
Sifter: Scalable Sampling for Distributed Traces,
without Feature Engineering

Pedro Las-Casas Giorgi Papakerashvili Vaastav Anand Jonathan Mace
Max Planck Institute for Software Systems

Abstract
Distributed tracing is a core component of cloud and datacenter
systems, and provides visibility into their end-to-end runtime behav-
ior. To reduce computational and storage overheads, most tracing
frameworks do not keep all traces, but sample them uniformly at
random. While effective at reducing overheads, uniform random
sampling inevitably captures redundant, common-case execution
traces, which are less useful for analysis and troubleshooting tasks.
In this work we present Sifter, a general-purpose framework for
biased trace sampling. Sifter captures qualitatively more diverse
traces, by weighting sampling decisions towards edge-case code
paths, infrequent request types, and anomalous events. Sifter does
so by using the incoming stream of traces to build an unbiased low-
dimensional model that approximates the system’s common-case
behavior. Sifter then biases sampling decisions towards traces that
are poorly captured by this model. We have implemented Sifter,
integrated it with several open-source tracing systems, and evaluate
with traces from a range of open-source and production distributed
systems. Our evaluation shows that Sifter effectively biases towards
anomalous and outlier executions, is robust to noisy and hetero-
geneous traces, is efficient and scalable, and adapts to changes in
workloads over time.

CCS Concepts
•Computer systems organization→Cloud computing; • Soft-
ware and its engineering→ Software performance.
ACM Reference Format:
Pedro Las-Casas Giorgi Papakerashvili Vaastav Anand Jonathan
Mace. 2019. Sifter: Scalable Sampling for Distributed Traces, without Feature
Engineering. In ACM Symposium on Cloud Computing (SoCC ’19), November
20–23, 2019, Santa Cruz, CA, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3357223.3362736

1 Introduction
Over the past decade, distributed tracing has emerged as a funda-
mental component of cloud and datacenter applications. Distributed
tracing is widely deployed in all major internet companies [14, 31],
and there are several popular open-source variants such as Open-
Tracing [27], Jaeger [11], and Zipkin [34].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6973-2/19/11. . . $15.00
https://doi.org/10.1145/3357223.3362736

Capturing, processing, and storing traces is computationally
expensive – especially for production workloads. To handle this
most tracing systems today do not trace everything; instead they
sample traces uniformly at random, which proportionally reduces
the computational overheads. Sampling is done at the granularity of
requests – either the end-to-end request trace is kept, or discarded.

While uniform random sampling is effective at reducing overheads,
it fails to take into account the utility of the traces it samples. Uniform
random sampling will naturally capture more traces of common-case
executions than it will of edge-case or anomalous executions, since
‘normal’ executions are far more prevalent in the workload. On the
other hand, the most valuable traces for analysis and troubleshooting
are traces of edge-case and anomalous executions.

In this paper we investigate biased trace sampling, where traces
are sampled proportional to how ‘interesting’ their content is. Biased
trace sampling increases the overall utility of traces that are sampled,
by reducing the prevalence of redundant common-case traces.

However, biased trace sampling is not straightforward and we
face several challenges. First, we cannot rely on manually engineered
features; this is brittle and time consuming for developers, and does
not automatically adapt to new or unexpected cases. On the other
hand, using generic trace features (e.g. enumerating all happened-
before relationships) is difficult due to extremely high dimensionality.
Second, sampling decisions must be robust to noise and heterogene-
ity in the trace data: qualitatively similar traces often differ in subtle
ways, due to transient issues like timing, and the detail and ver-
bosity of traces varies because they combine information across
many, independently-instrumented components. Lastly, sampling
techniques face strict operational requirements to be useful in prac-
tice: sampling decisions must be fast, techniques must scale to a large
volume of traces; and they must operate online over a continuous
stream of traces. Approaches that are useful in an offline batch set-
ting often don’t extend to an online setting in an obvious way, or are
impractical due to significant computational costs.

To address these challenges we present Sifter, a general-purpose
trace sampler that automatically biases sampling decisions towards
outlier and anomalous traces. Sifter operates on a continuous stream
of traces, and its computational cost is fixed with respect to both
workload volume and sampling rate. The intuition behind Sifter
is to approximate the distributed system’s common-case behavior,
and to sample new traces based on how well represented they are.

To do this, Siftermaintains a low-dimensional probabilisticmodel
of execution paths in the distributed system. By constraining the
amount of internal state and minimizing the model’s approximation
error, Sifter is forced to approximate only the execution paths most
prevalent across all traces. Sifter’s approximation is inspired by
recent advances in the area of neural language modeling [3], which
deal with similar challenges of high dimensionality and noise when
modeling words, sentences, and documents.

https://doi.org/10.1145/3357223.3362736
https://doi.org/10.1145/3357223.3362736

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Pedro Las-Casas, Giorgi Papakerashvili, Vaastav Anand, Jonathan Mace

With every sampling decision, Sifter also updates its internal
model to incorporate the new trace. Sifter does this for every trace,
not just those that are sampled. Consequently, Siftermodels common-
case behaviors at the frequency they occur, resulting in an unbiased
model, which enables it to then identify edge-cases when they arise.

In addition to biased sampling, Sifter adapts to changes inworkload
distributions over time and is robust to new kinds of traces (e.g., in
environments where code is continuously deployed). Sifter satisfies
the operational requirements of sampling: decisions are fast, and both
computational costs and storage costs are independent of both the
number of traces previously sampled and the workload volume.

We have implemented Sifter in Python using TensorFlow, and sup-
port sampling for X-Trace [8], Jaeger [11], and Zipkin [34] traces. To
evaluate Sifter’s ability to bias sampling decisions, we use a number
of trace datasets from several different distributed systems, including
open-source systems HDFS [30], YARN [35], and Spark [40]; the
DeathStar social network benchmark [9]; and production traces from
a large internet company. In comparison to alternative techniques
based on pairwise trace comparison [17], Sifter samples a more quali-
tatively interesting set of traces; is robust to noisy and heterogeneous
traces; makes faster sampling decisions; maintains significantly less
internal state; and adapts to variations in workload over time.

In summary, the main contributions of this paper are:
• We demonstrate that distributed traces can be used to build
an unbiased probabilistic model of system behavior.
• We identify prediction error (loss) as a strong signal that
indicates when a trace is an edge-case or outlier execution.
• We describe the design of Sifter, a framework that simulta-
neously models a system and makes sampling decisions for
traces of that system.
• We have implemented Sifter and evaluate it on trace datasets
from open-source and production distributed systems.

2 Motivation

2.1 Distributed Tracing Background

Distributed tracing is a valuable tool for providing end-to-end vis-
ibility of distributed systems. Tracing is useful for diagnosing a
range of correctness and performance problems in production sys-
tems (cf. §9), as traces capture both the events that occur during
request execution, as well as the causal ordering and concurrency
of these events, and combine this information across all distributed
components traversed by the request. Today, distributed tracing
tools are deployed at all major internet companies [11, 14, 31]. Open-
source distributed tracing tools are widely deployed, with notable
examples including OpenTracing [27], Jaeger [11], and Zipkin [34].

A key design goal for distributed tracing tools is to trace pro-
duction workloads – that is, to produce, collect, and store traces at
large request volume, with reasonable overheads. In the extreme,
tracing tools can capture an end-to-end execution trace for every
request in the entire production workload. Orthogonally, for just
a single request, its trace can contain a significant amount of data
about that request, capturing all of the events that happened during
its execution across all processes and machines; the order, concur-
rency, and relationships between events; logging messages from
developers; timing information; and more.

Pub/Sub

Traced Request

Trace Events

λ λ λ λ

Trace Storage

Event Aggregation

Trace Processing

Distributed
System

Event
Routing

Tracing
Backends

Storage

Fig. 1: Tracing pipeline described in §2.2.

2.2 Tracing Pipeline and Overheads
Distributed tracing tools operate in live production environments,
so computational overheads are a key concern. We briefly describe
these overheads with respect to Figure 1, which illustrates the typi-
cal tracing pipeline. First, traces are generated on the critical path
of requests in the distributed system. This incurs runtime overhead
to generate trace data, and for propagating trace contexts alongside
requests. For a single request, trace data will be spread across all
components traversed by the request. Second, a pub-sub system
such as Kafka [1] or Scribe [13] will route trace data to tracing back-
ends, incurring network overheads. Third, tracing backends receive
trace data and aggregate it in memory for a short period of time
before then processing it. Tracing backends are shared-nothing and
can easily be sharded using the request ID contained in the trace
data. Thus, despite originating from many disparate locations, trace
data for any given request will consistently arrive at only a single
backend instance. Processing a trace incurs computational costs
for constructing its abstract representation and applying feature-
extraction functions. There is no need for communication between
backend instances – each trace is processed in isolation. Lastly, the
trace data and the extracted features are forwarded to long-term
storage, where they can later be queried and analyzed.

2.3 Reducing Overheads by Sampling
The prevailing approach to reduce tracing overheads is sampling.
Instead of tracing every request, the distributed tracing tools only
capture and persist traces for a subset of requests to the system [31].
To ensure the captured data is useful, sampling decisions are coherent
per request – a trace is either sampled in its entirety, capturing the full
end-to-end execution, or not at all. Sampling is effective at reducing
computational overheads; these overheads are only paid if a trace
is sampled, so they can be easily reduced by reducing the sampling
probability. In practice, sampling rates can be as low as 0.1% [31].

Head-Based Sampling Early tracing systems such as Google’s
Dapper [31], and later Facebook’s Canopy [14], make sampling deci-
sions immediately when a request enters the system. This approach
– called head-based sampling – avoids the runtime costs to generate
trace data. However, since head-based sampling occurs prior to re-
quest execution, the sampling decision is uniformly at random, and
the resulting data is simply a random subset of requests. Inevitably,
the set of sampled traces contains mostly common-case execution
paths, with a lot of overlap and redundant information. Conversely,

Sifter: Scalable Sampling for Distributed Traces,
without Feature Engineering SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

✗ Non-Traced Request

Pub/Sub

Traced Request
✓

Trace Events

λ

Trace Storage

Tr
ac
in
g
Ba
ck
en
ds

Pub/Sub

Traced Request

Trace Events

✗

Tr
ac
in
g
Ba
ck
en
ds

Pub/Sub

Traced Request

Trace Events

λ

✓

Trace Storage

Tr
ac
in
g
Ba
ck
en
ds

(a) Head-based, not sampled. (b) Head-based, sampled. (c) Tail-based, not sampled. (d) Tail-based, sampled.

Fig. 2: Trace sampling (✓ ✗) can occur before (a,b) or after (c,d) request execution. For non-sampled requests (✗), head-based
sampling avoids all overheads (a), while tail-based sampling avoids only backend processing and storage overheads (c).

uncommon edge-case executions may be missing entirely, despite
containing useful information about anomalous behaviors and in-
frequently exercised code paths. This impacts the utility of the
collected traces in subsequent analyses and investigations.

Tail-Based Sampling Although the runtime overheads of dis-
tributed tracing are non-zero, they are not dominant compared to
the subsequent trace processing, querying, and storage costs. Tail-
based sampling is an alternative to head-based sampling: it captures
traces for all requests, and only decides whether to keep a trace
after the trace has been generated and sent to tracing backends.
Tail-based sampling schemes pay the runtime costs of generating
trace data, but in return the tracing data itself can be factored into
the sampling decision. Tail-based sampling introduces the possi-
bility of biased sampling schemes, where we only persist the most
useful traces, and discard traces that carry no useful information
(e.g., redundant traces of common-case execution paths). Using tail-
based sampling, we can sample qualitatively better traces for the
same storage budget; or alternatively, to achieve the same utility of
our sampled traces we need sample fewer traces overall.

Figure 2 illustrates the pipeline for recording, aggregating, pro-
cessing, and storing distributed traces, showingwhere in the pipeline
different sampling decisions can be made.

3 Limitations of Existing Approaches
With tail-based sampling, the contents of a trace can be factored
into the decision of whether to keep it. However, it remains an
open question how to determine what constitutes a useful trace,
and how to make sampling decisions at scale. Preliminary work on
tail-based sampling has raised these questions, but there remain
obstacles: the need for feature engineering, and a lack of scalability.

3.1 Feature Engineering
The most immediate question for tail-based samplers is what con-
stitutes an ‘interesting’ trace? The approach taken in prior work is
manual feature engineering. For each trace, a handful of high-level
features are calculated from traces. For example, request latency
can be derived from traces as the timestamp delta between the
request begin and the response being sent [14]. The sampler then
uses these features to make its sampling decision. For example, if

our use case is tail latency investigations, we might weight the
sampling probability proportional to the measured request latency.

Manual feature engineering is suitable when we already have a
good sense of the features that will correlate with traces being in-
teresting. Latency is the clearest example of such a feature, as many
anomalous executions or edge-case behaviors result in increased
request latency. However, feature engineering is naturally limited
to only those features that developers can predict will be interesting
a priori, and those features that can be easily written as a feature
extraction functions. For instance, at Facebook manually-derived
features are a useful starting point for many investigations, but the
authors acknowledge that manual features leave a large quantity
of data unused from each trace [14].

Ideally, a tail-based sampler should not require developers to
explicitly specify features on which to bias the sampling decision.
We argue that it would be impossible to predict all possible useful
features a priori, and since traces are richly structured, the space of
possible features is extremely large. More pragmatically, the burden
on developers to identify these features and write feature extraction
functions is undesirable. Most importantly, it is undesirable for
features to be identified and incorporated only in response to a
problem occurring, which is commonly how new features are added
to trace processing pipelines [14].

To address this, we propose that the sampling decision should
be made directly on the underlying trace data, and features should
be learned, rather than engineered. However, each trace is a richly
annotated, arbitrarily sized, directed acyclic graph, and there are a
number of additional subtleties that make it difficult to work with
this data. We outline these challenges in more detail in §4.

3.2 Operational Requirements

Trace sampling is inherently online: samplers operate in a pro-
duction setting, and they must make sampling decisions over a
continuous stream of incoming traces. Sampling decisions must be
fast, and the sampler should scale to large production workloads.
Satisfying these constraints while avoiding feature engineering is
difficult and has not been solved by prior work.

A common approach to trace sampling, and to related problems
like trace clustering, is to adapt general-purpose machine learning

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Pedro Las-Casas, Giorgi Papakerashvili, Vaastav Anand, Jonathan Mace

and graph mining algorithms. However, while many techniques
have a good conceptual fit, most algorithms are designed for an
offline setting and have computational costs far in excess of ac-
ceptable production limits. For example, some initial work on trace
sampling used graph kernels as a pairwise trace distance function,
and applied off-the-shelf clustering algorithms [21]. While this
approach yielded interesting offline clusters, the authors acknowl-
edged that significant improvements were needed to be reasonable
in an online setting.

Adapting offline approaches to an online setting is non-trivial,
however. For example, recent work proposed using hierarchical
clustering for trace sampling [17]; it was initially developed in an
offline setting, and to adapt it to the online setting, it required a
new special-purpose sliding window algorithm.

Techniques for trace clustering face similar challenges. For ex-
ample, to satisfy operational requirements, Magpie uses an approxi-
mate string-edit-distance comparison metric, and a simple “nearest
centroid” clustering algorithm [2]. Simplicity comes at a loss of util-
ity, with the authors acknowledging that the approach is likely to
deteriorate in larger systems with more complex request structures.

In all prior approaches, scalability remains a challenges. In all
cases, the internal state grows in proportion to the number of traces
seen or previously sampled. This is problematic if the computa-
tional cost of a sampling decision is proportional to the internal
state, especially if that state is unbounded. For example, most prior
approaches to both sampling and clustering compare incoming
traces with the set of previously sampled traces [2, 17, 21]. In terms
of state, this requires persisting in memory the set of previously
sampled traces; and in terms of computational cost, each successive
sampling decision is proportional the number of previously sam-
pled traces. Although approaches such as hierarchical clustering
can reduce the computational cost to logarithmic in the number of
previously sampled traces, they still quickly deteriorate as workload
volume increases [17].

To be feasible for a production setting, trace sampling must be
fast and scalable. Ideally, the computational cost of each sampling
decision should be constant, and the sampler should have a known
and fixed memory overhead over time. These costs should be in-
dependent of workload volume, the number of traces previously
seen, and the number of traces previously sampled.

3.3 Goals
The goal of this work is to design a tail-based sampler that satisfies
the operational requirements of production distributed systems.
Similar to the representative trace sampling problem [17], the sam-
pler biases sampling decisions towards edge-case traces. Given a
target sampling rate of α , we seek a sampling function Sα that
maintains an average rate of α and for each trace T calculates a
biased sampling probability ρ. In addition, Sα maintains state Θ
that is updated with each new trace.

Sα (T ,Θ) → ρ, Θ′

For scalability, Sα must satisfy the following two constraints: that
its computational complexity be O (1) with respect to workload
volume and previous sampling decisions; and that the memory
requirement of Θ is less than some constant B. Lastly, we desire an
Sα that does not depend on explicitly engineered trace features.

4 Challenges

The goal of this work is to design a trace sampler that is general-
purpose and makes sampling decisions directly on the underlying
trace data, rather than on manually engineered features. Simultane-
ously, the sampler must satisfy the strict operational requirements
described in §3.2. Balancing these objectives is challenging for sev-
eral reasons that we outline in this section. We begin with a brief
overview of what kind of data is captured in traces.

4.1 A Primer on Traces

Events Events are the core building block of a trace. Events
occur during a request’s execution, they are instantaneous in time,
and they can be likened to logging statements. A request trace
comprises all events generated during the request’s execution, from
all processes and machines where the request executed. When
events are generated, they are sent to the tracing framework’s
backend; the backend receives all of the events and stitches them
into a trace.

Events convey a variety of information. They carry useful diag-
nostic messages, indicate important control flow points in a pro-
gram, capture timing information, log concurrent communication,
report performance counters, log exceptions, and more. Events of-
ten carry auxiliary information such as timestamps, hostnames,
process IDs, thread IDs, and so on. Traces can be arbitrarily large,
depending on the amount and detail of instrumentation, and length
of execution. For example, traces at Facebook contain several thou-
sand events [14]; traces of Hadoop and Spark in our experiments
contain hundreds of thousands.

Relationships Events alone tell some of the story, but the most
important information in a trace is the causal ordering between
events, defined by Lamport’s happened-before relation [16]. Causal
ordering tells us the timing, concurrency, and relationship between
events, and is useful for determining which events potentially af-
fected each other, and which did not. For example, within a process
it can delineate a request’s path through request queues and thread
pools; between processes it ties together sending and receiving
of packets and messages. Causal ordering is useful for diagnos-
ing problems that cross address space boundaries, because it lets
users work backwards from symptoms to potential root causes,
even if those root causes were in a different process, machine, or
application tier [23]. Causal ordering is a first-class concept for
all distributed tracing frameworks, and distinguishes distributed
tracing from other types of monitoring data, such as logs and perfor-
mance counters, which do not explicitly capture the causal ordering
of events.

Traces A trace combines events and their causal ordering into a
directed, acyclic graph (DAG); events are vertices, and edges are
happened-before relationships. Since traces record occurrences of
events over time, edges always point forward in time. Alternative
to DAGs, another popular representation for traces is as a tree of
spans – this representation was proposed by Google’s Dapper [31]
and it is used by most open-source frameworks. Although spans
are a more common representation, DAGs are more general [19],
and there is a straightforward mapping from spans into DAGs.

Sifter: Scalable Sampling for Distributed Traces,
without Feature Engineering SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

4.2 Heterogeneous Event Annotations
Distributed tracing is an application-level concern. Events are gen-
erated explicitly in application code, and tracing metadata is main-
tained and propagated directly by applications or application-level
frameworks. Consequently, the origin and content of an event is
arbitrary, as events are defined by the developers of the software
being traced. Many events are simply human-readable text, to aid in
manual human-driven analysis and troubleshooting [7, 14, 26, 38].

For automated tasks such as trace sampling, we cannot easily
incorporate event annotations provided by developers, as inter-
preting messages to extract meaning is difficult; this is similar to
challenges faced in automated log analysis [42, 43]. However, we
observe that events almost always do identify their origin. For
example, in our experiments all events have source file and line
number annotations, even for different client libraries in different
languages. We use this origin information to assign each event a
label that uniquely identifies the event’s origin. Events from the
same origin share the same label (i.e., multiple invocations of the
same point in code), so there may be multiple events with the same
label both within and across traces.
4.3 Incorporating Structure
In some cases event labels may be enough to distinguish edge-case
and anomalous traces from common cases. For example, events that
are generated in exception handlers will only be present in traces
where those exceptions occurred. A simple representation for a
trace may then be a vector of label counts, and similar approaches
have been taken in prior work [10, 17]. However, this approach
naturally fails to account for executions that differ in event ordering,
which is something we must account for in our sampler.

Of course, incorporating structural information is not straight-
forward. Explicitly encoding every path in a trace as a feature is
intractable due to a combinatorial explosion. Traces are arbitrary
in size, both in the number of events and the edges between events,
and the number of happened-before relationships grows exponen-
tially in the number of events. On the other hand, using only partial
information inevitably loses useful context, e.g. using only neigh-
boring events omits useful non-local relationships.

This challenge also appears in work on execution clustering
and comparison, where a range of approximations have been ex-
plored, including linearized versions of traces [2, 29], probabilistic
context-free grammars [6], pairwise graph kernels [21], summary
features [14, 17], and in the extreme, graph isomorphism [24, 29].
In all cases, these sacrifice parallelism and concurrency information
to deal with the state space explosion, and most do not scale to
large datasets. Outside of distributed tracing, a similar challenge
occurs in language modeling, an important topic of natural lan-
guage processing research. Language modeling suffers a “curse of
dimensionality” because of the exponentially many ways in which
words can be composed to form sentences (many of which may be
valid, but never seen twice) [3].

Our intuition to address this challenge is twofold. First, while
the total number of paths in a trace is intractably large, the number
of ‘high signal’ paths is likely to be manageable. For example, we
often see the same subsequences of events occurring in exactly
the same order, e.g. because there are no branch points between
successive events. While we cannot predict which paths might be

useful, we can take advantage of efficient dimensionality reduction
techniques to perform this reduction for us. Second, we believe that
useful path-based features are more likely to be short than long.

4.4 Approximate Matching
In practice, approaches based on exact matching of paths [6] or
graphs [24, 29] are ineffective because they are not robust to noise
in traces: when two traces are very similar but not identical because
of transient, non-deterministic runtime effects. Noise arises from
subtle timing differences during execution, which might reorder
events or result in different happened-before orderings. Noise also
arises when requests generate repeated events, e.g. for actions on a
periodic timer, or best-effort IO calls. Noise makes exact matching
ineffective, because we might have significant overlap between
traces, yet never see exactly the same trace twice. For example,
our HDFS trace dataset (cf. §7) contains 70,966 traces of 7 different
types, yet no two trace DAGs are isomorphic.

In general we seek techniques that are robust to noise and do
not rely on exact matching, as minor permutations of common-case
executions are not as interesting, even if they have not been seen
before. A possible approach to combat noise would be to sanitize
traces (i.e., to identify and remove noise), but this is not a realis-
tic solution as it either requires manual effort in postprocessing
(aka feature engineering), or imposes unrealistic constraints on
the developers doing instrumentation (constraints that are easily
violated [22]).

4.5 Cross-Component Tracing
A final challenge is the cross-component nature of tracing. Traces
combine events across multiple components, where developers
make different and possibly inconsistent decisions about what to
trace, and the level of detail of tracing.

Varying trace detail Different system components may incor-
porate tracing with varying levels of detail. One service may be
intricately instrumented and fully capture its internal concurrency,
while another might only log entry and exit points. An artifact of
detailed instrumentation is that we often find repeated sequences
of events that always appear in the same order, i.e. due to a lack of
intermediate branching. Simple techniques such as node counting
unduly bias towards services with more detailed instrumentation;
our ideal techniques should be robust to this.

Composition Popular system designs like microservice archi-
tectures are compositional in nature. There are often complex de-
pendencies between services and system components; the same
service might be invoked in many different places. As a result, two
traces might be qualitatively different at a high level, yet internally
have some commonality because they invoked the same libraries
or downstream services. This commonality makes them less inter-
esting from a trace sampling standpoint, as there some amount of
internal redundancy.

Change over time Workload mixes change over time, and a
sampler should adapt to these changes. Similarly, code can change
over time, introducing new events, more detailed instrumentation,
or changing the relationships between events between version
updates [14].

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Pedro Las-Casas, Giorgi Papakerashvili, Vaastav Anand, Jonathan Mace

5 Design
This section describes the design of Sifter, a tail-based sampler that
address the challenges described in §4. Sifter is an online sampler
that operates over a continuous stream of traces coming from pro-
duction distributed systems. Unlike prior work, Sifter does not rely
on pairwise trace comparisons, and is efficient enough to be suitable
for production environments.

Our starting point is the observation that collectively, the stream
of traces in aggregate reflect the overall system and workload be-
havior, capturing the commonly-traversed paths, corner case ex-
ecutions, and distributions over paths and timings. Based on this
observation, our intuition for Sifter is to use the incoming stream
of traces to construct and maintain an unbiased low-dimensional
approximation of the distributed system’s common-case behavior.
Then to sample traces, it is a matter of comparing each trace to the
low-dimensional approximation, and biasing sampling decisions
towards traces that are not well approximated.

5.1 Dimensionality Reduction
Sifter constructs and maintains a low-dimensional approximation
of the distributed system’s common-case behavior. The purpose of
this low-dimensional approximation is to capture the probability
that events occur in a particular order. As outlined in §4 our ap-
proximation must be robust to noise, and should condense highly
correlated events and trace substructures, so explicitly enumerating
paths and probabilities is an unsuitable approach.

Instead, to achieve our goal, we take inspiration from the area
of neural language modeling [3], which we find shares many of
the challenges described in this work. Of particular interest are
techniques for constructing low-dimensional word and document
embeddings from large corpuses of example text [18, 25]. These
techniques share a similar goal of learning a probabilistic model
for words appearing together in sentences, and also deal with chal-
lenges of noise and high dimensionality. The model used by Sifter
is an adaptation of the paragraph vector embedding [18].

Concretely, Sifter uses a neural network that models the condi-
tional probability of a label occurring given its immediate causal
predecessors and successors. To incorporate structure, we decom-
pose a trace into sequences of events following happened-before
relationships. For each trace, we first extract all N -length paths,
where a path is a sequence of events that follow happened-before
relationships. We then map each event in the path to its correspond-
ing label. The model then operates on these N -length label paths.
For each path, we predict the middle label l N

2
given the surrounding

labels l0 . . . lN (excluding l N
2
) as input.

We implement the model using the same architecture as the dis-
tributed memory paragraph vector model, using concatenation [18].
The architecture is a 2-layer neural network illustrated in Figure 3.
Inputs are one-hot encodings of l0 . . . lN (excluding l N

2
), and the

output is a one-hot encoding of l N
2
. The first layer of the network

transforms each input label to a P-dimensional vector. The sec-
ond layer concatenates them then predicts the output label using a
softmax classifier.

Key to the design of this architecture is the intermediate layer,
where the choice of P is typically small. This forces the model to

ca[] b[]

1
0
0
0
.
.
.
0

0
0
1
0
.
.
.
0

a
b
c
d
.
.
.
z
a
b
c
d
.
.
.
z

0
1
0
0
.
.
.

0

.
.
.

[◦◦◦
]

[◦◦◦
]

a
b
c
d
.
.
.

z

L|Σ|×P

L|Σ|×P

U(N−1)P×|Σ|

One-Hot
Encode

Input Embedding
Concatenate

Softmax
Classify

Target

Fig. 3: For a path of labels a�b�c, Sifter predicts b given
[a c]. Sifter uses a modified version of the concatenation-based
distributed memory paragraph vector model [18]. P is embed-
dingdimension,N is path length, and Σ is the alphabet of labels.

find approximate representations for its inputs, because it cannot
represent the full joint probability distribution of inputs and out-
puts. Conceptually, this layer is similar to the hidden layer used by
autoencoders. When used by language modeling, the weights of
the intermediate layer can be used as low-dimensional representa-
tions of the corresponding words, and have a range of interesting
properties [25]. In our case, P forces the model to approximate –
specifically, the model maximizes the average log probability of a
label given its surrounding labels, across all walks in all traces. By
this definition, the model makes better predictions for paths that
are seen more frequently in the input dataset (i.e., in the traces we
train on).

5.2 Sampling Using Prediction Error
To make a sampling decision for a trace, Sifter extracts all N -length
paths from the trace, batches them together, and performs a single
forward-pass of the model. Since traces are directed and acyclic,
small values of N do not result in an intractable number of paths;
Table 1 outlines statistics for datasets used in our experiments.

The output of the forward pass is both a prediction of events,
and the prediction’s loss, i.e. the error between predicted labels and
actual labels. A high loss means that the model was unable to predict
the execution paths contained in the trace. Since the model is biased
towards the common-case execution paths, a high loss implies that
the trace contains edge-case execution paths that are not commonly
exercised. This implies that the trace is more interesting, since it
captures execution paths that are outside of the norm.

Sifter uses this signal to determine whether to sample the trace
– traces with higher loss are more interesting; we could not predict
their execution paths well, so we want to sample them with higher
probability.

5.3 Calculating Sampling Probability
After calculating the prediction loss for a trace, the next step is
to map this loss to a sampling probability. To begin, Sifter is pa-
rameterized with a target sampling rate α , e.g. to sample 1 out of
every 100 traces, we set α = 0.01. Translating prediction loss to a
sampling probability is not straightforward, because it depends on
the prediction loss of previously seen traces; i.e. if other traces seen
recently had higher prediction loss, then this trace is qualitatively
less interesting.

Sifter: Scalable Sampling for Distributed Traces,
without Feature Engineering SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

a b b d
c c e

Input Trace

[a � b � b]
[a � c � c]
[b � b � d]
[c � c � b]
[c � c � e]
[c � b � d]
[c � e � d]

Extract
Labeled
Paths

a b
a c
b d
c b
c e
c d
c d

b
c
b
c
c
b
e

Construct
Inputs
&Targets

loss = 1.5
Forward
Pass of
Model

Θ = (model, window)

Θ′ = (model′, window′)

ρ = 0.01
Calculate
Sampling
Probability

Backward Pass of Model
Update
Window

✗

✓

λ

Sample

Fig. 4: Sifter’s internal pipeline that makes sampling decisions based on an internal probabilistic model of paths in the system.
Each sampling decision updates the model.

To address this Sifter tracks the loss of the k most recently seen
traces, and weights the sampling probability of the next trace based
on the distribution of these prior k losses. For the k most recently
seen traces and for the new trace, we calculate weightswi where:

wi = lossi − min
1≤j≤k+1

lossj

If all weights are equal (i.e. all losses are the same) then we sample
the next trace uniformly at random with probability α . Otherwise,
we sample the next trace with probability:

ρ =
wk+1∑k+1
j=1 wj

× (k + 1) × α

The effect of this sampling scheme is that traces with the lowest
loss have sampling probability of zero; traces with the highest
loss have highest sampling probability; and for traces in between,
the sampling probability increases linearly with the error. If zero
sampling probability is undesirable, a constant term can be added
to ρ, representing a minimum sampling probability.

5.4 Sifter Workflow
Figure 4 outlines Sifter’s sampling workflow. Sifter integrates with a
typical tracing backend. Typical tracing backends aggregate events
in memory for a short period of time, before forwarding them
for trace processing and storage [14]. When a trace is ready to be
forwarded, it is sent to Sifter to make a sampling decision. Sifter
begins by extracting all N -length paths from the trace and does a
forward-pass of the model, as described in §5.2. From this forward
pass, we calculate a loss value for the trace.

Next, Sifter performs a gradient descent backpropagation pass
on the model to update the model weights to incorporate the trace
that was just seen. Sifter then calculates a sampling probability
from the loss, as described in §5.3. After calculating the sampling
probability, Sifter inserts the trace’s loss to the window of k most
recent losses and drops the oldest value.

Finally, Sifter makes the sampling decision using the calculated
sampling probability. If sampled, then the trace continues in the
trace processing pipeline. If not sampled, the trace is now dropped.

5.5 Scalability
Part of Sifter’s workflow is to perform a backpropagation pass on
the model to update the model weights for every trace that is seen.
This enables the model to capture common-case execution behavior,
even if that behavior is then less likely to be sampled. This approach
would fail if we only built the model using traces that are sampled,
because it’s a lack of bias in the model that enables us to determine
common cases in the incoming workload. As a consequence, the

model weights change over time if the underlying distribution of
traces changes (e.g., if the proportion of execution paths change; if
new execution types are added; if the vocabulary of labels changes
due to code updates, etc.).

Sifter only keeps internal state for the model’s weights, and to
track the k most recently seen losses. The model comprises exactly
|Σ| ×P weights for the first layer, and (N −1)×P × |Σ| weights for the
second layer, where P is the size of the low-dimensional intermediate
representation, N is the path size we wish to use, and Σ is the label
vocabulary. The model does not maintain paragraph vectors, since
each trace is seen once and only once. Thus the total size ofΘ (cf. §3.3)
is constant with respect to the workload volume and number of
sampled traces. In terms of computation, performing forward and
backwards passes of the models constitute a fixed number of floating
point multiplications, which has constant-time complexity.

6 Implementation
We have implemented Sifter in Python using TensorFlow for the
internall model. To use Sifter, an instance is first initialized using
input parameters N , P , k , and α described in §5. Subsequently,
sampling decisions are made through a call to sample(T), which
takes as input a trace T and gives as output a boolean sampling
decision. The input trace T is simply a directed, acyclic graph where
each node has a label l . For convenience, we implemented functions
to convert X-Trace [8], Zipkin [34], and Jaeger [11] traces into this
format.

Each call to sample performs the steps described in §5.4, includ-
ing backpropagation to update the internal model. Sifter does not
require a priori knowledge of the label vocabulary Σ; it extends the
model weights as needed when it encounters previously unseen
labels. By default, Sifter uses paths of length 5 (N = 5), embedding
dimension 10 (P = 10), a window of 50 (k = 50), and a learning rate
of 0.01 for the model backpropagation pass.

7 Evaluation
In this section we evaluate Sifter’s ability to bias sampling decisions
towards edge-case and anomalous traces. We use traces from a
variety of distributed systems, and consider a mix of synthetic and
real-world workloads. Our evaluation shows that Sifter addresses
the challenges described in §4 across all datasets, regardless of trace
size, detail, or noise. In particular, we demonstrate that:
• Sifter satisfies production sampling requirements: it makes
sampling decisions with low computational overhead, main-
tains constant-size intermediate state, and can operate online
over a continuous stream of traces.

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Pedro Las-Casas, Giorgi Papakerashvili, Vaastav Anand, Jonathan Mace

• Sifter is able to clearly distinguish anomalies and infrequent
executions from common-case executions. For mixed work-
loads, Sifter biases sampling decisions towards under-represented
execution types.
• Sifter requires no bootstrapping or pretraining – it begins
discriminating after only a few examples of traces.
• Sifter reacts to changing workload distributions, both when
common executions become less common, and vice versa.
• Sifter’s successful sampling decisions are only possible by
preserving happened-before relationships.

To evaluate the quality of sampling decisions made by Sifter, we
compare Sifter to the hierarchical clustering approach of prior
work [17], which uses label counting to perform pairwise trace
comparison.

7.1 Datasets
Our evaluation of Sifter focuses on the following three trace datasets:

Hadoop Distributed File System We have instrumented the
Hadoop Distributed File System (HDFS) [30] with the X-Trace
framework and deployed it on a 9-node cluster. To generate de-
tailed traces, we override HDFS’s logging calls to emit X-Trace
events. As a result, the generated traces can be large, and contain
lots of noise and minor permutations of events. Our dataset com-
prises traces of the following requests: (1) 1MB file writes to HDFS;
(2) reads of 1kB, 10kB, 100kB, 1MB, 10MB, and 100MB files from
HDFS; (3) random reads of between 1kB and 100kB. The dataset
comprises 70,966 traces in total.

DeathStar Social Network Benchmark We instrumented the
DeathStar social network microservices benchmark [9] with X-
Trace. We duplicated all logging calls to emit X-Trace events, and
logged events at the start and end of all services. We deployed
the benchmark on one machine and captured traces of 7 differ-
ent API types (Register user, Follow user, Unfollow user, Compose
post, Write timeline, Read timeline, Read user timeline). Internally,
the benchmark comprises 36 microservices; each high-level API
call invokes an overlapping subset of the services. In addition to
datasets of regular workloads, we also captured traces of two classes
of anomaly: one where we manually triggered exceptions in the
internal microservices; and one arising accidentally from a con-
figuration error in our deployment, causing docker containers to
intermittently restart and services to be temporarily unavailable.
The dataset comprises 15,148 traces in total.

Production Traces This dataset comprises 676 traces from a
large internet company. The traces capture spans from a microser-
vice architecture, and can be grouped into five different API types.

Table 1 summarizes statistics for traces in these datasets.

Dataset Traces Avg. Nodes Avg. Labels Avg. Walks
HDFS 70966 1428 38 2547

DeathStar 15148 127 82 155
Production 676 71 56 130

Table 1: Statistics for datasets used in experiments. Nodes, la-
bels, and walks are averages for the traces in each dataset.

0
1
2
3
4
5
6

Lo
ss

0

0.1

0.2

0.3

0.4

0 100 200 300 400 500 600 700 800 900 1000
Trace

Pr
ob
ab
ili
ty

Fig. 5: Loss and sampling probability for a workload of 1000
HDFS read traces.We intermittently introduce 5 write traces,
corresponding to the five spikeswithhighsamplingprobability.

7.2 Anomalies and Outliers
Our first set of experiments evaluates Sifter’s ability to identify and
sample anomalous and outlier executions.

HDFS Reads In our first experiment we replay traces of HDFS
read API calls, which randomly read between 1kB and 100kB of
data from HDFS. We record the loss and sampling probability for
a sequence of 1000 traces, and at five separate instances we insert
a trace of an HDFS write API call. Since Sifter primarily sees ex-
amples of read calls, writes are outliers, representing only 0.5%
of the workload. Qualitatively, there is little overlap between read
and write traces; some RPC events are shared, but most of the data
pipelining events are mutually exclusive.

Figure 5 plots Sifter’s loss and sampling probability, where our
target sampling rate is α = 0.01. The figure clearly shows five spikes
for each instance of a write. The average sampling probability for
reads is 0.0084, with minor fluctuations from trace to trace owing
to their internal variability. For the write traces, the sampling
probability is significantly higher, averaging 0.3325.

Social Network Compose Post We perform a similar experi-
ment using ComposePost traces from the DeathStar social network
benchmark. We record the loss and sampling probability for a se-
quence of 1000 traces, and at five separate instances we insert
an anomalous trace. The anomalous traces are also calls to the
ComposePost API, but internally we randomly trigger an exception
in one of the internal services. These anomalies represent only 0.5%
of the workload, but unlike the previous experiment, there is quali-
tatively more overlap between normal and anomalous executions,
since they are similar up to the point of the exception.

Figure 6 plots Sifter’s loss and sampling probability, with a target
sampling rate of α = 0.01. The five anomalous traces have higher
sampling probabilities between 0.12 and 0.28, while the regular
traces fluctuate around 0.01. Unlike the HDFS traces, the regular
ComposePost executions have more internal diversity, resulting in
more fluctuations; on the other hand, the anomalies are closer to
regular traces. Nonetheless, Sifter clearly identifies the anomalies
and samples them with higher probability.

Sifter: Scalable Sampling for Distributed Traces,
without Feature Engineering SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

0

0.5

1

1.5

2

Lo
ss

0

0.1

0.2

0.3

0 100 200 300 400 500 600 700 800 900 1000
Trace

Pr
ob
ab
ili
ty

Fig. 6: Loss and sampling probability for ComposePost API
calls. Five exception traces are introduced, corresponding to
five spikes with high sampling probability.

Social Network ReadUserTimeline We perform a final exper-
iment using ReadUserTimeline traces from the DeathStar social
network benchmark. In this experiment, we compare normal traces
to anomalous traces that we inadvertently encountered due to a
Docker misconfiguration that intermittently restarted some of the
microservices. We replay traces with a 90%-10% distribution of regu-
lar to failure traces, corresponding to the error ratio we experienced.
We replay 1000 traces and record the loss and sampling probability.

Figure 7 plots Sifter’s loss and sampling probability with a target
sampling rate α = 0.01.We plot the loss and sampling probability for
regular traces separately from the anomalous traces (which have 90%
fewer datapoints). The figure illustrates that sampling probability
for anomalous traces is higher than regular traces; regular traces
have average sampling probability 0.008, while failures have 0.029.

7.3 Representative Sampling
Our next set of experiments evaluate’s Sifter’s ability to generally
bias towards underrepresented execution paths and request types
for workloads in aggregate. We compare Sifter to random sam-
pling [31] and hierarchical clustering [17]. In practice, hierarchical
clustering is not a suitable choice for production systems due to its
computational costs. The purpose of this comparison is to assess
whether Sifter, with its lower, bounded computational costs, can
nonetheless sample traces with similar or better quality.

Production Traces We apply Sifter to a workload of 676 traces
captured from a large internet company’s production system. These
traces comprise 5 different high-level API calls; internally, the re-
quests share commonality in some of the services they call. To
introduce more variability, we adjust the representation of each
API type to 2%, 8%, 15%, 25%, and 50% respectively.

Figure 8a compares the distribution of traces sampled by Sifter,
and compares this to the original workload, as well as random
sampling and hierarchical clustering. Sifter increases the represen-
tation of low-frequency APIs, while decreasing the representation
of common-case APIs. By comparison, hierarchical clustering only
slightly increases the underrepresented APIs. To quantify this, Ta-
ble 2 lists the mean-squared error compared to an equal 20% division
between APIs; Sifter has significantly lower error than both random
and hierarchical clustering.

0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

Lo
ss

Regular Traces Failure Traces

0

0.05

0.1

0.15

0 100 200 300 400 500 600 700 800 900 1000
Trace

Pr
ob
ab
ili
ty

Fig. 7: Loss and probability for ReadUserTimeline requests. 10%
of the executions failed because of a Docker misconfiguration.

DeathStar Benchmark We perform the same experiment for
the 7 DeathStarBench API types totaling 14,000 traces, with the fol-
lowing distribution: 0.5% Register; 2% Unfollow; 2% Follow; 2.75%
WriteHomeTimeline; 2.75% ComposePost; 45% ReadHomeTimeline; 45%
ReadUserTimeline.

Figure 8b shows the distribution of traces sampled by Sifter. Sifter
increases the representation of low-frequency APIs, while decreasing
that of common-case calls. ComposePost has the highest represen-
tation, as it is internally the most complex API with the highest
internal execution diversity. Table 2 lists the mean-squared error of
the clusters compared to an equal 14.3% division between the APIs.

HDFS We lastly perform a similar experiment for HDFS. We in-
clude the following traces: 1MBwrite API calls; and 1kB, 10kB, 100kB,
1MB, 10MB, and 100MB read calls. The read calls have significant
internal similarity, as increasing the read size primarily duplicates
events recording data chunk transfers. We include 1% writes, and
45%, 25%, 15%, 7.5%, 4.5%, and 2% of the reads respectively.

Figure 8c shows the distribution of traces sampled by Sifter.
Sifter significantly increases the proportion of write traces that
are sampled, to 25%. Fewer read API calls are sampled, but they are
sampled approximately in proportion to their representation in the
original dataset. This occurs because the traces comprise the same
types of events (i.e., the same set of labels); just some events occur
more frequently in the large read calls. Consequently, the large
reads are interesting, but not too interesting, as the additional data
transfer events are treated as noise. Despite the uneven clustering,
this is a desirable result. The figure also shows the distribution of
traces sampled using hierarchical clustering [17]; this approach
simply counts the co-occurrence of labels in each trace, and in-
evitably weights towards traces with higher node counts, which
are the larger traces.

Sifter Hierarchical Random
Production 35.95 193.12 283.60
DeathStar 46.31 246.26 377.72

HDFS 119.91 404.22 218.28

Table 2: Mean-squared error of sampled clusters (cf. §7.3) for
Sifter, random sampling, and hierarchical clustering.

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Pedro Las-Casas, Giorgi Papakerashvili, Vaastav Anand, Jonathan Mace

Uniform Random
Sifter

Hierarchical Clustering

API-A API-B API-C API-D API-E

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
(a) 5 high-level API calls from a large internet company’s production system.

Uniform Random
Sifter

Hierarchical Clustering

UserRead HomeRead Compose WriteHome Follow Unfollow Register

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
(b) 7 API types from DeathStar social network microbenchmark.

Uniform Random
Sifter

Hierarchical Clustering

Read 1kB Read 10kB Read 100kB Read 1MB Read 10MB Read 100MB Write 1MB

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
(c) Read and write files of different sizes to the Hadoop Distributed File System.

Fig. 8: Proportion of request types sampled by three different schemes, for three different workloads. Note that uniform random
sampling reflects the original workload distribution.

7.4 Change over Time
We next evaluate how Sifter adapts to change over time. We fo-
cus on two scenarios: when workload distributions change; and
boostrapping Sifter from scratch.

Changing distributions This experiment uses 1MBHDFS write
traces and 1MB HDFS read traces. Iterations of the experiment al-
ternate between 90% write 10% read, followed by 10% write 90%
read. We expect Sifter’s sampling probability to adapt to these
workload changes; increasing the probability for the 10% class, and
decreasing the probability for the 90% class. Figure 9 plots the av-
erage sampling probability for 9 iterations, with a target sampling
probability of 0.01. The figure illustrates how the sampling probabil-
ity alternates between low and high for the classes as they alternate
between over- and under-represented.

Bootstrapping Sifter is designed to operate in real-time, and
does not require pre-training or manual configuration before oper-
ation. Initially, Sifter makes essentially random sampling decisions,
as its internal model is randomly initialized. As soon as it starts
receiving samples, it begins learning its model of system behavior.
In this experiment we select two API types from the production
traces, and use 5% of one type and 95% of the other.

Figure 10 plots Sifter’s loss and sampling probability, starting
randomly initialized. Sifter quickly begins to differentiate common
cases from edge cases, and the loss for common cases decreases
faster than the loss for the edge-case traces. We repeated this exper-
iment 100 times, varying the choice of API type and randomizing
the trace order, and saw the same behavior each time.

7.5 Importance of Structure
In this experiment we compare Sifter to a similar scheme that fails
to take into account trace structure. The goal of this experiment is
to evaluate Sifter’s effectiveness when using a linearized version of
traces that discards internal concurrency information [2, 29]. We
compare to Lifter, a modified version of Sifter in which we collapse
a trace’s events into a single timestamp-ordered sequence. We then

0
0.01
0.02
0.03
0.04
0.05

1 2 3 4 5 6 7 8 9
Iteration

Pr
ob
ab
ili
ty

Read Write

Fig. 9: Eachiterationalternates theworkloadproportion90%-10%
and vice versa. Sifter adapts to these changes, increasing the sam-
pling probability of the underrepresented class each iteration.

0
5
10
15
20
25

Lo
ss

95% traces 5% traces

0

0.05

0.1

0.15

0 100 200 300 400 500 600 700 800 900 1000
Trace

Pr
ob
ab
ili
ty

Fig. 10: Sifter requires no bootstrapping or pre-training.

apply Sifter to this sequential data, where paths are simply a sliding
window over this sequence.

We apply Sifter and Lifter to a workload of 1,000 traces compris-
ing 90% 1kB HDFS reads and 10% 100kB HDFS reads. Figure 11a
compares the loss and sampling probability for Sifter and Lifter. We
observe that the loss for Lifter has significantly more fluctuations
than Sifter, owing the fact that concurrent paths are superimposed
on one another. The average sampling probabilities for 1kb and
100kb traces respectively are 0.010 and 0.010 for Lifter, compared
to 0.007 and 0.034 for Sifter.

Sifter: Scalable Sampling for Distributed Traces,
without Feature Engineering SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

0.5

1

1.5

Lo
ss

1kB Reads 100kB Reads

0

0.02

0.04

0.06

0.08

0 100 200 300 400 500 600 700 800 900 1000
Trace

Pr
ob
ab
ili
ty

(a) Sifter samples underrepresented traces with higher probability.

0.5
1

1.5
2

2.5
3

Lo
ss

0

0.02

0.04

0.06

0.08

0 100 200 300 400 500 600 700 800 900 1000
Trace

Pr
ob
ab
ili
ty

(b) Lifter fails due to lack of trace structure.

Fig. 11: Trace structure is key to Sifter’s ability to distinguish underrepresented traces. Lifter, a modified version that works on
linearized traces, fails to distinguish subtle differences in structure.

7.6 Overheads
To evaluate the sampling overhead of Sifter, Figure 13 plots the
distribution of sampling latencies for traces from our experiments.
Sampling latencies vary between 3ms and 20ms. The factors that
contribute to increased sampling latency are the size of the trace,
and the number of unique labels in the trace. However, sampling
latency is independent of the workload volume, and the number
of previously sampled traces. By comparison, Figure 12 plots the
average overhead for a hierarchical clustering approach [17]. The
key limitation of this prior approach is that sampling overhead
grows proportional to the number of sampled traces. By contrast,
Sifter’s internal stateΘ is constant-sized with respect to the number
of sampled traces.

8 Discussion
In this work, we were interested in sampling traces based on the
structure of the traces themselves. The main advantage of this
approach over manual feature engineering (cf. §3.1) is that it no
longer requires explicit features. We believe that differences in high-
level metrics can always be explained by differences in the timing
and ordering of events in the underlying traces, so it is here that
sampling should be done. Nonetheless, Sifter is only part of the
story. Useful features often are available, such as end-to-end request
latency. By definition, these features exist because an engineer
previously found them useful for some particular problem, and
outlier values offer a strong signal that a trace should be sampled.
When this is a case, simple and computationally efficient statistical
techniques will do a good job of sampling. Sifter is not intended
to replace this use case, but to handle the case when engineered
features do not capture differences between traces.

In practice, instead of a single global sampling policy, it is often
desirable to specify separate sampling policies for different stratified
populations. Sifter can extend to this scenario in a straightforward
way: subpopulations share the same model, but maintain a separate
window of losses, each parameterized with their own α (cf. §5.3).

Sifter makes use of a popular neural network architecture for
language modeling [18]. We did not exhaustively explore either the
hyperparameters of the model, or possible refinements to model

0
20
40
60
80

10 50 100 500
Tree Size

M
ea
n
Sa
m
pl
in
g

La
te
nc
y
(m

s)

DeathStar
HDFS

Production

Fig. 12: Sampling latency for Hierarchical Clustering grows
proportional to the number of sampled traces.

0
0.2
0.4
0.6
0.8
1

3 4 5 6 7 8 10 12 14 16 1820
Sampling Latency (ms)

CD
F DeathStar

HDFS
Production

Fig. 13: Distribution of Sifter sampling latency for datasets.

architecture. We avoided prematurely designing custom models, as
our goal was to explore the feasibility of our proposed model-based
sampling approach. Nonetheless, we believe that Sifter may benefit
in the future from more specialized models, such as structural
autoencoders and embeddings [39].

Sifter’s internal state is independent of workload volume, but does
grow proportional to the number of unique labels (|Σ|). We envision
two possible approaches to deal with vocabulary size. First, we can
evict old labels using a least-recently-used cache; this would garbage
collect old labels when they become irrelevant after a software ver-
sion update. Second, we can overload labels (e.g. by hashing labels),
since the model is robust to labels with multiple meanings.

Sifter only considers happened-before relationships and event
labels, as we were primarily interested in trace structure. A natural
next step would be to incorporate event timing, which many trace
events report. Beyond this, it is an open question whether arbitrary
event annotations can be incorporated in an efficient and general-
purpose way.

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Pedro Las-Casas, Giorgi Papakerashvili, Vaastav Anand, Jonathan Mace

10MB Reads
100kB Reads

Compose
Follow
Unfollow
Register
ReadHome
ReadUser
WriteHome

(a) HDFS (b) DeathStar benchmark

Fig. 14: PCA projection shows clusters of different trace types.

Lastly, an interesting side-effect of model-based sampling is the
model itself. While Sifter uses loss to make sampling decisions, an
alternative approach would be to use the intermediate embeddings
produced by Sifter. Figure 14 plots a PCA projection of traces from
HDFS and the DeathStar social network benchmark. The figure
shows clear separation for traces in different clusters. For HDFS
traces, there is also clear separation despite both request types
being read requests. A possible sampling algorithm might try to
uniformly sample traces across different regions of the embedding
space. In practice we found that loss provided a much stronger
signal for sampling, especially in cases of never-before-seen traces,
for which loss will be very high, but the position in the embedding
space may be arbitrary. Nevertheless, while we did not use interme-
diate embeddings produced by Sifter, they may be useful for other
analysis tasks such as clustering or trace comparison, especially
since they are a compact and efficient representation of a trace.

9 Related Work
Distributed tracing supports a range of troubleshooting and diagno-
sis tasks, including diagnosing anomalous requests based on struc-
ture or timing [31, 37]; diagnosing steady-state problems [6, 8, 28,
29]; identifying slow components [5, 24]; modeling workloads and
resource usage [24, 32]; and identifying system bottlenecks [10, 37].

Several prior works sought to extract value from end-to-end
traces in aggregate, through clustering, classification, or anomaly
detection, and similar techniques could be considered for the trace
sampling problem. Pairwise graph comparison often appears as
a recurring primitive [2, 6, 17, 21, 24, 29]. However, many of the
approaches only consider approximated versions of traces, such as
string-edit-distance of linearized graphs [2, 29], event counting [17],
or grammars [6].

Alternatives Sifter could have considered include frequent sub-
graph mining [12]; maximal common subgraphs [4], and graph
kernels [36]. Many of these techniques do not approximate well,
or rely on pairwise comparison, and while they have potential for
other trace analysis tasks, we do not believe they are suitable for
low-overhead sampling. Furthermore, as described in §3.2 it can be
difficult to extend offline approaches to the online setting, and even
then they can have prohibitive computational costs.

Sifter’s approach takes advantage of recent results in the area of
neural language modeling [3]. In particular, approaches from this
research area excel at tackling high dimensionality, inferring rela-
tionships between proximate words, and handling variable length
structured input [18, 25]. We are not the first to identify an analogy

between natural language and traces. Pinpoint generates a proba-
bilistic context-free grammar from paths [6], which is an intuitive
way to model how the system generates events.

Sifter’s approach to trace sampling is a form of online machine
learning. Many online learning algorithms try to mitigate the fact
that models bias towards more recently seen training samples. For
our use case, we explicitly want to adapt to changes in workload;
but it remains open how to exactly quantify this rate of change. In
general, the phenomenon of temporally varying data is called con-
cept drift [33], and advances in this area may yield solutions that
can apply to Sifter. Sifter takes advantage of a concept called class
imbalance, which affects many machine learning models which
give better predictions for more common training examples. Com-
mon techniques to mitigate class imbalance include subsampling
frequently seen samples [25]; we did not use or evaluate these
techniques.

Outside of distributed tracing, prior work has also found struc-
ture useful for the metrics emitted by a system [15, 23], and for
logs [20]. Complementary research also looks into placing logging
statements in a way that maximizes differentiating code paths [41],
and extracting structure and meaning from logging messages [7,
26].

Not discussed in this paper is trace retention, a similar task to
sampling that can employ similar techniques. Most tracing sys-
tems simply discard traces older than a particular threshold; for
example, Stardust [32] and Dapper [31] discard traces after two
weeks; Canopy after a month [14]. A better approach might be to
progressively subsample.

10 Conclusion
In this paper we presented Sifter, a general-purpose trace sampler
that builds a low-dimensional unbiased model of common-case sys-
tem behaviors. Using the model of common-case behaviors, Sifter
exploits prediction error as a signal for identifying edge-case and
anomalous traces, and biases its sampling decision towards these
traces. In our evaluation, we showed that Sifter can identify and
bias its sampling decisions towards edge case and underrepresented
trace types. Sifter has low memory requirements, and only requires
a few milliseconds per sampling decision.

References
[1] Apache. Kafka: A Distributed Streaming Platform. Retrieved June 2019 from

https://kafka.apache.org/. (§2.2).
[2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for Request

Extraction and Workload Modelling. In 6th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’04). (§3.2, 4.3, 7.5, and 9).

[3] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A Neural Probabilistic Lan-
guage Model. Journal of Machine Learning Research, 3(Feb):1137–1155, 2003. (§1,
4.3, 5.1, and 9).

[4] H. Bunke. On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters, 1997. (§9).

[5] A. Chanda, A. L. Cox, and W. Zwaenepoel. Whodunit: Transactional Profiling for
Multi-Tier Applications. In 2nd ACM European Conference on Computer Systems
(EuroSys ’07). (§9).

[6] M. Y. Chen, A. Accardi, E. Kiciman, D. A. Patterson, A. Fox, and E. A. Brewer.
Path-Based Failure and Evolution Management. In 1st USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’04). (§4.3, 4.4, and 9).

[7] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch. The Mystery Ma-
chine: End-to-end Performance Analysis of Large-scale Internet Services. In 11th
USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14).
(§4.2 and 9).

[8] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-Trace: A Pervasive
Network Tracing Framework. In 4th USENIX Symposium on Networked Systems

https://kafka.apache.org/

Sifter: Scalable Sampling for Distributed Traces,
without Feature Engineering SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

Design and Implementation (NSDI ’07). (§1, 6, and 9).
[9] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu,

B. Ritchken, B. Jackson, et al. An Open-Source Benchmark Suite for Microservices
and Their Hardware-Software Implications for Cloud and Edge Systems. In
24th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’19). (§1 and 7.1).

[10] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and C. Delimitrou. Seer:
Leveraging Big Data to Navigate the Complexity of Performance Debugging
in Cloud Microservices. In 24th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’19). (§4.3
and 9).

[11] Jaeger. Jaeger: Open Source, End-to-End Distributed Tracing. Retrieved June
2019 from https://www.jaegertracing.io/. (§1, 2.1, and 6).

[12] C. Jiang, F. Coenen, andM. Zito. A survey of frequent subgraphmining algorithms.
The Knowledge Engineering Review, 2013. (§9).

[13] R. Johnson. Facebook’s Scribe technology now open source. Retrieved August
2017 from https://www.facebook.com/note.php?note_id=32008268919. (§2.2).

[14] J. Kaldor, J. Mace, M. Bejda, E. Gao,W. Kuropatwa, J. O’Neill, K.W. Ong, B. Schaller,
P. Shan, B. Viscomi, V. Vekataraman, K. Veeraraghavan, and Y. J. Song. Canopy: An
End-to-End Performance Tracing And Analysis System. In 26th ACM Symposium
on Operating Systems Principles (SOSP ’17). (§1, 2.1, 2.3, 3.1, 4.1, 4.2, 4.3, 4.5, 5.4,
and 9).

[15] M. P. Kasick, J. Tan, R. Gandhi, and P. Narasimhan. Black-Box Problem Diagnosis
in Parallel File Systems. In 8th USENIX Conference on File and Storage Technologies
(FAST ’10). (§9).

[16] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7):558–565, 1978. (§4.1).

[17] P. Las-Casas, J. Mace, D. Guedes, and R. Fonseca. Weighted Sampling of Execution
Traces: Capturing More Needles and Less Hay. In 10th ACM Symposium on Cloud
Computing (SOCC ’18). (§1, 3.2, 3.3, 4.3, 7, 7.3, 7.3, 7.6, and 9).

[18] Q. Le and T. Mikolov. Distributed Representations of Sentences and Documents.
In 31st International Conference on Machine Learning (ICML ’14). (§5.1, 3, 8, and 9).

[19] J. Leavitt. End-to-End Tracing Models: Analysis and Unification. B.Sc. Thesis,
Brown University, 2014. (§4.1).

[20] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li. Mining Invariants from Console Logs
for System Problem Detection. In USENIX Annual Technical Conference (ATC ’10).
(§9).

[21] J. Mace. Revisiting End-to-End Trace Comparison with Graph Kernels. M.Sc.
Project, Brown University, 2013. (§3.2, 4.3, and 9).

[22] J. Mace and R. Fonseca. Universal Context Propagation for Distributed System
Instrumentation. In 13th ACM European Conference on Computer Systems (EuroSys
’18). (§4.4).

[23] J. Mace, R. Roelke, and R. Fonseca. Pivot Tracing: Dynamic Causal Monitoring
for Distributed Systems. In 25th ACM Symposium on Operating Systems Principles
(SOSP ’15). (§4.1 and 9).

[24] G. Mann, M. Sandler, D. Krushevskaja, S. Guha, and E. Even-Dar. Modeling the
Parallel Execution of Black-Box Services. In 3rd USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud ’11). (§4.3, 4.4, and 9).

[25] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed Repre-
sentations of Words and Phrases and their Compositionality. In 27th Conference
on Neural Information Processing Systems (NIPS ’13). (§5.1 and 9).

[26] K. Nagaraj, C. Killian, and J. Neville. Structured Comparative Analysis of System
Logs to Diagnose Performance Problems. In 9th USENIX Conference on Networked
Systems Design and Implementation (NSDI ’12). (§4.2 and 9).

[27] OpenTracing. OpenTracing. Retrieved January 2017 from http://opentracing.io/.
(§1 and 2.1).

[28] K. Ostrowski, G. Mann, and M. Sandler. Diagnosing Latency in Multi-Tier Black-
Box Services. In 5th Workshop on Large Scale Distributed Systems and Middleware
(LADIS ’11). (§9).

[29] R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Krevat, S. Whitman, M. Stroucken,
W. Wang, L. Xu, and G. R. Ganger. Diagnosing Performance Changes by Com-
paring Request Flows. In 8th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’11). (§4.3, 4.4, 7.5, and 9).

[30] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed File
System. (§1 and 7.1).

[31] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver,
S. Jaspan, and C. Shanbhag. Dapper, a Large-Scale Distributed Systems Tracing
Infrastructure. Technical Report, Google, 2010. (§1, 2.1, 2.3, 4.1, 7.3, and 9).

[32] E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-El-Malek, J. Lopez, and G. R.
Ganger. Stardust: Tracking Activity in a Distributed Storage System. In 2006
ACM International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS ’06). (§9).

[33] H. Tian, M. Yu, and W. Wang. Continuum: A Platform for Cost-Aware, Low-
Latency Continual Learning. In 10th ACM Symposium on Cloud Computing (SOCC
’18). (§9).

[34] Twitter. Zipkin. Retrieved July 2017 from http://zipkin.io/. (§1, 2.1, and 6).
[35] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,

T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,

B. Reed, and E. Baldeschwieler. Apache Hadoop YARN: Yet Another Resource
Negotiator. In 4th ACM Symposium on Cloud Computing (SoCC ’13). (§1).

[36] S. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt. Graph
kernels. JMLR, 99:1201–1242, 2010. (§9).

[37] Y. Wu, A. Chen, and L. T. X. Phan. Zeno: Diagnosing Performance Problems with
Temporal Provenance. In 16th USENIX Conference on Networked Systems Design
and Implementation (NSDI ’19). (§9).

[38] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan. Detecting Large-Scale
System Problems by Mining Console Logs. In 22nd ACM Symposium on Operating
Systems Principles (SOSP ’09). (§4.2).

[39] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song. Neural Network-based Graph
Embedding for Cross-Platform Binary Code Similarity Detection. In 24th ACM
Conference on Computer and Communications Security (CCS ’17). (§8).

[40] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient Distributed Datasets: A Fault-Tolerant Abstrac-
tion for In-Memory Cluster Computing. In 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’12). (§1).

[41] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and Y. Zhou. Log20: Fully
Automated Optimal Placement of Log Printing Statements under Specified Over-
head Threshold. In 26th ACM Symposium on Operating Systems Principles (SOSP
’17). (§9).

[42] X. Zhao, K. Rodrigues, Y. Luo, D. Yuan, and M. Stumm. Non-Instrusive Perfor-
mance Profiling for Entire Software Stacks based on the Flow Reconstruction
Principle. In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI ’16). (§4.2).

[43] X. Zhao, Y. Zhang, D. Lion, M. Faizan, Y. Luo, D. Yuan, and M. Stumm. lprof: A
Non-intrusive Request Flow Profiler for Distributed Systems. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI ’14). (§4.2).

https://www.jaegertracing.io/
https://www.facebook.com/note.php?note_id=32008268919
http://opentracing.io/
http://zipkin.io/

	Abstract
	1 Introduction
	2 Motivation
	2.1 Distributed Tracing Background
	2.2 Tracing Pipeline and Overheads
	2.3 Reducing Overheads by Sampling

	3 Limitations of Existing Approaches
	3.1 Feature Engineering
	3.2 Operational Requirements
	3.3 Goals

	4 Challenges
	4.1 A Primer on Traces
	4.2 Heterogeneous Event Annotations
	4.3 Incorporating Structure
	4.4 Approximate Matching
	4.5 Cross-Component Tracing

	5 Design
	5.1 Dimensionality Reduction
	5.2 Sampling Using Prediction Error
	5.3 Calculating Sampling Probability
	5.4 Sifter Workflow
	5.5 Scalability

	6 Implementation
	7 Evaluation
	7.1 Datasets
	7.2 Anomalies and Outliers
	7.3 Representative Sampling
	7.4 Change over Time
	7.5 Importance of Structure
	7.6 Overheads

	8 Discussion
	9 Related Work
	10 Conclusion
	References

