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Abstract

In complex distributed services, the control flow of requests spans multiple software components, distributed over
many processes and machines. Traditional machine-centric approaches, such as profilers and debuggers, cannot
capture a coherent view on requests in such systems. To address this, special purpose tools arose to capture the
end-to-end flow of requests. They all rely on propagating a request context (e.g. request ID) alongside the request
across all components. This context propagation does not exist out-of-the-box. System developers must expend
significant effort modifying their system to provide context propagation. This instrumentation process is difficult.
Often, developers miss locations that require instrumentation; identify incorrect locations; or insert instrumentation
incorrectly. We present Pathfinder, a developer-in-the-loop tool that guides the developer through the end-to-end
instrumentation process. Pathfinder uses runtime analysis to detect potential instrumentation points of a system’s
source code, then directs developer attention to those places. Developers can then decide which of the detected points
are indeed places that require instrumentation. Pathfinder focuses on intra-process context propagation and exploits
inter-thread communication events to identify potential instrumentation points. Pathfinder was able to identify all
intra-process instrumentation points in two complex, widely used distributed systems. With the help of Pathfinder
less than 1% of each system’s code base needed to be investigated manually to achieve a full system instrumentation.
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Chapter 1

Introduction

In complex distributed services, the control flow of requests spans multiple software components, distributed over
many processes and machines. In this setting it is significantly difficult to troubleshoot performance and correctness
issues. For example, if the latency of a request is higher than average, it is difficult to deduce the root cause – i.e.,
what caused the request slowdown? – because doing so requires a coherent end-to-end view of the request. That
is, we would need information about what happened during the request in all of the components, processes, and
machines traversed by the request. To deduce the root cause, we would want to know the execution time in each
component, or important events that may have happened on different machines.

Traditional machine-centric approaches, such as profilers and debuggers, cannot capture such a coherent view on
requests in distributed systems. Consequently, special-purpose tools have been proposed by recent research, such as
distributed tracing [1, 2], resource tracking frameworks [3, 4], and metric tracking systems [5, 6, 7]. All of these tools
work at the granularity of end-to-end requests. In particular, to overcome the above challenges, all of these tools are
based on request flow tracking.

Request flow tracking is a technique for capturing end-to-end information about requests in distributed systems. A
simple example of request flow tracking is to use and propagate a unique request ID with each request. When each
request arrives at the system, it is assigned a unique request ID. The system then includes this request ID with the
request, everywhere it goes. If the request ID is present everywhere the request goes, performance and debugging
information – such as events that happened during the request’s execution, and measurements of execution times in
different components – can include the ID of the “current” request. Afterwards, this information can be collected
from all machines and grouped by request ID to reveal the end-to-end picture of the request’s execution.

In general, request flow tracking relies on context propagation. A context – in the previous example, the request
ID; in general, request-specific metadata – must be propagated alongside the request everywhere the request goes.
Request flow tracking is difficult to achieve in practice because context propagation is challenging to implement
correctly, as we show in §3.2. Context propagation must correctly pass contexts within and across all components,
otherwise the system might fail to attribute work correctly to the right requests. Context propagation must be correct
both between processes (e.g. contexts must be correctly included in RPCs) and within processes (e.g. contexts must
correctly move between threads, through request queues, etc.).

Context propagation does not exist out-of-the-box. Instead, system developers must expend significant effort mod-
ifying their system to provide context propagation. Consequently, many distributed systems today lack context
propagation, and it is a laborious process to deploy any tool (e.g. distributed tracing) that requires it. Although some
recent work has explored automating context propagation through source code transformation and by inferring request
paths [8, 9, 10], all prior approaches are incomplete and most are impractical. Consequently, context propagation
today is still primarily a manual instrumentation task that must be performed by developers.

Manual instrumentation requires developers to extensively modify the source code of their system to identify
places where contexts (e.g., request IDs) need to be propagated. For example, the context must be included in
inter-process messages when sent, and extracted from those messages when received. Context is propagated across
thread pools, event systems and custom execution infrastructures to correctly associate work done by each thread
with the corresponding request. The developer must consider large parts of the code base and its dependencies to
uncover all of these places where contexts must be propagated.

Unfortunately, instrumentation is challenging [11, 12, 13]. Developers must mentally understand the complete
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Figure 1.1: Incomplete context propagation along a request execution path. Because instrumentation is missing, T1
does not propagate the context to T3.

execution model of the system, map this understanding to specific locations in the program’s source code, and
finally correctly insert context propagation code at those locations. Often, developers miss locations that require
instrumentation; identify incorrect locations; or insert instrumentation incorrectly [14, 15, 16, 17, 18, 19, 20, 21]. In
all cases, this leads to incorrect request flow tracking: work will be incorrectly attributed to the wrong request, and
often, work will not be attributed to a request when it should be. Moreover, as we discuss in §2.3 and §3.2, context
propagation is sometimes use-case dependent and requires the developer to make qualitative decisions.

To illustrate why incorrect context propagation is a challenge, consider the example in Figure 1.1. In this example, a
request enters process P1 and begins executing in thread T1. Part way through execution, T1 offloads some work to
two other threads, T2 and T3; those threads then make remote calls to other processes. To correctly track the request,
instrumentation is required in two important places: when work is passed from T1 to T2; and when work is passed
from T1 to T3. If instrumentation is present, as illustrated for T1 to T2, then the work done in T2 and in subsequent
processes can be correctly attributed to the request. However, if instrumentation is missing, as illustrated for T1 to
T3, then none of the work will be attributed to the request, neither in T3, nor in any of the subsequent processes.
Completeness of instrumentation is therefore critically important to correctly track request flows, as a single “missing
link” can have an outsized effect.

The goal of this thesis is to make it easier to manually instrument systems. Specifically, we wish to reduce the
developer effort and cognitive burden required to achieve complete and correct system instrumentation. Although
instrumentation is primarily a manual task, we know of no existing tools to aid developers in instrumenting their
systems. Our solution, Pathfinder, is a developer-in-the-loop tool that guides the developer through the end-to-end
instrumentation process. Pathfinder uses runtime analysis to detect potential instrumentation points of a system’s
source code, then directs developer attention to those places. Developers can then decide which of the detected points
are indeed places that require instrumentation. Pathfinder substantially reduces the cognitive burden on developers,
because developers only need to consider a vastly-reduced set of potential instrumentation points.

Pathfinder is effective in identifying intra-process propagation points, widely considered to be the most difficult and
pernicious kind to get correct [10, 22], and neglected by prior automatic instrumentation techniques [23, 24, 10].
Pathfinder is a general-purpose tool for Java programs. It is intended to be used at development or testing time by
developers. Developers run their system with Pathfinder attached; Pathfinder will analyze the system as it runs, to detect
potential instrumentation points. Developers can then update the system’s source code with instrumentation. Pathfinder
is general-purpose: it can capture any intra-process request flows including asynchronous event execution, when work
items are submitted to thread pools, and when executions for different requests are paused and interleaved.

Pathfinder’s key observation is that at instrumentation points there is usually an information exchange between the
thread that currently executes the request and another that will continue the execution. For example, a common
pattern we observe is that one thread creates objects to represent some work or event item, then passes that object to a
different thread to perform the work. Pathfinder automatically tracks these information exchanges at runtime, and
combines this information to present to developers as potential instrumentation points. The developer inspects this
information, decides on relevance, and ultimately inserts instrumentation based on the information.

We evaluate Pathfinder by fully instrumenting two large distributed systems, HBase [25] and Cassandra [26]. With
the help of Pathfinder we realized a full system instrumentation for both systems. We were able to identify all
instrumentation points by investigating less than 1% of the code base of HBase and Cassandra respectively. We
defined the ground truth of instrumentation points based on existing instrumentation both systems provide.
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Our overall contributions are as follows:

• We identify inter-thread communication as highly discriminitive in determining instrumentation points.
• We develop an exhaustive method for detecting inter thread communications in program executions.
• We present a systematic developer-in-the-loop instrumentation workflow that takes advantage of tracked

inter-thread communication events to guide the developer.
• We design and implement Pathfinder, an instrumentation tool, and present evaluation on two large open-source

distributed systems.

The rest of this thesis is organized as follows. Chapter 2 introduces background on request tracking, the instrumentation
process for context propagation and related work. Chapter 4 presents the concepts behind Pathfinder, including
a mechanism to track inter-thread communication in program runs and a systematic instrumentation workflow.
Chapter 6 presents the implementation of our Java prototype. Chapter 7 covers the evaluation of Pathfinder on two
software systems. In Chapter 8 we discuss the results of the evaluation and future work. In Chapter 9 we conclude the
thesis.
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Chapter 2

Background

In this chapter, we present background and an overview on request flow tracking, which the work of this thesis then
builds upon.

2.1 Distributed Systems
Modern internet services like Netflix [27] and YouTube [28] are distributed systems. They comprise multiple software
components, which run in different runtimes and are distributed across many machines in a datacenter. This is
necessary for the enormous scale of the applications and the performance and availability that they require. This
contrasts with more traditional application designs which appear as single-process, monolithic systems.

The prevailing design approach for building distributed services is the micro-service architecture. Microservices
isolate the different software components of an application into smaller, fine-grained pieces. They communicate
with each other via runtime-independent protocols (e.g. remote procedure calls), which minimizes inter-service
dependencies and offers much higher modularity.

Using a microservice architecture has several benefits. It enables teams of developers to work independently, using
the software stack that best fits their project. Moreover, it enables independent evolution: the developers of one service
do not need to know the internal details of other services.

However, the downside is an increase in system complexity. When a top-level request from a user enters the system
(e.g. to load the user’s personalized Twitter stream), the resulting execution can be an adventure across many different
machines and software components. It will touch potentially hundreds of services and traverse many machines in the
datacenter. Different requests follow different paths through the application, touch different machines, and utilize
different resources. For example, in September 2019 Uber [29] reported over 3000 distinct microservices, where
requests touch hundreds of nodes.

At any point in time, there may be millions of requests concurrently traversing the system. Within each service, there
may be multiple requests queued and multiple requests executing concurrently. Every service may utilize complex
scheduling and load-balancing mechanisms to ensure the system is efficient and robust under load, further affecting
the paths each individual request may take.

2.2 Troubleshooting & Monitoring Distributed Systems
Because of the large and repeatedly changing set of machines a request execution traverses, it is difficult for system
engineers to troubleshoot performance and correctness issues. For example, if the latency of a request is higher than
average, the root cause may originate from any of the components, processes, or machines traversed by the request.
To deduce this root cause – i.e., what caused the request slowdown? – requires the engineer to observe everything the
request did during its end-to-end execution.

Many of the traditional tools and techniques that we have for debugging and diagnosing problems don’t work well
in this setting, because they are machine-centric. For example, logging, profilers, and debuggers, only operate on a
per-process or per-machine basis. They do not provide this coherent, end-to-end view of requests, that we need to
investigate root causes. Moreover, since each microservice may concurrently process multiple requests, a further
challenge is disentangling requests from one another.
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Recent work in both academia and industry has begun proposing new tools for monitoring and diagnosing problems
in distributed systems. They tackle a range of different important use cases. We give several examples:

Distributed tracing tools such as X-Trace [30], Dapper [1] and Jaeger [2] provide a way to record information
while a request executes and tie that information together across different processes and machines after-the-fact. The
tools produce traces of requests; a trace of a request includes where each part of a request is executed, how long
it takes and the events that appear while the execution. Sambasivan et al. [12] gives an overview about use cases
distributed tracing tools support including the identification of performance problems, correctness problems and tasks
like distributed profiling and request latency monitoring.

Resource attribution tools such as Retro [3] and Stardust [4] provide a way to monitor all of the computational
resources that are consumed during a request’s execution, on all machines. For example, the CPU cycles consumed,
the amount of network traffic, disk usage, and so on. Such information is for example useful to enforce fair resource
usage among requests.

Metric-gathering tools such as Census [6, 7] and Pivot Tracing [5] collect and aggregate statistics about the functions
being called and dependencies between functions, along the end-to-end paths of requests through the distributed
system. Collected metrics can help to automatically generate alerts at an outage or trigger resource up-scaling upon
high demand.

Anomaly detection tools such as Pinpoint [31] and Pip [32] track the paths requests take through the system, and
watch out for any changes that may occur, such as strong deviations in request latency, changes in the order of work
done or incorrect behavior by analysing end-to-end request execution reports.

2.3 Request Flow Tracking
In the above examples, all of the tools have a basic requirement to track work done across multiple processes and
machines. The established technique for capturing end-to-end information about requests in distributed systems is
request flow tracking.

Example: Tracking Requests using Request IDs
To elucidate request flow tracking in more detail, we begin with a simple example of propagating request IDs. When
a request arrives at the system, it is assigned a unique request ID. This ID is then conceptually "attached" to the
request, and the system includes the request ID anywhere the request goes, such as with remote procedure calls to
other services. If the request ID is present everywhere the request goes, then it can be added to any performance and
debugging information generated by the system. For example, if there are any interesting or anomalous events that
happened, the event will explicitly state the ID of the request that caused it. After the request execution completes, all
of the performance and debugging information can be collected from all machines. By grouping this information by
request ID, it reveals the end-to-end picture of each request’s execution. It also effectively separates information from
concurrently executing requests within each process.

2.4 Instrumentation Overview
Context Propagation. The previous example demonstrated how a tool might use a request ID to correlate informa-
tion generated by different system processes. In general, different tools propagate different identifiers or metadata,
but most tools make use of this technique of propagating request-specific metadata. We call this technique context
propagation.

Instrumentation. Unfortunately, operating systems and language runtimes do not provide context propagation as a
primitive that tools can just hook into. Instead, context propagation has to be implemented at the application-level,
i.e. directly in the source code of the system. Consequently, tools like distributed tracing often cannot be used
out-of-the-box. Instead, some effort must first be spent by the system developers to correctly implement context
propagation in their system. Once context propagation is implemented, the tool can hook into it and run correctly.
The task of adding context propagation to the system is called instrumentation.

Instrumentation is a mostly manual process undertaken by developers. The developer needs to explicitly mark out the
flow of a request, in the system source code, for all system components. This cannot be done automatically (e.g. by
the operating system) because most non-trivial applications make extensive use of application-level control and data
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flow, which are not visible to the operating system. Instead this is a manual task, where developers must exhaustively
modify the system’s source code to pass around contexts with the flow of requests.

2.4.1 Categories of Instrumentation
When developers modify their systems’ source code, the instrumentation required falls into several broad cate-
gories:

• Context Creation: When a request arrives at the system’s request entry point (e.g. an HTTP server or API
gateway), a context must be created.
• Begin Request Execution: When a request begins execution in a thread, the thread handling the request must

store the request’s context in a thread-local variable. For as long as the thread handles the request, the request’s
context can be accessed from the thread-local variable. This usually happens immediately after context creation.
• Forking: Often, the thread handling the request might delegate work to other threads, e.g. by enqueuing a

work item into a queue that is read by a different thread. When this happens, the request’s context must be
retrieved from the thread-local variable and saved with the queued work item. This way, the work item remains
associated with the request. Forking usually happens for any asynchronous execution patterns such as thread
pools.
• Joining: When a thread receives work, e.g. by reading from a queue, it also receives the context that was

attached to the work item. The thread must store the context in a thread-local variable for as long as it handles
work for the request. Joining usually happens for any asynchronous execution patterns such as thread pools.
• Discarding: Once a thread finishes work for a request, it must discard the context from the thread-local variable,

such that future work the thread processes is not incorrectly attached to the same request. Processed work could
possibly be independent of any tracked request. Discarding is for example necessary once a thread completed
processing a RPC.
• Remote Propagation: When a service makes a remote procedure call (RPC) to another service, it must

serialize the request’s context and include it with the RPC. The recipient must then deserialize the context upon
receipt. The receiver thread stores the context again in a thread-local variable.

2.4.2 Instrumentation API
We can generalize the above categories into an instrumentation API that is used by developers when instrumenting
their systems’ source code. All of the use cases described in §2.2 use some variant of this API.

create(): void creates a new context and attaches it to the current thread (i.e., stores it in a thread-
local variable)

fork(): Context retrieves a copy of the current thread’s context.

join(Context): void if there is already a context attached to the current thread (i.e., present in the thread-
local variable), this operation will combine the provided context with the attached
context. If there is no context attached to the current thread, then the provided context
will be attached.

discard(): void detaches any context attached to the current thread (i.e., clears the thread-local
variable).

In addition, it is assumed that Context objects can be serialized and deserialized for propagation over RPC; some
tools provide explicit APIs to do this, but we omit them here as they are extraneous to this work.

2.5 Motivating Example
To make these concepts concrete, we present a concrete example of the source-code modifications needed to instrument
a producer-consumer execution pattern. To provide some additional context, we also illustrate how a distributed
tracing tool makes use of contexts to record traces. In our description, we make reference to the instrumentation API
of §2.4.2.

Request Flow Overview. Listing 2.1 outlines a snippet of code implementing a producer-consumer execution
pattern. We refer to the listing in the following description. We mark in blue the instrumentation needed to propagate
context but ignore them momentarily and revisit them after providing an initial overview.
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1 Queue <Work > workQueue = new Queue <Work >();
2
3 class Work {
4 String name;
5 Context context;
6 }
7
8 // executed by T1
9 startRequest(Request q) {

10 create ();
11 compute(q.name);
12 }
13
14 compute(String name){
15 doWork ();
16
17 logEvent("delegate work") //E1
18 Work w = new Work ();
19 w.name = name;
20 w.context = fork ();
21 workQueue.put(w);
22
23 doMoreWork ();
24
25 logEvent("waiting") //E2
26 w.await ();
27
28 join(w.context );
29 logEvent("work done") //E3
30 });
31
32
33 // executed by T2
34 RunThreadsWith(processingLoop () {
35 while (...) {
36 Work w = workQueue.take ();
37 join(w.context );
38
39 logEvent("processing") //E4
40 process(w.name , w); // accessing Work.name
41
42 w.context = fork ();
43 w.signalDone ();
44 discard ();
45 }
46 });

Listing 2.1: Demonstrates a common producer-consumer pattern with instrumentation
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Figure 2.1: An execution of the code from Listing 2.1. Above each thread, we illustrate each line of code invoked (line
number attached). Below each thread we illustrate the context at that point of time. We overlay the happened-before
relation between logEvent calls in cyan.

The request execution proceeds as follows: beginning in thread T1 (Line 9), the thread does some work, logs an event
E1 with a logEvent API, then delegates further work to another thread by enqueueing a work item (Line 21). T1
continues to execute: it logs an event E2 then waits for the work item to complete. Meanwhile T2 receives the work
item (Line 36), logs an event E4, processes the work item, and lastly signals the work’s completion (Line 43). T1
wakes up and finally logs an event E3.

Distributed Tracing. To ground the example in a concrete use case, we now introduce a distributed tracing tool
into the picture. Before outlining the instrumentation, we will first describe one goal of distributed tracing we focus
on for this example.

One goal of distributed tracing is to capture the causal ordering of events that appear as part of requests. In this
example, under Lamport’s happened-before relation→ [33], distributed tracing would record: E1→ E2, E2→ E3,
E1→ E4, and E4→ E3.

To achieve this, the tool requires two things. First, to distinguish between events logged by other concurrent requests,
the tool generates a unique requestID at the beginning of the request. Every logEvent call will access and record
the requestID. Second, to capture happened-before relationships, every logEvent will include a reference to the
most recent previous logEvent; this reference is called the parentID. For example, when E4 is logged, it will
include a reference to E1. Together, requestIDs and parentIDs are sufficient to reconstruct the request trace later
from the logged events.

In practical terms, both the requestID and parentID are provided to logEvent calls using context propagation.
The variables are stored inside the thread-local context, and accessed whenever logEvent is invoked. Figure 2.1
illustrates the happened-before relation with respect to the overall execution; the causal ordering of events is illustrated
in cyan.

Instrumentation Needed. We now describe how a developer would instrument Listing 2.1 to track requests.
Although we are contextualizing the example for distributed tracing, this instrumentation process is generic and
would remain the same for other request-flow tracking tools.

The lines marked in blue in Listing 2.1 illustrate instrumentation for this code.

• T1 initializes a context using the create API function at the beginning of the request (Line 10 in Listing 2.1;
À in Figure 2.1). Internally, this randomly generates a new requestID, and stores the created context in a
thread-local variable.
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• Before T1 passes the work item to T2, it must first invoke fork (Line 20 in Listing 2.1; Á in Figure 2.1). This
makes a copy of the current context, which T1 then stores directly with the work item.
• Immediately after T2 fetches the work item, it puts the work item’s context into the thread local variable using
join (Line 37 in Listing 2.1; Â in Figure 2.1).
• Once T2 completes the work item, it invokes fork to copy the context from the thread local variable and store

it with the work result (Line 42 in Listing 2.1; Ã in Figure 2.1).
• T2 is now finished with the work item. It invokes discard to clear the thread-local variable (Line 44 in

Listing 2.1; Ä in Figure 2.1). This ensures no other work item begins inadvertently adding logEvent to the
wrong request in the future.
• Immediately after T1 receives the result from T2, it takes the result’s context and invokes join (Line 28 in

Listing 2.1; Å in Figure 2.1).

Effects of the instrumentation. With contexts being correctly propagated, the distributed tracing tool can use them
to pass around requestID for the request. Concretely, the logEvent API call can internally do the following:

• When any thread logs an event with logEvent, the requestID can be retrieved from the context and included
with the logged event.
• After logging an event, the parentID can be updated to the ID of the event that was just logged. For example,

after logging E1, parentID is updated to E1.
• When any thread logs an event with logEvent, the parentID is also retrieved from the context and included

with the logged event. For example, when E4 is logged, the parentID=E1 will be logged.

The end result is a correct trace: every event records its immediate predecessor events according to the happened-before
relationship→, and every event records the request ID that it belongs to.

Although we provided distributed tracing as a concrete use case in this example, the instrumentation API calls marked
in blue throughout are generic. Except for small adjustments any tool that uses request flow tracking would need to
insert instrumentation as presented for this example.

Pathfinder With respect to the example, Pathfinder specifically targets the instrumentation API calls, marked in
blue throughout the example. This instrumentation is a pre-requisite for deploying any tool that uses request-flow
tracking. For example, if a developer wished to deploy distributed tracing, they would first have to make all of the
instrumentation source code modifications.

Pathfinder’s goal is to aid the developer in determining where to insert these instrumentation API calls. In the next
chapter we will motivate how instrumentation is a challenging task for developers today, due to system source code
complexity and a lack of useful tooling.

2.6 Execution Patterns
The example in §2.5 illustrates one example of an execution pattern. Execution patterns typically have multiple, inter-
related instrumentation points. Successfully instrumenting the producer-consumer pattern in the example required
more than one modification. If any of these modifications were omitted or incorrectly placed, the instrumentation
would not correctly capture the flow of execution.

Conceptually, instrumenting a system happens at the level of execution patterns, rather than just individual code
locations. It involves finding the execution patterns used by the system, then correctly identifying the multiple relevant
instrumentation points.

Beyond the producer-consumer example given, there are a range of different execution patterns that can be instru-
mented. They usually involve taking a context from a thread, and ultimately, passing it to a different thread, where
execution continues. To aid in the reader’s intuition of instrumentation, we provide an overview of several execution
patterns commonly found in systems.

Intra-Process Execution Patterns. Similar to the producer-consumer patterns, these are internal to a process and
influence how a request execution proceeds.

• Thread Fork. The current thread T1 starts another thread T2 to continue the execution of the request. T1 may
terminate, continue with the execution of the same or another request, or wait for T2 to finish.
Instrumentation: In this scenario the context of the current thread is propagated to T2 when it is started. If T2
joins with T1 when T2 completes, the context can be propagated back to T1.
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• Thread Messaging. The current thread stores a message in a queue or similar data structure. Then a different
thread fetches the message from the data structure to continue the execution. In rare cases the data structure
might be replaced by single shared variables. This pattern is extremely common and appears in execution
services that use a thread pool to handle arbitrary work, in event systems where the message describes an
event that is triggered asynchronously, or in custom execution infrastructures that realize application specific
batching, interleaving or scheduling strategies.
Instrumentation: A possible instrumentation was already presented as part of §2.5.
• Request Interleaving. The current thread stores an intermediary state of a request or work object R in a data

structure to continue with the execution of another request or work object to later resume the execution of R. If
several threads are involved in processing the different work or request objects the pattern becomes similar to
the previous one.
Instrumentation: On pause events the context is retrieved from the thread and attached to R. The thread discards
the context and on resume the context is again picked up from the work item by the thread before the execution
is continued.

Inter-Process Execution Patterns. End-to-end requests span multiple machines, and instrumentation is required
for including contexts with remote communications.

• Messaging. The current thread sends a message to a thread in another process (e.g. via RPC). Depending on if
the processes are on the same machine the message is transferred over network, local sockets, pipes or shared
memory.
Instrumentation: In this scenario the context is retrieved from the current thread with fork, serialized, and
included in the message header. On the receiver side the other thread retrieves the context from the message,
deserializes it and calls join.

2.6.1 Summary
While the above list outlines commonly-used execution patterns, it is not exhaustive. Execution patterns are an
application-level design choice; the original system developers could have implemented arbitrary custom patterns for
the logic of their application. We must be aware of this when instrumenting a system, since all executions patterns
must be instrumented.

Although instrumentation must be done with care, the resulting source code modifications are usually modest in size,
ranging only into the tens or hundreds of lines of code (LOC) modification [3, 5]. For example, in our evaluation,
instrumenting Cassandra and HBase required only 19 respectively 36 LOC modification, compared to a source code
base of 385252 and 406263 LOC.

Nonetheless it is a significant challenge to identify and instrument execution patterns, and Pathfinder’s goal is to aid
developers in this task. In the next chapter we will examine this challenge in more detail.
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Chapter 3

Challenges

Although instrumentation is conceptually straightforward, it is challenging in practice. Developers must exhaustively
identify all relevant execution patterns, then correctly and completely insert the appropriate instrumentation API calls.
In this chapter, we examine the reasons why instrumentation is a challenging task for developers.

3.1 How do Developers Approach Instrumentation?
By default, developers must identify and instrument the aforementioned execution patterns themselves. Since the goal
is to capture the complete execution path of requests, instrumenting a system means identifying and instrumenting
all instances of execution patterns that are used by the system. In this section, we discuss the typical approaches
developers take in completing this daunting task.

3.1.1 Recommended Approaches in Developer Guides
Several high level instrumentation guides provide recommendations for how to build up system instrumentation [34,
35]. The guides recommend the following steps:

1. Specify the set of high value requests that should be tracked. Start by instrumenting the most important ones.
2. Identify specific libraries or services that are the most widely used (e.g., RPC libraries, web frameworks) .

Instrumenting these libraries will give the broadest coverage.
3. Add instrumentation on intra-process level as needed.

The first step of this guide depends on the system and use case and can also include important operations triggered by
system internals. Internally, systems usually re-use common execution structures such as thread-pools, and there
may not be a 1-to-1 mapping between request types and the internal structures that must be instrumented. This is
reflected in the second recommended step: instrumentation often boils down to instrumenting some ‘core’ execution
libraries and frameworks that are used throughout the whole system. We found this to be true in our instrumentation
of Cassandra [26] and HBase [25] used in our evaluation in Chapter 7, and from our prior experience instrumenting
other systems [5, 3, 14].

The third recommended step encompasses the vast range of instrumentation needed in practice, both in terms of code
modifications and developer effort. To guarantee that context flow is end-to-end, request context must be propagated
form one side of the process to the other, so that context flows along the critical path to connect incoming RPCs with
outgoing RPCs. If context is not propagated at an intermediary component on this critical path, the context flow cuts
of and subsequent components cannot be associated with the current request (illustrated with Figure 1.1 in Chapter 1).
Context propagation to components outside of this critical path is optional and depends on the target granularity and
higher-level task that finally utilizes the context propagation infrastructure. An example of such an optional case is
context propagation to sub-tasks that do not need to complete for the completion of the whole request.

3.1.2 Code Traversal
Unless developers have a perfect mental model of the system’s entire code base, they will need to do some amount
of exploration to identify the paths requests take through the system and the execution patterns they touch. This
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manual traversal can take several forms. This can happen systematically along request paths, with a global search for
keywords and interfaces, or through trial and error using partial instrumentation.

Traversing the code base along a request starts where the request is received and follows the request flow through
the code base until the request reaches a process boundary or ends. Along this path context propagation points
are identified and instrumented. This procedure helps to derive a global execution model of the system and puts
instrumentation in a context what makes it easier to asses the affects and makes is less likely to miss context
propagation points. We consider this approach as adequate in the context of intra-process instrumentation where there
is initially little indication of where instrumentation is needed.

There are also other ways to find instrumentation points without any request context. One is looking for important
infrastructures like global execution services or inter-thread communication components. This approach relies on
searching for keywords or interfaces that appear around RPC libraries etc. We consider this approach useful in contexts
where the instrumentation effects to the system are obvious and completeness is guaranteed, as when instrumenting
a global inter-process communication infrastructure. However, this procedure is barely helpful for intra-process
instrumentation. The intra-process context exhibits various inter-thread communication patterns which cannot be
revealed with a simple search for keywords or interface implementations, leading to an incomplete instrumentation.
In addition, the full effect of one instrumentation point is often hard to asses without the context of a request.

In general, code traversal is very ad-hoc. Developers have no indication that their instrumentation is either complete
or correct, and there are few hints about how to progress in instrumenting a system.

Although manual code traversal is a somewhat “brute force” approach to instrumentation, it is nonetheless the de facto
approach to instrumenting systems. Later in this chapter we describe some attempts to automate the instrumentation
process, and the corresponding problems that arise. We know of no prior work in tools that aid developers in doing
instrumentation.

3.2 Instrumentation Pitfalls
Instrumenting systems is a tedious and time consuming task. Researchers and practitioners describe it as one of the
most time consuming and difficult parts of deploying a tracing tool [11, 12, 13, 36]. Especially the instrumentation in
the intra-process context is consistently described as difficult:

Facebook report about instrumentation of android apps [37]:

"What’s worse, instrumenting the code thoroughly was difficult due to the multi-threaded nature of
the app and the highly asynchronous nature of user interactions. Every time the app submitted work
to another thread, a little identifier would have to be handed over to stitch things together. Canceling
markers and making sure things were connected correctly made the experience less than ideal."

Nike report about deploying distributed tracing [22]:

"In reactive non-blocking frameworks and libraries, this thread-hopping is the norm, not the exception.
This means that supporting [intra-process propagation] in Java can get ugly, depending on what you’re
doing."

As mentioned in §2.3, one way to point out places where context propagation is needed is via manually traversing the
code base along the flow of a request. This task is comparable to manually doing a static code analysis that includes
heuristically inferring likely runtime types and values, following many many branches deep down into dependencies
and understanding what is actually called when code is indirectly integrated via reflection, dependency injection or if
dynamically loaded. It is easy to get lost in this difficult search scenarios.

Developers miss instrumentation places, implement them incorrectly or forget to adjust them after the application
logic was changed.

3.2.1 Pitfall: Incorrect Instrumentation
If request flow is not understood at execution boundaries, incorrect instrumentation leads to wrongly attributing work
to requests. As part of instrumenting a thread-pool in Accumulo [38], context was propagated to threads when they are
initially created instead of when they start to process a work item as part of a request flow [16]. This lead to mistakenly
associating the entire activity of a thread with the request that initially started it. Similarly, if developers fail to mark
the end of a request’s execution, the next request will inherit the previous request context. For example, Accumulo’s
instrumentation did not mark the end of a compaction task once it completed, causing the next compaction task to
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be merged into the same trace [39]. In contrast to this, prematurely discarding of the request context means that
subsequent operations stay hidden and are not linked to any request. For example in HBase, RPC call tracing was
inadvertently terminated before the call actually completed [40], leading to wrong request durations.

3.2.2 Pitfall: Incomplete Instrumentation
Inexhaustive instrumentation is a common pitfall, particularly for infrequently exercised code paths such as back-
ground tasks, edge-case handling, and failure recovery. For example, Cassandra [26] did not initially instrument
request retries [41], so traces would end after the first request attempt; nor did Cassandra instrument result pagina-
tion [42]], so traces would end after the first page of results. HBase produced traces with gaps in them due to its
uninstrumented write-ahead log [43]. Instrumentation omissions in Cassandra failed to propagate request contexts to
the ‘finalize’ step of queries, leading users to incorrectly believe requests were not completing properly [18, 44]. An
uninstrumented thread pool caused request flow tracking in HBase’ tracing infrastrucutrue to end prematurely without
tracking any server-side activity [19]. Similarly, missing context propagation to thread pools in Accumulo [17] lead
to erroneous loss of context on some request paths.

3.2.3 Pitfall: Changes Break Instrumentation
After extending, refactoring or adjusting application code, context propagation must also be adjusted if necessary. But
this can easily be forgotten. For example, a patch to Hadoop’s inter-process communication [45] forgot to include
HTrace context in the new call headers [46]. A patch to refactor components in Cassandra [47]. introduced some
new execution boundaries, but failed to propagate request contexts across these new boundaries [48, 49]. Similarly,
refactoring broke tracing support for several file system operations in Accumulo [50].

3.2.4 Summary
These pitfalls demonstrate the importance that instrumentation be complete and correct. They also illustrate how
maintaining instrumentation in the long term is important. Taken together, these pitfalls motivate a need for tools that
make it easier and faster to implement correct and complete instrumentation.

3.3 Can we Automate Instrumentation?
Facing those challenges rises the question: Can we further automate or eliminate the instrumentation process?
Intuitively, instrumentation revolves around identifying and modifying execution patterns, as we described in Chapter 2.
Surely, then, this task might be amenable to some amount of automation, since there are common execution patterns
and therefore, presumably, common solutions for instrumenting them. Unfortunately, we believe fully automated
instrumentation to be beyond the realm of possibility due to the subjectivity of instrumentation.

3.3.1 Pitfall: Subjective Request Paths
A request takes a specific path through a distributed system. As we showed, request context must follow this path
such that request related information can be associated with the request using the context. However, it is subjective
what this path is and so where the context should go. We give an example to illustrate this aspect.

Figure 3.1 shows the execution of two requests. As part of its execution, Request 1 stores an object in a cache, finishes
and returns to the client. After a period of time the execution of Request 2 starts. Request 2 accesses the cache and
sets a new object into the cache. This causes the old object to be evicted. The eviction procedure includes a write out
of the old object to disk that is performed as part of Request 2 before it returns.

In this example it is possible to associate the eviction procedure with Request 2 that finally performs the eviction or
with Request 1 which originally caused the work. Sambasivan et al. [12] introduced this example and calls the slice
that connects the eviction procedure with Request 1 the submitter-preserving slice and the slice that connects the
eviction procedure with Request 2 the trigger-preserving slice. So the two slices shown in Figure Figure 3.1 show the
same executions of the two requests only the attribution of work differs. Corresponding to which relation should
be preserved the propagation path of the context differs. Propagating the request ID of Request 1 to the eviction
procedure (executed by Request 2) allows to associate the caused disk utilization with Request 1. This might be useful
in the context of resource attribution tools. On the other hand, propagating the request ID of Request 2 to the eviction
procedure, associates the task with Request 2 what might be useful for latency diagnosis. If the eviction is part of the
critical path of requests similar to Request 2, this might help do understand the high latency of a request. If we are
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Figure 3.1: Trigger-preserving and submitter-preserving slice of request executions

only interested in one of the use cases, it does not make sense to capture both relations, so to associate the eviction
procedure with both requests. Unnecessary information are not useful and it would be needed to filter them out later
when investigating the data.

3.3.2 Pitfall: Subjective Granularity
Even for simple and obvious request paths it is often not desirable to capture all relations on the lowest level of
granularity including all relations to all execution parts. We show another example to illustrate this aspect.

When a distributed tracing tool is deployed to a storage system to be used by a system end-user to monitor system
performance to spot slow nodes or data hot spots, it does not make sense to include information on the traces that
point to system internals the end-user cannot influence. In this case it is not necessary to propagate the context further
down to system internals. However, if a distributed tracing tool is deployed to rather be used by the system developers
for distributed profiling to improve the system design, capturing the fine-grained execution graph can make sense. In
this case propagating the context even to minor tasks can be desirable.

In general, which relationships should be preserved depends on the tool that uses the request tracking capability, the
system and the use case. Based on these factors developers need to consciously decide in the individual case what
information in the system should be associated with which request. Those decisions are ultimately reflected in the
context propagation infrastructure, which must be implemented accordingly. Preserving just all causal relationships
introduces unnecessary overhead, development costs, and only moves the filtering problem to a later point.

3.3.3 Pitfall: Unclear Instrumentation
Another aspect that hinders automation is that there exist execution patterns for which there is no general agreement
on how to instrument them [51]. For example when several request executions join at some point and only one
operation is executed for all of the requests, there are several ways to associate this one operation with the requests.
Usually the instrumentation here has to be aligned with the capabilities and use case of the target request flow tracking
tool.

3.3.4 Summary
These pitfalls motivate why fully automatic instrumentation approaches are infeasible in practice. Instrumentation is
qualitative and use case dependent, making it intractable to automate completely and correctly. Even if the approaches
can arrive on a correct solution, or several candidate solutions, it would still require developer input to validate the
correctness of the instrumentation. Regardless, no fully automated instrumentation approaches exist today.

3.4 Can Partial Automation Help?
Although fully-automated instrumentation is a panacea, there are several approaches that partially automate some
aspects of instrumentation, with a goal of relieving the developer instrumentation burden. We provide an overview of
these approaches here, followed by some of the associated pitfalls.
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3.4.1 Approach: Pre-Instrumented Libraries
Projects like OpenTelemetry [7] and OpenTracing [52] try to reach a standard for context propagation to provide
vendor-neutral APIs. With a standard it is possible to share instrumentation of services, common libraries and
execution patterns of various runtimes and programming languages. This allows, for example, to use an existing
instrumented version of a common RPC library that internally propagates the context along RPCs. Since context
propagation is already realized inside the library, placing propagation code manually is not longer necessary at this
point.

Naturally, a developer did instrument the source code at some point. The main benefit of pre-instrumented libraries is
that instrumentation can be reused. This is especially effective if a system’s main execution patterns reside within
the library. For example, the library might provide an executor or futures pattern, along with all of the required
instrumentation.

While this can reduce the amount of additional instrumentation the system needs, it comes with its own set of
associated problems:

• Distributed systems tend to be heterogeneous [12], so use a brought set of different libraries and runtimes. So
there might not exist a pre-instrumented version of a used library or service.
• Context propagation is use case dependent [12]. Depending on the top-level task that finally uses the context

propagation infrastructure, existing pre-instrumented libraries might not provide the desired instrumentation.
• Especially in the context of multi-threaded execution, there exist many custom execution patterns which only

use common data-structures for which a general instrumentation does not make sense and so does not exist.

3.4.2 Approach: Exploiting System Visible Channels
Approaches like Causeway [23] rely on events that are visible to the operating system, such as using pipes and
other process communication mechanisms. When the operating system has visibility of these, it can automatically
propagate request contexts across those channels for send and receive events. Recent work has also included capturing
signal/wait events and thread forks [10], and network send and receive events [24].

While such an approach is appealing, it has a clear limitation: most execution patterns are implemented at the
application level, and the operating system lacks visibility into communication events. Typically, the application is a
black box, that receives multiple requests as inputs, and makes multiple subsequent calls to other services. Tying up
inputs to outputs is a challenging problem, and instrumentation is needed to explicitly address this.

3.4.3 Approach: Exploiting Coding Paradigms
Other approaches rely on specific coding patterns or frameworks. That is, they expect all execution patterns used by
the system to be encapsulated within a specific library, framework, runtime, or programming construct. Outside of
this “golden path”, instrumentation will not be automatic.

AppInsight [8] and Timecard [53] realize automatic context propagation along user transactions through mobile apps.
Thread execution boundaries within processes are identified with a simple heuristic. In situations like asynchronous
event execution, callback handling and concurrent processing, the event logic, the callbacks or the work items must
be transferred across execution boundaries exclusively in the form of specific functional objects having a specific
run-time type. If this condition is not full filled corresponding execution boundaries are not instrumented. Even if this
might be sufficient under a specific framework in the domain of mobile apps, the approach cannot be generalized
and leads to incomplete and/or overcomplete context propagation in other systems. Similarly, WebPerf [54] requires
that a specific coding paradigm for asynchronous execution is used. Outside of this framework the approach is not
effective.

3.4.4 Approach: Pattern Matching
Retro [3] and Pivot Tracing [5] automate the instrumentation of common patterns, by using AspectJ to identify uses of
Java interfaces such as Thread, Runnable, Callable and so on. The authors noted that this approach reduced, but
did not remove, the need for manual instrumentation. In several cases, pattern matching inserted instrumentation incor-
rectly in places where it was not needed; the authors had to manually disable those instrumentation places. Similarly,
Domino [55] provides automatic rewriting of JavaScript applications through a limited set of interfaces.

The limitations of such a pattern matching approach are clear: it is best effort, and will not capture anything outside
of a narrow “golden path”. Moreover, it can (and did) incorrectly add instrumentation where it was not required. The

18



end result is that a developer must still manually validate the correctness of the instrumentation, and ultimately fix
any errors directly in source code.

3.4.5 Approach: Analyzing Inter-Thread Data Flow
Whodunit [9] provides a more general approach that tries to automatically propagate context along relevant data flows
of a transaction within a process. To realize this, Whodunit analyses producer-consumer relations of threads through
shared memory to infer transaction flow. This approach is in principle applicable to arbitrary systems. However,
to identify relevant data flows, Whodunit relies on several assumptions that are inappropriate for many distributed
systems.

• "Threads in a multi-tier application have predefined roles. They are either producers or consumers of a resource,
but not both producers and consumers of the same resource.." – Whodunit ignores dataflows that violate
this rule and miss context propagation in that case. In the context of execution services and thread pools it
is common practice that a worker thread submits a work item as part of processing another, which is later
processed by the same thread; or in situations where a request is paused and interleaved, a request object might
be re-enqueued and picked up again at a later point in time by the same thread. In those cases the same thread
acts as producer and consumer but still context propagation is needed.
• "Accesses to shared data structures always occur in critical sections protected by locks" – especially in

concurrent data structures the use of locks is often avoided for performance reasons. In such cases context is
not propagated where it should be.

Additionally, the presented techniques are essentially restricted to a specific use case. Whodunit presents a dynamic
approach that decides at runtime where context should be propagated. The presented techniques cannot be easily
adapted to give the user the ability to control where context should be propagated. But as we discussed in §2.3,
different use cases require different context propagation infrastructures.

3.4.6 Pitfall: Need for Developer Intervention
The approaches listed in this section all share a common pitfall: a developer must ultimately intervene to validate the
correctness of the instrumentation, fix any issues with incorrect instrumentation, and manually add any instrumentation
that was missing.

All the shown approaches suffer this pitfall. The instrumentation based on pre-instrumented libraries, code patterns or
coding paradigms might cover an arbitrary non-connected subset of all existing request execution boundaries. Those
approaches do not give the developer any information about if instrumentation might be missing, where to extend the
instrumentation or if existing instrumentation might be irrelevant.

Arguably, developers must pay a higher cognitive cost for intervening at the source-code level under these approaches.
Not only does it require identifying and understanding the execution patterns in the system; it also requires identifying
which of these get automatically matched and instrumented, versus which don’t. No existing approaches offer tools
or solutions to aid in this task; fixing instrumentation happens by manually traversing source code.

3.4.7 Summary
So overall we can summarize that context propagation is required by many request flow tracking tools but does not
come for free. Developers have to manually modify code at various potentially non-obvious places throughout a
system’s code base what is time consuming and difficult. The key challenges arise from a need for intra-process
context propagation, which are constrained by large source code bases and the infeasibility of automation.

In the remaining chapters, we will present the design, implementation, and evaluation of Pathfinder, a tool for
instrumentation that takes a different perspective. Unlike prior work, Pathfinder is designed with the expectation that
developers are involved in the instrumentation process. The foundational challenge remains the same: making it
easier to identify execution patterns in large source code bases. Its goal, however, is to speed up instrumentation, with
developers making all choices about where and how instrumentation should be placed.
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Chapter 4

Design

In this chapter, we provide an overview of Pathfinder’s design. We start by summarizing our goals, then present our
key intuitions, followed by the design of Pathfinder.

4.1 Goals
Pathfinder is a developer-in-the-loop tool that assists the manual instrumentation of distributed systems for intra-
process context propagation. As we outlined in Chapter 3, a key challenge for instrumenting large systems is
that developers must manually traverse the code base to perform instrumentation – a significant challenge since
many real-world distributed systems can be very large. Concretely, for example, the two systems we examine in our
evaluation, Cassandra [26] and HBase [25], comprise 385252 and 406263 lines of code respectively, spanning 4621
and 3427 classes, and 1678 and 1919 files. Instrumentation, by contrast, is only relevant to a small fraction of the
code where execution patterns are implemented. Pathfinder’s core objective is therefore to narrow developers’ focus
to only the locations in code where instrumentation is relevant.

To achieve this core objective, Pathfinder must satisfy several goals related to quality of instrumentation and developer
effort.

G1: Completeness. Request flow tracking is only effective when the instrumentation is complete, as outlined
in §3.2. Pathfinder should exhaustively identify all possible intra-process instrumentation points such that the final
instrumentation covers full request paths.

G2: Correctness. Incorrect instrumentation leads to incorrect request paths. Pathfinder should make it as easy as
possible for developers to make correct instrumentation choices, by reducing the amount of information presented to
developers and by subdividing the problem into manageable pieces.

G3: Fast. Instrumenting a system is time-consuming, and the effort required is open-ended. Instrumenting a system
using Pathfinder should be both fast and quantifiable in terms of time.

G4: Incremental. Full request paths are a requirement for completeness, but as we discussed in §3.1.1, in the most
cases not all request types need to be exhaustively instrumented.

G5: Composable. Pathfinder should be sensitive to any existing instrumentation that may exist in the system.

G6: Developer First. All instrumentation decisions should ultimately be made by the developer. Pathfinder’s
focus is on providing a narrow set of possible instrumentation choices, to make it easier for developers to make this
choice.
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Figure 4.1: An overview of how developers use Pathfinder to instrument a system.

4.2 Pathfinder Overview
We begin with an overview of how a developer uses Pathfinder to instrument a system. Our goal is to provide an
overview of Pathfinder’s main components; in the subsequent sections we provide more details of each compo-
nent.

A developer uses Pathfinder during development time to identify candidate instrumentation points. Pathfinder is not
used thereafter; once the instrumentation process is complete, Pathfinder’s job is done and the developer is free to use
the detected instrumentation points with any other request-flow tracking tool.

Using Pathfinder is an iterative process. After an initial setup stage, the developer proceeds in iterations. Each iteration
involves a tracking stage, an investigation stage, and an instrumentation stage. The developer repeats iterations until
instrumentation is complete. Figure 4.1 illustrates this process.

Setup stage. To start using Pathfinder, the developer must select a starting point in code. The starting point can be
arbitrary, but the intention is to begin at the logical starting point of a request. On the client side where service API
calls are initially triggered or at the RPC entry points where API calls are started to be processed. The developer
inserts instrumentation at this one starting point.

Tracking Stage. The developer then runs the system with Pathfinder attached. Pathfinder performs runtime analysis
of the program to detect possible locations where new instrumentation could be inserted. Thus the developer must
submit a workload to the system or execute test cases to trigger different code paths in the system. The workload
does not need to be exhaustive – it only needs to execute the code paths the developer wants to be instrumented. The
profiling stage is brief – on the order of minutes – before Pathfinder has collected sufficient output for the next stage.
This output is called a Pathfinder Report.

Investigation Stage. Developers then use a tool we have developed called Pathfinder Explorer to consume the
report from the tracking stage and deduce where instrumentation should be inserted. The report includes numerous
possible locations where new instrumentation could be inserted, and details class names, method dependencies, and
variable names that are likely to be part of some execution pattern. The developer interprets this output, possibly
cross-referencing with source code, to decide any places where instrumentation might be necessary.

Instrumentation Stage. Finally, the developer inserts one or more lines of instrumentation in the system’s source
code. Pathfinder exposes the same instrumentation API as the one outlined in §2.4.2. Once new instrumentation is
inserted, the developer repeats the loop starting from the tracking stage. During the next iteration, the developer will
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see different output as a result of the new instrumentation, which helps Pathfinder guide where its runtime analysis
should apply.

Overall, using Pathfinder instrumentation is no longer a manual code traversal task. Instead, Pathfinder guides the
developer by quickly identifying points where the developer should focus their attention. Pathfinder collects enough
contextual information to enable developers to understand the relationship between points in code that comprise
some higher-level execution pattern.

4.3 Inter-Thread Communication (ITC)
A key technical challenge for Pathfinder is how to detect possible instrumentation points. Our intuition to address
this challenge is that instrumentation aligns with inter-thread communication. We reach this intuition by examining
the instrumentation of a number of large open-source distributed systems, including HBase [25], Cassandra [26],
HDFS [56], Hadoop MapReduce [57], YARN [58], SockShop [59], DeathStarBench [60], ZooKeeper [61], and
Spark [62].

Concretely, instrumentation is only required at request execution boundaries: places where a request begins or ends
executing in a thread. A thread cannot know what to execute without receiving some information from elsewhere,
such as a work item, and similarly if it does not directly write its response to the network, then it must pass the result
to some other thread. Even if a thread re-enqueues a work item into its own request queue, there still exist some
detectable inter-thread entry and exit points1.

Inter-thread communication is a key building block for Pathfinder. Inter-thread communication is intrinsically a
read-after-write relation. Information between threads are exchanged through shared memory where one thread writes
a value another one reads. The goal of Pathfinder’s runtime analysis is to identify memory addresses with an inter-
thread read-after-write relation. Most memory reads and writes do not belong to such inter-thread read-after-write
events, so restricting developer attention to these locations immediately reduces the search space in comparison to a
manual code search.

Definition 4.3.1 (Inter-Thread Communication Event). An inter-thread communication event between thread A and
thread B occurs at time t2 if the following conditions hold:

• Thread A writes to a memory address X at time t1.
• Thread B reads from memory address X at time t2, with t1 < t2 and A 6= B.
• There does not exist a point in time t3 where t1 < t3 < t2 and a write happens to memory address X from any

thread.

Thread A is considered the producer/writer and thread B is considered the consumer/reader. There can be multiple
ITCEs for one write.

4.3.1 Example
We provide an example of this observation in Listing 4.1 which shows a slightly simplified version of the code
illustrated earlier in Listing 2.1. As before, we highlight context propagation instrumentation in blue. In the example,
inter-thread communication occurs for the following fields:

• Work.name – set by T1 on Line 18 and read by T2 on processing the work item at Line 34.
• Queue.first – pointing to the head of the queue. T1 writes to this field when submitting the work to the

queue at Line 20 and T2 reads from it when dequeuing at Line 31.
• Queue$Node.item – internal to the implementation of Queue is a class Node with a field item. Each entry

in the queue is stored as an item on a Node instance. T1 writes to this field when submitting the work to the
queue at Line 20 and T2 reads from it when dequeuing at Line 31.

Though this is a simplified example, in real system code methods such as compute and processingLoop may
be defined in disparate locations, making manually finding these methods and their relationship to one another
challenging. By contrast, Pathfinder’s tracking stage would identify inter-thread communication events for the
memory addresses of these variables.

1We discuss the pathological case of a single-threaded application in Chapter 8
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1 Queue <Work > workQueue = new Queue <Work >();
2
3 class Work {
4 String name;
5 Context context;
6 }
7
8 // executed by T1
9 startRequest(Request q) {

10 create ();
11 compute(q.name);
12 }
13
14 compute(String name){
15 doWork ();
16
17 Work w = new Work ();
18 w.name = name;
19 w.context = fork ();
20 workQueue.put(w);
21
22 doMoreWork ();
23
24 w.await ();
25 });
26
27
28 RunThreadsWith(processingLoop () {
29 // executed by T2 and others
30 while (...) {
31 Work w = workQueue.take ();
32 join(w.context );
33
34 process(w.name , w); // accessing Work.name
35
36 w.signalDone ();
37 discard ();
38 }
39 });

Listing 4.1: Demonstrates a common producer-consumer pattern with instrumentation
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4.3.2 Naïve ITCE Tracking
A simple approach to detecting ITCEs in a program execution is as follows: When a thread writes to any memory
address we associate its thread ID with the address in a global mapping. When afterwards a thread with a different
thread ID reads from the same memory address we detect an ITCE between the writer and reader thread.

There are two problems with this approach:

• Overheads. Such an approach would invoke Pathfinder when reading and writing every single address in the
whole address space. This would impose impractical overheads.
• Context. Pathfinder needs to establish a connection between memory accesses and code locations. This

includes where in the code the memory addresses are accessed and to which classes, object fields or arrays they
belong.

4.3.3 Efficient ITCE Tracking
So Pathfinder takes a similar approach, but only tracks a small subset of the overall address space. We observe that
it is only possible for memory to be used in an ITCE when it corresponds to one of the following programming
language constructs:

• global class fields
• static class fields
• arrays (allocated space)

Concretely, for common programming languages the shared memory address space in which ITCEs can happen is a
subset of the address space reachable through these language constructs. In practice, it is substantially smaller than
the full address space. Pathfinder only needs to track this smaller subset of the address space, without losing detection
accuracy. To achieve efficient ITCE tracking, Pathfinder analyzes the program’s source to identify the subset of fields
and arrays that must be tracked. We refer to these as tracked memory addresses. Pathfinder ignores local fields that
can never have ITCEs.

4.4 Communication Slices
Detecting ITCEs alone is not useful for developers, because an ITCE only comprises a memory address, which alone
is not useful to developers. Our second intuition is that developers require higher-level, abstract information that
maps memory addresses back to code locations where instrumentation might be needed. Instrumentation is done at
the source code level, and conceptually aligns with execution patterns. Many ITCEs might map to the same locations
in code, and a single execution pattern can comprise multiple source code locations.

We refer back to the example in Listing 4.1 to illustrate. Two of the three ITCE detections occur within the Queue class.
Even if we could immediately map memory locations back to specific fields in the program’s source, it would not be
illuminating to developers because Queue is widely used. It would be sub-optimal to insert instrumentation directly
in the Queue class, because it is used in many other places, where context propagation is usually not necessary. In the
example, a more appropriate instrumentation location is compute and processingLoop as marked in blue.

This is obvious to a developer – though not to an automated tool – and only when the developer is given sufficient
information about where the calls to Queue came from. To make this instrumentation decision, the developer would
need to inspect the stack traces of both the writer and reader thread at the point when the ITCE occurred. The stack
traces detail more information about the specific paths taken by the program to read and write those fields. From this
information, the developer can find the place in code where the execution pattern occurred. Locating the execution
pattern usually entails looking several hops back up the stack.

Definition 4.4.1 (Communication Slice). A communication slice corresponds to a inter-thread communication event
(Definition 4.3.1) and includes:

• Thread IDs of the ITCE’s writer and reader thread.
• Stack traces of the ITCE’s writer and reader thread.
• A memory identifier that corresponds to a location in code (e.g. field name). We elaborate memory identifiers

in §4.4.2
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Field Writer Stack Reader Stack
Queue.first Queue.put(Queue.java:93) Queue.take(Queue.java:68)

Example.compute(Example.java:20) Example.processingLoop(Example.java:31)
Example.startRequest(Example.java:11) Thread.run(Thread.java:742)

Queue$Node.item Queue$Node.<init>(Queue.java:13) Queue.take(Queue.java:68)
Queue.put(Queue.java:93) Example.processingLoop(Example.java:31)
Example.compute(Example.java:20) Thread.run(Thread.java:742)
Example.startRequest(Example.java:11)

Work.name Example.compute(Example.java:18) Example.processingLoop(Example.java:34)
Example.startRequest(Example.java:11) Thread.run(Thread.java:742)

Table 4.1: Inter-thread communication slices when executing Listing 4.1. A slice comprises the Field that has an inter-
thread read-after-write relationship; a Writer Stack showing where the field is written; and a Reader Stack showing
where the field is read. The writer stacks were truncated to the relevant part. We list the above fields in detection
order; that is, when the program runs, it first reads Queue.first, then Queue$Node.item, then Work.name.

4.4.1 Example
Table 4.1 outlines the three slices in this example. It indicates that several fields are read and written in close prox-
imity to one another, in Example.compute and Example.processingLoop. Method names are often descriptive,
providing additional clues about the existence here of some execution pattern. The following can be derived from
these slices:

• As part of executing compute, the writer thread adds an item to a queue. This item is dequeued from the queue
by the reader thread as part of executing the method processingLoop.
• A Work object is created immediately preceding Queue.put in compute. This object is accessed by the reader

thread right after the execution of Queue.take in process. This gives a strong indication that the writer
thread delegates some work to the reader thread that processes it.
• The methods compute, process, processingLoop trigger the communication. The methods Queue.put/take

belong to a generic data structure that is not intrinsically related to any specific use case.

4.4.2 Capturing Communication Slices
To capture communication slices, we extend the ITCE detection mechanism that we described in §4.3.3. Firstly, when
a thread writes to a tracked memory address, Pathfinder records the stack trace of the writer. When another thread
reads from the same address and so an ITCE is detected the reader thread’s stack trace is recorded. Secondly, in
addition to the stack trace, Pathfinder will record the memory identifier to link the memory address back to a specific
field or array declaration in code:

• If the memory identifier is a static or global field, we record the code location of the field. That is package
name of the class, class name and field name.
• If the memory identifier is an array, so the write happens to the allocated space of the array, we report the

code location of the last accessed global/static field pointing to that array. If the array is exclusively reachable
through a position in another array we report the location as unknown. The array can be used at different places
in the application. The location we record is approximativ and can be one out of many.

4.4.3 Pathfinder Reports
The output of the tracking stage is a Pathfinder Report: a file that is generated during the tracking stage that contains
communication slices for all detected ITCEs. The Pathfinder report serves as input to the investigation stage. In the
following we give a brief overview about how instrumentation can be derived from communication slices. We present
more on how Pathfinder supports the investigation of Pathfinder Reports in Chapter 5.

4.5 Request-Guided Instrumentation

4.5.1 Deriving Instrumentation from Communication Slices
Communication slices identify where developers should investigate in the code, and where the constituent parts of
some higher-level execution pattern may be executing. Often, these places are scattered across several class and
method definitions. The slices clearly identify which pieces are related to one-another. During the investigation
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stage, developers look at the data of detected slices to infer the execution pattern and derive instrumentation. In the
example above, the developer would investigate compute, process, and processingLoop, and finally derive the
instrumentation by identifying places for fork(), join(), discard() and where to transfer the context, such as
piggybacking the Work object here.

Pathfinder is overcomplete: many memory addresses might exhibit an ITCE without being relevant to instrumentation.
For example, incrementing a concurrent counter will involve reads and writes, though there may be no relationship
to the thread that previously updated the counter. Updating metadata in shared data structures, such as filesystem
metadata, will have an ITCE with previous threads that wrote the metadata, even if they are not part of the same
request. Threads might lazily initialize global system infrastructures including long living objects and data-structures.
As part of requests threads access these common data-structures what results in ITCEs between them and the
initialization thread. Those ITCEs are not interesting for context propagation. Pathfinder is able to filter out certain
irrelevant slices; we discuss this more in §5.4.

There is no strict deterministic pattern for how to identify execution patterns from communication slices (we
demonstrate this in our evaluation in Chapter 7). Consequently, Pathfinder leaves this to be a manual step for
developers to apply their own intuition. We consider automating instrumentation to be a significant challenge and
beyond the scope of our work. In this work we are only interested in capturing and exposing communication slices
for developers to then reason about; we leave it to future work to explore automatically deriving instrumentation
from these inputs.

Consequently, a key goal for the investigation stage is to present developers with the most relevant data to enable rapid
progress. When we apply Pathfinder to an entire system, we still encounter a large volume of detected communication
slices. Many of these communication slices are redundant – that is, there might be numerous slices that correspond
to just one communication channel. This occurs commonly – in the previous example, we detect a communication
slice for each field of the Work object, even though we only need to propagate context once. In the next chapter we
will describe several techniques Pathfinder provides for filtering data when presenting it to developers during the
investigation stage.

4.5.2 Scoping Instrumentation to Requests
Our third intuition thus relates to which information we collect and present during each iteration of the tool. Pathfinder
could record every communication slice exhaustively throughout the program. This would present an information
overload to users; even though instrumentation eventually doesn’t touch much of the code base, the developer would
still need to sort through many communication slices to identify instrumentation points. In each tracking run of
Pathfinder the target system is run. While the system operates many system internal operations and requests execute
that all involve ITCEs that cause communication slices that would need to be investigated.

To address this, Pathfinder is based on building up instrumentation successively along code paths of single requests.
This follows the established recommendations of existing distributed tracing documentation (cf. §3.1.1). To build
up system instrumentation a developer instruments each request type one-at-a-time. The developers only need to
consider the request types they are interested in. Pathfinder will only detect communication slices relevant to these
request types of interest. The instrumentation process for a single request may involve several iterations. In each
iteration, Pathfinder tracks inter-thread communication slices which are then used by a developer to decide where
to put instrumentation code. Based on the new instrumentation code the developer inserted, Pathfinder can infer
where the request continues and so extends the tracking accordingly. So in each iteration Pathfinder reveals more and
more execution boundaries that appear as part of request executions until all are revealed and so all request paths are
instrumented.

From a developer’s perspective, this approach has several intuitive advantages. It substantially prunes the space of
communication slices that developers must consider in each iteration. This is of key importance to make instru-
mentation a tractable task. However, it does so in a logical way, instead of just selecting an arbitrary subset of the
code base. Even though it only tracks a subset of the system’s source, Pathfinder will nonetheless track encountered
execution patterns coherently – i.e., when one is encountered, all communication slices will be tracked. Furthermore,
the detected slices will have some degree of overlap in the writer and reader stacks, differing only in the last few
methods and field locations. This further reduces the cognitive overhead for developers.

4.5.3 Tracking Scope API
Pathfinder is an iterative tool for gradually building up instrumentation in a system. Our approach for scoping
instrumentation to requests is to make use of the partial instrumentation for guiding where the tracking stage should
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next apply.

Pathfinder provides a tracking scope API for developers to define where a request starts and along which code
paths it advances. This API directly corresponds to the general instrumentation interface in §2.4.2. By using the
tracking scope API, Pathfinder can restrict itself to just a subset of all trackable memory addresses. This reduces the
computational overhead of tracking, but moreover, reduces the amount of output a developer must interpret in each
iteration. At the end of the whole Pathfinder process, the instrumentation inserted with the tracking scope API will
have fully identified all instrumentation points.

Tracking Scope During the tracking stage, Pathfinder will only track writes to memory addresses when they occur
within a tracking scope. Reads are tracked independent of tracking scopes. Developers demarcate tracking scopes in
the system’s source code with instrumentation; first during the setup stage, and then during the instrumentation stage
for each iteration of the tool.

TrackingScope.begin(tag) Marks the beginning of a tracking scope. Subsequently, any writes to trackable
memory addresses performed by the thread that enters the tracking scope will be
tracked. tag is an identifier that relates the scope to the source-code location of this
invocation.

TrackingScope.end() Marks the end of a tracking scope. Writes will no longer be tracked.

During the setup stage, the first task of the developer is to choose an appropriate place to begin and end a tracking
scope. The most sensible choice is on the client side where application API calls are initially triggered or at the
RPC entry point to the process where an API call is started to be processed. In practice this is easy to identify, and
Pathfinder only requires one tracking scope to start with for one request.

During the tracking stage, Pathfinder internally creates some metadata when a tracking scope begins. This metadata
includes a unique scope ID for the scope, plus the specified scope tag to relate the scope to the specific tasks that is
executed by the thread. Tracked communication slices can later be grouped based on this tag.

Following Request Paths Pathfinder only detects writes within a tracking scope, but will detect all reads. Thus the
output of any iteration of Pathfinder will provide one additional level of possible request flow to other threads.

During the investigation stage, developers will identify places where instrumentation should go. Pathfinder’s tracking
API provides methods for developer to extend tracking across a thread boundary. The API corresponds to the general
fork and join instrumentation API described in §2.4.2.

TrackingScope.getContext() If called within a tracking scope, returns a TrackingScopeContext containing a
copy of the tracking scope’s metadata; null otherwise.

TrackingScope.join(ctx, tag) The receiving thread inherits the provided TrackingScopeContext as follows:
• If the provided context is null, the operation has no effect.
• If the receiving thread has no tracking scope, then a new tracking scope will

begin, but using the provided metadata.
• If the receiving thread is already within a tracking scope, then the provided

metadata will be merged with the current metadata. If the scope IDs are
different, both are retained. The new provided scope tag is ignored, and the
present scope tag from the existing metadata is retained.

Using this API, instrumentation can gradually follow a request path, through successive iterations of Pathfinder.
Initially, a developer only needs to choose a starting point in the system to begin investigating. In each iteration of the
tool, the developer will extend the instrumentation by one “hop”, unlocking new tracking points in other threads.
Eventually, after several iterations, the instrumentation is complete. We cover this process in §4.6.

4.5.4 Example
We demonstrate the API with two snippets from our running example.

The initial TrackingScope instrumentation is shown in Listing 4.2. During the setup stage, the developer identifies
startRequest as the place to begin investigation, and creates a Tracking Scope. The developer proceeds to the
tracking stage.
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1 Queue<Work> workQueue = new Queue<Work>();
2
3 class Work {
4 String name;
5 }
6
7
8 // executed by T1
9 startRequest(Request q) {

10 try {
11 TrackingScope.begin("startRequest");
12 compute(q.name);
13 } finally {
14 TrackingScope.end();
15 }
16 }
17
18 compute(String name){
19 doWork();
20
21 Work w = new Work();
22 w.name = name;
23
24
25 workQueue.put(w);
26 doMoreWork();
27 w.await();
28 });
29
30 RunThreadsWith(processingLoop() {
31 // executed by T2 and others
32 while (...) {
33 Work w = workQueue.take();
34
35
36 process(w.name, w); // accessing Work.name
37 w.signalDone();
38
39 }
40 });
Listing (4.2) The initial instrumentation is added to the
startRequest method.

1 Queue<Work> workQueue = new Queue<Work>();
2
3 class Work {
4 String name;
5 TrackingScopeContext context;
6 }
7
8 // executed by T1
9 startRequest(Request q) {

10 try {
11 TrackingScope.begin("startRequest");
12 compute(q.name);
13 } finally {
14 TrackingScope.end();
15 }
16 }
17
18 compute(String name){
19 doWork();
20
21 Work w = new Work();
22 w.name = name;
23 w.context = TrackingScope.getContext();
24
25 workQueue.put(w);
26 doMoreWork();
27 w.await();
28 });
29
30 RunThreadsWith(processingLoop() {
31 // executed by T2 and others
32 while (...) {
33 Work w = workQueue.take();
34 TrackingScope.join(w.context);
35
36 process(w.name, w); // accessing Work.name
37 w.signalDone();
38 TrackingScope.discard();
39 }
40 });
Listing (4.3) After inspecting communication slices during
the tracking stage, new instrumentation is added to com-
pute and processingLoop.

Figure 4.2: Code listings illustrating a developer’s use of Pathfinder’s tracking API for two iterations of the Pathfinder
tool. The modifications made by the developer in each iteration are highlighted in blue. For each iteration, the developer
adds instrumentation. During the next tracking stage, Pathfinder uses the existing instrumentation to identify new
communication slices for the next investigation stage.
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During the tracking stage, Pathfinder will track all writes within the compute method, and all reads performed by any
thread to capture the three communication slices listed previously in Table 4.1. Pathfinder will not track any writes
elsewhere; for example, writes starting in T2.

During the investigation stage, the developer identifies that the Work object should be instrumented, and extends the
TrackingScope instrumentation as shown in Listing 4.3. The developer can proceed to another tracking stage.

During the second tracking stage, Pathfinder will propagate the tracking scope from T1 to T2. When processingLoop
executes, it will use the propagated tracking scope and Pathfinder will track possible communication slices that appear
between T2 and T1 or any other thread that communicates with T2 while processing the work item.

We provide in Appendix B a more extensive example, demonstrating the TrackingScope API usage.

4.5.5 Process Boundaries
Request tracking is primarily used in distributed systems. To enable tracking across process boundaries, we provide a
serialization API so that tracking scopes can continue on the receiver side of RPCs.

TrackingScopeContext.serialize() A member method of TrackingScopeContext that serializes the context and
returns a byte array.

TrackingScope.deserialize(byte[]) Deserializes a byte array and returns a TrackingScopeContext.

Pathfinder does not intentionally help identify the process boundaries in code where these API calls should be inserted.
Pathfinder focuses on inter-thread communication and does not detect when threads access sockets or files. Pathfinder
relies on the developer to identify these places manually. Typically, inter-process communication is more well defined
and easier to identify than intra-thread communication, occurring through well defined, narrow interfaces.

4.5.6 Incorporating Existing Instrumentation
Pathfinder is able to take existing instrumentation into account. In order to incorporate existing instrumentation,
existing calls to a request context propagation API must be aligned with calls to our tracking scope API pre-
sented in §4.5.3. TrackingScopeContext must be propagated along with existing request context flow. Since the
tracking scope API directly corresponds to common context propagation tools, this just requires to combine or re-
place existing calls of create, fork, join, discard with TrackingScope.begin, TrackingScope.getContext,
TrackingScope.join and TrackingScope.end.

4.6 Summary
In §4.2 we outlined the main stages involved with using Pathfinder. We conclude this chapter with a summary of the
key design details of each stage.

To reach a system instrumentation a developer selects a set of requests for which end-to-end context propagation
should be implemented. Each of these requests is then instrumented using Pathfinder.

To prepare the application of Pathfinder, inter-process tracking scope propagation should be implemented by the
developer using the API presented in §4.5.5. Pathfinder focuses on inter-process context propagation and so is not
able to detect process boundaries where tracking scopes must be serialized and deserialized. With this instrumentation
in place tracking is automatically continued on other processes when a request crosses a process boundary.
After this preparation the developer proceeds as follows for each request.

During the one-off Setup Stage, the developer chooses a starting point for Pathfinder to begin, and creates a
TrackingScope. The standard starting point would be a request start point at the client side or an API call entry
point.

In the Tracking Stage, the developer runs a workload with Pathfinder attached to the system. Pathfinder will statically
analyze the code to identify fields and arrays that should be tracked; then at runtime, it will track reads and writes to
those addresses. Only writes occurring within a TrackingScope will be tracked. For all detected ITCEs, Pathfinder will
record a communication slice comprising a reader stack trace, writer stack trace, thread IDs, the memory identifier, the
tracking scope ID, and the tracking scope tag. The output of the tracking stage is a Pathfinder Report that records
all detected communication slices.
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The Investigation Stage comes next; the developer uses a tool we have developed called Pathfinder Explorer to
investigate communication slices and decide where to insert new instrumentation. In the next chapter we describe
Pathfinder’s exploration features.

Next, during the Instrumentation Stage, the developer adds new TrackingScope calls to extend the reach of Pathfinder
to other threads. During the subsequent tracking stage, Pathfinder will propagate its scope metadata to these new
threads, creating new TrackingScopes, and resulting in new communication slices in the next tracking run.

If the investigation stage did not point to any new instrumentation points, the developer drops out of this loop, because
all instrumentation points were discovered for this request type. The developer may then choose to instrument a
different request type, or end here.

When the system is instrumented, the tracking scope API calls that were added to the system can be replaced with
actual calls to a request context propagation API provided by the desired request flow tracking tool. Since Pathfinder’s
tracking scope API directly corresponds to common context propagation APIs, this task is straight forward.
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Chapter 5

Pathfinder Explorer

In this chapter, we describe Pathfinder Explorer, an additional tool we have developed specifically for analyzing
Pathfinder Reports. The tool is used by developers during the investigation stage to group, sort, filter, and visualize
communication slices.

The focus of this chapter is how Pathfinder Explorer presents communication slices to developers. Pathfinder does
not simply display the raw report to developers, since Pathfinder reports can be quite large: many communication
slices represent the same locations in code; and there might be a large amount of redundant information. Thus, we
have developed several techniques to filter, prune, and ultimately visualize Pathfinder’s output.

5.1 Goals
A developer investigates Pathfinder Reports to answer the following questions:

• Does a collection of detected communication slices correspond to an execution pattern where instrumentation
might be needed?
• How should the instrumentation of this execution pattern be correctly implemented?

To answer the first question developers need to understand what the communication is about, why it happens and
under which task it happens. To answer the second questions it is helpful to understand which resources (e.g. work
item) are transferred between the threads to understand along which resource flow the request context might be
propagated. An example was shown in. In an example we showed (Listing 4.1) the context is forked on creation of a
work item, attached to the work item, retrieved from the work item.

5.2 Pathfinder Report
Typically, the detected communication slices are somewhat localized in the code. This occurs because of Pathfinder’s
tracking scope, which restricts the attention to only a subset of the code base. Figure 5.1 illustrates a hypothetical
example where a request has communication between four different threads; it shows which communication slices
are detected in each iteration. In this example Thread T1 started the execution of the request. In the first iteration T1
communicates with T2 and T3. Corresponding ITCEs were detected, and the communication slices were captured.
All of the captured communication slices carry the same scope tag TAG1, because the tracking scope originated from
the same line of source code.

A developer examines the output and identifies the communication between T1 to T2 as relevant so adds new
TrackingScope instrumentation. The communication between T1 to T3 is identified as irrelevant, so no instrumentation
is necessary there. In the subsequent iteration, scope metadata is propagated from T1 to T2. New ITCEs are
now detected: T2 communicates with T4. In this second iteration of the tool, the developer’s attention shifts to
corresponding captured slices with scope tag TAG2.

5.3 Pathfinder Explorer
We present how communication slices can be investigated to answer the question mentioned under goals.
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Figure 5.1: Communication slices detected during two iterations of Pathfinder.

Visualization Pathfinder Explorer provides several visualizations for investigating individual communication slices,
as well as communication slices in aggregate. Developers can select a specific subset of slices to investigate according
to their own filtering criteria, before then visualizing the slices. We provide examples momentarily.

Filtering Pathfinder Explorer includes several filtering techniques for reducing the number of communication slices.
We can heuristically identify that many slices are not relevant to investigation through post-processing, and filter
these out before displaying information to a developer. We describe these techniques in §5.4.

Thread Pairs The main dimension along which we partition a Pathfinder Report is a thread pair. One thread pair
consists of a writer and a reader thread, identified by the thread ID included with each communication slice. In one
iteration we investigate all communication slices that belong to one thread pair at a time. Referring again to the
example in Figure 5.1, in the first investigation stage, the developer would separately investigate communication
slices between T1 and T2, followed by communication slices between T1 and T3. Similarly in the second investigation
stage, the investigation would proceed with T2, T4.

Scope Tags In addition to the thread IDs, communication slices can be partitioned by scope tag, which identifies
the line of code that created the tracking scope.
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5.3.1 Investigating Single Slices
The developer iterates through the communication slices until she can deduce what the communication is about and if
any context propagation is necessary. Anecdotally, we have found that only a small number (e.g. 5) of communication
slices are needed before an execution pattern and corresponding instrumentation can be deduced.

To investigate a communication slice, the most important information to consider is the relationship between the
writer and reader, and through which memory identifier. By inspecting a slice, the developer can often identify
subsequent methods of interest to investigate.

Figure 5.2: Slice visualization. Reader stack on the left side. Writer stack on the right.

Figure 5.3: Visualization of multiple slices. Reader and writer stack traces are merged. Stack trace start points for
reader and writer are marked with a cross. Numbers underneath presented fields indicate the reader access order.

For example, consider the slice depicted in Figure 5.2, corresponding to one detection from our running example
(cf. Figure 4.2).

5.3.2 Investigation Order
The default approach we take to investigation is to inspect individual communication slices in order. Pathfinder
presents slices in reader access order. The communication slice that is first accessed by the reader is presented first.
This often points to the root point of the communication. For example, when a work item is passed to another thread,
this thread first accesses the data structure over which the work item is passed, or the meta data that is stored in the
work item. These accesses happen close to the initial communication point. The work item’s payload, which fields are
often written first, are usually read later when they are used as part of actual processing logic. In this case the stack
traces do not contain the methods that point to the communication point what makes it harder to understand how the
message actually reached the reader thread. But this is what we are most interested in for the instrumentation.
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5.3.3 Visualization
Pathfinder Explorer provides several visualization features for investigating single communication slices or multiple
communication slices at the same time. Figure 5.2 depicts a visualization for a single communication slice. Figure 5.3
depicts a visualization for all three communication slices from our example. By depicting multiple slices simultane-
ously, developers can further deduce the relationships between the multiple memory locations. In the example we can
see that a common prefix of all slices is the processingLoop and compute methods, suggesting this is a good place
to investigate.

We provide in Appendix A several more examples of real-system slices detected during our evaluation.

5.4 Filtering Communication Slices
We now describe several filtering techniques used by Pathfinder Explorer to reduce the number of communication
slices for investigation. Some filtering is entirely local and is performed during the tracking stage; the rest occurs as a
post-processing step in Pathfinder Explorer.

5.4.1 Irrelevant Slices
For various reasons, Pathfinder might record a communication slice that is not relevant. This means they are not
helpful for a developer during the investigation stage. Here we describe several categories of slices that are irrelevant,
that Pathfinder filters out.

Null Values

Description: ITCEs are irrelevant when writing and reading null values. For example when the last entry of a linked
list is removed, the field pointing to the last entry is set to null. Under the task of iterating through a list, reading this
null value results in an ITCE if the thread that removed a last entry is a different one than the reader. A similar case
appears when objects are reused and cleared before returning to a pool.
Filter: To eliminate such ITCEs we do not track the writes of null values. This occurs during the tracking stage.

Runtime Internals

Description: There is implicit communication between runtime internal threads and application threads, e.g. when a
thread of the runtime garbage collection finalizes objects and thereby reads fields of that object.
Filter: To eliminate corresponding communication slices we filter based on the stack traces. The garbage collector
executes runtime specific code. Pathfinder removes all tracked slices where the reader stack trace contains any
method of runtime internal code packages such as the garbage collection package. This occurs as a post-processing
step.

Thread Synchronization

Description: The usage of synchronization mechanisms like locking can lead to ITCEs. When a lock is taken or
released writes and reads by different threads are involved. Intuitively, synchronization operations should arise when
information exchange takes place, because they fundamentally protect shared data; prior works have noted and
exploited this [23]. However, the synchronization mechanisms themselves do not help indicate which information is
exchanged. Moreover, Pathfinder will detect the actual information exchange that occurs within the critical section.
Thus, tracking the synchronization mechanisms is superfluous and is sometimes a red herring. For example, entering
a lock when a thread polls a work item from a queue does not imply that the thread that entered the lock before
submitted this work item. A similar argument holds for signal/wait relations. Signaled threads might poll work
items that arrived after receiving the signal. Unless one is not particularly interested in lock/release relations and
synchronization events, context flow along these events is unnecessary.
Filter: The usage of locks, conditionals and signal/wait involves specific classes and internals. During the tracking
stage, Pathfinder provides the option to disable the observation of writes and reads for most of these components.
Pathfinder also provides the option of filtering based on stack traces as a post-processing step.

Class Loading

Description: Many runtimes load classes lazily when they are first required. The first thread that needs to use a class
will perform the class loading; afterwards other threads will use the loaded instance. This leads to read-after-write
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events between those threads through class loading infrastructures. These ITCEs do not correspond to any application
logic and so are irrelevant.
Filter: Pathfinder pauses tracking of ITCEs while class loading during the tracking stage.

Duplicates

Description: Multiple ITCEs can end up producing equal communication slices, if they have the same stack traces
and access the same memory modifier. This is possible if several message objects are exchanged between threads in a
loop or if multiple invocations of the same code executes in parallel threads.
Filter: Pathfinder eliminates redundant communication slices as a post-processing step. First Pathfinder eliminates all
duplicate communication slices with identical thread IDs, memory identifiers and stack traces.
Second Pathfinder considers duplicate communication slices that only differ in their thread IDs. Removing these
duplicates is useful for developers, but we must be careful to do so consistently. Then we consider all thread pairs of
one writer thread (thread appears as writer). We remove all slices corresponding to one thread pair if there exists
another pair having an equal set of slices. Slice sets A and B are considered equal if for each slice in set A there exist
an slice in set B with the identical memory identifier and stack traces and for each slice in set B there exist an slice in
set A with the identical memory identifier and stack traces. This operation is not equivalent to just iterating through
the full slice list and removing equivalent ones. Such an operation can cause inconsistencies when removing not one
thread pair as a whole but slices across thread pairs.

Cross Request

The parallel execution of requests or system internal operations can cause ITCEs between threads that belong to
different requests/system operations. For example through global caches or state. The relevance of corresponding
communication slices is use case dependent.
Filter: To minimize such ITCEs only one request should be executed on the system at a time. Accordingly, requests
should be executed in parallel or subsequently if such cross request relations are relevant.

The execution of system internal operations which are not user requests is usually hard to control. Pathfinder does not
provide additional mechanisms to further control which ITCEs are tracked that appear between tracked requests and
system internal operations. We rely on the developer to filter out remaining slices that are irrelevant.

Initialization

When a request is first executed it might initialize required infrastructures what can lead to ITCEs between the
initialization thread and other threads that use the infrastructures. These ITCEs do not correspond to data in transit
and are usually irrelevant.
Filter: To prevent Pathfinder from tracking those ITCEs, a workload should be executed on the system before tracking
is started. This workload will trigger the initialization independent of any tracking run.

5.4.2 Increasing Variance of Communication Slice Sets
To further speed up the investigation process, Pathfinder Explorer removes communication slices that are highly
similar to others, reducing the amount of redundant information a developer has to inspect.

Concretely, Pathfinder Explorer filters redundant communication slices with memory identifiers that are members
of the same parent object. Pathfinder does the following: To begin, the list of slices is sorted accordingly to the
reader access order starting with the earliest access. We then iterate in reverse order over this list and eliminate a
slice A if there exists another slice B in iteration direction with A.parent = B.parent and the stack trace of the reader
respectively writer of A equals the stack trace of the reader respectively writer of B excluding the line number of the
most current stack trace entry.

slice.parent is defined as follows. If the slice corresponds to an

• array index access – slice.parent is the reference to the array
• static field – slice.parent is packagename + class name of the memory identifier
• global field – slice.parent is a reference to the parent object the field is a member of

Since the stack traces are almost identical, we loose no crucial information here. We remove slices from the end to
the start and so keep early slices which might correspond to the initial communication point. This technique also
eliminates identical slices that might be caused by a loop execution.
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Figure 5.4: Remove Covered Slices

5.4.3 Covered Inter-Thread Communication Events
After we instrumented an inter-thread communication channel with Pathfinder we do not want to investigate commu-
nication slices that correspond to the same inter-thread communication channel again. But this is what will happen
by default. Different requests share the same components, so their executions will traverse the same inter-thread
communication channels several times.When we start a tracking scope for a request, Pathfinder tracks all ITCEs that
follow, even if they correspond to covered instrumentation points. Communication slices that belong to the same
boundary are tracked again and the developer has to identify them as redundant and skip them. Doing this over and
over for different requests is time consuming.

To address this we provide a mechanism to automatically identify and remove communication slices that belong to
inter-thread communication channels that were already covered.
The usage of Pathfinder involves propagating TrackingScopeContexts along the same paths the request context would
take. We exploit this fact. We automatically infer the TrackingScopeContext flow and so identify if a slice occurs
between threads that already exchanged the TrackingScopeContext. If this is the case we safely remove corresponding
slices.

Eliminating Covered Communication Slices

We realize this automatic elimination of slices as follows. We associate the tracking scope ID, each tracking scope
carries, with each memory address that is written by a thread under a tracking scope. When a tracking scope is merged
into another using TrackingScope.join(), the tracking scope ID is added as a parent tracking scope reference. When a
communication slice is captured, Pathfinder captures the writer tracking scope ID and the list of parent scope IDs of
the reader’s tracking scope, if there is any. Before slices are investigated by the developer, a slice is removed if the
writer’s tracking scope ID is contained in the list of parent tracking scope IDs of the reader. We illustrate which slice
can be removed this way in Figure 5.4.

Slices that are captured before TrackingScope.join() or after TrackingScope.end() usually appear as part of using a
data structure to exchange messages. For example objects that wrap list entries are written and read before the actual
message and context. To eliminate them we provide an additional option to remove all slices that appear between
threads that triggered at least one ITCE which slice could be removed with the presented technique.

Verify Instrumentation

This feature can also be used to verify the effects of context propagation. We can identify all ITCEs that appear after
the TrackingScopeContext was joined and before it is ended and also which ITCEs appear before TrackingScope.join()
and after TrackingScope.end(). With this information a developer can verify if the context flow covers all code areas
it should.
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Chapter 6

Implementation

We have implemented Pathfinder for tracking ITCEs in Java programs. We have also implemented Pathfinder Explorer
for presenting Pathfinder’s output. We choose Java due to its widespread use in large-scale open-source distributed
systems.

6.1 Overview
Pathfinder uses several techniques to implement tracking for Java programs. Pathfinder’s Rewriter is a Java agent
that intercepts all class loading and rewrites classes to add Pathfinder’s tracking code. The Rewriter analyzes
the class and inserts tracking code for fields and arrays. The inserted tracking code comprises invocations of
Pathfinder’s AccessTracker. The AccessTracker is an application-level component that maps memory addresses to
partial communication slices. Lastly, a background Logger component outputs the captured communication slices.
We describe each component in more detail.

6.2 AccessTracker

6.2.1 TrackingScope
We implement Pathfinder’s TrackingScope with the API described in §4.5.3. When TrackingScope.begin is
invoked, a scope object is created with a unique ID and the given tag. The object is stored in a thread-local
variable.

6.2.2 API
Pathfinder’s AccessTracker component is invoked whenever tracked memory addresses are read or written. Its main
responsibility is to store partial communication slices when memory addresses are written. It has the following
API:

AccessTracker.write(location, value) Invoked after the current thread has performed a write to the specified
memory location

AccessTracker.read(location) Invoked after the current thread has performed a read from the specified
memory location

Internally, Pathfinder’s AccessTracker maintains a map from location to partial communication slice information.
An invocation of write will capture the writer-side portion of the slice (thread ID and stack trace) then store this
information in the map, using location as the key, overwriting any previous mapping to location. This only
occurs if value is not null, and if there is an active tracking scope. If value is null then any previous mapping to
location is simply removed.

An invocation of read will use the map to look up if there was a previous write to the same location. If not, then
nothing further occurs. If there was a previous read, then the AccessTracker compares thread IDs to ensure this was
an ITCE. If so, Pathfinder will capture the reader-side portion of the slice (thread ID and stack trace) then enqueue
the completed slice to be output by an asynchronous logging thread.
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6.2.3 Memory Locations
Pathfinder uses java.lang.System.identityHashCode() from Java’s runtime in lieu of concrete memory ad-
dresses. identityHashCode is designed for purposes such as ours – it provides an ID that is likely to be unique for
instances of Java objects. However, it alone is not sufficient for our purposes. We explain by example. Consider the
following snippet of code:

1 class Work {
2 String name;
3 }
4
5 Work w = new Work ();
6 w.name = "MPI";

In the above, suppose name is the field through which an ITCE is detected. To get the address of name, it is incorrect
to use System.identityHashCode(name), as this returns the address of the value of name, because objects in Java
are pass-by-reference. Instead, the address of name is in fact some offset of the address of the Work object w.

With this intuition, Pathfinder identifies memory locations using the identityHashCode of the parent object, plus
additional information to identify the offset within the parent object.
For static fields, the parent object is null. We just use the fully qualified name of static fields for identification.
For array accesses we use the identityHashCode of the array object, plus the array index that is accessed. To
identify global fields within an object, we use the identityHashCode of the object, plus the fully qualified field
name.

Because memory locations are identified with field names these can directly be used as the memory identifiers that
Pathfinder reports for communication slices. To derive the memory identifier for arrays Pathfinder also has some
special-case handling for array aliasing.

6.2.4 Limiting Communication Slice Tracking
To reduce overhead Pathfinder provides an option to limit the tracking of communication slices. The amount of slices
that are captured for a thread pair can be limited to a fixed number (e.g. 50). For further ITCEs no slice is captured
what safes the time needed for capturing the reader’s stack trace. As we will present in the evaluation, it is usually
enough to investigate the first few tracked communication slices, so it is not necessary to capture a communication
slice for all occurring ITCEs. We implement this feature by maintaining a map that maps thread pairs (i.e. thread ID of
writer and reader) to the number of tracked slices. If the specified limit is reached, no further slices are tracked.

6.3 Rewriter
Pathfinder provides a Rewriter to rewrite Java classes. Pathfinder’s Rewriter scans Java classes and identifies all lines
of code that read or write static/object fields and arrays. The Rewriter inserts invocations to AccessTracker.write
and AccessTracker.read. During this step, the Rewriter essentially has access to the program source, so can
construct memory location identifiers using field names in a straightforward way.

Pathfinder’s Rewriter is deployed as a Java agent using java.lang.instrument [63] to rewrite classes at runtime
when they are loaded and as static rewriting tool to rewrite classes ahead of time.

ITCEs can occur while the execution of application code, Java standard or other third-party library code. Pathfinder
rewrites all code sources. The Java standard library contained in Java’s "rt.jar" is rewritten statically, ahead of time.
The instrumented rt.jar must be given as a boot classpath option. Application code and other third-party libraries are
rewritten at runtime. The Rewriter uses the bytecode engineering toolkit Javassist [64] to rewrite classes.

In the following we present some special cases and refinements for the default rewriting mechanism.

6.3.1 Immutable Objects
Several Java library classes are immutable and do not need to be rewritten, for example java.lang.Integer and
java.lang.String. We manually identify these classes and exclude them from rewriting.

6.3.2 Lambda Expressions
ITCEs can occur through the captured variables of a lambda expression. Lambda expressions in Java are not compiled
to bytecode ahead of time such as other code but at runtime when those are first accessed. The bytecode that is

38



generated does not pass Java’s instrumentation framework (i.e. java.lang.instrument) Pathfinder relies on. So
lambda expressions would not be matched by Pathfinder’s main rewriting approach. We address this in the following
way: When byte code is generated for lambda expressions at runtime we redirect generated code to our dynamic
Rewriter. We implement this by statically instrumenting the lambda factory code contained in the rt.jar.

6.3.3 Native Memory Accesses
Besides standard field and array accesses, Java provides utility classes to do common operations faster via native
code or to bypass Java’s memory management. Such functionality is provided by the classes sun.misc.Unsafe,
java.lang.System and over Java’s native interface (JNI) [65]. Because such operations call native code that
performs the write or read, our standard Java byte-code rewriting misses these places. We provide special refinements
to capture memory accesses via Unsafe and System. Memory accesses that happen through the JNI are not observed
by Pathfinder.

Unsafe

Pathfinder redirects calls to Unsafe to our tracking component where we track the access and perform the actual call
to Unsafe. We do not redirect all Unsafe calls. We only redirect the ones which are frequently used in common
data structures under java.util. We consider the use of Unsafe outside of java internals as rare. We handle the
following methods:

• Unsafe.compareAndSwapObject(Object o, long l, Object a, Object b)
• Unsafe.putOrderedObject(Object o, long l, Object val)
• Unsafe.putObject(Object o, long l, Object val)

Correctly tracking and updating memory locations for Unsafe code requires some additional consideration. Some
Unsafe calls work on memory offsets (e.g. Unsafe.putOrderedObject). These methods require to provide the
parent object of the field, the offset of the target field in that object and the value that should be set. To get the memory
offset, Unsafe.objectFieldOffset is used. The offset is defined per class, so is instance independent. To refer
memory offsets back to actual field code locations we keep track of fields and their offsets that are retrieved via
Unsafe.objectFieldOffset. On the use of another Unsafe method we lookup which field actually corresponds
to the memory address for the given object class.

System.arraycopy

Java’s System.arraycopy is an efficient call to native code for performing bulk array copies. Pathfinder does not
observe read accesses as part of System.arraycopy() that are performed by threads that do not act under an active
tracking scope. We do this to avoid additional overhead. Tracking those accesses would introduce significant overhead
for all array copy operations in the system. We consider missing an instrumentation point because of not tracking
those memory accesses as unlikely because of the following reasons:

• We investigated the occurrences of this instruction in Cassandra and HBase. The instruction is mainly used by
array based data structures such as array lists when the capacity is extended or when byte arrays are written
to buffers but barely in the context of inter-thread communication. In the case of an array list the method is
only called when the data structure is extended what happens non-deterministically when the capacity limit is
reached. The appearance of such a call while a request execution is rather rare and as we will show in §7.1.3 the
same infrastructures and so the same code is used at several places within and across requests. The likelihood
that the array is extended every-time it is accessed across several request executions is rather small.
• Experiments showed that threads usually exchange several data pieces within one communication activity.

Tracking further slices corresponding to close by memory accesses can compensate a missing slice.

6.3.4 Static Initialization
Pathfinder does not instrument static initializers to prevent class loader deadlocks. A classloader deadlock appears if
class A has a static dependency on class B that has a dependency on class A. For example: The static initializer of A
uses B that again uses A but the call to B cannot complete because A is not initialized, yet. Because Pathfinder also
instruments common data structures that itself uses, such a scenario can be problematic. Static initializers are called
once for a class type. This cannot cause writes that belong to dynamically created objects in transit. So we consider
scenarios where not tracking memory accesses in static initializers hides relevant inter thread communication as
unlikely.
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Chapter 7

Evaluation

In this chapter we present an evaluation of Pathfinder on two widely used distributed systems: Cassandra [26] and
HBase [25]. We evaluate the completeness of Pathfinder’s instrumentation, we approximate the amount of effort
required to perform the instrumentation, and we compare Pathfinder’s instrumentation to pre-existing reference
instrumentation within each of the systems. Further, we compare Pathfinder with an existing automatic instrumentation
approach. We also measure the overheads Pathfinder imposes during the tracking stage. Overall, we show that:

• Pathfinder is able to identify all instrumentation points of a reference instrumentation in both Cassandra and
HBase.
• Using Pathfinder we identified multiple instrumentation points in HBase that are missing from the reference

instrumentation.
• Pathfinder required investigating less than 1% of the code base of either system.
• Pathfinder does not suffer the same pitfalls as the automatic instrumentation approach of OpenTracing.
• Pathfinder’s runtime overhead is up to 150× the latency of regular requests, which is within acceptable bounds

for runtime tracking to be feasible.

7.1 Experimental Setup

7.1.1 Systems
We apply Pathfinder on Apache HBase [25] and Apache Cassandra [26]. Both systems are large scale distributed
storage systems. We picked them because of the following properties:

• active and relevant – They are both actively developed and used by many companies. (e.g. Facebook, Uber,
Pinterest)
• open source – They are free for academic purposes and offer white box access what is a requirement of

Pathfinder.
• complex – A request execution traverses various execution patterns Pathfinder has to deal with.
• existing instrumentation – Both systems provide an existing instrumentation we can use as a reference.

7.1.2 Deployment Setup
We deploy all systems and run all the experiments in a VirtualBox VM that runs Ubuntu 16.04. The resources
allocated for the VM are 16GB RAM and 3 CPU Cores. The VM runs on a machine with 32GB RAM and Intel Core
i7-6700K (4x4.3GHz) as CPU.

We deploy the different nodes that are part of the distributed systems as separate processes in the same VM. It is
required to ensure that request executions traverse all code paths that they would in a real deployment. However, a
full production deployment is not required – only a minimal deployment to ensure code paths are followed. Typically
it is enough to deploy a system with only one or two nodes. We describe the exact deployment scenarios in line for
each experiment.
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Request Iterations Distinct Investigated Covered Covered Investigated Instr. Points
Type Slices Slices Classes Methods Methods Found

Rel. Total Rel. Total Rel. Total Rel. Total
create keyspace 2 4.5k 11 96 42 293 66 559 8 27 1
scan 2 0.5k 12 24 30 96 58 170 6 16 1
insert 1 0.5k 0 4 0 21 0 32 0 0 0
update 1 0.5k 0 3 0 19 0 29 0 0 0
delete 1 0.5k 0 3 0 19 0 29 0 0 0
create table 1 5.5k 0 19 0 104 0 191 0 2 0
drop table 1 5.0k 0 29 0 150 0 260 0 2 0
System 9 17k 23 171 61 386 108 801 14 47 2

Table 7.1: Summary statistics for instrumenting Cassandra with Pathfinder. Request types were instrumented in the
order presented. Slices, classes, and methods are relevant if they correspond to some instrumentation in the reference
instrumentation. See §7.2.2 for a detailed description.

7.1.3 Instrumentation Procedure
For each system (Cassandra and HBase), we used Pathfinder to derive instrumentation. We follow the instrumentation
workflow described in this thesis, where we selected several request types to instrument one-by-one. We ran a small
workload before tracking a request, to reduce the chance of lazy object initialization triggering spurious ITCEs (we
covered this topic in §5.4). We then tracked exactly one request, to minimize the chance of cross-request slices.

7.2 Instrumenting Cassandra
In our first experiment, we use Pathfinder to derive instrumentation for Cassandra. The focus of this experiment is
firstly instrumentation completeness: does Pathfinder successfully identify all instrumentation points? To answer this
question we compare to pre-existing instrumentation that already exists within Cassandra. That prior instrumentation
was added by the system’s developers manually, to provide distributed tracing, at great pains (as outlined in Chapter 3).
The existing instrumentation serves as a reference for assessing the relevance of Pathfinder’s communication slices,
and enables us to report on completeness and correctness of Pathfinder’s derived instrumentation.

The second goal of this experiment is instrumentation effort. To assess this, we measure several metrics relating
to how much of the code base contained ITCEs, was presented by Pathfinder Explorer, and was investigated to
implement context propagation. While there is no accurate baseline to estimate the amount of effort for a manual
instrumentation, we compare our measured metrics to the overall code base, and show that Pathfinder only requires
investigating less than 1% of the overall code base in detail and less than %3 as part of the high-level investigation
of stack traces. To provide qualitative context for understanding the results we also report on the wall-clock time
required to perform this instrumentation.

7.2.1 Setup
We used Cassandra Version 3.11.6. We ran a two node Cassandra cluster (two processes on the same host), suffi-
cient to exercise Cassandra’s primary and secondary node code paths. Having more nodes provides no additional
benefits.

We modified the source code of Cassandra to prepare the application of Pathfinder. We implemented inter-process
context propagation (the serialize and deserialize methods) ahead of time in Cassandra’s networking layer
to allow Pathfinder to track slices across processes. Identifying such code locations is trivial and required code
modifications in 4 places. We implemented a small Cassandra client to set the start point of requests and initiate
tracking.

We increased the request timeouts on the client side to tolerate the overhead Pathfinder introduces to 20 seconds.
Request executions would time out and be aborted under Pathfinder without this extension. The default is 2 sec-
onds.

7.2.2 Results
We instrumented 7 request types, shown in Table 7.1, in the given order. The order is arbitrary, but relevant because
instrumentation found for one request type is then already covered for later request types.
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Table 7.1 shows how many relevant inter-thread slices and irrelevant inter-thread slices we investigated across the
iterations. A slice is relevant if the reference instrumentation contains context propagation along the communication
channel the slice points to. Accordingly, a slice is irrelevant if there is no corresponding context propagation in the
reference instrumentation.

We provide a brief description of the overall investigation process. We began with the “create keyspace” request
type. A request begins with the client program performing an RPC to one of the Cassandra nodes. The request is
received and a thread starts processing: it writes to a commit log, changes in-memory state, and notifies other nodes
to replicate the data. The other nodes perform essentially the same operations. When all nodes complete and return
an acknowledgment, the operation returns to the client.

Using Pathfinder required 2 iterations to complete the instrumentation for this request. Overall, Pathfinder tracked
approximately 4500 distinct (i.e. unique stack trace and memory identifier) slices for this request. Of those only
96 slices required investigating – others were either filtered out (cf. §5.4), or were skipped while the investigation
because the necessary information could already be derived from previous slices. 11 slices we investigated were
relevant and 85 were irrelevant.

Consequently, we added instrumentation for only one execution pattern: the base class of an execution service that is
used in multiple places in the code.

Overall, the communication slices we considered during the investigation named 293 classes and 559 methods – that
is, these classes and methods appeared on either the reader or writer stack traces. Often this is enough for us to infer
patterns in the code.

Sometimes, further investigation of the actual code (i.e. method bodies) is required. This is necessary to decide the
final instrumentation points, or if relationships between threads cannot be fully inferred by the stack traces. This was
necessary for 27 of the 559 methods.

Table 7.1 further shows the results for other request types. The entry System summarizes the results across all request
types.

7.2.3 Derived Instrumentation
Pathfinder was able to identify all instrumentation points that are covered in the reference instrumentation. We verified
this based on the reference instrumentation code and produced traces. There are only two instrumentation places
because all requests use a shared set of execution services. Instrumenting their base classes was sufficient to cover all
requests.

In addition to the reference instrumentation, Pathfinder identified several additional places where instrumentation
might be desired. We are unable to assess whether this instrumentation is omitted in Cassandra by mistake, or if
it was a qualitative developer choice because distributed tracing is undesirable in these locations. We categorized
corresponding slices as irrelevant in Table 7.1. We list such detected places here:

• The reference instrumentation does not associate RPC sending and receiving tasks with requests. The reference
instrumentation embeds request context into inter-process messages before passing them to separate threads
that perform the actual RPC. So context is not propagated to those separated threads and so the actual sending
task that is performed by those separate threads is not captured for a request.
A more fine-grained instrumentation at this point may have been undesired for distributed tracing.
• The instrumentation does not capture some asynchronous tasks that are triggered by the request, such as a

cleanup task. These are unlikely to be desired for distributed tracing, and likely were omitted for this reason.
However, it might be reasonable to instrument them as a separate background task, in which case Pathfinder is
useful for identifying these starting points in code.
• The reference instrumentation does not propagate context back to callers at places where results of concurrent

executions are retrieved like in the example shown in Figure 2.1, introduced in §2.4.2. This is not required for
the distributed tracing tool used in Cassandra.
• Cassandra uses a write-ahead log on the critical path of some requests. This code path is not instrumented, but

could be included as part of a distributed trace. The instrumentation for this execution pattern is not straight-
forward because several log operations across several requests are summarized to one write out operation. It is
not obvious how to associate the one write out operation with all the requests with the tracing tools Cassandra’s
instrumentation supports. We believe this is the reason why this place is omitted.
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7.2.4 Irrelevant Slices
The results show that most of the slices we investigated were irrelevant. Out of 171 slices only 23 corresponded to
eventually relevant instrumentation places. In addition to omitted instrumentation listed above, the remaining slices
were caused by system operations that read data the tracked requests had written during the execution including
cached data, metric information, global application state (e.g., endpoint information, in memory storage tables) and
custom synchronization structures. Pathfinder is not able to filter such slices out. This is one of the main arguments
why Pathfinder relies on a developer to do this. For a human it is usually easy to identify a slice as relevant or
irrelevant.

7.2.5 Diminishing Returns
As the instrumentation progresses, the number of captured slices reduces in each iteration. This is caused by:

• The elimination of covered slices. After the first two request types, we had identified and instrumented all
necessary places in the code base. For subsequent request types, those slices were automatically eliminated
with the technique presented in §5.4.3.
• Slices that cover operations that were already fully explored can be filtered out in subsequent iterations. We

remove such slices based on method names that belong to those operations and appear on the stack traces.
For example, create keyspace and create table both partially use the same code paths.We only remove such
"redundant" slices based on operation names if we can be sure that the triggered operation cannot lead to
unseen behavior depending on arguments and state.

7.2.6 Tracked vs. Investigated
Table 7.1 shows a significantly higher number of tracked slices than actually investigated. This discrepancy results
from the filtering Pathfinder performs and the limited manual investigation of slices. We only investigate as many
slices as needed to understand the relation between threads (e.g. message passing, shared cache, shared application
state). On average we investigated 3 slices for one thread pair.

7.2.7 Instrumentation Time
To provide qualitative context to the instrumentation presented here, we report the wall-clock time needed to complete
the instrumentation. This is based on a single developer (the author of this thesis) and only serves to provide
context.

The full instrumentation process for intra-process context propagation took about 10 hours. The investigation of an
irrelevant slice took between 30 and 60 seconds on average. Based on the information that are part of the stack traces,
it was usually possible to derive the context of the relation and that it is not relevant.

The investigation of relevant slices, and corresponding code places plus the instrumentation took about 3 hours in
total. The most time consuming part here was to assess and verify the effects of possible instrumentation places. In
Cassandra all execution services share a few common base classes. Pathfinder reveals them but we had to verify
that the general instrumentation of a base class does not affect branches where propagation is undesired (e.g. a long
running task is started).

The investigation of seemingly relevant slices and corresponding methods that are eventually not part of the reference
instrumentation took about 1 hour.

The rest of the time was spent on preparation, compilation, running the system and loading, filtering, selecting the
tracked data.

7.2.8 Search Space
To give an indication that Pathfinder indeed reaches a reduction in search space, we relate the code part we covered
while the instrumentation with Pathfinder to Cassandra’s code base.

The code base of Cassandra includes 1678 Java files, excluding testing and third-party code. These files comprise
4621 classes and 28172 methods.

The communication slices we investigated with Pathfinder Explorer covered 801 methods (3% of the code base).
That is, 3% of methods appeared on either the writer or reader stacks traces (the average stack trace had a depth of
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Request Iterations Distinct Investigated Covered Covered Investigated Instr. Points
Type Slices Slices Classes Methods Methods Found

Rel. Total Rel. Total Rel. Total Rel. Total
create table 4 4.5k 19 178 53 331 107 769 22 53 5
put 1 0.5k 0 6 0 50 0 87 0 0 0
get 1 0.1k 0 2 0 41 0 64 0 0 0
scan 1 0.5k 0 7 0 63 0 107 0 1 0
delete 1 0.5k 0 5 0 44 0 79 0 0 0
disable table 2 1.5k 3 26 12 125 20 230 3 3 1
delete table 1 2.0k 0 6 0 26 0 50 0 0 0
enable table 2 1.5k 0 37 0 135 0 268 0 3 0
System 10 11.1k 22 219 58 381 114 918 25 60 6

(a) Summary statistics for instrumenting HBase with Pathfinder. Request types were instrumented in the order presented. Slices,
classes, and methods are relevant if they correspond to some instrumentation in the baseline manual instrumentation.

Request Iterations Distinct Investigated Covered Covered Investigated Instr. Points
Type Slices Slices Classes Methods Methods Found

Rel. Total Rel. Total Rel. Total Rel. Total
create table – – +14 – +23 +18 +67 +42 +13 – +5
enable table – – +3 – +11 +11 +18 +13 +3 – +1
System – – +17 – +31 +26 +72 +45 +16 – +6

(b) Using Pathfinder we identified several places that were missing from the baseline instrumentation. These numbers describe the
additional slices, classes, and methods to find these additional instrumentation points. They occurred in two request types.

Table 7.2: Summary statistics for instrumenting HBase with Pathfinder. See §7.3.2 for a detailed description.

20 methods). As part of the high-level investigation of slices we scanned parts of the stack traces to understand the
communication between threads.

During our investigation, we investigated the code of 46 methods in detail. These are part of 34 classes. 46 methods
correspond to 0.16% of the code base.

7.3 Instrumenting HBase
In this section we repeat the experiment presented in the previous section, this time considering HBase [25]. HBase
is an open-source distributed database that interacts with two other services, ZooKeeper [61] and HDFS [56]. It is
widely used as part of larger microservice architectures.

7.3.1 Setup
We use HBase version 1.6 [25] with the extended instrumentation patch applied [66]. We ran a 2 node cluster with
one master node and one region node. They all run as separate processes on the same host. Similar to Cassandra this
small setup is sufficient to exercise all code paths.

We modified the source code of HBase to prepare the application of Pathfinder, by adding inter-process instrumentation
(serialize and deserialize) in 4 locations in code. This enables Pathfinder to track slices between processes. As
with Cassandra, identifying these locations is trivial. A request timeout adjustment was not necessary. The default is
300 seconds.

7.3.2 Results
We instrumented 8 request types, shown in Table 7.2a, in the given order. The order is arbitrary, but relevant because
instrumentation found for one request type is then already covered for later request types. The table has the same
structure as Table 7.1 and we perceive similar results. Only a small number of slices need to be investigated to identify
appropriate instrumentation points. There are a larger number of irrelevant slices. And as we proceed through the
request types, less additional slices were necessary to investigate because common code locations are already covered
by instrumentation of earlier request types.
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7.3.3 Derived Instrumentation
Using Pathfinder, all instrumentation points of the reference instrumentation were also identified and instrumented.
HBase has more instrumentation points than Cassandra because in Cassandra all request related ad-hoc executions
are performed by execution services that share a set of base classes and most of the instrumentation needed was
within those base classes. This is not the case for HBase. So for HBase we had to put instrumentation close to places
where the execution services were used (e.g. wrapping a service instance) instead of instrumenting the service classes
generally.

In addition to this aspect, HBase is more heterogeneous in how tasks are executed (e.g. different custom execution ser-
vices, ad-hoc thread creations) and exhibits more infrastructures that are instrumented in the reference instrumentation
such as an event handling service, procedure scheduling service and an asynchronous commit log.

As for Cassandra, Pathfinder identified several places in HBase which are not covered by the reference instrumentation
and that are not necessarily relevant but optional (e.g. message passing to extra thread that performs an RPC). We did
not consider these relevant in Table 7.2.

Unlike Cassandra, we also identified several further places using Pathfinder that are clearly part of the request
execution but were missing in the reference instrumentation. The missing instrumentation corresponds to features for
which the official instrumentation is still work in progress [67]. So the missing instrumentation points may be added
to the official instrumentation in the future. Table 7.2b lists the additional relevant slices, classes, and methods for
these locations.

7.3.4 Instrumentation Time
As with our Cassandra instrumentation, we report the wall-clock time needed to complete the instrumentation. This
provides qualitative context for the experiment presented here. The full instrumentation process for intra-process
context propagation took about 16 hours. The investigation of an irrelevant ITCE took between 30 and 60 seconds
on average. Based on the information that are part of the stack traces, it was usually possible to derive the context
of the relation and that it is not relevant. The investigation of relevant slices, and corresponding code places plus
the instrumentation took about 6 hours in total. The investigation of seemingly relevant slices and corresponding
methods that are eventually not part of the reference instrumentation took about 2 hours. The rest of the time was
spent on preparation, compilation, running the system and loading/filtering/selecting the tracked data.

7.3.5 Search Space
As for Cassandra we relate the code part we covered while the instrumentation with Pathfinder to HBase’s code
base.

The code base of HBase includes 1919 Java files that do not contain testing or third-party code. These include 3427
classes and 26072 methods. With the help of Pathfinder we investigated the code of 60 methods that are part of 42
classes. 60 methods correspond to 0.2% of the code base. The high level investigation of inter-thread slices covered
918 methods what is 4% of the code base.

Only 1900 HBase specific classes were actually loaded by HBase at runtime to execute the listed request types. This
number does not include generated classes, Java library classes or other third-party libraries HBase uses. If we assume
a developer is able to identify those classes at no cost as part of a code traversal when instrumenting manually we can
use this set of classes as resulting code base. In comparison to this class set we investigated 2% of the classes.

7.3.6 Additional Insights
• Detecting inter-process boundaries – Although Pathfinder does not explicitly support the instrumentation of

process boundaries, Pathfinder was able to identify all inter-process message sending points in Cassandra and
many in HBase. This was possible because most used RPC frameworks use separate threads to perform the
RPC. Pathfinder detects communication to those threads and captures the accesses to message objects when
those are created and serialized by different threads.
• Detecting system level transactions – Pathfinder was able to identify several system internal operations and their

start points in code. System internal operations and background tasks are started as part of request executions
or access resources that were written by request executions. So the threads that execute those operations appear
as readers of read-after-write relations Pathfinder tracks. The reported stack traces point to corresponding
methods and operation start points. In Cassandra those operations are not traced; some of them are traced in
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HBase. For the presented instrumentation task we focus on user-level requests but one could use the identified
start points of those operations to also instrument them with Pathfinder.
• Instrumentation points are shared – The reference instrumentation of HBase traces system internal transactions

which are not triggered by a user (e.g. periodic flushing, pre-fetching). We do not investigate such transactions
using Pathfinder, although Pathfinder would be suitable for instrumenting them given some appropriate starting
point in code. Nonetheless, we observed that Pathfinder was able to detect all instrumentation points relevant
to these background tasks, because different types of requests share the same infrastructures which need to be
instrumented. So investigating a subset of requests already allows a complete system instrumentation.
• Request Profile – The successive investigation of code slices as part of Pathfinder’s workflow automatically

leads to an understanding of the execution profile of requests. This allows to asses the context and relevance
of potential instrumentation points, shows how they belong together and gives additional confidence that the
instrumentation is end-to-end.

7.3.7 Manual Instrumentation Experience
As part of other research projects we instrumented several systems manually and found ourselves often in situations
where we could identify several instrumentation points but finding the remaining ones was extremely time consuming
or points were completely missed. When the critical end-to-end path was instrumented there was no indication that
there are still sub-tasks connected, resulting in an incomplete instrumentation. We experienced a heuristic code
traversal as extremely time-consuming, covering an often insufficient sub set of the code base. Which branches to
follow is a often an ad-hoc decision and not exhaustive. So the variance in needed time to identify an instrumentation
point was usually very high, resulting in instrumentation times up to several weeks.

With Pathfinder the instrumentation process became a straightforward processing of displayed slices. The mental
load reduced significantly and presented slices cover an sufficient sub set of code to identify all instrumentation
points.

7.3.8 Summary
Overall we show that Pathfinder was able to detect all instrumentation points and so that Pathfinder successfully
exploits inter-thread communication events to reveal instrumentation points for intra-process context propaga-
tion.

We give several indications that Pathfinder achieves a significant reduction in search space and so needed time to
accomplish a full system instrumentation.

7.4 How does Pathfinder compare to an automatic instrumentation ap-
proach?

In §3.3 we outlined several prior approaches to partially automating instrumentation. In this section we evaluate
one such automatic instrumentation approach and compare the resulting instrumentation with the one derived with
Pathfinder. Concretely, we use the automatic instrumentation feature of OpenTracing [68]. The experiment illustrates
that an existing automatic approach misses many important instrumentation points, but also adds instrumentation to
many places where it is undesirable.

7.4.1 OpenTracing Instrumentation Agent
OpenTracing provides an automatic code transformation tool that plugs-in pre-instrumented libraries and instruments
fixed code patterns. Classes are modified at runtime with byte code instrumentation. The application of this tool only
requires to provide OpenTracing’s agent to the Java virtual machine of the target program.

In the context of intra-process context propagation in HBase and Cassandra the agent instruments classes that inherit
or implement the following classes/interfaces.

• java.util.concurrent.Executor
• java.util.concurrent.ScheduledExecutorService
• java.lang.Thread

Executor and ScheduledExecutorService are execution infrastructures that are driven by thread pools and
allow to submit tasks which are then executed by a thread pool thread. The instrumentation the agent inserts for
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java.util.concurrent.Executor and java.util.concurrent.ScheduledExecutorService propagates con-
text along with the submission of task objects and for java.lang.Threads the context is propagated on thread
creation and continued when the thread is started. The agent does not help finding start points of requests just as
Pathfinder.

7.4.2 Results
Cassandra

We used the OpenTracing agent to instrument Cassandra. The resulting instrumentation is over-complete: it covers all
instrumentation points of the reference instrumentation, but also many others that do not require instrumentation.
The agent instruments 43 classes for intra-process context propagation where only 2 are actually instrumented in the
reference instrumentation.

The instrumentation is incorrect or unsuitable at many places, resulting in:

• Background tasks that are connected to requests that initially schedule them.
• Infinite traces for long running and periodic tasks.
• Connection of low level tasks with a request that the reference instrumentation does not connect to not overload

traces.

The tool is fully automatic and so the application did not require any additional effort unlike Pathfinder.

HBase

We could not apply the agent on HBase. HBase crashed while startup when using the agent. We tried to simulate the
effects and look for classes that implement the interfaces the agent would look for. Under this simulated application
the agent would be able to instrument 4/6 respectively 7/10 (extended baseline instrumentation) instrumentation
points the reference instrumentation covers. The missing instrumentation points appear at custom services which do
not use any Java execution infrastructures. At such places item processing is handled by threads which are manually
started and stopped and items are passed over generic data structures such as queues. Request context has to be
propagated when requests submit items to those services. The agent cannot handle such scenarios.

As for Cassandra the agent generally instruments all classes that inherit from Java execution infrastructure classes.
This results in a largely over-complete instrumentation. We did not simulate the full extend of the agent’s automatic
instrumentation but we found 95 classes that implement java.util.concurrent.Executor and identified over
5 long running threads and 4 tasks that perform periodic executions. The instrumentation at these places leads to
similar effects like mentioned for Cassandra (e.g. infinite traces, connection of background tasks with the requests
that initially schedule them)

7.5 Overhead
In the following we present measurements of overhead Pathfinder introduces for request executions. The overhead
Pathfinder introduces for request executions must be sufficiently low such that requests complete successfully, do not
time out or are distorted. Otherwise Pathfinder is not able to capture all the slices and inter-thread communication
channels a request usually covers.

The only performance requirement for Pathfinder is that requests correctly execute. Pathfinder is exclusively applied
at development time and does not affect executions at production time. The final instrumentation for a system that
runs in production is fully independent of Pathfinder.

We measure runtimes for normal request executions and compare them with tracked request executions under
Pathfinder. Additionally, we check if the requests complete successfully and if any problematic events are logged
while the execution.

The results show that Pathfinder introduces significant overhead for requests. Request executions under Pathfinder can
be over 150 slower than normal. However, with appropriate timeout adjustments all requests complete successfully
and do not show any odd behavior. We list possible optimizations to improve the performance of Pathfinder in
§8.2.
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7.5.1 General Setup
The basic setup is the same as presented in §7.2.1 and §7.3.1. In addition we consider the widest end-to-end tracking
setting the systems had while the instrumentation process. This is the worst case scenario where all appearing slices
are tracked along the end-to-end path of a request. In addition, we limit the slices that Pathfinder tracks per thread
pair to 50. Pathfinder ignores further appearing slices. We also used this setting when doing the instrumentation in
§7.1.3.

All executed requests insert, delete or retrieve single values. We never run data heavy workloads.

7.5.2 Single Execution
In this experiment we measure the overhead of tracked requests when Pathfinder tracks exactly one request right after
system start. This scenario is the same as when we did the instrumentation in §7.1.3.
We compare the runtime of a normal request execution to the runtime of a tracked request execution.

Before we measure the runtime of the tracked request execution we run a small workload that contains a single
execution of all the requests that we want to instrument. This setup mimics the Pathfinder application scenario we
presented in §7.1.3. In each iteration when Pathfinder is applied, one compiles the system, runs it, executes a small
workload before tracking exactly one request. The tracked request execution has to complete successfully such that
Pathfinder can be effective.

Results
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Figure 7.1: Cassandra: Normalized runtimes of the requests under normal operation and under Pathfinder. Each
request execution was the first after running a small workload after system start. Average and std.-dev. of 5 first
request executions directly after system start.
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Figure 7.2: Cassandra: Absolute runtimes of requests under normal operation and under Pathfinder. Each request
execution was the first after system start. Average and std.-dev. of 5 first request executions directly after system start.

Figure 7.1 and Figure 7.3 show normalized average (µ) runtimes for Cassandra respectively HBase. The line on each
bar covers the range from [µ−σ ,µ +σ ]. We averaged 5 first executions.
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Figure 7.3: HBASE: Normalized runtimes of the requests under normal operation and under Pathfinder. Each request
execution was the first after system start. Average and std.-dev. of 5 first request executions directly after system start.
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Figure 7.4: HBASE: Absolute runtimes of the requests under normal operation and under Pathfinder. Each request
execution was the first after system start. Average and std.-dev. of 5 first request executions directly after system start.

Figure 7.2 and Figure 7.4 show the corresponding absolute runtimes. Normal runtimes for delete, insert, update,
select, put and get lie between 1 and 60 ms.

The overheads are significant for all request types. The first execution of requests can be over 150 times slower than
normal. This is because Pathfinder captures every memory read; and every memory write under a tracking scope.
Every memory write under a tracking scope and every memory read that leads to an ITCE causes the capturing of the
reader’s stack traces and leads to a log entry that is hold in memory.

The absolute overhead of Pathfinder is higher for operations that effect more state like create table and create
keyspace that cause more ITCEs. This is also visible in Table 7.1 and Table 7.2 where we see more tracked slices
for the operations for which Pathfinder causes more absolute runtime overhead.
However, the relative overhead is higher for fast operations like get and put and lower for operations like create
table. A possible explanation for this is that a significantly bigger portion of the runtime for create table is
caused by RPCs and disk accesses in comparison to runtimes of put/get. Pathfinder does not cause overhead
for message delivery over sockets or disk accesses. So these operations contribute to the overall runtime but do
not increase the absolute overhead Pathfinder causes. So the overall relative overhead Pathfinder causes appears
lower.

For create keyspace, create table and select requests we have to increase the timeout (default is 2 seconds)
such that requests do not abort. With the adjusted timeout all requests complete successfully and do not exhibit any
distorted behavior visible in the logs.

Overall we see that with a timeout adjustment Cassandra tolerates the overhead and requests execute correctly and
complete successfully.
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Figure 7.5: Cassandra: Normalized runtimes of the requests under normal operation and under Pathfinder. Average
and std.-dev. of 25 request executions directly after system start.
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Figure 7.6: HBASE: Normalized runtimes of the requests under normal operation and under Pathfinder. Average and
std.-dev. of 25 request executions directly after system start.

7.5.3 Multi Execution
In this experiment we measure the overhead of tracked requests when Pathfinder tracks multiple executions of requests
right after system start. This experiment is similar to the one presented in §7.5.2. However, now we run requests
multiple times instead of exactly once such as in a small workload. This scenario can be relevant when tracking
cross request relations (e.g. shared caches, join points). The main question this experiment wants to answer is, if the
overhead for requests increases with an increasing amount of executions.
We compare the runtime of a normal request execution to the runtime of a tracked request execution.
Before we measure the runtime of the tracked request execution we run a small workload as in experiment
§7.5.2.

Results

Each measurement shown in Figure 7.5 and Figure 7.6 corresponds to the average of 25 executions of one request
after executing a small workload right after the system start.

The results show that the overhead tends to decrease with more executions for within 25 executions. This is because
the first tracking activity for the first execution leads to initialization of Pathfinder’s tracking framework and Java’s just-
in-time compiler can bring in optimizations over time. With more and more tracking activity Pathfinder accumulates
more and more data that is considered for lookups when a memory address is accessed for reading by a thread.
The results show that this accumulation does not significantly increase the runtime for such lookups when small
workloads are tracked.
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Chapter 8

Discussion

8.1 Approximating Developer Effort
In our evaluation, we measured several statistics relating to the system code base, to illustrate that Pathfinder reduces
the amount of code a developer must consider. These statistics are only approximate measures that, we argue, correlate
with developer instrumentation effort. However, we do not compare to the amount of code that is actually investigated
as part of a manual instrumentation process.

To address this, we could conduct a user study where a group of users instruments a set of systems with Pathfinder
and another instruments the same systems without Pathfinder. The needed time and instrumentation experience could
be measured and compared. We did not conduct a user study as it was beyond the scope of this work. Moreover,
instrumentation is a specialized task, for which it is challenging to identify experts to perform the task. Further, the
needed time each user has to invest to instrument the systems can take days to weeks. Setting such a user study up
would be far too costly and time intensive as part of this thesis. The focus of the presented evaluation is on measuring
how many instrumentation points Pathfinder is able to detect, showing that observing inter-thread communication
events can be effectively exploited to identify context propagation places in real systems. We reported on the wall-
clock time taken to perform this instrumentation by the author of this thesis. Anecdotally, this instrumentation process
was substantially faster than manual instrumentation tasks performed by the same author previously.

We do not evaluate Pathfinder on other uses case than distributed tracing, since we could not find any open source
systems that have a corresponding instrumentation in place. Defining a reference instrumentation on our own
would be biased and potentially unrealistic. Our evaluation approach fundamentally relies on a realistic reference
instrumentation.

8.2 Pathfinder’s Overhead
In §7.5 we showed that Pathfinder causes significant overhead for tracked requests. Since Pathfinder is exclusively
applied at development time, this is not a problem as long as timeouts can be adjusted accordingly. There can be
many factors in realistic scenarios which can naturally cause a massive latency increase for requests in distributed
systems. A system that is not configurable to tolerate such higher latencies and just does not properly serve requests
in such common scenarios seems unlikely.

• RPC distance – Network messages might be transferred between data-centers across continents. What causes
high message delivery times (can be order of seconds).
• RPC loss/delay – Networks are best effort. Packages can get lost or delay causing high request latencies.
• System under load – If a services gets popular request amounts can suddenly increase. The available resource

per request decreases and request latencies increase.
• Slow nodes – Single nodes that are traversed by a request can be exceptionally slow because of high disk failure

rates.
• Heterogeneous machine power – The same system might be deployed for different applications under strongly

different resource conditions what causes higher or lower request latencies and request latency requirements.

However, we cannot exclude the possibility that systems exist that do not tolerate the overhead Pathfinder introduces.
We think Pathfinder’s tracking performance can be significantly improved to increase the probability that systems
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tolerate the caused overhead. We identified several places in our prototype where optimizations are possible to
improve performance.

• Initialization – Measurements presented in §7.5.3 give an indication that Pathfinder’s initialization causes
significant overhead. Pathfinder is initialized when the tracking framework is first touched by the first tracked
request. To decrease overhead for the request, we could decouple the initialization. We could initialize Pathfinder
with a separate initialization request that just initializes pathfinder on all nodes before an actual request is
tracked. We do not initialize Pathfinder statically when a node is started to prevent class loader deadlocks.
• Synchronization – Pathfinder globally serializes tracking calls for simplicity. There is no interleaving between

calls to Pathfinder’s tracking component that happen by different threads. This is not necessary. Only the access
to the central look up map must be synchronized properly. This can lead to waiting times for a thread when
the tracking component is currently blocked by another. Since all reads from shared memory are redirected to
Pathfinder’s tracking framework, the overall wait times of all threads might be significant.
• Stack traces – Pathfinder frequently captures stack traces and capturing a stack trace is expensive in Java.

Improving the stack trace capturing time will improve the track latency. This can be achieved by actively
maintaining stack traces in a thread’s local storage as a thread enters and leaves methods. Capturing a stack
trace becomes passing a pointer to the current stack trace state.
• Data Locality – Pathfinder maintains one central map to lookup past writes to memory locations. Accesses

on this map must be serialized and tracked data is stored not local to the actual memory addresses that are
observed. Instead of storing metadata centrally, it is possible to store it locally to the memory address we track
accesses to. This would significantly increase spatial locality (cache efficiency) and would remove the needed
synchronization of threads.

8.3 Can Pathfinder miss something?
Pathfinder fundamentally relies on detecting inter-thread communication events. However, theoretically there can
exist execution patterns which are single threaded and still need context propagation. An example is when only one
thread processes and interleaves incoming requests. We presented this example in §2.6. Pathfinder is at its current
state not able to detect corresponding propagation places, because there is no inter-thread communication involved.
However, our evaluation indicates that this execution pattern is uncommon in modern systems that try to maximize
concurrency to fully utilize machines.

In the following we present an example that we encountered in HBase that comes at least close to the execution pattern
described above. In HBase we encountered a custom procedure execution stage where procedures are resubmitted. A
procedure processing thread pulls a procedure from a queue, processes parts of it, and then resubmits the procedure
to the queue. After processing other procedures the thread pulls and continues the procedure.
Pathfinder could detect the re-submission point because the stage is driven by several threads and another thread
continued the execution. However, this additional slice was not even necessary. Pathfinder detects the communication
between the external thread that initially submitted a procedure and the worker thread that processes it. The general
submission and retrieving logic was revealed by the corresponding slices. The derived instrumentation was naturally
on a general level such that it covered the re-submission case. We did not specifically addressed this case in any way.
So even if the stage had been driven by a single thread we still would have covered this place. We think other possibly
single threaded stages like event engines, request dispatching engines can be handled similarly. Revealing the first
interaction with the stage is often sufficient.

8.3.1 Adjustment
Even if there does not seem to be necessary, there is a simple adjustment for Pathfinder to extend the tracking
capability to reveal such places where context propagation is needed but no inter-thread communication is involved.
Instead of associating thread IDs with memory addresses, we associate request IDs with memory addresses. A
thread gets a request ID at the start of a request when a tracking scope is begun. When the tracking scope context is
propagated, the request ID follows. When a thread writes to a memory address, the request ID is associated with the
memory address. Threads that execute code outside of tracking scopes automatically carry a "no-request ID" and if a
thread with a "no-request ID" reads from a memory address that has a request ID, a transfer point (similar to ITCE) is
detected.
Suppose in the example we described above only one thread would pull, process and resubmit procedures. The thread
resubmits the procedure under an active tracking scope and discards the tracking scope afterwards when it ends the
current processing. When the thread then pulls the procedure again later the thread pulls the procedure outside of a
tracking scope and so the read is performed by a thread with a "no-request ID" - a request ID that differs from the

52



request ID that was associated with the memory address. A transfer point is detected. Capturing a slice including
writer and reader stack traces would reveal the needed instrumentation point.
Scenarios we encountered in the wild that are potentially single threaded like event engines or request interleaving
can be revealed this way. However, this adjustment has a few weaknesses.

• Potentially many places will be detected as transfer points which are irrelevant. Whenever a thread accesses
memory addresses outside of a tracking scope, it has written before under a tracking scope, these will be
detected as transfer points. This includes all data structures and fields that are used to manage a stage (e.g.
counter, list of threads, size field of work item list) and more.
• Theoretically there can be places that are still missed. For example, when a single thread can jump between

stages and the producer and consumer point are both covered under the same tracking scope and so nothing is
detected.

We leave it to future work to further explore this approach.
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Chapter 9

Conclusion

Pathfinder is a developer-in-the-loop tool that guides the developer through the end-to-end instrumentation process for
request flow tracking. Fundamentally different to other tools, Pathfinder integrates a developer in the instrumentation
process. Pathfinder detects and presents potential instrumentation points to the developer who thereby understands
the execution profile of requests and related execution patterns to make system and use case dependent decisions
about where and how to propagate context. To the best of our knowledge, Pathfinder is the first tool that interactively
assists the developer with the instrumentation task.
The application of Pathfinder on two large distributed systems showed that Pathfinder successfully exploits inter-
thread communication events to exhaustively reveal instrumentation points for intra-process context propagation in
the area of request flow tracking. We provided several indications that Pathfinder additionally achieves a significant
reduction in search space and so needed time to accomplish a full system instrumentation.
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Appendix A

Visualizations

Figure A.1: Cassandra, as part of "Create Keyspace". Writer thread on the right submits work to a thread pool. Reader
thread on the left dequeues the work.
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Figure A.2: Cassandra, as part of "Create Keyspace". Writer thread on the right computes cache entry. Reader thread
on the left reads from the cache.

Figure A.3: Cassandra, as part of "Create Keyspace". Writer thread on the right submits message to be send over
network. Reader thread on the left pulls the message.
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Figure A.4: Cassandra, as part of "Create Keyspace". Memtable flush task scheduling. The writer thread on the right
is part of a thread pool and executes a "migration" task that was submitted as part of processing request "create
keyspace". On the left the reader thread pulls the scheduled task.

Figure A.5: Cassandra, at several places. Thread pool finished processing and sets result that is read by the reader that
initially submitted the task.
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Figure A.6: Cassandra. Writer recycles a buffer and returns it to the buffer pool. Buffer is retrieved by the reader
thread.

Figure A.7: HBase. The slice reveals a background task. "CompletedProcedureCleaner" iterates over procedures that
were marked as finished by the writer thread.
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Figure A.8: HBase. Writer thread on the right, passes a message over to a socket thread to send it over the wire.

Figure A.9: HBase. Writer thread on the right wants to append a log entry to an operation log. Therefore it submits
some log message to an asynchronous operation log service. A thread that is part of this service retrieves the message
to perform the append. The message exchange happens via a ring buffer.
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Figure A.10: HBase. As part of processing the "create table" request a procedure is submitted to a procedure scheduler.
A procedure executor polls from this scheduler to process the procedure.

Figure A.11: HBase. This slice appears close by to the slice presented above. As part of processing the "create table"
request a procedure is passed to a procedure executor. The "Procedure" object is revealed as message object that is
exchanged between the two threads.
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Figure A.12: HBase. As part of processing the create table procedure a task is submitted to a thread pool.

Figure A.13: HBase. The writer thread creates an HStore that is accessed by the reader. The reader thread executes an
unrelated request that accesses global application state (i.e. HStore).
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Figure A.14: Merged view of over 50 slices. Reader thread on the left, writer thread on the right. Method names
are omitted. Pathfinder Explorer allows to enable and disable method names on demand to further investigate such
graphs and allows to zoom in for particular slices. Numbers at the bottom correspond to reader access order of fields.

66



Appendix B

Instrumentation Example

1 private class API {
2 private RequestProcessor procedureExecutor = new RequestProcessor ();
3
4 public void performPayment(Payment procedure) { // API entry point
5 TrackingScope.begin("PaymentRequest");
6 try {
7 prepareProcedure(procedure );
8
9 procedureExecutor.submit(procedure );

10 procedure.await ();
11
12 finishProcedure(procedure );
13 } finally {
14 TrackingScope.end();
15 }
16 }
17 }
18
19
20 private class RequestProcessor { // Stage 1
21 private CommitLog log = new CommitLog ();
22 private Queue <Procedure > queue = new Queue <Procedure >();
23
24 public void submit(Procedure proc) {
25 proc.context = TrackingScope.getContext ();
26 queue.add(proc);
27 }
28
29 private void processingLoop () {
30 while (...) {
31 Procedure proc = queue.poll ();
32 TrackingScope.join(proc.context , "RequestProcessor");
33 try {
34 log.logState(proc);
35
36 process(proc);
37
38 proc.finish ();
39 log.logState(proc);
40 } finally {
41 TrackingScope.end();
42 }
43 }
44 }
45
46 }
47
48 private class CommitLog { // Stage 2
49 private Queue <LogEntry > queue = new Queue <LogEntry >();
50
51 public void logState(Procedure proc) {
52 LogEntry w = new LogEntry(proc.getState ());
53 w.context = TrackingScope.getContext ();
54 queue.add(w);
55 w.await (); // wait for commit
56 }
57
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58 private void processingLoop () {
59 while (...) {
60 LogEntry entry = queue.poll ();
61 TrackingScope.join(entry.context , "CommitLog");
62 try {
63 writeBytes(entry.getBytes ());
64 entry.finish ();
65 } finally {
66 TrackingScope.end();
67 }
68 }
69 }
70 }
Listing B.1: An artificial multi stage request processing example instrumented with the TrackingScope API. The
shown code would run within one process. A payment request traverses a request processor Stage and an asynchronous
commit log Stage. The TrackingScopeContext is propagated end-to-end. For simplicity, TrackingScopeContext is
not propagated back to callers here (e.g. from Stage 2 back to Stage 1). Placing those additional TrackingScope
calls would only serve to persist instrumentation decisions that are later replaced with actual request context API calls
but does not influence what is tracked. With Pathfinder, 2 iterations would be needed to get to this instrumentation.
In the first iteration the communication between the thread that calls performPayment with Stage 1 would be
revealed. In the second iteration the communication between Stage 1 and Stage 2 would be detected.
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