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ABSTRACT
We investigate the decidability of the monadic second-order (MSO)

theory of the structure ⟨N;<, 𝑃1, . . . , 𝑃𝑘 ⟩, for various unary predi-

cates 𝑃1, . . . , 𝑃𝑘 ⊆ N. We focus in particular on ‘arithmetic’ pred-

icates arising in the study of linear recurrence sequences, such

as fixed-base powers Pow𝑘 = {𝑘𝑛 : 𝑛 ∈ N}, 𝑘-th powers N𝑘 =

{𝑛𝑘 : 𝑛 ∈ N}, and the set of terms of the Fibonacci sequence

Fib = {0, 1, 2, 3, 5, 8, 13, . . .} (and similarly for other linear recur-

rence sequences having a single, non-repeated, dominant charac-

teristic root). We obtain several new unconditional and conditional

decidability results, a select sample of which are the following:

• The MSO theory of ⟨N;<, Pow2, Fib⟩ is decidable;
• The MSO theory of ⟨N;<, Pow2, Pow3, Pow6⟩ is decidable;
• The MSO theory of ⟨N;<, Pow2, Pow3, Pow5⟩ is decidable
assuming Schanuel’s conjecture;

• The MSO theory of ⟨N;<, Pow4,N2⟩ is decidable;
• The MSO theory of ⟨N;<, Pow2,N2⟩ is Turing-equivalent to
the MSO theory of ⟨N;<, 𝑆⟩, where 𝑆 is the predicate cor-

responding to the binary expansion of

√
2. (As the binary

expansion of

√
2 is widely believed to be normal, the corre-

sponding MSO theory is in turn expected to be decidable.)

These results are obtained by exploiting and combining techniques

from dynamical systems, number theory, and automata theory.

CCS CONCEPTS
• Theory of computation→ Logic and verification.
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Monadic second-order logic, linear recurrence sequences, toric
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1 INTRODUCTION
Büchi’s seminal 1962 paper [9] established the decidability of the

monadic second-order (MSO) theory of the structure ⟨N;<⟩, and
in so doing brought to light the profound connections between

mathematical logic and automata theory. Over the ensuing decades,

considerable work has been devoted to the question of which expan-

sions of ⟨N;<⟩ retain MSO decidability. In other words, for which

unary predicates 𝑃1, . . . , 𝑃𝑘 is the MSO theory of ⟨N;<, 𝑃1, . . . , 𝑃𝑘 ⟩
decidable?

1
Here by unary predicate we mean a fixed set of non-

negative integers 𝑃 ⊆ N. Taking, for example, 𝑃 to be the set of

prime numbers, Büchi and Landweber [10] observed in 1969 that a

proof of decidability of the MSO theory of ⟨N;<, 𝑃⟩ would “seem

very difficult”, as it would inter alia enable one (at least in principle)

to settle the twin prime conjecture. (Decidability was subsequently

established assuming Schinzel’s hypothesis H [5].)

The set of prime numbers is, of course, highly intricate. In 1966,

Elgot and Rabin [15] considered a large class of simpler predicates

of ‘arithmetic’ origin, such as, for any fixed 𝑘 , the set Pow𝑘 =

{𝑘𝑛 : 𝑛 ∈ N} of powers of 𝑘 , and the set N𝑘 = {𝑛𝑘 : 𝑛 ∈ N}
of 𝑘-th powers. For any such predicate 𝑃 , they systematically es-

tablished decidability of the MSO theory of ⟨N;<, 𝑃⟩ by using (in

modern parlance) a notion of effective profinite ultimate periodicity
(essentially an automata-theoretic concept). Many years later, the

theory was substantially developed and extended by Carton and

Thomas [12], Rabinovich [28], and Rabinovich and Thomas [29],

among others. A related key concept is that of effective almost pe-
riodicity, introduced in the 1980s by Semënov [32], and recently

brought to bear in the MSO model checking of linear dynamical

systems [20].

It is notable that whilst Elgot and Rabin establish separately the

decidability of the MSO theories, for example, of ⟨N;<, Pow2⟩ and
1
The restricted focus on unary (ormonadic) predicates is justified by the fact that most

natural non-unary predicates immediately lead to undecidability.
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⟨N;<, Pow3⟩, they remain resolutely silent on the obvious joint

expansion ⟨N;<, Pow2, Pow3⟩. This in hindsight is wholly unsur-

prising: there are various statements that one can express in the

above theory whose truth values are highly non-trivial to deter-

mine: for example, for given fixed 𝑎, 𝑏, the assertion that there exist

infinitely many powers of 3 whose distance to the next power of 2

is congruent to 𝑎 modulo 𝑏. An immediate corollary of our first

main result, Thm. 5.1, is that the MSO theory of ⟨N;<, Pow2, Pow3⟩
is indeed decidable. Although this is new, we should mention that

decidability of the first-order theory of ⟨N;<, Pow2, Pow3⟩ has been
known for over forty years, an important result of Semënov [31].

Looking over the last several decades’ worth of research work on

monadic second-order expansions of the structure ⟨N;<⟩, it is fair
to say that the bulk of the attention has focused on the addition of a

single predicate 𝑃 . The obvious reason is that whilst, in general, the

decidability of single-predicate expansions of ⟨N;<⟩ can usually be

handled with automata-theoretic techniques alone, by reasoning

about individual patterns in isolation, this is not the case when

multiple predicates are at play simultaneously. Such collections of

predicates can exhibit highly complex interaction patterns, which

existing approaches are ill-equipped to handle.

In this paper, we show that key aspects of such interactions

can be modelled in the theory of dynamical systems, and in par-

ticular via the notion of toric words [7]. In addition, we make

use of number-theoretic tools to ensure effectiveness at various

junctures of our algorithms. Some of our results are conditional:

whereas Baker’s theorem on linear forms in logarithms (along-

side other tools) underpins the decidability of the MSO theory of

⟨N;<, Pow2, Pow3⟩, we are only able to show decidability of the

MSO theory of ⟨N;<, Pow2, Pow3, Pow5⟩ subject to Schanuel’s con-
jecture, a central hypothesis in transcendental number theory. Intu-

itively, the reason is that whilst Baker’s theorem suffices to handle

interaction patterns of powers of 2 and powers of 3, the injection

of powers of 5 into the mix exceeds the limits of contemporary

number-theoretic knowledge.

Our paper contains two main results. Theorem 5.1 considers

predicates arising from the sets of values achieved by certain linear
recurrence sequences, generalising the predicates considered above.

A simplified version of that result is as follows:

Theorem 1.1. Let 𝜌1, . . . , 𝜌𝑑 > 1 be natural numbers.
(1) The MSO theory of ⟨N;<, Pow𝜌1 , . . . , Pow𝜌𝑑 ⟩ is decidable as-

suming Schanuel’s conjecture.
(2) If 1/log(𝜌1), . . . , 1/log(𝜌𝑑 ) are linearly independent over Q,

then the decidability is unconditional.
(3) If each triple of distinct 𝜌𝑖 , 𝜌 𝑗 , 𝜌𝑘 is multiplicatively dependent,

then the decidability is unconditional.

Item (3) captures, for example, the decidability of the MSO theory

of ⟨N;<, Pow2, Pow3, Pow6⟩. Our second main result is Thm. 7.2,

restated here:

Theorem 1.2. Let 𝑝, 𝑞, 𝑏, 𝑑 be natural numbers such that 𝜂 =
𝑑
√︁
𝑝/𝑞 is irrational, 𝑃1 = {𝑞𝑛𝑑 : 𝑛 ∈ N}, and 𝑃2 = {𝑝𝑏𝑛𝑑 : 𝑛 ∈ N}.

The decidability of the MSO theory of ⟨N;<, 𝑃1, 𝑃2⟩ is Turing-equiva-
lent to that of the MSO theory of the base-𝑏 expansion of 𝜂.2

2
The representation of 𝜂 in the base-𝑏 number system is an infinite word 𝛼 over the

finite alphabet Σ = {0, 1, . . . , 𝑏 − 1} of digits. By MSO theory of an infinite word,

The underlying dynamical system here is of a symbolic nature: it

consists of the base-𝑏 expansion of the irrational number 𝜂, which

is a 𝑑-th root of a rational number. Such expansions are widely

conjectured to be normal, and a fortiori weakly normal: every finite

pattern of digits should occur infinitely often. As the MSO theory

of any weakly normal word is decidable (Thm. 4.18), we obtain a

conditional decidability result.

Note that when𝜂 is rational, we obtain unconditional decidability

(Thm. 7.1), thanks to a composition result (Thm. 4.11) which we

believe may be of independent interest. Here we state a simple

corollary of Thm. 7.1:

Corollary 1.3. For any positive integers 𝑏 and 𝑑 , the MSO theory
of ⟨N;<, Pow𝑏𝑑 ,N𝑑 ⟩ is decidable.

For example, we recover from the above the decidability of the

MSO theory of ⟨N;<, Pow4,N2⟩, mentioned in the abstract.

2 PRELIMINARIES
2.1 Words and Automata
By an alphabet Σ we mean a finite set of letters. For a finite or

infinite word 𝛼 and 𝑛 ∈ N, we write 𝛼 (𝑛) for the 𝑛th letter of 𝛼 .

Thus 𝛼 = 𝛼 (0)𝛼 (1) · · · . We define 𝛼 [𝑛,𝑚) B 𝛼 (𝑛) · · ·𝛼 (𝑚−1), and
assuming 𝛼 is infinite, 𝛼 [𝑛,∞) B 𝛼 (𝑛)𝛼 (𝑛 + 1) · · · . We denote the

length of a finite word𝑤 by |𝑤 |. A finite word𝑤 ∈ Σ∗ occurs at a
position 𝑛 in 𝛼 if 𝛼 [𝑛, 𝑛+ |𝑤 |) = 𝑤 . Such𝑤 is called a factor of 𝛼 . We

will often factorise 𝛼 ∈ Σ𝜔 as 𝛼 = 𝑢0𝑢1 · · · , where 𝑢𝑖 ∈ Σ∗ for all
𝑖 ∈ N. Such a factorisation is uniquely determined by an increasing

sequence ⟨𝑘𝑛⟩∞𝑛=0 over N such that 𝑢𝑖 = 𝛼 [𝑘𝑖 , 𝑘𝑖+1) for all 𝑖 . Finally,
consider 𝛼𝑖 ∈ Σ𝜔

𝑖
for 1 ≤ 𝑖 ≤ 𝑑 . The product word 𝛼 B 𝛼1× · · ·×𝛼𝑑

is defined by 𝛼 (𝑛) = (𝛼1 (𝑛), . . . , 𝛼𝑑 (𝑛)) ∈ Σ1 × · · · × Σ𝑑 for all 𝑛.

Let 𝛼 ∈ Σ𝜔 . We say that 𝛼 is

(a) effective if for any 𝑛 ∈ N, 𝛼 (𝑛) can be effectively computed,

(b) weakly normal if for every𝑤 ∈ Σ+,𝑤 occurs as a factor of 𝛼

infinitely often, and

(c) uniformly recurrent if for every 𝑤 ∈ Σ+, either 𝑤 does not

occur in 𝛼 , or there exists 𝑅(𝑤) ∈ N such that 𝑤 occurs in

every factor of 𝛼 of length 𝑅(𝑤). Equivalently, if 𝑤 occurs

in𝛼 , then there exists an integer𝑅(𝑤) such that for all𝑁 ∈ N,
𝑤 occurs in 𝛼 [𝑁, 𝑁 + 𝑅(𝑤)).

Prominent examples of uniformly recurrent words include the Thue-

Morse word [2, Chap. 1] and all Sturmian words [22, Chap. 2].

A deterministic finite Muller automaton A over an alphabet Σ is

given by a tuple (𝑄,𝑞init, 𝛿, F ), where 𝑄 is the (finite) set of states,

𝑞init is the initial state, 𝛿 : 𝑄 × Σ → 𝑄 is the transition function,

and F is the acceptance condition consisting of subsets of 𝑄 . We

denote byA(𝛼) the run ofA on 𝛼 , which is the set of states visited

when A reads 𝛼 . A word 𝛼 ∈ Σ𝜔 is accepted by A if the set 𝑆 of

states appearing infinitely often in A(𝛼) is present in F .

A deterministic finite transducer B over an input alphabet Σ and

an output alphabet Γ is given by (𝑅, 𝑟init, 𝜎), where 𝑅 is the (finite)

set of states, 𝑟init is the initial state, and 𝜎 : 𝑅 × Σ → 𝑅 × Γ∗ is the
transition function. At every step, B reads a letter from the input

alphabet Σ, transitions to the next state, and outputs a finite word

over the output alphabet Γ. We define 𝜎𝑅 : 𝑅 × Σ → 𝑅 to be the

we mean the MSO theory of the structure ⟨N;<, 𝑃0, . . . , 𝑃𝑏−1 ⟩, where 𝑃𝑖 = {𝑛 ∈
N : 𝛼 (𝑛) = 𝑖 } for 0 ≤ 𝑖 ≤ 𝑏 − 1.
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function that returns the next state, and 𝜎Γ∗ : 𝑅 × Σ → Γ∗ to be

the function that returns the output word. We denote by B(𝛼) the
(possibly finite) word over Γ output by B upon reading 𝛼 ∈ Σ𝜔 .

Let A be a finite automaton as above. By a journey on A we

mean an element of 𝐽 B 𝑄 ×𝑄 × 2
𝑄
. A path 𝑞0𝑞1𝑞2 · · ·𝑞𝑛 ∈ 𝑄𝑛+1

makes the journey (𝑞0, 𝑞𝑛,𝑉 ) where𝑉 is the set of states occurring

in the proper suffix 𝑞1𝑞2 · · ·𝑞𝑛 . If 𝑛 ≥ 1, then 𝑞𝑛 ∈ 𝑉 necessarily,

but 𝑞0 may not belong to 𝑉 . The unique journey a word 𝑤 ∈ Σ∗

makes starting in 𝑞 ∈ 𝑄 , denoted by jour(𝑤,𝑞), is the journey made

by 𝑞0 · · ·𝑞 |𝑤 | where 𝑞𝑖+1 = 𝛿 (𝑞𝑖 ,𝑤 (𝑖)) for 1 ≤ 𝑖 < |𝑤 |. The empty

word makes journeys of the form (𝑞, 𝑞, ∅). If 𝑣 makes the journey

(𝑞1, 𝑞3,𝑉1) and 𝑤 makes the journey (𝑞3, 𝑞2,𝑉2), then 𝑣𝑤 makes

the journey (𝑞1, 𝑞2,𝑉1 ∪𝑉2).
Next, we define the equivalence relation ∼A as follows. Two

words 𝑣,𝑤 ∈ Σ∗ are equivalent, denoted 𝑣 ∼A 𝑤 , if and only if the

sets of journeys they can undertake (starting from various states)

are identical. The equivalence is moreover a congruence: if 𝑣 ∼A 𝑤

and 𝑥 ∼A 𝑦, then 𝑣𝑥 ∼A 𝑤𝑦. Observe that ∼A is not the classical

congruence associated with the automatonA. Our choice, however,

will be more convenient for technical reasons.

Since there are only finitely many equivalence classes of ∼A , the

quotient of Σ∗ by ∼A is a finite monoid𝑀 . We use ℎ to denote the

natural morphism from Σ∗ into𝑀 . Themorphismℎmaps each letter

to its equivalence class modulo ∼A . We also extend the function

jour to take inputs from𝑀 ×𝑄 : For equivalence class𝑚 = [𝑤] and
state 𝑞, we define jour(𝑚,𝑞) = jour(𝑤,𝑞). Finally, we will need the

following lemma, whose proof is immediate.

Lemma 2.1. Let A be an automaton as above and 𝛼 ∈ Σ𝜔 with
factorisation 𝛼 = 𝑢0𝑢1 · · · ∈ Σ𝜔 , where 𝑢𝑛 ∈ Σ∗ for all 𝑛. Then the
word A(𝛼) can be decomposed as the concatenation of journeys

(𝑞0, 𝑞1,𝑉0) (𝑞1, 𝑞2,𝑉1) (𝑞2, 𝑞3,𝑉2) · · ·

where 𝑞0 = 𝑞init, jour(𝑢𝑛, 𝑞𝑛) = (𝑞𝑛, 𝑞𝑛+1,𝑉𝑛) for all 𝑛, and for every
𝑞 ∈ 𝑄 , the state 𝑞 appears infinitely often in A(𝛼) if and only if
𝑞 ∈ 𝑉𝑛 for infinitely many 𝑛 ∈ N.

2.2 Monadic Second-Order Logic
Monadic second-order logic (MSO) is an extension of first-order

logic that allows quantification over subsets of the universe. Such

subsets can be viewed as unary (that is, monadic) predicates. We

will only be interpreting MSO formulas over expansions of the

structure ⟨N;<⟩. For a general perspective on MSO, see [8].

Let S B ⟨N;<, 𝑃1, . . . , 𝑃𝑚⟩ be a structure where each 𝑃𝑖 ⊆ N is a

unary predicate. We associate a language LS of terms and formulas

with S as follows. The terms ofLS are the countably many constant

symbols {0, 1, 2, . . .}, lowercase variable symbols that stand for ele-

ments of N, and uppercase variable symbols that denote subsets of

N. The formulas of LS are the well-formed statements constructed

from the built-in equality (=) and membership (∈) symbols, logical

connectives, quantification over elements of N (written 𝑄𝑥 for a

quantifier 𝑄), and quantification over subsets (written 𝑄𝑋 for a

quantifier 𝑄). The MSO theory of the structure S is the set of all
sentences belonging to LS that are true in S. The MSO theory

of S is decidable if there exists an algorithm that, given a sentence

𝜑 ∈ LS, decides if 𝜑 belongs to the MSO theory of S.

As an example, consider S = ⟨N;<, 𝑃⟩ where 𝑃 is the set of all

primes. Let 𝑠 (·) be the successor function defined by 𝑠 (𝑥) = 𝑦 if

and only if

𝑥 < 𝑦 ∧ ∀𝑧. 𝑥 < 𝑧 ⇒ 𝑦 ≤ 𝑧.
That is, 𝑠 (𝑥) = 𝑥 + 1. Further let

𝜑 (𝑋 ) B 1 ∈ 𝑋 ∧ 0, 2 ∉ 𝑋 ∧ ∀𝑥 . 𝑥 ∈ 𝑋 ⇔ 𝑠 (𝑠 (𝑠 (𝑥))) ∈ 𝑋,
𝜓 B ∃𝑋 : 𝜑 (𝑋 ) ∧ ∀𝑦. ∃𝑧 > 𝑦 : 𝑧 ∈ 𝑋 ∧ 𝑃 (𝑧) .

The formula 𝜑 defines the subset {𝑛 : 𝑛 ≡ 1 (mod 3)} of N, and𝜓
is the sentence “there are infinitely many primes congruent to 1

modulo 3”, which is the case. At the time of writing, it is not known

whether the MSO theory of the structure S above is decidable.
The Acceptance Problem for an infinite word 𝛼 , denoted Acc𝛼 , is

to determine, given a deterministic Muller automaton A, whether

A accepts 𝛼 . Let 𝑃1, . . . , 𝑃𝑑 ⊂ N be predicates and Σ = {0, 1}𝑑 .

Definition 2.2. The characteristic word of (𝑃1, . . . , 𝑃𝑑 ), written
𝛼 B Char(𝑃1, . . . , 𝑃𝑑 ) ∈ Σ𝜔 , is defined by 𝛼 (𝑛) = (𝑏𝑛,1, . . . , 𝑏𝑛,𝑑 )
where 𝑏𝑛,𝑖 = 1 if 𝑛 ∈ 𝑃𝑖 and 𝑏𝑛,𝑖 = 0 otherwise.

The following is a seminal result of Büchi, through which he

showed decidability of the MSO theory of ⟨N;<⟩.

Theorem 2.3 ([33, Thms. 5.4 and 5.9]). The decision problem of
theMSO theory of the structure ⟨N;<, 𝑃1, . . . , 𝑃𝑑 ⟩ is Turing-equivalent
to Acc𝛼 , where 𝛼 is the characteristic word of (𝑃1, . . . , 𝑃𝑑 ).

2.3 Algebraic Numbers
A complex number 𝜆 is algebraic if there exists 𝑝 ∈ Q[𝑥] such
that 𝑝 (𝜆) = 0. The set of algebraic numbers is denoted by Q. The
unique irreducible monic polynomial that has 𝜆 as a root is called

the minimal polynomial of 𝜆. A canonical representation of an alge-

braic number 𝜆 consists of its minimal polynomial 𝑝 and sufficiently

accurate rational approximations of the real and imaginary parts

of 𝜆 to distinguish it from the other roots of 𝑝 . All arithmetic oper-

ations can be performed effectively on canonical representations

of algebraic numbers [13, Sec. 4.2].

By a multiplicative relation of (𝜆1, . . . , 𝜆𝑑 ) ∈ C𝑑 we mean k =

(𝑘1, . . . , 𝑘𝑑 ) ∈ Z𝑑 such that 𝜆
𝑘1
1

· · · 𝜆𝑘𝑑
𝑑

= 1. We write

𝐺 B 𝐺𝑀 (𝜆1, . . . , 𝜆𝑑 )
for the set of all multiplicative relations of (𝜆1, . . . , 𝜆𝑑 ), which is a

free abelian group under addition. If 𝐺 = {(0, . . . , 0)}, we say that

𝑋 B {𝜆1, . . . , 𝜆𝑑 } is multiplicatively independent . The rank of 𝐺 is

the cardinality of a largest multiplicatively independent subset of𝑋 .

If rank(𝐺) = 𝑚, then 𝐺 has a basis 𝐵 = {v1, . . . , v𝑚} ⊆ Z𝑑 that is

linearly independent over Q with the property that every z ∈ 𝐺
can be written as an integer linear combination of v1, . . . , v𝑚 . If

𝜆1, . . . , 𝜆𝑑 are algebraic, we can compute a basis of 𝐺 using a deep

result of Masser [24].

Theorem 2.4 ([11]). Given 𝜆1, . . . , 𝜆𝑑 ∈ Q, one can compute a
basis for 𝐺𝑀 (𝜆1, . . . , 𝜆𝑑 ).

Finally, for 𝜆1, . . . , 𝜆𝑑 as above, we define the group of additive
relations as

𝐺𝐴 (𝜆1, . . . , 𝜆𝑑 ) B {(𝑘1, . . . , 𝑘𝑑 ) ∈ Z𝑑 : 𝑘1𝜆1 + · · · + 𝑘𝑑𝜆𝑑 ∈ Z}.
Observe that 𝐺𝐴 (𝜆1, . . . , 𝜆𝑑 ) = 𝐺𝑀 (𝑒𝑖2𝜋𝜆1 , . . . , 𝑒𝑖2𝜋𝜆𝑑 ).
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2.4 Linear Recurrence Sequences
A sequence ⟨𝑢𝑛⟩∞𝑛=0 is a linear recurrence sequence (over Z) if𝑢𝑛 ∈ Z
for all 𝑛 ∈ N and there exist 𝑐1, . . . , 𝑐𝑑 ∈ Z such that 𝑐𝑑 ≠ 0 and

𝑢𝑛+𝑑 = 𝑐1𝑢𝑛+𝑑−1 + · · · + 𝑐𝑑𝑢𝑛 (1)

for all 𝑛 ∈ N. We assume that the recurrence (1) is minimal, i.e.
𝑐𝑑 ≠ 0. The characteristic polynomial of this sequence is 𝑝 (𝑥) =

𝑥𝑑 − ∑𝑑
𝑖=1 𝑐𝑖𝑥

𝑑−𝑖
. Suppose ⟨𝑢𝑛⟩∞𝑛=0 is an LRS whose characteris-

tic polynomial has the (distinct) roots 𝜆1, . . . , 𝜆𝑚 ∈ Q, called the

characteristic roots of ⟨𝑢𝑛⟩∞𝑛=0. Then there exist unique non-zero

polynomials 𝑞1, . . . , 𝑞𝑚 ∈ Q[𝑥] such that

𝑢𝑛 = 𝑞1 (𝑛)𝜆𝑛1 + · · · + 𝑞𝑚 (𝑛)𝜆𝑛𝑚 (2)

for all 𝑛 ∈ N. Eq. (2) is known as the exponential-polynomial form
of ⟨𝑢𝑛⟩∞𝑛=0. For a given characteristic root 𝜆𝑖 , the polynomial 𝑞𝑖 is

the coefficient of 𝜆𝑖 . A characteristic root 𝜆𝑖 is called simple if 𝑞𝑖 is
constant and dominant when |𝜆𝑖 | ≥ |𝜆 𝑗 | for all 1 ≤ 𝑗 ≤ 𝑚. We refer

the reader to the book [16] for a detailed account of LRS.

Next we give two straightforward lemmas about LRS. First, the

exponential-polynomial form (2) immediately implies an exponen-

tial upper bound on |𝑢𝑛 |, formalised below.

Lemma 2.5. Let ⟨𝑢𝑛⟩∞𝑛=0 be an LRS, 𝑟, 𝑅 > 0 be real algebraic, and
suppose 𝑅 > |𝜆𝑖 | for any characteristic root 𝜆𝑖 of ⟨𝑢𝑛⟩∞𝑛=0. We can
compute 𝑁 ∈ N such that |𝑢𝑛 | ≤ 𝑟𝑅𝑛 for all 𝑛 ≥ 𝑁 .

From (1) it follows that an integer-valued LRS is ultimately peri-

odic modulo any𝑚 ∈ N.
Lemma 2.6. Let ⟨𝑢𝑛⟩∞𝑛=0 be an LRS and𝑚 be a positive integer. We

can effectively compute 𝑁, 𝑝 ∈ N such that 𝑢𝑛 ≡ 𝑢𝑛+𝑝 (mod 𝑚) for
all 𝑛 ≥ 𝑁 .

2.5 Schanuel’s Conjecture
A set 𝑋 = {𝛼1, . . . , 𝛼𝑑 } of complex numbers is algebraically inde-
pendent over Q if 𝑝 (𝛼1, . . . , 𝛼𝑑 ) ≠ 0 for any non-zero polynomial

𝑝 ∈ Q[𝑥1, . . . , 𝑥𝑑 ]. The transcendence degree of 𝑋 is the size of a

largest subset of 𝑋 that is algebraically independent over Q. Below
we state Schanuel’s conjecture, a classical conjecture in transcen-

dental number theory with far-reaching implications [21].

Conjecture 2.7 (Schanuel’s conjecture). If 𝛼1, . . . , 𝛼𝑑 ∈ C
are linearly independent over Q, then the transcendence degree of
{𝛼1, . . . , 𝛼𝑑 , exp(𝛼1), . . . , exp(𝛼𝑑 )} is at least 𝑑 .

We will use Schanuel’s conjecture in two ways. First, consider

the structure Rexp B ⟨R;<, +,−, ·, exp(·), 0, 1⟩ of real numbers

equipped with arithmetic and (real) exponentiation. By the first-

order theory of Rexp we mean the set of all well-formed first-order

sentences in a suitable language Lexp that are true in Rexp. In
[23], Macintyre and Wilkie show that the first-order theory of the

structure Rexp is decidable assuming Schanuel’s conjecture.

Theorem 2.8. Assuming Schanuel’s conjecture, given a sentence
𝜑 ∈ Lexp, we can decide whether 𝜑 holds in Rexp.

We will also use Schanuel’s conjecture to prove the following.

Lemma 2.9. Let 𝜆1, . . . , 𝜆𝑑 ∈ R>1 ∩ Q. Assuming Schanuel’s con-
jecture, a basis for 𝐺𝐴 (1/log(𝜆1), . . . , 1/log(𝜆𝑑 )) can be computed.

The proof is in App. A.1.

2.6 Baker’s Theorem
By a Q-affine form we mean ℎ(𝑥1, . . . , 𝑥𝑑 ) = 𝑎0 +

∑𝑑
𝑖=1 𝑎𝑖𝑥𝑖 , where

𝑎𝑖 ∈ Q for all 0 ≤ 𝑖 ≤ 𝑑 . We recall Baker’s celebrated theorem on

Q-affine forms in logarithms.

Theorem 2.10 (Thm. 1.6 in [34]). Let 𝜆1, . . . , 𝜆𝑑 ∈ R>0 ∩ Q be
multiplicatively independent. Then the numbers 1, log(𝜆1), . . . , log(𝜆𝑑 )
are linearly independent over Q.

We will use Baker’s theorem to prove the following results.

Lemma 2.11. Let 𝑑 ≥ 2, 𝜆1, . . . , 𝜆𝑑 ∈ R>1 ∩ Q be pairwise multi-
plicatively independent, and suppose

rank(𝐺𝑀 (𝜆1, . . . , 𝜆𝑑 )) ≥ 𝑑 − 2.

Then 1/log(𝜆1), . . . , 1/log(𝜆𝑑 ) are linearly independent over Q.

The proof of the lemma above is in App. A.2.

Lemma 2.12. Given 𝜆1, . . . , 𝜆𝑑 ∈ Q and 𝑎0, . . . , 𝑎𝑑 ∈ Q, we can
effectively determine the sign of 𝑎0 +

∑𝑑
𝑖=1 𝑎𝑖 log(𝜆𝑖 ).

Proof. By computing the multiplicative relationships among

the 𝜆𝑖 using Thm. 2.4, we can rewrite this expression as 𝑏0 +∑𝑒
𝑖=1 𝑏𝑖 log(𝜆𝑖 ). Here, we relabeled the 𝜆𝑖 such that 𝜆1, . . . , 𝜆𝑒 is

a maximum multiplicatively independent subset of 𝜆1, . . . , 𝜆𝑑 , and

𝑏0, . . . , 𝑏𝑒 ∈ Q are explicitly computed. By Thm. 2.10), this expres-

sion is 0 if and only if all 𝑏𝑖 are 0. If this expression is non-zero,

we can compute it up to arbitrary precision and test whether it is

positive or not. □

Multiple effective versions of Baker’s theorem exist, which give a

lower bound on the magnitude of Λ B ℎ(log(𝜌1), . . . , log(𝜌𝑑 )) for
a Q-affine form ℎ, assuming Λ ≠ 0. We use Matveev’s version [25]

to prove the following in App. A.3.

Theorem 2.13. Let 𝑏1, 𝑏2, 𝑐1, 𝑐2, 𝜌1, 𝜌2, 𝑅1, 𝑅2 be positive real al-
gebraic numbers such that 𝜌1 > 𝑅1 > 0 and 𝜌2 > 𝑅2 > 0. Then, one
can compute 𝑁 ∈ N such that for all 𝑛1, 𝑛2 ≥ 𝑁 ,

|𝑐1𝜌𝑛1
1

− 𝑐2𝜌𝑛2
2
| ≤ 𝑏1𝑅𝑛1

1
+ 𝑏2𝑅𝑛2

2
(3)

implies that 𝑐1𝜌
𝑛1
1

= 𝑐2𝜌
𝑛2
2
.

2.7 Toric Words
Denote byT the abelian groupR/Z, viewed as the interval [0, 1). For
𝑥 ∈ R, let {𝑥} B 𝑥 − ⌊𝑥⌋ be the fractional part of 𝑥 . A word 𝛼 ∈ Σ𝜔

is toric, written 𝛼 ∈ T , if there exist 𝑑 > 0, s = (𝑠1, . . . , 𝑠𝑑 ) ∈ T𝑑 , a
translation 𝑔 : T𝑑 → T𝑑 given by

(𝑥1, . . . , 𝑥𝑑 ) → ({𝑥1 + 𝛿1}, . . . , {𝑥𝑑 + 𝛿𝑑 }) (4)

for 𝛿1, . . . , 𝛿𝑑 ∈ T, and a collection S = {𝑆𝑏 : 𝑏 ∈ Σ} of subsets
of T𝑑 such that for all 𝑛 ∈ N and 𝑏 ∈ Σ,

𝛼 (𝑛) = 𝑏 ⇔ 𝑔 (𝑛) (s) ∈ 𝑆𝑏 . (5)

Here 𝑔 (𝑛) (s) denotes the result of iteratively applying 𝑔 to s a

total of 𝑛 times. That is, 𝛼 is the coding (with respect to S) of
the trajectory of the discrete-time dynamical system on T𝑑 de-

fined by (𝑔, s). Observe that 𝑔 (𝑛) (s) = ({𝑠1 + 𝑛𝛿1}, . . . , {𝑠𝑑 + 𝑛𝛿𝑑 }).
The word 𝛼 belongs to the class T𝑂 of toric words if there exist

𝑑 > 0, 𝑠1, 𝛿1, . . . , 𝑠𝑑 , 𝛿𝑑 ∈ T as above and a collection {𝑆𝑏 : 𝑏 ∈ Σ}
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of open subsets of T𝑑 such that (5) holds for all 𝑛 ∈ N and 𝑏 ∈ Σ.
See [7] for a discussion of various subclasses of toric words.

Let s, 𝜹 ∈ T𝑑 , 𝐺 = 𝐺𝐴 (𝜹), and 𝑔 : T𝑑 → T𝑑 be as in (4). Define

T𝜹 B {z ∈ T𝑑 : 𝐺𝐴 (z) ⊆ 𝐺𝐴 (𝜹)} ⊆ T𝑑 . The following is a rephras-
ing of Kronecker’s theorem in Diophantine approximation [18]. In

the language of dynamical systems, it states that the dynamical

system (on T𝜹 ) obtained by restricting 𝑔 to T𝜹 is minimal.

Theorem 2.14. The orbit ⟨𝑔 (𝑛) (0)⟩∞
𝑛=0

, where 0 = (0, . . . , 0) ∈ T𝑑 ,
is dense in T𝜹 . Moreover, for every open subset 𝑂 of T𝜹 there exist
infinitely many 𝑛 ∈ N such that 𝑔 (𝑛) (0) ∈ 𝑂 .

Let v1, . . . , v𝑚 ∈ Z𝑑 be a basis of 𝐺𝐴 (𝜹), where𝑚 < 𝑑 . Write

v𝑖 = (𝑣𝑖,1, . . . , 𝑣𝑖,𝑑 ) for 1 ≤ 𝑖 ≤ 𝑚 and let 𝐶 = max𝑖 ∥v𝑖 ∥∞, noting

that |v𝑖 · z| ≤ 𝐶𝑑 for all z ∈ T𝑑 . We have that 𝑧 ∈ T𝜹 if and only if

v𝑖 · z ∈ Z for all 𝑖 , which is equivalent to

𝑑∧
𝑖=1

∨
|𝑘 | ≤𝐶𝑑

v𝑖 · z = 𝑘.

That is, T𝜹 , viewed as a subset of R𝑑 , is an intersection of T𝑑 with

a union of affine subspaces of R𝑑 with integer parameters. We can

now define T𝜹,s B {({𝑠1 + 𝑧1}, . . . , {𝑠𝑑 + 𝑧𝑑 }) | (𝑧1, . . . , 𝑧𝑑 ) ∈ T𝜹 }.
Applying Thm. 2.14, we obtain the following.

Theorem 2.15. The orbit ⟨𝑔 (𝑛) (s)⟩∞
𝑛=0

is dense in T𝜹,s, and for
every open subset 𝑂 of T𝜹,s there exist infinitely many 𝑛 ∈ N such
that 𝑔 (𝑛) (s) ∈ 𝑂 .

To prove the first main result of this paper, we will need to show

thatAcc𝛼 is decidable for certain𝛼 ∈ T𝑂 . The followingwell-known
fact will play an important role in this; See [7] for a proof.

Theorem 2.16. Every 𝛼 ∈ T𝑂 is uniformly recurrent.

2.8 Fourier-Motzkin Elimination
Let Φ(𝑥1, . . . , 𝑥𝑚) be a Boolean combination of atomic formulas

of the form ℎ(𝑥1, . . . , 𝑥𝑚) ∼ 0, where ℎ is a Q-affine form and

∼ is a (strict or non-strict) inequality symbol. Let 1 ≤ 𝑙 ≤ 𝑚,

and consider the formula ∃𝑥1, . . . , 𝑥𝑙 ∈ R : Φ(𝑥1, . . . , 𝑥𝑚). Using
the Fourier-Motzkin Elimination [14], we can compute a formula

Ψ(𝑥𝑙+1, . . . , 𝑥𝑚) = ∨
𝑗∈ 𝐽

∧
𝑘∈𝐾 ℎ 𝑗,𝑘 (𝑥𝑙+1, . . . , 𝑥𝑚) ∼𝑗,𝑘 0 such that

(a) each ∼𝑗,𝑘 is an inequality and ℎ 𝑗,𝑘 is a Q-affine form, and

(b) for all 𝑧𝑙+1, . . . , 𝑧𝑚 ∈ R, the sentence
∃𝑥1, . . . , 𝑥𝑙 ∈ R : Φ(𝑥1, . . . , 𝑥𝑙 , 𝑧𝑙+1, . . . , 𝑧𝑚)

holds if and only if Ψ(𝑥𝑙+1, . . . , 𝑥𝑚) holds.

3 SYNOPSIS OF OUR TECHNIQUES
Our central problem is as follows:

For unary predicates 𝑃1, . . . , 𝑃𝑑 , establish the decid-

ability of the MSO theory of ⟨N;<, 𝑃1, . . . , 𝑃𝑑 ⟩.
In this section, we give a high-level overview of our approach.

The predicates we consider in this paper have arithmetic origins,

e.g. Pow2 = {2𝑛 : 𝑛 ∈ N}. In order to exploit their mathematical

properties, we view the problem from the equivalent automata-

theoretic perspective (Thm. 2.3). Recall the characteristic word from

Def. 2.2, and let 𝛼 = Char(𝑃1, . . . , 𝑃𝑑 ) ∈
(
{0, 1}𝑑

)𝜔
. We have that

𝛼 (𝑛) = (𝑏𝑛,1, . . . , 𝑏𝑛,𝑑 ), where for all 𝑛 ∈ N and 1 ≤ 𝑖 ≤ 𝑑 , 𝑏𝑛,𝑖 = 1

if 𝑛 ∈ 𝑃𝑖 and 𝑏𝑛,𝑖 = 0 otherwise. Our problem is thus restated:

For 𝛼 = Char(𝑃1, . . . , 𝑃𝑑 ), establish the decidability

of the automaton acceptance problem Acc𝛼 .

We let 0 denote the letter (0, . . . , 0) and express

𝛼 = 0𝑘0𝛼 (𝑘0)0𝑘1𝛼 (𝑘0 + 𝑘1 + 1) · · · 0𝑘𝑛𝛼 (𝑘0 + · · · + 𝑘𝑛 + 𝑛) · · · (6)

where each letter between the blocks of 0’s is not 0. Characteristic
words defined by a single predicate (e.g. Pow2, the powers of 2) are

much better studied than those defined by multiple predicates (e.g.

Pow2, Pow3). Intuitively, this is because in the latter case, one needs

to capture additional element of interaction between predicates. To

do this, we define order words.

Definition 3.1 (Order Word). For unary predicates 𝑃1, . . . , 𝑃𝑑 with

𝛼 = Char(𝑃1, . . . , 𝑃𝑑 ) ∈
(
{0, 1}𝑑

)𝜔
, their order word

𝛼 ′ = Ord(𝑃1, . . . , 𝑃𝑑 ) ∈
(
{0, 1}𝑑

)𝜔
is obtained by deleting all occurrences of (0, . . . , 0) from 𝛼 .

In compressing the characteristic word 𝛼 to the order word 𝛼 ′,
one only retains partial information, i.e. a particular aspect of the in-

teraction between predicates. Not surprisingly (by Lem. 4.5), Acc𝛼 ′

always reduces to Acc𝛼 . Remarkably however, under certain cir-

cumstances, the interaction captured by order words is the essence

of the decision problem Acc𝛼 : For certain well-behaved tuples of

predicates, given an automaton A, one can use the order word 𝛼 ′

to recover sufficient information about the interspersed 0’s, and
hence about 𝛼 itself, to decide whether A accepts 𝛼 .

Let us intuit why this could be so. We rewrite (6) in terms of the

order word 𝛼 :

𝛼 = 0𝑘0𝛼 ′ (0) · · · 0𝑘𝑛𝛼 ′ (𝑛) · · · .

An automaton A is crucially finite, and consequently one can com-

pute 𝐾, 𝑝 > 0 such that for all 𝑛 ≥ 𝐾 , it cannot distinguish 0𝑛

from 0𝑛+𝑝 . Provided that 𝑘𝑛 is persistently larger than 𝐾 , it suffices

to only keep track of 𝑘𝑛 modulo 𝑝 . We will show that if ⟨0𝑚𝑛 ⟩∞
𝑛=0

,

where each𝑚𝑛 is indistinguishable from 𝑘𝑛 to A, can be inserted

back into 𝛼 ′ using a transducer, then Acc𝛼 reduces to Acc𝛼 ′ .

In Sec. 4, we develop the automata-theoretic machinery required

to prove that Acc𝛼 (the acceptance problem of the characteristic

word) reduces to Acc𝛼 ′ (the acceptance problem of of the order

word) assuming the predicates (𝑃1, . . . 𝑃𝑑 ) meet certain technical

conditions. In Sec. 5, we invoke Baker’s theorem to argue that the

predicates defined by LRS with one simple dominant root indeed

meet the sufficient conditions identified in Sec. 4.

We devote Sec. 6 to proving decidability of Acc𝛼 ′ for the order

word 𝛼 ′ defined by tuples of LRS with one simple dominant root.

We do so by showing that 𝛼 ′ can be generated as a toric word.

Toric words are almost periodic, and it is known that if a word

𝛽 is effectively almost periodic, then Acc𝛽 is decidable (Thm. 4.2).

Through number-theoretic arguments, we establish when the order

word 𝛼 ′ is indeed effectively almost-periodic.

Below is a summary of our strategy to solve our central problem:

(1) Identify sufficient conditions to reduce Acc𝛼 (the acceptance

problem of the characteristic word) to Acc𝛼 ′ (the acceptance

problem of of the order word). (Sec. 4)
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(2) Prove that the predicates under consideration meet these

conditions. (Sec. 5)

(3) Generate 𝛼 ′ as the trace of a toric dynamical system, and

exploit the underlying model to decide Acc𝛼 ′ . (Sec. 6)

In Sec. 7, we follow a similar approach to analyze Char(𝑃1, 𝑃2) for
𝑃1 = {𝑞𝑛𝑑 : 𝑛 ∈ N} and 𝑃2 = {𝑝𝑏𝑛𝑑 : 𝑛 ∈ N}. The difference is
that the underlying dynamical systems are driven by numeration
systems [22, Chap. 7].

4 PROVING MSO DECIDABILITY
4.1 Classical Results
We recount various classes of words whose automaton acceptance

problem is known to be decidable. Recall that a word 𝛼 is effective

if its letters can be effectively computed. Semënov considered the

class of (effectively) almost-periodic words in [32].

Definition 4.1. A word 𝛼 ∈ Σ𝜔 is almost-periodic, if for every
𝑢 ∈ Σ+, there exists 𝑅(𝑢) ∈ N such that the word 𝑢 either

(a) does not occur in 𝛼 [𝑅(𝑢),∞), or
(b) occurs in every factor of 𝛼 of length 𝑅(𝑢).

If, moreover, 𝛼 is effective and a return time 𝑅(𝑢) as above is com-

putable given 𝑢, then 𝛼 is said to be effectively almost-periodic.

Theorem 4.2 (Theorem 3 in [26]). If 𝛼 ∈ Σ𝜔 is effectively almost-
periodic, then Acc𝛼 is decidable.

Carton and Thomas [12] introduced the class of profinitely ulti-

mately periodic words as a framework to generalise the thematic

contraction methods of Elgot and Rabin [15].

Definition 4.3. Let Σ be an alphabet.

(a) A sequence of finite words ⟨𝑢𝑛⟩𝑛∈N is effectively profinitely
ultimately periodic if for any morphism ℎ from Σ∗ into a

finite monoid𝑀 , we can compute 𝑁 and 𝑝 such that for all

𝑛 ≥ 𝑁 , ℎ(𝑢𝑛) = ℎ(𝑢𝑛+𝑝 ).
(b) An infinite word 𝛼 is called effectively profinitely ultimately

periodic if it can be effectively factorised as an infinite con-

catenation 𝑢0𝑢1 · · · of finite non-empty words forming an

effectively profinitely ultimately periodic sequence.

Theorem 4.4. Let 𝛼 ∈ Σ∗. The problem Acc𝛼 is decidable if and
only if 𝛼 is effectively profinitely ultimately periodic.

The if direction is due to Carton and Thomas [12], and the con-

verse is due to Rabinovich [28]. Every infinite word is profinitely

ultimately periodic, as a close inspection of the use of Ramsey’s the-

orem in Rabinovich’s proof reveals. The effectiveness distinguishes

words whose automaton acceptance problem is decidable.

A comprehensive class of predicates whose characteristic words

(𝛼 ∈ {0, 1}𝜔 ) are effectively profinitely ultimately periodic is iden-

tified by [12, Thm. 5.2]. This class includes fixed base powers

Pow𝑘 = {𝑘𝑛 : 𝑛 ∈ N} as well as 𝑘-th powers N𝑘 = {𝑛𝑘 : 𝑛 ∈ N}.

4.2 Closure Properties
We now define a few constructs under which the set of infinite

words with a decidable automaton acceptance problem is closed.

Lemma 4.5 (Transduction). Let 𝛼 ∈ Σ𝜔 , B be a deterministic
finite transducer with input alphabet Σ and output alphabet Γ, and
𝛽 = B(𝛼) ∈ Γ𝜔 . The problem Acc𝛽 reduces to Acc𝛼 .

Proof. Given an instance A = (𝑄,𝑞init, 𝛿, F ) of Acc𝛽 , we shall
construct A′

whose run on 𝛼 simulates the run of A on 𝛽 . Write

B = (𝑅, 𝑟init, 𝜎). The automatonA′
must simulate whatB would do

upon reading 𝛼 , and furthermore, what A would do upon reading

each output block of B(𝛼). We define the set of states, initial state,

and transition function of A′
as

𝑄 ′ = 𝑄 × 2
𝑄 × 𝑅;

𝑞′
init

= (𝑞init, ∅, 𝑟init);
𝛿 ′ ((𝑞1,𝑉1, 𝑟1), 𝑎) = (𝑞2,𝑉2, 𝜎𝑅 (𝑟, 𝑎))

such that the invariant jour(𝜎Γ∗ (𝑟, 𝑎), 𝑞1) = (𝑞1, 𝑞2,𝑉2) holds.
Now, express 𝛽 = 𝑢0𝑢1 · · · such that B outputs 𝑢𝑛 upon reading

the 𝑛th letter of 𝛼 . By construction, the run

(𝑞init, ∅, 𝑟init) (𝑞1,𝑉0, 𝑟1) (𝑞2,𝑉1, 𝑟2) · · ·

of A′
on 𝛼 corresponds to the run of A on 𝛽 , decomposed as the

concatenation of journeys (𝑞0, 𝑞1,𝑉0) (𝑞1, 𝑞2,𝑉1) · · · corresponding
to the factorisation𝑢0𝑢1 · · · . By Lem. 2.1, a state𝑞 is visited infinitely

often in A if and only if a state (𝑞,𝑉 , 𝑟 ) with 𝑞 ∈ 𝑉 is visited

infinitely often in A′
, and the reduction is thus complete. □

In fact, we can even use the construction to detect whether 𝛽 is

an infinite word at all: 𝛽 is infinite if and only if the run of A′
on 𝛼

visits a state (𝑞,𝑉 , 𝑟 ) with 𝑉 ≠ ∅ infinitely often.

Next, we give our primary closure property. Here we have two

words 𝛼 and 𝛽 such that 𝛼 is a “compressed” version of 𝛽 . We

show that Acc𝛽 refuces to Acc𝛼 assuming we can dilate 𝛼 into (a

word equivalent to) 𝛽 . As expected, Thm. 4.6 further generalises

the frameworks of Elgot and Rabin [15] as well as Carton and

Thomas [12]. Below, by computing a factorisation 𝛽 = 𝑢0𝑢1 · · · we
mean giving an algorithm that on every 𝑛 ∈ N, returns a finite

word 𝑢𝑛 such that 𝛽 is the concatenation of ⟨𝑢𝑛⟩∞𝑛=0.

Theorem 4.6. Let 𝛼 ∈ Σ𝜔 and 𝛽 ∈ Γ𝜔 be such that for any
morphism ℎ from Σ∗ into a finite monoid 𝑀 , we can construct a
deterministic finite transducer B (with input alphabet Σ and output
alphabet 𝑀) and compute a factorisation 𝑢0𝑢1 · · · of 𝛽 such that
𝛾 = B(𝛼) = 𝛾 (0)𝛾 (1) · · · ∈ 𝑀𝜔 satisfies ℎ(𝑢𝑛) = 𝛾 (𝑛) for all 𝑛 ∈ N.
Then Acc𝛽 reduces to Acc𝛼 .

Proof. Given a deterministic finite automatonA as an instance

of Acc𝛽 , we will use the natural morphism ℎ into the finite quotient

monoid𝑀 = Γ∗/∼A to reduce it to an instance of Acc𝛼 .
For ℎ,𝑀 chosen thus, consider the transducer B, factorisation

𝑢0𝑢1 · · · of 𝛽 , and word 𝛾 = B(𝛼) ∈ 𝑀𝜔
from the premise. We have

that for all 𝑛, ℎ(𝑢𝑛) = 𝛾 (𝑛). Since the morphism ℎ maps each word

in Γ∗ to the equivalence class of words that undertake the same

set of journeys, the equivalence class 𝛾 (𝑛) ∈ 𝑀 contains all the

information about the journeys that 𝑢𝑛 can undertake, i.e. for all

𝑛 ∈ N, 𝑞 ∈ 𝑄 , jour(𝑢𝑛, 𝑞) = jour(𝛾 (𝑛), 𝑞) ∈ 𝐽 .
It is straightforward to construct a transducer B′

such that

B′ (𝛾) = 𝜁 = 𝑗0 𝑗1 · · · ∈ 𝐽𝜔 has the following properties:

(1) 𝑗0 = jour(𝛾 (0), 𝑞init) = jour(𝑢0, 𝑞init) = (𝑞init, 𝑞1,𝑉0);
(2) 𝑗𝑛 = jour(𝛾 (𝑛), 𝑞𝑛) = jour(𝑢𝑛, 𝑞𝑛) = (𝑞𝑛, 𝑞𝑛+1,𝑉𝑛) for𝑛 ≥ 1.

We will now show how to decide Acc𝛽 , which is equivalent to

deciding whether the run of A on 𝛽 visits a state 𝑞 infinitely often.

To that end, observe that the infinite word 𝜁 ∈ 𝐽𝜔 is indeed a
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decomposition of the run of A on 𝛽 . By Lem. 2.1, the latter visits a

state 𝑞 ∈ 𝑄 infinitely often if and only if 𝑞 ∈ 𝑉𝑛 of 𝑗𝑛 for infinitely

many 𝑛. This is easily seen to be an instance of Acc𝜁 . By Lem. 4.5,

Acc𝜁 reduces to Acc𝛾 , which itself reduces to Acc𝛼 . □

Corollary 4.7 (Dilation). Let Σ = {1, . . . , 𝑏}, Σ0 = Σ∪{0}, and
𝛼 ∈ Σ𝜔 . Suppose 𝛽 ∈ Σ𝜔

0
and 𝛽 = 0

𝑘0𝛼 (0)0𝑘1𝛼 (1) · · · is such that for
any finite monoid𝑀 and morphism ℎ : Σ∗

0
→ 𝑀 , we can construct a

transducer B with the following property. Its output 𝛾 B B(𝛼) ∈ 𝑀𝜔

upon reading 𝛼 satisfies ℎ(0𝑘𝑛𝛼 (𝑛)) = 𝛾 (𝑛) for all 𝑛. Then Acc𝛽
reduces to Acc𝛼 .

Corollary 4.8 (Interleaving). Let 𝛼 ∈ Σ𝜔 , ⟨𝑣𝑛⟩𝑛∈N be an
effectively profinitely ultimately periodic sequence of words in Σ∗,
and 𝛽 = 𝑣0𝛼 (0)𝑣1𝛼 (1) · · · ∈ Σ𝜔 . The problem Acc𝛽 reduces to Acc𝛼 .

Proof. We will show that for any morphism ℎ into a finite

monoid𝑀 , we can construct a transducer B such that 𝛾 B B(𝛼) =
𝛾 (0)𝛾 (1) · · · ∈ 𝑀𝜔

satisfies ℎ(𝑣𝑛𝛼 (𝑛)) = 𝛾 (𝑛) for all 𝑛 ∈ N. The
conclusion then follows immediately from Thm. 4.6.

Since the sequence ⟨𝑣𝑛⟩𝑛∈N is effectively profinitely ultimately

periodic, we can compute 𝑁, 𝑝 ∈ N with 𝑝 > 0 such that ℎ(𝑣𝑛) =
ℎ(𝑣𝑛+𝑝 ) for all 𝑛 ≥ 𝑁 . Define 𝛾 (𝑛) = ℎ(𝑣𝑛𝛼 (𝑛)) = ℎ(𝑣𝑛) · ℎ(𝛼 (𝑛))
for 𝑛 < 𝑁 + 𝑝 , and 𝛾 (𝑁 + 𝑞𝑝 + 𝑟 ) = ℎ(𝑣𝑁+𝑟 ) · ℎ(𝛼 (𝑁 + 𝑞𝑝 + 𝑟 )) for
𝑞 > 0 and 0 < 𝑟 < 𝑝 . It is straightforward to construct a transducer

B that outputs ℎ(𝑣0𝛼 (0))ℎ(𝑣1𝛼 (1)) · · · upon reading 𝛼 . □

4.3 Predicates Corresponding to Functions
Recall that we associate to a tuple of predicates (𝑃1, . . . , 𝑃𝑑 ) its
characteristic word 𝛼 ∈ Σ𝜔 , where Σ = {0, 1}𝑑 and 𝛼 (𝑛) records
which of the predicates hold for 𝑛. The order word 𝛼 ′ only records

the order in which the predicates hold: it is obtained by deleting all

occurrences of (0, . . . , 0) from the characteristic word 𝛼 .

Definition 4.9. Let F be the class of strictly increasing functions

𝑓 : N→ N such that the characteristic word 𝛼 of the predicate 𝑃 =

{𝑓 (𝑛) : 𝑛 ∈ N} can be factorised as 0
𝑘0
10
𝑘1
1 · · · where ⟨0𝑘𝑛 ⟩∞

𝑛=0
is

an effectively profinitely ultimately periodic sequence of words.

The following readily follows from Thm. 4.4.

Lemma 4.10. Suppose 𝛼 is the characteristic word of a predicate
𝑃 = {𝑓 (𝑛) : 𝑛 ∈ N} where 𝑓 ∈ F . Then Acc𝛼 is decidable.

Theorem 4.11 (Composition). Let 𝑓1, . . . , 𝑓𝑑 ∈ F . Define func-
tions 𝑔1, . . . , 𝑔𝑑 : N→ N such that 𝑔𝑖 = 𝑓1 ◦ · · · ◦ 𝑓𝑖 . Let Σ = {0, 1}𝑑 ,
𝑃𝑖 = {𝑔𝑖 (𝑛) : 𝑛 ∈ N} for 1 ≤ 𝑖 ≤ 𝑑 , and 𝛼 ∈ Σ𝜔 be the characteristic
word of (𝑃1, . . . , 𝑃𝑑 ). Then Acc𝛼 is decidable.

Proof. Wewill prove the theorem by repeatedly applying Cor. 4.8.

Let 𝑔0 be the identity function, 𝑃0 = N, and note that 𝑔𝑖 = 𝑔𝑖−1 ◦ 𝑓𝑖 .
Observe that 𝑃𝑖+1 = {𝑔𝑖 (𝑓𝑖+1 (𝑛)) : 𝑛 ∈ N} and 𝑃𝑖 = {𝑔𝑖 (𝑛) : 𝑛 ∈ N}.
Therefore, 𝑃1 ⊇ · · · ⊇ 𝑃𝑑 . Let 𝛼

(0) = 𝛼 , and denote by 𝛼 (𝑖 )
the re-

striction of 𝛼 to the positions where 𝑃𝑖 holds. Let𝑏𝑖 ∈ Σ be the letter

whose first 𝑖 components are 1 and the remaining 𝑑 − 𝑖 components

are all 0. It is clear that 𝛼 (𝑖 ) ∈ {𝑏𝑖 , . . . , 𝑏𝑑 }𝜔 .
Since all functions are strictly increasing, so are their composi-

tions, and we deduce that

𝛼 (𝑖 ) = 𝑏𝑘0
𝑖
𝛼 (𝑖+1) (0)𝑏𝑘1

𝑖
𝛼 (𝑖+1) (1) · · ·𝑏𝑘𝑛

𝑖
𝛼 (𝑖+1) (𝑛) · · ·

where 𝛼 (𝑖+1) ∈ {𝑏𝑖+1, . . . , 𝑏𝑑 }𝜔 ⊂ Σ𝜔 , 𝑘0 = 𝑓𝑖+1 (0), and 𝑘𝑛 =

𝑓𝑖+1 (𝑛) − 𝑓𝑖+1 (𝑛 − 1) − 1. Since 𝑓𝑖+1 ∈ F , by Definition 4.9, the

sequence ⟨𝑏𝑘𝑛
𝑖
⟩𝑛∈N is effectively profinitely ultimately periodic.

Hence the hypothesis of Cor. 4.8 is satisfied, and Acc𝛼 (𝑖 ) reduces

to Acc𝛼 (𝑖+1) . However, 𝛼
(𝑑 ) = 𝑏𝜔

𝑑
and therefore Acc𝛼 (𝑑 ) is clearly

decidable. We conclude that Acc𝛼 is decidable. □

Proof of Cor. 1.3. Recall, by [12, Thm. 5.2], N𝑑 , Pow𝑏 ∈ F .

On applying the previous theorem with 𝑓1 (𝑛) = 𝑛𝑑 , 𝑓2 (𝑛) = 𝑏𝑛

we get 𝑔1 (𝑛) = 𝑛𝑑 , 𝑔2 (𝑛) = 𝑏𝑛𝑑 . Thus, Acc𝛼 is decidable for the

characteristic word 𝛼 of the predicates (𝑃1, 𝑃2), where 𝑃1 = {𝑔1 (𝑛) :
𝑛 ∈ N} and 𝑃2 = {𝑔2 (𝑛) : 𝑛 ∈ N}. Equivalently, the MSO theory of

⟨N;<,N𝑑 , Pow𝑏𝑑 ⟩ is decidable. □

4.4 From Characteristic to Order Words
We will now use our reduction techniques to discuss when the ac-

ceptance problem for the characteristic word 𝛼 is in fact equivalent
to that for the order word 𝛼 ′. Note that Acc𝛼 ′ trivially reduces to

Acc𝛼 by Lem. 4.5; we therefore focus on the other direction.

Definition 4.12 (Procyclic Predicates). A strictly increasing func-

tion 𝑓 : N → N is said to be procyclic3 if the sequence 𝑓 (𝑛) is
effectively ultimately periodic modulo any𝑚 ∈ N, i.e. given any𝑚,

there exist computable 𝑁, 𝑝 such that for all 𝑛 ≥ 𝑁 , 𝑓 (𝑛+𝑝) ≡ 𝑓 (𝑛)
mod 𝑚. The corresponding 𝑃 = {𝑓 (𝑛) : 𝑛 ∈ N} is called a procyclic
predicate.

Definition 4.13 (Effectively Sparse Predicates). A strictly increas-

ing function 𝑓 : N → N is said to be effectively sparse if for any
𝐾 ∈ N, the inequality 𝑓 (𝑛 + 1) − 𝑓 (𝑛) ≤ 𝐾 has finitely many so-

lutions in 𝑛 which can moreover be effectively enumerated. The

corresponding 𝑃 = {𝑓 (𝑛) : 𝑛 ∈ N} is said to be an effectively sparse
predicate.

Definition 4.14 (Pairwise Effectively Sparse Predicates). Strictly
increasing functions 𝑓1, 𝑓2 : N→ N are said to be pairwise effectively
sparse if for any 𝐾 ∈ N, the inequality |𝑓1 (𝑛) − 𝑓2 (𝑚) | ≤ 𝐾 has

finitely many solutions in 𝑛,𝑚 which can moreover be effectively

enumerated. The corresponding 𝑃1 = {𝑓1 (𝑛) : 𝑛 ∈ N} and 𝑃2 =

{𝑓2 (𝑛) : 𝑛 ∈ N} are said to be pairwise effectively sparse predicates.

We remark that similar notions of effective sparsity have been

considered in literature as early as [31].

Theorem 4.15 (Sparse Procyclic Predicates). Let (𝑃1, . . . , 𝑃𝑑 )
be a tuple of predicates with characteristic word 𝛼 and order word 𝛼 ′.
Suppose

(1) 𝑃1, . . . , 𝑃𝑑 are each (a) procyclic and (b) effectively sparse;
(2) each distinct (𝑃𝑖 , 𝑃 𝑗 ) is pairwise effectively sparse.

Then, Acc𝛼 reduces to Acc𝛼 ′ .

Proof. Let 0 = (0, . . . , 0). We observe that

𝛼 = 0𝑘0𝛼 ′ (0)0𝑘1𝛼 ′ (1) · · · 0𝑘𝑛𝛼 ′ (𝑛) · · · .
3
This definition is weaker than the notion of (effectively) profinitely ultimately periodic

sequences defined by Carton and Thomas [12]. The function 𝑓 would be effectively

profinitely ultimately periodic if, for any morphism ℎ from N into a finite monoid

𝑀 , the sequence 𝛾 (𝑛) = ℎ (𝑓 (𝑛 + 1) − 𝑓 (𝑛) ) were effectively ultimately periodic.

On the other hand, our definition of procyclic functions only considers morphisms

into cyclic groups. It is often much easier to show that functions meet the criterion of

being procyclic rather than being effectively profinitely ultimately periodic.
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The above suggests using Cor. 4.7 to prove the theorem. In order to

do so, we need to show that for any morphismℎ into a finite monoid

𝑀 , we can construct a transducer B such that B(𝛼 ′) = 𝛾 ∈ 𝑀𝜔
,

where 𝛾 (𝑛) = ℎ(0𝑘𝑛𝛼 ′ (𝑛)) = ℎ(0𝑘𝑛 )ℎ(𝛼 ′ (𝑛)). The transducer B
outputs 𝛾 (𝑛) upon reading 𝛼 (𝑛): it gets the second factor directly

from the input. We will show that we can compute the first factor

with finite state.

First, note that via a simple pigeonhole argument that exploits

the finiteness of monoid 𝑀 , we can compute 𝐾,𝑚 ≥ 1 such that

𝐾 is a multiple of𝑚, and for all 𝑗 ≥ 𝐾 , ℎ(0𝑗 ) = ℎ(0𝑗+𝑚). In other

words, if 𝑘𝑛 is sufficiently large, it suffices to only keep track of it

modulo𝑚. Now, consider conditions (1b) and (2) of the premise.

By the very definition of sparsity, we can compute 𝑁 such that for

all 𝑛 ≥ 𝑁 , 𝑘𝑛 ≥ 𝐾 . This means that we can compute when 𝑘𝑛 is

guaranteed to be sufficiently large.

The prefix 𝛾 (0) · · ·𝛾 (𝑁 − 1) of the output can be hardcoded for

the prefix 𝛼 ′ (0) · · ·𝛼 ′ (𝑁 − 1) of the input. It only remains to show

how to track 𝑘𝑛 modulo𝑚 for the infinite suffix. For this, we will

use condition (1a) of the premise: that 𝑃1, . . . , 𝑃𝑑 are each procyclic.

This means that each of 𝑓1, . . . , 𝑓𝑑 are effectively ultimately periodic

modulo𝑚, i.e. for each 𝑖 , one only needs finitely many states to

evaluate 𝑓𝑖 (𝑛), andmoreover the state for 𝑓𝑖 (𝑛) uniquely determines

that for 𝑓𝑖 (𝑛 + 1). As an example, 3
𝑛 + 2

𝑛
modulo 8 follows the

pattern 2, 5, 5, 3, 1, 3, 1, 3, . . . , which can be represented by a typical

lasso-shaped graph.

The transducer B thus keeps track of: (a) for each 𝑖 , what the

next occurrence of 𝑃𝑖 will be modulo𝑚, and (b) what the occurrence

of 𝑃 𝑗 indicated by the last read letter of 𝛼 ′ (𝑛 − 1) was, modulo𝑚.

Upon reading the next letter of 𝛼 ′ (𝑛), it can update its record, and

appropriately compute 𝑘𝑛 , the number of intervening 0’s, modulo

𝑚. Let this remainder be 𝑟𝑛 < 𝑚. Finally, to write its output, B
simply uses the fact that

𝛾 (𝑛) = ℎ
(
0𝑘𝑛𝛼 ′ (𝑛)

)
= ℎ

(
0𝑘𝑛

)
ℎ(𝛼 ′ (𝑛)) = ℎ

(
0𝐾+𝑟𝑛

)
ℎ(𝛼 ′ (𝑛))

and we are done. □

4.5 Normal Words
Recall that a word 𝛼 ∈ Σ𝜔 is weakly normal if every 𝑢 ∈ Σ∗

appears infinitely in 𝛼 .4 Normality is usually considered when

Σ = {0, . . . , 𝑏 − 1} is the alphabet of digits and 𝛼 is the base-𝑏

expansion of a real number 𝑎. Thus, when 𝑎 =
√
2 and 𝑏 = 10,

𝛼 = 141421356 · · · . A number is (weakly) normal in base 𝑏 if its

base-𝑏 expansion is a (weakly) normal word. Surveys on normal

numbers include Harman [19] and Queffélec [27]. In particular, [19]

states the following conjecture.

Conjecture 4.16. An irrational algebraic number 𝛼 is weakly
normal in any integer base 𝑏 ≥ 2.

The strongest result towards this conjecture is due to Adam-

czewski and Bugeaud [1]. Let 𝑝 (𝑛) be the number of distinct factors

of 𝛼 of length 𝑛. The function 𝑝 is called the factor complexity of 𝛼 .

4
In comparison, a normal word has the stronger property that each factor𝑢 of length𝑛

appears with asymptotic frequency 1/|Σ |𝑛 . A real number is normal if it is normal in

every base 𝑏. Constants like
√
2, 𝑒 , and 𝜋 are all conjectured to be normal [27].

Theorem 4.17. If 𝑏 ≥ 2 and 𝛼 is the base-𝑏 expansion of an
irrational algebraic number, then

lim inf

𝑛→∞
𝑝 (𝑛)
𝑛

= +∞.

We have the following result.

Theorem 4.18. If 𝛼 is weakly normal, then Acc𝛼 is decidable.

Intuitively, the proof uses the abundance of each factor to guar-

antee that the set of states visited infinitely often is an entire bottom

strongly connected component in the graph induced by the automa-

ton. We defer its technical details to App. A.4.

5 LINEAR RECURRENCE SEQUENCES WITH A
SINGLE DOMINANT ROOT

In the upcoming two sections, we prove the first main result of this

paper, whose corollaries appeared in the abstract.

Theorem 5.1. Consider LRS (over Z) of the form

𝑢
(𝑖 )
𝑛 = 𝑐𝑖𝜌

𝑛
𝑖 +

𝑘𝑖∑︁
𝑗=1

𝑝𝑖, 𝑗 (𝑛)𝜌𝑛𝑖,𝑗 ,

for 1 ≤ 𝑖 ≤ 𝑑 , such that for all 𝑖 and 𝑗 ,

(1) 𝑐𝑖 , 𝜌𝑖 , 𝜌𝑖, 𝑗 ∈ Q and 𝑝𝑖, 𝑗 ∈ Q[𝑥],
(2) 𝑐𝑖 > 0, 𝜌𝑖 > 1 and |𝜌𝑖, 𝑗 | < |𝜌𝑖 |, and
(3) there exist only finitely many pairs (𝑛,𝑚) ∈ N2 such that

𝑐𝑖𝜌
𝑛
𝑖
= 𝑐 𝑗𝜌

𝑚
𝑗
.

If we write 𝑃𝑖 ⊆ N for the value set of ⟨𝑢 (𝑖 )𝑛 ⟩∞
𝑛=0

, then the MSO theory
of ⟨N;<, 𝑃1, . . . , 𝑃𝑑 ⟩ is decidable assuming Schanuel’s conjecture. The
decidability is unconditional in either of the following cases:

(a) If 1/log(𝜌1), . . . , 1/log(𝜌𝑑 ) are linearly independent over Q;
(b) If rank(𝐺𝑀 (𝜌1, . . . , 𝜌𝑑 )) ≥ 𝑑 − 2, and 𝜌1, . . . , 𝜌𝑑 are pairwise

multiplicatively independent.

This formulation implies Thm. 1.1 from the introduction when

𝜌1, . . . , 𝜌𝑑 are pairwise multiplicatively independent, as conditions

(1-3) are immediately met. Suppose 𝜌1, . . . , 𝜌𝑑 are not pairwise

multiplicatively dependent. Then 1/log(𝜌1), . . . , 1/log(𝜌𝑑 ) are not
linearly independent over Q. We can compute pairwise multiplica-

tively independent 𝜆1, . . . , 𝜆𝑚 ∈ N such that for all 1 ≤ 𝑖 ≤ 𝑑 , 𝜌𝑖 =
𝜆
𝜇 (𝑖 )
𝜎 (𝑖 ) for some 𝜎 (𝑖), 𝜇 (𝑖) ∈ N. Consider ⟨N;<, Pow𝜆1 , . . . , Pow𝜆𝑚 ⟩.
The original characteristic word can be recovered by noting that

precisely every 𝜇 (𝑖)-th occurrence of Pow𝜆𝜎 (𝑖 ) is an occurrence of

Pow𝜌𝑖 . This can be implemented with a simple transduction; hence

by Lem. 4.5, the MSO theory of ⟨N;<, Pow𝜌1 , . . . , Pow𝜌𝑑 ⟩ reduces
to that of ⟨N;<, Pow𝜆1 , . . . , Pow𝜆𝑚 ⟩. It remains to observe that if

every triple of 𝜌1, . . . , 𝜌𝑑 is multiplicatively dependent, then so is

every triple of 𝜆1, . . . , 𝜆𝑚 .

To prove Thm. 5.1 we will use the framework described in Sec. 3.

In the remainder of this section, for 1 ≤ 𝑖 ≤ 𝑑 , let ⟨𝑢 (𝑖 )𝑛 ⟩∞
𝑛=0

and 𝑃𝑖
be as in the statement of Thm. 5.1. Denote by 𝛼 the characteristic

word of (𝑃1, . . . , 𝑃𝑑 ), and by 𝛽 the order word of (𝑃1, . . . , 𝑃𝑑 ).
Fix 1 ≤ 𝑖 < 𝑗 ≤ 𝑑 , and suppose that

𝑐𝑖𝜌
𝑛
𝑖 = 𝑐 𝑗𝜌

𝑚
𝑗 (7)
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has solutions (𝑛1,𝑚1), (𝑛2,𝑚2) ∈ N2 in (𝑛,𝑚). Since 𝜌𝑖 , 𝜌 𝑗 > 1,

without loss of generality we can assume 𝑛1 ≤ 𝑛2 and𝑚1 ≤ 𝑚2.

Observe that for all 𝑘 ∈ N, (𝑛1 + 𝑘 (𝑛2 − 𝑛1),𝑚1 + 𝑘 (𝑚2 −𝑚1))
solves (7). Since (7) has finitely many solutions by assumption,

𝑛2 = 𝑛1 and𝑚2 = 𝑚1. Therefore, for every 1 ≤ 𝑖, 𝑗 ≤ 𝑑 , (7) has at
most one solution (𝑛,𝑚) ∈ N2.

We next define order words obtained from sequences that do not

necessarily take exclusively integer values.

Definition 5.2. Let ⟨𝑣 (1)𝑛 ⟩∞
𝑛=0

, . . . , ⟨𝑣 (𝑑 )𝑛 ⟩∞
𝑛=0

be a family of real-

valued, strictly increasing sequences with pairwise disjoint ranges.

Further let 𝑍 = ∪𝑑
𝑖=1

{𝑣 (𝑖 )𝑛 : 𝑛 ∈ N}. We define the word

𝛾 B Ord(⟨𝑣 (1)𝑛 ⟩∞𝑛=0, . . . , ⟨𝑣
(𝑑 )
𝑛 ⟩∞𝑛=0) ∈ {1, . . . , 𝑑}𝜔

by

𝛾 (𝑛) = 𝑖 ⇔ ∃𝑧 ∈ ⟨𝑣 (𝑖 )𝑛 ⟩∞𝑛=0 : |{𝑦 ∈ 𝑍 : 𝑦 < 𝑧}| = 𝑛.

In this section we prove the following.

Theorem 5.3. Let 𝛼, 𝛽 be as above. Acc𝛼 reduces to Acc𝛽 . Fur-
thermore, we can construct positive real algebraic 𝑟1, . . . , 𝑟𝑑 such that
Acc𝛽 reduces to Acc𝜉 , where 𝜉 = Ord(⟨𝑟1𝜌𝑛

1
⟩∞
𝑛=0

, . . . , ⟨𝑟𝑑𝜌𝑛𝑑 ⟩
∞
𝑛=0

).

In Sec. 6 we will show that 𝜉 is effectively almost-periodic and

therefore Acc𝜉 is decidable. To prove Thm. 5.3, we will need the

following lemma, whose main tool is Thm. 2.13.

Lemma 5.4. Let ⟨𝑢 (1)𝑛 ⟩∞
𝑛=0

, . . . , ⟨𝑢 (𝑑 )𝑛 ⟩∞
𝑛=0

be as above. We can com-
pute 𝑁,𝑚1, . . . ,𝑚𝑑 ∈ N with the following properties.

(a) For all 1 ≤ 𝑖 ≤ 𝑑 , ⟨𝑢 (𝑖 )𝑚𝑖+𝑛⟩
∞
𝑛=0

is strictly increasing. More-
over, for every 𝐾 ∈ N and 1 ≤ 𝑖 ≤ 𝑑 , there exists effectively
computable 𝐿𝑖 such that for all 𝑛 ≥ 𝐿𝑖 , 𝑢

(𝑖 )
𝑛+1 − 𝑢

(𝑖 )
𝑛 > 𝐾 .

(b) For all 1 ≤ 𝑖 ≤ 𝑑 and 𝑛 ∈ N,

𝑢
(𝑖 )
𝑛 ≥ 𝑁 ⇔ 𝑛 ≥ 𝑚𝑖 .

(c) 𝑢
(1)
𝑚1

= 𝑁 .
(d) For all 1 ≤ 𝑖, 𝑗 ≤ 𝑑 , 𝑛𝑖 ≥ 𝑚𝑖 and 𝑛 𝑗 ≥ 𝑚 𝑗 , we have that

𝑐𝑖𝜌
𝑛𝑖
𝑖

≠ 𝑐 𝑗𝜌
𝑛 𝑗

𝑗
and 𝑢 (𝑖 )𝑛𝑖 ≠ 𝑢

( 𝑗 )
𝑛 𝑗

.
(e) For 1 ≤ 𝑖, 𝑗 ≤ 𝑑 , 𝑛𝑖 ≥ 𝑚𝑖 and 𝑛 𝑗 ≥ 𝑚 𝑗 ,

𝑐𝑖𝜌
𝑛𝑖
𝑖

> 𝑐 𝑗𝜌
𝑛 𝑗

𝑗
⇒ 𝑢

(𝑖 )
𝑛𝑖 > 𝑢

( 𝑗 )
𝑛 𝑗
.

Proof. See App. A.5. □

By Lem. 5.4 (d), each letter of 𝛼 [𝑁,∞) is a tuple from {0, 1}𝑑
containing at most a single 1. Let 𝑟𝑖 = 𝑐𝑖𝜌

𝑚𝑖
for 1 ≤ 𝑖 ≤ 𝑑 , and

𝜉 = Ord(⟨𝑟1𝜌𝑛
1
⟩∞
𝑛=0

, . . . , ⟨𝑟𝑑𝜌𝑛𝑑 ⟩
∞
𝑛=0

) ∈ {1, . . . , 𝑑}𝜔 . By (e), the word

𝛼 [𝑁,∞), up to a renaming of variables, is the same as 𝜉 . We can

now finalise the proof of Thm. 5.3.

(1) Each 𝑃𝑖 is procyclic. To see this, let 𝑓 (𝑛) be the 𝑛th largest

element of 𝑃𝑖 and𝑚 ∈ N. We have to show that ⟨𝑓 (𝑛) mod

𝑚⟩∞
𝑛=0

is effectively eventually periodic. By Lem. 5.4 (a), the

sequences ⟨𝑢 (𝑖 )𝑛 ⟩∞
𝑛=0

and ⟨𝑓 (𝑛)⟩∞
𝑛=0

agree on a suffix that can

be effectively determined. It remains to invoke Lem. 2.6.

(2) By Thm. 6.1 (a), each 𝑃𝑖 is effectively sparse.

(3) Finally, we prove that 𝑃1, . . . , 𝑃𝑑 are pairwise effectively

sparse. Let 1 ≤ 𝑖 < 𝑗 ≤ 𝑑 and 𝐾 ≥ 0. Using Lem. 2.5,

compute 𝑅𝑖 , 𝑅 𝑗 , 𝑏𝑖 , 𝑏 𝑗 > 0 such that 𝑅𝑖 < 𝜌𝑖 , 𝑅 𝑗 < 𝜌 𝑗 , and for

all 𝑛 ≥ 0, 𝑏𝑖𝑅
𝑛
𝑖
> |𝑢 (𝑖 )𝑛 − 𝑐𝑖𝜌𝑛𝑖 | and 𝑏 𝑗𝑅

𝑛
𝑗
> |𝑢 ( 𝑗 )𝑛 − 𝑐 𝑗𝜌𝑛𝑗 +𝐾 |.

Then, the triangle inequality and Thm. 2.13 give a 𝑁 ′ ≥ 0

such that for all 𝑛 ≥ 𝑁 ′
,

|𝑢 (𝑖 )𝑛 − 𝑢 ( 𝑗 )𝑛 | > |𝑐𝑖𝜌𝑛𝑖 − 𝑐 𝑗𝜌𝑛𝑗 | − 𝑏𝑖𝑅
𝑛
𝑖 − 𝑏 𝑗𝑅𝑛𝑗 + 𝐾 ≥ 𝐾.

By Thm. 4.15, Acc𝛼 reduces to Acc𝛽 . To complete the proof of

Thm. 5.3, recall that 𝛽 can be obtained from 𝜉 through finite mod-

ifications, which can be realised by a transducer. Conclude by in-

voking Lem. 4.5.

6 EFFECTIVE ALMOST PERIODICITY OF THE
ORDERWORD

In this section, let 𝑟𝑖 , 𝜌𝑖 ∈ R∩Qwith 𝑟𝑖 > 0 and 𝜌𝑖 > 1 for 1 ≤ 𝑖 ≤ 𝑑 .
Suppose for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑑 and 𝑛,𝑚 ∈ N, 𝑟𝑖𝜌𝑛𝑖 ≠ 𝑟 𝑗𝜌

𝑚
𝑗
. Let

𝜉 B Ord(⟨𝑟1𝜌𝑛
1
⟩∞
𝑛=0

, . . . , ⟨𝑟𝑑𝜌𝑛𝑑 ⟩
∞
𝑛=0

) ∈ {1, . . . , 𝑑}𝜔 as in Def. 5.2.

We will prove the following.

Theorem 6.1.

(a) The word 𝜉 is almost-periodic.
(b) Assuming Schanuel’s conjecture, 𝜉 is effectively almost-periodic.
(c) If 1/log(𝜌1), . . . , 1/log(𝜌𝑑 ) are linearly independent over Q,

then 𝜉 is unconditionally effectively almost-periodic.
(d) If rank(𝐺𝑀 (𝜌1, . . . , 𝜌𝑑 )) ≥ 𝑑 − 2, and 𝜌1, . . . , 𝜌𝑑 are pair-

wise multiplicatively independent, then 𝜉 is unconditionally
effectively almost-periodic.

This result, together with Thm. 5.3, will prove Thm. 5.1. By

scaling and reordering the 𝑑 sequences, we can without loss of
generality assume that 1 < 𝜌1 ≤ 𝜌2 ≤ · · · ≤ 𝜌𝑑 and 𝑟1 = 1. Let

𝑉 =
{
log

(
𝑟𝑖𝜌

𝑛
𝑖

)
: 1 ≤ 𝑖 ≤ 𝑑, 𝑛 ∈ N

}
and ⟨𝑣𝑛⟩∞𝑛=0 be the ordering of 𝑉 with 𝑣0 < 𝑣1 < · · · . Observe that

𝜉 = Ord( ⟨log
(
𝑟1𝜌

𝑛
1

)
⟩∞𝑛=0, . . . , ⟨log

(
𝑟𝑑𝜌

𝑛
𝑑

)
⟩∞𝑛=0 ).

Example 6.2. Consider 𝑟1 = 1, 𝜌1 = 2, 𝑟2 = 9, 𝜌2 = 3. Then

2
0 < 2

1 < 2
2 < 2

3 < 9 · 30 < 2
4 < 9 · 31 < 2

5 < · · ·
and hence 𝜉 = 11112121121 · · · . We have 𝑣0 = 0, 𝑣1 = log(2),
𝑣2 = 2 log(2), 𝑣3 = 3 log(2), 𝑣4 = log(9), and so on.

Our strategy to prove Thm, 6.1 will be to show that 𝜉 has a suffix

that belongs to the class T𝑂 of toric words; recall from Sec. 2.7 that

words in T𝑂 are uniformly recurrent and hence almost-periodic. To

prove effective almost-periodicity, we will deploy number theory

either through Baker’s theorem, or Schanuel’s conjecture.

Continuing Ex. 6.2, let 𝑎𝑛 = 𝑛 log(2) and 𝑏𝑛 = log(9) + 𝑛 log(3).
Figure 1 illustrates a way to generate 𝜉 . We start at the point (0, 0)
and follow the line 𝑦 = 𝑥 . Every time a vertical line 𝑥 = 𝑎𝑛 for

some 𝑛 is hit, we write a 1. When we hit a horizontal line 𝑦 = 𝑏𝑛 for

some 𝑛, we write 2. If we discard the first three characters of 𝜉 , we

obtain a cutting sequence (equivalently, a billiard word), illustrated
in Fig. 2. (See [17, Chap. 4.1.2] and [3, 4] for more on billiard words.)

Figure 2 is obtained from Fig. 1 by a translation and a scaling. In

Fig. 2, we start at the point (0, 𝑦), where 0 < 𝑦 < 1, and follow

the dashed line which has slope log(2)/log(3). When we hit a line

𝑥 = 𝑛 for 𝑛 ∈ N, we write 1; When we hit 𝑦 = 𝑛, we write 2.

We will not directly use the fact that a suffix of 𝜉 is a cutting

sequence, but combinatorial properties of such sequences can be
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𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

𝑏0

𝑏1

𝑏2

Figure 1: Generating 𝜉 .

1 2 3 4

1

2

3

(0, 0)

Figure 2: The suffix 𝜉 [3,∞) as a cutting sequence.

used to prove a weaker version of Thm. 6.1 (c); see Sec. 6.1. We

note that cutting sequences generated by a line on the plane with

irrational slope (as in Fig. 2) are exactly the Sturmian words [22].

We continue our proof of Thm. 6.1. Define 𝑧𝑛 =
𝑣𝑛

log(𝜌1 ) , and

observe that ⟨𝑧𝑛⟩∞𝑛=0 is strictly increasing. Let 𝜎 : {𝑧𝑛 : 𝑛 ∈ N} →
{1, . . . , 𝑑} be such that 𝜉 (𝑛) = 𝜎 (𝑧𝑛). Observe that for every 𝑛, there
exists𝑚 ∈ N such that 𝑧𝑚 = 𝑛 and 𝜎 (𝑧𝑚) = 1. For this value of𝑚,

𝑣𝑚 = log(𝑟1𝜌𝑛
1
) = 𝑛 log(𝜌1). In Ex. 6.2, 𝑧0 = 0, 𝑧1 = 1, 𝑧2 = 2, 𝑧3 = 3,

𝑧4 = log(9)/log(2) ≈ 3.17, 𝑧5 = 4, 𝑧6 = log(9 · 3)/log(2) ≈ 4.75,

𝑧7 = 5, 𝑧8 = 6, and so on.

Wewill next factorise 𝜉 = 𝑤−𝑤0𝑤1 · · · . Intuitively, for𝑛 ∈ N, the
finite word𝑤𝑛 contains the labels of all terms of ⟨𝑧𝑛⟩∞𝑛=0 (obtained
by applying 𝜎) that lie in the interval [𝑛, 𝑛+1). Formally, let ⟨𝑘𝑛⟩∞𝑛=0
be the sequence over N such that for all 𝑛,𝑚 ∈ N, 𝑛 ≤ 𝑣𝑚 < 𝑛 + 1

if and only if 𝑘𝑛 ≤ 𝑚 < 𝑘𝑛+1. Then 𝑤− = 𝜉 [0, 𝑘0) and 𝑤𝑛 =

𝜉 [𝑘𝑛, 𝑘𝑛+1) for all 𝑛 ∈ N. Consider 𝑛 ∈ N. As argued earlier, there

exists 𝑚 ∈ N such that 𝑧𝑚 = 𝑛 and 𝜎 (𝑧𝑚) = 1. That is, the first

letter of𝑤𝑛 for every 𝑛 is 1. Moreover, in each such𝑤𝑛 the letter 1

occurs exactly once. In Ex. 6.2, 𝑤− is empty, 𝑤0 = 𝑤1 = 𝑤2 = 1,

𝑤3 = 12,𝑤4 = 12,𝑤5 = 1, and so on.

Let𝑁 be the smallest integer𝑛 such that every letter of {1, . . . , 𝑑}
appears in𝑤0 · · ·𝑤𝑁 ∈ {1, . . . , 𝑑}∗. In Ex. 6.2, 𝑁 = 3. Further let Σ
be the set of all finite patterns over {1, . . . , 𝑑} that start with the

letter 1 and contain atmost one instance of 𝑖 for all 𝑖 ∈ {1, . . . , 𝑑}. De-
fine 𝛽 ∈ Σ𝜔 by 𝛽 (𝑛) = 𝑤𝑁+𝑛 . In our example, 𝛽 = (12) (12) (1) · · · .
Observe that the suffix 𝑤𝑁𝑤𝑁+1 · · · of 𝜉 is the image of 𝛽 under

the application of the morphism 𝜇 : Σ∗ → {1, . . . , 𝑑}∗ defined by

𝜇 (𝑤) = 𝑤 (0) · · ·𝑤 ( |𝑤 | − 1) for 𝑤 ∈ Σ∗. Since effectively almost-

periodic words are closed under applications of morphisms (pro-

vided that the image word is also infinite) and finite modifica-

tions [26], the word 𝛽 is effectively almost-periodic if and only

if 𝜉 is. We will next show that 𝛽 is toric with 𝛽 ∈ T𝑂 . Recall that
{𝑥} B 𝑥 − ⌊𝑥⌋ denotes the fractional part of 𝑥 .

Theorem 6.3. For 2 ≤ 𝑖 ≤ 𝑑 , let 𝛿𝑖 = log(𝜌1 )
log(𝜌𝑖 ) ∈ T and

𝑠𝑖 =

{
(𝑁 + 1) log(𝜌1) − log(𝑟𝑖 )

log(𝜌𝑖 )

}
∈ T.

Then 𝛽 is the toric word generated by 𝜹 = (𝛿2, . . . , 𝛿𝑑 ) ∈ T𝑑−1 and
s = (𝑠2, . . . , 𝑠𝑑 ) ∈ T𝑑−1, as well as a collection of open subsets of
T𝑑−1 defined by linear inequalities (in variables 𝑥2, . . . , 𝑥𝑑 ) of the
form 𝑥𝑖/𝛿𝑖 < 𝑥 𝑗/𝛿 𝑗 or 𝑥𝑖/𝛿𝑖 ∼ 1, where ∼ ∈ {>, <} and 2 ≤ 𝑖, 𝑗 ≤ 𝑑 .

Proof. For 2 ≤ 𝑖 ≤ 𝑑 and 𝑛 ∈ N, let

𝐿(𝑛, 𝑖) =
{
log

(
𝑟𝑖𝜌

𝑘
𝑖

)
log(𝜌1)

: 𝑘 ∈ N
}
∩ (−∞, 𝑁 + 𝑛 + 1]

and Δ(𝑛, 𝑖) be the smallest distance from 𝑁 +𝑛 + 1 to an element of

𝐿(𝑛, 𝑖). Intuitively, 𝐿(𝑛, 𝑖) is the “downward distance” from 𝑁 +𝑛+1
to the lattice {log

(
𝑟𝑖𝜌

𝑘
𝑖

)
/log(𝜌1) : 𝑘 ∈ N}. By construction of 𝑁 ,

the value of Δ(𝑛, 𝑖) is well-defined and finite for every 𝑛 and 𝑖 .

Let𝑏 = 𝑏0𝑏1 · · ·𝑏𝑚 ∈ Σ, where𝑏𝑖 ∈ {1, . . . , 𝑑} for all 𝑖 and𝑏0 = 1.

By definition, 𝛽 (𝑛) = 𝑏 if and only if𝑤𝑁+𝑛 = 𝑏, which is the case if

and only if the following hold.

(∗) There exist 𝑘1, . . . , 𝑘𝑚 ∈ N such that

𝑁 + 𝑛 ≤
log

(
𝑟𝑏1𝜌

𝑘1
𝑏1

)
log(𝜌1)

< · · · <
log

(
𝑟𝑏𝑚𝜌

𝑘𝑚
𝑏𝑚

)
log(𝜌1)

< 𝑁 + 𝑛 + 1.

(∗∗) For every 𝑘 ∈ N and 𝑖 ∈ {2, . . . , 𝑑} not appearing in 𝑏,

log

(
𝑟𝑖𝜌

𝑘
𝑖

)
log(𝜌1)

∉ [𝑁 + 𝑛, 𝑁 + 𝑛 + 1).

As discussed earlier, for every 𝑡 ∈ N there exist 𝑙 ∈ N such that

𝑧𝑙 = 𝑡 = log

(
𝑟1𝜌

𝑡
1

)
/log(𝜌1) .

Since no two distinct terms of ⟨𝑧𝑛⟩∞𝑛=0 are equal, for every 𝑖 ≠ 1

and 𝑘 ∈ N, log
(
𝑟𝑖𝜌

𝑘
𝑖

)
/log(𝜌1) ∉ N. Thus in (∗) and (∗∗) we can

replace non-strict inequalities with strict ones, and vice versa.

Next, observe that (∗) is equivalent to
Δ(𝑛,𝑏𝑚) < · · · < Δ(𝑛,𝑏1) < 1. (8)

Similarly, (∗∗) holds if and only if for every 𝑖 ∈ {2, . . . , 𝑑} not

appearing in 𝑏,

Δ(𝑛, 𝑖) > 1. (9)

Since for all 𝑖 and 𝑘 ∈ N,
log

(
𝑟𝑖𝜌

𝑘
𝑖

)
log(𝜌1)

=
log(𝑟𝑖 )
log(𝜌1)

+ 𝑘 log(𝜌𝑖 )
log(𝜌1)

,

we have that

Δ(𝑛, 𝑖) = log(𝜌𝑖 )
log(𝜌1)

·
{
𝑁 + 𝑛 + 1 − log(𝑟𝑖 )/log(𝜌1)

log(𝜌𝑖 )/log(𝜌1)

}
=

1

𝛿𝑖
{𝑠𝑖 + 𝑛𝛿𝑖 }.

Consider the dynamical system on T𝑑−1 given by (𝑔, s), where
𝑔(𝑦2, . . . , 𝑦𝑑 ) = ({𝑦2 + 𝛿2}, . . . , {𝑦𝑑 + 𝛿𝑑 }). Recall from Sec. 2.7 that

for 𝑛 ∈ N, 𝑔 (𝑛) (s) = ({𝑠2 + 𝑛𝛿2}, . . . , {𝑠𝑑 + 𝑛𝛿𝑑 }). Considering (8)

and (9), we are led to defining, for 𝑏 = 𝑏0𝑏1 · · ·𝑏𝑚 ∈ Σ, 𝑆𝑏 ⊆ T𝑑−1
as the (open) set of all (𝑥2, . . . , 𝑥𝑑 ) ∈ T𝑑−1 such that

𝑥𝑏𝑚

𝛿𝑏𝑚
< · · · <

𝑥𝑏1

𝛿𝑏1
< 1 ∧

∧
1≤ 𝑗≤𝑑

𝑗≠𝑏1,...,𝑏𝑚

𝑥 𝑗

𝛿 𝑗
> 1. (10)
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112

13

132

123

Figure 3: The torus for 𝜌1 = 2, 𝜌2 = 3, and 𝜌3 = 5.

With this definition, for all 𝑏 ∈ Σ and 𝑛 ∈ N, 𝛽 (𝑛) = 𝑏 if and only if

𝑔 (𝑛) (s) ∈ 𝑆𝑏 . □

In the remainder of this section, let s = (𝑠2, . . . , 𝑠𝑑 ) ∈ T𝑑−1
and 𝜹 B (𝛿2, . . . , 𝛿𝑑 ) ∈ T𝑑−1, and 𝑔 : T𝑑−1 → T𝑑−1 be defined as

above. Figure 3 illustrates the target sets {𝑆𝑏 : 𝑏 ∈ Σ} constructed in
Thm. 6.3 for the sequences ⟨2𝑛⟩∞

𝑛=1
, ⟨3𝑛⟩∞

𝑛=1
, and ⟨5𝑛⟩∞

𝑛=1
. Figure 3

can also be viewed as follows. Consider a dynamical system on N
that starts at 2 and at each step jumps to the next power of 2. At

each step, a letter from {1, 12, 13, 123, 132} is written depending on

whether the point jumped over a power of 3 or a power of 5 in

the last step (and in what order). The exact letter to be written is

determined by keeping track of the fractional part of log
3
(2𝑛) and

log
5
(2𝑛); this gives rise to the linear inequalities defining the open

sets depicted in Fig. 3.

Since 𝛽 ∈ T𝑂 , it is uniformly recurrent (Sec. 2.7). As mentioned

earlier, the suffix𝑤𝑁𝑤𝑁+1 · · · of 𝜉 is the image of 𝛽 under a mor-

phism, and hence is almost-periodic by [26, Sec. 3]. It follows that 𝜉

is almost-periodic; this proves Thm. 6.1 (a). We next analyse

effective almost periodicity of 𝛽 , which implies effective almost

periodicity of 𝜉 . We will need the following lemma, whose proof

can be found in App. A.6.

Lemma 6.4. Let 𝛼 be a uniformly recurrent word for which 𝛼 (𝑛)
can be effectively determined given 𝑛. Then the word 𝛼 is effectively
almost-periodic if and only if we can decide occurrence of a given
finite word𝑤 in 𝛼 .

We next study how to decide whether given𝑤 ∈ Σ∗ occurs in 𝛽 .

Lemma 6.5. Let 𝑤 ∈ Σ∗. There exists an open subset 𝑆𝑤 ⊆ T𝑑−1
with the following property. For all 𝑛 ∈ N, the pattern 𝑤 occurs
in 𝛽 at the position 𝑛 if and only if 𝑔 (𝑛) (s) ∈ 𝑆𝑤 . Furthermore, we
can compute a representation of 𝑆𝑤 as a Boolean combination of
inequalities of the form

ℎ(𝑥2/𝛿2, . . . , 𝑥𝑑/𝛿𝑑 , 1/𝛿2, . . . , 1/𝛿𝑑 ) ∼ 0, (11)

where ℎ is a Q-affine form and ∼ is an inequality symbol.

Proof. See App. A.7. □

We next prove Thm. 6.1 (c). Suppose 1/log(𝜌1), . . . , 1/log(𝜌𝑑 )
are linearly independent over Q. Then for all 𝑐2, . . . , 𝑐𝑑 , 𝑘 ∈ Q,

𝑑∑︁
𝑖=2

𝑐𝑖𝛿𝑖 = 𝑘 ⇔ 𝑐2

log(𝜌2)
+ · · · + 𝑐𝑑

log(𝜌𝑑 )
=

𝑘

log(𝜌1)
⇒ 𝑘, 𝑐2, . . . , 𝑐𝑑 = 0.

Hence 𝐺𝐴 (𝜹) is the trivial group, T𝜹 = T𝑑−1, and by Kronecker’s

theorem (Thm. 2.14), ⟨𝑔 (𝑛) (s)⟩∞
𝑛=0

is dense in T𝑑−1. Therefore, a
pattern 𝑤 ∈ Σ∗ occurs in 𝛽 if and only if 𝑆𝑤 ≠ ∅. As shown in

Lem. 6.5, to decide whether 𝑆𝑤 ≠ ∅ we have to decide the truth of

Ψ B ∃𝑥2, . . . , 𝑥𝑑 : Φ(𝑥2, . . . , 𝑥𝑑 ) where Φ is a formula of the form∨
𝑗∈ 𝐽

∧
𝑘∈𝐾

ℎ 𝑗,𝑘 (𝑥2/𝛿2, . . . , 𝑥𝑑/𝛿𝑑 , 1/𝛿2, . . . , 1/𝛿𝑑 ) ∼𝑗,𝑘 0.

Recall that each ℎ 𝑗,𝑘 is a Q-affine form. Hence Ψ is equivalent to

∃𝑥2, . . . , 𝑥𝑑 : Φ(𝑥2, . . . , 𝑥𝑑 ). Applying Fourier-Motzkin Elimination,

we can compute finitely manyQ-affine formsℎ𝑙,𝑚 and an inequality

symbols ∼𝑙,𝑚 such that Ψ is true if and only if∨
𝑙∈𝐿

∧
𝑚∈𝑀

ℎ𝑙,𝑚 (1/𝛿2, . . . , 1/𝛿𝑑 ) ∼𝑙,𝑚 0.

Recall that
1

𝛿𝑖
=

log(𝜌𝑖 )
log(𝜌1 ) . For ℎ(𝑥2, . . . , 𝑥𝑑 ) B 𝑐1 + 𝑐2𝑥2 + · · · + 𝑐𝑑𝑥𝑑 ,

ℎ(1/𝛿2, . . . , 1/𝛿𝑑 ) =
1

log(𝜌1)
(𝑐1 log(𝜌1) + · · · + 𝑐𝑑 log(𝜌𝑑 )).

Hence for all 𝑙,𝑚, whether ℎ𝑙,𝑚 (1/𝛿2, . . . , 1/𝛿𝑑 ) ∼𝑙,𝑚 0 can be de-

cided using Baker’s theorem (Lem. 2.12). Thus, under the assump-

tion that 1/log(𝜌1), . . . , 1/log(𝜌𝑑 ) are linearly independent over Q,
we can decide whether a given pattern 𝑤 ∈ Σ∗ occurs in 𝛽 . We

conclude that 𝛽 and hence 𝜉 are effectively almost periodic. This
proves Thm. 6.1 (c). To prove Thm. 6.1 (d), recall Lem. 2.11
and invoke Thm. 6.1 (c).

It remains to prove Thm. 6.1 (b). Assuming Schanuel’s con-

jecture, we can compute a basis of 𝐺𝐴 (1/log(𝜌1), . . . , 1/log(𝜌𝑑 ))
(Lem. 2.9). Hence we can compute an Rexp formula defining the

compact T𝜹,s ⊆ T𝑑−1 in which in ⟨𝑓 (𝑛) (s)⟩∞
𝑛=0

is dense (Sec. 2.7).

Recall from Sec. 2.7 that a pattern 𝑤 occurs in 𝛽 if and only if

𝑆𝑤 ∩ T𝜹,s ≠ ∅, which can be effectively verified using a decision

procedure for the first-order theory of Rexp. Hence 𝛽 and 𝜉 are

effectively almost-periodic assuming Schanuel’s conjecture. This
proves Thm. 6.1 (b).

6.1 Applying the Theory of Cutting Sequences
Let 𝜉 = Ord(⟨𝑟1𝜌𝑛

1
⟩∞
𝑛=0

, . . . , ⟨𝑟𝑑𝜌𝑛𝑑 ⟩
∞
𝑛=0

) be as above. As hinted ear-

lier, it can be shown that 𝜉 has a suffix that is the cutting sequence

generated by the line {(𝑠1 + 𝑡/log(𝜌1), . . . , 𝑠𝑑 + 𝑡/log(𝜌𝑑 )) : 𝑡 ≥ 0},
where 𝑠𝑖 ∈ [0, 1) for all 𝑖 . As in Sec. 4.5, we write 𝑝 (𝑛) for the
number of distinct factors of 𝜉 of length 𝑛; the function 𝑝 is the

factor complexity of 𝜉 . The factor complexity of cutting sequences

has been extensively studied, and in many cases, an exact formula

for 𝑝 (𝑛) is known. We give an overview of results in this direction.

(i) If𝑑 = 2 and log(𝜌1)/log(𝜌2) is irrational, then 𝜉 is a Sturmian

word and therefore 𝑝 (𝑛) = 𝑛 + 1. See, e.g. [2, Chap. 10.5].

(ii) By [3], if 𝑑 = 3, and 1/log(𝜌1), 1/log(𝜌2), 1/log(𝜌3) as well
as log(𝜌1), log(𝜌2), log(𝜌3) are linearly independent over Q,
then 𝑝 (𝑛) = 𝑛2 + 𝑛 + 1.

(iii) For arbitrary 𝑑 > 0, Bedaride [6] gives an exact formula

for 𝑝 (𝑛) assuming 1/log(𝜌1), . . . , 1/log(𝜌𝑑 ) as well as ev-
ery triple log(𝜌𝑖 ), log(𝜌 𝑗 ), log(𝜌𝑘 ) for pairwise distinct 𝑖, 𝑗, 𝑘
are linearly independent over Q. This generalises the well-
known result [4] of Baryshnikov.

Going back to our word 𝜉 , let𝑤 be a finite pattern of length 𝑛, and

suppose we know the value of 𝑝 (𝑛). Then we can decide whether

𝑤 occurs (as required by Lem. 6.4) in 𝜉 by just reading prefixes

of 𝜉 until we have seen 𝑝 (𝑛) distinct factors of length 𝑛. Using
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this approach, we can prove that the word 𝜉 is effectively almost-

periodic under the assumption of (iii). Note, however, that this

result is strictly weaker than Thm. 6.1 (b). Consider, for example,

𝜌1 = 2, 𝜌2 = 3 and 𝜌3 = 6. By Lem. 2.11, 1/log(𝜌1), . . . , 1/log(𝜌3)
are linearly independent over Q, but log(𝜌1), . . . , log(𝜌3) are not.

6.2 Proof of Theorem 5.1
We can now combine everything we have shown so far to prove

Thm. 5.1. For 1 ≤ 𝑖 ≤ 𝑑 , let ⟨𝑢 (𝑖 )𝑛 ⟩∞
𝑛=0

for 1 ≤ 𝑖 ≤ 𝑑 be as in the

statement of Thm. 5.1 with the value set 𝑃𝑖 . Further let 𝛼 be the

characteristic word of (𝑃1, . . . , 𝑃𝑑 ), and recall that the MSO theory

of ⟨N;<, 𝑃1, . . . , 𝑃𝑑 ⟩ is decidable if and only if Acc𝛼 is decidable.

Applying Thm. 5.3, we can construct 𝑟1, . . . , 𝑟𝑑 such that Acc𝛼 re-

duces to Acc𝜉 , where 𝜉 = Ord(⟨𝑟1𝜌𝑛
1
⟩∞
𝑛=0

, . . . , ⟨𝑟𝑑𝜌𝑛𝑑 ⟩
∞
𝑛=0

). Applying
Thm. 6.1, we obtain conditions under which 𝜉 is effectively almost-

periodic. It remains to recall from Thm. 4.2 that Acc𝜉 is decidable
if 𝜉 is effectively almost-periodic.

7 MSO OF LRS AND NORMAL NUMBERS
In this section, we discuss a second class of LRS that give rise to

interesting MSO theories; we will show that these are intimately

connected to base-𝑏 expansions of certain algebraic numbers. In

particular, we will show that the base-𝑏 expansion of
𝑑
√︁
𝑝/𝑞 is in-

trinsic to the pair of predicates {𝑞𝑛𝑑 : 𝑛 ∈ N} and {𝑝𝑏𝑛𝑑 : 𝑛 ∈ N}.
That is, the binary expansion of

3

√︁
1/27 = 1/3 underlies the pair

of predicates {27𝑛3 : 𝑛 ∈ N} and {8𝑛 : 𝑛 ∈ N}, while the binary
expansion of

3
√
5 underlies the pair {𝑛3 : 𝑛 ∈ N} and {5 ·8𝑛 : 𝑛 ∈ N}.

The dynamical systems at play in this section differ from the ones

we considered previously: they are defined by numeration systems
[22, Chap. 7] as opposed to translations on a torus (Sec. 6 and 2.7).

We begin by considering the case where
𝑑
√︁
𝑝/𝑞 is rational, which

implies that its base-𝑏 expansion is ultimately periodic for any

𝑏 ≥ 2. The following is a generalisation of Cor. 1.3; see App. A.8

for the proof, which is a simple application of Thm. 4.11.

Theorem 7.1. Let 𝑏, 𝑑 ≥ 2 and 𝑝, 𝑞 ≥ 1 be integers such that
𝑑
√︁
𝑝/𝑞 is rational. Let 𝛼 ∈

(
{0, 1}2

)𝜔 be the characteristic word of
(𝑃1, 𝑃2), where 𝑃1 = {𝑞𝑛𝑑 : 𝑛 ∈ N} and 𝑃2 = {𝑝𝑏𝑛𝑑 : 𝑛 ∈ N}. Then
the problem Acc𝛼 is decidable.

The case where
𝑑
√︁
𝑝/𝑞 is irrational is more involved.

Theorem 7.2. Let 𝑏, 𝑑, 𝑝, 𝑞 be positive integers such that 𝑑
√︁
𝑝/𝑞 is

irrational. Furthermore, let

(1) 𝛼 ∈
(
{0, 1}2

)𝜔 be the characteristic word of (𝑃1, 𝑃2), where
𝑃1 = {𝑞𝑛𝑑 : 𝑛 ∈ N} and 𝑃2 = {𝑝𝑏𝑛𝑑 : 𝑛 ∈ N};

(2) 𝛽 ∈ {0, 1, . . . , 𝑏 − 1}𝜔 be the infinite string of digits in the
base-𝑏 expansion of 𝜂 = 𝑑

√︁
𝑝/𝑞 and

(3) 𝛾 be the order word corresponding to 𝛼 , i.e. the word obtained
by deleting all occurrences of (0, 0) from 𝛼 .

Then the problems Acc𝛼 , Acc𝛽 , and Acc𝛾 are Turing-equivalent.

Proof. We will prove the theorem by showing:

(1) Acc𝛽 reduces to Acc𝛼 .
(2) Acc𝛼 reduces to Acc𝛾 .
(3) Acc𝛾 reduces to Acc𝛽 .

Part (1): Acc𝛽 reduces to Acc𝛼 . By construction (except for an

easily computable finite prefix), we have the invariant

𝛽 (𝑛) = ⌊𝜂𝑏𝑛⌋ mod 𝑏, 𝛽 (𝑛) ∈ {0, . . . , 𝑏 − 1}.

For example, if 𝑝 = 2, 𝑞 = 1, 𝑏 = 10, and 𝑑 = 2, then 𝜂 =
√
2 =

1.4142 · · · and 𝛽 (0) = 1, 𝛽 (1) = 4, 𝛽 (2) = 1 etc. This observation

accounts for one reduction of the Turing equivalence.

We will prove the claim by constructing a deterministic finite

transducer B such that 𝛽 = B(𝛼) and applying Lem. 4.5. The

states of B are 𝑅 = {0, . . . , 𝑏 − 1} with initial state 𝑏 − 1. The

transducer moves from state 𝑞 to state 𝑞 + 1 mod 𝑏 if it reads

(1, 0) and does not move otherwise. The transducer outputs its

current state 𝑞 on reading (0, 1) and otherwise it outputs the empty

word. Thus, the letter (0, 0) has no effect on the state or output

of the transducer. By construction, the transducer keeps count of

the number of occurrences of 𝑃1 modulo 𝑏, and outputs this count

on encountering an occurrence of 𝑃2. Hence its 𝑛th output will be

𝑏𝑛 mod 𝑏, where 𝑏𝑛 B |{𝑚 ∈ N : 𝑞𝑚𝑑 < 𝑝𝑏𝑛𝑑 }| − 1. It remains to

observe that

𝑏𝑛 = |{𝑚 ∈ N :𝑚 < 𝑏𝑛 · 𝑑
√︁
𝑝/𝑞} − 1| ≡ ⌊𝜂𝑏𝑛⌋ (mod 𝑏) .

Part (2): Acc𝛼 reduces to Acc𝛾 . This reduction requires a more

refined understanding of the word 𝛼 . We readily observe that (1, 1)
does not occur in 𝛼 . If 𝑞𝑚𝑑 = 𝑝𝑏𝑛𝑑 , then𝑚 = 𝜂𝑏𝑛 . As 𝜂 is irrational,

𝑚 and 𝑏𝑛 cannot both be integers. Thus, 𝛼 only contains (0, 0),
(0, 1) and (1, 0).

Consider the order word 𝛾 ∈ {(1, 0), (0, 1)}𝜔 of (𝑃1, 𝑃2).

𝛼 = (0, 0)𝑛0𝛾 (0) (0, 0)𝑛1𝛾 (1) · · · .

We apply Thm. 4.15 to show that in the case of (𝑃1, 𝑃2), the ac-

ceptance problem of the characteristic word reduces to that of the

order word. Condition (1) of the premise, i.e. that 𝑃1 and 𝑃2 are

procyclic and effectively sparse, are easily seen to hold. We have

also established that 𝑃1 and 𝑃2 can never hold simultaneously. To

argue Condition (2), i.e. that 𝑃1, 𝑃2 are pairwise effectively sparse,

we apply the following result of Schinzel and Tijdeman [30].

Lemma 7.3 (Schinzel and Tijdeman). For every 𝑁 ≥ 1, the
equation |𝑞𝑛𝑑 − 𝑝𝑏𝑚𝑑 | = 𝑁 has finitely many solutions (𝑛,𝑚) that
can be effectively enumerated.

Hence the claim follows from Thm. 4.15: Acc𝛼 of the character-

istic word reduces to Acc𝛾 of the order word.

Part (3): Acc𝛾 reduces to Acc𝛽 . Note that 𝛾 itself can be written as

𝛾 = (1, 0)𝑚0 (0, 1) (1, 0)𝑚1 (0, 1) · · · .

We now reduce Acc𝛾 to Acc𝛽 using Cor. 4.7. We remark that despite

the differing underlying arithmetic, the key automata-theoretic

ideas are similar to the proof of Thm. 4.15. We record the invariants:

𝑆𝑘 =

𝑘∑︁
𝑖=0

𝑚𝑖 = ⌊𝜂𝑏𝑘 ⌋

𝛽𝑘 ≡ ⌊𝜂𝑏𝑘 ⌋ (mod 𝑏)
𝑏𝑆𝑘 ≤ 𝑆𝑘+1 < 𝑏 (𝑆𝑘 + 1)
𝑆𝑘+1 = 𝑏𝑆𝑘 + 𝛽𝑘+1 = 𝑆𝑘 +𝑚𝑘+1 .



On the Decidability of MSO with Arithmetic Predicates Conference’17, July 2017, Washington, DC, USA

Define

𝛾 ′ = ⊥𝑚0𝛽 (0)⊥𝑚1𝛽 (1) · · · .
By Lem. 4.5, it is easy to see thatAcc𝛾 reduces toAcc𝛾 ′ via a straight-
forward transduction, which is in fact a homomorphism. It thus

suffices to reduce Acc𝛾 ′ to Acc𝛽 .

We denote 𝑆𝑘 = ⌊𝜂𝑏𝑘 ⌋ and observe that 𝑏𝑆𝑘 ≤ 𝑆𝑘+1 < 𝑏 (𝑆𝑘 + 1)
(one can check the identity 𝑏 ⌊𝑥⌋ ≤ ⌊𝑏𝑥⌋ < 𝑏 (⌊𝑥⌋ + 1). Thus, 𝑆𝑘+1 =
𝑏𝑆𝑘 + 𝛽𝑘+1 = 𝑆𝑘 +𝑚𝑘+1. Given 𝛽 and 𝑚0, we can use the above

properties to track 𝑆𝑘 , and hence𝑚𝑘 modulo 𝑡 for any integer 𝑡 .

This is useful, because: (1) it is easy to observe that ⟨𝑚𝑘 ⟩𝑘∈N is a

strictly increasing sequence, and that we can effectively compute

𝑗 such that𝑚𝑘 ≥ 𝑁 for all 𝑘 ≥ 𝑗 ; (2) for any morphism ℎ into a

finite monoid𝑀 , there exist effective 𝑁, 𝑡 such that for all 𝑛 ≥ 𝑁 ,

ℎ(⊥𝑛) = ℎ(⊥𝑛+𝑡 ).
Using these observations, given any morphism ℎ into a finite

monoid𝑀 , we can construct a transducer B such that B(𝛽) = 𝜇 ∈
𝑀𝜔

. We recall that we take the 𝑗 th factor of 𝛾 ′ to be ⊥𝑚 𝑗 𝛽 ( 𝑗). On
reading 𝛽 ( 𝑗),B outputs 𝜇 𝑗 , with the property thatℎ(⊥𝑚 𝑗 𝛽 ( 𝑗)) = 𝜇 𝑗
for all 𝑗 ∈ N. The hypothesis of Cor. 4.7 is met, and Acc𝛾 ′ thus
reduces to Acc𝛽 . □

ByConj. 4.16, it is expected that
𝑑
√︁
𝑝/𝑞 is aweakly normal number

in base 𝑏 when it is irrational. Hence, if the conjecture holds, Acc𝛽
is decidable by Thm. 4.18. Applying Theorem 7.2, both Acc𝛼 and

Acc𝛾 are decidable assuming Conj. 4.16.

We can slightly simplify the special case of Thm. 7.2 where 𝑝 =

𝑏, 𝑞 = 1, 𝑑 = 2 to the procyclic functions 𝑛2 and 𝑏𝑛 ; see App. A.9 for

the proof, which closely mirrors that of Thm. 7.2. On applying this

result with 𝑏 = 2, we get that the MSO theory of ⟨N;<,N2, Pow2⟩
is Turing-equivalent with Acc𝛽 , where 𝛽 is the binary expansion of√
2, as stated in the abstract.

Theorem 7.4. Let 𝑏 ≥ 2, 𝑃1 = N2, 𝑃2 = Pow𝑏 , and Σ = {0, 1}2.
Further let 𝛼 ∈ Σ𝜔 be the characteristic word of (𝑃1, 𝑃2) and 𝛽 ∈
{0, . . . , 𝑏 − 1}𝜔 be the base-𝑏 expansion of

√
𝑏. Then the problems

Acc𝛼 and Acc𝛽 are Turing-equivalent.
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A OMITTED PROOFS
A.1 Proof of Lemma 2.9
We will use the following lemmas to prove Lem. 2.9.

Lemma A.1. Assume that 𝑑, 𝑒 ≥ 1 and that

𝑓 (𝑥1, . . . , 𝑥𝑒 ) =
𝑐1∑𝑒

𝑖=1 𝑏𝑖,1𝑥𝑖
+ · · · + 𝑐𝑑∑𝑒

𝑖=1 𝑏𝑖,𝑑𝑥𝑖

for some 𝑐 𝑗 , 𝑏𝑖, 𝑗 ∈ Q such that for 1 ≤ 𝑗 < 𝑗 ′ ≤ 𝑑 ,
∑𝑒
𝑖=1 𝑏𝑖, 𝑗𝑥𝑖 ≠

𝑠
∑𝑒
𝑖=1 𝑏𝑖, 𝑗 ′𝑥𝑖 does not hold for any 𝑠 ∈ R. If 𝑓 (𝑥1, . . . , 𝑥𝑑 ) = 0, then

𝑐1, . . . , 𝑐𝑑 = 0.

Proof. For 1 ≤ 𝑗 ≤ 𝑑 , Let 𝑉𝑗 be the 𝑒 − 1-dimensional subspace

of R𝑒 where
∑𝑒
𝑖=1 𝑏𝑖, 𝑗𝑥𝑖 = 0 holds for all (𝑥1, . . . , 𝑥𝑒 ) ∈ R𝑒 . Assume

that for 1 ≤ 𝑗 ≤ 𝑑 , 𝑐 𝑗 ≠ 0.

If ⟨x𝑛⟩∞𝑛=0 is a R
𝑒
-valued sequence converging to x ∈ 𝑉𝑗 , then

lim𝑛→∞ |𝑓 (x𝑛) | = +∞. Hence, as 𝑓 (𝑥1, . . . , 𝑥𝑒 ) = 0, x ∈ 𝑉𝑗 ′ for

some 1 ≤ 𝑗 ′ ≤ 𝑑 unequal to 𝑗 . Then 𝑉𝑗 ∩ 𝑉𝑗 ′ is again a linear

subspace of R𝑒 of dimension at most 𝑒 − 1.

If𝑉𝑗 ∩𝑉𝑗 ′ has dimension less than 𝑒−1 for all 1 ≤ 𝑗 ′ ≤ 𝑑 unequal
to 𝑗 , then

𝑉𝑗 ⊊ ∪
1≤ 𝑗 ′≤𝑑
𝑗 ′≠𝑗

(𝑉𝑗 ∩𝑉𝑗 ′ )

giving a contradiction that each x ∈ 𝑉𝑗 is in some 𝑉𝑗 ′ with 𝑗
′ ≠ 𝑗 .

Thus, 𝑉𝑗 = 𝑉𝑗 ′ for some 𝑗 ′ ≠ 𝑗 , and so

∑𝑒
𝑖=1 𝑏𝑖, 𝑗𝑥𝑖 = 0 if and

only if

∑𝑒
𝑖=1 𝑏𝑖, 𝑗 ′𝑥𝑖 = 0. Hence, there is some 𝑠 ∈ R≠0 such that

𝑏𝑖, 𝑗 = 𝑠𝑏𝑖, 𝑗 ′ for all 1 ≤ 𝑖 ≤ 𝑒 . This gives a contradiction, and so

𝑐 𝑗 = 0. As this holds for all 1 ≤ 𝑗 ≤ 𝑑 , the lemma follows. □

Lemma A.2. Assume that 𝜆1, . . . , 𝜆𝑑 ∈ R>1 ∩Q are pairwise mul-
tiplicatively independent. Then 1/log(𝜆1), . . . , 1/log(𝜆𝑑 ) are linearly
independent over Q.

Proof. First, using Th. 2.4, compute a basis for 𝐺𝑀 (𝜆1, . . . , 𝜆𝑑 )
and select amaximummultiplicative independent subset {𝜆1, . . . , 𝜆𝑒 },
possibly needing to renumber the 𝜆𝑖 . Then, for all 1 ≤ 𝑗 ≤ 𝑑 , one
can compute 𝑏𝑖, 𝑗 for 1 ≤ 𝑖 ≤ 𝑒 such that log(𝜆 𝑗 ) =

∑𝑒
𝑖=1 𝑏𝑖, 𝑗 log(𝜆𝑖 )

using the known multiplicative relationships. Then we have to

show that when 𝑐1, . . . , 𝑐𝑑 ∈ Q and

𝑐1∑𝑒
𝑖=1 𝑏𝑖,1 log(𝜆𝑖 )

+ · · · + 𝑐𝑑∑𝑒
𝑖=1 𝑏𝑖,𝑑 log(𝜆𝑖 )

= 0 (12)

Schanuel’s conjecture implies that all 𝑐𝑖 are zero. By multiplying

(12) by

∏
𝑗=1

∑𝑒
𝑖=1 𝑏𝑖, 𝑗 log(𝜆𝑖 ), we obtain a polynomial expression

in log(𝜆1), . . . , log(𝜆𝑒 ) that equals zero.
We apply Schanuel’s conjecture (Conj. 2.7) with 𝛼𝑖 = log(𝜆𝑖 )

for 1 ≤ 𝑖 ≤ 𝑒 . As 𝜆1, . . . , 𝜆𝑒 are multiplicatively independent,

log(𝜆1), . . . , log(𝜆𝑒 ) are linearly independent overQ by Baker’s the-

orem (Thm. 2.10). Then {log(𝜆1), . . . , log(𝜆𝑒 ), 𝜆1, . . . , 𝜆𝑒 } has tran-
scendence degree at least 𝑑 by Schanuel’s conjecture while also

being equal to the transcendence degree of {log(𝜆1), . . . , log(𝜆𝑒 )}
as all 𝜆𝑖 are algebraic. Hence, log(𝜆1), . . . , log(𝜆𝑒 ) are algebraically
independent.

This implies that the polynomial expression obtained from (12),

has to evaluate trivially to zero. That is, the rational function

𝑓 (𝑥1, . . . , 𝑥𝑒 ) =
𝑐1∑𝑒

𝑖=1 𝑏𝑖,1𝑥𝑖
+ · · · + 𝑐𝑑∑𝑒

𝑖=1 𝑏𝑖,𝑑𝑥𝑖

is exactly zero. Assume that 1 ≤ 𝑗 < 𝑗 ′ < 𝑑 and

∑𝑒
𝑖=1 𝑏𝑖, 𝑗𝑥𝑖 ≠

𝑠
∑𝑒
𝑖=1 𝑏𝑖, 𝑗 ′𝑥𝑖 holds for a real number 𝑠 . As 𝜆 𝑗 ′ ≠ 0, some 𝑏𝑖, 𝑗 ′ is

non-zero. Then 𝑠 = 𝑏𝑖, 𝑗/𝑏𝑖, 𝑗 ∈ Q. Hence,

log(𝜆 𝑗 ) =
𝑒∑︁
𝑖=1

𝑏𝑖, 𝑗 log(𝜆𝑖 ) =
𝑒∑︁
𝑖=1

𝑠𝑏𝑖, 𝑗 ′ log(𝜆𝑖 ) = 𝑠 log(𝜆 𝑗 ′ ),

contradicting that 𝜆 𝑗 and 𝜆 𝑗 ′ aremultiplicatively independent. Thus,

the hypothesis of Lem. A.1 is satisfied and all 𝑐 𝑗 are 0. We conclude

the statement. □

Now Lem. 2.9 easily follows.

Proof of Lem. 2.9. If 𝜆𝑖 and 𝜆 𝑗 are multiplicatively dependent,

say 𝜆𝑎
𝑖
= 𝜆𝑏

𝑗
for some non-zero integers 𝑎 and 𝑏, then 𝑎 log(𝜆𝑖 ) =

𝑏 log(𝜆 𝑗 ). Hence, 𝑎/log(𝜆 𝑗 ) = 𝑏/log(𝜆𝑖 ), giving a non-trivial ele-

ment in 𝐺𝐴 (1/log(𝜆1), . . . , 1/log(𝜆𝑑 )).
Meanwhile, by Lem. A.2, for any pairwise multiplicative indepen-

dent subset of {𝜆1, . . . , 𝜆𝑑 }, the reciprocals of their logs are linearly
independent.

Together, this implies that any Q-linear relationship among

1/log(𝜆1), . . . , 1/log(𝜆𝑑 ) can be reduced to a relationship gener-

ated by pairwise multiplicative relationships. One can easily find

a basis among these by computing for each pair (𝜆𝑖 , 𝜆 𝑗 ) whether
they multiplicatively dependent using Thm. 2.4. □

A.2 Proof of Lemma 2.11
Proof of Lem. 2.11. By the two assumptions, for any 1 ≤ 𝑖 <

𝑗 < 𝑘 ≤ 𝑑 there exist 𝑏1, 𝑏2, 𝑏3 ∈ Z≠0 such that 𝜆
𝑏𝑖
𝑖
𝜆
𝑏 𝑗
𝑗
𝜆
𝑏𝑘
𝑘

= 1.

Equivalently, 𝑏1 log(𝜆1) + 𝑏2 log(𝜆2) + 𝑏3 log(𝜆3) = 0. Hence, for

1 ≤ 𝑗 ≤ 𝑑 , let 𝑏1, 𝑗 , 𝑏2, 𝑗 ∈ Q be such that log(𝜆 𝑗 ) = 𝑏1, 𝑗 log(𝜆1) +
𝑏2, 𝑗 log(𝜆2). Then 𝑏1,1 = 𝑏2,2 = 0 and all other 𝑏𝑖, 𝑗 are non-zero.

For a contradiction, let 𝑐1, . . . , 𝑐𝑑 ∈ Q be rational numbers such

that

∑𝑑
𝑗=1 𝑐 𝑗/log(𝜆 𝑗 ) = 0. Multiplying by

∏𝑑
𝑗=1 log(𝜆 𝑗 ) gives

𝑑∑︁
𝑗=1

𝑐 𝑗

𝑑∏
𝑖=1,𝑖≠𝑗

(
𝑏1, 𝑗 log(𝜆1) + 𝑏2, 𝑗 log(𝜆2)

)
= 0,

which simplifies to

𝑑∑︁
𝑖=0

𝑒𝑖 log(𝜆1)𝑖 log(𝜆2)𝑑−𝑖 = 0 (13)

for some 𝑒𝑖 ∈ Q. Assume not all 𝑒𝑖 are zero. Then dividing by

log(𝜆2)𝑑 shows that log(𝜆1)/log(𝜆2) is the root of the non-zero

polynomial

∑𝑑
𝑖=0 𝑒𝑖𝑥

𝑖 ∈ Q[𝑥]. That is, log(𝜆1)/log(𝜆2) is an alge-

braic number, say 𝛼 and so log(𝜆1) − 𝛼 log(𝜆2) = 0, contradicting

Baker’s theorem (Thm. 2.10). Hence, all 𝑒𝑖 have to be zero.

As (13) is obtained by multiplying

∑𝑑
𝑗=1

𝑐 𝑗
log(𝜆 𝑗 ) with the non-

zero number

∏𝑑
𝑗=1 log(𝜆 𝑗 ),

𝑑∑︁
𝑗=1

𝑐𝑖

𝑏1, 𝑗𝑥1 + 𝑏2, 𝑗𝑥2
= 0 (14)

As in Lem. A.2, we deduce that as all 𝜆𝑖 are pairwise multiplicatively

dependent and so (14) satisfies the hypothesis of Lem. A.1. Thus,

all 𝑐𝑖 are zero and the statement follows. □
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A.3 Proof of Theorem 2.13
Proof of Thm. 2.13. If 𝜌1 and 𝜌2 aremultiplicatively dependent,

say 𝜌𝑚1 = 𝜌
𝑚2

2
, let 𝜌3 = 𝜌

1/𝑚2

1
, 𝑅3 = max(𝑅1/𝑚2

1
, 𝑅

1/𝑚1

2
). Then

𝑅3 < 𝜌3 and solving

|𝑐1𝜌
𝑛′
1

3
− 𝑐2𝜌

𝑛′
2

3
| ≤ (𝑏1 + 𝑏2)𝑅max(𝑛1+𝑛2 )

3

when 𝑐1𝜌
𝑛′
1

3
≠ 𝑐2𝜌

𝑛′
2

3
gives all solutions to (3) by setting 𝑛1 =𝑚2𝑛

′
1

and 𝑛2 =𝑚1𝑛
′
2
. As the left-hand side can be bounded from below

by𝐶1𝜌
max(𝑛′

1
,𝑛′

2
)

3
for a computable constant𝐶1 when it is non-zero,

max(𝑛′
1
, 𝑛′

2
) can be bounded from above and so 𝑛1 and 𝑛2 as well.

If 𝜌1 and 𝜌2 are multiplicatively independent, it is sufficient to

bound 𝑛1, 𝑛2 that satisfy

|𝑐1𝜌𝑛1
1

− 𝑐2𝜌𝑛2
2
| ≥ 2𝑏1𝑅

𝑛1
1
, 2𝑏2𝑅

𝑛2
2

(15)

as adding the two cases gives the result.We can assume that 𝜌1 < 𝜌2.

After dividing both sides by 𝑐1𝜌
𝑛1
1
, we apply Matveev’s result to

Λ = 𝑐−1
1
𝑐2 (𝜌−1

1
)𝑛1𝜌𝑛2

2
− 1 to find that

log |Λ| ≥ −𝐶1 (1 + log(max(1, 𝑛1, 𝑛2)))
for some computable constant 𝐶1 > 0. Thus, we want 𝑛1 and 𝑛2 to

satisfy

log |Λ| ≥ log(2𝑏1/𝑐1) + 𝑛1 log(𝜌1/𝑅1) and

log |Λ| ≥ log(2𝑏2/𝑐1) + 𝑛2 log(𝜌2) − 𝑛1 log(𝑅1) .
(16)

If 𝑛1 ≥ 𝑛2 and the first of these equations is false, then

𝐶1 (1 + log(max(1, 𝑛1))) ≥ log(𝑐2/(2𝑏1)) + 𝑛1 log(𝜌1/𝑅1) (17)

We can effectively bound 𝑛1 (and thus 𝑛2) as the right-hand side

grows logarithmically while the left-hand grows linearly in 𝑛1.

If 𝑛2 ≥ 𝑛1 and the second equation of (16) is false,

𝐶1 (1 + log(max(1, 𝑛2))) ≤ log(𝑐2/(2𝑏1)) + 𝑛1 log(𝜌1/𝑅1) .
Thus, we can compute constants 𝐶3, 𝐶4 such that 𝐶4 > 0 and if the

second equation of (16) is false, then 𝑛1 ≥ 𝐶3 +𝐶4 log(𝑛2). Thus,
we can assume that 𝑛1 ≤ 𝐶3 +𝐶4 log(𝑛2). If the second equation of

(16) is false,

𝐶1 (1 + log(max(1, 𝑛2))) ≥ log(𝑐1/2𝑏2) + 𝑛2 log(𝜌2) − 𝑛1 log(𝑅1).
Using our bound on 𝑛1, we obtain that when 𝑛2 ≥ 1

𝐶1 (1+log(𝑛2)) ≥ log(𝑐1/2𝑏2)+𝑛2 log(𝜌2)−(𝐶3+𝐶4 log(𝑛2)) log(𝑅1) .
The left-hand side grows logarithmically in 𝑛2 while the right-hand

side grows linearly. Hence, we can again bound 𝑛2 (and thus 𝑛1).

The result follows. □

A.4 Proof of Theorem 4.18
Proof of Thm. 4.18. Consider a given deterministic Muller au-

tomaton A as a directed graph allowing multiple edges. We parti-

tion the graph into its strongly connected components (SCCs) and

call an SCC without outgoing edges a bottom SCC. We will show

that the set of states visited infinitely often by the run of A on 𝛼 is

precisely a bottom SCC. Hence, we decide Acc𝛼 by simulating this

run until a bottom SCC is inevitably reached. Then 𝛼 is accepted if

and only if this bottom SCC is in the Muller acceptance condition.

We need to show that (a) if an SCC is not a bottom SCC, then

the run eventually exits it; and (b) if the run enters a bottom SCC,

it visits all its states infinitely often.

For (a), let 𝑆 be a non-bottom SCC. There thus exist 𝑞1 ∈ 𝑆, 𝑏 ∈ Σ
such that 𝛿 (𝑞1, 𝑏) ∉ 𝑆 , i.e. reading the letter 𝑏 in state 𝑞1 exits 𝑆 .

We will order the states of 𝑆 as 𝑞1, . . . , 𝑞𝑘 , construct words 𝑢1 =

𝑏, . . . , 𝑢𝑘 ∈ Σ+, and inductively prove that for all 𝑗 ≤ 𝑖 , 𝛿 (𝑞 𝑗 , 𝑢𝑖 ) ∉ 𝑆 .
Since 𝛼 is weakly normal, 𝑢𝑘 will inevitably occur as a factor, and

hence, the run will exit 𝑆 .

We have observed the base case to hold with 𝑢1 = 𝑏. For the

induction step, assume that for all 𝑗 ≤ 𝑖 , 𝛿 (𝑞 𝑗 , 𝑢𝑖 ) ∉ 𝑆 . Now, if

𝛿 (𝑞𝑖+1, 𝑢𝑖 ) ∉ 𝑆 , take𝑢𝑖+1 = 𝑢𝑖 . Else, if 𝛿 (𝑞𝑖+1, 𝑢𝑖 ) = 𝑞 ∈ 𝑆 , the strong
connectivity of 𝑆 implies that 𝛿 (𝑞, 𝑣𝑖 ) = 𝑞1 for some 𝑣𝑖 ∈ Σ∗. Thus,
take 𝑢𝑖+1 = 𝑢𝑖𝑣𝑖𝑏, and observe that for all 𝑗 ≤ 𝑖 + 1, 𝛿 (𝑞 𝑗 , 𝑢𝑖+1) ∉ 𝑆 .

We prove (b) similarly. Fix an order of states 𝑞1, . . . , 𝑞𝑘 of 𝑆 . By

definition, a run entering the bottom SCC 𝑆 will be confined in

𝑆 . It thus suffices to prove that for any 𝑞 ∈ 𝑆 , we can inductively

construct a word 𝑢𝑘 ∈ Σ+ such that for all 𝑗 ≤ 𝑘 , the non-empty

run of 𝑢𝑘 on A starting from 𝑞 𝑗 visits 𝑞. The induction is similar to

the one above. Choose 𝑞1 ∈ 𝑆,𝑢1 ∈ Σ∗ to be such that 𝛿 (𝑞1, 𝑢1) = 𝑞.
By the induction hypothesis, for every 𝑗 ≤ 𝑖 , the run on 𝑢𝑖 starting

in 𝑞 𝑗 visits 𝑞. If the run on 𝑢𝑖 starting in 𝑞𝑖+1 visits 𝑞, take 𝑢𝑖+1 = 𝑢𝑖 .
Else, use that 𝑆 is a bottom SCC to identify 𝑣𝑖 ∈ Σ+ such that

𝛿 (𝑞𝑖+1, 𝑢𝑖𝑣𝑖 ) = 𝑞, and take 𝑢𝑖+1 = 𝑢𝑖𝑣𝑖 . We have thus ensured that

for all 𝑗 ≤ 𝑖 + 1, the run on 𝑢𝑖 starting in 𝑞 𝑗 visits 𝑞. Since 𝛼 is

weakly normal, 𝑢𝑘 occurs as a factor infinitely often, and hence all

𝑞 ∈ 𝑆 are visited infinitely often. □

A.5 Proof of Lemma 5.4
Proof of Lem. 5.4. We first deal with the first part of (d). Fix

distinct 𝑖, 𝑗 . Recall we assumed there were only finitely many pairs

(𝑛𝑖 , 𝑛 𝑗 ) ∈ N2 such that 𝑐𝑖𝜌
𝑛𝑖
𝑖

= 𝑐 𝑗𝜌
𝑛 𝑗

𝑗
. Using Thm. 2.4, we can

compute a basis for 𝐺𝑀 (𝑐𝑖/𝑐 𝑗 , 𝜌𝑖 , 𝜌 𝑗 ) and with linear algebra, we

can compute all such (𝑘1, 𝑘2, 𝑘3) such that 𝑘1 = 1. These elements

are exactly the solutions of 𝑐𝑖𝜌
𝑘2
𝑖

= 𝑐 𝑗𝜌
−𝑘3
𝑗

in integers. As there

are only finitely many such 𝑘2 and 𝑘3, we can compute and set

𝑘𝑖, 𝑗 = max(𝑘2,−𝑘3).
We continue with the proof of (a-e). We already have a bound

for the first part of (d). Let us treat (e). For 1 ≤ 𝑖 ≤ 𝑑 , apply Lem. 2.5

to find 𝑏𝑖 , 𝑅𝑖 > 0 such that |𝑢 (𝑖 )𝑛 − 𝑐𝑖𝜌𝑛𝑖 | < 𝑏𝑖𝑅
𝑛
𝑖
for all 𝑛 ≥ 0. Then,

𝑢
(𝑖 )
𝑛𝑖 − 𝑢 ( 𝑗 )𝑛 𝑗

= 𝑐𝑖𝜌
𝑛
𝑖 − 𝑐 𝑗𝜌𝑛𝑗 + 𝑢

(𝑖 )
𝑛𝑖 − 𝑐𝑖𝜌𝑛𝑖 − 𝑢 ( 𝑗 )𝑛 𝑗

+ 𝑐 𝑗𝜌𝑛𝑗
> 𝑐𝑖𝜌

𝑛
𝑖 − 𝑐 𝑗𝜌𝑛𝑗 − 𝑏 𝑗𝑅

𝑛
𝑗 − 𝑏 𝑗𝑅

𝑛
𝑗 .

Using Thm. 2.13, for each pair 1 ≤ 𝑖 < 𝑗 ≤ 𝑑 , we compute 𝑘′
𝑖, 𝑗

such

that for all 𝑛𝑖 , 𝑛 𝑗 ≥ 𝑘𝑖, 𝑗 ′ , |𝑐𝑖𝜌𝑛𝑖 − 𝑐 𝑗𝜌𝑛𝑗 | > 𝑏𝑖𝑅
𝑛
𝑖
+ 𝑏 𝑗𝑅𝑛𝑗 such that for

such 𝑛𝑖 , 𝑛 𝑗 , 𝑢
(𝑖 )
𝑛𝑖 − 𝑢 ( 𝑗 )𝑛 𝑗

and 𝑐𝑖𝜌
𝑛
𝑖
− 𝑐 𝑗𝜌𝑛𝑗 have the same sign. Thus,

(e) follows.

For the second part of (𝑑), assume that 𝑛𝑖 , 𝑛 𝑗 ≥ 𝑘𝑖, 𝑗 , 𝑘
′
𝑖, 𝑗
. Now

note the first part of (𝑑) implies that, 𝑐𝑖𝜌
𝑛𝑖
𝑖

> 𝑐 𝑗𝜌
𝑛 𝑗

𝑗
or 𝑐𝑖𝜌

𝑛𝑖
𝑖

<

𝑐 𝑗𝜌
𝑛 𝑗

𝑗
and thus by (e), 𝑢

(𝑖 )
𝑛𝑖 ≠ 𝑢

( 𝑗 )
𝑛 𝑗

.

For (a), let 1 ≤ 𝑖 ≤ 𝑑 . Then,

𝑢
(𝑖 )
𝑛+1 − 𝑢

(𝑖 )
𝑛 < 𝑐𝑖𝜌

𝑛+1
𝑖 − 𝑐𝑖𝜌𝑛+1𝑖 − 𝑏𝑖𝑅𝑛+1𝑖 − 𝑏𝑖𝑅𝑛𝑖

= 𝑐𝑖 (𝜌𝑖 − 1)𝜌𝑛𝑖 − 𝑏𝑖 (𝑅𝑖 + 1)𝑅𝑛𝑖 .

As 𝜌𝑖 > 𝑅𝑖 , one can compute a bound 𝑘𝑖 such that 𝑐𝑖 (𝜌𝑖 − 1)𝜌𝑛
𝑖
>

𝑏𝑖 (𝑅𝑖 + 1)𝑅𝑛
𝑖
for all 𝑛 ≥ 𝑘𝑖 .
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Thus, when𝑚𝑖 ≥ 𝑘𝑖 , 𝑘𝑖, 𝑗 , 𝑘
′
𝑖, 𝑗

for all 1 ≤ 𝑖, 𝑑 ≤ 𝑑 , (a), (d) and (e)

are satisfied. Let𝑚′
𝑖
satisfy these conditions. Then choose a 𝑁 ′ ≥ 0

such that 𝑁 ′ ≥ 𝑢 (𝑖 )
𝑚′

𝑖

for all 1 ≤ 𝑖 ≤ 𝑑 . Then let𝑚1 be the smallest

number such that 𝑢
(1)
𝑚1

≥ 𝑁 ′
and 𝑁 = 𝑢

(1)
𝑚1

. Then for 1 ≤ 𝑖 ≤ 𝑑 , let
𝑚𝑖 be the smallest number such that 𝑢

(𝑖 )
𝑚𝑖

≥ 𝑁 . Then (b) and (c) are

satisfied.

□

A.6 Proof of Lemma 6.4
Proof of Lem. 6.4. Recall that every finite factor of a uniformly

recurrent word occurs infinitely often and with bounded gaps. Let

𝑤 be a finite pattern that occurs in 𝛼 . We will show how to compute

𝑀 ∈ N such that 𝑤 occurs at least twice in every factor of 𝛼 of

length𝑀 . The value𝑀 is then an upper bound on the gaps between

consecutive occurrences of𝑤 in 𝛼 . Note that such𝑀 exists by the

uniform recurrence assumption. Let 𝑇𝑛 be the set of all factors of 𝛼

of length 𝑛, which can be computed by enumerating all words of

length 𝑛 and checking whether each one occurs in 𝛼 . The value𝑀

can be found by computing 𝑇𝑛 for increasing values of 𝑛. □

A.7 Proof of Lemma 6.5
Proof of Lem. 6.5. For 𝑏 = 1𝑏 (1) · · ·𝑏 (𝑚) ∈ Σ, let

𝑆𝑏,𝑘 = {x ∈ T𝑑−1 : 𝑔 (𝑘 ) (x) ∈ 𝑆𝑏 }.

Since 𝑔 : T𝑑−1 → T𝑑−1 is a homeomorphism, 𝑆𝑏,𝑘 is an open sub-

set of T𝑑−1. Since 𝑔 (𝑘 ) (𝑥2, . . . , 𝑥𝑑 ) = ({𝑥2 + 𝑘𝛿2}, . . . , {𝑥𝑑 + 𝑘𝛿𝑑 }),
from (10) it follows that 𝑆𝑏,𝑘 is the set of all (𝑥2, . . . , 𝑥𝑑 ) ∈ T𝑑−1
satisfying

{𝑥𝑏 (𝑚) + 𝑘𝛿𝑏 (𝑚) }
𝛿𝑏 (𝑚)

< · · · <
{𝑥𝑏 (1) + 𝑘𝛿𝑏 (1) }

𝛿𝑏 (1)
< 1

and ∧
1≤ 𝑗≤𝑑

𝑗 ≠𝑏 (1),...,𝑏 (𝑚)

{𝑥 𝑗 + 𝑘𝛿 𝑗 }
𝛿 𝑗

> 1.

For 2 ≤ 𝑖 ≤ 𝑑 , let 𝑡𝑖 = ⌊𝑘𝛿𝑖 ⌋. Observe that {𝑥𝑖 + 𝑘𝛿𝑖 } = 𝑥𝑖 + 𝑘𝛿𝑖 − 𝑡𝑖
if 𝑥𝑖 + 𝑘𝛿𝑖 < 𝑡𝑖 + 1 and {𝑥𝑖 + 𝑘𝛿𝑖 } = 𝑥𝑖 + 𝑘𝛿𝑖 − (𝑡𝑖 + 1) otherwise.
Moreover, 𝑥𝑖+𝑘𝛿𝑖 < 𝑡𝑖+1 is equivalent to 𝑥𝑖/𝛿𝑖+𝑘 <

𝑡𝑖+1
𝛿𝑖

. Therefore,

{𝑥 𝑗+𝑘𝛿 𝑗 }
𝛿 𝑗

⊲⊳ 1 (where ⊲⊳ is an (in)equality symbol) is equivalent to

𝑥𝑖

𝛿𝑖
+ 𝑘 <

𝑡𝑖 + 1

𝛿𝑖
⇒

𝑥 𝑗 + 𝑘𝛿 𝑗 − 𝑡 𝑗
𝛿 𝑗

⊲⊳ 1 ∧

𝑥𝑖

𝛿𝑖
+ 𝑘 ≥ 𝑡𝑖 + 1

𝛿𝑖
⇒

𝑥 𝑗 + 𝑘𝛿 𝑗 − (𝑡 𝑗 + 1)
𝛿 𝑗

⊲⊳ 1.

Rearranging, this formula can be written as a Boolean combination

of inequalities of the form (11) where ℎ is a Q-affine form. Similarly,

{𝑥𝑖+𝑘𝛿𝑖 }
𝛿𝑖

<
{𝑥 𝑗+𝑘𝛿 𝑗 }

𝛿 𝑗
can be equivalently written as a Boolean

combination of inequalities of the form (11) by conditioning on

whether 𝑥𝑖/𝛿𝑖 +𝑘 < (𝑡𝑖 + 1)/𝛿𝑖 and 𝑥 𝑗/𝛿 𝑗 +𝑘 < (𝑡 𝑗 + 1)/𝛿 𝑗 . Finally,
observe that 0 ≤ 𝑥𝑖 < 1 is equivalent to 0 ≤ 𝑥𝑖𝛿𝑖 < 1/𝛿𝑖 . We

conclude that 𝑆𝑏,𝑘 can be defined by a Boolean combination of

inequalities of the form (11).

It remains to define 𝑆𝑤 =
⋂ |𝑤 |−1
𝑘=0

𝑆𝑤 (𝑘 ),𝑘 . Since each 𝑆𝑤 (𝑘 ),𝑘 is

open and defined by a Boolean combination of inequalities of the

form (11), we conclude the same for 𝑆𝑤 . □

A.8 Proof of Theorem 7.1
Proof of Cor. 7.1. By assumption, 𝑝/𝑞 = 𝐴𝑑/𝐵𝑑 for some co-

prime integers 𝐴, 𝐵 ≥ 1. Thus, 𝑝 = 𝑞𝐴𝑑/𝐵𝑑 and 𝐵𝑑 divides 𝑞.

Let 𝑓1 (𝑛) = (𝑞/𝐵𝑑 )𝑛𝑑 and 𝑓2 (𝑛) = 𝐴𝑏𝑛 . Then 𝑔1 (𝑛) = 𝑓1 (𝑛) =

(𝑞/𝐵𝑑 )𝑛𝑑 and 𝑔2 (𝑛) = 𝑔1 ◦ 𝑓2 (𝑛) = 𝑔1 (𝐴𝑏𝑛) = (𝑞/𝐵𝑑 )𝐴𝑑𝑏𝑛𝑑 =

𝑝𝑏𝑛𝑑 . Let 𝛽 be the characteristic word of ({𝑔1 (𝑛) : 𝑛 ∈ N}, {𝑔2 (𝑛) :
𝑛 ∈ N}). Then the problem Acc𝛽 is decidable by Thm. 4.11 as by

[12, Theorem 5.2], 𝑓1, 𝑓2 ∈ F .

Then we construct a transducer B from 𝛽 to 𝛼 as follows. We

keep track of the number of occurrences of (1, 0) and (1, 1) we have
encountered modulo 𝐵𝑑 . When this counter is zero modulo 𝐵𝑑 , we

output 𝛽 (𝑛), otherwise we output (0, 𝑗) instead of (𝑖, 𝑗). Thus, the
second predicate remains unchanged while for the first we only

count every 𝐵𝑑 th term. Hence, 𝛼 = B(𝛽) and so Acc𝛼 is decidable

using Lem. 4.5. □

A.9 Proof of Theorem 7.4
Proof of Thm. 7.4. The proof mirrors the proof of Thm. 7.2

closely.

To show that Acc𝛽 reduces to Acc𝛼 , let 𝛼 ′ be the word obtained

from 𝑛2 and 𝑏 ·𝑏2𝑛 . Then the transducer B that changes every (1, 1)
into (1, 0) (and leaves everything else unchanged) has the property

that B(𝛼) = 𝛼 ′. This follows from the fact that a power of 𝑏 is not

a square if and only if it is of the form 𝑏 · 𝑏2𝑛 . By Lem. 4.5, Acc𝛼 ′

reduces to Acc𝛼 . As Acc𝛼 ′ and Acc𝛽 are Turing-equivalent, one

direction follows.

To show the other direction, let 𝛾 ∈ {(0, 1), (1, 0), (1, 1)}𝜔 be the

word obtained by deleting all occurrences of (0, 0) from 𝛼 . Denoting

0 = (0, 0), we have:

𝛼 = 0𝑘0𝛾 (0) · · · 0𝑘𝑛𝛾 (𝑛) · · · .

We invoke Lem. 7.3 to argue that for any 𝐾 , we can compute 𝑁

such that for all 𝑛 ≥ 𝑁 , 𝑘𝑛 > 𝐾 . The number of intervening 0’s is
effectively eventually lower bounded, and thanks to the procyclic

nature of the predicates, can still be computed modulo any𝑚. Thus,

similar to the proof of Thm. 4.15, one can use Cor. 4.7 to show that

Acc𝛼 reduces to Acc𝛾 . Our strategy to reduce Acc𝛾 to Acc𝛽 is to

closely follow the proof of Thm. 7.2 (3), and apply Cor. 4.7 in a

similar way.

The terms (1, 0) signify the squares which are not powers of 𝑏,

(0, 1), the numbers 𝑏 · 𝑏2𝑛 and (1, 1) the numbers 𝑏2𝑛 . We express

𝛾 as

𝛾 = (1, 0)𝑘0 (1, 1) (1, 0)𝑘1 (0, 1) · · · (1, 0)𝑘2𝑛 (1, 1) (1, 0)𝑘2𝑛+1 (0, 1) · · · .
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In order to apply Cor. 4.7, we are interested in computing 𝑘𝑛 .

Similar to the proof of Thm. 7.2 (3), we record:

𝑆2𝑛 = 𝑛 +
2𝑛∑︁
𝑖=0

𝑘𝑖 = 𝑏
𝑛

𝑆2𝑛+1 = 𝑛 +
2𝑛+1∑︁
𝑖=0

𝑘𝑖 =
⌊
𝑏𝑛

√
𝑏
⌋

𝑘2𝑛 = 𝑏𝑛 −
⌊
𝑏𝑛−1

√
𝑏
⌋
− 1

𝑘2𝑛+1 =
⌊
𝑏𝑛

√
𝑏
⌋
− 𝑏𝑛

𝛽 (𝑛) ≡
⌊
𝑏𝑛

√
𝑏
⌋

mod 𝑏

𝑆2𝑛+2 = 𝑏𝑆2𝑛 = 𝑆2𝑛+1 + 𝑘2𝑛+1 + 1

𝑆2𝑛+3 = 𝑏𝑆2𝑛+1 + 𝛽 (𝑛 + 1) = 𝑆2𝑛+2 + 𝑘2𝑛+3

Using these, one can keep track of 𝑘𝑛 modulo any𝑚 given the

digits of 𝛽 . The rest of the proof, which goes on to appropriately

invoke Cor. 4.7, proceeds similarly, and we omit it. □
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