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ABSTRACT
It is a longstanding open problem whether there is an algorithm to

decide the Skolem Problem for linear recurrence sequences (LRS)

over the integers, namely whether a given such sequence ⟨un⟩
∞
n=0

has a zero term (i.e., whether un = 0 for some n). A major break-

through in the early 1980s established decidability for LRS of order

4 or less, i.e., for LRS in which every new term depends linearly on

the previous four (or fewer) terms. The Skolem Problem for LRS of

order 5 or more, in particular, remains a major open challenge to

this day.

Our main contributions in this paper are as follows:

First, we show that the Skolem Problem is decidable for re-
versible LRS of order 7 or less. (An integer LRS ⟨un⟩

∞
n=0 is re-

versible if its unique extension to a bi-infinite LRS ⟨un⟩
∞
n=−∞

also takes exclusively integer values; a typical example is

the classical Fibonacci sequence, whose bi-infinite extension is

⟨. . . , 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, . . .⟩.)

Second, assuming the Skolem Conjecture (a central hypothesis in
Diophantine analysis, also known as the Exponential Local-Global
Principle), we show that the Skolem Problem for LRS of order 5 is

decidable, and exhibit a concrete procedure for solving it.
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1 INTRODUCTION
1.1 Linear Recurrence Sequences and

Bi-Sequences
A linear recurrence relation over a ring R is an equation of the

following form:

un+k = a1un+k−1 + · · · + akun , (1)

where a1, . . . ,ak ∈ R. We shall in addition require that ak , 0.

Let S = {1,ak ,a
2

k ,a
3

k , . . .}, and let S−1R be the localisation of R

by S .1 Given initial values u0, . . . ,uk−1 ∈ R, Eqn. (1) uniquely de-

fines an R-sequence −→u = ⟨un⟩∞n=0, as well as an (S
−1R)-bi-sequence

←→u = ⟨un⟩∞n=−∞. We refer to the former as a linear recurrence se-
quence (LRS), and to the latter as a linear recurrence bi-sequence
(LRBS). The smallest k for which the sequence obeys a relation of

the form (1) is the order of the sequence.
Note that if ak is a unit of R, then S−1R = R and the LRBS

←→u
is entirely contained in R. An old result of Fatou [16] (see also [8,

Chapter 7]) straightforwardly entails that when R is the ring of

integers Z and k is the order of
−→u , then ←→u is contained in Z if

and only if ak = ±1. Such Z-LRS are said to be reversible, and
in turn the corresponding recurrence relation is likewise termed

reversible. A classical example is the Fibonacci sequence which

satisfies the recurrence un+2 = un+1 + un with initial values

u0 = 0,u1 = 1, and which extends to the integer bi-sequence

⟨. . . , 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, . . .⟩.

1S−1R is a ring consisting of elements of the form r/akm , with r ∈ R andm ∈ N.
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We shall also be interested in instances in which R is of the form

Z/mZ, for integerm ≥ 2. In such cases we will at times require that

gcd(m,ak ) = 1, which guarantees that the resulting LRBS
←→u is

entirely contained in Z/mZ. Note that LRS in Z/mZ are necessarily
always eventually periodic,

2
and therefore (among others) it is

always possible to determine whether they contain a zero or not.

Equation (1) gives rise to a polynomial

д(X ) := Xk − a1X
k−1 − · · · − ak . (2)

The characteristic polynomial of an LRS is the polynomial associated

with its minimal recurrence relation (i.e., k is the order of the LRS).

A Q-LRS is simple if its characteristic polynomial is simple, i.e., has

no repeated roots.

We refer to the roots of the characteristic polynomial of a given

LRS as the characteristic roots of the LRS. We then say that an LRS

is non-degenerate if it has no two distinct characteristic roots whose
ratio is a root of unity. As noted in the next section, the study of the

set of zeros of a given LRS can be reduced in an effective manner

to the study of the set of zeros of its non-degenerate subsequences.

1.2 The Skolem Problem and Bi-Variants
The decidability of the following question has been open for nearly

a century [15, 30]:

Skolem Problem. Let C be a class of linear recurrence sequences.

Given an LRS
−→u ∈ C, does −→u contain a zero?

(When the class C is not explicitly mentioned, it is assumed to

refer to integer linear recurrence sequences.) The Skolem Problem

is arguably, by some distance, the most prominent problem whose

decidability status is currently unknown. It remains open even if

restricting to simple LRS of order 5 [22], but is famously known to

be decidable for sequences of order 4 or below [21, 31]. It is also

straightforward that the Skolem Problems over Z and over Q are

interreducible.

The Skolem Problem, alongwith closely related questions such as

the Positivity Problem, is intimately connected to various fundamen-

tal topics in program analysis and automated verification, such as

the termination andmodel checking of simple while loops [3, 19, 23]

or the algorithmic analysis of stochastic systems [1, 2, 6, 13, 24]. It

also appears in a variety of other contexts, such as formal power

series [25, 29] and control theory [11, 17]. The Skolem Problem is

often used as a reference to establish hardness of other open deci-

sion problems; in addition to some of the previously cited papers,

the articles [4, 14], for example, specifically invoke hardness for the

Skolem Problem at order 5. Thus far, the only known complexity

bound for the Skolem Problem is NP-hardness [12].

Instead of sequences, one might shift one’s attention to bi-

sequences, leading to the following two natural problems:

Definition 1.1 (Q-Bi-Skolem Problem). Given a Q-LRBS←→u , does

←→u contain a zero?

Definition 1.2 (Z-Bi-Skolem Problem). Given a Z-LRBS←→u , does

←→u contain a zero?

2
Under the additional assumption that gcd(m, ak ) = 1, such LRS (and LRBS) are even

fully periodic.

Example 1.3. The Fibonacci sequence ⟨0, 1, 1, 2, 3, 5, . . .⟩ has a sin-

gle zero, whereas its shifted sibling ⟨1, 1, 2, 3, 5, 8, . . .⟩ has none.

Of course, their common canonical ‘completion’ as a bi-sequence,

⟨. . . , 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, . . .⟩, does have a zero. On the other

hand, the bi-sequence

⟨. . . , 7,−4, 3,−1, 2, 1, 3, 4, 7, . . .⟩ ,

which also obeys the Fibonacci recurrence, never vanishes. The

latter can be ascertained either via a growth argument (in abso-

lute value), or by observing that the corresponding bi-sequence of

residues modulo 5 (i.e., viewing the LRBS as lying in Z/5Z) has no
zeros. It is worth pointing out that the classical Fibonacci sequence

has infinitely many zeros modulo any integerm ≥ 2.

It is immediate that the Z-Bi-Skolem Problem reduces to the

Q-Bi-Skolem Problem, and that in turn the Q-Bi-Skolem Problem

reduces to the Skolem Problem. However, the following questions

do not seem to have obvious answers:

Problem 1.4. Is the Z-Bi-Skolem Problem decidable?

Problem 1.5. Does the Q-Bi-Skolem Problem reduce to the Z-Bi-
Skolem Problem?

Problem 1.6. Does the Skolem Problem reduce to the Q-Bi-Skolem
Problem?

The celebrated theorem of Skolem, Mahler, and Lech (see [15])

describes the structure of the set {n ∈ N : un = 0} of zeros of an

LRS as follows:

Theorem 1.7 (Skolem-Mahler-Lech). Given a Q-LRS −→u , its set of
zeros is a union of finitely many arithmetic progressions, together
with a finite set.

The statement of Theorem 1.7 can in fact be refined further. Any

Q-LRS can be effectively decomposed as an interleaving of finitely

many non-degenerate sequences, some of which may be identically

zero. The core of the Skolem-Mahler-Lech Theorem is the fact that

a non-zero non-degenerate linear recurrence sequence has finitely

many zeros. Unfortunately, all known proofs of this last assertion

are ineffective: it is not known how to compute the finite set of zeros

of a given non-degenerate LRS. It is readily seen that the existence

of a procedure to do so is equivalent to solving the Skolem Problem.

1.3 The Skolem Conjecture
In 1937, Thoralf Skolem formulated a conjecture (also known today

as the Exponential Local-Global Principle) on purely exponential

Diophantine equations [28]. Specialised to Q-LRBS, the conjecture
reads as follows:

SkolemConjecture. Let←→u be a simpleQ-LRBS satisfying Eqn. (1),
with a1, . . . ,ak and u0, . . . ,uk−1 in Z. Then

←→u has no zero iff, for
some integerm ≥ 2 such that gcd(m,ak ) = 1, we have that for all
n ∈ Z, un . 0 modm.

In other words, the Skolem Conjecture asserts that if a simple

LRBS fails to have a zero, then this is witnessedmodulo some integer
m. If true, this conjecture would therefore immediately entail the

existence of an algorithm to solve the Q-Bi-Skolem Problem for

simple LRBS: simply search in parallel either for a zero of the LRBS,

or for a numberm substantiating the absence of zeros. If the Skolem
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Conjecture holds, then the search must necessarily terminate in

finite time.

Remark 1.8. Note that the Skolem Conjecture only applies to bi-
sequences, as the simple example of the shifted Fibonacci sequence

beginning with ⟨1, 1, . . .⟩ demonstrates.

The assumption of simplicity can also not be lifted: consider

the LRBS
←→u given by un+2 = 4un+1 − 4un , with u0 = 1 and

u1 = 6, having closed formun = (2n+1)2
n
with the single repeated

characteristic root 2. un is clearly never 0 for n ∈ Z, however given
any integerm ≥ 2, there are infinitely many values of n ∈ N such

that un ≡ 0 modm.
3

There exists a substantial body of literature on the Skolem Con-

jecture, including proofs of a variety of special cases. In particular,

as pertains to its specialisation to Q-LRBS, the Skolem Conjecture

has been shown to hold for simple LRBS of order 2 [7], and for

certain families of LRBS of order 3 [26, 27]. In a different but related

vein, Bertók and Hajdu have shown that, in some sense, the Skolem

Conjecture is valid in “almost all” instances [9, 10].

It is worth noting that, in spite of the similarity in nomencla-

ture between the Skolem Problem and the Skolem Conjecture, the

truth of the latter is not known (or even believed) to imply the

decidability of the former (and nor, for that matter, conversely).

Indeed, as pointed out in Remark 1.8, the Skolem Conjecture only

applies to simple LRBS. Moreover—and perhaps more significantly—

the Skolem Conjecture only differentiates between LRBS having

at least one zero, and LRBS having none. The Skolem Conjecture

would therefore appear to be of little utility for any LRS whose

bi-completion happens to harbour a zero. As a stark illustration

of this state of affairs, note that an algorithm for the Skolem Prob-

lem would enable one to produce in finite time the set of all zeros

of a given non-degenerate LRS, whereas there is no obvious way

to achieve the same merely by virtue of the Skolem Conjecture

holding.

1.4 Main Contributions
Recall that the Skolem Problem is presently not known to be de-

cidable for LRS of order 5 and above [22]. It is interesting to note

that, whilst most researchers in the area likely expect decidability

to hold at all orders, to the best of our knowledge there is currently

not a single proposed candidate procedure that might conjecturally

serve to decide outstanding open cases of the Skolem Problem.

Our contributions in the present paper are threefold:

(1) We show that the Skolem Problem is decidable for reversible
Z-LRS of order 7 or less (Theorem 4.1).

(2) Assuming the Skolem Conjecture, we show that the Skolem

Problem is decidable for all Z-LRS of order 5 (Theorem 5.1).
4

(3) We exhibit concrete LRS, respectively of order 8 (Section 4.2)

and of order 6 (Example 3.5), showing that the above tech-

niques and results do not extend (at least in any obvious

manner) to higher orders.

3
Strictly speaking, the Skolem Conjecture only requires one to consider positive

integers m such that gcd(m, 4) = 1, which in turn ensures that the sequence of

residues modulom remains well defined for negative values of n.
4
In fact, it is sufficient merely to assume that the Skolem Conjecture holds for LRBS of

order 5.

Our conditional decidability result for LRS of order 5 is obtained

by producing an explicit (and easily implementable) decision pro-

cedure. Correctness is unconditional and straightforward, whereas

termination is guaranteed via the Skolem Conjecture (for LRBS of

order 5). To the best of our knowledge, this is the first concrete

plausible proposal of an algorithm to solve the Skolem Problem at

order 5.

2 PRELIMINARIES
In this section we briefly summarise some basic notions about

algebraic numbers and linear recurrences. For more details see [5,

Chapters 10–12] and [15, Section 1.1.6].

Let K be a finite Galois extension of Q. Write O for the ring of

algebraic integers in K . Every ideal of O can be written uniquely

(up to reordering) as a product of prime ideals of O. In particular,

for every rational prime p ∈ Z we have pO = pe
1
· · ·peд for some

prime ideals p1, . . . ,pд and a positive integer e the ramification
index of p. In this situation we say that the prime ideals p1, . . . ,pд
lie above p. Here we have that e divides [K : Q] (the degree of K
over Q).

Given a prime ideal p of O, we define the p-adic valuation
vp : O → N ∪ {∞} by writing vp(0) = ∞ and, for α , 0,

defining vp(α) to be the exponent of p in the prime decompo-

sition of αO. We then have vp(α1α2) = vp(α1) + vp(α2) and
vp(α1 + α2) ≥ min(vp(α1),vp(α2)) for all α1,α2 ∈ O, i.e., vp is
indeed a valuation. A further useful fact is that if α1,α2 ∈ O are

such that α1/α2 is not a root of unity and all Galois conjugates of

α1/α2 have modulus one, then there exists a prime ideal p with

vp(α1) , vp(α2).
Consider a recurrence of the form (1) with integer coefficients.

Let K be the splitting field of the characteristic polynomial. Every

LRS
−→u = ⟨un⟩∞n=0 satisfying the recurrence admits an exponential-

polynomial representation un =
∑k
i=1Ai (n)λ

n
i , where λ1, . . . , λk

are the distinct characteristic roots (which are algebraic integers)

and A1, . . . ,Ak ∈ K[X ] are polynomials such that the degree of Ai
is less than the multiplicity of λi . We say that a characteristic root

λi is dominant in modulus if |λi | ≥ |λj | for any other characteristic

root λj . Given a prime ideal p of O, we say that λi is dominant
with respect to the valuation vp if vp(λi ) ≤ vp(λj ) for any other

characteristic root λj .

3 THE MSTV CLASS AND LRS MODULARITY
We introduce a class of LRS for which the Skolem Problem is de-

cidable, named after the authors of the seminal papers [21, 31], in

which decidability is established:

Definition 3.1. The Mignotte-Shorey-Tijdeman-Vereshchagin
(MSTV) class consists of those Z-LRS that either have at most three

dominant roots in modulus or at most two dominant roots with

respect to some p-adic valuation.

The MSTV class includes all integer LRS of order at most 4 and

all integer LRS of order 5 with repeated characteristic roots. It also

includes all order-5 LRS that have 5 characteristic roots of equal

modulus.
5

5
The last assertion can be seen as follows. Consider a non-degenerate order-5 LRS

with characteristic roots λ1, λ1, λ2, λ2, λ3 , all having the same modulus. By rescaling,
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The following notion plays an instrumental role in our paper:

Definition 3.2. A Z-LRS ⟨un⟩
∞
n=0 is modular if there exists an

integer m ≥ 2 such that there are only finitely many values of

n ∈ N with un ≡ 0 modm.

Remark 3.3. Note that, contrary to membership in the MSTV class,

in general we do not know how to decide whether a given LRS is

modular or not. However, if a non-degenerate LRS
−→u is known (or

assumed) to be modular, then it is straightforward to compute its

set of zeros: first find a relevant value ofm through enumeration

(bearing in mind that the sequence of residues modulom is always

eventually periodic), from which one can elicit an upper bound N
beyond which

−→u is guaranteed not to vanish, and then evaluate
−→u

at all indices less than or equal to N .

Example 3.4. Consider the Z-LRS −→u = ⟨un⟩∞n=0 given by

un =
1

6

(
(−4 + 7i)n + (−4 − 7i)n

)
+
1

3

(
(8 + i)n + (8 − i)n

)
− 31 ,

or equivalently

un+5 = 9un+4 − 10un+3 + 522un+2 − 4745un+1 + 4225un

with initial values (for n = 0, 1, 2, 3, 4) of ⟨−30,−27, 0, 469, 1762⟩.

The five characteristic roots of
−→u are

λ1 = −4 + 7i, λ1 = −4 − 7i, λ2 = 8 + i, λ2 = 8 − i, λ3 = 1 .

One can verify that
−→u is non-degenerate. Moreover, the two

Gaussian primes p1 = −2+i and p2 = 3−2i serve as building blocks
for the non-real characteristic roots: λ1 = p1p2 and λ2 = −p1p2.
From this one can show that, for any prime ideal p of the ring

of integers of Q(λ1, λ1, λ2, λ2, λ3), there are always at least three
dominant characteristic roots in p-adic absolute value. Finally, we

have

|λ1 | = |λ1 | = |λ2 | = |λ2 | =
√
65 > λ3 = 1 .

In other words,
−→u does not belong to the MSTV class.

Now given any m ≥ 2 with gcd(m, 4225) = 1, the fact that

u2 = 0 entails that there are infinitely many values of n such that

un ≡ 0 modm. Nevertheless,
−→u is modular, and one can check

(preferably using a computer!) that the smallest relevant value is

m = 12625 = 101 · 53. Finally, one can then in turn verify that the

only zero of
−→u occurs at index n = 2.

It might be tempting to speculate that any order-5 Z-LRS not in
the MSTV class is necessarily modular, but unfortunately that is

not the case: consider the LRS
−→v defined by vn := 5

n
13

nun (with

⟨un⟩
∞
n=0 as above). One easily verifies that vn is not in the MSTV

class. Moreover, since 4225 = 5
2
13

2
, and making use of our earlier

observations about un , it follows straightforwardly that
−→v fails to

be modular.

Observe that
−→v is, however, reducible: it comprises

−→u as a factor,

and moreover such factors can always be effectively extracted.
6

we may assume that |λ1 | = |λ2 | = λ3 = 1. From the fact that all the Galois conjugates

of λ1/λ2 have modulus one and that λ1/λ2 is not a root of unity, there exists a prime

ideal p such vp(λ1) , vp(λ2). Since vp(λ1) = −vp(λ1) and vp(λ2) = −vp(λ2), there
are at most two dominant roots among {λ1, λ2, λ1, λ2 } with respect to vp(·) and the
dominant root(s) have a non-zero valuation. Hence there are still at most two dominant

roots among all five characteristic roots.

6
Technically speaking, irreducibility is the assertion that no rational prime divides all

of the characteristic roots in the relevant subring of algebraic integers—see Section 5

for details.

The crux of our main conditional decidability result, presented in

Section 5, proceeds as follows: assuming the Skolem Conjecture,

we show that any irreducible order-5 Z-LRS that does not belong
to the MSTV class is necessarily modular.

Our main unconditional decidability result, according to which

reversible Z-LRS of order 7 or below have a decidable Skolem Prob-

lem, is obtained as follows: we show that any such non-degenerate

LRS must necessarily have at most three characteristic roots of max-

imummodulus, whence the LRS automatically belongs to the MSTV

class. This is achieved in Section 4.1 mainly via Galois-theoretic

combinatorial arguments.

Finally, we present below an instance of a non-degenerate, irre-

ducible, order-6 LRS that does not belong to the MSTV class and

is not modular. This suggests that the techniques deployed in Sec-

tion 5 do not immediately appear to extend to LRS of orders 6 and

beyond.

Example 3.5. Write

λ1 = 1 + 2i, λ2 =
3

2

+
1

2

√
−11, λ3 =

1

2

+
1

2

√
−19 ,

and let un = λn
1
+ λ1

n
+ λn

2
+ λ2

n
− 2λn

3
− 2λ3

n
; or equivalently,

un+6 = 6un+5 − 26un+4 + 66un+3 − 130un+2 + 150un+1 − 125un

with initial values (for n = 0, 1, 2, 3, 4, 5) of ⟨0, 3, 11,−12,−125,

−177⟩.

The proofs that
−→u does not belong to the MSTV class and fails

to be modular are somewhat technical, and are deferred to Appen-

dix A.

4 REVERSIBLE LINEAR RECURRENCE
SEQUENCES

Recall that an integer Z-LRS −→u = ⟨un⟩∞n=0 is reversible if its bi-
completion

←→u = ⟨un⟩
∞
n=−∞ lies entirely in Z. As noted in Sec-

tion 1.1,
−→u is reversible if and only if its characteristic polynomial

д(X ) = Xk − a1X
k−1 − · · · − ak

has the property that ak = ±1. This in turn entails, by Vieta’s

formula, that the product of the characteristic roots (including repe-

titions) is equal to ±1, and therefore all characteristic roots are units

in the ring of algebraic integers. Conversely, if all characteristic

roots of a given Z-LRS are units, then so is their product, which

is equal (up to a sign) to the constant term of the characteristic

polynomial of the Z-LRS. The latter being a rational integer, it is

±1, and the original Z-LRS is therefore reversible.

Let
−→u be a degenerate reversible Z-LRS, and let L be the least

common multiple of the orders of the roots of unity appearing

among quotients of distinct characteristic roots. Then for anym ∈
{0, . . . ,L − 1}, the subsequence ⟨uLn+m⟩

∞
n=0 is non-degenerate,

of order at most that of
−→u , and moreover its characteristic roots

are L-th powers of the characteristic roots of
−→u . In particular, the

characteristic roots of each such derived subsequence are units, and

the subsequence is therefore also reversible.

4.1 The Skolem Problem for Reversible LRS
In this section, we establish the following:
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Theorem 4.1. The Skolem Problem for reversible Z-LRS of order 7
or less is decidable.

As noted earlier, it is sufficient to restrict our attention to non-

degenerate reversible LRS.
7
The proof of Theorem 4.1 proceeds by

showing that any non-degenerate reversible Z-LRS of order 7 or

less has at most three characteristic roots of maximum modulus,

and therefore belongs to the MSTV class.

In order to do so, we show in Propositions 4.2, 4.3, and 4.4, that no

monic polynomial д ∈ Z[X ] that has degree at most 7 and constant

term ±1 satisfies the following two properties:

(H1) д has at least four distinct roots of maximum modulus;

(H2) no quotient of two distinct roots of д is a root of unity.

Proposition 4.2. No monic polynomial д ∈ Z[X ] of degree at most
5 and constant term ±1 satisfies both (H1) an (H2).

Proof. We suppose that д exists with the given properties and

derive a contradiction. By (H1), д has at least four distinct dominant

roots
8
and, by (H2), at most one of the dominant roots is real. Hence

the dominant roots include two complex-conjugate pairs λ1, λ1 and

λ2, λ2. The dominant roots of д must have modulus strictly greater

than 1 for otherwise, by an old result of Kronecker [20], the roots

of д would all be roots of unity, which is precluded by (H2).

Each root of д is a unit in the ring of algebraic integers and hence

has norm
9
equal to ±1. In particular, the dominant root λ1 must

have a Galois conjugate of modulus less than 1, that is, there is a

non-dominant root λ3 of д and an automorphism σ of the splitting

field of д such that σ (λ1) = λ3. Thus д has degree 5 and

|σ (λ1)| < |σ (λ1)| = |σ (λ2)| = |σ (λ2)| . (3)

Now the dominant roots of д satisfy the equation λ1λ1 =

λ2λ2. For the automorphism σ , mentioned above, we thus have

σ (λ1)σ (λ1) = σ (λ2)σ (λ2). But this clearly contradicts Equa-

tion (3). □

Proposition 4.3. No monic degree-6 polynomial д ∈ Z[X ] with
constant term ±1 satisfies both (H1) and (H2).

Proof. Once again we suppose that д exists with the given

properties and derive a contradiction. Let G denote the group of

automorphisms of the splitting field of д.
Arguing exactly as in the proof of Proposition 4.2, the dominant

roots of д include two complex-conjugate pairs λ1, λ1 and λ2, λ2,
such that

λ1λ1 = λ2λ2 . (4)

A fact which we will use repeatedly is that, by Equation (4), for all

σ ∈ G,

σ (λ1)σ (λ1) = σ (λ2)σ (λ2) . (5)

Since λ1 has norm ±1, being a unit, it must have a Galois con-

jugate of modulus less than 1, that is, there exists a non-dominant

root λ3 of д and σ ∈ G with σ (λ1) = λ3. Now we cannot have

7
In decomposing a given LRS into a collection of non-degenerate LRS, the order of the

non-degenerate LRS thus obtained is always at most the order of the original LRS.

8
Throughout Section 4.1, dominant root refers to roots of maximal modulus.

9
The norm of an algebraic integer is the product of its Galois conjugates (including

itself).

both σ (λ1) and σ (λ1) non-dominant, since then σ (λ2) and σ (λ2)
would have to lie among the four dominant roots, and Equation (5)

would fail. We thus must have that σ (λ1) is dominant, and exactly

one element of {σ (λ2),σ (λ2)} is dominant, with other elements

having the same modulus as λ3. In particular, there is a second non-

dominant root, having the same modulus as λ3. By Condition (H2)

the two non-dominant roots cannot both be real; thus we have two

non-dominant complex roots λ3 and λ3. Taking into account σ ,σ
−1

and complex conjugation, it is now clear thatG acts transitively on

the roots of д; hence д is irreducible.

Since д is irreducible, its roots all have degree 6. It follows that

the order of G (which is equal to the degree of the splitting field of

д over Q) is divisible by 3. In particular, by Cauchy’s theorem, G
contains an element σ of order 3. Such an element is either a 3-cycle

or is the product of two disjoint 3-cycles. We claim that in fact σ

is a product of two disjoint 3-cycles (D1 D2 λ3) and (D3 D4 λ3),
where D1, . . . ,D4 is a list of the dominant roots.

To prove the claim, suppose for a contradiction that σ contains

a 3-cycle of dominant roots. By renaming roots we can assume

without loss of generality that the cycle is (λ1 λ2 λ1). Since σ

maps each of λ1, λ2, λ1 to a dominant root, by Equation (5) we

have that σ (λ2) is also dominant, i.e., σ fixes λ2. Now Equation (5)

gives λ2λ1 = λ1λ2. Multiplying the previous equation by λ1λ2 and

dividing by Equation (4) gives λ2
2
= λ1

2

, contradicting Condition

(H2). We now have that a cycle decomposition of σ must contain a

3-cycle of the form (D1 D2 λ3), with D1,D2 dominant roots. Again,

by Equation (5), σ must map one of the remaining two dominant

roots to λ3. Thus σ be the product of two 3-cycles, necessarily of

the form indicated in the claim.

We now consider two cases according to the cycle decomposition

of σ .

Case 1. Suppose that some 3-cycle inσ contains a pair of complex-

conjugate roots of д. By renaming dominant roots, we can assume

without loss of generality that σ = (λ1 λ1 λ3)(λ2 λ2 λ3). Applying

σ twice to Equation (4) we successively get that λ1λ3 = λ2λ3 and

λ3λ1 = λ3λ2. Next, multiplying the two previous equations and

dividing the result by Equation (4), we get λ2
3
= λ2

3
. This contradicts

Condition (H2). Thus Case 1 leads to a contradiction.

Case 2. Suppose that neither 3-cycle in the decomposition of σ
contains a pair of complex-conjugate roots. By renaming dominant

roots we can write σ = (λ1 λ2 λ3)(λ2 λ1 λ3) without loss of

generality (since it is not possible for both λ2 and λ2 both to map

to non-dominant roots, otherwise Equation (5) would be violated).

By Equation (5) we have

λ2λ3 = λ3λ1 (6)

We now consider two sub-cases:

Sub-case 2.1. Suppose that λ1λ2λ3 is a root of unity. Multiplying

Equation (6) by λ1λ
2

3
we have

λ1λ2λ3λ3λ3 = λ1λ1λ
3

3
. (7)

Dividing Equation (7) by its complex-conjugate equation gives

(λ1λ2λ3)/(λ1λ2λ3) = (λ3/λ3)
3 ,
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which implies that λ3/λ3 is a root of unity, contradicting Condition
(H2).

Sub-case 2.2. Suppose that λ1λ2λ3 is not a root of unity. Then
λ1λ2λ3 has a Galois conjugate of modulus strictly greater than 1.

But for a product of three roots of д to have modulus greater than 1

they must all be dominant, since the product of two dominant and

one non-dominant root has modulus 1. Hence there exists τ ∈ G
such that τ (λ1), τ (λ2), and τ (λ3) are all dominant. Then, since at

most one of τ (λ1) and τ (λ2) can be dominant, in order for τ to

preserve Equation (4) we would need that both τ (λ1) and τ (λ2) be

non-dominant, and τ (λ3) be dominant. But then τ does not preserve

Equation (6). Again we arrive at a contradiction.

We have thus given an exhaustive case analysis, with all cases

leading to a contradiction. We conclude that there does not exist a

polynomial д with the properties stated in the proposition. □

Proposition 4.4. No monic degree-7 polynomial д ∈ Z[X ] with
constant term ±1 satisfies both (H1) and (H2).

Proof. Once more we suppose that д exists with the given prop-

erties and derive a contradiction. Let G denote the Galois group of

д.
Exactly as in the proof of Proposition 4.3, one shows that there

are two pairs of complex-conjugate dominant roots λ1, λ1 and λ2, λ2
and a pair of non-dominant complex conjugate roots λ3, λ3 such
that the six mentioned roots are contained in a single orbit of the

Galois group of д (and hence are all roots of the same irreducible

factor of д). But the six mentioned roots cannot be the roots of a

degree-6 factor of д, since this factor would violate Proposition 4.3.

Hence д must be irreducible.

Let λ4 ∈ R be the remaining root of д. We note that λ4 is not
dominant. Indeed, if λ4 were dominant then we would have the

equation

λ1λ1 = λ2λ2 = λ2
4
.

But consider the image of this equation under σ ∈ G such that

σ (λ1) = λ3. In order to preserve the equation we would need one

of σ (λ2) and σ (λ2) to be non-dominant and σ (λ4) to also be non-

dominant, that is, we would need the image of σ to contain three

non-dominant roots—which is impossible. We conclude that λ4 is
non-dominant.

Since д is irreducible, the order of G is divisible by 7 and hence,

by Cauchy’s theorem,G contains an element σ of order 7. Now σ
induces a 7-cycle of the roots of д. Let D1, . . . ,D4 be a list of the

dominant roots of д in some arbitrary order and likewise N1,N2,N3

a list of the non-dominant roots. To preserve the equation λ1λ1 =

λ2λ2, σ must map exactly two dominant roots to non-dominant

roots. This yields (up to cyclic symmetry) three possible patterns

for σ . We show that each case leads to a contradiction.

Case 1. Suppose σ = (D1 D2 N1 N2 D3 D4 N3). Then σ 2
maps

three dominant roots (namely D1,D2,D3) to non-dominant roots

and hence does not preserve the equation λ1λ1 = λ2λ2. Thus there
cannot be an automorphism of this form.

Case 2. Let σ be either (D1 D2 D3 N1 D4 N2 N3) or

(D1 D2 D3 N1 N2 D4 N3). In both of these cases (as can be seen

by enumerating all powers of σ ), every one of the six pairs of

dominant roots is mapped by some power of σ to a pair of non-

dominant roots. In particular, some power of σ maps both λ1 and

λ1 to non-dominant roots and hence does not preserve the equation

λ1λ1 = λ2λ2 (for only one of λ2 and λ2 can be sent to the remaining

non-dominant root). □

4.2 Hard Instances at Order 8
We conclude our discussion of reversible linear recurrence se-

quences by showing that the preceding string of propositions can-

not be extended further, that is, there exists a family of degree-8

polynomials all having constant term 1 and satisfying properties

(H1) and (H2). In turn, this enables us to exhibit a family of non-

degenerate reversible Z-LRS that do not belong to the MSTV class.

Fix non-zero integers a,b with a , ±b and let ρ =
√
2 + 1 (more

generally, the construction below works for ρ any real quadratic

unit greater than 1). Let k be an even positive integer parameter.

Writing

д1(X ) := (X
2 − aX + ρk )(X 2 − bX + ρk ) ,

the roots of д1 are

a ±
√
a2 − 4ρk

2

and

b ±
√
b2 − 4ρk

2

.

For k sufficiently large, д1 has four complex roots, all with modulus

ρk/2.
Now write д(X ) := д1(X )д2(X ), where

д2(X ) := (X
2 − aX + ρ−k )(X 2 − bX + ρ−k ) .

Noting that the Galois conjugate of ρ is −ρ−1, since k is even we

have that д is an integer polynomial of degree 8 and constant term

1. The roots of д2 are

a ±
√
a2 − 4ρ−k

2

and

b ±
√
b2 − 4ρ−k

2

.

Thus, for suitably large k , the roots of д2 have modulus at most

max(|a |, |b |) < ρk/2 and so д has four roots of maximal modulus,

i.e., д satisfies (H1).

It remains to observe that д satisfies (H2) for all but finitely many

choices of k . Indeed, for sufficiently large k the non-dominant roots

(in modulus) are real and all pairwise distinct. Meanwhile, the

arguments of the roots of maximal modulus converge to ±π as k
tends to infinity. Since for every k the roots of maximal modulus

lie in a field of degree at most 8 and since there are only finitely

many roots of unity of degree at most 8, the desired result follows.

Let us furthermore observe that, for any prime ideal p the valua-

tion function vp(·) evaluates to 0 on every root of д (as the latter

are all units). Consequently, д always has eight dominant roots in

p-adic absolute value. It is now straightforward to manufacture

a family of non-degenerate reversible order-8 Z-LRS that do not

belong to the MSTV class, with such LRS having instantiations

of д as characteristic polynomials. We construct one such simple

instance below.

Example 4.5. Let ρ =
√
2 + 1 as earlier, and write:

λ1 =
1 +

√
1 − 4ρ2

2

and λ2 =
2 +

√
4 − 4ρ2

2

.



On the Skolem Problem and the Skolem Conjecture LICS ’22, August 2–5, 2022, Haifa, Israel

The characteristic roots of maximum modulus will be λ1, λ1, λ2,
and λ2. The other four (real) roots are

r1 =
1 +

√
1 − 4ρ−2

2

, r̃1 =
1 −

√
1 − 4ρ−2

2

,

r2 =
2 +

√
4 − 4ρ−2

2

, and r̃2 =
2 −

√
4 − 4ρ−2

2

.

Let

un =
√
2

(
λn
1
+ λ1

n
+ 2λn

2
+ 2λ2

n
− rn

1
− r̃n

1
− 2rn

2
− 2r̃n

2

)
.

Equivalently, write:

un+8 = 6un+7 − 25un+6 + 66un+5 − 120un+4 +

150un+3 − 89un+2 + 18un+1 − un ,

with initial values (for n = 0, . . . , 7) of ⟨0, 0,−48,−120, 0, 520,

624,−2016⟩.
−→u = ⟨un⟩∞n=0 has zeros at indices 0, 1, and 4. It does not belong

to the MSTV class, it is irreducible (as all roots are units), and it is

not modular.
10

5 THE SKOLEM PROBLEM AT ORDER 5
In this section, we prove the following result:

Theorem 5.1. The Skolem Problem for Z-LRS of order 5 is decidable,
assuming the Skolem Conjecture.

Remark 5.2. In fact, the proof of Theorem 5.1 only requires that the

Skolem Conjecture hold for Z-LRBS of order 5. Let us also record

an immediate corollary, to the effect that the Skolem Problem for

Q-LRS of order 5 is also decidable subject to the Skolem Conjecture.

Proof. As noted in Section 3, it suffices to consider non-

degenerate order-5 Z-LRS that do not belong to the MSTV class. Let

−→u = ⟨un⟩∞n=0 be such an LRS. Then
−→u has five distinct non-zero

characteristic roots λ1, . . . , λ5, with λ2 = λ1, λ4 = λ3, λ5 real, and
such that

λ1λ2 = λ3λ4 > λ2
5
. (8)

DefineK := Q(λ1, . . . , λ5) to be the field generated by the charac-
teristic roots and write O for the ring of integers of K . By rescaling,

we may assume that the coefficients α1, . . . ,α5 in the exponential-

polynomial representation un =
∑
5

i=1 αiλ
n
i all lie in O.

Write d = [K : Q] for the degree of K over Q. By dividing
−→u

into d subsequences ⟨udn+r ⟩
∞
n=0, for r = 0, . . . ,d − 1, and sepa-

rately considering each subsequence, we can assume without loss

of generality that for each characteristic root λ of
−→u , every valu-

ation vp(λ) is an integer multiple of d . Furthermore, by rescaling

we may assume that there is no rational prime that divides all the

characteristic roots (in O).

We now show, assuming the Skolem Conjecture, that
−→u is nec-

essarily modular, from which decidability follows. We proceed by

contradiction and suppose that
−→u is not modular.

As established in the proof of Proposition 4.2, the set {λ1, . . . , λ4}
of roots that are dominant in modulus is invariant under every

automorphism of K . It follows that all Galois conjugates of λ1/λ2

10
Any reversible LRS that has a zero (or whose bi-completion has a zero) will necessarily

fail to be modular, since for any given integerm ≥ 2, the sequence of residues modulo

m is always periodic.

have modulus one. Since λ1/λ2 is not a root of unity there is a prime

ideal p of O such that vp(λ1) , vp(λ2). Without loss of generality

we may suppose that p divides λ1. We further claim that p does not

divide every characteristic root. Indeed, suppose for a contradiction

that p does divide every characteristic root. Let p lie above the

rational prime p and denote by e its ramification index. Since the

Galois group of K acts transitively on the prime ideals above p we

get that every prime ideal above p divides every characteristic root.

In turn this implies that every prime ideal above p divides every

characteristic root to order at least d ≥ e . But this implies that the

rational integer p divides every characteristic root, contrary to our

assumption. Thus the claim is proved.

By the previous claim we have that every p-adically dominant

characteristic root λi has vp(λi ) = 0. We also know that vp(λ1) > 0.

Furthermore, by the assumption that
−→u is not in the MSTV class

we know that at least three characteristic roots have zero valuation

with respect to vp . By Equation (8), we may thus suppose that

vp(λ1) = vp(λ3) > 0 and vp(λ2) = vp(λ4) = vp(λ5) = 0.

Write f for the residual degree of p (i.e., such that O/p has order

pf ). For some residue class r ∈ {0, 1, . . . ,pf − 2} we have that the
subsequence ⟨u(p f −1)n+r ⟩

∞
n=0 fails to be modular (otherwise it is

easily seen that ⟨un⟩
∞
n=0 itself would be modular). For this value of r ,

define
−→w = ⟨wn⟩

∞
n=0 bywn := u(p f −1)n+r . Since

−→w is not modular,

it follows that for every k ∈ N there exists rk ∈ {0, 1, . . . ,p
k − 1}

such that

∀m ≥ 2 ∃∞n ∈ rk + pkN : wn ≡ 0 modm . (9)

(To see this, fix k ∈ N, and consider the infinite sequence of indices
corresponding to null residues modulom = ℓ!. By the pigeonhole

principle, some rk will emerge for infinitely many instances of ℓ!,

and will thus satisfy Equation 9 for allm ≥ 2.)

Setting m = pk in (9), we see that for all k there exists nk ∈

rk + p
kN such that nk ≥ k andwnk ≡ 0 mod pk .

By the Skolem Conjecture and (9), for all k there exists n ∈

rk + p
kZ such thatwn = 0; that is, for all k , nk is congruent modulo

pk to some integer zero of
←→w . Since

←→w has only finitely many

integer zeros (by the Skolem-Mahler-Lech theorem), there must

exist x ∈ Z such that wx = 0 and x ≡ nk mod pk for infinitely

many k .
Now for all n ∈ Z we have

wn = β1λ
(p f −1)n
1

+ β3λ
(p f −1)n
3

+

β2λ
(p f −1)n
2

+ β4λ
(p f −1)n
4

+ β5λ
(p f −1)n
5

,

for some non-zero β1, . . . , β5 ∈ O. In particular, for x as above, we

have

wx = β1λ
(p f −1)x
1

+ β2λ
(p f −1)x
2

+ · · · + β5λ
(p f −1)x
5

= 0 . (10)

On the other hand, since wnk ≡ 0 mod pk , nk ≥ k , and
vp(λ1),vp(λ3) > 0, we have

β2λ
(p f −1)nk
2

+ β4λ
(p f −1)nk
4

+ β5λ
(p f −1)nk
5

≡ 0 mod p
k . (11)

Since O/p is a finite field of order pf , we have that

λ
p f −1
2
, λ

p f −1
4
, λ

p f −1
5

∈ 1 + p. Now for all z ∈ 1 + p and n1,n2 ∈ Z

by the Binomial theorem we have that if n1 ≡ n2 mod pk then



LICS ’22, August 2–5, 2022, Haifa, Israel Richard J. Lipton, Florian Luca, Joris Nieuwveld, Joël Ouaknine, David Purser, and James Worrell

zn1 ≡ zn2
mod pk+1 (see, e.g. [18, Section 4.6]). From this fact and

Equation (11) we deduce that

β2λ
(p f −1)x
2

+ β4λ
(p f −1)x
4

+ β5λ
(p f −1)x
5

≡ 0 mod p
k .

Since the above holds for all k ≥ 0, we have

β2λ
(p f −1)x
2

+ β4λ
(p f −1)x
4

+ β5λ
(p f −1)x
5

= 0 . (12)

Comparing (10) and (12) we have

β1λ
(p f −1)x
1

+ β3λ
(p f −1)x
3

= 0 .

Applying complex conjugation to this equation gives

β2λ
(p f −1)x
2

+ β4λ
(p f −1)x
4

= 0 .

The previous equation together with Equation (12) entail that

β5λ
(p f −1)x
5

= 0, which is impossible, since β5, λ5 , 0. □

Remark 5.3. It is worth noting in the above proof that the Skolem

Conjecture is invoked infinitely many times, although only ever

on order-5 LRBS that do not belong to the MSTV class. It would

therefore suffice to prove this particular special case of the Skolem

Conjecture to obtain the unconditional decidability of the Skolem

Problem at order 5.

We now outline a simple procedure for computing the set of all

zeros of a given non-degenerate order-5 Z-LRS −→u = ⟨un⟩∞n=0. We

assume that
−→u does not belong to the MSTV class, otherwise one

simply proceeds using one of the known existing algorithms [21,

31].

Write un =
∑
5

i=1 αiλ
n
i , where each λi is an algebraic integer.

Let C ∈ N be the largest rational integer such, for each i , one can
write λi = Cµi , with µi an algebraic integer. And let D ≥ 1 be

the smallest rational integer such that, for each i , γi := Dαi is an
algebraic integer.

Letting

vn :=
D

Cn
un =

5∑
i=1

γi µ
n
i ,

we see that the zero sets of the Z-LRS −→u and
−→v are the same.

The proof of Theorem 5.1 shows that, assuming the Skolem

Conjecture,
−→v is modular. Therefore search (by enumeration) for a

suitable value ofm, from which one can compute a bound N ∈ N
such that, for all n > N , vn , 0.

Finally, compute the set of zeros of
−→u by inspecting each un , for

0 ≤ n ≤ N .

Note that whenever this procedure halts, it has correctly pro-

duced the zero set of
−→u . The Skolem Conjecture merely ensures

that the procedure always does terminate.
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A PROOFS FOR EXAMPLE 3.5
Recall the order-6 Z-LRS from Example 3.5; we have

λ1 = 1 + 2i, λ2 =
3

2

+
1

2

√
−11, λ3 =

1

2

+
1

2

√
−19 ,

and un = λn
1
+ λ1

n
+ λn

2
+ λ2

n
− 2λn

3
− 2λ3

n
; equivalently

un = 6un−1 − 26un−2 + 66un−3 − 130un−4 + 150un−5 − 125un−6

with initial values (for n = 0, 1, 2, 3, 4, 5) of ⟨0, 3, 11,−12,−125,

−177⟩.

We prove that
−→u is not modular and does not belong to the

MSTV class. Here we assume familiarity with basic notions con-

cerning the p-adic numbers Qp . In particular, we refer to Hensel’s

Lemma [5, Theorem 12.16] and the following simple fact about

p-adic exponentiation (see, e.g., [18, Section 4.6]): for α ∈ Zp and

k ≥ 0, the congruence (1 + pα)p
k
≡ 1 mod pk+1 holds.

Let us first show that the sequence
−→u fails to be modular. This

will result from the following two conditions:

(M1) For everym that is not divisible by 5, the sequence ⟨un mod

m⟩∞n=0 is periodic.

(M2) For all k ≥ 0 and ℓ ≥ 1, we have uℓ ·4·5k ≡ 0 mod 5
k
.

Indeed, given any m not divisible by 5, by (M1) the sequence

⟨un modm⟩∞n=0 is periodic—say with period ℓ. Since u0 = 0 we

have that uℓ ·4·5k ≡ 0 modm for all k ≥ 0. But by (M2) we also

have uℓ ·4·5k ≡ 0 mod 5
k
. Hence uℓ ·4·5k ≡ 0 modm5

k
for all k ≥ 0.

Since every positive integer has the formm5
k
for some k ≥ 0 and

m not divisible by 5, we conclude that
−→u is not modular.

It remains to establish (M1) and (M2). In fact, (M1) was already

noted in Section 1.1. For (M2) it is convenient to work in the field

Q5 of 5-adic numbers and its subring Z5 of 5-adic integers.

Let K := Q(
√
−1,
√
19,
√
11) be the field generated over Q by

the characteristic roots of
−→u . Since −1, 19, 11 are all squares in Q5,

we may regard K as a subfield of Q5. Indeed, by Hensel’s Lemma,

we can choose

√
−1,
√
19,
√
11 to be elements of Z5 satisfying the

following congruences in Z5:
√
−1 ≡ 3 mod 5,

√
19 ≡ 2 mod 5, and

√
11 ≡ 1 mod 5. This in turn leads us to identify the characteristic

roots of
−→u as elements of Z5 such that, respectively, λ1, λ2, λ3 .

0 mod 5 and λ1, λ2, λ3 ≡ 0 mod 5.

Since the residue field Z5/5Z5 is the finite field Z/5Z,
we have λ4

1
, λ4

2
, λ4

3
≡ 1 mod 5. Hence, applying the above-

mentioned fact about exponentiation, we have that for all ℓ,k ≥

0, λℓ ·4·5
k

1
, λℓ ·4·5

k

2
, λℓ ·4·5

k

3
≡ 1 mod 5

k+1
. But we also have

λ1
ℓ ·4·5k

, λ2
ℓ ·4·5k

, λ3
ℓ ·4·5k

≡ 0 mod 5
k
. Thus, from the formula

un = λn
1
+ λ1

n
+ λn

2
+ λ2

n
− 2λn

3
− 2λ3

n
, we have that uℓ ·4·5k ≡

0 mod 5
k
. This establishes (M2) and completes the proof that

−→u is

not modular.

We now proceed to show that the sequence
−→u does not lie in the

MSTV class. Note that if we regard the characteristic roots of
−→u

as lying in Q5, then, as explained above, there are three dominant

roots with respect to the 5-adic absolute value. Specifically we have

thatv5(λ1) = v5(λ2) = v5(λ3) = 0, with the remaining roots having

positive 5-adic valuation. Let us now take some prime-ideal divisor

p of a characteristic root in K . Then p divides 5 since the product of
every complex-conjugate pair of characteristic roots is 5. Moreover,

since the characteristic polynomial of
−→u splits into distinct linear

factors overQ5 we have that (K ,vp) can be embedded in (Q5,v5) as
a valued field (see the discussion in [5, Section 12.8]). It follows that

there are also three dominant characteristic roots with respect to

vp . Moreover, since each characteristic root has modulus

√
5, there

https://perspicuous-computing.science
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are six dominant root with respect to modulus. We conclude that

−→u does not lie in the MSTV class.
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