
CEAL: A C-based Language for

Self-Adjusting Computation

Matthew Hammer Umut Acar Yan Chen

Toyota Technological Institute at Chicago

PLDI 2009

Self-adjusting computation

P P P

I1 I2 I3ε1 ε2

O1 O2 O3

I Programs usually run from-scratch on new inputs

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 2 / 28

Self-adjusting computation

P P P

I1 I2 I3ε1 ε2

δ1 δ2O1 O2 O3

I Programs usually run from-scratch on new inputs

I Interested when small input change ⇒ small output change

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 2 / 28

Self-adjusting computation

P P P

I1 I2 I3ε1 ε2

δ1 δ2O1 O2 O3

T1 T2 T3

O1 ∆1 ∆2

I Include program trace T with program output

I Idea: Small ε and small δ often implies small ∆

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 2 / 28

Self-adjusting computation

I1 I2 I3ε1 ε2

cp cpP

δ1 δ2O1 O2 O3

T1 T2 T3

O1 ∆1 ∆2

I Initial run records a program trace

I Change propagation (cp) updates the output & trace

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 2 / 28

Goal of self-adjusting computation

Given input change (ε), update output & trace in time
proportional to trace distance (∆)

Application From-scratch Insertion/deletion
List Primitives O(n) O(1)
Quicksort O(n · log n) O(log n)
Mergesort O(n · log n) O(log n)

Convex Hulls (2d) O(n · log n) O(log n)
Convex Hulls (3d) O(n · log n) O(log n)

From-scratch time vs trace distance for an insertion/deletion

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 3 / 28

Linear vs logarithmic time

I Interesting problems take O(n) time (or more)

I Suppose we can update output in O(log n) time

I Is the speedup worth it?

0

1k

2k

0 1k 2k

n
100 log(n)
10 log(n)

0

50k

100k

0 50k 100k

n
100 log(n)

10 log(n)

O(n) increases exponentially faster than O(log n)

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 4 / 28

Challenges for Self-Adjusting Computation

Challenge 1

I Impractical to trace every operation

I What operations should be traced?

Challenge 2

I Trace must support e�cient incremental updates

I How should the trace be structured?

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 5 / 28

What operations should be traced?

Idea: Distinguish between stable and changeable data

I Programmer manages changeable data in modrefs
(modi�able references)

I Analogous to conventional references

I Trace records modref operations

Modref operations

modref_t* modref() Create an empty modref

void write(modref_t *m, void *p) Write to a modref

void* read(modref_t *m) Read from a modref

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 6 / 28

Example: Evaluating expression trees

ceal eval (modref_t *in, modref_t *out) {

node_t *node = read (in);

if (node->kind == LEAF)

write (out, node->leaf_value);

else {

modref_t *m_a = modref ();

modref_t *m_b = modref ();

eval (node->left_child, m_a);

eval (node->right_child, m_b);

int a = read (m_a);

int b = read (m_b);

if (node->binary_op == PLUS) {

write (out, a + b);

} else {

write (out, a - b);

}

}

}

Key Idea

Input & output
stored in modrefs

TODO: illustrate
execution of the two
cases

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 7 / 28

How is trace structured? how do we update it?

Need to identify & record dependencies between data & code

Idea: When a modref is changed, rerun code with new value

What code do we rerun?

Normal form

Every read followed by a tail call

x = read(m); tail f (x, y)

I Use of m's value recorded as a closure of f

I Closure can be rerun if & when m changes

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 8 / 28

How is trace structured? how do we update it?

Need to identify & record dependencies between data & code

Idea: When a modref is changed, rerun code with new value
What code do we rerun?

Normal form

Every read followed by a tail call

x = read(m); tail f (x, y)

I Use of m's value recorded as a closure of f

I Closure can be rerun if & when m changes

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 8 / 28

How is trace structured? how do we update it?

Need to identify & record dependencies between data & code

Idea: When a modref is changed, rerun code with new value
What code do we rerun?

Normal form

Every read followed by a tail call

x = read(m); tail f (x, y)

I Use of m's value recorded as a closure of f

I Closure can be rerun if & when m changes

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 8 / 28

Tracing return values

TODO: make this slide more concise

I How to trace & rerun functions with return values?

I How do we rerun the caller without recording call stack?

Idea: Return results through modref arguments

I Don't want to record call stack

I Restrict all functions with reads to return void

I Destination-passing style returns results in modrefs

I ⇒ modrefs track all callee-to-caller data�ow

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 9 / 28

Compilation Overview

Goal: Compile CEAL into C code.
Target C code is linked with a runtime library.

C

TranslateCore CEAL

RT library

Normalize

gcc executable

CEAL to C: a two step process

I Normalize CEAL code (put into normal form)

I Translate the (normal form) CEAL code to C

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 10 / 28

Normalization

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 11 / 28

Normalization via control-�ow graphs

Idea: Transform the program as a control-�ow graph

Nodes I a designated root node
I a function node
I a command (read, write, etc.), conditional,

or return statement

Entry Nodes I a function entry ≡ a function node
I a read entry ≡ successor of a read

Edges I Control edges: (tail) call & goto
I Entry edges: from root to entry nodes

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 12 / 28

Example: Program graph for eval

1 ceal eval (modref_t *in, modref_t *out) {

2 node_t *node = read (in);

3 if (node->kind == LEAF) {

4 write (out, node->leaf_value);

5 } else {

6 modref_t *m_a = modref ();

7 modref_t *m_b = modref ();

8 eval (node->left_child, m_a);

9 eval (node->right_child, m_b);

10 int a = read (m_a);

11 int b = read (m_b);

12 if (node->binary_op == PLUS) {

13 write (out, a + b);

14 } else {

15 write (out, a - b);

16 }

17 }

18 return; }

2

4 6

7

8

9

10

13 15

18

1

3

11

12

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 13 / 28

Example: Program graph for eval

1 ceal eval (modref_t *in, modref_t *out) {

2 node_t *node = read (in);

3 if (node->kind == LEAF) {

4 write (out, node->leaf_value);

5 } else {

6 modref_t *m_a = modref ();

7 modref_t *m_b = modref ();

8 eval (node->left_child, m_a);

9 eval (node->right_child, m_b);

10 int a = read (m_a);

11 int b = read (m_b);

12 if (node->binary_op == PLUS) {

13 write (out, a + b);

14 } else {

15 write (out, a - b);

16 }

17 }

18 return; }

2

4 6

7

8

9

10

13 15

18

r1

3

11

12

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 13 / 28

Dominator Relation, Dominator Trees

Def: Dominator relation

Node a dominates b if every path from root to b contains a

Def: Immediate dominator relation

Node a is the immediate dominator of b if

I a 6= b

I a dominates b

I Every other dominator of b dominates a

Every node has a (unique) immediate dominator, except root.

Def: Dominator tree

Immediate dominator relation forms a tree (root is root node)

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 14 / 28

Dominators & critical nodes

Dominator examples

I Root r dominates all nodes

I 1 dominates 2, but not 3

I 3 dominates 4 & 6�10, but not 11

I 12 dominates 13 & 15, but not 18

Root r is immediate dominator of

I Every entry node

I Nodes not dominated by any entry (18)

De�ne: Critical nodes

Nodes immediately dominated by the root

2

4 6

7

8

9

10

13 15

18

r1

3

11

12

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 15 / 28

Units & cross-unit edges

I De�ne critical nodes
as root's children:

Nodes 1, 2, 11, 12 & 18.

I De�ne units as subtrees
of critical nodes

I Lemma: every
cross-unit edge targets
a critical node.

I Corrollary: If each unit
becomes a separate
function, then cross-unit
edges can become calls.

2 46

7

8

9

10

13 15

18

R

1 3 11 12

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 16 / 28

Units & cross-unit edges

I De�ne critical nodes
as root's children:

Nodes 1, 2, 11, 12 & 18.

I De�ne units as subtrees
of critical nodes

I Lemma: every
cross-unit edge targets
a critical node.

I Corrollary: If each unit
becomes a separate
function, then cross-unit
edges can become calls.

2 46

7

8

9

10

13 15

18

R

1 3 11 12

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 16 / 28

Units & cross-unit edges

I De�ne critical nodes
as root's children:

Nodes 1, 2, 11, 12 & 18.

I De�ne units as subtrees
of critical nodes

I Lemma: every
cross-unit edge targets
a critical node.

I Corrollary: If each unit
becomes a separate
function, then cross-unit
edges can become calls.

2 46

7

8

9

10

13 15

18

R

1 3 11 12

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 16 / 28

Normalization: The Algorithm

Main Ideas:

I Units separate functions

I Cross-unit edges tail calls (args ≡ live vars)

Algorithm

1. Compute the dominator tree

2. For each critical node, not yet a function node:
I Create a new function node for unit
I Redirect incoming critical edges to new function node

(not always necessary; omitting minor details)

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 17 / 28

Example: New functions, Redirected edges

Before redirection

2 46

7

8

9

10

13 15

18

R

1 3 11 12

After redirection

2 46

7

8

9

10

13 15

18

R

1 3 11 12

a b c d

Node 1 already a function node, so no new function needed

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 18 / 28

Example: Output graph as output code

1 ceal eval (modref_t *in, modref_t *out) {
2 node_t *node = read (in); tail eval_a (node, out);

}

a ceal eval_a (node_t *node, modref_t *out) {
3 if (node->kind == LEAF) {
4 write (out, node->leaf_value); tail eval_d ();
5 } else {
6-9 ...
10 int a = read (m_a); tail eval_b (out, a, m_b);
17 }

}

b ceal eval_b (modref_t *out, int a, modref_t *m_b) {
11 int b = read (m_b); tail eval_c (out, a, b);

}

c ceal eval_c (modref_t *out, int a, int b) {
12 if (node->binary_op == PLUS) {
13 write (out, a + b); tail eval_d ();
14 } else {
15 write (out, a - b); tail eval_d ();
16 }

}

d ceal eval_d () {
18 return;

}

Normal Form

I Original function
split into �ve

I Cross-unit edges
become tail calls

I Tail call follows
each read

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 19 / 28

Translation

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 20 / 28

Translation Overview

Translation Basics

I Translation introduces closures for tail calls

I For reads: associates closure with read modref

I Uses a trampoline to run closures iteratively

Selective trampolining

I Only need to record closures for reads

I So, only trampoline tail calls that follow reads

I Other �tail calls� treated like ordinary calls

I Stack grows only temporarily (until a read)

See paper for details

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 21 / 28

Translation Overview

Translation Basics

I Translation introduces closures for tail calls

I For reads: associates closure with read modref

I Uses a trampoline to run closures iteratively

Selective trampolining

I Only need to record closures for reads

I So, only trampoline tail calls that follow reads

I Other �tail calls� treated like ordinary calls

I Stack grows only temporarily (until a read)

See paper for details

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 21 / 28

Translation Overview

Translation Basics

I Translation introduces closures for tail calls

I For reads: associates closure with read modref

I Uses a trampoline to run closures iteratively

Selective trampolining

I Only need to record closures for reads

I So, only trampoline tail calls that follow reads

I Other �tail calls� treated like ordinary calls

I Stack grows only temporarily (until a read)

See paper for details

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 21 / 28

Performance Evaluation

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 22 / 28

Evaluation Example: Quicksort

0.0

5.0

10.0

15.0

20.0

25.0

0 250K 500K 750K 1M

T
im

e
(s

)

Input Size

Quicksort From-Scratch

Self
Cnv.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

0 250K 500K 750K 1M

T
im

e
(m

s)

Input Size

Quicksort Ave. Update

Self

Overhead: about 6x (a constant)
Speedup: 1.4× 104 (increases linearly with input size)

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 23 / 28

Results summary
From-Scratch Propagation

Application n Cnv. Self. O.H. Ave. Update Speedup
filter 10.0M 0.5 7.4 14.2 2.1× 10−6 2.4× 105

map 10.0M 0.7 11.9 17.2 1.6× 10−6 4.2× 105

reverse 10.0M 0.6 11.9 18.8 1.6× 10−6 3.9× 105

minimum 10.0M 0.8 10.9 13.8 4.8× 10−6 1.6× 105

sum 10.0M 0.8 10.9 13.9 7.0× 10−5 1.1× 104

quicksort 1.0M 3.5 22.4 6.4 2.4× 10−4 1.4× 104

quickhull 1.0M 1.1 12.3 11.5 2.3× 10−4 4.6× 103

diameter 1.0M 1.0 12.1 12.0 1.2× 10−4 8.3× 103

exptrees 10.0M 1.0 7.2 7.2 1.4× 10−6 7.1× 105

mergesort 1.0M 6.1 37.6 6.1 1.2× 10−4 5.1× 104

distance 1.0M 1.0 11.0 11.0 1.3× 10−3 7.5× 102

tcon 1.0M 2.6 20.6 7.9 1.0× 10−4 2.5× 104

Average Overhead 6�19x
Average Speedups 3.6× 104 (for n = 1M)

1.4× 105 (for n = 10M)

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 24 / 28

Related Work

Other self-adjusting/incremental language support:

Acar et. al., PLDI'05 SAC library for ML (Sting)

Shankar & Bodík, PLDI'07 Invariant checks in Java (Ditto)

Hammer & Acar, ISMM'08 SAC library for C

Ley-Wild et. al., ICFP'08 DeltaML language & compiler

DeltaML is most comparable system

I Compiler support for general-purpose SAC

I Similar modref-like primitives

I Similar benchmarks

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 25 / 28

CEAL vs DeltaML: Summary

Normalized Measurements (DeltaML / CEAL)

App. From-Scratch Ave. Update Max Live
filter 9.3 6.2 4.4
map 9.3 7.1 4.4

reverse 8.0 5.8 4.2
minimum 4.6 8.8 2.9

sum 4.6 3.5 2.9
quicksort 26.9 15.6 4.8
quickhull 5.1 3.3 1.1
diameter 5.8 4.3 1.5

I From-Scratch CEAL 5�27 times faster (9 on average)

I Change propagation CEAL 3�9 times faster (7 on average)

I Max live CEAL uses up to 5 times less space (3 on average)

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 26 / 28

Concluding remarks

CEAL: In Summary

I C-based language for self-adjusting computation

I Compiles directly to (portable) C code

I Promising performance results

On-going & future directions

I Support for return values

I Implicit modi�able operations (using type annotations)

I Finer-grained code dependencies for reads
(At what point can re-execution stop?)

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 27 / 28

Thanks, Questions

Thank You!
Questions?

Matthew Hammer CEAL: A C-Based Language for Self-Adj. Computation 28 / 28

