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The front page illustration depicts the
two folding curves described in Subsection
2.2.3 after 16 iterations. They merge to
form a triangle. The first folding curve
starts brownish pink and turns into pale
blue and belongs to −←−−w14, while the sec-
ond starts black and fades to blue, green
and copper and belongs to w15.

Abstract

Repeatedly folding a strip of paper in half and unfolding it in straight angles produces a fractal: the
dragon curve. Shallit, van der Poorten and others showed that the sequence of right and left turns
relates to a continued fraction that is also a simple infinite series. We construct a Mahler function
from two functions of Dilcher and Stolarsky with similar properties. It produces a predictable irregular
continued fraction that admits a regular continued fraction and a shape resembling the dragon curve.
Furthermore, we discuss numerous variations on this theme.
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Introduction

The simple functional equation H(x) = H(x2) + xH(x4) seems to have few interesting properties. A
solution has a power series expansion

H(x) = 1 + x+ x2 + x4 + x5 + x8 + x9 + x10 + x16 + x17 + x18 + x20 + x21 + x32 + · · ·

whose coefficients are all 0 and 1. The series contains long strings of zeros that end at powers of 2,
and the number of coefficients 1 relates to the Fibonacci numbers. However, a more profound beauty
is hidden inside H. When investigating the functional equation at x 7→ x−1, one finds out that its
solutions ultimately are two functions from Dilcher and Stolarsky [12]. Mimicking these two functions,
an irregular continued fraction in a spirit of Ramanujan’s [7, (9.29)] can be found for ρ(x) := H(x)

H(x2)
:

1 +
x

1 +
x2

1 +
x4

1 +
x8

. . .

.

This gives a recipe for defining ρ at many points on the unit circle, where H remains undefined. Only,
most strikingly, ρ also allows to be written as a regular continued fraction whose partial quotients are,
apart for possibly one, all ±x and form a sequence related to the paperfolding dragon. The present
thesis is a mathematical exposition of numerous features of H and ρ and their close relatives.

Chapter 1 introduces four intertwining Mahler functions that exist within the unit disk. Dilcher
and Stolarsky [12] recently constructed the first two, F and G. The third, H, emerges when studying
their system of Mahler equations at infinity. Getting only one power series instead of two to solve
the system is already an interesting phenomenon. The fourth, I, is the generating function of the
Baum-Sweet sequence and satisfies the never before observed relation xF (x3) +G(x3) = I(x). Next,
we construct two continued fractions. The first, λ, was already studied by Dilcher and Stolarsky and
relates to F and G; the second continued fraction is ρ. We prove that λ(x) = xρ(x−3) whenever both
sides make sense and that both assume algebraic values at certain roots of unity.

Chapter 2 begins with recalling Shallit’s and van der Poorten’s link between continued fractions,
f(x) =

∑∞
n=0 x

2n−1 and the paperfolding dragon [23]. This earliest example of a folded continued
fraction will illustrate how ρ(x) above corresponds to two regular continued fractions whose partial
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quotients are all, except for possibly one, equal to x and −x. These continued fractions coincide
within the unit disk but differ outside. Like the paperfolding dragon, the signs of the partial quotients
produce fractals, and their generating functions induce algebraically independent Mahler functions.
The second half of the chapter focuses on more general folded continued fractions. Examples like
the paperfolding dragon and ρ are rare because many others converge to algebraic functions near the
origin. We discuss several cases. Finally, an observation analogous to a result of Cohn [11] as well as
a simple method to find identities involving Fibonacci numbers are presented.

In Chapter 3, we study Mahler functions in combination with the Hadamard product, which is the
termwise multiplication of power series. Many well-known spaces of functions are closed under this
operation, including many large subspaces of Mahler functions. We recall a few of these subspaces,
expand them slightly and show that the entire space of Mahler functions does not have this property.
Finally, we classify the rational functions whose Hadamard product with each Mahler function is
Mahler.
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Chapter 1

Four curious power series

In this chapter, we investigate a rabbit hole of functions and the remarkable connections between
them. We introduce the functions F , G, H and I, proof a few simple properties and connect these
functions with continued fractions.

1.1 Defining four intertwining power series

In this section, four so-called Mahler functions are introduced and linked together. Before defining
what a Mahler function is, the first two functions are given.

1.1.1 Two power series

The two power series called F and G are defined as the unique power series around q = 0 that satisfy
F (0) = G(0) = 1 and the system of equations

F (q) = G(q2) + qF (q4),

G(q) = qF (q2) +G(q4).
(1.1.1)

These power series are

F (q) =

∞∑
n=0

anq
n = 1 + q + q2 + q5 + q6 + q8 + q9 + q10 + · · · and

G(q) =
∞∑
n=0

bnq
n = 1 + q + q3 + q4 + q5 + q11 + q12 + q13 + · · · .

(1.1.2)

They were constructed by Dilcher and Stolarsky in [12] as limits of so-called Stern polynomials. Here
we use the system of equations to define F and G rather than the original construction because the
system has a unique power series solution. Dilcher and Stolarsky also proved in [12, Proposition 5.1]
that the mixed system of F and G can be split into two systems:

F (q) = (1 + q + q2)F (q4)− q4F (q16) and

qG(q) = (1 + q + q2)G(q4)−G(q16).
(1.1.3)
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This makes F and G transparently in a known class functions because of the following definition:

Definition 1.1.1. Let k ≥ 2. An analytic function f ∈ C[[q]] is called a k-Mahler function if there
exist a d ≥ 0 and polynomials A(q), A0(q), A1(q), . . . , Ad(q) ∈ C[q] such that A0(q)Ad(q) 6= 0 and

A(q) +A0(q)f(q) +A1(q)f(qk) + · · ·+Ad(q)f
(
qk

d)
= 0. (1.1.4)

The (linear) functional equation above, solved by a k-Mahler function, is called a k-Mahler equation.
Here d is said to be the degree of f . The k-Mahler equation is called homogeneous if A(q) = 0 and
inhomogeneous otherwise. If k is clear from the context, it is often omitted from the terminology.

From (1.1.3), we see that F and G satisfy homogeneous 4-Mahler equations of degree 2. Note that
this implies that F and G also satisfy 2-Mahler equations of degree 4.

By comparing the coefficients of these power series, the uniqueness of the expansions can be shown
from the system (1.1.1) through a recursion for the coefficients:

an =


bn

2
if n ≡ 0 mod 2,

an−1
4

if n ≡ 1 mod 4,

0 if n ≡ 3 mod 4

and bn =


an−1

2
if n ≡ 1 mod 2,

bn
4

if n ≡ 0 mod 4,

0 if n ≡ 2 mod 4.

(1.1.5)

The recursions show that the coefficients of F and G are automatic, a property we do not study
in this thesis. In particular, the recursions imply that all coefficients of F and G are either 0 or 1 by
induction. This property is given its own name:

Definition 1.1.2. A {0, 1}-power series is a power series whose coefficients are all 0 or 1.

Furthermore, by [12, Proposition 5.2], F and G satisfy

G(q)G(q2)− qF (q)F (q2) = 1 and F (q)G(q4)− qG(q)F (q4) = 1. (1.1.6)

Such relations falsely suggest there are more algebraic relations between F (q), G(q), F (q2), G(q2).

Definition 1.1.3. Let S be a set of functions over C in variable q. The transcendence degree of
S is the cardinality of the largest subset S′ ⊆ S such that the fields C(q)(S) and C(q)(S′) coincide.
The notation used for this is tr deg(S).

A more general notion of transcendence degree exists but is not used here. Obtaining the tran-
scendence degree involving all possible F (qd) and G(qd) for all positive integers d turns out to be a
rather difficult question, but when only studying powers of 2, this is somewhat doable. For example,
F
(
q2
d) can be written as a linear combination over C[q] of F (q), G(q), F (q2) and G(q2) by simply

iterating the equations of the system (1.1.1). Therefore,

tr deg
(
F (q), G(q), F (q2), G(q2), F (q4), G(q4), F (q4), G(q4), F (q8), G(q8), . . .

)
= tr deg

(
F (q), G(q), F (q2), G(q2)

)
≤ 4.
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Adding G(q)G(q2)− qF (q)F (q2) = 1 (1.1.6) to this conclusion lowers the upper bound to 3. In 2015,
Bundschuh and Väänänen proved in [10] that the transcendence degree is indeed equal to 3, and that
there are no algebraic relations between any three of F (q), G(q), F (q2) and G(q2). There is a related
result on the transcendence of these functions [9]:

tr deg
(
F (q), F (q2), F ′(q), F ′(q2)

)
= 4.

To conclude the subsection, notice that F and G are defined everywhere within the unit disk as
{0, 1}-power series. However, both cannot be analytically continued any further. That is, the unit
circle forms an impassable boundary [9, Lemma 1].

1.1.2 Defining the third function, H

As the unit circle forms an impassable boundary for F and G, what happens with the system of
equations at the other side of the unit circle seems interesting. To do this, view the system (1.1.1) at
infinity by formally defining F̃ (q) := F (q−1) and G̃(q) := G(q−1) for all 0 < |q| < 1. This produces
the system of equations

F̃ (q) = G̃(q2) + q−1F̃ (q4),

G̃(q) = q−1F̃ (q2) + G̃(q4),

which does not have a solution in power series. Fortunately, it has a power series solution in q
1
3 , which

one extracts by defining F̂ (q) := q
2
3 F̃ (q) and Ĝ(q) := q

1
3 G̃(q). Then

F̂ (q) = Ĝ(q2) + qF̂ (q4),

Ĝ(q) = F̂ (q2) + qĜ(q4).

This system has a lot of symmetry. Like F and G, we demand F̂ (0) = Ĝ(0) = 1 and that both have a
power series expansion. Then there is a unique power series solution H(q) = F̂ (q) = Ĝ(q). This can be
most easily seen as follows: Define A(q) =

∑∞
n=0 xnq

n = F̂ (q)− Ĝ(q). Then A(q) = −A(q2) + qA(q4),
which gives the following recursion for xn:

xn =


−xn

2
if n ≡ 0 mod 2,

xn−1
4

if n ≡ 1 mod 4,

0 if n ≡ 3 mod 4.

As x0 = A(0) = F̂ (0) − Ĝ(0) = 0, all xn are 0 by induction, giving that A(q) is the zero function.
Thus, H(q) = F̂ (q) = Ĝ(q) is indeed well-defined and satisfies

H(q) = H(q2) + qH(q4). (1.1.7)
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This gives us

H(q) =
∞∑
n=0

cnq
n = 1 + q + q2 + q4 + q5 + q8 + q9 + q10 + q16 + · · · .

The 2-Mahler solution of equation (1.1.7) that satsifies H(0) = 1 is taken as definition of H(q). In
particular, H is a Mahler function. Like for F and G, the Mahler equation induces a recursion for the
coefficients of the power series:

cn =


cn

2
if n ≡ 0 mod 2,

cn−1
4

if n ≡ 1 mod 4,

0 if n ≡ 3 mod 4.

(1.1.8)

From this recursion, it follows that H(q) is also a {0, 1}-power series. The sequence (cn)∞n=0 is already
known: cn = 1 if and only if n is in A003714 on the OEIS [21], the so-called ‘Fibbinary’ sequence,
the numbers without consecutive 1’s in their binary expansion. This can easily be verified with the
recursive properties in (1.1.8). Another property of this sequence is that cn +

(
3n
n

)
≡ 1 mod 2 [21].

Again, mirroring F and G, H can be written as a 4-Mahler function.

Proposition 1.1.4. For all q such that |q| < 1, H also satisfies

H(q) = (1 + q + q2)H(q4)− q6H(q16).

Proof. From the system (1.1.7), it follows that H(q2) = H(q4) + q2H(q8) and H(q4) = H(q8) +

q4H(q16), so

H(q) = (H(q4) + q2H(q8)) + qH(q4) + q2(H(q4)−H(q8)− q4H(q16))

= (1 + q + q2)H(q4)− q6H(q16).

The sole difference between H and F is the presence of a factor −q6 in place of −q4 in the 4-Mahler
equations. This difference changes the power series expansions, and thus the functions, fundamentally.

By iterating equation (1.1.7), it follows that tr deg
(
H(q), H(q2), H(q4), H(q8), . . .

)
≤ 2. This is

remarkable, as the system on the other side of the unit circle has transcendence degree 3. It turns out
that this upper bound is sharp:

Proposition 1.1.5. tr deg
(
H(q), H(q2), H(q4), H(q8), . . .

)
= 2.

Proposition 1.1.5 can be proven with a conventional theorem as in [18], but a short-cut exists
within the same paper for this particular case. This short-cut is given in the next subsection.
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1.1.3 The fourth power series: I

The existence of H and its accompanying transcendence degree is remarkable but can be explained
by studying it once more at infinity. Thus, let H̃(q) satisfy

H̃(q) = H̃(q2) + q−1H̃(q4).

Then there is no power series in q that satisfies this equation, but there is one in q
1
3 . To extract this

solution, define I(q) = qH̃(q3) such that

qI(q) = q2I(q2) + q−3+4I(q4).

Cleaning this up gives that the newly found Mahler equation

I(q) = qI(q2) + I(q4), (1.1.9)

which has a unique power series solution when setting I(0) = 1:

I(q) =
∞∑
n=0

dnq
n = 1 + q + q3 + q4 + q7 + q9 + q12 + q15 + q16 + · · · .

The coefficients of I satisfy

dn =


dn−1

2
if n ≡ 1 mod 2,

dn
4

if n ≡ 0 mod 4,

0 if n ≡ 3 mod 4,

(1.1.10)

and so I is also a {0, 1}-power series.

In contrast to H, I is a well-known function: It is the generating function of the Baum-Sweet
sequence [21, A086747]. This sequence is defined as “dn = 1 if the binary representation of n contains
no block of consecutive zeros of odd length; otherwise dn = 0.” For n = 0, this definition is ambiguous,
as the binary representation of 0 can be defined as the empty string or 0. The OEIS is in the minority
defining d0 = 0 while Baum and Sweet [4], Nishioka [18] and Wikipedia [27] use d0 = 1. Hence the
following definition is chosen.

Definition 1.1.6. The Baum-Sweet sequence (dn)∞n=0 is defined by d0 = 1, and for all n ≥ 1,
dn = 0 when the binary representation contains a block of zeros of odd length and 1 otherwise.

Using equation (1.1.9), it is easily verified that I is indeed the generating function of the Baum-
Sweet sequence. We remark that Baum and Sweet introduced their sequence as the unique root of
I(q)3 + q−1I(q) + 1 = 0 in F2((q

−1)) [4].

Like the three other functions, I can also be written in terms of I(q4) and I(q16).
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Proposition 1.1.7. For all q such that |q| < 1, I(q) satisfies

q3I(q) = (1 + q3 + q6)I(q4)− I(q16).

Proof. From (1.1.9), extract qI(q2) = q3I(q4) + qI(q8) and qI(q8) = q−3I(q4)− q−3I(q16). Thus,

I(q) = q3I(q4) + qI(q8) + I(q4) + q−3I(q4)− q−3I(q16)− qI(q8) = (q−3 + 1 + q3)I(q4)− q−3I(q16)

and by multiplying with q3, the result follows.

While H(q) and F (q3) had almost the same 4-Mahler equation, I(q) and G(q3) satisfy exactly the
same 4-Mahler equation. Moreover, qF (q3) also satisfies this 4-Mahler equation. This is remarkable,
but also paves the way for an identity that, to the best of our knowledge, has not yet been observed.

Proposition 1.1.8. For all q such that |q| < 1, I(q) = qF (q3) +G(q3).

Proof. As F (q) = G(q) + qF (q4) and G(q) = qF (q) +G(q4), qF (q3) +G(q3) = qG(q6) + q4F (q12) +

q3F (q6) +G(q12) = q(q2F (q6) +G(q6)) + (q4F (q12) +G(q12)). Then qF (q3) +G(q3) follows the same
Mahler equation as I(q). As (1.1.9) gives a unique power series when I(0) = 1 is fixed, verifying the
constant terms on both sides gives the proposition.

Due to the fame of the Baum-Sweet sequence, transcendence results are already known for I.

Theorem 1.1.9 (Example in [18]). I(q) and I(q2) are algebraically independent over C[q].

This theorem gives the short-cut needed to reach the transcendence degree of H(q) and H(q2).
Define the Mahler function Ĩ(q) as the unique power series whose linear term is 1 and that satisfies

Ĩ(q) = q−1Ĩ(q2) + Ĩ(q4).

The transcendence degree of this function can easily be established:

Lemma 1.1.10. tr deg
(
Ĩ(q), Ĩ(q2)

)
= 2.

Proof. Apply the proof of the last example in [18] with z = q−1.

From here, H can be reached directly.

Proof of Proposition 1.1.5. We have qH(q3) = q−1 ·q2H(q6)+q4H(q12), and the linear term of qH(q3)

is H(0) = 1, hence Ĩ(q) = qH(q3). If H(q) and H(q2) were not algebraically independent over C[q],
then there would exist a polynomial P ∈ C[q,H(q), H(q2)] such that P (q,H(q), H(q2)) = 0. Then

P (q3, H(q3), H(q6)) = P (q3, q−1Ĩ(q), q−2Ĩ(q2)) = 0,

which contradicts Lemma 1.1.10.
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1.2 Continued fractions

In their work on the power series F and G, Dilcher and Stolarsky [12] already noticed that F and G
have a connection with continued fractions. For H and I similar constructions exist, but the one for
H has another remarkable property – a form as a folded continued fraction that will be described in
Chapter 2. To state and prove all these connections, a crash course on continued fractions is given.
As q is often used in this context, x serves as the main variable in the upcoming sections. All results
and notations are from [7].

1.2.1 A crash course on continued fractions

Definition 1.2.1. A finite continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

...
+

1

an−1 +
1

an

with n ≥ 0, a0 ∈ Z, ai ∈ Z>0 for i = 1, 2, . . . , n. This is denoted by [a0; a1, a2, . . . , an], and the ai
are called the partial quotients of the continued fraction.

For example, the continued fraction [1; 2, 3] is 1 + 1
2+ 1

3

= 1 + 3
7 = 10

7 . Instead of Z and Z>0, other
sets of numbers or even polynomial rings can be used but issues with dividing by 0 may then arise.
If there are none, the entire construction can still be used. The advantage of using Z and Z>0 is that
there is now a unique continued fraction with an 6= 1 for each rational number and no division by zero
problems occurs [7].

The partial quotients can also be seen as variables. Let pn = pn(a0, a1, . . . , an) and qn =

qn(a0, a1, . . . , an) be polynomials in n+ 1 variables defined by p0 = a0, q0 = 1,

pn = a0pn−1(a1, a2, . . . , an) + qn−1(a1, a2, . . . , an) and

qn = pn−1(a1, a2, . . . , an−1).

Then one can show by induction that pn
qn

= [a0; a1, a2, . . . , an]. To simplify some statements, define
p−1 = 1 and q−1 = 0. The following lemma will often be used.

Lemma 1.2.2 (Key Lemma, Lemma 2.8 in [7]). For each n ≥ 1,(
pn pn−1

qn qn−1

)
=

(
a0 1

1 0

)(
a1 1

1 0

)
. . .

(
an−1 1

1 0

)(
an 1

1 0

)
.

The matrix

(
pn pn−1

qn qn−1

)
is called the matrix of continuants of the continued fraction. A few

important consequences are:
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Lemma 1.2.3 (Lemma 2.9 in [7]). Let n ≥ 1. Then pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2.

Lemma 1.2.4 (Theorem 2.14 in [7]). For all n ≥ 0, qnpn−1 − pnqn−1 = (−1)n.

The next ingredient is infinite continued fractions. These are simply defined as the limit of
a sequence of their finite truncations. Famously, the continued fraction [1; 1, 1, 1, 1, 1, 1, . . . ] is
equal to 1+

√
5

2 , the golden ratio. An infinite continued fraction such that a0 ∈ Z and ai ∈ Z≥1 for all
i ≥ 1 always converges. In the opposite direction, for each real irrational number, there is a unique
infinite continued fraction that converges to it [7]. Less conventionally, we also define that a sequence
of truncated continued fractions (bn)∞n=0 = ([a0; a1, . . . , an])∞n=0 is parity partial converging if the
limits (b2n)∞n=0 and (b2n+1)

∞
n=0 exist (but perhaps differ).

To describe a continued fraction associated to H, a slightly more general notion has to be intro-
duced: the irregular continued fraction.

Definition 1.2.5. Let n ≥ 0. Then an irregular continued fraction is an expression of the from

a0 +
b1

a1 +
b2

a2 +
b3

...
+

bn−1

an−1 +
bn
an

denoted by

a0 +
b1

a1
+
b2

a2
+
b3

a3
+ · · ·+

bn

an
.

As for usual continued fractions, we similarly define infinite irregular fractions, when the limit of
their truncations exists, and the same holds for parity partial convergence.

1.2.2 Continued fractions related to F , G, H and I

For all n ≥ 0, define the two continued fractions

λn(x) := [x; x2, x4, x8, . . . , x2
n
] and

λ+n (x) := [x; x2, x4, x8, . . . , x2
n

+ 1]
(1.2.1)

and the irregular, ‘upside down’, continued fraction

ρn(x) := 1 +
x

1
+
x2

1
+
x4

1
+ · · ·+

x2
n−2

1
+
x2

n−1

1
. (1.2.2)

These two continued fractions turn out to be connected with the four Mahler functions discussed
before. Both λn and ρn are defined for many n on a large subset of C but not everywhere.

12



Example 1.2.6. Let ζ12 denote exp(2πi12 ). Then

λ3(ζ12) = ζ12 +
1

ζ212
+

1

ζ412
= ζ12 +

ζ412

ζ612 + 1
= ζ12 +

ζ412
0

is not defined.

Naturally, only assign a value to λn(x) and ρn(x) when such problems do not occur for a particular
x. The partial convergents of λn and ρn take elegant forms. To find them, define, for all n ≥ 0,

Fn(x) :=

2n−1∑
n=0

anx
n, Gn(x) :=

2n−1∑
n=0

bnx
n,

Hn(x) :=
2n−1∑
n=0

cnx
n, In(x) :=

2n−1∑
n=0

dnx
n.

If n < 0, set Fn(x) = Gn(x) = Hn(x) = In(x) = 1. Clearly, limn→∞ Fn(x) equals F (x) for |x| < 1,
and such limits similarly exist for the other three cases. We have the following Mahler-like recursions.

Lemma 1.2.7. Let n ≥ 1. Then

Fn(x) = Gn−1(x
2) + xFn−2(x

4), Gn(x) = xFn−1(x
2) +Gn−2(x

4),

Hn(x) = Hn−1(x
2) + xHn−2(x

4), In(x) = xIn−1(x
2) + In−2(x

4).

Proof. All these relations follow from the recursion formulas (1.1.5), (1.1.8) and (1.1.10).

With these expressions, the convergents of the three continued fractions can be written explicitly.

Proposition 1.2.8. For all n ≥ 0,

1. ρn(x) = Hn(x)
Hn−1(x2)

.

2. λ+n = In(x)
In−1(x2)

.

3. λn(x) equals xFn(x3)
Gn−1(x6)

for even n and Gn(x3)
x2Fn−1(x6)

for odd n.

Proof. 1. For n = 0, ρ0(x) = 1 = H0(x)
H−1(x2)

. Then use induction and Lemma 1.2.7 for the truncated
sums:

ρn+1(x) = 1 +
x

ρn(x2)
= 1 +

x

Hn(x2)/Hn−1(x4)
=
xHn−1(x

4) +Hn(x2)

Hn(x2)
=
Hn+1(x)

Hn(x2)
.

2. For n = 0, λ+0 (x) = 1 = I0(x)
I−1(x2)

; again by induction and Lemma 1.2.7,

λ+n+1(x) = x+
1

λ+n (x2)
= x+

1

In(x2)/In−1(x4)
=
In−1(x

4) + xIn(x2)

In(x2)
=
In+1(x)

In(x2)
.

13



3. The statement holds true for n = 0 by construction as F0(x) = G−1(x) = 1 and λ0(x) = x.
Assume that n > 0 and λn(x) = pn(x)

qn(x)
and apply Lemma 1.2.7:

λn+1(x) = x+
1

λn(x2)
= x+

qn(x2)

pn(x2)
=
xpn(x2) + qn(x2)

pn(x2)
.

For even n, qn+1(x) = pn(x2) = Gn−1(x
6) and

pn+1(x) = x · x3Fn(x6) +Gn−1(x
12) = Gn+1(x

3)

and, for odd n, qn+1(x) = pn(x2) = x2Fn−1(x
6) and

pn+1(x) = xGn(x6) + x4Fn−1(x
12) = xFn+1(x

3).

Thus, by induction the statement follows.

Now, wherever possible, one can also form (irregular) infinite continued fractions by passing to
the limits

ρ(x) := lim
n→∞

ρn(x), λ+(x) := lim
n→∞

λ+n (x) and λ(x) := lim
n→∞

λn(x).

As F (x), G(x), H(x) and I(x) are defined only for |x| < 1, the limits of the first two exist for all
|x| < 1 and are equal to H(x)

H(x2)
for ρ(x) and I(x)

I(x2)
for λ+(x). Dilcher and Stolarsky found a parity

partial limit for λ(x).

Proposition 1.2.9 (Propositions 6.3 and 7.1 of [12]). For all x such that 0 < |x| < 1,

lim
n→∞
n even

λn(x) =
xF (x3)

G(x6)
and

lim
n→∞
n odd

λn(x) =
G(x3)

x2F (x6)
.

Moreover, if |x| > 1, limn→∞ λn(x) also exists and is unique.

Thus, the extra +1 in the last partial quotient of λ+n creates usual convergence instead of parity
partial convergence if |x| < 1! On the other side of the unit circle, for |x| > 1, its extra role is lost as
x2

n grows quickly, giving that λ(x) = λ+(x) for these |x| > 1. So the oddity of different behaviour
inside and outside the unit circle of the Mahler functions is carried out in the continued fractions.

Due to their continued-fraction forms, ρ, λ+ and λ also satisfy Mahler-like identities:

ρ(x) = 1 +
x

ρ(x2)
, λ+(x) = x+

1

λ+(x2)
and λ(x) = x+

1

λ(x2)
.

These are not authentic Mahler equations, and as the examples of λ and λ+ show, the solutions to
the equations are often not unique. Adamczewski studied λ in [1], where he denoted it with C.

As mentioned before, ρ and λ are also closely related, and now this can be clearly stated. This
gives an explicit link between H and F,G, which were originally defined on disjoint domains.
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Theorem 1.2.10. Let x ∈ C such that x 6= 0 and λ(x) exists. Then λ(x) = xρ(x−3) where equality
is understood as that for 0 < |x| < 1,

lim
n→∞

λ2n(x) = lim
n→∞

xρ2n(x−3) and lim
n→∞

λ2n+1(x) = lim
n→∞

xρ2n+1(x
−3)

and for |x| > 1,
lim
n→∞

λn(x) = lim
n→∞

xρn(x−3).

This theorem also explains the dichotomy of the two parity partial limits of λ(x) on one side
of the unit circle. This correlates with the fact that tr deg

(
F (x), G(x), F (x2), G(x2)

)
= 3 and

tr deg
(
H(x), H(x2)

)
= 2. To prove this theorem rigorously, some work is required.

Lemma 1.2.11. Let n ≥ 0. Then for all x ∈ C \ {0},

Hn(x) =

x2
2n−1

3 Fn(x−1) if n is even,

x
2n+1−1

3 Gn(x−1) if n is odd.

Proof. As always, use induction on n. For n = 0, H0(x) = 1 = F0(x), and so the claim holds.
Similarly, for n = 1, H1(x) = 1 + x = x(1 + x−1) = xG1(x

−1). Now apply the identities from Lemma
1.2.7 to get, for even n,

Hn+1(x) = Hn(x2) + xHn−1(x
4) = (x2)2

2n−1
3 Fn(x−2) + x(x4)

2n−1+1−1
3 Gn(x−4)

= x−1x
2n+2−1

3 Fn(x−2) + x
2n+2−1

3 Gn(x−4) = x
2n+2−1

3 Gn+1(x
−1)

and, for odd n,

Hn+1(x) = Hn(x2) + xHn−1(x
4) = (x2)2

2n+1−1
3 Gn(x−2) + x(x4)2

2n−1−1
3 Fn(x−4)

= x2
2n+1−1

3 Gn(x−2) + x−1 · x2
2n+1−1

3 Fn(x−4) = x2
2n+1−1

3 Fn+1(x
−1).

Proposition 1.2.12. Let n ≥ 0. Then

ρn(x) =
Hn(x)

Hn−1(x2)
=


Fn(x−1)

Gn−1(x−2)
if n is even,

Gn(x−1)

xFn−1(x−2)
if n is odd.

Proof. The statement follows directly from Lemma 1.2.11 as for even n and odd n, respectively,

Hn(x)

Hn−1(x2)
=

x2
2n−1

3 Fn(x−1)

(x2)
2n−1+1−1

3 Gn−1(x−2)
=

Fn(x−1)

Gn−1(x−2)
and

Hn(x)

Hn−1(x2)
=

x
2n+1−1

3 Gn(x−1)

(x2)2
2n−1−1

3 Fn(x−2)
=

Gn(x−1)

xFn−1(x−2)
.
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Proof of Theorem 1.2.10. Apply Propositions 1.2.8 and 1.2.12. For even n,

λn(x) =
xFn(x3)

Gn−1(x6)
= xρn(x−3)

and, for odd n,

λn(x) =
Gn(x3)

x2Fn−1(x6)
=

Gn(x3)

x2x−3Fn−1(x6)
= xρn(x−3).

For another proof, one can also produce an explicit equivalence transformation of irregular con-
tinued fractions. To show that this property is truly inherited from F , G and H, this method was
chosen. As λn(x) only converges along n of the same parity for |x| < 1, an immediate consequence is
obtained.

Corollary 1.2.13. For all |x| < 1, (ρn(x))∞n=0 converges, and for |x| > 1, (ρn(x))∞n=0 is only parity
partial convergent.

As already mentioned, H and I are cubic roots in F2((x
−1)), and Adamczewski [1] claims that λ(x)

is the unique root of λ(x)3 + xλ(x)2 + 1 in F2((x
−1)). Hence, by filling in Theorem 1.2.10, ρ(x) is the

unique root of ρ(x)3 + ρ(x)2 + x = 0 over the same field. The symmetries between these polynomials
coming from H and I and from ρ and λ are evident.

Then there is another helpful property of ρ:

Proposition 1.2.14. Let |x| 6= 1 and n ≥ 0. Then ρn(x) + ρn(−x) = 2. In particular, if limits over
the same parity are taken, then ρ(x) + ρ(−x) = 2.

Proof. This is a simple writing-out exercise: ρn(x) + ρn(−x) = 1 + x
ρn(x2)

+ 1 + −x
ρn(x2)

= 2.

In the same spirit, a result for λ can be obtained.

Proposition 1.2.15. If |x| 6= 1 and n ≥ 0, λn(x) +λn(−x) = 2. Particularly, if limits over the same
parity are taken, then λ(x) + λ(−x) = 2.

Proposition 1.2.16. If |x| < 1,
∏∞
k=0 ρ

(
x2

k)
= H(x) and

∏∞
k=0 λ

(
x2

k)
= I(x).

Proof. Define f(x) :=
∏∞
k=0 ρ

(
x2

k). Then f(0) = 1 and

f(x) = ρ(x)ρ(x2)f(x4) =

(
1 +

x

ρ(x2)

)
ρ(x2)f(x4) = (ρ(x2) + x)f(x4) = f(x2) + xf(x4).

As such, if |x| < 1, f(x) = H(x), and the case of λ and I follows the same argument.

On another note, Schwartz Reflection Principle [16, Theorem IX.1.1] ensures that H(x) = H(x)

within the unit disk, and so for all |x| < 1, ρ(x) = ρ(x) as ρ(x) = H(x)
H(x2)

. To conclude this subsection,
we include some numerical findings:

Observation 1.2.17. 1. Within the unit disk, ρ has two simple zeros, which are near −0.440049±
0.65651142i. As such, H and ρ have each two zeros, and ρ has two poles within the unit disk.

2. On the real interval (0, 1), ρ(ζ3x) is an oscillating function.
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1.2.3 The continued fractions ρ and λ evaluated at roots of unity

In this subsection, we study the continued fractions ρ and λ at special roots of unity. As this is exactly
the overlap of the closures of the domains where the limits as n goes to infinity are unique and parity
partial, these roots are interesting. Since F , G, H and I cannot be defined on the unit circle due to
their Mahler equations, it is not expected that ρ and λ can be defined there. Yet, for example, both
ρ(1) and λ(1) can be computed easily: The continued fraction [1; 1, 1, 1, 1, . . . ] approaches 1+

√
5

2 ,
the golden ratio.

Denote the root of unity exp(2πi an) by ζan and all primitive 2nth roots of unity by Xn:

Xn := {ζa2n : 1 ≤ a ≤ 2n and a odd}.

The union of all these roots of unity is denoted by X:

X :=
⋃
n≥0

Xn.

The set X consists exactly of all complex numbers x such that x2k = 1 for sufficiently large k and is
a dense subset of the unit circle. For all x ∈ X, all values of ρ(x) and λ(x) have to do with

√
5:

Proposition 1.2.18. For all x ∈ X, ρ(x) and λ(x) are defined and xρ(x−3) = λ(x). In particular, if
x = exp(2πi a2n ) with a odd and n ≥ 0, then x lies in Q(ζ2n ,

√
5) but, if n ≥ 2, x is not in Q(ζ2n−1 ,

√
5)

nor in Q(ζ2n).

Proof. For n = 0, there is only one nth root of unity: 1, and

ρn(1) = λn(1) = 1 +

n−1 terms︷ ︸︸ ︷
1

1
+

1

1
+ · · ·+

1

1
.

This continued fraction converges to 1+
√
5

2 , which verifies the statement for n = 0. Now let x = ζa2n

with a odd. Then the statement follows from induction on n, since

λ(x) = x+
1

λ(x2)
= x+

1

x2ρ(x−6)
= x

(
1 +

x−3

ρ(x−6)

)
= xρ(x−3).

Proposition 1.2.19. Let n ≥ 2. Then
∑

x∈Xn ρ(x) = 2n−1.

Proof. Apply Proposition 1.2.14 to get 2
∑

x∈Xn ρ(x) =
∑

x∈Xn
(
ρ(x) + ρ(−x)

)
= 2n−1 · 2.

The maps ρ and λ have some more well-behaved properties when viewed as maps from Xn to
Q(ζ2n ,

√
5). A little bit of Galois theory is required for the next part. Let Gal(L : K) denote the

Galois group of the field extension L : K.

Lemma 1.2.20. For all n ≥ 0, Q(ζ2n) ∩Q(
√

5) = Q.
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Proof. Because 2 is the only ramified prime of OQ(ζ2n ) [25, Theorem 3.12] and 5 is the discriminant
of Q(

√
5) [25, Exercise 4.9] and so the only ramified prime of OQ(

√
5) [25, Theorem 4.14], we have

OQ(
√
5) 6⊂ OQ(ζ2n ). Thus,

√
5 /∈ OQ(ζ2n ) ⊂ Q(ζ2n). Now, as # Gal(Q(

√
5) : Q) = 2, Q(

√
5) has only

two subfields, Q and Q(
√

5), and so Q(ζ2n) ∩Q(
√

5) = Q.

Proposition 1.2.21. Let σ ∈ Gal(Q(ζ2n ,
√

5) : Q(
√

5)) and σ̄ its restriction to Gal(Q(ζ2n) : Q).
Then σ(ρ(x)) = ρ(σ̄(x)) for all x ∈ X.

Proof. As σ acts trivial on Q(
√

5) and is a ring homomorphism,

ρ(σ̄(x)) = 1 +
σ̄(x)

1
+
σ̄(x)2

1
+
σ̄(x)4

1
+ · · ·+

σ̄(x)2
n−2

1
+
−1

φ

= 1 +
σ(x)

1
+
σ(x2)

1
+
σ(x4)

1
+ · · ·+

σ
(
x2

n−2)
1

+
−1

σ(φ)

= σ(ρ(x)).

Corollary 1.2.22. Let σ ∈ Gal(Q(X,
√

5) : Q(
√

5)) and σ̄ be its restriction to Gal(Q(X) : Q). Then
for all x ∈ X, σ(ρ(x)) = ρ(σ̄(x)).

Proof. This follows from verifying the statement for all x ∈ Xn on the restrictions σ|Q(ζ2n ,
√
5):Q(

√
5)

and σ̄|Q(ζ2n ):Q and from Proposition 1.2.21.

Corollary 1.2.23. Let n ≥ 0 and z ∈ Xn. Then the Galois conjugates of ρ(z) in Q(Xn,
√

5) : Q(
√

5)

are all in the set {ρ(x) : x ∈ Xn}.

Thus, on X, the continued fraction ρ has a pleasant form and is well-defined. From the identity
λ(x) = xρ(x−3), it follows that similar results are valid for λ(x). Then, as X is dense on the unit
circle, ρ and λ are well-defined on a dense subset of the unit circle.

On the other hand, Example 1.2.6 demonstrates that ρ is not defined at all but finite points of
ζ9X and λ at all but finite points of ζ3X. Therefore, both ρ(x) and λ(x) are also undefined on a dense
subset of the unit circle.
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Chapter 2

Folded continued fractions

As mentioned in the previous chapter, H and ρ have an exceptional connection with continued frac-
tions. Not only can ρ be manipulated into an easy irregular continued fraction but, peculiarly, also
into a predictable regular continued fraction. More specifically, it is an example of a so-called folded
continued fraction. For comparison, the original folded continued fraction are given. Then the folded
continued fraction of ρ is presented and studied, and a few other examples of algebraic functions are
discussed. At the end of the chapter, two related results are discussed.

2.1 An introduction to folded continued fractions

To be able to deal with folded continued fractions, more notation is required.

Notation 2.1.1. Let w = [a0; a1, . . . , an] be a continued fraction. Then it can also be seen as a
finite sequence, which will be called a word. Let w be such a word.

• If b is a number and v another word, then [w, b] and [w, v] denote the concatenation of w with
b and v, respectively.

• The word −w denotes the negation of w. That is, [−a0; −a1, . . . , −an].

• The word ←−w denotes the reverse of w. That is, [an; an−1, . . . , a0].

• The length of w is denoted by #w and is equal to n+ 1.

The empty word is the word containing no elements and is denoted by [ ]. It’s length is 0.

The following lemma will be used constantly:

Lemma 2.1.2. For a continued fraction w = [a0; a1, . . . , an], we have [−a0; −a1, . . . , −an] =

−[a0; a1, . . . , an] and −←−w =
←−−−w.

Proof. The first statement follows by induction and the second one by writing out the definition.

Thus, for a continued fraction w, writing −w is unambiguous.
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2.1.1 An example of a folded continued fraction

In the late 1970s, Shallit published the first paper [24] on the continued fraction of
∑∞

n=0 x
−2k for

integers x greater or equal to 3, which, strangely enough, contained almost only ±x. In the 1980s
and 1990s, further work was done by, amongst others, Shallit, van der Poorten, Mendèz France and
Dekking. In 1992, Shallit and van der Poorten coined the name folded continued fraction. One central
result is the so-called Folding Lemma:

Theorem 2.1.3 (Folding Lemma [7]). Let n ≥ 0, [a0; a1, a2, . . . , an] be a continued fraction, w =

[a1, a2, . . . , an], t not zero, and

(
pn pn−1

qn qn−1

)
the matrix of continuants of this continued fraction. Then

p2n+1 = qnpnt+ (−1)n, q2n+1 = tq2n and [a0;w, t,−←−w ] =
pn
qn

+
(−1)n

tq2n
.

The simplest function that can be written as a folded continued fraction is f(x) := x
∑∞

n=0 x
−2n

due to Shallit and van der Poorten [23]. It coincides with the continued fraction limn→∞[1; pn] where
p0 is the empty word and pn = [pn−1, x, −

←−−pn−1] for n ≥ 1. Now observe that after each folding
iteration, the continued fraction has length 2n, and that p0 = q0 = 1. Then, by induction and applying
the Folding Lemma with t = x, it follows that for all n ≥ 1,

p2n−1 = xpmqm + (−1)2
n

= x

( n−1∑
i=0

x2
n−1−2i

)
xm−1 + 1 =

n∑
i=0

x2
n−2i and

q2n−1 = xq2m = x · xm−1 = x2
n−1,

where m = 2n−1 − 1. Then the continued fraction [1; pn] approaches

lim
n→∞

p2n−1
q2n−1

= lim
n→∞

∑n
i=0 x

2n−2i

x2n−1
= f(x).

Note that f is also a 2-Mahler function as f(x) = xf(x2) + 1.

The recursion for pn starts with pn−1, making the first 2n−1 terms of pn and pn−1 coincide. Thus,
the sequence of words pn converges to an infinite continued fraction as n goes to infinity:

lim
n→∞

pn = [x;x,−x, x, x,−x,−x, x, x, x,−x,−x, x,−x,−x, . . . ].

As all terms are either x or −x, knowing the signs of the partial quotients is sufficient to understand
the entire continued fraction. The corresponding sequence of signs is famous in popular mathematics:
the (regular) paperfolding sequence or dragon curve sequence. Hence the name ‘folded continued
fraction’. In Subsection 2.2.2, there is a method presented to remove the −x from the continued
fraction to achieve a regular continued fraction with only positive partial quotients.
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2.1.2 Paperfolding sequences as curves

The paperfolding sequence is better known as a fractal, graphically the paperfolding dragon or
dragon curve, than as a Mahler function or automatic sequence. As the construction is unknown to
many modern mathematicians [26], it is explained here again, following the paper of Tabachnikov [26].

Recipe 2.1.4. Take a strip of paper and fold it n times in half in the same direction. After unfolding,
2n − 1 hills and trenches appear. For example, the result after three folds is drawn in Figure 2.1.

Figure 2.1: A strip of paper is folded three times and then unfolded.

Associating the hills with a 1 and the trenches with a −1 creates a word. For example, after
three folds, this word is [1, 1, −1, 1, 1, −1, −1]. The paperfolding sequence is also the limit sequence
when iterating indefinitely. Recall that the recursive rule of the words is pn = [pn−1, 1, −←−−pn−1]. The
first pn−1 is the bottom of the paper that remains at the same position during the fold, the 1 is the
fold, and the second pn−1 is the half of the paper that is folded on top. The minus sign comes from
flipping that half upside down and the reverse arrow from laying it in the opposite direction. Thus,
the two constructions coincide. When laying the hills and trenches of the folds in right angles, a shape
emerges. For example, after three folds, Figure 2.2 is obtained.

Figure 2.2: A strip of paper is folded three times and then unfolded, starting at the red dot.

For each number of folds, one can make such a graph, and surprisingly, it is never self-crossing.
That is, not a single line is drawn twice, and the curve never self-intersects. If one takes the limit
of these folds, infinitely many lines are drawn, and if one takes four of these collections of lines, it
covers the entire grid Z2. Thus, each line between two neighbouring points is covered exactly once.
In Figure 2.3, the paperfolding dragon is shown after 5, 9 and 17 iterations, respectively. Due to the
unusual shape, this curve was named the dragon curve. Such drawings are called folding curves.

Figure 2.3: The dragon curve after 5, 9 and 17 iterations, respectively. It starts purple and slowly
fades to red following the colours of the rainbow.
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2.2 The folded continued fraction of ρ

As seen for the regular paperfolding sequence, Mahler functions and folded continued fractions can
sometimes live in the same world. So far, only infinite sums and products seem to have been studied
in the literature, such as

∑∞
n=0 2−Fn where Fn are the Fibonacci numbers [7]. Because ρ(x) is defined

as an irregular continued fraction, such a regular folded continued fraction is yet unknown.

2.2.1 Computing a folded continued fraction for ρ

For ρ(x), a folded continued fraction exists with a more intricate fold. First, recall that

ρn(x) := 1 +
x

1
+
x2

1
+
x4

1
+ · · ·+

x2
n−2

1
+
x2

n−1

1
.

Evaluating the regular continued fractions of these rational functions ρn in Magma [8] gives

ρ0(x) = [1],

ρ1(x) = [1 + x],

ρ2(x) = [1; x, x],

ρ3(x) = [x+ 1; −x, −x, x, x],

ρ4(x) = [1; x, x, x, −x, −x, x, −x, −x, x, x],

ρ5(x) = [x+ 1;−x,−x, x, x,−x,−x,−x, x, x,−x, x, x, x,−x,−x, x,−x,−x, x, x].

It is already remarkable that almost all partial quotients are ±x. Moreover, the words wn seem to
converge along even indices n and along odd indices n. The parity partial convergence of ρ(x) in
Corollary 1.2.13 for |x| > 1 explains the existence of the two distinct continued fractions. A careful
look suggests that ρ(x) = [sn(x); wn(x)] with the recursion

wn = [wn−2, (−1)nx, −←−−−wn−2, (−1)nx, wn−1] (2.2.1)

for wn = wn(x), where

sn(x) =

1 if n even,

x+ 1 if n odd.
(2.2.2)

This form resembles the folding of p. To begin proving the observed recursions (2.2.1) and (2.2.2), a
few technical lemmas need to be set.

Lemma 2.2.1. For all n ≥ 1,

Hn−2(x
2)Hn(x)−Hn−1(x)Hn−1(x

2) = (−1)n−1x2
n−1.

Proof. Use induction. For n = 1, the left side evaluates to 1 · (x + 1) − 1 · 1 = x, which is correct.
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Now assume that n ≥ 2. Using Hn(x) = Hn−1(x
2) + xHn−2(x

4) for all n ≥ 1, we obtain

Hn−2(x
2)Hn(x)−Hn−1(x)Hn−1(x

2)

= Hn−2(x
2)
(
Hn−1(x

2) + qHn−2(x
4)
)
−
(
Hn−2(x

2) + qHn−3(x
4)
)
Hn−1(x

2)

= xHn−2(x
2)Hn−2(x

4)− xHn−3(x
4)Hn−1(x

2) = −x(−1)n−2(x2)2
n−1−1 = (−1)n−1x2

n−1.

Lemma 2.2.2. For all n ≥ 1,

Hn(x) = Hn−1(x) + x2
n−1

Hn−2(x).

Proof. Recall that Hn(x) =
∑2n−1

m=0 cmq
m, where cm = 0 if the binary expansion of m contains two

neighbouring 1’s and cm = 1 otherwise. Let m < 2n such that cm = 1. If m < 2n−1, then cm is
already in Hn−1. If m ≥ 2n−1, the binary expansion of m starts with 10, and removing these terms
gives a number below 2n−2 corresponding to Hn−2. This leads to the formula.

Let (kn)∞n=0 be the sequence defined by k0 = k1 = 0 and kn = 2kn−2 + kn−1 + 2 for all n ≥ 2.

Lemma 2.2.3. For all n ≥ 0, kn = 2n+1±(−1)n
3 − 1 and kn is even.

Proof. Both the closed formula and each term being an even integer follow from induction.

The terms kn+1 form the Jacobsthal sequence, sequence A001045 on the OEIS [21]. This sequence
is also relevant to the construction of F and G using Stern polynomials, determines where the long
sequences of zero coefficients in their expansions begin and end, and to the degree of Hn(x). This is
not coincidental. By construction, kn = degHn(x2), which is the degree of the denominator of ρn(x).
At this point, only the main theorem remains to be proven.

Theorem 2.2.4. Let n ≥ 0 and x be a real number. Then ρn(x) is expressed as a regular continued
fraction by writing ρn(x) = [sn; wn] for

sn =

1 if n even,

1 + x if n odd,

with wn defined recursively by

wn = [wn−2, (−1)nx, −←−−−wn−2, (−1)nx, wn−1] for n ≥ 2,

w0 = w1 are empty, the length of wn is equal to kn, pkn = Hn(x) and qkn = Hn−1(x
2).

Proof. The theorem holds true for n = 0 and 1, and then apply induction. Assume that n ≥ 2. From
the recursion, the length of wn is equal to twice the length of wn−2, the length of wn−1 and 2 added
together. Thus, the length of wn is indeed kn.

Now let l = kn−1 and m = kn−2. Verifying that wn satisfies this recursion is the most difficult
part. Start along the lines of the proof of the Folding Lemma in [7, Lemma 6.3]. Define

ρn−1 = [a0; a1, a2, . . . , al] and ρn−2 = [b0; b1, b2, . . . , bm],
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where a0 = sn−1 and b0 = sn−2 such that

wn−1 = [a1; a2, a3, . . . , al] and wn−2 = [b1; b2, b3, . . . , bm].

Then the Key Lemma (Lemma 1.2.2) gives(
a0 1

1 0

)(
a1 1

1 0

)
. . .

(
al 1

1 0

)
=

(
pl pl−1

ql ql−1

)
.

Set t = (−1)nx, and compute [wn−2, t, −←−−−wn−2] by first dealing with [−←−−−wn−2, −b0] as follows:(
−bm 1

1 0

)
. . .

(
−b1 1

1 0

)(
−b0 1

1 0

)
=

((
−b0 1

1 0

)(
−b1 1

1 0

)
. . .

(
−bm 1

1 0

))T

=

(
(−1)m+1pm (−1)mqm

(−1)mpm−1 (−1)m−1qm−1

)
=

(
−pm qm

pm−1 −qm−1

)
,

because m = kn−1 is even by Lemma 2.2.3. Then −←−−−wn−2 is computed as(
−bm 1

1 0

)
. . .

(
−b1 1

1 0

)
=

(
−pm qm

pm−1 −qm−1

)(
0 1

1 b0

)
=

(
qm b0qm − pm
−qm−1 pm−1 − b0qm−1

)
.

By the Key Lemma for [wn−2, t, −←−−−wn−2], we obtain(
b0 1

1 0

)
. . .

(
bm 1

1 0

)(
t 1

1 0

)(
−bm 1

1 0

)
. . .

(
−b1 1

1 0

)

=

(
pm pm−1

qm qm−1

)(
t 1

1 0

)(
qm b0qm − pm
−qm−1 pm−1 − b0qm−1

)

=

(
tpm + pm−1 pm

tqm + qm−1 qm

)(
qm b0qm − pm
−qm−1 pm−1 − b0qm−1

)

=

(
(tpm + pm−1)qm − qm−1pm (tpm + pm−1)(b0qm − pm) + pm(pm−1 − b0qm−1)
(tqm + qm−1)qm − qm−1qm (tqm + qm−1)(b0qm − pm) + qm(pm−1 − b0qm−1)

)

=

(
tpmqm + (−1)m tb0pmqm − tp2m + (−1)mb0

tq2m tb0q
2
m − tqmpm + 1

)
,

where again (−1)m = 1. Now the Key Lemma is applied to [t, wn−1] to deduce(
t 1

1 0

)(
a1 1

1 0

)(
a2 1

1 0

)
. . .

(
al 1

1 0

)
=

(
t 1

1 0

)(
a0 1

1 0

)−1(
pl pl−1

ql ql−1

)

=

(
t 1

1 0

)(
0 1

1 −a0

)(
pl pl−1

ql ql−1

)
=

(
1 t− a0
0 1

)(
pl pl−1

ql ql−1

)
=

(
pl + ql(t− a0) ∗

ql ∗

)
.

Here, the ∗-terms denote expressions that do not matter for the end result. Note that sn−1−sn−2 = x

for even n and sn−1 − sn−2 = −x for odd n. It means that sn−1 − sn−2 = a0 − b0 = (−1)nx = t, and
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hence t− a0 = −b0. Now the entire recursion [wn−2, (−1)nx, −←−−−wn−2, (−1)nx, wn−1] is computed by
multiplying the matrices found for [wn−2, t, −←−−−wn−2] and [t, wn−1]:(

tpmqm + 1 tb0pmqm − tp2m + b0

tq2m tb0q
2
m − tqmpm + 1

)(
pl − qlb0 ∗

ql ∗

)

=

(
(tpmqm + 1)(pl − qlb0) + (tpmqmb0 − tp2m + b0)ql ∗

tq2m(pl − qlb0) + (tq2mb0 − tqmpm + 1)ql ∗

)

=

(
pl + tpmqmpl − tp2mql ∗
ql + tq2mpl − tqmpmql ∗

)
=

(
pl + (−1)nxpm(qmpl − pmql) ∗
ql + (−1)nxqm(qmpl − pmql) ∗

)
.

As l = kn−1 and m = kn−2, the induction hypothesis gives that pl = Hn−1(x), pm = Hn−2(x),
ql = Hn−2(x

2) and pl = Hn−3(x
2). Since n ≥ 2, one can apply Lemma 2.2.1 for n− 1:

qmpl − pmql = Hn−3(x
2)Hn−1(x)−Hn−2(x)Hn−2(x

2) = −(−1)n−1x2
n−1−1 = (−1)nx2

n−1−1.

By Lemma 2.2.2,

pkn = pl + (−1)nxpm(qmpl − pmql) = Hn−1(x) + x2
n−1

Hn−2(x) = Hn(x) and

qkn = ql + (−1)nxqm(qmpl − pmql) = Hn−2(x
2) + x2

n−1
Hn−3(x

2) = Hn−1(x
2).

Thus, the formulas for pkn and qkn are valid, and by Proposition 1.2.8, ρn =
pkn
qkn

. This means that
the recursion for wn and sn−2 = sn are valid.

2.2.2 Specializing the folded continued fraction for ρ

For the regular finite continued fraction of a rational number, [a0; a1, . . . , al], ai is commonly a positive
integer for all 1 ≤ i ≤ l. The same holds for all i ≥ 1 for an infinite continued fraction [a0; a1, a2, . . . ]

as then there is a one-to-one correspondence between the infinite continued fractions and irrational
numbers. Theorem 2.2.4 does not give this traditional shape for integer values x as −x shows up too.
But one can specialise it into the preferred form as described in [7] with the following helpful lemma.

Lemma 2.2.5. For all x, y and z such that both sides of the equation make sense,

[x; −y, z] = [x− 1; 1, y − 1, −z].

Proof. By the Key Lemma, and the matrices of partial convergents of the two continued fractions are(
x 1

1 0

)(
−y 1

1 0

)(
z 1

1 0

)
=

(
x+ z − xyz 1− xy

1− yz −y

)
and(

x− 1 1

1 0

)(
1 1

1 0

)(
y − 1 1

1 0

)(
−z 1

1 0

)
=

(
x+ z − xyz xy − 1

1− yz y

)
.

As the two left entries of the matrices coincide, the lemma follows.

Now the regular continued fraction can be constructed. A continued fraction [a0; a1, . . . , al] such
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that for each 1 ≤ i ≤ l, ai ∈ {−x, x} can be written as a regular continued fraction that only contains
a0, a0 − 1, 1, x− 2, x− 1 and x by using Lemma 2.1.2 and Lemma 2.2.5 repeatedly. For example,

ρ4(x) = [1; x, x, x, −x, −x, x, −x, −x, x, x]

= [1; x, x, x− 1, 1, x− 1, −[−x, x, −x, −x, x, x]]

= [1; x, x, x− 1, 1, x− 1, x, −x, x, x, −x, −x]

= [1; x, x, x− 1, 1, x− 1, x− 1, 1, x− 1, −x, −x, x, x]

= [1; x, x, x− 1, 1, x− 1, x− 1, 1, x− 2, 1, x− 1, x, −x, −x]

= [1; x, x, x− 1, 1, x− 1, x− 1, 1, x− 2, 1, x− 1, x− 1, 1, x− 1, x].

This process can also be generalised in three steps:

1. For all 0 ≤ i ≤ l − 1 such that ai 6= ai+1, insert a 1 between ai and ai+1.

2. Replace every −x by x.

3. For each term x in the new sequence, subtract 1 for each neighbour being equal to 1.

The length of the continued fraction increases by the number of sign changes in the original sequence,
which is bounded by l − 1. Thus, the new continued fraction has less than 2l partial quotients. Also
note that for all m ≥ 3, this method gives a ‘proper’ continued fraction for ρn(m) that only contains
1,m− 2,m− 1 and m. In other words, the two parity partial convergents of the continued fraction of
ρ(m) are all among four possible numbers. For example, m = 5 gives two continued fractions

[1, 5, 5, 4, 1, 4, 4, 1, 3, 1, 4, 4, 1, 4, 5, 4, 1, 4, 4, 1, . . . ] for even n and

[5; 1, 4, 4, 1, 4, 4, 1, 4, 5, 4, 1, 4, 4, 1, 3, 1, 4, 5, 4, . . . ] for odd n.

2.2.3 The folding curve of ρ

The construction of the folded continued fraction of ρ shares many features with Shallit’s and van
der Poorten’s example discussed in Section 2.1. Hence it is natural to investigate whether this new
folded continued fraction shares other properties with the paperfolding sequence. In this subsection,
the folding curves of ρ are tackled. As ρ has two convergents, there are two different curves. In Figure
2.4, a few examples are present.
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Figure 2.4: The curves derived from ρ for several values of n. On top, after 6, 10 and 14 iterations,
respectively, and, on the bottom after 7 and 13 iterations. It starts purple and slowly fades to red
following the colours of the rainbow.

These curves resemble right isosceles triangles that increase in size. They are not perfect triangles,
as the diagonals contain ‘hooks’. These hooks are small, local features that do not appear on a global
scale. At the limit, they resemble true triangles. For one parity of n, the side lengths of the triangles
grow by a factor of two and one triangle is added at the iteration n + 2. The side lengths of the
triangles of opposite parity differ by

√
2.

Figure 2.5: The curve for ρ15. Blue is the term w13, green is −←−−w13 and red is w14. Thus, the folding
curve first goes to the right, then up, and the last term completes the largest triangle.

Computational evidence suggests that these curves are not self-crossing for any n ≥ 0. In Figure
2.5, the way the fold works is drawn. The pattern is clear.

Observation 2.2.6. For all n ≥ 0, the curve induced by the parity of the partial quotients of ρ is not
self-crossing. Moreover, by taking eight copies of the two limits and rotating and flipping them, the
entire Z2 grid can be covered.
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The appearance of triangles is not surprising as the folding curve of the recursion defined by q0 = []

and qn = [qn−1, (−1)nx, −←−−qn−1] converges to a single triangle. Similarly, recursions giving gradually
growing dragon curves exist, for example, the folding curve of the recursion defined by v0 = v1 = [ ]

and [vn−2, x, −←−−−vn−2, (−1)nx, vn−1]. Both of these folding curves are presented in Figure 2.6. Thus,
there is a strong relation between the folding curves of the paperfolding sequence and w.

Figure 2.6: On the left is the curve for q depicted after 14 iterations. It starts purple and slowly fades
into red following the colours of the rainbow. On the right is the curve for v after 17 iterations. Blue
is the term vn−2, green is −←−−−vn−2 and red is vn−1. The red and green pieces together form a mirror
paperfolding dragon, just like the red and green curve in Figure 2.5 form a triangle.

To strengthen this connection even further, both qn and wn are also observed to be a folded
continued fraction of certain functions, respectively, of

x

∞∑
n=0

(−1)nx2
n

and 1−
x

1
−
x2

1
−
x4

1
−
x8

1
− · · · .

2.2.4 The folding sequence of ρ as a Mahler function

The folding recursion for w gives not much structure on the two intertwining sequences consisting
solely of ±1. The Toeplitz construction is another method to generate the paperfolding sequence and
also gives a Mahler equation for its generating function. In this subsection, we show that w posesses
the same structure. The two main strategies to generate the paperfolding sequence are [3, Example
5.1.6 and Exercise 5.7]:

1. The folding approach. Let p0 = [] and pn = [pn−1, 1,←−−pn−1] for n ≥ 1. Then the paperfolding
sequence is limn→∞ pn. This definition is used to prove the paperfolding lemma.

2. The Toeplitz construction. Let p0 = [ ] again be the empty word and for n ≥ 1,

pn = [1, pn−1[0], −1, pn−1[1], 1,pn−1[2], −1, pn−1[3], 1, pn−1[4], . . . ].

Here, pn−1[m] is the mth element of pn−1, and the 1 and −1 alternate.

To prove these definitions are equivalent, first show by induction that in the first approach, the
subsequence of terms of even index alternate. That is, pn[0],pn[2],pn[4], . . . are 1,−1, 1,−1, 1, . . . .
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Then prove the subsequences qn of pn of terms of odd index satisfy qn = [qn−1, 1, ←−−qn−1]. Let P (x)

be the generating function of the paperfolding sequence. Then the Toeplitz construction induces that

P (x) = xP (x2) +
1

1 + x2
. (2.2.3)

Multiplying both sides with 1 + x2 shows that P (x) is a Mahler function:

(1 + x2)P (x) = (x+ x3)P (x2) + 1.

The limit of the iteration of equality (2.2.3) gives a more direct formula:

P (x) =

∞∑
n=0

x2
n−1

1 + x2n
.

The function P (x) is not rational and not even algebraic over C[x]. If 0 < |α| < 1 is algebraic, then
P (α) is a transcendental number [13, 19].

Now we want to mimic this idea for ρ and w using Theorem 2.2.4. To recap, the words wn of the
folded continued fraction of ρn(x) satisfy w0 = w1 = [ ], and for n ≥ 2,

wn = [wn−2, (−1)nx, −←−−−wn−2, (−1)nx, wn−1].

Each word only contains x and −x, and the sequence of wn converges parity partially. Replace x with
1 and −x with −1, to get

wn = [wn−2, (−1)n, −←−−−wn−2, (−1)n, wn−1].

From this recursion, we will compute two generating functions. First introduce some notation:

Notation 2.2.7. Let N ≥ 0 and a = (an)Nn=0 and b = (bn)∞n=0 be sequences. finite and infinite. Then
the generating function of a, the polynomial

∑N
n=0 anx

n, is denoted by GF(a) and GF(b) is written
for the power series

∑∞
n=0 bnx

n.

Next, let F(x) = limn→∞GF(w2n) and G(x) = limn→∞GF(w2n+1), to state the Mahler equations.

Theorem 2.2.8. We have

F(x) = x2F(x4)− 2x6

1 + x8
+

1

1 + x4
+

x

1 + x2
and

G(x) = x4G(x4)− 1− x8

1 + x8
+

x2

1 + x4
− x

1 + x2
.

This result has a lengthy proof, but there has to be a starting point somewhere. Recall that kn
denotes the length of the word wn. Thus, by Lemma 2.2.3, k0 = k1 = 0, kn = kn−1 + 2kn−2 + 2 for
n ≥ 2. We need a refinement modulo 4.

Lemma 2.2.9. For all even n ≥ 2, kn ≡ 2 mod 4 and for all odd n ≥ 1, kn ≡ 0 mod 4.
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Proof. Use that kn is even and apply induction on kn = 2kn−2 + kn−1 + 2 ≡ kn−1 + 2 mod 4.

Proposition 2.2.10. Let n ≥ 0 and 0 ≤ m < kn. Then:

1. If n is even, then wn[m] = 1 if m ≡ 1 mod 4 and wn[m] = −1 if m ≡ 3 mod 4.

2. If n is odd, then wn[m] = −1 if m ≡ 1 mod 4 and wn[m] = 1 if m ≡ 3 mod 4.

Proof. Use induction on n; the cases n = 0 and n = 1 follow easily. Now assume the statement holds
for n− 1 and n− 2. Then recall Lemma 2.2.9 and the recursion

wn = [wn−2, (−1)n, −←−−−wn−2, (−1)n, wn−1].

For all five concatenated pieces of the recursion, the statement will be proven. The first, wn−2, follows
from n − 2 and n sharing the same parity. The first (−1)n appears on position kn−2, which is even,
hence does not interfere. Now consider the third part, −←−−−wn−2. If n is even, then kn ≡ 2 mod 4,
so the position of the first term of −←−−−wn−2 is 3 modulo 4. Then −←−−−wn−2[4k] = −wn−2[kn − 1 −
4k] = −wn−2[1] = −1 is on positions 3 modulo 4 and −←−−−wn−2[4k + 2] = −wn−2[kn − 1 − 4k − 2] =

−wn−2[3] = 1 on positions 1 modulo 4. If n is odd, kn ≡ 0 mod 4, −←−−−wn−2[0] is at a position 1
modulo 4. Then −←−−−wn−2[4k] = −wn−2[kn − 1 − 4k] = −wn−2[3] = 1 is on positions 1 modulo 4
and −←−−−wn−2[4k + 2] = −wn−2[kn − 4k − 3] = −wn−2[1] = 1 on positions 3 modulo 4. The second
(−1)n appears on an odd position 2kn−2 + 1. By Lemma 2.2.9, 2kn−2 + 1 is 1 modulo 4, and (−1)n

is thus exactly as required. The last part wn−1 begins on position 2kn−2 + 1 which is 2 modulo 4. If
m ≡ 1 mod 4, wn−1[m] is placed on a position that is 3 modulo 4 in wn. Similarly, if m ≡ 3 mod 4,
wn−1[m] is added at a position 1 modulo 4 in wn.

Corollary 2.2.11. We have

lim
n→∞

GF([0, w2n[1], 0, w2n[3], . . . , 0, w2n[k2n − 1]]) =
x

1 + x2
and

lim
n→∞

GF([0, w2n+1[1], 0, w2n+1[3], . . . , 0, w2n+1[k2n+1 − 1]]) =
−x

1 + x2
.

To continue, it is useful to introduce the terms of wn of even index with a small twist. Define

en := [wn[0], −wn[2], wn[4], . . . , (−1)mwn[2m], . . . , −(−1)
kn
2 wn[kn − 2]].

For example, as w4 = [1, 1, 1, −1, −1, 1, −1, −1, 1, 1], we have e4 := [1, −1, −1, 1, 1].

Proposition 2.2.12. Let n ≥ 0. If n is even, then wn = −en+1, and if n is odd, then [1, wn] = en+1.

Proof. As kn is even, #en = kn
2 , and kn = 2n+1+(−1)n

3 − 1 by Lemma 2.2.3. Then, if n is even,
kn+1 = 2kn, and if n is odd, kn+1 = 2kn + 1. Thus, the number of terms on both sides agrees for both
parities of n. The statement holds for n = 0 and n = 1 and proceed by induction. If n is even, then
kn−1 ≡ 0 mod 4, and if n is odd, kn−1 ≡ 2 mod 4, so kn−1

2 ≡ n mod 2. Thus, n + 1 + kn−1

2 ≡ 1
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mod 2 and (−1)n+1+
kn−1

2 = −1. Then

(−1)
kn−1

2 [wn−1[kn−1 − 2], −wn−1[kn−1 − 4], . . . , −(−1)
kn−1

2 wn−1[0]]

= (−1)
kn−1

2

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[−(−1)

kn−1
2 wn−1[0], (−1)

kn−1
2 wn−1[2], . . . , wn−1[kn−1 − 2]]

= (−1)
kn−1

2 ·
(
− (−1)

kn−1
2
←−−en−1

)
= −←−−en−1

is needed to prove that

en+1 = [wn[0], −wn[2], wn[4], . . . , (−1)mwn[2m], . . . , −(−1)
kn
2 wn[kn − 2]]

= [wn−1[0], . . . , −(−1)
kn−1

2 wn−1[kn−1 − 2], (−1)
kn−1

2 (−1)n+1, −(−1)
kn−1

2
←−−−−−wn−1[1], . . . ,

←−−−−−wn−1[kn−1 − 1], −wn[0],wn[2], . . . , (−1)
kn
2 wn[kn − 2]]

= [en−1, (−1)n+1+
kn−1

2 , (−1)
kn−1

2 wn−1[kn−1 − 2], . . . , −wn−1[0], −en]

= [en−1, −1, −←−−en−1, −en].

Thus, if n is even,

−en+1 = −[en−1, −1, −←−−en−1, −en]

= −[−wn−2], −1, ←−−−wn−2, −[1, wn]]

= [wn−2, 1, −←−−−wn−2, 1, wn] = wn+1;

and if n is odd,

en+1 = [en−1, −1, −←−−en−1, −en]

= [[1, wn−2], −1, −
←−−−−−−
[1, wn−2], wn]

= [1,wn−2, −1, −←−−−wn−2, −1, wn] = [1, wn+1].

The Hadamard product of two analytic functions f and g is the termwise multiplication of their
power series and is denoted by f ? g. We review this notion in greater details in Chapter 3.

Lemma 2.2.13. We have

1

1 + x
? F(x) = F(x)− 2x

1 + x2
and

1

1 + x
? G(x) = G(x) +

2x

1 + x2
.

Proof. Let F(x) =
∑∞

m=0 amx
m and n ≥ 0. Then for even n, the left side of the equation is 1 ·an and

the right side is an + 0 = an. If n = 2m+ 1 is odd, then Proposition 2.2.10 gives that the left side is
−1 · (−1)m and the right side is (−1)m − 2(−1)m = −(−1)m. For G a similar argument is used.

Proposition 2.2.14. The following functional equations are valid:

F(x) = −x2G(x2)− 2x4

1 + x4
+ 1 +

x

1 + x2
and G(x) = −F(x2) +

2x2

1 + x4
− x

1 + x2
.
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Proof. From the definition of en and Corollary 2.2.11 one obtains that, for each n ≥ 0,

GF(wn)(x) = GF([wn[0], 0,wn[2], 0, . . . ,wn[kn − 2], 0])(x)

+ GF([0,wn[1], 0,wn[3], . . . , 0,wn[kn − 1]])(x)

=
1

1 + x2
?GF(en)(x2) + (−1)n GF([0, 1, 0,−1, 0, 1, . . . , 0, (−1)kn ]).

Then inserting Corollary 2.2.11 and Proposition 2.2.12 gives

F(x) = lim
n→∞

GF(w2n)(x)

= lim
n→∞

1

1 + x2
?GF(e2n)(x2) + (−1)2n GF([0, 1, 0,−1, 0, 1, . . . , 0, (−1)k2n ])

=
1

1 + x2
? lim
n→∞

GF([1,w2n−1])(x
2) +

x

1 + x2
=

1

1 + x2
? (1 + x2G(x2)) +

x

1 + x2

=
1

1 + x2
? x2G(x2) + 1 +

x

1 + x2
= x2

(
−1

1 + x2
? G(x2)

)
+ 1 +

x

1 + x2

= −x2
(
G(x2) +

2x2

1 + x4

)
+ 1 +

x

1 + x2
= −x2G(x2)− 2x4

1 + x4
+ 1 +

x

1 + x2
,

where the second-to-last step is due to Lemma 2.2.13. The other identity follows similarly:

G(x) = lim
n→∞

GF(w2n+1)(x)

= lim
n→∞

1

1 + x2
?GF(e2n+1)(x

2) + (−1)2n+1 GF([0, 1, 0,−1, 0, 1, . . . , 0, (−1)k2n+1 ])

=
1

1 + x2
? lim
n→∞

GF(−w2n)(x2)− x

1 + x2
=

1

1 + x2
? (−F(x2))− x

1 + x2

= −
(
F(x2)− 2x2

1 + x4

)
− x

1 + x2
= −F(x2) +

2x2

1 + x4
− x

1 + x2
.

Now the individual Mahler equations for F and G can be computed easily.

Proof of Theorem 2.2.8. Combine the two equalities of Proposition 2.2.14 to deduce

F(x) = −x2G(x2)− 2x4

1 + x4
+ 1 +

x

1 + x2

= −x2
(
−F(x4) +

2x4

1 + x8
− x2

1 + x4

)
− 2x4

1 + x4
+ 1 +

x

1 + x2

= x2F(x4)− 2x6

1 + x8
− x4

1 + x4
+

x

1 + x2

and

G(x) = −F(x2) +
2x2

1 + x4
− x

1 + x2

= −
(
− x4G(x4)− 2x8

1 + x8
+ 1 +

x2

1 + x4

)
+

2x2

1 + x4
− x

1 + x2

= x4G(x4)− 1− x8

1 + x8
+

x2

1 + x4
− x

1 + x2
.
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Like F and G, the functions F and G can be connected with a simple Mahler function.

Corollary 2.2.15. Let I(x) = F(x3)− x2G(x3). Then I(x) is 2-Mahler.

Proof. Combining the functions obtained in Proposition 2.2.14 gives

F(x3)− x2G(x3) = x2
(
F(x6)− x4G(x6)

)
− 2x8 + 2x12

1 + x12
+
x3 + x5

1 + x6
+ 1.

In the same vain, the transcendence of F and G can be studied as was done for F and G. First,
an upper bound of the transcendence degree is obtained.

Corollary 2.2.16. The transcendence degree of {F(x),G(x),F(x2), G(x2),F(x4),G(x4), . . . } is at
most 2.

Proof. Apply Proposition 2.2.14:

2 ≥ tr deg(F(x),G(x)) = tr deg(F(x),G(x),F(x2),G(x2))

= tr deg(F(x),G(x),F(x2),G(x2),F(x4),G(x4)) = · · · = tr deg(F(x),G(x),F(x2),G(x2), . . . ).

Proving that F and G are transcendental over C[x] gives a first lower bound. A standard approach
would be to apply Theorem 1.3 of [20]: If F(x) is algebraic over C, then F(x) is in C(x). Then a
contradiction is reached by showing that there are no coprime polynomials a(x) and b(x) such that
a(x)
b(x) satisfies the equations of Theorem 2.2.8. Fortunately, a short-cut exists for both F and G.

Proposition 2.2.17. The functions F and G are both transcendental over C[x].

Proof. By Theorem 1.2.10, ρ(8) = 2λ(12), which by [1, Theorem 1.2] is transcendental, and hence not
a quadratic irrational. Then any continued fraction of ρ(8) is not eventually periodic by [7, Theorem
2.48]. Then the coefficients of 8F(x) are not eventually periodic and 8F(x) is not rational and thus
transcendental by [20, Theorem 1.3]. A similar argument is used for G.

Such tricks are of little use when tackling the algebraic independence of F and G, so more so-
phisticated methods have to be used. To start, tweak the formulas slightly and change the sign of G.
Namely, define

F̃(x) := F(x)− x

1 + x2
and G̃(x) := −G(x) +

x

1 + x2
.

Feeding in this new pair into Theorem 2.2.8 gives

F̃(x) = x2G̃(x2) +
1

1 + x4
and G̃(x) = F̃(x2)− x2

1 + x4
.

These equalities imply that both F̃(x) and G̃(x) are even functions. This allows us to write I(x2) =

xF̃(x3) and J (x2) = x2G̃(x3), leading to the system of two {0,±1}-series:

I(x) = J (x2) +
x

1 + x6
and J (x) = I(x2)− x5

1 + x6
. (2.2.4)
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By reversing the construction, I(x) and J (x) being algebraically independent over C(x) would
imply the same for F(x) and G(x). As most theorems for algebraic independence of Mahler functions
desire homogeneous equations or that the coefficients in front of the functions are all constants, the
entire route to I and J has to be taken. A simplified version of a theorem by Nishioka will be used:

Theorem 2.2.18 (Nishioka, Theorem 3.2.2 in [20]). Let m ≥ 1 and f1(x), . . . , fn(x) ∈ C[[x]] satisfy
f1(x)
...

fn(x)

 = A


f1(x

k)
...

fn(xk)

+


g1(x)
...

gn(x)


where k ≥ 2, A is an n× n matrix over C and gi(x) ∈ C(x). If f1, . . . , fm are algebraically dependent
over C, there are c1, . . . , cm ∈ C not all all zero such that

∑m
i=0 ci · fi(x) ∈ C(x).

The theorem is unhelpful when dealing with the Mahler equations (2.2.4), so we iterate them once:

I(x) = I(x4) +
x

1 + x6
− x10

1 + x12
, J (x) = J (x4)− x5

1 + x6
+

x2

1 + x12
.

Theorem 2.2.19. I(x) and J (x) are algebraically independent over C(x).

Proof. Assume the opposite. Apply Nishioka’s theorem (Theorem 2.2.18) with m = 2, k = 4,

A =

(
1 0

0 1

)
, g1(x) =

x

1 + x6
− x10

1 + x12
and g2(x) = − x5

1 + x6
+

x2

1 + x12
.

Then there are c1, c2 ∈ C, not both zero, and coprime polynomials a(x) and b(x) such that c1I(x) +

c2J (x) = a(x)
b(x) . In other words,

a(x4)

b(x4)
=
a(x)

b(x)
+ c1g1(x) + c2g2(x).

The equation can be transformed into an equation of polynomials: A(x) = B(x) + C(x), where

A(x) = a(x4)b(x)(1 + x6)(1 + x12),

B(x) = a(x)b(x4)(1 + x6)(1 + x12) and

C(x) = b(x)b(x4)
(
c1(x− x10 + x13 − x16) + c2(x

2 − x5 + x8 − x17)
)

= b(x)b(x4)x(1− x3)
(
c1(1 + x3 + x6 + x12) + c2x(1 + x6 + x9 + x12)

)
= b(x)b(x4)x(1− x3)c(x).

Using that a(x) and b(x) are coprime and thus a(x4) and b(x4) are coprime as well, we deduce that
b(x) | b(x4)(1 + x6)(1 + x12) and b(x4) | b(x)(1 + x6)(1 + x12).

As b(x4) | b(x)(1 + x6)(1 + x12), x cannot divide b(x), and so b(0) 6= 0. Assume ζ is a root of b(x)

that is not a root of 1− x6. Then, as ζ 6= 0 and ζ6 6= 1, the four fourth roots of ζ are zeros of b(x4)
but not of (1 + x6)(1 + x12). Using that b(x4) | b(x)(1 + x6)(1 + x12), these four roots are all roots
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of b(x). Iterating this process gives an unbounded number of roots of b(x). This contradiction means
that b(x) | (1 − x6)k for some k ≥ 0. By the same argument, b(x) cannot have two identical roots
that are zeros of 1− x6. Thus, b(x) | (1− x6) and b(x4) | (1− x24).

From b(x) | (1 − x6) and b(x) | b(x4)(1 + x6)(1 + x12), it follows that b(x) | b(x4). Combine this
with b(x4) | b(x)(1 + x6)(1 + x12) to conclude that, for y ∈ C, b(y) = 0 if and only if b(y4) = 0 and
(1 + y6)(1 + y12) 6= 0. In particular, for y = −ζk3 , where ζ3 = e

2πi
3 and k = 0, 1, 2, we have b(ζk3 ) = 0

if and only if b(−ζk3 ) = 0. Thus, deg b(x) is even and deg b(x4) is divisible by 8.

Let ζ be a root of (1 + x6)(1 + x12). If one of the multiplicities ordζ(A), ordζ(B) and ordζ(C) is
smaller than the others and m = min(ordζ(A), ordζ(B), ordζ(C)), the limit

lim
x→ζ

(
A(ζ)

(x− ζ)m
− B(ζ)

(x− ζ)m
− C(ζ)

(x− ζ)m

)
involves two zero terms and one non-zero term so cannot be zero. This contradicts A(x)+B(x) = C(x).
Let us apply this fact a few times. Since b(x) | (1− x6), b(ζ) 6= 0 and ζ(1− ζ3) 6= 0 as well.

• If b(ζ4) = 0, then a(ζ4) 6= 0 as a(x4) and b(x4) are coprime. Therefore, ordζ(A) = 1 and
ordζ(B) ≥ 2. Then ordζ(C) = 1, and hence, c(ζ) 6= 0 as b(ζ4) = 0.

• If b(ζ4) 6= 0, then ordζ(C) = ordζ(c). As ordζ(A) ≥ 1 and ordζ(B) ≥ 1, it follows that
ordζ(C) ≥ 1. Thus, c(ζ) = 0 as b(ζ4) 6= 0.

To summarise, exactly one of b(ζ4) and c(ζ) is zero. If c(ζ) = 0 for such a root ζ of (1 + x6)(1 + x12),
then if ζ is a root of 1 + x12 or 1 + x6, respectively,

c1(ζ
3 + ζ6) = −c2ζ(ζ6 + ζ9) and c1(1 + ζ9) = −c2ζ(ζ3 + ζ12).

In both cases, using ζ 6= 0, 1 + ζ3 6= 0 and 1 + ζ9 6= 0, we conclude that c1 = −c2ζ4. Then c(x) has at
most four roots in common with (1 +x6)(1 +x12) as c1 and c2 are constants, not simultaneously zero.
Then b(x4) has at least 18−4 = 14 roots in common with (1+x6)(1+x12), and so deg b(x) ≥

⌈
14
4

⌉
= 4.

As b(x) | b(x4) and b(x) and (1 +x6)(1 +x12) are coprime, deg b(x4) ≥ 18. Since deg b(x4) is divisible
by 8, it is at least 24. As b(x4) | (1− x24) this implies that b(x4) = 1− x24 and b(x) = 1− x6. Now
divide the equation A(x) = B(x) + C(x) by b(x4) to obtain

a(x4) = a(x)(1 + x6)(1 + x12) + x(1− x3)(1− x6)c(x).

Thus, a(1) = 4a(1), and so a(1) = 0. A contradiction, as a(x) and b(x) are coprime and b(1) = 0.
Thus, a(x) and b(x) do not exist, implying that I(x) and J (x) are algebraically independent.

Corollary 2.2.20. F(x) and G(x) are algebraically independent over C(x).

2.3 Algebraic folded continued fractions

In the previous section, we gave an example of a folded continued fraction that is a quotient of two
2-Mahler functions. In this section, folded continued fractions are defined more generally, several
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examples are given and different choices are discussed. In particular, algebraic functions produced by
a folded continued fraction are examined with the help of a few examples.

2.3.1 Defining folded continued fractions

The concept of folded continued fraction can be moulded in many ways, and any such definition is
more or less temporarily useful. In this thesis, a relatively small area is chosen where interesting
examples can turn up. Other cases like

∑∞
n=0 2−Fn are fascinating but of a different nature.

Definition 2.3.1. A recursion of words is an infinite sequence (wn)∞n=0 of finite sequences wn

called words such that:

• Each word wn is finite, and all its letters are x or −x.

• There is a decent amount of convergence so that taking a limit limn→∞wn is meaningful.

• A recursion itself means the following: There are r,N ≥ 0 such that for each n ≥ N ,

wn = [vn,1, vn,2, . . . , vn,r],

where each vn,i is equal to

x, −x, wn−1, −wn−1,
←−−−wn−1, −←−−−wn−1, . . . , wn−N , −wn−N ,

←−−−−wn−N or −←−−−−wn−N .

Here, x and−x are called constant words and those depending onwn−i non-constant words.

As before, we associate a continued fraction with each word, and the paperfolding sequence (pn)∞n=0

is a recursion of words. Clearly, there is much of a personal taste in this definition, as it does not
include (−1)nwn−1. Thus, (wn)∞n=0 for ρ is not a recursion of words, but as shown below, that does
not exclude ρ entirely. Despite the strict definition, many examples are quite similar.

Example 2.3.2. Recall that the original paperfolding sequence satisfies pn = [pn−1, x, −
←−−pn−1] for

n ≥ 1 and p0 = [ ]. Consider a few variations:

• Let q0 = [x] and qn = [qn−1, x, −
←−−qn−1], then qn+1 = pn, it is just a shift.

• If q0 = [ ] and qn = [qn−1, −x, −
←−−qn−1], then qn = −pn.

• If q0 = [ ] and qn = [qn−1, x, −
←−−qn−1, x], then [x; qn] = pn+1.

• If q0 = [ ], q1 = [ ] and qn = [qn−2, x, −
←−−qn−2], then q2n = q2n−1 = pn. Thus, twice as many

iterations are needed to reach the same continued fraction.

• If q0 = [ ] and qn = [qn−1, x, −
←−−qn−1, x, qn−1, −x, −

←−−qn−1]. Then only half the number of
iterations is needed to achieve the same continued fraction p.

In the same way, the folding sequence for ρ can be written without the (−1)n term. Recall that
wn = [wn−2, (−1)nx, −←−−−wn−2, (−1)nx, wn−1]. To remove the (−1)n from the recursion, define
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w+
n = (−1)nwn. It satisfies wn = [w+

n−2, x, −
←−−−
w+
n−2, x, −w

+
n−1]. As such, disallowing (−1)nx as a

possible term in the recursion does not exclude ρ from the definition.

Many recursions of words are uninteresting. When only including constant words, a rational
function is obtained. With precisely one non-constant word, the limit is eventually periodic, hence a
quadratic irrationality. There are also other ways to obtain eventually periodic words, for example by
defining w0 = [x] and wn = [wn−1, wn−1], which converges to [x; x, x, x, x, x, . . . ].

Let kn be #wn − 1. Then in the case of at least two non-constant words, the degrees of the poly-
nomials pkn(x) and qkn(x) increase exponentially with each iteration. If pkn(x) and qkn(x) converge
(partially) to power series, they fall into two categories:

1. Fast converging recursions. These are recursions for which the number of correct coefficients
of limn→∞ pkn and limn→∞ qkn after n iterations grows exponentially with respect to n. The
power series for ρ is an example of this type.

2. Slowly converging recursions have, instead of exponential, only a linear in n number of correct
coefficients. The next subsection contains an example of this type.

Although countless slowly converging recursions of words exist, the set of fast converging recursions
of words appears to be limited. All examples we have found are related to either x

∑∞
n=0 x

2n or H(x)
H(x2)

with slight variations in signs or linear combinations.

2.3.2 A cubic folded continued fraction

In this subsection, a folded continued fraction is shown to be a root of a cubic equation over Q[x].
First, the matrix of continuants of wn is shown to satisfy a specific recursion. Then it is established
that a particular power series satisfies the same recursion, leading to the equality.

Define the recursion of words (wn)∞n=0 by w0 = [ ] and wn = [wn−1, wn−1, x, −←−−−wn−1, −←−−−wn−1].
Furthermore, let kn := #wn − 1.

Lemma 2.3.3. Let n ≥ 1 and m = kn. Then(
pkn+1 pkn+1−1

qkn+1 qkn+1−1

)
=

(
x(p2m + pm−1qm)2 1− xqm(pm + qm−1)(p

2
m + pm−1qm)

1 + xqm(pm + qm−1)(p
2
m + pm−1qm) −xq2m(pm + qm−1)

2

)
.

Proof. The recursion for wn gives kn+1 = #wn+1 − 1 = 4#wn = 4kn − 4 is even for all n ≥ 1. Thus,
pm−1qm − pmqm−1 = (−1)m = 1 by Lemma 1.2.4. Recall that the matrix of continuants of −←−wn is(

(−1)m+1pm (−1)mpm−1

(−1)mqm (−1)m−1qm−1

)
=

(
−pm pm−1

qm −qm−1

)
.

Next, the [wn−1, x, −←−−−wn−1] part of the recursion is computed like for paperfolding sequence:(
pm pm−1

qm qm−1

)(
x 1

1 0

)(
−pm qm

pm−1 −qm−1

)
= x

(
−p2m pmqm

−pmqm q2m

)
+

(
0 1

1 0

)
.
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These cancellations make the rest of the computation slightly easier. We obtain,(
pkn+1 pkn+1−1

qkn+1 qkn+1−1

)
=

(
pm pm−1

qm qm−1

)2(
x 1

1 0

)(
−pm qm

pm−1 −qm−1

)2

= x

(
pm pm−1

qm qm−1

)(
−p2m pmqm

−pmqm q2m

)(
−pm qm

pm−1 −qm−1

)

+

(
pm pm−1

qm qm−1

)(
0 1

1 0

)(
−pm qm

pm−1 −qm−1

)
.

Computing the two parts separately gives the required result, since

x

(
pm pm−1

qm qm−1

)(
−p2m pmqm

−pmqm q2m

)(
−pm qm

pm−1 −qm−1

)

= x

(
pm pm−1

qm qm−1

)(
pm(p2m + pm−1qm) −pmqm(pm + qm−1)

qm(p2m + pm−1qm) −q2m(pm + qm−1)

)

= x

(
(p2m + pm−1qm)2 −qm(p2m + pm−1qm)(pm + qm−1)

qm(pm + qm−1)(p
2
m + pm−1qm) −q2m(pm + qm−1)

2

)

and (
pm pm−1

qm qm−1

)(
0 1

1 0

)(
−pm qm

pm−1 −qm−1

)
=

(
pm pm−1

qm qm−1

)(
pm−1 −qm−1
−pm qm

)

=

(
pmpm−1 − pmpm−1 −pmqm−1 + pm−1qm

qmpm−1 − pmqm−1 −qm−1qm + qmqm−1

)
=

(
0 1

1 0

)
.

The limits of pkn , pkn−1, qkn and qkn−1 are observed to converge to power series; explicitly, to

A(x) =
∞∑
n=0

anx
n = x+ 2x3 + 7x5 + 30x7 + 143x9 + 728x11 + · · · ,

B(x) =

∞∑
n=0

bnx
n = 1− x2 − 3x4 − 12x6 − 55x8 − 273x10 − 1428x12 + · · · ,

C(x) =
∞∑
n=0

cnx
n = 1 + x2 + 3x4 + 12x6 + 55x8 + 273x10 + 1428x12 + · · · ,

D(x) =
∞∑
n=0

dnx
n = −x3 − 4x5 − 18x7 − 88x9 − 455x11 + · · · .

Here, an and dn vanish for even n while bn and cn vanish for odd n. A well-educated guess suggests
that the non-zero terms of A(x), C(x) and D(x) are given by A006012, A001764 and the negation
of A006629 on the OEIS [21], respectively. Then a2n+1 = 1

n+1

(
3n+1
n

)
, c2n = 1

2n+1

(
3n
n

)
and d2n+3 =

− 2
n+2

(
3n+3
n

)
. Meanwhile, B(x) = 2−C(x). These formulas are actually used to define A(x), . . . , D(x).

The OEIS lists the following results: xC(x)2 = A(x), D(x) = −x3C(x)4, C(x) = 1 + x2C(x)3 [21].
This implies that D(x) = −xA(x)2. A few more identities are needed.
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Lemma 2.3.4. D(x) = xC(x)− xC(x)2, xC(x) = A(x) +D(x) and A(x)2 +B(x)C(x) = C(x).

Proof. All three identities follow easily by manipulating the identities found on the OEIS.

Write A for A(x), B for B(x) etc. Now we prove that A,B,C and D indeed relate to limn→∞wn.

Lemma 2.3.5. We have(
A B

C D

)
=

(
x(A2 +BC)2 1− xC(A+D)(A2 +BC)

1 + xC(A+D)(A2 +BC) −xC2(A+D)2

)
.

Proof. We have (
x(A2 +BC)2 1− x2C(A+D)(A2 +BC)

xC(A+D)(A2 +BC) + 1 −xC2(A+D)2

)

=

(
xC2 −xC3 + 1

1 + x2C3 −x3C4

)
=

(
A B

C D

)
.

Theorem 2.3.6. Near the origin, the continued fraction wn converges to A(x)
C(x) as n→∞.

Proof. We aim at proving by induction that, after n recursions, the first n coefficients of pkn , pkn−1,
qkn and qkn−1 are the same as the first n coefficients of A(x), B(x), C(x) and D(x). Since w0 = [ ],

the corresponding matrix is

(
0 1

1 0

)
as required. If n ≥ 1, Lemma 2.3.3 and Lemma 2.3.5 show that

each iteration gives one extra term in the x-expansions of the matrix entries.

Corollary 2.3.7. Near the origin, the continued fraction wn converges to xC(x) as n→∞.

Proof. A(x)
C(x) = xC(x)2

C(x) = xC(x).

As C(x) = 1 + x2C(x)3, we get
(
xC(x)

)3 − xC(x) + x = 0, hence the continued fraction w

corresponds to a root of the polynomial t3 − t+ x ∈ C[x][t]. For real |x| <
√

4
27 , this polynomial has

three real roots, and the continued fraction represents the middle one,

3
√

3

( 3
√

2
√

81x2 − 12− 18x

3
+

1
3
√

2
√

81x2 − 12− 18x

)
.

Sadly, such identities hold only within a certain domain of the complex plane without any nonzero
integers. The series for C(x) converges within the disk |x| <

√
4
27 [21], and experimental evidence

supports that the continued fraction is not any more algebraic for rational |x| ≥
√

4
27 . For example,

when x = 1, the continued fraction gives 1.43229968255951445829 . . . , which does not fit any polyno-
mial equation up to degree 60 with reasonably sized coefficients. Moreover, x = ±

√
4
27 is also exactly

the point where t3− t+x has a double root, so this point is not a surprise. Inside the radius of conver-
gence, the convergence of the continued fraction is slow. While the number of terms of the continued
fraction grows fourfold with each iteration, the number of correct digits increases at a constant rate.
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In particular, the example is a slowly converging folded continued fraction. In the domain |x| >
√

4
27 ,

the continued fraction seems to be a smooth function with a power series expansion at infinity:

y−1(1 + y2 − y4 + y8 − 2y12 + 2y14 + y16 − 4y18 +O(y20)),

where y = x−1. The convergence towards this power series is fast: the number of correct coefficients
in the power series grows as quickly as the number of terms in the continued fraction. The folding
curve of this recursion is boring: It is self-crossing, has many gaps and is less self-similar than the
dragon curve or the curve for ρ as Figure 2.7 illustrates.

Figure 2.7: The folding curve of the cubic folded continued fraction starts purple and slowly fades to
red following the colours of the rainbow. The left curve is drawn after 6 iterations and the right after
8 iterations.

Many recursions of words relate to this cubic example. An alternative recursion, v0 = [ ] and
vn = [vn−1, −←−−−vn−1, −←−−−vn−1, vn−1, x], gives the exact same cubic and power series A,B,C and D as
introduced earlier. Both converge to the same values within the disk |x| <

√
4
27 , where the matrix

converges, but differ outside this disk. For example,

w(1) = 1.4322996825595144583 · · · = [1, 2, 3, 5, 5, 3, 5, 4, 2, 5, 3, . . . ];

v(1) = 0.60281150560716119896 · · · = [0, 1, 1, 1, 1, 13, 1, 1, 1, 2, 6, . . . ];

w(10) = 10.099000099980200960 · · · = [10, 10, 9, 1, 9, 9, 1, 9, 10, 9, 1, . . . ];

v(10) = 9.9009999000199950014 · · · = [9, 1, 9, 9, 1, 9, 9, 1, 9, 9, 1, . . . ].

The general pattern of w and v also differ wildly as can be seen in Figures 2.7 and 2.8.
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Figure 2.8: The folding curve of the alternative cubic folded continued fraction after 5 and 8 iterations
starts purple and slowly fades to red following the colours of the rainbow.

Only this folded continued fraction does not ‘really’ converge: We have checked the matrix con-
vergence only along (kn)∞n=0. Another choice for such a subset, say k0 − 1, k1 − 1, k2 − 1, . . . , leads to

another function for |x| <
√

4
27 , namely, to B(x)

D(x) in this case.

2.3.3 Other examples of folded continued fraction identities

The behaviour of the folded continued fraction converging to the cubic function is, in contrast with ρ
and p, not rare. The continued fractions of many more recursions of words tend to algebraic functions.

Example 2.3.8. Take the recursion of words given by w0 = [ ] being empty and

wn = [wn−1, −←−−−wn−1, x, −x, −←−−−wn−1, wn−1, x].

Then, letting kn = #wn − 1, experimentally gives

lim
n→∞

pkn = 2x
∞∑
n=0

x2n =
2x

1− x2
and

lim
n→∞

qkn = 1 + 2x2
∞∑
n=0

x2n =
1 + x2

1− x2
.

Thus, the continued fraction approaches 2x
1+x2

, and it is natural to expect that its radius of convergence
is 1. However, this turns out to be false as the convergence holds for |x| < 0.22 . . . . The best
explanation we have for this phenomenon is that the power series has many large incorrect terms that
dominate the slow convergence.

The folding curve this sequence induces is self-intersecting but, more interestingly, looks globally
like the cubic in Figure 2.8. Only on a local scale, the curves differ. The theme of globally similar
folding curves appears more often when searching graphical illustrations of underlying examples. Even
when, on first glance, two folded continued fractions differ, their folding curves can be quite similar.

41



Figure 2.9: The curve as defined in Example 2.3.8 after 4 and 8 iterations. It starts purple and slowly
fades to red following the colours of the rainbow.

This example also shows that analytically continuing such relations beyond the radius of conver-
gence of the power series for limn→∞ pkn and limn→∞ qkn is impossible. For a nonzero integer x, the
rational limit 2x

1+x2
has a finite continued fraction and differs from the infinite continued fraction w.

Example 2.3.9. The recursion defined by w0 being the empty word and

wn = [wn−1, wn−1, wn−1, −x, −←−−−wn−1, −←−−−wn−1, −←−−−wn−1, x]

looks like an even further exaggeration of the original folded continued fraction and the cubic folded
continued fraction. For some reason, many terms cancel out again, giving a relationship. The partial
quotients, p(x) and q(x), converge to the two power series

p(x) = −1− 2x2 − 17x4 − 195x6 − 2570x8 − 36720x10 − 553168x12 − 8650756x14 −O(x16),

q(x) = −x− 6x3 − 61x5 − 756x7 − 10406x9 − 152880x11 − 2348164x13 − 37250298x15 +O(x17).

Both sequences of coefficients do not show up on the OEIS in any form and have no cheap closed
form. Call their quotient t(x). Then t(x) has a Laurent expansion with a simple pole around 0:

t(x) = x−1 − 4x− 20x3 − 197x5 − 2410x7 − 32939x9 − 481780x11 − 7377385x13 −O(x15);

it is recognisable as an algebraic function of degree 5 because it satisfies

xt(x)5 − t(x)4 + 2xt(x)3 + 2t(x)2 − 3xt(x) + x2 − 1 = 0. (2.3.1)

The continued fraction convergences to the corresponding root of this polynomial within a disk of
approximate radius 0.230 around the origin. As polynomial (2.3.1) is quintic over Z[t(x)], we note
that its Galois group is isomorphic to the the symmetric group S5 for generic rational values of x and
thus non-solvable. Therefore, there is no finite expression in radicals for t(x).

As a variant, define vn = [wn, wn, wn] such that wn = [vn−1, −x, −←−−−vn−1, x] and

vn = [vn−1, −x,−←−−−vn−1, x,vn−1, −x, −←−−−vn−1, x, vn−1, −x, −←−−−vn−1, x].
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Clearly, vn is the beginning of wn−1 and wn is the beginning of vn, so that limn→∞wn = limn→∞ vn.
However, the partial quotients of w converge to different power series than v around the origin; w is
a root of a quintic polynomial and v of a cubic. In contrast with the cubic example, the folding curve
of w is regular, see Figure 2.10. It is not self-crossing and has transparent self-symmetry.

Figure 2.10: The curve as defined in Example 2.3.9 after 3 and 6 iterations starts purple and slowly
fades to red following the colours of the rainbow.

Many examples of such continued fractions exist. From above, one may falsely suspect that some
sort of balance in the number of terms wn and −←−wn is required. This is not the case: The recursion

wn = [wn−1, x, wn−1, x, −x, wn−1, −x,wn−1]

gives a continued fraction whose convergent relates to the cubic example in Subsection 2.3.2.

2.4 An analogue of a result of Cohn

In [11], Cohn explores the fact that the function F (x) =
∑∞

n=0 x
−2n has a folded continued fraction

form from a different perspective: All partial quotients of the regular infinite continued fraction of
F (x) are in Z[x]. Moreover, the terms x2n can also be interpreted as an iteration of the function
f(x) = x2. Let fn(x) denote f(fn−1(x)) for n ≥ 2; then F (x) =

∑∞
n=0

1
fn(x) .

Definition 2.4.1. A regular continued fraction with partial quotients in C(x) is called specializable
if all partial quotients are polynomials in Z[x].

Now, the question is for which polynomials f(x) ∈ Z[x] the continued fraction F (x) =
∑∞

n=0
1

fn(x)

is specializable. The answer to this question is given by the following theorem:

Theorem 2.4.2 (Cohn [11]). For each polynomial f ∈ Z[x] of degree at least two,
∑∞

n=0
1

fn(x) has a
specializable continued fraction if and only if f satisfies one of the following fourteen congruences:

1. f(x) ≡ 0 mod x2;

2. f(x) ≡ −x mod x2;

3. f(x) ≡ 1 mod x2(x− 1);

4. f(x) ≡ −1 mod x2(x+ 1);

5. f(x) ≡ x3 − x2 − x+ 1 mod x2(x− 1)2;

6. f(x) ≡ −x3 + 2x2 − x+ 1 mod x2(x− 1)2;

7. f(x) ≡ −x3 + 3x2− 2x+ 1 mod x2(x− 1)2;

8. f(x) ≡ x3 + x2 − x− 1 mod x2(x+ 1)2;
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9. f(x) ≡ −x3 − 2x2 − x− 1 mod x2(x+ 1)2;

10. f(x) ≡ −x3− 3x2− 2x− 1 mod x2(x+ 1)2;

11. f(x) ≡ x2 − x+ 1 mod x2(x− 1)2;

12. f(x) ≡ x2 − 2x+ 1 mod x2(x− 1)2;

13. f(x) ≡ −x2 − x− 1 mod x2(x+ 1)2;

14. f(x) ≡ −x2 − 2x− 1 mod x2(x+ 1)2.

Because ρn(x) is 1+
x

1
+
f(x)

1
+
f2(x)

1
+ · · ·+

fn(x)

1
with f(x) = x2, ρ is specializable by Theorem

2.2.4. This motivates asking Cohn’s question for an irregular continued fraction shape of F (x).

Observation 2.4.3. Let f be a polynomial in Z[x] of degree at least two. Then the irregular continued

fraction x+
f(x)

1
+
f2(x)

1
+ · · ·+

fn(x)

1
has a specializable continued fraction for all n ≥ 0 if f satisfies

one of the following conditions:

1. f(x) ≡ 0 mod x2;

2. f(x) ≡ −1 mod x(x+ 1);

3. f(x) ≡ −x− 1 mod x(x+ 1);

4. f(x) = x2 − 2.

The observation, in contrast with Theorem 2.4.2, does not contain not an ‘if and only if’ condition.
For some polynomials, a large iteration for n is needed to discard them, and those that remain do not
belong to obvious classes. A naive computation requires dealing with polynomials of degree (deg f)n,
so even testing n = 10 is hard for polynomials of degree 4. All polynomials that may produce
specializable continued fractions are −x−2 mod 2x(x+ 2), −2x−2 mod 2x(x+ 2), or −x mod x2.

The continued fraction for f = x2 − 2 is quite remarkable. It appears to be the only polynomial
of degree at least 2 and not a multiple of x2 such that the corresponding regular continued fraction is
specializable with partial quotients equal to linear polynomials. Like ρ, it has two limits. These are

[1 + x, −x, x, −x, x, −x, . . . ] and [1, −x, x, −x, x, −x, . . . ].

Save for the first terms, the partial quotients alternate between x and −x. Thus, both parity partial
limits of the continued fraction are quadratic elements of Q[x]. Due to these results, iterating polyno-
mials is natural in combination with folded continued fractions. To strengthen this claim, we study a
special class of recursions of words.

Definition 2.4.4. Let (wn)∞n=0 be a recursion of words defined by w0 = [ ] and the recursion

wn = [wn−1, ±x, −←−−−wn−1, ±x, wn−1, ±x, −←−−−wn−1, ±x, . . . , ±x, wn−1 or −←−−−wn−1],

where each sign is chosen independently and the parts wn−1 and −←−−−wn−1 alternate. Then (wn)∞n=0 is
called special.
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To understand why these special recursions are indeed special, we give a few examples where
kn = #wn − 1 and p̃ and q̃ denote pkn−1 and qkn−1 , respectively. For wn = [wn−1, x, −←−−−wn−1],

pkn = xp̃2 and qkn = xp̃q̃ + 1.

For wn = [wn−1, x, −←−−−wn−1, x, wn−1],

pkn = p̃(−x2p̃2 + 1) and qkn = q̃(−x2p̃2 + 1) + xp̃.

For wn = [wn−1, x, −←−−−wn−1, x, wn−1, x, −←−−−wn−1],

pkn = p̃(x3p̃3 + 2xp̃) and qkn = q̃(x3p̃3 + 2xp̃) + x2p̃2 + 1.

For wn = [wn−1, x, −←−−−wn−1, x, wn−1, x, −←−−−wn−1, x, wn−1],

pkn = p̃(x4p̃4 − 3x2p̃2 + 1) and qkn = q̃(x4p̃4 − 3x2p̃2 + 1)− 3x3p̃3 + 2xp̃.

For wn = [wn−1, x, −←−−−wn−1, x, wn−1, x, −←−−−wn−1, x, wn−1, x, −←−−−wn−1],

pkn = p̃(x5p̃5 + 4x3p̃3 + 3xp̃) and qkn = q̃(x5p̃5 + 4x3p̃3 + 3xp̃) + x4p̃4 + 3x2p̃2 + 1.

Observe that the equation for pkn only contains p̃, and the equation for qkn only contains p̃ and q̃ and
is linear in the latter. Furthermore, both pkn and qkn have a common term, which is a polynomial in
x · p̃ multiplied by p̃ and q̃, respectively; pkn has no other terms while qkn has an extra term, which is
a polynomial in x · p̃. These observations can be summarised as follows:

Observation 2.4.5. A recursion of words that only contains x,−x,wn−1,−wn−1,
←−−−wn−1 and −←−−−wn−1

and satisfies w0 = [ ] gives a recursion for pkn only in terms of x and pkn−1 if and only if the recursion
of words is special. Moreover, if the recursion of words is special, there are polynomials P,Q ∈ Z[y]

such that kn = #wn − 1, pkn = pkn−1P (xpkn−1) and qkn = qkn−1P (xpkn−1) + Q(xpkn−1) for n ≥ 0,
p−1 = 0 and q−1 = 1.

Assuming the observation, the corresponding continued fraction is a sum of an iterated polynomial:

qkn
pkn

=
q̃P (xp̃) +Q(xp̃)

p̃P (xp̃)
=
q̃

p̃
+

Q(xp̃)

p̃P (xp̃)
=
qkn−1

pkn−1

+
Q(xp̃)

p̃P (xp̃)
.

Hence the continued fraction can be written as

lim
n→∞

wn =
(

lim
n→∞

qkn
pkn

)−1
=

( ∞∑
n=0

Q
(
xP̂n(1)

)
P̂n+1(1)

)−1
,

where P̂ (y) = yP (xy). For example, if wn = [wn−1, x,−←−−−wn−1, x,wn−1, x,−←−−−wn−1, x,wn−1], then
P̂ (y) = x4y5−3x2y3 +y and Q(y) = −3y3 + 2y. As degP ≥ degQ, this sum converges for all |x| > 1.

Special folded continued fractions also have a very clear connection with real-life paper folding,
like the paperfolding dragon. The paper is folded in a number of pieces equal to the number of
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non-constant terms. The constant terms direct how the paper is folded.

Finally, when all ±x are chosen to be x, P and Q assume a simple form, save for perhaps signs.
Coefficients of equal parity are either zero or of the form

(
n−k
k

)
and

(
n−k−1

k

)
, where n is the number

of non-constant terms in the recursion. For example, when there are n = 20 non-constant terms,

P (y) = y19 + 18y17 + 136y15 + 560y13 + 1365y11 + 2002y9 + 1716y7 + 792y5 + 165y3 + 10y,

Q(y) = y18 + 17y16 + 120y14 + 455y12 + 1001y10 + 1287y8 + 924y6 + 330y4 + 45y2 + 1.

The non-zero coefficients of P (y) and the coefficients of Q(y) correspond to
(
20−k
k

)
for k = 0, 1, . . . , 9

and
(
19−k
k

)
for k = 0, 1, . . . , 9, respectively. Such a connection could be established by induction, but

we will not do this in the current thesis.

2.5 Mahler functions, remarkable identities and Fibonacci numbers

We now move on to a somewhat different theme. Let Fn denote the nth Fibonacci number, Ln the
nth Lucas number and φ ≈ 1.618 . . . the golden ratio. Then

F0 = 0, F1 = 1 and Fn = Fn−2 + Fn−1 for all n ≥ 2 and

L0 = 2, L1 = 1 and Ln = Ln−2 + Ln−1 for all n ≥ 2.

Binet’s formula is an elementary tool to work with Fibonacci and Lucas numbers.

Theorem 2.5.1 (Binet’s formula). For all n ≥ 0, Fn = φn−(−φ−1)n√
5

and Ln = φn + (−φ)−n.

It implies that

F2n =


1 if n = 0

1−
(
(φ−1)2

n
)2

√
5(φ−1)2n

if n ≥ 1,
and L2n =


1 if n = 0

1+
(
(φ−1)2

n
)2

(φ−1)2n
if n ≥ 1.

In 1974, I. J. Good [14] published a remarkable identity involving the Fibonacci numbers, namely

∞∑
n=0

1

F2n
=

7−
√

5

2
.

In particular, this is an algebraic number. Meanwhile, Becker and Töpfer [6] proved that
∑∞

n=0
1

F2n+1
is

transcendental and Nishioka [19] showed that the numbers
∑∞

n=0

(
1

F2n+1

)l for l ≥ 1 are all algebraically
independent of each other. The powers of 2 in the indices of the Fibonacci numbers already suggest
that Good’s identity has something to do with Mahler functions. Such identities have been fairly
popular, being cited dozens of times, and articles are still published about these sums four decades
later. Good’s identity can be constructed in the following way: Let f(x) =

√
5x

1−x2 . Then

√
5

1− x
=

√
5

1− x2
+ f(x) =

√
5

1− x4
+ f(x) + f(x2) =

√
5

1− x8
+ f(x) + f(x2) + f(x4) = · · · ,
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and so √
5

1− x
= lim

n→∞

√
5

1− x2n
+

n−1∑
m=0

f
(
x2

m)
=
√

5 +
∞∑
n=0

f
(
x2

n)
if |x| < 1.

Evaluating
∑∞

n=0 f
(
x2

n) at φ−1 gives the desired result using Binet’s formula.

More general, one finds these identities by choosing a k ≥ 2 and a rational function f(x). By
taking g(x) := f(x)− f(xk), it follows from telescoping that f(x)− limn→∞ f

(
xk

n)
=
∑∞

n=0 g
(
xk

n).
If almost all of g(x), g(xk), g

(
xk

2)
, . . . evaluate to a combination of Fibonacci and Lucas numbers by

Binet’s formula, and the limit and sum converge, a new identity is born.

Example 2.5.2. Let f(x) = 1√
5(1+x2)

. Then g(x) = f(x) − f(x2) = x2(x2−1)√
5(1+x2)(1+x4)

= x2−1
x
√
5

x2

1+x4
x

1+x2

can be evaluated at φ−1 to get the infinite sum

∞∑
n=0

F2n

L2nL2n+1

=
3
√

5 + 5

30
=

√
5

10
+

1

6
.

This construction does not only work for sums. For example, defining g(x) via f(x) = g(x)f(xk)

leads to closed forms for infinite products, while extracting g(x) and h(x) from f(x) = g(x)f(xk)+h(x)

evaluates infinite sums of finite products. For the last mentioned type, both g
(
xk

n) and h(xkn) have
to assume nice forms using Binet’s formula for almost all n. We have the following example:

Example 2.5.3 (Example of [22]). Let k = 2, f(x) = 1 − x2 and g(x) = −x2
1−x4 . Then f(x) =

g(x)f(x2) + 1, implies that

f(x) =

∞∑
n=0

n−1∏
m=0

g
(
x2

m)
.

Using that φ−2n = −
√

5F2n+1 , we evaluate at x = φ−1 to get

√
5− 3

2
= f(φ−1)− 1 =

∞∑
n=0

1

g(φ−1)g(φ−2) · · · g
(
φ−2n−1

) − 1 =

∞∑
n=1

1(
−
√

5
)n
F2F4 · · ·F2n

.

This construction uses an elementary technique and produces a short proof. Different methods
were used in [22]. Similarly, identities with irregular continued fractions can be constructed, which
seem to be not yet discovered. The set up is the following: Let f(x), g(x) and h(x) be rational
functions satisfying f(x) = g(x) + h(x)

f(x2)
. Then fix f(x) and one of g(x) and h(x), compute the other

of g(x) and h(x), and test whether Binet’s formula can be applied to g
(
xk

n) and h
(
xk

n) for almost
all n. Any continued fraction with a unique limit then produces an identity.

For h(x) = 1, multiple rational functions appear as solutions, but they always seem to have two
limits, and the trick fails. For example, f(x) = x+1

x−1 and g = 2x
x2−1 gives

lim
n→∞

2√
5F1

+
1
2√
5F2

+
1
2√
5F4

+ · · ·+
1
2√

5F2n−1

+
1
2√
5F2n

.

The 2√
5F2n

is small, making 2√
5F2n−1

+
(

2√
5F2n

)−1 large etc. Therefore, depending on the parity of the
continued fraction, the result is larger or smaller than 1, hence, the convergence fails.
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On the other hand, setting f(x) = (1+x)2

x , g(x) = 1+x2

x and h(x) = 2 (1+x2)2

x2
we obtain

1 +
2√
5

= f(φ) = g(φ) +
h(φ)

L2

+
2L2

2

L4

+
2L2

4

L8

+
2L2

8

L16

+ · · · ,

which can be alternatively written as

7

5
= L1 +

2L2
1

L2

+
2L2

2

L4

+
2L2

4

L8

+
2L2

8

L16

+ · · · .

Below is a table with a few continued fractions that converge to some number in Q. Far more continued
fractions do not converge in Q but in Q(

√
5), but due to the supply of such identities, only these six

examples are shown which have ‘nicer’ values.

f(x) g(x) h(x) Continued Fraction Value

(1−x)2
x

1+x2

x −2 (1−x2)2
x2

L1 −
10F 2

1

L2

−
10F 2

2

L4

− · · · -9

(1−x2)2
x2

(1+x2)2

x2
−4 (1−x4)2

x4
L2
1 −

20F 2
2

L2
2

−
20F 2

4

L2
4

− · · · -3

1+x4

x2
(1+x2)2

x2
−21+x8

x4
L2
1 −

2L4

L2
2

−
2L8

L2
4

− · · · -1

(1+x)2

x2+1
1 + 1+x2

x
(1+x2)2

x2
L1 + 1 +

L2
1

1 + L2

+
L2
2

1 + L4

+ · · · 2.2

1+x4

x2
(1−x2)2
x2

21+x8

x4
5F 2

1 +
2L4

5F 2
2

+
2L8

5F 2
4

+ · · · 7

(1+x2)2

x2
1 + (1−x2)2

x2
3 (1+x4)2

x4
1 + 5F 2

1 +
3L2

2

1 + 5F 2
2

+
3L2

4

1 + 5F 2
4

+ · · · 9

48



Chapter 3

Hadamard products of Mahler functions

The space of k-Mahler functions is known to be closed under several operations, for example addition
and multiplication. In this section, its closeness under another operation, the Hadamard product, is
studied. To do this efficiently, we show that the usual definition of a Mahler function can be weakened.
Recall that Mahler function were assumed to be analytical and thus have a power series expansion
around the origin.

Theorem 3.0.1. The condition that A0(q)Ad(q) 6= 0 in the definition of a k-Mahler function f(q) ∈
C[[q]] \ {0} (Definition 1.1.1) can be weakened to “not all Ai(q) are zero”.

Proof. Without loss of generality, Ad(q) can be assumed to be 0, and if A0(q) = 0, then by the new
condition, there is a smallest number 0 ≤ e < d such that Ae(q) 6= 0. As such, we have the equation

A(q) +Ae(q)f(qk
e
) +Ae+1(q)f(qk

e+1
) + · · ·+Ad(q)f(qk

d
) = 0. (3.0.1)

Note that C[[q]] can be written as a direct sum of C[[qk
e
]], qC[[qk

e
]], . . . , qk

e−1C[[qk
e
]]. As 0 6= f(q) ∈

C[[q]], f(qk
e
) is in the first of these otherwise disjoint vector spaces and in none of the others, projecting

the Mahler equation (3.0.1) onto each of these vector spaces gives a new relation for f(q). As d is
minimal, the relations are linearly independent, and hence, as (3.0.1) is another relation for f(q),
all but one is zero. Let this sole projection be to qjC[[qk

e
]] for a 0 ≤ j < ke. Then qj divides

the polynomial coefficients of the Mahler equation, and so by updating the relation by dividing the
relation by qj , all new polynomial coefficients are in C[qk

e
]. Evaluating the new equation in q

1
ke gives

a usual k-Mahler equation.

Corollary 3.0.2. If f is analytic and dimC(q)(f(q), f(qk), f(qk
2
), . . . ) is finite, then f is Mahler.

Proof. By the assumption, there is an equation like (3.0.1), and so f is Mahler by Theorem 3.0.1.

This corollary enables us to show the space of k-Mahler functions is closed under several operations.

Example 3.0.3. That the space of k-Mahler functions is closed under addition, can be seen as follows.
For a k-Mahler function f of degree df , the vector space C(q)[1, f(q), f(qk), f

(
qk

2)
, . . . ] has dimension
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at most df + 1. If g is a k-Mahler function of degree dg, then

dimC(q)
(
1, (f + g)(q), (f + g)(qk), (f + g)

(
qk

2)
, . . .

)
≤ dimC(q)

(
1, f(q), f(qk), f

(
qk

2)
, . . . , g(q), g(qk), g

(
qk

2)
, . . .

)
≤ df + dg + 1

is finite. Thus, f + g satisfies a k-Mahler equation by corollary 3.0.2.

Definition 3.0.4. The Hadamard product of two power series f(q) =
∑∞

n=0 cnq
n and g(q) =∑∞

n=0 dnq
n in C[[q]] is defined as

∑∞
n=0 cndnq

n and denoted by f ? g.

Several well-known subsets of C[[q]] are closed under the Hadamard product: the spaces of mono-
mials, polynomials, rational functions [15, Theorem 7] and D-functions (functions that satisfy a linear
differential equation with polynomial coefficients) [15, Theorem 9]. To the best of our knowledge,
this question has not yet been answered for the entire space of k-Mahler functions, but Allouche and
Shallit proved it for a subspace of so-called k-regular functions [2]. This construction is studied in
Subsection 3.1. To start, recall a simple observation:

Proposition 3.0.5. Let f(q) =
∑∞

n=0 xnq
n be a k-Mahler function that satisfies the k-Mahler equation

A(q) +A0(q)f(q) +A1(q)f(qk) + · · ·+Ad(q)f
(
qk

d)
= 0

for some A(q), A0(q), . . . , Ad(q) ∈ C[q] with A0(q)Ad(q) 6= 0 and N = max(degA0(q), . . . ,degAd(q)).
If Ai(q) =

∑N
j=0 ai,jq

j and n > degA, then we have

a0,0xn + · · ·+ a0,Nxn−N + a1,0xn
k

+ · · ·+ a1,Nxn−N
k

+ · · ·+ ad,N + · · ·+ a1,Nxn−N
kd

= 0.

A rational function f(q) = r(q)
s(q) is k-Mahler as s(q)f(q) − r(q) = 0. Moreover, the Hadamard

product is commutative, associative and distributive over addition. Its identity is the rational function
1 + q + q2 + · · · = 1

1−q . Only, the Hadamard product of k-Mahler functions is not always k-Mahler.

Example 3.0.6. Let k = 2, f(q) = q+ q2 + q4 + q8 + . . . and g(q) = 1
1−2q = 1 + 2q+ 4q2 + 8q3 + · · · .

Then f satisfies f(q) = q + f(q2), so both are 2-Mahler. Their Hadamard product is

∞∑
n=0

xnq
n := (f ? g)(q) = 2q + 4q2 + 16q4 + 256q8 + · · ·+ 22

n
q2
n

+ · · · .

This means that

xn =

2n if n is a power of 2,

0 otherwise.

If f ? g is 2-Mahler, Proposition 3.0.5 gives a recursion for some N and d. If n is a large power of 2,
0 ≤ i ≤ N and 0 ≤ j ≤ d, then n−i

2j
is a power of 2 if and only if i = 0. Thus, for large m only a small

number of non zero terms remain, and the recursion becomes

a0,0x2m + a1,0x2m−1 + · · ·+ ad,0x2m−d = 0.
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As such, the sequence (x2m)∞m=0 =
(
22
m)∞

m=0
satisfies a linear recursion while x2m

x2m−1
= 22

m−1 tends to
infinity. A contradiction. Thus, f ? g is not 2-Mahler.

Any f(q) with arbitrary long sequences of zeros in its q-expansion does the job in Example 3.0.6,
so F , G, H and I from Chapter 1 work as well. One could argue that 1

1−2q is not a ‘legitimate’ Mahler
function as it is not defined in the entire unit disk. However, examples without this drawback exist.

Example 3.0.7. If k ≥ 2, α is non-zero and not a root of unity, g(q) = 1
1−αq and f = q+qk+qk

2
+ · · ·

satisfies f(q) = q + f(qk), then (f ? g)(q) = αq + αkqk + αk
2
qk

2
+ · · · and the recursion

a0,0xkm + a1,0xkm−1 + · · ·+ ad,0xkm−d = 0.

is obtained as in Example 3.0.6 for large m. For such large m, αkm−d is a root of a0,0qk
d

+ a1,0q
kd−1

+

· · ·+ad,0 because xkm = αk
m . As α is not a root of unity, all αkm−d differ from each other, giving that

the polynomial has an infinite number of roots and hence is the zero polynomial. Thus, the recursion
is trivial and f ? g is not k-Mahler.

Not all numbers on the unit circle are roots of unity or transcendental. For example, Lehmer’s
polynomial of degree 10 [17] has 8 roots on the unit circle that are not roots of unity. In general, the
projection of an algebraic number onto the unit circle is algebraic but often not a root of unity.

Meanwhile, there are many pairs Mahler whose Hadamard product is again Mahler.

Example 3.0.8. We call a k-Mahler function special if, as defined in Proposition 3.0.5, all Ai(q) = ai

are constant and A(q) =
∑M

i=0 biq
i with bi = 0 if i is not a kth power. Examples of special Mahler

functions are f in Example 3.0.6 and g(q) = q+ q2 + 2q4 + 3q8 + · · ·+Fn+1q
2n + · · · , where Fn is the

nth Fibonacci number, which satisfies g(q) = g(q2) + g(q4) + q.

There is a natural bijection between the special k-Mahler functions and rational functions defined
at q = 0 that preserves the Hadamard product: x1q + xkq

k + xk2q
k2 + · · · 7→ x1 + xkq + xk2q

2 + · · · .
Thus, the recursion for xn transforms into a linear recursion. As the rational functions are closed
under the Hadamard product [15, Theorem 7], the special k-Mahler functions are as well.

3.1 The space of k-regular functions

Much larger spaces of Mahler functions that are closed under the Hadamard product exist. In this
section, we study a space introduced by Allouche and Shallit [2] and Becker [5].

Definition 3.1.1. The k-kernel of a sequence (xn)∞n=0 is the set of all the subsequences of the form
(xken+r)

∞
n=0 where e ≥ 0 and 0 ≤ r ≤ ke − 1.

Definition 3.1.2. A sequence (xn)∞n=0 is called k-automatic if its k-kernel is finite and k-regular
if its k-kernel is finitely generated.

Naturally, the definitions of k-automatic and k-regular sequences translate to their generating
functions. We give a few examples. The k-kernel of 1

1−q consists of one element: (1, 1, . . . ). So 1
1−q is
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k-automatic and k-regular. Next, q
(1−q)2 has a k-kernel generated by (1, 1, . . . ) and (0, 1, 2, . . . ) and

is k-regular but not k-automatic. Lastly, 1
1−2q is neither k-automatic nor k-regular. By [2, Theorem

2.10], the coefficients of a k-regular sequence have to grow polynomially.

More generally, a k-regular sequence is k-automatic if and only if it assumes a finite number of
values [2, Theorem 2.3]. Moreover, both the sum and Hadamard product of two k-regular sequences
are k-regular [2, Theorem 2.5]. There does not exist an easy characterisation of k-regular functions in
terms of k-Mahler functional equations, but at least there is a one-sided relationship.

Theorem 3.1.3 (Theorem 1 in [5]). A k-regular function satisfies a homogeneous k-Mahler equation.

The inclusion is strict, as f(q) = 1
1−2q demonstrates. It satisfies (1− 2q)f(q)− (1− 2q2)f(q2) = 0,

but it is not k-regular as noted above. Becker showed a partial inverse:

Definition 3.1.4. A k-Mahler function as in Proposition 3.0.5 with A(q) = 0 (so homogeneous) and
A0(q) = 1 is called a k-Becker function or k-Becker for short.

Theorem 3.1.5 (Theorem 2 in [5]). A k-Becker function is k-regular.

Again, the inclusion is strict. Take f(q) = q, which is k-regular. If f was k-Becker, the linear term
of Ai(q)f

(
qk

i)
= Ai(q)q

ki would be zero and A0(q)f(q) = q would not cancel out in the Mahler equa-
tion. An inhomogeneous k-Becker function is a not necessarily homogeneous k-Becker function.

Proposition 3.1.6. An inhomogeneous k-Becker function is k-regular.

Proof. Let f be an inhomogeneous k-Becker function that satisfies the Mahler functional equation

f(q) +A1(q)f(qk) +A2(q)f
(
qk

2)
+ · · ·+Ad(q)f

(
qk

d)
+A(q) = 0

for some polynomials A1, A2, . . . , Ad, A ∈ C[q] and Ad 6= 0. If A(q) = 0, we are done by Theorem
3.1.5. Recall that polynomials are k-regular, and that the space of k-regular sequences is closed
under addition and multiplication [2, Theorem 3.1]. Our goal is to prove that f is a sum of k-regular
functions and thus k-regular with several reductions.

Step 1. If e = degA and A(q) =
∑e

n=0 anq
n, there are Mahler functions g0(q), . . . , ga(q) such that

g0(q) +A1(q)g0(q
k) +A2(q)g0

(
qk

2)
+ · · ·+Ad(q)g0

(
qk

d)
+ a0 = 0

...
...

ge(q) +A1(q)ge(q
k) +A2(q)ge

(
qk

2)
+ · · ·+Ad(q)ge

(
qk

d)
+ an = 0

and f(q) =
∑

n=0 ge(q), and so, without loss of generality, A(q) can be assumed to be a monomial.
Step 2. If A(q) = cqn is a monomial for some c ∈ C \ {0} and n ≥ 0, then

q−nf(q) + q−nA1(q)f(qk) + q−nA2(q)f
(
qk

2)
+ · · ·+ q−nAd(q)f

(
qk

d)
+ c = 0.

Now A(q) can be assumed to be constant due to the map f(q) to g(q) := f(q)qn which gives

g(q) + qnk−nA1(q)g(qk) + qnk
2−nA2(q)f

(
qk

2)
+ · · ·+ qnk

d−nAd(q)f
(
qk

d)
+ c = 0.
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Step 3. Assume that A(q) = c, a non-zero constant. Then

f(q) +A1(q)f(qk) +A2f
(
qk

2)
+ · · ·+Adf

(
qk

d)
+ c = 0 and

f(qk) +A1(q
k)f
(
qk

2)
+A2(q

k)f
(
qk

3)
+ · · ·+Ad(q

k)f
(
qk

d+1)
+ c = 0.

Subtracting these two equations gives a homogeneous equation for f . This completes the reduction.

Thus, an inhomogeneous k-Becker function can be written as a sum of homogeneous k-Becker
functions scaled by powers of q. If n ≥ 1 and f k-Becker, then f is k-regular by Theorem 3.1.5. As qn

is a polynomial, it is k-regular, and so their product qnf(q) is k-regular. This completes the proof.

Again, this characterisation is incomplete. Take P (q) as introduced in Subsection 2.2.4. It satisfies
(1 + q2)P (q) = (q + q3)P (q2) + 1 and is 2-automatic by Theorem 6.5.4 of [3] and thus k-regular, but
it is unclear whether P (q) is (inhomogeneous) k-Becker.

3.2 Complete Hadamard functions

The identity function with respect to the Hadamard product is 1
1−q , so the Hadamard product of any

k-Mahler function and 1
1−q is again k-Mahler. Such functions are quite rare. We name them:

Definition 3.2.1. A complete Hadamard function is a function f(q) ∈ C[[q]] such that the
Hadamard product of f and every k-Mahler function is k-Mahler.

Simple examples of complete Hadamard functions are polynomials as their Hadamard product
with a power series is again a polynomial. In this section, an elegant classification of the rational
functions with this property is given.

Theorem 3.2.2. A rational function f(q) = r(q)
s(q) with r, s ∈ C[q] coprime and s(0) 6= 0 is complete

Hadamard if and only if all roots of s(q) are roots of unity.

Note that the condition s(0) 6= 0 implies that f has a power series expansion. To start, we give a
few basic observations on complete Hadamard functions:

Lemma 3.2.3. Let f(q) be complete Hadamard and A ∈ C[q]. Then

1. f(q) is k-Mahler;

2. The space of complete Hadamard functions forms a ring with multiplication being defined the
Hadamard product and the multiplicative identity being 1

1−q .

3. A(q)f(q) is complete Hadamard.

Proof. Let h(q) be k-Mahler.

1. f(q) = f(q) ? 1
1−q is k-Mahler.
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2. Let g(q) be complete Hadamard. The space of complete Hadamard functions is closed under
both addition and the Hadamard product. Then (f + g) ? h = f ? h + g ? h is the sum of two
k-Mahler functions and thus k-Mahler. As g is complete Hadamard, g?h is k-Mahler, and hence
f ? (g ? h) = (f ? g) ? h as well. The other axioms follow trivially.

3. If α ∈ C, (αf) ? h = α(f ? h) is also k-Mahler, and thus αf(q) is complete Hadamard. If
h̃(q) := h(q)−h(0)

q , h̃(q) is Mahler and analytic. Then

(qf) ? (h) = (qf) ? (g(0) + qh̃) = (qf) ? (g(0)) + (qf) ? (qh̃) = 0 + q(f ? h̃)

is k-Mahler, and thus qf(q) is complete Hadamard. As the ring of complete Hadamard functions
is closed under addition, iterating these two facts gives that A(q)f(q) is complete Hadamard.

A more involved complete Hadamard function is 1
(1−q)n for every n ≥ 0.

Lemma 3.2.4. The derivative f ′(q) of a k-Mahler function f is k-Mahler.

Proof. Differentiating the k-Mahler equation of f gives

A′(q) +A′0(q)f(q) +A0(q)f
′(q) + · · ·+A′d(q)f

(
qk

d)
+Ad(q)k

dqk
d−1f ′

(
qk

d)
= 0.

Thus, dimC(q)(1, f(q), f ′(q), f(qk), f ′(qk), f
(
qk

2)
, f ′
(
qk

2)
, . . . ) ≤ 2d + 2, and so f ′(q) is k-Mahler by

Corollary 3.0.2 as dimC(q)(1, f
′(q), f ′(qk), . . . ) is finite.

Lemma 3.2.5. The derivative of a complete Hadamard function is complete Hadamard.

Proof. Let f(q) =
∑∞

n=0 anq
n be complete Hadamard and g(q) =

∑∞
n=0 bnq

n be k-Mahler. Then

f ′(q) ? g(q) =
( ∞∑
n=0

(n+ 1)an+1q
n
)
?
( ∞∑
n=0

bnq
n
)

=

∞∑
n=0

(n+ 1)an+1bnq
n =

d

dq
(f(q) ? qg(q))

is k-Mahler by applying Lemmas 3.2.3 and 3.2.4.

Lemma 3.2.6. For all n ≥ 0, 1
(1−q)n is complete Hadamard.

Proof. As 1
1−q is complete Hadamard, its (n− 1)st derivative (n−1)!

(1−q)n is as well by Lemma 3.2.5.

Now Theorem 3.2.2 can be proven. First, one direction:

Proposition 3.2.7. Let r(q) and s(q) be coprime polynomials and f(q) = r(q)
s(q) such that s(0) 6= 0 and

s has a root α that is not a root of unity. Then f(q) is not complete Hadamard.

Proof. If f(q) were complete Hadamard, then p(q)
1−α−1q

:= f(q) s(q)
1−α−1q

would be complete Hadamard

by Lemma 3.2.3 and as s(q)
1−α−1q

is a polynomial. Write

p(q)

1− α−1q
=

p(α−1)

1− α−1
+ u(q) = p(α−1)

∞∑
n=0

α−nqn + u(q)
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for some polynomial u(q). Thus, like in Example 3.0.7, the Hadamard product of
∑∞

n=0 p(α
−1)αnqn

with g(q) satisfying g(q) = g(qk)+ q gives rise to a linear recurrence and a polynomial with an infinite
number of roots. Thus f ? g is not Mahler and f(q) cannot be complete Hadamard.

And the other way around:

Lemma 3.2.8. For all m ≥ 1, 1
1−qm is complete Hadamard.

Proof. Assume that g(q) =
∑∞

n=0 cnq
n is k-Mahler. Then

1

1− qm
? g(q) =

∞∑
n=0

m∑
i=0

ζimα
nqn =

m∑
i=0

g(ζimq).

Thus, as for all 0 ≤ i ≤ m

dimC(q)
(
1, g(ζimq), g((ζim)kqk), g((ζim)k

2
qk

2
), . . .

)
is finite, {g(ζimq

kj ) : i, j ≥ 0} is finitely generated. Now Corollary 3.0.2 gives that 1
1−qm ? g(q) is

k-Mahler and thus the proposition.

Proposition 3.2.9. Let r(q) and s(q) be coprime polynomials and f(q) = r(q)
s(q) such that all roots of

s are roots of unity. Then f is complete Hadamard.

Proof. If all roots of s(q) are roots of unity, let m be the least common multiple of these orders. Then
s(q) divides (1− qm)l for some l ≥ 1. If l = 1, then this case has been treated in the proof of Lemma
3.2.8. If l > 1 and g is k-Mahler, then 1

1−qm ? g has a k-Mahler equation and its coefficients follow a
recursion by Proposition 3.0.5. As only the coefficients xn−i

kj
matter when i is a multiple of m, it is

seen that all Ai(q) and A(q) are polynomials in C[qm]. Then ( 1
1−qm ? g)(q

1
m ) is also k-Mahler and

(
1

(1− qm)l
? g

)
(q) =

(((
1

1− qm
? g

)
(q

1
m )

)
?

1

(1− q)l

)
(qm)

is k-Mahler, and thus 1
(1−qm)l

is complete Hadamard. Thus, r(q)
s(q) = r(q)

(1−qm)l
(1−qm)l

s(q) is complete

Hadamard by Lemma 3.2.3 as (1−qm)l

s(q) is a polynomial by construction.

Proof of Theorem 3.2.2. Combine Propositions 3.2.7 and 3.2.9.

The natural follow-up question is whether there are irrational complete Hadamard functions, but
their existence is highly dubious.
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