
See it to Believe it? The Role of Visualisation in
Systems Research

Thomas Davidson
Jonathan Mace

Max Planck Institute for Software Systems (MPI-SWS)
Saarland Informatics Campus, Germany

ABSTRACT
A common fixture of computer systems research are Visuali-
sation-in-the-Loop Tools: tools that produce complex output
data and require a human user to interpret the data visually.
However, systems research frequently omits or sidelines de-
tails of the visualisation components that were necessary
for the tool. In a survey of 1,274 recent systems papers we
find that at least 7.7% (98) of them present a visualisation-in-
the-loop tool. We also find that the majority of these publi-
cations pay no attention and give little explanation to imple-
mented visualisations. We propose that the impact and reach
of visualisation-in-the-loop systems research can be greatly
enhanced when exposition is given to visualisation, and pro-
pose a concrete checklist of steps for authors to realise this
opportunity.

CCS CONCEPTS
• General and reference → Surveys and overviews; •
Human-centered computing → Interactive systems
and tools.

KEYWORDS
survey, human-in-the-loop, visualisation-in-the-loop, visual-
isation, computer systems

ACM Reference Format:
Thomas Davidson and Jonathan Mace. 2022. See it to Believe it?
The Role of Visualisation in Systems Research. In SoCC ’22: ACM
Symposium on Cloud Computing (SoCC ’22), November 7–11, 2022,
San Francisco, CA, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3542929.3563488

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SoCC ’22, November 7–11, 2022, San Francisco, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9414-7/22/11.
https://doi.org/10.1145/3542929.3563488

1 INTRODUCTION
Humans are an integral part of building, testing, deploying,
operating, and troubleshooting computer systems. Modern
systems are large, complex, and always-on, giving rise to
disciplines such as site reliability engineering, and blurring
the boundaries between development and operations, with
devops roles and on-call duties commonplace in industry.

Visualisation-in-the-Loop Tools (VL-Tools) are thus impor-
tant in practice and commonplace in the systems research
literature as they inherently rely on human users to interact
with and interpret output data from systems. VL-Tools are
software tools to aid the developers and operators of com-
puter systems. VL-Tools typically analyse a system’s code,
configuration, deployment, or runtime execution, to provide
human users insight into the system’s behavior and prop-
erties. They achieve this by producing complex data which
must be interpreted by a human and is often presented in
a custom visualisation component of the tool, to aid the
analysis. Although other interaction modalities outside of
visualisation do exist, visualisation is commonplace and thus
we focus on VL-Tools.

Consider distributed tracing as a running example; we will
revisit this example throughout the paper, but emphasise
that the key aspects it highlights are prevalent in all forms of
VL-Tools. A key use case of distributed tracing is debugging
anomalous requests in distributed systems.While distributed
tracing research primarily focuses on how to capture trace
data across machines at runtime, taking the technical pieces
in isolation elides a critical step: the recorded trace data is
complex (an annotated directed acyclic graph); the data is
presented to users through a graph or timeline visualisa-
tion; and the user is ultimately responsible for exploring and
interpreting the visualisation to intuit any anomaly’s root
cause [42].

User interfaces and visualisations thus influence how effec-
tive a VL-Tool is. Human users are needed when tasks cannot
be fully automated, andmany tasks are time-critical and com-
plex. Visualisation is enormously useful in this setting be-
cause interpreting raw data directly can be slow, unintuitive,
and error prone. In distributed tracing, visualisations have
repeatedly surfaced in the research literature for this reason,

https://doi.org/10.1145/3542929.3563488
https://doi.org/10.1145/3542929.3563488
https://doi.org/10.1145/3542929.3563488


SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Davidson and Mace

(a) Magpie [6] developed a timeline visualisation that dis-
plays resource events grouped by thread and highlights pro-
cessing time of a request in each thread.

(b) Dapper [48] inspired by timelines of Magpie [6] intro-
duced spans, an abstraction for RPC calls, and visualises
them in a hierarchical timeline.

Client
Javascript

Server
Resource

js: Rxqi7lfkvHd

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
dd 5.5server_only 4.5tti 3.7

Main Thread_6430_P[0]

DataUnitCollection::addElementsAtTail [DataUnitCollection.add…

RecyclerView::onLayout [RV OnLayout]

DataLoaderUIHandler::doSendStoriesToUI [DataLoader] …

ObservableAdaptersCollection$ListItemCollectionObserver::onI…

RV OnLayout
NewsFeedRecyclerView::onLayout [NewsFeedRecyclerView.onLayout]

traversal to Missing

createLayout:FeedTreePropsWra…

FeedUnitAdapter::lazyGroupPrepare […

RV OnBindView

SinglePartHolder::prepare [SinglePartHolder.prepare]
RecyclerView$Adapter::bindViewHolder [RV OnBindView] RecyclerView$Adapter::bind…

layout

RV CreateView

SinglePartHolder::prepare […

Choreographer#doFrame to Missing

RV OnBindView
RecyclerView$Adapter::createViewHo

createLayout:FeedStoryMessage…

(c) Canopy [24] extends Dapper’s swimlanes with flame
graphs [18] and context aggregated across many requests.

(d) The open-source Jaeger [22] is inspired by Dapper (cf. 1b)
and incorporates aspects of Canopy [24].

Figure 1: The canonical “swimlane” visualisation found
in distributed tracing tools has evolved across multiple
works.

from the event timelines in Magpie [6], to span waterfalls in
Dapper [48], to aggregations in Canopy [24] (cf. Figure 1).

Yet the distributed tracing example is atypical. Many sys-
tems research papers introduce tools with complex outputs,
but leave the visualisation components and requirements
unexplained, unpresented, or only implied. In §3 we survey

1,274 research papers published over the last 5 years at top
systems conferences. We found that almost 8% of all papers
described tools that relied on human user interpretation of
complex outputs, well-suited to visualisation. However, less
than 30% of these papers show an example, or explain how
or if they visualised the output. Furthermore, only 17% of
these papers motivate the design decisions for presenting
the outputs. These results are not counterbalanced by sys-
tems publications in the visualisation research community
either: over the 5 years covered by our survey out of roughly
950 papers published at IEEE VIS (the premier visualisation
conference) only 8 held relevance to systems visualisation
problems.
This demonstrates a missed opportunity for systems re-

search: practitioners require a solution for the UI and visu-
alisation components, without which interpreting complex
data outputs is cumbersome and error prone. Yet without ex-
plicit consideration in the research literature, the challenge
of designing and implementing visualisation components is
pushed to practitioners, raising the barrier for adoption and
hindering potential impact.

Within our example of distributed tracing, prior research
on trace comparison [43, 44] has influenced later features
in open-source tools [46]; however, long-standing problems
such as accessible visualisation for non-experts [47] have
received little attention and remain a major pain point for
practitioners [30, 47].

The essence of the problem is missing exposition. Systems
research often omits details of visualisation, even when these
components exist. By doing so, it forgoes an opportunity to
disseminate new problems and domain insights to a wider
audience of visualisation researchers and practitioners. A
proof of concept, no matter how unrefined, can still have
surprising impact: in our running example, all distributed
tracing tools we know of base their visualisations on the
span swimlanes first presented by Dapper [48].
In this paper we show that systems research has histori-

cally under-presented the user-facing visualisations. The de-
tails that readers require are often simple, such as prototype
screenshots; yet they make the visualisation requirements
concrete, offer a problem definition, and highlight subtleties
and unexpected challenges that can arise.
We outline our solution in §4: a checklist of 5 questions

adapted from the “what, why, how” principle for designing
and presenting visualisations [34]. In following the checklist,
systems researchers methodically and concisely produce a
description of the user-facing visualisations, the problem defi-
nition for these components, challenges already encountered,
and insights into possible future visualisation approaches.
We hope that by shining the spotlight on visualisation we
can increase the impact of systems research by extending its



See it to Believe it? The Role of Visualisation in Systems Research SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

reach to a broader audience of practitioners, visualisation
researchers, and systems researchers.

2 MOTIVATION
2.1 VL-Tools: Visualisation-in-the-Loop

Tools
VL-Tools are software tools that aid system developers and
operators with some high-level task, and present output that
those human users must interpret and reason about visually.
In general, VL-Tools commonly analyse a system’s code,
configuration, deployment, or runtime execution; and their
goal is often to provide users with actionable insight into the
system’s behavior and properties. VL-Tools produce output
data that is large, structured, and multi-dimensional, and
users benefit from having data visualisations rather than
consuming the data in its raw from. Users may also need to
correlate the output data with other sources (e.g. a source
code base), further increasing the task complexity.

Concretely, we use the term VL-Tools to refer to tools that:
• produce complex, potentially multi-faceted data;
• produce data that is well-suited to visualisation;
• require humans to visually interpret the output data
and make decisions based on it;

• cannot be automated fully, or automation cannot be
fully trusted;

• and benefit when human users perform their task
faster and more effectively.

Our interest in VL-Tools stems from a simple premise: if
a user has to interpret complex data output by a tool and
make decisions based on this interpretation, then how users
consume the output – through UIs and visualisation – is
of significant importance. Consider the following example
areas and tools:
Distributed tracing tools such as Dapper [48]. These tools
aid operators in understanding and debugging problems in
distributed systems. They produce traces of requests, com-
prising numerous logging statements and latency measure-
ments, ordered into a directed acyclic graph. Human opera-
tors manually inspect individual traces, typically aided by a
swimlane visualisation (cf. Figure 1), to gain detailed insight
into a request’s execution.
Network Profiling Tools such as tpprof[53] facilitate users
in designing, understanding and optimising networks. These
tools process and rank complex usage data in order to present
traffic as composite graphs and heatmaps. This output is
leveraged by operators in the implementation and mainte-
nance of networks.
System Modeling Tools generate models of system be-
havior from profiling data (e.g. resource consumption mod-
els [52]), often incorporating static analysis of source code.

Human users can inspect these models to aid system under-
standing and problem diagnosis (e.g. diagnosing scheduling
problems).
Network Configuration Tools such as SelfStarter[23] col-
late data from multiple nodes and sources of varying for-
mats(such as access control lists) and allow system operators
to detect outliers. SelfStarter presents this information using
a template structure which highlights anomalous discrepan-
cies and allows the user to mitigate misconfigurations caused
by a range of different factors.

Other topics where VL-Tools are prevalent include debug-
ging, modelling, and performance analysis, at the application,
operating system, and network level. An example of a tool
that does not meet the criteria for a VL-Tool would be a
command-line tool that produces basic or trivial output and
doesn’t require humans to perform a complex task. Likewise,
many systems research topics may have usability concerns
(e.g. research on high-level programming APIs) but do not
meet the criteria for VL-Tools. Finally, while there exist in-
teraction modalities outside of visualisation, these are not
the focus of this work.

2.2 Opportunities
Users are central to motivating VL-Tools, but thereafter re-
search often focuses on the technical challenges of making
the tool a reality. This is commonplace in systems research,
as we show in §3, but not surprising: if we cannot overcome
the technical challenges then the tool isn’t possible in the
first place. In the use cases introduced in §2.1, the research
primarily focuses on those technical challenges. Distributed
tracing, for example, focuses on how to causally relate infor-
mation across machines, the instrumentation needed at the
system level, and how to collect and reconstruct recorded
information into traces.

The contribution of research that introduces a VL-Tool is
therefore primarily demonstrating that such a tool is techni-
cally possible. Nonetheless, we argue that research should
be careful not to lose sight of the human users of these tools.
Concretely, there are three broader opportunities available
to research that successfully ‘closes the loop’ of the VL-Tool
back to its human users and exposes how the complex out-
put of the data is presented. Namely, doing so increases the
potential impact, by extending the reach of research to practi-
tioners, human computer interaction (HCI) and visualisation
researchers, and ultimately back to systems researchers.
Practitioners. Practitioners are often the intended audi-
ence and motivation for VL-Tools, and thus an important
measure of success is whether research ideas proliferate into



SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Davidson and Mace

practice. For a tool to be feasible, it cannot omit the visual-
isation or user interface that human users are expected to
interact with.

Consider again distributed tracing. Open-source tools Jaeg-
er [22] and Zipkin [55] both leverage designs from Dap-
per [48] (Figure 1), a tool developed by industrial researchers,
where there is clear impetus for practical tools and the au-
thors explicitly present their visualisation approach for dis-
tributed tracing. By contrast, X-Trace [15], an academic dis-
tributed tracing tool, only introduced its visualisation in later
experience reports [14, 41].

Research that ‘closes the loop’ of a VL-Tool back to human
users is more accessible to practitioners and has the potential
for practical impact. The key to seizing this opportunity is
to reduce uncertainty around what is needed to take a tool
from research prototype to usable in practice.

If the research paper does not explicitly discuss the visual-
isation then it introduces doubt about how feasible the tool
might be and whether there exist unmentioned or unsolved
challenges.
On the other hand, research that does discuss visualisa-

tion reduces this uncertainty, even if some challenges are
unsolved. Screenshots or descriptions of prototypes serve
both as evidence and as starting points for practitioners, even
though these may only be byproducts of the research.
For example, Figure 1 illustrates how the the standard

swimlane diagram used by today’s distributed tracing tools
evolved from ideas presented by Magpie [6] and Dapper [48].

Eliminating uncertainty increases the appeal to practition-
ers who may want to implement ideas. This is even the case
for unsolved challenges.
Visualisation Research. VL-Tools are human-in-the-loop
solutions to systems problems which provide visualisation
to their user and are therefore a natural fit for visualisation
research [34]. Visualisation research can address common
challenges shared by different kinds of data and VL-Tools.
An example are dashboards that report metrics to system
operators. Dashboards are commonplace in performance
monitoring tools, and in their general form, decision sup-
port dashboards have received significant attention in the
visualisation literature [45].

In general, VL-Tools wrangle multi-dimensional, multi-
faceted, and structured data – a difficult research challenge
that receives attention across a wide range of application do-
mains [25, 29, 49]. Of particular note are medical science and
bioinformatics, where a focus on user interaction and visual-
isation has spurred development and adoption of common
visualisation approaches [36, 38, 39], and so much research
interest that dedicated visualisation conferences now exist
in this field [19]. Similarly, high-performance computing has

received attention due to the importance of performance
optimisation and relatively homogeneous systems [21].
In contrast to these other application domains, VL-Tools

receive relatively little direct attention in the visualisation
literature. In the past 5 years of IEEE VIS out of roughly 950
papers we found only 1 VL-Tool paper (CloudDet [51], cen-
tered on cloud performance anomalies) and a further 7 papers
with broad similarities (4 software engineering [12, 20, 26, 33]
and 3 high-performance computing [28, 35, 50]). Generally,
we have observed that when VL-Tools are presented in visu-
alisation literature, it is often by the same group responsible
for developing the original VL-Tool. For example, Spectro-
scope [43, 44], Pajé [10, 37] and ShiViz [7, 17] each have
tandem contributions in systems and visualisation.

We believe this observation demonstrates a missed oppor-
tunity for systems research. Interesting visualisation chal-
lenges exist in VL-Tools, but by default, only systems re-
searchers have visibility of those challenges. In the afore-
mentioned examples, researchers were able to pursue visu-
alisation research because they were already familiar with
the VL-Tool and application domain. For researchers outside
of this expert core, a lack of domain expertise and a clear
problem statement are domain and abstraction threats to be
avoided [34]. Thus, when systems researchers choose not to
pursue visualisation research questions, there is little chance
that other researchers will pursue them either. Overall, this
situation leads to point solutions for specific VL-Tools, but lit-
tle technique-driven research that addresses commonalities
across many tools.
To benefit from the attention of visualisation research,

VL-Tools must offer visibility of their challenges. For sys-
tems researchers this entails communicating details about
the human-facing components, and specifically how they
present their complex output to users. Counter-intuitively,
there is substantial value when systems research acknowl-
edges visualisation and interaction challenges that it hasn’t
addressed, because this still ‘closes the loop’ back to hu-
man users and exposes details, difficulties, and nuances. It
highlights an extant need for further research and makes
it possible for readers to extract common challenges that
transcend individual tools. Lastly, it provides a starting point
for HCI and visualisation researchers to approach problems
without requiring a priori application domain knowledge.
Systems Community. The needs of human-users can also
drive systems research into VL-Tools. In §2.1 we provided
several examples of VL-Tool research. These examples have
the potential to stem further research, such as that laid out
in distributed tracing. These sorts of problems are often mo-
tivated by a need from practitioners who have adopted a



See it to Believe it? The Role of Visualisation in Systems Research SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

tool. In general, VL-Tool research has flexibility in choos-
ing the data to capture, and changing use cases can cause
researchers to revisit these tools.
Beyond directly motivating new research directions, re-

search that closes the loop back to users provides a founda-
tion for subsequent work to both inherit and enhance. Fig-
ure 1 provides an example of this, where each work builds
upon ideas presented in the previous. In areas such as met-
ric dashboards, commonplace in industry today, systems
researchers can assume basic functionality that is common-
place and provides a starting point. In many other areas there
is a lack of these initial reference points.

3 SURVEY OF VL-TOOLS
In this section we conduct a survey of 1,274 research papers
published between 2017-2021 at six premier systems con-
ferences – ASPLOS, NSDI, OSDI, SIGCOMM, SoCC, SOSP.
Combined these venues represent systems research broadly
and cover a diverse range of topics.
The survey design is inspired by the “what, why, how?”

principle of visualisation research [34]. The principle helps
designers and researchers effectively present and explain
their work by asking: what is shown to the user; why is it
shown; and how is it shown. The questions are prompts for
describing three important aspects of visualisation research:
data abstractions (what), task abstractions (why), and visual
and interaction idioms (how). We are interested in these
aspects: given a tool, can we ascertain the data abstractions
relevant to the tool (what); the tasks expected of users (why);
and lastly, ideas or justification for presenting data to users
(how). Overall we map these aspects to five survey questions.

The survey was conducted by the lead author, whose pri-
mary expertise is visualisation, and cross-validated by three
systems researchers. In order to mitigate the risks associ-
ated with a single person surveying over 1,000 papers we
performed an extensive cross-validation of the results by
selecting a random subset of 50 papers and providing them
to three other researchers along with a guide on how to
execute the survey. From this cross validation, 100% of the
results matched with the lead author’s. In order to allow for
full scrutiny and further examination of the results we make
the full result set available1. Table 1 summarises the results.

Q1: Does the paper present a VL-Tool?
Yes/No/Unclear

From the survey of 1,274 papers, we found that 7.7% (98)
met the criteria for a VL-Tool: they describe tools with com-
plex output that must be actioned by human users. A further

1https://gitlab.mpi-sws.org/cld/sysviz

12 papers explicitly stated that their output took a non vi-
sual form and these are excluded from the further survey
questions and revisited in §4.2. From our 98 VL-Tool pa-
pers, 43 made explicit reference to utilising visualisation, the
remaining 55 discussed presenting complex output to the
users, potentially in a visual form, but did not explicitly state
its form. These 55 papers are included as they are highly
likely to utilise visualisation. We touch on this lack of clarity
in §3.1.
The remaining 1,164 papers were split into 1,039 (81.5%)

that did not present a VL-Tool at all and so were not relevant
to our survey. The non-relevant papers include tools that in-
tegrated into some external system and effectively outsource
all user interaction, e.g. reporting metrics to Prometheus [5].
The remaining 125 (9.8%) of papers could not be categorised.
The main reason for this would be that the work motivated
a problem for human users, but thereafter did not provide
any elaboration of the user’s role. For the rest of the survey
we do not consider the 125 ‘unclear’ papers.

Ultimately, we completed the full survey on 98 VL-Tool
papers that either explicitly utilised visualisation, or provided
complex output to a user in a potentially visual form.

Q2: Does the paper show a screenshot or mock-up?
Yes/No/Partial

We ask this question preemptively because many papers
use example screenshots as a vehicle to explain visualisation.
Of the 98 VL-Tool papers, 28.6% (28) include a screenshot or
mock-up.

59.2% (58) do not include a screenshot or mock-up. We did
not consider it sufficient to indicate the existence of a visual-
isation (e.g. in an overview diagram) without providing fur-
ther detail. 12.2% (12) do not include a screenshot or mock-up,
but provide some depiction of the visualisation beyond just
its existence. For example, Seer [16] depicts stylised Gantt
charts in its system overview diagram (Figure 2), thereby
indicating a data abstraction used by its visualisation and
is marked as “partial”. Papers that provide an overview di-
agram with no indication of the form of output, such as
TrackIO [13] are marked as “no”.

Q3: Does the paper explain the visualisation? (“What”)
Yes/No

This asks whether papers describe the data abstractions
output by the tool. A paper can satisfy this question regard-
less of including a screenshot; however, most papers make
reference to a screenshot. We accepted any explanation pro-
vided: detailed description in the text body; a brief figure

https://gitlab.mpi-sws.org/cld/sysviz


SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Davidson and Mace

Q1 (n=1,274) Q2 (n=98) Q3 (n=98) Q4 (n=98) Q5 (n=98)
Yes Unclear No Yes Partial No Yes No Yes No Yes No

% 7.7 9.8 81.5 28.6 12.2 59.2 37.8 62.2 17.4 82.6 12.2 87.8
Raw Count 98 125 1,039 28 12 58 37 61 17 81 12 86

Table 1: Full Survey Results

Figure 2: Seer [16] depicts stylised Gantt charts in its
system overview diagram, indicating a data abstraction
used by its visualisation

caption; or annotations directly in the screenshot. Most pa-
pers only provide one-line statements or figure captions.
Several, such as tpprof and SelfStarter [53][23], provide sub-
stantial detail. Of the 98 VL-Tool papers, 37.8% (37) explain
the user-facing output and 62.2% (61) do not provide any
explanation.

Q4: Does the paper motivate the visualisation?
(“Why”)

Yes/No

This question ties the visualisation back to the tasks the user
is expected to perform. We look for an explanation of why
the specific output is the right fit for the task at hand. For
example, Rex [32] is a tool for preventing misconfigurations
when developers update code but don’t update related con-
figuration files. The tool uses association rule mining, but
developers struggled to interpret this output, so instead the
tool presents concrete explanations and examples from prior
code commits. In general we accepted any explanation pro-
vided, including anecdotal, intuitive, or empirical evidence.
Of the 98 VL-Tool papers, 17.4% (17) motivate the visualisa-
tion and the remaining 82.6% (81) provide no justification.

Q5: Does the paper design user-facing components?
(“How”)

Yes/No

This question stretches the expectations of systems research,

yet we found that several papers dedicate significant atten-
tion to explaining how an effective visualisation could be im-
plemented, by proposing and/or implementing visual idioms.
For example, tpprof [53] discusses how visually aligning
network state heat-maps with network state subsequences
enables users to draw detailed conclusions about network
traffic patterns. We accepted any explanation of the visual pa-
rameters used to portray the data. Of the 98 VL-Tool papers,
12.2% (12) provide an explanation and 87.8% (86) provide no
explanation.

3.1 Takeaways

Most VL-Tool research omits visualisation details. De-
spite us identifying 110 papers (98 VL-Tool papers and the 12
non visualisation tool papers) that provided complex output
to users, only 50% of these explicitly state the form of their
output. In both work that does explicitly describe using visu-
alisation, and work that implies it, screenshots, descriptions,
and designs are absent for themajority beyond an initial prob-
lem motivation. Q1 identified a conservative lower bound of
7.7% of papers presenting VL-Tools; a further 9.6% of papers
not included in subsequent survey questions potentially also
include human-facing visualisation components, but this
wasn’t clear from the paper alone.
Most VL-Tool descriptions focus on “what” and not
“why”. Most research papers focus on making a VL-Tool
a reality, under the assumption that outputs can be made
useful for users. Though they may provide screenshots and
descriptions of what is provided as output (Q2, Q3), informa-
tion is often missing about why the data is needed and how
it maps to users’ tasks (Q4).
Work that provides implementation details provides
even more exposition. When VL-Tool research satisfies
the later survey questions and provides motivation descrip-
tion of how the visualisation was implemented, they often
satisfy the earlier questions too and provide significant expo-
sition of their output. Of the 12 papers that satisfied question
5, 9 provide a screenshot, 11 explain their visualisation and
6 motivate their visual representation – significantly higher
than the global average. We invite readers to carry out fur-
ther analysis of our results by downloading the full dataset.2

2https://gitlab.mpi-sws.org/cld/sysviz

https://gitlab.mpi-sws.org/cld/sysviz


See it to Believe it? The Role of Visualisation in Systems Research SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Industry papers are more user-centric. Of the 98 VL-
Tool papers, 52 were published by industrial research groups.
When these papers explicitly discuss having used visualisa-
tion (22 papers), they perform better than their non-industry
counterparts (21 papers): 50% provide screenshots compared
to 33%; 60% explain the visualisation (52% for non industry);
36% motivate their visualisation (19% non industry) and 18%
describe their implementation (14% non industry). We expect
that industrial researchers more directly draw from practical
evidence and needs.
VL-Tools are Datacentre-centric. Several common
themes emerge when we stratify our survey results by key
topics.We observe that VL-Tools often target datacentres and
clouds, they operate at the network and application level, and
common challenges include monitoring, debugging, analy-
sis and configuration. The prevalence of VL-Tools in these
areas is likely due to increased complexity, “always-on” sys-
tems, and a need to touch live systems when investigating
problems.
VL-Tools are on the rise. The number of VL-Tool papers
published across these conferences has steadily increased
since 2017: 15 in 2017; 18 in 2018; 23 in 2019; 29 in 2020 and
25 in 2021. We attribute this growth to a continuing shift in
software engineering practices towards a tighter integration
of development and operations and larger, continuously-
deployed systems.
Multi-modal Data is Commonplace. Combining data
sources is commonplace; e.g. debugging, performance op-
timisation, and configuration research often ties runtime
measurements back to source code and use paths and walks
through source code as data abstractions [31, 54]. Change
over time is commonplace due to code changes, workload
changes, and self-adaptation; differencing and comparison
are common task abstractions. Many VL-Tools today remain
myopic, yet live in a broader ecosystem; combining tools or
relating information between tools remains an open chal-
lenge [3, 24]. We also found that bug-localisation work [40]
whilst repeatedly identifying the importance of an end-users
interaction rarely addressed how this could be achieved.
These are all compelling future directions for VL-Tool
visualisation research.

Summary A common theme to all three opportunities
is exposition. Practitioners, visualisation researchers, and
systems researchers benefit when research closes the loop
between the VL-Tool and its human users. These opportuni-
ties only become available when systems research provides
details of how output from their tools is presented and how
human users are expected to interact with the tool. By ex-
plicitly laying out any challenges presented by this, and

providing solid details, researchers provide a starting point
for future work and adoption in our three highlighted areas.

4 CLOSING THE LOOP
This paper’s goal is to nudge researchers towards more ex-
position of the human-facing data outputs and visualisation
components of their VL-Tools. This is not a panacea to the
problem, but it is a good starting point. In this section, we
propose a concrete checklist for researchers to aid this task.

The philosophy of our checklist is to overshare.We request
only the details, and not qualitative arguments defending
choices.
1. Explain the user’s role. State that a user is required for
any part of the tool, even if: (1) it’s off the critical path; (2)
user interaction can be outsourced to some other system; or
(3) it requires no changes from prior tools. If the work is not
human-in-the-loop, but prior or related work is, state this
distinction. If human users motivate the work (introduction,
motivation), then clarify this role later (design, implementa-
tion).
2. Include a screenshot. State whether a visualisation was
implemented. If so, screenshots contextualise the work for
all audiences and reduce the burden on textual descriptions.
If space is a concern, defer to an appendix or link to examples
in a webpage or repository. If screenshots aren’t possible (e.g.
for privacy concerns) consider a stylised mock-up.
3. Describe the data outputs and visualisation. Not all readers
are domain experts, yet assuming knowledge was a common
pitfall in our survey. Describe the data types the tool visu-
alises and the outside data sources required to use the tool
(e.g. the source code base). Highlight differences between
this work and prior or related work, such as subtle changes
or additions to the visualisation. Avoid only an abstract spec-
ification: if a tool is designed to be flexible (e.g. “Dapper sup-
ports a map of key-value annotations” [48]) then describe the
common uses (“Programmers tend to use application-specific
annotations as a kind of distributed debug log file” ), the scale
of the output (“70% of all Dapper spans and 90% of all Dapper
traces have at least one application-specified annotation” ), and
expected outliers (“In many of the larger systems at Google, it
is not uncommon to find traces with thousands of spans” ).
4. Motivate the visualisation from the user’s perspective. Ex-
plain why the tool’s visual representation was the ‘right’ rep-
resentation for the user. This justification can be anecdotal,
intuition, or empirical evidence. In many cases the represen-
tation may already be justified by prior work, though this
should be revisited for any changes or additions. If possible,
decouple the justification from technical limitations of the
tool.



SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Davidson and Mace

5. Explain how you built it. If a visualisation was imple-
mented, describe any ideas or intuitions that went into it,
such as visual motifs that users found compelling, or estab-
lished visualisation design patterns that could be leveraged.
Conversely, if the visualisation was apparently trivial to im-
plement, say so.

4.1 Above and Beyond
Our checklist is pragmatic and establishes what we believe is
an easy baseline for VL-Tool research to achieve.We have not
argued for visualisation components to judiciously adhere to
visualisation design principles, nor that they be scientifically
evaluated if visualisation is not the scientific focus of the
paper. Exposition alone has substantial value.
Nonetheless, there are further steps that go above and

beyond our proposed checklist. To achieve rigor in the pre-
sentation of visualisation components, the well-established
“what, why, how” principle [34] from the visualisation re-
search literature describes how to explicitly state what data
the visualisation shows, why it shows that data, and how the
data is presented in a visual form provides sufficient expo-
sition for other interested researchers. A step further is to
scientifically evaluate aspects of the visualisation, which can
follow established principles for visualisation and UI evalua-
tion [2, 27]. In this paper we have not proposed a general set
of quantitative metrics for VL-Tools, but we hope that these
emerge in the future as more VL-Tools incorporate scientific
evaluation of visualisation components.
Several exemplar works demonstrate effective presenta-

tion of visualisation components. SelfStarter [23] is a VL-Tool
to detect misconfigured networks; the paper provides clear
explanations and examples of output, motivates the need for
visualisation, and explains the visual techniques employed –
without detracting from the paper’s technical contributions.
SecureCode [9] is a VL-Tool to detect risky infrastructure
scripts; the paper presents a mostly textual visualisation, yet
places the human user front and center, and gives clear expo-
sition of the problem’s impact on intended users. The gold
standard of visualisation presentation is naturally found in
the visualisation research community; exemplar works such
as CloudDet [51] are featured in the applications track of
conferences like IEEE VIS.

4.2 Beyond Visualisation
In this paper we have focused on VL-Tools, defined as tools
that produce complex outputs and have human users who
benefit from data visualisations. However, a broad range of
systems research work involves human users in other con-
texts. A notable example are high-level programming APIs
that aim to simplify programming for users, such as MapRe-
duce [11], Spark [4], and TensorFlow [1]. Additionally, there

exist commercial products that utilise non-visual modali-
ties for interaction, such as smart speakers with no display
which rely solely on audio interaction and output. Human-
in-the-Loop tool research may, in the future, also expand and
begin to utilise non-visual modalities too. Moreover, there
already exists systems research, such as Net2Text [8], which
produces purely textual complex output and relies on hu-
man interaction. We believe that the checklist and general
concepts discussed in this paper can extend to other sys-
tems works that incorporate elements of HCI. Concretely,
this work can form the basis for understanding how systems
research should present the “interface” to human users – the
key concepts, interactions and expectations bridging users
to tools.

5 CONCLUSION
In this paper we described the important role of visualisa-
tion in systems research through Visualisation-in-the-Loop
Tools (VL-Tools). We advocated the benefits of effective doc-
umentation and presentation of visualisation components,
both for the systems community and to a wider audience
(§2). We surveyed 1,274 research papers (§3) published at
systems conferences over the last 5 years and found that a
significant proportion describe VL-Tools that rely on humans
to interpret complex data outputs, with implicit or explicit
visualisation components. We found that less than 40% of
these works included any form of example output, example
visualisation, or explanation thereof. Moreover, we found
that less than 20% of papers surveyed motivated the design or
described the implementation of visualisation components.

To address this, we have advocated that an ideal VL-Tool
publication would provide example screenshots of visualisa-
tions, explain the data outputs and presentation, motivate
the visual representation, and explain how the visualisation
was implemented. We provide a checklist built on our sur-
vey to aid future researchers in presenting their user-facing
tools to facilitate the most benefit and exposition of their
work. Several options exist to enable this exposition without
impinging on the limited page real-estate; for example, in-
clusion in appendices; expanded technical report versions of
the paper; and even dual-publications in systems and visual-
isation venues.

Exposition is a low barrier to entry for systems researchers.
It is only a step towards addressing the problems raised in
this paper, yet it is a valuable step: a lack of exposition only
serves to exacerbate those problems. By including visuali-
sation in the presentation of VL-Tools, papers elevate the
human user and highlight their importance to the work. We
believe that this first step can serve as a stepping stone to
increase the reach of systems research and ultimately help
establish meaningful collaborations between systems and
visualisation researchers and communities.



See it to Believe it? The Role of Visualisation in Systems Research SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

REFERENCES
[1] Martín Abadi. 2016. TensorFlow: learning functions at scale. In Proceed-

ings of the 21st ACM SIGPLAN International Conference on Functional
Programming. 1–1.

[2] Wolfgang Aigner, Stephan Hoffmann, and Alexander Rind. 2013. Eval-
bench: A software library for visualization evaluation. In Computer
Graphics Forum, Vol. 32. Wiley Online Library, 41–50.

[3] Dan Ardelean, Amer Diwan, and Chandra Erdman. 2018. Performance
analysis of cloud applications. In 15th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI} 18). 405–417.

[4] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin,
Ali Ghodsi, et al. 2015. Spark sql: Relational data processing in spark.
In Proceedings of the 2015 ACM SIGMOD international conference on
management of data. 1383–1394.

[5] Prometheus Authors. 2015. Prometheus -Monitoring System and Time-
Series Database. Retrieved January 2021 from https://prometheus.io/.

[6] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier.
2004. Using Magpie for request extraction and workload modelling..
In OSDI, Vol. 4. 18–18.

[7] Ivan Beschastnikh, Perry Liu, Albert Xing, Patty Wang, Yuriy Brun,
and Michael D Ernst. 2020. Visualizing distributed system executions.
ACM Transactions on Software Engineering and Methodology (TOSEM)
29, 2 (2020), 1–38.

[8] Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, andMartin
Vechev. 2018. Net2Text: query-guided summarization of network
forwarding behaviors. In 15th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 18). 609–623.

[9] Ting Dai, Alexei Karve, Grzegorz Koper, and Sai Zeng. 2020. Automat-
ically detecting risky scripts in infrastructure code. In Proceedings of
the 11th ACM Symposium on Cloud Computing. 358–371.

[10] J Chassin De Kergommeaux, Benhur Stein, and Pierre-Eric Bernard.
2000. Pajé, an interactive visualization tool for tuning multi-threaded
parallel applications. Parallel Comput. 26, 10 (2000), 1253–1274.

[11] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data
processing on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[12] Sabin Devkota, Pascal Aschwanden, Adam Kunen, Matthew Legendre,
and Katherine E Isaacs. 2020. CcNav: Understanding Compiler Op-
timizations in Binary Code. IEEE transactions on visualization and
computer graphics (2020).

[13] Ashutosh Dhekne, Ayon Chakraborty, Karthikeyan Sundaresan, and
Sampath Rangarajan. 2019. TrackIO: tracking first responders inside-
out. In 16th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 19). 751–764.

[14] Rodrigo Fonseca, Michael J Freedman, and George Porter. 2010. Ex-
periences with Tracing Causality in Networked Services. INM/WREN
10, 10 (2010).

[15] Rodrigo Fonseca, George Porter, RandyHKatz, and Scott Shenker. 2007.
X-trace: A pervasive network tracing framework. In 4th {USENIX}
Symposium on Networked Systems Design & Implementation ({NSDI}
07).

[16] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna
Pancholi, and Christina Delimitrou. 2019. Seer: Leveraging big data to
navigate the complexity of performance debugging in cloud microser-
vices. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems. 19–33.

[17] Stewart Grant, Hendrik Cech, and Ivan Beschastnikh. 2018. Inferring
and asserting distributed system invariants. In Proceedings of the 40th
International Conference on Software Engineering. 1149–1159.

[18] Brendan Gregg. 2017. Flame Graphs. Retrieved January 2021 from
http://www.brendangregg.com/flamegraphs.html.

[19] BioViz Interest Group. 2022. BioVis Conference. Retrieved September
2022 from http://biovis.net/.

[20] Katherine E Isaacs and Todd Gamblin. 2018. Preserving command
line workflow for a package management system using ASCII DAG
visualization. IEEE transactions on visualization and computer graphics
25, 9 (2018), 2804–2820.

[21] Katherine E Isaacs, Alfredo Giménez, Ilir Jusufi, Todd Gamblin, Abhi-
nav Bhatele, Martin Schulz, Bernd Hamann, and Peer-Timo Bremer.
2014. State of the Art of Performance Visualization.. In EuroVis (STARs).

[22] Jaeger 2017. Jaeger: Open Source, End-to-End Distributed Tracing.
Retrieved January 2021 from https://www.jaegertracing.io/.

[23] Siva Kesava Reddy Kakarla, Alan Tang, Ryan Beckett, Karthick Jayara-
man, Todd Millstein, Yuval Tamir, and George Varghese. 2020. Finding
Network Misconfigurations by Automatic Template Inference. In 17th
{USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 20). 999–1013.

[24] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor
Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan,
Brendan Viscomi, et al. 2017. Canopy: An end-to-end performance
tracing and analysis system. In Proceedings of the 26th Symposium on
Operating Systems Principles. 34–50.

[25] Johannes Kehrer and Helwig Hauser. 2012. Visualization and Visual
Analysis of Multifaceted Scientific Data: A Survey. IEEE Transactions
on Visualization and Computer Graphics 19, 3 (2012), 495–513.

[26] Youngtaek Kim, Jaeyoung Kim, Hyeon Jeon, Young-Ho Kim, Hyunjoo
Song, Bohyoung Kim, and Jinwook Seo. 2020. Githru: Visual Analyt-
ics for Understanding Software Development History Through Git
Metadata Analysis. arXiv preprint arXiv:2009.03115 (2020).

[27] Heidi Lam, Enrico Bertini, Petra Isenberg, Catherine Plaisant, and
Sheelagh Carpendale. 2011. Empirical studies in information visualiza-
tion: Seven scenarios. IEEE transactions on visualization and computer
graphics 18, 9 (2011), 1520–1536.

[28] Zhimin Li, Harshitha Menon, Dan Maljovec, Yarden Livnat, Shusen
Liu, Kathryn Mohror, Peer-Timo Bremer, and Valerio Pascucci. 2020.
SpotSDC: Revealing the Silent Data Corruption Propagation in High-
performance Computing Systems. IEEE Transactions on Visualization
and Computer Graphics (2020).

[29] Shusen Liu, Dan Maljovec, Bei Wang, Peer-Timo Bremer, and Valerio
Pascucci. 2016. Visualizing High-Dimensional Data: Advances in the
Past Decade. IEEE Transactions on Visualization and Computer Graphics
23, 3 (2016), 1249–1268.

[30] Dan Luu. 2021. A simple way to get more value from tracing. Retrieved
February 2021 from https://danluu.com/tracing-analytics/.

[31] JonathanMace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot Tracing:
Dynamic Causal Monitoring for Distributed Systems. In 25th ACM
Symposium on Operating Systems Principles (SOSP’15).

[32] Sonu Mehta, Ranjita Bhagwan, Rahul Kumar, Chetan Bansal, Chandra
Maddila, B Ashok, Sumit Asthana, Christian Bird, and Aditya Kumar.
2020. Rex: Preventing bugs and misconfiguration in large services
using correlated change analysis. In 17th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 20). 435–448.

[33] Haris Mumtaz, Shahid Latif, Fabian Beck, and Daniel Weiskopf. 2019.
Exploranative code quality documents. IEEE transactions on visualiza-
tion and computer graphics 26, 1 (2019), 1129–1139.

[34] Tamara Munzner. 2014. Visualization analysis and design. CRC press.
[35] Huu Tan Pham Nguyen, Abhinav Bhatele, Nikhil Jain, Suraj Kesavan,

Harsh Bhatia, Todd Gamblin, Kwan-Liu Ma, and Peer-Timo Bremer.
2019. Visualizing hierarchical performance profiles of parallel codes
using callflow. IEEE transactions on visualization and computer graphics
(2019).

https://prometheus.io/
http://www.brendangregg.com/flamegraphs.html
http://biovis.net/
https://www.jaegertracing.io/
https://danluu.com/tracing-analytics/


SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Davidson and Mace

[36] Seán I O’Donoghue, Benedetta Frida Baldi, Susan J Clark, Aaron E
Darling, James M Hogan, Sandeep Kaur, Lena Maier-Hein, Davis J
McCarthy, William J Moore, Esther Stenau, et al. 2018. Visualization
of biomedical data. Annual Review of Biomedical Data Science 1 (2018),
275–304.

[37] F-G Ottogalli, Cyril Labbé, Vincent Olive, Benhur de Oliveira Stein,
J Chassin de Kergommeaux, and J-M Vincent. 2001. Visualization of
Distributed Applications for Performance Debugging. In International
conference on computational science. Springer, 831–840.

[38] Georgios A Pavlopoulos, Dimitris Malliarakis, Nikolas Papanikolaou,
Theodosis Theodosiou, Anton J Enright, and Ioannis Iliopoulos. 2015.
Visualizing genome and systems biology: technologies, tools, imple-
mentation techniques and trends, past, present and future. Gigascience
4, 1 (2015), s13742–015.

[39] Bernhard Preim and Charl P Botha. 2013. Visual computing for medicine:
theory, algorithms, and applications. Newnes.

[40] Fabian Ruffy, Tao Wang, and Anirudh Sivaraman. 2020. Gauntlet:
Finding Bugs in Compilers for Programmable Packet Processing. In
14th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 20). 683–699.

[41] Raja R Sambasivan, Rodrigo Fonseca, Ilari Shafer, and Gregory R
Ganger. 2014. So, you want to trace your distributed system? Key
design insights from years of practical experience. Parallel Data Lab.,
Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU-PDL 14
(2014).

[42] Raja R Sambasivan, Ilari Shafer, Jonathan Mace, Benjamin H Sigelman,
Rodrigo Fonseca, and Gregory R Ganger. 2016. Principled workflow-
centric tracing of distributed systems. In Proceedings of the Seventh
ACM Symposium on Cloud Computing. 401–414.

[43] Raja R Sambasivan, Ilari Shafer, Michelle L Mazurek, and Gregory R
Ganger. 2013. Visualizing request-flow comparison to aid performance
diagnosis in distributed systems. IEEE transactions on visualization
and computer graphics 19, 12 (2013), 2466–2475.

[44] Raja R Sambasivan, Alice X Zheng, Michael De Rosa, Elie Krevat,
Spencer Whitman, Michael Stroucken, William Wang, Lianghong Xu,
and Gregory R Ganger. 2011. Diagnosing Performance Changes by
Comparing Request Flows.. In NSDI, Vol. 5. 1–1.

[45] Alper Sarikaya, Michael Correll, Lyn Bartram, Melanie Tory, and
Danyel Fisher. 2018. What do we talk about when we talk about
dashboards? IEEE transactions on visualization and computer graphics
25, 1 (2018), 682–692.

[46] Yuri Shkuro. 2019. A Picture is Worth a 1,000 Traces. Retrieved Febru-
ary 2021 from https://www.shkuro.com/talks/2019-11-18-a-picture-
is-worth-a-thousand-traces/.

[47] Cindy Shridharan. 2019. Distributed Tracing – we’ve been doing it
wrong. Retrieved February 2021 from https://copyconstruct.medium.
com/distributed-tracing-weve-been-doing-it-wrong-39fc92a857df.

[48] Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephen-
son, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag.
2010. Dapper, a large-scale distributed systems tracing infrastructure.
(2010).

[49] Junpeng Wang, Subhashis Hazarika, Cheng Li, and Han-Wei Shen.
2018. Visualization and Visual Analysis of Ensemble Data: A Survey.
IEEE Transactions on Visualization and Computer Graphics 25, 9 (2018),
2853–2872.

[50] Katy Williams, Alex Bigelow, and Kate Isaacs. 2019. Visualizing a mov-
ing target: A design study on task parallel programs in the presence
of evolving data and concerns. IEEE transactions on visualization and
computer graphics 26, 1 (2019), 1118–1128.

[51] Ke Xu, Yun Wang, Leni Yang, Yifang Wang, Bo Qiao, Si Qin, Yong Xu,
Haidong Zhang, and Huamin Qu. 2019. Clouddet: Interactive visual
analysis of anomalous performances in cloud computing systems. IEEE

transactions on visualization and computer graphics 26, 1 (2019), 1107–
1117.

[52] Suli Yang, Jing Liu, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. 2018. Principled schedulability analysis for distributed stor-
age systems using thread architecture models. In 13th {USENIX} Sym-
posium on Operating Systems Design and Implementation ({OSDI} 18).
161–176.

[53] Nofel Yaseen, John Sonchack, and Vincent Liu. 2020. tpprof: A Network
Traffic Pattern Profiler. In 17th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 20). 1015–1030.

[54] Yongle Zhang, SergueiMakarov, Xiang Ren, David Lion, andDing Yuan.
2017. Pensieve: Non-intrusive failure reproduction for distributed
systems using the event chaining approach. In Proceedings of the 26th
Symposium on Operating Systems Principles. 19–33.

[55] Zipkin 2016. Zipkin: A Distributed Tracing System. Retrieved January
2021 from http://zipkin.io/.

https://www.shkuro.com/talks/2019-11-18-a-picture-is-worth-a-thousand-traces/
https://www.shkuro.com/talks/2019-11-18-a-picture-is-worth-a-thousand-traces/
https://copyconstruct.medium.com/distributed-tracing-weve-been-doing-it-wrong-39fc92a857df
https://copyconstruct.medium.com/distributed-tracing-weve-been-doing-it-wrong-39fc92a857df
http://zipkin.io/

	Abstract
	1 Introduction
	2 Motivation
	2.1 VL-Tools: Visualisation-in-the-Loop Tools
	2.2 Opportunities

	3 Survey of VL-Tools
	3.1 Takeaways

	4 Closing the loop
	4.1 Above and Beyond
	4.2 Beyond Visualisation

	5 Conclusion
	References

