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Abstract
Many tools for analyzing distributed systems propagate con-
texts along the execution paths of requests, tasks, and jobs,
in order to correlate events across process, component and
machine boundaries. _ere is a wide range of existing and pro-
posed uses for these tools, which we call cross-cutting tools,
such as tracing, debugging, taint propagation, provenance,
auditing, and resource management, but few of them get de-
ployed pervasively in large systems. When they do, they are
brittle, hard to evolve, and cannot coexist with each other.
While they use very diòerent context metadata, the way they
propagate the information alongside execution is the same.
Nevertheless, in existing tools, these aspects are deeply inter-
twined, causing most of these problems.

In this paper, we propose a layered architecture for cross-
cutting tools that separates concerns of system developers and
tool developers, enabling independent instrumentation of sys-
tems, and the deployment and evolution ofmultiple such tools.
At the heart of this layering is a general underlying format, bag-
gage contexts, that enables the complete decoupling of system
instrumentation for context propagation from tool logic. Bag-
gage contexts make propagation opaque and general, while
still maintaining correctness of the metadata under arbitrary
concurrency and diòerent data types. We demonstrate the
practicality of the architecture with implementations in Java
and Go, porting of several existing cross-cutting tools, and
instrumenting existing distributed systems with all of them.

1. Introduction
Context propagation is fundamental to a broad range of dis-
tributed system monitoring, diagnosis, and debugging tasks.
It means that for every execution (e.g. request, task, job, etc.),
the system forwards a context object alongside the execution,
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across all process, component, and machine boundaries, with
metadata about the execution. Contexts are a powerful mecha-
nism for capturing causal relationships between events on the
execution path at runtime, and have enabled a large number
of tools, both in research and in practice [37, 42, 48, 57, 58].
Of these, the most widespread are tracing tools [31, 39, 74, 85],
which can record causality between logs and events across
components by propagating request and event IDs. Beyond
tracing, tenant IDs enable coordinated scheduling decisions
across components [51,82]; latencymeasurements enable tools
to adapt to bottlenecks or processing delays [33, 73]; user to-
kens enable tools for auditing security policies [2,79,85]; causal
histories enable cross-system consistency checking [50]; and
more. We refer to this broad class of tools as cross-cutting tools,
to stress their use beyond recording traces.1
Despite their demonstrated usefulness, organizations re-

port that they struggle to deploy cross-cutting tools. One fun-
damental reason is that they require modiûcations to source
code that touch nearly every component of distributed sys-
tems. But this is not the only reason. To see why, we can break
up cross-cutting tools into two orthogonal components: ûrst
is the instrumentation of the system components to propagate
context; second is the tool logic itself. _is logic – what the
metadata is, such as IDs, tags, or timings, and when it changes
– depends on the tool, while the context propagation – through
threads, RPCs, queues, etc. – only depends on the structure
of the instrumented system and its concurrency.

In all cross-cutting tools to date, system instrumentation
and tool logic are deeply intertwined. _is tight coupling
requires teams deploying cross-cutting tools to have a deep
understanding of both the tool andof all instrumented systems.
It also makes any modiûcation or evolution of a cross-cutting
tool, or the deployment of new cross-cutting tools, as diõcult
as the initial deployment.

In this paper, we present the design and implementation
of baggage contexts, an intermediate representation for cross-
cutting tool contexts that enables the complete decoupling of
system instrumentation for context propagation from cross-
cutting tool logic. Our design bridges two objectives. First,
baggage contexts are capable of carrying a wide range of data
types that cross-cutting tools use, such as primitive types, IDs,
sets, maps, counters, nested data structures, and more, while
1Prior work has also used the term meta-applications [29].



Concerns Tasks Abstractions

Cross-Cutting Tool
Developers

(e.g. Zipkin, Pivot Tracing)

Cross-cutting tool semantics,
information communicated

Cross-cutting tool logic: deûne context using BDL; use
execution-�ow scoped variables to implement tracing logic
(e.g., spans, security, resource accounting)

Execution-�ow scoped
variables (§3.2)

Tracing Plane Developers
(_is paper)

Context behavior under concurrent
execution (i.e. correct merging)

Tracing plane internals: BDL compiler, underlying context
format, nesting, multiplexing, trimming

System Developers
(e.g. HDFS, Spark)

Execution boundaries and concurrency
(e.g. queues, threadpools, RPCs)

Instrumentation: modify systems to propagate contexts
alongside executions

Baggage contexts, ûve propa-
gation operations (§3.1)

Table 1: _e Tracing Plane provides abstractions to separate the concerns of diòerent developers.

remaining eõcient and extensible. Second, system instrumen-
tation that propagates baggage contexts is completely agnostic
to the interpretation of any data therein and independent of
the semantics of any cross-cutting tool. At ûrst glance these
objectives appear easily satisûed by existing data formats, such
as plaintext dictionaries (as with HTTP headers), or struc-
tured serialization formats (like Protocol Buòers). However, a
key challenge not addressed – which baggage contexts solve –
is how to maintain correctness under arbitrary concurrency;
speciûcally, merging baggage contexts correctly, according to
the semantics of any data types therein, whenever two con-
current execution branches join. §4 outlines the properties
of baggage contexts that address this challenge and enable
an expressive and eõcient implementation: idempotent, com-
mutative, and associative merge; lazy resolution; and order
preservation.

To fully beneût from our decoupling, we expose baggage
contexts to system developers and tool developers through
diòerent abstractions that hide irrelevant aspects from each
group. We propose a layered architecture, which we call the
Tracing Plane, with baggage contexts serving as a narrow waist,
to enforce this separation of concerns. Table 1 summarizes the
concerns of each developer group, and the abstractions the
Tracing Plane exposes to them.

Systemdevelopers can instrument their systems to opaquely
propagate baggage contexts, independent of any cross-cutting
tool. All that is required at this level is that they instrument
their code using a set of ûve propagation operations: Branch,
Join, Trim, Serialize, and Deserialize. _ese eòectively encode
the system developer’s knowledge of the concurrency struc-
ture of their system. Because it is simple and independent
of any cross-cutting tool, this instrumentation can be done
without committing to speciûc cross-cutting tools at develop-
ment time, and the costs of instrumentation can be amortized
among many tools.

Tool developers, on the other hand, should not be con-
cernedwith details of propagation, but focus on the tool’s logic.
We expose to them the abstraction of execution-�ow scoped
variables, i.e., variables that “follow the execution”,maintaining
correct values across arbitrary concurrency patterns. _ese
variables are speciûed through a simple interface deûnition
language which we call Baggage Deûnition Language, or BDL,
and are compiled to encode diòerent concurrent data types
onto the baggage context representation.

Baggage contexts serve as the compilation target for BDL
types, encapsulate their correct behavior under concurrency,
and bridge the gap between the high-level execution-�ow
scoped variables and the ûve propagation operations that sys-
tem developers use. By making instrumentation for propaga-
tion independent of tool logic, it can be done once, at devel-
opment time, independently for each component. It becomes
easier to deploy and evolve cross-cutting tools, and for multi-
ple cross-cutting tools to co-exist.

To demonstrate the applicability of baggage contexts as
a general tracing context format, and of the eòectiveness of
the Tracing Plane abstractions built around them, we have
implemented and open-sourced prototypes in Java and in Go.
We have implemented revised and extended versions of Open-
Tracing [60], Pivot Tracing [53], Retro [51], X-Trace [39], and
Zipkin [65],whichuse BDL to deûne and interactwith baggage
contexts, plus two new cross-cutting tools for resource man-
agement and critical path analysis. Using the ûve propagation
operations above, we have instrumented several open-source
distributed systems to propagate baggage contexts, including
Hadoop,HDFS,YARNandSpark, and the Sock ShopMicroser-
vices Demo [95].
_e main contributions of this work as as follows:
• Design of baggage context, a ‘narrow waist’ that decouples
context propagation from cross-cutting tool logic. Baggage
contexts are simple, yet they are expressive enough to
represent many distributed data types and preserve their
correct merge semantics.

• Proposal of a layered architecture that separates concerns
of system developers and cross-cutting tool developers,
enabling independent instrumentation of systems, and the
deployment and evolution of multiple cross-cutting tools.

• Deûnition of a Baggage Deûnition Language (BDL), which
compiles nested concurrent data types onto baggage con-
texts, allowing cross-cutting tool developers to program
with simple ‘execution-�ow scoped variables’.

• Implementation of the Tracing Plane stack in Java and Go
• Demonstration of the practicality and eõciency of the Trac-
ing Plane through implementing several cross-cutting tools
and deploying on multiple existing distributed systems.



2. Background and Motivation
Monitoring, understanding, and enforcing distributed system
behavior is notoriously diõcult [37, 48, 53, 59]. Symptoms can
manifest in components far removed from the root cause of
problems [43,44],making the tools and abstractions useful for
standalone programs – execution stacks, thread IDs, thread-
local variables, debuggers, proûlers, and many more – ineòec-
tive or inadequate for distributed systems [42]. Inevitably, to
address these challenges distributed systems need the ability
to correlate events at one point of the system with events that
are meaningful from other parts of the system.

_is observation has been addressed in a growing body of
work by maintaining the notion of a context that follows the
execution of applications through events, queues, thread pools,
ûles, caches, andmessages between distributed system compo-
nents. _ere is a wide range of such tools, which we call cross-
cutting tools, with diverse goals and, correspondingly, a rich
set of data types. Many systems propagate activity and request
IDs for use in debugging and proûling, anomaly detection, re-
source accounting, or resource management [39,46,51,79,85].
Tracing tools propagate sampling decisions to bias traced re-
quests towards underrepresented request types [46]. Taint
tracking and DIFC propagate security labels as the system ex-
ecutes, warning of or prohibiting policy violations [35, 55, 99].
User tokens enable tools for auditing security policies [2,79,85]
and identifying business �ows [79]. Data provenance systems
propagate information about the lineage of data as diòerent
components manipulate it [34, 54]. Tools for end-to-end la-
tency, path proûling, and critical path analysis propagate par-
tial latency measurements and information about execution
paths and graphs [28, 33, 73, 90]. Metric-gathering systems
propagate labels and query state so that downstream compo-
nents can select, group, and ûlter statistics [41, 53, 79]. Recent
work has proposed cross-cutting tools that propagate causal
histories to validate cross-system consistency [50]. Note that
some of these tools use write-once metadata, while others
constantly change the metadata. Some tools only record in-
formation, while others use the metadata to take actions at
runtime.
Despite this proliferation of cross-cutting tools, there re-

main signiûcant challenges to their development and perva-
sive, end-to-end deployment. In the remainder of this section
we detail the twomain aspects of cross-cutting tools– propaga-
tion and logic – and describe how most of the problems with
their development, evolution, and co-existence stem from the
coupling between these aspects.

2.1 Anatomy of a Cross-Cutting Tool
_e cross-cutting tools we consider here have two largely or-
thogonal components: the system instrumentation for prop-
agating contexts alongside executions, and the cross-cutting
tool logic. Figure 1 illustrates these components’ interaction
with each other and with the instrumented system. We refer
to the numbers in the ûgure (e.g. À) in our description below.
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Processes
Request execution path
Context propagationÀ

Á Boundary: serialize
Â Boundary: deserialize
Ã Boundary: branch
Ä Boundary: join

Update context
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Query context
Æ

Fig. 1: Systems propagate the cross-cutting tool’s context (À) along
the execution path, including across process andmachine boundaries
(Á Â Ã Ä). Cross-cutting tools update (Å) and query (Æ) context
values.

Context Propagation. To correlate events across diòerent
parts of the system, all system components participate by prop-
agating a context (À) along the end-to-end execution path of
each request (or task, job, etc.). A context comprises variables
and data structures that the cross-cutting tool uses to observe
and record causality. Examples include a single integer request
ID [31, 51]; IDs and �ags describing recent events [39, 63, 85];
and data structures like sets and maps [41, 53]. Context propa-
gation requires small but non-trivial interventions within all
distributed system components, to maintain and propagate
contexts alongside executions. Examples include reading and
writing contexts in RPC headers; storing in thread-local vari-
ables; and passing through thread pool queues and with con-
tinuations. _is instrumentation is required at all execution
boundaries, lest intermediary components discard context
required later.
Contexts need a small set of propagation rules to deûne

behavior at execution boundaries. _ese include rules for seri-
alizing and deserializing (Á,Â); for duplicating contexts when
executions branch (Ã); and formerging contexts when concur-
rent branches join (Ä). Whereas the points in the execution
where these operations happen depend on the instrumented
system and its concurrency structure, the semantics of the
operations, especially merge, depends on the cross-cutting
tool at hand, as we describe next.
Cross-Cutting Tool Logic. Cross-cutting tools interact with
contexts intermittently during program execution, updating
(Å) and querying (Æ) values at relevant points. Unlike propa-
gation, which requires pervasive instrumentation, the extent
of intervention here depends on the tool. For example, dis-
tributed logging scatters logging statements throughout com-
ponents, whereas resource accounting adds counters to only
very speciûc resource APIs. Some tools, such as security au-
diting, only deploy tool logic to a subset of components; e.g.
to set the context’s user ID in the front end, and to check the
user ID once the request reaches the database [2,85,100]. Most
cross-cutting tools also have background components, e.g. to
collect logging statements or aggregate counters across many
executions, but these are peripheral to our discussion.



_e tool logic deûnes what data gets propagated with the
execution, and the propagation rules for the data. _ese are
trivial for simple contexts such as write-once request or tenant
IDs [31, 51]. However for dynamic contexts these rules are
more elaborate. For example, if a context comprises a set
of tags then merging two contexts entails a set-union [41,
53]; maintaining a simple integer counter requires care to
avoid double-counting, or dropping changes made in one
concurrent branch over another; and a critical path application
might need to keep the maximum time accrued between two
merging branches. In the general case we formalize contexts
as state-based replicated objects with parallels to CRDTs [77],
where communication between instances occurs only when
their respective execution branches join (cf. §4.3).

2.2 Challenges
Developing and deploying cross-cutting tools on large dis-
tributed systems and across large organizations is challenging.
One fundamental reason is the need for pervasive instrumenta-
tion to propagate contexts throughout all system comopnents.
Researchers and practitioners consistently describe instru-
mentation as the most time consuming and diõcult part of
deploying a cross-cutting tool [32, 38, 39, 47, 76, 84]. Instru-
mentation is a challenge because system modiûcations are
dispersed across a wide range of disparate source code loca-
tions, making it brittle and easy to get wrong [85].

In many cases, missing or misaligned instrumentation will
prematurely discard request contexts [12, 13, 16, 18, 26, 88]; on
the other hand, failing to discard contexts enables them to
linger and associate with the next request, causing e.g. dis-
tinct traces to merge [5] or resource consumption to be mis-
attributed [51, 52]. Instrumentation eòort also depends on
system heterogeneity: the wider the variety of languages and
platforms in use, the more eòort required to do instrumenta-
tion [32, 49, 76].

_e result of these complications is that instrumentation
is done only once, if at all. _is would be acceptable if such
instrumentation could be reused by diòerent cross-cutting
tools, and if it would enable the evolution of existing tools. In
practice, however, instrumentation andpropagation are deeply
intertwined with a speciûc cross-cutting tool. As we discuss
next, this greatly increases the cognitive load of deploying
cross-cutting tools, and makes the cost of changing existing
tools, or deploying new ones, as high as that of the initial
deployment.
Cognitive Load Because cross-cutting tools are coupled with
context propagation, to perform any one task – system in-
strumentation, deploying tool logic, or even designing the
tool itself – is cognitively challenging, because it requires tacit
understanding of all components – the system being instru-
mented, the semantics of the tool, and context subtleties when
executions branch and join. As shown in Table 1, the people
who understand and care about these aspects are usually in
diòerent groups.

To propagate and interact with contexts, developers must
pay attention to serialization, encoding schemes, and binary
formats. _ey must also know the libraries (e.g. RPCs) and
concurrency structures (e.g. event loops, futures, queues) used
by the system, to determine boundaries for propagation. In
practice, because they are usually deployed together, the se-
mantics of the cross-cutting tool greatly aòect instrumenta-
tion; not only does this entail understanding tool logic at
instrumentation time, but also, by specializing instrumenta-
tion, precludes reuse of the instrumentation even by similar
tools. For example, Zipkin omits merge rules [61, 62], lead-
ing to diõculties instrumenting queues [97], asynchronous
executions [66, 67, 69] and capturing multiple-parent causal-
ity [68, 70]. HDFS and HBase developers encountered similar
problems due to HTrace lacking rules to capture multiple-
parent causality [17,21,23,24].When cross-cutting tools do not
require instrumentation of all boundaries, it sows confusion
among developers about whether to propagate contexts across
those boundaries; the most common example being RPC re-
sponse instrumentation [25, 64, 89]. Developers also struggle
to instrument execution patterns when they do not ût into the
tool’s intendedmodel. For example,Dapper’s request-response
spanmodel is ill-suited for instrumenting streams,queues [97],
async [66, 67, 69], and several others [21, 23, 46, 68, 70].
Because there are no pre-existing abstractions or implemen-

tations for context propagation, it is insuõcient to simply state
“propagate this data structure” in a setting where executions
arbitrarily branch and join. Instead, something seemingly sim-
ple like an integer can require complex propagation rules in
order to behave correctly and consistently; e.g. if it is used as
a counter, its underlying implementation will more closely
resemble a version vector [72]. An example of this is Pivot
Tracing [53]; to propagate sets of tuples requires a complicated
versioning scheme based on interval tree clocks [1].
Duplicated Eòort _e coupling between tool logic and prop-
agation also makes any changes in tools entail revisiting the
instrumentation to update variables, propagation logic, and
cross-cutting tool API invocations. _e same is true when
deploying new tools, even if semantically similar. For example,
the Hadoop ecosystem [75] has three distributed databases
based on BigTable’s design [30] and each database imple-
mented its own an ad-hoc tracing system: Accumulo [3] devel-
oped CloudTrace [8]; HBase [15] developed HTrace [19, 20];
and Cassandra [9] developed QueryTracing [11]. Accumulo
developers wanted CloudTrace to extend to the underlying
distributed ûle system HDFS [4]; however, HDFS developers
opted for compatibility with HBase and deployed HTrace in-
stead [22]. As a result, to get visibility of HDFS, Accumulo
developers replaced CloudTrace with HTrace [7]. Migrat-
ing Accumulo to HTrace meant updating instrumentation
at 471 source code locations [7]. Similarly extensive changes
were required to deploy Zipkin in Cassandra [10, 14, 96] and
Phoenix [27].



Some tools alleviate these issues with ad-hoc compatibility
shims, so that a system instrumented for a diòerent tool can
share contexts and talk to the same backends. _is approach
is fragile even for tools that ostensibly perform the same task.
For example, open-source Dapper derivatives preserve causal
relationships at diòerent granularities, leading to “severe signal
loss” when integrating with less expressive tools [62], or re-
quiring system-level changes to capture missing relationships
required by more expressive tools [6, 17, 24].

3. Interfaces
Many of the problems in §2.2 stem from the coupling between
cross-cutting tools and instrumentation, brittle deployments,
and repeated developer eòort. To avoid this, we separate the
concerns of cross-cutting tool developers from those of sys-
tem developers, by providing a general-purpose intermedi-
ate representation called baggage contexts. Baggage contexts
have two goals: to be expressive enough to support a wide
range of diòerent data types and cross-cutting tools; and to
enable opaque system-level instrumentation. Using baggage
contexts, system instrumentation is a one-time task, and new
cross-cutting tools can be deployed without eòecting changes
to instrumentation. _is section ûrst outlines the interfaces
for 1) system developers and 2) cross-cutting tool developers,
which baggage contexts must bridge. We then describe the
design and implementation of baggage contexts in §4 and §5.

3.1 Interface for System Instrumentation
_emain concern for system developers is instrumenting sys-
tems to propagate context objects alongside requests as they
execute. Our goal for system developers is to enable reusable
instrumentation that is only done once, independent of any
cross-cutting tools. To support this, system developers are not
exposed to the internal representation of baggage contexts.
Instead, baggage contexts are opaque objects that provide a
minimal set of ûve propagation operations necessary for cap-
turing system concurrency patterns and boundaries: BRANCH
derives new context instances for when the execution splits
into concurrent branches; a commutative JOIN merges mul-
tiple context instances when concurrent execution branches
join; SERIALIZE and DESERIALIZEwrite and read a serialized bag-
gage representation; and TRIM imposes a size constraint on
baggage, e.g. if a system will propagate at most 1kB of context
data. Table 2 summarizes these operations.

3.2 Interface for Cross-Cutting Tools
Orthogonal to system developers, the main concern for cross-
cutting tool developers is specifying the data types used by the
cross-cutting tool. §2 describes the variety of diòerent data
types and use cases of cross-cutting tools.

To support this heterogeneity, we expose a rich library of
concurrent data types expressed through an interface deûni-
tion language called BDL, or Baggage Deûnition Language.
Figure 2 outlines BDL declarations for ûve cross-cutting tools

bag Zipkin {
fixed64 traceID = 0
fixed64 spanID = 1
fixed64 parentSpanID = 2
flag sampled = 3

}

bag XTrace {
fixed64 TaskID = 0;
set<fixed64> ParentIDs = 1;

}

bag Retro {
int32 TenantID = 0;

}

bag PivotTracing {
map<string, set<bytes>> tuples = 0;

}

bag NetJob {
map<string,string> Labels = 0;

}

Fig. 2: BDL declarations for cross-cutting tools used in our evaluation
(see §6.1 for a description).

that we revisit in our evaluation (see §6.1 for a description).
_e BDL format is similar in style and primitives to proto-
col buòers [93]; it also provides sets, maps, nested data struc-
tures, and several more elaborate data types based on CRDTs
(cf. §5.6). A declaration includes a name andone ormore ûelds,
with each ûeld specifying a type, a name, and a numbered in-
dex. BDL declarations can be updated to add new ûelds and
deprecate existing ûelds, without aòecting backwards com-
patibility with systems that deployed old versions. _e only
requirement is that, once deployed, new ûelds cannot reuse
indices of existing ûelds.

_e goal of BDL is to separate the speciûcation of what
data is carried in a baggage context, from the implementa-
tion details of how the data is encoded. From a BDL speciû-
cation, a BDL compiler will generate interfaces for tools to
access and manipulate data within baggage context instances.
For example, a�er compiling a bag declaration, tool code
will access data inside baggage contexts with simple method
calls, e.g. zmd := zipkin.readFrom(bagCtx). Generated BDL in-
terfaces access baggage contexts, interpret the data therein,
and construct a corresponding object representation of the
data. Callers can then read, update, and manipulate values, e.g.
zmd.SetTraceID(55).
From the perspective of cross-cutting tool developers,

baggage contexts provide the abstraction of “execution-�ow
scoped variables”, which, once set, follow the cross-cutting
execution across all components. To automatically merge
instances when execution branches join, all BDL data types
encapsulate well-deûned behavior for merging instances.

3.3 Example Baggage Context Usage
To clarify these concepts we give a brief description of how
baggage contexts might be used, with an example focusing on
who uses them and when.
First, baggage context developers (e.g., the authors of this

paper) implement baggage context libraries. _e libraries are
twofold: a propagation library for system developers that
exposes an API with the ûve propagation operations; and
a BDL compiler for cross-cutting tool developers that can
compile BDL speciûcations.

Next, system developers at development time instrument
their systems using the propagation library, to propagate bag-
gage contexts alongside executions. System developers treat
baggage contexts as opaque objects. _ey identify the bound-



Operation Execution Boundary Operation Description (§3.1) Atom Layer Implementation (§5.1)
BRANCH Execution splits into multiple branches

(e.g. threads, concurrent RPCs)
Derive a context for each branch Duplicate the baggage context without modiûcation

JOIN Concurrent execution branches join Combine multiple contexts into one LEXMERGE incoming baggage contexts from the joining branches
SERIALIZE Send a network request Serialize context to wire format Write baggage atoms in order, each length-prefixed by a varint
DESERIALIZE Receive a network request Deserialize context from wire format Read baggage atoms in order, each length-preûxed by a varint
TRIM Anywhere with size constraints Impose a size constraint on a context Discard atoms from the baggage tail then append trim marker

Table 2: Five propagation operations for system instrumentation (§3.1) and their implementation by the atom layer (§5.1).

aries of execution – e.g. where threads are created, or RPCs
are made – and at these boundaries, invoke propagation oper-
ations, i.e. to duplicate, merge, serialize, deserialize, or trim
contexts. Developers also use techniques like thread-local
storage to keep track of an execution’s current baggage con-
text instance. Overall, this instrumentation task requires no
co-ordination with developers of other systems.

Meanwhile, cross-cutting tool developers implement cross-
cutting tool logic. _ey use BDL to specify the data types they
wish to propagate, and compile the corresponding accessors.
_e public-facing APIs of their tool (e.g. that log trace events)
will include a baggage context instance as an argument. _e in-
ternal API logic of their tool uses the compiled BDL accessors
to observe and manipulate data within the passed baggage
context parameter.
Finally, at some point in the future, a system operator

decides to deploy a cross-cutting tool. _ey pick one or more
parts of the system in which to deploy the tool. Perhaps this
is localized to a single system, component, or function; or
it could include disparate components, separated by several
levels of indirection. In these chosen locations, they update
the source code to add invocations of the cross-cutting tool
API, e.g. to log trace events.

_e system operator redeploys the modiûed parts of their
system, then runs a workload. Each execution initially has an
empty baggage context. For each execution, the ûrst invoca-
tion of the cross-cutting tool API will populate the request’s
baggage context with some data. _is baggage context is car-
ried with the execution, including over the network, within
processes, and in particular, through all intermediate layers
including those that were le� unmodiûed. Later invocations
of the cross-cutting tool API will read data from the baggage
context that was written by that ûrst invocation.

4. Baggage Context Design
Central to the separation of the two interfaces is an intermedi-
ate baggage context representation that is capable of preserv-
ing correct propagation behavior for a wide variety of data
types. Baggage contexts hide these details from both the sys-
tem instrumentation for propagating contexts, and from the
cross-cutting tool code that uses BDL-generated APIs. Our
baggage context design comprises two pieces. First, a core bag-
gage context representation that provides several fundamental
properties. Second, an eõcientmapping of data types onto the
core representation that includes nesting and multiplexing. §5
describes concrete details of our implementation.

4.1 Core Representation
_e core baggage context representation factors out a minimal
implementation of the ûve propagation operations for systems
to propagate metadata, while maintaining correctness for ar-
bitrary concurrency patterns. It does not include interpreting
data types or understanding cross-cutting tools. It encapsu-
lates a simple, concrete implementation of the ûve propagation
operations described in §3.1. _e most important of these op-
erations to consider for correct propagation of contexts is the
merging of contexts when two branches of computation join.
To this end we derive the following properties:
Idempotent Merge Many cross-cutting tools have "write-
once" contexts, such as a tenant ID [51] or a trace ID [46].
Since a context may be propagated through arbitrary invoca-
tions ofBRANCHand JOIN, yet remain unchanged, bothBRANCH
and JOINmust be idempotent in order to constrain the size of
a baggage context.
Lazy Resolution We o�en need to merge baggage contexts
that contain diòerent values, and resolve them using tool-
speciûc logic (e.g. taking a max or min value). Since we do not
interpret the values to merge, our default behavior is to keep
both and resolve them later. We expect that, eventually, the
relevant cross-cutting tool will access its data in the baggage
context, and can then manually interpret and resolve the
merge. Lazy resolution implies baggage contexts are collection-
like and comprise multiple data elements, and that our merge
function merges two collections.
Associative Merge For collection-like baggage contexts, an
associative merge function is necessary for the same reason
we require an idempotent merge: to constrain the size of a
baggage context through arbitrary invocations of BRANCH and
JOIN. _at is, if we have two "write-once" contexts that remain
unchanged, then it is natural to requiremerge(A,merge(A, B))
=merge(A,B), and likewisemerge(merge(A, B), B) =merge(A,
B).
Order-Preserving Merge Our ûnal property incorporates or-
dering into baggage contexts. A baggage context is an ordered
collection of elements, but we place no restrictions on the
actual interpretation, cardinality, or ordering of elements. Or-
dering elements implicitly gives us control over element prior-
ities by manipulating their ordering. By extension, our merge
function is priority-preserving, i.e. its output will preserve the
relative order of elements from either input.



4.2 Representing Data Types
Using the core baggage context representation, we design en-
codings for a range of diòerent data types that preserve the
correct data type merge semantics through arbitrary invo-
cations of BRANCH and JOIN. _ese data types are exposed
through BDL. From a BDL speciûcation, the BDL compiler
will generate code that understands how to convert between
data type instances and baggage context encodings. Some data
types, like primitive types, only encode a single data element to
represent their state. Other data types, such as sets and maps,
encode their state using multiple data elements.
All BDL data types adhere to a common encoding strategy

that enables multiplexing of cross-cutting tools and arbitrary
nesting of data. _e encoding strategymanipulates the relative
ordering of individual data elements to take advantage of the
order-preserving merge. Nested objects, which might com-
prise many data elements, are laid out in a speciûc traversal
order that persists through arbitrary invocations of JOIN. With
this strategy, the properties described in §4.1 apply recursively
to nested objects. §5.2 describes our implementation of this
encoding strategy.

4.3 Con�ict-Free Replicated Data Types
Context propagation has a direct analogy to replicated data
structures. Replicated data structures comprise multiple inde-
pendent object instances, and operations performed on one
instance eventually propagate as updates to the other instances.
In our setting, concurrent branches within an execution main-
tain their own baggage context instances, each branch interacts
with its instance independently, and when two branches join
their contexts must be merged. _is analogy enables us to
draw on a comprehensive body of existing work in con�ict-
free replicated data types (CRDTs), which are replicated data
structures that have deterministic merge behavior and provide
strong eventual consistency [77]. In the literature, there are
CRDT implementations for a range of data types including
sets, maps, registers, counters, and graphs [78]. Furthermore,
baggage contexts themselves fulûll the deûnition of a state-
based CRDT [77], as they have an idempotent, associative,
and commutative merge function.

4.4 Layering Summary
_e ûnal contribution of this work is to group the concepts
presented herein into an abstraction layering that we call the
Tracing Plane. By separating components into distinct layers,
the Tracing Plane separates concerns of system developers
from those of cross-cutting tool developers (cf. Table 1), and
makes it easy to implement and support the diòerent features.
Figure 3 illustrates the Tracing Plane’s layered design. _e

transit layer encapsulates the system-level instrumentation
done by system developers, and aims to provide generic and
reusable instrumentation (§3.1). _e cross-cutting layer simpli-
ûes the development and deployment of cross-cutting tools,
by providing BDL to specify cross-cutting tool contexts, and
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Fig. 3: Tracing Plane layered design.

BDL-compiled interfaces to access andmanipulate data (§3.2).
We bridge these layers with two internal layers. _e atom layer
corresponds to the core baggage context representation and
implements the ûve propagation operations (§4.1 and §5.1).
_e baggage layer implements the encoding strategy for nested
data structures and multiplexed cross-cutting tools (§4.2 and
§5.2).

Minimal Tracing Plane support does not require imple-
mentation of the full stack: a system needs to support the core
baggage context representation to correctly propagate baggage.
_e atom layer thereby serves as the “narrow waist” of context
propagation and provides a low barrier to entry; for example,
our Go atom layer implementation has fewer than 100 LOC.
However, though the core baggage context representation is
designed to be simple and expressive, it is intended as a com-
pilation target for BDL, and the mappings described in §5 are
wholly encapsulated by the BDL compiler and baggage layer.

5. Implementation
We now present our implementation of baggage contexts. Our
implementation is expressive, eõcient, and enables multiple
cross-cutting tools to co-exist without interference. Further-
more, it allows for controlling the size of the underlying bag-
gage context.

Zipkin To aid our discussion, we brie�y describe the cross-
cutting tool Zipkin. Zipkin is a open-source tool based on
Google’s Dapper [85]. For each execution it records the hi-
erarchy of invoked RPCs as a tree of causally-related spans,
with each span containing timing information and logged
events. To relate the spans for each request, Zipkin generates
a random TraceID at the start of the request, and propagates
it with subsequent execution. To capture causal relationships
between spans, Zipkin generates and propagates random IDs
for the current span and parent span. Zipkin updates these
IDs when logging new spans and reinstates parent IDs when
closing spans. Zipkin also supports a sampling directive, and,
more recently, tags that go in its context (we omit tags from
Figure 2).When spans end,Zipkin clients log them to a central
database.



5.1 Core Representation (Atom Layer)
Our core representation is based on two important concepts:
atoms and lexicographic merge.
Atoms A baggage context instance is an array of zero or
more atoms, where an atom is an arbitrary array of zero or
more bytes. _e ordering and interpretation of atoms within
a baggage context is arbitrary, and diòerent BDL data types
write and interpret atoms in diòerent ways.
Propagation Operations Table 2 summarizes the ûve propa-
gation operations for atoms. DESERIALIZE and SERIALIZE read
and write atoms in order, varint-preûxed. BRANCH trivially
duplicates atoms. TRIM truncates atoms and appends a special
trim marker, which is just the zero-length atom; we discuss
TRIM in §5.5. _e most important operation is JOIN.
Lexicographic Order JOIN is based on the lexicographic order
of atoms. Lexicographic order is a generalization of alphabeti-
cal order: to compare two atoms, compare them byte-by-byte
from le�-to-right until one byte is found to be less than the
other, or one atom is found to be a preûx of the other (Fig-
ure 4a†). For example, the following atoms are lexicographi-
cally ordered: 2B01<5E7744<5F<5F01<A0 .
Lexicographic Merge To merge two baggage instances, JOIN
performs a lexicographic merge, which is similar to the merge
of merge-sort: traverse the input arrays in tandem; compare
pairs of atoms; select and advance the lexicographically smaller
atom each time (Figure 4a‡). Notably however, if two atoms
are found to be equal, only output them once. Figure 4b il-
lustrates lexicographic merge examples on various baggage
contexts. Lexicographic merge does not sort atoms, nor re-
quires the inputs to be sorted. _e algorithm makes a single
pass through the inputs, and repeated atoms can be output
if they are not encountered together, e.g. 5F1B in Figure 4b†.
Lexigoraphic merge satisûes the properties described in §4.1:
it is idempotent, associative, commutative, lazy, and order pre-
serving.

5.2 Atom Encodings (Cross-Cutting Layer)
As described in §4.4, the core atom representation and lexico-
graphic merge are together suõcient for propagating opaque
baggage contexts. We now describe the intermediate encoding
scheme shared by all BDL data types that enables nesting and
addressing, and provides isolation and multiplexing of ûelds
and tools.
Atom Preûxes _e ûrst byte of each atom is its preûx, concep-
tually similar to IP packet headers. Preûxes serve two purposes:
they encode information about the atom’s type, and enable
us to control the lexicographic order of diòerent atom types
regardless of their payload.
Data Atoms A data atom encodes the value of a ûeld or struct
and is preûxed by a 0 byte. For example, Zipkin2 declares
a TraceID ûeld of type ûxed64 (a 64 bit integer). BDL en-
2Zipkin is described in §3.2. Figure 2 outlines Zipkin’s BDL declaration.

1: procedure LexCmp(x, y) ▷ atom comparison †
2: for i ∈ [0 . . . min(x .length, y.length)] do
3: if x[i] ≠ y[i] then return x[i] − y[i]
4: return x .length − y.length
5: procedure LexMerge(a, b) ▷ baggage merge ‡
6: j ← 0; k ← 0; out ← []

7: while not a.IsEmpty and not b.IsEmpty do
8: cmp ←LexCmp(a.Head, b.Head)
9: if cmp < 0 then out.Push(a.Pop)
10: else if cmp > 0 then out.Push(b.Pop)
11: else
12: a.Pop
13: out.Push(b.Pop)
14: out.PushAll(a, b)
15: return out
(a)Lexicographic atom comparison and baggagemerge pseudo-code.

Baggage A Baggage B LEXMERGE (A, B)
A0 5F1B A0 5F1B
A0 5F1B A0 2B A0 2B 5F1B
A0 5F1B A0 2B 77 A0 2B 5F1B 77
A0 5F1B A0 2B 5F1B A0 2B 5F1B
A0 5F1B A0 5F1B0044 A0 5F1B 5F1B0044
A0 5F1B BB 2B A0 5F1B BB 2B

† A0 5F1B BB 5F1B A0 5F1B BB 5F1B

XX atom XX YY baggage
(b)Lexicographic merge examples; atoms use hexadecimal notation.
Fig. 4: A baggage context is an array of atoms. Baggage contexts are
merged using lexicographic comparison.

codes primitives like ûxed64 to one data atom; e.g. calling
zmd.SetTraceID(234)will yield a data atom with the payload
234, i.e. 0000000000000000EA . For ease of demonstration, we
abbreviate data atoms by highlighting the 0 preûx and writing
literal values, e.g. 0234 .
HeaderAtomsHeader atoms address data atoms. Eachheader
encodes one component of a fully qualiûed path name. For
example, to address Zipkin.TraceID requires two header atoms,
one each for Zipkin and TraceID. Header atoms encode the
preûx byte as follows:
• _e ûrst bit of a header atom preûx is 1 , making all header
atoms >lex all data atoms.

• _e middle four bits of a header encode its depth in the
path in descending order from 15 (the maximum depth) –
i.e. 0�F , 1�E , . . . ,15�0 . For example, Zipkin (level 0) and
TraceID (level 1) encode F and E respectively. With this
encoding, headers at depth i are >lex headers at depth > i.

• _e remaining preûx bits are incidental feature �ags.
A�er the preûx byte, headers encode their component iden-
tiûer. For a compact encoding we use positional indexes de-
clared in BDL instead of literal identiûers, e.g. TraceID�0 .
Root identiûers, e.g. Zipkin, lack a positional index and in-
stead use an implicit global mapping of root identiûers to
indexes, similar to how TCP ports are mapped to common
processes; our examples arbitrarily assign Zipkin to 2 . For ease
of demonstration, we abbreviate header atoms by highlight-
ing the leading 1 bit, the header’s level, and its identiûer, e.g.
Zipkin.TraceID headers F802 , F000 abbreviate as 1F2 , 1E0 .
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Fig. 5: Timeline of a request to order socks in the Sock Shop microservices demo [95], invoking Users, Cart, and Payments microservices. Rows
represent threads; shaded bars represent time executing; lines indicate causality; and we highlight invocations of BRANCH ( ) and JOIN ( ). (b)
and (c) illustrate concurrent execution branches setting diòerent Tag values, that are later merged at (d). (e) illustrates atoms a�er imposing a
size constraint of 60 bytes; (f) illustrates how the trim marker preserves the position of potentially lost atoms.

Atom Order With this encoding, BDL objects lay out their
atoms as a pre-order depth-ûrst traversal of the constituent
ûelds. _e traversal visits siblings in lexicographically-increas-
ing order of identiûer. For example, the complete encoding
of Zipkin’s TraceID is simply 1F2 , 1E0 , 0234 . If we also set
Zipkin’s SpanID, e.g. zmd.SetSpanID(55), then the encoding is
1F2 , 1E0 , 0234 , 1E1 , 055 . TraceID precedes SpanID due to
its lower BDL index. Note that the root Zipkin header 1F2 is
not duplicated.
Merging _e behavior of this encoding under lexicographic
merge is fundamental to preserve BDL data types, and is a
core contribution of this paper. Lexicographically merging
atoms under this encoding conceptually entails a tandem
traversal of two trees. _e traversal merges all data atoms at
each node visited and proceeds jointly through both inputs in
depth-ûrst order. Nodes that exist in only one of the inputs are
correctly inserted into the appropriate position in the output.
Atoms present in both inputs are preserved oncewithout being
unnecessarily duplicated. _is behavior enables BDL to nest
and multiplex ûelds and tools.

To illustrate, suppose we had set Zipkin’s SpanID and
TraceID on separate baggage context instances, i.e. A = 1F2 ,
1E0 , 0234 and B = 1F2 , 1E1 , 055 . LEXMERGE of A and B
correctly yields 1F2 , 1E0 , 0234 , 1E1 , 055 — it does not
duplicate 1F2 ; it correctly positions siblings 1E0 and 1E1 ;
and it preserves 0234 and 055 under the correct headers.

5.3 Example
Tomake these concepts concrete, we present an example using
the Sock Shop microservices demo [95]. Sock shop comprises
13 microservices written in several languages, primarily Java

and Go. We implemented baggage libraries in Java and Go;
instrumented the Spring Cloud [86] and Go Kit [91] microser-
vice frameworks; instrumented all Java and Go microservices;
andmigrated Java andGoZipkin implementations to interface
with baggage contexts instead of hard-coding identiûers.

Figure 5 illustrates the end-to-end execution of a request to
place an order for socks, with calls to the Orders, Users, Cart
and Payments microservices. Figure 5a illustrates the object
and corresponding atom representation of baggage included in
the GetUser call from Orders. _e baggage includes values for
Zipkin’s TraceID, SpanID, ParentSpanID, and Sampled ûelds.

5.4 Complex Data Types
Beyond the simple encodings described in §5.2, BDL provides
more elaborate data types with encodings comprisingmultiple
atoms. For example, BDL encodes the set data type by encod-
ing one header atom, then encoding a data atom per element
and arranging data atoms in lexicographically-increasing or-
der. Lexicographically merging two encoded sets performs
the correct set union and outputs sorted data atoms due to
the sorted inputs. Other data types supported by BDL include
counters, maps, and CRDT variants (cf. §5.6). To demonstrate
the BDL map type, we update Zipkin’s BDL declaration with
the following ûeld:

map<string, string> tags = 4
Tags are a recent extension to Zipkin3 present in the Go Zipkin
implementation but not Java. For this demonstration, we
modify the Go-based User microservice to add tags whenever
GetAddress or GetCard is invoked.

3Zipkin tags are inspired by, and named a�er, Pivot Tracing’s baggage [53];
we use the name tags instead of baggage to avoid overloaded terminology.



Maps encode each key-value pair as a header containing the
key literal and a data atom containing the value. Figure 5b illus-
trates atoms a�er GetCard adds the tag CardGetHostname=comp-
ute10; similarly Figure 5c illustrates atoms a�er GetAddress
adds AddressGetHostname=compute10. Note that GetCard and
GetAddress are concurrent calls, so atoms in one execution
branch will not be visible to the other, and vice-versa, until
a�er the branches join.
Merging _e desired merge behavior of a map is to union all
keys and recursively merge values mapped under each key.
With the above encoding of maps to atoms, lexicographic
merge yields the correct behavior. Figure 5d illustrates this:
a�er the concurrent GetCard and GetAddress calls return and
the branches eventually join, lexicographic merge correctly
preserves and orders both of the key-value mappings for Tags.

_is example illustrates an important and powerful prop-
erty of our encoding. _e Orders microservice is written in
Java, and its Zipkin implementation lacks support for tags. Pre-
viously, Zipkin would naïvely ignore and lose any tags propa-
gated from the Go implementation. However, using baggage
contexts, lexicographic merge correctly preserves and propa-
gates tags, despite lacking knowledge of its existence or type.
All BDL data types achieve this eòect, which is extremely use-
ful in environments like this where it is infeasible to redeploy
all components for any new tool or update to existing tools.
BDL declarations can be updated to add new ûelds and depre-
cate existing ûelds, without aòecting backwards compatibility
with systems that deployed old versions. _e only require-
ment is that, once deployed, new ûelds cannot reuse indices
of existing ûelds. In compiled objects, old versions ignore, but
continue to propagate, ûelds they don’t know about.
Optimizations Since most BDL ûelds have a small index
(i.e., TraceID=0, SpanID=1), we implement a special variable-
length lexvarint encoding, similar to protocol buòer’s varint,
but with lexicographical comparison equivalent to the corre-
sponding integer comparison. Using lexvarints,we can encode
most headers in 2 bytes; 1 for the preûx and 1 for the ûeld index.
Lexvarints are the default integer type in BDL unless explicitly
designated ûxed-width (e.g., int64 is a lexvarint; ûxed64 is
a ûxed 8 bytes). We provide further lexvarint encodings for
signed and unsigned integers, and ascending and descending
order. We evaluate baggage encoded sizes in §6, but in general
they are modest, particularly for ûxed-width IDs. For example,
excluding Tags, Zipkin’s ûelds use 48 bytes.

5.5 Over�ow
§3.1 introduced TRIM, to enable system developers to impose
size constraints on baggage contexts, which is o�en necessary
to avoid excessive performance overheads from potentially
large contexts [53,81].We call it over�owwhenwe are forced to
discard atoms as a result of TRIM. To handle over�ow, we des-
ignate the zero-length atom to be a special trim marker. TRIM
simply drops tail atoms until the size restriction is met, then
appends the trimmarker. _e trimmarker is lexicographically

less than all other atoms. Consequently wherever it is inserted,
it will maintain that exact position, even through subsequent
branches and joins. Later, we can observe the position of the
trim marker to infer whether atoms may have been dropped.

To illustrate, we modify the Orders microservice to im-
pose an aggressive limit of 60 bytes when calling Payments.
Consequently, baggage included with the Payments request
over�ows, and the tags added by the Users microservice are
dropped (Figure 5e). Later, when Payments responds to Or-
ders, the baggage containing the trimmarkermerges backwith
the sender’s local baggage; however, the trim marker persists,
marking the position where data may have been discarded. A
corollary of TRIM is that the order of BDL ûelds also implies
priority – higher index ûelds are dropped ûrst by trimming. To
ensure that BDL declarations can be updated to add higher pri-
ority ûelds, BDL supports both positive and negative indexed
ûelds.

5.6 Con�ict-Free Replicated Data Types
As described in §4.3, context propagation has a direct analogy
to replicated data structures. In the literature, there are CRDT
implementations for a range of data types including sets,maps,
registers, counters, and graphs [78]. Current BDL data types
with CRDT equivalents are counters, �ags, sets, and maps.
Furthermore, our baggage context implementation naturally
provides sets and maps (cf. §5.4), corresponding to the add-
only set and dictionary CRDTs; in the literature these form
building blocks for many CRDTs and enable emulation of all
others [78].

To make things concrete, we describe the implementation
of an add-only counter using baggage, which mirrors the G-
Counter CRDT. Counters are useful for cross-cutting tools, e.g.
to measure resources consumed during execution [53]. How-
ever, it is insuõcient to implement a counter by just propagat-
ing a single integer, because it can lead to concurrent updates
or inadvertent double-counting when later merging baggage
instances. Instead, the BDL counter type is similar to a version
vector [72]. A counter comprises zero or more components.
Each component has a random ID, and stores its value un-
der a header with that ID. To increment, we either increment
an existing component, or initialize a new component. To
query, we sum up the values in all components. Execution
branches reuse their own component ID, but do not share it
when branching. Counters thus maintain 1 component for
each concurrent branch of execution; this grows proportion-
ally with execution width.When two baggage instances merge,
lexicographic merge will recursively merge values under each
component. If a component has multiple values (i.e., the merg-
ing branches diòered), we take the maximum value; this can
be done lazily. Finally, counters supporting subtraction (i.e.,
PN-Counters) are easily implemented by composing two add-
only G-Counters, one for addition and one for subtraction.



6. Evaluation
§5.3 illustrated baggage contexts in the Sock Shop microser-
vices demo environment. _e remainder of our evaluation
centers on four cross-cutting tools running simultaneously in
an instrumented version of the Hadoop stack. We focus on re-
quests to the Hadoop Distributed File System (HDFS)[83]
and Spark [101] data analytics jobs running atop Hadoop
YARN[94]. We run our experiments on a 25 node cluster.
Our evaluation demonstrates that the Tracing Plane:
• supports a range of data types, hiding concurrency subtleties
• supports a variety of cross-cutting tools, deployed simulta-
neously

• propagates contexts through systems in diòerent languages
• is robust to over�ow and systems with size constraints
• makes it easy to update and deploy new tool versions
• is robust to mixed tool versions and black-box propagation

6.1 Cross-Cutting Tools
In addition to Zipkin, described in §2, we implemented the
following cross-cutting tools using the Tracing Plane. Figure 2
shows the BDL speciûcation for each.
Retro Retro is a resource management framework that prop-
agates a tenant ID alongside executions, intercepts API calls
to resources (e.g., disk, network, locks, etc.), and aggregates
resource counters per tenant [51]. For clarity, we conûgure
Retro to only intercept disk API calls.
X-Trace X-Trace is an end-to-end tracing framework [39];
during execution, X-Trace logs events, which are similar to
logging statements. When X-Trace logs an event, it attaches
three pieces of information: a task ID that is randomly gener-
ated at the beginning of execution; a randomly generated event
ID; and parent IDs for the immediately preceding events. It
then replaces the parent IDs in the baggage with the new event
ID. We implement a slight variation of the original X-Trace:
in our version, multiple parent events can accumulate when
executions merge, so the size of X-Trace’s baggage can grow
if there are multiple merges and no new event is logged. We
generate X-Trace events by overriding Java’s log4j logging.
Pivot Tracing Pivot Tracing is a dynamic instrumentation
system for querying statistics about causally related events [53].
We reproduceQ7 from the paper, which propagates two pieces
of information: the hostname of the client when initiating
an HDFS operation; and the locations of ûle replicas on the
NameNode when looking up a ûle. When the request reaches
a DataNode, it relates the DataNode’s hostname with the two
pieces of information, and emits a result tuple.
NetJob NetJob is a cross-cutting tool we are developing for
monitoring network contention in data analytics jobs. NetJob
propagates Hadoop and Spark job and task IDs alongside re-
quests and combines it with network traõc statistics recorded
on each node. Our current implementation of NetJob propa-
gates these IDs in a map (cf. Figure 2), to be �exible in experi-
menting with propagating diòerent information.

6.2 Cross-Cutting Tools in Practice
We instrumented HDFS 2.7.2 with the Java tracing plane
library and deployed the cross-cutting tools described in §6.1.

6.2.1 Execution Patterns
Figure 6a illustrates the end-to-end execution timeline of a
1MB HDFS write request, highlighting the BRANCH and JOIN
behavior at several points. _ere are swimlanes for the client
(À), NameNode (Á), and three DataNodes (Â). We highlight
5 phases: in Ã, the client makes two RPCs to create the ûle
and allocate a data block; in Ä the client sets up a streaming
pipeline with three DataNodes; Å zooms in on the streaming
of 64kB application-level packets through the pipeline, in a
rather complex pattern of branches and joins (there can be
up to 80 unacknowledged packets in �ight). A�er writing the
ûle the client awaits conûrmation that the data is synced to
disk (Æ), then makes another NameNode RPC to close the
ûle (Ç). _is example illustrates how the request execution
patterns of a seemingly simple API call can be quite complex,
encompassing several models of execution; this contrasts with
the comparatively simpler request-response microservices
hierarchy in §5.3.

6.2.2 Cross-Cutting Tools
Figure 6b illustrates the places during request execution where
each cross-cutting tool interacted with the request’s baggage.
Retro writes the tenant ID once and reads it on every disk
operation. NetJob intercepts all network communication to
check for a job ID, but because we were not running the re-
quest as part of a job, it never ûnds one and does nothing
further. X-Trace generates events at several points during
execution, which involves both querying and updating its
IDs in the baggage. Finally, Pivot Tracing Q7 instruments
three locations: the start of the request in the client; the re-
turn of getBlockLocations on the NameNode; and DataNode
DataTransferProtocol operations. _is example demonstrates
how several cross-cutting tools coexist side-by-side using bag-
gage, and how they varywidely in terms ofwhere cross-cutting
tool logic is invoked. All systems were instrumented once for
propagation, and deploying the tools solely involved deûning
their BDL representation and using the accessor methods on
the relevant variables, at the right points.

6.2.3 Baggage Overheads
Figure 7a shows a time series of the average baggage size dur-
ing the request, and a break down for each cross-cutting tool.
Retro and Pivot Tracing only updated values once, and im-
posed constant-sized overheads of 9 and 15 bytes respectively.
NetJob never updated baggage values and imposed no over-
head. X-Trace accessed baggage multiple times during execu-
tion, and the typical X-Trace overhead was 29 bytes to carry
the TaskID and one ParentID. In several places X-Trace ac-
cumulated multiple ParentIDs (11 at most, using 153 bytes)
due to repeated merges. Normally, X-Trace discards the pre-
vious ParentIDs each time it logs a new event; however, as
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Fig. 7: Baggage overheads for Figure 6.

Figure 6b illustrates, there is a long period where X-Trace logs
no events and does not discard the IDs. Increasing the ûdelity
to trace-level messages mitigated this and we saw no more
than 3 ParentIDs.

In Figure 7b, we plot the request’s network throughput, and
the cost of the baggage that is included in network requests. In
aggregate across the request, baggage contributed 11kB of the
request’s total 3.18MB of network traõc (0.35%). _e network
utilization of the request varies over time, depending on the
stage of execution; RPC communication at the beginning
and end of the request has light network usage (t = 0 to 20);
streaming data imposes the most overhead (t = 125 to 150);
and there are periods of no network utilization while waiting
for the client to ûll up data buòers (t = 65 to 80). _e network
contribution of baggage is nearly constant; it is included in all
network communication, regardless of payload sizes.

6.3 Cross-Cutting Tools at Scale
We now deploy the same set of cross-cutting tools in instru-
mented versions of Spark, YARN, and HDFS, running on a
25-node Google Compute Engine [40] cluster. Each node is
an n1-standard-4 instance with 4 cores and 15GB memory.
Our workload comprises a subset of 19 TPC-DS queries [92],
selected by prior benchmarking work [36, 71], with the scale
factor set to 100; that is, input data in HDFS is approximately
200GB uncompressed / 17GB compressed.
6.3.1 Overview of a Query
Figure 8a illustrates the execution of query 43 [45] (Q43). Spark
first acquires 20 executors – containers deployed in YARN that
cache Spark data in memory and perform Spark computations.
_e query has three stages: (i) loading (small) metadata from
HDFS; (ii) a parallel map stage that reads the tables into
memory, filters them, and joins some small tables; (iii) a shuffle
stage that combines the query results over the network. In stage
(ii), each executor sets up multiple connections to HDFS to
read input data, resulting in a large execution width.
Figure 8b illustrates the average baggage size during query

execution, which peaks at 167 bytes. Pivot Tracing Q7 and
NetJob impose higher overheads than the HDFS request in
§6.2: the job has many HDFS read requests, and Q7 updates
the baggage in two places (client and NameNode) instead of
the previous one; and NetJob updates the baggage with stage
and task IDs as the job runs. X-Trace overhead is lower because
fewer parent IDs accumulate in baggage due to merges. Retro
overhead is constant as before, since it only propagates a single
tenant ID. In aggregate across the job, baggage accounts for a
total of 1.0% of network throughput.
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Fig. 8: Execution of TPC-DS Q43 on a 25-node Spark cluster.

6.3.2 Developing a New Tool
So far, the demonstrated cross-cutting tools have nearly con-
stant baggage overhead. However, data types such as counters,
which are not used by these cross-cutting tools, (cf. §5.6) can
potentially grow to be large, since they maintain a counter
component for each execution branch in the worst case. To il-
lustrate this, andhowwe canmitigate it,we develop an updated
version of Retro called Retro+ which aggregates disk writes
using an in-baggage counter. Retro+ modiûes Retro’s disk in-
strumentation to increment the counter, and extend Retro’s
BDL declaration with an additional ûeld: counter DiskWrites
= 1. Updating Retro+ took less than 10 minutes, and required
no additional system-level modiûcations.
Figure 8c plots Spark’s disk write over time; every task on

every executor writes its output to disk. Figure 9a illustrates
the growth in baggage over time. Once tasks start writing to
disk (t = 25), the baggage size increases linearly, as each of the
362 tasks in stage (ii) requires a new counter component. At
t = 50, the average baggage size across all execution branches
is 3.7kB, which imposes up to 22% network overhead, and a
total of 13% in aggregate for the job.

_is experiment demonstrates the worst-case behavior of
baggage – that it can grow proportional to execution width.
_is is, of course, dependent on the cross-cutting tool, and not
inherent to baggage. We have two mechanisms to counter this.

_e ûrst, system-level instrumentation can specify hard limits
for baggage size by trimming. Figure 9b illustrates the growth
in baggage size when we limit all baggage serialization to 1kB;
at t = 30 we begin dropping atoms, which caps the network
overhead to 7.4% for stage (ii) (5% in aggregate for the job).We
conûgure baggage so that Retro+ appears a�er the other cross-
cutting tools, so its atoms are dropped ûrst; this preserves the
other cross-cutting tools’ baggage. Dropping Retro+’s counter
components leads to the counter being inaccurate; by the end
of the job, it has a 43% error.

Our secondmechanism reduces baggage size and addresses
counter error. At well-chosen points during execution (such
as BSP barriers), we know that branches have completed. At
these points, we can compact the baggage by collapsing the
now-defunct counter components into a single component.
Compaction is a special case of JOIN, but requires knowledge
of baggage semantics (e.g., knowing that bag 1 of Retro+ is a
counter) and support for the operation by the data type. We
updated our Spark instrumentation to compact baggage when
tasks and stages complete – an additional two lines of code. Fig-
ure 9c illustrates baggage overheads with compaction enabled:
baggage size peaks at only 186 bytes, which imposes at most
1.4% overhead during stage (ii) and a total of 1.1% in aggregate
for the job. _is occurs because at the end of each of the 362
tasks in stage (ii), the additional counter component it created
is dropped and merged into some other existing counter com-
ponent. Consequently, the number of components �uctuates
between 2 and 4 during the job, over�ow does not occur, and
the counter value is correct at the end of the job.
6.3.3 Benchmark Results
Figure 10 repeats the Spark experiments for 19 TPC-DS queries,
including results with and without compaction (Retro+C and
Retro+ respectively). _e queries each diòer in the number of
stages and tasks, and at what points they write to disk.

6.4 Experience Using Baggage Contexts
We found it easy to develop or update cross-cutting tools.
For example, we added per-request logging levels to X-Trace,
conûguration �ags in Retro, and a tool to record critical paths,
all without touching the lower level system instrumentation.

In §6.3 we introduced a compaction operator. Compaction
is a special case of JOIN, butwe omit it from the transit layerAPI
because, in order to compact a data type, it requires knowledge
of tool and data type semantics (i.e., knowledge that speciûc
atoms correspond to a speciûc data type)._is circumvents the
separation of concerns achieved by our layering, in exchange
for improved performance.

Similarly, we only implemented naive overflow that drops
atoms from the end of baggage. However, if cross-cutting tool
semantics are known (i.e., BDL-generated code for the tool is
deployed in anode), thenwe could implement a data type-aware
overflow; for example, a counter could drop the components
with the smallest values to minimize counter error.
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Lazy resolution (§4.1) enables baggage contexts to carry
essentially arbitrary data types, as cross-cutting tools can de-
fer evaluation of custom merge functions until tool logic is
invoked. However, this is only possible because merge is com-
mutative. In some circumstances, tools might want a non-
commutative merge operation. For example, in an environ-
ment where executions are RPC request-response trees, a tool
might want to distinguish between baggage contexts of the
caller and callee. We intentionally avoid supporting this use
case, as it encourages a more restrictive execution model and
commonly leads to brittle instrumentation (cf. §2.2).
Even with end-to-end baggage context propagation, success-

ful cross-cutting tool deployment is still largely dependent on
instrumentation decisions made by system developers. Errors
in instrumentation can affect cross-cutting tools, as can mis-
matched expectations of what constitutes the extent of an execu-
tion. In this paperwe advocate for instrumentation to propagate
contexts along the end-to-end execution path of requests, i.e.,
the “trigger-preserving slice” [76]. However, baggage contexts
could be propagated along other dimensions, such as through
caches, using the same five propagation operations.
BDL’s wire speciûcation of serialized atoms is language-

independent, andminimal tracing plane support only requires
the atom layer. _e atom layer is simple and easy to implement,
requiring less than 100 LOC in our Go implementation.

7. RelatedWork
_roughout this paper we mention several cross-cutting tools
and related instrumenteddistributed applications, andwe com-
plement the discussion here. Distributed systems tracing is
useful for a range of tasks surrounding performance monitor-

ing, anomaly detecting, and resource management; we refer
to [76] for a detailed overview.

In the open-source community, Dapper’s span model is
the prevailing approach with numerous derivative implemen-
tations [20, 56, 65, 80, 87, 98]. As these tracing systems have
matured, their community has encountered many of the chal-
lenges described in this paper [97], and recently motivated the
OpenTracing eòort to standardize the semantics of this class
of cross-cutting tools [60]. Canopy [46] also identiûes and
addresses these challenges, by decoupling aspects of context
propagation, instrumentation, and trace representation.

Pivot Tracing [53] introduced a related, but more restricted
concept of baggage as a generic set of key-value pairs that fol-
lows execution. Pivot Tracing does not decouple cross-cutting
tools from instrumentation, and its baggage is not order pre-
serving, a requirement for lexicographic merge. In this work
we generalize baggage to a wide range of data types, and in-
troduce abstractions that encapsulate baggage implementa-
tions from cross-cutting tools and system developers. Our
notion of Baggage relies on the advances in concurrent data
types [77, 78], and is inspired by the way in which IDLs such
as protocol buòers [93] automate and simplify the tasks of
marshalling, serializing, and transporting datastructures.

8. Conclusion
_e Tracing Plane is a step forward towards truly pervasive
instrumentation of distributed systems, addressing important
roadblocks. At the system level, it increases the value of in-
strumenting a system – ideally at development time – as such
instrumentation can be re-used by many tracing and related
tools. It also makes the work of cross-cutting tool developers
much easier, as they can focus on tool logic and data types,
and ignore details of serialization, deserialization, propaga-
tion, and all of the subtleties of keeping data consistent in
face of concurrency. _e layered design brings in all the stan-
dard beneûts of a strong separation of concerns, reuse, and
independent evolution around a simple yet expressive narrow
waist. While we have demonstrated the implementation of
several cross-cutting tools on a number of instrumented sys-
tems, the Tracing Plane’s ultimate success will be measured by
the in�uence of its ideas in practice.
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