
Abstract of “A Universal Architecture for Cross-Cutting Tools in Distributed Systems” by Jonathan Mace,
Ph.D., Brown University, May 2018.

Recent research has proposed a variety of cross-cutting tools to help monitor and troubleshoot end-to-end
behaviors in distributed systems. However, most prior tools focus on data collection and aggregation, and
treat analysis as a distinct step to be performed later, oøine. _is restricts the applicability of such tools to
only doing post-facto analysis. However, this is not a fundamental limitation. Recent research has proposed
tools that integrate analysis and decision-making at runtime, to directly enforce end-to-end behaviors and
adapt to events.

In this thesis I present two new applications of cross-cutting tools to previously unexplored domains:
resource management, and dynamicmonitoring. Retro, a cross-cutting tool for resource management, provides
end-to-end performance guarantees by propagating tenant identiûers with executions, and using them to
attribute resource consumption and enforce throttling decisions. Pivot Tracing, a cross-cutting tool for dynamic
monitoring, dynamicallymonitorsmetrics and contextualizes them based on properties deriving from arbitrary
points in an end-to-end execution.

Retro and Pivot Tracing illustrate the potential breadth of cross-cutting tools in providing visibility and
control over distributed system behaviors. From this, I identify and characterize the common challenges
associated with developing and deploying cross-cutting tools. _is motivates the design of baggage contexts,
a general-purpose context that can be shared and reused by diòerent cross-cutting tools. Baggage contexts
abstract and encapsulate components that are otherwise duplicated by most cross-cutting tools, and decouples
the design of tools into separate layers that can be addressed independently by diòerent teams of developers.

_e potential impact of a common architecture for cross-cutting tools is signiûcant. It would enable
more pervasive, more useful, and more diverse cross-cutting tools, and make it easier for developers to defer
development-time decisions about which tools to deploy and support.

A Universal Architecture for Cross-Cutting Tools in Distributed Systems

by
Jonathan Mace

Sc.M., Brown University, 2014
M.Math.Comp., Oxford University, 2009

A dissertation submitted in partial fulûllment of the
requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island
May 2018

© Copyright 2018 by Jonathan Mace

_is dissertation by Jonathan Mace is accepted in its present form by
the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Rodrigo Fonseca, Director

Recommended to the Graduate Council

Date
Maurice Herlihy, Reader

Date
Shriram Krishnamurthi, Reader

Approved by the Graduate Council

Date
Andrew G. Campbell

Dean of the Graduate School

iii

Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Cross-Cutting Challenges in Distributed Systems . 1
1.2 _e Need for Cross-Cutting Tools . 2
1.3 _esis Goals and Contributions . 3

2 Cross-Cutting Tools 5
2.1 Cloud Distributed Systems . 5
2.2 Cross-Cutting Executions . 6
2.3 Troubleshooting Across Boundaries . 6
2.4 End-to-End Tracing . 7

2.4.1 Overview . 7
2.4.2 Implementations and Use Cases . 8

2.5 Cross-Cutting Tools . 9
2.6 Goal: Second-Generation Cross-Cutting Tools . 10
2.7 Other Approaches . 11

2.7.1 Alternatives to Context Propagation . 11
2.7.2 Alternatives to Cross-Cutting Tools . 12

3 Resource Management in Distributed Systems 14
3.1 Background . 14

3.1.1 Multi-Tenant Systems . 14
3.1.2 Resource Management and Isolation . 14
3.1.3 Cross-Cutting Resource Management . 15

3.2 Hadoop Architecture . 16
3.3 Resource Management Challenges . 16
3.4 Prior Approaches . 20

3.4.1 Multi-Resource Scheduling . 20
3.4.2 Ad-Hoc Approaches to Resource Isolation . 20
3.4.3 Other Dimensions of Resource Management . 21

4 Retro: A Cross-Cutting Tool for Resource Management 23
4.1 Overview . 23
4.2 Design . 24

4.2.1 Retro abstractions . 24

iv

4.2.2 Architecture . 26
4.3 Implementation . 28

4.3.1 Per-work�ow resource measurement . 28
4.3.2 Resource library . 29
4.3.3 Coordinated throttling . 31

4.4 Policies . 32
4.4.1 BFair policy . 32
4.4.2 rDRF policy . 33
4.4.3 LatencySLO policy . 34

4.5 Evaluation . 36
4.5.1 BFair in the Hadoop stack . 36
4.5.2 LatencySLO . 38
4.5.3 rDRF in HDFS . 40
4.5.4 Overhead and scalability of Retro . 40

4.6 Discussion . 42
4.7 Conclusion . 43

5 Monitoring and Troubleshooting Distributed Systems 44
5.1 Limitations of Current Approaches . 44

5.1.1 One Size Does Not Fit All . 44
5.1.2 Costs of Monitoring . 45
5.1.3 Dynamic Instrumentation . 45

5.2 Cross-Component Monitoring . 45
5.2.1 Crossing Boundaries . 45
5.2.2 Causal Tracing . 46

5.3 Other Tools and Techniques . 46
5.3.1 Beyond Metrics and Logs . 46
5.3.2 Troubleshooting and Root-Cause Diagnosis . 46

6 Pivot Tracing: A Cross-Cutting Tool for Dynamic Causal Monitoring 48
6.1 Overview . 48

6.1.1 Pivot Tracing in Action . 49
6.1.2 Design Summary . 51

6.2 Design . 52
6.2.1 Tracepoints . 53
6.2.2 Query Language . 53
6.2.3 Happened-before Joins . 53
6.2.4 Advice . 55

6.3 Pivot Tracing Optimizations . 56
6.3.1 Baggage . 58
6.3.2 Local Tuple Aggregation . 59
6.3.3 Optimizing Happened-Before Joins . 59
6.3.4 Cost of Baggage Propagation . 60

6.4 Implementation . 60
6.4.1 Pivot Tracing Agent . 60
6.4.2 Dynamic Instrumentation . 61
6.4.3 Baggage . 61
6.4.4 Materializing Advice . 62

v

6.4.5 Baggage Consistency . 62
6.5 Evaluation . 64

6.5.1 Case Study: HDFS Replica Selection Bug . 65
6.5.2 Diagnosing End-to-End Latency . 68
6.5.3 Overheads of Pivot Tracing . 69

6.6 Discussion . 71
6.7 Conclusion . 73

7 Developing and Deploying Cross-Cutting Tools 74
7.1 Metadata Propagation . 74
7.2 Heterogeneous Data Types . 74
7.3 Anatomy of a Cross-Cutting Tool . 75

7.3.1 Context Propagation . 76
7.3.2 Cross-Cutting Tool Logic . 77

7.4 Deployment Challenges . 77
7.4.1 Pervasive Instrumentation . 78
7.4.2 Cognitive Load . 80
7.4.3 Duplicated Eòort . 81

7.5 Related Work . 82
7.5.1 Instrumenting Systems . 82
7.5.2 Generic Contexts . 83

7.6 _e Need for Abstractions . 83

8 Baggage Contexts: A Universal Abstraction for Cross-Cutting Tools 85
8.1 Separation of Concerns . 85
8.2 Interfaces . 86

8.2.1 Interface for System Instrumentation . 86
8.2.2 Interface for Cross-Cutting Tools . 87
8.2.3 Example Baggage Context Usage . 87

8.3 Baggage Context Design . 88
8.3.1 Core Representation . 89
8.3.2 Representing Data Types . 90
8.3.3 Con�ict-Free Replicated Data Types . 90
8.3.4 Layering Summary . 91

8.4 Implementation . 92
8.4.1 Core Representation (Atom Layer) . 92
8.4.2 Atom Encodings (Cross-Cutting Layer) . 94
8.4.3 Example . 95
8.4.4 Complex Data Types . 96
8.4.5 Over�ow . 97
8.4.6 Con�ict-Free Replicated Data Types . 97

8.5 Evaluation . 98
8.5.1 Cross-Cutting Tools . 98
8.5.2 Cross-Cutting Tools in Practice . 99
8.5.3 Cross-Cutting Tools at Scale . 101

8.6 Discussion . 104
8.7 Conclusion . 106

vi

9 Conclusions and Future Work 107
9.1 Multi-Tenant Resource Management . 107
9.2 Dynamic Causal Monitoring . 108
9.3 Universal Abstractions for Context Propagation . 108
9.4 Future Work . 108

9.4.1 Cross-Cutting Tools . 108
9.4.2 Abstractions for Cross-Cutting Tools . 109
9.4.3 Automatic Instrumentation . 109
9.4.4 Large-Scale Performance Analytics . 110

Bibliography 111

vii

List of Tables

2.1 Information about end-to-end tracing tools deployed at several companies. Information was
gathered from the Distributed Tracing Workgroup [124] . 13

4.1 Retro API used by the scheduling policies. We omit auxiliary calls to set, for example, the
reporting interval and smoothing parameters, as well as to obtainmore details such as operation
counts, etc. 28

4.2 Costs of Retro instrumentation . 41

6.1 Operations supported by the Pivot Tracing query language . 52
6.2 Primitive operations supported by Pivot Tracing advice for generating and aggregating tuples

as deûned in §6.2. 55
6.3 Query rewrite rules for happened-before join between two queries P and Q. Optimizations

push operators as close as possible to source tuples, thereby reducing the tuples that must be
propagated in baggage from P to Q. Combine refers to an aggregator’s combiner function (e.g.,
for Count, the combiner is Sum). See Table 6.1 for descriptions of query operators. 60

6.4 Baggage API for Pivot Tracing Java implementation. PACK operations store tuples in the
baggage. API methods are static and only allow interaction with the current execution’s baggage. 61

6.5 Latency overheads for HDFS stress test with Pivot Tracing enabled, baggage propagation
enabled, and full queries enabled, as described in §6.5.3 . 71

7.1 _ree groups are involved in developing and deploying cross-cutting tools; each group has a
diòerent set of concerns and is involved in diòerent tasks. 80

8.1 Five operations for propagating contexts used to instrument systems. 86
8.2 _e Tracing Plane provides abstractions to separate the concerns of diòerent developers. Each

developer group performs a diòerent task, corresponding to the tasks outlined in Table 7.1. . . 91
8.3 Atom layer implementation of the ûve propagation operations for system instrumentation. . 92

viii

List of Figures

3.1 Typical deployment of HDFS, ZooKeeper, Yarn, MapReduce, and HBase in a cluster. Gray
rectangles represent servers, white rectangles are processes, and white circles represent control
points that we added. See text for details. 17

3.2 i) Average request latency for a client reading 8kB ûles from HDFS [242] is impacted by
diòerent workloads that A: replicate HDFS blocks; B: list large directories; and C: make new
directories; these overload the disk, threadpool, and locks respectively. ii) latency of DataNode
disk operations, iii) latency at NameNode RPC queue, iv) latency to acquire NameNode
“NameSystem” lock. 17

3.3 _e latency of a high-priority tenant, hp, is dependent on resource bottlenecks caused by
background tenants t1 and t2. Only t1 is responsible for the resource bottlenecks, and only
throtting t1 will alleviate the bottlenecks. 18

4.1 Retro architecture. Gray boxes are system components on the same or diòerent machines.
Work�ows start at several points and reach multiple components. Intercepted resources ()
generate measurements that serve as inputs to policies. Policy decisions are enforced by control
points (). 27

4.2 _e throughput of Java ReentrantReadWriteLock (y-axis) as a function of three parameters:
probability of a write lock operation (x-axis), average duration of read and write locks (see
legend, time in milliseconds). 31

4.3 BFair policy, see §4.4.1. 32
4.4 rDRF policy, see §4.4.2. 33
4.5 LatencySLO policy, see §4.4.3. 34
4.6 BFair policy as described in §4.5.1. BFair is enabled in phase A with overload threshold T=25. 37
4.7 LatencySLO policy as described in §4.5.2. Top-le� ûgure shows high priority work�ow laten-

cies without LatencySLO. Bottom-le� ûgure shows resource slowdown during experiment.
Top-right ûgure shows high priority work�ow latencies with LatencySLO. Bottom-right
sparklines show control point utilizations for background work�ows. 38

4.8 LatencySLO rate-limits replication to enforce a 100ms SLO for Thp (le�). LatencySLO
enforces a 50ms latency for heartbeats (right). 39

4.9 Resource share for experiment described in §4.5.3. 40
4.10 Normalized latency (le�) and throughput (right) for HDFS NameNode benchmark operations

along with error bars showing one standard deviation. 41
4.11 Retro’s BFair policy on a 200-node cluster with four work�ows and overloaded disks. BFair is

enabled at t=1.5 with a target slowdown of 50; client weights are adjusted at t=4. 41
4.12 Total network throughput for a several-hundred node production Hadoop cluster and network

throughput of Retro, from 1 month of traces. Retro’s bandwidth requirements are on average
0.1% of the total throughput. 41

ix

6.1 In this example, Pivot Tracing exposes a low-level HDFS metric grouped by client identiûers
from other applications. Pivot Tracing can expose arbitrary metrics at one point of the system,
while being able to select, ûlter, and group by events meaningful at other parts of the system,
even when crossing component or machine boundaries. 49

6.2 Pivot Tracing overview (§6.1.2) . 52
6.3 An example request execution graph and the results of running queries over that request. . . 54
6.4 Pivot Tracing evaluates query Q2 from §6.1.1 by compiling it into two advice speciûcations.

Pivot Tracing dynamically installs the advice at the tracepoints referenced in the query. . . . 55
6.5 Steps to install a Pivot Tracing query. Tracepoints are only references to locations in code, and

require no system-levelmodiûcations until queries are installed. Step 4 illustrates howweweave
advice for Q2 at the DataNodeMetrics tracepoint (Q2 also weaves advice at ClientProtocols,
not shown). Variables exported by the tracepoint (i.e., delta) are passed when the advice is
invoked. 57

6.6 To implement the happened-before join, systems propagate baggage (À) along the execution
path of requests. Baggage is duplicated when requests split into concurrent branches (Á);
merged when concurrent branches join (Â); and included in all inter-process communication
(Ã Ä). Pivot Tracing queries PACK tuples into the baggage at some tracepoints (Å) andUNPACK
tuples at other tracepoints (Æ). 58

6.7 Illustration comparing the optimized and unoptimized evaluation of A →⋈ B . _e optimized
query evaluates →⋈ inline by propagating tuples in baggage, avoiding a costly global aggregation. 59

6.8 An execution that branches then joins. Baggage is split into A and B, then later joined. In
both examples, A and B contain the same tuples; however, the merge result is diòerent
in each case, because the tuples represent diòerent happened-before relationships. Baggage
must be consistently joined in order to correctly re�ect the happened-before relationship
represented by the tuples (cf. §6.4.5). 62

6.9 Interactions between systems. Each system comprises several processes on potentially many
machines. Typical deployments o�en co-locate processes from several applications, e.g.DataN-
ode, NodeManager, Task and RegionServer processes. 64

6.10 Pivot Tracing query results leading to our discovery ofHDFS-6268 [76]. Faulty replica selection
logic led clients to prioritize the replicas hosted by particular DataNodes (§6.5.1). 66

6.11 (a) Observed request latencies for a closed-loop HBase workload experiencing occasional
end-to-end latency spikes; (b) Average time in each component on average (top), and for
slow requests (bottom, end-to-end latency > 30s); (c) Per-machine network throughput – a
faulty network cable has downgraded Host B’s link speed to 100Mbit, aòecting entire cluster
throughput. 68

6.12 Latencymicro-benchmark results forpacking,unpacking, serializing,anddeserializing randomly-
generated 8-byte tuples. 70

7.1 Systems propagate the cross-cutting tool’s context (À) along the execution path, including
across process and machine boundaries (Á Â Ã Ä). Cross-cutting tools update (Å) and query
(Æ) context values. 75

8.1 BDL declarations for ûve cross-cutting tools. See §8.5.1 for a description of these tools.. 87
8.2 All BDL data types have Encode and Decode functions for encoding and decoding data

type instances. For each BDL data type, Encode and Decode are carefully designed so that
lexicographic merge (cf. §8.4.1) correctly preserves the type-speciûc merge behavior. _is
enables a separation into layers as described in §8.3.4 . 90

x

8.3 _e Tracing Plane groups concepts into an abstraction layering that separates the concerns of
diòerent developer groups. 91

8.4 A baggage context is an array of atoms. Baggage contexts are merged using lexicographic
comparison. 93

8.5 Timeline of a request to order socks in the Sock Shop microservices demo [269], invoking
Users, Cart, and Payments microservices. Rows represent threads; shaded bars represent time
executing; lines indicate causality; and we highlight invocations of BRANCH () and JOIN ().
(b) and (c) illustrate concurrent execution branches setting diòerent Tag values, that are later
merged at (d). (e) illustrates atoms a�er imposing a size constraint of 60 bytes; (f) illustrates
how the trim marker preserves the position of potentially lost atoms. 95

8.6 _e end-to-end proûle of a 1MB HDFS write request with four cross-cutting tools deployed.
See §8.5.2 for a full description. 99

8.7 Baggage overheads for the 1MB HDFS write request illustrated in Figure 8.6. 100
8.8 Execution of TPC-DS Q43 on a 25-node Spark cluster. 102
8.9 Baggage size and network overhead for TPC-DS query 43 running on a 25-node Spark cluster.

(a) Baggage for Retro+ grows to 4kB in size with no over�ow conûgured; (b) Trimming baggage
to 1kB reduces the overhead but sacriûces counter precision; (c) Compacting the counter at
carefully chosen points during execution maintains correctness while substantially reducing size. 103

8.10 Average baggage sizes for cross-cutting tools across 19 TPC-DS queries executed on a 25-node
Spark cluster. Figures for Retro+ show with and without compaction. 104

xi

Chapter 1
Introduction

_esis Statement Many tools for monitoring and enforcing distributed systems capture information about
end-to-end executions by propagating in-band contexts. We characterize a broad class of such cross-cutting
tools, and extend these ideas to new applications in resource management and dynamic monitoringWe identify
underlying commonalities in this class of tools, and propose an abstraction layering that simpliûes their
development, deployment, and reuse.

1.1 Cross-Cutting Challenges in Distributed Systems

Distributed systems represent some of the most interesting and successful computing applications in use today,
from web search and social networks, to data analytics and large-scale machine learning, to loosely-coupled
microservices, serverless lambdas, and the public cloud. _e prevailing approach is to implement cloud systems
as user-space applications running atop commodity PC hardware. System processes run across many diòerent
machines, communicate and co-ordinate over the local network, and implement important features such as
fault tolerance at the application level, instead of in hardware. _is approach leads to scalable and cost-eòective
systems [198], as system capacity can be increased by simply adding more machines, which scales linearly in
cost.

However, it is notoriously diõcult to understand, troubleshoot, and enforce cloud systems behaviors. _e
potential problems are myriad: hardware and so�ware failures, misconûguration, hot spots, aggressive tenants,
or even simply unrealistic user expectations [6, 132, 145, 166, 198]. A single execution in the system— e.g., an
action such as loading a page on facebook.com, or a data analytics job —might entail complex executions
spanning clients, networks, and distributed back-end services. Meanwhile, the symptoms of an issue can
manifest in components far removed from the root cause, including in diòerent processes, machines, and
application tiers, and they may be visible to diòerent users; transient factors are o�en to blame, symptoms are
masked by fault tolerance mechanisms, and instead of an outright crash, systems experience more pernicious
symptoms like sustained degraded performance [145, 148]. When they materialize in production systems (as
they have with all major cloud providers [145]) it leads to high-proûle outages and a massive loss of revenue.

_ese challenges stem from the fact that distributed systems lack a central point of visibility and control over

1

CHAPTER 1. INTRODUCTION 2

end-to-end executions. Each component only performs a narrow slice of work, and to execute a high-level task
(such as a search query or an analytics job) entails a complex �ow across multiple processes, machines, and the
network. _e tools and abstractions traditionally useful for diagnosing problems in standalone programs— e.g.
the execution stack, thread IDs, thread-local variables, debuggers, proûlers, and many more — are ineòective
or inadequate in this setting because they cannot coherently reason about the system when executions cross
boundaries between so�ware components and machines [142,148]. Similarly, traditional, well-studied resource
isolation and management techniques in the OS and hypervisor — e.g. myopic thread, process, network, and
IO schedulers — are insuõcient for distributed systems because they lack end-to-end visibility of requests,
which contend for resources both within processes and across component and machine boundaries.

Consequently, most systems today do not embed monitoring or logging that can coherently reason about
end-to-end executions. _e tools and abstractions commonly used are ad-hoc and myopic; systems lack end-
to-end resource management; and executions lose important context when they cross so�ware component and
machine boundaries. _is makes it diõcult to answer questions about causes of failures, uncover dependencies
between components, understand performance or resource usage, and provide end-to-end performance
guarantees or isolation between tenants. Many organizations face debugging, monitoring, and troubleshooting
challenges a�er deploying distributed systems [6, 132, 145, 166, 198], and past systems have suòered cascading
failures [10, 72, 145], slowdown [33, 36, 83, 145, 174], and even cluster-wide outages [10, 33, 145, 178] as a result.

1.2 _e Need for Cross-Cutting Tools

To address these challenges, we inevitably need to correlate and integrate data that crosses component, system,
and machine boundaries, i.e. a user of one application may need to relate information from some other
dependent application in order to diagnose problems that span multiple systems. A growing body of research
addresses this observation by maintaining the notion of a context that follows the execution of applications
through events, queues, thread pools, ûles, caches, and messages between distributed system components.
Contexts are a powerful mechanism for capturing causal relationships between events on the execution path
at runtime, and have enabled a number of tools, both in research and in practice [132, 142, 166, 197, 198]. Of
these, the most widespread are end-to-end tracing tools [111, 135, 227, 244], which record causality between
logs and events across components by propagating request and event IDs.

However, while end-to-end tracing is primarily concerned with aggregation of traces and oøine analysis, a
growing number of distributed system tools utilize context propagation for online tasks. For example, in recent
research, tenant IDs enable coordinated scheduling decisions across components [241]; latency measurements
enable tools to adapt to bottlenecks or processing delays [114,225]; user tokens enable tools for auditing security
policies [6, 237, 244]; causal histories enable cross-system consistency checking [179]; and more. We refer to
this broader class of tools as cross-cutting tools, to stress their use beyond recording traces.

Cross-cutting tools represent a compelling approach to tackling problems in observing and enforcing
distributed system behaviors. However, it is an open question the extent of problems to which cross-cutting

CHAPTER 1. INTRODUCTION 3

tools can apply. Furthermore, despite a growing proliferation of cross-cutting tools, there remain signiûcant
challenges to their development and pervasive, end-to-end deployment. We ûnd that in practice, few cross-
cutting tools get deployed pervasively in large systems. When they do, they are brittle, hard to evolve, and
cannot coexist with each other.

1.3 _esis Goals and Contributions

_egoal of this thesis is to investigate the broad scope ofmonitoring andenforcement tasks that can be addressed
by cross-cutting tools, and to address fundamental challenges aòecting our ability to develop and deploy such
tools. _is thesis explores two new applications of cross-cutting tools to previously unexplored domains:
resource management, and dynamic monitoring. Subsequently, to address challenges in the development and
pervasive deployment of cross-cutting tools, we propose common abstractions to underpin their design. _e
contributions of this thesis are as follows:

Retro Retro (Chapter 4) is a cross-cutting tool for resource management, that provides guarantees to end-to-
endwork�ows. Retro performs online resourcemanagement and, in real-time, attributes resource consumption
to tenants and makes per-tenant scheduling decisions. A key challenge addressed by Retro is that end-to-end
performance can be aòected by resource congestion within any process visited by an execution. To address
this, Retro adapts cross-cutting tool components to track tenant executions and resource usage in shared
distributed systems. Retro is an example of an online, reactive cross-cutting tool that continually monitors and
adjusts system parameters.

Pivot Tracing Pivot Tracing (Chapter 6) is a cross-cutting tool for dynamically monitoring metrics, and
contextualizing them based on properties that derive from any point in an end-to-end execution. Pivot Tracing
gives users the ability to obtain metrics from one point of the system while selecting, ûltering, and grouping by
events from other parts of the system. Pivot Tracing addresses two key challenges faced by distributed systems
today: monitoring and logging decisions are made a priori, at development time; and existing monitoring
and logging tools lack cross-component visibility. Pivot Tracing generalizes the context propagation seen in
previous cross-cutting tools, and uses it to propagate partial query state alongside requests.

Baggage Contexts Together with other recent applications seen in the research literature, Retro and Pivot
Tracing illustrate the potential breadth of cross-cutting tools in providing visibility and control over distributed
system behaviors. From this, we identify and characterize the common challenges associated with developing
and deploying cross-cutting tools (Chapter 7). _is motivates the design of baggage contexts – general-purpose
context propagation that can be shared and reused by diòerent cross-cutting tools (Chapter 8). Baggage contexts
abstract and encapsulate common context propagation components that are otherwise duplicated by most
cross-cutting tools, and decouples the design of tools into separate layers that can be addressed independently

CHAPTER 1. INTRODUCTION 4

by diòerent teams of developers. _e potential impact of a common architecture for cross-cutting tools is
signiûcant. It would enable more pervasive, more useful, and more diverse cross-cutting tools, and make it
easier for developers to defer development-time decisions about which tools to deploy and support.

Chapter 2
Cross-Cutting Tools

2.1 Cloud Distributed Systems

Distributed systems underpin some of the most interesting and successful computing applications in use today,
from web search and social networks, to data analytics and large-scale machine learning, to loosely-coupled
microservices, serverless lambdas, and the public cloud. A typical cloud distributed system is not unlike the
standalone so�ware that runs on laptop or desktop PCs. It consists of several user-space processes, written
in common programming languages like Java or C++. _e processes run on oò-the-shelf operating systems
such as Linux, atop commodity PC hardware. _e main diòerence compared to standalone so�ware is that
distributed system components communicate and co-ordinate with each other across the network, in order to
execute their high-level tasks [136]. Since commodity PC hardware lacks the reliability guarantees previously
provided by, e.g. mainframes, failure-tolerance mechanisms are typically implemented at the application level,
within the distributed system so�ware [120]. While this increases the complexity of the distributed system
so�ware, this approach is nonetheless an extremely cost-eòective way of tackling the scalability challenges
posed by internet-scale problems like web search. Today, this approach is the prevailing way of building cloud
distributed systems [121, 136].

A typical deployment of cloud systems will comprise not just one distributed system but many, inter-
operating systems, o�en co-locating their processes atop the same physical hardware. For example, early work
from Google presented individual systems providing storage [136], database [108], and processing [121], which
together were combined to solve problems such as web indexing and search. Other examples include storage,
conûguration management, database, queueing, and co-ordination services, such as Azure Storage [103],
Amazon Dynamo [122], HDFS [242], HBase [40], ZooKeeper [153], and many more. Similarly, the Hadoop
ecosystem of open-source distributed systems comprises dozens of diòerent systems, many of which are
designed to compose with each other [228]. In turn, this has also prompted a wide variety of new architectures
and frameworks, such as microservices architectures [197], function-as-a-service [9], and similar commercial
oòerings [8, 139, 191]. To be cost-eòective, typical cloud deployments will host many diòerent users and
workloads concurrently, sharing the same machines, processes, and the network.

5

CHAPTER 2. CROSS-CUTTING TOOLS 6

2.2 Cross-Cutting Executions

A fundamental diòerence between standalone programs and distributed systems is that distributed systems lack
a central point of visibility and control. When we execute a program in a distributed system, each component
of our distributed system will perform only a narrow slice of work. Each high-level task – such as a search
query or an analytics job – will entail a complex �ow across multiple processes, machines, and the network. At
the same time, many of the processes visited by executions are shared processes, that handle executions of
many diòerent users simultaneously; these are multiplexed at the application level, within the processes of the
distributed system [136, 242]. Given this, the scope of a single end-to-end execution will include many narrow
slices of work, contributed by many diòerent processes and machines. We refer to this as the cross-cutting
dimension that is scoped to end-to-end executions. It cuts across processes, components, and machines, and
includes all of the work done to complete a high-level, end-to-end task. In distributed systems, the cross-cutting
dimension is orthogonal to machines, processes, and threads. It is an important dimension for reasoning about
end-to-end executions, because the correct behavior and performance of an end-to-end execution can be
in�uenced by events occurring anywhere in the cross-cutting dimension.

In this context, monitoring, understanding, and enforcing the behaviors of distributed systems is extremely
challenging. Each cross-cutting execution can be in�uenced by a wide range of factors based on the processes
it visits, other workloads present at the same time, diòerences in deployed so�ware versions, and many
more. Dynamic factors also in�uence performance, such as continuous deployment of new code, changing
conûgurations, user-speciûc experiments, and datacenters with distinct characteristics [157]. _e potential
problems are myriad: hardware and so�ware failures, misconûguration, hot spots, aggressive tenants, or even
simply unrealistic user expectations [6,132,145,166,198]. _e symptoms of an issue can manifest in components
far removed from the root cause, including in diòerent processes, machines, and application tiers, and they
may be visible to diòerent users [145, 148]. Transient factors are o�en to blame; symptoms can be masked by
fault tolerance mechanisms; and instead of an outright crash, systems experience more pernicious symptoms
like sustained degraded performance [127, 145]. When problems materialize in production systems (as they
have with all major cloud providers) it leads to high-proûle outages and a massive loss of revenue.

2.3 Troubleshooting Across Boundaries

Because distributed system executions are inherently cross-cutting, to diagnose problems one o�en needs
to correlate and integrate data that crosses component, system, and machine boundaries. _at is, a user of
one application may need to relate information from some other dependent application in order to diagnose
problems that span multiple systems. However, the tools and abstractions traditionally useful for diagnosing
standalone programs — e.g. the execution stack, thread IDs, thread-local variables, debuggers, proûlers, and
many more — are ineòective or inadequate in this setting because they do not align with the cross-cutting
dimension, and they cannot coherently reason about the system when executions cross boundaries between

CHAPTER 2. CROSS-CUTTING TOOLS 7

so�ware components and machines [142, 148]. Similarly, traditional, well-studied resource isolation and
management techniques in the OS and hypervisor — e.g. myopic thread, process, network, and IO schedulers
— are insuõcient for distributed systems because they too do not align with the cross-cutting dimension, and
thereby lack end-to-end visibility of executions, which contend for resources both within processes and across
component and machine boundaries.

Most systems today do not embed monitoring that can relate to other systems, lack end-to-end resource
management, and lose important context when requests cross so�ware component and machine boundaries.
_is makes it diõcult to answer questions about causes of failures, uncover dependencies between components,
understand performance or resource usage, and provide end-to-end performance guarantees or isolation
between tenants. Many organizations face debugging, monitoring, and troubleshooting challenges a�er de-
ploying distributed systems [6, 132, 145, 166, 198], and past systems have suòered cascading failures [10, 72, 145],
slowdown [33, 36, 83, 145, 174], and even cluster-wide outages [10, 33, 145, 178] as a result. In describing this
problem, a Twitter engineer writes “the tried and true tools we’re used to — conûguration management, log
processing, strace, tcpdump, etc — prove to be crude and dull instruments when applied to microservices” [142];
for Hailo, “rationalising the behaviour of each individual component may be simpler, but understanding the be-
haviour of the whole system, and ensuring correctness, is more diõcult.” [148]. @Honest_Update is more candid:
“We replaced our monolith with micro services so that every outage could be more like a murder mystery.” [151].

2.4 End-to-End Tracing

To address these challenges, distributed systems inevitably need the ability to correlate events at one point of
the system with events that are meaningful from other parts of the system. In the past decade, end-to-end
tracing has emerged as a valuable tool for analyzing and diagnosing problems in distributed systems [230].

2.4.1 Overview

End-to-end tracing frameworks [230] record traces of end-to-end executions, by recording events (i.e., logging
statements) across multiple machines, and explicitly recording event timing, ordering, and causality (according
to Lamport’s happens before relation [171]). A common representation for the traces recorded by such frame-
works is an execution graph— a directed, acyclic graph that describes the path of a single request through
components of a distributed system [173]. An individual trace provides a description of a request as it traverses
a distributed system – it captures the path of the request, performance costs incurred at the components visited,
and timings between events. Traces incorporate a wide range of information from all components on the
cross-cutting execution path of requests, from clients through backend services [157]. Causal relationships
between events provide further information about the concurrency and dependencies of execution. Collectively,
execution graphs can represent aggregate system behavior - capturing the commonly-traversed paths, corner
case executions, and distributions over paths and timings.

CHAPTER 2. CROSS-CUTTING TOOLS 8

_e key component of tracing frameworks that enables capturing event causality is metadata propagation.
To deploy an end-to-end tracing framework in a distributed system, developers must ûrst modify their system
to (i) generate events using the framework’s APIs; and (ii) propagatemetadata alongside the entire end-to-end
execution. _e latter of these – metadata propagation – is necessary for attributing events to executions and
capturing relationships between events. Typically, the metadata includes a unique ID for the execution (e.g.
a RequestID) as well as identiûers for the most recently generated events (e.g. a PreviousEventID). Each
time an event is generated, the framework will annotate the event with these identiûers (and update the
propagated identiûers for the most recently generated events). Backend components of the tracing framework
(e.g., databases) will receive and persist events generated across the distributed system. _e attached identiûers
enable the backend to group events related to the same requests, construct the graph of each trace, and provide
interfaces for users to view and explore traces.

2.4.2 Implementations and Use Cases

End-to-end tracing frameworks exist both in academia [97, 106, 135, 227, 257] and in industry [128, 157, 161,
244, 245], with notable early examples including X-Trace [135] and Google’s Dapper [244]. Recent commercial
tracing oòerings include Amazon’s X-Ray [98] and Google’s Stackdriver Trace [99], which provide cloud-
hosted backends and instrumentation APIs to ingest trace data from users’ applications. Popular open-source
frameworks largely derive from Dapper [244], and include Zipkin [259], HTrace [62], Jaeger [238], and
others [196,201,246,274]. As these tracing systems have matured, they have begun to converge and standardize
the semantics of this class of tracing tools, with the recent OpenTracing eòort [201].

Tracing frameworks have been used for a variety of purposes in monitoring and troubleshooting dis-
tributed system behaviors. _is includes both manual analysis of traces, and automated approaches that
reason about traces in aggregate. Examples include diagnosing anomalous requests whose structure or timing
deviate from the norm [3, 97, 110, 111, 212, 231]; diagnosing steady-state problems that manifest across many
requests [135, 227, 231, 244, 257]; identifying slow components and functions [106, 184, 244]; modelling work-
loads and resource usage [96,97, 184,257]; explaining structural and statistical diòerences between ‘before’ and
‘a�er’ traces [184, 231]; reconciling observed system behavior with a description of the developer’s expected
behavior [227]; auditing security [244]; critical-path analysis [184, 212]; deriving high-level performance
metrics [157]; recording resource consumption [257]; and optimizing client-server web requests [155, 176].
Recent work has extended these techniques to continuous proûling and analysis [146, 157, 188–190, 284].

Table 2.1 highlights use cases for tracing tools deployed in production at 26 companies. Examples range
from debugging individual anomalous requests, to capturing performance, resource, and latency metrics, to
correlating failures and behavioral clustering. Nonetheless, there remains a lack of consensus and standards
on tools for understanding, monitoring, troubleshooting, and enforcing distributed system behaviors. A
recent study identiûed security, performance, tracing, and monitoring as highly important yet overlooked
areas [6]. Despite this proliferation of tracing tools there remain signiûcant challenges to their development

CHAPTER 2. CROSS-CUTTING TOOLS 9

and pervasive, end-to-end deployment, and distributed tracing and logging is still described as “the most
wanted and missed tool in the micro-service world” [281].

2.5 Cross-Cutting Tools

_e primary use case of end-to-end tracing frameworks is oøine analysis, with a distinct division between the
system-level components of the tool for capturing traces at runtime, and the post-facto aggregation and trace
analysis components. However, more recent research has considered a wider variety of online monitoring,
diagnosis, and enforcement tasks, by adapting some of the concepts seen in end-to-end tracing and eschewing
others. Instead of just oøine analysis, these tools observe and analyze events in-band during executions, then
make immediate decisions about actions to take, such as changing system or tool behaviors. We refer to
this broad class of tools as cross-cutting tools, characterized by the fact that the tasks they perform align with
cross-cutting executions. We include end-to-end tracing frameworks in this class of tools, but we emphasize
that cross-cutting tools as a whole encompass a broader range of use cases than just recording traces.

Cross-cutting tools expand upon the ability of end-to-end tracing frameworks to correlate events at
one point of the system with events that are meaningful from other parts of the system. Building upon the
metadata propagation techniques used by end-to-end tracing frameworks, these tools maintain the notion of
a context that follows the execution patterns of applications through events, queues, thread pools, ûles, caches,
and messages between distributed system components. Context propagation entails that for every execution
(e.g. request, task, job, etc.), the system forwards a context object alongside the execution, across all process,
component, and machine boundaries, with metadata about the execution. Context propagation requires small
but non-trivial interventions at the source-code level, within all distributed system components, to maintain
and propagate contexts alongside executions. Contexts are a powerful mechanism for observing and capturing
causal relationships between events on the execution path at runtime.

Beyond end-to-end tracing, cross-cutting tools have a diverse range of goals and applications. Correspond-
ingly, diòerent cross-cutting tools make use of contexts in diòerent ways, to achieve diòerent purposes. For ex-
ample, many systems propagate tenant IDs for use in resource accounting and resource management [180,241],
and failure testing [149]. Energy tracking systems propagate activity IDs for attributing energy consump-
tion to high-level activities [133]. Taint tracking and DIFC propagate security labels as the system executes,
warning of or prohibiting policy violations [129, 193, 276]. User tokens enable tools for auditing security
policies [6, 237, 244] and identifying business �ows [237]. Data provenance systems propagate information
about the lineage of data as diòerent components manipulate it [123, 192]. Tools for end-to-end latency, path
proûling, and critical path analysis propagate partial latency measurements and information about execution
paths and graphs [106, 114, 225, 225, 253]. Metric-gathering systems propagate labels and query state so that
downstream components can select, group, and ûlter statistics [141, 182,237]. In the networking literature, tools
for attributing latency in virtualized network stacks propagate timestamps with packets [254]. Recent work
has proposed cross-cutting tools that propagate causal histories to validate cross-system consistency [179].

CHAPTER 2. CROSS-CUTTING TOOLS 10

Other proposed use cases for cross-cutting tools include propagating fault instructions for chaos engineering,
and markers for capacity planning [237].

Note that some of these tools use write-once contexts, while others constantly change and update the
context data. Some tools like end-to-end tracing frameworks only record information, while others use context
data to take actions at runtime. We broadly distinguish two diòerent classes of cross-cutting tools. _e ûrst
class encompasses the early tools presented in the literature – primarily end-to-end tracing frameworks
– and we term these ûrst-generation cross-cutting tools. First-generation tools separate the techniques for
capturing traces at runtime, from the subsequent (oøine) analysis step. We refer to the later class of tools –
which perform adaptive or online tasks – as second-generation cross-cutting tools. Second-generation tools
incorporate elements of analysis that were previously part of a post-facto stage, with the runtime techniques for
observing events and causal relationships. _is enables adaptive tasks that can immediately react to observed
events; make analysis decisions on the �y; and avoid the computational overheads of aggregating verbose
traces.

2.6 Goal: Second-Generation Cross-Cutting Tools

_e central theme of this thesis is the following: to what extent can second-generation cross-cutting tools
address the challenges of monitoring, understanding, and enforcing distributed system behaviors? To answer
this question, this thesis will explore new applications of second-generation cross-cutting tools, and examine
new abstractions to underpin their design.

_e ûrst goal of this thesis is to examine the application of cross-cutting tools to two new domains,
with very diòerent end-to-end goals. We present two cross-cutting tools. Retro (Chapter 4) is a resource
management framework for providing end-to-end performance guarantees; it propagates tenant identiûers
alongside requests, and uses them to attribute resource consumption to tenants andmake per-tenant scheduling
decisions. Pivot Tracing (Chapter 6) is a monitoring framework that gives users the ability to obtain metrics
from one point of the system while selecting, ûltering, and grouping by events from other parts of the system;
it propagates partial query state alongside requests.

Together, these new applications illustrate the potential breadth of cross-cutting tools in providing visibility
and control over distributed system behaviors. _e second goal of this thesis is to identify and characterize the
common challenges associated with developing and deploying cross-cutting tools (Chapter 7). _is motivates
the design of baggage contexts – general-purpose context propagation that can be shared and reused by diòerent
tracing tools (Chapter 8). Baggage contexts abstract and encapsulate common context propagation components
that are otherwise duplicated by most cross-cutting tools, and decouples the design of tools into separate layers
that can be addressed independently by diòerent teams of developers. _e potential impact of a common
architecture for cross-cutting tools is signiûcant. It would enable more pervasive,more useful, andmore diverse
cross-cutting tools, and make it easier for developers to defer development-time decisions about which tools
to deploy and support.

CHAPTER 2. CROSS-CUTTING TOOLS 11

2.7 Other Approaches

_e focus of this thesis is abstractions for, and applications of, second-generation cross-cutting tools. As
described, this work primarily extends prior research in the area of end-to-end tracing. However, this is not
the only avenue of research in understanding, troubleshooting, and enforcing distributed system behaviors. In
this section, we give a brief overview of the related work in other areas.

2.7.1 Alternatives to Context Propagation

Both ûrst- and second-generation cross-cutting tools utilize context propagation in order to observe the
relationships between events occurring in distributed systems. Context propagation requires small but non-
trivial interventions at the source-code level, within all distributed system components, to maintain and
propagate contexts alongside executions. Researchers and practitioners consistently describe instrumentation
as the most time consuming and diõcult part of deploying tracing frameworks [113, 134, 135, 162, 230, 243].

Consequently, prior work has considered alternative ways of establishing causal relationships between
events. Alternative approaches include combining identiûers – i.e. call ID, IP address, etc.– present across
multiple logging statements [96,113,163,257,275,282]; inferring causality using machine learning and statistical
techniques [101, 184, 200, 275]; and augmenting models with static source code analysis [275, 282, 283].

For example, Magpie [96, 97] demonstrated that under certain circumstances, causality between events
can be inferred a�er the fact. Speciûcally, if ‘start’ and ‘end’ events exist to demarcate a request’s execution on
a thread, then we can infer causality between the intermediary events. Similarly we can also infer causality
across boundaries, provided we can correlate ‘send’ and ‘receive’ events on both sides of the boundary (e.g.,
with a unique identiûer present in both events). Under these circumstances, Magpie evaluates queries that
explicitly encode all causal boundaries and use temporal joins to extract the intermediary events. In a similar
vein, Pip [227] expects developer-provided annotations at execution boundaries (e.g. to match up send and
receive calls). Zhao et al. [282] captured this notion as the “Flow Reconstruction Principle”, claiming that
“programmers will output suõcient information to logs so as to be able to reconstruct runtime execution �ows
a�er the fact”.

_ese approaches avoid context propagation altogether; however, the use cases are limited to oøine analysis
of the information exposed by the system through logs, and they do not apply to online use cases such as
scheduling and data quality trade-oòs. It is also challenging to scale black-box analysis because inferring
causal relationships is expensive; for example, computing a Facebook model from 1.3M traces took 2 hours for
the Mystery Machine [113]. Furthermore, these approaches require verbose, broad-brush logging, whereas
cross-cutting tools can target speciûc executions and coherently sample cross-cutting executions. Since the goal
of this thesis is to explore new avenues in second-generation cross-cutting tools, we only consider approaches
using context propagation. Of course, the trade-oò is that context propagation requires explicit source-code
instrumentation, and cannot treat the system as a black box.

CHAPTER 2. CROSS-CUTTING TOOLS 12

2.7.2 Alternatives to Cross-Cutting Tools

Existing tools for troubleshooting distributed systems apply to a range of use cases and make use of a range of
diòerent input data. In addition to the cross-cutting tools described, they include tools that ingest existing per-
process and per-component logs [163, 194, 275]; state-monitoring systems that track system-level metrics and
performance counters [185]; and aggregation systems to collect and summarize application-level monitoring
data [169, 182,262]. Wang et al. provide a comprehensive overview of datacenter troubleshooting tools in [268].

Prior work in troubleshooting distributed systems has presented a variety of analysis techniques: semi-
automatically honing in on root causes of performance anomalies [267]; identifying statistical anomalies [163];
online statistical outlier monitoring [94]; and analyzing critical path dependencies, slack, and speedup [113,213].
In most cases, operator-driven exploration is a prerequisite to most automated approaches in order to identify
salient features [194]. In a recent analysis of Splunk usage, Alspaugh et al. noted that the use of statistical
and machine learning inference techniques is “relatively rare” and that human inference is the key driver of
analyses [7]. At Facebook, Canopy’s primary use case is to support ad hoc high-level exploratory analysis,
because problems arising in practice are diõcult to anticipate and there are a wide range of potential features to
explore [157]. Facebook developers made extensive use of statistical comparison techniques to ûnd correlations
between features and compare distributions, e.g. between application versions.

Beyond ûrst-generation tracing tools, second-generation tools cover a much broader range of use cases,
and in particular, these use cases include online and adaptive tasks. For the domains considered in this thesis,
we defer discussion of alternative approaches to Chapter 3, Chapter 5 and Chapter 7, where we consider related
work speciûc to each tool.

CHAPTER 2. CROSS-CUTTING TOOLS 13

Company Services Engineers Tools Use Cases
Allegro 250+ 500 Zipkin†∗ debugging; understanding service dependencies;

network traõc analysis; latency monitoring
BBN Technologies 30+ 60 Zipkin† understand service dependencies; performance and

latency monitoring
Coursera 15+ 60 Zipkin†∗ dependency visualization; failure correlation and

analysis
Etsy — 200+ CrossStitch† [274] latency monitoring; aggregated analysis
Facebook — — Canopy [157] mobile analysis; regression analysis
FINN.no 200 120 Zipkin†
Google — — Dapper [244],

Census [141]
performance and resource monitoring; security
auditing; root-cause analysis

Groupon 400+ 1700 Zipkin† performance improvements; architectural
understanding; monitoring; SLA enforcement; anomaly
detection; ad-hoc exploratory analysis

Hailo 200+ 30 In-House† [148] debugging; metric aggregation; architectural
understanding; network traõc analysis; performance
optimizations

Line 24+ 200+ Brave, Zipkin† latency monitoring; metrics monitoring
Lookout 15+ 100 Zipkin† statistics and metrics monitoring; deployment tooling;

client whitelisting;
Ly� — — zend† [168] dependency analysis; latency analysis; mobile device

correlations
Medidata Solutions 100 — Zipkin† system monitoring
Naver 100 2000 Naver Pinpoint† architectural understanding; realtime monitoring;

stacktrace sampling; batch analysis
Net�ix 100+ 1000+ Salp† [160] dependency analysis; ad-hoc oøine querying; realtime

analysis; critical path analysis
Pinterest — — PinTrace† [162] latency analysis; architectural understanding;

debugging; cost attribution; root-cause analysis
Prezi 50 100 Zipkin† latency analysis; service dependency analysis
Smart_ings 24+ 35 Zipkin† real-time analysis
SoundCloud 50 140 Zipkin† architectural understanding, performance

optimizations; latency analysis; batch analysis
Sourcegraph — — Appdash† debugging; performance and latency monitoring
Tracelytics — — TraceView§ latency analysis; performance monitoring; realtime

monitoring; metric aggregation
TomTom Maps 10+ 100+ Brave, Zipkin† statistical analysis and aggregation
Uber 2000+ 2000+ Jaeger architectural understanding, execution clustering;

historical analysis; anomaly detection; inspect service
dependencies; latency correlations; real-time
aggregations

Yahoo — — YTrace [161] root-cause analysis, cascading failures
Yelp 300+ — Zipkin† [2] debugging; service dependency analysis; latency

analysis
Zalando 100+ 1000+ Zalando Tracer§ realtime and batch analysis
Zhihu 150+ 80+ Zipkin† architectural understanding; metric aggregation;

dependency analysis; stack trace analysis; latency
analysis

* version with extensions or
modiûcations †Dapper [244] derivative §X-Trace [135] derivative

Table 2.1: Information about end-to-end tracing tools deployed at several companies. Information was gathered
from the Distributed Tracing Workgroup [124]

Chapter 3
Resource Management in Distributed Systems

_e ûrst new domain for cross-cutting tools that we consider in this thesis is resource management in multi-
tenant distributed systems. _is chapter describes how resource management is inherently a cross-cutting
concern, and motivates how cross-cutting tools are a compelling choice for managing resources. In the next
chapter, we will present the design and implementation of Retro, a second-generation cross-cutting tool for
resource management. To motivate Retro, this chapter describes the challenges inherent to managing resources
in multi-tenant systems.

3.1 Background

3.1.1 Multi-Tenant Systems

Many important distributed systems and cloud services execute requests of multiple tenants simultaneously.
_ese include storage, conûguration management, database, queueing, and co-ordination services, such as
Azure Storage [103], Amazon Dynamo [122], HDFS [242], ZooKeeper [153], and many more. Shared systems
have clear advantages in terms of cost, eõciency, and scalability.

Key to shared systems is that they execute requests of multiple tenants simultaneously, within the same
shared processes. Consider the Hadoop Distributed File System (HDFS) [242]. _e HDFS NameNode process
maintains metadata related to locations of blocks in HDFS. Users invoke various APIs on the NameNode
to create, rename, or delete ûles, create or list directories, or look up ûle block locations. As in most shared
systems, requests to the NameNode wait in an admission queue and are processed in FIFO order by a set of
worker threads. In this setting tenant requests contend for resources, such as threads, CPU, disks, or even
locks, from within the shared process.

3.1.2 Resource Management and Isolation

It is crucial to provide resource isolation in shared systems to ensure that a single tenant cannot get more
than its intended share of resources, to prevent aggressive tenants or unpredictable workloads from causing
starvation, high latencies, or reduced throughput for others. In such cases, aggressive tenants can overload

14

CHAPTER 3. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 15

the shared process and gain an unfair share of resources. In the extreme, this lack of isolation can lead to
denial-of-service for well-behaved tenants and even system wide outages.

Systems in the past have suòered cascading failures [10, 145], slowdown [33, 36, 83, 145, 174], and even
cluster-wide outages [10, 33, 145] due to aggressive tenants and insuõcient resource isolation. For example,
eBay Hadoop clusters regularly suòered denial of service attacks caused by heavy users overloading the shared
HDFS NameNode [174, 175]. HDFS users report slowdown for a variety of reasons: poorly written jobs making
many API calls [83]; unmanaged, aggressive background tasks making too many concurrent requests [72]; and
computationally expensive APIs [36]. Impala [170] queries can fail on overloaded Kudu [178] clusters due to
request timeouts and a lack of fair sharing [88]. Cloudstack users can hammer the shared management server,
causing performance issues for other users or even crashes [33]. Guo et al. [145] describe examples where a
lack of resource management causes failures that cascade into system-wide outages: a failure in Microso�’s
datacenter where a background task spawned a large number of threads, overloading servers; overloaded
servers not responding to heartbeats, triggering further data replication and overload; GMail and Skype
outages where load balancing and front-end admission overloads individual nodes; and more. A 2015 Amazon
DynamoDB outage [10] was caused by expensive API calls overloading a shared membership server, cascading
to a system-wide outage.

Ideally, multi-tenant service providers should be able to implement resource management policies with
various high-level goals – e.g., admission control, fairness, guaranteed performance, or usage limits. _ese
policies enable the provider to guarantee service-level objectives (SLOs) to a tenant, while simultaneously sup-
porting other tenants with diòering workload characteristics. Equally important, these policies can ensure that
a tenant does not trigger a system-wide outage by adversarially or inadvertently starving essential background
tasks of required resources.

3.1.3 Cross-Cutting Resource Management

Traditionally, resource management has been implemented using OS-level primitives at the granularity of
processes or users (e.g., cgroups [187]) or using hypervisors that provide similar isolation among virtual
machines. _ere is also some progress in providing network performance guarantees to groups of VMs [219,
236].

However, when tenants compete inside a process, traditional and well-studied resource management
techniques in the operating system and hypervisor are unsuitable for protecting tenants from each other. In
this setting there is a mismatch in granularity between resource management and the existing mechanisms:
on the one hand tenants share the same processes, thus sharing ûne-grained resources within the processes
(e.g. using the same data structures, thread pools, and locks); on the other hand, several processes spanning
machines work on behalf of the same tenant. A single end-to-end execution will consume resources across
multiple processes andmachines, including ûne-grained application-level resources within each process visited,
as well as machine-level resources like disk, network, and CPU. _is dimension of resource consumption is

CHAPTER 3. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 16

the same as the cross-cutting dimension.
_e performance experienced by an end-to-end execution is, by deûnition, aòected by every resource

consumed along the cross-cutting execution path. To achieve our desired end-to-end resource management
and performance guarantees, we cannot rely on traditional OS or hypervisor mechanisms, because they
only align with processes, threads, or machines. Instead, we seek new mechanisms that orient with cross-
cutting executions. _is mismatch in granularity motivates our exploration of cross-cutting tools for resource
management.

3.2 Hadoop Architecture

Before describing the challenges of resource management in multi-tenant distributed systems, we ûrst give
a high-level overview of Hadoop components. _ough this work is presented in the context of the Hadoop
stack, the results generalize to other distributed systems as well.

Figure 3.1 shows the relevant components of the Hadoop stack. HDFS [242], the distributed ûle system,
consists of DataNodes (DN) that store replicated ûle blocks and run on each workermachine, and a NameNode
(NN) that manages the ûlesystem metadata. Yarn [264] comprises a single ResourceManager (RM), which
communicates with NodeManager (NM) processes on each worker. Hadoop MapReduce is an application of
Yarn that runs its processes (application master and map and reduce tasks) inside Yarn containers managed by
NodeManagers. HBase [40] is a data store running on top of HDFS that consists of RegionServers (RS) on all
workers and an HBase Master, potentially co-located with the NameNode or Yarn. Finally, ZooKeeper [153] is
a system for distributed coordination used by HBase.

MapReduce job input and output ûles are loaded from HDFS or HBase, but during the job’s shuøe phase,
intermediate output is written to local disk by mappers (bypassing HDFS) and then read and transferred by
NodeManagers to reducers. Reading and writing to HDFS has the NameNode on the critical path to obtain
block metadata. An HBase query executes on a particular RegionServer and reads/writes its data from one or
many DataNodes.

In such deployment, a large number of processes share the hardware resources on worker nodes. Moreover,
each process might concurrently execute requests on behalf of multiple users or background tasks.

3.3 Resource Management Challenges

Resourcemanagement shares the overarching challenges described in Chapter 2 thatmake it diõcult tomonitor,
troubleshoot, and enforce distributed systems. _is section elaborates on additional challenges speciûc to
resource management.

Any resource can become a bottleneck Figure 3.2 demonstrates how the latency of an HDFS client can be
adversely aòected by other clients executing very diòerent types of requests, contending for diòerent resources.

CHAPTER 3. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 17

DN

RS NM

CCC
DN

RS NM

CCC
…

NN HM ZK Yarn

DN

RS NM

C

C

C

DN

RS NM

C

C

C

…

NN HM Yarn ZK

ZK

ZK

…

Yarn ZK

ZK

ZK

×
x

NN HM

DN

RS NM

C

C

C

DN

RS NM

C

C

C

DN

RS NM

C

C

C

HBase RS

HDFS DN

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn NM

Yarn RM

HDFS

NN

HBase

Master

ZK

ZK

ZK

HBase RS

HDFS DN

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn NM

HBase RS

HDFS DN

Local storage

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn NM
O

th
e

r
re

so
u

rc
e

s

HBase RS

HDFS DN

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn NM

Yarn RM

HDFS

NN

HBase

Master

ZK

ZK

ZK

HBase RS

HDFS DN

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn NM

HBase RS

HDFS DN

Local storage

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn NM

O
th

e
r

re
so

u
rc

e
s

Figure 3.1: Typical deployment of HDFS, ZooKeeper, Yarn,MapReduce, and HBase in a cluster. Gray rectangles
represent servers, white rectangles are processes, and white circles represent control points that we added. See
text for details.

0

500 requesti)

0

500
iii) queue

0

12
disk opii)

0

500
lockiv)

0 5 10time (min)

la
te
nc
y
(m
s)

A B C

Figure 3.2: i) Average request latency for a client reading 8kB ûles from HDFS [242] is impacted by diòerent
workloads that A: replicate HDFS blocks; B: list large directories; and C: make new directories; these overload
the disk, threadpool, and locks respectively. ii) latency of DataNode disk operations, iii) latency at NameNode
RPC queue, iv) latency to acquire NameNode “NameSystem” lock.

In production, a Hadoop job that reads many small ûles can stress the storage system with disk seeks, as
workload A in the ûgure, and impact all other workloads using the disks. Similarly, a workload that repeatedly
resubmits a job that fails quickly puts a large load on the NameNode, like workload C, as it has to list all the
ûles in the job input directories. In communication with Cloudera [11], they acknowledge several instances of
aggressive tenants impacting the whole cluster, saying “anything you can imagine has probably been done by a
user”. Interviews with service operators at Microso� conûrm this observation.

_e bottleneck resource in each of these instances varies from locks, thread pool queues, to the storage
and the network. While it might be tempting to design throttling and scheduling policies based only on the
primary APIs and resources, our experiments show that this would be incomplete. _us, robust resource
management requires a comprehensive accounting of all resources that clients can potentially bottleneck on,
and consideration of all possible API calls.

Resource contention is o�en localized Distributed systems comprise multiple processes across many ma-
chines, and diòerent tenants contribute diòerent load to the system. Resource contention may be localized to a
subset of machines or resources. Some tenants may not be accessing these machines or resources, while other

CHAPTER 3. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 18

0

500

0

1.5

0 60 120 180 240 300

th
r'
p
u
t
[r

e
q
/s

]

la
te

n
c
y
 [

s
e
c
]

time [sec]

hp latency

t1 thr'put

t2 thr'put

(a) t1 is throttled starting at t = 120. _e latency of hp is
initially high, but gradually decreases as t1 is throttled.
_is occurs because t1 creates bottlenecks on resources
also consumed by hp.

0

500

0

1.5

0 60 120 180 240 300

th
r'
p
u
t
[r

e
q
/s

]

la
te

n
c
y
 [

s
e
c
]

time [sec]

hp latency

t1 thr'put

t2 thr'put

(b) t2 is throttled starting at t = 120. _e latency of hp
remains high throughout the experiment, as t2 does not
cause congestion on any of the resources consumed by
hp.

Figure 3.3:_e latency of a high-priority tenant, hp, is dependent on resource bottlenecks caused by background
tenants t1 and t2. Only t1 is responsible for the resource bottlenecks, and only throtting t1 will alleviate the
bottlenecks.

tenants may be consuming more than their fair share. If a goal of the system was to reduce contention on these
resources, it would be ineõcient and unfair to penalize all tenants equally when only a subset may be culpable.

Figure 3.3 demonstrates the eòect in HDFS on the latency of a high priority tenant, when we manually
throttle the request rates of two other tenants. _e ûgure shows a high-priority tenant, thp, sending 4MB write
requests, sharing the service with two low-priority tenants. Tenant t1 submits 8kB random reads, while tenant
t2 lists ûles in a directory. When we separately throttle the request rates of the background tenants, we observe
an eòect on the latency of thp only when throttling t1.

In the above example, if our goal was to decrease the latency of thp, we would only beneût from reducing
t1’s request. A non-trivial system should be capable of targeting the cause of contention - the tenants, machines,
and resources responsible.

Multiple granularities of resource sharing On the one hand, concurrently executing work�ows share
so�ware resources, such as threadpools and locks, within a process, while on the other hand, resources, such
as the disk on Hadoop worker nodes, are distributed across the system. _e disk resource, for example, is
accessed by DataNode, NodeManager, and mapper/reducer processes running across all workers. Systems
have many entry points (e.g., HBase, HDFS, or MapReduce API) and maintenance tasks are launched from
inside the system. Finally, enforcing resource usage for long-running requests requires throttling inside the
system, not just at the entry points.

Resource demands are hard to predict Many schedulers [138, 144, 256] need the cost of a request to be
speciûed a priori, o�en in amultidimensional space representing the diòerent resources.We argue that resource
requirements estimated oøine would be insuõcient for a number of reasons.

First, the resources requested by a task could be in�uenced by one or more of the arguments of the API call.
For example, the resource use of a write operation depends signiûcantly on the size of the block and number

CHAPTER 3. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 19

of blocks in a ûle. While these parameters might be enough to estimate the number of bytes sent over the
network and written to disk, or how many requests to the NN will be executed, the actual rate of resource
consumption (e.g. the rate of transferring the bytes over the network) will depend on the overall throughput of
the request and thus on the time spent in the other resources in the system.

Second, even if we could model resource requirements of some requests oøine, the behavior of other API
calls depends on the state of the system. For example, the cost of executing a read operation depends on the
size of the ûle (which is not known when the request is submitted to the system) and on whether the data is
cached in the OS/disk cache. Similarly, the cost of listing a directory will depend on the size of the directory.
_ese costs can also change with every update to the system so�ware.

_ird, we may not know which speciûc machines may execute a request. For example, HDFS comprises
multiple DNs, and a client has the option to read their data from multiple replicas. Given that congestion may
be localized to one or more DNs, it would be impossible to predict which DN is selected.

Finally, while some operations intuitively execute a constant amount of work – such as the ûle rename
API – and could thus be modeled using a ûxed cost, their cost might change when errors are encountered.
For example, when trying to rename a non-existent ûle, the NN returns early with an exception. A client
continuously trying to rename a missing ûle thus imposes a signiûcantly diòerent load on the locks in the
namenode.

Maintenance and failure recovery cause congestion Many distributed systems perform background tasks
that are not directly triggered by tenant requests but compete for the same resources. For example, HDFS
performs data replication a�er failures, asynchronous garbage collection a�er ûle deletion, and blockmovement
for balancing DataNode load. In some cases, these background tasks can adversely aòect the performance
of foreground tasks. For example, HDFS-4183 [72] describes an example where a large number of ûles are
abandoned without closing, triggering a storm of block recovery operations a�er the lease expiration interval
one hour later, which overloads the NameNode. Guo et al. [145] describe a similar failure in Microso�’s
datacenter where a background task spawned a large number of threads, overloading the servers. On the other
hand, some of these tasks need to be protected from foreground tasks. For example, Guo et al. [145] describe
a cascading failure resulting from overloaded servers not responding to heartbeats, triggering further data
replication and further overload. _ough background tasks are not directly triggered by tenant requests, they
nonetheless have cross-cutting executions that involve multiple processes and machines, and can invoke other
systems.

Resource management is nonexistent or noncomprehensive Systems like HDFS, ZooKeeper, and HBase
do not contain any resource management policies. While Yarn allocates compute slots using a fair scheduler,
it ignores network and disk, thus, an aggressive job can overload these resources. Interviews with service
operators at Microso� indicate that productions system o�en implement resource management policies that
ignore important resources and use hardcoded thresholds. For example, a policy might assume that an open()

CHAPTER 3. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 20

is 2x more expensive than delete(), while the actual usage varies widely based on parameters and system
state, resulting in very inaccurate resource accounting. _e policies are o�en tweaked manually, typically a�er
causing performance issues or outages, or when the system or the workloads change. Writing the policies o�en
requires intimate knowledge of the system and of the request resource proûle, which may be impossible to
know a priori.

3.4 Prior Approaches

When tenants compete inside a process, traditional and well-studied resource management techniques in the
operating system and hypervisor are unsuitable for protecting tenants from each other due to a mismatch
in the management granularity. Nonetheless, many shared distributed systems implement some variant of
performance isolation, such as fair sharing [137,241,256], throttling aggressive tenants [103,242], and providing
latency or throughput guarantees [122, 256, 265, 266].

3.4.1 Multi-Resource Scheduling

Several research projects tackle multi-resource allocation, such as Cake [265], IOFlow [256], and SQLVM [195].
Cake provides isolation between low-latency and high-throughput tenants using HBase and HDFS. However,
it treats HDFS as a single resource, and cannot target speciûc resource bottlenecks and work�ows that overload
these resources. IOFlow provides per-tenant guarantees for remote disk IO requests in datacenters but does
not schedule other resources such as threadpools, CPU, and locks. SQLVM [195] provides isolation for CPU,
disk IO, and memory for multiple relational databases deployed in a single machine, but does not deal with
distributed scenarios.

In the data analytics domain, task schedulers such as Mesos [150], Yarn [264], or Sparrow [214] use an
admission control approach to allocate individual tasks to machines. In these frameworks, each task passes
through the scheduler before starting its execution, the scheduler can place it to an arbitrary machine in the
cluster and a�er starting execution, the task is not scheduled any more. In typical distributed systems, requests
do not pass through a single point of execution and routing of a request through the system is driven by
complex internal logic. Finally, to achieve ûne-grained control over resource consumption, requests have to
be throttled during its execution, not only at the beginning. _ese frameworks thus do not directly apply to
scheduling in general distributed systems. All of these approaches are conûned to single systems, so only align
with part, but not all, of the cross-cutting execution.

3.4.2 Ad-Hoc Approaches to Resource Isolation

In all cases observed, the enforcement mechanisms for high-level policies were manually implemented. For
example, Cake [265] manually instruments the RPC entry points of HDFS and HBase to add queues and
associates tenants based on an identiûer from the HDFS RPC headers; IOFlow [256] modiûes queues in key

CHAPTER 3. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 21

resources (e.g., NIC, disk driver) on the data path; and Pisces [241] modiûes the scheduling and queueing code
of Membase and directly updates tenant weights at these queues.

Lack of visibility of actual resource bottlenecks leads to the ad-hoc selection of the metrics used for
performance isolation. For example, Azure Storage [103] and Pisces [241] select only request rate and operation
size as metrics. SQLVM [195] uses CPU, I/O, and memory as key resources. Cake [265] breaks HDFS requests
into equal-sized chunks, then assumes disk as a bottleneck and uniform cost for each chunk.

Despite the potential for degraded quality of service and outages, providing intra-process fairness is
challenging to the extent that Cassandra developers rejected a proposal for per-user queueing [30], responding

“As for multitenancy support - you aren’t alone here, the request for it comes up relatively o�en.
But I believe that it’s something that should be designed from top to bottom, and it’s going to be a
major change encapsulating a lot of layers, and not from bottom up, via half measures.”

Twitter engineers share this sentiment in their proposal for a new database, Manhatten [232], for providing
multi-tenancy and quality-of-service as ûrst-class citizens:

“Supporting multi-tenancy was a key requirement from the beginning... Allowing multiple cus-
tomers to use the same cluster increases the challenge of running our systems. We now must think
about isolation, management of resources, capacitymodeling withmultiple customers, rate limiting,
QoS, quotas, and more.”

Given the burden on application programmers, inevitably, many distributed systems do not provide isolation
between tenants, or only utilize ad-hoc isolation mechanisms to address individual problems reported by
users. For example, HDFS recently introduced priority queueing [39] to address the problem that “any poorly
writtenMapReduce job is a potential distributed denial-of-service attack,” but this only provides coarse-grained
throttling of aggressive users over long periods of time. CloudStack addressed denial-of-service attacks in
release 4.1, addingmanually conûgurable upper bounds for tenant request rates [32]. A recentHBase update [43]
introduced rate limiting for operators to throttle aggressive users, but it relies on hard-coded thresholds,manual
partitioning of request types, and lacks cost-based scheduling. In these examples, the developers identify multi-
tenant fairness and isolation as an important, but diõcult, and as-yet unsolved problem [30,88,232], describing
the features as “down payments on what will become more robust functionality in future releases.” [100]. _ese
challenges illustrate how resource management is orthogonal to any individual system.

3.4.3 Other Dimensions of Resource Management

Banga and Druschel addressed the mismatch between OS abstractions and the needs of resource accounting
with resource containers [95], which, albeit in a single machine, aggregate resource usage orthogonally to
processes, threads, or users. Causeway [107] modiûes Linux to propagate generic metadata when threads
communicate, and uses this to buildmeta-applications that could include resource accounting. Whodunit [106]
uses causal propagation to record timings between parts of a program, and provides a proûle of where requests

CHAPTER 3. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 22

spent their time. Timecard [225] also propagates cumulative time information in the request path between a
mobile web client and a server, and uses this in real time to speed up the processing of requests that are late;
however Timecard is restricted to synchronous request-response applications.

Chapter 4
Retro: A Cross-Cutting Tool for Resource Management

Based on the challenges and principles outlined in Chapter 3, we argue that an eõcient resource management
tool will require detailed and timely tracking of the resources used by each tenant, along the entire cross-
cutting execution path of requests. _is motivates the design of Retro, a second-generation cross-cutting
tool for resource tracking and throttling in distributed systems. In this chapter we describe the design and
implementation of Retro, and demonstrate the feasibility of Retro in a complex Hadoop deployment.

4.1 Overview

Retro is a cross-cutting tool for resource management, whose core principle is to separate resource man-
agement policies from themechanisms required to implement them. Retro enables system designers to state,
verify, tune, and maintain management policies independent of the underlying system implementation. As in
so�ware deûned networking, Retro policies execute in a logically-centralized controller with Retromechanisms
providing a global view of resource usage both within and across processes and machines. Retro captures
resource measurements and enforces resource usage along the cross-cutting dimension.

_e goal of Retro is to enable targeted policies that achieve desired performance guarantee or fairness
goals by identifying and only throttling the tenants or system activities responsible for resource bottlenecks.
Retro provides three abstractions to simplify the development of such policies. First, it groups all system
activities – both tenant-generated requests and system-generated tasks – into individual work�ows, which
align with cross-cutting executions and form the units of resource management. Retro attributes the usage
of a resource at any instant to some work�ow in the system and aggregates measurements at the centralized
controller. Second, Retro provides a resource abstraction that uniûes arbitrary resources, such as physical
storage, network, CPU, thread pools, and locks, enabling resource-agnostic policies. Each resource exposes
two opaque performance metrics: slowdown, a measure of resource contention, and a per-work�ow load,
which attributes the resource usage to work�ows. Finally, Retro creates control points, places in the system that
implement resource scheduling mechanisms such as token buckets, fair schedulers, or priority queues. Each
control point schedules requests locally, but is conûgured centrally by the policy.

Retro advocates reactive policies that dynamically respond to the current resource usage of work�ows in

23

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 24

the system, instead of relying on static models of future resource requirements. _ese policies continuously
react to changes in resource bottlenecks and input workloads by making small adjustments directing the
system towards a desired goal. Such a “hill climbing” approach enables policies that are robust to both changes
in workload characteristics and nonlinear performance characteristics of underlying resources.

We evaluate Retro abstractions and design principles by implementing three policies: a reactive version of
bottleneck resource fairness [137]; a reactive version of dominant resource fairness [138]; and a policy that
enforces end-to-end latency targets for a subset of work�ows. We use these policies on a Retro implementation
for the Hadoop stack, comprising HDFS, Yarn, MapReduce, HBase and ZooKeeper. All three policies are
concise (about 20 lines of code) and are agnostic of Hadoop internals. We experimentally demonstrate that
these policies are robust and converge to desired performance goals for diòerent types of workloads and
bottlenecks.

_e targeted and reactive policies of Retro rely on accurate, near real-time measurements of resource
usage across all work�ows and all resources in the system. _rough a careful design of mostly-automatic
instrumentation and aggregation of resource usage measurements our implementation of Retro for the Hadoop
stack incurs latency and throughput overhead of 0.3% to 2%.

4.2 Design

_emain goal ofRetro is to enable simple, targeted, system-agnostic, and resource-agnostic resource-management
polices for multi-tenant distributed systems. Based oò the challenges described in Chapter 3, these policies
should fundamentally deal with resources consumed by entire cross-cutting executions, and likewise apply
throttling decisions uniformly for cross-cutting executions. Examples of such policies are: a) throttle aggressive
tenants who are getting an unfair share of bottlenecked resources, b) shape work�ows to provide end-to-end
latency or throughput guarantees, or c) adjust resource allocation to either speed up or slow down certain
maintenance or failure recovery tasks.

Retro addresses the resource management challenges described in §3.3 by separating the mechanisms of
measurement and enforcement of resource usage from high-level, global resource management policies. It
does this by using three unifying abstractions – work�ows, resources, and control points – that enable logically
centralized policies to be succinctly expressed and apply to a broad class of resources and systems.

4.2.1 Retro abstractions

Work�ow Resource contention in a distributed system can be caused by a wide range of system activities.
Retro treats each such activity as a ûrst-class entity called awork�ow. A work�ow is a set of end-to-end requests,
and for each request, includes all activity along the cross-cutting execution path. Work�ows form the unit
of resource measurement, attribution, and enforcement in Retro. For instance, a work�ow might represent
requests from the same user, various background activities (such as heartbeats, garbage collection, or data load
balancing operations), or failure recovery operations (such as data replication). _e aggregation of requests

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 25

into a work�ow is up to the system designer. For instance, one system might treat all background activities as
one work�ow but another might treat heartbeats as a distinct work�ow from other activities, if the system
designer decides to provide a diòerent priority to heartbeats.

Each work�ow has a unique work�ow ID. To properly attribute resource usage to individual work�ows,
Retro propagates the work�ow ID along the execution path of all requests, like context propagation used by
end-to-end tracing tools (cf. §2.4). _is causal propagation allows Retro to attribute the usage of a resource to
a work�ow at any point in the execution, whether within a shared process or across the network.

Resources As shown in Figure 3.2, a work�ow can use diòerent resources and contention in any one of
these resources can reduce its end-to-end throughput or latency. A comprehensive resource management
policy should be able to respond to contention in any resource – hardware or so�ware – and attribute load
to work�ows using it. A key hypothesis of Retro is that resource management policies can and should treat
all resources, from thread pools to locks to disk, uniformly under a common abstraction. Such a uniform-
treatment allows one to state policies that respond to disk contention, say, in the same way as lock contention.
Equally importantly, this allows gradually expanding the scope of resource-management to new resources
without policy change. For instance, a storage service might start by throttling clients based on their network
or disk usage. However, as the complexity of the service increases to include sophisticated metadata operations,
the service can start throttling by CPU usage or lock-contention. On the other hand, the challenge in providing
such a unifying abstraction is to capture the behavior of varied kinds of resources with diòerent complex
non-linear performance characteristics.

To overcome this challenge, Retro captures a resource’s current ûrst-order performance with two unitless
metrics:

• Slowdown indicates how slow the resource is currently, compared to its baseline performance with no
contention;

• Load is a per-work�ow metric that determines who is responsible for the slowdown.
As a simple example, consider an abstract resource with an (unbounded) queue. Let Qw ,i be the queueing

time of the ith request from work�ow w in a time interval and let Sw ,i be the time the resource takes to
service that request. During this interval, the load by w is ΣiSw ,i and the slowdown is Σw ,i

Qw , i+Sw , i
Σw , iSw , i . Note, the

denominator of the slowdown is the time taken to process the requests if the queue is empty throughout the
interval.

_e reactive policies in Retro allow these metrics to provide a linear approximation of the complex
non-linear behavior. _e policies continuously measure the resource metrics while making incremental
resource allocation changes. Operating in such a feedback loop enables simple abstractions while reacting to
nonlinearities in the underlying performance characteristics of the resource.

Resources in real systems are more complex than the simple queue above. Retro’s goal is to hide the com-
plexities of measuring the load and slowdown of diòerent resources in resource libraries that are implemented
once and reused across systems. §4.3.2 explains how our current implementation provides these abstractions

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 26

for the resources of interest for our experiments.
An important implication of this abstraction is that it is not possible to query the capacity of a resource.

Instead, a policy can treat a resource to have reached its capacity if the slowdown exceeds some ûxed constant.
Directly measuring true capacity is o�en not possible because of many request types supported (e.g. open,
read, sync, etc. on a disk) and because of eòects of caching or buòering, work�ow demands do not compose
linearly. Also, due to limping hardware [126], estimating the current operating capacity is next to impossible.

Control points To separate the low-level complexities of enforcing resource allocation throughout the
distributed system, we introduce the control point abstraction. A control point is a point in the execution of a
request where Retro can enforce the decisions of resource scheduling policies. Each control point executes
locally, such as delaying requests of a work�ow using a token bucket, but is conûgured centrally from a policy.

While a control point can be placed directly in front of a resource (such as a thread pool queue), it can
more generally be located anywhere it is reasonable to sleep threads or delay requests, such as in HDFS threads
sending and receiving data blocks. _e location of control points should be selected by the system designer
while keeping a few rules in mind. A control point should not be inserted where delaying a request can directly
impact other work�ows, such as when holding an exclusive lock. Conversely, some asynchronous design
patterns (such as thread pools) present an opportunity to interpose control points, as it is unlikely that a request
will hold critical resources yet potentially block for a long period of time.

Each logical control point has one or more instances. A point with a single instance is centralized, such
as a point in front of the RPC queue in HDFS NameNode. Distributed points, such as in the DataNode or
its clients, have many, potentially thousands of instances. Each instance measures the current, per-work�ow
throughput which is aggregated inside the controller.

To achieve ûne-grained control, a request has to periodically pass through control points, otherwise, it
could consume unbounded amount of resources. To illustrate this, consider a request in HBase that scans a large
region, reading data from multiple store ûles in HDFS. If Retro only throttles the request at the RegionServer
RPC queue, a policy has only one chance to stop the request; once it enters HBase, it can read an unbounded
amount of data from HDFS and perform computationally expensive ûlters on the data server-side. By adding
a point to the DataNode block sender, we can control the work�ow at the granularity of 64kB HDFS data
packets. More generally, the longer the period of time a request can execute without passing through a control
point, the longer it will take any policy to react. _is is similar to the dependence between the longest packet
length Lmax and the fairness guarantees provided by packet schedulers [216, 251].

4.2.2 Architecture

Figure 4.1 outlines the high-level architecture of Retro and its three main components. First, Retro has
a measurement infrastructure that provides near-real-time resource usage information across all system
resources and components, segmented by workload. Second, the logically centralized controller uses the
resource library to translate raw measurements to the load and slowdown metrics, and provides them as input

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 27

Control pointsResources

Distributed enforcement

Pervasive measurement

Workflows

R
et

ro
 C

on
tr

ol
le

r A
P

I

P
ol

ic
y

P
ol

ic
y

P
ol

ic
y

Figure 4.1: Retro architecture. Gray boxes are system components on the same or diòerentmachines.Work�ows
start at several points and reach multiple components. Intercepted resources () generate measurements that
serve as inputs to policies. Policy decisions are enforced by control points ().

to Retro policies. _ird, Retro has a distributed, coordinated enforcement mechanism that consistently applies
the decisions of the policies to control points in the system. We discuss the design of the controller in the
following paragraphs. In §4.3 we describe the measurement and enforcement mechanisms in detail, and in
§4.4 we present the implementation of three policies.

Logically centralized policies In current systems, resource management policies are hard-coded into the
system implementation making it diõcult to maintain as the system and policies evolve. A key design principle
behind Retro is to separate the mechanisms (§4.3) from the policies (§4.4). Apart from making such policies
easier to maintain, such a separation allows policies to be reused across diòerent systems or extended with
more resources.

Borrowing from the design of So�ware Deûned Networks and IOFlow [256], Retro takes the separation a
step further by logically centralizing its policies. _is makes policies much easier to write and understand, as
one does not have to worry about myopic local policies making con�icting decisions. In this light, we can view
Retro as building a “control plane” for distributed systems, and providing a separation of concerns for policy
writers and system developers and instrumenters.

Retro exposes to policies a simple API, shown in Table 4.1, that abstracts the complexity of individual
resources and allows one to specify resource-agnostic scheduling policies, as demonstrated in §4.4. _e ûrst
three functions in the table correspond to the three abstractions explained above. In addition, latency(r,w)
returns the total time work�ow w spent using resource r. throughput(p,w)measures the aggregate request rate
of work�ow w through a (potentially distributed) throttling point p, such as the entry point to the RS process.
Finally, policies can aòect the system through Retro’s throttling mechanisms.

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 28

workflows() list of work�ows
resources() list of resources
points() list of throttling points

load(r,w) load on r by work�ow w
slowdown(r) slowdown of resource r
latency(r,w) total latency spent by w on r

throughput(p,w) throughput of work�ow w at point p
get_rate(p,w) get the throttling rate of work�ow w at point p
set_rate(p,w,v) throttle work�ow w at point p to v

Table 4.1: Retro API used by the scheduling policies. We omit auxiliary calls to set, for example, the reporting
interval and smoothing parameters, as well as to obtain more details such as operation counts, etc.

4.3 Implementation

4.3.1 Per-work�ow resource measurement

End-to-end ID propagation At the beginning of a request, Retro associates threads executing the request
with the work�ow by storing its ID in a thread local variable; when execution completes, Retro removes
this association. While the developer has to manually propagate the work�ow ID across RPCs or in batch
operations, we use AspectJ to automatically propagate the work�ow IDwhen using Runnable, Callable, Thread,
or a Queue. _is instrumentation eòort is equivalent to that required by any other cross-cutting tool, as the
execution boundaries at which to propagate contexts are invariant to the speciûc tool being deployed.

Aggregation and reporting When a resource is intercepted, Retro determines the work�ow associated with
the current thread, and increments in-memory counters that track the per-work�ow resource use. _ese
counters include the number of resource operations started and ended, total latency spent executing in the
resource and any operation-speciûc statistics such as bytes read or queue time. When the work�ow ID is not
available, such as when parsing an RPCmessage from the network, the resource use is attributed to the next ID
that is set on the current thread (e.g., a�er extracting the work�ow ID from the RPC message). Retro does not
log or transmit individual trace events like the ûrst-generation cross-cutting tools described in §2.4, but only
aggregates counters in memory. A separate thread reads and reports the values of the counters to the central
controller at a ûxed interval, currently once per second. Reports are serialized using protocol buòers [263] and
sent using ZeroMQ [4] pub-sub. _e centralized controller aggregates reports by work�ow ID and resource,
smoothes out the values using exponential running average, and uses the resource library to compute resource
load and slowdown.

Batching In some circumstances, a system might batch the requests of multiple work�ows into a single
request. HDFS NameNode, HBase RegionServers, and ZooKeeper each have a shared transaction log on the
critical path of write requests. In these cases, we create a batch work�ow ID to aggregate resource consumption
of the batch task (e.g., the resources consumed when writing HBase transaction logs to HDFS). Constituent

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 29

work�ows report their relative contributions to the batch (e.g., serialized size of transaction) and the controller
decomposes the resources consumed by the batch to the contributing work�ows.

Automatic resource instrumentation using AspectJ Retro uses AspectJ [164] to automatically instrument
all hardware resources and resources exposed through the Java standard library. Disk and network consumption
is captured by intercepting constructor and method calls on ûle and network streams. CPU consumption is
tracked during the time a thread is associated with a work�ow. Locking is instrumented for all Java monitor
locks and all implementers of the Lock interface, while thread pools are instrumented using Java’s Executors
framework. _e only manual instrumentation required is for application-level resources created by the devel-
oper, such as custom queues, thread pools, or pipeline processing stages.

AspectJ is highly optimized and weaves the instrumentation with the source code when necessary without
additional overheads. In order to avoid potentially expensive runtime checks to resolve virtual function calls,
Retro instrumentation only intercepts constructors to return proxy objects that have instrumentation in place.

4.3.2 Resource library

Retro presents a uniûed framework that incorporates individual models for each type of resource. Management
policies only make incremental changes to request rates allocated to individual work�ows; for example, if the
CPU is overloaded, a policy might reduce total load on the CPU by 5%. _erefore, as long as we correctly
detect contention on a resource, iteratively reducing load on that resource will reduce the contention. Our
models, thus, capture only the ûrst-order impact of load on resource slowdown.

CPU We query the per-thread CPU cycle counter when setting and unsetting the work�ow ID on a thread
(using QueryThreadCycleTime in Windows and clock_gettime in Linux) to count the total number of CPU
cycles spent by each work�ow. _e load of a work�ow is thus proportional to its usage of CPU cycles. To
estimate the slowdown, we divide the actual latency spent using CPU by the optimal latency of executing this
many cycles at the CPU frequency. _at is, on a core with a frequency of F cycles per second, a work�ow that
consumes f cycles in t seconds has slowdown:

slowdown = F × t
f

(4.0.1)

Since part of the thread execution could be spent in synchronous IO operations, we only use CPU cycles and
latency spent outside of these calls to compute CPU slowdown. If frequency scaling is enabled, we could use
other existing performance counters to detect CPU contention [271].

Disk To estimate disk slowdown, we use a subset of disk IO operation types that we monitor, in particular,
reads and syncs. For example, given a time interval with n syncs and b bytes written during these operations,
we use a simple disk model that assumes a single seek with duration Ts for each sync, followed by data transfer

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 30

at full disk bandwidth B. Denoting t to be the total time spent in sync operations, we derive slowdown using
an estimate of the the optimal total latency:

latency = nTs + bB
slowdown = t

latency

(4.0.2)

To deal with disk caching, buòering, and readahead, we only count as seeks the operations that took longer
than a certain threshold, e.g., 5ms. We use similar logic for reads and to estimate the load of each work�ow.

Network _e load of a work�ow on a network link is proportional to the number of bytes transferred by
that work�ow. We ignore data sent over the loopback interface by checking the remote address when the
connection is set up. We currently do not measure the actual network latency and thus estimate the network
slowdown based on its utilization by treating it as a M/M/1 queue. _us a link with utilization u has slowdown:

slowdown = 1 + u
1 − u

(4.0.3)

It is feasible to extend Retro by encoding a model of the network (topology, bandwidths, and round trip times),
and network �ow parameters (source, destination, number of bytes), to estimate the network �ow latency with
no congestion [215]. Comparing this no-congestion estimate with measured latency could be used to compute
network slowdown.

_read pool _e load of a work�ow on a thread pool is proportional to the total amount of time it was
using threads in this pool. Since we explicitly measure queuing time tq and service time ts of a thread pool
operation, we can directly compute the slowdown:

slowdown = tq + ts
ts

(4.0.4)

Write Locks A write lock behaves similarly to a thread pool with a single thread, and we explicitly measure
the queuing time of a lock operation and the time the thread was holding the lock. Slowdown is thus the total
latency of lock operation (from requesting the lock until release) divided by the time actually holding the lock.

Read-Write Locks Load of a read-write lock depends on the number of read and write operations, for how
long they hold the lock, and the exact lock implementation. While there has been previous work on modeling
locks using queues [156, 159, 221], none of them exactly match the ReentrantReadWriteLock used in HDFS.
Instead, we approximate the capacity or throughput of a lock, T(f ,w , r), in a simple benchmark using three
work�ow parameters: fraction of write locks f , and average duration of write and read locks w and r. See
Figure 4.2 for a subset of the measured values; notice that the throughput is nonlinear and non-monotonic.

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 31

100

1000

10000

100000

1000000

0.01 0.1 1
lo

c
k
 t
h
ro

u
g
h
p
u
t
[o

p
s
/s

e
c
]

f, probability of write lock

w=0.1, r=0.01 w=0.1, r=1

w=0.1, r=10 w=10, r=10

Figure 4.2: _e throughput of Java ReentrantReadWriteLock (y-axis) as a function of three parameters:
probability of a write lock operation (x-axis), average duration of read and write locks (see legend, time in
milliseconds).

We use trilinear interpolation [158] to predict throughput for values not directly measured. Given a work�ow
with characteristic (f ,w , r) and current lock throughput t, we estimate its load on the lock as:

t
T(f , r,w) (4.0.5)

For example, a work�ow making 1000 lock requests a second with its estimated max throughput of 5000
operations a second, would have a load of 0.2.

4.3.3 Coordinated throttling

Retro is designed to support multiple scheduling schemes, such as various queue schedulers or priority queues.
In the current implementation of Retro, each control point is a per-work�ow distributed token bucket. _reads
can request tokens from the current work�ow’s token bucket, blocking until available. Queues can delay a
request from being dequeued until suõcient tokens are available in the corresponding work�ow’s bucket. For
a particular control point and work�ow, a policy can set a rate limit R, which is then split (behind the scenes)
across all point instances proportionally to the observed throughput. Retro keeps track of new control point
instances coming and going – e.g., mappers starting and ûnishing – and properly distributes the speciûed limit
across them.

So long as each request executes a bounded amount of work, even using a single control point at the
entrance to the system is enough for Retro to enforce usage of individual work�ows. However, as described in
§4.2.1, requests have to periodically pass through control points to guarantee fast convergence of allocation
policies. Even without any control points in the system, each resource reports howmany times it has been used
by a particular work�ow. For example, loading a single HDFS block of 64MB would result in approximately
1000 requests to the disk, each reading 64kB of data. _ese statistics help developers identify blocks of code
where requests execute large amount of work and where adding control points helps break down execution
and signiûcantly improves convergence of control policies.

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 32

1 // identify slowest resource
2 S = r in resources () with max slowdown(r)
3 foreach w in workflows ()
4 demand[w] = load(S, w)
5 capacity += (1 − α)∗demand[w]
6
7 // determine fair allocation
8 fair = MaxMinFairness(capacity , demand)
9
10 // apply fair allocation
11 foreach w in workflows ()
12 if (slowdown(S) > T && fair[w] < demand[w]) // throttle
13 factor = fair[w] / demand[w]
14 else // probe for demand
15 factor = (1 + β)
16
17 foreach p in points ()
18 set_rate(p, w, factor*get_rate(p, w))

Figure 4.3: BFair policy, see §4.4.1.

In the Hadoop stack, we added several points: in the HDFS NameNode and HBase RegionServer RPC
queues, in the HDFS DataNode block sender and receiver, in the Yarn NodeManager, and in the MapReduce
mappers when writing to the local disk. Each of these points has a number of instances equal to the number of
processes of the particular type.

Notice that we do not need to throttle directly on resource R to enforce resource limits on R. Assume that
a work�ow is achieving throughput of Np at point p and has load LR on R. By setting a throttling rate of αNp

for all points, we will indirectly control the load on R to αLR.

4.4 Policies

_is section describes three targeted reactive resource-management policies that we used to evaluate Retro.
Respectively, these policies enforce fairness on the bottleneck resource (§4.4.1), dominant-resource fairness
(§4.4.2), and end-to-end latency SLOs (§4.4.3). All of these polices are system-agnostic, resource-agnostic,
and can be concisely stated in a few lines of code. _ese are not the only policies that could be implemented
on top of Retro; in fact, we believe that the Retro abstractions allow developers to write more complex policies
that consider a combination of fairness and latency, together with other metrics, such as throughput, work�ow
priorities, or deadlines.

4.4.1 BFair policy

_e BFair policy provides bottleneck fairness [137, 138]; i.e., if a resource is overloaded, the policy reduces
the total load on this resource while ensuring max-min fairness for work�ows that use this resource. _is
policy can be used to throttle aggressive work�ows or to provide DoS protection. It provides coarse-grained

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 33

1 // estimate resource demands based on measured usage
2 foreach w in workflows ()
3 foreach r in resources ()
4 demand[r,w] = (1 + α)∗load(r,w)
5
6 // update capacity estimates based on current slowdown
7 capacities = current capacity estimates
8 foreach r in resources ()
9 total_load = Σw load(r,w)
10 if(slowdown(r) > Tr) // slowdown exceeds threshold , reduce estimate
11 capacities[r] = min(capacities[r], total_load);
12 else // probe for more capacity
13 capacities[r] = max ((1+β)* capacities[r], total_load);
14
15 // determine fair allocation
16 share = DRF(demand , cap)
17
18 // apply fair allocation
19 foreach w in workflows ()
20 if (share[w] < 1)
21 foreach p in points ()
22 set_rate(p, w, share[w]* get_rate(p,w))

Figure 4.4: rDRF policy, see §4.4.2.

performance isolation, since work�ows are guaranteed a fair-share of the bottlenecked resource.
_e policy, described in Figure 4.3, ûrst identiûes the slowest resource S in the system according to the

slowdown measure (Line 2). _en, the policy runs the max-min fairness algorithm with demands estimated by
the current load of work�ows (Line 4) and resource capacity estimated by the total demand reduced by 1 − α
to relieve the bottleneck if any (Line 5).

_e policy considers S to be bottlenecked if its slowdown is greater than a policy-speciûc threshold T. If this
is the case and the fair share fair[w] of work�ow w is smaller than its current load (Line 12), the policy throttles
the rate by a factor of fair[w] / demand[w]. Here, the policy assumes a linear relationship between throughput
at control points and the load on resources. If either the resource is not bottlenecked or if a work�ow is not
meeting its fair share (Line 14), the policy increases the throttling rate by a factor of 1 + β to probe for more
demand.

Notice that this policy performs coordinated throttling of the work�ow across all the control points; by
reducing the rate proportionally on each point, we quickly reduce the load of the work�ow on all resources.
Parameters α and β control how aggressively the policy reacts to overloaded resources and underutilized
work�ows respectively. Notice that this policy will throttle only if there is a bottleneck in the system; we can
change the deûnition of a bottleneck using the parameter T.

4.4.2 rDRF policy

Dominant resource fairness (DRF) [138] is a multi-resource fairness algorithm with many desirable properties.
_e rDRF policy (Figure 4.4) calls the original DRF function at Line 16 which requires the current resource

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 34

1 // determine high -priority workflow that is missing latency target
2 foreach w in H
3 miss(w) = latency(w) / target_latency(w)
4 h = w in H with max miss(w)
5
6 // compute low -priority workflow gradients
7 foreach l in L
8 g[l] = Σr (latency(h,r) * log(slowdown(r)) * load(r,l) / Σw load(r,w))
9
10 // normalize gradients to use as weights
11 foreach l in L
12 g[l] /= ∑kg[k]
13
14 // throttle or relax low -priority workflows
15 foreach l in L
16 if(miss(h) > 1) // throttle
17 factor = 1-α*(miss(h)-1)*g[l]
18 else // relax
19 factor = (1 + β)
20
21 foreach p in points ()
22 set_rate(p, l, factor*get_rate(p, l))

Figure 4.5: LatencySLO policy, see §4.4.3.

demands and capacities of all resources. In a general distributed system, we cannot directly measure the actual
resource demand of a work�ow, but only its current load on a resource. A work�ow might not be able to meet
its demand due to bottlenecks in the system.

_e rDRF policy overcomes this problem by being reactive: making incremental changes and reacting
to how the system responds to these changes. At any instant, the policy conservatively assumes that each
work�ow can increase its current demand by a factor of α (Line 4). _is increased allocation provides room
for bottlenecked work�ows to increase the load on resources.

Similarly, the policy uses the slowdownmeasure to estimate capacity. At Line 10,when the current slowdown
exceeds a resource-speciûc threshold, the policy reduces its capacity estimate to the current load. On the other
hand, if the slowdown is within the threshold (Line 12) and the current capacity estimate is lower than the
current load, the policy increases the capacity estimate by a factor of β to probe for more capacity.

Given estimates of demand and capacity, the DRF() function returns share[w], the fraction of w’s de-
mand that was allocated based on dominant-resource fairness. If share[w]< 1, we throttle w at each point p
proportionally to its current throughput at p.

4.4.3 LatencySLO policy

In the LatencySLO policy, we have a set of high-priority work�ows H with a speciûed target latency SLO
(service-level objective). Let L (low-priority) be the remaining work�ows. _e goal of the policy is to achieve
the highest throughput for L, while meeting the latency targets for H. We assume the system has enough
capacity to meet the SLOs for H in the absence of the work�ows L; in other words, it is not necessary to throttle

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 35

H. To maximize throughput, we want to throttle work�ows in L as little as possible; e.g., if a work�ow in L is
not using an overloaded resource, it should not be throttled.

Consider a work�ow h in H that is missing its target latency. If multiple such work�ows exist, the policy
choses the one with the maximum miss ratio (Line 4). Let tw be the current request rate of work�ow w and
consider a possible change of this rate to tw × fw . _e resulting latency lh of h is some (nonlinear) function of
the relative work�ow rates fw of all work�ows. _e LatencySLO computes an approximate gradient of lh with
respect to fw and uses the gradient to move the throttling rates in the right direction. Based on the system
response, the policy repeats this process until all latency targets are met.

We derive an approximation of lh which results in an intuitive throttling policy. Consider a resource r
with a current slowdown of Sr , load Dw ,r for work�ow w, and total load:

Dr = ∑
w
Dw ,r (4.0.6)

If Lh,r is the current latency of h at r, the baseline latency is
Lh,r
Sr

when there is no load at r, by the deûnition
of slowdown. We model the latency of h at r, lh,r as an exponential function of the load dr that satisûes the
current (dr = Dr) and baseline (dr = 0) latencies, and obtain:

lh,r = Lh,r × S
dr
Dr−1
r (4.0.7)

Finally, we model the latency of h as the sum of latencies across all resources in the system:

lh = ∑
r

lh,r (4.0.8)

Assuming that a fractional change in a work�ow’s request rate results in the same fractional change in its load
on the resources, we have:

dr = ∑
w
Dw ,r × fw (4.0.9)

_e gradient of lh,r with respect to fw at dr = Dr is:

∂lh,r
∂ fw

= Lh,r × log Sr × Dw ,r

Dr
(4.0.10)

_is is a very intuitive result: the impact of work�ow w on the latency of h is high if it has a high resource
share, Dw ,r

Dr
, on a resource with high slowdown, log Sr , and where work�ow h spends a lot of time, Lh,r .

Figure 4.5 uses this formula for the gradient calculation (Line 8). _e policy throttles work�ows in L based
on the normalized gradients a�er dampening by a factor α to ensure that the policy only takes small steps. If
all work�ows in H meet their latency guarantees, the policy uses this opportunity to relax the throttling by a
factor β.

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 36

4.5 Evaluation

In this section we evaluate Retro in the context of the Hadoop stack. We have instrumented ûve open-source
systems – HDFS, Yarn, MapReduce, HBase, and ZooKeeper – that are widely used in production today. We
use a wide variety of work�ows, which are based on real-world traces, widely-used benchmarks, and other
workloads known to cause resource overload in production systems. _e cross-cutting executions in these
work�ows traverse multiple processes, machines, and systems, consuming resources in all of them.

Our evaluation shows that Retro addresses the challenges in §3.3 when applied simultaneously to all these
stack components. In particular, we show that Retro:

• applies coordinated throttling to achieve bottleneck and dominant resource fairness (§4.5.1 and §4.5.3);
• applies policies to application-level resources, resources shared betweenmultiple processes, and resources
with multiple instances across the cluster;

• guarantees end-to-end latency in the face of workloads contending on diòerent resources, uniformly for
client and system maintenance work�ows (§4.5.2);

• is scalable and has very low developer and execution overhead (§4.5.4);
• throttles eõciently: it correctly detects bottlenecked resources and applies targeted throttling to the

relevant work�ows and control points.
We do not directly compare to other policies, since to our knowledge, no previous systems oòer this rich

source of per-work�ow and per-resource data. Many of previous policies, such as Cake [265], could be directly
implemented on top of Retro.

4.5.1 BFair in the Hadoop stack

In Figure 4.6, we demonstrate the BFair policy successfully throttling aggressive work�ows without negatively
aòecting the throughput of other work�ows. _e three major work�ows are: SORT, a MapReduce sort job;
RW64MB, 100 HDFS clients reading and writing 64MB ûles with a 50/50 split; and SCAN, 100 HBase clients
scanning large tables. _ese work�ows bottleneck on the disk on the worker machines. _e two minor
work�ows are: READ8KB, 32 clients reading 8kB ûles from HDFS; and SCAN-CACHED, 32 clients scanning tables
in HBase that are mostly cached in the RegionServers. We perform this experiment on a 32-node deployment of
Windows Azure virtual machines; one node runs the Retro controller, one node runs HDFS NameNode, Yarn,
ZooKeeper, and HBase RegionServer, the other thirty are used as Hadoop workers. Each VM is a Standard_A4
instance with 8 cores, 14GB RAM and a 600GB data disk, connected by a 1Gbps network.

At the beginning of the experiment, we start READ8KB, SCAN-CACHED, and SORT together, and delay start
of SCAN and RW64MB. Figure 4.6a shows the disk throughput achieved by each work�ow; notice how the
throughput changes as diòerent work�ows start, for example, throughput of SORT drops from 750MB/sec to
100MB/sec. Figure 4.6b shows the slowdown of a few diòerent resources. Disk is the only constantly overloaded
resource, reaching slowdown of up to 60. While slowdown of other resources also occasionally spikes, this
happens only due to workload burstiness. In Figure 4.6c, we show sparklines of the work�ow utilization ratios

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 37

ut
ili

za
tio

n
pr

at
io

1

0

1

0

1

0

1

0

1

0

1

4

16

64

0 2 4 6 8 10 12 14

sl
ow

do
w

n

Disk CPU NN Queue Network

0

0.4

0.8

1.2

di
sk

th
ro

ug
hp

ut
[G

B
/s

]

0 2 4 6 8 10 12 14
time [min]

A

RW64MB

SCAN

SORT

READ8KB

SCAN-CACHED

READ8KB
RW64MB

SCAN-CACHED
SCAN

SORT

time [min]

0 2 4 6 8 10 12 14
time [min]

(a) Disk throughput achieved by each work�ow.

ut
ili

za
tio

n
pr

at
io

1

0

1

0

1

0

1

0

1

0

1

4

16

64

0 2 4 6 8 10 12 14

sl
ow

do
w

n

Disk CPU NN Queue Network

0

0.4

0.8

1.2

di
sk

th
ro

ug
hp

ut
[G

B
/s

]

0 2 4 6 8 10 12 14
time [min]

A

RW64MB

SCAN

SORT

READ8KB

SCAN-CACHED

READ8KB
RW64MB

SCAN-CACHED
SCAN

SORT

time [min]

0 2 4 6 8 10 12 14
time [min]

(b) Slowdown for four resources.

ut
ili

za
tio

n
pr

at
io

1

0

1

0

1

0

1

0

1

0

1

4

16

64

0 2 4 6 8 10 12 14

sl
ow

do
w

n

Disk CPU NN Queue Network

0

0.4

0.8

1.2

di
sk

th
ro

ug
hp

ut
[G

B
/s

]

0 2 4 6 8 10 12 14
time [min]

A

RW64MB

SCAN

SORT

READ8KB

SCAN-CACHED

READ8KB
RW64MB

SCAN-CACHED
SCAN

SORT

time [min]

0 2 4 6 8 10 12 14
time [min]

(c) Sparklines illustrating work�ow utilizations, i.e.
their achieved workload throughput relative to their
allocated rates. 1 means that the work�ow is being ac-
tively rate-limited; 0 means the work�ow is not rate-
limited. SORT plots utilization at two control points
(black: DataNode BlockSender; dashed red: Mapper
output); also RW64MB (black: DataNode BlockSender;
dashed red: DataNode BlockReceiver).

Figure 4.6: BFair policy as described in §4.5.1. BFair is enabled in phase A with overload threshold T=25.

– the achieved throughput relative to the allocated rate at a particular control point. A ratio of 1 means that the
work�ow is being actively rate-limited; a ratio of 0 means that the work�ow is never rate-limited. For SORT, we
show ratios at two control points: the DN BlockSender (black, used by mapper to read data from the DN) and
mapper output (dashed red, used by mapper to write its output to local disk). For RW64MB, we show ratios at
two control points: the DN BlockSender (black, used to read data from HDFS DNs) and the DN BlockReceiver
(dashed red, used to write data to HDFS DNs).

In phase A we enable the BFair with overload threshold T=25. Quickly, the disk throughput of the three
major work�ows equalizes at about 300MB/sec, thus achieving fairness on the bottlenecked resource. Also,
the disk slowdown �uctuates at around 25 (navy blue line in the slowdown graph) because the policy starts
throttling the major work�ows.

_e utilization ratio sparklines provide further insight. RW64MB is the most aggressive work�ow and
consequently it is fully throttled (ratio of 1) at all of the control points. While not as aggressive, SCAN is also
throttled though less. Depending on the phase of the map-reduce computation, we throttle SORT while reading
input (black) and/or when writing output (red dashed). Finally, as expected, the two minor work�ows are not
throttled as much, or at all, because the fairness allocates their full demand. Furthermore, SCAN-CACHED is
completely unthrottled as it has no disk utilization.

_ese results highlight how Retro enables coordinated and targeted throttling of workloads. No other
system we are aware of would achieve these results, as Retro coordinates the same resource through diòerent
control points – for example, disk is controlled not only by HDFS block transfer (used by SCAN, RW64MB,

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 38

F6F4 F5

ut
ili

za
tio

ny
ra

tio

F4 PHBaseyscanU F5 PHDFSymkdirU F6 PcacheyscanU

F4

F5

F60.5

1
0.5

1
0.2

1

0.1

1

10

0 5 10 15 20 25 30sl
o-

no
rm

al
iz

ed
ylc

y

timey[min]

0

5

10

15

0 5 10 15 20 25 30

sl
ow

do
w

n

HBaseyQueueHDFSyNNyQueue
HDFSyNNyLock

CPU
Disk

F4 F5 F6

0.1

1

10

100

1000

sl
o-

no
rm

al
iz

ed
ylc

y
F1 F2

F3PHDFSyread8kU PHBaseyrowU PcachedyrowU

timey[min]

Figure 4.7: LatencySLO policy as described in §4.5.2. Top-le� ûgure shows high priority work�ow latencies
without LatencySLO. Bottom-le� ûgure shows resource slowdown during experiment. Top-right ûgure shows
high priority work�ow latencies with LatencySLO. Bottom-right sparklines show control point utilizations
for background work�ows.

READ8KB and the job input to SORT), but also by the SORT mapper output that accesses disk directly, bypassing
HDFS. Retro only throttles the relevant workloads, leaving the small read and scan workloads mostly alone.

4.5.2 LatencySLO

Wedemonstrate that the LatencySLOpolicy can enforce a) end-to-end latency SLOs acrossmultiple work�ows
and systems, and b) SLOs for both front-end clients and background tasks. We perform these experiments on
an 8-node cluster; one node runs the Retro controller, one node runs HDFS NameNode, Yarn, ZK, and HBase
Master, the other 6 are used as Hadoop workers and HBase RegionServers.

Enforcing multiple guarantees In this experiment we simultaneously enforce SLOs in HBase and HDFS
for three high priority work�ows with intermittently aggressive background work�ows. _e three high priority
work�ows are: F1 randomly reads 8kB from HDFS with 500ms SLO, F2 randomly reads 1 row from a small
table cached by HBase with 25ms SLO, and F3 randomly reads 1 row from a large HBase table with 250ms
SLO. _e background work�ows are: F4 submits 400-row HBase table scans, F5 creates directories in HDFS,
and F6 submits 400-row HBase table scans of a cached HBase table.

Figure 4.7(top-le�) demonstrates the request latencies of the three high priority work�ows, normalized to
their SLOs. During each of the three phases of the experiment, a background work�ow temporarily increases
its request rate, aòecting the latency of the high priority work�ows. In the ûrst stage, F4 increases its load
and F1 and F2 miss their SLO. In the second stage, F5 increases its load and F1 misses its SLO by a factor of
10. In the last stage, F6 increases its load and F2 and F3 miss their SLOs by factors of 10 and 500 respectively.
Figure 4.7(bottom-le�), shows the slowdown of diòerent resources as the experiment progresses: at ûrst F4
table scans cause disk slowdown, then F5 causes HDFS NameNode lock and NameNode queue slowdown, and

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 39

Thb4latency
T14throughput
T24throughput

0 3 6 9 12 15 18

th
ro

ug
hp

ut
4[

k4
re

q/
s]

la
te

nc
y4

[s
ec

]

time4[min]

0.8

0.4

0.6

0.2

0

3

2

1

0
0 1 2 3 4 5

th
ro

ug
hp

ut
4[

M
B

/s
]

time4[min]

0.2

0

0.1

80

60

40

20

0

Thp4latency
Tr4throughput

Figure 4.8: LatencySLO rate-limits replication to enforce a 100ms SLO for Thp (le�). LatencySLO enforces a
50ms latency for heartbeats (right).

ûnally F6 causes CPU and HBase queue slowdown as its data is cached.
We repeat the experiment using LatencySLO to enforce the SLOs of F1, F2 and F3. Figure 4.7(top-right)

shows that the policy successfully maintains the SLOs by throttling the background work�ows at a number
of control points within HDFS and HBase. Figure 4.7(bottom-right) shows the sparklines of the work�ow
utilization ratios – the achieved throughput relative to the allocated rate at a particular control point, similar to
Figure 4.6. We see that LatencySLO only rate-limits the background work�ows during their speciûc overload
phases.

_ese results highlight how LatencySLO selectively throttles workloads based on their contribution to
the SLO violation. Retro can enforce SLOs for multiple work�ows across so�ware and hardware resources
simultaneously.

Background work�ows _anks to the work�ow abstraction, LatencySLO is equally applicable to providing
guarantees for high priority background tasks, such as heartbeats, or to protecting high priority work�ows
from aggressive background tasks such as data replication.

Figure 4.8 (right) demonstrates the eòect of two work�ows T1 and T2 on the latency of datanode heartbeats,
Thb . _e heartbeat latency increases from 4ms to about 450ms when T1 and T2 start renaming ûles and listing
directories, respectively, causing increased load the HDFS namesystem lock. Whilst Thb and T2 only require
read locks, T1 requires write locks to update the ûlesystem, thus blocking heartbeats. When we start SLO
enforcement at t=13, the policy identiûes T1 as the cause of slowdown, throttles it at the NameNode RPC queue,
and achieves the heartbeat SLO.

Figure 4.8 (le�), LatencySLO rate-limits low-priority background replication Tr , to provide guaranteed
latency to high priority work�ow Thp submitting 8kB read requests with 100ms SLO. At t=1, we manually
trigger replication of a large number of HDFS blocks; subsequently, LatencySLO rate-limits Tr . High-priority
replication (single remaining replica) could use a separate work�ow ID to avoid throttling.

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 40

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

re
s
o

u
rc

e
 s

h
a

re
time [min]

read4M, disk read4M, network

list, disk list, network

Figure 4.9: Resource share for experiment described in §4.5.3.

4.5.3 rDRF in HDFS

To demonstrate rDRF (Figure 4.9), we run an experiment with two work�ows – READ4M with 50 clients
reading 4MB ûles, and SORTwith 5 clients listing 1000 ûles in a directory – accessing the HDFS cluster remotely
sharing a 1Gbps network link. _e dominant resource for READ4M is disk and for SORT it is the network, since
it is reading large amounts of data from the memory of the NameNode.

We start READ4M at t=0 and add SORT at t=5, with sharing weights of 1. Between time 5 and 10, rDRF
throttles READ4M to achieve equal dominant shares across both of these work�ows (60% on disk and network).
A�er increasing the weight of READ4M to 2 at t=10, the dominant shares change to 80% and 40%, respectively.

Despite knowing neither the demands of eachwork�ow,nor the capacity of each resource, rDRF successfully
allocates each work�ow the fair share of its dominant resource. _e experiment demonstrates how slowdown
is viable as a proxy for resource capacity, and coupled with reactive policies, enables us to overcome some
limitations of an existing resource fairness technique.

4.5.4 Overhead and scalability of Retro

Retro propagates a work�ow ID (3 bytes) along the cross-cutting execution path of a request, incurring up to
80ns of overhead (see Figure 4.2) to serialize and deserialize when making network calls. _e overhead to
record a single resource operation is approximately 340ns, which includes intercepting the thread, recording
timing, CPU cycle count (before and a�er the operation), and operation latency, and aggregating these into a
per-work�ow report.

To estimate the impact of Retro on throughput and end-to-end latency, we benchmark HDFS and HDFS
instrumented with Retro using requests derived from the HDFS NNBench benchmark. See Figure 4.10 for
throughput and end-to-end latency for ûve requests types.Open opens a ûle for reading; Read reads 8kB of data
from a ûle; Create creates a ûle for writing; Rename renames an existing ûle andDelete deletes the ûle from the
name system (and triggers an asynchronous block delete). Of the request types, Read is a DataNode operation
and the others are NameNode operations. In all cases, latency increases by approximately 1-2%, and throughput
drops by a similar 1-2%. Variance in latency and throughput increases slightly in HDFS instrumented with

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 41

Operation Latency
Deserialize metadata 80ns
Read active metadata 9ns
Serialize metadata 46ns
Record use one resource operation 342ns

Table 4.2: Costs of Retro instrumentation

N
o
rm

a
liz

e
d
 L

a
te

n
c
y

1.2

1

0.8

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

HDFS
HDFS w/ Retro

1.2

1

0.8

Figure 4.10: Normalized latency (le�) and throughput
(right) for HDFS NameNode benchmark operations
along with error bars showing one standard deviation.

0

25

50

75

0

0.4

0.8

1.2

0 1 2 3 4 5 6

S
lo

w
do

w
n

D
is

k[
T

hr
ou

g
hp

ut
[[G

B
/s

]

Time[[min]

client[×[800
client[×[1200

client[×[2000
disk[slowdown

client[×[1600

Figure 4.11: Retro’s BFair policy on a 200-node cluster
with four work�ows and overloaded disks. BFair is
enabled at t=1.5 with a target slowdown of 50; client
weights are adjusted at t=4.

0 5 10 15 20 25 30
Timed[days]

1M

10M

100M

1G

10G

100G

N
et

w
or

kd
T

h
ro

ug
h

pu
td[

by
te

s/
s] Total Retro

Figure 4.12: Total network throughput for a several-
hundred node production Hadoop cluster and net-
work throughput of Retro, from 1 month of traces.
Retro’s bandwidth requirements are on average 0.1%
of the total throughput.

Retro. _ese overheads could be further signiûcantly reduced by sampling, i.e., tracing only a subset of requests
or operations.

We evaluate Retro’s ability to scale beyond the cluster sizes presented thus far with an 200-VM experiment
on Windows Azure (Standard_A2 instances). Figure 4.11 shows slowdown and aggregate disk throughput
for four work�ows when BFair is activated (at t=1.5) and per-work�ow weights are adjusted (at t=4). Each
work�ow ran a mix of 64MB HDFS reads and writes, with 800, 1200, 1600, and 2000 closed-loop clients
respectively. Before the policy is activated we observe the expected imbalance in disk throughput caused by
the diòering number of clients in each work�ow. When the policy is activated at t=1.5, the work�ows quickly
converge to an equal share of disk throughput, and the slowdown decreases to the target of 50. At t=4, two of
the clients are given a weight of 2 and the policy quickly establishes the new fair share.

We evaluate the scalability of Retro’s central controller in terms of its ability to process resource reports. In
a benchmark where each report contains resource usage for 1000 work�ows, the controller can process on the
order of 10,000 reports per second. Assuming 10 resources per machine, the controller could thus support
up to 1000 machines. In this setup, each machine would use about 600kB/sec of network bandwidth to send
the reports. Figure 4.12 shows calculated network overhead that would be imposed by Retro on a production

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 42

Hadoop cluster comprising several hundred nodes over a period of a month. We calculate the network traõc
that would be generated by Retro based on traces from this production cluster. _e ûgure shows that Retro
would account for an average of 0.1% of the network traõc present. Furthermore, since Retro aggregation
only computes sums and averages, we can aggregate hierarchically (e.g. inside each machine and rack), further
reducing the required network bandwidth and thereby supporting much larger deployments.

Whilst Retro requiresmanual developer intervention to propagate work�ow IDs across network boundaries
and to verify correct behavior of Retro’s automatic instrumentation, our experience shows that this requires
little work. For example, instrumenting each of the ûve systems required only between 50 and 200 lines of
code; for example to handle RPCmessages. Instrumenting resource operations happens automatically through
AspectJ.

4.6 Discussion

Application-Level Measurement and Enforcement In Retro, we made the decision to implement both
resource measurement and control points at the application level. While applying Retro in the OS, hypervisor,
or device driver level could provide more accurate measurements and ûne-granularity enforcement, our
approach has the advantages of fast and pervasive deployment, and of not requiring specially built OS or
drivers (we deployed Retro in both Windows and Linux environments). Retro’s promising results indicate that
OS’s, and distributed systems in general, should provide mechanisms to facilitate the propagation of work�ow
IDs across their components.

Admission Control Retro’s control points can throttle requests mid-execution. Initially this may seem
counter-intuitive, as it increases the latency of executions artiûcially, and requests may have exclusive access
to resources such as allocated memory. However, throttling requests mid-execution is necessary to handle
arbitrary-length executions. Admission control is only appropriate for short requests with a known, bounded
duration. For scenarios like long-running MapReduce jobs, admission control would be too coarse-grained an
enforcement technique.

Application-Level Resources Retro is extensible to handle custom resources. For example, ZooKeeper uses
a custom request processing pipeline, which is not part of Java’s standard library. We treat ZooKeeper queues
as custom resources and estimate their load and slowdown.

In some scenarios, the number of resources might be large, but they might be used infrequently. For
example, in systems that perform row-level locking, the number of locks is equal to the number of rows in a
table, which would prevent us from eõciently aggregating all resources. In systems with row-level locking we
cannot treat each lock/row as an individual resource because the number of resources might be unbounded. To
address this, one approach would be to use custom resources: we could deûne each data partition as a logical
resource, which would signiûcantly reduce the number of resources in the system. An alternative approach is

CHAPTER 4. RETRO: A CROSS-CUTTING TOOL FOR RESOURCE MANAGEMENT 43

to use sampling methods [116, 183] that identify heavy hitters with low overhead.
Similarly, we currently group all resource instances of the same type into one logical resource, such as disks

on all DataNodes, and thus do not eõciently handle the case when a single tenant is overloading a particular
DataNode. However, we do have information available to identify these hot spots and throttle the oòending
tenants.

Limitations _e current implementation of Retro has several limitations. First, some resources cannot be
automatically revoked once a request has obtained them and have to be explicitly released by the system. For
example, this applies to memory, sockets, or disk space. A developer could implement application-speciûc
hooks that Retro could use to reclaim resources. Second, because the rates of distributed token buckets are
updated only once a second, when workload is very variable, this might reduce the throughput of the system.
Using diòerent local schedulers, such as weighted fair queues [240] and reservations [144] would alleviate this
problem.

4.7 Conclusion

Retro is a cross-cutting tool for implementing resource management policies in multi-tenant distributed
systems. Retro tackles important challenges and provides useful abstractions that enable a separation between
resource-management policies and mechanisms. In order to track the resources consumed by cross-cutting
executions, Retro propagates a work�ow ID alongside executions. _e work�ow ID is carried with executions
including across process and machine boundaries. _is enables Retro to attribute resource consumption to
executions, and to make throttling decisions at the granularity of executions. Cross-cutting executions are
an appealing dimension for resource management in distributed systems, because the overall performance
experienced by a tenant is dependent upon all resources consumed along this dimension.

Writing policies requires low developer eòort, and Retro is lightweight enough to be run in production. We
demonstrate the applicability of Retro to key components of the Hadoop stack and develop and evaluate three
targeted and reactive policies for achieving fairness and latency targets. _ese policies are system-agnostic,
resource-agnostic, and uniformly treat all system activities, including background management tasks. To the
best of our knowledge, Retro is the ûrst framework to do so.

Chapter 5
Monitoring and Troubleshooting Distributed Systems

_e second application domain we consider in this thesis is online monitoring in distributed systems. _is
chapter describes how a broad class of monitoring problems in distributed systems inherently cut across
component boundaries, and need to relate information from multiple places in cross-cutting executions.
In the next chapter, we will present the design and implementation of Pivot Tracing, a second-generation
cross-cutting tool for dynamic monitoring. To motivate Pivot Tracing, this chapter describes two important
limitations of tools today that make it diõcult to monitor and troubleshoot cross-cutting executions.

5.1 Limitations of Current Approaches

Monitoring and troubleshooting distributed systems is notoriously diõcult. _e potential problems are myriad:
hardware and so�ware failures, misconûgurations, hot spots, aggressive tenants, or even simply unrealistic user
expectations. Despite the complex, varied, and unpredictable nature of these problems, most monitoring and
diagnosis tools commonly used today – logs, counters, and metrics – have at least two fundamental limitations:
what gets recorded is deûned a priori, at development or deployment time, and the information is captured
in a component- or machine-centric way, making it extremely diõcult to correlate events that cross these
boundaries.

5.1.1 One Size Does Not Fit All

By default, the information required to diagnose an issue may not be reported by the system or contained
in system logs. Current approaches tie logging and statistics mechanisms into the development path of
products, where there is a mismatch between the expectations and incentives of the developer and the needs
of operators and users. Panelists at SLAML [102] discussed the important need to “close the loop of operations
back to developers”. According to Yuan et al. [278], regarding diagnosing failures, “(. . .) existing log messages
contain too little information. Despite their widespread use in failure diagnosis, it is still rare that log messages
are systematically designed to support this function.”

_is mismatch can be observed in the many issues raised by users on Apache’s issue trackers: to request

44

CHAPTER 5. MONITORING AND TROUBLESHOOTING DISTRIBUTED SYSTEMS 45

new metrics [38, 42, 47–49, 65, 75]; to request changes to aggregation methods [50, 64, 67]; and to request new
breakdowns of existing metrics [37, 45, 46, 57–60, 63, 64, 71, 73, 77, 80, 89]. Many issues remain unresolved
due to developer pushback [58, 63, 73, 75, 80] or inertia [45, 47, 48, 65, 67, 71, 77, 89]. Even simple cases of
misconûguration are frequently unreported by error logs [277].

5.1.2 Costs of Monitoring

Eventually, applications may be updated to record more information, but this has eòects both in performance
and information overload. Users must pay the performance overheads of any systems that are enabled by
default, regardless of their utility. For example, HBase SchemaMetrics were introduced to aid developers, but
all users of HBase pay the 10% performance overhead they incur [64]. _e HBase user guide [68] carries the
following warning for users wishing to integrate with Ganglia [185]: “By default, HBase emits a large number
of metrics per region server. Ganglia may have diõculty processing all these metrics. Consider increasing the
capacity of the Ganglia server or reducing the number of metrics emitted by HBase.”

_e glut of recorded information presents a “needle-in-a-haystack” problem to users [222]; while a system
may expose information relevant to a problem, e.g. in a log, extracting this information requires system
familiarity developed over a long period of time. For example, Mesos cluster state is exposed via a single JSON
endpoint and can become massive, even if a client only wants information for a subset of the state [90].

5.1.3 Dynamic Instrumentation

Dynamic instrumentation frameworks such as Fay [131], DTrace [105], and SystemTap [220] address these
limitations, by allowing almost arbitrary instrumentation to be installed dynamically at runtime, and have
proven extremely useful in the diagnosis of complex and subtle system problems [104]. Because of their
side-eòect-free nature, however, they are limited in the extent to which probes may share information with
each other. In Fay, only probes in the same address space can share information, while in DTrace the scope is
limited to a single operating system instance. _is limitation is fundamental, as neither Fay nor DTrace can
aòect the monitored system to propagate the monitoring context across these boundaries.

5.2 Cross-Component Monitoring

5.2.1 Crossing Boundaries

In multi-tenant, multi-application stacks, the root cause and symptoms of an issue may appear in diòerent
processes, machines, and application tiers, and may be visible to diòerent users. A user of one application may
need to relate information from some other dependent application in order to diagnose problems that span
multiple systems. For example, HBASE-4145 [59] outlines how MapReduce lacks the ability to access HBase
metrics on a per-task basis, and that the framework only returns aggregates across all tasks. MESOS-1949 [89]
outlines how the executors for a task do not propagate failure information, so diagnosis can be diõcult if an

CHAPTER 5. MONITORING AND TROUBLESHOOTING DISTRIBUTED SYSTEMS 46

executor fails. In discussion the developers note: “_e actually interesting / useful information is hidden in one
of four or ûve diòerent places, potentially spread across as many diòerent machines._is leads to unpleasant and
repetitive searching through logs looking for a clue to what went wrong. (. . .) _ere’s a lot of information that is
hidden in log ûles and is very hard to correlate.”

5.2.2 Causal Tracing

Prior research, described in Chapter 2, has presented mechanisms to observe or infer the relationship between
events and studies of logging practices conclude that end-to-end tracing would be helpful in navigating the
logging issues they outline [199, 222]. A variety of these mechanisms have also materialized in production
systems: for example, Google’s Dapper [244], Apache’s HTrace [85], Accumulo’s Cloudtrace [12], and Twitter’s
Zipkin [259]. _ese approaches can obtain richer information about particular executions than component-
centric logs or metrics alone, and have found uses in troubleshooting, debugging, performance analysis and
anomaly detection, for example. However, most of these systems record or reconstruct traces of execution for
oøine analysis, and thus share the problems outlined in §5.1 concerning what to record.

5.3 Other Tools and Techniques

5.3.1 Beyond Metrics and Logs

A variety of tools have been proposed in the research literature to complement or extend application logs
and performance counters. _ese include the use of machine learning [163, 194, 200, 275] and static analy-
sis [283] to extract better information from logs; automatic enrichment of existing log statements to ease
troubleshooting [278]; end-to-end tracing systems to capture the happened-before relationship between
events [135, 244]; state-monitoring systems to track system-level resources and indicate the health of a clus-
ter [185]; and aggregation systems to collect and summarize application-level monitoring data [169,262]. Wang
et al. provide a comprehensive overview of datacenter troubleshooting tools in [268]. _ese tools suòer from
the aforementioned challenges of pre-deûned information.

5.3.2 Troubleshooting and Root-Cause Diagnosis

Several oøine techniques have been proposed to infer execution models from logs [101, 113, 184, 283] and
diagnose performance problems [93, 167, 194, 231]. End-to-end tracing frameworks exist both in academia [97,
106, 135,227,257] and in industry [85, 128,244,245,259] and have been used for a variety of purposes, including
diagnosing anomalous requests whose structure or timing deviate from the norm [3, 97, 110, 111, 212, 231];
diagnosing steady-state problems that manifest across many requests [135, 227, 231, 244, 257]; identifying slow
components and functions [106, 184, 244]; and modelling workloads and resource usage [96, 97, 184, 257].
Recent work has extended these techniques to continuous proûling and analysis [146, 188–190, 284].

CHAPTER 5. MONITORING AND TROUBLESHOOTING DISTRIBUTED SYSTEMS 47

VScope [267] introduces a novelmechanism for honing in on root causes on a running system,but at the last
hop defers to oøine user analysis of debug-level logs, requiring the user to trawl through 500MB of logs which
incur a 99.1% performance overhead to generate. While causal tracing enables coherent sampling [229, 244]
which controls overheads, sampling risks missing important information about rare but interesting events.

Chapter 6
Pivot Tracing: A Cross-Cutting Tool for Dynamic
Causal Monitoring

_is chapter describes Pivot Tracing, a cross-cutting tool for monitoring distributed systems. Pivot Tracing
addresses the challenges outlined in Chapter 5 by combining dynamic instrumentation with a novel relational
operator: the happened-before join. Using the happened-before join, users of Pivot Tracing can express
monitoring queries that relate information frommultiple points on the cross-cutting execution path of requests.
Pivot Tracing gives users, at runtime, the ability to deûne arbitrary metrics at one point of the system, while
being able to select, ûlter, and group by events meaningful at other parts of the system, even when crossing
component or machine boundaries. In this chapter we describe the design, implementation, and evaluation of
Pivot Tracing.

6.1 Overview

In Chapter 5 we outlined the challenges associated with monitoring and troubleshooting distributed systems.
Despite the complex, varied, and unpredictable nature of these problems, most monitoring and diagnosis tools
commonly used today – logs, counters, and metrics – have at least two fundamental limitations: what gets
recorded is deûneda priori, at development ordeployment time,and the information is captured in a component-
or machine-centric way, making it extremely diõcult to correlate events that cross these boundaries.

Pivot Tracing addresses these challenges and combines dynamic instrumentation with causal tracing
techniques [106, 135, 244] to fundamentally increase the power and applicability of either technique. Like
Fay [131], Pivot Tracing models the monitoring and tracing of a system as high-level queries over a dynamic
dataset of distributed events. Pivot Tracing exposes an API for specifying such queries and eõciently evaluates
them across the distributed system, returning a streaming dataset of results.

_e key contribution of Pivot Tracing is the “happened-before join” operator, →⋈, that enables queries to be
contextualized by Lamport’s happened-before relation,� [171]. Using →⋈ , queries can group and ûlter events
based on properties of any events that causally precede them in an execution.

48

CHAPTER 6. PIVOT TRACING 49

Time [min]

0

50

100

150

200

0 5 10 15

H
D

F
S

 T
h

ro
ug

h
pu

t [
M

B
/s

] Host A Host E
Host B Host F
Host C Host G
Host D Host H

(a) HDFS DataNode
throughput per machine from

instrumented
DataNodeMetrics.

Time [min]
H

D
F

S
 T

h
ro

ug
h

pu
t [

M
B

/s
]

0

50

100

150

200

0 5 10 15

MRSORT100G HSCAN
MRSORT10G HGET

FSREAD4M
FSREAD64M

(b) HDFS DataNode
throughput grouped by

high-level client application.

DisknWritenThroughputDisknReadnThroughput

HostnA
HostnB
HostnC
HostnD
HostnE
HostnF
HostnG
HostnH

Σcluster

HDFS Map Shuffle Reduce Σmachine

(c) Pivot table showing disk read and write sparklines for
MRSORT10G. Rows group by host machine; columns group
by source process. Bottom row and right column show
totals, and bottom-right corner shows grand total.

Figure 6.1: In this example, Pivot Tracing exposes a low-level HDFS metric grouped by client identiûers from
other applications. Pivot Tracing can expose arbitrary metrics at one point of the system, while being able to
select, ûlter, and group by events meaningful at other parts of the system, even when crossing component or
machine boundaries.

To track the happened-before relation between events, Pivot Tracing borrows from causal tracing tech-
niques, and utilizes a generic metadata propagation mechanism for passing partial query execution state along
the cross-cutting execution path of each request. _is enables inline evaluation of joins along the cross-cutting
dimension, while requests execute, drastically mitigating query overhead and avoiding the scalability issues of
global evaluation.

Pivot Tracing takes inspiration from data cubes in the online analytical processing domain [143], and
derives its name from spreadsheets’ pivot tables and pivot charts [117], which can dynamically select values,
functions, and grouping dimensions from an underlying dataset. Pivot Tracing is intended for use in both
manual and automated diagnosis tasks, and to support both one-oò queries for interactive debugging and
standing queries for long-running system monitoring. It can serve as the foundation for the development of
further diagnosis tools. Pivot Tracing queries impose truly no overhead when disabled and utilize dynamic
instrumentation for runtime installation. We show that Pivot Tracing can eòectively identify a diverse range of
root causes such as so�ware bugs, misconûguration, and limping hardware. We show that Pivot Tracing is
dynamic, extensible, and enables cross-tier analysis between inter-operating applications, with low execution
overhead.

6.1.1 Pivot Tracing in Action

In this section we motivate Pivot Tracing with a monitoring task on the Hadoop stack. _e goal here is to
demonstrate some of what Pivot Tracing can do; details of its design, query language, and implementation are
introduced in §6.2, §6.3, and §6.4, respectively.

Suppose we want to apportion the disk bandwidth usage across a cluster of eight machines simultaneously
running HBase, Hadoop MapReduce, and direct HDFS clients. §6.5 has an overview of these components, but

CHAPTER 6. PIVOT TRACING 50

for now it suõces to know that HBase, a database application, accesses data through HDFS, a distributed ûle
system. MapReduce, in addition to accessing data through HDFS, also accesses the disk directly to perform
external sorts and to shuøe data between tasks. We run the following client applications:

FSREAD4M Random closed-loop 4MB HDFS reads
FSREAD64M Random closed-loop 64MB HDFS reads
HGET 10kB row lookups in a large HBase table
HSCAN 4MB table scans of a large HBase table
MRSORT10G MapReduce sort job on 10GB of input data
MRSORT100G MapReduce sort job on 100GB of input data

By default, the systems expose a fewmetrics for disk consumption, such as disk read throughput aggregated
by each HDFS DataNode. To reproduce this metric with Pivot Tracing, we deûne a tracepoint for the DataN-

odeMetrics class, in HDFS, to intercept the incrBytesRead(int delta) method. A tracepoint is a location in
the application source code where instrumentation can run, cf. §6.2. We then run the following query, in Pivot
Tracing’s LINQ-like query language [186]:

Q1: From incr In DataNodeMetrics.incrBytesRead
GroupBy incr.host
Select incr.host, SUM(incr.delta)

_is query causes each machine to aggregate the delta argument each time incrBytesRead is invoked,
grouping by the host name. Each machine reports its local aggregate every second, from which we produce
the time series in Figure 6.1a.

_ings get more interesting, though, if we wish to measure the HDFS usage of each of our client ap-
plications. HDFS only has visibility of its direct clients, and thus an aggregate view of all HBase and all
MapReduce clients. At best, applications must estimate throughput client side. With Pivot Tracing, we deûne
tracepoints for the client protocols of HDFS (DataTransferProtocol), HBase (ClientService), and MapRe-
duce (ApplicationClientProtocol), and use the name of the client process as the group by key for the query.
Figure 6.1b shows the global HDFS read throughput of each client application, produced by the following
query:

Q2: From incr In DataNodeMetrics.incrBytesRead
Join cl In First(ClientProtocols) On cl -> incr
GroupBy cl.procName
Select cl.procName, SUM(incr.delta)

_e -> symbol indicates a happened-before join. Pivot Tracing’s implementation will record the process name
the ûrst time the request passes through any client protocol method and propagate it along the execution.
_en, whenever the execution reaches incrBytesRead on a DataNode, Pivot Tracing will emit the bytes read

CHAPTER 6. PIVOT TRACING 51

or written, grouped by the recorded name. _is query exposes information about client disk throughput that
cannot currently be exposed by HDFS.

Figure 6.1c demonstrates the ability for Pivot Tracing to group metrics along arbitrary dimensions. It
is generated by two queries similar to Q2 which instrument Java’s FileInputStream and FileOutputStream,
still joining with the client process name. We show the per-machine, per-application disk read and write
throughput of MRSORT10G from the same experiment. _is ûgure resembles a pivot table, where summing
across rows yields per-machine totals, summing across columns yields per-system totals, and the bottom right
corner shows the global totals. In this example, the client application presents a further dimension along which
we could present statistics.

Query Q1 above is processed locally, while query Q2 requires the propagation of information from client
processes to the data access points, with the cross-cutting execution. Pivot Tracing’s query optimizer installs
dynamic instrumentation where needed, and determines when such propagation must occur to process a
query. _e out-of-the box metrics provided by HDFS, HBase, and MapReduce cannot provide analyses like
those presented here. Simple correlations – such as determining which HDFS datanodes were read from by
a high-level client application – are not typically possible. Metrics are ad hoc between systems; HDFS sums
IO bytes, while HBase exposes operations per second. _ere is very limited support for cross-tier analysis:
MapReduce simply counts global HDFS input and output bytes; HBase does not explicitly relate HDFS metrics
to HBase operations.

6.1.2 Design Summary

Figure 6.2 presents a high-level overview of how Pivot Tracing enables queries such as Q2. We refer to the
numbers in the ûgure (e.g.,À) in our description. Full support for Pivot Tracing in a system requires two basic
mechanisms: dynamic code injection and causal metadata propagation. While it is possible to have some of
the beneûts of Pivot Tracing without one of these (§6.6), for now we assume both are available.

Queries in Pivot Tracing refer to variables exposed by one or more tracepoints – places in the system
where Pivot Tracing can insert instrumentation. Tracepoint deûnitions are not part of the system code, but are
rather instructions on where and how to change the system to obtain the exported identiûers. Tracepoints
in Pivot Tracing are similar to pointcuts from aspect-oriented programming [165], and can refer to arbitrary
interface/method signature combinations. Tracepoints are deûned by someone with knowledge of the system,
maybe a developer or expert operator, and deûne the vocabulary for queries (À). _ey can be deûned and
installed at any point in time, and can be shared and disseminated.

Pivot Tracing models system events as tuples of a streaming, distributed dataset. Users submit relational
queries over this dataset (Á), which get compiled to an intermediate representation called advice (Â). Advice
uses a small instruction set to process queries, and maps directly to code that local Pivot Tracing agents install
dynamically at relevant tracepoints (Ã). Later, requests executing in the system invoke the installed advice
each time their execution reaches the tracepoint.

CHAPTER 6. PIVOT TRACING 52

Tracepoint Tracepoint w/ advice

Execution path Baggage propagation

PT Agent

PT Agent

Pivot Tracing
Frontend

Instrumented System

Query{

Message busAdvice Tuples

1

2

3

4
5

4 6

7

8

Figure 6.2: Pivot Tracing overview (§6.1.2)

Operation Description Example

From Use input tuples from a set of tracepoints From e In RPCs

Union (⋃) Union events from multiple tracepoints From e In DataRPCs, ControlRPCs

Selection (σ) Filter only tuples that match a predicate Where e.Size < 10

Rename (ρ) Create a ûeld using an expression Let SizeKB = e.Size / 1000

Projection (Π) Restrict tuples to a subset of ûelds Select e.User, e.Host

Aggregation (A) Aggregate tuples Select SUM(e.Cost)

GroupBy (G) Group tuples based on one or more ûelds GroupBy e.User

GroupBy Aggregation (GA) Aggregate tuples of a group Select e.User, SUM(e.Cost)

Happened-Before Join (→⋈)
Happened-before join tuples from another
query Join d In Disk On d->e

Happened-before join a subset of tuples Join d In MostRecent(Disk) On d->e

Table 6.1: Operations supported by the Pivot Tracing query language

We distinguish Pivot Tracing from prior work by supporting joins between events that occur within and
across process, machine, and application boundaries. _e eõcient implementation of the happened before
join requires advice in one tracepoint to send information along the execution path to advice in subsequent
tracepoints. _is is done through a new baggage abstraction, which uses context propagation (Ä). In query
Q2, for example, cl.procName is packed in the ûrst invocation of the ClientProtocols tracepoint, to be
accessed when processing the incrBytesRead tracepoint.

Advice in some tracepoints also emit tuples (Å), which get aggregated locally and then ûnally streamed to
the client over a message bus (Æ and Ç).

6.2 Design

We now detail the fundamental concepts and mechanisms behind Pivot Tracing. Pivot Tracing is a dynamic
monitoring and tracing framework for distributed systems. At a high level, it aims to enable �exible runtime
monitoring by correlating metrics and events from arbitrary points in the system. _e challenges outlined in

CHAPTER 6. PIVOT TRACING 53

§5.1 motivate the following high-level design goals:
1. Dynamically conûgure and install monitoring at runtime
2. Low system overhead to enable “always on” monitoring
3. Capture causality between events from multiple processes and applications

6.2.1 Tracepoints

Tracepoints provide the system-level entry point for Pivot Tracing queries. A tracepoint typically corresponds
to some event: a client sends a request; a low-level IO operation completes; an external RPC is invoked, etc..

A tracepoint identiûes one or more locations in the system code where Pivot Tracing can install and run
instrumentation. Tracepoints export named variables that can be accessed by instrumentation. Figure 6.5
shows the speciûcation of one of the tracepoints in Q2 from §6.1.1. Besides declared exports, all tracepoints
export a few variables by default: host, timestamp, process id, process name, and the tracepoint deûnition.

Tracepoints are only references to locations where Pivot Tracing can install instrumentation — they are
not baked into the system and they do not require a priori modiûcations. Only at runtime, when a user
submits a query, will Pivot Tracing compile and install monitoring code at tracepoints referenced by the query.
Subsequently, when requests running in the system reach a tracepoint, any instrumentation conûgured for
that tracepoint will be invoked, generating a tuple with its exported variables. _ese are then accessible to any
instrumentation code installed at the tracepoint.

6.2.2 Query Language

PivotTracing enables users to express high-level queries about the variables exported by one ormore tracepoints.
We abstract tracepoint invocations as streaming datasets of tuples; Pivot Tracing queries are therefore relational
queries across the tuples of several such datasets.

To express queries, Pivot Tracing provides a parser for LINQ-like text queries such as those outlined in
§6.1.1. Table 6.1 outlines the query operations supported by Pivot Tracing. Pivot Tracing supports several
typical operations including projection (Π), selection (σ), renaming (ρ), grouping (G), and aggregation (A).
Pivot Tracing aggregators include Count, Sum, Max, Min, and Average. Pivot Tracing also deûnes the temporal
ûlters MostRecent, MostRecentN, First, and FirstN, to take the 1 or N most or least recent events. Finally,
Pivot Tracing introduces the happened-before join query operator (→⋈).

6.2.3 Happened-before Joins

A key contribution of Pivot Tracing is the happened-before join query operator. Happened-before join enables
the tuples from two Pivot Tracing queries to be joined based on Lamport’s happened before relation,� [171].
For events a and b occurring anywhere in the system, we say that a happened before b and write a � b if
the occurrence of event a causally preceded the occurrence of event b and they occurred as part of the same

CHAPTER 6. PIVOT TRACING 54

Execution Graph
a1

c1

a3

c2

b1

a2

b2

Query Query Results

A a1 , a2 , a3

A→⋈B a1 � b2 , a2 � b2

B→⋈C b1 � c1 , b1 � c2 , b2 � c2

(A→⋈B)→⋈C a1 � b2 � c2 , a2 � b2 � c2

(a) A request that triggers tracepoints A,
B and C several times during its execu-
tion. Each invocation of a tracepoint pro-
duces a tuple, e.g. tracepoint A generates
a1 , a2 , a3 , etc..

(b) Queries and the corresponding results for the request. A query for a single
tracepoint (e.g. A) gives all tuples produced by that tracepoint. A happened-
before join between two tracepoints (e.g. A →⋈B) gives all pairs of tuples
satisfying that happened-before relationship.

Figure 6.3: An example request execution graph and the results of running queries over that request.

cross-cutting execution.1 If a and b are not part of the same execution, then a /� b; if the occurrence of a did
not lead to the occurrence of b, then a /� b (e.g., they occur in two parallel threads of execution that do not
communicate); and if a � b then b /� a.

In general, events occurring during a request’s execution will form a directed, acyclic graph (DAG) under
the happened-before relation. Figure 6.3 illustrates an example DAG. Events occurring concurrently in diòerent
threads, processes, or machines, do not satisfy the happened-before relation (e.g., a1 and b1). However, when
there is communication between concurrent components, that communication will establish the happened-
before relationship with later events (e.g., a1 � c1 and b1 � c1).

_e happened-before join operator enables queries about the relationships between events. For any two
queries Q1 and Q2, the happened-before join Q1

→⋈Q2 produces tuples t1t2 for all t1 ∈ Q1 and t2 ∈ Q2 such that
t1 � t2. _at is, Q1 produced t1 before Q2 produced tuple t2 in the execution of the same request. Figure 6.3
shows an example execution triggering tracepoints A, B, and C several times, and outlines the tuples that
would be produced for this execution by diòerent queries.

Query Q2 in §6.1.1 demonstrates the use of happened-before join. In the query, tuples generated by the disk
IO tracepoint DataNodeMetrics.incrBytesRead are joined to the ûrst tuple generated by the ClientProtocols

tracepoint.
Happened-before join substantially improves our ability to perform root cause analysis by giving us

visibility into the relationships between events in the system. _e happened-before relationship is fundamental
to prior approaches in root cause analysis, including end-to-end tracing. Pivot Tracing is designed to eõciently
support happened-before joins, but does not optimize more general joins such as equijoins (⋈).

1_is deûnition does not capture all possible causality, including when events in the processing of one request could in�uence another,
but could be extended if necessary.

CHAPTER 6. PIVOT TRACING 55

Operation Description
OBSERVE Construct a tuple from variables exported by a tracepoint
UNPACK Retrieve one or more tuples from prior advice
FILTER Evaluate a predicate on all tuples
PACK Make tuples available for use by later advice
EMIT Output a tuple for global aggregation

Table 6.2: Primitive operations supported by Pivot Tracing advice for generating and aggregating tuples as
deûned in §6.2.

A1: OBSERVE procName
PACK-FIRST procName

A2: OBSERVE delta
UNPACK procName
EMIT procName, SUM(delta)

ClientProtocols
Tracepoint

DataNodeMetrics
TracepointRequestVExecution

ClientVProcesses HDFSVDataNode

A1
OBSERVEV PACKV

UNPACKV OBSERVEV

A2 EMITV

(a) Advice generated for Q2 from §6.1.1. A1 is
dynamically installed at the ClientProtocols
tracepoint, and A2 at the DataNodeMetrics tra-
cepoint.

(b) When requests pass through ClientProtocols they invoke A1.
A1 observes and packs procName to be carried with the request. When
requests subsequently reach DataNodeMetrics,A2 unpacks procName,
observes delta, and emits (procName, SUM(delta))

Figure 6.4: Pivot Tracing evaluates query Q2 from §6.1.1 by compiling it into two advice speciûcations. Pivot
Tracing dynamically installs the advice at the tracepoints referenced in the query.

6.2.4 Advice

Pivot Tracing queries compile to an intermediate representation called advice. Advice speciûes the operations
to perform at each tracepoint used in a query, and eventually materializes as monitoring code installed at those
tracepoints (§6.4). Advice has several operations for manipulating tuples through the tracepoint-exported
variables, and evaluating →⋈ on tuples produced by other advice at prior tracepoints in the execution.

Table 6.2 outlines the advice API. OBSERVE creates a tuple from exported tracepoint variables. UNPACK

retrieves tuples generated by other advice at other tracepoints prior in the execution. Unpacked tuples can
be joined to the observed tuple, i.e., if to is observed and tu1 and tu2 are unpacked, then the resulting tuples
are totu1 and totu2. Tuples created by this advice can be discarded (FILTER), made available to advice at other
tracepoints later in the execution (PACK), or output for global aggregation (EMIT). Both PACK and EMIT can
group tuples based on matching ûelds, and perform simple aggregations such as SUM and COUNT. PACK also has
the following special cases: FIRST packs the ûrst tuple encountered and ignores subsequent tuples; RECENT
packs only the most recent tuple, overwriting existing tuples. FIRSTN and RECENTN generalize this to N tuples.
_e advice API is expressive but restricted enough to provide some safety guarantees. In particular, advice
code has no jumps or recursion, and is guaranteed to terminate.

By packing and unpacking tuples into the baggage, advice can join tuples based on the happened-before
relation: if we are interested in emitting tuples only when A happened before B, a query can pack tuples at A

CHAPTER 6. PIVOT TRACING 56

and unpack tuples at B. Since baggage is explicitly propagated along the execution path of a request, this query
directly evaluates the happened-before relation, as follows:

_eorem 1 Let e1 be any event, and let t be a tuple observed with that event, i.e. t = OBSERVE(e1). If
we PACK t at e1, then for all other events e2 we get the following:

t ∈ UNPACK(e2) ⇐⇒ e1 � e2

Proof. Suppose t ∈ UNPACK(e2). _en the baggage at e1 was propagated to e2. By deûnition, if the
baggage at e1 is propagated to e2 then e2 is part of the same cross-cutting execution. _erefore
e1 � e2.
Now suppose e1 � e2 and t ∉ UNPACK(e2). _en the baggage at e1 is not the same baggage as at e2.
By deûnition, if e2 is part of the same execution as e1 then the baggage at e1 is propagated to e2.
_erefore e2 is not part of the same execution so e1 /� e2.

Example Figure 6.4 outlines the advice generated for query Q2 from §6.1.1, and illustrates how the advice
and tracepoints interact with the execution of requests in the system. First, A1 observes and packs a single
valued tuple containing the process name. _en, when execution reaches the DataNodeMetrics tracepoint, A2
unpacks the process name, observes the value of delta, then emits a joined tuple. Figure 6.4 shows how this
advice and the tracepoints interact with the execution of requests in the system.

Compiling Queries to Advice To compile a query to advice, we instantiate one advice speciûcation for a
From clause and add an OBSERVE operation for the tracepoint variables used in the query. For each Join clause,
we add an UNPACK operation for the variables that originate from the joined query. We recursively generate
advice for the joined query, and append a PACK operation at the end of its advice for the variables that we
unpacked. Where directly translates to a FILTER operation. We add an EMIT operation for the output variables
of the query, restricted according to any Select clause. Aggregate, GroupBy, and GroupByAggregate are all
handled by EMIT and PACK. §6.3 outlines several query rewriting optimizations for implementing →⋈ .

Installing Advice at Tracepoints Pivot Tracing weaves advice into tracepoints by: 1) loading code that
implements the advice operations; 2) conûguring the tracepoint to execute that code and pass its exported
variables; 3) activating the necessary tracepoint at all locations in the system. Figure 6.5 outlines this process
of weaving advice for Q2.

6.3 Pivot Tracing Optimizations

In this section we outline several optimizations that Pivot Tracing performs in order to support eõcient
evaluation of happened-before joins.

CHAPTER 6. PIVOT TRACING 57

Step Example

1. Declare Tracepoints
(References to locations
in code)

Tracepoint
Class: DataNodeMetrics
Method: incrBytesRead
Exports: delta

Refers to class DataNodeMetrics {
void incrBytesRead(int delta) {

. . .
}

}

2. Write Query
(Using declared
tracepoints)

Q2: From incr In DataNodeMetrics.incrBytesRead
Join cl In First(ClientProtocols) On cl -> incr
GroupBy cl.procName
Select cl.procName, SUM(incr.delta)

3. Generate Advice
(To be installed in the
system)

A1: OBSERVE procName
PACK-FIRST procName

A2: OBSERVE delta
UNPACK procName
EMIT procName, SUM(delta)

4. Weave Advice
(Dynamically modify
source code)

class DataNodeMetrics {
void incrBytesRead(int delta) {

. . .
}

}

Weave
class DataNodeMetrics {

void incrBytesRead(int delta) {
PivotTracing.Advise("A2", delta);
. . .

}
}

Invokes
class GeneratedAdviceImpl {

void Advise(Object . . . observed) {
. . . // Generated advice code

}
}

Figure 6.5: Steps to install a Pivot Tracing query. Tracepoints are only references to locations in code, and
require no system-level modiûcations until queries are installed. Step 4 illustrates how we weave advice for Q2
at the DataNodeMetrics tracepoint (Q2 also weaves advice at ClientProtocols, not shown). Variables exported
by the tracepoint (i.e., delta) are passed when the advice is invoked.

CHAPTER 6. PIVOT TRACING 58

Á
À

Ã Ä Â

Ã
Ä Ã

Ä
Å

Å

Æ

Processes
Request execution path
Baggage propagationÀ

Á Branch: Duplicate Baggage
Â Join: Merge Baggage
Ã Network: Serialize Baggage
Ä Network: Deserialize Baggage

PACK tuples into Baggage
Å

UNPACK tuples from Baggage
Æ

Figure 6.6: To implement the happened-before join, systems propagate baggage (À) along the execution path
of requests. Baggage is duplicated when requests split into concurrent branches (Á); merged when concurrent
branches join (Â); and included in all inter-process communication (Ã Ä). Pivot Tracing queries PACK tuples
into the baggage at some tracepoints (Å) and UNPACK tuples at other tracepoints (Æ).

6.3.1 Baggage

_e naïve evaluation strategy for happened-before join is that of an equijoin (⋈) or θ-join (⋈ θ [223]),
requiring tuples to be aggregated globally across the cluster prior to evaluating the join. Temporal joins as
implemented by Magpie [96], for example, are expensive because they implement this evaluation strategy
(cf. §6.6). Figure 6.7a illustrates this approach for happened-before join.

Instead of a naïve global join, Pivot Tracing enables inexpensive happened-before joins by providing the
baggage abstraction. Baggage is a per-request container for tuples that is propagated alongside a request as it
traverses thread, application and machine boundaries. Figure 6.6 illustrates baggage propagation for a request.
Each branch of the request’s execution maintains its own baggage instance. To propagate baggage, instances are
copied when executions split into concurrent branches; merged when concurrent branches join; and included
with all of the request’s inter-process and inter-thread communication. Pivot Tracing advice uses the PACK and
UNPACK operations to store and retrieve tuples from the current request’s baggage.

Baggage explicitly follows the execution path of each request, and thereby observes all happened-before
relationships of a request while it is executing. Tuples that are packed during a request’s execution will follow
the request from that point onward. Consequently, the presence of the tuples in baggage later during the
request’s execution imply a happened-before relationship.

Baggage is a generalization of the metadata propagation used by end-to-end tracing frameworks described
in Chapter 2. Using baggage, Pivot Tracing eõciently evaluates happened-before joins in situ during the
execution of a request. Figure 6.7b shows the optimized query evaluation strategy to evaluate joins in-place
during request execution.

CHAPTER 6. PIVOT TRACING 59

⋃(A) ⋃(B)
⋃(A →⋈ B)

Requests Tracepoint
InvocationsProcesses

⋃(A →⋈ B)

�
��
���

�

Emitted Tuples Baggage Propagation

(a) Unoptimized query with all tuples collected centrally
across the cluster prior to evaluation of →⋈ .

(b) Optimized query that propagates tuples in baggage,
enabling inline evaluation of →⋈ .

Figure 6.7: Illustration comparing the optimized and unoptimized evaluation of A →⋈ B . _e optimized query
evaluates →⋈ inline by propagating tuples in baggage, avoiding a costly global aggregation.

6.3.2 Local Tuple Aggregation

One metric to assess the cost of a Pivot Tracing query is the number of tuples emitted for global aggregation.
Although baggage carries partial query state at a per-request granularity, once tuples have been emitted for
global aggregation, Pivot Tracing collects and aggregates these tuples across all requests to produce the ûnal
query results. To reduce this cost, Pivot Tracing performs intermediate aggregation for queries containing
Aggregate or GroupByAggregate. Pivot Tracing aggregates the emitted tuples within each process and reports
results globally at a regular interval, e.g., once per second. Process-level aggregation substantially reduces
traõc for emitted tuples; Q2 from §6.1.1 is reduced from approximately 600 tuples per second to 6 tuples per
second from each DataNode.

6.3.3 Optimizing Happened-Before Joins

A second cost metric for Pivot Tracing queries is the number of tuples packed during a request’s execution and
carried within the request’s baggage. Pivot Tracing rewrites queries to minimize the number of tuples packed.
Pivot Tracing pushes projection, selection, and aggregation terms as close as possible to source tracepoints. In
Fay [131] the authors outlined query optimizations for merging streams of tuples, enabled because projection,
selection, and aggregation are distributive. _ese optimizations also apply to Pivot Tracing and reduce the
number of tuples emitted for global aggregation. To reduce the number of tuples transported in the baggage,
Pivot Tracing adds further optimizations for happened-before joins, outlined in Table 6.3.

CHAPTER 6. PIVOT TRACING 60

Query Optimized Query

Πp,q(P →⋈ Q) Πp(P) →⋈ Πq(Q)
σp(P →⋈ Q) σp(P) →⋈ Q
σq(P →⋈ Q) P →⋈ σq(Q)
Ap(P →⋈ Q) Combinep(Ap(P) →⋈ Q)

Query Optimized Query

GAp(P →⋈ Q) GpCombinep(GAp(P) →⋈ Q)
GAq(P →⋈ Q) GqCombinep(P →⋈ GAq(Q))
GpAq(P →⋈ Q) GpCombineq(Πp(P) →⋈ Aq(Q))
GqAp(P →⋈ Q) GqCombinep(Ap(P) →⋈ Πq(Q))

Table 6.3: Query rewrite rules for happened-before join between two queries P and Q. Optimizations push
operators as close as possible to source tuples, thereby reducing the tuples that must be propagated in baggage
from P to Q. Combine refers to an aggregator’s combiner function (e.g., for Count, the combiner is Sum). See
Table 6.1 for descriptions of query operators.

6.3.4 Cost of Baggage Propagation

Pivot Tracing does not inherently bound the number of packed tuples and potentially accumulates a new tuple
for every tracepoint invocation. However, we liken this to database queries that inherently risk a full table
scan – our optimizations mean that in practice, this is an unlikely event. Several of Pivot Tracing’s aggregation
operators explicitly restrict the number of propagated tuples and in our experience, queries only end up
propagating aggregations, most-recent, or ûrst tuples.

In cases where too many tuples are packed in the baggage, Pivot Tracing could revert to an alternative
query plan, where all tuples are emitted instead of packed, and the baggage size is kept constant by storing only
enough information to reconstruct the causality, a laX-Trace [135], Stardust [257], or Dapper [244]. To estimate
the overhead of queries, Pivot Tracing can execute a modiûed version of the query to count tuples rather than
aggregate them explicitly. _is would provide live analysis similar to “explain” queries in the database domain.

6.4 Implementation

We have implemented a Pivot Tracing prototype in Java and applied Pivot Tracing to several open-source
systems from the Hadoop ecosystem. Section §6.5 outlines our instrumentation of these systems. In this
section, we describe the implementation of our prototype.

We opted to implement and evaluate Pivot Tracing in Java in order to make use of several existing open-
source distributed systems written in this language. However, the components of Pivot Tracing generalize and
are not restricted to Java – a query could span multiple systems written in diòerent programming languages.

6.4.1 Pivot Tracing Agent

A Pivot Tracing agent thread runs in every Pivot Tracing-enabled process and awaits instruction via central
pub/sub server to weave advice to tracepoints. Tuples emitted by advice are accumulated by the local Pivot
Tracing agent, which performs partial aggregation of tuples according to their source query. Agents publish
partial query results at a conûgurable interval – by default, one second.

CHAPTER 6. PIVOT TRACING 61

Method Description
pack(q, t...) Pack tuples into the baggage for a query
unpack(q) Retrieve all tuples for a query
serialize() Serialize the baggage to bytes
deserialize(b) Set the baggage by deserializing from bytes
split() Split the baggage for a branching execution
join(b1, b2) Merge baggage from two joining executions

Table 6.4: Baggage API for Pivot Tracing Java implementation. PACK operations store tuples in the baggage.
API methods are static and only allow interaction with the current execution’s baggage.

6.4.2 Dynamic Instrumentation

Our prototype weaves advice at runtime, providing dynamic instrumentation similar to that of DTrace [105]
and Fay [131]. Java version 1.5 onwards supports dynamicmethod body rewriting via the java.lang.instrument

package. _e Pivot Tracing agent programmatically rewrites and reloads class bytecode fromwithin the process
using Javassist [112].

We can deûne new tracepoints at runtime and dynamically weave and unweave advice. To weave advice,
we rewrite method bodies to add advice invocations at the locations deûned by the tracepoint (cf. Figure 6.5).
Our prototype supports tracepoints at the entry, exit, or exceptional return of any method. Tracepoints can
also be inserted at speciûc line numbers.

To deûne a tracepoint, users specify a class name, method name, method signature and weave location.
Pivot Tracing also supports pattern matching, for example, all methods of an interface on a class. _is feature
is modeled a�er pointcuts from AspectJ [164]. Pivot Tracing supports instrumenting privileged classes (e.g.,
FileInputStream in §6.1.1) by providing an optional agent that can be placed on Java’s boot classpath.

Pivot Tracing only makes system modiûcations when advice is woven into a tracepoint, so inactive
tracepoints incur no overhead. Executions that do not trigger the tracepoint are unaòected by Pivot Tracing.
Pivot Tracing has a zero-probe eòect: methods are unmodiûed by default, so tracepoints impose truly zero
overhead until advice is woven into them.

6.4.3 Baggage

We provide an implementation of Baggage that stores per-request instances in thread-local variables. At the
beginning of a request, we instantiate empty baggage in the thread-local variable; at the end of the request, we
clear the baggage from the thread-local variable. _e baggage API (Table 6.4) can get or set tuples for a query
and at any point in time baggage can be retrieved for propagation to another thread or serialization onto the
network. To support multiple queries simultaneously, queries are assigned unique IDs and tuples are packed
and unpacked based on this ID.

Baggage is lazily serialized and deserialized using protocol buòers [263]. _is minimizes the overhead of
propagating baggage through applications that do not actively participate in a query, since baggage is only
deserialized when an application attempts to pack or unpack tuples. Serialization costs are only incurred for

CHAPTER 6. PIVOT TRACING 62

pack() split() join(A, B)

={} ={ } A={ }

B={ }

={ }

(a) One tuple () is packed prior to the execution branching. When the execution splits, the tuple exists in both
A and B. When the execution joins, the tuple must only be retained once, because it only captures one

happened-before relationship.

pack()

pack()

split() join(A, B)

={} A={}

B={}

A={ }

B={ }

={ , }

(b) Baggage is empty when the execution branches. Both branches of execution encounter distinct events that pack
a tuple; however, the tuples happen to have the same value (both). When the execution joins, the two identical
tuples must both be retained, because they capture diòerent happened-before relationships.

Figure 6.8: An execution that branches then joins. Baggage is split into A and B, then later joined. In both
examples, A and B contain the same tuples; however, the merge result is diòerent in each case, because
the tuples represent diòerent happened-before relationships. Baggage must be consistently joined in order to
correctly re�ect the happened-before relationship represented by the tuples (cf. §6.4.5).

modiûed baggage at network or application boundaries.
Pivot Tracing relies on developers to implement Baggage propagation when a request crosses thread,

process, or asynchronous execution boundaries. In our experience (§6.5) this entails adding a baggage ûeld to
existing application-level request contexts and RPC headers.

6.4.4 Materializing Advice

Tracepoints with woven advice invoke the PivotTracing.Advise method (cf. Figure 6.5), passing tracepoint
variables as arguments. Tuples are implemented as Object arrays and there is a straightforward translation
from advice to implementation: OBSERVE constructs a tuple from the advice arguments; UNPACK and PACK
interact with the Baggage API; FILTER discards tuples that do not match a predicate; and EMIT forwards tuples
to the process-local aggregator.

6.4.5 Baggage Consistency

In order to preserve the happened-before relation correctly within a request, Pivot Tracing must handle
executions that branch and rejoin, as illustrated in Figure 6.6. Each branch of the request’s execution maintains
its own baggage instance. To propagate baggage, instances are copied when executions split into concurrent

CHAPTER 6. PIVOT TRACING 63

branches; merged when concurrent branches join; and included with all of the request’s inter-process and
inter-thread communication. Tuples packed by one execution branch are not visible to any other branch until
the branches rejoin or communicate.

In executions that arbitrarily branch and join, we must be careful not to inadvertently duplicate tuples
when merging baggage instances from concurrent execution branches. It is possible for both baggage instances
to contain the same tuple derived from the same source event, as illustrated in Figure 6.8a. In this case our
merge function must not naïvely duplicate the tuple – we must ensure that the output baggage only contains
the tuple once, to correctly re�ect that there is only one happened-before relationship. On the other hand, it
is also possible for each execution branch to independently pack tuples with the same values, as illustrated
in Figure 6.8b. In this case, we expect the merged baggage to contain both tuples, because they represent
independent events and we must preserve both happened-before relationships.

To correctly preserve happened-before relationships for executions that arbitrarily branch and join, we
implement baggage as a set: when a request branches, the baggage tuples are simply duplicated for each branch;
when two or more branches join, we perform a set union on the tuples present in each baggage instance. To
disambiguate between the two cases illustrated in Figure 6.8, we append a unique identiûer to each tuple when
it is initially packed. Consequently, when merging two baggage instances, set union will not duplicate tuples if
they are the same tuple derived from the same source event; conversely, if two distinct events produced tuples
with the same value, they will be diòerentiated by diòerent IDs.

We extend this concept further to handle the query optimization rules described in §6.3.3, which push
projection, selection, and aggregation terms as close as possible to source tuples. For some queries, these
optimizations lead to advice that directly aggregates tuples in baggage, for example, by summing values
immediately as tuples are packed, and propagating only the sum in baggage. However, for the same reason
as illustrated in Figure 6.8, it is insuõcient to only propagate a running total in baggage, as it can lead to
double counting when merging baggage instances. Instead, we require some additional causality information
to determine how to merge two sums.

To handle this, we extend the previously described tuple ID scheme. Internal to a baggage instance,
we maintain one or more bags, each of which has a unique bag ID and sequence number. We store tuples,
aggregations, etc. within each bag naïvely without any additional embellishments. Each branch of execution
considers one of the bags to be the ‘active’ bag, and it packs and aggregates tuples into only that bag. A�er
an execution branches, one of the branches continues using the previous active bag and increments the bag’s
sequence number; the other branch lazily instantiates a new bag the next time it needs to pack tuples. When
multiple branches join, the bag with the highest sequence number for each bag ID is retained.

Under this scheme a baggage instance resembles a version vector [218] with a variable number of compo-
nents, for which bags correspond to components. In the original version of Pivot Tracing, we generated bag
IDs using interval tree clocks [5], which provided a mechanism for splitting IDs when executions branch, and
recombining IDs when branches rejoin. _is scheme guaranteed unique bag IDs, but required maintaining

CHAPTER 6. PIVOT TRACING 64

HDFS

HBase

YARN

MapReduce

Clients

Region
Server

Client
Application

Client
Application

Resource
Manager

Node
Manager

Data
Node

Name
Node

Master TaskApp
Master

Figure 6.9: Interactions between systems. Each system comprises several processes on potentially many ma-
chines. Typical deployments o�en co-locate processes from several applications, e.g. DataNode, NodeManager,
Task and RegionServer processes.

interval tree IDs even if nothing was propagated in the baggage. In our most recent Pivot Tracing implementa-
tion we have switched to random bag IDs, to eliminate the overhead of maintaining interval tree IDs. However,
this now introduces a small chance of ID collisions, which can occur when two branches of the same request
generate the same random ID concurrently. Our evaluation in §6.5 uses Pivot Tracing with the original interval
tree clock scheme.

6.5 Evaluation

In this section we evaluate Pivot Tracing in the context of the Hadoop stack. We have instrumented four open-
source systems – HDFS, HBase, Hadoop MapReduce, and YARN – that are widely used in production today.
We present several case studies where we used Pivot Tracing to successfully diagnose root causes, including
real-world issues we encountered in our cluster and experiments presented in prior work [172, 267]. Our
evaluation shows that Pivot Tracing addresses the challenges in §5.1 when applied to these stack components.
In particular, we show that Pivot Tracing:

• is dynamic and extensible to new kinds of analysis (§6.5.2)
• is scalable and has low developer and execution overhead (§6.5.3)
• enables cross-tier analysis between any inter-operating applications (§6.1.1, §6.5.2)
• captures event causality to successfully diagnose root causes (§6.5.1, §6.5.2)
• enables insightful analysis with even a very small number of tracepoints (§6.5.1)

Hadoop Overview We ûrst give a high-level overview of Hadoop, before describing the necessary modiûca-
tions to enable Pivot Tracing. Figure 6.9 shows the relevant components of the Hadoop stack.

HDFS [242] is a distributed ûle system that consists of several DataNodes that store replicated ûle blocks
and a NameNode that manages the ûlesystem metadata.

HBase [40] is a non-relational database modeled a�er Google’s Bigtable [109] that runs on top of HDFS
and comprises a Master and several RegionServer processes.

Hadoop MapReduce is an implementation of the MapReduce programming model [121] for large-scale
data processing, that uses YARN containers to run map and reduce tasks. Each job runs an ApplicationMaster

CHAPTER 6. PIVOT TRACING 65

and several MapTask and ReduceTask containers.
YARN [264] is a container manager to run user-provided processes across the cluster. NodeManager

processes run on each machine to manage local containers, and a centralized ResourceManager manages the
overall cluster state and requests from users.

Hadoop Instrumentation In order to support Pivot Tracing in these systems, we made one-time modiû-
cations to propagate baggage along the execution path of requests. As described in §6.4 our prototype uses
a thread-local variable to store baggage during execution, so the only required system modiûcations are
to set and unset baggage at execution boundaries. To propagate baggage across remote procedure calls, we
manually extended the protocol deûnitions of the systems. To propagate baggage across execution boundaries
within individual processes we implemented AspectJ [164] instrumentation to automatically modify common
interfaces (Thread, Runnable, Callable, and Queue). Each system only required between 50 and 200 lines
of manual code modiûcation. Once modiûed, these systems could support arbitrary Pivot Tracing queries
without further modiûcation. _e places in source code where we made these modiûcations mirror those
made to propagate Retro’s tenant ID (cf. §4.3.1).

Our queries used tracepoints from both client and server RPC protocol implementations of the HDFS
DataNode DataTransferProtocol and NameNode ClientProtocol. We also used tracepoints for piggyback-
ing oò existing metric collection mechanisms in each instrumented system, such as DataNodeMetrics and
RPCMetrics in HDFS and MetricsRegionServer in HBase.

6.5.1 Case Study: HDFS Replica Selection Bug

In this section we describe our discovery of a replica selection bug in HDFS that resulted in uneven distribution
of load to replicas. A�er identifying the bug, we found that it had been recently reported and subsequently
ûxed in an upcoming HDFS version [76].

HDFS provides ûle redundancy by decomposing ûles into blocks and replicating each block onto several
machines (typically 3). A client can read any replica of a block and does so by ûrst contacting the NameNode
to ûnd replica hosts (GetBlockLocations), then selecting the closest replica as follows: 1) read a local replica;
2) read a rack-local replica; 3) select a replica at random. We discovered a bug whereby rack-local replica
selection always follows a global static ordering due to two con�icting behaviors: the HDFS client does not
randomly select between replicas; and the HDFS NameNode does not randomize rack-local replicas returned
to the client. _e bug results in heavy load on the some hosts and near zero load on others.

In this scenario we ran 96 stress test clients on an HDFS cluster of 8 DataNodes and 1 NameNode. Each
machine has identical hardware speciûcations; 8 cores, 16GB RAM, and a 1Gbit network interface. On each
host, we ran a process called StressTest that used an HDFS client to perform closed-loop random 8kB reads
from a dataset of 10,000 128MB ûles with a replication factor of 3.

Our investigation of the bug began when we noticed that the stress test clients on hosts A and D had
consistently lower request throughput than clients on other hosts, shown in Figure 6.10a, despite identical

CHAPTER 6. PIVOT TRACING 66

0

20

40

60

80

0 1 2 3 4 5

C
lie

nt
8T

hr
ou

gh
pu

t8[
re

q/
s]

Time8[min]

Client8A
Client8B
Client8C
Client8D

Client8E
Client8F
Client8G
Client8H

(a) Clients on Hosts A and D experience
reduced workload throughput.

M
ill

io
ns

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5

Host4A Host4B
Host4C Host4D

N
et

w
or

k4
T

ra
ns

fe
r4

[M
B

/s
]

Time4[min]

(b) Network transfer is skewed across
machines.

Host G Host H
Host E Host F

Time [min]

D
at

aN
od

e
T

hr
ou

gh
pu

t [
op

s/
s] 200

150

100

50

0
0 1 2 3 4 5

(c) HDFS DataNode throughput is
skewed across machines.

Host A
Host B
Host C
Host D

Host G
Host H

Host E
Host F

Client A
Client B
Client C
Client D
Client E
Client F
Client G
Client H

H
os

t A

H
os

t B

H
os

t C
H

os
t D

H
os

t G
H

os
t H

H
os

t E

H
os

t F

H
os

t A

H
os

t B

H
os

t C
H

os
t D

H
os

t G
H

os
t H

H
os

t E

H
os

t F

H
os

t A

H
os

t B

H
os

t C
H

os
t D

H
os

t G
H

os
t H

H
os

t E

H
os

t F

(d) Observed HDFS ûle read
distribution (row) per client

(col).

(e) Frequency each client
(row) sees each

DataNode (col) as a
replica location.

(f) Frequency each client
(row) subsequently

selects each DataNode
(col).

(g) Observed frequency of
choosing one replica host (row)

over another (col)

Figure 6.10: Pivot Tracing query results leading to our discovery of HDFS-6268 [76]. Faulty replica selection
logic led clients to prioritize the replicas hosted by particular DataNodes (§6.5.1).

CHAPTER 6. PIVOT TRACING 67

machine speciûcations and setup. We ûrst checked machine level resource utilization on each host, which
indicated substantial variation in the network throughput (Figure 6.10b). We began our diagnosis with Pivot
Tracing by ûrst checking to see whether an imbalance in HDFS load was causing the variation in network
throughput. _e following query installs advice at a DataNode tracepoint that is invoked by each incoming
RPC:

Q3: From dnop In DataNode.DataTransferProtocol
GroupBy dnop.host
Select dnop.host, COUNT

Figure 6.10c plots the results of this query, showing the HDFS request throughput on each DataNode. It shows
that DataNodes on hosts A and D in particular have substantially higher request throughput than others –
host A has on average 150 ops/sec, while host H has only 25 ops/sec. _is behavior was unexpected given that
our stress test clients are supposedly reading ûles uniformly at random. Our next query installs advice in the
stress test clients and on the HDFS NameNode, to correlate each read request with the client that issued it:

Q4: From getloc In NameNode.GetBlockLocations
Join st In StressTestClient.DoNextOp On st -> getloc
GroupBy st.host, getloc.src
Select st.host, getloc.src, COUNT

_is query counts the number of times each client reads each ûle. In Figure 6.10d we plot the distribution of
counts over a 5 minute period for clients from each host. _e distributions all ût a normal distribution and
indicate that all of the clients are reading ûles uniformly at random. _e distribution of reads from clients on
A and D are skewed le�, consistent with their overall lower read throughput.

Having conûrmed the expected behavior of our stress test clients, we next checked to see whether the
skewed datanode throughput was simply a result of skewed block placement across datanodes:

Q5: From getloc In NameNode.GetBlockLocations
Join st In StressTestClient.DoNextOp On st -> getloc
GroupBy st.host, getloc.replicas
Select st.host, getloc.replicas, COUNT

_is query measures the frequency that each DataNode is hosting a replica for ûles being read. Figure 6.10e
shows that, for each client, replicas are near-uniformly distributed across DataNodes in the cluster. _ese results
indicate that clients have an equal opportunity to read replicas from each DataNode, yet, our measurements
in 6.10c clearly show that they do not. To gain more insight into this inconsistency, our next query relates the
results from 6.10e and 6.10c:

Q6: From DNop In DataNode.DataTransferProtocol
Join st In StressTestClient.DoNextOp On st -> DNop
GroupBy st.host, DNop.host
Select st.host, DNop.host, COUNT

CHAPTER 6. PIVOT TRACING 68

Time [min]R
eq

ue
st

 L
at

en
cy

 [s
ec

]

0
60

120
180
240
300

0 5 10 15

(a) HBase Request Latencies

0 60Latencyg[sec]

RSgQueue
RSgProcess DNgTransfer

DNgBlocked
DNgGC

Slow

Average

(b) Request latency decomposition.

Host A Host E
Host B Host F
Host C Host G
Host D Host H

Time [min]

N
et

w
or

k
T

x
[M

bi
t/s

] 800

600

400

200

0
0 5 10 15

(c) Per-Machine Network _roughput

Figure 6.11: (a) Observed request latencies for a closed-loop HBase workload experiencing occasional end-
to-end latency spikes; (b) Average time in each component on average (top), and for slow requests (bottom,
end-to-end latency > 30s); (c) Per-machine network throughput – a faulty network cable has downgraded
Host B’s link speed to 100Mbit, aòecting entire cluster throughput.

_is query measures the frequency that each client selects each DataNode for reading a replica. We plot the
results in Figure 6.10f and see that the clients are clearly favoring particular DataNodes. _e strong diagonal is
consistent with HDFS client preference for locally-hosted replicas (39% of the time in this case). However, the
expected behavior when there is not a local replica is to select a rack-local replica uniformly at random; clearly
these results suggest that this was not happening.

Our ûnal diagnosis steps were as follows. First, we checked to see which replica was selected by HDFS
clients from the locations returned by the NameNode. We found that clients always selected the ûrst location
returned by the NameNode. Second, we measured the conditional probabilities that DataNodes precede each
other in the locations returned by the NameNode. We issued the following query for the latter:

Q7: From DNop In DataNode.DataTransferProtocol
Join getloc In NameNode.GetBlockLocations On getloc -> DNop
Join st In StressTestClient.DoNextOp On st -> getloc
Where st.host != DNop.host
GroupBy DNop.host, getloc.replicas
Select DNop.host, getloc.replicas, COUNT

_is query correlates the DataNode that is selected with the other DataNodes also hosting a replica. We remove
the interference from locally-hosted replicas by ûltering only the requests that do a non-local read. Figure 6.10g
shows that host A was always selected when it hosted a replica; host D was always selected except if host A was
also a replica, and so on.

At this point in our analysis, we concluded that this behavior was quite likely to be a bug in HDFS. HDFS
clients did not randomly select between replicas, and the HDFS NameNode did not randomize the rack-local
replicas. We checked Apache’s issue tracker and found that the bug had been recently reported and ûxed in an
upcoming version of HDFS [76].

6.5.2 Diagnosing End-to-End Latency

Pivot Tracing can express queries about the time spent by a request across the components it traverses using the
built-in time variable exported by each tracepoint. Advice can pack the timestamp of any event then unpack

CHAPTER 6. PIVOT TRACING 69

it at a subsequent event, enabling comparison of timestamps between events. _e following example query
measures the latency between receiving a request and sending a response:

Q8: From response In SendResponse
Join request In MostRecent(ReceiveRequest) On request -> response
Select response.time − request.time

When evaluating this query, MostRecent ensures we select only the most recent preceding ReceiveRequest
event whenever SendResponse occurs. We can use latency measurement in more complicated queries. _e
following example query measures the average request latency experienced by Hadoop jobs:

Q9: From job In JobCompletionEvents
Join latencyMeasurement In Q8 On latencyMeasurement -> end
Select job.id, AVERAGE(latencyMeasurement)

A query can measure latency in several components and propagate measurements in the baggage, reminiscent
of transaction tracking in Timecard [225] and transactional proûling in Whodunit [106]. For example, during
the development of Pivot Tracing we encountered an instance of network limplock [127, 172], whereby a faulty
network cable caused a network link downgrade from 1Gbit to 100Mbit. One HBase workload in particular
would experience latency spikes in the requests hitting this bottleneck link (Figure 6.11a). To diagnose the
issue, we decomposed requests into their per-component latency and compared anomalous requests (> 30s
end-to-end latency) to the average case (Figure 6.11b). _is enabled us to identify the bottleneck source
as time spent blocked on the network in the HDFS DataNode on Host B. We measured the latency and
throughput experienced by all workloads at this component and were able to identify the uncharacteristically
low throughput of Host B’s network link (Figure 6.11c).

We have also replicated results in end-to-end latency diagnosis in the following other cases: to diagnose
rogue garbage collection in HBase RegionServers as described in [267]; and to diagnose an overloaded HDFS
NameNode due to exclusive write locking as described in [180].

6.5.3 Overheads of Pivot Tracing

Baggage By default, Pivot Tracing propagates an empty baggage with a serialized size of 0 bytes. In the worst
case Pivot Tracing may need to pack an unbounded number of tuples in the baggage, one for each tracepoint
invoked. However, the optimizations in §6.3 reduce the number of propagated tuples to 1 for Aggregate, 1
for Recent, n for GroupBy with n groups, and N for RecentN. Of the queries presented in this chapter, Q7
propagates the largest baggage containing the stress test hostname and the location of all 3 ûle replicas (4
tuples, ≈137 bytes per request).

_e size of serialized baggage is approximately linear in the number of packed tuples. _e overhead to pack
and unpack tuples from the baggage varies with the size of the baggage – Figure 6.12 gives micro-benchmark
results measuring the overhead of baggage API calls.

CHAPTER 6. PIVOT TRACING 70

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 4 8
 1

6
 3

2
 6

4

 1
2
8

 2
5
6

L
a
te

n
c
y
 (

µ
s
)

Number of tuples in baggage

(a) Pack 1 tuple

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8
 1

6
 3

2
 6

4

 1
2
8

 2
5
6

L
a
te

n
c
y
 (

µ
s
)

Number of tuples in baggage

(b) Unpack all tuples

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8
 1

6
 3

2
 6

4

 1
2
8

 2
5
6

L
a
te

n
c
y
 (

µ
s
)

Number of tuples in baggage

(c) Serialize baggage

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 1 2 4 8
 1

6
 3

2
 6

4

 1
2
8

 2
5
6

L
a
te

n
c
y
 (

µ
s
)

Number of tuples in baggage

(d) Deserialize baggage

Figure 6.12: Latency micro-benchmark results for packing, unpacking, serializing, and deserializing randomly-
generated 8-byte tuples.

Application-level Overhead To estimate the impact of Pivot Tracing on application-level throughput and
latency, we ran benchmarks from HiBench [152], YCSB [115], and HDFS DFSIO and NNBench benchmarks.
Many of these benchmarks bottleneck on network or disk and we noticed no signiûcant performance change
with Pivot Tracing enabled.

To measure the eòect of Pivot Tracing on CPU bound requests, we stress tested HDFS using requests
derived from the HDFS NNBench benchmark: Read8k reads 8kB from a ûle; Open opens a ûle for reading;
Create creates a ûle for writing; Rename renames an existing ûle. Read8kB is a DataNode operation and the
others are NameNode operations. We compared the end-to-end latency of requests in unmodiûed HDFS to
HDFS modiûed in the following ways: 1) with Pivot Tracing enabled; 2) propagating baggage containing one
tuple but no advice installed; 3) propagating baggage containing 60 tuples (≈1kB) but no advice installed; 4)
with the advice from queries in §6.5.1 installed; 5) with the advice from queries in §6.5.2 installed.

Table 6.5 shows that the application-level overhead with Pivot Tracing enabled is at most 0.3%. _is
overhead includes the costs of baggage propagation within HDFS, baggage serialization in RPC calls, and
to run Java in debugging mode. _e most noticeable overheads are incurred when propagating 60 tuples in
the baggage, incurring 15.9% overhead for Open. Since this is a short CPU-bound request (involving a single
read-only lookup), 16% is within reasonable expectations. Rename does not trigger any advice for the queries
from §6.5.1, but does trigger advice for the queries from §6.5.2. Overheads of 0.3% and 5.5% respectively re�ect
this diòerence.

Dynamic Instrumentation Some Java Virtual Machines (JVMs) only support the HotSwap feature when de-
bugging mode is enabled, which in turn disables some compiler optimizations. For practical purposes, however,
HotSpot JVM’s full-speed debugging is suõciently optimized that it is possible to run with debugging support
always enabled [211]. Our HDFS throughput experiments above measured only a small overhead between
debugging enabled and disabled. Reloading a class with woven advice has a one-time cost of approximately
100ms, depending on the size of the class being reloaded.

CHAPTER 6. PIVOT TRACING 71

Benchmark
Read8k Open Create Rename

Unmodiûed System 0% 0% 0% 0%
Pivot Tracing Enabled 0.3% 0.3% <0.1% 0.2%

Baggage – 1 Tuple 0.8% 0.4% 0.6% 0.8%
Baggage – 60 Tuples 0.8% 15.9% 8.6% 4.1%

Queries – §6.5.1 1.5% 4.0% 6.0% 0.3%
Queries – §6.5.2 1.9% 14.3% 8.2% 5.5%

Table 6.5: Latency overheads for HDFS stress test with Pivot Tracing enabled, baggage propagation enabled,
and full queries enabled, as described in §6.5.3

6.6 Discussion

Overheads Pivot Tracing is designed to have similar per-query overheads to the metrics currently exposed
by systems today. It is feasible for a system to have several Pivot Tracing queries on by default; these could be
sensible defaults provided by developers, or custom queries installed by users to address their speciûc needs.
We leave it to future work to explore the use of Pivot Tracing for automatic problem detection and exploration.

Partial Deployment Dynamic instrumentation is not a requirement to utilize Pivot Tracing. By default, a
system could hard-code a set of predeûned tracepoints. Without dynamic instrumentation the user is restricted
to those tracepoints; adding new tracepoints remains tied to the development and build cycles of the system.
Inactive tracepoints would also incur at least the cost of a conditional check, instead of our current zero cost.

Similarly, a system that does not implement baggage can still utilize the other mechanisms of Pivot Tracing;
in such a case the system resembles DTrace [105] or Fay [131]. Alternatively, kernel-level execution context
propagation [107, 217, 226] can provide language-independent access to baggage variables.

Advice Safety While users are restricted to advice comprised of Pivot Tracing primitives, Pivot Tracing does
not guarantee that its queries will be side-eòect free, due to the way exported variables from tracepoints are
currently deûned. We can enforce that only trusted administrators deûne tracepoints and require that advice
be signed for installation, but a comprehensive security analysis, including complete sanitization of tracepoint
code is beyond the scope of this work.

Baggage Size Pivot Tracing does not inherently bound the number of packed tuples and potentially accumu-
lates a new tuple for every tracepoint invocation. However, we liken this to database queries that inherently
risk a full table scan – our optimizations mean that in practice, this is an unlikely event.

Several of Pivot Tracing’s aggregation operators explicitly restrict the number of propagated tuples and in
our experience, queries only end up propagating aggregations, most-recent, or ûrst tuples. Pivot Tracing could
also be extended to allow users to trade oò between the performance overhead of queries and the desired
results. Pivot Tracing can be easily extended to support custom aggregation, which would allow users to
interchangeably select between coarse or ûne grained aggregators.

In cases where too many tuples are packed in the baggage, Pivot Tracing could revert to an alternative

CHAPTER 6. PIVOT TRACING 72

query plan, where all tuples are emitted instead of packed, and the baggage size is kept constant by storing only
enough information to reconstruct the causality, a laX-Trace [135], Stardust [257], or Dapper [244]. To estimate
the overhead of queries, Pivot Tracing can execute a modiûed version of the query to count tuples rather than
aggregate them explicitly. _is would provide live analysis similar to “explain” queries in the database domain.

Scalability _e experiments included in this thesis evaluate Pivot Tracing on an 8-node cluster. However,
initial runs of the instrumented systems on a 200-node cluster with constant-size baggage being propagated
showed negligible performance impact. By design, Pivot Tracing only imposes a constant amount of overhead
with each request, as baggage is scoped to individual executions. As the size of a deployment grows, the baggage
size propagated with each execution remains constant. _e main scalability bottleneck for Pivot Tracing will
eventually be its backend, which is responsible for aggregating output tuples. Sampling at the advice level is a
further method of reducing overhead which we plan to investigate.

Platform and Language Independent We opted to implement Pivot Tracing in Java in order to easily
instrument several popular open-source distributed systems written in this language. However, the components
of Pivot Tracing generalize and are not restricted to Java – a query can spanmultiple systems written in diòerent
programming languages due to Pivot Tracing’s platform-independent baggage format and restricted set of
advice operations. In particular, it would be an interesting exercise to integrate the happened-before join with
Fay or DTrace.

Temporal Joins Like Fay [131], Pivot Tracing models the events of a distributed system as a stream of
dynamically generated tuples belonging to a distributed database. Pivot Tracing’s happened-before join is an
example of a θ-join [223] where the condition is happened-before. Pivot Tracing’s happened-before join is
also an example of a special case of path queries in graph databases [272]. Diòerently from oøine queries in a
pre-stored graph, Pivot Tracing eõciently evaluates →⋈ at runtime.

Pivot Tracing captures causality between events by generalizingmetadata propagation techniques proposed
in prior work such as X-Trace [135]. While Baggage enables Pivot Tracing to eõciently evaluate happened-
before join, it is not necessary; Magpie [97] demonstrated that under certain circumstances, causality between
events can be inferred a�er the fact. Speciûcally, if ‘start’ and ‘end’ events exist to demarcate a request’s execution
on a thread, then we can infer causality between the intermediary events. Similarly we can also infer causality
across boundaries, provided we can correlate ‘send’ and ‘receive’ events on both sides of the boundary (e.g.,
with a unique identiûer present in both events). Under these circumstances, Magpie evaluates queries that
explicitly encode all causal boundaries and use temporal joins to extract the intermediary events.

By extension, for any Pivot Tracing query with happened-before join there is an equivalent query that
explicitly encodes causal boundaries and uses only temporal joins. However, such a query could not take
advantage of the optimizations outlined in this paper, and necessitates global evaluation.

Online Analytics Processing Pivot Tracing derives its name from pivot tables and pivot charts [117] from
spreadsheet programs due to their ability to dynamically select values, functions, and grouping dimensions from
an underlying dataset. Pivot tables are simple versions of data cubes [143] in the online analytics processing

CHAPTER 6. PIVOT TRACING 73

domain. Streaming data cubes [147] perform similar real-time aggregation and optimization on incoming
data streams.

InstrumentationCosts forDevelopers Pivot Tracing relies on developers to implement Baggage propagation
when a request crosses thread, process, or asynchronous execution boundaries. In our experience (§6.5) this
entails adding a baggage ûeld to existing application-level request contexts and RPC headers.

A common criticism of systems that require causal propagation of metadata is the need to instrument
the original systems [113]. We argue that the beneûts outweigh the costs of doing so (§6.5), especially for new
systems.

In the next chapter, we propose that a generalization of Pivot Tracing’s baggage abstraction can be shared
with other applications like those described in Chapter 2; then, system instrumentation would be a one-time
task, reusable, and independent of any tracing system or use case, and deploying new tracing systems would
be possible without having to revisit the underlying context propagation mechanism.

6.7 Conclusion

Pivot Tracing is the ûrst monitoring system to combine dynamic instrumentation and causal tracing. Its novel
happened-before join operator fundamentally increases the expressive power of dynamic instrumentation
and the applicability of causal tracing. Pivot Tracing enables cross-tier analysis between any inter-operating
applications, with low execution overhead. Ultimately, its power lies in the uniform and ubiquitous way in
which it integrates monitoring of a heterogeneous distributed system.

Chapter 7
Developing and Deploying Cross-Cutting Tools

Building on our experiences with Retro (Chapter 4) and Pivot Tracing (Chapter 6), in this chapter we draw out
similarities and diòerences between cross-cutting tools today. _is chapter further describes the challenges
faced today in actually deploying cross-cutting tools in production distributed systems. In the next chapter, we
will argue that some of the core components of cross-cutting tools – that are responsible for these deployment
challenges – can be abstracted into separate, shared components. Chapter 8 describes these abstractions in
detail.

7.1 Metadata Propagation

Chapter 2 describes the challenges in monitoring and enforcing distributed system behaviors, and outlines
how cross-cutting tools are an appealing approach to addressing these challenges. Chapter 4 and Chapter 6
demonstrated new use cases for cross-cutting tools, and illustrated how they can apply to a range of online
monitoring and enforcement tasks. O�en these tasks are tailored to speciûc concerns (e.g. resourcemanagement
or metric gathering).

A key component of the cross-cutting tools considered in this thesis is context propagation. For example,
Retro propagated a tenant ID, while Pivot Tracing propagated baggage containing tuples. Context propagation
is fundamental to a broad range of distributed systemmonitoring, diagnosis, and debugging tasks. It means that
for every execution (e.g. request, task, job, etc.), the system forwards a context object alongside the execution,
across all process, component, and machine boundaries, with metadata about the execution. Contexts are a
powerful mechanism for capturing causal relationships between events on the execution path at runtime.

7.2 Heterogeneous Data Types

Since cross-cutting tools have a diverse set of goals, correspondingly, cross-cutting tools propagate a wide
range of diòerent data types in their contexts. Depending on the tool and its goals, the data types in a context
can vary widely. Many systems propagate activity and request IDs for use in debugging and proûling, anomaly
detection, resource accounting, or resource management [135, 157, 180, 237, 244]. Tracing tools propagate

74

CHAPTER 7. DEVELOPING AND DEPLOYING CROSS-CUTTING TOOLS 75

Ã
À

Á Â Ä
Á

Â Á
ÂÅ

Å

Æ

Processes
Request execution path
Context propagationÀ

Á Boundary: serialize
Â Boundary: deserialize
Ã Boundary: branch
Ä Boundary: join

Update context
Å

Query context
Æ

Figure 7.1: Systems propagate the cross-cutting tool’s context (À) along the execution path, including across
process and machine boundaries (Á Â Ã Ä). Cross-cutting tools update (Å) and query (Æ) context values.

sampling decisions to bias traced requests towards underrepresented request types [157]. Taint tracking and
DIFC propagate security labels as the system executes, warning of or prohibiting policy violations [129,193,276].
User tokens enable tools for auditing security policies [6, 237, 244] and identifying business �ows [237]. Data
provenance systems propagate information about the lineage of data as diòerent components manipulate
it [123, 192]. Tools for end-to-end latency, path proûling, and critical path analysis propagate partial latency
measurements and information about execution paths and graphs [106,114,225,253]. Metric-gathering systems
propagate labels and query state so that downstream components can select, group, and ûlter statistics [141,
182, 237]. Recent work has proposed cross-cutting tools that propagate causal histories to validate cross-
system consistency [179]. Recent tools deployed in industry include propagating fault instructions for chaos
engineering, and markers for capacity planning [237].

Note that some of these tools use write-once metadata, while others constantly change the metadata. Some
tools only record information, while others use the metadata to take actions at runtime. In Chapter 2 we drew
a distinction between ûrst and second generation cross-cutting tools. Typically it is ûrst-generation tools that
use minimal, static metadata in order to correlate data for oøine collection and analysis.

7.3 Anatomy of a Cross-Cutting Tool

Despite this proliferation of cross-cutting tools, there remain signiûcant challenges to their development
and pervasive, end-to-end deployment. In this section we detail the two main aspects of cross-cutting tools–
propagation and logic – and in the next section, we describe howmost of the problems with their development,
evolution, and co-existence stem from the coupling between these aspects.

_e cross-cutting tools we consider here have two largely orthogonal components: the system instrumen-
tation for propagating contexts alongside executions, and the cross-cutting tool logic. Figure 7.1 illustrates
these components’ interaction with each other and with the instrumented system. We refer to the numbers in
the ûgure (e.g. À) in our description below.

CHAPTER 7. DEVELOPING AND DEPLOYING CROSS-CUTTING TOOLS 76

7.3.1 Context Propagation

To correlate events across diòerent parts of the system, all system components participate by propagating a
context (À) along the end-to-end execution path of each request (or task, job, etc.).

Contexts A context comprises variables and data structures that the cross-cutting tool uses to observe and
record causality. Examples include static IDs such as Retro’s integer work�ow ID (cf. §4.2.1); mutable IDs and
�ags describing recent events, as used by tracing tools (cf. §2.4); dynamic data structures like Pivot Tracing’s
baggage, comprising sets of tuples (cf. §6.3.1); and more (cf. §7.2).

Instrumentation Context propagation requires small but non-trivial interventions within all distributed
system components, to maintain and propagate contexts alongside executions. Contexts must be serialized
for inclusion with RPCs (Á, Â); stored while a thread is doing work; attached to work items when queued
to thread pools; duplicated when fanning out (Ã); merged when fanning in (Ä); etc. All distributed system
components must be instrumented to propagate contexts, otherwise an intermediary componentmight discard
context required by a later component. §4.3.1 and §6.4.3 describe this instrumentation task for Retro and Pivot
Tracing respectively.

Propagation Rules Contexts need a small set of propagation rules to deûne behavior at execution boundaries.
_ese include rules for serializing and deserializing (Á, Â); for duplicating contexts when executions branch
(Ã); and for merging contexts when concurrent branches join (Ä). Whereas the points in the execution where
these operations happen depend on the instrumented system and its concurrency structure, the semantics of
the operations, especially merge, depends on the cross-cutting tool at hand, as we describe next.

Instrumentation Scope Early research explored doing context propagation automatically in the operating
system [107, 226]. However, the operating system’s lack of visibility into application-level communication
channels turned out to be a signiûcant problem for today’s distributed systems [235], which comprise a wide
variety of applications, languages, and platforms. _e prevailing strategy, which we employed with both Retro
and Pivot Tracing, is to instead intervene at the application level, i.e. for system developers to directly modify
source code to explicitly propagate context.

Happened-Before Relation Context propagation is intrinsically related to the happened-before relation [171],
scoped to individual executions. Formally, for events a and b occurring anywhere in the system, including
across system boundaries, we say that a happened before b and write a→b if the occurrence of event a causally
preceded the occurrence of event b and they occurred as part of the same execution.

CHAPTER 7. DEVELOPING AND DEPLOYING CROSS-CUTTING TOOLS 77

7.3.2 Cross-Cutting Tool Logic

UsingContexts Cross-cutting tools interactwith contexts intermittently during program execution,updating
(Å) and querying (Æ) values at relevant points. Unlike propagation, which requires pervasive instrumentation,
the extent of intervention here depends on the tool. For example, end-to-end tracing scatters logging statements
throughout components, whereas resource accounting adds counters to only very speciûc resource APIs. Some
tools, such as security auditing, only deploy tool logic to a subset of components; e.g. to set the context’s user ID
in the front end, and to check the user ID once the request reaches the database [6,244,279]. Most cross-cutting
tools also have background components, e.g. to collect logging statements or aggregate counters across many
executions, but these are peripheral to our concerns in this chapter.

Propagation Rules _e tool logic deûnes what data gets propagated with the execution, and the propagation
rules for the data. _ese are trivial for simple contexts such as write-once IDs such as Retro’s tenant ID.
However for dynamic contexts these rules are more elaborate. For example, if a context comprises a set of
tags then merging two contexts entails a set-union [141]; maintaining a simple integer counter requires care to
avoid double-counting, or dropping changes made in one concurrent branch over another; and a critical path
application might need to keep the maximum time accrued between two merging branches. §6.4.5 described
how Pivot Tracing incorporates a versioning scheme in order to support consistent query operations that
aggregate data. In the general case we formalize contexts as state-based replicated objects with parallels to
CRDTs [233], where communication between instances occurs only when their respective execution branches
join.1 We discuss this correspondence in §8.3.3.

7.4 Deployment Challenges

Developing and deploying cross-cutting tools on large distributed systems and across large organizations
is challenging. _is section describes three broad challenges in developing and deploying cross-cutting
tools. _e ûrst challenge is the need for pervasive instrumentation to propagate contexts throughout all
system components. Pervasive instrumentation is time consuming and brittle, leading organizations to do
instrumentation only once, if at all. Furthermore, instrumentation is usually deeply intertwined with a speciûc
cross-cutting tool, which greatly increases the cognitive load of deploying cross-cutting tools. _is ultimately
makes the cost of changing existing tools, or deploying new ones, as high as that of the initial deployment.

_is section cites numerous examples from the open-source distributed tracing community. As described
in Chapter 2, distributed tracing tools are the most widespread of cross-cutting tools, and due to the relative
maturity of this class of tools we readily ûnd examples to illustrate the challenges described. However, we
emphasize that these challenges apply more broadly to cross-cutting tools in general, and stress the use of
cross-cutting tools beyond just recording traces.

1Out-of-band communication would violate the happened-before relation.

CHAPTER 7. DEVELOPING AND DEPLOYING CROSS-CUTTING TOOLS 78

7.4.1 Pervasive Instrumentation

Researchers and practitioners consistently describe instrumentation as the most time consuming and diõcult
part of deploying a cross-cutting tool [113, 134, 135, 162, 230, 243], from early works like X-Trace: “capturing
causal connections presented the highest variability in diõculty” [134, 135]; to recent eòorts such as OpenTracing:
“deploying a distributed tracing system requires person-years of engineer eòort, monkey-patched communication
packages, and countless inconsistencies across platforms” [243]. Instrumentation is a challenge because system
modiûcations are dispersed across a wide range of disparate source code locations, making it brittle and easy
to get wrong [244].

Completeness Developers can inadvertently omit infrequently exercised code paths such as background
tasks, edge-case handling, and failure recovery; or only instrument speciûc request types. In Cassandra [22],
missing instrumentation to propagate contexts with request retries caused traces to end prematurely a�er the
ûrst attempt [119], and missing instrumentation for paginated requests caused traces to end a�er the ûrst page
of results [118]; initial eòorts in HDFS [74] only instrumented I/O operations, so developers had to later revisit
instrumentation for metadata operations [79] and background tasks [69].

Correctness In many cases, missing or misaligned instrumentation will prematurely discard contexts [28,
29, 52, 56, 86, 248]; on the other hand, failing to discard contexts enables them to linger and associate with the
next execution, causing e.g. distinct traces to merge [15] or misattributed resource consumption [180, 181].

Compatibility Aligning instrumentation between a system and its dependencies is also challenging; for
example, Accumulo developers blamed HTrace’s wrapper library for an instrumentation bug [87], discovered
it was actually their own fault [14], and introduced new bugs attempting to ûx it [18, 19]. Compatibility between
tracing systems is the main focus of the recent OpenTracing initiative [201].

Maintenance Persistent problems may arise intermittently a�er an instrumented system is deployed. Un-
related code changes can break instrumentation if they fail to propagate contexts across new or modiûed
execution boundaries; for example, a patch to Hadoop’s inter-process communication [34] omitted HTrace
context in the new call headers [35]; refactored components in Cassandra [23] failed to propagate request
contexts across new execution boundaries [25, 26]; and in HBase, a patch to the write-ahead log led to gaps
in traces due to instrumentation omissions [41]. When a system is only partially instrumented, the overlap
between instrumented and uninstrumented code paths makes revisiting the instrumentation diõcult. For
example, Cassandra developers extended instrumentation to background tasks and found that “It was more
involved than I thought, partly because of heisenbugs and the trace state mysteriously not propagating” [27].

Testing Testing instrumentation for end-to-end correctness is a further challenge because it touches so many
components; the result is poor test coverage, complicated integration tests, broken tests across application

CHAPTER 7. DEVELOPING AND DEPLOYING CROSS-CUTTING TOOLS 79

versions, and a struggle to ensure that instrumentation remains correct [26, 44, 53, 54, 81].

Platform Support Some systems mitigate the instrumentation burden by propagating context in shared
underlying communication and concurrency layers instead of directly at the application level [244]. Fon-
seca et al. proposed alleviating X-Trace instrumentation diõculties by modifying concurrency libraries or
runtime environments [135]. Dapper [244] stated this as a design goal and mostly avoided application-level
instrumentation by instead modifying Google’s core threading, control �ow, and RPC libraries. At Facebook,
instrumenting core frameworks was useful for making tracing widely available and reducing the need for every
system to maintain its own instrumentation [157]. Recent work has also used source and binary rewriting
techniques to automatically instrument common execution patterns [155, 180–182].

Heterogeneous Systems However, this is not always feasible; extreme heterogeneity is commonplace, as
many large organizations have to deal with legacy components and decentralized, disparate development
teams [230]. For example, at Facebook, there are a wide variety of custom system designs, third party code, and
other issues that limit use of those core frameworks [157]. Instrumentation is typically compiled into services
as they are released, so even when tracing is integrated into core frameworks, a single trace may cross through
multiple services each with their own version of instrumentation. Instrumentation eòort also depends on
system heterogeneity: the wider the variety of languages and platforms in use, the more eòort required to
do instrumentation [113, 177, 230]. For example, for systems like Facebook’s, which comprise many language,
middleware, and execution environments, adding instrumentation retroactively is a “Herculean” task [113].

Heterogeneous Use Cases On the other hand, at Facebook, diòerent tracing systems were developed to
address various single- and cross-system performance scenarios [157]. Each system was specialized for a
speciûc use case and diõcult to extend to other domains. For example, backend services had RPC call-tree
instrumentation that was diõcult to adapt to other execution models like event loops. Browser page-load
tracing focused on joining data from the client and a single server, and had diõculty scaling to cover other
backend systems. Mobile applications had standalone OS-provided tracing that lacked the ability to look
at aggregate production data. In each of these cases, analysis over traces was conûned to ûxed work�ows,
with limited customization for per-domain features and slow iteration time for new features or analyses. _is
siloed approach to tracing led to several problems. It was diõcult to get cross-system insights when the tools
themselves didn’t cross all systems, and it meant that engineers needed to understand multiple tracing tools
and when to use and switch between them. Each tracing system evolved to meet speciûc needs and respond to
gaps in other tracing systems, but no single system could handle the broad spectrum of issues that arise in
practice. _e type of analysis supported by each system was also fairly rigid and changes took days to deploy.

Conclusion _e result of these complications is that instrumentation is done only once, if at all. _is would
be acceptable if such instrumentation could be reused by diòerent cross-cutting tools, and if it would enable

CHAPTER 7. DEVELOPING AND DEPLOYING CROSS-CUTTING TOOLS 80

Developers Concerns Tasks

(a)
Cross-Cutting Tool

Developers
(e.g. Zipkin, Pivot Tracing)

Semantics of their cross-cutting tool, the APIs for
using the tool, the information to communicate
between API invocations

Specify cross-cutting tool logic; implement APIs;
specify data types used by context

(b)
Context Format
Developers

What is the correct behavior of the context under
concurrent executions
i.e. how to correctly merge multiple contexts

Implement context data format; implement logic
for serialization and merging contexts.

(c)
System Developers
(e.g. HDFS, Spark)

Execution boundaries and concurrency
e.g. queues, threadpools, RPCs

Instrument systems to propagate contexts
alongside executions

Table 7.1: _ree groups are involved in developing and deploying cross-cutting tools; each group has a diòerent
set of concerns and is involved in diòerent tasks.

the evolution of existing tools. In practice, however, instrumentation and propagation are deeply intertwined
with a speciûc cross-cutting tool. As we discuss next, this greatly increases the cognitive load of deploying
cross-cutting tools, and makes the cost of changing existing tools, or deploying new ones, as high as that of the
initial deployment.

7.4.2 Cognitive Load

Because cross-cutting tools are coupled with context propagation, to perform any one task – system instrumen-
tation, deploying tool logic, or even designing the tool itself – is cognitively challenging, because it requires
tacit understanding of all components – the system being instrumented, the semantics of the tool, and context
subtleties when executions branch and join. However, in practice the people who understand and care about
these aspects are usually in diòerent groups. Table 7.1 summarizes the concerns of each developer group:
developers of the system (Table 7.1c) know its execution and concurrency structure; developers of cross-cutting
tools (Table 7.1a) understand what data they need for their tool; and none of them should actually care about
the complexities of representing concurrent data structures (Table 7.1b).

To propagate and interact with contexts, developers must pay attention to serialization, encoding schemes,
and binary formats. _ey must also know the libraries (e.g. RPCs) and concurrency structures (e.g. event loops,
futures, queues) used by the system, to determine boundaries for propagation. In practice, because they are
usually deployed together, the semantics of the cross-cutting tool greatly aòect instrumentation; not only does
this entail understanding tool logic at instrumentation time, but also, by specializing instrumentation, precludes
reuse of the instrumentation even by similar tools. For example, in HDFS,HBase, and Phoenix, instrumentation
is hard-coded to HTrace contexts and rules [62, 74, 91]. For example, Zipkin omits merge rules [202, 204],
leading to diõculties instrumenting queues [273], asynchronous executions [206, 207, 209] and capturing
multiple-parent causality [208,210]. HDFS and HBase developers encountered similar problems due to HTrace
lacking rules to capture multiple-parent causality [55, 70, 78, 82]. When cross-cutting tools do not require
instrumentation of all boundaries, it sows confusion among developers about whether to propagate contexts
across those boundaries; the most common example being RPC response instrumentation [84, 205, 249].

CHAPTER 7. DEVELOPING AND DEPLOYING CROSS-CUTTING TOOLS 81

Developers also struggle to instrument execution patterns when they do not ût into the tool’s intended model.
For example, Dapper’s request-response span model is ill-suited for instrumenting streams, queues [273],
async [206, 207, 209], and several others [70, 78, 157, 208, 210].

Because there are no pre-existing abstractions or implementations for context propagation, it is insuõcient
to simply state “propagate this data structure” in a setting where executions arbitrarily branch and join. Instead,
something seemingly simple like an integer can require complex propagation rules in order to behave correctly
and consistently; e.g. if it is used as a counter, its underlying implementation will more closely resemble a
version vector [218]. An example of this is Pivot Tracing; to propagate sets of tuples requires a bag versioning
scheme to avoid con�icts (cf. §6.4.5).

7.4.3 Duplicated Eòort

Deploying tracing tools end-to-end is challenging because it requires coherent choices and participation across
all system components. However, developers of diòerent systems and components are o�en isolated from one
another, causing them to make incompatible or con�icting choices about which tracing tools deploy; e.g. at
Pinterest, “enabling and deploying instrumentation across several services is like herding cats” [162]. Amazon
required extensive, co-ordinated eòort to deploy X-Ray [98] across dependent systems to support tracing in
Lambda [1, 9].

Deploying Tools _e coupling between tool logic and propagation also makes any changes in tools entail re-
visiting the instrumentation to update variables, propagation logic, and cross-cutting tool API invocations. _e
same is true when deploying new tools, even if semantically similar. For example, the Hadoop ecosystem [228]
has three distributed databases based on BigTable’s design [109] and each database implemented its own an
ad-hoc tracing system: Accumulo [12] developed CloudTrace [21]; HBase [40] developed HTrace [61, 62];
and Cassandra [22] developed QueryTracing [24]. Accumulo developers wanted CloudTrace to extend to
the underlying distributed ûle system HDFS [13]; however, HDFS developers opted for compatibility with
HBase and deployed HTrace instead [74]. As a result, to get visibility of HDFS, Accumulo developers replaced
CloudTrace with HTrace [20]. Migrating Accumulo to HTrace meant updating instrumentation at 471 source
code locations [20]. Similarly extensive changes were required to deploy Zipkin in Cassandra [23, 31, 270] and
Phoenix [92]. We also observed this in our own experiences deploying, successively, X-Trace, Retro, and Pivot
Tracing.

Updating Tools Diòerent versions of the same tracing tool suòer similar problems if they change their
context format or propagation logic [17, 27, 51, 247, 250]. Developers must be careful to consider compatibility
implications when updating tools, especially if they wish to support tracing during upgrades, incremental
upgrades, or mixed versions. For example, hard-coded serialization logic in Cassandra could cause out-of-
bounds errors during deserialization if a newer version of the application extends the context deûnition [27];
similarly, clients of the tracing system Sleuth would crash when encountering unexpected context values [247,

CHAPTER 7. DEVELOPING AND DEPLOYING CROSS-CUTTING TOOLS 82

250]. Accumulo developers were hesitant to change HTrace versions due to possible Hadoop con�icts [16,
17, 51], expressing frustration with the “continued lack of concern in the HTrace project around tracing during
upgrades” [17]. _e eòort needed to update a tool’s version is o�en the same as simply migrating to a diòerent
tool; for example, systems updating HTrace versions each required hundreds of changes in dozens of ûles [16,
66,82]. Accumulo developers decried the “continued lack of concern in the HTrace project around tracing during
upgrades” [17].

MixingTools Some tools alleviate these issueswith ad-hoc compatibility shims, so that a system instrumented
for a diòerent tool can share contexts and talk to the same backends. _is approach is fragile even for tools that
ostensibly perform the same task. For example, open-source Dapper derivatives preserve causal relationships
at diòerent granularities, leading to “severe signal loss” when integrating with less expressive tools [204], or
requiring system-level changes to capture missing relationships required by more expressive tools [16, 55, 82].

7.5 RelatedWork

7.5.1 Instrumenting Systems

Early research explored automatically propagating context in the operating system [107, 226]. However, the
operating system lacks visibility into application-level communication channels, which leads to inaccurate
instrumentation [235] and turns out to be a signiûcant problem for today’s distributed systems, which comprise
a wide variety of applications, languages, and platforms. Consequently, the prevailing strategy is to instead
intervene at the application level, i.e. by modifying source code in applications and libraries.

Many systems push instrumentation into shared underlying communication and concurrency layers
instead of relying on application-level instrumentation. Fonseca et al. proposed instrumenting concurrency
libraries or runtime environments to avoid the instrumentation burden they experienced with X-Trace [135].
Dapper [244] instrumented Google’s core threading, control �ow, and RPC library code, in order to minimize
or eliminate the amount of application-level instrumentation needed. Several RPC frameworks follow this
approach, such as Twitter’s Finagle [260], Uber’s tchannel [261], and Go kit [255]. Strongloop’s Node runtime
automatically traces Javascript continuations, HTTP requests, and calls to database backends [252]. Similarly,
Spring Cloud Sleuth [246] automatically instruments Spring applications at common ingress and egress points.

Several prior systems have used binary and source rewriting techniques to automatically instrument
common execution patterns. For example, with both Retro and Pivot Tracing, we pattern-match common
interfaces and execution patterns and automatically instrument them using AspectJ. Similarly, Timecard [225]
automatically instrumentation Windows Phone applications to propagate metadata, using binary rewriting
techniques for Silverlight on the client side, and .NET on the server side(client side) and .NET (server side) [224].
WebPerf [155] extends Timecard’s automatic instrumentation to include .NET async/await style programs.
Domino [176] monkey-patches Javascript web applications on both the client and server side for node.js
applications. APM companies Instana and AppDynamics deploy their tracing instrumentation using Java

CHAPTER 7. DEVELOPING AND DEPLOYING CROSS-CUTTING TOOLS 83

agents, which automatically modify Java bytecode at load time [125]; Naver’s Pinpoint tracing framework takes
the same approach [196].

Both of these techniques – framework instrumentation and automatic instrumentation – reduce the instru-
mentation required, but do not eliminate it entirely. For example, Prezi achieved approximately 80% coverage
by instrumenting Django’s HTTP, database, and AWS calls. Retro and Pivot Tracing required approximately
50-300 additional lines of source code modiûcation to catch instrumentation cases not handled by automatic
instrumentation. Dapper authors noted 40 C++ applications and 33 Java applications (out of thousands) that
required some manual trace propagation, as well as some uninstrumented applications that used non-standard
communication libraries.

OpenTracing is a recent eòort in the open-source tracing community to address some of the challenges sur-
rounding end-to-end deployment and reuse for tracing frameworks. However, OpenTracing is more narrowly
focused on recording traces as span trees, like Dapper, and does not capture some causal relationships [202,204];
it also includes logging and span management, which are orthogonal to context propagation and instead fall
under cross-cutting tool logic [203].

An alternative class of work in understanding and troubleshooting distributed systems focuses on black-
box approaches, i.e. log analysis [96, 282]. _is avoids context propagation altogether; however, its use cases
are limited to oøine analysis of the information exposed by the system through logs, and it does not apply to
online use cases such as scheduling and data quality trade-oòs.

7.5.2 Generic Contexts

SDI propagates generic context objects alongside requests on a single machine and deûnes a grammar of
actions that occur at execution boundaries. SDI does not address merging of contexts, but does address some
questions of security and other issues [226]. Causeway [107] introduced the notion of meta-applications and
propose system-level instrumentation that can be used by many meta-applications. Causeway called execution
boundaries ’transfer points’, and supports registering callbacks at transfer points. As with SDI, Causeway does
not address merging of contexts.

Subsequent to the publication of Pivot Tracing [182], OpenTracing incorporated the notion of key-value
pairs that can be propagated alongside requests, also using the term baggage. OpenTracing does not specify
how to resolve con�icts between baggage values whenmerging contexts, and the default behavior of the current
implementation will arbitrarily select one value if there are con�icting keys.

7.6 _e Need for Abstractions

Many of the problems described in this chapter stem from the coupling between cross-cutting tools and
instrumentation, brittle deployments, and repeated developer eòort. In fact, in all cross-cutting tools to date,
system instrumentation and tool logic are deeply intertwined. _is tight coupling requires teams deploying
cross-cutting tools to have a deep understanding of both the tool and of all instrumented systems. It also makes

CHAPTER 7. DEVELOPING AND DEPLOYING CROSS-CUTTING TOOLS 84

any modiûcation or evolution of a cross-cutting tool, or the deployment of new cross-cutting tools, as diõcult
as the initial deployment.

To address these challenges, we argue that system instrumentation should be a one-time task, reusable,
independent of any tracing tool, and that developing, deploying, and updating tracing tools should be possible
without having to revisit or consider the underlying context propagation mechanisms. To achieve this we
advocate for abstractions to separate the concerns of tracing tool developers from those of system developers,
to enable reusable general-purpose context propagation. In the next chapter we describe the design and
implementation of our proposed abstractions.

Chapter 8
Baggage Contexts: A Universal Abstraction for
Cross-Cutting Tools

Based on the challenges outlined in Chapter 7, we argue that system instrumentation for context propagation
should be decoupled from cross-cutting tool logic, with the ultimate goal of system instrumentation being a
one-time task. _is motivates the design of baggage contexts, an intermediate representation for cross-cutting
tool contexts. Baggage contexts extend and generalize the baggage concept introduced by Pivot Tracing in §6.3.1.
Baggage contexts enable the complete decoupline of system instrumentation from cross-cutting tool logic, and
using baggage contexts, new cross-cutting tools can be deployed without eòecting changes to instrumentation.
To fully beneût from this decoupling, we expose baggage contexts to system developers and tool developers
through diòerent abstractions that hide irrelevant aspects from each group. We propose a layered architecture
called the Tracing Plane, with baggage contexts serving as a narrow waist, to enforce this separation of concerns.
In this chapter we describe the design and implementation of baggage contexts. We also demonstrate and
evaluate the applicability of baggage contexts as a general tracing context format, and the eòectiveness of the
Tracing Plane abstractions built around them.

8.1 Separation of Concerns

_e problems described in Chapter 7 stem from the coupling between cross-cutting tools and instrumentation,
which cause brittle deployments, and repeated developer eòort. To avoid this, we separate the concerns of
cross-cutting tool developers from those of system developers, by providing a general-purpose intermediate
representation called baggage contexts. Baggage contexts have two goals:

• Baggage contexts must be capable of carrying a wide range of data types that cross-cutting tools use,
such as primitive types, IDs, sets, maps, counters, nested data structures, and more, while remaining
eõcient and extensible.

• System instrumentation that propagates baggage contexts must be completely agnostic to the interpreta-
tion of any data therein and independent of the semantics of any cross-cutting tool.

85

CHAPTER 8. BAGGAGE CONTEXTS 86

Operation Execution Boundary Operation Description
BRANCH Execution splits into multiple branches

(e.g. threads, concurrent RPCs)
Derive a context for each branch

JOIN Concurrent execution branches join Combine multiple contexts into one
SERIALIZE Send a network request Serialize context to wire format
DESERIALIZE Receive a network request Deserialize context from wire format
TRIM Anywhere with size constraints Impose a size constraint on a context

Table 8.1: Five operations for propagating contexts used to instrument systems.

At ûrst glance these objectives appear easily satisûed by existing data formats, such as plaintext dictionaries
(as with HTTP headers), or structured serialization formats (like Protocol Buòers). However, a key challenge
not addressed – which baggage contexts solve – is how to maintain correctness under arbitrary concurrency;
speciûcally, merging baggage contexts correctly, according to the semantics of any data types therein, whenever
two concurrent execution branches join.

8.2 Interfaces

Before describing the design of baggage contexts, we ûrst outline the interfaces for 1) system developers and 2)
cross-cutting tool developers, which baggage contexts must bridge.

8.2.1 Interface for System Instrumentation

_e main concern for system developers is instrumenting systems to propagate context objects alongside
requests as they execute. Our goal for system developers is to enable reusable instrumentation that is only done
once, independent of any cross-cutting tools. To this end, it has two requirements. First, that baggage contexts
be opaque, which decouples the instrumentation from the details of any speciûc cross-cutting tool. Second,
that the instrumentation be pervasive: with opaque contexts, we have no idea which causal relationships a
cross-cutting tool might want to preserve; consequently, it is necessary to instrument all execution boundaries.

To support this, system developers are not exposed to the internal representation of baggage contexts.
Instead, baggage contexts are opaque objects that provide a minimal set of ûve propagation operations neces-
sary for capturing system concurrency patterns and boundaries: BRANCH derives new context instances for
when the execution splits into concurrent branches; a commutative JOINmerges multiple context instances
when concurrent execution branches join; SERIALIZE and DESERIALIZE write and read a serialized baggage
representation; and TRIM imposes a size constraint on baggage, e.g. if a system will propagate at most 1kB of
context data. Table 8.1 summarizes these operations.

CHAPTER 8. BAGGAGE CONTEXTS 87

bag Zipkin {
fixed64 traceID = 0
fixed64 spanID = 1
fixed64 parentSpanID = 2
flag sampled = 3

}

bag XTrace {
fixed64 TaskID = 0;
set<fixed64> ParentIDs = 1;

}

bag Retro {
int32 TenantID = 0;

}

bag PivotTracing {
map<string, set<bytes>> tuples = 0;

}

bag NetJob {
map<string,string> Labels = 0;

}

Figure 8.1: BDL declarations for ûve cross-cutting tools. See §8.5.1 for a description of these tools..

8.2.2 Interface for Cross-Cutting Tools

Orthogonal to system developers, themain concern for cross-cutting tool developers is specifying the data types
used by the cross-cutting tool. §7.2 describes the variety of diòerent data types and use cases of cross-cutting
tools.

To support this heterogeneity, we expose a rich library of concurrent data types expressed through an
interface deûnition language called BDL, or Baggage Deûnition Language. Figure 8.1 outlines BDL declarations
for ûve cross-cutting tools that we revisit in our evaluation (see §8.5.1 for a description). _e BDL format is
similar in style and primitives to protocol buòers [263]; it also provides sets, maps, nested data structures,
and several more elaborate data types based on CRDTs (cf. §8.4.6). A declaration includes a name and one or
more ûelds, with each ûeld specifying a type, a name, and a numbered index. BDL declarations can be updated
to add new ûelds and deprecate existing ûelds, without aòecting backwards compatibility with systems that
deployed old versions. _e only requirement is that, once deployed, new ûelds cannot reuse indices of existing
ûelds.

_e goal of BDL is to separate the speciûcation of what data is carried in a baggage context, from the
implementation details of how the data is encoded. From a BDL speciûcation, a BDL compiler will generate
interfaces for tools to access andmanipulate data within baggage context instances. For example, a�er compiling
a bag declaration, tool code will access data inside baggage contexts with simple method calls, e.g. zmd :=

zipkin.readFrom(bagCtx). Generated BDL interfaces access baggage contexts, interpret the data therein, and
construct a corresponding object representation of the data. Callers can then read, update, and manipulate
values, e.g. zmd.SetTraceID(55).

From the perspective of cross-cutting tool developers,baggage contexts provide the abstraction of “execution-
�ow scoped variables”, which, once set, follow the cross-cutting execution across all components. To automati-
cally merge instances when execution branches join, all BDL data types encapsulate well-deûned behavior for
merging instances.

8.2.3 Example Baggage Context Usage

To clarify these concepts we give a brief description of how baggage contexts might be used, with an example
focusing on who uses them and when.

CHAPTER 8. BAGGAGE CONTEXTS 88

First, baggage context developers (e.g., the author of this thesis) implement baggage context libraries. _e
libraries are twofold: a propagation library for system developers that exposes an API with the ûve propagation
operations; and a BDL compiler for cross-cutting tool developers that can compile BDL speciûcations.

Next, system developers (e.g., developers of HDFS, HBase etc.) at development time instrument their
systems using the propagation library, to propagate baggage contexts alongside executions. System developers
treat baggage contexts as opaque objects. _ey identify the boundaries of execution – e.g. where threads are
created, or RPCs are made – and at these boundaries, invoke propagation operations, i.e. to duplicate, merge,
serialize, deserialize, or trim contexts. Developers also use techniques like thread-local storage to keep track of
an execution’s current baggage context instance. Overall, this instrumentation task requires no co-ordination
with developers of other systems; it also requires no knowledge of any cross-cutting tools that may be later
deployed.

Meanwhile, cross-cutting tool developers implement cross-cutting tool logic (e.g., the APIs and backends
for Retro, Pivot Tracing, etc.). _ey use BDL to specify the data types they wish to propagate, and compile
the corresponding accessors. _e public-facing APIs of their tool (e.g. that log trace events, record resource
usage, or invoke advice) will include a baggage context instance as an argument. _e internal API logic of
their tool uses the compiled BDL accessors to observe and manipulate data within the passed baggage context
parameter.

Finally, at some point in the future, a system operator decides to deploy a cross-cutting tool. _ey pick one
or more parts of the system in which to deploy the tool. Perhaps this is localized to a single system, component,
or function; or it could include disparate components, separated by several levels of indirection. In these
chosen locations, they update the source code to add invocations of the cross-cutting tool API, e.g. to log trace
events. For tools like Retro and Pivot Tracing, these modiûcations are trivial – for example Pivot Tracing uses
an agent

_e system operator redeploys the modiûed parts of their system, then runs a workload. Each execution
initially has an empty baggage context. For each execution, the ûrst invocation of the cross-cutting tool API
will populate the request’s baggage context with some data. _is baggage context is carried with the execution,
including over the network, within processes, and in particular, through all intermediate layers including those
that were le� unmodiûed. Later invocations of the cross-cutting tool API will read data from the baggage
context that was written by that ûrst invocation.

8.3 Baggage Context Design

Central to the separation of the two interfaces is an intermediate baggage context representation that is
capable of preserving correct propagation behavior for a wide variety of data types. Baggage contexts hide
these details from both the system instrumentation for propagating contexts, and from the cross-cutting tool
code that uses BDL-generated APIs. Our baggage context design comprises two pieces. First, a core baggage
context representation that provides several fundamental properties. Second, an eõcient mapping of data

CHAPTER 8. BAGGAGE CONTEXTS 89

types onto the core representation that includes nesting and multiplexing. §8.4 describes concrete details of
our implementation.

8.3.1 Core Representation

_e core baggage context representation factors out a minimal implementation of the ûve propagation opera-
tions for systems to propagate metadata, while maintaining correctness for arbitrary concurrency patterns. It
does not include interpreting data types or understanding cross-cutting tools. It encapsulates a simple, concrete
implementation of the ûve propagation operations described in §8.2.1. _e most important of these operations
to consider for correct propagation of contexts is the merging of contexts when two branches of computation
join. To this end we derive the following properties:

Idempotent Merge Many cross-cutting tools have "write-once" contexts, such as Retro’s work�ow ID or
a trace ID [157]. Since a context may be propagated through arbitrary invocations of BRANCH and JOIN, yet
remain unchanged, both BRANCH and JOINmust be idempotent in order to constrain the size of a baggage
context.

Lazy Resolution We o�en need to merge baggage contexts that contain diòerent values, and resolve them
using tool-speciûc logic (e.g. taking a max or min value). Since we do not interpret the values to merge, our
default behavior is to keep both and resolve them later. We expect that, eventually, the relevant cross-cutting
tool will access its data in the baggage context, and can then manually interpret and resolve the merge. Lazy
resolution implies baggage contexts are collection-like and comprise multiple data elements, and that our
merge function merges two collections.

Associative Merge For collection-like baggage contexts, an associative merge function is necessary for the
same reason we require an idempotent merge: to constrain the size of a baggage context through arbitrary
invocations of BRANCH and JOIN. _at is, if we have two "write-once" contexts that remain unchanged, then it
is natural to require:

merge(A, merge(A, B)) = merge(A, B) (8.0.1)

and likewise, by also considering that merge is commutative:

merge(merge(A, B), B) = merge(A, B) (8.0.2)

Order-Preserving Merge Our ûnal property incorporates ordering into baggage contexts. A baggage context
is an ordered collection of elements, but we place no restrictions on the actual interpretation, cardinality, or
ordering of elements. Ordering elements implicitly gives us control over element priorities by manipulating
their ordering. By extension, our merge function is priority-preserving, i.e. its output will preserve the relative
order of elements from either input.

CHAPTER 8. BAGGAGE CONTEXTS 90

0XXX... 0YYY... 0ZZZ...

0AAA... 0BBB... 0CCC...

0HHH... 0JJJ... 0KKK...

object1: BDLType

object2: BDLType
object3: BDLType

Type-Speciûc Encode Function
Encode: BDLTypeÐ→ []atom

Type-Speciûc Merge
Merge: (BDLType, BDLType)Ð→ BDLType

Type-agnostic Lexicographic Merge
LEXMERGE: ([]atom, []atom)Ð→ []atom

Type-Speciûc Decode Function
Decode: []atomÐ→ BDLType

Narrow Waist

Ba
gg
ag
eL
ay
er

At
om

La
ye

r

Figure 8.2: All BDL data types have Encode and Decode functions for encoding and decoding data type
instances. For each BDL data type, Encode andDecode are carefully designed so that lexicographic merge (cf.
§8.4.1) correctly preserves the type-speciûc merge behavior. _is enables a separation into layers as described
in §8.3.4

8.3.2 Representing Data Types

Using the core baggage context representation, we design encodings for a range of diòerent data types that
preserve the correct data type merge semantics through arbitrary invocations of BRANCH and JOIN. _ese
data types are exposed through BDL. From a BDL speciûcation, the BDL compiler will generate code that
understands how to convert between data type instances and baggage context encodings. Some data types, like
primitive types, only encode a single data element to represent their state. Other data types, such as sets and
maps, encode their state using multiple data elements. Figure 8.2 illustrates the transformation of BDL data
type instances to encoded instances and back again; for all BDL data types, the type-agnostic merge function,
when applied to the encoded data type instances, correctly preserves the type-speciûc merge behavior.

All BDL data types adhere to a common encoding strategy that enables multiplexing of cross-cutting
tools and arbitrary nesting of data. _e encoding strategy manipulates the relative ordering of individual
data elements to take advantage of the order-preserving merge. Nested objects, which might comprise many
data elements, are laid out in a speciûc traversal order that persists through arbitrary invocations of JOIN.
With this strategy, the properties described in §8.3.1 apply recursively to nested objects. §8.4.2 describes our
implementation of this encoding strategy.

8.3.3 Con�ict-Free Replicated Data Types

Context propagation has a direct analogy to replicated data structures. Replicated data structures comprise
multiple independent object instances, and operations performed on one instance eventually propagate as
updates to the other instances. In our setting, concurrent branches within an execution maintain their own
baggage context instances, each branch interacts with its instance independently, and when two branches join
their contexts must be merged. _is analogy enables us to draw on a comprehensive body of existing work in
con�ict-free replicated data types (CRDTs), which are replicated data structures that have deterministic merge

CHAPTER 8. BAGGAGE CONTEXTS 91

Developers Tasks Abstractions

(a)
Cross-Cutting Tool

Developers
(e.g. Zipkin, Pivot Tracing)

Cross-cutting tool logic: deûne context using BDL; use
execution-�ow scoped variables to implement tracing logic
(e.g., spans, security, resource accounting)

Execution-�ow scoped
variables (§8.2.2)

(b)
Tracing Plane Developers

(_is chapter)
Tracing plane internals: BDL compiler, underlying context format,
nesting, multiplexing, trimming

(c)
System Developers
(e.g. HDFS, Spark)

Instrumentation: modify systems to propagate contexts alongside
executions

Baggage contexts, ûve
propagation operations (§8.2.1)

Table 8.2: _e Tracing Plane provides abstractions to separate the concerns of diòerent developers. Each
developer group performs a diòerent task, corresponding to the tasks outlined in Table 7.1.

Cross-Cutting Layer

Baggage Layer

Atom Layer

Transit Layer

Cross-Cutting Tools
Baggage Definition Language

Data Type Encodings
Nested data structures

Muliplexed cross-cutting tools

Atoms
Lexicographic merging

Trimming

Instrumented Systems
Propagate opaque Baggage Context

Compiled BDL accessors

Propagation Primitives Tr
ac

in
gP

lan
e

NarrowWaist

Cross-Cutting Tool
Developers

SystemDevelopers

Figure 8.3: _e Tracing Plane groups concepts into an abstraction layering that separates the concerns of
diòerent developer groups.

behavior and provide strong eventual consistency [233]. In the literature, there are CRDT implementations
for a range of data types including sets, maps, registers, counters, and graphs [234]. Furthermore, baggage
contexts themselves fulûll the deûnition of a state-based CRDT [233], as they have an idempotent, associative,
and commutative merge function.

8.3.4 Layering Summary

_e ûnal component of our design is to group the concepts presented herein into an abstraction layering that
we call the Tracing Plane. By separating components into distinct layers, the Tracing Plane separates concerns
of system developers from those of cross-cutting tool developers (cf. Table 7.1), and makes it easy to implement
and support the diòerent features.

Figure 8.3 illustrates the Tracing Plane’s layered design. _e transit layer encapsulates the system-level
instrumentation done by system developers, and aims to provide generic and reusable instrumentation
(§8.2.1). _e cross-cutting layer simpliûes the development and deployment of cross-cutting tools, by providing
BDL to specify cross-cutting tool contexts, and BDL-compiled interfaces to access and manipulate data
(§8.2.2). We bridge these layers with two internal layers. _e atom layer corresponds to the core baggage
context representation and implements the ûve propagation operations (§8.3.1 and §8.4.1). _e baggage layer
implements the encoding strategy for nested data structures and multiplexed cross-cutting tools (§8.3.2 and
§8.4.2).

CHAPTER 8. BAGGAGE CONTEXTS 92

Operation Atom Layer Implementation
BRANCH Duplicate the baggage context without modiûcation
JOIN LEXMERGE incoming baggage contexts from the joining branches
SERIALIZE Write baggage atoms in order, each length-preûxed by a varint
DESERIALIZE Read baggage atoms in order, each length-preûxed by a varint
TRIM Discard atoms from the baggage tail then append trim marker

Table 8.3: Atom layer implementation of the ûve propagation operations for system instrumentation.

Minimal Tracing Plane support does not require implementation of the full stack: a system needs to
support the core baggage context representation to correctly propagate baggage. _e atom layer thereby serves
as the “narrow waist” of context propagation and provides a low barrier to entry; for example, our Go atom
layer implementation has fewer than 100 LOC. However, though the core baggage context representation
is designed to be simple and expressive, it is intended as a compilation target for BDL, and the mappings
described in §8.4 are wholly encapsulated by the BDL compiler and baggage layer.

8.4 Implementation

We now present our implementation of baggage contexts. Baggage contexts are expressive, eõcient, and enable
multiple cross-cutting tools to co-exist without interference. Furthermore, it allows for controlling the size of
the underlying baggage context.

Zipkin To aid our discussion, we brie�y describe the cross-cutting tool Zipkin. Following the overview of
end-to-end tracing tools given in §2.4, Zipkin is an open-source end-to-end tracing tool based on Google’s
Dapper [244]. For each execution it records the hierarchy of invoked RPCs as a tree of causally-related spans,
with each span containing timing information and logged events. To relate the spans for each request, Zipkin
generates a random TraceID at the start of the request, and propagates it with subsequent execution. To capture
causal relationships between spans, Zipkin generates and propagates random IDs for the current span and
parent span. Zipkin updates these IDs when logging new spans and reinstates parent IDs when closing spans.
Zipkin also supports a sampling directive, and, more recently, tags that go in its context (we omit tags from
Figure 8.1). When spans end, Zipkin clients log them to a central database.

8.4.1 Core Representation (Atom Layer)

Our core representation is based on two important concepts: atoms and lexicographic merge.

Atoms A baggage context instance is an array of zero or more atoms, where an atom is an arbitrary array
of zero or more bytes. _e ordering and interpretation of atoms within a baggage context is arbitrary, and
diòerent BDL data types write and interpret atoms in diòerent ways.

Propagation Operations Table 8.3 summarizes the ûve propagation operations for atoms. DESERIALIZE and
SERIALIZE read and write atoms in order, varint-preûxed. BRANCH trivially duplicates atoms. TRIM truncates

CHAPTER 8. BAGGAGE CONTEXTS 93

1: procedure LexCmp(x, y) ▷ Lexicographic atom comparison
2: for i ∈ [0 . . . min(x .length, y.length)] do
3: if x[i] ≠ y[i] then return x[i] − y[i]
4: return x .length − y.length

(a) Lexicographic atom comparison pseudo-code.

1: procedure LexMerge(a, b) ▷ Lexicographic merge of two atom arrays
2: j ← 0; k ← 0; out ← []
3: while not a.IsEmpty and not b.IsEmpty do
4: cmp ←LexCmp(a.Head, b.Head)
5: if cmp < 0 then out.Push(a.Pop)
6: else if cmp > 0 then out.Push(b.Pop)
7: else
8: a.Pop
9: out.Push(b.Pop)
10: out.PushAll(a, b)
11: return out

(b) Pseudo-code of lexicographic merge. Two baggage contexts are merged by travers-
ing their atoms in tandem, performing pairwise lexicographic atom comparisons.

Baggage A Baggage B LEXMERGE (A, B)
A0 5F1B A0 5F1B
A0 5F1B A0 2B A0 2B 5F1B
A0 5F1B A0 2B 77 A0 2B 5F1B 77
A0 5F1B A0 2B 5F1B A0 2B 5F1B
A0 5F1B A0 5F1B0044 A0 5F1B 5F1B0044
A0 5F1B BB 2B A0 5F1B BB 2B

† A0 5F1B BB 5F1B A0 5F1B BB 5F1B

XX atom XX YY baggage

(c) Lexicographic merge examples; atoms use hexadecimal notation.

Figure 8.4: A baggage context is an array ofatoms. Baggage contexts aremergedusing lexicographic comparison.

atoms and appends a special trim marker, which is just the zero-length atom; we discuss TRIM in §8.4.5. _e
most important operation is JOIN.

LexicographicOrder JOIN is based on the lexicographic order of atoms. Lexicographic order is a generalization
of alphabetical order: to compare two atoms, compare them byte-by-byte from le�-to-right until one byte is
found to be less than the other, or one atom is found to be a preûx of the other (Figure 8.4a). For example, the
following atoms are lexicographically ordered: 2B01<5E7744<5F<5F01<A0 .

Lexicographic Merge To merge two baggage instances, JOIN performs a lexicographic merge, which is similar
to the merge of merge-sort: traverse the input arrays in tandem; compare pairs of atoms; select and advance the
lexicographically smaller atom each time (Figure 8.4b). Notably however, if two atoms are found to be equal,
only output them once. Figure 8.4c illustrates lexicographic merge examples on various baggage contexts.
Lexicographic merge does not sort atoms, nor requires the inputs to be sorted. _e algorithm makes a single
pass through the inputs, and repeated atoms can be output if they are not encountered together, e.g. 5F1B in
Figure 8.4c†. Lexicographic merge satisûes the properties described in §8.3.1: it is idempotent, associative,

CHAPTER 8. BAGGAGE CONTEXTS 94

commutative, lazy, and order preserving.

8.4.2 Atom Encodings (Cross-Cutting Layer)

As described in §8.3.4, the core atom representation and lexicographic merge are together suõcient for
propagating opaque baggage contexts. We now describe the intermediate encoding scheme shared by all BDL
data types that enables nesting and addressing, and provides isolation and multiplexing of ûelds and tools.

Atom Preûxes _e ûrst byte of each atom is its preûx, conceptually similar to IP packet headers. Preûxes
serve two purposes: they encode information about the atom’s type, and enable us to control the lexicographic
order of diòerent atom types regardless of their payload.

Data Atoms A data atom encodes the value of a ûeld or struct and is preûxed by a 0 byte. For example, Zipkin1

declares a TraceID ûeld of type ûxed64 (a 64 bit integer). BDL encodes primitives like ûxed64 to one data
atom; e.g. calling zmd.SetTraceID(234) will yield a data atom with the payload 234, i.e. 0000000000000000EA.
For ease of demonstration, we abbreviate data atoms by highlighting the 0 preûx and writing literal values, e.g.
0234.

Header Atoms Header atoms address data atoms. Each header encodes one component of a fully qualiûed
path name. For example, to address Zipkin.TraceID requires two header atoms, one each for Zipkin and
TraceID. Header atoms encode the preûx byte as follows:
• _e ûrst bit of a header atom preûx is 1, making all header atoms >lex all data atoms.
• _emiddle four bits of a header encode its depth in the path in descending order from 15 (themaximumdepth)
– i.e. 0�F, 1�E, . . . ,15�0. For example, Zipkin (level 0) and TraceID (level 1) encode F and E respectively.
With this encoding, headers at depth i are >lex headers at depth > i.
• _e remaining preûx bits are incidental feature �ags.
A�er the preûx byte, headers encode their component identiûer. For a compact encoding we use positional
indexes declared in BDL instead of literal identiûers, e.g. TraceID�0. Root identiûers, e.g. Zipkin, lack a
positional index and instead use an implicit global mapping of root identiûers to indexes, similar to how TCP
ports are mapped to common processes; our examples arbitrarily assign Zipkin to 2. For ease of demonstra-
tion, we abbreviate header atoms by highlighting the leading 1 bit, the header’s level, and its identiûer, e.g.
Zipkin.TraceID headers F802, F000 abbreviate as 1F2, 1E0.

Atom Order With this encoding, BDL objects lay out their atoms as a pre-order depth-ûrst traversal of
the constituent ûelds. _e traversal visits siblings in lexicographically-increasing order of identiûer. For
example, the complete encoding of Zipkin’s TraceID is simply 1F2, 1E0, 0234. If we also set Zipkin’s SpanID,
e.g.zmd.SetSpanID(55), then the encoding is 1F2, 1E0, 0234, 1E1, 055. TraceID precedes SpanID due to its
lower BDL index. Note that the root Zipkin header 1F2 is not duplicated.

Merging _e behavior of this encoding under lexicographic merge is fundamental to preserve BDL data types,
and is a core contribution of this paper. Lexicographically merging atoms under this encoding conceptually
1Zipkin is described in §8.2.2 and Figure 8.1 outlines Zipkin’s BDL declaration.

CHAPTER 8. BAGGAGE CONTEXTS 95

Orders

Users GetUser
GetCard

GetAddress
Cart GetItems
Payments Authorize

Time (ms)

1F2 1E0 0FD7A88... 1E1 08F44B2...
1E2 04555B6... 1E3 01

Zipkin
TraceID: int64(FD7A88...)
SpanID: int64(8F44B2...)
ParentSpanID: int64(4555B6...)
Sampled: True

1F2 1E0 0FD7A88... 1E1 0AE3778...
1E2 04555B6... 1E3 01 1E4
1DCardGetHostname 0compute10

Zipkin
TraceID: int64(FD7A88...)
SpanID: int64(AE3778...)
ParentSpanID: int64(4555B6...)
Sampled: True
Tags
CardGetHostname: “compute10”

1F2 1E0 0FD7A88... 1E1 0E987BA...
1E2 04555B6... 1E3 01 1E4
1DAddressGetHostname 0compute10

Zipkin
TraceID: int64(FD7A88...)
SpanID: int64(E987BA...)
ParentSpanID: int64(4555B6...)
Sampled: True
Tags
AddressGetHostname: “compute10”

1F2 1E0 0FD7A88... 1E1 04555B6...
1E3 01 1E4 1DAddressGetHostname
0compute10 1DCardGetHostname
0compute10

Zipkin
TraceID: int64(FD7A88...)
SpanID: int64(4555B6...)
Sampled: True
Tags
AddressGetHostname: “compute10”
CardGetHostname: “compute10”

1F2 1E0 0FD7A88... 1E1 04555B6...
1E3 01 1E4 -
1DAddressGetHostname 0compute10
1DCardGetHostname 0compute10

Zipkin
TraceID: int64(FD7A88...)
SpanID: int64(4555B6...)
Sampled: True
Tags
trim marker
AddressGetHostname: “compute10”
CardGetHostname: “compute10”

1F2 1E0 0FD7A88... 1E1 0DAC5C7...
1E2 04555B6... 1E3 01 1E4 -

Zipkin
TraceID: int64(FD7A88...)
SpanID: int64(DAC5C7...)
ParentSpanID: int64(4555B6...)
Sampled: True
Tags
trim marker

(a)

(b) (c) (d)
(e)

(f)

Figure 8.5: Timeline of a request to order socks in the Sock Shop microservices demo [269], invoking Users,
Cart, and Payments microservices. Rows represent threads; shaded bars represent time executing; lines indicate
causality; and we highlight invocations of BRANCH () and JOIN (). (b) and (c) illustrate concurrent execution
branches setting diòerent Tag values, that are later merged at (d). (e) illustrates atoms a�er imposing a size
constraint of 60 bytes; (f) illustrates how the trim marker preserves the position of potentially lost atoms.

entails a tandem traversal of two trees. _e traversal merges all data atoms at each node visited and proceeds
jointly through both inputs in depth-ûrst order. Nodes that exist in only one of the inputs are correctly inserted
into the appropriate position in the output. Atoms present in both inputs are preserved once without being
unnecessarily duplicated. _is behavior enables BDL to nest and multiplex ûelds and tools.

To illustrate, suppose we had set Zipkin’s SpanID and TraceID on separate baggage context instances, i.e. A
= 1F2, 1E0, 0234 and B = 1F2, 1E1, 055. LEXMERGE of A and B correctly yields 1F2, 1E0, 0234, 1E1, 055
— it does not duplicate 1F2; it correctly positions siblings 1E0 and 1E1; and it preserves 0234 and 055 under
the correct headers.

8.4.3 Example

To make these concepts concrete, we present an example using the Sock Shop microservices demo [269]. Sock
shop comprises 13 microservices written in several languages, primarily Java and Go. We implemented baggage
libraries in Java and Go; instrumented the Spring Cloud [246] and Go Kit [255] microservice frameworks;
instrumented all Java and Go microservices; and migrated Java and Go Zipkin implementations to interface
with baggage contexts instead of hard-coding identiûers.

Figure 8.5 illustrates the end-to-end execution of a request to place an order for socks, with calls to the
Orders, Users, Cart and Payments microservices. Swimlanes represent threads; we label the microservices
and APIs invoked; and highlight points during execution when the request branches and joins. Figure 8.5a
illustrates the object and corresponding atom representation of baggage included in the GetUser call from
Orders. _e baggage includes values for Zipkin’s TraceID, SpanID, ParentSpanID, and Sampled ûelds.

CHAPTER 8. BAGGAGE CONTEXTS 96

8.4.4 Complex Data Types

Beyond the simple encodings described in §8.4.2, BDL provides more elaborate data types with encodings
comprising multiple atoms. For example, BDL encodes the set data type by encoding one header atom,
then encoding a data atom per element and arranging data atoms in lexicographically-increasing order.
Lexicographically merging two encoded sets performs the correct set union and outputs sorted data atoms
due to the sorted inputs. Other data types supported by BDL include counters, maps, and CRDT variants
(cf. §8.4.6). To demonstrate the BDL map type, we update Zipkin’s BDL declaration with the following ûeld:

map<string, string> tags = 4

Tags are a recent extension to Zipkin, present in the Go Zipkin implementation but not Java. Zipkin Tags are
inspired by, and named a�er, Pivot Tracing’s baggage; however, we use the name tags instead of baggage to
avoid overloaded terminology. For this demonstration, we modify the Go-based User microservice to add tags
whenever GetAddress or GetCard is invoked.

Maps encode each key-value pair as a header containing the key literal and a data atom containing the value.
Figure 8.5b illustrates atoms a�er GetCard adds the tag CardGetHostname=compute10; similarly Figure 8.5c
illustrates atoms a�er GetAddress adds AddressGetHostname=compute10. Note that GetCard and GetAddress
are concurrent calls, so atoms in one execution branch will not be visible to the other, and vice-versa, until
a�er the branches join.

Merging _e desired merge behavior of a map is to union all keys and recursively merge values mapped
under each key. With the above encoding of maps to atoms, lexicographic merge yields the correct behavior.
Figure 8.5d illustrates this: a�er the concurrent GetCard and GetAddress calls return and the branches
eventually join, lexicographic merge correctly preserves and orders both of the key-value mappings for Tags.

_is example illustrates an important and powerful property of our encoding. _e Orders microservice is
written in Java, and its Zipkin implementation lacks support for tags. Previously, Zipkin would naïvely ignore
and lose any tags propagated from the Go implementation. However, using baggage contexts, lexicographic
merge correctly preserves and propagates tags, despite lacking knowledge of its existence or type. All BDL data
types achieve this eòect, which is extremely useful in environments like this where it is infeasible to redeploy
all components for any new tool or update to existing tools. BDL declarations can be updated to add new
ûelds and deprecate existing ûelds, without aòecting backwards compatibility with systems that deployed old
versions. _e only requirement is that, once deployed, new ûelds cannot reuse indices of existing ûelds. In
compiled objects, old versions ignore, but continue to propagate, ûelds they don’t know about.

Optimizations Since most BDL ûelds have a small index (i.e., TraceID=0, SpanID=1), we implement a special
variable-length lexvarint encoding, similar to protocol buòer’s varint, but with lexicographical comparison
equivalent to the corresponding integer comparison. Using lexvarints, we can encode most headers in 2 bytes; 1
for the preûx and 1 for the ûeld index. Lexvarints are the default integer type in BDL unless explicitly designated
ûxed-width (e.g., int64 is a lexvarint; ûxed64 is a ûxed 8 bytes). We provide further lexvarint encodings for
signed and unsigned integers, and ascending and descending order. We evaluate baggage encoded sizes in

CHAPTER 8. BAGGAGE CONTEXTS 97

§8.5, but in general they are modest, particularly for ûxed-width IDs. For example, excluding Tags, Zipkin’s
ûelds use 48 bytes.

8.4.5 Over�ow

§8.2.1 introduced TRIM, to enable system developers to impose size constraints on baggage contexts, which
is o�en necessary to avoid excessive performance overheads from potentially large contexts [182, 239]. We
call it over�ow when we are forced to discard atoms as a result of TRIM. To handle over�ow, we designate the
zero-length atom to be a special trim marker. TRIM simply drops tail atoms until the size restriction is met,
then appends the trim marker. _e trim marker is lexicographically less than all other atoms. Consequently
wherever it is inserted, it will maintain that exact position, even through subsequent branches and joins. Later,
we can observe the position of the trim marker to infer whether atoms may have been dropped.

To illustrate, we modify the Orders microservice to impose an aggressive limit of 60 bytes when calling
Payments. Consequently, baggage included with the Payments request over�ows, and the tags added by
the Users microservice are dropped (Figure 8.5e). Later, when Payments responds to Orders, the baggage
containing the trim marker merges back with the sender’s local baggage; however, the trim marker persists,
marking the position where data may have been discarded. A corollary of TRIM is that the order of BDL ûelds
also implies priority – higher index ûelds are dropped ûrst by trimming. To ensure that BDL declarations can
be updated to add higher priority ûelds, BDL supports both positive and negative indexed ûelds.

8.4.6 Con�ict-Free Replicated Data Types

As described in §8.3.3, context propagation has a direct analogy to replicated data structures. In the literature,
there are CRDT implementations for a range of data types including sets, maps, registers, counters, and
graphs [234]. Current BDL data types with CRDT equivalents are counters, �ags, sets, and maps. Furthermore,
our baggage context implementation naturally provides sets and maps (cf. §8.4.4), corresponding to the
add-only set and dictionary CRDTs; in the literature these form building blocks for many CRDTs and enable
emulation of all others [234].

To make things concrete, we describe the implementation of an add-only counter using baggage, which
mirrors the G-Counter CRDT. Counters are useful for cross-cutting tools, e.g. to measure resources consumed
during execution [182]. However, it is insuõcient to implement a counter by just propagating a single inte-
ger, because it can lead to concurrent updates or inadvertent double-counting when later merging baggage
instances. Instead, the BDL counter type is similar to a version vector [218]. A counter comprises zero or more
components. Each component has a random ID, and stores its value under a header with that ID. To increment,
we either increment an existing component, or initialize a new component. To query, we sum up the values
in all components. Execution branches reuse their own component ID, but do not share it when branching.
Counters thus maintain 1 component for each concurrent branch of execution; this grows proportionally
with execution width. When two baggage instances merge, lexicographic merge will recursively merge values

CHAPTER 8. BAGGAGE CONTEXTS 98

under each component. If a component has multiple values (i.e., the merging branches diòered), we take the
maximum value; this can be done lazily. Finally, counters supporting subtraction (i.e., PN-Counters) are easily
implemented by composing two add-only G-Counters, one for addition and one for subtraction.

8.5 Evaluation

§8.4.3 illustrated baggage contexts in the Sock Shop microservices demo environment. _e remainder of
our evaluation centers on four cross-cutting tools running simultaneously in an instrumented version of the
Hadoop stack. We focus on requests to the Hadoop Distributed File System (HDFS) [242] and Spark [280]
data analytics jobs running atop Hadoop YARN [264]. We run our experiments on a 25 node cluster. Our
evaluation demonstrates that the Tracing Plane:

• supports a range of data types, hiding concurrency subtleties
• supports a variety of cross-cutting tools, deployed simultaneously
• propagates contexts through systems in diòerent languages
• is robust to over�ow and systems with size constraints
• makes it easy to update and deploy new tool versions
• is robust to mixed tool versions and black-box propagation

8.5.1 Cross-Cutting Tools

In addition to Zipkin, described in §8.4, we implemented several other cross-cutting tools using the Tracing
Plane. Our evaluation also includes updated versions of Retro (Chapter 4) and Pivot Tracing (Chapter 6) which
use baggage contexts to propagate work�ow IDs and query tuples. Figure 8.1 shows the BDL speciûcations for
all cross-cutting tools included in our evaluation. We brie�y summarize these tools

Retro Retro, presented in Chapter 4, is a resource management framework that propagates a tenant ID
alongside executions, intercepts API calls to resources (e.g., disk, network, locks, etc.), and aggregates resource
counters per tenant. For clarity in this section, we conûgure Retro to only intercept disk API calls.

X-Trace X-Trace [135] is an end-to-end tracing framework (cf. §2.4); during execution, X-Trace logs events,
which are similar to logging statements. When X-Trace logs an event, it attaches three pieces of information: a
task ID that is randomly generated at the beginning of execution; a randomly generated event ID; and parent
IDs for the immediately preceding events. It then replaces the parent IDs in the baggage with the new event ID.
We implement a slight variation of the original X-Trace: in our version, multiple parent events can accumulate
when executions merge, so the size of X-Trace’s baggage can grow if there are multiple merges and no new
event is logged. We generate X-Trace events by overriding Java’s log4j logging.

Pivot Tracing Pivot Tracing, presented in Chapter 6 is a dynamic instrumentation system for querying
statistics about causally related events. We reproduce Q7 from Pivot Tracing’s evaluation (cf. §6.5.1), which
propagates two pieces of information: the hostname of the client when initiating an HDFS operation; and the

CHAPTER 8. BAGGAGE CONTEXTS 99

Time (ms)

À
Á
Â

0 30 60 90 120 150 180 210

Ã Ä Å Æ Ç

Execution in a thread Invocations of BRANCH Invocations of JOIN Communication between processes/
threads that also includes baggage

(a) Request timeline: rows represent threads; shading indicates execution; highlighted sections illustrate branch and join
points during execution.

0 30 60 90 120 150 180 210

0 30 60 90 120 150 180 210

0 30 60 90 120 150 180 210

0 30 60 90 120 150 180 210

Retro: X-Trace:

Pivot Tracing Q7NetJob:

(b) Cross-cutting tools query () and update () baggage values at various points during request execution.

Figure 8.6: _e end-to-end proûle of a 1MB HDFS write request with four cross-cutting tools deployed. See
§8.5.2 for a full description.

locations of ûle replicas on the NameNode when looking up a ûle. When the request reaches a DataNode, it
relates the DataNode’s hostname with the two pieces of information, and emits a result tuple.

NetJob NetJob is a cross-cutting tool we are developing for monitoring network contention in data analytics
jobs. NetJob propagates Hadoop and Spark job and task IDs alongside requests and combines it with network
traõc statistics recorded on each node. Our current implementation of NetJob propagates these IDs in a map,
to be �exible in experimenting with propagating diòerent information.

8.5.2 Cross-Cutting Tools in Practice

We instrumented HDFS 2.7.2 with the Java tracing plane library and deployed the cross-cutting tools described
in §8.5.1.

Execution Patterns

Figure 8.6a illustrates the end-to-end execution timeline of a 1MB HDFS write request, highlighting the
BRANCH and JOIN behavior at several points. _ere are swimlanes for the client (À), NameNode (Á), and three
DataNodes (Â). We highlight 5 phases: in Ã, the client makes two RPCs to create the ûle and allocate a data
block; in Ä the client sets up a streaming pipeline with three DataNodes; Å zooms in on the streaming of 64kB

CHAPTER 8. BAGGAGE CONTEXTS 100

0
4
8
12
16
20

0 30 60 90 120 150 180 210

Ex
ec

ut
io
n

W
id

th
_reads _reads + Edges

(a) Number of concurrent threads during execution, and
in-�ight communication (edges) between threads.

0
50
100
150
200

0 30 60 90 120 150 180 210

Ba
gg
ag
eS

iz
e

(b
yt
es
) Retro

NetJob
X-Trace
Pivot Tracing Q7

Total

(b)Average baggage sizes. NetJobpropagates nothing; Retro
and Pivot Tracing make few updates; X-Trace varies widely.

1k
10k

100k
1M

10M
100M

1G

0 30 60 90 120 150 180 210

N
et
w
or

k
Tx

(b
yt
es

/s
ec

on
d) Total Baggage Contribution

Time (ms)

(c) Total network throughput and baggage overhead (5ms
buckets).

0
20
40
60
80
100

0 30 60 90 120 150 180 210

Pe
rc
en

ta
ge

of
Re

qu
es

tT
ot
al

Time (ms)

Network Contribution of Baggage

(d) Percentage of network traõc due to baggage; baggage
imposes low overhead, but is proportionally expensive for
small payloads, e.g. packet acks (t = 31, t = 61, etc.).

Figure 8.7: Baggage overheads for the 1MB HDFS write request illustrated in Figure 8.6.

application-level packets through the pipeline, in a rather complex pattern of branches and joins (there can be
up to 80 unacknowledged packets in �ight). A�er writing the ûle the client awaits conûrmation that the data is
synced to disk (Æ), then makes another NameNode RPC to close the ûle (Ç). _is example illustrates how the
request execution patterns of a seemingly simple API call can be quite complex, encompassing several models
of execution; this contrasts with the comparatively simpler request-response microservices hierarchy in §8.4.3.

Cross-Cutting Tools

Figure 8.6b illustrates the places during request execution where each cross-cutting tool interacted with the
request’s baggage. Retro writes the tenant ID once and reads it on every disk operation. NetJob intercepts
all network communication to check for a job ID, but because we were not running the request as part of a
job, it never ûnds one and does nothing further. X-Trace generates events at several points during execution,
which involves both querying and updating its IDs in the baggage. Finally, Pivot Tracing Q7 instruments
three locations: the start of the request in the client; the return of getBlockLocations on the NameNode;
and DataNode DataTransferProtocol operations. _is example demonstrates how several cross-cutting tools
coexist side-by-side using baggage, and how they vary widely in terms of where cross-cutting tool logic is
invoked. All systems were instrumented once for propagation, and deploying the tools solely involved deûning
their BDL representation and using the accessor methods on the relevant variables, at the right points.

Baggage Overheads

Figure 8.7b shows a time series of the average baggage size during the request, and a break down for each
cross-cutting tool. Retro and Pivot Tracing only updated values once, and imposed constant-sized overheads of
9 and 15 bytes respectively. NetJob never updated baggage values and imposed no overhead. X-Trace accessed

CHAPTER 8. BAGGAGE CONTEXTS 101

baggage multiple times during execution, and the typical X-Trace overhead was 29 bytes to carry the TaskID
and one ParentID. In several places X-Trace accumulated multiple ParentIDs (11 at most, using 153 bytes) due
to repeated merges. Normally, X-Trace discards the previous ParentIDs each time it logs a new event; however,
as Figure 8.6b illustrates, there is a long period where X-Trace logs no events and does not discard the IDs.
Increasing the ûdelity to trace-level messages mitigated this and we saw no more than 3 ParentIDs.

In Figure 8.7c, we plot the request’s network throughput, and the cost of the baggage that is included in
network requests. In aggregate across the request, baggage contributed 11kB of the request’s total 3.18MB of
network traõc (0.35%). _e network utilization of the request varies over time, depending on the stage of
execution; RPC communication at the beginning and end of the request has light network usage (t = 0 to 20);
streaming data imposes the most overhead (t = 125 to 150); and there are periods of no network utilization
while waiting for the client to ûll up data buòers (t = 65 to 80). _e network contribution of baggage is nearly
constant; it is included in all network communication, regardless of payload sizes.

8.5.3 Cross-Cutting Tools at Scale

We now deploy the same set of cross-cutting tools in instrumented versions of Spark, YARN, and HDFS,
running on a 25-node Google Compute Engine [140] cluster. Each node is an n1-standard-4 instance with
4 cores and 15GB memory. Our workload comprises a subset of 19 TPC-DS queries [258], selected by prior
benchmarking work [130, 213], with the scale factor set to 100; that is, input data in HDFS is approximately
200GB uncompressed / 17GB compressed.

Overview of a Query

Figure 8.8a illustrates the execution of query 43 [154] (Q43). Spark first acquires 20 executors – containers
deployed in YARN that cache Spark data in memory and perform Spark computations. _e query has three
stages: (i) loading (small) metadata from HDFS; (ii) a parallel map stage that reads the tables into memory,
filters them, and joins some small tables; (iii) a shuffle stage that combines the query results over the network. In
stage (ii), each executor sets up multiple connections to HDFS to read input data, resulting in a large execution
width.

Figure 8.8c illustrates the average baggage size during query execution, which peaks at 167 bytes. Pivot
Tracing Q7 and NetJob impose higher overheads than the HDFS request in §8.5.2: the job has many HDFS read
requests, and Q7 updates the baggage in two places (client and NameNode) instead of the previous one; and
NetJob updates the baggage with stage and task IDs as the job runs. X-Trace overhead is lower because fewer
parent IDs accumulate in baggage due to merges. Retro overhead is constant as before, since it only propagates
a single tenant ID. In aggregate across the job, baggage accounts for a total of 1.0% of network throughput.

CHAPTER 8. BAGGAGE CONTEXTS 102

(i) (ii) (iii) Spark
Tasks
Spark
Stages

0 10 20 30 40 50 600

20

Sp
ar
k

Ex
ec

ut
or

s

Time (s)
(a) Illustration of tasks and stages during the execution of Spark TPC-DS Q43 on a cluster
with 20 executors running on 20 machines.

0
50
100
150
200

0 10 20 30 40 50 60
Ex
ec

ut
io
n

W
id

th _reads
_reads
+ Edges

Time (s)
(b) Execution width for Spark TPC-DS Q43 across all system components. _reads + Edges
also accounts for in-�ight network communication.

0
50
100
150
200

0 10 20 30 40 50 60Ba
gg
ag
eS

iz
e

(b
yt
es
)

Retro
NetJob
X-Trace
Pivot
Tracing
Total

Time (s)
(c) Average baggage sizes for the cross-cutting tools during Q43 execution.

10k
100k
1M

10M
100M

1G

0 10 20 30 40 50 60N
et
w
or

k
Tx

(b
yt
es

/s
)

Total
Baggage

Time (s)
(d) Additional network overhead imposed by the addition of baggage within all network
communication.

25k
50k
75k

100k
125k

0
0 10 20 30 40 50 60

D
isk

W
rit
e

(b
yt
es

/s
)

Time (s)
(e) Spark executors spill intermediary output to disk. Retro+ instruments disk writes and
increments a counter in baggage.

Figure 8.8: Execution of TPC-DS Q43 on a 25-node Spark cluster.

Developing a New Tool

So far, the demonstrated cross-cutting tools have nearly constant baggage overhead. However, data types such
as counters, which are not used by these cross-cutting tools, (cf. §8.4.6) can potentially grow to be large, since
they maintain a counter component for each execution branch in the worst case. To illustrate this, and how we
can mitigate it, we develop an updated version of Retro called Retro+ which aggregates disk writes using an
in-baggage counter. Retro+ modiûes Retro’s disk instrumentation to increment the counter, and extend Retro’s
BDL declaration with an additional ûeld: counter DiskWrites = 1. Updating Retro+ took less than 10 minutes,
and required no additional system-level modiûcations.

Figure 8.8e plots Spark’s disk write over time; every task on every executor writes its output to disk.
Figure 8.9a illustrates the growth in baggage over time. Once tasks start writing to disk (t = 25), the baggage

CHAPTER 8. BAGGAGE CONTEXTS 103

10
100
1k

10k Retro+
NetJob
X-Trace
Pivot
Tracing
Total

10k
100k
1M

10M
100M

1G

Total
Baggage

0 6010 20 30 40 50 0 6010 20 30 40 50 0 6010 20 30 40 50

(a) No over�ow limit or compaction (b) Trim to 1kB when serializing (c) Compact at task and stage boundaries

Time (s) Time (s) Time (s)

Ba
gg
ag
eS

iz
e

(b
yt
es
)

N
et
w
or

k
Tx

(b
yt
es

/s
)

Figure 8.9: Baggage size and network overhead for TPC-DS query 43 running on a 25-node Spark cluster. (a)
Baggage for Retro+ grows to 4kB in size with no over�ow conûgured; (b) Trimming baggage to 1kB reduces
the overhead but sacriûces counter precision; (c) Compacting the counter at carefully chosen points during
execution maintains correctness while substantially reducing size.

size increases linearly, as each of the 362 tasks in stage (ii) requires a new counter component. At t = 50, the
average baggage size across all execution branches is 3.7kB, which imposes up to 22% network overhead, and a
total of 13% in aggregate for the job.

_is experiment demonstrates the worst-case behavior of baggage – that it can grow proportional to
execution width. _is is, of course, dependent on the cross-cutting tool, and not inherent to baggage. We have
two mechanisms to counter this. _e ûrst, system-level instrumentation can specify hard limits for baggage
size by trimming. Figure 8.9b illustrates the growth in baggage size when we limit all baggage serialization to
1kB; at t = 30 we begin dropping atoms, which caps the network overhead to 7.4% for stage (ii) (5% in aggregate
for the job). We conûgure baggage so that Retro+ appears a�er the other cross-cutting tools, so its atoms are
dropped ûrst; this preserves the other cross-cutting tools’ baggage. Dropping Retro+’s counter components
leads to the counter being inaccurate; by the end of the job, it has a 43% error.

Our second mechanism reduces baggage size and addresses counter error. At well-chosen points during
execution (such as BSP barriers), we know that branches have completed. At these points, we can compact the
baggage by collapsing the now-defunct counter components into a single component. Compaction is a special
case of JOIN, but requires knowledge of baggage semantics (e.g., knowing that bag 1 of Retro+ is a counter) and
support for the operation by the data type. We updated our Spark instrumentation to compact baggage when
tasks and stages complete – an additional two lines of code. Figure 8.9c illustrates baggage overheads with
compaction enabled: baggage size peaks at only 186 bytes, which imposes at most 1.4% overhead during stage
(ii) and a total of 1.1% in aggregate for the job. _is occurs because at the end of each of the 362 tasks in stage
(ii), the additional counter component it created is dropped and merged into some other existing counter
component. Consequently, the number of components �uctuates between 2 and 4 during the job, over�ow
does not occur, and the counter value is correct at the end of the job.

Benchmark Results

Figure 8.10 repeats the Spark experiments for 19 TPC-DS queries, including results with andwithout compaction
(Retro+C and Retro+ respectively). _e queries each diòer in the number of stages and tasks, and at what points

CHAPTER 8. BAGGAGE CONTEXTS 104

0
20
40
60
80
100

3 7 19 27 34 42 4346 52 53 55 59 63 65 68 73 79 89 98

Ba
gg
ag
eS

iz
e

(b
yt
es
)

Pivot
Tracing
NetJob
Retro+C
X-Trace

Retro+96
2

20
49

28
5

20
34

53
57

20
8

183
7

18
60

20
2

22
84

20
5

20
34

24
00

24
27

513 45
1

40
8

23
30

22
0

TPC-DS Query

Figure 8.10: Average baggage sizes for cross-cutting tools across 19 TPC-DS queries executed on a 25-node
Spark cluster. Figures for Retro+ show with and without compaction.

they write to disk.

8.6 Discussion

In this section we discuss our experiences with using baggage contexts, relating both to the experiments
presented in this chapter, and with cross-cutting tools more broadly. We also complement our discussion of
the cross-cutting tools and related applications discussed throughout this chapter.

Developing and Updating Tools In general, we found the baggage context abstraction made it easy to
develop and update new cross-cutting tools without having to revisit system-level instrumentation. For
example, we added per-request logging levels to X-Trace, conûguration �ags in Retro, and a tool to record
critical paths, all without touching the lower level system instrumentation.

Baggage Compaction In §8.5.3 we introduced a compaction operator. Compaction is a special case of JOIN,
but we omit it from the transit layer API because, in order to compact a data type, it requires knowledge of
tool and data type semantics (i.e., knowledge that speciûc atoms correspond to a speciûc data type). _is
circumvents the separation of concerns achieved by our layering, in exchange for improved performance.

Datatype-Aware Over�ow Similarly, we only implemented naive over�ow that drops atoms from the end of
baggage. However, if cross-cutting tool semantics are known (i.e., BDL-generated code for the tool is deployed
in a node), then we could implement a data type-aware over�ow; for example, a counter could drop the
components with the smallest values to minimize counter error.

Lazy Resolution Lazy resolution (§8.3.1) enables baggage contexts to carry essentially arbitrary data types,
as cross-cutting tools can defer evaluation of custom merge functions until tool logic is invoked. However, this
is only possible because merge is commutative. In some circumstances, tools might want a non-commutative
merge operation. For example, in an environment where executions are RPC request-response trees, a tool
might want to distinguish between baggage contexts of the caller and callee. We intentionally avoid supporting
this use case, as it encourages amore restrictive executionmodel and commonly leads to brittle instrumentation

CHAPTER 8. BAGGAGE CONTEXTS 105

(cf. §7.4).

Execution Patterns Our experiments demonstrated propagation in a variety of execution patterns, including
nested RPCs, continuations, streams, and computation DAGs. Other environments, such as microservices
architectures, are even more amenable to features such as compaction.

Instrumentation for Context Propagation Even with end-to-end baggage context propagation, successful
cross-cutting tool deployment is still largely dependent on instrumentation decisions made by system de-
velopers. Errors in instrumentation can aòect cross-cutting tools, as can mismatched expectations of what
constitutes the extent of an execution. In this paper we advocate for instrumentation to propagate contexts
along the end-to-end execution path of requests, i.e., the “trigger-preserving slice” [230]. However, baggage
contexts could be propagated along other dimensions, such as through caches, using the same ûve propagation
operations.

Overheads _e application-level overhead of deploying baggage was low, consistent with benchmarks from
other papers. Overheads are more dependent on the cost of cross-cutting tool logic than the cost of baggage
propagation. Baggage itself can be lazily serialized and deserialized, and branch and join can be eõciently
implemented using tricks such as reference counting.

Cross-Language Compatibility BDL’s wire speciûcation of serialized atoms is language-independent, and
minimal tracing plane support only requires the atom layer. _e atom layer is simple and easy to implement,
requiring less than 100 LOC in our Go implementation.

Datatype Proofs We have not yet provided formal deûnitions or proofs of the properties of lexicographic
comparison and lexicographic merge, and leave it to future work to examine this in more detail. Particular
results that we depend upon in this work include (i) proofs that lexicographic comparison is a total order on
atoms; (ii) proofs that lexicographic merge is idempotent, commutative, and associative; (iii) proofs – for all
BDL data types and for the overall baggage context representation – that lexicographic merge on their encoded
representation correctly preserves the desired merge behavior for the data type (as illustrated in Figure 8.2);
and (iv) proofs that baggage contexts themselves are a CRDT under lexicographic merge with the subsequence
operator providing a least-upper-bound.

End-to-End Tracing Tools Baggage contexts are designed for arbitrary context data for a broad class of
cross-cutting tools. Of these, end-to-end tracing frameworks are the most prevalent today, and these tools are
useful for a range of tasks surrounding performancemonitoring, anomaly detecting, and resourcemanagement.
In the open-source community, Dapper’s span model is the prevailing approach with numerous derivative
implementations [62, 196, 238, 246, 259, 274]. Many popular open-source systems and service frameworks

CHAPTER 8. BAGGAGE CONTEXTS 106

support tracing, including Twitter’s Finagle [260], Uber’s tchannel [261], and Go kit [255]. As these tracing
systems have matured, their community has encountered many of the challenges described in this thesis [273],
and recently motivated the OpenTracing eòort to standardize the semantics of this class of cross-cutting
tools [201]. Canopy [157] also identiûes and addresses these challenges, by decoupling aspects of context
propagation, instrumentation, and trace representation.

Beyond End-to-End Tracing Recent cross-cutting tools in the research literature tackled a variety of use
cases, such as measuring and predicting critical path latency [114, 155, 225, 253], tracking energy consump-
tion [133], understanding client-server interactions [155, 176,225], making data quality trade-oòs [114], attribut-
ing resource consumption [180, 182], failure testing [149] and others [106, 161, 161]. Other work has explored
similar context propagation ideas at the granularity of network packets [254]. In some cases, authors have
experienced limitations similar to those described in §7.4; e.g. Facebook authors could not extend existing
TraceID propagation to record their desired causality [113]; nor could Google authors extend Dapper [184,212].

Comparison to Pivot Tracing In Chapter 6 we introduced Pivot Tracing, which includes a related, but more
restricted concept of baggage as a generic set of key-value pairs that follows execution. Pivot Tracing does not
decouple cross-cutting tools from instrumentation, and its baggage is not order preserving, a requirement for
lexicographic merge. _is chapter generalizes baggage to a wide range of data types, and introduce abstractions
that encapsulate baggage implementations from cross-cutting tools and system developers. Our notion of
Baggage relies on the advances in concurrent data types [233, 234], and is inspired by the way in which IDLs
such as protocol buòers [263] automate and simplify the tasks of marshalling, serializing, and transporting
datastructures.

8.7 Conclusion

_e Tracing Plane is a step forward towards truly pervasive instrumentation of distributed systems, address-
ing important roadblocks. At the system level, it increases the value of instrumenting a system – ideally at
development time – as such instrumentation can be re-used by many tracing and related tools. It also makes
the work of cross-cutting tool developers much easier, as they can focus on tool logic and data types, and
ignore details of serialization, deserialization, propagation, and all of the subtleties of keeping data consistent
in face of concurrency. _e layered design brings in all the standard beneûts of a strong separation of concerns,
reuse, and independent evolution around a simple yet expressive narrow waist. While we have demonstrated
the implementation of several cross-cutting tools on a number of instrumented systems, the Tracing Plane’s
ultimate success will be measured by the in�uence of its ideas in practice.

Chapter 9
Conclusions and Future Work

As systems get composed of increasing numbers of distributed components, understanding how they work
and fail hinges on our tools to instrument their execution. While there are many very useful tools, there are
important challenges preventing their truly pervasive application.

_is thesis outlined several important distributed systems challenges that are prevalent in distributed
systems today. _ese challenges predominantly aòect the end-to-end behavior of executions, and we use the
term cross-cutting executions to refer to this dimension of execution, and to this perspective on distributed
system behavior. In this thesis we examined these challenges in detail, and characterized a broad class of
cross-cutting tools designed to tackle cross-cutting challenges.

_is thesis explored in greater detail two application domains where these challenges arise: resource
management, and dynamic monitoring. To address these challenges, we designed and implemented two new
cross-cutting tools, for each domain respectively.

Subsequent to this examination of two application domains, we generalized our experiences developing
these tools, and observations of others from the research literature. We identiûed several key challenges to
the development and pervasive deployment of cross-cutting tools in distributed systems. To address these
challenges, we ûnally proposed common abstractions to underpin their designs.

9.1 Multi-Tenant Resource Management

_e ûrst application domain considered in this thesis is resource management in multi-tenant distributed
systems. We presented Retro, a framework for implementing resource management policies in multi-tenant
distributed systems. Retro tackles important challenges and provides key abstractions that enable a separation
between resource-management policies and mechanisms. It requires low developer eòort, and is lightweight
enough to be run in production. Retro enables policies that are system-agnostic, resource-agnostic, and
uniformly treat all system activities, including background management tasks. To the best of our knowledge,
Retro is the ûrst framework to do so.

107

CHAPTER 9. CONCLUSIONS AND FUTUREWORK 108

9.2 Dynamic Causal Monitoring

_e second application domain considered in this thesis is dynamic monitoring of distributed systems. We
presented Pivot Tracing, a monitoring framework for distributed systems that combines dynamic instrumenta-
tion and causal tracing. Pivot Tracing is the ûrst monitoring system that enables ad-hoc cross-component
monitoring and querying. Its novel happened-before join operator fundamentally increases the expressive
power of dynamic instrumentation and the applicability of causal tracing. Pivot Tracing enables cross-tier
analysis between any inter-operating applications, with low execution overhead. Ultimately, its power lies in
the uniform and ubiquitous way in which it integrates monitoring of a heterogeneous distributed system.

9.3 Universal Abstractions for Context Propagation

Building on our experiences with Retro and Pivot Tracing, the ûnal contribution of this thesis generalizes our
experiences developing these tools, and observations of others from the research literature Baggage contexts
are a step forward towards truly pervasive instrumentation of distributed systems, addressing important
roadblocks. At the system level, it increases the value of instrumenting a system – ideally at development
time – as such instrumentation can be re-used by many tracing and related tools. It also makes the work of
cross-cutting tool developers much easier, as they can focus on tool logic and data types, and ignore details
of serialization, deserialization, propagation, and all of the subtleties of keeping data consistent in face of
concurrency. _e layered design brings in all the standard beneûts of a strong separation of concerns, reuse,
and independent evolution around a simple yet expressive narrow waist. While we have demonstrated the
implementation of several cross-cutting tools on a number of instrumented systems, the Tracing Plane’s
ultimate success will be measured by the in�uence of its ideas in practice.

9.4 Future Work

Cloud and distributed systems are still a rapidly changing area. As we discover new designs for distributed
systems, new use cases, and new requirements, we will also encounter new and interesting dimensions along
which they can fail. _ere are several exciting future directions in this area. Here, we brie�y outline future
work in establishing cross-cutting tools in practice, and the common designs and conventions that might
emerge over time.

9.4.1 Cross-Cutting Tools

_is thesis presents two promising avenues for second-generation cross-cutting tools. Retro improves visibility
and control over resource consumption in distributed systems, while Pivot Tracing improves our visibility
of unanticipated monitoring problems and enables control over how metrics are grouped and aggregated.
However, as we discover new designs for distributed systems, new use cases, and new requirements, we will

CHAPTER 9. CONCLUSIONS AND FUTUREWORK 109

also encounter new and interesting dimensions along which they can fail. _ere also remain several interesting
applications for cross-cutting tools that are as-yet unexplored. _is includes applications in detecting security
violations and enforcing security policies; performing targeted chaos engineering, failure testing, and invariant
veriûcation; scriptable debugging; improving caching and scheduling heuristics; and many more. Furthermore,
many of the traditional tools used for standalone so�ware lack a distributed systems analogue, including
fundamental tools such as proûlers and stop-the-world debuggers. Distributed systems present a new setting
for us to revisit these tools and techniques that are well understood for the single machine setting.

9.4.2 Abstractions for Cross-Cutting Tools

Deploying cross-cutting tools inherently requires coherent choices and participation across all system compo-
nents. However, today there is little consensus on which tools, abstractions, and approaches to use. Developers
of diòerent components are o�en isolated from one another, causing them to make incompatible or con�icting
choices about the cross-cutting tools to embed. Ideally it is not developers who should make these choices,
but the operators who deploy the systems at runtime. An interesting future direction to pursue is the general-
purpose mechanisms that developers can embed in the system at development time, to enable operators to
dynamically deploy any cross-cutting tool at runtime. _e work presented in this thesis on baggage contexts is
a step towards this broader goal. A compelling way to explore this question is to take inspiration from so�ware
deûned networking, and consider how cross-cutting tools can decouple system-wide enforcement mechanisms
from tool-speciûc control logic. By disentangling control logic from enforcement, we can expose and exploit
commonalities in the way diòerent tools observe and manipulate system behaviors.

9.4.3 Automatic Instrumentation

Instrumentation has long been the biggest pain point of deploying cross-cutting tools. _e work presented
in this thesis reduces, but does not fully remove, the instrumentation burden associated with deploying
cross-cutting tools. In the distributed tracing community, as well as the broader application performance
monitoring (APM) industry, fully automatic instrumentation is a panacea: if the instrumentation burden
can be completely removed, then it potentially enables black-box deployment of many cross-cutting tools. It
remains an open question whether fully automatic instrumentation is possible. However, we remain cautiously
optimistic, because we observe that instrumentation is challenging not because it is complex, but because
it must be pervasive; most instrumentation is simple, repetitive, and characterized by only a handful of
diòerent techniques for capturing diòerent models. Future work in this area can explore methods for observing
or inferring execution models in systems, with the goal of reducing or eliminating the need for manual
instrumentation. If successful, this would represent a signiûcant advance for both the research community
and industry.

CHAPTER 9. CONCLUSIONS AND FUTUREWORK 110

9.4.4 Large-Scale Performance Analytics

First-generation tracing tools have addressedmany of the challenges in capturing rich, end-to-end performance
traces in large-scale systems. For the intrepid systems researcher, this presents a conundrum—we have been so
focused on how to collect performance data from systems, that we don’t know what to do with it once we have
it. _e second-generation cross-cutting tools presented in this thesis only perform rudimentary analysis, as do
all other tools presented in the research literature. An exciting future research direction lies in advancing the
techniques used to derive insights from cross-cutting performance data. _is might entail applying techniques
from statistics, data mining, and machine learning to large volumes of performance traces. _ere are a wide
range of potential use cases, and they extend beyond just analysis. For example, traces can be used to ûnd
features early in an execution that are highly predictive of later performance; this insight can then be exploited
by cross-cutting tools at runtime to make better scheduling decisions. One of the key challenges of analyzing
performance traces is incorporating their structure, as a trace is conceptually a directed, acyclic graph (DAG)
of events, with annotations (e.g. labels and metrics) on events and on edges; the most interesting features are
o�en the structural relationships between events, such as their ordering and timing. _is structure makes
many oò-the-shelf techniques computationally intractable given the number of potential features; it demands
new approaches to visualizing, querying, and exploring traces based on structure; and at scale, it imposes new
storage and processing constraints.

Bibliography

[1] Adrian Cockro�, Amazon Web Services. Personal Communication. (February 2017). Page 81.

[2] Prateek Agarwal. Distributed Tracing at Yelp. (April 2016). Retrieved January 2017 from https:
//engineeringblog.yelp.com/2016/04/distributed-tracing-at-yelp.html. Page 13.

[3] Marcos K. Aguilera, Jeòrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and Athicha Muthitacharoen.
Performance Debugging for Distributed Systems of Black Boxes. In 19th ACM Symposium on Operating
Systems Principles (SOSP ’03). Pages 8 and 46.

[4] Faruk Akgul. ZeroMQ. Packt Publishing, 2013. Page 28.

[5] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Interval Tree Clocks: A Logical Clock for
Dynamic Systems. In 12th International Conference On Principles Of Distributed Systems (OPODIS ’08).
Page 63.

[6] Nuha Alshuqayran, Nour Ali, and Roger Evans. A Systematic Mapping Study in Microservice Architec-
ture. In 9th IEEE International Conference on Service-Oriented Computing and Applications (SOCA ’16).
Pages 1, 2, 6, 7, 8, 9, 75, and 77.

[7] Sara Alspaugh, Bei Di Chen, Jessica Lin, Archana Ganapathi, Marti A Hearst, and Randy H Katz.
Analyzing Log Analysis: An Empirical Study of User Log Mining. In 28th USENIX Large Installation
System Administration Conference (LISA ’14). Page 12.

[8] Amazon. Amazon Web Services. Retrieved January 2017 from https://aws.amazon.com. [Online;
accessed January 2017]. Page 5.

[9] Amazon. AWS Lambda. Retrieved January 2017 from https://aws.amazon.com/lambda. Pages 5 and 81.

[10] Amazon. Summary of the Amazon DynamoDB Service Disruption. (September 2015). Retrieved June
2016 from https://aws.amazon.com/message/5467D2/. Pages 2, 7, and 15.

[11] AndrewWang, Cloudera. Personal Communication. (March 2014). Page 17.

[12] Apache. Accumulo. Retrieved January 2017 from https://accumulo.apache.org/. Pages 46 and 81.

[13] Apache. ACCUMULO-1197: Pass Accumulo trace functionality through the DFSClient. Retrieved
January 2017 from https://issues.apache.org/jira/browse/ACCUMULO-1197. Page 81.

[14] Apache. ACCUMULO-3507: Naming_readFactory.new_read should not wrap runnable
with TraceRunnable. Retrieved January 2017 from https://issues.apache.org/jira/browse/
ACCUMULO-3507. Page 78.

111

https://engineeringblog.yelp.com/2016/04/distributed-tracing-at-yelp.html
https://engineeringblog.yelp.com/2016/04/distributed-tracing-at-yelp.html
https://aws.amazon.com
https://aws.amazon.com/lambda
https://aws.amazon.com/message/5467D2/
https://accumulo.apache.org/
https://issues.apache.org/jira/browse/ACCUMULO-1197
https://issues.apache.org/jira/browse/ACCUMULO-3507
https://issues.apache.org/jira/browse/ACCUMULO-3507

BIBLIOGRAPHY 112

[15] Apache. ACCUMULO-3725: Majc trace tacked onto minc trace. Retrieved January 2017 from https:
//issues.apache.org/jira/browse/ACCUMULO-3725. Page 78.

[16] Apache. ACCUMULO-3741: Reduce incompatibilities with htrace 3.2.0-incubating. Retrieved January
2017 from https://issues.apache.org/jira/browse/ACCUMULO-3741. Page 82.

[17] Apache. ACCUMULO-4171: Update to htrace-core4. https://issues.apache.org/jira/browse/
ACCUMULO-4171. [Online; accessed January 2017]. Pages 81 and 82.

[18] Apache. ACCUMULO-4191: Tracing on client can sometimes lose "sendMutations" events. Retrieved
January 2017 from https://issues.apache.org/jira/browse/ACCUMULO-4191. Page 78.

[19] Apache. ACCUMULO-4192: Analyze _reading for Tracing correctness. Retrieved January 2017 from
https://issues.apache.org/jira/browse/ACCUMULO-4192. Page 78.

[20] Apache. ACCUMULO-898: Look into replacing CloudTrace. Retrieved January 2017 from https:
//issues.apache.org/jira/browse/ACCUMULO-898. Page 81.

[21] Apache. Accumulo CloudTrace. Retrieved January 2017 from http://accumulo.apache.org/1.6/
accumulo_user_manual.html#_tracing. Page 81.

[22] Apache. Cassandra. Retrieved January 2017 from https://cassandra.apache.org/. Pages 78 and 81.

[23] Apache. CASSANDRA-10392: Allow Cassandra to trace to custom tracing implementations. Retrieved
January 2017 from https://issues.apache.org/jira/browse/CASSANDRA-10392. Pages 78 and 81.

[24] Apache. CASSANDRA-1123: Allow tracing query details. Retrieved January 2017 from https://issues.
apache.org/jira/browse/CASSANDRA-1123. Page 81.

[25] Apache. CASSANDRA-11706: Tracing payload not passed through newSession(..). Retrieved January
2017 from https://issues.apache.org/jira/browse/CASSANDRA-11706. Page 78.

[26] Apache. CASSANDRA-12835: Tracing payload not passed from QueryMessage to tracing session.
Retrieved January 2017 from https://issues.apache.org/jira/browse/CASSANDRA-12835. Pages 78
and 79.

[27] Apache. CASSANDRA-5483: Repair tracing. Retrieved January 2017 from https://issues.apache.
org/jira/browse/CASSANDRA-5483. Pages 78 and 81.

[28] Apache. CASSANDRA-7644: Tracing does not log commitlog/memtable ops when the coordinator
is a replica. Retrieved January 2017 from https://issues.apache.org/jira/browse/CASSANDRA-7644.
Page 78.

[29] Apache. CASSANDRA-7657: Tracing doesn’t ûnalize under load when it should. Retrieved January
2017 from https://issues.apache.org/jira/browse/CASSANDRA-7657. Page 78.

[30] Apache. CASSANDRA-8032: User based request scheduler. Retrieved June 2016 from https://issues.
apache.org/jira/browse/CASSANDRA-8032. Page 21.

[31] Apache. CASSANDRA-8553: Add a key-value payload for third party usage. Retrieved January 2017
from https://issues.apache.org/jira/browse/CASSANDRA-8553. Page 81.

[32] Apache. CLOUDSTACK-618: API request throttling to avoid malicious attacks on MS per account
through frequent API request. Retrieved June 2016 from https://issues.apache.org/jira/browse/
CLOUDSTACK-618. Page 21.

https://issues.apache.org/jira/browse/ACCUMULO-3725
https://issues.apache.org/jira/browse/ACCUMULO-3725
https://issues.apache.org/jira/browse/ACCUMULO-3741
https://issues.apache.org/jira/browse/ACCUMULO-4171
https://issues.apache.org/jira/browse/ACCUMULO-4171
https://issues.apache.org/jira/browse/ACCUMULO-4191
https://issues.apache.org/jira/browse/ACCUMULO-4192
https://issues.apache.org/jira/browse/ACCUMULO-898
https://issues.apache.org/jira/browse/ACCUMULO-898
http://accumulo.apache.org/1.6/accumulo_user_manual.html#_tracing
http://accumulo.apache.org/1.6/accumulo_user_manual.html#_tracing
https://cassandra.apache.org/
https://issues.apache.org/jira/browse/CASSANDRA-10392
https://issues.apache.org/jira/browse/CASSANDRA-1123
https://issues.apache.org/jira/browse/CASSANDRA-1123
https://issues.apache.org/jira/browse/CASSANDRA-11706
https://issues.apache.org/jira/browse/CASSANDRA-12835
https://issues.apache.org/jira/browse/CASSANDRA-5483
https://issues.apache.org/jira/browse/CASSANDRA-5483
https://issues.apache.org/jira/browse/CASSANDRA-7644
https://issues.apache.org/jira/browse/CASSANDRA-7657
https://issues.apache.org/jira/browse/CASSANDRA-8032
https://issues.apache.org/jira/browse/CASSANDRA-8032
https://issues.apache.org/jira/browse/CASSANDRA-8553
https://issues.apache.org/jira/browse/CLOUDSTACK-618
https://issues.apache.org/jira/browse/CLOUDSTACK-618

BIBLIOGRAPHY 113

[33] Apache. Cloudstack API Request _rottling. Retrieved June 2016 from https://cwiki.apache.org/
confluence/display/CLOUDSTACK/API+Request+Throttling. Pages 2, 7, and 15.

[34] Apache. HADOOP-13438: Optimize IPC server protobuf decoding. Retrieved January 2017 from
https://issues.apache.org/jira/browse/HADOOP-13438. Page 78.

[35] Apache. HADOOP-13473: Tracing in IPC Server is broken. Retrieved January 2017 from https:
//issues.apache.org/jira/browse/HADOOP-13473. Page 78.

[36] Apache. HADOOP-3810: NameNode seems unstable on a cluster with little space le�. Retrieved June
2016 from https://issues.apache.org/jira/browse/HADOOP-3810. Pages 2, 7, and 15.

[37] Apache. HADOOP-6599 Split RPC metrics into summary and detailed metrics. Retrieved July 2017
from https://issues.apache.org/jira/browse/HADOOP-6599. Page 45.

[38] Apache. HADOOP-6859 Introduce additional statistics to FileSystem. Retrieved July 2017 from
https://issues.apache.org/jira/browse/HADOOP-6859. Page 45.

[39] Apache. HADOOP-9640: RPC Congestion Control with FairCallQueue. Retrieved June 2016 from
https://issues.apache.org/jira/browse/HADOOP-9640. Page 21.

[40] Apache. HBase. Retrieved June 2016 from https://hbase.apache.org. Pages 5, 16, 64, and 81.

[41] Apache. HBASE-11004: Extend traces through FSHLog#sync. Retrieved January 2017 from https:
//issues.apache.org/jira/browse/HBASE-11004. Page 78.

[42] Apache. HBASE-11559 Add dumping of DATA block usage to the BlockCache JSON report. Retrieved
July 2017 from https://issues.apache.org/jira/browse/HBASE-11559. Page 45.

[43] Apache. HBASE-11598: Add simple RPC throttling. Retrieved June 2016 from https://issues.apache.
org/jira/browse/HBASE-11598. Page 21.

[44] Apache. HBASE-12356: Rpc with region replica does not propagate tracing spans. Retrieved January
2017 from https://issues.apache.org/jira/browse/HBASE-12356. Page 79.

[45] Apache. HBASE-12364 API for query metrics. Retrieved July 2017 from https://issues.apache.org/
jira/browse/HBASE-12364. Page 45.

[46] Apache. HBASE-12424 Finer grained logging and metrics for split transaction. Retrieved July 2017 from
https://issues.apache.org/jira/browse/HBASE-12424. Page 45.

[47] Apache. HBASE-12477 Add a �ush failed metric. Retrieved July 2017 from https://issues.apache.
org/jira/browse/HBASE-12477. Page 45.

[48] Apache. HBASE-12494 Add metrics for blocked updates and delayed �ushes. Retrieved July 2017 from
https://issues.apache.org/jira/browse/HBASE-12494. Page 45.

[49] Apache. HBASE-12496 A blockedRequestsCount metric. Retrieved July 2017 from https://issues.
apache.org/jira/browse/HBASE-12496. Page 45.

[50] Apache. HBASE-12574 Update replication metrics to not do so many map look ups. Retrieved July 2017
from https://issues.apache.org/jira/browse/HBASE-12574. Page 45.

[51] Apache. HBASE-12938: Upgrade HTrace to a recent supportable incubating version. Retrieved January
2017 from https://issues.apache.org/jira/browse/HBASE-12938. Pages 81 and 82.

https://cwiki.apache.org/confluence/display/CLOUDSTACK/API+Request+Throttling
https://cwiki.apache.org/confluence/display/CLOUDSTACK/API+Request+Throttling
https://issues.apache.org/jira/browse/HADOOP-13438
https://issues.apache.org/jira/browse/HADOOP-13473
https://issues.apache.org/jira/browse/HADOOP-13473
https://issues.apache.org/jira/browse/HADOOP-3810
https://issues.apache.org/jira/browse/HADOOP-6599
https://issues.apache.org/jira/browse/HADOOP-6859
https://issues.apache.org/jira/browse/HADOOP-9640
https://hbase.apache.org
https://issues.apache.org/jira/browse/HBASE-11004
https://issues.apache.org/jira/browse/HBASE-11004
https://issues.apache.org/jira/browse/HBASE-11559
https://issues.apache.org/jira/browse/HBASE-11598
https://issues.apache.org/jira/browse/HBASE-11598
https://issues.apache.org/jira/browse/HBASE-12356
https://issues.apache.org/jira/browse/HBASE-12364
https://issues.apache.org/jira/browse/HBASE-12364
https://issues.apache.org/jira/browse/HBASE-12424
https://issues.apache.org/jira/browse/HBASE-12477
https://issues.apache.org/jira/browse/HBASE-12477
https://issues.apache.org/jira/browse/HBASE-12494
https://issues.apache.org/jira/browse/HBASE-12496
https://issues.apache.org/jira/browse/HBASE-12496
https://issues.apache.org/jira/browse/HBASE-12574
https://issues.apache.org/jira/browse/HBASE-12938

BIBLIOGRAPHY 114

[52] Apache. HBASE-13077: BoundedCompletionService doesn’t pass trace info to server. Retrieved January
2017 from https://issues.apache.org/jira/browse/HBASE-13077. Page 78.

[53] Apache. HBASE-13078: IntegrationTestSendTraceRequests is a noop. Retrieved January 2017 from
https://issues.apache.org/jira/browse/HBASE-13078. Page 79.

[54] Apache. HBASE-13458: Create/expand unit test to exercise htrace instrumentation. Retrieved January
2017 from https://issues.apache.org/jira/browse/HBASE-13458. Page 79.

[55] Apache. HBASE-14451: Move on to htrace-4.0.1 (from htrace-3.2.0) and tell a couple of good trace
stories. Retrieved January 2017 from https://issues.apache.org/jira/browse/HBASE-14451. Pages
80 and 82.

[56] Apache. HBASE-15880: RpcClientImpl#tracedWriteRequest incorrectly closes HTrace span. Retrieved
January 2017 from https://issues.apache.org/jira/browse/HBASE-14880. Page 78.

[57] Apache. HBASE-2257 [stargate] multiuser mode. Retrieved July 2017 from https://issues.apache.
org/jira/browse/HBASE-2257. Page 45.

[58] Apache. HBASE-4038 Hot Region : Write Diagnosis. Retrieved July 2017 from https://issues.apache.
org/jira/browse/HBASE-4038. Page 45.

[59] Apache. HBASE-4145 Provide metrics for hbase client. Retrieved July 2017 from https://issues.
apache.org/jira/browse/HBASE-4145. Page 45.

[60] Apache. HBASE-4219 Add Per-Column Family Metrics. Retrieved July 2017 from https://issues.
apache.org/jira/browse/HBASE-4219. Page 45.

[61] Apache. HBASE-6215: Per-request proûling. Retrieved January 2017 from https://issues.apache.
org/jira/browse/HBASE-6215. Page 81.

[62] Apache. HBASE-6449: Dapper like tracing. Retrieved January 2017 from https://issues.apache.org/
jira/browse/HBASE-6449. Pages 8, 80, 81, and 105.

[63] Apache. HBASE-7958 Statistics per-column family per-region. Retrieved July 2017 from https://
issues.apache.org/jira/browse/HBASE-7958. Page 45.

[64] Apache. HBASE-8370 Report data block cache hit rates apart from aggregate cache hit rates. Retrieved
July 2017 from https://issues.apache.org/jira/browse/HBASE-8370. Page 45.

[65] Apache. HBASE-8868 add metric to report client shortcircuit reads. Retrieved July 2017 from https:
//issues.apache.org/jira/browse/HBASE-8868. Page 45.

[66] Apache. HBASE-9121: Update HTrace to 2.00 and add new example usage. Retrieved January 2017 from
https://issues.apache.org/jira/browse/HBASE-9121. Page 82.

[67] Apache. HBASE-9722 need documentation to conûgure HBase to reduce metrics. Retrieved July 2017
from https://issues.apache.org/jira/browse/HBASE-9722. Page 45.

[68] Apache. HBase Reference Guide. Retrieved July 2017 from https://hbase.apache.org/book.html.
Page 45.

[69] Apache. HDFS-10174: Add HTrace support to the Balancer. Retrieved January 2017 from https:
//issues.apache.org/jira/browse/HDFS-10174. Page 78.

https://issues.apache.org/jira/browse/HBASE-13077
https://issues.apache.org/jira/browse/HBASE-13078
https://issues.apache.org/jira/browse/HBASE-13458
https://issues.apache.org/jira/browse/HBASE-14451
https://issues.apache.org/jira/browse/HBASE-14880
https://issues.apache.org/jira/browse/HBASE-2257
https://issues.apache.org/jira/browse/HBASE-2257
https://issues.apache.org/jira/browse/HBASE-4038
https://issues.apache.org/jira/browse/HBASE-4038
https://issues.apache.org/jira/browse/HBASE-4145
https://issues.apache.org/jira/browse/HBASE-4145
https://issues.apache.org/jira/browse/HBASE-4219
https://issues.apache.org/jira/browse/HBASE-4219
https://issues.apache.org/jira/browse/HBASE-6215
https://issues.apache.org/jira/browse/HBASE-6215
https://issues.apache.org/jira/browse/HBASE-6449
https://issues.apache.org/jira/browse/HBASE-6449
https://issues.apache.org/jira/browse/HBASE-7958
https://issues.apache.org/jira/browse/HBASE-7958
https://issues.apache.org/jira/browse/HBASE-8370
https://issues.apache.org/jira/browse/HBASE-8868
https://issues.apache.org/jira/browse/HBASE-8868
https://issues.apache.org/jira/browse/HBASE-9121
https://issues.apache.org/jira/browse/HBASE-9722
https://hbase.apache.org/book.html
https://issues.apache.org/jira/browse/HDFS-10174
https://issues.apache.org/jira/browse/HDFS-10174

BIBLIOGRAPHY 115

[70] Apache. HDFS-11622 TraceId hardcoded to 0 in DataStreamer, correlation between multiple spans
is lost. Retrieved April 2017 from https://issues.apache.org/jira/browse/HDFS-11622. Pages 80
and 81.

[71] Apache. HDFS-4169 Add per-disk latency metrics to DataNode. Retrieved July 2017 from https:
//issues.apache.org/jira/browse/HDFS-4169. Page 45.

[72] Apache. HDFS-4183: _rottle block recovery. Retrieved June 2016 from https://issues.apache.org/
jira/browse/HDFS-4183. Pages 2, 7, 15, and 19.

[73] Apache. HDFS-5253 Add requesting user’s name to PathBasedCacheEntry. Retrieved July 2017 from
https://issues.apache.org/jira/browse/HDFS-5253. Page 45.

[74] Apache. HDFS-5274: Add Tracing to HDFS. Retrieved January 2017 from https://issues.apache.
org/jira/browse/HDFS-5274. Pages 78, 80, and 81.

[75] Apache. HDFS-6093 Expose more caching information for debugging by users. Retrieved July 2017
from https://issues.apache.org/jira/browse/HDFS-6093. Page 45.

[76] Apache. HDFS-6268 Better sorting in NetworkTopology.pseudoSortByDistance when no local node
is found. Retrieved July 2017 from https://issues.apache.org/jira/browse/HDFS-6268. Pages x, 65,
66, and 68.

[77] Apache. HDFS-6292 Display HDFS per user and per group usage on webUI. Retrieved July 2017 from
https://issues.apache.org/jira/browse/HDFS-6292. Page 45.

[78] Apache. HDFS-7054: Make DFSOutputStream tracing more ûne-grained. Retrieved January 2017 from
https://issues.apache.org/jira/browse/HDFS-7054. Pages 80 and 81.

[79] Apache. HDFS-7189: Add trace spans for DFSClient metadata operations. Retrieved January 2017 from
https://issues.apache.org/jira/browse/HDFS-7189. Page 78.

[80] Apache. HDFS-7390 Provide JMX metrics per storage type. Retrieved July 2017 from https://issues.
apache.org/jira/browse/HDFS-7390. Page 45.

[81] Apache. HDFS-7963: Fix expected tracing spans in TestTracing along with HDFS-7054. Retrieved
January 2017 from https://issues.apache.org/jira/browse/HDFS-7963. Page 79.

[82] Apache. HDFS-9080: update htrace version to 4.0.1. Retrieved January 2017 from https://issues.
apache.org/jira/browse/HDFS-9080. Pages 80 and 82.

[83] Apache. HDFS-945: Make NameNode resilient to DoS attacks (malicious or otherwise). Retrieved June
2016 from https://issues.apache.org/jira/browse/HDFS-945. Pages 2, 7, and 15.

[84] Apache. HDFS-9853: Ozone: Add container deûnitions. Retrieved January 2017 from https://issues.
apache.org/jira/browse/HDFS-9853. Page 80.

[85] Apache. HTrace. Retrieved January 2017 from http://htrace.incubator.apache.org/. Page 46.

[86] Apache. HTRACE-330: Add to Tracer,TRACE-level logging of push andpop of contexts to aid debugging
"Can’t close TraceScope..". Retrieved January 2017 from https://issues.apache.org/jira/browse/
HTRACE-330. Page 78.

https://issues.apache.org/jira/browse/HDFS-11622
https://issues.apache.org/jira/browse/HDFS-4169
https://issues.apache.org/jira/browse/HDFS-4169
https://issues.apache.org/jira/browse/HDFS-4183
https://issues.apache.org/jira/browse/HDFS-4183
https://issues.apache.org/jira/browse/HDFS-5253
https://issues.apache.org/jira/browse/HDFS-5274
https://issues.apache.org/jira/browse/HDFS-5274
https://issues.apache.org/jira/browse/HDFS-6093
https://issues.apache.org/jira/browse/HDFS-6268
https://issues.apache.org/jira/browse/HDFS-6292
https://issues.apache.org/jira/browse/HDFS-7054
https://issues.apache.org/jira/browse/HDFS-7189
https://issues.apache.org/jira/browse/HDFS-7390
https://issues.apache.org/jira/browse/HDFS-7390
https://issues.apache.org/jira/browse/HDFS-7963
https://issues.apache.org/jira/browse/HDFS-9080
https://issues.apache.org/jira/browse/HDFS-9080
https://issues.apache.org/jira/browse/HDFS-945
https://issues.apache.org/jira/browse/HDFS-9853
https://issues.apache.org/jira/browse/HDFS-9853
http://htrace.incubator.apache.org/
https://issues.apache.org/jira/browse/HTRACE-330
https://issues.apache.org/jira/browse/HTRACE-330

BIBLIOGRAPHY 116

[87] Apache. HTRACE-5: Tracing never ends when using TraceRunnable in a thread pool. Retrieved January
2017 from https://issues.apache.org/jira/browse/HTRACE-5. Page 78.

[88] Apache. KUDU-1395: Scanner KeepAlive requests can get starved on an overloaded server. Retrieved
June 2016 from https://issues.apache.org/jira/browse/KUDU-1395. Pages 15 and 21.

[89] Apache. MESOS-1949 All log messages from master, slave, executor, etc. should be collected on a
per-task basis. Retrieved July 2017 from https://issues.apache.org/jira/browse/MESOS-1949. Page
45.

[90] Apache. MESOS-2157 Add /master/slaves and /master/frameworks/{framework}/tasks/{task} endpoints.
Retrieved July 2017 from https://issues.apache.org/jira/browse/MESOS-2157. Page 45.

[91] Apache. PHOENIX-177: Collect usage and performance metrics. Retrieved January 2017 from https:
//issues.apache.org/jira/browse/PHOENIX-177. Page 80.

[92] Apache. Phoenix 195: Zipkin. Retrieved January 2017 from https://github.com/apache/phoenix/
pull/195. Page 81.

[93] Mona Attariyan, Michael Chow, and Jason Flinn. X-ray: Automating Root-Cause Diagnosis of Perfor-
mance Anomalies in Production So�ware. In 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’12). Page 46.

[94] Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and Sahaana Suri. Mac-
roBase: Analytic Monitoring for the Internet of _ings. arXiv preprint arXiv:1603.00567, 2016. Page
12.

[95] Gaurav Banga, Peter Druschel, and Jeòrey C. Mogul. Resource Containers: A New Facility for Re-
source Management in Server Systems. In 3rd USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’99). Page 21.

[96] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using Magpie for Request Ex-
traction and Workload Modelling. In 6th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’04). Pages 8, 11, 46, 58, and 83.

[97] Paul Barham, Rebecca Isaacs, Richard Mortier, and Dushyanth Narayanan. Magpie: Online Modelling
and Performance-Aware Systems. In 9th USENIX Workshop on Hot Topics in Operating Systems (HotOS
’03). Pages 8, 11, 46, and 72.

[98] Jeò Barr. AWS X-Ray – See Inside of Your Distributed Application. (De-
cember 2016). Retrieved January 2017 from https://aws.amazon.com/blogs/aws/
aws-x-ray-see-inside-of-your-distributed-application/. Pages 8 and 81.

[99] Dan Belcher. Introducing Google Stackdriver: uniûed monitoring and logging for GCP and
AWS. (March 2016). Retrieved January 2017 from https://cloudplatform.googleblog.com/2016/
03/Google-Stackdriver-integrated-monitoring-and-logging-for-hybrid-cloud.html. Page 8.

[100] Matteo Bertozzi. New in CDH 5.2: Improvements for Running Multiple Workloads on a Single HBase
Cluster. (December 2014). Retrieved June 2016 from http://blog.cloudera.com/blog/2014/12/
new-in-cdh-5-2-improvements-for-running-multiple-workloads-on-a-single-hbase-cluster/.
Page 21.

https://issues.apache.org/jira/browse/HTRACE-5
https://issues.apache.org/jira/browse/KUDU-1395
https://issues.apache.org/jira/browse/MESOS-1949
https://issues.apache.org/jira/browse/MESOS-2157
https://issues.apache.org/jira/browse/PHOENIX-177
https://issues.apache.org/jira/browse/PHOENIX-177
https://github.com/apache/phoenix/pull/195
https://github.com/apache/phoenix/pull/195
https://aws.amazon.com/blogs/aws/aws-x-ray-see-inside-of-your-distributed-application/
https://aws.amazon.com/blogs/aws/aws-x-ray-see-inside-of-your-distributed-application/
https://cloudplatform.googleblog.com/2016/03/Google-Stackdriver-integrated-monitoring-and-logging-for-hybrid-cloud.html
https://cloudplatform.googleblog.com/2016/03/Google-Stackdriver-integrated-monitoring-and-logging-for-hybrid-cloud.html
http://blog.cloudera.com/blog/2014/12/new-in-cdh-5-2-improvements-for-running-multiple-workloads-on-a-single-hbase-cluster/
http://blog.cloudera.com/blog/2014/12/new-in-cdh-5-2-improvements-for-running-multiple-workloads-on-a-single-hbase-cluster/

BIBLIOGRAPHY 117

[101] Ivan Beschastnikh, Yuriy Brun, Michael D Ernst, and Arvind Krishnamurthy. Inferring Models of
Concurrent Systems from Logs of _eir Behavior with CSight. In 36th ACM International Conference
on So�ware Engineering (ICSE ’14). Pages 11 and 46.

[102] Peter Bodik. Overview of the Workshop of Managing Large-Scale Systems via the Analysis of System
Logs and the Application of Machine Learning Techniques (SLAML’11). SIGOPS Operating Systems
Review, 45(3):20–22, 2011. Page 44.

[103] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie, Yikang Xu,
Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, et al. Windows Azure Storage: A Highly Available
Cloud Storage Service with Strong Consistency. In 23rd ACMSymposium onOperating Systems Principles
(SOSP ’11). Pages 5, 14, 20, and 21.

[104] Bryan Cantrill. Hidden in Plain Sight. ACM Queue, 4(1):26–36, 2006. Page 45.

[105] Bryan Cantrill, Michael W Shapiro, and Adam H Leventhal. Dynamic Instrumentation of Production
Systems. In 2004 USENIX Annual Technical Conference (ATC). Pages 45, 61, and 71.

[106] Anupam Chanda, Alan L Cox, andWilly Zwaenepoel. Whodunit: Transactional Proûling for Multi-Tier
Applications. In 2nd ACM European Conference on Computer Systems (EuroSys ’07). Pages 8, 9, 21, 46,
48, 69, 75, and 106.

[107] Anupam Chanda, Khaled Elmeleegy, Alan L Cox, and Willy Zwaenepoel. Causeway: Support for Con-
trolling andAnalyzing the Execution ofMulti-tier Applications. In 6th ACM/IFIP/USENIX International
Middleware Conference (Middleware ’05). Pages 21, 71, 76, 82, and 83.

[108] Fay Chang, Jeòrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed storage system for
structured data. In 7th USENIX Symposium on Operating Systems Design and Implementation (OSDI
’06). Page 5.

[109] Fay Chang, Jeòrey Dean, Sanjay Ghemawat,Wilson CHsieh, Deborah AWallach,Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E Gruber. Bigtable: A Distributed Storage System for Structured
Data. In 7th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’06). Pages
64 and 81.

[110] Mike Y Chen, Anthony Accardi, Emre Kiciman, David A Patterson, Armando Fox, and Eric A Brewer.
Path-Based Failure and EvolutionManagement. In 1st USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’04). Pages 8 and 46.

[111] Mike Y Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric Brewer. Pinpoint: Problem
Determination in Large, Dynamic Internet Services. In 32nd IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN ’02). Pages 2, 8, and 46.

[112] Shigeru Chiba. Javassist: Java Bytecode Engineering Made Simple. Java Developer’s Journal, 9(1), 2004.
Page 61.

[113] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and_omas FWenisch. _eMystery Machine:
End-to-end Performance Analysis of Large-scale Internet Services. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’14). Pages 11, 12, 46, 73, 78, 79, and 106.

BIBLIOGRAPHY 118

[114] Michael Chow, Kaushik Veeraraghavan, Michael Cafarella, and Jason Flinn. DQBarge: Improving
Data-Quality Tradeoòs in Large-Scale Internet Services. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’16). Pages 2, 9, 75, and 106.

[115] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. Benchmarking
Cloud Serving Systems with YCSB. In 1st ACM Symposium on Cloud Computing (SoCC ’10). Page 70.

[116] Graham Cormode and Shan Muthukrishnan. An Improved Data Stream Summary: _e Count-Min
Sketch and its Applications. Journal of Algorithms, 55(1):58–75, 2005. Page 43.

[117] J. Couckuyt, P. Davies, and J.M. Cahill. Multiple chart user interface, 06 2005. US Patent US6906717 B2.
Pages 49 and 72.

[118] Datastax. JAVA-794: Enable tracing accross multiple result pages. Retrieved January 2017 from https:
//datastax-oss.atlassian.net/browse/JAVA-794. Page 78.

[119] Datastax. JAVA-815: No tracing results when a RETRY happens. Retrieved January 2017 from https:
//datastax-oss.atlassian.net/browse/JAVA-815. Page 78.

[120] Jeò Dean. _e Rise of Cloud Computing Systems. In SOSP History Day 2015. Page 5.

[121] Jeòrey Dean and Sanjay Ghemawat. Mapreduce: Simpliûed data processing on large clusters. In 6th
USENIX Symposium on Operating System Design and Implementation (OSDI ’04). Pages 5 and 64.

[122] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman,
Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s
Highly Available Key-Value Store. Pages 5, 14, and 20.

[123] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S Wallach. QUIRE: Lightweight
Provenance for Smart Phone Operating Systems. In 20th USENIX Security Symposium (Security ’11).
Pages 9 and 75.

[124] Distributed Tracing Workgroup. Distributed Tracing Workgroup. Retrieved January 2017 from https:
//goo.gl/xs96fn. Pages viii and 13.

[125] Distributed Tracing Workgroup. Shared Documents. Retrieved January 2017 from https://goo.gl/
8znW4w. Page 83.

[126] _anh Do, Haryadi S Gunawi, _anh Do, Tyler Harter, Yingchao Liu, Haryadi S Gunawi, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. _e Case for Limping-Hardware Tolerant Clouds. In
5th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’13). Page 26.

[127] _anh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-anake, and Haryadi S Gunawi.
Limplock: Understanding the Impact of Limpware on Scale-Out Cloud Systems. In 4th ACM Symposium
on Cloud Computing (SoCC ’13). Pages 6 and 69.

[128] Dynatrace. Dynatrace Application Monitoring. Retrieved July 2017 from http://www.dynatrace.com.
Pages 8 and 46.

[129] William Enck, Peter Gilbert, Byung-Gon Chun, Landon Cox, Jaeyeon Jung, Patrick McDaniel, and
Anmol N Sheth. TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring
on Smartphones. In 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI
’10). Pages 9 and 75.

https://datastax-oss.atlassian.net/browse/JAVA-794
https://datastax-oss.atlassian.net/browse/JAVA-794
https://datastax-oss.atlassian.net/browse/JAVA-815
https://datastax-oss.atlassian.net/browse/JAVA-815
https://goo.gl/xs96fn
https://goo.gl/xs96fn
https://goo.gl/8znW4w
https://goo.gl/8znW4w
http://www.dynatrace.com

BIBLIOGRAPHY 119

[130] Justin Erickson, Marcel Kornacker, and Dileep Kumar. New SQL Choices
in the Apache Hadoop Ecosystem: Why Impala Continues to Lead. (May
2014). Retrieved January 2017 from https://blog.cloudera.com/blog/2014/05/
new-sql-choices-in-the-apache-hadoop-ecosystem-why-impala-continues-to-lead/. Page
101.

[131] Úlfar Erlingsson, Marcus Peinado, Simon Peter, Mihai Budiu, and Gloria Mainar-Ruiz. Fay: Extensible
Distributed Tracing from Kernels to Clusters. In 23rd ACM Symposium on Operating Systems Principles
(SOSP ’11). Pages 45, 48, 59, 61, 71, and 72.

[132] Christian Esposito, Aniello Castiglione, and Kim-Kwang Raymond Choo. Challenges in Delivering
So�ware in the Cloud as Microservices. IEEE Cloud Computing, 3(5):10–14, 2016. Pages 1, 2, 6, and 7.

[133] Rodrigo Fonseca, Prabal Dutta, Philip Levis, and Ion Stoica. Quanto: Tracking Energy in Networked
Embedded Systems. In 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI
’08). Pages 9 and 106.

[134] Rodrigo Fonseca, Michael J Freedman, and George Porter. Experiences with Tracing Causality in
Networked Services. In 2010 USENIX Internet Network Management Workshop/Workshop on Research
on Enterprise Networking (INM/WREN ’10). Pages 11 and 78.

[135] Rodrigo Fonseca, George Porter, Randy H Katz, Scott Shenker, and Ion Stoica. X-Trace: A Pervasive Net-
work Tracing Framework. In 4th USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’07). Pages 2, 8, 11, 13, 46, 48, 60, 72, 74, 78, 79, 82, and 98.

[136] Sanjay Ghemawat, Howard Gobioò, and Shun-Tak Leung. _e google ûle system. In 19th ACM
Symposium on Operating Systems Principles (SOSP ’03). Pages 5 and 6.

[137] Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica. Multi-Resource Fair Queueing for Packet
Processing. In 2012 Conference of the ACM Special Interest Group on Data Communication (SIGCOMM).
Pages 20, 24, and 32.

[138] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and Ion Stoica. Dom-
inant Resource Fairness: Fair Allocation of Multiple Resource Types. In 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’11). Pages 18, 24, 32, and 33.

[139] Google. Cloud Platform. Retrieved January 2017 from https://cloud.google.com. Page 5.

[140] Google. Compute Engine. Retrieved January 2017 from https://cloud.google.com/compute/. Page
101.

[141] Google. gRPC/Census. Retrieved January 2017 from https://goo.gl/iEqlqH. Pages 9, 13, 75, and 77.

[142] Oliver Gould. Real World Microservices: When Services Stop Playing Well and Start Get-
ting Real. (May 2016). Retrieved July 2017 from https://blog.buoyant.io/2016/05/04/
real-world-microservices-when-services-stop-playing-well-and-start-getting-real/. Pages
2 and 7.

[143] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali Venkatrao, Frank
Pellow, and Hamid Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-By,
Cross-Tab, and Sub-Totals. Data Mining and Knowledge Discovery, 1(1):29–53, 1997. Pages 49 and 72.

https://blog.cloudera.com/blog/2014/05/new-sql-choices-in-the-apache-hadoop-ecosystem-why-impala-continues-to-lead/
https://blog.cloudera.com/blog/2014/05/new-sql-choices-in-the-apache-hadoop-ecosystem-why-impala-continues-to-lead/
https://cloud.google.com
https://cloud.google.com/compute/
https://goo.gl/iEqlqH
https://blog.buoyant.io/2016/05/04/real-world-microservices-when-services-stop-playing-well-and-start-getting-real/
https://blog.buoyant.io/2016/05/04/real-world-microservices-when-services-stop-playing-well-and-start-getting-real/

BIBLIOGRAPHY 120

[144] Ajay Gulati, Arif Merchant, and Peter J. Varman. mClock: Handling _roughput Variability for Hy-
pervisor IO Scheduling. In 9th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’10). Pages 18 and 43.

[145] Zhenyu Guo, Sean McDirmid, Mao Yang, Li Zhuang, Pu Zhang, Yingwei Luo, Tom Bergan, Madan
Musuvathi, Zheng Zhang, and Lidong Zhou. Failure Recovery: When the Cure Is Worse _an the
Disease. In 14th USENIX Workshop on Hot Topics in Operating Systems (HotOS ’13). Pages 1, 2, 6, 7, 15,
and 19.

[146] Zhenyu Guo, Dong Zhou, Haoxiang Lin, Mao Yang, Fan Long, Chaoqiang Deng, Changshu Liu, and
Lidong Zhou. G2 : A Graph Processing System for Diagnosing Distributed Systems. In 2011 USENIX
Annual Technical Conference (ATC). Pages 8 and 46.

[147] Jiawei Han, Yixin Chen, Guozhu Dong, Jian Pei, Benjamin WWah, Jianyong Wang, and Y Dora Cai.
Stream Cube: An Architecture for Multi-Dimensional Analysis of Data Streams. Distributed and Parallel
Databases, 18(2):173–197, 2005. Page 73.

[148] Matt Heath. A Journey into Microservices: Dealing with Complexity. (March
2015). Retrieved January 2017 from http://sudo.hailoapp.com/services/2015/03/09/
journey-into-a-microservice-world-part-3/. Pages 1, 2, 6, 7, and 13.

[149] Victor Heorhiadi, Shriram Rajagopalan, Hani Jamjoom, Michael K Reiter, and Vyas Sekar. Gremlin:
Systematic Resilience Testing of Microservices. In 36th IEEE International Conference on Distributed
Computing Systems (ICDCS ’16). Pages 9 and 106.

[150] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy Katz,
Scott Shenker, and Ion Stoica. Mesos: A Platform for Fine-grained Resource Sharing in the Data Center.
In 8th USENIX Conference on Networked Systems Design and Implementation (NSDI ’11). Page 20.

[151] @Honest_Update. Honest status page. (October 2015). Retrieved July 2017 from https://twitter.com/
honest_update/status/651897353889259520. Page 7.

[152] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. _e HiBench Benchmark Suite:
Characterization of the MapReduce-Based Data Analysis. In 26th IEEE International Conference on
Data Engineering Workshops (ICDEW ’10). Page 70.

[153] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. ZooKeeper: Wait-free
Coordination for Internet-scale Systems. In 2010 USENIX Annual Technical Conference (ATC). Pages 5,
14, and 16.

[154] Impala TPC-DS Kit. TPC-DS Query 43. Retrieved January 2017 from https://github.com/cloudera/
impala-tpcds-kit/blob/c5d32ae55a5259dd081bf4546bb650b2a3d668de/queries/q43.sql. Page 101.

[155] Yurong Jiang, Lenin Ravindranath, Suman Nath, and Ramesh Govindan. WebPerf: Evaluating “What-If ”
Scenarios for Cloud-hosted Web Applications. In 2016 Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM). Pages 8, 79, 82, and 106.

[156] _eodore Johnson. Approximate Analysis of Reader/Writer Queues. IEEE Transactions on So�ware
Engineering, 21(3):209–218, 1995. Page 30.

[157] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win
Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi, Vinod Vekataraman, Kaushik Veeraraghavan, and

http://sudo.hailoapp.com/services/2015/03/09/journey-into-a-microservice-world-part-3/
http://sudo.hailoapp.com/services/2015/03/09/journey-into-a-microservice-world-part-3/
https://twitter.com/honest_update/status/651897353889259520
https://twitter.com/honest_update/status/651897353889259520
https://github.com/cloudera/impala-tpcds-kit/blob/c5d32ae55a5259dd081bf4546bb650b2a3d668de/queries/q43.sql
https://github.com/cloudera/impala-tpcds-kit/blob/c5d32ae55a5259dd081bf4546bb650b2a3d668de/queries/q43.sql

BIBLIOGRAPHY 121

Yee Jiun Song. Canopy: An End-to-End Performance Tracing And Analysis System. In 26th ACM
Symposium on Operating Systems Principles (SOSP ’17). Pages 6, 7, 8, 12, 13, 74, 75, 79, 81, 89, and 106.

[158] Henry R Kang. Computational Color Technology. SPIE Press Bellingham, 2006. Page 31.

[159] Sung-Il Kang and Heung-Kyu Lee. Analysis and Solution of Non-Preemptive Policies for Scheduling
Readers and Writers. SIGOPS Operating Systems Review, 32(3):30–50, 1998. Page 30.

[160] Nitesh Kant. Distributed Tracing at Net�ix. (July 2015). Retrieved January 2017 from https:
//speakerdeck.com/niteshkant/distributed-tracing-at-netflix. Page 13.

[161] Partha Kanuparthy, Yuchen Dai, Sudhir Pathak, Sambit Samal, _eophilus Benson, Mojgan Ghasemi,
and PPS Narayan. YTrace: End-to-end Performance Diagnosis in Large Cloud and Content Providers.
arXiv preprint arXiv:1602.03273, 2016. Pages 8, 13, and 106.

[162] Suman Karumuri. PinTrace: Distributed Tracing at Pinterest. (August 2016). Retrieved July 2017 from
https://www.slideshare.net/mansu/pintrace-advanced-aws-meetup. Pages 11, 13, 78, and 81.

[163] Soila P. Kavulya, Scott Daniels, Kaustubh Joshi, Matti Hiltunen, Rajeev Gandhi, and Priya Narasimhan.
Draco: Statistical Diagnosis of Chronic Problems in Large Distributed Systems. In 42nd IEEE/IFIP
Conference on Dependable Systems and Networks (DSN ’12). Pages 11, 12, and 46.

[164] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeòrey Palm, and William G. Griswold. An
Overview of AspectJ. In 15th European Conference on Object-Oriented Programming (ECOOP ’01). Pages
29, 61, and 65.

[165] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-Oriented Programming. In 11th European Conference on Object-
Oriented Programming (ECOOP ’97). Page 51.

[166] Tom Killalea. _e Hidden Dividends of Microservices. Communications of the ACM, 59(8):42–45, 2016.
Pages 1, 2, 6, and 7.

[167] Myunghwan Kim, Roshan Sumbaly, and Sam Shah. Root Cause Detection in a Service-Oriented
Architecture. In 2013 ACM International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS). Page 46.

[168] Matt Klein. Ly�’s Envoy: From Monolith to Service Mesh. (January 2017). Retrieved January 2017 from
https://www.microservices.com/talks/lyfts-envoy-monolith-service-mesh-matt-klein/. Page
13.

[169] Steven Y Ko, Praveen Yalagandula, Indranil Gupta, Vanish Talwar, Dejan Milojicic, and Subu Iyer.
Moara: Flexible and Scalable Group-Based Querying System. In 9th ACM/IFIP/USENIX International
Conference on Middleware (Middleware ’08). Pages 12 and 46.

[170] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky, Casey Ching, Alan Choi, Justin
Erickson, Martin Grund, Daniel Hecht, Matthew Jacobs, et al. Impala: A Modern, Open-Source SQL
Engine for Hadoop. In 7th Biennial Conference on Innovative Data Systems Research (CIDR ’15). Page 15.

[171] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Communications of
the ACM, 21(7):558–565, 1978. Pages 7, 48, 53, and 76.

https://speakerdeck.com/niteshkant/distributed-tracing-at-netflix
https://speakerdeck.com/niteshkant/distributed-tracing-at-netflix
https://www.slideshare.net/mansu/pintrace-advanced-aws-meetup
https://www.microservices.com/talks/lyfts-envoy-monolith-service-mesh-matt-klein/

BIBLIOGRAPHY 122

[172] Brian Laub, Chengwei Wang, Karsten Schwan, and Chad Huneycutt. Towards Combining Online &
Oøine Management for Big Data Applications. In 11th USENIX International Conference on Autonomic
Computing (ICAC ’14). Pages 64 and 69.

[173] Jonathan Leavitt. End-to-End Tracing Models: Analysis and Uniûcation. B.Sc. _esis, Brown University,
2014. Page 7.

[174] Chris Li. eBay Tech Blog: Quality of Service in Hadoop. (August 2014). Retrieved June 2016 from
http://www.ebaytechblog.com/2014/08/21/quality-of-service-in-hadoop/. Pages 2, 7, and 15.

[175] Chris Li. HDFS NameNode Denial of Service Resilience. Retrieved June 2016 from https://issues.
apache.org/jira/secure/attachment/12616864/NN-denial-of-service-updated-plan.pdf. Page
15.

[176] Ding Li, James Mickens, Suman Nath, and Lenin Ravindranath. Domino: Understanding Wide-Area,
Asynchronous Event Causality in Web Applications. In 6th ACM Symposium on Cloud Computing
(SoCC ’15). Pages 8, 82, and 106.

[177] Lightstep. Lightstep. Retrieved January 2017 from http://lightstep.com. Page 79.

[178] Todd Lipcon,David Alves, Dan Burkert, Jean-Daniel Cryans, AdarDembo,Mike Percy, Silvius Rus, Dave
Wang, Matteo Bertozzi, Colin Patrick McCabe, and Andrew Wang. Kudu: Storage for Fast Analytics on
Fast Data. Retrieved June 2016 from http://getkudu.io/kudu.pdf. Pages 2, 7, and 15.

[179] João Loò,Daniel Porto,Carlos Baquero, JoãoGarcia,NunoPreguiça, andRodrigoRodrigues. Transparent
Cross-System Consistency. In 3rd International Workshop on Principles and Practice of Consistency for
Distributed Data (PaPoC ’17). Pages 2, 9, and 75.

[180] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musuvathi. Retro: Targeted Resource
Management in Multi-Tenant Distributed Systems. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’15). Pages 9, 69, 74, 78, 79, and 106.

[181] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musuvathi. Towards General-Purpose
Resource Management in Shared Cloud Services. In 10th USENIXWorkshop on Hot Topics in System
Dependability (HotDep ’14). Pages 78 and 79.

[182] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. Pivot Tracing: Dynamic Causal Monitoring for
Distributed Systems. In 25th ACM Symposium on Operating Systems Principles (SOSP ’15). Pages 9, 12,
75, 79, 83, 97, and 106.

[183] Gurmeet Singh Manku and Rajeev Motwani. Approximate Frequency Counts over Data Streams. In
28th International Conference on Very Large Data Bases (VLDB ’02). Page 43.

[184] Gideon Mann, Mark Sandler, Darja Krushevskaja, Sudipto Guha, and Eyal Even-Dar. Modeling the
Parallel Execution of Black-Box Services. In 3rd USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud ’11). Pages 8, 11, 46, and 106.

[185] Matthew L Massie, Brent N Chun, and David E Culler. _e Ganglia Distributed Monitoring System:
Design, Implementation, and Experience. Parallel Computing, 30(7):817–840, 2004. Pages 12, 45, and 46.

[186] Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: Reconciling Object, Relations and XML in the
.NET Framework. In 2006 ACM SIGMOD International Conference on Management of Data. Page 50.

http://www.ebaytechblog.com/2014/08/21/quality-of-service-in-hadoop/
https://issues.apache.org/jira/secure/attachment/12616864/NN-denial-of-service-updated-plan.pdf
https://issues.apache.org/jira/secure/attachment/12616864/NN-denial-of-service-updated-plan.pdf
http://lightstep.com
http://getkudu.io/kudu.pdf

BIBLIOGRAPHY 123

[187] Paul Menage. Control Groups. (2004). Retrieved July 2017 from https://www.kernel.org/doc/
Documentation/cgroup-v1/cgroups.txt. Page 15.

[188] Haibo Mi, Huaimin Wang, Zhenbang Chen, and Yangfan Zhou. Automatic Detecting Performance
Bugs in Cloud Computing Systems via Learning Latency Speciûcation Model. In 8th IEEE International
Symposium on Service Oriented System Engineering (SOSE ’14), pages 302–307. IEEE. Pages 8 and 46.

[189] Haibo Mi, HuaiminWang, Yangfan Zhou, Michael R Lyu, and Hua Cai. Toward Fine-Grained, Unsuper-
vised, Scalable Performance Diagnosis for Production Cloud Computing Systems. IEEE Transactions
on Parallel and Distributed Systems, 24(6):1245–1255, 2013. Pages 8 and 46.

[190] Haibo Mi, HuaiminWang, Yangfan Zhou, Michael Rung-Tsong Lyu, Hua Cai, and Gang Yin. An Online
Service-Oriented Performance Proûling Tool for Cloud Computing Systems. Frontiers of Computer
Science, 7(3):431–445, 2013. Pages 8 and 46.

[191] Microso�. Azure. Retrieved January 2017 from https://azure.microsoft.com. Page 5.

[192] Kiran-Kumar Muniswamy-Reddy, Peter Macko, and Margo I Seltzer. Provenance for the Cloud. In 8th
USENIX Conference on File and Storage Technologies (FAST ’10). Pages 9 and 75.

[193] Andrew CMyers and Barbara Liskov. A Decentralized Model for Information Flow Control. In 16th
ACM Symposium on Operating Systems Principles (SOSP ’97). Pages 9 and 75.

[194] Karthik Nagaraj, Charles Edwin Killian, and Jennifer Neville. Structured Comparative Analysis of
Systems Logs to Diagnose Performance Problems. In 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’12). Pages 12 and 46.

[195] Vivek R. Narasayya, Sudipto Das, Manoj Syamala, Badrish Chandramouli, and Surajit Chaudhuri.
SQLVM: Performance Isolation in Multi-Tenant Relational Database-as-a-Service. In 6th Biennial
Conference on Innovative Data Systems Research (CIDR ’13). Pages 20 and 21.

[196] Naver. Pinpoint. Retrieved January 2017 from https://github.com/naver/pinpoint. Pages 8, 83,
and 105.

[197] Net�ix. Net�ix Open Source So�ware. Retrieved January 2017 from http://netflix.github.io/.
Pages 2 and 5.

[198] Sam Newman. Building Microservices. O’Reilly Media, Inc., 2015. Pages 1, 2, 6, and 7.

[199] Adam Oliner, Archana Ganapathi, and Wei Xu. Advances and Challenges in Log Analysis. Communi-
cations of the ACM, 55(2):55–61, 2012. Page 46.

[200] Adam J. Oliner, Ashutosh V. Kulkarni, and Alex Aiken. Using Correlated Surprise to Infer Shared
In�uence. In 40th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN ’10).
Pages 11 and 46.

[201] OpenTracing. OpenTracing. Retrieved January 2017 from http://opentracing.io/. Pages 8, 78,
and 106.

[202] OpenTracing. OpenTracing 28: Non-RPC Spans and Mapping to Multiple Parents. Retrieved January
2017 from https://github.com/opentracing/opentracing.io/issues/28. Pages 80 and 83.

[203] OpenTracing. Speciûcation 23: Standard(s) for in-process propagation. Retrieved February 2017 from
https://github.com/opentracing/specification/issues/23. Page 83.

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://azure.microsoft.com
https://github.com/naver/pinpoint
http://netflix.github.io/
http://opentracing.io/
https://github.com/opentracing/opentracing.io/issues/28
https://github.com/opentracing/specification/issues/23

BIBLIOGRAPHY 124

[204] OpenTracing. Speciûcation 5: Non-RPC Spans and Mapping to Multiple Parents. Retrieved February
2017 from https://github.com/opentracing/specification/issues/5. Pages 80, 82, and 83.

[205] OpenZipkin. OpenZipkin 48: Would a common http response id header be helpful? Retrieved January
2017 from https://github.com/openzipkin/openzipkin.github.io/issues/48. Page 80.

[206] OpenZipkin. Zipkin 1189: Representing an asynchronous span in Zipkin. Retrieved January 2017 from
https://github.com/openzipkin/zipkin/issues/1189. Pages 80 and 81.

[207] OpenZipkin. Zipkin 1243: Support async spans. Retrieved January 2017 from https://github.com/
openzipkin/zipkin/issues/1243. Pages 80 and 81.

[208] OpenZipkin. Zipkin 1244: Multiple parents aka Linked traces. Retrieved January 2017 from https:
//github.com/openzipkin/zipkin/issues/1244. Pages 80 and 81.

[209] OpenZipkin. Zipkin 925: How to track async spans? Retrieved January 2017 from https://github.
com/openzipkin/zipkin/issues/925. Pages 80 and 81.

[210] OpenZipkin. Zipkin 939: Zipkin v2 span model. Retrieved January 2017 from https://github.com/
openzipkin/zipkin/issues/939. Pages 80 and 81.

[211] Oracle. _e Java HotSpot Performance Engine Architecture. Retrieved March 2015 from http://www.
oracle.com/technetwork/java/whitepaper-135217.html. Page 70.

[212] Krzysztof Ostrowski, Gideon Mann, and Mark Sandler. Diagnosing Latency in Multi-Tier Black-Box
Services. In 5th Workshop on Large Scale Distributed Systems and Middleware (LADIS ’11). Pages 8, 46,
and 106.

[213] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon Chun. Making Sense of
Performance in Data Analytics Frameworks. In 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’15). Pages 12 and 101.

[214] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Sparrow: Distributed, Low Latency
Scheduling. In 24th ACM Symposium on Operating Systems Principles (SOSP ’13). Page 20.

[215] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling TCP _roughput: A Simple
Model and its Empirical Validation. In 1998 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM). Page 30.

[216] Abhay K Parekh and Robert G Gallagher. A Generalized Processor Sharing Approach to Flow Control
in Integrated Services Networks: _e Multiple Node Case. IEEE/ACM Transactions on Networking,
2(2):137–150, 1994. Page 26.

[217] Insung Park and Ricky Buch. Event Tracing: Improve Debugging and Performance Tuning with
ETW. (April 2007). Retrieved July 2017 from http://download.microsoft.com/download/3/A/7/
3A7FA450-1F33-41F7-9E6D-3AA95B5A6AEA/MSDNMagazineApril2007en-us.chm. [Online; published
April 2007; accessed July 2017]. Page 71.

[218] D Stott Parker, Gerald J Popek, Gerard Rudisin, Allen Stoughton, Bruce J Walker, Evelyn Walton, Jo-
hanna M Chow, David Edwards, Stephen Kiser, and Charles Kline. Detection of Mutual Inconsistency
in Distributed Systems. IEEE Transactions on So�ware Engineering, (3):240–247, 1983. Pages 63, 81,
and 97.

https://github.com/opentracing/specification/issues/5
https://github.com/openzipkin/openzipkin.github.io/issues/48
https://github.com/openzipkin/zipkin/issues/1189
https://github.com/openzipkin/zipkin/issues/1243
https://github.com/openzipkin/zipkin/issues/1243
https://github.com/openzipkin/zipkin/issues/1244
https://github.com/openzipkin/zipkin/issues/1244
https://github.com/openzipkin/zipkin/issues/925
https://github.com/openzipkin/zipkin/issues/925
https://github.com/openzipkin/zipkin/issues/939
https://github.com/openzipkin/zipkin/issues/939
http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://download.microsoft.com/download/3/A/7/3A7FA450-1F33-41F7-9E6D-3AA95B5A6AEA/MSDNMagazineApril2007en-us.chm
http://download.microsoft.com/download/3/A/7/3A7FA450-1F33-41F7-9E6D-3AA95B5A6AEA/MSDNMagazineApril2007en-us.chm

BIBLIOGRAPHY 125

[219] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy, Sylvia Ratnasamy, and Ion
Stoica. FairCloud: Sharing _e Network In Cloud Computing. In 2012 Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM). Page 15.

[220] Vara Prasad, William Cohen, Frank Ch. Eigler, Martin Hunt, Jim Keniston, and Brad Chen. Locating
System Problems using Dynamic Instrumentation. In 2005 Ottawa Linux Symposium. Page 45.

[221] Lindsey C. Puryear and Vidyadhar G. Kulkarni. Comparison of Stability and Queueing Times for
Reader-Writer Queues. Performance Evaluation, 30(4):195–215, 1997. Page 30.

[222] Ariel Rabkin and Randy Howard Katz. How Hadoop Clusters Break. IEEE So�ware, 30(4):88–94, 2013.
Pages 45 and 46.

[223] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. Osborne/McGraw-Hill,
Berkeley, CA, USA, 2nd edition, 2000. Pages 58 and 72.

[224] Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul Mahajan, Ian Obermiller, and Shahin
Shayandeh. AppInsight: Mobile App Performance Monitoring in the Wild. In 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI ’12). Page 82.

[225] Lenin Ravindranath, Jitendra Padhye, Ratul Mahajan, and Hari Balakrishnan. Timecard: Controlling
User-Perceived Delays in Server-Based Mobile Applications. In 24th ACM Symposium on Operating
Systems Principles (SOSP ’13). Pages 2, 9, 22, 69, 75, 82, and 106.

[226] John Reumann and Kang G Shin. Stateful Distributed Interposition. ACM Transactions on Computer
Systems, 22(1):1–48, 2004. Pages 71, 76, 82, and 83.

[227] Patrick Reynolds, Charles Edwin Killian, Janet L Wiener, Jeòrey C Mogul, Mehul A Shah, and Amin
Vahdat. Pip: Detecting the Unexpected in Distributed Systems. In 3rd USENIX Symposium onNetworked
Systems Design and Implementation (NSDI ’06). Pages 2, 8, 11, and 46.

[228] Javi Roman. _e Hadoop Ecosystem Table. Retrieved January 2017 from https://
hadoopecosystemtable.github.io/. Pages 5 and 81.

[229] Raja R. Sambasivan, Rodrigo Fonseca, Ilari Shafer, and Gregory R. Ganger. So, you want to trace
your distributed system? Key design insights from years of practical experience. Technical Report
CMU-PDL-14-102, Parallel Data Laboratory, Carnegie Mellon University, Pittsburgh, PA 15213-3890,
April 2014. Page 47.

[230] Raja R Sambasivan, Ilari Shafer, Jonathan Mace, Benjamin H Sigelman, Rodrigo Fonseca, and Gregory R
Ganger. PrincipledWork�ow-Centric Tracing of Distributed Systems. In 7th ACM Symposium on Cloud
Computing (SOCC ’16). Pages 7, 11, 78, 79, and 105.

[231] Raja R Sambasivan, Alice X Zheng, Michael De Rosa, Elie Krevat, SpencerWhitman, Michael Stroucken,
WilliamWang, Lianghong Xu, and Gregory R Ganger. Diagnosing Performance Changes by Comparing
Request Flows. In 8th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’11).
Pages 8 and 46.

[232] Peter Schuller. Manhattan, our real-time, multi-tenant distributed database for Twitter scale.
(April 2014). Retrieved June 2016 from https://blog.twitter.com/engineering/en_us/a/2014/
manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale.html. Page
21.

https://hadoopecosystemtable.github.io/
https://hadoopecosystemtable.github.io/
https://blog.twitter.com/engineering/en_us/a/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale.html
https://blog.twitter.com/engineering/en_us/a/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale.html

BIBLIOGRAPHY 126

[233] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Con�ict-Free Replicated Data
Types. In 13th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS
’11). Pages 77, 91, and 106.

[234] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A Comprehensive Study of Con-
vergent and Commutative Replicated Data Types. Technical Report, Inria–Centre Paris-Rocquencourt;
INRIA, 2011. Pages 91, 97, and 106.

[235] Kai Shen and Meng Zhu. Best-Eòort Request Labeling and Scheduling on Multicore Servers. Technical
Report, University of Rochester, 2016. Pages 76 and 82.

[236] Alan Shieh, Srikanth Kandula, Albert Greenberg, and Changhoon Kim. Seawall: Performance Isolation
for Cloud Datacenter Networks. In 2nd USENIXWorkshop on Hot Topics in Cloud Computing (HotCloud
’10). Page 15.

[237] Yuri Shkuro. Baggage Propagation at Uber. (September 2017). Retrieved October 2017 from https:
//github.com/TraceContext/tracecontext-spec/issues/13#issuecomment-330094227. Pages 2, 9, 10,
74, and 75.

[238] Yuri Shkuro. Evolving Distributed Tracing at Uber Engineering. (February 2017). Retrieved July 2017
from https://eng.uber.com/distributed-tracing/. Pages 8 and 105.

[239] Yuri Shkuro. Jaeger #373: Baggage Whitelisting. (September 2017). Retrieved October 2017 from
https://github.com/jaegertracing/jaeger/issues/373. Page 97.

[240] Madhavapeddi Shreedhar and George Varghese. Eõcient Fair Queuing Using Deûcit Round-Robin.
IEEE/ACM Transactions on Networking, 4(3):375–385, 1996. Page 43.

[241] David Shue, Michael J Freedman, and Anees Shaikh. Performance Isolation and Fairness for Multi-
Tenant Cloud Storage. In 10th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’12). Pages 2, 9, 20, and 21.

[242] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. _e Hadoop Distributed
File System. Pages ix, 5, 6, 14, 16, 17, 20, 64, and 98.

[243] Benjamin H Sigelman. Towards Turnkey Distributed Tracing. (June 2016). Retrieved January 2017 from
https://medium.com/opentracing/towards-turnkey-distributed-tracing-5f4297d1736. Pages 11
and 78.

[244] BenjaminH Sigelman, Luiz Andre Barroso,Mike Burrows, Pat Stephenson,Manoj Plakal,Donald Beaver,
Saul Jaspan, and Chandan Shanbhag. Dapper, a Large-Scale Distributed Systems Tracing Infrastructure.
Technical Report, Google, 2010. Pages 2, 8, 9, 13, 46, 47, 48, 60, 72, 74, 75, 77, 78, 79, 82, and 92.

[245] SolarWinds. Traceview. https://traceview.solarwinds.com/. [Online; accessed July 2017]. Pages 8
and 46.

[246] Spring. Spring Cloud Sleuth. Retrieved January 2017 from http://cloud.spring.io/
spring-cloud-sleuth/. Pages 8, 82, 95, and 105.

[247] Spring Cloud. Sleuth 306: Malformed X-B3 headers cause 500 error. Retrieved January 2017 from
https://github.com/spring-cloud/spring-cloud-sleuth/issues/306. Page 81.

[248] Spring Cloud. Sleuth 410: Trace ID problem when using Spring _readPoolTaskExecutor. Retrieved
January 2017 from https://github.com/spring-cloud/spring-cloud-sleuth/issues/410. Page 78.

https://github.com/TraceContext/tracecontext-spec/issues/13#issuecomment-330094227
https://github.com/TraceContext/tracecontext-spec/issues/13#issuecomment-330094227
https://eng.uber.com/distributed-tracing/
https://github.com/jaegertracing/jaeger/issues/373
https://medium.com/opentracing/towards-turnkey-distributed-tracing-5f4297d1736
https://traceview.solarwinds.com/
http://cloud.spring.io/spring-cloud-sleuth/
http://cloud.spring.io/spring-cloud-sleuth/
https://github.com/spring-cloud/spring-cloud-sleuth/issues/306
https://github.com/spring-cloud/spring-cloud-sleuth/issues/410

BIBLIOGRAPHY 127

[249] Spring Cloud. Sleuth 424: Not seeing traceids in the http response headers. Retrieved January 2017
from https://github.com/spring-cloud/spring-cloud-sleuth/issues/424. Page 80.

[250] Spring Cloud. Sleuth 425: Make Sleuth more robust in accepting invalid span headers. Retrieved
January 2017 from https://github.com/spring-cloud/spring-cloud-sleuth/issues/425. Page 81.

[251] Dimitrios Stiliadis and Anujan Varma. Latency-Rate Servers: A General Model for Analysis of Traõc
Scheduling Algorithms. IEEE/ACM Transactions on Networking, 6(5):611–624, 1998. Page 26.

[252] StrongLoop Arc. Tracing. Retrieved January 2017 from https://docs.strongloop.com/display/SLC/
Tracing. Page 82.

[253] Hongkai Sun. General Baggage Model for End-to-End Tracing and Its Application on Critical Path
Analysis. M.Sc. _esis, Brown University, 2016. Pages 9, 75, and 106.

[254] Kun Suo, Jia Rao, Luwei Cheng, and Francis Lau. Time Capsule: Tracing Packet Latency across Diòerent
Layers in Virtualized Systems. In 7th ACM Asia-Paciûc Workshop on Systems (APSys ’16). Pages 9
and 106.

[255] _e Go Blog. Go kit: A toolkit for microservices. Retrieved October 2017 from https://gokit.io.
Pages 82, 95, and 106.

[256] Eno_ereska,Hitesh Ballani,GregO’Shea,_omas Karagiannis, Antony Rowstron, TomTalpey, Richard
Black, and Timothy Zhu. IOFlow: A So�ware-deûned Storage Architecture. In 24th ACM Symposium
on Operating Systems Principles (SOSP ’13). Pages 18, 20, and 27.

[257] Eno _ereska, Brandon Salmon, John Strunk, Matthew Wachs, Michael Abd-El-Malek, Julio Lopez,
and Gregory R Ganger. Stardust: Tracking Activity in a Distributed Storage System. In 2006 ACM
International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS). Pages 8,
11, 46, 60, and 72.

[258] Transaction Processing Performance Council. TPC Benchmark DS Version 2.4.0. (February 2017).
Retrieved March 2017 from http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.
4.0.pdf. Page 101.

[259] Twitter. Zipkin. Retrieved July 2017 from http://zipkin.io/. Pages 8, 46, and 105.

[260] Twitter Open Source. Finagle: A Fault Tolerant, Protocol-Agnostic RPC System . Retrieved April 2018
from https://twitter.github.io/finagle. Pages 82 and 106.

[261] Uber Open Source. TChannel: Network multiplexing and framing protocol for RPC. Retrieved April
2018 from https://github.com/uber/tchannel. Pages 82 and 106.

[262] Robbert Van Renesse, Kenneth P Birman, and Werner Vogels. Astrolabe: A Robust and Scalable
Technology For Distributed System Monitoring, Management, and Data Mining. ACM Transactions on
Computer Systems, 21(2):164–206, 2003. Pages 12 and 46.

[263] Kenton Varda. Protocol Buòers: Google’s Data Interchange Format. (July 2008). Retrieved January 2017
from https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html. Pages
28, 61, 87, and 106.

https://github.com/spring-cloud/spring-cloud-sleuth/issues/424
https://github.com/spring-cloud/spring-cloud-sleuth/issues/425
https://docs.strongloop.com/display/SLC/Tracing
https://docs.strongloop.com/display/SLC/Tracing
https://gokit.io
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.4.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.4.0.pdf
http://zipkin.io/
https://twitter.github.io/finagle
https://github.com/uber/tchannel
https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html

BIBLIOGRAPHY 128

[264] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar, Robert
Evans, _omas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen
O’Malley, Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. Apache Hadoop YARN: Yet Another
Resource Negotiator. In 4th ACM Symposium on Cloud Computing (SoCC ’13). Pages 16, 20, 65, and 98.

[265] AndrewWang, Shivaram Venkataraman, Sara Alspaugh, Randy Katz, and Ion Stoica. Cake: Enabling
High-level SLOs on Shared Storage Systems. In 3rd ACM Symposium on Cloud Computing (SoCC ’12).
Pages 20, 21, and 36.

[266] AndrewWang, Shivaram Venkataraman, Sara Alspaugh, Ion Stoica, and Randy Katz. Sweet Storage
SLOs with Frosting. In 4th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’12). Page
20.

[267] Chengwei Wang, Infantdani Abel Rayan, Greg Eisenhauer, Karsten Schwan, Vanish Talwar, Matthew
Wolf, and Chad Huneycutt. VScope: Middleware for Troubleshooting Time-Sensitive Data Center
Applications. In 13th ACM/IFIP/USENIX International Middleware Conference (Middleware ’12). Pages
12, 47, 64, and 69.

[268] Chengwel Wang, Soila P Kavulya, Jiaqi Tan, Liting Hu, Mahendra Kutare, Mike Kasick, Karsten Schwan,
Priya Narasimhan, and Rajeev Gandhi. Performance Troubleshooting in Data Centers: An Annotated
Bibliography. ACM SIGOPS Operating Systems Review, 47(3):50–62, 2013. Pages 12 and 46.

[269] Weaveworks and Container Solutions. Sock shop: Amicroservices demo application. RetrievedOctober
2017 from https://microservices-demo.github.io. Pages xi and 95.

[270] Mick Semb Wever. Replacing Cassandra’s tracing with Zipkin. (Decem-
ber 2015). Retrieved July 2017 from http://thelastpickle.com/blog/2015/12/07/
using-zipkin-for-full-stack-tracing-including-cassandra.html. Page 81.

[271] _omas Willhalm, Roman Dementiev, and Patrick Fay. Intel Performance Counter Monitor – A better
way to measure CPU utilization. (January 2017). Retrieved July 2017 from http://intel.ly/1C23e67.
Page 29.

[272] Peter T. Wood. Query Languages for Graph Databases. SIGMOD Record, 41(1):50–60, 2012. Page 72.

[273] Distributed Tracing Workgroup. Tracing Workshop. (February 2017). Retrieved February 2017 from
https://goo.gl/2WKjhR. Pages 80, 81, and 106.

[274] Paul Wright. CrossStitch: What Etsy Learned Building a Distributed Tracing System.
(September 2014). Retrieved January 2017 from https://www.slideshare.net/PaulWright9/
crossstitch-what-etsy-learned-building-a-distributed-tracing-system-for-surge-conference-2014.
Pages 8, 13, and 105.

[275] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. Detecting Large-Scale
System Problems by Mining Console Logs. In 22nd ACM Symposium on Operating Systems Principles
(SOSP ’09). Pages 11, 12, and 46.

[276] Lok-Kwong Yan and Heng Yin. DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic
Views for Dynamic AndroidMalware Analysis. In 21st USENIX Security Symposium (Security ’12). Pages
9 and 75.

https://microservices-demo.github.io
http://thelastpickle.com/blog/2015/12/07/using-zipkin-for-full-stack-tracing-including-cassandra.html
http://thelastpickle.com/blog/2015/12/07/using-zipkin-for-full-stack-tracing-including-cassandra.html
http://intel.ly/1C23e67
https://goo.gl/2WKjhR
https://www.slideshare.net/PaulWright9/crossstitch-what-etsy-learned-building-a-distributed-tracing-system-for-surge-conference-2014
https://www.slideshare.net/PaulWright9/crossstitch-what-etsy-learned-building-a-distributed-tracing-system-for-surge-conference-2014

BIBLIOGRAPHY 129

[277] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N Bairavasundaram, and Shankar Pasu-
pathy. An Empirical Study on Conûguration Errors in Commercial and Open Source Systems. In 23rd
ACM Symposium on Operating Systems Principles (SOSP ’11), pages 159–172. ACM. Page 45.

[278] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. Improving So�ware Diag-
nosability via Log Enhancement. In 16th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’11). Pages 44 and 46.

[279] Yuri Shkuro, Uber. Personal Communication. (February 2017). Page 77.

[280] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley,
Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing. In 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’12). Page 98.

[281] Denis Zaytsev. Distributed Tracing – _e Most Wanted And Missed Tool In _e Micro-
Service World. (April 2016). Retrieved July 2017 from https://medium.com/@denis.zaytsev/
distributed-tracing-the-most-wanted-and-missed-tool-in-the-micro-service-world-c2f3d7549c47.
Page 9.

[282] Xu Zhao,Kirk Rodrigues, Yu Luo,Ding Yuan, andMichael Stumm. Non-Intrusive Performance Proûling
for Entire So�ware Stacks Based on the Flow Reconstruction Principle. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’16). Pages 11 and 83.

[283] Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan, Yu Luo, Ding Yuan, and Michael Stumm.
lprof: A Non-intrusive Request Flow Proûler for Distributed Systems. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’14). Pages 11 and 46.

[284] Jingwen Zhou, Zhenbang Chen, Haibo Mi, and Ji Wang. MTracer: A Trace-Oriented Monitoring
Framework for Medium-Scale Distributed Systems. In 8th IEEE International Symposium on Service
Oriented System Engineering (SOSE ’14). Pages 8 and 46.

https://medium.com/@denis.zaytsev/distributed-tracing-the-most-wanted-and-missed-tool-in-the-micro-service-world-c2f3d7549c47
https://medium.com/@denis.zaytsev/distributed-tracing-the-most-wanted-and-missed-tool-in-the-micro-service-world-c2f3d7549c47

	List of Tables
	List of Figures
	Introduction
	Cross-Cutting Challenges in Distributed Systems
	The Need for Cross-Cutting Tools
	Thesis Goals and Contributions

	Cross-Cutting Tools
	Cloud Distributed Systems
	Cross-Cutting Executions
	Troubleshooting Across Boundaries
	End-to-End Tracing
	Overview
	Implementations and Use Cases

	Cross-Cutting Tools
	Goal: Second-Generation Cross-Cutting Tools
	Other Approaches
	Alternatives to Context Propagation
	Alternatives to Cross-Cutting Tools

	Resource Management in Distributed Systems
	Background
	Multi-Tenant Systems
	Resource Management and Isolation
	Cross-Cutting Resource Management

	Hadoop Architecture
	Resource Management Challenges
	Prior Approaches
	Multi-Resource Scheduling
	Ad-Hoc Approaches to Resource Isolation
	Other Dimensions of Resource Management

	Retro: A Cross-Cutting Tool for Resource Management
	Overview
	Design
	Retro abstractions
	Architecture

	Implementation
	Per-workflow resource measurement
	Resource library
	Coordinated throttling

	Policies
	BFair policy
	rDRF policy
	LatencySLO policy

	Evaluation
	BFair in the Hadoop stack
	LatencySLO
	rDRF in HDFS
	Overhead and scalability of Retro

	Discussion
	Conclusion

	Monitoring and Troubleshooting Distributed Systems
	Limitations of Current Approaches
	One Size Does Not Fit All
	Costs of Monitoring
	Dynamic Instrumentation

	Cross-Component Monitoring
	Crossing Boundaries
	Causal Tracing

	Other Tools and Techniques
	Beyond Metrics and Logs
	Troubleshooting and Root-Cause Diagnosis

	Pivot Tracing: A Cross-Cutting Tool for Dynamic Causal Monitoring
	Overview
	Pivot Tracing in Action
	Design Summary

	Design
	Tracepoints
	Query Language
	Happened-before Joins
	Advice

	Pivot Tracing Optimizations
	Baggage
	Local Tuple Aggregation
	Optimizing Happened-Before Joins
	Cost of Baggage Propagation

	Implementation
	Pivot Tracing Agent
	Dynamic Instrumentation
	Baggage
	Materializing Advice
	Baggage Consistency

	Evaluation
	Case Study: HDFS Replica Selection Bug
	Diagnosing End-to-End Latency
	Overheads of Pivot Tracing

	Discussion
	Conclusion

	Developing and Deploying Cross-Cutting Tools
	Metadata Propagation
	Heterogeneous Data Types
	Anatomy of a Cross-Cutting Tool
	Context Propagation
	Cross-Cutting Tool Logic

	Deployment Challenges
	Pervasive Instrumentation
	Cognitive Load
	Duplicated Effort

	Related Work
	Instrumenting Systems
	Generic Contexts

	The Need for Abstractions

	Baggage Contexts: A Universal Abstraction for Cross-Cutting Tools
	Separation of Concerns
	Interfaces
	Interface for System Instrumentation
	Interface for Cross-Cutting Tools
	Example Baggage Context Usage

	Baggage Context Design
	Core Representation
	Representing Data Types
	Conflict-Free Replicated Data Types
	Layering Summary

	Implementation
	Core Representation (Atom Layer)
	Atom Encodings (Cross-Cutting Layer)
	Example
	Complex Data Types
	Overflow
	Conflict-Free Replicated Data Types

	Evaluation
	Cross-Cutting Tools
	Cross-Cutting Tools in Practice
	Cross-Cutting Tools at Scale

	Discussion
	Conclusion

	Conclusions and Future Work
	Multi-Tenant Resource Management
	Dynamic Causal Monitoring
	Universal Abstractions for Context Propagation
	Future Work
	Cross-Cutting Tools
	Abstractions for Cross-Cutting Tools
	Automatic Instrumentation
	Large-Scale Performance Analytics

	Bibliography

