C ′) + 2
3∆ + O( 1

n )ψ by Lemma 13.
Then, we have that

2
3nw(C ′) + 2

3∆+O( 1
n

)ψ ≤ 2
3n

(
MST(G) + 1

2w(C)
)

+ 2
3∆+O( 1

n
)ψ

= 2
3nMST(G) + 1

3nw(C) + 2
3∆+O( 1

n
)ψ

≤ (4
3 + 1

3aγ)ψ +O( 1
n

)ψ,

where the first inequality follows from Lemma 3 and the second follows from Lemmas 8 and
9, and (2).

Similarly, if we use a minimum weight perfect matching M to obtain the Hamiltonian
cycle CM in Lemma 14, we can construct a feasible schedule with a total weight of at most

2
3nw(CM ) + 2

3∆+O( 1
n

)ψ ≤ 2
3n

(
w(M) + 1

n
w(E) +O( 1

n2 )w(E)
)

+ 2
3∆+O( 1

n
)ψ

≤ 2
3nw(M) +∆+O( 1

n
)ψ

≤ (1 − 1
6γ + aγ)ψ +O( 1

n
)ψ,

where the first inequality follows from Lemma 14, the second follows from w(E) = 1
2∆ ≤

O(1)ψ, and the last follows from Lemma 9 and (3).
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Since we select the better one between these two Hamiltonian cycles, then the approxima-
tion ratio is min{ 4

3 + 1
3aγ, 1− 1

6γ+aγ}+O( 1
n ). Hence, there exists a constant c such that the

ratio is bounded by min{ 4
3 + 1

3aγ, 1 − 1
6γ+aγ} + c

n . For an arbitrary ε > 0, if n ≤ c
ε = O(1),

we can find an optimal solution by brute force, otherwise we use the approximation algorithm.
This establishes the approximation ratio of min{ 4

3 + 1
3aγ, 1 − 1

6γ + aγ} + ε. ◀

Note that max0≤a,γ≤1 min{ 4
3 + 1

3aγ, 1 − 1
6γ+ aγ} + ε is maximized when a = γ = 1 with

value ( 5
3 + ε). However, this would require 0 = ( 2

3 + 1
3γ − aγ)ψ ≥ nw(P ∗) ≥ 1

2nw(T ∗) by
Lemma 12. If we use any constant ratio approximation algorithm for minimum weight P3
path packing or minimum weight triangle packing, we may get a much better schedule based
on them and therefore, we will show that we can do better than ( 5

3 + ε) by combining the
Hamiltonian cycle construction with the triangle packing construction shown next.

3.3 The Triangle Packing and P3 Path Packing Constructions
In this section, we will construct a feasible schedule based on a triangle packing or a P3
path packing. The idea is similar to the packing schedule based on a minimum weight
perfect matching for TTP-2 [25, 28, 30, 31, 17]. Given a triangle packing (resp., a P3 path
packing), we consider the three normal teams in a triangle (resp., a P3 path) as a super-team.
The packing construction is to first arrange a single round-robin for super-teams and then
extend the single round-robin into a double round-robin for normal teams. Although the
construction is similar for a given triangle packing and a given P3 packing, the analysis and
the approximation ratio may be different.

3.3.1 Construction
First, we will introduce the single round-robin of super-teams.

Given a triangle packing T (resp., P3 path packing P ) of G, recall that we take the three
teams in each triangle (resp., P3 path) as a super-team. There are n normal teams and then
there are m = n

3 super-teams. The set of super-teams is U = {u1, u2, . . . , um−1, um}. We
relabel the n teams such that ui = {t3i−2, t3i−1, t3i} for each i.

In the construction, the case of n = 6 is easy, and hence we assume here that n ≥ 12. Each
super-team will attend m− 1 super-games in m− 1 time slots. Each super-game in the first
m− 2 time slots will be extended to normal games that span six days, and each super-game
in the last time slot will be extended to normal games that span ten days. Therefore, we have
6 × (m− 2) + 10 = 6m− 2 = 2n− 2 days of normal games in total. This is the number of
days in a double round-robin. We will construct the schedule for super-teams from the first
time slot to the last time slot m− 1. In each of the m− 1 time slots, we have m

2 super-games.
The schedule in the last time slot is different from the schedules in the first m− 2 time slots.

For the first time slot, the m
2 super-games are arranged as shown in Figure 1. The

super-game including super-team um is called left super-game and we put a letter ‘L’ on the
edge to indicate it. All other super-games are called normal super-games. Each super-game
is represented by a directed edge, where a directed edge from ui to uj means a super-game
between them at the home of uj . The information of which will be used to extend super-games
to normal games between normal teams.

In Figure 1, we can see that the last super-team um is denoted as a dark node and all
other super-teams u1, . . . , um−1 are denoted as white nodes which form a cycle. In the second
time slot, we keep the position of um and change the positions of white super-teams in the
cycle by moving one position in the clockwise direction, and we also change the direction of
each edge. In the second time slot, there are still m

2 − 1 normal super-games and one left
super-game.
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𝑢𝑢10 𝑢𝑢9

𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4

𝑢𝑢8 𝑢𝑢7 𝑢𝑢6 𝑢𝑢5

𝐿𝐿

Figure 1 The super-game schedule in the first time slot for an instance with m = 10.

Table 1 Extending normal super-games where home games are marked in bold.

6q − 5 6q − 4 6q − 3 6q − 2 6q − 1 6q

a x z y xxx zzz yyy

b y x z yyy xxx zzz

c z y x zzz yyy xxx

x aaa bbb ccc a b c

y bbb ccc aaa b c a

z ccc aaa bbb c a b

Table 2 Extending left super-games where home games are marked in bold.

6q − 5 6q − 4 6q − 3 6q − 2 6q − 1 6q

a x z yyy xxx zzz y

b y x zzz yyy xxx z

c z y xxx zzz yyy x

x aaa bbb c a b ccc

y bbb ccc a b c aaa

z ccc aaa b c a bbb

The schedules for the other middle slots are derived analogously. Before we introduce
the super-games in the last time slot, we first explain how to extend the super-games in
the first m − 2 time slots to normal games. In these time slots, we have two different
kinds of super-games: normal super-games and left super-games. We first consider normal
super-games.
Case 1. Normal super-games: Each normal super-game will be extended to eighteen normal

games in six days. Assume that in a normal super-game, super-team ui plays against the
super-team uj at the home of uj in time slot q (1 ≤ i, j ≤ m and 1 ≤ q ≤ m−1). For ease
of presentation, we let ui = {t3i−2, t3i−1, t3i} = {a, b, c} and uj = {t3j−2, t3j−1, t3j} =
{x, y, z}. The super-game will be extended to eighteen normal games in six corresponding
days from 6q − 5 to 6q, as shown in Table 1 where home games are marked in bold.

Case 2. Left super-games: Each left super-game will be extended to eighteen normal games
in six days. Assume that in a left super-game, super-team ui = {a, b, c} plays against super-
team uj = {x, y, z} at the home of uj in time slot q (2 ≤ i ≤ m− 1 and 1 ≤ q ≤ m− 2).
The super-game will be extended to normal games in six corresponding days from 6q − 5
to 6q, as shown in Table 2.
The first m− 2 time slots will be extended to 6 × (m− 2) = 2n− 12 days according to
the above rules. Each normal team will have ten remaining games, which correspond to
the super-games in the last time slot. Figure 2 shows the schedule in the last time slot.
All super-games in the last time slot are last super-game where we put a letter ‘Z’ to
indicate it.
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𝑢𝑢10 𝑢𝑢1

𝑢𝑢2 𝑢𝑢3 𝑢𝑢4 𝑢𝑢5

𝑢𝑢9 𝑢𝑢8 𝑢𝑢7 𝑢𝑢6

𝑍𝑍
𝑍𝑍 𝑍𝑍 𝑍𝑍 𝑍𝑍

Figure 2 The super-game schedule in the last time slot for an instance with m = 10.

Table 3 Extending last super-games where home games are marked in bold.

6q − 5 6q − 4 6q − 3 6q − 2 6q − 1 6q 6q + 1 6q + 2 6q + 3 6q + 4
a x z y xxx zzz yyy c b ccc bbb

b y x c yyy xxx ccc z aaa zzz a

c z y bbb zzz yyy b aaa xxx a x

x aaa bbb z a b zzz y c yyy ccc

y bbb ccc aaa b c a xxx z x zzz

z ccc aaa xxx c a x bbb yyy b y

Case 3. Last super-games: Each normal super-game will be extended to thirty normal
games in ten days. Assume that in the last time slot q = m− 1, super-team ui = {a, b, c}
plays against super-team uj = {x, y, z} (1 ≤ i, j ≤ m) at the home of uj . The super-game
will be extended to thirty normal games in ten corresponding days from 6q − 5 to 6q + 4,
as shown in Table 3.

▶ Theorem 16 (*). For TTP-3 with n teams such that n ≡ 0 (mod 6), the above construction
can generate a feasible schedule.

3.3.2 Analyzing the Approximation Quality
Note that all teams play three consecutive away games and three consecutive home games in
a normal super-game. Indeed, all teams are at home before and after each normal super-game
in the schedule, otherwise, it will break the bounded-by-3 property. Using this property, we
can get the total cost of normal super-games by analyzing each normal super-game separately.

▶ Lemma 17 (*). If there is a normal super-game between super-teams ui and uj at the home
of uj , then the cost of all normal teams in ui and uj is at most 4

3c(ui, uj) + 2c(ui) + 2c(uj).

To analyze the total weight of our schedule, we first analyze the total cost of normal
super-games. Recall that there is exactly one super-game between each pair of super-teams in
U and then, there are m(m−1)

2 super-games in total. We define R(ui, uj) = 1 if the super-game
between super-teams ui and uj is a normal super-game, and R(ui, uj) = 0 otherwise. By
Lemma 17 and (1), we know that the total cost of all normal super-games E0 satisfies that

E0 ≤
∑

1≤i<j≤m

( 4
3c(ui, uj) + 2c(ui) + 2c(uj)

)
R(ui, uj)

≤
∑

1≤i<j≤m

( 4
3c(ui, uj) + 2c(ui) + 2c(uj)

)
= 4

3c(F ) + 2(m− 1)w(T )
≤ 2

3∆+ 2
3nw(T ).

(4)

The total cost of all left super-games and all last super-games are denoted by E1 and E2,
respectively.

▶ Lemma 18 (*). By using O(n3) time to reorder all super-teams, we can make

E1 + E2 = O( 1
n )ψ.
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Based on Lemma 18 and (4), we can get

▶ Theorem 19. For TTP-3 with the case of n ≡ 0 (mod 6), suppose there exists a triangle
packing T in graph G, then there is a polynomial-time algorithm to generate a feasible schedule
with a total weight of at most 2

3∆+ 2
3nw(T ) +O( 1

n )ψ.

▶ Theorem 20. Suppose there exist ρt and ρp approximation algorithms for minimum weight
triangle packing and P3 path packing problems respectively, then for an arbitrary ε > 0,
there is a polynomial-time algorithm for TTP-3 with the case of n ≡ 0 (mod 6), whose
approximation ratio is 8ρ+6

9 + 4ρ−3
9 γ − 4ρ−2

3 aγ + ε, where ρ = min{ρp, ρt}.

Proof. First, we consider that the schedule uses a triangle packing T of G. By Theorem 19,
we know that the total weight is bounded by 2

3∆+ 2
3nw(T ) +O( 1

n )ψ. Suppose the triangle
packing T is obtained by using a ρt-approximation algorithm, i.e., w(T ) ≤ ρtw(T ∗), then by
Lemmas 9 and 12, we have that

2
3∆+ 2

3nw(T ) +O( 1
n

)ψ ≤ 2
3∆+ 2

3ρtnw(T ∗) +O( 1
n

)ψ

≤ 2
3∆+ 4

3ρtnw(P ∗) +O( 1
n

)ψ

≤ (8ρt + 6
9 + 4ρt − 3

9 γ − 4ρt − 2
3 aγ)ψ +O( 1

n
)ψ.

Then, we consider that the schedule uses a P3 path packing P of G. Suppose the P3
path packing P is obtained by using a ρp-approximation algorithm, i.e., w(P ) ≤ ρpw(P ∗),
then we can get a triangle packing T ′ by completing the P3 path packing P such that
w(T ′) ≤ 2w(P ) ≤ 2ρpw(P ∗) by the triangle inequality. Thus, by Lemmas 9 and 12, the total
weight of our schedule is bounded by

2
3∆+ 2

3nw(T ′) +O( 1
n

)ψ ≤ 2
3∆+ 4

3ρpnw(P ∗) +O( 1
n

)ψ

≤ (8ρp + 6
9 + 4ρp − 3

9 γ − 4ρp − 2
3 aγ)ψ +O( 1

n
)ψ.

By selecting the better schedule, we can get the approximation ratio of 8ρ+6
9 + 4ρ−3

9 γ −
4ρ−2

3 aγ + ε, where ρ = min{ρp, ρt}. Note that the algorithm of our triangle packing
construction runs in polynomial time since it takes O(n3) time to reorder all super-teams
and O(n2) time to construct the schedule. ◀

3.4 Trade-off between Two Constructions
▶ Theorem 21 (*). Suppose there exist ρt and ρp approximation algorithms for minimum
weight triangle packing and P3 path packing problems respectively, for TTP-3 with an arbitrary
ε > 0, there is an approximation algorithm whose ratio is 11

6 − 5
2(4ρ+1) + ε when ρ ≤ 9

4 , and
5
3 − 2

3(4ρ−1) + ε otherwise, where ρ = min{ρt, ρp}. Given ρ = 8
3 , the approximation ratio is

139
87 + ε < 1.598 + ε which improves the previous ratio of 5

3 + ε < 1.667 + ε.

Proof. For the case of n ≡ 0 (mod 6), our algorithm will select the better schedule from
the two constructions. By Theorem 15, the ratio of the Hamiltonian cycle construction
is min{ 4

3 + 1
3aγ, 1 − 1

6γ + aγ} + ε, and by Theorem 20, the ratio of the triangle packing
construction is 8ρ+6

9 + 4ρ−3
9 γ− 4ρ−2

3 aγ+ ε. Therefore, the ratio of our algorithm in the worst
case is

max
0≤a,γ≤1

min
{

4
3 + 1

3aγ, 1 − 1
6γ + aγ,

8ρ+ 6
9 + 4ρ− 3

9 γ − 4ρ− 2
3 aγ

}
+ ε.
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We can transform it into the following linear programming where we let γ̃ = aγ.

max y

s.t. y ≤ 4
3 + 1

3 γ̃,

y ≤ 1 − 1
6γ + γ̃,

y ≤ 8ρ+ 6
9 + 4ρ− 3

9 γ − 4ρ− 2
3 γ̃,

0 ≤ γ̃ ≤ γ ≤ 1.

It shows that the ratio is 11
6 − 5

2(4ρ+1) + ε when ρ ≤ 9
4 , and 5

3 − 2
3(4ρ−1) + ε otherwise.

To our best knowledge, both of the current best-known ratios for minimum weight
triangle packing and minimum weight P3 path packing problems are 8

3 [12]. Therefore, given
ρ = ρp = ρt = 8

3 , the final approximation ratio of our algorithm is 139
87 + ε < 1.598 + ε.

Note that the cases n ≡ 2 (mod 6) and n ≡ 4 (mod 6) have not been analyzed yet. Since
n is not divisible by 3 for these two cases, there is no perfect P3 path packing or triangle
packing in G. However, with some modifications, we can extend the second construction and
its analysis to get the same approximation ratio. ◀

By Theorem 21, we know that the approximation ratio can achieve (4/3 + ε) if ρ = 1.

▶ Corollary 22. If a minimum weight triangle packing or P3 path packing is given, there
exists a (4/3 + ε)-approximation algorithm for TTP-3, for an arbitrary ε > 0.

4 LDTTP-3

When all teams are located on a straight line, this problem is known as Linear Distance
TTP-3 (LDTTP-3) [15]. For this problem, the minimum weight triangle packing and P3
path packing can be found in polynomial time. Thus, for LDTTP-3, our algorithm has
an approximation ratio of (4/3 + ε), which also matches the current best-known ratio of
4/3 (however, note that their construction only works for the case of n ≡ 4 (mod 6)) [15].
Their ratio is based on a stronger lower bound of LDTTP-3. If we use this lower bound, the
approximation ratio of our triangle packing construction can be proved to be (6/5 + ε).

▶ Theorem 23 (*). For LDTTP-3, there is an approximation algorithm whose ratio is
(6/5 + ε), for an arbitrary ε > 0.

5 TTP-4

It is natural to use the same idea to solve TTP-4. For the problem of minimum weight P4
path packing, to our best knowledge, the current best-known ratio is 3/2 [22]. If we use the
construction based on the Hamiltonian cycle and the construction based on P4 path packing,
we can get a (17/10 + ε)-approximation algorithm for TTP-4 which improves the previous
approximation ratio of (7/4 + ε) [29].

▶ Theorem 24 (*). For TTP-4 with any ε > 0, there is an algorithm whose approximation
ratio is (17/10 + ε) which improves the previous approximation ratio of (7/4 + ε).

For TTP-k with k ≥ 5, we note that both of the best-known approximation ratios
for minimum weight k-cycle packing and Pk path packing are 4(1 − 1/k) > 3 [12]. The
approximation ratios are too large and we can not improve TTP-k by using the same idea.
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