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Monitoring and troubleshooting distributed systems is notoriously difficult; potential problems are com-
plex, varied, and unpredictable. The monitoring and diagnosis tools commonly used today—logs, counters,
and metrics—have two important limitations: what gets recorded is defined a priori, and the information
is recorded in a component- or machine-centric way, making it extremely hard to correlate events that
cross these boundaries. This article presents Pivot Tracing, a monitoring framework for distributed systems
that addresses both limitations by combining dynamic instrumentation with a novel relational operator: the
happened-before join. Pivot Tracing gives users, at runtime, the ability to define arbitrary metrics at one point
of the system, while being able to select, filter, and group by events meaningful at other parts of the system,
even when crossing component or machine boundaries. We have implemented a prototype of Pivot Tracing
for Java-based systems and evaluate it on a heterogeneous Hadoop cluster comprising HDFS, HBase, MapRe-
duce, and YARN. We show that Pivot Tracing can effectively identify a diverse range of root causes such as
software bugs, misconfiguration, and limping hardware. We show that Pivot Tracing is dynamic, extensible,
and enables cross-tier analysis between inter-operating applications, with low execution overhead.
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1 INTRODUCTION

Monitoring and troubleshooting distributed systems is hard. The potential problems are myriad:
hardware and software failures, misconfigurations, hot spots, aggressive tenants, or even simply
unrealistic user expectations. Despite the complex, varied, and unpredictable nature of these prob-
lems, most monitoring and diagnosis tools commonly used today—logs, counters, and metrics—
have at least two fundamental limitations: what gets recorded is defined a priori, at development
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or deployment time, and the information is captured in a component- or machine-centric way,
making it extremely difficult to correlate events that cross these boundaries.

While there has been great progress in using machine learning techniques [60, 76, 78, 103] and
static analysis [106, 107] to improve the quality of logs and their use in troubleshooting, they carry
an inherent tradeoff between recall and overhead, as what gets logged must be defined a priori.
Similarly, with monitoring, performance counters may be too coarse-grained [73]; and if a user
requests additional metrics, a cost-benefit tug-of-war with the developers can ensue [19].

Dynamic instrumentation systems such as Fay [54] and DTrace [38] enable the diagnosis of
unanticipated performance problems in production systems [37] by providing the ability to select,
at runtime, which of a large number of tracepoints to activate. Both Fay and DTrace, however, are
still limited when it comes to correlating events that cross address-space or OS-instance bound-
aries. This limitation is fundamental, as neither Fay nor DTrace can affect the monitored system
to propagate the monitoring context across these boundaries.

In this article, we combine dynamic instrumentation with causal tracing techniques [39, 55,
93] to fundamentally increase the power and applicability of either technique. We present Pivot
Tracing, a monitoring framework that gives operators and users, at runtime, the ability to obtain
an arbitrary metric at one point of the system, while selecting, filtering, and grouping by events
meaningful at other parts of the system, even when crossing component or machine boundaries.

Like Fay, Pivot Tracing models the monitoring and tracing of a system as high-level queries
over a dynamic dataset of distributed events. Pivot Tracing exposes an API for specifying such
queries and efficiently evaluates them across the distributed system, returning a streaming dataset
of results.

The key contribution of Pivot Tracing is the “happened-before join” operator, 5, that enables
queries to be contextualized by Lamport’s happened-before relation, — [65]. Using 5, queries
can group and filter events based on properties of any events that causally precede them in an
execution.

To track the happened-before relation between events, Pivot Tracing borrows from causal trac-
ing techniques, and utilizes a generic metadata propagation mechanism for passing partial query
execution state along the execution path of each request. This enables inline evaluation of joins
during request execution, drastically mitigating query overhead and avoiding the scalability issues
of global evaluation.

Pivot Tracing takes inspiration from data cubes in the online analytical processing domain [56],
and derives its name from spreadsheets’ pivot tables and pivot charts [48], which can dynamically
select values, functions, and grouping dimensions from an underlying dataset. Pivot Tracing is in-
tended for use in both manual and automated diagnosis tasks, and to support both one-off queries
for interactive debugging and standing queries for long-running system monitoring. It can serve
as the foundation for the development of further diagnosis tools. Pivot Tracing queries impose
truly no overhead when disabled and utilize dynamic instrumentation for runtime installation.

We have implemented a prototype of Pivot Tracing for Java-based systems and evaluate it on
a heterogeneous Hadoop cluster comprising HDFS, HBase, MapReduce, and YARN. In our evalu-
ation, we show that Pivot Tracing can effectively identify a diverse range of root causes such as
software bugs, misconfiguration, and limping hardware. We show that Pivot Tracing is dynamic,
extensible to new kinds of analysis, and enables cross-tier analysis between inter-operating appli-
cations with low execution overhead.

In summary, this article has the following contributions:

—Introduces the abstraction of the happened-before join () for arbitrary event correlations;
—Presents an efficient query optimization strategy and implementation for 5 at runtime,
using dynamic instrumentation and cross-component causal tracing;
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—Presents a prototype implementation of Pivot Tracing in Java, applied to multiple compo-
nents of the Hadoop stack;
—Evaluates the utility and flexibility of Pivot Tracing to diagnose real problems.

2 MOTIVATION
2.1 Pivot Tracing in Action

In this section, we motivate Pivot Tracing with a monitoring task on the Hadoop stack. Our goal
here is to demonstrate some of what Pivot Tracing can do, and we leave details of its design, query
language, and implementation to Section 3, Section 4, and Section 5, respectively.

Suppose we want to apportion the disk bandwidth usage across a cluster of eight machines
simultaneously running HBase, Hadoop MapReduce, and direct HDES clients. Section 6 has an
overview of these components, but for now, it suffices to know that HBase, a database application,
accesses data through HDFS, a distributed file system. MapReduce, in addition to accessing data
through HDFS, also accesses the disk directly to perform external sorts and to shuffle data between
tasks. We run the following client applications:

FSREAD4M Random closed-loop 4MB HDFS reads
FSREAD64M Random closed-loop 64MB HDFS reads
HGeT 10kB row lookups in a large HBase table
Hscan 4MB table scans of a large HBase table

MRsoRrT10G MapReduce sort job on 10GB of input data
MRsorT1006  MapReduce sort job on 100GB of input data

By default, the systems expose a few metrics for disk consumption, such as disk read throughput
aggregated by each HDFS DataNode. To reproduce this metric with Pivot Tracing, we define a
tracepoint for the DataNodeMetrics class, in HDFS, to intercept the incrBytesRead(int delta)
method. A tracepoint is a location in the application source code where instrumentation can run,
cf. Section 3. We then run the following query, in Pivot Tracing’s LINQ-like query language [70]:

Q1: From incr In DataNodeMetrics.incrBytesRead
GroupBy incr.host
Select incr.host, SUM(incr.delta)
This query causes each machine to aggregate the delta argument each time incrBytesRead is
invoked, grouping by the host name. Each machine reports its local aggregate every second, from
which we produce the time series in Figure 1(a).

Things get more interesting, though, if we wish to measure the HDFS usage of each of our client
applications. HDFS only has visibility of its direct clients, and thus an aggregate view of all HBase
and all MapReduce clients. At best, applications must estimate throughput client side. With Pivot
Tracing, we define tracepoints for the client protocols of HDFS (DataTransferProtocol), HBase
(ClientService), and MapReduce (ApplicationClientProtocol), and use the name of the client
process as the group by key for the query. Figure 1(b) shows the global HDFS read throughput of
each client application, produced by the following query:

Q2: From incr In DataNodeMetrics.incrBytesRead
Join cl In First(ClientProtocols) On cl -> incr
GroupBy cl.procName
Select cl.procName, SUM(incr.delta)
The -> symbol indicates a happened-before join. Pivot Tracing’s implementation will record the
process name the first time the request passes through any client protocol method and propagate it
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Fig. 1. In this example, Pivot Tracing exposes a low-level HDFS metric grouped by client identifiers from
other applications. Pivot Tracing can expose arbitrary metrics at one point of the system, while being able to
select, filter, and group by events meaningful at other parts of the system, even when crossing component
or machine boundaries.

along the execution. Then, whenever the execution reaches incrBytesRead on a DataNode, Pivot
Tracing will emit the bytes read or written, grouped by the recorded name. This query exposes
information about client disk throughput that cannot currently be exposed by HDFS.

Figure 1(c) demonstrates the ability for Pivot Tracing to group metrics along arbitrary dimen-
sions. It is generated by two queries similar to Q2, which instrument Java’s FileInputStream
and FileOutputStream, still joining with the client process name. We show the per-machine,
per-application disk read and write throughput of MRsorT10G from the same experiment. This
figure resembles a pivot table, where summing across rows yields per-machine totals, summing
across columns yields per-system totals, and the bottom right corner shows the global totals. In
this example, the client application presents a further dimension along which we could present
statistics.

Query Q1 above is processed locally, while query Q2 requires the propagation of information
from client processes to the data access points. Pivot Tracing’s query optimizer installs dynamic
instrumentation where needed, and determines when such propagation must occur to process a
query. The out-of-the box metrics provided by HDFS, HBase, and MapReduce cannot provide anal-
yses like those presented here. Simple correlations—such as determining which HDFS datanodes
were read from by a high-level client application—are not typically possible. Metrics are ad hoc
between systems; HDFS sums IO bytes, while HBase exposes operations per second. There is very
limited support for cross-tier analysis: MapReduce simply counts global HDFS input and output
bytes; HBase does not explicitly relate HDFS metrics to HBase operations.

2.2 Pivot Tracing Overview

Figure 2 presents a high-level overview of how Pivot Tracing enables queries such as Q2. We refer
to the numbers in the figure (e.g., @) in our description. Full support for Pivot Tracing in a system
requires two basic mechanisms: dynamic code injection and causal metadata propagation. While
it is possible to have some of the benefits of Pivot Tracing without one of these (Section 8), for
now we assume both are available.

Queries in Pivot Tracing refer to variables exposed by one or more tracepoints—places in the
system where Pivot Tracing can insert instrumentation. Tracepoint definitions are not part of the
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Fig. 2. Pivot Tracing overview (Section 2.2).

system code, but are rather instructions on where and how to change the system to obtain the ex-
ported identifiers. Tracepoints in Pivot Tracing are similar to pointcuts from aspect-oriented pro-
gramming [62] and can refer to arbitrary interface/method signature combinations. Tracepoints
are defined by someone with knowledge of the system, maybe a developer or expert operator, and
define the vocabulary for queries (®). They can be defined and installed at any point in time and
can be shared and disseminated.

Pivot Tracing models system events as tuples of a streaming, distributed dataset. Users sub-
mit relational queries over this dataset (@), which get compiled to an intermediate representation
called advice (®). Advice uses a small instruction set to process queries, and maps directly to code
that local Pivot Tracing agents install dynamically at relevant tracepoints (®). Later, requests exe-
cuting in the system invoke the installed advice each time their execution reaches the tracepoint.

We distinguish Pivot Tracing from prior work by supporting joins between events that occur
within and across process, machine, and application boundaries. The efficient implementation of
the happened before join requires advice in one tracepoint to send information along the execu-
tion path to advice in subsequent tracepoints. This is done through a new baggage abstraction,
which uses causal metadata propagation (®). In query Q2, for example, cl.procName is packed
in the first invocation of the ClientProtocols tracepoint, to be accessed when processing the
incrBytesRead tracepoint.

Advice in some tracepoints also emit tuples (®), which get aggregated locally and then finally
streamed to the client over a message bus (@ and ®).

2.3 Monitoring and Troubleshooting Challenges

Pivot Tracing addresses two main challenges in monitoring and troubleshooting. First, when the
choice of what to record about an execution is made a priori, there is an inherent tradeoff between
recall and overhead. Second, to diagnose many important problems, one needs to correlate and
integrate data that crosses component, system, and machine boundaries. In Section 7, we expand
on our discussion of existing work relative to these challenges.

One Size Does Not Fit All. Problems in distributed systems are complex, varied, and unpredictable.
By default, the information required to diagnose an issue may not be reported by the system or
contained in system logs. Current approaches tie logging and statistics mechanisms into the de-
velopment path of products, where there is a mismatch between the expectations and incentives
of the developer and the needs of operators and users. Panelists at 2011 workshop on managing
large scale systems (SLAML’11) [36] discussed the important need to “close the loop of operations
back to developers.” According to Yuan et al. [106], regarding diagnosing failures, “(...) existing
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log messages contain too little information. Despite their widespread use in failure diagnosis, it is still
rare that log messages are systematically designed to support this function.”

This mismatch can be observed in the many issues raised by users on Apache’s issue trackers:
to request new metrics [5, 7, 10-12, 20, 25]; to request changes to aggregation methods [13, 19, 21];
and to request new breakdowns of existing metrics [4, 8, 9, 14-19, 23, 24, 27, 28, 30]. Many issues
remain unresolved due to developer pushback [15, 18, 24, 25, 28] or inertia [8, 10, 11, 20, 21, 23, 27,
30]. Even simple cases of misconfiguration are frequently unreported by error logs [105].

Eventually, applications may be updated to record more information, but this has effects both
in performance and information overload. Users must pay the performance overheads of any sys-
tems that are enabled by default, regardless of their utility. For example, HBase SchemaMetrics
were introduced to aid developers, but all users of HBase pay the 10% performance overhead they
incur [19]. The HBase user guide [22] carries the following warning for users wishing to integrate
with Ganglia [69]: “By default, HBase emits a large number of metrics per region server. Ganglia may
have difficulty processing all these metrics. Consider increasing the capacity of the Ganglia server or
reducing the number of metrics emitted by HBase.”

The glut of recorded information presents a “needle-in-a-haystack” problem to users [84]; while
a system may expose information relevant to a problem, e.g., in a log, extracting this information
requires system familiarity developed over a long period of time. For example, Mesos cluster state
is exposed via a single JSON endpoint and can become massive, even if a client only wants infor-
mation for a subset of the state [31].

Dynamic instrumentation frameworks such as Fay [54], DTrace [38], and SystemTap [83] ad-
dress these limitations, by allowing almost arbitrary instrumentation to be installed dynamically
at runtime, and have proven extremely useful in the diagnosis of complex and subtle system prob-
lems [37]. Because of their side-effect-free nature, however, they are limited in the extent to which
probes may share information with each other. In Fay, only probes in the same address space can
share information, while in DTrace, the scope is limited to a single operating system instance.

Crossing Boundaries. This brings us to the second challenge Pivot Tracing addresses. In multi-
tenant, multi-application stacks, the root cause and symptoms of an issue may appear in different
processes, machines, and application tiers, and may be visible to different users. A user of one
application may need to relate information from some other dependent application in order to di-
agnose problems that span multiple systems. For example, HBASE-4145 [16] outlines how MapRe-
duce lacks the ability to access HBase metrics on a per-task basis, and that the framework only
returns aggregates across all tasks. MESOS-1949 [30] outlines how the executors for a task do not
propagate failure information, so diagnosis can be difficult if an executor fails. In discussion, the
developers note: “The actually interesting / useful information is hidden in one of four or five different
places, potentially spread across as many different machines. This leads to unpleasant and repetitive
searching through logs looking for a clue to what went wrong. (...) There’s a lot of information that
is hidden in log files and is very hard to correlate.”

Prior research has presented mechanisms to observe or infer the relationship between events
(Section 7) and studies of logging practices conclude that end-to-end tracing would be helpful
in navigating the logging issues they outline [77, 84]. A variety of these mechanisms have also
materialized in production systems: for example, Google’s Dapper [93], Apache’s HTrace [29],
Accumulo’s Cloudtrace [3], and Twitter’s Zipkin [96]. These approaches can obtain richer infor-
mation about particular executions than component-centric logs or metrics alone, and have found
uses in troubleshooting, debugging, performance analysis, and anomaly detection, for example.
However, most of these systems record or reconstruct traces of execution for offline analysis, and
thus share the problems above with the first challenge, concerning what to record.
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3 DESIGN

We now detail the fundamental concepts and mechanisms behind Pivot Tracing. Pivot Tracing is
a dynamic monitoring and tracing framework for distributed systems. At a high level, it aims to
enable flexible runtime monitoring by correlating metrics and events from arbitrary points in the
system. The challenges outlined in Section 2 motivate the following high-level design goals:

(1) Dynamically configure and install monitoring at runtime
(2) Low system overhead to enable “always on” monitoring
(3) Capture causality between events from multiple processes and applications

3.1 Tracepoints

Tracepoints provide the system-level entry point for Pivot Tracing queries. A tracepoint typically
corresponds to some event: a client sends a request; a low-level IO operation completes; an external
RPC is invoked, and so on.

A tracepoint identifies one or more locations in the system code where Pivot Tracing can install
and run instrumentation. Tracepoints export named variables that can be accessed by instrumen-
tation. Figure 5 shows the specification of one of the tracepoints in Q2 from Section 2. Besides
declared exports, all tracepoints export a few variables by default: host, timestamp, process ID,
process name, and the tracepoint definition.

Tracepoints are only references to locations where Pivot Tracing can install instrumentation—
they are not baked into the system and they do not require a priori modifications. Only at runtime,
when a user submits a query, will Pivot Tracing compile and install monitoring code at trace-
points referenced by the query. Subsequently, when requests running in the system reach a tra-
cepoint, any instrumentation configured for that tracepoint will be invoked, generating a tuple
with its exported variables. These are then accessible to any instrumentation code installed at the
tracepoint.

3.2 Query Language

Pivot Tracing enables users to express high-level queries about the variables exported by one or
more tracepoints. We abstract tracepoint invocations as streaming datasets of tuples; Pivot Tracing
queries are therefore relational queries across the tuples of several such datasets.

To express queries, Pivot Tracing provides a parser for LINQ-like text queries such as those out-
lined in Section 2. Table 1 outlines the query operations supported by Pivot Tracing. Pivot Tracing
supports several typical operations including projection (II), selection (o), renaming (p), grouping
(G), and aggregation (A). Pivot Tracing aggregators include Count, Sum, Max, Min, and Average.
Pivot Tracing also defines the temporal filters MostRecent, MostRecentN, First, and FirstN, to
take the 1 or N most or least recent events. Finally, Pivot Tracing introduces the happened-before
Jjoin query operator ().

3.3 Happened-before Joins

A key contribution of Pivot Tracing is the happened-before join query operator. Happened-before
join enables the tuples from two Pivot Tracing queries to be joined based on Lamport’s happened
before relation, — [65]. For events a and b occurring anywhere in the system, we say that a hap-
pened before b and write a — b if the occurrence of event a causally preceded the occurrence of
event b and they occurred as part of the execution of the same request.! If a and b are not part of

IThis definition does not capture all possible causality, including when events in the processing of one request could
influence another, but could be extended if necessary.
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Table 1. Operations Supported by the Pivot Tracing Query Language

Operation Description Example

From Use input tuples from a set of tracepoints From e In RPCs

Union (|J) Union events from multiple tracepoints From e In DataRPCs, ControlRPCs
Selection (o) Filter only tuples that match a predicate Where e.Size < 10

Rename (p) Create a field using an expression Let SizeKB = e.Size / 1000
Projection (IT) Restrict tuples to a subset of fields Select e.User, e.Host
Aggregation (A) Aggregate tuples Select SUM(e.Cost)

GroupBy (G) Group tuples based on one or more fields GroupBy e.User

GX)glgfeagation (GA) Aggregate tuples of a group Select e.User, SUM(e.Cost)
Happened-Before = Happened-before join tuples from

Join (52) another query Join d In Disk On d -> e

Happened-before join a subset of tuples Join d In MostRecent (Disk)On d -> e

Execution Graph Query Query Results
A @ @,
@ AXB @-b,, @-b

(a) A request that triggers tracepoints (b) Queries and their corresponding results for the execution in Fig-
A, B and C several times during its ure 3a. A query for a single tracepoint (e.g. A) gives all tuples produced
execution. Each invocation of a trace- by that tracepoint. A happened-before join between two tracepoints
point produces a tuple, e.g. tracepoint (e.g. A BIB) gives all pairs of tuples satisfying that happened-before
A generates @, @, , etc. relationship.

Fig. 3. An example request execution graph and the results of running queries over that request.

the same execution, then a + b; if the occurrence of a did not lead to the occurrence of b, then
a 4 b (e.g., they occur in two parallel threads of execution that do not communicate); and ifa — b,
then b5 a.

In general, events occurring during a request’s execution will form a directed, acyclic graph
(DAG) under the happened-before relation. Figure 3 illustrates an example DAG. Events occurring
concurrently in different threads, processes, or machines do not satisfy the happened-before re-
lation (e.g., @ and ®y). However, when there is communication between concurrent components,
that communication will establish the happened-before relationship with later events (e.g., @ —
€ and & — ).

The happened-before join operator enables queries about the relationships between events. For
any two queries Q; and Q, the happened-before join Q; 54 Q, produces tuples t;t; for all t; € Oy
and t, € Q, such that t; — t,. That is, Q; produced t; before Q;, produced tuple #; in the execution
of the same request. Figure 3 shows an example execution triggering tracepoints A, B, and C several
times, and outlines the tuples that would be produced for this execution by different queries.
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Table 2. Primitive Operations Supported by Pivot Tracing Advice
for Generating and Aggregating Tuples

Operation Description
OBserVE  Construct a tuple from variables exported by a tracepoint
UNPACK Retrieve one or more tuples from prior advice

FILTER Evaluate a predicate on all tuples
Pack Make tuples available for use by later advice
EmIT Output a tuple for global aggregation

Query Q2 in Section 2 demonstrates the use of happened-before join. In the query, tuples gen-
erated by the disk IO tracepoint DataNodeMetrics.incrBytesRead are joined to the first tuple
generated by the ClientProtocols tracepoint.

Happened-before join substantially improves our ability to perform root cause analysis by giv-
ing us visibility into the relationships between events in the system. The happened-before rela-
tionship is fundamental to a number of prior approaches in root cause analysis (Section 7). Pivot
Tracing is designed to efficiently support happened-before joins but does not optimize more gen-
eral joins such as equijoins (>).

3.4 Advice

Pivot Tracing queries compile to an intermediate representation called advice. Advice specifies the
operations to perform at each tracepoint used in a query, and eventually materializes as monitoring
code installed at those tracepoints (Section 5). Advice has several operations for manipulating
tuples through the tracepoint-exported variables and evaluating % on tuples produced by other
advice at prior tracepoints in the execution.

Table 2 outlines the advice API. OBSERVE creates a tuple from exported tracepoint variables.
UNPACK retrieves tuples generated by other advice at other tracepoints prior in the execution.
Unpacked tuples can be joined to the observed tuple, i.e., if ¢, is observed and t,; and t,, are
unpacked, then the resulting tuples are t,t,; and t,t,. Tuples created by this advice can be dis-
carded (FILTER), made available to advice at other tracepoints later in the execution (PAck), or
output for global aggregation (EMIT). Both Pack and EMIT can group tuples based on matching
fields, and perform simple aggregations such as SUM and COUNT. PAck also has the following spe-
cial cases: FIRST packs the first tuple encountered and ignores subsequent tuples; RECENT packs
only the most recent tuple, overwriting existing tuples. FIRSTN and RECENTN generalize this to N
tuples. The advice API is expressive but restricted enough to provide some safety guarantees. In
particular, advice code has no jumps or recursion and is guaranteed to terminate.

Figure 4 outlines the advice generated for query Q2 from Section 2 and illustrates how the
advice and tracepoints interact with the execution of requests in the system. First, A1 observes
and packs a single valued tuple containing the process name. Then, when execution reaches the
DataNodeMetrics tracepoint, A2 unpacks the process name, observes the value of delta, then
emits a joined tuple. Figure 4 shows how this advice and the tracepoints interact with the execu-
tion of requests in the system.

To compile a query to advice, we instantiate one advice specification for a From clause and add
an OBSERVE operation for the tracepoint variables used in the query. For each Join clause, we
add an UNPACK operation for the variables that originate from the joined query. We recursively
generate advice for the joined query and append a PAck operation at the end of its advice for the
variables that we unpacked. Where directly translates to a FILTER operation. We add an EMIT oper-
ation for the output variables of the query, restricted according to any Select clause. Aggregate,
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... Request Execution @ SlientProtocols ., DataNodeMetrics

A1: OBSERVE procName q Tracepoint Tracepoint

PACK-FIRST procName R 5 | > H

- UNPACK“OBSERVE

A2: OBSERVE delta OBSERVE ﬂ PACK ity

UNPACK procName LN WL AEMIT

EMIT procName, SUM(delta) = — = -

Client Processes HDFS DataNode

(a) Advice generated for Q2. A1 is dynami-
cally installed at the ClientProtocols tra-
cepoint, and A2 at the DataNodeMetrics tra-
cepoint.

(b) When requests pass through ClientProtocols they invoke
A1. A1 observes and packs procName to be carried with the
request. When requests subsequently reach DataNodeMetrics,
A2 unpacks procName, observes delta, and emits (procName,
SUM(delta))

Fig. 4. Pivot Tracing evaluates query Q2 from Section 2 by compiling it into two advice specifications. Pivot
Tracing dynamically installs the advice at the tracepoints referenced in the query.

GroupBy, and GroupByAggregate are all handled by EmrT and PAck. Section 4 outlines several
query rewriting optimizations for implementing .

Pivot Tracing weaves advice into tracepoints by: (1) loading code that implements the advice
operations; (2) configuring the tracepoint to execute that code and pass its exported variables;
(3) activating the necessary tracepoint at all locations in the system. Figure 5 outlines this process
of weaving advice for Q2.

4 PIVOT TRACING OPTIMIZATIONS

In this section, we outline several optimizations that Pivot Tracing performs in order to support
efficient evaluation of happened-before joins.

4.1 Baggage

The naive evaluation strategy for happened-before joins is that of an equijoin () or 6-join
(> [85]), requiring tuples to be aggregated globally across the cluster prior to evaluating the join.
Temporal joins as implemented by Magpie [33], for example, are expensive because they imple-
ment this evaluation strategy (Section 7). Figure 7(a) illustrates this approach for happened-before
joins.

Instead of a naive global join, Pivot Tracing enables inexpensive happened-before joins by pro-
viding the baggage abstraction. Baggage is a per-request container for tuples that is propagated
alongside a request as it traverses thread, application, and machine boundaries. Figure 6 illustrates
baggage propagation for a request. Each branch of the request’s execution maintains its own bag-
gage instance. To propagate baggage, instances are copied when executions split into concurrent
branches; merged when concurrent branches join; and included with all of the request’s inter-
process and inter-thread communication.? Pivot Tracing advice uses the Pack and UNPACK oper-
ations to store and retrieve tuples from the current request’s baggage.

Baggage explicitly follows the execution path of each request, and thereby observes all
happened-before relationships of a request while it is executing. Tuples that are packed during
a request’s execution will follow the request from that point onward. Consequently, the presence
of the tuples in baggage later during the request’s execution imply a happened-before relationship.

Baggage is a generalization of end-to-end metadata propagation techniques outlined in prior
work such as X-Trace [55] and Dapper [93]. Using baggage, Pivot Tracing efficiently evaluates

2Section 5.5 describes how baggage is propagated consistently through concurrent executions.
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Step Example

1. Declare Tracepoints \/Tracepoint \ Refers to : c1ass pataNodeMetrics {

. I Class: DataNodeMetrics "\/\/\» void incrBytesRead(int delta) {
(References to locations 1 Method: incrBytesRead ..

in code) | Exports: delta ____ ) }
2. Write Query Q2: From incr In DataNodeMetrics.incrBytesRead
. Join cl In First(ClientProtocols) On cl -> incr
(Using declared GroupBy cl.procName
tracepoints) Select cl.procName, SUM(incr.delta)
3. Generate Advice (M OBSERVE proctame ) (A2 OBSERVE delta ;
: ; ! PACK-FIRST procName ! ! UNPACK procName |
(To be l)nstalled in the ' ] ' EMIT procName, SUM(delta) j
system ****************** S ST T T o s o s s
4. Weave Advice class_ DataNodeMetrics 4{ class_ DataNodeMetrics 4{

. . void incrBytesRead(int delta) {i Weave void incrBytesRead(int delta) { _ _
(Dynamically modify R VAV = (PivotTracing. Advise("A2", delta); -
source code) e e

i 3
3 3

Invok_és

class GeneratedAdviceImpl {
void Advise(Object... observed) {: ¢
// Generated advice code
3

b;

Fig. 5. Steps to install a Pivot Tracing query. Tracepoints are only references to locations in code and require
no system-level modifications until queries are installed. Step 4 illustrates how we weave advice for Q2 at the
DataNodeMetrics tracepoint (Q2 also weaves advice at ClientProtocols, not shown). Variables exported
by the tracepoint (i.e., delta) are passed when the advice is invoked.

(—J Processes @ Branch: Duplicate Baggage
; ® Join: Merge Baggage
-=-%» Request execution path O
. @ Network: Serialize Baggage ']}
LW Baggage propagation ® Network: Deserialize Baggage g) UNPACK tuples from Baggage

%’ PACK tuples into Baggage

Fig. 6. To implement the happened-before join, systems propagate baggage (©) along the execution path of
requests. Baggage is duplicated when requests split into concurrent branches (®); merged when concurrent
branches join (®); and included in all inter-process communication (® ®). Pivot Tracing queries PAck tuples
into the baggage at some tracepoints (®) and UNPAck tuples at other tracepoints (@).

happened-before joins in situ during the execution of a request. Figure 7(b) shows the optimized
query evaluation strategy to evaluate joins in-place during request execution.

4.2 Local Tuple Aggregation

One metric to assess the cost of a Pivot Tracing query is the number of tuples emitted for
global aggregation. Although baggage carries partial query state at a per-request granularity, once
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ey _O- Tracepoint 60 Emi B P :
() Processes  --- } Requests -O Invoehtions Q9 Emitted Tuples (i Baggage Propagation

(a) Unoptimized query with all tuples collected cen-  (b) Optimized query that propagates tuples in baggage,
trally across the cluster prior to evaluation of 5. enabling inline evaluation of 3.

Fig. 7. lllustration comparing the optimized and unoptimized evaluation of@[?qi:B:}. The optimized query
evaluates 3 inline by propagating tuples in baggage, avoiding a costly global aggregation.

Table 3. Query Rewrite Rules for Happened-before Join between
Two Queries P and Q

Query Optimized Query Query Optimized Query
Iy, 4(P 34 Q) I, (P) 54 4(Q) GA,(P Q) GpCombine, (GA,(P) 5 Q)
ap(P> Q) a,(P) 5 Q GA4(P > Q) GyCombine, (P54 GA4(Q))
oq(P Q) P 04(Q) GpAq(PB4 Q)  GpCombine, (I, (P) B4 Aq(Q))

Ap(P3 Q)  Combine,(Ap(P) 3 Q) G4A,(PRI Q)  GyCombine, (A, (P) 51 11,4(Q))

Optimizations push operators as close as possible to source tuples, thereby reducing the tuples that must be
propagated in baggage from P to Q. Combine refers to an aggregator’s combiner function (e.g., for Count, the
combiner is Sum). See Table 1 for descriptions of query operators.

tuples have been emitted for global aggregation, Pivot Tracing collects and aggregates these tuples
across all requests to produce the final query results. To reduce this cost, Pivot Tracing performs
intermediate aggregation for queries containing Aggregate or GroupByAggregate. Pivot Tracing
aggregates the emitted tuples within each process and reports results globally at a regular interval,
e.g., once per second. Process-level aggregation substantially reduces traffic for emitted tuples; Q2
from Section 2 is reduced from approximately 600 tuples per second to 6 tuples per second from
each DataNode.

4.3 Optimizing Happened-Before Joins

A second cost metric for Pivot Tracing queries is the number of tuples packed during a request’s
execution and carried within the request’s baggage. Pivot Tracing rewrites queries to minimize
the number of tuples packed. Pivot Tracing pushes projection, selection, and aggregation terms as
close as possible to source tracepoints. In Fay [54], the authors outlined query optimizations for
merging streams of tuples, enabled because projection, selection, and aggregation are distributive.
These optimizations also apply to Pivot Tracing and reduce the number of tuples emitted for global
aggregation. To reduce the number of tuples transported in the baggage, Pivot Tracing adds further
optimizations for happened-before joins, outlined in Table 3.
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4.4 Cost of Baggage Propagation

Pivot Tracing does not inherently bound the number of packed tuples and potentially accumulates
a new tuple for every tracepoint invocation. However, we liken this to database queries that in-
herently risk a full table scan—our optimizations mean that, in practice, this is an unlikely event.
Several of Pivot Tracing’s aggregation operators explicitly restrict the number of propagated tu-
ples and, in our experience, queries only end up propagating aggregations, most-recent, or first
tuples.

In cases where too many tuples are packed in the baggage, Pivot Tracing could revert to an
alternative query plan, where all tuples are emitted instead of packed, and the baggage size is
kept constant by storing only enough information to reconstruct the causality, a la X-Trace [55],
Stardust [95], or Dapper [93]. To estimate the overhead of queries, Pivot Tracing can execute a
modified version of the query to count tuples rather than aggregate them explicitly. This would
provide live analysis similar to “explain” queries in the database domain.

5 IMPLEMENTATION

We have implemented a Pivot Tracing prototype in Java and applied Pivot Tracing to several open-
source systems from the Hadoop ecosystem. Section 6 outlines our instrumentation of these sys-
tems. In this section, we describe the implementation of our prototype.

We opted to implement and evaluate Pivot Tracing in Java in order to make use of several exist-
ing open-source distributed systems written in this language. However, the components of Pivot
Tracing generalize and are not restricted to Java—a query could span multiple systems written in
different programming languages.

5.1 Pivot Tracing Agent

A Pivot Tracing agent thread runs in every Pivot Tracing-enabled process and awaits instruction
via central pub/sub server to weave advice to tracepoints. Tuples emitted by advice are accumu-
lated by the local Pivot Tracing agent, which performs partial aggregation of tuples according to
their source query. Agents publish partial query results at a configurable interval—by default, one
second.

5.2 Dynamic Instrumentation

Our prototype weaves advice at runtime, providing dynamic instrumentation similar to that of
DTrace [38] and Fay [54]. Java version 1.5 onward supports dynamic method body rewriting via the
java.lang.instrument package. The Pivot Tracing agent programmatically rewrites and reloads
class bytecode from within the process using Javassist [44].

We can define new tracepoints at runtime and dynamically weave and unweave advice. To
weave advice, we rewrite method bodies to add advice invocations at the locations defined by
the tracepoint (cf. Figure 5). Our prototype supports tracepoints at the entry, exit, or exceptional
return of any method. Tracepoints can also be inserted at specific line numbers.

To define a tracepoint, users specify a class name, method name, method signature, and weave
location. Pivot Tracing also supports pattern matching, for example, all methods of an interface on
a class. This feature is modeled after pointcuts from Aspect] [61]. Pivot Tracing supports instru-
menting privileged classes (e.g., FileInputStream in Section 2) by providing an optional agent
that can be placed on Java’s boot classpath.

Pivot Tracing only makes system modifications when advice is woven into a tracepoint, so
inactive tracepoints incur no overhead. Executions that do not trigger the tracepoint are unaffected
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Table 4. Baggage API for Pivot Tracing Java Implementation

Method Description

pack(q, t...)  Pack tuples into the baggage for a query
unpack(q) Retrieve all tuples for a query

serialize() Serialize the baggage to bytes
deserialize(b) Set the baggage by deserializing from bytes
split() Split the baggage for a branching execution
join(b1, b2) Merge baggage from two joining executions

PAck operations store tuples in the baggage. API methods are static and only
allow interaction with the current execution’s baggage.

by Pivot Tracing. Pivot Tracing has a zero-probe effect: methods are unmodified by default, so
tracepoints impose truly zero overhead until advice is woven into them.

5.3 Baggage

We provide an implementation of Baggage that stores per-request instances in thread-local vari-
ables. At the beginning of a request, we instantiate empty baggage in the thread-local variable;
at the end of the request, we clear the baggage from the thread-local variable. The baggage API
(Table 4) can get or set tuples for a query, and at any point in time, baggage can be retrieved for
propagation to another thread or serialization onto the network. To support multiple queries si-
multaneously, queries are assigned unique IDs, and tuples are packed and unpacked based on this
ID.

Baggage is lazily serialized and deserialized using protocol buffers [98]. This minimizes the over-
head of propagating baggage through applications that do not actively participate in a query, since
baggage is only deserialized when an application attempts to pack or unpack tuples. Serialization
costs are only incurred for modified baggage at network or application boundaries.

Pivot Tracing relies on developers to implement Baggage propagation when a request crosses
thread, process, or asynchronous execution boundaries. In our experience (Section 6), this entails
adding a baggage field to existing application-level request contexts and RPC headers.

5.4 Materializing Advice

Tracepoints with woven advice invoke the PivotTracing.Advise method (cf. Figure 5), pass-
ing tracepoint variables as arguments. Tuples are implemented as Object arrays and there is a
straightforward translation from advice to implementation: OBSERVE constructs a tuple from the
advice arguments; UNPACK and PAck interact with the Baggage API; FILTER discards tuples that
do not match a predicate; and EmIT forwards tuples to the process-local aggregator.

5.5 Baggage Consistency

In order to preserve the happened-before relation correctly within a request, Pivot Tracing must
handle executions that branch and rejoin, as illustrated in Figure 6. Each branch of the request’s
execution maintains its own baggage instance. To propagate baggage, instances are copied when
executions split into concurrent branches, merged when concurrent branches join, and included
with all of the request’s inter-process and inter-thread communication. Tuples packed by one ex-
ecution branch are not visible to any other branch until the branches rejoin or communicate.

In executions that arbitrarily branch and join, we must be careful not to inadvertently duplicate
tuples when merging baggage instances from concurrent execution branches. It is possible for both
baggage instances to contain the same tuple derived from the same source event, as illustrated in
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pack($) split(tilly) join(tilha, i)

-l ={}---- — 1l ={¢} -\ lhp={¢} /- m=}—
tlhg={¢}

(a) One tuple () is packed prior to the execution branching. When the execution splits, the tuple
exists in both s and (lg. When the execution joins, the tuple must only be retained once, because
it only captures one happened-before relationship.

split(tilly) pack($) join(tilha, i)
-l =f}----mmm e «----- iy ={}-----o——1lp={¢} mh={6.0}>
\ pack(¢$)

*~--tlig={}--- - -——1ilig={¢}

(b) Baggage is empty when the execution branches. Both branches of execution encounter distinct
events that pack a tuple; however, the tuples happen to have the same value (both ¢). When the
execution joins, the two identical tuples must both be retained, because they capture different
happened-before relationships.

Fig. 8. An execution that branches then joins. Baggage is split into (l)s and (i, then later joined. In both
examples, (i and Wl contain the same tuples; however, the merge result is different in each case because
the tuples represent different happened-before relationships. Baggage must be consistently joined in order
to correctly reflect the happened-before relationship represented by the tuples (cf. Section 5.5).

Figure 8(a). In this case, our merge function must not naively duplicate the tuple—we must ensure
that the output baggage only contains the tuple once to correctly reflect that there is only one
happened-before relationship. On the other hand, it is also possible for each execution branch
to independently pack tuples with the same values, as illustrated in Figure 8(b). In this case, we
expect the merged baggage to contain both tuples, because they represent independent events and
we must preserve both happened-before relationships.

To correctly preserve happened-before relationships for executions that arbitrarily branch and
join, we implement baggage as a set: when a request branches, the baggage tuples are simply
duplicated for each branch; when two or more branches join, we perform a set union on the tuples
present in each baggage instance. To disambiguate between the two cases illustrated in Figure 8, we
append a unique identifier to each tuple when it is initially packed. Consequently, when merging
two baggage instances, set union will not duplicate tuples if they are the same tuple derived from
the same source event; conversely, if two distinct events produced tuples with the same value, they
will be differentiated by different IDs.

We extend this concept further to handle the query optimization rules described in Section 4.3,
which push projection, selection, and aggregation terms as close as possible to source tuples. For
some queries, these optimizations lead to advice that directly aggregates tuples in baggage, for
example, by summing values immediately as tuples are packed, and propagating only the sum in
baggage. However, for the same reason as illustrated in Figure 8, it is insufficient to only propagate
a running total in baggage, as it can lead to double counting when merging baggage instances.
Instead, we require some additional causality information to determine how to merge two sums.
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Fig. 9. Interactions between systems. Each system comprises several processes on potentially many ma-
chines. Typical deployments often co-locate processes from several applications, e.g., DataNode, NodeMan-
ager, and Task and RegionServer processes.

To handle this, we extend the previously described tuple ID scheme. Internal to a baggage in-
stance, we maintain one or more bags, each of which has a unique bag ID and sequence number.
We store tuples, aggregations, and the like within each bag naively without any additional embel-
lishments. Each branch of execution considers one of the bags to be the “active” bag, and it packs
and aggregates tuples into only that bag. After an execution branches, one of the branches con-
tinues using the previous active bag and increments the bag’s sequence number; the other branch
lazily instantiates a new bag the next time it needs to pack tuples. When multiple branches join,
the bag with the highest sequence number for each bag ID is retained.

Under this scheme, a baggage instance resembles a version vector [82] with a variable number
of components, for which bags correspond to components. In the original version of Pivot Tracing,
we generated bag IDs using interval tree clocks [2], which provided a mechanism for splitting IDs
when executions branch, and recombining IDs when branches rejoin. This scheme guaranteed
unique bag IDs, but required maintaining interval tree IDs even if nothing was propagated in the
baggage. In our most recent Pivot Tracing implementation, we have switched to random bag IDs
to eliminate the overhead of maintaining interval tree IDs. However, this now introduces a small
chance of ID collisions, which can occur when two branches of the same request generate the same
random ID concurrently. Our evaluation in Section 6 uses Pivot Tracing with the original interval
tree clock scheme.

6 EVALUATION

In this section, we evaluate Pivot Tracing in the context of the Hadoop stack. We have instrumented
four open-source systems—HDFS, HBase, Hadoop MapReduce, and YARN—that are widely used
in production today. We present several case studies where we used Pivot Tracing to successfully
diagnose root causes, including real-world issues we encountered in our cluster and experiments
presented in prior work [66, 101]. Our evaluation shows that Pivot Tracing addresses the challenges
in Section 2 when applied to these stack components. In particular, we show that Pivot Tracing:

—is dynamic and extensible to new kinds of analysis (Section 6.2)

—is scalable and has low developer and execution overhead (Section 6.3)

—enables cross-tier analysis between any inter-operating applications (Section 2, Section 6.2)
—captures event causality to successfully diagnose root causes (Section 6.1, Section 6.2)
—enables insightful analysis with even a very small number of tracepoints (Section 6.1)

Hadoop Overview. We first give a high-level overview of Hadoop, before describing the necessary
modifications to enable Pivot Tracing. Figure 9 shows the relevant components of the Hadoop
stack.
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HDFS [92] is a distributed file system that consists of several DataNodes that store replicated
file blocks and a NameNode that manages the filesystem metadata.

HBase [6] is a non-relational database modeled after Google’s Bigtable [41] that runs on top of
HDEFS and comprises a Master and several RegionServer processes.

Hadoop MapReduce is an implementation of the MapReduce programming model [49] for large-
scale data processing that uses YARN containers to run map and reduce tasks. Each job runs an
ApplicationMaster and several MapTask and ReduceTask containers.

YARN [99] is a container manager to run user-provided processes across the cluster. NodeMan-
ager processes run on each machine to manage local containers, and a centralized ResourceMan-
ager manages the overall cluster state and requests from users.

Hadoop Instrumentation. In order to support Pivot Tracing in these systems, we made one-
time modifications to propagate baggage along the execution path of requests. As described in
Section 5, our prototype uses a thread-local variable to store baggage during execution, so the
only required system modifications are to set and unset baggage at execution boundaries. To prop-
agate baggage across remote procedure calls, we manually extended the protocol definitions of
the systems. To propagate baggage across execution boundaries within individual processes, we
implemented Aspect] [61] instrumentation to automatically modify common interfaces (Thread,
Runnable, Callable, and Queue). Each system only required between 50 and 200 lines of manual
code modification. Once modified, these systems could support arbitrary Pivot Tracing queries
without further modification.

Our queries used tracepoints from both client and server RPC protocol implementations of the
HDFS DataNode DataTransferProtocol and NameNode ClientProtocol. We also used trace-
points for piggybacking off existing metric collection mechanisms in each instrumented system,
such as DataNodeMetrics and RPCMetrics in HDFS and MetricsRegionServer in HBase.

6.1 Case Study: HDFS Replica Selection Bug

In this section, we describe our discovery of a replica selection bug in HDFS that resulted in un-
even distribution of load to replicas. After identifying the bug, we found that it had been recently
reported and subsequently fixed in an upcoming HDFS version [26].

HDFS provides file redundancy by decomposing files into blocks and replicating each block onto
several machines (typically three). A client can read any replica of a block and does so by first
contacting the NameNode to find replica hosts (GetBlockLocations), then selecting the closest
replica as follows: (1) read a local replica; (2) read a rack-local replica; (3) select a replica at random.
We discovered a bug whereby rack-local replica selection always follows a global static ordering
due to two conflicting behaviors: the HDFS client does not randomly select between replicas; and
the HDFS NameNode does not randomize rack-local replicas returned to the client. The bug results
in heavy load on some hosts and near zero load on others.

In this scenario, we ran 96 stress test clients on an HDFS cluster of eight DataNodes and one
NameNode. Each machine has identical hardware specifications; 8 cores, 16GB RAM, and a 1Gbit
network interface. On each host, we ran a process called StressTest that used an HDFS client to
perform closed-loop random 8kB reads from a dataset of 10,000 128MB files with a replication
factor of 3.

Our investigation of the bug began when we noticed that the stress test clients on hosts A and
D had consistently lower request throughput than clients on other hosts, shown in Figure 10(a),
despite identical machine specifications and setup. We first checked machine level resource utiliza-
tion on each host, which indicated substantial variation in the network throughput (Figure 10(b)).
We began our diagnosis with Pivot Tracing by first checking to see whether an imbalance in HDFS
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Fig. 10. Pivot Tracing query results leading to our discovery of HDFS-6268 [26]. Faulty replica selection logic
led clients to prioritize the replicas hosted by particular DataNodes (Section 6.1).

load was causing the variation in network throughput. The following query installs advice at a
DataNode tracepoint that is invoked by each incoming RPC:
Q3: From dnop In DataNode.DataTransferProtocol

GroupBy dnop.host
Select dnop.host, COUNT

Figure 10(c) plots the results of this query, showing the HDFS request throughput on each DataN-
ode. It shows that DataNodes on hosts A and D in particular have substantially higher request
throughput than others—host A has on average 1500ps/sec, while host H has only 250ps/sec.
This behavior was unexpected given that our stress test clients are supposedly reading files uni-
formly at random. Our next query installs advice in the stress test clients and on the HDFS
NameNode to correlate each read request with the client that issued it:

Q4: From getloc In NameNode.GetBlockLocations
Join st In StressTestClient.DoNextOp On st -> getloc
GroupBy st.host, getloc.src
Select st.host, getloc.src, COUNT

This query counts the number of times each client reads each file. In Figure 10(d), we plot the
distribution of counts over a 5 minute period for clients from each host. The distributions all fit a
normal distribution and indicate that all of the clients are reading files uniformly at random. The
distribution of reads from clients on A and D are skewed left, consistent with their overall lower
read throughput.
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Having confirmed the expected behavior of our stress test clients, we next checked to see
whether the skewed datanode throughput was simply a result of skewed block placement across
datanodes:

Q5: From getloc In NameNode.GetBlockLocations
Join st In StressTestClient.DoNextOp On st -> getloc

GroupBy st.host, getloc.replicas
Select st.host, getloc.replicas, COUNT

This query measures the frequency that each DataNode is hosting a replica for files being read.
Figure 10(e) shows that, for each client, replicas are near-uniformly distributed across DataNodes
in the cluster. These results indicate that clients have an equal opportunity to read replicas from
each DataNode, yet our measurements in Figure 10(c) clearly show that they do not. To gain more
insight into this inconsistency, our next query relates the results from Figure 10(e) and (c):

Q6: From DNop In DataNode.DataTransferProtocol
Join st In StressTestClient.DoNextOp On st -> DNop
GroupBy st.host, DNop.host
Select st.host, DNop.host, COUNT

This query measures the frequency that each client selects each DataNode for reading a replica. We
plot the results in Figure 10(f) and see that the clients are clearly favoring particular DataNodes.
The strong diagonal is consistent with HDFS client preference for locally-hosted replicas (39% of
the time in this case). However, the expected behavior when there is not a local replica is to select a
rack-local replica uniformly at random; clearly, these results suggest that this was not happening.

Our final diagnosis steps were as follows. First, we checked to see which replica was selected by
HDFS clients from the locations returned by the NameNode. We found that clients always selected
the first location returned by the NameNode. Second, we measured the conditional probabilities
that DataNodes precede each other in the locations returned by the NameNode. We issued the
following query for the latter:

Q7: From DNop In DataNode.DataTransferProtocol
Join getloc In NameNode.GetBlockLocations On getloc -> DNop
Join st In StressTestClient.DoNextOp On st -> getloc
Where st.host != DNop.host
GroupBy DNop.host, getloc.replicas
Select DNop.host, getloc.replicas, COUNT

This query correlates the DataNode that is selected with the other DataNodes also hosting a replica.
We remove the interference from locally-hosted replicas by filtering only the requests that do a
non-local read. Figure 10(g) shows that host A was always selected when it hosted a replica; host
D was always selected except if host A was also a replica, and so on.

At this point in our analysis, we concluded that this behavior was quite likely to be a bug in
HDEFS. HDEFS clients did not randomly select between replicas, and the HDFS NameNode did not
randomize the rack-local replicas. We checked Apache’s issue tracker and found that the bug had
been recently reported and fixed in an upcoming version of HDFS [26].

6.2 Diagnosing End-to-End Latency

Pivot Tracing can express queries about the time spent by a request across the components it tra-
verses using the built-in time variable exported by each tracepoint. Advice can pack the timestamp
of any event then unpack it at a subsequent event, enabling comparison of timestamps between
events. The following example query measures the latency between receiving a request and send-
ing a response:
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Fig. 11. (a) Observed request latencies for a closed-loop HBase workload experiencing occasional end-to-end
latency spikes; (b) Average time in each component on average (top), and for slow requests (bottom, end-to-
end latency > 30s); (c) Per-machine network throughput—a faulty network cable has downgraded Host B’s
link speed to 100Mbit, affecting entire cluster throughput.

Q8: From response In SendResponse
Join request In MostRecent(ReceiveRequest) On request -> response
Select response.time — request.time

When evaluating this query, MostRecent ensures we select only the most recent preceding Re-
ceiveRequest event whenever SendResponse occurs. We can use latency measurement in more
complicated queries. The following example query measures the average request latency experi-
enced by Hadoop jobs:

Q9: From job In JobCompletionEvents

Join latencyMeasurement In Q8 On latencyMeasurement => end
Select job.id, AVERAGE(latencyMeasurement)

A query can measure latency in several components and propagate measurements in the
baggage, reminiscent of transaction tracking in Timecard [86] and transactional profiling in
Whodunit [39]. For example, during the development of Pivot Tracing, we encountered an in-
stance of network limplock [51, 66], whereby a faulty network cable caused a network link down-
grade from 1Gbit to 100Mbit. One HBase workload, in particular, would experience latency spikes
in the requests hitting this bottleneck link (Figure 11(a)). To diagnose the issue, we decomposed
requests into their per-component latency and compared anomalous requests (>30s end-to-end
latency) to the average case (Figure 11(b)). This enabled us to identify the bottleneck source as
time spent blocked on the network in the HDFS DataNode on Host B. We measured the latency
and throughput experienced by all workloads at this component and were able to identify the
uncharacteristically low throughput of Host B’s network link (Figure 11(c)).

We have also replicated results in end-to-end latency diagnosis in the following other cases:
to diagnose rogue garbage collection in HBase RegionServers as described in Ref. [101], and to
diagnose an overloaded HDFS NameNode due to exclusive write locking as described in Ref. [67].

6.3 Overheads of Pivot Tracing

Baggage. By default, Pivot Tracing propagates an empty baggage with a serialized size of 0 bytes.
In the worst case, Pivot Tracing may need to pack an unbounded number of tuples in the baggage,
one for each tracepoint invoked. However, the optimizations in Section 4 reduce the number of
propagated tuples to one for Aggregate, one for Recent, n for GroupBy with n groups, and N for
RecentN. Of the queries in this article, Q7 propagates the largest baggage containing the stress test
hostname and the location of all three file replicas (4 tuples, ~137 bytes per request).

The size of serialized baggage is approximately linear in the number of packed tuples. The over-
head to pack and unpack tuples from the baggage varies with the size of the baggage—Figure 12
gives micro-benchmark results measuring the overhead of baggage API calls.
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Fig. 12. Latency micro-benchmark results for packing, unpacking, serializing, and deserializing randomly-
generated 8-byte tuples.

Table 5. Latency Overheads for HDFS Stress Test with Pivot Tracing
Enabled, Baggage Propagation Enabled, and Full Queries Enabled,
as Described in Section 6.3

Benchmark
READS8K OpPEN CREATE RENAME

Unmodified System 0% 0% 0% 0%
Pivot Tracing Enabled 0.3% 03%  <0.1% 0.2%
Baggage—1 Tuple 0.8% 0.4% 0.6% 0.8%
Baggage—60 Tuples | 0.82%  15.9% 8.6% 4.1%
Queries—Section 6.1 1.5% 4.0% 6.0% 0.3%
Queries—Section 6.2 1.9% 14.3% 8.2% 5.5%

Application-level Overhead. To estimate the impact of Pivot Tracing on application-level
throughput and latency, we ran benchmarks from HiBench [59], YCSB [47], and HDFS DFSIO
and NNBench benchmarks. Many of these benchmarks bottleneck on network or disk, and we
noticed no significant performance change with Pivot Tracing enabled.

To measure the effect of Pivot Tracing on CPU bound requests, we stress tested HDFS using
requests derived from the HDFS NNBench benchmark: READ8K reads 8kB from a file; OPEN opens
a file for reading; CREATE creates a file for writing; RENAME renames an existing file. READ8KB
is a DataNode operation and the others are NameNode operations. We compared the end-to-end
latency of requests in unmodified HDFS to HDFS modified in the following ways: (1) with Pivot
Tracing enabled; (2) propagating baggage containing one tuple but no advice installed; (3) propa-
gating baggage containing 60 tuples (*1kB) but no advice installed; (4) with the advice from queries
in Section 6.1 installed; (5) with the advice from queries in Section 6.2 installed.

Table 5 shows that the application-level overhead with Pivot Tracing enabled is at most 0.3%.
This overhead includes the costs of baggage propagation within HDFS, baggage serialization in
RPC calls, and to run Java in debugging mode. The most noticeable overheads are incurred when
propagating 60 tuples in the baggage, incurring 15.9% overhead for OPEN. Since this is a short
CPU-bound request (involving a single read-only lookup), 16% is within reasonable expectations.
RENAME does not trigger any advice for the queries from Section 6.1, but does trigger advice for
the queries from Section 6.2. Overheads of 0.3% and 5.5% respectively reflect this difference.

Dynamic Instrumentation. Some Java Virtual Machines (JVMs) only support the HotSwap fea-
ture when debugging mode is enabled, which in turn disables some compiler optimizations. For
practical purposes, however, HotSpot JVM’s full-speed debugging is sufficiently optimized so that
it is possible to run with debugging support always enabled [79]. Our HDFS throughput experi-
ments above measured only a small overhead between debugging enabled and disabled. Reloading
a class with woven advice has a one-time cost of approximately 100ms, depending on the size of
the class being reloaded.
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7 RELATED WORK

In Section 2, we described the challenges with troubleshooting tools that Pivot Tracing addresses,
and complement the discussion on related work here.

Pivot Tracing’s dynamic instrumentation is modeled after aspect-oriented programming [62]
and extends prior dynamic instrumentation systems [38, 54, 83] with causal information that
crosses process and system boundaries.

Temporal Joins. Like Fay [54], Pivot Tracing models the events of a distributed system as a stream
of dynamically generated tuples belonging to a distributed database. Pivot Tracing’s happened-
before join is an example of a f-join [85] where the condition is happened-before. Pivot Tracing’s
happened-before join is also an example of a special case of path queries in graph databases [102].
Differently from offline queries in a pre-stored graph, Pivot Tracing efficiently evaluates % at
runtime.

Pivot Tracing captures causality between events by generalizing metadata propagation tech-
niques proposed in prior work such as X-Trace [55]. While Baggage enables Pivot Tracing to ef-
ficiently evaluate happened-before join, it is not necessary; Magpie [34] demonstrated that under
certain circumstances, causality between events can be inferred after the fact. Specifically, if “start”
and “end” events exist to demarcate a request’s execution on a thread, then we can infer causality
between the intermediary events. Similarly, we can also infer causality across boundaries, pro-
vided we can correlate “send” and “receive” events on both sides of the boundary (e.g., with a
unique identifier present in both events). Under these circumstances, Magpie evaluates queries
that explicitly encode all causal boundaries and use temporal joins to extract the intermediary
events.

By extension, for any Pivot Tracing query with happened-before join, there is an equivalent
query that explicitly encodes causal boundaries and uses only temporal joins. However, such a
query could not take advantage of the optimizations outlined in this article and necessitates global
evaluation.

Beyond Metrics and Logs. A variety of tools have been proposed in the research literature to
complement or extend application logs and performance counters. These include the use of ma-
chine learning [60, 76, 78, 103] and static analysis [107] to extract better information from logs;
automatic enrichment of existing log statements to ease troubleshooting [106]; end-to-end tracing
systems to capture the happened-before relationship between events [55, 93]; state-monitoring
systems to track system-level resources and indicate the health of a cluster [69]; and aggregation
systems to collect and summarize application-level monitoring data [64, 97]. Wang et al. provide a
comprehensive overview of datacenter troubleshooting tools in Ref. [100]. These tools suffer from
the challenges of pre-defined information outlined in Section 2.

Troubleshooting and Root-Cause Diagnosis. Several offline techniques have been proposed to
infer execution models from logs [35, 45, 68, 107] and diagnose performance problems [32, 63, 76,
90]. End-to-end tracing frameworks exist both in academia [34, 39, 55, 88, 95] and in industry [29,
52, 93, 94, 96] and have been used for a variety of purposes, including diagnosing anomalous
requests whose structure or timing deviate from the norm [1, 34, 42, 43, 80, 90]; diagnosing steady-
state problems that manifest across many requests [55, 88, 90, 93, 95]; identifying slow components
and functions [39, 68, 93]; and modeling workloads and resource usage [33, 34, 68, 95]. Recent work
has extended these techniques to online profiling and analysis [57, 71-73, 108].

VScope [101] introduces a novel mechanism for honing in on root causes on a running sys-
tem, but, at the last hop, defers to offline user analysis of debug-level logs, requiring the user to
trawl through 500MB of logs, which incur a 99.1% performance overhead to generate. While causal
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tracing enables coherent sampling [89, 93], which controls overheads, sampling risks missing im-
portant information about rare but interesting events.

Context Propagation. Several use cases have been demonstrated in the research literature that
require context propagation between system components. Many systems propagate activity and
request IDs for use in debugging, profiling, and end-to-end tracing [55, 93]. Taint tracking and
DIFC maintain and propagate security labels as the system executes, warning of or prohibiting
policy violations [53, 75, 104]. Data provenance systems propagate information about the lineage
of data as different components manipulate it [50, 74]. Tools for end-to-end latency, path profiling,
and critical path analysis propagate partial latency measurements and information about execu-
tion paths and graphs, in order to adapt to bottlenecks or processing delays [39, 46, 86]. Tenant IDs
enable coordinated scheduling decisions across components [67, 91]. Pivot Tracing’s baggage ab-
straction generalizes the contexts used by systems such as these, by providing an opaque container
for queries to dynamically propagate tuples along the execution path of requests.

Online Analytics Processing. Pivot Tracing derives its name from pivot tables and pivot charts
[48] from spreadsheet programs due to their ability to dynamically select values, functions,
and grouping dimensions from an underlying dataset. Pivot tables are simple versions of data
cubes [56] in the online analytics processing domain. Streaming data cubes [58] perform similar
real-time aggregation and optimization on incoming data streams.

8 DISCUSSION

Despite the advantages over logs and metrics for troubleshooting (Section 2), Pivot Tracing is not
meant to replace all functions of logs, such as security auditing, forensics, or debugging [77].

Pivot Tracing is designed to have similar per-query overheads to the metrics currently exposed
by systems today. It is feasible for a system to have several Pivot Tracing queries on by default;
these could be sensible defaults provided by developers, or custom queries installed by users to
address their specific needs. We leave it to future work to explore the use of Pivot Tracing for
automatic problem detection and exploration.

Dynamic instrumentation is not a requirement to utilize Pivot Tracing. By default, a system
could hard-code a set of predefined tracepoints. Without dynamic instrumentation, the user is
restricted to those tracepoints; adding new tracepoints remains tied to the development and build
cycles of the system. Inactive tracepoints would also incur at least the cost of a conditional check,
instead of our current zero cost.

A common criticism of systems that require causal propagation of metadata is the need to in-
strument the original systems [45]. We argue that the benefits outweigh the costs of doing so
(Section 6), especially for new systems. We also propose that the baggage abstraction, or a gen-
eralization, could be shared with other applications like those described in Section 7; then, sys-
tem instrumentation would be a one-time task, reusable, and independent of any tracing system
or use case, and deploying new tracing systems would be possible without having to revisit the
underlying context propagation mechanism. Nonetheless, a system that does not implement bag-
gage can still utilize the other mechanisms of Pivot Tracing; in such a case, the system resembles
DTrace [38] or Fay [54]. Alternatively, kernel-level execution context propagation [40, 81, 87] can
provide language-independent access to baggage variables.

While users are restricted to advice comprised of Pivot Tracing primitives, Pivot Tracing does
not guarantee that its queries will be side-effect free, due to the way exported variables from tra-
cepoints are currently defined. We can enforce that only trusted administrators define tracepoints
and require that advice be signed for installation, but a comprehensive security analysis, including
complete sanitization of tracepoint code is beyond the scope of this article.
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Even though we evaluated Pivot Tracing on an 8-node cluster in this article, initial runs of the
instrumented systems on a 200-node cluster with constant-size baggage being propagated showed
negligible performance impact. It is ongoing work to evaluate the scalability of Pivot Tracing to
larger clusters and more complex queries. Sampling at the advice level is a further method of
reducing overhead, which we plan to investigate.

We opted to implement Pivot Tracing in Java in order to easily instrument several popular open-
source distributed systems written in this language. However, the components of Pivot Tracing
generalize and are not restricted to Java—a query can span multiple systems written in differ-
ent programming languages due to Pivot Tracing’s platform-independent baggage format and re-
stricted set of advice operations. In particular, it would be an interesting exercise to integrate the
happened-before join with Fay or DTrace.

9 CONCLUSION

Pivot Tracing is the first monitoring system to combine dynamic instrumentation and causal trac-
ing. Its novel happened-before join operator fundamentally increases the expressive power of dy-
namic instrumentation and the applicability of causal tracing. Pivot Tracing enables cross-tier
analysis between any inter-operating applications, with low execution overhead. Ultimately, its
power lies in the uniform and ubiquitous way in which it integrates monitoring of a heteroge-
neous distributed system.
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