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Abstract
End-to-end tracing has emerged recently as a valuable tool to im-

prove the dependability of distributed systems, by performing dy-

namic verification and diagnosing correctness and performance

problems. Contrary to logging, end-to-end traces enable coherent

sampling of the entire execution of specific requests, and this is

exploited by many deployments to reduce the overhead and stor-

age requirements of tracing. This sampling, however, is usually

done uniformly at random, which dedicates a large fraction of the

sampling budget to common, ‘normal’ executions, while missing

infrequent, but sometimes important, erroneous or anomalous exe-

cutions. In this paper we define the representative trace sampling

problem, and present a new approach, based on clustering of execu-

tion graphs, that is able to bias the sampling of requests to maximize

the diversity of execution traces stored towards infrequent patterns.

In a preliminary, but encouraging work, we show how our approach

chooses to persist representative and diverse executions, even when

anomalous ones are very infrequent.
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•Computer systems organization→Cloud computing; • Soft-
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Keywords
distributed tracing, weighted sampling

ACM Reference Format:
Pedro Las-Casas, Jonathan Mace, Dorgival Guedes, and Rodrigo Fonseca.

2018. Weighted Sampling of Execution Traces: Capturing More Needles

and Less Hay. In ACM Symposium on Cloud Computing (SoCC ’18), October
11–13, 2018, Carlsbad, CA, USA. ACM, New York, NY, USA, 7 pages. https:

//doi.org/10.1145/3267809.3267841

1 Introduction
End-to-end tracing has emerged in the past decade as a valuable tool

to diagnose correctness and performance problems in distributed

systems [8, 18, 20, 24, 25]; model workloads, resource usage, and
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Figure 1: Distribution of HTTP status codes of a microser-
vices trace froma large ride sharing provider. X axis is scaled
logarithmically.

timings [2, 4, 14, 24, 25]; and to detect anomalous requests at run-

time [2, 5, 17, 20]. It has also been gaining widespread use in in-

dustry, with ongoing standardization efforts [16, 27] and use in

many companies and frameworks [9, 24, 28]. In the increasingly

distributed environments of today, the coherent view of executions

provided by end-to-end tracing, spanning the boundaries of compo-

nents, layers, machines, and even administrative domains, enables

developers and operators to reason about, and understand, how

their systems run, and why they fail.

One important aspect of end-to-end tracing is that it allows for

coherent sampling of execution events, i.e., the capture, across all
components, of all events related to a particular execution or re-

quest, which can’t be done with traditional, component-centric

logging [15]. Given the scale of instrumented distributed systems,

this becomes especially valuable. For example, both Google [24],

and, more recently, Facebook [10] mention request-based sampling

as a fundamental aspect of their tracing systems. The W3C’s recent

specification for a trace context HTTP header [27], which follows

the Dapper span model, has ‘sampled’ as one of three top-level com-

ponents. These systems vary in the complexity of their sampling

policies, including a specified fraction of requests to be sampled

(often 10
−5

in Dapper [24], in 2010), or a rate limit on generated

samples. After some filtering and rate limiting, however, all current

systems resort to uniform sampling to choose which executions to

keep.

The problem with uniform sampling is that, given a fixed budget

for storing request traces, most of the budget will be dedicated to

a few classes of ‘normal’ traces, and almost no resources will be

dedicated to recording infrequent, anomalous requests. In particular,

if a problematic type of execution only happens with very low

frequency, with uniform sampling the global sampling frequency

has to be increased to capture enough of these executions. As a

simple example, Figure 1 plots the distribution of HTTP status

codes in events in a trace of a large ride sharing provider using

microservices (note the logarithmic scale). More than 85% of the

events have status 200 OK, and the four most popular statuses

https://doi.org/10.1145/3267809.3267841
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account for over 99.2% of the events. There are however 17 other

status codes that together account for only 0.7% of all events!

In this paper, we introduce the representative trace sampling

problem, and provide initial solutions based on clustering that work

both online and offline. In short, our goal is to make the probability

of persisting an execution trace higher the more unique that trace

is. Differently from classic statistical techniques of stratified sam-

pling [26] or importance sampling [23], in our scenario we cannot

assume that we know the types of traces that we will collect a

priori, and much less their frequency distribution. While we do not

claim to completely solve the problem, we demonstrate promising

early results in controlled scenarios, and in an initial analysis of

production traces.

2 Background
We assume that we have a distributed system (e.g. a cluster running
Spark over HDFS, or a set of loosely coupled microservices) and that

the system is instrumented with end-to-end tracing [8, 16, 19, 24].

The instrumentation produces traces for executions of the system.

A common format for these traces is a tree of spans, as defined
by Dapper [24], and used by most open source tracing frameworks

of today. A span is a portion of an execution of a system, usually

in a single component, with a defined start and end. Spans can

initiate other spans (e.g., the server side of an RPC call), and a child

span keeps a reference to the parent span. Spans can have internal

annotations, and, in some frameworks, can also link back to parent

nodes when done. X-Trace uses a more general model, consisting

of a directed acyclic graph of events, where edges represent causal-

ity [8]. In this work, we consider a trace to be a DAG of events, and

can easily convert a tree of spans with annotations to this format.

Usually not all executions of the system are logged, and traces

can be sampled. Sampling techniques include head-based coher-
ent sampling and tail-based sampling. In head-based sampling, the

sampling decision is made at the initial event and metadata is prop-

agated through the execution, indicating if the trace points should

generate trace events. As mentioned in §1, even though there are

some variations, head-based sampling chooses which traces to gen-

erate and persist uniformly at random.

Alternatively, in tail-based methods, the sampling decision is

made at the end of an execution. While more expensive a priori –

as more trace data is generated and kept in memory for a period of

time – it is possible to use more intelligent sampling and to persist

only traces that are “interesting”. Even in cases where all executions

are traced (e.g., [13]), selecting interesting or representative traces

is important, to reduce ongoing storage costs, or to select what

traces to show to operators or developers with a finite cognitive

budget.

3 Problem Definition
Given the limitations of uniform sampling, here we define more

precisely the problem we are trying to solve:

Representative trace sampling problem: Given a set of exe-
cution traces and a sampling budget s , select a subset of the traces
that is maximally diverse (or minimally redundant).

Let us first look at an idealized case in whichN total traces can be

classified into a well-defined set of K clusters, with |Ci |, 1 ≤ i ≤ K ,
as the number of traces in each cluster. The sampling budget is

Offline Sampling Online
Sliding Tree Algorithm

Incremental
Hierarchical Clustering

(PERCH [11])

End-to-end Traces

Pairwise distance metric

Figure 2: Overview of our sampling approach.

sN = S traces, i.e. s is the fraction of the N traces we can store. We

also assume that s is enough to capture at least one of each type

of trace, i.e., sN ≥ K . Intuitively, we would like to have an equal

representation of each cluster in our sample, except when there are

not enough traces of a given cluster. A max-min fairness allocation

of sampled traces per cluster provides precisely this [3]. With this

allocation, for each cluster, one will have Si = min (|Ci |,σ ), where
σ ≥ S/K is such that

∑
Si = S . If |Ci | ≥ S/K ∀i , then σ = S/K ,

i.e., when there are enough traces in each cluster, all clusters get

exactly the same “fair” share of S. It turns out that the max-min fair

allocation is also the allocation with maximum entropy, as shown

by Coluccia et al. [6], and this is in line with the problem definition.

Unfortunately, in a realistic setting the context is not so clear,

because we cannot assume that this clustering exists: executions

differ for many reasons such as timing, and execution path, and

systems have multiple components that are loosely coupled, and

which change independently. Even if it does, we do not know what

the clustering is, or howmany clusters there are, nor the probability

distribution over the clusters.

We assume in this work, instead, that we can compute a distance

metric among any two traces, and use this to approximate a sam-

pling strategy that maximizes the diversity of the resulting sample.

The intuition is that a trace that is very similar to many other traces

adds little information, and would decrease the entropy of the sam-

ple. Traces that are more unique, on the other hand, would increase

the resulting entropy.

Further challenges in solving this problem in a practical setting

are that this has to be done in an online fashion, as new traces arrive,

at scale, and in comparison to the traces that we have already stored

(as opposed to all other traces seen).

4 An approximate solution
In this section we describe our approach, using hierarchical cluster-

ing, to derive a sampling strategy that approximates a solution to

the representative trace sampling problem above. Figure 2 outlines

our approach. We will first describe the clustering and the sampling

algorithms, and defer the description of how we process the traces,

and the definition of a distance metric between two traces to Sec-

tion 4.4. For now, it is sufficient to assume we have such a distance

metric.

4.1 Hierarchical Clustering
The first step in our sampling strategy is to organize the traces in a

hierarchical clustering binary tree, also called a dendrogram. While

there are several approaches to hierarchical clustering, we adopt



Weighted Sampling of Execution Traces:
Capturing More Needles and Less Hay SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

the PERCH algorithm (Purity Enhancing Rotations for Cluster Hier-

archies) [11]. Perch is a recently proposed non-greedy, incremental

algorithm for hierarchical clustering that scales to both massive

N points and K clusters. This algorithm constructs a tree over

data points that are incrementally inserted to the leaves, using ro-

tation operations that maintains its dendrogram purity. Assuming

the existence of an underlying clustering (separable data), purity

roughly measures how close a dendrogram tree is to this ground

truth clustering, by comparing, for each pair of nodes in the under-

lying cluster, how close they are in the tree. We refer to the original

paper [11] for the precise definition. When purity decreases, or

when the tree becomes unbalanced, the algorithm will perform

recursive rotations to restore these properties. The tree structure

enables an efficient search that scales over large datasets and is

often logarithmic.

In PERCH, each new trace is inserted next to its nearest neighbor,

found using A* search. In order to reduce the computational cost of

the algorithm, the authors use approximations based on bounding

boxes. Each internal node of the tree maintains a bounding box

that has all its leaves. The heuristic used in the A* search algorithm

is the minimum distance to each node based on the bounding box.

Thus, instead of comparing to all leaves of an internal node, they

simply compare the new point to the bounding box, reducing the

computational cost. In order to reduce even more the cost of the

nearest neighbor search, it is possible to use the search algorithm

with predefined beam width, that is, the algorithm only allows a

limited number of nodes to be in the frontier at any time. That

solution will not guarantee that the best solution will be found, but

it reduces the cost of this operation.

Because of its node rotations, PERCH trees tend to be balanced,

and this is helpful in our sampling strategy.

4.2 Offline Sampling
Given the binary tree generated by the hierarchical clustering, our

offline sampling strategy is very simple, and given in Algorithm 1:

to produce a sample, start at the root of the tree and for each branch

choose one side with 50% chance. Repeat this without replacement

until the desired number of samples is reached. All traces are in

the leaves of the tree. For each individual trace, at depth d , the

probability of being sampled is 2
−d

.

Algorithm 1 Dendrogram Sampling algorithm

Input: tree and n, number of traces to be sampled.

Output: strace , set of sampled traces.

1: strace ← set()
2: ctrace ← 0

3: while ctrace < n do
4: node ← tree .root()
5: while node is not lea f do
6: node ← choose(node .children) ▷ Select a child

randomly.

7: if node not in strace then
8: strace .add(node)
9: ctrace ← ctrace + 1

10: return strace

Under this strategy, in an ideal case with K clusters, where κ
is an integer and K = 2

κ
, and in which the first κ levels of the

tree are balanced, each cluster will have the same probability 2
−κ

of having elements sampled, independent of the number of nodes

in each cluster. If a cluster then has Ci = 2
γ
traces, and again

the subtree is balanced, each node will be at depth κ + γ , and will

have a probability 2
−κ × 2−γ of being sampled, which equals 2

−κ

if multiplied by Ci = 2
γ
.

In practice, neither the number of clusters nor the number of

nodes per cluster will be powers of 2, and the tree will not be

perfectly balanced. This is a tradeoff in a binary tree that will

make the sampling deviate from the ideal case. However, we found

that this strategy, due to the properties of the clustering algorithm,

seems to work well in practice. PERCH has two desirable properties:

dendrogram purity, which strives to place similar nodes close in

the tree, and the balancing, which tends to make subtrees balanced,

provided this does not violate purity as well. Similar and frequent

executionswill likely be placed in the same branch, making it deeper

than the branches containing infrequent ones. Rare traces, different

from other traces, will tend to be in separate branches, with less

nodes and, thus, more shallow. These will tend to be sampled with

higher probability.

4.3 Online Sampling: Sliding Tree
While we use the offline algorithm to evaluate the quality of the

clustering, it is not very practical to have all traces and then sample

them. In this section, we describe an online sampling approach,

which we call the Sliding Tree algorithm. The name comes from an

analogy with a sliding window, as we use the tree to store a fixed

number of traces.

With each new trace, the algorithm (listed in Algorithm 2) first

checks to see if the tree has reached its maximum size. If so, it deletes

an element that is among the ones with the lowest probability of

being sampled. To do this, the algorithm starts at the root and

follows the branchwith the largest number of leaves, until it reaches

a leaf. Ties are broken randomly. After this element is removed, the

algorithm inserts the new element in its regular place, i.e., adjacent
to its closest node already in the tree.

Algorithm 2 Sliding Tree Algorithm

Input: tree,n, trace
Output: tree

▷ Every node in the tree keeps information about its leaves.

1: if |tree | == n then
2: delete-unlikely-node(tree)

3: Insert new trace (tree, trace) ▷ Algorithm from [11].

Algorithm 3 Delete Unlikely Node

1: procedure delete-unlikely-node(tree)
2: node ← tree .root()
3: while node is not lea f do
4: node ←max(child .leaves for child in node .children)
5: delete node
6: update leaves property for all ancestors

The use of this strategy makes it difficult to remove rare traces

from the tree since they are likely to have high sampling probability.
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In contrast, frequent executions do not flood the tree, since when a

new trace of this type is to be inserted, it simply replaces another

one of this same type. This way, we can balance the tree with the

different trace types, as will be shown in Section 5. This algorithm

also decouples the insertion cost from the volume of traces, as the

cost of insertion depends only on the (fixed) size of the tree, and

not on the total number of traces. Most of the cost of storing traces

is also done outside of the critical path of the traced application,

causing only a small overhead to a production system.

4.4 Distance between traces

Our approach is extensible to different types of traces, provided

we can compute a meaningful distance between two traces. In

this paper, we use X-Trace event-based traces and OpenTracing

traces that we convert to the same event format. X-Trace traces are

represented as event DAG’s. Given a graph, we summarize it as an

array and use the Euclidean distance as a metric to compare traces.

We propose three different approaches to represent the execution

graphs as arrays, but only present results in this paper for the

simplest, node-based one below.

A graphG = (V ,E, ℓ) consists of a set of verticesV = v0,v1, ...,vn ,
a set of directed edges E ⊂ V ×V , and a labeling function ℓ : V → Σ
that assigns labels from an alphabet Σ to vertices. When G repre-

sents an execution graph, V is constructed from the events of the

execution, E from the causal edges, and ℓ is constructed from the

user-specified labels that the execution graph records for each event.

That is, for any nodes v0 ∈ G0 and v1 ∈ G1, ℓ(v0) = ℓ(v1) implies

that v0 and v1 are different occurrences of the same event. Com-

monly this means that the events were generated by the same line

of code, though specifying event labels is a design decision at the

time of instrumentation.

From these graphs we generate a node-based array, where each

distinct node of the graph is represented as an entry in the array,

and its value indicates the number of times this event occurred in

the trace. We use the Euclidean distance as the metric between two

vectors. We also experimented with other vector representations,

namely using edge names (as the concatenation of the names of the

two adjacent nodes), and a generalization based on the Weisfeiler-

Lehman isomorphism test [21], but we leave further investigation

of these other metrics as future work.

5 Evaluation

We evaluate our solution to the representative sampling problem

in three steps and two datasets. First, we evaluate the clustering

algorithm (and our distance metric among traces) using the offline

algorithm on a set of controlled, small scale experiments in which

we artificially create diverse executions of known types and fre-

quencies. Second, we evaluate the online tree sliding algorithm on

the same datasets. Lastly, we present an initial evaluation of the

offline algorithm on a set of real production traces from a large ride

sharing provider. Note that in the controlled experiments, while we

created a known number of classes of executions (e.g., executions
with a failure), we only use this knowledge for the evaluation, the

algorithm does not use any a priori information about the nature

of the executions.

5.1 Controlled Experiments
We instrumented Spark, YARN and HDFS with the X-Trace frame-

work and deployed it on a small, 11-node cluster. We use X-Trace

based on automatic instrumentation of the systems, that is, the

events to be recorded in the traces are created based on log4j/commons

logging calls. While this is a low effort way of instrumenting these

systems, the generated traces are large, and filled with events that

have little discriminatory power for the graphs. Thus, we summa-

rize the graphs aiming to remove those events.

We do this by eliminating nodes in the graph that are abstracted

by redundant edges. An edge in G is said to be redundant if it can

be removed without changing the reachability of the graph. Thus,

an edge (i, j) is redundant if there is a path from event i to event

j without the need to use edge (i, j). We can remove the nodes in

the longer path. To find redundant edges, we identify the transitive

reduction of the graph [7]. The original graphs have an average of

16,502 nodes and 32,967 edges, while the summarized ones average

7,536 nodes and 8,753 edges.

Using this instrumentation, we ran two different experiments in

order to understand and evaluate how our sampling behaves.

Memory FaultWe simulated a system fault during the execu-

tion by limiting the total memory for one of the VM’s in the cluster.

While a normal VM has 8 GB memory, we limited one with only

512 MB. We then ran a Spark WordCount job with a 30 GB input

file. During the execution, the low memory VM would fail and all

its task would have to be resubmitted to the other nodes.

VM Fail In these experiments, we simulate the failure of one of

the VMs during Spark job execution. We randomly selected one of

the machines and stopped it. This way, all tasks being performed

on this machine had to be reallocated to another VM.

5.2 Clustering Evaluation

Normal executions Failed
executions

Figure 3: Hierarchical tree with 90 normal traces and 10
failed executions.

To evaluate the quality of the sampling, we analyzed the two ex-

periments described above, varying the distribution of the different

execution trace classes. For comparison purposes, we also present

the results obtained by sampling uniformly at random.

In the memory failure case, we started the experiment with 99

normal execution traces and only one failed execution (1%). Then

we increase the proportion until the failed executions reach 20%

of the total. Figure 3 shows the tree obtained when applying the

hierarchical clustering to a scenario with 10% traces with failures.

In this case, the clustering is perfect, with all the executions with
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failure in the same subtree, split from the others at the first level.

In this particular tree, we sample from each type of execution with

the same probability, until we run out of executions with failure.

Figure 4 shows the result obtained when considering a 15% sam-

pling ratio (we select 15 out of 100 executions), for both our sam-

pling (weighted), and uniform sampling (‘random’). For each sce-

nario, we performed 100 different experiments, randomly varying

the traces used, and the order they are inserted in the tree. As

we vary the fraction of executions with a failed VM, the Y-axis

shows the fraction of the sampled traces that contained an execu-

tion with a failure. According to the max-min allocation (cf. §2),

the expected fraction of traces with a failure for the sampled traces

is min( |Ci |S , 1/K), indicated in the plot as the ‘expected’ line.

It is worth noticing that, although in production distributed sys-

tems the sampling percentage is much lower (Dapper uses less than

1%, for example), we used 15% due to the small number of execu-

tions we have. As can be seen, random sampling is proportional

to the distribution of traces, that is, failed executions are rarely

selected by the sampling. In contrast, our sampling sampled both

execution classes with equal probability.
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Figure 4: Percentage of failed traces (low memory) in the se-
lected sample.

For the VM Fail experiment, we also varied the distribution of

normal and failed executions. However, in this case, the failed class

has 4 subclasses, one for each different VM stopped during the

execution. Thus, we would expect normal traces representing 20%

of the sampled traces and the failed ones, 80%. As can be seen in

Figure 5, the failed traces achieve around 85% of the sampled traces

when they represent 20% of all performed executions.

5.3 Sliding Tree Evaluation
To evaluate the online sliding tree algorithm, we defined a sliding

tree containing 50 leaves (traces). For the Memory Fault case, we

inserted 100 normal traces and 30 faulty ones. We performed 100

different experiments varying the order of insertion, and in each

of them, the order of insertion of traces was randomly defined,

and plotted the average number of traces for each type over time.

Figure 6 shows that, until reaching 50 traces inserted, the tree con-

tinues to grow, being composed, mostly, by normal traces. However,

from this moment, for each new trace, a normal execution is re-

moved from the tree, since it is more frequent, until it converges
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Figure 5: Percentage of failed traces (VM Fail) in the selected
sample.

and the number of normal executions and failures present the same

proportion.
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Figure 6: Online evaluation for the Memory Fault experi-
ment.

5.4 Production Traces
Our experiments in a controlled environment showed the poten-

tial of our sampling approach. We also applied our method in real

production data from a large ride sharing provider. Their infras-

tructure is based on microservices, using an OpenTracing-based

tracing environment. For this preliminary work, we tested our rep-

resentative sampling approach using 1,000 different traces. Since

we do not have the ground truth for these traces, we measure the

quality of our sampling in a different way, by using the sampled

traces to reconstruct the original trace (as in a lossy compression

scheme). More specifically, we can use a subset of the original traces

to represent the whole set by replacing each missing original trace

with a reference to the closest trace in the sample. Then, to measure

the quality of the approximation, for each trace in the original set,

we determine the distance (using our trace distance metric) to the

closest trace in the sampled set. We report the sum of this distance

for all traces in the original set. A better sample will have a smaller
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overall distance. Figure 7 shows the results for our approach and for

random sampling, averaged over 10 runs for each sampling ratio.
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Figure 7: Distance between a reconstruction of all traces
from a sample and the original set of traces.

The distance between the selected samples using our approach is

significantly lower than the samples selected through the random

sampling, meaning that the chosen set is a better approximation

of the original set of traces, i.e., they are more representative of

the original set. We plan to further investigate the quality of our

sampling with other methods as future work.

6 Related Work
Causal end-to-end tracing has emerged as a valuable tool for im-

proving the dependability of distributed systems by recording, diag-

nosing and analyzing their execution across components, recording

their causality according to Lamport’s happens before relation [12].

A number of such frameworks exist both in academia [2, 4, 8, 18, 25]

and in industry [1, 13, 16, 24, 28], and have been used for a variety

of purposes, including diagnosing anomalous requests [2, 5, 17, 20];

diagnosing steady-state problems problems that manifest across

many requests [8, 18, 20, 24, 25]; identifying slow components and

functions [4, 14, 24]; and modelling workloads and resource us-

age [2, 14, 25].

Spectroscope [20] diagnoses performance changes by comparing

sets of before- and after- traces, based on the request structures

and/or timings. Their request sampling is made randomly when the

request enters the system and, by default, captures 10% of all traces.

Dapper uses a random sampling with less than 0.1% rate. Every day,

their production clusters generate more than 1 TB of sampled trace

data. Both Spectroscope and Dapper suggest storing traces for two

weeks for post-hoc analyses before discarding them [19]. Since just

one out of thousands of requests provides sufficient information

for many common uses of the tracing data [24], we could use our

representative sampling approach to select the most interesting

traces and instead of discarding them, storing a small fraction in a

long-term storage.

7 Discussion and Future Work
End-to-end tracing frameworks applied to modern distributed sys-

tem generates high volumes of very rich data. The representative

trace sampling problem we introduce in this paper can improve the

usefulness of this data by reducing the amount of data while still

preserving interesting and diverse traces, even if very infrequent.

We present an initial solution that can work both offline and online

in an efficient way. While our experiments are preliminary – per-

formed at small scale in controlled experiment, and with a small

amount of traces from a large company – the results encourage

further investigation.

We aim to test our scheme with more real-world traces and to

explore the costs and performance overhead of our approach. Since

our solution is tail-based, the tracing metadata has to be propagated

across all invocations. Thus, we intend to investigate the use of the

prefix of the traces as input for the sampling approach.

We also aim to further explore different distance metrics, such as

ones that take into account latency and importance of nodes, and the

richer structure of the graphs, and how they impact zero-day bugs.

Interesting options include considering the edges as components,

or using the Weisfeiler-Lehman framework for efficient subgraph

isomorphism [22].

In a broader context, our approach can be applied to online

clustering scenarios where the goal is to keep as diverse a set of

samples as possible, given a fixed budget.
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