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Abstract

Reasoning about concurrency in a realistic, non-toy language like C/C++ or Rust, which encompasses
many interweaving complex features, is very hard. Yet, realistic concurrency involves relaxed memory
models, which are significantly harder to reason about than the simple, traditional concurrency model
that is sequential consistency. To scale up verifications to realistic concurrency, we need a few ingredients:
(1) strong but abstract reasoning principles so that we can avoid the too tedious details of the underlying
concurrency model; (2) modular reasoning so that we can compose smaller verification results into
larger ones; (3) reasoning extensibility so that we can derive new reasoning principles for both complex
language features and algorithms without rebuilding our logic from scratch; and (4) machine-checked
proofs so that we do not miss potential unsoundness in our verifications. With these ingredients in hand,
a logic designer can flexibly accommodate the intricacy of relaxed memory features and the ingenuity of
programmers who exploit those features.

In this dissertation, I present how to develop strong, abstract, modular, extensible, and machine-
checked separation logics for realistic relaxed memory concurrency in the Iris framework, using multiple
layers of abstractions. I report two main applications of such logics: (i) the verification of the Rust type
system with a relaxed memory model, where relaxed memory effects are encapsulated behind the safe
interface of libraries and thus are not visible to clients, and (ii) the compositional specification and
verification of relaxed memory libraries, in which relaxed memory effects are exposed to clients.

Zusammenfassung

Programmverifikation von nebenläufige Programmen in einer realistischen Programmiersprache wie
C/C++ oder Rust, die viele komplexe, miteinander verflochtene Sprachkonstrukte enthält, ist sehr
schwierig. Realistische nebenläufige Programme basieren auf schwachen Speicherkonsistenzmodellen, in
denen sich die Beweisführung im Vergleich zum traditionellen, sequentiellen Speicherkonsistenzmodell
(SC) erheblich schwieriger gestaltet. Um die Verifikation solcher realistischen nebenläufigen Programme
zu ermöglichen benötigen wir mehrere Voraussetzungen: (1) starke Beweisregeln die die mühsamen
Details des zugrundeliegenden Speicherkonsistenzmodells abstrahieren, (2) modulare Beweistechniken
die es erlauben, die Verifikation in kleinere, mundgerechte Beweise aufzuteilen, (3) eine erweiterbare
Verifikationslogik, in der neue Beweistechniken hinzugefügt werden können, ohne die Korrektheit der
gesamten Logik erneut beweisen zu müseen (4) maschinengeprüfte Beweise, die die Korrektheit der
Logik und der durchgeführten Beweise garantiert. Mit diesen Voraussetzungen kann ein Logikdesigner
die Komplexität des schwachen Speicherkonsistenzmodells und den Einfallsreichtum der Programmierer,
die sich dessen Funktionenen zu Nutze machen, flexibel berücksichtigen.

In dieser Dissertation stelle ich vor, wie man starke, abstrakte, modulare, erweiterbare und maschi-
nengeprüfte Separationslogiken für realistische schwache Speicherkonsistenz in dem Framework Iris mit
Hilfe von mehreren Abstraktionsebenen erstellen kann. Ich berichte über zwei Hauptanwendungen dieser
Logiken: (i) die Verifikation des Typsystems von Rust auf Basis eines schwachen Speicherkonsistenzmod-
ells, bei dem die Auswirkungen schwacher Speicherkonsistenz hinter der sicheren Programmschnittstelle
abstrahiert und somit für Clients unsichtbar sind, und (ii) die modulare Spezifikation und Verifikation
von Programmbibliotheken mit schwacher Speicherkonsistenz, bei denen die Auswirkungen schwacher
Speicherkonsistenz für Clients sichtbar sind.
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1
Introduction

Reasoning about concurrency is hard, due to the explosion of possible
interactions between threads running in parallel. In the traditional
concurrency model of sequential consistency1, every thread takes turns to 1Lamport, “How to Make a Multipro-

cessor Computer That Correctly Executes
Multiprocess Programs” [Lam79].execute its atomic instructions, and the behavior of a concurrent program

is defined as all interleavings of all threads’ atomic instructions. As
such, if one needs to verify some property of the program, one would
need to check that property for every possible interleaving of the atomic
instructions performed by the threads. This is low level and hard to scale:
if we want to compose our verified libraries, then we would have to look
at the compositions of their interleavings, and we would have to make
sure that the properties they have been verified against are compatible
with interleaving composition. In order to scale verification to more
intricate programming language features and algorithms, we need more
abstract and modular reasoning principles.

CONCURRENT SEPARATION LOGICS2 (hereafter, CSLs) provide a feasible 2O’Hearn, “Resources, concurrency, and
local reasoning” [O’H07]; Brookes, “A
Semantics for Concurrent Separation
Logic” [Bro07].

approach to abstract and modular control of interference: instead of
thinking in terms of interleavings, we can reason about each thread more
modularly by thinking in terms of the resources that the thread owns.
The resources owned by each thread are “separated” from those of other
threads, and encode the thread’s permissions on the shared memory’s
fragments that it owns. As a result, they can restrict how other threads
may interfere with the current thread’s execution. This “separation”
idea has led to long research lines on highly expressive logics or logic
frameworks3 that have been applied to various sophisticated concurrency 3Just to list a few: [VP07; FFS07; Fen09;

Fu+10; DY+10; JB12; SB14; RPDG14;
RP+16; Nan+14; SWT18; Kro+20;
TDB13; Jun+15; Jun+18b; Cha+21;
FKB21; G+̈22].

verification problems. Among these problems includes reasoning about
realistic relaxed memory concurrency4—the main focus of this dissertation.

4[VN13; TVD14; DV16; DV17; Kai+17;
Sve+18; He+18; Dan+20a; MJP20].

RELAXED MEMORY CONCURRENCY. Sequential consistency (hereafter,
SC)—the interleaving model of concurrency in which threads take turns
accessing the global state, and all threads share the same view of that
state—does not reflect what is going on in modern multicore program-
ming languages. In reality, multicore hardware employ rich hierarchies
of caches to improve memory access performance, with which a CPU’s
write may not immediately reach the main memory, or may not be im-
mediately visible to all other cores, or may not be visible to all other
cores at the same time. To further improve performance, both hardware

1
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and compilers can analyze dependencies of memory accesses to apply
optimizations: if the effects of two memory accesses are independent,
they can be executed independently. In short, from the perspective of
programmers, memory accesses instructions can be executed out-of-order
in modern programming languages.

To match this modern reality, we need models of so-called relaxed
memory concurrency (hereafter, RMC) at the programming-language level
that provide an abstraction over different hardware architectures and
compilers. However, due to the complexity of hardware behaviors and
desirable optimizations, the formal semantics of RMC models (at both
hardware level and language level) still require extensive ongoing re-
search.5 Nevertheless, the goal of this dissertation is not to find the right5[Bat+11; Kan+17; Pul+18; Flu+17;

Lah+17; Pul+19; CV19; PLV19; Lee+20;
Cho+21b; Sim+20; Cho+22; Lee+23]. model that captures all relaxed memory features. Here, I take as assump-

tion a language-level memory model whose features have stabilized over
years of research, and present how to build RMC separation logics that
can scale up to very substantial verification efforts.

1.1 Reasoning about Relaxed Memory Concurrency

This dissertation focuses on the relaxed memory model of C/C++, which
was first proposed in the C++11 standard and was formalized by Batty
et al.,6 and is now broadly adopted7 by the RMC models of Rust, Java,6Batty et al., “Mathematizing C++ con-

currency” [Bat+11].

7potentially partially, with minor modifi-
cations or simplifications.

OCaml, JavaScript, and WebAssembly.8 The C/C++ RMC model (here-

8[BP19; WRP19; DSM18; Wat+20].

after, C11) supports a variety of different consistency levels for shared-
memory accesses, which intuitively dictate how much reordering can
be applied to the accesses. For programmers who demand the simpler
SC concurrency model where there is strong synchronization between
threads (so that they have the same view of shared memory), SC accesses
are available.9 This strength, however, comes at the cost of disabling9The word “consistency”, used e.g., in se-

quential consistency or relaxed memory
consistency, can be understood as the con-
sistency among the views of the threads
(or processors) on shared memory.

reordering optimizations and inserting expensive memory fences into
the compiled code. The weaker consistency levels of release/acquire and
relaxed allow one to trade off synchronization strength in return for more
efficient compiled code. These different consistency levels are widely
employed in performance-critical concurrency libraries such as locks,
reference-counting, stacks, queues, read-copy-update (RCU), and so on.

Compared to SC, reasoning about RMC is significantly more compli-
cated: relaxed-memory programs have many more behaviors depending
on which consistency levels are employed. In fact, some useful reasoning
principles in SC logics are no longer sound for reasoning about relaxed
behaviors. Furthermore, such behaviors are defined in C11 not in the
familiar style of interleavings, but by an axiomatic semantics, in which the
allowed behaviors of a program are defined by enumerating candidate
executions (represented as “event graphs”) and then restricting attention
to the executions that obey various coherence axioms. Vafeiadis et al.
overcome these challenges and provided the first abstract and modular
reasoning principles for C11 in form of various RMC separation logics.1010[VN13; DV16; DV17; TVD14].

However, in building these logics, Vafeiadis et al. were not able
to use the standard model of Hoare-style program specifications from
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prior CSLs because notions like “the machine states before and after
executing a command c” do not have a clear meaning in C11’s axiomatic
semantics. Instead, they had to come up with new, non-standard models
of separation logic in terms of predicates on event graphs. Unfortunately,
the complexity of these new models has made them challenging to adapt
and extend to more complex settings, for example in verifying Rust’s
type system. Furthermore, although the soundness of these logics has
been verified formally in Coq, there has thus far been no tool support to
perform machine-checked verifications of RMC programs or libraries in
these logics.

To scale the reasoning principles of concurrent separation logic to
realistic languages like C/C++ or Rust, which encompass many inter-
weaving complex features, we need a few ingredients: (1) strong but
abstract reasoning principles so that we can avoid the too tedious details
of the underlying concurrency model; (2) modular reasoning so that we
can compose smaller verification results into larger ones; (3) reasoning
extensibility so that we can derive new reasoning principles for both
complex language features and algorithms without rebuilding our logic
from scratch; and (4) machine-checked verifications so that we do miss
potential bugs in our proofs—both in soundness proofs of our logics
and in program verifications. Only recently was it possible to acquire
these ingredients at once with the CSL framework Iris,11 which comes 11Jung et al., “Iris: Monoids and

Invariants as an Orthogonal Basis for Con-
current Reasoning” [Jun+15]; Jung et al.,
“Higher-order ghost state” [Jun+16];
Krebbers et al., “The Essence of
Higher-Order Concurrent Separation
Logic” [Kre+17]; Jung et al., “Iris from
the ground up: A modular foundation
for higher-order concurrent separation
logic” [Jun+18b].

with strong tactic support in Coq.12 Using Iris, Jung et al.13 have verified

12Krebbers et al., “Interactive Proofs
in Higher-Order Concurrent Separation
Logic” [KTB17]; Krebbers et al., “MoSeL:
A General, Extensible Modal Frame-
work for Interactive Proofs in Separation
Logic” [Kre+18].

13Jung et al., “RustBelt: Securing the
Foundations of the Rust Programming Lan-
guage” [Jun+18a].

the soundness of the Rust’s type system, and thus have demonstrated
the scalability of CSLs to complex languages such as Rust, even though
only for the SC memory model. Meanwhile, my collaborators and I had
previously re-proven the soundness of Vafeiadis et al.’s RSL and GPS
logics in Iris, and demonstrated the possibility of building extensible
RMC separation logics, even though only for a small fragment of the C11
model.14

14Kaiser et al., “Strong Logic for Weak
Memory: Reasoning About Release-
Acquire Consistency in Iris” [Kai+17].

I, together with my collaborators, have developed strong, abstract,
modular, extensible, and machine-checked RMC separation logics in
Iris that scale to substantial verification efforts, for an also substantial
fragment of C11 whose features have stabilized over years of research,
namely the RC11 (Repaired C11) model.15 In this dissertation, I present

15Lahav et al., “Repairing sequential con-
sistency in C/C++11” [Lah+17].

the abstractions needed to build such logics. I report two main contribu-
tions that rely on those logics:

1. RustBelt Relaxed:16 the soundness proof of the Rust’s type system

16Dang et al., “RustBelt Meets Relaxed
Memory” [Dan+20a].

in RMC, where relaxed memory effects are encapsulated behind
the safe interface of libraries and thus are not visible to clients; and

2. Compass:17 the compositional specification and verification of re-
17Dang et al., “Compass: strong and com-
positional library specifications in relaxed
memory separation logic” [Dan+22].

laxed memory libraries, where relaxed memory effects are exposed
to clients of such libraries.

1.2 RustBelt Relaxed: Verifying the Soundness of Rust’s Type Sys-
tem in RMC

Rust18 is a young and evolving programming language that aims to 18Klabnik and Nichols, The Rust Program-
ming Language [KN18].
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bring safety to systems programming. Specifically, Rust provides low-
level control over data layout and resource management à la modern
C++, while at the same time offering strong high-level guarantees (such
as type and memory safety) that are traditionally associated with safe
languages like Java. In fact, Rust takes a step further, statically preventing
more forms of anomalous behavior, such as data races and iterator
invalidation, that safe languages typically fail to rule out. Rust strikes
its delicate balance between safety and control using a substructural
type system, in which types not only classify data but also represent
ownership of resources, such as the right to read, write, or reclaim a piece
of memory. By tracking ownership in the types, Rust is able to prohibit
dangerous combinations of mutation and aliasing, a well-known source
of programming pitfalls and security vulnerabilities in C/C++ and Java.

Nevertheless, Rust’s ownership-based type system is not always ex-
pressive enough to type-check very delicate programming idioms, e.g.,
some pointer-based data structures, synchronization abstractions, garbage
collection mechanisms. To allow for these mechanisms, Rust supports
extension to the type system via libraries whose implementations inter-
nally utilize unsafe features (e.g., unchecked type casts, array accesses
without bounds checks, or accesses of “raw” pointers who are untracked
by the type system). Given that these libraries are not checked by the
type system, it is now the responsibility of libraries developers to make
sure that these extensions are actually safe, in the sense that they have
properly encapsulated the uses of unsafe features within their “safe APIs”.
Unfortunately, as the language is evolving and libraries are being updated
or created, it is not clear what such encapsulation formally means.

RustBelt19 is the first work on the formal foundations of the Rust19Jung et al., “RustBelt: Securing the
Foundations of the Rust Programming Lan-
guage” [Jun+18a]. programming language, in which it covers not only the soundness of the

ownership-based type system, but also the safe encapsulation by Rust’s
extensions via libraries. RustBelt managed to formalize such interactions
between the type system and the extensions in the presence of complex
language features like recursive types and higher-order state. Further-
more, all proofs were machine-checked in Coq. Unfortunately, while
ground-breaking, RustBelt assumes the SC memory model. Therefore,
even though RustBelt’s results increase the confidence in the safety of
Rust’s type system and libraries, the results cannot yet be applied to
actual Rust code, which relies on the C11 memory model.

To circumvent this problem, we developed RustBelt Relaxed (or RBrlx,
for short), the first formal validation of the soundness of Rust under RMC.
Although based closely on the original RustBelt, RBrlx takes a significant
step forward by accounting for the safety of the more weakly consistent
memory operations that real concurrent Rust libraries actually use. For
the most part, we were able to verify Rust’s uses of relaxed-memory
operations as is. Only in the implementation of one Rust library (Arc) did
we need to strengthen the consistency level of two memory reads (from
relaxed to acquire) in order to make our verification go through. And
in one of these cases, our attempt to verify the original (more relaxed)
access led us to expose it as the source of a previously undetected data
race in the library. Our fix for this race has since been merged into the
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Rust codebase.20 20Jourdan, Insufficient synchronization in
Arc::get_mut [Jou18].

SYNCHRONIZED GHOST STATE. The main technical challenge of porting
RustBelt to RMC is relevant not just to Rust but to relaxed-memory ver-
ification in general: namely, that existing work on separation logic
does not provide an adequate foundation for reasoning about re-
source reclamation under relaxed memory. Resource reclamation
under relaxed memory intertwines resource accounting and physical syn-
chronization: one needs to make sure that resources provided to every
client thread must be returned completely and with proper synchro-
nization. As a result, more care is needed when designing and proving
relaxed memory reasoning rules. Fortunately, in RBrlx we show that
changes in the rules needed to support reclamation are minimal and can
be handled fairly routinely, thanks to a novel notion of synchronized ghost
state: ghost state that is tied to physical synchronization so that it can be
used for safe, well-synchronized resource accounting.

1.3 Compass: Strong and Compositional Specifications of Relaxed-
Memory Libraries

Existing RMC separation logics have been applied to verify tricky RMC
algorithms such as locks, stacks, queues, read-copy-update,21 and ref- 21Tassarotti et al., “Verifying read-copy-

update in a logic for weak mem-
ory” [TDV15].erence counting,22 as well as the RBrlx work. However, these works

22Doko and Vafeiadis, “Tackling
Real-Life Relaxed Concurrency with
FSL++” [DV17].

(except Cosmo23—see more below) only verify implementations against

23Mével et al., “Cosmo: a concur-
rent separation logic for multicore
OCaml” [MJP20].

some “reasonable” specifications that are sufficient for their respective
purposes, but do not necessarily capture their full functional correctness.
For example, as we will see, even with unsafe features, the RMC libraries
verified in RBrlx only need specifications strong enough to verify the
soundness of Rust’s type system, which focuses on safety and does not
expose relaxed behaviors to users. As another example, the queue speci-
fication in GPS24 only captures the fact that a dequeue is synchronized 24Turon et al., “GPS: navigating weak

memory with ghosts, protocols, and sep-
aration” [TVD14]; Kaiser et al., “Strong
Logic for Weak Memory: Reasoning
About Release-Acquire Consistency in
Iris” [Kai+17].

with the enqueue that it is matched with, but not the standard first-in-
first-out (FIFO) property of queues. Stronger functional correctness CSL
specifications (from now on, specs for short) for RMC libraries thus are
needed, especially for clients that build new libraries out of smaller ones
and rely on certain relaxed behaviors of the constituent libraries to verify
their library’s implementation.

However, unlike in the SC setting, in RMC verification research there
is no canonical way to specify full functional correctness of a library
that may expose relaxed behaviors. While linearizability25 is the de 25Herlihy and Wing, “Linearizability: A

Correctness Condition for Concurrent Ob-
jects” [HW90].facto standard correctness condition for concurrent libraries, it does not

extend to many highly concurrent libraries, including those in RMC:
these libraries tend to have less synchronization or control, and it may
be that a linearization is extremely difficult to construct (e.g., Herlihy-
Wing queue) or that the library has no useful sequential behaviors (e.g.,
exchangers26). Therefore, various linearizability-like criteria have been 26[SLS05; HRV15].

proposed as alternatives,27 especially for relaxed memory.28 These works 27[Hen+13; JR14; Der+14; Haa+16;
Nei94; AKY10; Bur+14; CRR15].

28[Bur+12; BDG13; Jag+13; Doh+18;
Don+18; Raa+19; EE19; Kri+20].

essentially share one basic idea in relaxing linearizability: instead of
requiring a total order on a library’s operations, one only requires that
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operations respect some partial orders. These works, however, have little
support for modular client reasoning. Therefore, we want to improve the
proposed relaxations of linearizability with Hoare-style specs to support
better modular reasoning about clients who rely on strong correctness
guarantees of RMC libraries.

Accordingly, our starting point is logical atomicity,29 a key proof29Rocha Pinto et al., “TaDA: A Logic for
Time and Data Abstraction” [RPDG14];
Svendsen and Birkedal, “Impredicative
Concurrent Abstract Predicates” [SB14];
Jung et al., “Iris: Monoids and Invariants
as an Orthogonal Basis for Concurrent Rea-
soning” [Jun+15]; Jung et al., “The future
is ours: prophecy variables in separation
logic” [Jun+20].

technique to achieve strong specs and modular client reasoning in (SC)
CSLs. Logically atomic specs are similar to Hoare-triple based specs, but
they allow atomic access to the exact, up-to-date abstract state of the data
structure. As such, they provide the abstraction that an operation takes
effect atomically on the data structure’s abstract state, so that clients
can build a concurrent protocol to govern how the data structure is used
(how the state can evolve). If the client wants to compose multiple data
structures, they can further build a protocol for multiple abstract states,
all the while enjoying the benefits of separation logics.

Logical atomicity has been applied mostly in the SC setting, and only
recently did Mével and Jourdan30 demonstrate its use to give stronger30Mével and Jourdan, “Formal verification

of a concurrent bounded queue in a weak
memory model” [MJ21]. CSL specs for RMC libraries. Unsurprisingly, the application of the tech-

nique needs to account for relaxed behaviors: Mével and Jourdan needed
to combine logical atomicity with the tracking of some synchronization
information among library operations, reminiscent of the partial orders
from the relaxations of linearizability. But they only needed limited
synchronization tracking, because their logic, Cosmo,31 is sound only for31Mével et al., “Cosmo: a concur-

rent separation logic for multicore
OCaml” [MJP20]. the Multicore OCaml memory model,32 and they only gave one spec for

32Dolan et al., “Bounding data races in
space and time” [DSM18].

a concurrent queue and verified one client.
Consequently, the Cosmo-style specs does not scale to libraries or

clients that rely on interacting relaxed behaviors. More specifically, while
Cosmo specs expose internal (to the implementation) synchronizations
among operations, they do not take into account how additional exter-
nal synchronizations created by clients or other libraries can affect the
behaviors of the library in question.

LOGICAL ATOMICITY AND RICHER PARTIAL ORDERS. We generalize Mével
and Jourdan’s approach by combining logical atomicity with richer
partial orders inspired by the relaxations of linearizability, so that we
can give stronger specs for more weakly consistent libraries, in the
more relaxed memory model RC11. But, given the plethora of partial
orders from those relaxations of linearizability, which one should we
use? We believe the event-graph based criteria proposed by Raad et al.3333Raad et al., “On library correct-

ness under weak memory consistency:
specifying and verifying concurrent li-
braries under declarative consistency mod-
els” [Raa+19].

(“Yacovet”) are the most general, because in that framework a verifier
can give a library stronger or weaker specs by choosing the partial orders
they prefer and by stating suitable library-specific consistency conditions
on the partial orders. Therefore, we decided to encode Yacovet criteria
in our separation logic and enhance them further with logical atomicity.
As such, we can give strong and compositional Hoare-style specs for
RMC libraries, with better support for modular client reasoning, in a new
framework called Compass. We demonstrate the strength, satisfiability,
and support for client reasoning of our specs with multiple mechanized
libraries and client verifications.
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ORC11 (§3)C11/RC11 Review (§2)

λRust (§4)Part I

Base Logic (§7) Iris Review (§6)

vProp (§8)

Atomic Points-To (§10)Non-Atomic Points-To (§9) RMC General Invariants (§11)

Example Verifications (§12)
Part II

The SC Lifetime Logic Review (§15)RustBelt Review (§14)

The Relaxed Lifetime Logic (§16) GPS Protocols (§17)

RwLock (§18)Arc (§19)
Part III

Logical Atomicity Review (§21)

Compass Specs (§22)

Stacks and Queues (§23) Exchanger and Elimination Stack (§24)

Part IV

FIGURE 1.1: Dependency graph of this dissertation’s chapters and the concepts that they introduce.
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1.4 Structure

This dissertation is composed of three parts: Part II presents the basic
layers needed to build RMC separation logics with Iris, while Part III
and Part IV discuss how such logics can be extended and/or applied
for RustBelt Relaxed and Compass, respectively. Part III and Part IV are
independent from each other, but both rely on materials presented in
Part II. Each part will discuss the context, the challenges, the solutions,
and the results separately, as well as related and future work in detail.
The conclusion (Chapter 26) provides a high level summary and potential
future research directions. Note that Figure 1.1 (page 7) provides the
dependency graph for the main chapters in this dissertation.

Part I presents ORC11, an operational variant of RC11 that is needed
to instantiate Iris. It provides a brief background review on relaxed
memory models, which readers who are familiar with the topics can skip.
The most important feature of ORC11 is its race detector—an operational
account for data races, which need meticulous care and significantly
complicate the soundness proof of iRC11.3434It indeed delayed the publication of the

RBrlx work by a year. Part II discusses the features and the construction of iRC11, our ex-
tensible RMC separation logic for ORC11. It first provides a review of
the Iris framework. The main chapters of Part II flesh out the abstraction
layers needed to build the various core reasoning principles of iRC11: its
modalities, and its non-atomic and atomic points-to assertions, and its
forms of invariants, including cancelable invariants that employ synchro-
nized ghost state. The atomic points-to assertion is a novel contribution of
this dissertation that has not been published elsewhere. The extensibility
of the construction will be demonstrated by the fact that iRC11 not only
can incorporate all reasoning principles from all other RMC separation
logics, but also can extend and combine them with iRC11’s own novel
reasoning principles.

Part III discusses the proofs of the RustBelt Relaxed work. It first
provides an overview of Rust and RustBelt, and briefly explains the
soundness proof the Rust’s type system, which crucially depends on the
lifetime logic. The remaining chapters of Part III elaborate on how iRC11’s
synchronized ghost state and cancelable invariants are used in re-proving
the lifetime logic and in re-verifying the concurrent standard libraries of
Rust that use relaxed memory operations (e.g., Mutex, RwLock, or Arc).
The library verifications depend crucially on a combination of cancelable
invariants and GPS single-location protocols.35 A bit of history on how the35Turon et al., “GPS: navigating weak

memory with ghosts, protocols, and sep-
aration” [TVD14]; Kaiser et al., “Strong
Logic for Weak Memory: Reasoning
About Release-Acquire Consistency in
Iris” [Kai+17].

bug in Arc was found will be provided.36

36Jourdan, Insufficient synchronization in
Arc::get_mut [Jou18].

Part IV presents the Compass specification framework. It starts by
reviewing logical atomicity in both SC and RMC settings, as well as
the event-graph based Yacovet specs. It then presents how to encode
Yacovet specs in iRC11 with logical atomicity. The remaining chapters
present the library verifications and client verifications of various RMC
data structures, relying on a general notion of multi-location invariants
in combination with the atomic points-to assertions. I will also touch on
the topic of helping (cooperation) with logical atomicity, and its role in
the specs of exchangers. Some of the specifications and verifications are
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the first-ever performed in the relaxed memory setting.

1.5 Publications and Collaborations

This dissertation contains the work of the following two papers:

• [Dan+20a]: Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver
Kaiser, Derek Dreyer. “RustBelt Meets Relaxed Memory”, appeared
in POPL 2020.

• [Dan+22]: Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-
Than Nguyen, William Mansky, Jeehoon Kang, and Derek Dreyer.
“Compass: Strong and Compositional Library Specifications in Re-
laxed Memory Separation Logic”, appeared in PLDI 2022.

While reusing much of the text from these two papers, the dissertation
provides substantially more in-depth details—many of which have not
been presented before—in a coherent structure. The following contents
are new and have not been discussed elsewhere:

• §3.4: the details of ORC11’s race detector;

• §7: the detailed model of the iRC11 base logic;

• §8: the models of various iRC11’s modalities;

• §9: the model of the non-atomic points-to assertion, which depends
tightly on ORC11’s race detector;

• §10: the model of the atomic points-to assertion;

• §11: the detailed interfaces and models of iRC11 objective invariants
and cancelable invariants;

• §12: several example verifications demonstrating many intermedi-
ate abstractions provided by iRC11;

• §16: more details on how the lifetime logic was ported to iRC11;

• §17: the detailed model of GPS single-location protocols, built atop
atomic points-to;

• §19: the detailed verification of Rust’s standard library Arc;

• §22: the detailed interpretations of Compass specs in iRC11 with
logical atomicity;

• §23: the verifications of stacks and queues against Compass specs;

• §24: a more complete spec of the exchanger with helping.

Some of the ideas in this work were originally developed in iGPS
([Kai+17]: Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav,
and Viktor Vafeiadis. “Strong Logic for Weak Memory: Reasoning About
Release-Acquire Consistency in Iris”, appeared in ECOOP 2017) of which
I was a co-author. Although iGPS is not a part of this dissertation, I
contributed to those ideas and have ported them fully into iRC11.
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COLLABORATIONS. The two papers mentioned above, on which this dis-
sertation is based, are the results of delightful collaborations. Although
I led the efforts in both works, they would not have been achievable
without the team efforts of many fellow researchers.

For RBrlx, the ORC11’s race detector and the model of GPS protocols
were inspired by those developed for iGPS, which in turn was the result
of collaborations with Jan-Oliver (Janno) Kaiser. The flaw of the initial
ORC11’s race detector was found by Derek Dreyer, and after I fixed
the design, it was Janno that led the (on-paper) correspondence proof
between RC11 and ORC11. I proved most of the soundness of the iRC11

logic, but I collaborated with Jacques-Henri Jourdan to construct the
models of several iRC11 modalities. It was Jacques-Henri who used
iRC11 to re-prove the soundness of the lifetime logic. I re-verified the
Rust concurrent libraries by substantially extending the original proofs in
SC RustBelt.37 It was also Jacques-Henri’s original suggestion to re-prove37Jung et al., “RustBelt: Securing the

Foundations of the Rust Programming Lan-
guage” [Jun+18a]. the model of GPS protocols directly on top of iRC11, instead of on top of

the base logic from Iris’ instantiation as in iGPS. I only completed that
task 2 years later.

For Compass, I encoded the Yacovet specs in iRC11 with logical atom-
icity, and verified library implementations against those specs. I collabo-
rated with Jaehwang Jung and Jaemin Choi to refine those specs to cater
to the linearizablity-style specs, but those specs are not included in this
dissertation. Together with all other co-authors, we performed the client
verifications that used the specs reported in [Dan+22].

COQ ARTIFACTS. Unless noted explicitly, all definitions and proofs in this
dissertation are formalized in Coq. The follow repositories contain the
respective Coq developments and instructions for how to build and use
them.

• ORC11:

https://gitlab.mpi-sws.org/iris/gpfsl/-/tree/master/orc11

• iRC11:

https://gitlab.mpi-sws.org/iris/gpfsl/-/tree/master/gpfsl

• RBrlx:

https://gitlab.mpi-sws.org/iris/lambda-rust/-/tree/masters/

weak_mem

• Compass:

https://gitlab.mpi-sws.org/iris/gpfsl/-/tree/master/gpfsl-examples

https://gitlab.mpi-sws.org/iris/gpfsl/-/tree/master/orc11
https://gitlab.mpi-sws.org/iris/gpfsl/-/tree/master/gpfsl
https://gitlab.mpi-sws.org/iris/lambda-rust/-/tree/masters/weak_mem
https://gitlab.mpi-sws.org/iris/lambda-rust/-/tree/masters/weak_mem
https://gitlab.mpi-sws.org/iris/gpfsl/-/tree/master/gpfsl-examples


Part I

OPERATIONAL SEMANTICS FOR RELAXED MEMORY
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This thesis discusses the features and the construction of iRC11, a
concurrent separation logic that is sound for the relaxed memory model
RC11.38 We do not assume prior knowledge either on relaxed memory 38Lahav et al., “Repairing sequential con-

sistency in C/C++11” [Lah+17].models or concurrent separation logics. Therefore, in this part, we
discuss the semantics of relaxed memory concurrency. We start with
Chapter 2 to review relaxed memory models defined in axiomatic style,
specifically for the C1139 and RC11 models. Readers familiar with RMC 39Batty et al., “Mathematizing C++ con-

currency” [Bat+11].can freely skip this review, unless they are interested in the specific
details of the RC11 model. Then, in Chapter 3, we present our first
contribution: ORC11, an operational version of RC11 that is geared to
complement the λRust language used in RustBelt,40 which is presented in 40Jung et al., “RustBelt: Securing the

Foundations of the Rust Programming Lan-
guage” [Jun+18a].Chapter 4. Developing an operational semantics for RC11 is a necessary

prerequisite for instantiating Iris. The bottom half of Figure 1.1 visualizes
the dependency among these chapters.





2
Background: Relaxed Memory Models

The goal of hardware and language relaxed memory models is to give an
abstraction for the possibility (or impossibility) of out-of-order behaviors
for relaxed memory accesses, which are induced by hardware and/or
compiler optimizations. The models can be defined in form of either
operational or axiomatic semantics. RMC operational semantics typically
involve some kind of buffers (e.g., write buffers in x86-TSO)1 to delay 1Sewell et al., “x86-TSO: a rigorous and

usable programmer’s model for x86 multi-
processors” [Sew+10].the effects of memory accesses and thus make them appear out-of-order.

Axiomatic semantics, on the other hand, define a set of constraints
(axioms) on several partial orders among memory accesses in a candidate
execution—accesses not so tightly ordered can thus be executed out-of-
order. In this chapter, we review the axiomatic semantics of C112 and 2Batty et al., “Mathematizing C++ con-

currency” [Bat+11].RC11.3 More specifically, we review the intuitive semantics of C11 in §2.1,
3Lahav et al., “Repairing sequential con-

sistency in C/C++11” [Lah+17].
then a formal excerpt of RC11’s partial orders and axioms in §2.2. In §3,
we present ORC11, our operational version of RC11.

2.1 C11, Intuitively

The C11 memory model offers several different modes of memory ac-
cesses, including non-atomic (na), relaxed (rlx), release (rel), acquire
(acq), and sequentially consistent (sc). Non-atomic accesses are “nor-
mal” data accesses, meaning that it is the programmer’s responsibility
to ensure that they are properly synchronized through other means. If
they are not properly synchronized—i.e., there is a data race involving
non-atomics—then C11 says the whole program has undefined behavior,
or UB for short. The remaining modes, collectively called atomic accesses,
are allowed to be racy and are indeed used to establish synchronization
among non-atomic accesses.

Example 2.1 (Message-Passing). To explain what synchronization ac-
tually means, we explore the Message-Passing examples in Figure 2.1.
In Example 2.1(a), we initialize two memory locations ℓx and ℓy to 0

non-atomically, then spawn two threads π (on the left) and ρ (on the
right). Thread π intends to pass a “message” to ρ. The message, 42, is
stored in ℓx (line π1). π then sets the boolean flag ℓy to 1 (line π2), to
signal to ρ that the message is ready to be received. Once ρ sees the flag
set (line ρ1), it attempts to read the message from ℓx (line ρ2). However,
both the intended value of 42 as well as the initial value of 0 could be

15
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ℓx :=na 0; ℓy :=na 0;

π1: ℓx :=rlx 42;

π2: ℓy :=rlx 1;

ρ1: if ∗rlxℓy != 0 then

ρ2: ∗rlxℓx; // 0 or 42

((a)) MP with relaxed accesses.

ℓx :=na 0; ℓy :=na 0;

π1: ℓx :=na 42;

π2: ℓy :=sc 1;

ρ1: if ∗scℓy != 0 then

ρ2: ∗naℓx; // 42

((b)) MP with SC accesses.

ℓx :=na 0; ℓy :=na 0;

π1: ℓx :=na 42;

π2: ℓy :=rel 1;

ρ1: if ∗acqℓy != 0 then

ρ2: ∗naℓx; // 42

((c)) MP with release-acquire accesses.

ℓx :=na 0; ℓy :=na 0;

π1: ℓx :=na 42;

π2: fencerel;

π3: ℓy :=rlx 1;

ρ1: if ∗rlxℓy != 0 then

ρ2: fenceacq;

ρ3: ∗naℓx; // 42

((d)) MP with relaxed accesses and fences.

FIGURE 2.1: Message-Passing examples in
C11/RC11.

read. That is, even though ρ has read 1 from ℓy, it is not guaranteed
to read 42 from ℓx. This is because the relaxed accesses of ℓy are not
enough to establish synchronization between π and ρ.

In C11, threads are not synchronized by default: they each have their
own perspective on the values in shared memory, and thus may observe
memory events in different order. In Example 2.1(a), thread ρ may see
that π2 (π’s write to ℓy) is executed out-of-order, before π1 (π’s write to
ℓx), and therefore ρ reads 0 from ℓx in line ρ2. What is happening under
the hood is that hardware and/or compilers may deduce that π’s writes
are of independent memory locations, and thus may reorder them.44Note that from thread π’s point of view,

such reordering does not really matter as
it cannot distinguish the effects, which,
on the contrary, are distinguishable to the
concurrently running thread ρ.

C11, however, also provides certain ways of performing accesses such
that all threads can agree that one access is ordered before the other. In
particular, the remaining examples in Figure 2.1 present several ways to
create the happens-before relation between π’s write to ℓx (π1) and ρ’s
read from ℓx (ρ2). We say to “establish synchronization” is to guarantee
somehow that two memory events of interest are in the happens-before
relation. Relaxed accesses are the weakest atomic accesses in C11 and
do not guarantee happens-before. Thus, in Example 2.1(a), the relaxed
accesses on ℓy do not establish synchronization between the accesses on
ℓx.

SC ACCESSES (sc) are the strongest option to establish synchronization,
and we use them in Example 2.1(b) for the accesses of ℓy.5 If ρ’s read5According to C11, SC accesses can have

subtle behaviors when mixed with other
kinds of accesses. We refer interested read-
ers to the RC11 paper ([Lah+17]) for
more details. In this dissertation, we do
not focus on SC accesses. We only mention
them here for the purpose of demonstra-
tion.

of ℓy (line ρ1) is not zero, then it reads from π’s write of 1 to ℓy (line
π2). By C11’s semantics of SC accesses, π2 happens before ρ1. Further-
more, SC accesses prevent all reorderings of other intra-thread accesses
around them—i.e., π1 cannot be reordered to after π2, and ρ2 cannot
be reordered to before ρ1. As a result, we know that π1 happens before
ρ2—or in other words, that ρ’s read of ℓx is synchronized with π’s write
to it. Since the write of 42 is the most recent write to ℓx, we know that
thread ρ must read 42 in ρ2.

RELEASE-ACQUIRE ACCESSES. Instead of using the costly SC accesses,
we can use the release-acquire idiom to establish synchronization, as in
Example 2.1(c). Here, π uses a release (rel) write in π2, and ρ uses an
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acquire (acq) read in ρ1. If ρ1 reads 1 from π2, C11’s release-acquire
semantics on the location ℓx says that π2 happens before ρ1. Furthermore,
a release write prevents reordering other intra-thread reads and writes
that appear before it to after it, so, again, π1 cannot be reordered to after
π2. Conversely, an acquire read prevents reordering other intra-thread
reads and writes that appear after it to before it, so ρ2 cannot be reordered
to before ρ1. Consequently, we still have π1 happens before ρ2. Note that
release and acquire accesses are less costly to implement than SC accesses
because they allow more reordering around them. Nevertheless, they are
quite sufficient to establish synchronization in many RMC algorithms.6 6In x86-TSO ([Sew+10]), release and ac-

quire accesses are the default and weakest
atomic accesses.

RELEASE-ACQUIRE FENCES. We can also achieve release-acquire synchro-
nization using relaxed accesses with fences, as in Example 2.1(d). Here,
thread π performs a release fence (fencerel) after the write to ℓx, and
then relaxedly (rlx) writes to ℓy. Meanwhile, ρ performs an acquire
fence (fenceacq) once it relaxedly reads 1 from ℓy. Note that there is
no happens-before relation between the relaxed accesses of ℓy, but C11
guarantees happens-before between the accesses of ℓx (lines π1 and ρ3)
through chains of the form “release fence → relaxed write → relaxed
read→ acquire fence”. That is, synchronization is guaranteed between
the events before the release fence and the events after the acquire fence
if the two fences are connected by the relaxed write and read.

In terms of reordering, a release fence prevents reorderings of other
accesses before it (to after it) and relaxed writes after it (to before it),
while an acquire fence prevents reorderings of other accesses after it
(to before it) and relaxed reads before it (to after it). Combining those
restrictions with the fact that ρ1 reads from π3, we have that π1 happens
before ρ3.

DATA RACES. Note that in Example 2.1(a), where we do not have suf-
ficient synchronization between the accesses to ℓx, the worst thing can
happen is that ρ would read unwanted values. However, if we were to
replace the rlx accesses of ℓx with non-atomic accesses (na), it would
constitute a data race and the program would exhibit undefined behav-
ior. In the remaining examples in Figure 2.1, we always have sufficient
synchronization (and hence no races) between the accesses of ℓx, so we
can use non-atomic accesses for those.

2.2 RC11, Formally

The axiomatic semantics of C11/RC11 relaxed memory models are de-
fined in two steps:

• first, we generate a set of candidate executions for the program
of interest, in form of graphs whose vertices are memory events
generated by the program’s memory accesses and whose edges are
several partial orders among the events;

• then, the behaviors of the program are those candidate executions
that satisfy the model’s consistency axioms.
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In the following, we provide an excerpt of the RC11 formalization—
following Lahav et al.7 closely with minor presentation deviations—that7Lahav et al., “Repairing sequential con-

sistency in C/C++11” [Lah+17]. are relevant to the features used in this dissertation. Interested readers
can consult the original paper. Note that the formalizations in this chapter
are also not included in our Coq developments. Again, they can be found
in the RC11 paper’s artifacts.

2.2.1 Basic Definitions

A relaxed memory model only concerns about the possible orders between
memory accesses, and thus can be separated from the language syntax.
Therefore, we can delay our language syntax much later (Chapter 4).For
the bare minimum, we assume the abstract types Loc for memory loca-
tions and Val for values stored in memory, with meta-variables ℓ ∈ Loc
and v ∈ Val, respectively.

First, we need the type of memory access consistency mode:

Definition 2.2 (Memory Access Consistency Mode).

o ∈ AccessMode ::= sc | acq | rel | relacq | rlx | na.

AccessMode’S LATTICE o1 ⊑ o2

na ⊑ o rlx ⊑ acq rlx ⊑ rel

rel ⊑ relacq acq ⊑ relacq o ⊑ sc

Definition 2.3 (Memory Access Event). Each memory access generates
an event of type MemEvent, with the meta-variable ε.

ε ∈ MemEvent ::= Ro(ℓ,v) | Wo(ℓ,v) | Uor,ow(ℓ,vr,vw) | Fo.

Specifically:

• Ro(ℓ,v): a Read of v from ℓ, with access mode o ∈ {na, rlx, acq, sc}.

• Wo(ℓ,v): a Write of v to ℓ, with access mode o ∈ {na, rlx, rel, sc}.

• Uor,ow(ℓ,vr,vw): a read-modify-write (Update) to ℓ, with read value
vr and write value vw, and read access mode or ∈ {rlx, acq, sc},
and write access mode ow ∈ {rlx, rel, sc}.88Alternatively, RC11 models an Update

event as a Read event immediately fol-
lowed by a Write event. Here we follow
C11. It is only a matter of presentation.

• Fo: a memory Fence, with o ∈ {acq, rel, relacq, sc}.

Definition 2.4 (Memory Event Projections). For a memory event ε, the
projections loc, mod, valr, and valw respectively give ε’s location, access
mode, read value and write value when applicable. More specifically,
locis only applicable for R, W, and U events; valr is applicable for R and U

events; and valw is applicable for W and U events.
For U events, mod is defined as follows:

• Urlx,rlx( ).mod ::= rlx

• Urlx,rel( ).mod ::= rel

• Uacq,rlx( ).mod ::= acq

• Uacq,rel( ).mod ::= relacq
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• Usc,sc( ).mod ::= sc

Notation 2.5 (Update Event Access Mode). Consequently, we also use
the following shorthand notations for Update events:

• Urlx( ) ::= Urlx,rlx( )

• Urel( ) ::= Urlx,rel( )

• Uacq( ) ::= Urlx,acq( )

• Urelacq( ) ::= Uacq,rel( )

• Usc( ) ::= Usc,sc( )

Notation 2.6 (Memory Event Sets). The notations R, W, U, and F respec-
tively denote sets of Read, Write, Update, and Fence events.

We may also combine event sets, e.g., RW ::= R ∪ W. We use subscript
and superscript respectively to filter the sets by accessed location and
access mode, e.g., W⊒rel

ℓ ::= {ε ∈ W | ε.loc = ℓ ∧ ε.mod ⊒ rel}.

Notation 2.7 (Memory Event Relations). For a binary relation on events
R ∈ MemEvent ×MemEvent, R?, R+, and R∗ respectively denote its re-
flexive, transitive, and reflexive-transitive closures. dom(R) and codom(R)

denote the domain and co-domain of R, respectively.
The notation R1 ; R2 denotes the left composition of two relations

R1 and R2. We assume that ; binds stronger than ∪ and \. The notation
[A] stands for the identity relation on the set A. Consequently, [A] ; R

can be understood as filtering R on the left with A, while R ; [B] filters
R on the right with B. That is, [A] ; R = {(εa, εb) ∈ R | εa ∈ A}, and
R ; [B] = {(εa, εb) ∈ R | εb ∈ B}. Finally, [A] ;R ; [B] = R ∩ (A×B).

Given a function f , =f and ̸=f denote the binary relations of pairs
that are f -equal and f -non-equal, respectively:

=f ::= {(εa, εb) | f(εa) = f(εb)}
̸=f ::= {(εa, εb) | f(εa) ̸= f(εb)}

Meanwhile, given a relation R′, R|R′ denotes the filtering of R with
respect to R′, i.e., R|R′ ::= R∩R′. For example, R|=loc

and R|̸=loc
denote

the relation R restricted to same and different locations, respectively.

2.2.2 Execution Graphs

Definition 2.8 (Execution Graph). An execution graph G is a tuple
(E, po, rf,mo):

• E is the set of memory events (MemEvent) in G .

• The program order po is a strict9 partial order that orders each 9It is irreflexive, i.e., (ε, ε) /∈ po.

thread’s event by the program’s control flow. For simplicity, RC11
assumes that for each location ℓ, E contains a Write event εℓ0 ::=

Wna(ℓ, 0) as the initialization for ℓ. po is then required to order
initialization events before all other events, i.e., E0 × (E \ E0) ⊆ po

where E0 ::=
{
εℓ0 ∈ E

}
is the set of E’s initialization events.

• The reads-from relation rf relates a write with a read that reads
from it, i.e.,



20 Background: Relaxed Memory Models

Wna(ℓx, 0) Wna(ℓy, 0)

Wrlx(ℓx, 42)

Wrlx(ℓy, 1)

Rrlx(ℓy, 1)

Rrlx(ℓx, 0)

po

po po

po po

mo

mo

rfrf

((a)) An execution of Example 2.1(a).

Wna(ℓx, 0) Wna(ℓy, 0)

Wrlx(ℓx, 42)

Wrlx(ℓy, 1)

Rrlx(ℓy, 1)

Rrlx(ℓx, 42)

mo

mo

rf rf

((b)) Another execution of Example 2.1(a).

Wna(ℓx, 0) Wna(ℓy, 0)

Wna(ℓx, 42)

Wrel(ℓy, 1)

Racq(ℓy, 1)

Rna(ℓx, 42)

mo

mo

rf rf

((c)) An execution of Example 2.1(c).

Wna(ℓx, 0) Wna(ℓy, 0)

Wna(ℓx, 42)

Frel

Wrlx(ℓy, 1)

Rrlx(ℓy, 1)

Facq

Rna(ℓx, 42)

mo

mo
rf rf

((d)) An execution of Example 2.1(d).

FIGURE 2.2: Candidate executions of sev-
eral MP examples.

(i) rf ⊆ [WU] ; =loc ; [RU];10 and10Recall that an Update event is consid-
ered both a read and a write.

(ii) rf respects written and read values: εw.valw = εr.valr for all
(εw, εr) ∈ rf; and

(iii) rf is injective: if (ε1w, εr) ∈ rf and (ε2w, εr) ∈ rf then ε1w = ε2w.

• The modification order mo is a strict partial order that gives a strict
total order on the write events of each location. That is, mo is a
disjoint union of the relations {moℓ}ℓ∈Loc where moℓ is a strict total
order on (WU)ℓ.

The components are also used as projections, e.g., G .mo. In cases where
G is clear in the context, we may also drop the “G .” part and just use mo.

Definition 2.9 (Candidate Execution). Execution graphs of a program P
encode prefixes of traces of events generated by the program’s memory
accesses and fences. A execution G is a candidate execution if it represents
a full trace generated by the whole program P.

Example 2.10 (Candidate Executions for MP). Figure 2.2 gives a few
candidate executions for several MP examples in Figure 2.1. We use filled
arrows, dotted arrows, and dashed arrows—with the same colors—for
po, mo, and rf edges, respectively, between events. To avoid cluttering,
we sometimes elide edge labels and instead use the arrow style to make
the edge’s type evident.

Definition 2.11 (Complete Execution). An execution G is complete if ev-
ery read reads some written value, i.e., G .R ⊆ codom(G .rf). A candidate
execution is always complete, but the reverse is not always true.
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Definition 2.12 (Derived Relations). RC11 defines the following derived
partial orders on execution graphs.

rb ::= (rf−1 ;mo) \ [E] (reads before)

eco ::= (rf ∪mo ∪ rb)+ (extended coherence order)

rs ::= [WU] ; po|?=loc
; [WU⊒rlx] ; (rf ; [U])∗ (release sequence)

sw ::= [E⊒rel] ; ([F] ; po)? ; rs ; rf ; (synchronized-with)

[RU⊒rlx] ; (po ; [F])? ; [E⊒acq]

hb ::= (po ∪ sw)+ (happens-before)

psc ::= . . . (elided) (partial SC)

• The reads-before relation rb relates a Read event εr and a Write
event εw, where εr reads from (rf) a write that is mo-before εw.
The “ \ [E]” part is to exclude the case where an Update event reads
from itself.

• The extended coherence order eco is the transitive closure of rf, mo,
and rb, and is defined by RC11 to remedy C11’s behaviors for SC
accesses and fences.11 11Lahav et al., “Repairing sequential con-

sistency in C/C++11” [Lah+17].

• The release sequence rs of a Write event εw contains (i) all later
same-thread, same-location (po|=loc

-later) atomic writes (WU⊒rlx)
including the write εw itself—hence the reflexive closure (?) of
po|=loc

, as well as (ii) all Updates that recursively read from such
writes.

• The synchronized-with relation sw defines inter-thread synchroniza-
tion. A release event εa ∈ E⊒rel is synchronized with an acquire
event εb ∈ E⊒acq, if εb (or, in case εb is a Fence event, some atomic
Read event that is po-before εb) reads from the release sequence of
εa (or in case εa is a Fence event, some atomic Write event that is
po-after εa). Note that the relation rs ; rf is between a Write event
and a Read event. The relations ([F] ; po)? and (po ; [F])? allow us to
extend rs ; rf to fences that come po-before and po-after the Write
and the Read events in rs ; rf, respectively.

• Most importantly, the happens-before relation hb formally defines
what global synchronization means, as the transitive closure of
the inter-thread synchronization sw relation and the intra-thread
program order po.

• Finally, the partial SC relation psc is defined by RC11 to rectify SC
behaviors, using a diligent combination of mo, rf, rb, eco, and hb.
The exact definition, however, is not in the focus of this dissertation
and therefore elided.

Example 2.13 (Illustrations of Derived Relations). Figure 2.3 demon-
strates the derived relations on several execution graphs. Figure 2.3(e)
especially demonstrates a fairly complex instance of the release sequence
rs relation with 4 threads, of which the middle 2 threads use Updates
(atomic read-modify-write instructions).
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Wna(ℓx, 0) Wna(ℓy, 0)

Wrlx(ℓx, 42)

Wrlx(ℓy, 1)

Rrlx(ℓy, 1)

Rrlx(ℓx, 0)

rb

((a)) rb on the execution in Figure 2.2(a).

Wna(ℓx, 0) Wna(ℓy, 0)

Wrlx(ℓx, 42)

Wrlx(ℓy, 1)

Rrlx(ℓy, 1)

Rrlx(ℓx, 0)

eco

((b)) eco (transitive closure elided) derived
from Figure 2.3(a).

Wna(ℓx, 0) Wna(ℓy, 0)

Wna(ℓx, 42)

Wrel(ℓy, 1)

Racq(ℓy, 1)

Rna(ℓx, 42)rs

sw hb

((c)) rs, sw, and a part of hb on the execution
in Figure 2.2(c).

Wna(ℓx, 0) Wna(ℓy, 0)

Wna(ℓx, 42)

Frel

Wrlx(ℓy, 1)

Rrlx(ℓy, 1)

Facq

Rna(ℓx, 42)rs

sw hb

((d)) rs, sw, and a part of hb on the execution
in Figure 2.2(d).

Wna(ℓx, 0) Wna(ℓy, 0)

Wna(ℓx, 42)

Wrel(ℓy, 1)

Wrlx(ℓy, 2)

Urlx(ℓy, 2, 3)

Urlx(ℓy, 3, 4)

Rrlx(ℓy, 4)

Facq

Rna(ℓx, 42)

rs
sw

hb

((e)) More complex rs, sw, and hb on an execution with Updates.

FIGURE 2.3: Illustrations of derived rela-
tions. We use dotted arrows, dash-dot-dotted arrows, filled arrows, filled

arrows, and dash-dotted arrows, respectively for rb, eco, rs, sw, and hb

edges.

2.2.3 Consistency

Definition 2.14 (RC11-consistency). An execution G is RC11-consistent
if it is complete (Definition 2.11) and

• hb ; eco? is irreflexive; and (RC11-COHERENCE)

• psc is acyclic; and (RC11-SC)

• po ∪ rf is acyclic. (RC11-NO-OOTA)

RC11-COHERENCE is the main axiom that give sane behaviors to most
memory operations—see Proposition 2.19 below. RC11-SC is the main
contribution of the RC11 work to give better semantics for SC accesses
and fences, which, again, is not in the focus of this dissertation and is
only stated here for completeness. The RC11-NO-OOTA condition is a
simple fix to forbid load-buffering (LB) behaviors, and therefore forbids
the out-of-thin-air problem12—see Remark 2.21 below.12Boehm and Demsky, “Outlawing ghosts:

avoiding out-of-thin-air results” [BD14].
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ℓx :=na 0; ℓy :=na 0;

π1: ℓx :=na 42;

π2: ℓy :=rlx 1;

ρ1: if ∗rlxℓy != 0 then

ρ2: ∗naℓx; // racy

((a)) A racy MP program.

Wna(ℓx, 0) Wna(ℓy, 0)

Wna(ℓx, 42)

Wrlx(ℓy, 1)

Rrlx(ℓy, 1)

Rna(ℓx, )

race

((b)) No hb is established between the accesses of
ℓx.

FIGURE 2.4: A racy execution of a racy
MP program.2.2.4 Data Races

Definition 2.15 (Races). Two events εa and εb are conflicting in an
execution G if they are on the same location and one of them is a write,
i.e., εa ̸= εb and εa.loc = εb.loc and {εa, εb} ∩G .(WU) ̸= ∅.

The pair (εa, εb) is called a race in G , denoted (εa, εb) ∈ G .race,
if they are conflicting in G and neither happens before the other, i.e.,
(εa, εb) /∈ hb ∪ hb−1.

Definition 2.16 (Racy Executions). An execution G is called racy if there
is some conflicting event pair in G such that one of them is a non-atomic
access, i.e., ∃(εa, εb) ∈ G . race ∧ {εa, εb} ∩ Ena ̸= ∅.

Example 2.17 (Racy Execution of MP). A racy MP program and one
of its racy executions is given in Figure 2.4. The race is between the
non-atomic accesses of ℓx, where no hb edge is established between the
accesses, because we use only relaxed accesses for ℓy.

2.2.5 Program Behaviors

Definition 2.18 (RC11 Program Behavior). A program P has undefined
behavior (UB) under RC11 if it has some racy RC11-consistent execution.
Otherwise, its behaviors are defined by the set of RC11-consistent full
executions of P.

Proposition 2.19 (RC11 and C11 Coherence). RC11-COHERENCE is
equivalent to the conjunction of the following C11 axioms:13 13Lahav et al., “Repairing sequential con-

sistency in C/C++11” [Lah+17], §3.4,
Proposition 1.• hb is irreflexive. (C11-HB)

• rf ; hb is irreflexive. (C11-NO-FUTURE-READ)

• mo ; rf ; hb is irreflexive. (C11-CORW)

• mo ; hb is irreflexive. (C11-COWW)

• mo ; hb ; rf−1 is irreflexive. (C11-COWR)

• mo ; rf ; hb ; rf−1 is irreflexive. (C11-CORR)

Example 2.20 (C11 Coherence). C11 coherence axioms are demon-
strated by several forbidden (non-consistent) behaviors14 in Figure 2.5. 14Batty et al., “Mathematizing C++ con-

currency” [Bat+11], §2.7.

• C11-HB ensures that hb is a strict partial order.

• C11-NO-FUTURE-READ (Figure 2.5(a)) says that a read may not
happen before the write that it reads from.
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R(ℓx, 1)

W(ℓx, 1)

rf

hb

((a)) Violation of C11-NO-
FUTURE-READ.

W(ℓx, 1) R(ℓx, 1)

W(ℓx, 2)

rf

hbmo

((b)) Violation of C11-
CORW.

W(ℓx, 1)

W(ℓx, 2)

mo
hb

((c)) Violation of C11-
COWW.

W(ℓx, 1) W(ℓx, 2)

R(ℓx, 1)
rf

hb

mo

((d)) Violation of C11-
COWR.

W(ℓx, 1)

W(ℓx, 2)

R(ℓx, 1)

R(ℓx, 2)

rf

rf
hbmo

((e)) Violation of C11-CORR.

FIGURE 2.5: Several forbidden (inconsis-
tent) executions in C11/RC11.

• C11-CORW (Figure 2.5(b)) requires that a read may not happen
before a write that mo-before the write it reads from.

• C11-COWW (Figure 2.5(c)) requires that mo and hb may not dis-
agree.

• C11-COWR (Figure 2.5(d)) requires that a read may not read from
a write that is already hidden by (mo-before) another write that
happens-before it.

• C11-CORR (Figure 2.5(e)) requires that two reads connected by hb

may not read from writes with the inverse order in mo.

Remark 2.21 (LB and OOTA). The C11 memory model allows the so-
called Load-Buffering (LB) behavior, while the RC11 memory model
simply forbids it with RC11-NO-OOTA. Figure 2.6(a) gives an example
program with an execution demonstrating its LB behavior in Figure 2.6(c).
Here, one can think that the reads (loads) are buffered until the writes are
completed, and then they can both read 1. The execution in Figure 2.6(c)
is consistent in C11, and so such behavior is allowed in C11.

The problem with LB is that, the same execution in Figure 2.6(c)
justifies an undesirable behavior of the program in Figure 2.6(b), where
the reads read 1, even though 1 does not appear in the program: it
appears out of thin air (OOTA)! OOTA behaviors are forbidden by the
informal C11 standard, and are not exhibited in any implementation.
However, it is formally non-trivial to distinguish LB, which is desirable,
from OOTA, which is not. Several solutions are already proposed to
distinguish them,15 but they result in more involved semantics. Further-15Kang et al., “A promising semantics for

relaxed-memory concurrency” [Kan+17];
Chakraborty and Vafeiadis, “Ground-
ing thin-air reads with event struc-
tures” [CV19].

more, the LB behavior itself is rather non-local and makes it hard to build
high-level, logic-based reasoning—see [Sve+18] for an attempt.

RC11 resolves to a simpler solution: forbidding LB behaviors alto-
gether, by requiring po ∪ rf to be acyclic (RC11-NO-OOTA). Similar to
existing logics,16 we also adopt this solution in ORC11 (which is an opera-16[VN13; DV16; DV17].

tional version of RC11), as it simplifies the construction of our separation
logic. Recent work by Ou and Demsky17 suggests that the performance17Ou and Demsky, “Towards understand-

ing the costs of avoiding out-of-thin-air
results” [OD18].
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∗rlxℓx; // 1

ℓy :=rlx 1;

∗rlxℓy; // 1

ℓx :=rlx 1;

((a)) A program with LB behaviors.

a := ∗rlxℓx; // 1

if (a) then

ℓy :=rlx a;

b := ∗rlxℓy; // 1

if (b) then

ℓx :=rlx b;

((b)) A program with OOTA behaviors in C11.

R(ℓx, 1)

W(ℓy, 1)

R(ℓy, 1)

W(ℓx, 1)

rf

rf

((c)) An execution with LB behav-
iors.

FIGURE 2.6: Load-buffering (LB) and Out-
of-thin-air (OOTA) behaviors.overhead of working with RC11 vs. C11 may not be so significant in prac-

tice. Even more recently, Lee et al.18 suggests forbidding LB behaviors 18Lee et al., “Putting Weak Memory in
Order via a Promising Intermediate Repre-
sentation” [Lee+23].in the source language model (e.g., C and C++) but still allowing LB

in the intermediate representation (IR) semantics. This would result
in a compromising memory model where logics like iRC11 can be used
for verifications the source level, and where all optimizations for non-
atomics can still be performed at the IR level, and therefore imposing no
overhead on non-atomics.

Remark 2.22 (Consume Accesses and Locks). Unlike C11, RC11 does not
consider consume accesses, which is a premature feature not implemented
by major compilers, nor locks, which can be implemented with release-
acquire accesses.

CHAPTER SUMMARY. This chapter reviews the high-level intuition for
the behaviors of C11 atomic accesses, as well as an excerpt of the RC11

formalization in form of axiomatic semantics. The distinctive feature of
the RMC axiomatic semantics is the use of axioms to constrains partial
orders among memory events. While this style results in very concise
definitions,19 it may take time to get used to. Nevertheless, the main 19In contrast, the formulation of ORC11

in Chapter 3 is much more verbose.inconvenience of axiomatic semantics is that the behaviors are encoded in
the axioms that are stated rather globally on relations that span multiple
events across multiple threads, making it difficult to prove soundness of
thread-local, Hoare-style CSLs directly on top of those semantics.20 In 20Yet it is still achievable, by annotat-

ing resources on incoming and outcoming
edges of an event node, as Vafeiadis et al.
demonstrated with RSL and FSL ([VN13;
DV16]).

the next chapter, we present ORC11, an operational version of RC11 that
is more convenient to build our separation logic iRC11 in Iris.





3
ORC11: Operational Repaired C11

Following iGPS,1 we need an operational semantics for relaxed memory 1Kaiser et al., “Strong Logic for Weak
Memory: Reasoning About Release-
Acquire Consistency in Iris” [Kai+17].so that it can be instantiated in the Iris framework. We extend iGPS’s

operational semantics for release-acquire and non-atomics (RA+NA) to
include relaxed accesses and fences. The result is ORC11—Operational
Repaired C11.2 2The definitions in this chapter are for-

malized in Coq in the repository https:
//gitlab.mpi-sws.org/iris/orc11.Features-wise, ORC11 is closely related to the axiomatic semantics

of RC11.3 Most importantly, it forbids load-buffering (LB) behaviors,
3Lahav et al., “Repairing sequential con-

sistency in C/C++11” [Lah+17].i.e., po ∪ rf is acyclic. Construction-wise, ORC11 follows the view-based
approach to operational semantics for relaxed memory.4 More concretely,

4Steinke and Nutt, “A unified theory
of shared memory consistency” [SN04];
Lahav et al., “Taming release-acquire
consistency” [LGV16]; Podkopaev et al.,
“Operational Aspects of C/C++ Concur-
rency” [PSN16].

it follows the promising semantics formalization5 but without promises,

5Kang et al., “A promising semantics for
relaxed-memory concurrency” [Kan+17].

and thus forbids LB. The promising semantics, however, does not model
non-atomics.6 Meanwhile, ORC11 needs to employ a race detector to

6It models plain accesses, who can race
without triggering undefined behaviors.

formalize races on non-atomics which, as we will see, in the presence of
relaxed accesses, are more tricky to get right than iGPS’s race detector.

Consequently, ORC11 is defined by two sub-semantics: the view-
based machine semantics that focuses on relaxed behaviors (§3.3) and
the race-detector semantics that focuses on UB-triggering races (§3.4). In
§3.6, we sketch a paper proof of correspondence between ORC11 and
RC11.

The expression semantics, which defines the reductions of language ex-
pressions, can fortunately be mostly separated from the relaxed memory
model that is ORC11. Chapter 4 will present the relaxed λRust language
which combines the expression reductions together with ORC11.7 7And thus the semantics of the relaxed

λRust language is a combination of three
sub-semantics: the expression semantics,
the view-based machine semantics, and
the race-detector semantics.

But first, let us give a high-level, intuitive explanation of RMC using
views.

3.1 Understanding Relaxed Memory with Views

The view-based approach to operational semantics for relaxed memory
allows for a more thread-local characterization of relaxed effects. In
particular, each thread in the program has its own local view which
represents its subjective observations on the globally-shared memory.

For example, a thread π’s local view may record (but not limited to)
the writes to memory that the thread has observed, e.g., those writes
that happen before the current program counter PCπ of the thread π.
More concretely, if we follow the language of iGPS8 and track writes to 8Kaiser et al., “Strong Logic for Weak

Memory: Reasoning About Release-
Acquire Consistency in Iris” [Kai+17].memory in views, we can defined a view as a map from memory locations

27

https://gitlab.mpi-sws.org/iris/orc11
https://gitlab.mpi-sws.org/iris/orc11
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to timestamps: View ::= Loc fin−⇀ Time, where the timestamps are indices
into an ordering of the writes to a location.9 With V (ℓ) = t, we say that9Timestamps are typically just natural

numbers, but can be more complex de-
pending on the memory model. the view V has seen or observed the write to ℓ identified by the timestamp

t. When thread π writes to a location ℓ in shared memory, a new write
event εw is added to the shared memory with some fresh timestamp tw,
and thread π updates its local view (its observations) Vπ accordingly to
include tw for ℓ.

However, it is not necessary that another thread ρ observes that
write εw by thread π immediately. In the terminology of views, we say
that thread ρ’s local view Vρ does not include the timestamp tw for ℓ.
In order to observe the write εw, thread ρ needs to perform physical
synchronization with thread π, so that thread π’s local view Vπ (which
includes εw) is incorporated or joined into Vρ. Then, Vπ is included
in Vρ: Vπ ⊑ Vρ. The view inclusion relation therefore approximates
synchronization, or more formally, the happens-before (hb) relation.
Consequently, as threads execute and their local views grow over time,
they occasionally synchronize with one another by sending their local
views to other threads.

Example 3.1 (Racy MP with Views). Consider again the racy MP example
in Figure 2.4 (Example 2.17), where we use relaxed accesses for ℓy and
therefore we are not guaranteed a happens-before relation between the
conflicting non-atomic accesses to ℓx by thread π and thread ρ. In the
language of views, this racy behavior can be explained as follows, using
Figure 3.1(a).

• After thread π writes 42 to ℓx, its local view is V 1
π , as illustrated

in Figure 3.1(a) with an arrow pointing to after the write. As an
approximation of hb, V 1

π also tracks the po relation in π, and thus
it includes the freshly created timestamp t1x for the write 42 to ℓx,
i.e., V 1

π (ℓx) = t1x.

• Similarly, after thread π writes 1 to ℓy, its local view V 2
π includes the

timestamp ty: V 2
π (ℓy) = t2y. More importantly, V 1

π ⊑ V 2
π : a thread-

local view only grows, so as to maintain that happens-before (hb)
contains program order (po).

• Unfortunately, because we use a relaxed access in writing 1 to ℓy,
thread π does not release its local view (neither V 1

π nor V 2
π ) with

that write.

• So even if thread ρ reads that write of 1 to ℓy, it does not acquire
the timestamp t1x (for the write of 42 to ℓx) into its local view after
the read V 1

ρ .

• Consequently, when reading ℓx non-atomically in the next line,
thread ρ’s current local view V 1

ρ is not guaranteed to include t1x.
In the operational semantics, performing a non-atomic operation
without having observed all writes to the same location in the local
view constitutes a race.
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ℓx :=na 0; ℓy :=na 0;

t1x : ℓx :=na 42;

t2y : ℓy :=rlx 1;

if ∗rlxℓy != 0 then

∗naℓx; // racy

V 1
π

V 2
π

V 1
ρ

((a)) Racy MP with relaxed accesses.

ℓx :=na 0; ℓy :=na 0;

t1x : ℓx :=na 42;

t2y : ℓy :=rel 1;

if ∗acqℓy != 0 then

∗naℓx; // 42

V 1
π

V 2
π

V 1
ρ

((b)) MP with release-acquire accesses.

ℓx :=na 0; ℓy :=na 0;

ℓx :=na 42;

fencerel;

ℓy :=rlx 1;

if ∗rlxℓy != 0 then

fenceacq;

∗naℓx; // 42

V 1
π

V 2
π

V 3
π

V 1
ρ

V 2
ρ

((c)) MP with relaxed accesses and fences.

FIGURE 3.1: View-based explanation of
MP behaviors.Put it differently, that thread ρ’s view before the non-atomic read of ℓx

does not include t1x approximates the fact that the non-atomic write to ℓx

does not happen before the non-atomic read, hence a race.

Example 3.2 (Release-Acquire MP with Views). Similarly, the release-
acquire synchronization in Figure 2.1(c) (Example 2.1) can also be
explained with views, using Figure 3.1(b). Because we instead use a
release write of 1 to ℓy, thread π releases its local view V 2

π through the
write (which also include the write itself). When thread ρ reads that
write using an acquire read, it acquires that view into its local view V 1

ρ .
Accordingly, V 2

π ⊑ V 1
ρ , so thread ρ has observed all writes to ℓx, and

can safely read ℓx non-atomically. Furthermore, thread ρ reads from ℓx’s
latest write, which is 42.

In other words, V 2
π ⊑ V 1

ρ encodes the synchronized-with (sw) relation
between the release-acquire pair, and transitively the happens-before
relation (hb). Effectively, thread π’s write of 42 to ℓx happens before
thread ρ’s read from ℓx, the race is excluded, and the expected behavior
results.

Example 3.3 (Fence-MP with Views). The view-based explanation for
the MP example with fences in Figure 2.1(d) (Example 2.1) is a bit more
interesting, using Figure 3.1(c).

• Here, thread π’s relaxed write to ℓy, like in Example 3.1, does
not release the current local view V 3

π at the point of the write.
However, unlike in Example 3.1, π’s release fence which comes
before guarantees that the write to ℓy does release π’s local view
before the fence, i.e., V 1

π .

• On the other side, ρ’s read of ℓy, if reads 1, will acquire V 1
π , but does

not immediately join V 1
π into its local view V 1

ρ right after the read,
i.e., V 1

π ̸⊑ V 1
ρ . Instead, later, thread ρ’s acquire fence will perform

that join, so that after the acquire fence, V 1
π ⊑ V 2

ρ . Consequently,
we again have the hb relation between the non-atomic write and
read of ℓx.

In other words, to explain fences behaviors in terms of views, we requires
more views than just the current thread-local view: a release fence stores
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the current view (by the time of the fence), so that it can be released
through some later relaxed write, while an acquire fence restores (into the
current view) some view that have been acquired by some earlier relaxed
read. This is in agreement with the definition of the synchronized-with
(sw) relation (Definition 2.12).

SUMMARY. Views are an approximation of the happens-before (hb) rela-
tion that is more thread-local and can help simplify the soundness proof
of RMC separation logics. However, we need more intricate uses of views
to handle fences (§3.3), which need multiple views, and to handle data
races (§3.4), which, due to their subtle interactions with relaxed (rlx)
accesses, require views to have a more complex structure than just a map
from locations to timestamps.

3.2 Basic Machine State Definitions

We define the basic definitions of ORC11’s machine state, whose most
important components are the globally-shared memory and the thread-
local views. First, we note some extra features that affect the formal
definitions of ORC11.

Pointer Arithmetic The λRust language (Chapter 4) adopts the Com-
pCert model for locations,10 where allocations and deallocations10Leroy et al., The CompCert Memory

Model, Version 2 [Ler+12]. are done in blocks, and a location consists of a block index i and
an offset n into that block, and pointer arithmetics can only be
performed within the same block. Consequently, we need to model
explicit allocations and deallocations of blocks.

Uninitialized Memory λRust also allows memory to be uninitialized,
with the only safe operations are reading and writing to uninitial-
ized memory—other uses of values read from uninitialized memory
are undefined behavior. We follow λRust, which in turn follows Lee
et al.11 to use a poison value h for uninitialized memory.11Lee et al., “Taming undefined behavior

in LLVM” [Lee+17].

Data Races To handle the interactions between races and rlx accesses,
ORC11 views cannot just simply track write events (like in iGPS
and what we have seen in §3.1). Instead, ORC11 views need to
track both read and write events.

Definition 3.4 (ORC11 Basic Types).

π, ρ ∈ Thread ::= N+

ℓ ∈ Loc ::= (i, n) i ∈ N+, n ∈ Z

v ∈ Val ::= h | . . .
ω ∈ MemVal ::= � | � | v ∈ Val

t ∈ Time ::= N+

α ∈ ActIds ::= 2N
+

• A thread-id π or ρ is a positive number.
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• A location ℓ is a pair of block index i (which is a positive number)
and an offset n.

• The value type Val can still be abstract, but should include the
poison value h.

• The memory value type MemVal is the type for values stored in
locations the global memory, which can be in Val or be the two
additional values � and � to respectively mark the allocated and
deallocated states of a location.

• A timestamp t is a positive number.

• A set of actions α is a set of positive numbers, which will be used to
track sets of reads and writes.

Definition 3.5 (ORC11 Memory Access Event).

ε ∈ MemEvent ::= | Ro(ℓ,v) | Wo(ℓ,v) | Uor,ow(ℓ,vr,vw) | Fo

| A(ℓ, n ∈ N+) | D(ℓ, n ∈ N+).

We extend memory events (Definition 2.3) to include two new event
types: the allocation event type A and deallocation event type D. Both
event types carry the base location ℓ of a block, and the size n of that
block.

Definition 3.6 (Views).

V ∈ View ::= Loc fin−⇀ {w : Time, aw : ActIds, nr : ActIds, ar : ActIds}

A (simple) view is a finite, partial map from locations to tuples of one
timestamp and three sets of actions. For a view V and a location ℓ,

• V (ℓ).w is the timestamp of the latest write to ℓ that V has seen.

• V (ℓ).aw is the set of atomic writes to ℓ that V has seen.

• V (ℓ).nr is the set of non-atomic reads from ℓ that V has seen.

• V (ℓ).ar is the set of atomic reads from ℓ that V has seen.

Definition 3.7 (Views’ Join Semi-Lattice). The bottom element of views
is the empty map ∅. The inclusion relation and the join operation for
views are defined as follows.

V1 ⊑ V2 ::= ∀ℓ. V1(ℓ).w ≤ V2(ℓ).w ∧ V1(ℓ).aw ⊆ V2(ℓ).aw

∧ V1(ℓ).nr ⊆ V2(ℓ).nr ∧ V1(ℓ).ar ⊆ V2(ℓ).ar

V1 ⊔ V2 ::= λℓ.
{

w := max({V1(ℓ).w, V2(ℓ).w});
aw := V1(ℓ).aw ∪ V2(ℓ).aw;

nr := V1(ℓ).nr ∪ V2(ℓ).nr;

ar := V1(ℓ).ar ∪ V2(ℓ).ar
}

Note that V1 ⊔ V2 is only defined for locations that are in the domains of
either V1 or V2, i.e., dom(V1 ⊔ V2) = dom(V1) ∪ dom(V2). If some location
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ℓ is not in one view, then the value in the other view takes over for the
join.

For view inclusion, we consider by default:

V1(ℓ) ⊑ V2(ℓ) if ℓ /∈ dom(V1)

V1(ℓ) ̸⊑ V2(ℓ) if ℓ ∈ dom(V1) ∧ ℓ /∈ dom(V2)

Definition 3.8 (Thread-Views).

V ∈ ThreadView ::= {rel : Loc fin−⇀ View, frel : View, cur : View, acq : View}

A thread-view12 is used to track the observations of a thread, and has12This is inspired by thread-views of the
promising semantics ([Kan+17]). four components. For a thread π to have the thread-view V at its current

program counter PCπ,

• V.cur is the actual, current view of π, which includes all reads and
writes that happen before the current counter PCπ.

• V.acq is the acquire view of π. It tracks the observations acquired
by π’s earlier relaxed reads, and will be restored into π’s current
view after the next acquire or SC fence. In other words, it tracks all
reads and writes that happen before π’s next acquire or SC fence.

• V.frel is the release-fence view of π. It tracks all reads and writes
that happen before π’s most recent release or SC fence, and it can
be released by π’s later relaxed writes.

• V.rel is a finite, partial function that tracks per-location release views
for π. For a location ℓ, V.rel(ℓ) is the release view of π’s most recent
release write to ℓ, and can be released by π’s later relaxed writes
to the same location ℓ. This view is needed to model the release
sequence (rs, Definition 2.12) for ℓ.

Property 3.9 (Thread-Views Wellformedness). The following properties
must hold for a thread-view V:

• dom(V.rel) ⊆ dom(V.cur) (TVIEW-DOM)

• ∀ℓ.V.rel(ℓ) ⊑ V.cur (TVIEW-REL)

• V.frel ⊑ V.cur (TVIEW-FREL)

• V.cur ⊑ V.acq (TVIEW-CUR)

Definition 3.10 (Thread-Views’ Join Semi-Lattice). The bottom element
of thread-views, also denoted by ∅, is the tuple of an empty release map
and empty (bottom) views. The inclusion relation and the join operation
for thread-views are defined as follows.

V1 ⊑ V2 ::= (∀ℓ.V1.rel(ℓ) ⊑ V2.rel(ℓ)) ∧ V1.frel ⊑ V2.frel
∧ V1.cur ⊑ V2.cur ∧ V1.acq ⊑ V2.acq

V1 ⊔ V2 ::=
{

rel := λℓ.V1.rel(ℓ) ⊔ V2.rel(ℓ);
frel := V1.frel ⊔ V2.frel;
cur := V1.cur ⊔ V2.cur;

acq := V1.acq ⊔ V2.acq
}
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Definition 3.11 (Global Memory).

M∈ MsgPool ::= Loc fin−⇀ Time fin−⇀
{

val : MemVal, view : View?
}

m ∈ ExtMsg ::=
{

ts : Time, val : MemVal, view : View?
}

The global memory, or the message poolM contains all write messages
to all locations. It is a finite, partial map from locations to timestamps to
a pair of a written value and an optional view (View?).

For a location, M(ℓ) contains all write messages to ℓ, ordered by
timestamps. The timestamp order of M(ℓ) encodes the per-location
modification order moℓ (Definition 2.8) for ℓ.

For some timestamp t, the pairM(ℓ)(t) carries the information about
a write to ℓ identified by the timestamp t. If the write is an non-atomic
write, then M(ℓ)(t).view = None. Otherwise, if the write is an atomic
write, thenM(ℓ)(t).view = Some(V ) for some view V that is called the
(released) view of the write. As a shorthand notation for the option type,
we write ⊥ for None, and simply write V for Some(V ).13 13Note that instead of using the option

type, we can also require that the view V
of a non-atomic write to be empty (∅).The message type ExtMsg combines the timestamp with the value and

the optional view into a single message. As such, the message pool can
be seen as a map from locations to messages: MsgPool ≈ Loc fin−⇀ ExtMsg.

Property 3.12 (View Closedness). V ∈M V ∈M
A view V is said to be closed in M if V only contains write messages
in M, i.e., ∀ℓ, V (ℓ).w ∈ M(ℓ). The definition is lifted point-wise for
thread-views.

Property 3.13 (Global Memory Wellformedness). A global memoryM
is wellformed if the following hold.

∀ℓ,m.m ∈M(ℓ) ∧m.view ̸= ⊥ ⇒ m.view(ℓ′) ∈M (WF-MEM-CLOSED)

∀ℓ,m.m ∈M(ℓ) ∧m.view ̸= ⊥ ⇒ m.view(ℓ).w = m.ts (WF-MSG-VIEW)

∀ℓ, t.M(ℓ)(t).val = �⇒ t = min(dom(M(ℓ))) (WF-MEM-ALLOC)

∀ℓ, t.M(ℓ)(t).val = �⇒ t = max(dom(M(ℓ))) (WF-MEM-DEALLOC)

WF-MEM-CLOSED requires thatM is closed in itself, i.e., any view of any
write messages inM only refers to messages also inM. WF-MSG-VIEW

requires that the view of a write message contains exactly the timestamp
of that message. WF-MEM-ALLOC (resp. WF-MEM-DEALLOC) require that if a
write is an allocation (resp. deallocation) then it must be the minimum
(resp. maximum) write event for that location.

Definition 3.14 (Global Machine State).

N ∈ RaceView ::= View

ς ∈ GlobalState ::= MsgPool× RaceView

The global machine state ς is a pair (M,N ) of the global memory M
and a simple view N that is the state of the race detector (§3.4).

Property 3.15 (Global Machine State Wellformedness). A global state
(M,N ) is wellformed if
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• M is wellformed (Property 3.13); and

• N is closed inM; and

• N observe the deallocations in M, i.e., ∀ℓ, t.M(ℓ)(t).val = � ⇒
t ≤ N (ℓ).w.

3.3 View-based RMC Semantics

We define the view-based semantics of ORC11, which describes the inter-
actions between thread-views V ’s and the global memoryM. First we
need a few auxiliary definitions.

Definition 3.16 (Memory Value Injection). ω ≡ v

The injection of memory values (MemVal) into values (Val) is defined by
the following rules.

MVAL-VAL

v ≡ v

MVAL-AVAL

� ≡ h

That is, if the memory value is a value v , then it is returned as is. If the
memory value is the allocated value �, then poison h is returned. There
is no injection of the deallocated value � into values.

Definition 3.17 (Unallocated Locations). ℓ ∈ unalloc(M)

A location ℓ is called unallocated inM if it has not been allocated or it
has been deallocated inM.

ℓ /∈ dom(M)

ℓ ∈ unalloc(M)

∃t.M(ℓ)(t) = (�, )

ℓ ∈ unalloc(M)

Notation 3.18 (Function Computations). We use the notation (x) ? y : z

to denote the expression that if x is true, then y is returned, otherwise z

is returned.
For a finite, partial function f , the notation f [x← y] denotes the same

function f but with the key x updated to the value y.
For a record r, the notation {r [x := y]} (including braces) denotes

the same record r but with the key x updated to the value y.

Remark 3.19 (Conditions on Allocations and Deallocations). C11 only
specifies that the lifetime of an object is from its allocation to dealloca-
tion, but does not specify a synchronization condition or possible races
between allocation/deallocation and normal accesses. Here, we employ
the following conditions that are widely thought to be reasonable.

• The allocation of a block must happen-before all accesses to it.
(ALLOC-SAFE)

• The deallocation of a block must happen-after all accesses to it.
(DEALLOC-SAFE)

We consider violations of these conditions data races and, thus, undefined
behavior. Correspondingly, we will treat the semantics of allocations and
deallocations as that of non-atomic writes.
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We now define two functions (written in form of relations) to compute
the resulting thread-view of a thread after a read or a write, in Figure 3.2.

Definition 3.20 (Post-Read Thread-Views). V R:o,ℓ,t,Vr,r−−−−−−−→ V ′

OM-POST-READ-TVIEW (Figure 3.2) computes the thread-view after a read
V ′ = (Vrel, Vfrel, V

′
cur, V

′
acq) from the thread-view before the read V =

(Vrel, Vfrel, Vcur, Vacq), using the read’s access mode o and location ℓ, the
timestamp t and the view Vr ∈ View+ of the write message that the read
reads from, and a fresh action id r ({r} ∈ ActIds) that identifies the
read.14 The computation is as follows. 14Note that if o = na, then Vr = ⊥

(None).

• Vcur(ℓ).w ≤ t: the read only reads a write event (identified by
t) that is not mo-earlier than the current view. Intuitively, this
restriction helps establish axioms like C11-COWR and C11-CORR.

• Vr(ℓ) ≤ t: the operational semantics maintains an invariant that
the timestamp t of the write to ℓ is the maximum timestamp in the
write’s view Vr.

• The view V tracks the identifying information of the read and the
write that the read reads from. In particular, V.w is the timestamp
t of the write. The read id r is added to the non-atomic read
component V.nr if this is a non-atomic read (o = na), otherwise r

is added to the atomic read component V.ar.

• A read only changes the current and acquire (simple) views of V.

• The view V is joined into both the new current and acquire views
V ′
cur and V ′

acq, so that both views observe at least the read and the
write.

• If this is an atomic read (rlx ⊑ o), then the view Vr of the write is
also joined into the acquire view V ′

acq. This encodes the delayed
synchronization of relaxed reads, where the view Vr sent over the
write is temporarily stored in the acquire view V ′

acq and will only
later be restored into the current view with an acquire fence (recall
Example 3.3).

• If this is at least an acquire read (acq ⊑ o), then the view Vr of
the write is immediately joined into the current view V ′

cur (recall
Example 3.2).

• The computation maintains wellformedness of thread-views (Prop-
erty 3.9).

Definition 3.21 (Post-Write Thread-Views). V W:o,ℓ,t,V ?
r ,V ?

w−−−−−−−−→ V ′

OM-POST-WRITE-TVIEW (Figure 3.2) computes the thread-view after a write
V ′ = (V ′

rel, Vfrel, V
′
cur, V

′
acq) from the thread-view before the write V =

(Vrel, Vfrel, Vcur, Vacq), using the write’s access mode o and location ℓ, and
a fresh timestamp t to identify the write, and the view Vr ∈ View+ that
the write reads from in case it is an Update (U). Additional, it computes
the view Vw of the write itself. The computation is as follows.
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OM-POST-READ-TVIEW

Vcur(ℓ).w ≤ t Vr(ℓ) ≤ t

V =[ℓ←{w := t; aw := ∅; nr := (o = na) ? {r} :∅; ar := (o ⊑ rlx) ? {r} :∅}]
V ′
cur = (acq ⊑ o) ? Vcur ⊔ V ⊔ Vr : Vcur ⊔ V

V ′
acq = (rlx ⊑ o) ? Vacq ⊔ V ⊔ Vr : Vacq ⊔ V

(Vrel, Vfrel, Vcur, Vacq)
R:o,ℓ,t,Vr,r−−−−−−−→ (Vrel, Vfrel, V

′
cur, V

′
acq)

OM-POST-WRITE-TVIEW

Vcur(ℓ).w < t

V =[ℓ←{w := t; aw := (rlx ⊑ o) ? {t} :∅; nr := ∅; ar := ∅}]
V ′
cur = Vcur ⊔ V V ′

acq = Vacq ⊔ V

V ′ = Vrel(ℓ) ⊔ (rel ⊑ o) ? V ′
cur : V V ′

rel = Vrel[ℓ←V ′]

Vw = (rlx ⊑ o) ? V ′ ⊔ Vfrel ⊔ Vr :⊥

(Vrel, Vfrel, Vcur, Vacq)
W:o,ℓ,t,Vr,Vw−−−−−−−−→ (V ′

rel, Vfrel, V
′
cur, V

′
acq)

FIGURE 3.2: Computations of post thread-
views for read and write operations.

• Vcur(ℓ).w < t: the fresh timestamp t picked for the write must be
mo-later than the current view of ℓ.

• The view V tracks the identifying information of the write. In
particular, V.w is the timestamp t of the write. t is also added to
the atomic write component V.aw if this is an atomic write.

• The write updates the current and acquire (simple) views, and the
component ℓ of the per-location release view Vrel of V.

• The view V is joined into both the new current and acquire views
V ′
cur and V ′

acq, so that both views observe at least the write.

• The view V ′ is the new release write for the location ℓ, and is
updated into to V ′

rel(ℓ) (V ′
rel = Vrel[ℓ←V ′]). In particular, if this is

at least a release write, then ℓ’s new release view V ′ also includes
the new current view V ′

cur. (Otherwise, if the write is at most a
relaxed write, then the release views remain unchanged.) This
means that the write releases its current view immediately (recall
also Example 3.2), and this release write starts a new release
sequence (Definition 2.12) for ℓ, so that po-later relaxed writes to
the same ℓ will indeed release V ′

cur.

• The view Vw of the write itself is ⊥ if this is a non-atomic write.
Otherwise, it includes at least (i) the new release view V ′

rel(ℓ) for ℓ,
and (ii) the view Vfrel of the most recent same-thread release fence,
and (iii) the view Vr of another write that this write reads from in
case it is an Update. All of these views establish this write’s effects
as a part of a release sequence for ℓ (see also Example 2.13).

• The computation maintains wellformedness of the thread-views
(Property 3.9).

Finally, we can define the view-based semantics of ORC11.



View-based RMC Semantics 37

OM-READ

ℓ /∈ unalloc(M) M(ℓ)(t) = (ω, Vr) ω ≡ v

V R:o,ℓ,t,Vr,r−−−−−−−→ V ′

M | V Ro(ℓ,v),r,[]−−−−−−→ M | V ′

OM-WRITE

ℓ /∈ unalloc(M) t /∈M(ℓ)

M′ =M[ℓ←M(ℓ)[t←(v , Vw)]]

V W:o,ℓ,t,⊥,Vw−−−−−−−→ V ′

M | V Wo(ℓ,v),⊥,[(t,v ,Vw)]−−−−−−−−−−−−→ M′ | V ′

OM-UPDATE

ℓ /∈ unalloc(M) M(ℓ)(tr) = (vr, Vr) tw = tr + 1 tw /∈M(ℓ)

M′ =M[ℓ←M(ℓ)[tw←(vw, Vw)]]

V R:or,ℓ,tr,Vr,r−−−−−−−−→ W:ow,ℓ,tw,Vr,Vw−−−−−−−−−−→ V ′

M | V Uor,ow (ℓ,vr,vw),r,[(tw,vw,Vw)]−−−−−−−−−−−−−−−−−−−→ M′ | V ′

OM-ACQ-FENCE

M | V Facq,⊥,[]−−−−−→ M | (V.rel,V.frel,V.acq,V.acq)

OM-REL-FENCE

M | V Frel,⊥,[]−−−−−→ M | ([ℓ←V.cur | ℓ ∈ dom(V.rel)] ,V.cur,V.cur,V.acq)

OM-ALLOC

ℓ = (i, n′) {i} × N # dom(M)

M′ =M[ℓ+m←[tm←(�,⊥)] |m ∈ [0, n)]

V W:na,ℓ+0,t0,⊥,⊥−−−−−−−−−−→ · · · W:na,ℓ+m,tm,⊥,⊥−−−−−−−−−−−→ · · · W:na,ℓ+(n−1),tn−1,⊥,⊥−−−−−−−−−−−−−−−→ V ′

ms = [(tm, �,⊥) | m ∈ [0, n)]

M | V A(ℓ,n),⊥,ms−−−−−−−→ M′ | V ′

OM-FREE

ℓ = (i, n′) dom(M) ∩ {i} × N = {i} × ([≥n′, <n′ + n])

∀m ∈ [0, n). ℓ+m /∈ unalloc(M) ∀m ∈ [0, n), t ∈ dom(M(ℓ+m)). t < tm

M′ =M[ℓ+m←[tm←(�,⊥)] |m ∈ [0, n)]

V W:na,ℓ+0,t0,⊥,⊥−−−−−−−−−−→ · · · W:na,ℓ+m,tm,⊥,⊥−−−−−−−−−−−→ · · · W:na,ℓ+(n−1),tn−1,⊥,⊥−−−−−−−−−−−−−−−→ V ′

ms = [(tm, �,⊥) | m ∈ [0, n)]

M | V D(ℓ,n),⊥,ms−−−−−−−→ M′ | V ′

FIGURE 3.3: View-based machine seman-
tics.

Definition 3.22 (ORC11 View-based Reductions). M | V −→ M′ | V ′

The relation M | V ε,r?,ms−−−−−→ M′ | V ′ relates a pair of global memory
M and a local thread-view V before a machine step that generates a
memory event ε to a corresponding pairM′ and V ′ after the step. r is an
optional action id associated with the event if it is a read, and ms is a list
of write messages generated by the event if it is a write. The rules of the
view-based reductions are given in Figure 3.3.

• OM-READ says that a read Ro(ℓ,v) does not change the global mem-
ory M, and is only possible if ℓ is alive in M,15 whose memory 15see Definition 3.17.

value ω is injected into the read value v (so that a read of an unini-
tialized location will return the poison value h).16 The thread-view 16see Definition 3.16.

is updated from V to V ′ using the timestamp t and the view Vr of
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the write, and the fresh action id r for the read, following Defini-
tion 3.20.

• OM-WRITE says that a write Wo(ℓ,v) is only possible if ℓ is alive in
M, and M is updated to M′ with a new message (t,v , Vw) for
ℓ, where t is a fresh timestamp in M for ℓ, and Vw is computed
following Definition 3.21, which also defines how V ′ is computed.
Note that there is no other constraint on the timestamp t, e.g., it
does not need to be the next largest timestamp for ℓ inM. This
allows “holes” in the set of used timestamps, so that writes to ℓ

by other threads may come in later in ORC11 machine execution
order, but actually ends up mo-earlier than the writes made by the
thread in question. But do note also that Definition 3.21 requires
that the timestamp t is at least mo-later than the writes for ℓ seen
by the current thread-view, so as to guarantee that moℓ agrees with
the current thread’s po.

• OM-UPDATE combines the effects of both OM-READ and OM-WRITE,
saying that an update Uor,ow(ℓ,vr,vw) reads from an existing write
message (tr,vr, Vr) and updates the memoryM with a new write
message (tw,vw, Vw). The new write message’s timestamp tw must
be fresh for ℓ inM, and must be next to the read message’s times-
tamp tr: tw = tr + 1, so as to exclude holes between the two
messages in moℓ, and thus to disallow other threads’ concurrent
writes to come in between this update and the write that it reads
from. This guarantees the uniqueness of a successful update event
U who represents the effects of RMW instructions: if multiple
RMW instructions are racing on reading the same value, then only
one of them will successfully perform a write. Finally, the new
thread-view V ′ is computed from V using r, Vr, and Vw, following
Definition 3.20 and then Definition 3.21.

• OM-ACQ-FENCE simply joins the thread-view’s acquire component
V.acq into the new current component V ′.cur, restoring views ac-
quired through earlier relaxed reads and thus establishing synchro-
nizations (recall Example 3.3).

• OM-REL-FENCE stores the thread-view’s current component V.cur
into the new release components V ′.rel (the per-location release
views) and V ′.frel (the release-fence view).

• OM-ALLOC says that an allocation A(ℓ, n) of a fresh block (whose
base is ℓ) inserts n write messages ms into the global memoryM,
each for a location in the block. The new write messages ms all
have the allocated memory value �. The new thread-view V ′ is
computed by applying Definition 3.21 for n consecutive non-atomic
writes.

• Finally, OM-FREE says that a deallocation D(ℓ, n) requires that ℓ is
indeed the base location of a block whose size is n, and all locations
in the block are alive (∀m ∈ [0, n). ℓ + m /∈ unalloc(M)). The
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deallocation inserts n write messages ms into the global memory
M, all with the deallocated memory value �, and the maximal
timestamps (∀m ∈ [0, n), t ∈ dom(M(ℓ+m)). t < tm).

Property 3.23 (Wellformedness of View-based Reductions). The pairM |
V is wellformed if V is wellformed (Property 3.9) andM is wellformed
(Property 3.13) and V is closed inM (Property 3.12).

Lemma 3.24 (Invariant of ORC11 View-based Reductions). The ORC11

view-based reductions (Definition 3.22) maintain wellformedness (Prop-
erty 3.23), and maintain that the thread-views only grow (V ⊑ V ′).

3.4 The Data-Race Detector

The goal of the race detector, as the name suggest, is to raise undefined
behavior (UB) if the program is racy in C11/RC11 (Definition 2.16 and
2.18). That is, if a program may have a RC11-consistent execution graph
that is racy, then the program must also have a ORC11 execution where
the data-race detector (defined in this section) raises UB.

In this work, we model UB as stuckness: we say that the execution
gets stuck if there is no further reduction possible when the reducing
expression has not reaches a value. (If the reducing expression is already
a value, then the execution has safely terminated.)17 We will not see 17There may be several ways for an exe-

cution to run into UBs, i.e., to get stuck
(e.g., performing computations on poison
h, see §4.2), so it may be beneficial to
distinguish the different reasons for the
different UB types, rather than collapsing
all of them into a single stuck state. This
can be done by introducing error machine
states. However, in this work, we do not
need such details, and therefore decide to
simply use stuckness.

the expression reductions until §4.2, so in the following, we simply
consider stuckness as “there is no further reduction possible for the
current machine state”.

The aim of the race detector is to make sure locally that conflicting
accesses where at least one is non-atomic must get stuck. For this, the
race detector relies on the global machine state, which includes the global
memoryM and the race detector’s state N ∈ View, in combination of
the executing thread π’s thread-view V. In practice, only the current
component V.cur ∈ View will be used, because that view encodes what
have happened before the thread π’s program counter PCπ, and recall
that races are due to the lack of hb edges between conflicting accesses.

Recall from Definition 3.6 that both N and V.cur tracks, for each
location ℓ, the most recent write timestamp and sets of action ids for
atomic writes, non-atomic reads, and atomic reads. The differences are
that (1) N tracks all actions that have been performed globally by all
threads, while V.cur only tracks locally what π has observed, and (2)
N .w(ℓ) only tracks the globally most recent non-atomic write for ℓ, not
the most recent write for ℓ.

The race detector checks for data-race freedom (DRF) for each memory
access on an ℓ that π is going to perform. If it is not data-race free,
then the execution gets stuck. Otherwise, the race detector state N
is updated correspondingly to track the newly performed access. The
race detector is therefore defined using two definitions: the DRF pre-
condition (Definition 3.25) which defines the pre-condition of a data-race
free access, and the DRF post-condition (Definition 3.26) which computes
the post state N ′ for the race detector.
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DRF-READ-NA

N (ℓ).w ≤ V.cur(ℓ).w ∀t ∈ dom(M(ℓ)). t ≤ V.cur(ℓ).w N (ℓ).aw ⊑ V.cur(ℓ).aw

M,N ,V ⊢ RaceFree(Rna(ℓ,v))

DRF-WRITE-NA

N (ℓ) ⊑ V.cur(ℓ) ∀t ∈ dom(M(ℓ)). t ≤ V.cur(ℓ).w

M,N ,V ⊢ RaceFree(Wna(ℓ,v))

DRF-READ-AT

rlx ⊑ o N (ℓ).w ≤ V.cur(ℓ).w

M,N ,V ⊢ RaceFree(Ro(ℓ,v))

DRF-WRITE-AT

rlx ⊑ o N (ℓ).w ≤ V.cur(ℓ).w N (ℓ).nr ⊑ V.cur(ℓ).nr

M,N ,V ⊢ RaceFree(Wo(ℓ,v))

DRF-UPDATE

M,N ,V ⊢ RaceFree(Ror (ℓ,vr)) M,N ,V ⊢ RaceFree(Wow(ℓ,vw))

M,N ,V ⊢ RaceFree(Uor,ow(ℓ,vr,vw))

DRF-ALLOC

M,N ,V ⊢ RaceFree(A(ℓ, n))

DRF-DEALLOC

∀i ∈ [<n], t′ ∈ dom(M(ℓ+ i)). t′ ≤ V.cur(ℓ).w ∀i ∈ [<n].N (ℓ+ i) ⊑ V.cur(ℓ+ i)

M,N ,V ⊢ RaceFree(D(ℓ, n))

DRF-FENCE

M,N ,V ⊢ RaceFree(Fo)

FIGURE 3.4: Data-race free (DRF) pre-
conditions.

Definition 3.25 (DRF Pre-conditions). M,N ,V ⊢ RaceFree(ε)

M,N ,V ⊢ RaceFree(ε) says that the memory access ε is data-race free
when executed with the global state (M,N ) by a thread whose thread-
view is V. The rules are given in Figure 3.4.

• DRF-READ-NA says that a non-atomic read from ℓ is data-race free
if the thread has observed all writes to ℓ, atomic and non-atomic,
tracked globally byM and N . Note that the conditions concerning
V.cur(ℓ).w by themselves are not sufficient: they only maintain that
V has observed the moℓ-maximum non-atomic write, which is only
sufficient to guarantee observations of all non-atomic writes which
must happen sequentially. The condition N (ℓ).aw ⊑ V.cur(ℓ).aw
guarantees the observations of all atomic writes: the atomic writes
can be safely concurrent with one another, so a set of timestamps
are needed instead of just a simple timestamp. Note that a non-
atomic read can be safely executed concurrently with other reads,
atomic or non-atomic.

• DRF-WRITE-NA says that a non-atomic write to ℓ is data-race free if
the thread has observed all memory accesses to ℓ.
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• DRF-READ-AT says that an atomic read from ℓ is data-race free if the
thread has observed the latest non-atomic write to ℓ. Note that an
atomic read can be safely executed concurrently with other reads,
atomic or non-atomic, and atomic writes.

• DRF-WRITE-AT says that an atomic write to ℓ is data-race free if the
thread has observed all non-atomic accesses, reads or writes.

• DRF-UPDATE is simply a combination of DRF-READ-AT and DRF-WRITE-

AT. Note that an Update (U) does not support non-atomic (na)
accesses.

• DRF-ALLOC says that the allocation of a fresh block is always data-
race free. Note that we do not model out-of-memory errors.

• DRF-DEALLOC is simply an iteration of DRF-WRITE-NA for the whole
block.

• DRF-FENCE says that fences are never racy.

Definition 3.26 (DRF Post-conditions). 18 N
ε,r?,ms

N ′ 18The racing-ghost notation is due to Jan-
Oliver Kaiser.

The relation N
ε,r?,ms

N ′ defines how a race-free event ε for ℓ updates
the global race detector state from N to N ′, using the optional action id
r if ε is a read, and the list of write messages ms if ε is a write. The rules
are given in Figure 3.5. Note that we use the record update notation
defined in Notation 3.18.

• DRF-POST-READ-NA requires that the action id r is picked fresh glob-
ally to identify this read, and the race detector’s component for
tracking ℓ’s non-atomic reads (N ′(ℓ).nr) is extended with r.

• DRF-POST-WRITE-NA says that a non-atomic write with the message
m simply extends the race detector’s component for tracking ℓ’s
non-atomic writes (N ′(ℓ).w) with the write timestamp m.ts.

• DRF-POST-READ-AT says that the effect of an atomic read on N is
similar to that of a non-atomic one (DRF-POST-READ-NA), but instead
changes the component for tracking ℓ’s atomic reads.

• DRF-POST-WRITE-AT says that the effect of an atomic write on N
is similar to that of a non-atomic one (DRF-POST-WRITE-NA), but
instead changes the component for tracking ℓ’s atomic writes.

• DRF-POST-UPDATE combines the effects of DRF-POST-READ-AT and
DRF-POST-WRITE-AT.

• DRF-POST-ALLOC says that the race detector state is extended with
simple observations on the non-atomic write timestamps mi.ts for
the whole newly allocated block.

• DRF-POST-DEALLOC is an iteration of DRF-POST-WRITE-NA for the whole
block that is deallocated.
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DRF-POST-READ-NA

r /∈ N (ℓ).nr N ′ = N [ℓ←{N (ℓ) [nr := N (ℓ).nr ∪ {r}]}]

N
Rna(ℓ,v),r,[]

N ′

DRF-POST-WRITE-NA

N ′ = N [ℓ←{N (ℓ) [w := m.ts]}]

N
Wna(ℓ,v),⊥,[m]

N ′

DRF-POST-READ-AT

rlx ⊑ o r /∈ N (ℓ).ar N ′ = N [ℓ←{N (ℓ) [ar := N (ℓ).ar ∪ {r}]}]

N
Ro(ℓ,v),r,[]

N ′

DRF-POST-WRITE-AT

rlx ⊑ o N ′ = N [ℓ←{N (ℓ) [aw := N (ℓ).aw ∪ {m.ts}]}]

N
Wo(ℓ,v),⊥,[m]

N ′

DRF-POST-UPDATE

r /∈ N (ℓ).ar N ′ = N [ℓ←{N (ℓ) [ar := N (ℓ).ar ∪ {r} ; aw := N (ℓ).aw ∪ {m.ts}]}]

N
Uor,ow (ℓ,vr,vw),r,[m]

N ′

DRF-POST-ALLOC

N ′ = N [ℓ+ i←{w := mi.ts, aw := ∅, nr := ∅, ar := ∅} | i ∈ [<n]]

N
A(ℓ,n),⊥,[m0...mn−1]

N ′

DRF-POST-DEALLOC

N ′ = N [ℓ+ i←{N (ℓ+ i) [w := mi.ts]} | i ∈ [<n]]

N
D(ℓ,n),⊥,[m0...mn−1]

N ′

DRF-POST-FENCE

N
Fo,⊥,[]

N

FIGURE 3.5: Data-race free (DRF) post-
conditions.

• DRF-POST-FENCE says that fences do not affect the race detector
state.

Lemma 3.27. The DRF post-conditions (Definition 3.26) only grow the
data-race view, i.e., N ⊑ N ′. When combined with the view-based reduc-
tions (Definition 3.22), the DRF post-conditions also maintain wellformed-
ness of the global machine state (Property 3.15).

3.5 Comparison with iGPS Race Detector

ORC11 is the first operational semantics that incorporates a race detector
for non-atomic accesses into a language with release-acquire accesses,
relaxed accesses, and fences. ORC11’s race detector extends the race
detector Kaiser et al.19 developed for iGPS, in order to address the extra19Kaiser et al., “Strong Logic for Weak

Memory: Reasoning About Release-
Acquire Consistency in Iris” [Kai+17]. effects of relaxed accesses. To explain the necessity of this extension, we
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first discuss why the approach of Kaiser et al. does not scale to relaxed
accesses.

The iGPS race detector, introduced by Kaiser et al. for the release-
acquire/non-atomic (RA+NA) fragment of C11, is somewhat unusual
in that it does not in fact detect all races in every execution. Instead,
although iGPS forbids write-before-read races—that is, races where a
write is interleaved before a racing read—it allows read-before-write
races—where a read is interleaved before a racing write.

Example 3.28 (iGPS Race Detector Asymmetry). To illustrate this asym-
metry, consider the following example code:

ℓx := 0;
∗ℓx || ℓx := 37

In this program there are two possible interleavings, both of which are
considered racy by C11. The iGPS race detector detects a race in the
interleaving where the read from ℓx is executed after the write to ℓx, but
it does not detect a race in the interleaving where ℓx is read first.

The upside of iGPS’s approach is that reads do not need to be tracked
by the race detector, which reduces the amount of state in the operational
semantics. The downside, of course, is that some races are not detected—
a seemingly rather severe problem for a race detector! The reason this
is not a problem in iGPS is that Hoare triples imply absence of races
for all executions of a program. In order to be able to claim that the
iGPS logic ensures absence of data races according to C11, it thus suffices
for the race detector in the operational semantics to detect a race on
some execution of every program that is racy according to C11. And
indeed it does: for programs with only release-acquire and non-atomic
accesses (the domain of iGPS), for any execution with a read-before-
write race, there is always a differently interleaved execution with a
write-before-read race, which iGPS’s race detector will detect.

In the presence of relaxed accesses, however, the iGPS race detector is
no longer sufficient, because the property mentioned above is no longer
true. That is, it is possible to construct programs that have executions in
which the read-before-write races happen, but there is no interleaving
where the write will be executed before the read.

Example 3.29 (No Write-before-Read Races). Consider the following
program:

ℓx := 0; ℓy := 0;
∗ℓx; ℓy :=rlx 1 || while (∗rlxℓy == 0); ℓx := 37

Here, the non-atomic read in the left thread is guaranteed to be executed
before the non-atomic write to ℓx in the right thread, and there is no
interleaving where the reverse can happen. The iGPS race detector would
not declare this program racy, but the two accesses to ℓx are not related
by happens-before and are thus considered a race by C11.
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To account for such programs, ORC11’s race detector extends iGPS’s,
which already tracked non-atomic writes, to track all memory access
events, including atomic writes, and atomic and non-atomic reads in
the local thread-views (see Definition 3.6). These events then must be
sent across threads to perform synchronization and to ensure data-race
freedom. In Example 3.29 above, the non-atomic read of ℓx by the left
thread, when executed, will add a fresh read event rna into N ’s global
set of non-atomic reads for ℓx (N (ℓx).nr). The non-atomic write of ℓx by
the right thread is guaranteed to be executed after the read by the left
thread. However, when the write is executed, the race detector requires
that the right thread must have observed in its local current view all read
events (DRF-WRITE-NA), including rna, in order to be deemed non-racy.
Since the right thread did not synchronize with the left thread to obtain
rna in its local view, its write to ℓx will be declared racy by the ORC11

race detector.

3.6 The Correspondence between RC11 and ORC11

To show a correspondence between ORC11 and RC11, we exploit the fact
that ORC11 is very close to the “promise-free” fragment of Kang et al.2020Kang et al., “A promising semantics for

relaxed-memory concurrency” [Kan+17]. extended with non-atomics and a race detector. Kang et al. already
proved a formal correspondence between their promise-free fragment
and C11.21 Building on their result, we show an on-paper correspondence21[Kan+17], Appendix B: Proof of Theo-

rem 5. proof between ORC11 and RC11. This proof has been provided in the
technical appendix of the RBrlx paper,22 and we only sketch its summary22Dang et al., Technical Appendix: RustBelt

Meets Relaxed Memory [Dan+20b], §2. here.

It is woth noting that our language is actually the combination of
the memory model of ORC11 and the λRust expression language (Chap-
ter 4). Together, ORC11 + λRust is more conservative and declares more
programs as having undefined behaviors than RC11. For example, λRust

can trigger UBs if we compare two values that are incomparable (Def-
inition 4.9). Furthermore, the race detector in ORC11 is stronger, i.e.,
detects more races, than RC11. In particular, ORC11 does not permit
reducing an RMW operation with the acq access mode in the presence of
an unsynchronized non-atomic read even though the RMW itself synchro-
nizes with the non-atomic read. In contrast, the self-synchronizing nature
of RMW leads to RC11 accepting this particular behavior as non-racy.

Consequently, we cannot show an equivalence in behaviors between
ORC11 + λRust and RC11. Instead, we also combine RC11 with λRust,
and relates ORC11 + λRust with RC11 + λRust. To simplify the proof, we
allow RC11 to take λRust’s expression reduction steps that are disallowed
with ORC11. In particular, the declarative semantics in RC11 + λRust may
compare arbitrary values with each other, whereas ORC11 + λRust will
get stuck in some of these cases.

Ultimately, we want to show that if a program has defined behaviors in
ORC11 + λRust,23 then it must have defined behaviors in RC11 + λRust.2423which is a proof dischargeable using our

separation logics

24see Definition 2.18

Conversely, we show that any (UB-triggering) racy RC11-consistent exe-
cution25 can be replayed as a racy execution in ORC11.

25see Definition 2.14 and Definition 2.16
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Following Kang et al., we decompose the correspondence proof into 2
steps. First, we prove that any racy RC11 execution of the program can be
replayed as a racy execution in the Operational Graph Semantics (OGS).
Second, we prove that the racy OGS execution can be replayed as a racy
execution in ORC11. The OGS is designed to be an intermediate mixture
of RC11 and ORC11: its state is a RC11-consistent execution graph G , and
every memory access operationally extends G without violating OGS’s
own race detector. OGS’s race detector is stated in terms of execution
graphs, but encodes exactly the rules of ORC11’s race detector.26 OGS is 26see Figure 3.4

then extended with the same λRust’s expression reduction steps as that of
RC11 (which can compare arbitrary values).

We then show that (1a) any non-racy, consistent execution of RC11
+ λRust can be replayed as a non-racy or racy consistent execution of
OGS + λRust;27 and (1b) any program that has racy executions in RC11 27[Dan+20b], Lemma 3.

+ λRust also has racy executions in OGS + λRust.28 Then, to relate OGS 28[Dan+20b], Lemma 4.
+ λRust and ORC11 + λRust, we relate OGS’s state with the timestamp
assignments in ORC11’s thread-view and race detector states. We then
show that (2a) any non-racy, consistent execution of OGS + λRust can be
replayed as a non-stuck or stuck execution of ORC11 + λRust;29 and (2b) 29[Dan+20b], Lemma 6.

any racy execution of OGS + λRust can get stuck in ORC11 + λRust.30
30[Dan+20b], Lemma 7.

Finally, combining all of those results, we show that any program that
has racy executions in RC11 + λRust can get stuck in ORC11 + λRust.31 31[Dan+20b], Theorem 1.

CHAPTER SUMMARY. This chapter explains the view-based semantics and
the race-detector semantics of ORC11, and illustrates how it is related
to RC11. In the next chapter, we present the λRust language and explain
how to combine it with ORC11 to achieve our target language that will
be used to instantiate Iris.





4
The Relaxed λRust Language

The relaxed λRust language retrofits the original RustBelt’s λRust
1 on top 1Jung et al., “RustBelt: Securing the

Foundations of the Rust Programming Lan-
guage” [Jun+18a].of the relaxed memory semantics of ORC11. In this chapter, we briefly

review λRust and formally define how to “plug” it in with ORC11 to obtain
our target language.

It worths noting up front that we (nor the origin RustBelt’s authors)
do not plan to tackle the Herculean task of giving a formal definition
of the complete Rust language: the core λRust calculus only captures
central features of the Rust language, and the original semantics assume
a SC memory model,2 and we extend the operational semantics to cover 2with a race detector that intuitively

implements reader-writer locks on non-
atomics locations.relaxed memory accesses. Nevertheless, the reasoning principles we

develop in this dissertation are not restricted to λRust or Rust, and can
be applied to other languages that employ the RC11 memory model (or
stronger memory models).

4.1 Language Syntax

Definition 4.1 (λRust Grammar). The grammar is given in Figure 4.1.
λRust is a lambda calculus with:

• values that can be poison (h),3 a block-based location, an integer 3see §3.2.

(meta-variable z ∈ Z), or a recursive function (meta-variable f)
that has a list of binders (x) for the arguments.

• expressions (meta-variable e) that can be a value; or a variable
(x); or a path operator (e.e) where the second operand (called the
offset) must evaluate to an integer offset of the first operand; or a
binary operator; or function application (e(e)) where the arguments
are a list expressions; or a (switch) case block (case e of e) that
allows branching into a list of expressions; or a fork operator that
supports forking new (detached) threads; or a memory instruction
which can be a read, a write, a compare-and-swap (CAS), or a
fence instruction with different consistency modes;4 or an explicit 4see Definition 2.2.

allocation or deallocation instruction.

Definition 4.2 (λRust Left-to-Right Evaluation Contexts). The reduction
strategy of λRust’s expressions is encoded using evaluation contexts K ∈
ECtx. The approach of evaluation contexts decomposes an expression e

into an evaluation context K and an expression e′ that can perform a

47
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v ∈ Val ::= h | ℓ | z | rec f(x) := e

e ∈ Expr ::= | v | x | e.e
| e+ e | e− e | e ≤ e | e == e

| e(e)
| case e of e
| fork { e }
| ∗oe | e1 :=o e2 | CASof ,or,ow(e0, e1, e2) | fenceo
| alloc(e) | free(e1, e2)

K ∈ ECtx ::= | •
| K.e | v .K
| K + e | v +K | K − e | v −K | K ≤ e | v ≤ K | K == e | v == K

| K(e) | v(v ++ [K] ++ e)

| caseK of e

| ∗oK | K :=o e | v :=o K

| CASof ,or,ow(K, e1, e2) | CASof ,or,ow(v0,K, e2) | CASof ,or,ow(v0,v1,K)

| alloc(K) | free(K, e2) | free(e1,K)

FIGURE 4.1: The relaxed λRust language
syntax. primitive reduction and so will be evaluated next, satisfying e = K[e′].

The empty context • is called the “hole” where the next-to-be-evaluated
expression is filled in.

The evaluation strategy is left-to-right call-by-value, and is given in
Figure 4.1. Let us consider an example evaluation of an assignment
e1 :=o e2:

• The expression is first decomposed into K1 = • :=o e2 and e1,
which allows e1 to be evaluated first.

• After e1 is evaluated to a value v1, the expression is K1[v1] = v1 :=o

e2, which can be decomposed into K2 = v1 :=o •, which now
allows e2 to be evaluated.

• Once e2 is evaluated to a value v2, the expression is K2[v2] = v1 :=o

v2, which is decomposed into • and v1 :=o v2.

• The primitive reduction of assignments then can kick in and com-
plete the evaluation.

Notation 4.3 (λRust Syntactic Sugars). Several syntactic sugars are taken
as-is from the original RustBelt, given in Figure 4.2. Specifically:

• Non-recursive functions (λ[x]. e) simply ignore the recursive func-
tion argument. let bindings are used to declare local variables
in λRust, which are pure and do not occupy memory (they are not
mutable nor addressable). They are simply evaluated and then sub-
stituted into the remaining expression, hence the definition using
functions. Sequential composition is defined using let bindings.
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λ[x]. e ::= rec ([x]) := e

letx = e in e′ ::= (λ[x]. e′)([e])

e′; e ::= let = e′ in e

false ::= 0

true ::= 1

if e0 then e1 else e2 ::= case e0 of [e2, e1]

∗e ::= ∗nae

e1 := e2 ::= e1 :=na e2

new ::= λ[size]. if size == 0 then (42, 1337) else alloc(size)

delete ::= λ[size, ptr]. if size == 0 thenh else free(size, ptr)

memcpy ::= rec memcpy([dst, len, src]) :=

if len ≤ 0 thenh else

dst.0 := src.0;

memcpy([dst.1, len− 1, src.1])

e1 :=n
∗e2 ::= memcpy(e1, n, e2)

e
inj i
:== () ::= e.0 := i

e1
inj i
:== e2 ::= e1.0 := i; e1.1 := e2

e1
inj i
:==n

∗e2 ::= e1.0 := i; e1.1 :=n
∗e2

skip ::= letx = h inh

newlft ::= h

endlft ::= skip

FIGURE 4.2: Some syntactic sugars for
λRust.• We use 0 and 1 as boolean values false and true, respectively. This

allows us to define if -branching using case : if e0 is false, then
the expression with index 0 in the list [e2, e1], which is e2 is picked
to be evaluated next; and if e0 is true, then the expression with
index 1, which is e1, is picked.

• We suppress the access modes for reads and writes if they are na.

• new and delete, unlike alloc and free, never get stuck when the
provided block size is 0. new simply just returns some location in
that case.

• memcpy copies len cells from src to dst using the path operator.
The “assign with length” notation (e1 :=n

∗e2) uses memcpy.

• There is no language primitive to define compound data structures.
Instead, they can be implemented in memory using pointer arith-
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letcont k(x) := e in e′ ::= let k = (rec k(x) := e) in e′

jump k(e) ::= k(e)

funrec f(x) ret k := e ::= rec f([k] ++ x) := e

call f(e) ret k ::= f([k] ++ e)

FIGURE 4.3: CPS notations for λRust.

metic. In particular, e1
inj i
:== e2 simulates tagged union (sum types):

the location at offset e.0 stores the active tag i (the case of the sum)
while the location at offset e.1 stores the actual value evaluated
from e2. e1

inj i
:==n

∗e2 is the notation for writing a tagged union
whose values span multiple locations (memory cells).

• Finally, newlft and endlft are “ghost instructions” that have no
interesting operational behaviors, and are only needed for logical
soundness of the RustBelt type system (Part III).

Notation 4.4 (Continuation-Passing Style). Programs in λRust can be
presented in continuation-passing style (CPS). This allows for encoding
more complex control-flow constructs like labeled break or early return.
This also makes λRust closer to Rust’s Mid-level Intermediate Representation
(MIR)5 than to surface Rust. The notations are given in Figure 4.3.5Matsakis, Introducing MIR [Mat16].

• Continuations (meta-variable k) can be defined with letcont k(x) :=

e in e′ where x is a list of binders that will be instantiated with the
arguments e when a continuation is called with jump k(e).

• CPS functions can be declared with funrec f(x) ret k := e where
f is the binder for a recursive function, x the list of binders for
the arguments, and k the binder for the return continuation that
will be called when the function returns. The return continuation
takes only one argument for the return value. Accordingly, CPS
functions can be called using call f(e) ret k where e are the list of
arguments and k the return continuation argument.

Note 4.5. Most syntactic sugars (Notation 4.3) and the CPS notations
(Notation 4.4) are needed for the type system in RustBelt (Part III).

4.2 Language Expression Reductions

The complete semantics is defined by three sub semantics: the view-based
machine semantics (§3.3), the race-detector semantics (§3.4), and the
expressions semantics defined in this section. The complete semantics
will be given in §4.3.

We first define some more auxiliary definitions.

Definition 4.6 (Readable Memory Value). ω ∈ Readable(ℓ,M,V)
The predicate Readable(ℓ,M,V) defines the set of memory values read-
able from ℓ for the global memoryM by a thread π whose thread-view is



Language Expression Reductions 51

currently V.

ω ∈ Readable(ℓ,M,V) ::= ∃t.M(ℓ)(t) = (ω, ) ∧ t ≤ V.cur(ℓ)

That is, the thread π can only read a memory value ω that is in the
memory for ℓ and is not mo-earlier than π’s current view V.cur for ℓ.
This is the same condition as OM-READ (Definition 3.22), but additionally
concerns values.

POINTER COMPARISON is a problem on its own,6 especially for dead 6Kang et al., “A formal C mem-
ory model supporting integer-pointer
casts” [Kan+15]; Memarian et al., “Into
the depths of C: elaborating the de facto
standards” [Mem+16]; Lee et al., “Rec-
onciling high-level optimizations and low-
level code in LLVM” [Lee+18]; Besson et
al., “CompCertS: A Memory-Aware Veri-
fied C Compiler Using a Pointer as Inte-
ger Semantics” [BBW19]; Memarian et al.,
“Exploring C semantics and pointer prove-
nance” [Mem+19]; Lepigre et al., “VIP:
verifying real-world C idioms with integer-
pointer casts” [Lep+22].

pointers. In this work, for simplicity, we follow the original RustBelt work
and assume the most conservative choice that avoids UB:7 unallocated

7UB is not a choice because pointer com-
parison is possible in safe Rust.

pointers can non-deterministically be compared equal even though their
representations are not.

Definition 4.7 (Value Equality). M ⊢ v1 = v2

The results of equality comparison in M are defined by the following
rules. (Recall that z is the meta-variable for integers.)

M ⊢ z = z M ⊢ ℓ = ℓ
ℓ1 ∈ unalloc(M) ∨ ℓ2 ∈ unalloc(M)

M ⊢ ℓ1 = ℓ2

Definition 4.8 (Value Inequality). ⊢ v1 ̸= v2

The results of inequality comparison are defined by the following rules.

z1 ̸= z2

⊢ z1 ̸= z2

ℓ1 ̸= ℓ2

⊢ ℓ1 ̸= ℓ2
⊢ ℓ ̸= 0 ⊢ 0 ̸= ℓ

That is, two values compare in-equal if their representations are different,
and locations are never null (0). Note that this means that equality and
inequality are not mutually exclusive for unallocated pointers.

Definition 4.9 (Val (non-UB) Comparability). ⊢ v1 =? v2

Two values are comparable, and thus may be compared equal and/or
in-equal, if they satisfy the following rules.

⊢ z1 =? z2 ⊢ ℓ1 =? ℓ2 ⊢ ℓ =? 0 ⊢ 0 =? ℓ

Definition 4.10 (λRust Expression Reductions). M,V ⊢ e
ε?−→ e′1, e

′?
2

The expression reduction relationM,V ⊢ e
ε?−→ e′1, e

′?
2 says that under

the global memoryM and the thread-view V, the expression e reduces
in one step to e′1, potentially with an optional memory event ε? and
an optional expression e′2 that will be running concurrently in a newly
forked thread. Only memory operations will generate a memory event ε,
and only fork { e′2 } generates the new thread’s expression e′2. The rules
for the expression reduction are given in Figure 4.4.

• OE-ECTX is the general rule that drives the evaluation strategy
through evaluation contexts (see Definition 4.2). The remaining
rules are the primitive reductions that only reduce in one step.
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OE-ECTX

e→ e′1, e
′?
2

M,V ⊢ K[e]→ K[e′1], e
′?
2

OE-PROJ

M,V ⊢ ℓ.n→ ℓ+ℓ n

OE-ADD

z1 +Z z2 = z′

M,V ⊢ z1 + z2 → z′

OE-SUB

z1 −Z z2 = z′

M,V ⊢ z1 − z2 → z′

OE-LE-TRUE

z1 ≤Z z2

M,V ⊢ z1 ≤ z2 → true

OE-LE-FALSE

z1 >Z z2

M,V ⊢ z1 ≤ z2 → false

OE-EQ-TRUE

M ⊢ v1 = v2

M,V ⊢ v1 == v2 → true

OE-EQ-FALSE

⊢ v1 ̸= v2

M,V ⊢ v1 == v2 → false

OE-APP

|x| = |v |
M,V ⊢ (rec f(x) := e)(v)→ e[rec f(x) := e/f,v/x]

OE-CASE

0 ≤ i < |e|
M,V ⊢ case i of e→ ei

OE-FORK

M,V ⊢ fork { e } → h, e

OE-READ

M,V ⊢ ∗oℓ
Ro(ℓ,v)−−−−→ v

OE-WRITE

M,V ⊢ ℓ :=o v
Wo(ℓ,v)−−−−→ h

OE-CAS-FAIL

rlx ⊑ of , or, ow ∀ω ∈ Readable(ℓ,M,V).∃v ′. ω ≡ v ′∧ ⊢ v1 =? v ′ ⊢ v1 ̸= vr

M,V ⊢ CASof ,or,ow(ℓ,v1,v2)
R
of (ℓ,vr)−−−−−→ false

OE-CAS-SUCC

rlx ⊑ of , or, ow ∀ω ∈ Readable(ℓ,M,V).∃v ′. ω ≡ v ′∧ ⊢ v1 =? v ′ M ⊢ v1 = vr

M,V ⊢ CASof ,or,ow(ℓ,v1,v2)
Uor,ow (ℓ,vr,v2)−−−−−−−−−→ true

OE-FENCE

M,V ⊢ fenceo
Fo−→ h

OE-ALLOC

n > 0

M,V ⊢ alloc(n)
A(ℓ,n)−−−−→ ℓ

OE-FREE

n > 0

M,V ⊢ free(n, ℓ)
D(ℓ,n)−−−−→ h

FIGURE 4.4: Relaxed λRust expression se-
mantics.

• OE-PROJ says that the path operator simply computes a new location
with offset n ∈ Z from ℓ, using the meta-level operator +ℓ which
is defined as (i, n′) +ℓ n = (i, n′ +Z n). (Note that the offsets are
integers, and use the integer operator +Z.)

• OE-ADD, OE-SUB, OE-LE-TRUE, and OE-LE-FALSE say that integer oper-
ators reduce according to the meta-level integer operators. Note
that we have no reduction rules for poison (h), which means that
any computation using poison will get stuck. Also recall that true
and false are just notations for 1 and 0, respectively.

• OE-EQ-TRUE and OE-EQ-FALSE say that comparison reduce according
to equality and inequality comparisons, respectively.8 This means8see Definition 4.7 and Definition 4.8.

that comparing unallocated locations can non-deterministically
reduce to either true or false.

• OE-CASE says that a case block reduces if the choice index i is an
actual index into the list of expressions. Then the expression ei will
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be picked to reduce. Note that no expression in the list e is reduced
before the case is reduced.

• OE-APP says that function application reduces once all arguments
have been evaluated to a list of values v .9 It is also required that the 9Recall that by the Definition 4.2 for eval-

uation contexts, the arguments are evalu-
ated left-to-right.list of binders and the list of arguments have the same length. Then,

the reduction substitutes the arguments for the binders, including
the recursive function binder f , in the function’s body.

• OE-FORK says that fork { e } returns poison in the forking thread
(so that the return value should not be used), and e will be used
for the newly forked thread (see §4.3).

• OE-READ says that a read simply reduces to the value v that comes
with the read event that Ro(ℓ,v) it is tied to. The memory event will
be used to match this reduction with the view-based machine (§3.3)
and the race detector (§3.4) in the complete semantics (§4.3).

• OE-WRITE says that a write reduces to poison and is tied to the
corresponding write event.

• A compare-and-swap instruction CASof ,or,ow(ℓ,v1,v2) takes three
atomic access modes: of is the order that will be used when the CAS

fails, in which case it acts like a read with the mode of ; otherwise,
if the CAS succeeds, then it acts as both a read with the mode or and
a write with the mode ow. The CAS atomically (i) reads the location
ℓ, (ii) compares the value read vr with v1, and (iii) if the values
are equal, writes v2 to ℓ. OE-CAS-FAIL and OE-CAS-SUCC therefore
both require that for any memory value ω readable10 by the CAS, its 10i.e., those values that are not yet

overshadowed by V.cur(ℓ)—see Defini-
tion 4.6.injected value v ′ must be comparable11 with v1.

11see Definition 4.9.– In case of failure, OE-CAS-FAIL says that it must be that v1 is
in-equal to the read value vr, and the reduction reduces to
false and is tied to the read event Rof (ℓ,vr).

– In case of success, OE-CAS-SUCC says that it must be that v1 is
equal to the read value vr, and the reduction reduces to true

and is tied to the update event Uor,ow(ℓ,vr,v2).

Note again that this means that the CAS can non-deterministically
fail or succeed if v1 and what ℓ stores can be unallocated location
values.

• OE-FENCE says that a fence also reduces to poison and is tied to the
corresponding fence event.

• Finally, OE-ALLOC and OE-FREE both require that the provided block
size n is positive, and respectively are tied to the memory events
A(ℓ, n) and D(ℓ, n). The allocation call returns the base location ℓ

of the newly allocated block, while the deallocation call returns
poison.

Note 4.11. In the expression reductions, the global memoryM is used
in equality comparison (OE-EQ-TRUE). Other than that, it is only used
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ForkView(V) ::= (∅,∅,V.cur,V.cur)

OC-PURE

M,V ⊢ e→ e′, e?f

(M,N ) | (e,V) ⊥,(ef ,ForkView(V))?−−−−−−−−−−−−→t (M,N ) | (e′,V)

OC-MEM

∀ε′. (M,V ⊢ e
ε′−→ ,⊥) ∧ (M | V ε′, ,−−−−→ | ) =⇒ M,N ,V ⊢ RaceFree(ε′)

M,V ⊢ e
ε−→ e′,⊥ M | V ε,r?,ms−−−−−→ M′ | V ′ N

ε,r?,ms

N ′

(M,N ) | (e,V) ε,⊥−−→t (M′,N ′) | (e′,V ′)

FIGURE 4.5: The combined 1-thread se-
mantics of ORC11 machine semantics and
λRust expression semantics.

together with the thread-view V for comparison in CAS (OE-CAS-FAIL and
OE-CAS-SUCC).

4.3 The Complete Operational Semantics of Relaxed λRust

Definition 4.12 (1-Thread Reductions). ς | (e,V) ε?,(ef ,Vf )
?

−−−−−−−→t ς
′ | (e′,V ′)

The combined 1-thread (single-thread) reductions of ORC11 machine
semantics and λRust expression semantics is given in Figure 4.5. The
configuration (M,N ) | (e,V) is called a 1-thread configuration which
includes the thread’s executing expression e, the thread-view V, and
the global stateM and N . The pair (e,V) is also called a thread-local
configuration. The combined 1-thread reductions define how a 1-thread
configuration is transformed in one reduction step, possibly generating
an optional memory event ε and an optional pair of expression and
thread-view (ef ,Vf ) for a newly forked thread.

• OC-PURE allows for a pure step that only reduces the expression of
the configuration, and potentially generates an expression ef for
a new thread. In that case, the thread-view ForkView(V), derived
from V, is picked for the newly forked thread. The definition of
ForkView(V) encodes our choice for fork’s behaviors with respect
to synchronization: the forked (child) thread should be synchro-
nized with the forking thread, but a fork does not act as a release
fence for the forked thread, so its release views are empty (∅).

• OC-MEM allows for a memory step that simultaneously (i) reduces
the expression e in one step to e′ (M,V ⊢ e

ε−→ e′,⊥, Defini-
tion 4.10) with a memory event ε, and (ii) makes a view-based

machine step (M | V ε,r?,ms−−−−−→ M′ | V ′, Definition 3.22) and a

race detector step (N
ε,r?,ms

N ′, Definition 3.26) with the same
memory event ε, potentially with an optional read action id r?

and a list of write messages ms. The reduction needs to be race-
free, i.e., for any potential memory step that the current config-
uration can make and thus generate an event ε′, it must be that
M,N ,V ⊢ RaceFree(ε′) (Definition 3.25).
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OT-STEP

T (π) = (e,V) (M,N ) | (e,V) ε?,(ef ,Vf )
?

−−−−−−−→t (M′,N ′) | (e′,V ′)

(M,N ) | T → (M′,N ′) | T [π←(e′,V ′)]
[
ρ←(ef ,Vf )

∣∣ (ef ,Vf )? ̸= ⊥ ∧ ρ /∈ dom(T )
]

FIGURE 4.6: Threadpool semantics.

Finally, we can lift the 1-thread semantics to the complete, concurrent
semantics with a thread-pool.

Definition 4.13 (Thread-pools). A thread-pool T is a partial, finite map
from thread-ids to pairs of expressions and thread-views, i.e.,

T ∈ ThreadPool ::= Thread fin−⇀ (Expr× ThreadView)

Definition 4.14 (Threadpool Reductions). ς | T → ς ′ | T ′

The thread-pool semantics is given in Figure 4.6. It defines the reduction
of a thread-pool configuration ς | T that includes the global machine state
(Definition 3.14) and the thread-pool for all threads. OT-STEP says that a
thread-pool reduction just picks some random thread π in the thread-pool
and make a 1-thread step using the 1-thread configuration ς | (e,V) for
the global state and thread π. The results of the 1-thread step are then
used to update the thread-pool configuration. In case thread π forks a
new thread with (ef ,Vf ), then a fresh thread-id ρ /∈ dom(T ) is picked to
insert the newly forked thread into the thread-pool.

CHAPTER SUMMARY. This chapter presents the λRust language and ex-
plains how to combine it with the machine semantics of ORC11 to achieve
our target language. In the next chapter, we instantiate Iris with this
language to obtain a vanilla separation logic for RMC. Note that Iris takes
as input the 1-thread reductions (Definition 4.12) of a language and
defines its own thread-pool reductions. We only state the thread-pool
reductions (Definition 4.14) for completeness, which is similar to (but
simpler than) that of Iris.
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Related Work

Podkopaev et al.1 develop an operational account of a subset of C11 that 1Podkopaev et al., “Operational Aspects
of C/C++ Concurrency” [PSN16].includes relaxed accesses and non-atomics. However, it lacks support for

fences and thus could not be used as is to build a logic to verify libraries
that use fences e.g., Rust’s Arc. Their semantics also does not forbid the
data race in Example 3.29.

Doherty et al.2 develop an operational semantics based on event 2Doherty et al., “Verifying C11 programs
operationally” [Doh+19].graphs for the release/acquire/relaxed fragment of RC11. They also

develop an invariant-based logic geared towards automated verification
for programs in that fragment. Their operational semantics supports
neither non-atomics nor fences.

Kang et al.’s promising semantics3 proposes using promises to fix C11’s 3Kang et al., “A promising semantics for
relaxed-memory concurrency” [Kan+17].out-of-thin-air problem without prohibiting load-store reordering on

relaxed accesses, as RC11 and ORC11 do. The promising semantics as
well as its versions 2.0 and 2.1,4 however, does not include non-atomic 4Lee et al., “Promising 2.0: global op-

timizations in relaxed memory concur-
rency” [Lee+20]; Cho et al., “Modu-
lar data-race-freedom guarantees in the
promising semantics” [Cho+21b].

accesses, as the authors did not consider the problem of undefined
behaviors (UBs). Instead, the semantics has plain accesses that can race
among one another and still have defined semantics.

Recently, Cho et al.5 extends version 2.1 (PS2.1) with UB-inducing 5Cho et al., “Sequential reasoning for op-
timizing compilers under weak memory
concurrency” [Cho+22].non-atomics (dubbed PSna) in order to verify optimizations on non-

atomics across atomics. Non-atomics in PSna can also be promised, and
write-write races with a non-atomic access invokes UB, while read-write
races results in the read of undef (which is more defined than the poison
h value).6 The race detection mechanism of PSna is similar to that of 6Lee et al., “Taming undefined behavior

in LLVM” [Lee+17].ORC11: a non-atomic access is racy if the thread is not locally aware of
another access to the same location with a bigger timestamp (similar
to DRF-READ-NA and DRF-WRITE-NA); and an atomic access is racy if the
thread is not aware of another non-atomic access to the same location
with a bigger timestamp (similar to DRF-READ-AT, DRF-WRITE-AT and DRF-

UPDATE). Interestingly, the implementation of PSna’s race detector is much
simpler: instead of using a global non-atomic view N as in ORC11, PSna

distinguishes between atomic and non-atomic messages in the global
memoryM, and the check for races simply looks at the timestamps and
the messages’ types. We believe that ORC11 can benefit from such a
simplification.

The follow-up work of PSna by Lee et al.7 proposes a two-layered 7Lee et al., “Putting Weak Memory in
Order via a Promising Intermediate Repre-
sentation” [Lee+23].semantics: a source language semantics without promises, and an inter-

mediate representation (IR) semantics that can have promises (dubbed

57
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PSIR) but only for race-detection purpose. The paper also comes with a
proposal to hardware developers to justify the semantics of PSIR. If the
proposal is accepted, it mean that iRC11 can be applied to most C and
C++ RMC programs. As of now, iRC11 can only be used for promise-free
programs (a property which can be checked externally), and the verifica-
tion results can be ported to the full semantics using the DRF theorems
by Cho et al.8.8Cho et al., “Sequential reasoning for op-

timizing compilers under weak memory
concurrency” [Cho+22]. Meanwhile, semantics for low-level languages, such as that of the

ARM ISA,9 do not employ UBs. Regardless, their modern semantics in-
9[Pul+18; Flu+17; Pul+19; Sim+20]. clude hardware optimisations such as speculative execution and multiple

layers of caches, resulting in complex memory models. It remains to be
seen if the view-based approach can be used to model various hardware
features—there have been view-based semantics for non-volatile mem-
ory,10 but, to the best of our knowledge, not for instruction caches11 nor10Cho et al., “Revamping hardware per-

sistency models: view-based and ax-
iomatic persistency models for Intel-x86
and Armv8” [Cho+21a].

11Simner et al., “ARMv8-A System Seman-
tics: Instruction Fetch in Relaxed Architec-
tures” [Sim+20].

virtual memory.12

12Simner et al., “Relaxed virtual memory
in Armv8-A” [Sim+22].
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This part discusses the features and the construction of iRC11. We
give a brief review of the Iris separation logic framework in Chapter 6 and
discuss the instantiation of Iris with ORC11 in Chapter 7, which results
in the base logic for ORC11. The base logic, however, is very close to
the operational semantics, and only provides basic separation reasoning
principles. Chapter 8, following iGPS,13 presents the first abstraction 13Kaiser et al., “Strong Logic for Weak

Memory: Reasoning About Release-
Acquire Consistency in Iris” [Kai+17].layer that gives rise to the iRC11 logic: view-monotone predicates, or vProp

for short. The chapter also presents several RMC-specific modalities
of iRC11 in vProp, some of which are inspired by FSL and Cosmo.14 14Doko and Vafeiadis, “A Program Logic

for C11 Memory Fences” [DV16]; Mével
et al., “Cosmo: a concurrent separation
logic for multicore OCaml” [MJP20].

Chapter 9 and Chapter 10 present the construction for the core ownership
assertions of iRC11: the non-atomic and atomic points-to. Chapter 11
introduces invariants—the standard principle for concurrently sharing
resources—but with RMC-specific limitations. Finally, Chapter 12 ends
this part with several simple example verifications of RMC programs
and libraries using iRC11. The bottom half of Figure 1.1 visualizes the
dependency among these chapters.





6
More Background: Iris, A Framework for
Concurrent Separation Logics

In this chapter, we give a quick review of the concurrent separation logic
framework Iris.1 Readers who are familiar with Iris can skip this review, 1Jung et al., “Iris: Monoids and

Invariants as an Orthogonal Basis for Con-
current Reasoning” [Jun+15]; Jung et al.,
“Higher-order ghost state” [Jun+16];
Krebbers et al., “The Essence of
Higher-Order Concurrent Separation
Logic” [Kre+17]; Jung et al., “Iris from
the ground up: A modular foundation
for higher-order concurrent separation
logic” [Jun+18b].

and jump to Chapter 7 for the instantiation of Iris with our relaxed λRust

+ ORC11 language. On the other hand, for readers who prefer a deep
dive into the details of Iris, please consult the journal paper [Jun+18b].

Iris as a framework contains (i) a higher-order, resource-aware, step-
indexing base logic with bunched implications (BI),2 (ii) extensions3

2O’Hearn and Pym, “The logic of
bunched implications” [OP99]; Ish-
tiaq and O’Hearn, “BI as an Asser-
tion Language for Mutable Data Struc-
tures” [IO01].

3derived from the base logic

that support program verification (i.e., program logics with weakest pre-
conditions and impredicative invariants) for an input language with an
operational interleaving semantics, and (iii) a general Iris Proof Mode
(IPM)4 that supports interactive resource reasoning and that can be

4Krebbers et al., “Interactive Proofs
in Higher-Order Concurrent Separation
Logic” [KTB17]; Krebbers et al., “MoSeL:
A General, Extensible Modal Frame-
work for Interactive Proofs in Separation
Logic” [Kre+18].

instantiated with any BI logics.
An excerpt of Iris grammar is given in Figure 6.1. Propositions in Iris

belong to the type iProp, which has a step-indexing model on resources.5

5[Jun+18b], §4.

Concept 6.1 (Iris Base Logic). The Iris base logic supports the common
logical connectives (False,True,⇒,∧,∨). iProp propositions are to be
interpreted with resources in mind, so the “classical” conjunction P ∧Q

should be read as P and Q hold relying on the same resources. The base
logic logic allows embedding pure facts ϕ which exist at the meta-level
and which naturally do not occupy resources.

• It is a BI logic: the separating conjunction P ∗Q says that P and Q

hold on disjoint resources, and the wand implication P −∗ Q holds
on some resource r that can be combined with some resource s

where P holds to obtain the resource r · s where Q holds.

• The base logic also supports higher-order logical quantification
(∀,∃) and recursive predicates (µ) because the quantified variable
x can also be an iProp. Recursive predicates need to be guarded:
occurrences of x in the body need to be under a later modality ▷.

• The later modality is the materialization of the step-indexing model
in the logic: ▷P intuitively means that P holds in the next step, so
P only becomes available until the program takes a step (and so
decrements the step-index). Step-indexing guarantees the logic’s
soundness in the presence of recursive higher-order quantifications,
impredicative invariants, and higher-order ghost state.

63
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P ∈ iProp ::= (* base logic *)

| ϕ | False | True | P ⇒ Q | P ∧Q | P ∨Q | P ∗Q | P −∗ Q | ∃x. P | ∀x. P | µx. P

| ▷P | □P | a : M
γ | ˙|⇛P | . . .

(* program logic *)

| P N | |⇛E1 E2 P | wpE e {v . Q} | . . .

FIGURE 6.1: An excerpt of Iris grammar.

• The persistent modality □P says that P is known to hold without
some exclusive resource, so that P can be freely duplicated, i.e.,
P ⇒ P ∗ P .

• The proposition a : M
γ

asserts the ownership of an element a of
a resource algebra M for the ghost location γ. In case the resource
algebra M is clear in context, we simply write a

γ
.

• The basic update modality ˙|⇛P hides away some ghost updates that
can be performed to achieve P .

Concept 6.2 (Iris Program Logic). To support program verification for a
language, several constructions can be derived from the base logic:66Not all connectives in the Iris base logic

are primitives, some are also derived.

• P
N

asserts the existence of some global invariant that holds the
resource P , under some invariant name that is in the namespace N .
Namespaces provide some hierarchy to sets of invariant names.

• The fancy update |⇛E1 E2 P hides away some logical updates (includ-
ing ghost updates) that can be performed to achieve P . The logical
updates involve accessing (opening and closing) invariants and
therefore trading resources with the involved invariants. The masks
E1 and E2 are sets of invariant names that identify the invariants
that hold (unopened) before and after the update, respectively.

• The weakest pre-condition wpE e {v . Q} assert the resources needed
for e to safely execute7 and maintain the invariants in E at every7never get stuck

step, and if e terminates to a value v , then the post-condition Q

holds. Note that the “if” signals that the program logic by default
only guarantee partial, not total correctness.

6.1 Basic Rules

Figure 6.2 provides several basic rules of many connectives in the Iris
base logic. The logical entailment P ⊢ Q says that Q is derivable from
P using the rules of the logic. Intuitively, its interpretation is that for
any resource and step-index where P holds, Q should also hold. The
notation P ⊣⊢ Q stands for P ⊢ Q and Q ⊢ P .

The rules in Figure 6.2 are very general rules that apply to all Iris
propositions. For example, they include commutativity, associativity, and
distributivity among connectives and modalities; PERS-ELIM tells us that
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True ∗ P ⊣⊢ P

P ∗Q ⊣⊢ Q ∗ P
(P ∗Q) ∗R ⊣⊢ P ∗ (Q ∗R)

SEP-MONO

P1 ⊢ Q1 P2 ⊢ Q2

P1 ∗ P2 ⊢ Q1 ∗Q2

WAND-INTRO-ELIM

P ∗Q ⊢ R

P ⊢ Q −∗ R

Several rules for the persistent modality.

P ⊢ Q

□P ⊢ □Q

PERS-IDEMP

□□P ⊣⊢ □P

PERS-ELIM

□P ⊢ P
□P ∧□Q ⊣⊢ □P ∗□Q

□(P ∗Q) ⊣⊢ □P ∗□Q

□∃x. P ⊣⊢ ∃x. □P

□∀x. P ⊢ ∀x. □P

Several rules for the later modality.

LATER-INTRO

P ⊢ ▷P

LATER-MONO

P ⊢ Q

▷P ⊢ ▷Q

LÖB

(▷P ⇒ P ) ⊢ P
▷(P ∗Q) ⊣⊢ ▷P ∗ ▷Q
□ ▷P ⊣⊢ ▷□P

τ inhabited

▷∃x : τ. P ⊣⊢ ∃x : τ. ▷ P

▷ ∀x. P ⊣⊢ ∀x. ▷ P

FIGURE 6.2: Basic rules of several Iris con-
nectives.we can always get P from □P ; or LATER-INTRO says that if we have P now,

we also have P in the next step; or LÖB allows us to do Löb induction:
if having P in the next step is sufficient to achieve P now, then we can
have P now.

6.2 Ghost State and Resource Algebras

The ghost ownership assertion a : M
γ

requires a to be an element of
a resource algebra M . Resource algebras give the separation structure
for ghost state in separation logics, and are a generalization of Iris for
partial commutative monoids (PCMs).

Definition 6.3 (Resource Algebras). A resource algebra (RA) is a tuple
(M, valid : M → Prop, | − | : M → M?, (·) : M ×M → M) where the
type M has a commutative, associative composition (·); a core function
(|− |) that computes a optional per-element unit (in M?) for each element
a ∈M ; and a validity predicate (valid) to indicate legal compositions.

Compared to PCMs, RAs force composition to be total, and instead
regain partiality with validity. Furthermore, where a PCM has a single
unit element ε, an RA can have multiple per-element units |a|, and some
elements may not have a unit, i.e., |a| = ⊥.

The following properties must hold for an RA.

∀a, b. a · b = b · a (RA-COMM)

∀a, b, c. (a · b) · c = a · (b · c) (RA-ASSOC)

∀a. |a| ∈M ⇒ |a| · a = a (RA-CORE-ID)

∀a. |a| ∈M ⇒ ||a|| = a (RA-CORE-IDEMP)

∀a. |a| ∈M ∧ a ≼ b⇒ |b| ∈M ∧ |a| ≼ |b| (RA-CORE-MONO)

∀a, b. valid(a · b)⇒ valid(a) (RA-VALID-OP)

where a? · ⊥ = ⊥ · a? = a?

a ≼ b ::= ∃c ∈M. b = a · c (RA-INCL)
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GHOST-ALLOC

valid(a)
˙|⇛∃γ. a γ

GHOST-VALID

a
γ ⇒ valid(a)

GHOST-OP

a · b γ ⇔ a
γ ∗ b

γ

GHOST-UPDATE-GEN

a⇝ B

a
γ
⇛̇ ∃b ∈ B. b

γ

GHOST-UPDATE

a⇝ b

a
γ
⇛̇ b

γ

BUPD-MONO

P ⊢ Q

˙|⇛P ⊢ ˙|⇛Q

BUPD-INTRO

P ⊢ ˙|⇛P

BUPD-TRANS

˙|⇛ ˙|⇛P ⊢ ˙|⇛P

BUPD-FRAME

Q ∗ ˙|⇛P ⊢ ˙|⇛(Q ∗ P )

where P ⇛̇ Q ::= □(P −∗ ˙|⇛Q).

FIGURE 6.3: Basic rules of Iris ghost own-
ership and basic updates.

RA-CORE-ID says that if a core exists for some a, then it is a unit for a, and
RA-CORE-MONO says that the core function maintains inclusion, defined
by RA-INCL using composition. RA-VALID-OP says that if a composition is
considered valid, all of its components must also be valid.

A unital RA (uRA) has a unit element ε satisfying:

valid(ε) ∀a ∈M. ε · a = a |ε| = ε

The rules for ghost ownership are given in Figure 6.3. GHOST-ALLOC

lets us allocate a fresh ghost location γ with an initial, valid element that
is a. Under the hood, this is a ghost update to the global ghost heap to
insert the fresh ghost location γ, and this update is hidden in the basic
update modality ˙|⇛. GHOST-VALID says that ghost ownership maintains
validity. More importantly, GHOST-OP says that the RA composition gives
the separation structure to ghost ownership.

Notation 6.4 (Basic Viewshifts). P ⇛̇ Q

Intuitively, basic viewshift P ⇛̇ Q says that the resources owned by P

can be turned into the resources owned by Q using some ghost updates.

P ⇛̇ Q ::= □(P −∗ ˙|⇛Q)

GHOST-UPDATE-GEN and GHOST-UPDATE allow us to update some ghost
state, using the basic viewshift. GHOST-UPDATE-GEN allows for an non-
deterministic update: some element in b will be picked after the update.
To maintain consistency of separation, the premises of these rules require
that ghost updates are frame-preserving.

Concept 6.5 (Frame-preserving Ghost Updates). a⇝ b

When doing a ghost update for a
γ
, one must remember that one only

has a part of the ghost location γ: with separation (i.e., using GHOST-

OP), other parts of γ that are compatible with a, called the frame, are
owned by other parties. As such, for any b that we update a to, one must
maintain that a is also compatible with the frame, i.e., one cannot allow
b composed with the frame being invalid, leading to inconsistency in
the logic (turning a valid state into an invalid one). The relation a⇝ b

encodes the fact that the update from a to b maintains validity of the
whole ghost state, i.e., it is a frame-preserving update.
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a⇝ b is derived from the more general definition a⇝ B which says
that a can be frame-preservingly updated to any element in B:

a⇝ B ::= ∀c? ∈M?. valid(a · c?)⇒ ∃b ∈ B. valid(b · c?)
(RA-FRAME-UPD-GEN)

a⇝ b ::= a⇝ {b} (RA-FRAME-UPD)

In this definition, “the frame” is universally quantified as c.

Figure 6.3 also provides some structural rules for basic updates.

6.3 Invariants and Fancy Updates

Invariants can be seen as logical, global spaces where resources can
be stored for concurrent accesses.8 The catch is that accesses must be 8They are indeed implemented in Iris

as a global chunk of resources, see
([Jun+18b], §7.1).(physically) atomic—take place during a single step of computation—and

invariants must be re-established after each access, so that they indeed
hold invariantly (i.e., after each step). As such, invariants are used to
build concurrent protocols on pieces of shared state, i.e., to constrain
how clients can change them.

The construction of Iris invariants, however, is not tied to the notion
of atomic expression. Instead, it uses invariant namespaces and masks
to track which invariants are opened (being accessed), and only subse-
quently tie weakest pre-conditions to masks to enforce atomicity. We will
see that in §6.7. Here, we look at the vanilla rules of Iris invariants.

The proposition I
N

asserts the existence of I in the global invariant
space with some invariant name ι in the namespace N .9 Several rules 9The meta-variable I is preferred over

P to indicate resources that are stored in
invariants.for Iris invariants are given in Figure 6.4, which rely on fancy updates,

which in turn generalize basic updates with masks. Intuitively, |⇛E1 E2 P

represents ownership of resources such that, assuming that the invariants
in E1 are enabled (they are not opened) before, one can perform frame-
preserving updates and afterwards obtaining P and having the invariants
in E2 enabled. As such, if the masks E1 and E2 are different, some
invariants may have been opened to achieve P , or some other resources
must have been returned to close some invariants. Furthermore, masks
prevent reentrancy: an invariant cannot be opened again without being
closed first.

This intuition is on display in the invariant access rule INV-ACC:

• If we know that the set of enabled invariants E1 includes the names-
pace N—meaning that the invariants in N are not opened yet,
then we can open all invariants in N with the fancy update |⇛E E\N

(so after that only the invariants in |⇛E E\N are enabled).

• Furthermore, if we know that I
N

, i.e., I is stored in one of those
invariants in N that are to be opened, then we get access to the
resources of I , but under a later modality (▷ I ). The later ensures
that I is guarded, because invariants are impredicative, e.g., I can
refer to I

N
itself.
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INV-ALLOC

▷ I ⊢ |⇛E I
N

INV-ACC

N ⊆ E

I
N ⊢ |⇛E E\N (

▷ I ∗ (▷ I ≡−∗E\N E True)
)

FUPD-BUPD

˙|⇛P ⊢ |⇛E P

FUPD-MONO

P ⊢ Q

|⇛E1 E2 P ⊢ |⇛E1 E2 Q

FUPD-INTRO

P ⊢ |⇛E P

FUPD-INTRO-MASK

E2 ⊆ E1
True ⊢ |⇛E1 E2 |⇛E2 E1 True

FUPD-FRAME

Q ∗ |⇛E1 E2 P ⊢ |⇛E1⊎Ef E2⊎Ef (Q ∗ P )

FUPD-TRANS

|⇛E1 E2 |⇛E2 E3 P ⊢ |⇛E1 E3 P

where |⇛E ::= |⇛E E and P ≡−∗E E′
Q ::= P −∗ |⇛E E′

Q.

FIGURE 6.4: Some rules for Iris invariants
and fancy updates. • Finally, we also get a “closing” update, (▷ I −∗ |⇛E\N E True), which

allows us to return the invariant resources, also under a later, ▷ I ,
we can close all invariants and re-establish that E is enabled.

Note that even though all invariants in N are opened during the
access, we only take out ▷ I and so we only need to return ▷ I . The
resources of other invariants are untouched and are kept safe under
the “closing” update. However, this means that the access rule does
not support accessing two invariants stored under the same namespace
together. To access two invariants I1 and I2 together, we need to allocate
them in two disjoint namespaces N1 # N2 ⊆ E . Then we can apply
INV-ACC twice, first with I1

N1 and E , then with I2
N2 and E \ N2, to get

access to ▷ I1 ∗ ▷ I2.
INV-ALLOC allows us to allocate an invariant I with some fresh invariant

name ι picked non-deterministically from N . Note that we only need
to provide I under a later, and that |⇛E is a notation for a fancy update
that does not change masks. This rule justifies the use of namespaces:
if we had use only invariant names, then when accessing invariants
we would have to deal with disjointness for names which are allocated
dynamically. Instead, in this setup with namespaces, we only have to
deal with disjointness of namespaces which can be picked statically. Note
that this also means that both masks and namespaces need to contain an
infinite number of names.

Figure 6.4 also provides some structural rules for fancy updates.
Importantly, FUPD-BUPD says that a fancy update includes a basic update.

Notation 6.6 (Fancy Updates and Wand Viewshifts). |⇛E denotes non-
mask-changing fancy updates |⇛E E , and P ≡−∗E E′

Q denotes wand view-
shifts, a combination of wand implication and fancy update:

P ≡−∗E E′
Q ::= P −∗ |⇛E E′

Q

P ≡−∗E Q denotes non-mask-changing wand viewshifts.
Plain viewshifts are the persistent version of wand viewshifts:

P ⇛E E′
Q ::= □(P −∗ |⇛E E′

Q)

P ⇛E Q ::= □(P −∗ |⇛EQ)
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6.4 Hoare Triples

Once we instantiate Iris with a language that has an interleaving op-
erational semantics defined in the style of evaluation contexts, the Iris
problem logic provides us a notion of weakest pre-conditions proposi-
tions that encode partial correctness of expressions. (We will see the
instantiation of the relaxed λRust language in Chapter 7.) Intuitively, the
proposition wpE e {v . Q} asserts the ownership of some resources with
which e can execute safely (i.e., it never gets stuck) while maintaining
the invariants in E at every step, and if e evaluates to a value v , then we
arrive at some resources at which the post-condition Q holds.

The goal of program verification for some program e is to prove that
the weakest pre-condition with some suitable target post-condition is
derivable from some sufficient resources—the pre-condition—using the
rules of the program logic. This can be seen more concretely in the Iris
definition of Hoare triples.

Definition 6.7 (Iris Hoare Triples). Hoare triples in Iris are defined in
terms of weakest pre-conditions:

{P} e {v . Q}E ::= □ (P −∗ wpE e {v . Q})

The persistent modality (□) guarantees that the precondition P is suf-
ficient to prove the weakest pre-condition—that is, the wand does not
need extra resources. The intuitive interpretation of Hoare triples is
straightforward: the precondition P is sufficient for the expression e to
safely execute while maintaining the invariants in E , and if e terminates
to v then Q holds.

6.5 Adequacy

Weakest pre-conditions and Hoare triples are also Iris propositions (iProp),
and are in fact also defined entirely in the logic of Iris to encode the
aforementioned intuition. However, once we have proven a weakest
pre-condition or a Hoare triple for some program, we would like to
achieve a guarantee outside of the logic that the program executes safely
under the target operational semantics. This is called adequacy: for each
instantiation of Iris with some language Λ, we need to prove once and
for all the following Theorem.

Theorem 6.8 (Iris Adequacy). If ⊢ wp⊤ e {v . ϕ(v)} is derivable in the
Iris program logic for Λ where ϕ(v) is a pure (meta-level) fact, then the
following holds.

∀π, T , σ. ([π 7→ e], σinit)→∗
Λ (T , σ)⇒

∀v . T (π) = v ⇒ ϕ(v) (IRIS-ADEQUACY-VAL)

∧ ∀ρ, eρ. T (ρ) = eρ ⇒
(
eρ is a value ∨ red(eρ, σ)

)
(IRIS-ADEQUACY-NO-STUCK)

That is, if we start running e with the initial global configuration
([π 7→ e], σinit)—where the threadpool only has a single thread π with
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the expression e and the initial global state σinit is typically empty—then
for any configuration reachable (T , σ) through the reflexive, transitive
closure of the threadpool reduction →Λ for Λ, (IRIS-ADEQUACY-VAL) if
thread π has reduces to a value v , the pure fact ϕ(v) must hold, and
(IRIS-ADEQUACY-NO-STUCK) for any thread ρ with the expression eρ, it is
not stuck: either eρ is a value, or eρ is still reducible on σ (red(eρ, σ)).

Note that the mask of the weakest pre-condition is ⊤, which means
that all invariants (any allocated) hold at every step. Note also that
deriving ⊢ wp⊤ e {v . ϕ(v)} is the same as deriving a Hoare triple with a
trivial pre-condition, i.e., ⊢ {True} e {v . Q}⊤.

6.6 Some Common Rules for WPs and Hoare Triples

On the other hand, during program verification, in order to derive
wpE e {v . Q}, one relies on the various rules for weakest pre-conditions
(WP). Many of those rules are language-specific: after instantiate Iris
with our target language Λ, we need to extend the logic with WP rules
for the primitive instructions of Λ. We will see those primitive rules for
our relaxed λRust + ORC11 language in Chapter 7. Here, we look at some
WP rules that are not so language-specific.

More concretely, these are the typical rules we would expect for a
lambda-calculus based language with an operational semantics using
evaluation contexts and fork-based concurrency. These rules, as well as
their corresponding derived Hoare-triple versions, are given in Figure 6.5.
Note that when reading the WP rules, by reading them backward—as
typically when we use a rule of form wpE e

′ {Ψ} ⊢ wpE e {Φ} to turn the
verification goal wpE e {Φ} into the goal wpE e

′ {Ψ}, we are driving the
symbolic execution of the program forward: the expression e reduces to
the expression e′. Note that we also use the meta-variables Φ and Ψ for
predicates on values (Val→ iProp) which can be used for post-conditions
(which so far have been written as v . Q).

• WP-VAL says that if the expression has reached a value v , then
we simply have to prove the post-condition Φ(v). HOARE-VAL is
derivable from WP-VAL with Φ ::= λw.w = v .

• WP-MONO allows for monotonicity for the post-conditions: to prove
a WP with the post-condition Ψ we may want to prove a WP
with the stronger post-condition Φ. It also additionally provides
monotonicity for masks: if we can prove a WP relying on fewer
invariants (with the smaller mask E1), then that WP also works
with more invariants (with the bigger mask E2).10 The well-known10So that from a wpE e {Φ} one can, for

example, obtain wp⊤ e {Φ} with the top
(⊤) mask, and subsequently apply ade-
quacy.

consequence rule HOARE-CONS is derivable from WP-MONO.

• WP-BIND is the core rule to drive sequential composition. It makes
use of evaluation contexts. To prove a WP for K[e], we prove a WP
for e whose post-condition is another WP that plugs the resulting v

into the “continuation” K. This corresponds to executing e first and
then the continuation K. HOARE-BIND is derivable from WP-BIND
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WP-VAL

Φ(v) ⊢ wpE v {Φ}

WP-MONO

E1 ⊆ E2
(∀v . Φ(v) −∗ |⇛E2

Ψ(v)) ∗ wpE1
e {Φ} ⊢ wpE2

e {Ψ}

WP-BIND

wpE e {v .wpE K[v ] {Φ}} ⊢ wpE K[e] {Φ}
WP-FRAME

P ∗ wpE e {Φ} ⊢ wpE e {v . P ∗ Φ(v)}

WP-LAM

▷wpE e[v/x] {Φ} ⊢ wpE (λx. e)v {Φ}
WP-FORK

▷Φ() ∗ ▷wp⊤ e { .True} ⊢ wpE fork { e } {Φ}

HOARE-VAL

{True}v {w.w = v}E

HOARE-BIND

{P} e {v . Q}E ∀v . {Q}K[v ] {w.R}E
{P}K[e] {w.R}E

HOARE-FRAME

{P} e {v . Q}E
{P ∗R} e {v . Q ∗R}E

HOARE-CONS

P ⊢ P ′ {P ′} e {v . Q′}E ∀v . Q′ ⊢ Q

{P} e {v . Q}E

HOARE-LAM

{P} e[v/x] {w.Q}E
{P} (λx. e)v {w.Q}E

HOARE-FORK

{P} e { .True}⊤
{P} fork { e } { .True}E

FIGURE 6.5: Some common rules for Iris
weakest pre-conditions and Hoare triples.and WP-MONO. Note that Hoare-triple rules should be read as the

separating conjunction of the premises implies the conclusion.

• WP-FRAME allows for “framing”: if the post-condition requires us
to prove P that has nothing to do with the execution of e, then
we can frame P out and separately prove the WP for e with the
remaining post-condition Φ. The famous frame rule HOARE-FRAME

is derivable from WP-FRAME.

• WP-LAM is a primitive rule for a language with beta-reduction. The
rule says that we need to prove the WP for the expression after beta-
reduction. However, because the reduction takes a step, we only
need to prove the new WP under a later. HOARE-LAM is derivable
from WP-LAM and LATER-INTRO.

• WP-FORK is a primitive rule for a language with fork-based concur-
rency. We need to prove, only under a later because the reduction
takes a step, (i) the current post-condition Φ() for the current
thread (assuming the returned value of fork is unit), and (ii) a
WP for the newly forked thread ρ (with the expression e) with a
trivial post-condition, which signifies that forked threads are “de-
tached” by the default.11 The rule HOARE-FORK is derivable from 11Iris, however, does support picking a

fixed, non-trivial post-condition for all
forked threads. But such a post-condition
only restricts the set of possible final states
of the forked threads. If one wants to com-
municate a post-condition Q back to the
forking thread, however, one can imple-
ment a join operation (using an extra lo-
cation) to wait for the thread ρ to receive
Q—see §12.3.

WP-FORK, and in that rule we can see that some resources P can be
transferred from the forking thread to the forked thread.

6.7 Weakest Pre-conditions and Invariants

Figure 6.6 provides some rules for the interaction between WPs (Hoare
triples) and invariants and fancy updates.

• WP-FUPD says that we can perform fancy updates around an ex-
pression if our goal is a WP. Combining this rule with FUPD-MONO
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WP-FUPD

|⇛E wpE e {v . |⇛E Φ(v)} ⊢ wpE e {Φ}

WP-ATOMIC

atomic(e)

|⇛E1 E2 wpE2
e
{
v . |⇛E2 E1 Φ(v)

}
⊢ wpE1

e {Φ}

WP-INV

▷ I ⊢ wpE\N e {v . ▷ I ∗ Φ(v)} atomic(e) N ⊆ E

I
N ⊢ wpE e {Φ}

HOARE-VS

P ⇛E P ′ {P ′} e {v . Q′}E ∀v . Q′ ⇛E Q

{P} e {v . Q}E

HOARE-INV

{▷ I ∗ P} e {v . ▷ I ∗Q}E\N atomic(e) N ⊆ E

I
N ⊢ {P} e {v . Q}E

where P ⇛E Q ::= □(P −∗ |⇛EQ) (see Notation 6.6).

FIGURE 6.6: Some rules for Iris weakest
pre-conditions and invariants. and FUPD-FRAME (Figure 6.4), around a WP we can eliminate any

hypotheses with fancy updates in our proof context if they have
masks smaller than E . With FUPD-BUPD, we can additionally per-
form ghost updates, and with FUPD-INTRO-MASK and INV-ACC, we can
also open invariants and close them immediately to obtain some du-
plicable knowledge. Furthermore, HOARE-CONS can be strengthened
to HOARE-VS.

• WP-ATOMIC allows us to perform mask-changing updates around
(physically) atomic instructions—those whose execution takes place
in a single step of computation. If e is atomic, then to prove
wpE1

e {Φ}, we can perform a mask-changing fancy update from
the mask E1 to the E2, and prove a WP for the mask E2 whose
post-condition must perform a reverse mask-changing update from
E2 back to E1 before establishing the original post-condition.

• WP-INV allows us to open invariants around atomic instructions,
and it is derivable from WP-ATOMIC. If we let E1 = E , and E2 = E\N ,

we can use WP-ATOMIC and then INV-ACC to open the invariant I
N

around a goal of wpE e {Φ}, and use ▷ I for the execution of the
atomic expression e, if we can re-establish ▷ I after the step. HOARE-

INV is easily derivable from WP-INV.

6.8 Properties of Propositions

There are two important properties of propositions that make proofs in
step-indexing separation logics more convenient. Several rules for these
two properties are given in Figure 6.7.

Property 6.9 (Timeless Propositions). Timeless propositions are those
who are independent of the step index, and thus are not affected by
the later modality. Concretely TIMELESS-DISCRETE allows them to be
used immediately—we say that the later is stripped off—using a fancy
update. Timelessness is maintained structurally in many cases, such
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TIMELESS-VS

timeless(P )

▷P ⊢ |⇛E P

TIMELESS-DISCRETE

M is discrete

timeless( a : M
γ
)

TIMELESS-PURE

timeless(ϕ)

PERSISTENT-DUP

persistent(P )

P ⇔ P ∗ P

PERSISTENT-PERS

persistent(□P )

PERSISTENT-PURE

persistent(ϕ)

PERSISTENT-CORE

|a| = a

persistent( a
γ
)

PERSISTENT-INV

persistent( I
N
)

TIMELESS-SEP

timeless(P ) timeless(Q)

timeless(P ∗Q)

TIMELESS-PERS

timeless(P )

timeless(□P )

PERSISTENT-SEP

persistent(P ) persistent(Q)

persistent(P ∗Q)

PERSISTENT-LATER

persistent(P )

persistent(▷P )

FIGURE 6.7: Some properties of timeless
propositions and persistent propositions.

as in TIMELESS-SEP. Some typical timeless propositions are pure (meta-
level) facts (TIMELESS-PURE), and ownership of a ghost element whose
RA is discrete (TIMELESS-DISCRETE), i.e., the equivalence relation is not
step-indexed.12 12A step-indexing family of equivalence

relations is needed for higher-order ghost
state.

Property 6.10 (Persistent Propositions). Intuitively, persistent propo-
sitions are those who do not consume resources. As such, they can
be freely duplicated and be used many times without being consumed,
as in PERSISTENT-DUP. For this reason, persistent propositions are often
called knowledge, in contrast to non-persistent ones, which are generally
called resources. Persistency is maintained structurally, for example,
as in PERSISTENT-SEP and PERSISTENT-LATER. Naturally, □P is persistent
(PERSISTENT-PERS). Some typical persistent propositions are pure facts
(PERSISTENT-PURE), the knowledge of some invariant (PERSISTENT-INV), or
ghost ownership of some core element (PERSISTENT-CORE).

6.9 The Method of Fictional Separation

When instantiating Iris with our target language, apart from the expected
WP rules mentioned above, we need to derive WP rules for our language’s
primitives (e.g., for reads and writes). These derivations, as well as most
derivations of rules that we will see in later chapters, all follow the
method of fictional separation.13 It is a method to turn the ownership 13Jensen and Birkedal, “Fictional Separa-

tion Logic” [JB12].of some monolithic, non-splittable resource r into separable ones. The
splitting of r is fictional: we construct some RA that mirrors r and that
has a suitable composition to provide the desirable separation structure.
In other words, we create a ghost copy of r and we split the copy, while
maintaining that the copy is in sync with the original r. For this, we need
the authoritative RA.

Definition 6.11 (The Authoritative Resource Algebra). The authoritative
RA,14 denoted AUTH(M), assumes a unital RA M , and provides two types 14Jung et al., “Iris: Monoids and Invari-

ants as an Orthogonal Basis for Concur-
rent Reasoning” [Jun+15].of elements for some element a ∈M : the authoritative element • a, and

the fragmentary element ◦ a. The elements satisfy (but are not limited
to) the rules given in Figure 6.8.
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∀a. |◦ a| = ◦ |a| (AUTH-FRAG-CORE)

∀a, b. ◦ (a · b) = ◦ a · ◦ b (AUTH-FRAG-OP)

∀a, b. a ≼ b⇒ ◦ a ≼ ◦ b (AUTH-FRAG-MONO)

∀a. valid(• a)⇔ valid(a) (AUTH-AUTH-VALID)

∀a. valid(◦ a)⇔ valid(a) (AUTH-FRAG-VALID)

∀a, b.¬valid(• a · • b) (AUTH-AUTH-OP-VALID)

∀a, b. valid(• a · ◦ b)⇔ b ≼ a ∧ valid(a) (AUTH-BOTH-VALID)

∀a1, b1, a2, b2. (a1, b1)⇝L (a2, b2)⇒ • a1 · ◦ b1 ⇝ • a2 · ◦ b2 (AUTH-UPDATE)

FIGURE 6.8: Several rules for the
AUTH(M) RA. That is, fragmentary elements preserve core, composition and thus

inclusion of M (AUTH-FRAG-CORE, AUTH-FRAG-OP, and AUTH-FRAG-MONO);
both types of elements preserve validity (AUTH-AUTH-VALID and AUTH-FRAG-

VALID), and the authoritative element is exclusive (AUTH-AUTH-OP-VALID).
Most importantly, a valid composition of the authoritative element of a
and a fragmentary element of b implies that b is included in a (AUTH-BOTH-

VALID). This is why the RA is named “authoritative”: the authoritative
element includes all fragmentary elements.

We then can use the authoritative element as the ghost copy for our
monolithic resource r, and the fragments as its splittable counterparts.

Concept 6.12 (The Method of Fictional Separation). To fictionally
separate a monolithic, non-splittable resource r:

1. Design an RA M that mirrors the original resource r and that has
the desirable separation structure i.e., an appropriate composition.

2. Apply the authoritative RA to M , i.e., AUTH(M), and keep the
ownership of the authoritative part • r in sync with r.

3. Use the fragmentary parts ◦ to build local assertions.

4. Derive rules for local assertions that update the splittable fragmen-
tary parts ◦ , in conjunction with • r and thus with r, but having r

and • r hidden, typically by using an invariant.

To update the fragmentary elements together with the authoritative
one, we use AUTH-UPDATE, which says that • a1 ·◦ b1 can frame-preservingly
updated to • a2 · ◦ b2 if (a1, b1) can be locally updated to (a2, b2).

Definition 6.13 (Local Updates). (a1, b1)⇝L (a2, b2)

A pair (a1, b1) can be locally updated to a pair (a2, b2), if for any (optional)
frame a?f completing b1 to a1, a?f also complete b2 to a2:

(a1, b1)⇝L (a2, b2) ::=

∀a?f . valid(a1) ∧ a1 = b1 · a?f ⇒ valid(a2) ∧ a2 = b2 · a?f

In the case of AUTH-UPDATE, this means that the frame a?f is the fragmentary
frame of ◦ b1, and when updating • a1 together with ◦ b1, we need to
maintain that the update respects a?f .
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Now, Iris allows use to fictionally separate the physical machine state
of our target language through the physical state interpretation.

6.10 The Physical State Interpretation

In fact, Iris requires us—the instantiator—to provide the state interpre-
tation predicate S : State → iProp where State is the type of the global
physical state. This predicate is used in the definition of Iris weakest
pre-conditions.

Definition 6.14 (Iris WP, simplified).

wpSE e {Φ} ::=
e ∈ Val ∧ |⇛E Φ(e)

∨
(
e /∈ Val ∧ ∀σ. S(σ) −∗

|⇛E ∅ (
red(e, σ) ∗ ∀e′, σ′, ef . (e, σ)→t (e

′, σ′, ef) −∗

▷ |⇛∅ E
(S(σ′) ∗ wpSE e′ {Φ} ∗ wpS⊤ ef {v .True})

))
Weakest pre-condition is defined as a recursive iProp predicate (guarded
by a later modality), with two cases. In case the expression e is already
a value, then the post-condition Φ(e) must hold. Otherwise, assuming
S(σ) for the current global physical state σ before a step, (i) e must be
safe to take a 1-thread reduction step (→t) in σ, i.e., e is reducible in σ

(red(e, σ)), and (ii) for any resulting configuration (e′, σ′, ef) of such a
1-thread reduction step, the state interpretation S(σ′) for the physical
state σ′ after the step must hold, and the weakest pre-conditions hold
recursively for e′ and the forked expression ef . The fancy updates enable
ghost updates and invariant accesses around a single reduction step.

From this definition, we see that the proposition S(σ) is needed to
perform a step and must be re-established afterwards, where σ ∈ State is
the current physical state of the machine. As such, we can use S, whose
definition is up to us (the instantiator) to pick, to fictionally separate the
physical state σ. Specifically, we will use S to keep the current state σ in
sync with our authoritative ghost copy •σ, and give out the fragmentary
element ◦σ—which can be separated into smaller elements—to define
our local assertions. Conveniently through S, the WP definition not only
keeps the physical state and the ghost copy in sync for us, but also hides
them away, so our only remaining tasks are to define a suitable RA that
enable the desirable separation on State and to prove our primitive WP
rules (which will need to update the physical state, thus the authoritative
ghost copy and the corresponding ghost fragments).

6.11 An Instantiation Example for Simple Heaps

To make it more concrete, we briefly consider an instantiation example
for an SC language whose physical state is simple heap—a map from
locations to values, i.e., State ::= Loc fin−⇀ Val.15 Let us call this language 15This example is rephrased from

[Jun+18b] and [Kai+17].
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λHEAP. What we want is to derive the small-footprint rules for reads and
writes, using the local points-to assertion.

HEAP-READ

{ℓ 7→ v} ∗ℓ {w.w = v ∗ ℓ 7→ v}⊤
HEAP-WRITE

{ℓ 7→ v} ℓ := v ′ {(). ℓ 7→ v ′}⊤

To do so, we pick a suitable RA to split a heap σ into multiple singleton
heaps of the form [ℓ←v ], which can then be used to define ℓ 7→ v . This
RA is called SHEAP, whose type is exactly State and composition is union
of finite maps, but composition is only valid between disjoint maps. That
is, valid(σ · σ′) ⇔ dom(σ) ∩ dom(σ′) = ∅. The state interpretation and
the points-to assertion are then defined as:

S(σ) ::= •σ : AUTH(SHEAP)
γHEAP

ℓ 7→ v ::= ◦ [ℓ←v ] : AUTH(SHEAP)
γHEAP

That is, the state interpretation S(σ) is the ghost ownership of the au-
thoritative heap •σ at the ghost location γHEAP, and the points-to asser-
tion ℓ 7→ v is the ghost ownership of the fragmentary singleton heap
◦ [ℓ←v ] at the same ghost location γHEAP. The ghost location γHEAP is allo-
cated before the program runs (a proof that indeed needs to be done in
Adequacy—see §6.5), and is needed to establish the agreement between
ℓ 7→ v and the current physical state σ, indirectly through S. To see this
in action, let us look at the proofs of HEAP-READ and HEAP-WRITE. Both
proofs first proceed by unfolding the definitions of Hoare triples (§6.4,
Definition 6.7), and WP (Definition 6.14).

Proof sketch of HEAP-READ. After introducing the assumptions and clear-
ing the fancy update (using FUPD-INTRO-MASK and FUPD-MONO),16 we16see §6.7

arrive at the following goal.

Context: Goal:

ℓ 7→ v (= ◦ [ℓ←v ]
γHEAP

)

S(σ) (= •σ γHEAP
) red(∗ℓ, σ) ∧ ∀e′, σ′, ef . . . .

We first need to show that e is reducible on σ.

With GHOST-OP and GHOST-VALID (see §6.2), from our assumptions,

we have valid(•σ · ◦ [ℓ←v ]), and then by AUTH-BOTH-VALID,

we have [ℓ←v ] ≼ σ and valid(σ), so σ = [ℓ←v ] ⊎ σf for some σf .

By the definition of SHEAP’s composition, we then know σ(ℓ) = v .

Since ℓ ∈ dom(σ), we can show red(∗ℓ, σ). Our remaining goal is

ℓ 7→ v ∗ S(σ) ∀e′, σ′, ef . (
∗ℓ, σ)→t (e

′, σ′, ef) −∗ ▷ |⇛∅ ⊤
. . .

Looking at the operational semantics of (∗ℓ, σ)→t (e
′, σ′, ef),

we learn that e′ = σ(ℓ) ∧ σ′ = σ ∧ ef = ⊥, so our goal is

ℓ 7→ v ∗ S(σ) ▷ |⇛∅ ⊤
S(σ) ∗ wpS⊤ σ(ℓ) {w.w = v ∗ ℓ 7→ v}

After clearing the later and fancy update modalities and simplifying

(using LATER-INTRO and FUPD-MONO again),

ℓ 7→ v ∗ S(σ) S(σ) ∗ σ(ℓ) = v ∗ ℓ 7→ v

Since we already know σ(ℓ) = v , we are done.
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Note that to apply GHOST-OP in the above proof, it is important that
S(σ) and ℓ 7→ v use the same ghost location γHEAP.

Proof sketch of HEAP-WRITE. Similar to the proof of HEAP-WRITE, by owning
ℓ 7→ v we know that σ(ℓ) = v where σ is the current physical state, so we
can prove red(ℓ := v ′, σ). We then introduce all assumptions and clear
the fancy update and the later from the goal. However, we additionally
need to use FUPD-TRANS to keep a fancy update |⇛⊤ : we need to update
our ghost copy so that it is in sync with the new physical state after the
step. Our goal then looks as follow.

Context: Goal:

ℓ 7→ v ∗ S(σ)
(ℓ := v ′, σ)→t (e

′, σ′, ef) |⇛⊤S(σ′) ∗ wpS⊤ e′ {(). ℓ 7→ v ′} ∗ . . .

From the operational semantics of→t, we learn that

e′ = () ∧ σ′ = σ[ℓ←v ′] ∧ ef = ⊥, so our goal is

ℓ 7→ v ∗ S(σ) |⇛⊤S(σ′) ∗ wpS⊤ () {(). ℓ 7→ v ′}

After simplifying, we arrive at

ℓ 7→ v ∗ S(σ) |⇛⊤S(σ′) ∗ ℓ 7→ v ′

This goal pins down to an update of our ghost copy to sync with the
new state σ′. Indeed, after applying GHOST-OP, then FUPD-BUPD, and then
GHOST-UPDATE, we have to prove the following frame-preserving update.

•σ · ◦ [ℓ←v ]⇝ •σ′ · ◦ [ℓ←v ′]

Applying AUTH-UPDATE, we have to show

(σ, [ℓ←v ])⇝L (σ′, [ℓ←v ′])

This is easy. We know that the frame σf that completes σ with [ℓ←v ] is
disjoint from [ℓ←v ]: σ = σf ⊎ [ℓ←v ]. Thus we can show

(σf ⊎ [ℓ←v ] , [ℓ←v ])⇝L (σf ⊎ [ℓ←v ′] , [ℓ←v ′])

easily by looking at the definition of local updates (Definition 6.13). We
are done because σ′ = σ[ℓ←v ′] = σf ⊎ [ℓ←v ′].





7
A Base Logic for RMC in Iris

In this chapter, we demonstrate how to instantiate the Iris framework
with our λRust + ORC11 semantics (defined in Chapter 4) to achieve a
“vanilla” relaxed-memory CSL. Even though vanilla, this so-called base
logic for our target language is already quite expressive, because it is
derived from the Iris program logic: it is a higher-order CSL with higher-
order ghost state, impredicative invariants, and admits the WP and Hoare
rules listed in Chapter 6. In this chapter, we establish more WP and Hoare
rules for our language’s relaxed memory primitives. These rules form the
bottom-most basis of our logic, from which all other constructs of the
higher-level iRC11 logic will be derived.

ROADMAP. §6.11 already gives an instantiation example for a language
with simple heaps, but it worths articulating the process, more specifically
for our λRust + ORC11 semantics:

1. We instantiate Iris with the 1-thread reductions (Definition 4.12)
of λRust + ORC11. Since we are in a relaxed memory semantics
with views, the resulting base logic will have to expose them. §7.1
discusses how views generally show up in our base-logic WP and
Hoare triple rules.

2. In contrast to an SC logic whose main local assertion is points-to,
we need new local assertions with appropriate separation structure
to handle relaxed effects and data races. §7.2 discusses the design
(interfaces) of those new assertions.

3. §7.3 presents the desired small-footprint, primitive rules that use
the new local assertions.

4. §7.4 presents the resource algebras needed to give a model for the
new local assertions and proves their properties.

5. Finally, §7.5 defines the state interpretation S for our language, and
§7.6 provides proofs of some primitive rules as well as adequacy.

7.1 Thread-local Configurations as Expressions

The Iris framework requires as input a language with a reduction relation
(e, σ)→t (e

′, σ′, ef)—which we call a 1-thread reduction—where e is the
expression of the thread being evaluated and σ is the physical machine

79
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BL-WP-BIND

wpE (e,V) {(v ,Vv ).wpE (K[v ],Vv ) {Φ}} ⊢ wpE (K[e],V) {Φ}

BL-WP-FRAME

P ∗ wpE (e,V) {Φ} ⊢ wpE (e,V) {(v ,Vv ). P ∗ Φ(v ,Vv )}

BL-WP-VAL

Φ(v ,V) ⊢ wpE (v ,V) {Φ}
BL-WP-LAM

▷wpE (e[v/x],V) {Φ} ⊢ wpE ((λx. e)v ,V) {Φ}

BL-WP-FORK

▷Φ(h,V) ∗ ▷wp⊤ (e, ForkView(V)) { .True} ⊢ wpE (fork { e },V) {Φ}

BL-WP-PLUS

▷wpE (n+Z m,V) {Φ} ⊢ wpE (n+m,V) {Φ}
BL-WP-IF

▷wpE ((b) ? e1 : e2,V) {Φ} ⊢ wpE (if b then e1 else e2,V) {Φ}

FIGURE 7.1: Pure primitive WPs in the
RMC base logic state. The resulting e′ is the thread’s new expression, and σ′ the new

physical state, and a new thread may be forked with the expression ef .11In fact, Iris supports forking multiple
threads, so ef can be a list of expressions. Satisfying this requirement of a 1-thread reduction is rather straightfor-

ward for traditional SC languages, but for our RMC language, we need a
little bit more care: the execution of a thread needs not only the globally-
shared physical state, but also some thread-local state—specifically in this
case, a thread-view. This can be seen clearly in our 1-thread reduction

relation ς | (e,V) ε?,(ef ,Vf )
?

−−−−−−−→t ς
′ | (e′,V ′) (Definition 4.12).

Aside from some notation mismatches, we need to fit our 1-thread
reduction relation to what Iris requires. The solution is simple: we
instantiate what Iris considers “expressions” with pairs of expressions
and thread-views (e,V)—our thread-local configurations. This is only
a change of perspective: what Iris really requires is a 1-thread relation
that describes how a thread-local configuration reduces together with the
global state, but Iris has often been instantiated with languages where the
thread-local configuration is just an expression. This perspective applies
to languages with thread-local state, which in our case is a thread-view,
but in other languages can be, for example, a call stack or an abstraction
for some hardware component.

The effects of picking expression-thread-view pairs as “Iris expressions”
are most visible in weakest pre-conditions and Hoare triples. They will
generally have the following forms;

wpE (e,V) {(v ,Vv ). Q}
{P} (e,V) {(v ,Vv ). Q}E

That is, a WP or Hoare triple encodes the behaviors of a thread-local
configuration (e,V) where V is the thread-view that e starts executing
with. Therefore it may be necessary that V satisfies certain properties
that can be stated in the precondition P . The configuration, if terminates,
will reduce to a configuration (v ,Vv ) where Vv is the thread-view after
the execution. Properties of Vv , like those of v , can be stated in the
post-condition, which now has the type Expr× ThreadView→ iProp.

Figure 7.1 presents a few pure WP rules that do not involve memory.
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They are the expected WP rules from §6.6, but adapted with an arbitrary
thread-view that mostly stays unchanged. Most notably, WP-BIND propa-
gates the thread-view after the expression has finished to the evaluation
context, and BL-WP-FORK picks the correct thread-view for the forked
thread. Rules for binary operations are in the same form as BL-WP-PLUS,
and the rule for case is similar to BL-WP-IF, and thus are elided.

However, for ORC11 memory operations, we know that expressions
cannot run with arbitrary thread-views, as that may cause data races.
The safety properties of thread-views are therefore unavoidable in the
logic, but we can keep them manageable in form of new local assertions.

7.2 Basic Local Assertions for View-based RMC

In traditional separation logics, the points-to assertion is essential to
achieve thread-modular reasoning: when interacting with the shared
global state, it is sufficient to just have a points-to ℓ 7→ v to access the
location ℓ, keeping the rest of the global state out of the picture and
in the “frame”. Thanks to the frame rule, traditional separation logics
enjoy the simple, thread-modular, small-footprint rules like HEAP-READ

and HEAP-WRITE (§6.11).
We have the same goal for our RMC base logic: we want to achieve

small-footprint rules that only require minimal ownership of bits of the
global state for the operations in question, and let the frame rule do
its job. Unfortunately, the bits of the global state needed for our RMC
memory accesses are rather involved: we need (i) the memory h of the
location ℓ being accessed, (ii) the thread-view V of the executing thread,
and (iii) the global race detector view for ℓ (N (ℓ)). Most importantly, the
safety and the result of an access depends on the relations between the
thread-view V and the location’s memory h and the global race detector
view N . We therefore need more assertions to make those relations
explicit. We present our choice of local assertions below. In §7.4, we
will present the RAs needed to fictionally separate the machine state and
define these local assertions within the logic.

Definition 7.1 (Local Assertions for the Base Logic). These assertions
concern knowledge or resources over the executing thread’s thread-view,
the memory of the location being accessed, the race detector state, and
their relations. All assertions are in iProp.

• The seen thread-view observation Seen(V) is a persistent knowledge
that some thread’s thread-view V is closed in the global memory.2 2see Property 3.12, §3.3

This assertion is needed to guarantee that a memory access is
grounded in the global memory.

• The history ownership assertion Histq(ℓ, h) is a fractional owner-
ship3 of the write messages h ∈ History of the location ℓ in the 3Boyland, “Checking interference with

fractional permissions” [Boy03].global memory, where History ::= Time fin−⇀
{

val : Val, view : View?
}

.

The fraction q ∈ (0, 1] denotes shared or full ownership of ℓ’s history.
The allocated assertion LocalA(ℓ, h, V ) says that the simple view V
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has observed the knowledge that ℓ’s history h has been allocated.
Both assertions are needed to perform any access to ℓ.

• The non-atomic read assertion Readnaq (ℓ, α) is the fractional owner-
ship of a subset α of ℓ’s non-atomic reads in the global race detector
state. That is, α ⊆ N (ℓ).nr if N is the global race detector state A
related persistent knowledge is the non-atomic read observation
LocalnaR (ℓ, α, V ), which asserts that the simple view V has observed
a subset α of ℓ’s non-atomic reads. Both assertions are needed to
perform race-free non-atomic reads on ℓ.

• The atomic read assertion Read⊒rlx
q (ℓ, α) is the fractional ownership

of a subset α of ℓ’s atomic reads in the global race detector state.
That is, α ⊆ N (ℓ).ar. The persistent knowledge Local⊒rlx

R (ℓ, α, V )

asserts that V has observed a subset α of ℓ’s atomic reads. Both
assertions are needed to perform race-free atomic reads on ℓ.

• The atomic write assertion Write⊒rlx
q (ℓ, α) is the fractional own-

ership of a subset α of ℓ’s atomic writes in the global race de-
tector state. That is, α ⊆ N (ℓ).aw. The persistent knowledge
Local⊒rlx

W (ℓ, α, V ) asserts that V has observed a subset α of ℓ’s
atomic writes. Both assertions are needed to perform race-free
atomic writes on ℓ.

• Last but not least, the block ownership assertion †nq ℓ is inherited
from RustBelt. This ownership is created at allocation of a block
whose base location is ℓ, and is only needed at deallocation of
that block. The ownership guarantees that the whole block is
deallocated together, i.e., any thread holding a fraction of the block
knows that the constituent locations are still alive. The assertion
simply tracks the location ℓ and the size n ∈ N of the block.

These assertions satisfy several properties, given in Figure 7.2.

Property 7.2 (Seen Thread-view Observations). The seen thread-view
observation is timeless and persistent (BL-SEEN-TIMELESS and BL-SEEN-

PERS).4 As Seen(V) is only a snapshot of some thread’s thread-view at4see §6.8

some point, it can be joined with others (BL-SEEN-JOIN), or can be forked
to get old snapshots (BL-SEEN-DOWNCLOSED). With Seen(V), we know that
the thread-view V is closed in the global memoryM, but we do not have
a rule for this property here. We will see how the property is established
by the state interpretation in §7.6.

Property 7.3 (History Ownership). The assertion Histq(ℓ, h) is timeless
(BL-HIST-TIMELESS) and fractional (BL-HIST-FRAC-VALID and BL-HIST-FRAC).
Owning a fraction of the assertion is sufficient to know the history of
ℓ, as implied by BL-HIST-AGREE. A change to the history requires the
full fraction, written as Hist(ℓ, h) without the fraction q = 1, which is
exclusive, as in BL-HIST-EXCL. (BL-HIST-EXCL is derivable from BL-HIST-

FRAC-VALID and BL-HIST-FRAC.)
BL-HIST-DROP-SINGLETON allows us to truncate the current history to

just a singleton of the latest write. This is a convenient abstraction for ℓ’s
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BL-SEEN-TIMELESS

timeless(Seen(V))
BL-SEEN-PERS

persistent(Seen(V))
BL-SEEN-JOIN

Seen(V) ∗ Seen(V ′) ⊣⊢ Seen(V ⊔ V ′)

BL-SEEN-DOWNCLOSED

V ⊑ V ′

Seen(V ′) ⊢ Seen(V)

BL-HIST-TIMELESS

timeless(Histq(ℓ, h))
BL-HIST-FRAC-VALID

Histq(ℓ, h) ⊢ q ∈ (0, 1]

BL-HIST-FRAC

Histq(ℓ, h) ∗ Histq′(ℓ, h) ⊣⊢ Histq+q′(ℓ, h)

BL-HIST-AGREE

Histq(ℓ, h) ∗ Histq′(ℓ, h′) ⊢ h = h′
BL-HIST-EXCL

Hist(ℓ, h) ∗ Hist(ℓ, h′) ⊢ False

BL-HIST-DROP-SINGLETON

h(t) = (v , V ) t = max(dom(h))

Hist(ℓ, h)⇛E Hist(ℓ, [t←(v , V )])

BL-NAR-TIMELESS

timeless(Readnaq (ℓ, α))

BL-NAR-FRAC-VALID

Readnaq (ℓ, α) ⊢ q ∈ (0, 1]

BL-NAR-JOIN

Readnaq (ℓ, α) ∗ Readnaq′ (ℓ, α′) ⊢ Readnaq+q′(ℓ, α ∪ α′)

BL-ATR-TIMELESS

timeless(Read⊒rlx
q (ℓ, α))

BL-ATR-FRAC-VALID

Read⊒rlx
q (ℓ, α) ⊢ q ∈ (0, 1]

BL-ATR-JOIN

Read⊒rlx
q (ℓ, α) ∗ Read⊒rlx

q′ (ℓ, α′) ⊢ Read⊒rlx
q+q′(ℓ, α ∪ α′)

BL-ATW-TIMELESS

timeless(Write⊒rlx
q (ℓ, α))

BL-ATW-FRAC-VALID

Write⊒rlx
q (ℓ, α) ⊢ q ∈ (0, 1]

BL-ATW-FRAC

Write⊒rlx
q (ℓ, α) ∗Write⊒rlx

q′ (ℓ, α) ⊣⊢Write⊒rlx
q+q′(ℓ, α)

BL-ATW-AGREE

Write⊒rlx
q (ℓ, α) ∗Write⊒rlx

q′ (ℓ, α′) ⊢ α = α′
BL-NAL-JOIN

LocalnaR (ℓ, α, V ) ∗ LocalnaR (ℓ, α′, V ) ⊢ LocalnaR (ℓ, α ∪ α′, V )

BL-ATRL-JOIN

Local⊒rlx
R (ℓ, α, V ) ∗ Local⊒rlx

R (ℓ, α′, V ) ⊢ Local⊒rlx
R (ℓ, α ∪ α′, V )

BL-ALLOC-MONO

V ⊑ V ′

LocalA(ℓ, h, V ) ⊢ LocalA(ℓ, h, V
′)

BL-NAL-MONO

V ⊑ V ′

LocalnaR (ℓ, α, V ) ⊢ LocalnaR (ℓ, α, V ′)

BL-ATRL-MONO

V ⊑ V ′

Local⊒rlx
R (ℓ, α, V ) ⊢ Local⊒rlx

R (ℓ, α, V ′)

BL-ATWL-MONO

V ⊑ V ′

Local⊒rlx
W (ℓ, α, V ) ⊢ Local⊒rlx

W (ℓ, α, V ′)

BL-BLOCK-TIMELESS

timeless(†nq ℓ)
BL-BLOCK-FRAC-VALID

†nq ℓ ⊢ q ∈ (0, 1]

BL-BLOCK-JOIN

†nq ℓ ∗ †n
′

q′ (ℓ+ n) ⊣⊢ †n+n′

q+q′ ℓ

FIGURE 7.2: Main properties of the base
logic’s local assertions

physical write events: while we need to maintain a set of write events
(instead of a single value like in SC) because they may be still visible to
some threads, once we know that certain writes are no longer visible, we
can simply forget about them. In particular, if one can perform a race-free
non-atomic write, all previous writes must be unreachable and should
be forgotten, because it would be racy to read them then. Consequently,
unlike the physical memory that only grows with more write messages,
the history h in Histq(ℓ, h) is not monotone—it grows during a period of
atomic accesses, but will shrink back to a singleton with a non-atomic
write. In later chapters, we will use BL-HIST-DROP-SINGLETON to switch
between non-atomic and atomic access modes.

Property 7.4 (Race Detector Ownership). The ownership assertions for
parts of the race detector state are also timeless and fractional. Like
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history ownership, fractions of the atomic write assertion Write⊒rlx
q (ℓ, α)

maintain agreement on ℓ’s set of atomic writes in the race detector (BL-

ATW-FRAC), and the full fraction is required to update the set. A fraction
q of the read assertions Readnaq (ℓ, α) or Read⊒rlx

q (ℓ, α) on the other hand
does not maintain agreement. Instead, a fraction only maintains that the
set α is a subset of the race detector’s sets for non-atomic and atomic
reads, respectively. This difference is due to the fact that, while writes
maintain a total order (moℓ) and thus must be updated with the full
fraction, we do not enforce an order among concurrent reads, so each
thread needs only some fraction of a read assertion to independently track
its own reads, and sets of reads can be joined together using BL-NAR-JOIN

or BL-ATR-JOIN.

Property 7.5 (Local Observations). The local observations (for allocation,
non-atomic and atomic reads, and atomic writes) are pure facts, and thus
are timeless and persistent. In fact, their definitions are as follow.

LocalA(ℓ, h, V ) ::= ∃t ∈ dom(h). t ⊑ V (ℓ).w

Local⊒rlx
W (ℓ, α, V ) ::= α ⊑ V (ℓ).aw

LocalnaR (ℓ, α, V ) ::= α ⊑ V (ℓ).nr

Local⊒rlx
R (ℓ, α, V ) ::= α ⊑ V (ℓ).ar

More importantly, they are view-monotone, i.e., if one holds on a smaller
view, it also holds on a bigger view (e.g., see BL-ALLOC-MONO). View
monotonicity is an important property that we will rely on heavily (see
Chapter 8).

The local observations for reads can be joined together using BL-NAL-

JOIN and BL-ATRL-JOIN.

Property 7.6 (Block Ownership). The block ownership assertion is also
timeless and fractional. BL-BLOCK-JOIN allows splitting and joining not
just with the fractions, but also with the offsets. As such, for each location
in a block one can own its bit of the block without needing to know the
block size, and is guaranteed that the block is still alive.

7.3 Primitive Memory Rules

We now see how the local assertions are meant to be used in our primitive
memory rules, given in Figures 7.3 to 7.6. Recall that in our base
logic, the executing “expression” is a thread-local configuration of the
actual expression and the executing thread’s thread-view. The rules for
allocation and deallocation are similar to that of non-atomic writes (BL-

HOARE-WRITE-NA), but with the block ownership assertions. For the sake
of simplicity, we will present them in a cleaner form in Chapter 9 (see
NA-ALLOC and NA-DEALLOC).

7.3.1 Rules for Fences

Figure 7.3 presents the simplest memory-related primitive rules, for
release and acquire fences. Both BL-HOARE-REL-FENCE and BL-HOARE-ACQ-

FENCE requires Seen(V) as the pre-condition for a fence running with the
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BL-HOARE-REL-FENCE

{Seen(V)} (fencerel,V) {(h,V ′).V ′ ⊒ V ∗ Seen(V ′) ∗ V ′.frel = V ′.cur}E

BL-HOARE-ACQ-FENCE

{Seen(V)} (fenceacq,V) {(h,V ′).V ′ ⊒ V ∗ Seen(V ′) ∗ V ′.cur = V ′.acq}E

FIGURE 7.3: The base logic’s primitive
Hoare rules for fencesthread-view V. Their post-conditions say that the fence instructions will

return poison h with a new thread-view V ′ ⊒ V.5 The effects of the 5see OE-FENCE, §4.2

fences are approximated by the properties of V ′. In case of an acquire
fence, the current component of V ′ is updated to include its acquire
component, exactly reflecting OM-ACQ-FENCE (§3.3). In case of a release
fence, the release-fence component of V ′ is updated to include its current
component. This only approximates OM-REL-FENCE (also §3.3) because
it hides away (in the relation V ′ ⊒ V) the changes to the per-location
release views V ′.rel. We made this abstraction to keep the rule simple, as
we have never needed such detailed information on V ′.rel.

7.3.2 Rules for Reads and Writes

The rules for reads and writes are given in Figure 7.4 and Figure 7.5.

NON-ATOMIC READS. To guarantee data-race freedom, BL-HOARE-READ-NA

requires a pre-condition that implies DRF-READ-NA (§3.4). That is, the
pre-condition ensures that the executing thread has observed all writes
(non-atomic and atomic) to ℓ. The pre-condition thus includes:

• Seen(V), like in other memory-related rules, to know the lower
bound of the executing thread’s thread-view; and

• a fraction q of the current singleton history Histq(ℓ,
[
t←(v , V ?)

]
)

where (t,v , V ?) is ℓ’s latest write; and

• the knowledge LocalA(ℓ,
[
t←(v , V ?)

]
,V.cur) that the current thread-

view V.cur has observed not only ℓ’s allocation but also its latest
write; and

• a fraction q of the race detector’s atomic writes set Write⊒rlx
q (ℓ, αw)

and the knowledge Local⊒rlx
W (ℓ, αw,V.cur) that the current thread-

view has observed all atomic writes (αw);6 and 6Recall that observing the latest write
(the previous part of the precondition)
does not guarantee observation of all
writes—it only guarantees observation of
all non-atomic writes because non-atomic
writes cannot race with one another, while
atomic writes can See also the discussion
in Definition 3.25.

• a fraction q of the race detector’s non-atomic reads set Readnaq (ℓ, αr),
needed to extend the read set αr with the read to be performed.

The post-condition is simple: the singleton value v is returned, the
history ownership and atomic writes set are unchanged, the non-atomic
reads set is extended with a new action id r representing this read, and
the thread arrives at a new thread-view V ′ represented by Seen(V ′). We
can make an abstraction here on how V ′ is related to V (like in the rule BL-

HOARE-REL-FENCE), but the higher-level rules require a detailed relation

between V ′ and V , so we simply keep the “raw” relation V R:na,ℓ,t,⊥,r−−−−−−−→ V ′

from the operational semantics.7 Note that we do know that V ⊑ V ′. 7see OM-POST-READ-TVIEW, §3.3
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BL-HOARE-READ-NA

LocalA(ℓ,
[
t←(v , V ?)

]
,V.cur) Local⊒rlx

W (ℓ, αw,V.cur) LocalnaR (ℓ, αr, Vr)

{Seen(V) ∗ Histq(ℓ,
[
t←(v , V ?)

]
) ∗Write⊒rlx

q (ℓ, αw) ∗ Readnaq (ℓ, αr)}
(∗naℓ,V)

{(w,V ′). w = v ∗ ∃r.V R:na,ℓ,t,⊥,r−−−−−−−→ V ′ ∗ LocalnaR (ℓ, αr ∪ {r} , Vr ⊔ V ′.cur) ∗

Seen(V ′) ∗ Histq(ℓ,
[
t←(v , V ?)

]
) ∗Write⊒rlx

q (ℓ, αw) ∗ Readnaq (ℓ, αr ∪ {r})}E
BL-HOARE-WRITE-NA

LocalA(ℓ,
[
t←(v , V ?)

]
,V.cur) LocalnaR (ℓ, α1,V.cur) Local⊒rlx

R (ℓ, α2,V.cur) Local⊒rlx
W (ℓ, αw,V.cur)

{Seen(V) ∗ Hist(ℓ, [t←(v , V ?)
]
) ∗Write⊒rlx(ℓ, αw) ∗ Readna(ℓ, α1) ∗ Read⊒rlx(ℓ, α2)}

(ℓ :=na v
′,V)

{(h,V ′).∃t′ > t.V W:na,ℓ,t′,⊥,⊥−−−−−−−−→ V ′ ∗ LocalA(ℓ, [t′←(v ′,⊥)] ,V ′.cur) ∗

Seen(V ′) ∗ Hist(ℓ, [t′←(v ′,⊥)]) ∗Write⊒rlx(ℓ, αw) ∗ Readna(ℓ, α1) ∗ Read⊒rlx(ℓ, α2)
}
E

FIGURE 7.4: The base logic’s primitive
Hoare rules for non-atomic reads and
writes Last but not least, we have an additional assertion LocalnaR (ℓ, αr, Vr) in

the pre-condition that is updated to LocalnaR (ℓ, αr∪{r} , Vr⊔V ′.cur) in the
post-condition. This assertion is not needed for the rule per se. It is used
to track the view Vr (which is Vr⊔V ′.cur after the step) that has observed
the subset αr of all non-atomic reads performed so far with the fraction
Readnaq (ℓ, αr). The view Vr will only be needed later when a thread has
recollected the full fraction Readna(ℓ, αr) where αr is then the complete
set of ℓ’s non-atomic reads. At that point, race-free operations would
require that the executing thread has observed all reads in αr, which
pins down to the thread’s thread-view V including Vr, i.e., Vr ⊑ V.cur.
We will see concretely how this view is used in Chapter 9.

NON-ATOMIC WRITES. BL-HOARE-WRITE-NA is the most demanding rule,
as a non-atomic write cannot race with any other memory accesses to
the same location ℓ.8 The pre-condition therefore requires full ownership8see DRF-WRITE-NA, §3.4

(the fraction q = 1) of ℓ’ current singleton history, and of the 3 sets of
the race detector’s state, and the knowledge that the current thread-view
V.cur has observed ℓ’s allocation, latest write, and those sets of all reads
and all atomic writes to ℓ.99Recall that a fraction of Readnaq (ℓ, α1)

or Read⊒rlx
q (ℓ, α2) only says that α1 or

α2 is only a subset of the global set—we
need a full fraction to be guaranteed that
α1 or α2 is the global set.

The post-condition keeps most ownership unchanged, and only up-
dates the singleton history ownership to Hist(ℓ, [t′←(v ′,⊥)]), where t′ is
the new timestamp for the new write message, with the value v ′ and no
message view. The thread arrives at a new thread-view V ′ computed from

V ′ (V W:na,ℓ,t′,⊥,⊥−−−−−−−−→ V ′),10 and knows that the new current view V ′.cur has10see OM-POST-WRITE-TVIEW, §3.3

observed the new write (LocalA(ℓ, [t
′←(v ′,⊥)] ,V ′.cur)).

ATOMIC READS. The rule BL-HOARE-READ-AT for atomic reads is rather
simple: it requires as pre-condition fractional ownership q of ℓ’s cur-
rent history, and of an atomic read subset of the race detector’s state
Read⊒rlx

q (ℓ, α) to add the read to be performed. An atomic read only
needs to avoid race with non-atomic writes,11 so LocalA(ℓ, h,V.cur) is11see DRF-READ-AT, §3.4
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BL-HOARE-READ-AT

rlx ⊑ o LocalA(ℓ, h,V.cur) Local⊒rlx
R (ℓ, α, Vr)

{Seen(V) ∗ Histq(ℓ, h) ∗ Read⊒rlx
q (ℓ, α)}

(∗oℓ,V)

{(v ,V ′).∃t, V ?, r. h(t) = (v , V ?) ∗ V R:o,ℓ,t,V ?,r−−−−−−−→ V ′ ∗ Local⊒rlx
R (ℓ, α ∪ {r} , Vr ⊔ V ′.cur) ∗

Seen(V ′) ∗ Histq(ℓ, h) ∗ Read⊒rlx
q (ℓ, α ∪ {r}) }

E

BL-HOARE-WRITE-AT

rlx ⊑ o LocalA(ℓ, h,V.cur) LocalnaR (ℓ, αr,V.cur) Local⊒rlx
W (ℓ, αw, Vw)

{Seen(V) ∗ Hist(ℓ, h) ∗Write⊒rlx(ℓ, αw) ∗ Readna(ℓ, αr)}
(ℓ :=o v

′,V)

{(h,V ′).∃t′ /∈ dom(h), V ′.V W:o,ℓ,t′,⊥,V ′

−−−−−−−−→ V ′ ∗ Local⊒rlx
W (ℓ, αw ∪ {t′} , Vw ⊔ V ′.cur) ∗

Seen(V ′) ∗ Hist(ℓ, h[t′←(v ′, V ′)]) ∗Write⊒rlx(ℓ, αw ∪ {t′}) ∗ Readna(ℓ, αr)
}
E

FIGURE 7.5: The base logic’s primitive
Hoare rules for atomic reads and writes

sufficient, because every non-atomic write would reset the history h to a
singleton, and LocalA(ℓ, h,V.cur) guarantees that the current thread-view
V.cur has observed some write in h.

In the post-condition, some value v in the history will be read and
returned, and the atomic reads set is extended with the new action id for
this read (Read⊒rlx

q (ℓ, α ∪ {r})), and the thread arrives at a new thread-

view V ′ computed from V with V R:o,ℓ,t,V ?,r−−−−−−−→ V ′.12 Note that the relaxed 12see OM-POST-READ-TVIEW, §3.3

memory effects are contained within this relation for V ′, and will be
abstracted later with higher-level rules.

The view Vr in Local⊒rlx
R (ℓ, α, Vr) plays the same role as its counter-

part in BL-HOARE-READ-NA. Vr is guaranteed to have observed the subset
α of atomic reads performed so far with the fraction q of Read⊒rlx

q (ℓ, α).
We will see concretely how Vr is used in Chapter 10.

ATOMIC WRITES. An atomic write must not race with non-atomic accesses,
both reads and writes,13 so BL-HOARE-WRITE-AT requires as pre-condition 13see DRF-WRITE-AT, §3.4

full fractions of the current history ownership Hist(ℓ, h) and of the non-
atomic reads set Readna(ℓ, αr), as well as the knowledge LocalA(ℓ, h,V.cur)
and LocalnaR (ℓ, αr,V.cur) that the current thread-view V.cur has observed
all non-atomic writes and reads to ℓ. Additionally, the full ownership
Write⊒rlx(ℓ, αw) of the race detector’s atomic writes set for ℓ is needed to
extend the set αw with the write to be performed.

The post-condition keeps the non-atomic reads set unchanged, ex-
tends the atomic writes set with the new timestamp t′ (fresh in h), and
updates the history and the atomic writes set to insert the new write
(h[t′←(v ′, V ′)] and αw∪{t′}). The new thread-view V ′ is computed from
V accordingly.14 14see OM-POST-WRITE-TVIEW, §3.3

The view Vw in Local⊒rlx
W (ℓ, αw, Vw) plays the same role as the view

Vr in BL-HOARE-READ-NA and BL-HOARE-READ-AT. It is the view that has
observed all atomic writes αw done so far using Write⊒rlx(ℓ, αw). We will
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BL-HOARE-CAS
rlx ⊑ of , or, ow LocalA(ℓ, h,V.cur) LocalnaR (ℓ, α1,V.cur)

Local⊒rlx
R (ℓ, α2, Vr) Local⊒rlx

W (ℓ, αw, Vw) ∀v0 ∈ Readable(h,V). ⊢ v0 =? vr

{Seen(V) ∗ Hist(ℓ, h) ∗Write⊒rlx(ℓ, αw) ∗ Readna(ℓ, α1) ∗ Read⊒rlx
q (ℓ, α2) ∗

Pcmp ∗□ ((vr = ℓr) ? (Pcmp −∗ Φcmp(ℓr)) : True) }
(CASof ,or,ow(ℓ,v1,v2),V)

{(b,V
′). Pcmp ∗ ∃h′, t, t′,v ′, V, V ′, r,Vx.V ⊑ Vx ⊑ V ′ ∗ h(t′) = (v ′, V ′) ∗

Local⊒rlx
W (ℓ, (b) ? (αw ∪ {t}) : αw, Vw ⊔ V ′.cur) ∗ Local⊒rlx

R (ℓ, α2 ∪ {r} , Vr ⊔ V ′.cur) ∗

Seen(V ′) ∗ Hist(ℓ, h′) ∗Write⊒rlx(ℓ, (b) ? (αw ∪ {t}) : αw) ∗ Readna(ℓ, α1) ∗ Read⊒rlx
q (ℓ, α2 ∪ {r}) ∗

b = false ∗vr ̸= v ′ ∗ h′ = h ∗ V R:of ,ℓ,t
′,V ′,r−−−−−−−−→ Vx

∨ b = true ∗vr = v ′ ∗ t /∈ dom(h) ∗ t = t′ + 1 ∗ V ⊒ V ′ ∗ h′ = h[t←(vw, V )] ∗

V R:or,ℓ,t
′,V ′,r−−−−−−−−→ Vx

W:ow,ℓ,t,V ′,V−−−−−−−−→ V ′

}
E

where Φcmp(ℓr) ::= (|⇛E ∃qr, hr. ▷Histqr (ℓr, hr)) ∧ (∀ℓ′ ∈ Readable(h,V) \ {ℓr} . |⇛E ∃q′, h′. ▷Histq′(ℓ
′, h′))

FIGURE 7.6: The base logic’s primitive
Hoare rule for CASes

also see concretely how Vw is used in Chapter 10.

7.3.3 A Rule for CASes

We present a Hoare rule BL-HOARE-CAS for CASes in Figure 7.6. It is a
rather complicated rule, because a CAS is a combination of a read, a
write, and a comparison that can be a pointer comparison.

First of all, a CAS cannot race with non-atomic accesses (reads and
writes),15 so the pre-condition requires the full fractions of the history15see DRF-UPDATE, §3.4

ownership Hist(ℓ, h), and of the non-atomic reads set Readna(ℓ, α1), and
the knowledge LocalA(ℓ, h,V.cur) and LocalnaR (ℓ, α1,V.cur) that V.cur has
observed ℓ’s allocation and all of its non-atomic reads and writes.

Second, the pre-condition needs the full fraction of the atomic writes
set Write⊒rlx(ℓ, αw) and a fraction of the atomic reads set Read⊒rlx

q (ℓ, α2)

in order to potentially extend those sets with a write event and a read
event that are to be generated by this CAS operation. The views Vw and
Vr have observed the sets αw and α2 respectively, and play the similar
role to those in the read and write rules, which we will see in Chapter 10.

Third, the post-condition is a combination of read and write effects.
The operation returns a boolean value b to indicate success or failure. In
any case, a message (t′,v ′, V ′) in h will be read, and the atomic reads set
α2 will be extended with a new action id r for that read. The non-atomic
reads set remains unchanged.

• In case the CAS fails, i.e., b = false, we know that the value read v ′

is not equal to the expected value vr (⊢ v ′ ̸= vr),16 that the history16see Definition 4.8, §4.2

h and the atomic writes set αw also remain unchanged, and that
the thread-view effect is similar to that of a read with the mode of

(V R:of ,ℓ,t
′,V ′,r−−−−−−−−→ Vx).1717see OM-POST-READ-TVIEW, §3.3
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• In case the CAS succeeds, i.e., b = false, the read value v ′ is exactly
the expected value vr, and a new message (t,vw, V ) is inserted into
h (h′ = h[t←(vw, V )]) right next to the read message (t = t′ + 1)
which guarantees the atomicity of the read and the write generated
by the CAS. The new thread-view V ′ and the write message view
V are computed from the old thread-view V and the read message
view V ′ accordingly.18 The atomic writes set αw is also extended 18see OM-UPDATE, §3.3

with the new timestamp t.

Finally, we look at the rule’s components concerning (pointer) com-
parison. The rule requires safety in the comparison between the ex-
pected value vr and any potential value v0 that the CAS may read: ∀v0 ∈
Readable(h,V). ⊢ v0 =? vr. The set of readable values Readable(h,V)
is lifted for histories from Definition 4.6 for the global memory. The
comparison is safe if the values are comparable (Definition 4.9).

DETERMINISTIC POINTER COMPARISON. If the comparison is between
locations, i.e., if vr is a non-null location ℓr, the pre-condition of BL-

HOARE-CAS requires some extra resources Pcmp to learn that compared
locations are alive, and thus to guarantee deterministic comparison.19 19Comparability makes sure that we need

not care about the case where the ex-
pected value vr is an integer but the read-
able values can be locations. If that is the
case, vr must be 0, and the comparison
always fails. See also Definition 4.8.

Furthermore, Pcmp will only be used to derive facts and will not be
consumed, so it is returned as-is in the post-condition. How Pcmp will
be used is encoded in the predicate Φcmp(ℓr) which employs a classical
conjunction. Intuitively, the persistent implication □(Pcmp −∗ Φcmp(ℓr))

requires that the resources in Pcmp simultaneously support two goals:

1. using Pcmp and potentially opening some invariant with the fancy
update |⇛E , one gets some fraction of the ownership Histqr (ℓr, hr)

of the expected value ℓr, which is sufficient to learn that ℓr is alive.

2. for any location ℓ′ readable from h that is not ℓr,20 using Pcmp and 20If the read value ℓ′ is also ℓr , then the
first part of the classical conjunction is also
the proof that ℓ′ is alive.potentially opening some invariant, one also learns that ℓ′ is alive.

7.3.4 A Stronger WP Rule for CASes

We present the rule BL-WP-CAS (Figure 7.7) for CASes that is stronger
than BL-HOARE-CAS. Note that this rule is very technical and is only
used to get stronger GPS rules that will be used in Part III. Readers are
welcome to skip this rule and continue with the next section.

The rule is written in form of weakest pre-conditions—a general fash-
ion that is common with Iris WPs, where the post-condition is universally
quantified as Φ. This style is not only more convenient to use in practice
in Coq, but also important to make our CAS rule stronger.

Notation 7.7 (Iris WP-style Rules). Recall Definition 6.7 where Hoare
triples are derived from WPs. In practice (in Coq), Iris rules for Hoare
triples and WPs are usually written with a universally quantified post-
condition Φ, so that they can be easily applied to a goal with an arbitrarily
shaped WP. For example, if e is not a value,21 a Hoare rule ⊢ {P} e {v . Q} 21If it is a value, we do not have a later

modality.for e can instead be written as:

⊢ □ (P −∗ ∀Φ. (▷ ∀v . Q −∗ Φ(v)) −∗ wp e {Φ})
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That is, the rule intuitively encodes that Q is the strongest post-condition
for e under the pre-condition P . The later modality allows us to prove
the post-condition only after the step, at which point our resources which
are under a later before the step have been made available. This from of
rule is more applicable to a goal of form wp K[e] {Ψ}: we first apply the
bind rule WP-BIND to focus on the expression e and push the continuation
into the post-condition (i.e., wpE e {v .wpE K[v ] {Ψ}}) which will then be
used to instantiate the predicate Φ of the rule.

We state our CAS rule in the following form:

R R′ ▷∀v ,Vv . Q −∗ Φ(v ,Vv )
P ⊢ wp (e,V) {Φ}

where P is the pre-condition, Q is the post-condition, and R and R′ are
extra premises. The wand implication ▷ ∀v ,Vv . Q −∗ Φ(v ,Vv ) is for the
post-condition and is the right-most premise. A rule of this form can be
read as the following Hoare rule:

R R′

⊢ {P} (e,V) {(v ,Vv ). Q}

Our CAS rule BL-WP-CAS, however, is strengthened by moving the
later inside and adding fancy updates to the post-condition—a combina-
tion called wand step viewshifts.

Notation 7.8 (Wand Step Viewshifts). P
E′

E Q

The wand step viewshift is a balanced (potentially mask-changing) view-
shift that has a later in between.

P
E′

E Q ::= P −∗ |⇛E E′
▷ |⇛E′ E

Q

We can now look at BL-WP-CAS in Figure 7.7. The rule can be applied
with an arbitrary post-condition Ψ which typically is the continuation
after executing the CAS. The rule says that the client can go on proving
Ψ assuming the return value (b,V ′) (together with other variables) uni-
versally quantified in the right-most premise, as well as the resources on
the left-hand side of the wand implications. Compared to the alterna-
tive WP-style reading (Notation 7.7) of the Hoare rule BL-HOARE-CAS,
BL-HOARE-CAS are strengthened in several ways.

• The client of the rule does not need to specify and provide Pcmp in
the pre-condition. Instead, the client can pick Pcmp after learning
all information about the results of the CAS (e.g., the return value b,
the read and write timestamps, the new history h′, the thread-views
and views). In fact, the client only needs to provide (prove) Pcmp

and how it is to be used (Φ) if the CAS succeeds (b = true).

• Note that the client however does not know that “vr = v ′ in case
b = true” before picking and proving Pcmp, because Pcmp is needed
to achieve that deterministic comparison result.
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BL-WP-CAS

rlx ⊑ of , or, ow

LocalA(ℓ, h,V.cur)
LocalnaR (ℓ, α1,V.cur)
Local⊒rlx

R (ℓ, α2, Vr)

Local⊒rlx
W (ℓ, αw, Vw)

∀v0 ∈ Readable(h,V).
⊢ v0 =? vr

∀b,V ′, h′, t, t′,v ′, V, V ′, r,Vx.

V ⊑ Vx ⊑ V ′ ∗ h(t′) = (v ′, V ′) ∗

Local⊒rlx
W (ℓ, (b) ? αw ∪ {t} : αw, Vw ⊔ V ′.cur) ∗

Local⊒rlx
R (ℓ, α2 ∪ {r} , Vr ⊔ V ′.cur) ∗

b = false ∗vr ̸= v ′ ∗ h′ = h ∗ V R:of ,ℓ,t
′,V ′,r−−−−−−−−→ Vx

∨ b = true ∗ t /∈ dom(h) ∗ t = t′ + 1 ∗ V ⊒ V ′ ∗

h′ = h[t←(vw, V )] ∗ V R:or,ℓ,t
′,V ′,r−−−−−−−−→ Vx

W:ow,ℓ,t,V ′,V−−−−−−−−→ V ′


−∗ ∃Pcmp. Pcmp ∗□ ((b ∧vr = ℓr) ? Φcmp(Pcmp, ℓr,v

′) : True) ∗
((b) ?vr = v ′ : True) ∗ Pcmp ∗ Seen(V ′) ∗ Hist(ℓ, h′) ∗

Write⊒rlx(ℓ, (b) ? αw ∪ {t} : αw) ∗ Readna(ℓ, α1) ∗ Read⊒rlx
q (ℓ, α2 ∪ {r})

E′

E Ψ(b,V ′)


Seen(V) ∗ Hist(ℓ, h) ∗Write⊒rlx(ℓ, αw) ∗ Readna(ℓ, α1) ∗ Read⊒rlx

q (ℓ, α2) ⊢ wpE (CAS
of ,or,ow(ℓ,v1,v2),V) {Ψ}

where Φcmp(Pcmp, ℓr,v
′) ::= ∧

Pcmp ≡−∗E Er ∃qr, hr. ▷Histqr (ℓr, hr)

∀ℓ′ = v ′ ̸= ℓr. Pcmp ≡−∗E E′
▷ |⇛E′ E0(ℓ

′)∃q′, h′. ▷Histq′(ℓ
′, h′)

FIGURE 7.7: The base logic’s primitive WP
rule for CASes

• After proving Pcmp and Φ, the client does get the deterministic
comparison result and Pcmp back. Recall that Pcmp is not consumed
and is only needed to know that compared locations are alive.

• The client also acquires the returned resources (i.e., the history
ownership and the ownership of the reads and writes sets), and
then can prove the continuation with the wand step viewshift. The
wand viewshift E′

E allows the client to make a mask-changing
viewshift from the mask E to the mask E ′ to open invariants (E ′

is of the client’s choice), then to strip a later in any resources that
the client owns at that point, and then to close the invariants and
return to the mask E , all in order to prove the continuation Ψ(b,V ′).
Note that if the client uses BL-HOARE-CAS, they would not have a
later at their disposal, because the results of the CAS operation are
only available after the later is introduced.

• Finally, the client can also rely on a later and mask-changing view-
shifts when proving Φcmp, i.e., the proof that Pcmp implies that the
compared locations are alive. In particular, the mask Er and the
function E0 from locations to masks are also of the client’s choice.
The client only needs to show that expected value ℓr and the read
value ℓ′ are alive. Interestingly, the client can do so by opening
invariants (of the client’s choice) without closing them.
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7.4 Resource Algebras for Basic Local Assertions

We briefly explain the resource algebras needed to define our local
assertions and tie them to the physical state. We will need 5 RAs.

Definition 7.9 (Lattice RA for Seen Thread-view Observations). The
lattice RA LAT(A) takes a join semi-lattice A and defines the composition
as the lattice’s join operation, the core function as the identity function
(so that every element is the core of itself), and validity is trivial. That
is, LAT(A) ::= (A, (λ .True), id,⊔). If the lattice A has a bottom element
⊥ ⊑ a for any a ∈ A, then ⊥ is the unit of LAT(A). Note that RA inclusion
≼ then coincides with the lattice order ⊑. Most importantly, the RA has
the following properties.

∀a, b. valid(• a · ◦ b)⇒ b ⊑ a (AUTH-LAT-VALID)

∀a, b. b ⊑ a⇒ • b⇝ • a · ◦ a (AUTH-LAT-UPDATE)

For Seen(V), we use the RA SEENR = AUTH(LAT(View)). It is an
optimization that we only track a simple view with LAT(View) and not
a thread-view with LAT(ThreadView). Recall that the role of Seen(V) is
to guarantee that V is closed in the global memory, which can be done
instead by just guaranteeing that V.acq is closed in the global memory,
because V.acq includes all other components of a wellformed V. The
closedness condition also means that we need not track one view per
thread: we simply track the upper bound Vup for all acquire components
of all thread-views and require that Vup is closed in the global memory.

In particular, the authoritative element •Vup guarantees that, for any
other fragmentary element ◦ V ′.acq, thanks to AUTH-LAT-VALID, V ′.acq ⊑
Vup. Furthermore, due to AUTH-LAT-UPDATE, •Vup can only be updated to
a bigger view, mirroring the property that views only grow.

Definition 7.10 (Fractional Agreement Map RA for History). We use the
RA HISTR = AUTH(MAP(Loc, FRAC × AG(History?))) for Histq(ℓ, h).

The agree RA AG only provides valid composition between elements
that are the same, and the fractional RA FRAC provides valid composition
between non-negative quotients that sum up to no greater than 1 (i.e.,
they are in the range [0, 1)). We use them together using the product
RA (written here as ×) which provides valid composition point-wise.
The map RA MAP takes a key type and a value RA, and provides valid
composition key-wise, using the valid composition of the value RA.

As such, our combined use of MAP with FRAC and AG gives per-
location agreement between fractions of history ownership, and with the
full fraction we can change the history. We use the option type History? to
support deallocation: when a location is deallocated, then its history will
be None. We use AUTH to have the authoritative element be the complete
memory, and the fragmentary elements of singleton maps will be used to
define Histq(ℓ, h). More concretely, we have the following properties.

∀m, ℓ, q, h. valid(•m · ◦ [ℓ←(q, ag(h))])⇒ m(ℓ) = (1, ag(h))

∀ℓ, q, h, q′, h′. valid(◦ [ℓ←(q, ag(h))] · ◦ [ℓ←(q′, ag(h′))])⇒ h = h′

∀m, ℓ, h. •m · ◦ [ℓ←(1, ag(h))]⇝ •m[ℓ←(1, ag(h′))] · ◦ [ℓ←(1, ag(h′))]
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The injection ag is the constructor of the RA AG.

Definition 7.11 (Fractional Map RA for Atomic Writes Sets). We use
the RA WRITER = AUTH(MAP(Loc, FRAC×AG(ActIds))) for the fractional
per-location ownership of atomic writes sets. This RA is similar to that
for history ownership, but tracks a set of action ids instead.

Definition 7.12 (Fractional Set Lattice RA for Reads Sets). We use
a slightly different RA READR = AUTH(MAP(Loc, FRAC × LAT(ActIds))).
That is, we use LAT(ActIds) in place of AG(ActIds). As such, we do
not have agreement between the fractions of read sets. In exchange,
a fraction is sufficient to grow the set: we can update the element
◦ [ℓ←(q, α)] (together with the authoritative element) to ◦ [ℓ←(q, α′)]

where α ⊆ α′ without requiring q = 1. Note that because we use the
lattice RA LAT, the sets can only grow. More concretely, we have the
following properties.

∀m, ℓ, q, α. valid(•m · ◦ [ℓ←(q, α)])⇒ ∃α′.m(ℓ) = (1, α′) ∧ α ⊆ α′

∀m, ℓ, q, α, α′, α′′.m(ℓ) = (1, α′)⇒ α ⊆ α′′ ⇒
•m · ◦ [ℓ←(1, α)] ⇝ •m[ℓ←(q, α′ ∪ α′′)] · ◦ [ℓ←(q, α′′)]

Definition 7.13 (Fractional Block RA for Block Ownership). We use
the RA BLOCKR = AUTH(MAP(N+, FRAC ×MAP(Z, EX(1)))). That is, we
use a map from block indices (in N+) to fractional maps from offsets
(in Z) to exclusive tokens (of type unit 1). The outer map allows us to
have per-block ownership with full fraction, and the inner map allows
use to split that full fraction between the offsets in the same block. The
ownership of every single offset in a block represents the block ownership
of a location and, thanks to the exclusive RA EX, such per-location block
ownership is unique.

7.5 State Interpretation

We now define the local assertions and the state interpretation S for our
base logic. We first need a few global ghost locations to store the RAs
defined in the previous section. They are γSEEN, γHIST, γNAR, γATW, γATR, and
γBLK. These ghost locations will need to be allocated before any program
runs (in the adequacy proof, see Theorem 7.19).

Definition 7.14 (Ghost State Model of Local Assertions). We define our
local assertions purely as ghost ownership of fragmentary elements.

Seen(V) ::= ◦ V.acq : SEENR
γSEEN

Histq(ℓ, h) ::= ◦ [ℓ←(q, ag(Some(h)))] : HISTR
γHIST

Write⊒rlx
q (ℓ, α) ::= ◦ [ℓ←(q, ag(α))] : WRITER

γATW

Readnaq (ℓ, α) ::= ◦ [ℓ←(q, α)] : READR
γNAR

Read⊒rlx
q (ℓ, α) ::= ◦ [ℓ←(q, α)] : READR

γATR

†nq ℓ ::= ◦ [ℓ←(q,[m← ex() |m ∈ [0, n)])] : BLOCKR
γBLK

The injection ex is the constructor of the RA EX.
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Definition 7.15 (Ghost Ownership for the Global State). The ghost
ownership GlobalGhost that mirrors the global physical state is defined
with ownership of authoritative elements. It takes as inputs the physical
state (M,N ) and the global upper bound Vup of all threads’s thread-
views. Additionally, to support truncating histories with BL-HIST-DROP-

SINGLETON, it also takes as input a view that tracks for each location the
timestamp of its latest write. We call this view the cut view Vcut.

GlobalGhost(M,N , Vup, Vcut) ::=

•Vup : SEENR
γSEEN ∗

• [ℓ←(1, ag(trunc(M(ℓ), Vcut(ℓ).w))) | ℓ ∈ dom(M)] : HISTR
γHIST ∗

• [ℓ←(1, ag(N (ℓ).aw)) | ℓ ∈ dom(N )] : WRITER
γATW ∗

• [ℓ←(1,N (ℓ).nr) | ℓ ∈ dom(N )] : READR
γNAR ∗

• [ℓ←(1,N (ℓ).ar) | ℓ ∈ dom(N )] : READR
γATR ∗

• [i←(1,[n← ex() | (i, n) ∈ dom(M)]) | (i, ) ∈ dom(M)] : BLOCKR
γBLK

where

trunc(h, t0) ::=

None if h is deallocated

Some([t←h(t) | t0 ≤ t ∈ dom(h)]) if h is alive

So GlobalGhost(M,N , Vup, Vcut) contains:

• the authoritative ownership of the upper-bound view Vup for all
thread-views; and

• the authoritative full fraction ownership of all histories inM, trun-
cated by the cut view Vcut;22 and22Note that we also need to convert mem-

ory values to values, following Defini-
tion 3.16. • the authoritative full fraction ownership of all atomic writes sets,

non-atomic reads sets, and atomic reads sets in N ; and

• the authoritative full fraction ownership of all blocks inM.

We use the map insert notation, e.g., [ℓ←(1,N (ℓ).nr) | ℓ ∈ dom(N )] to
convert the map N to a map from locations to pairs of fractions and
non-atomic reads sets that come from N .

Lemma 7.16 (Agreements between the Global Ghost State and Local
Assertions). The global ghost state ownership GlobalGhost and the local
assertions satisfy several agreement properties given in Figure 7.8. They are
all derived from validity of the corresponding RAs.

Lemma 7.17 (Updates of the Global Ghost State and Local Assertions).
GlobalGhost can be updated together the local assertions following the rules
in Figure 7.9. They are all derived from frame-preserving updates of the
corresponding RAs, and the properties of trunc.

Most notably, BL-GHOST-UPDATE-HIST-DROP-SINGLETON demonstrates
that shrinking a history to a singleton is simply a logical change (a
viewshift). It is done by bumping the cut view V ′

cut for ℓ up to its latest
timestamp t, which is the input to trunc. The rule is used to prove
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BL-GHOST-SEEN

GlobalGhost(M,N , Vup, Vcut) ∗ Seen(V) ⊢ V.acq ⊑ Vup ∧ V ∈M

BL-GHOST-HIST

GlobalGhost(M,N , Vup, Vcut) ∗ Histq(ℓ, h) ⊢ trunc(M(ℓ), Vcut(ℓ)) = h ∧ ℓ /∈ unalloc(M)

BL-GHOST-AT-WRITE

GlobalGhost(M,N , Vup, Vcut) ∗Write⊒rlx
q (ℓ, α) ⊢ N (ℓ).aw = α

BL-GHOST-NA-READ

GlobalGhost(M,N , Vup, Vcut) ∗ Readnaq (ℓ, α) ⊢ α ⊆ N (ℓ).nr ∧ (q = 1⇒ N (ℓ).nr = α)

BL-GHOST-AT-READ

GlobalGhost(M,N , Vup, Vcut) ∗ Read⊒rlx
q (ℓ, α) ⊢ α ⊆ N (ℓ).ar ∧ (q = 1⇒ N (ℓ).ar = α)

BL-GHOST-BLOCK-FULL

GlobalGhost(M,N , Vup, Vcut) ∗ †n ℓ ⊢ 0 < n ∗ ∀m. (ℓ+ℓ m) ∈ dom(M)⇔ m ∈ [0, n)

FIGURE 7.8: Several agreements between
the global ghost state and local assertions

BL-GHOST-UPDATE-SEEN

Vup ⊑ V ′
up V.cur ⊑ V ′

up V ′
up ∈M

GlobalGhost(M,N , Vup, Vcut) ⇛̇ GlobalGhost(M,N , V ′
up, Vcut) ∗ Seen(V)

BL-GHOST-UPDATE-HIST-DROP-SINGLETON

h(t) = (v , V ) t = max(dom(h)) V ′
cut = Vcut[ℓ←{Vcut(ℓ) [w := t]}]

GlobalGhost(M,N , Vup, Vcut) ∗ Hist(ℓ, h) ⇛̇ GlobalGhost(M,N , Vup, V
′
cut) ∗ Hist(ℓ, [t←(v , V )])

BL-GHOST-UPDATE-NA-WRITE

t > max(dom(h)) ≥ Vcut(ℓ).w
M′ =M[ℓ←M(ℓ)[t←(v , V )]] N ′ = N [ℓ←{N (ℓ) [w := t]}] V ′

cut = Vcut[ℓ←{Vcut(ℓ) [w := t]}]
GlobalGhost(M,N , Vup, Vcut) ∗ Hist(ℓ, h) ⇛̇ GlobalGhost(M′,N ′, Vup, V

′
cut) ∗ Hist(ℓ, [t←(v , V )])

BL-GHOST-UPDATE-AT-WRITE

t ≥ Vcut(ℓ).w M′ =M[ℓ←M(ℓ)[t←(v , V )]]

N ′ = N [ℓ←{N (ℓ) [aw := N (ℓ).aw ∪ {t}]}] V ′
cut = Vcut[ℓ←{Vcut(ℓ) [aw := Vcut(ℓ).aw ∪ {t}]}]

GlobalGhost(M,N , Vup, Vcut) ∗ Hist(ℓ, h) ∗Write⊒rlx(ℓ, α)

⇛̇ GlobalGhost(M′,N ′, Vup, V
′
cut) ∗ Hist(ℓ, h[t←(v , V )]) ∗Write⊒rlx(ℓ, α ∪ {t})

BL-GHOST-UPDATE-NA-READ

N ′ = N [ℓ←{N (ℓ) [nr := N (ℓ).nr ∪ {r}]}]
GlobalGhost(M,N , Vup, Vcut) ∗ Readnaq (ℓ, α) ⇛̇ GlobalGhost(M, π′, Vup, Vcut) ∗ Readnaq (ℓ, α ∪ {r})

BL-GHOST-UPDATE-AT-READ

N ′ = N [ℓ←{N (ℓ) [ar := N (ℓ).ar ∪ {r}]}]
GlobalGhost(M,N , Vup, Vcut) ∗ Read⊒rlx

q (ℓ, α) ⇛̇ GlobalGhost(M,N ′, Vup, Vcut) ∗ Read⊒rlx
q (ℓ, α ∪ {r})

FIGURE 7.9: Several update rules for the
global ghost state and local assertions
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BL-HIST-DROP-SINGLETON, by hiding the global ghost state GlobalGhost in
the state interpretation S, as we will see next.

Definition 7.18 (State Interpretation for the Base Logic).

GlobalInv(ς) ::= ∃Vup, Vcut.GlobalGhost(ς.M, ς.N , Vup, Vcut) ∗
ς is wellformed ∗ Vup ∈ ς.M∗ ς.N ⊑ Vcut

IHIST ::= ∃ς. ◦ ex(ς)
γSTATE ∗ GlobalInv(ς)

NHIST

S(ς) ::= • ex(ς) : AUTH(EX(GlobalState))
γSTATE ∗ IHIST

The global physical state ς, together with the logical states Vup and
Vcut, need to satisfy some basic properties, as written in the global
invariant GlobalInv(ς): ς is wellformed (Property 3.15), Vup is closed in
ς.M (Property 3.12), and the cut view Vcut must be at least the race
detector view N to guarantee that accessing some history h is not racy.

The definition of the state interpretation is a bit peculiar. We would
simply want S = GlobalInv. But recall that S is only accessible with a
weakest pre-condition (Definition 6.14), so if we let S = GlobalInv, we
can only prove rules with WPs. This is usually the case: an update to
the physical state needs to be done by some instruction, whose rule will
come with a WP, by which we can access the state interpretation S and
then the global ghost state GlobalGhost, with which we can perform a
ghost update to keep the ghost state and the physical state in sync.

However, what if we simply want to change the ghost state without
changing the physical state, i.e., a “view shift”? For example, the rule BL-

HIST-DROP-SINGLETON is simply a logical move that changes the “view”23 of23Note how the “view” in viewshifts is dif-
ferent from views of the relaxed memory
machine. the logic from a history h to a singleton, without changing the physical

memory for ℓ. To support such rules with not just WPs but also viewshifts,
we put GlobalInv inside an invariant with the fixed namespace NHIST,
and employ extra ghost state to maintain that the state ς existentially
quantified in the invariant IHIST is always exactly the parameter ς of
S(ς), which is the actual physical state. The RA AUTH(EX(GlobalState))
ensures that the states agree: valid(• ex(ς) · ◦ ex(ς ′))⇒ ς = ς ′.

Note that we also need another global ghost location γSTATE, and for
every viewshift |⇛E that wants to access GlobalInv, we implicitly assume
that NHIST ⊆ E and the invariant IHIST is known.

7.6 Proofs of Some Primitive Rules and Adequacy

Now, we show proof sketches of some base-logic rules. All rules have
been proven and checked by Coq.

Proof sketch of BL-HIST-DROP-SINGLETON (§7.2). Assuming NHIST ⊆ E , we
use INV-ACC (§6.3) to open IHIST. Note that since the contents of IHIST are
all timeless, the later we get after opening IHIST can be stripped off right
away. We then use BL-GHOST-UPDATE-HIST-DROP-SINGLETON to truncate the
history with a new cut view V ′

cut ⊒ Vcut ⊒ ς.N . The invariant contents
only change in V ′

cut. We therefore can easily re-establish invariant and
close it using the closing wand viewshift we get earlier from INV-ACC.
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Proof sketch of BL-HOARE-ACQ-FENCE (§7.3.1). We start by unfolding the
definition of Hoare triples (Definition 6.7 or Notation 7.7), and then of
WPs (Definition 6.14). Our goal then looks as follow.

Context: Goal:

Seen(V) ∗ S(ς) |⇛E ∅
(red((fenceacq,V), ς) ∗ ∀(e′,V ′). . . .)

Since we have a fancy update |⇛E ∅ in the goal, we can open IHIST:

• ex(ς)
γSTATE ∗ ◦ ex(ς)

γSTATE ∗ GlobalInv(ς) ∗ (. . . ≡−∗∅ E . . .)

The obligation red((fenceacq,V), ς) is easily discharged.

For the remaining goal, after introducing assumptions, we know

(i) ς | (fenceacq,V)
Facq,⊥−−−−→t ς | (h,V ′)

and the goal is ▷ |⇛∅ E
(S(ς) ∗ V ′ ⊑ V ∗ Seen(V ′) ∗ V ′.cur = V ′.acq)

Using BL-GHOST-SEEN, we know V.acq ⊑ Vup, so we can use

BL-GHOST-UPDATE-SEEN to get Seen(V ′) without updating Vup.

We can then use the closing wand viewshift (. . . ≡−∗∅ E . . .) to

close the invariant without updating ς. The goal is now:

S(ς) ∗ Seen(V ′) S(ς) ∗ V ′ ⊑ V ∗ Seen(V ′) ∗ V ′.cur = V ′.acq

This is easily done by looking at the reduction (i) for acquire fences.

Proof sketch of BL-HOARE-WRITE-AT (§7.3.2). We have the following as-
sumptions: (1) rlx ⊑ o, (2) LocalA(ℓ, h,V.cur), (3) LocalnaR (ℓ, αr,V.cur),
and (4) Local⊒rlx

W (ℓ, αw, Vw). After unfolding Hoare triple and WP defini-
tions, we have the following goal.

Context: Goal:

Seen(V) ∗ Hist(ℓ, h) ∗Write⊒rlx(ℓ, αw) ∗ Readna(ℓ, αr)

S(ς) |⇛E ∅
(red((ℓ :=o v

′,V), ς) ∗ ∀(e′,V ′). . . .)

We unfold S and open the invariant IHIST:

• ex(ς)
γSTATE ∗ ◦ ex(ς)

γSTATE ∗ GlobalInv(ς) ∗ (. . . ≡−∗∅ E . . .)

We first show safety: red((ℓ :=o v
′,V), ς)

By BL-GHOST-HIST and BL-GHOST-NA-READ, we have

trunc(ς.M(ℓ), Vcut(ℓ)) = h ∧ ℓ /∈ unalloc(ς.M) ∧ ς.N (ℓ).nr = αr.

Combining these with (2), (3), and ς.N ⊑ Vcut, we have

ς.N (ℓ).w ≤ V.cur(ℓ).w ∧ ς.N (ℓ).nr ⊑ V.cur(ℓ).nr.

So we satisfy DRF-WRITE-AT (§3.4), i.e., we are race-free.

Consequently, we satisfy OC-MEM (§4.3), so we are done.

For the remaining goal, after introducing assumptions, we know

(i) ς | (ℓ :=o v
′,V) Wo(ℓ,v ′),⊥−−−−−−→t ς

′ | (h,V ′)

and the goal is

▷ |⇛∅ E


S(ς ′) ∗ ∃t′ /∈ dom(h), V ′.V W:o,ℓ,t′,⊥,V ′

−−−−−−−−→ V ′ ∗
Local⊒rlx

W (ℓ, αw ∪ {t′} , Vw ⊔ V ′.cur) ∗
Seen(V ′) ∗ Hist(ℓ, h[t′←(v ′, V ′)]) ∗
Write⊒rlx(ℓ, αw ∪ {t′}) ∗ Readna(ℓ, αr)
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By looking at the reduction (i), we can get the new timestamp t′ and

the write message view V ′, and the fact V W:o,ℓ,t′,⊥,V ′

−−−−−−−−→ V ′, and that
N ′ = N [ℓ←{N (ℓ) [aw := N (ℓ).aw ∪ {t}]}].

Additionally, by BL-GHOST-AT-WRITE we have ς.N (ℓ).aw = αw. So
we can pick at new cut view V ′

cut, and use BL-GHOST-UPDATE-AT-WRITE

to update both the history ownership to Hist(ℓ, h[t′←(v ′, V ′)]) and the
atomic write ownership to Write⊒rlx(ℓ, αw ∪ {t′}). By using (4), we
also discharge the local observation Local⊒rlx

W (ℓ, αw ∪ {t′} , Vw ⊔ V ′.cur).
Using BL-GHOST-UPDATE-SEEN, we also get Seen(V ′). The non-atomic read
ownership Readna(ℓ, αr) is returned as-is.

We eventually end up with the following goal.

• ex(ς)
γSTATE ∗ ◦ ex(ς)

γSTATE ∗ GlobalInv(ς ′) ∗ (. . . ≡−∗∅ E . . .)

−∗ |⇛∅ E
S(ς ′)

This is easily done by first updating the ghost ownership • ex(ς)
γSTATE ∗

◦ ex(ς)
γSTATE to that of ς ′, and then use the closing wand viewshift to

close the invariant IHIST.

Finally, we show adequacy for our base logic, which is slightly differ-
ence from Theorem 6.8 in that we do not fix the initial state.

Theorem 7.19 (Base Logic Adequacy). Assuming that the state ς is
wellformed and a thread-view V is closed in ς.M (V ∈ ς.M), if ⊢
wp⊤ (e,V) {(v , ). ϕ(v)} is derivable in the base logic for λRust + ORC11

where ϕ(v) is a pure (meta-level) fact, then the following holds.

∀π, T ′, ς ′. ([π 7→ (e,V)], ς)→∗ (T ′, ς ′)⇒
∀v . T (π) = v ⇒ ϕ(v) (BL-ADEQUACY-VAL)

∧ ∀ρ, eρ,Vρ. T (ρ) = (eρ,Vρ)⇒
(
eρ is a value ∨ red((eρ,Vρ), ς ′)

)
(BL-ADEQUACY-NO-STUCK)

Proof. The proof follows from a Iris-provided adequacy theorem (that
also implies Theorem 6.8). All we need to do is to allocate the various
global ghost locations with the correct RAs, and establish the global
invariant IHIST of the state interpretation S(ς), which requires ς ’s well-
formedness and that V ∈ ς.M.

CHAPTER SUMMARY. In this chapter, we demonstrated the instantiation
of Iris with the λRust + ORC11 language to achieve a RMC base logic.
The most important feature of the logic is the explicit use of thread-views
in conjunction with various local assertions to achieve abstraction for
the relaxed memory effects. In the next chapter, we provide the next
abstractions for thread-views. In Chapter 9 and Chapter 10, we will
provide more abstractions for the local assertions.



8
vProp: View-monotone Predicates

Following iGPS1, in this chapter we introduce an abstraction to hide 1Kaiser et al., “Strong Logic for Weak
Memory: Reasoning About Release-
Acquire Consistency in Iris” [Kai+17].thread-views in the base logic, and lift the base logic to a surface-level

logic whose propositions have the type vProp, which stands for view
propositions. We call this surface logic of vProp the iRC11 logic. We will,
in this chapter as well as later ones, develop more reasoning principles
for iRC11, within iRC11 itself or on top of the base logic.

The motivation for hiding thread-views and views is that most of the
time, they do not have interesting behaviors, and when they do (in the
relaxed memory operations), the effects are usually that the thread-views
or views have grown in certain ways. If we can provide new assertions
that abstract those ways that views change (e.g., an observation of a value
written or read, or that a thread-view’s current view has been upgraded
to its acquire view), then we can achieve SC-like rules that have been
developed in many previous logics.2 In this chapter, we establish some of 2Vafeiadis and Narayan, “Relaxed sep-

aration logic: a program logic for
C11 concurrency” [VN13]; Doko and
Vafeiadis, “A Program Logic for C11 Mem-
ory Fences” [DV16]; Doko and Vafeiadis,
“Tackling Real-Life Relaxed Concurrency
with FSL++” [DV17]; Turon et al., “GPS:
navigating weak memory with ghosts, pro-
tocols, and separation” [TVD14].

such core rules for iRC11.
Note, however, that hiding views is an abstraction that weaken the

logic. While such abstraction is sufficient in many cases, views are
inevitable in order to provide strong reasoning principles or specifications
for very relaxed algorithms. This observation has been made by the RBrlx

work (Part III), the Cosmo logic,3 and the Compass specifications (Part IV),
3Mével et al., “Cosmo: a concur-

rent separation logic for multicore
OCaml” [MJP20].

chronologically. §8.5 will introduce several modalities to restore explicit
view reasoning in the logic of vProp.

8.1 View-monotone Predicates

We define vProp as the type of view-monotone predicates over iProp.

Definition 8.1 (vProp).

vProp ::= View mon−−→ iProp

satisfying ∀P : vProp.∀V, V ′. V ⊑ V ′ ⇒ P (V )⇒ P (V ′) (VPROP-MONO)

An assertion P : vProp is to be interpreted as some resource that holds
at a simple view. This view usually is the current component V.cur of a
thread π’s thread-view V in case P is owned locally by the thread π; or a
view of some write message m in case we attach P to the message m in
order to transfer P from m’s writer to its readers.

99
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Another choice is to define vProp as a predicate of thread-views
(ThreadView mon−−→ iProp), but such a definition does not have an actual
use. Thread-views are tied locally to threads, and so such a definition
is not suitable to represent resources that are not tied to a thread, but
instead, for example, are tied to a message, or are put inside a shared
invariant. Furthermore, resources are typically not tied to a whole thread-
view V, but rather to one of its components (the release-fence, current,
or acquire view). In short, simple view predicates are used pervasively,
while thread-view predicates are not.

The monotonicity requirement is needed to maintain “stability” of
the frame when the view grows. That is, more observations made by
a thread’s step should not invalidate resources that are not relevant to
the step. As a result, we explicitly monotonize vProp propositions when
necessary (i.e., when they are not already monotone). Note that this is a
source of weakening the surface logic compared to the base logic.

We lift the many logical connectives and modalities of the base logic
(which we inherit from Iris) straightforwardly.

Definition 8.2 (Model of vProp propositions). The function J·K provides
a model of vProp propositions into predicates from views to iProp, em-
bedding proofs that the predicates are monotone.44This model is also useful elsewhere, and

has been generalized in Iris to monotone
predicates over types that come with a par-
tial order. JϕK ::= λ . ϕ

JFalseK ::= λ .False

JTrueK ::= λ .True

JP ⇒ QK ::= λV.∀V ′ ⊒ V. JP K(V ′)⇒ JQK(V ′)

JP ∧QK ::= λV. JP K(V ) ∧ JQK(V )

JP ∨QK ::= λV. JP K(V ) ∨ JQK(V )

JP ∗QK ::= λV. JP K(V ) ∗ JQK(V )

JP −∗ QK ::= λV.∀V ′ ⊒ V. JP K(V ′) −∗ JQK(V ′)

J∃x. P K ::= λV.∃x. JP K(V )

J∀x. P K ::= λV.∀x. JP K(V )

J▷P K ::= λV. ▷JP K(V )

J□P K ::= λV. □JP K(V )

J a
γ
K ::= λ . a

γ

J ˙|⇛P K ::= λV. ˙|⇛JP K(V )

J |⇛E1 E2 P K ::= λV. |⇛E1 E2 JP K(V )

. . .

Note that, JP ∗QK, for example, is view-monotone assuming P and Q

are vProp and thus view-monotone. On the other hand, JP −∗ QK needs
to be monotonized explicitly. The model of ghost state ownership J a

γ
K

interestingly simply ignores the input view.

Lemma 8.3 (Properties of iRC11 connectives). The properties in Fig-
ure 6.2, Figure 6.3, Figure 6.4, and Figure 6.7 are preserved for iRC11

connectives by the encoding of Definition 8.2.
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The most interesting encodings are those of weakest pre-conditions
(from which Hoare triples are derived similarly as before), non-atomic
and atomic points-to assertions, and invariants. We will discuss non-
atomic points-to in Chapter 9, atomic points-to in Chapter 10, and invari-
ants in Chapter 11. In the remaining, we discuss the models of iRC11
(vProp) weakest pre-conditions and several RMC-specific modalities.

8.2 Model of iRC11 Weakest Pre-conditions

iRC11 WPs are a vProp proposition that is built upon the base logic WPs,
and that hides away thread-views. Nevertheless, we need a way to
refer to the thread-view, specifically to define the release and acquire
modalities (§8.5) that provide the abstraction of fence behaviors. For this
purpose, we expose thread-ids in the WP definition, which are used under
the hood to associate with thread-views. Fortunately, these iRC11-level
thread-ids need not be the same thread-ids of the threadpool, so we
can simply store thread-views in ghost state—with the RA TVIEWR =

AUTH(LAT(ThreadView))), and use ghost locations as thread-ids.

Definition 8.4 (iRC11 Weakest Pre-conditions).

JwpE e in π {Φ}K ::=

λV.∀V. V ⊑ V.cur −∗ •V : TVIEWR
π −∗ Seen(V) −∗

wpE (e,V)
{
(v ,V ′). • V ′ π

∗ JΦ(v)K(V ′.cur)
}

The WP definition takes care of several things.

• It makes sure that the definition is view-monotone explicitly, by
requiring that the underlying base logic WP take a thread-view V
whose current component V.cur is in the upward closure of the
input view V .

• It threads through the authoritative ghost ownership • V π
of the

thread-view being executed with the expression e, in the pre- and
post-conditions. This also allows for creating snapshots (fragmen-
tary ownership) • V π

for the lower bound of the executing thread
π’s thread-view, which in turn will be used to define release and
acquire modalities.

• By hiding thread-views, it also hides the assertion Seen(V). Accord-
ingly, it also provides Seen(V) as assumption to the base logic WP.
It does not require Seen(V ′) in the post-condition, because this can
be easily obtained from the state interpretation S (hidden in the
base logic WP) using BL-GHOST-UPDATE-SEEN.

Definition 8.5 (iRC11 Hoare triples). iRC11 Hoare triples are defined
similarly as before.

{P} e in π {v . Q}E ::= □(P −∗ wpE e in π {v . Q})
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If we interpret this definition in iProp, we will arrive at the following.

J{P} e in π {v . Q}EK ::=

λV. □∀V ′,V. V ⊑ V ′ ⊑ V.cur −∗ JP K(V ) −∗ •V π −∗ Seen(V)

−∗ wpE (e,V)
{
(v ,V ′). • V ′ π

∗ JQK(V ′.cur)
}

As one can see, generally both the pre-condition P and post-condition Q

are interpreted at the current components V.cur and V ′.cur, respectively,
of the executing thread’s thread-view.

Lemma 8.6 (Properties of iRC11 WPs and Hoare triples). The properties
in Figure 6.5 and Figure 6.6, except those concerning invariants which are
not yet defined, also hold for iRC11 WPs and Hoare triples.

Theorem 8.7 (iRC11 Adequacy). If ∀π. ⊢ wp⊤ e in π {v . ϕ(v)} is derivable
in the iRC11 logic for λRust + ORC11 where ϕ(v) is a pure (meta-level) fact,
then the following holds.

∀π, T ′, ς ′. ([π 7→ (e,Vinit)], ςinit)→∗ (T ′, ς ′)⇒
∀v . T (π) = v ⇒ ϕ(v) (ADEQUACY-VAL)

∧ ∀ρ, eρ,Vρ. T (ρ) = (eρ,Vρ)⇒
(
eρ is a value ∨ red((eρ,Vρ), ς ′)

)
(ADEQUACY-NO-STUCK)

where Vinit = (∅,∅,∅,∅) and ςinit = (∅,∅).

Proof sketch. The proof follows from the base logic adequacy (Theo-
rem 7.19). Note that the initial thread-view Vinit and state ςinit are
wellformed and Vinit ∈ ςinit. We then need to allocate the ghost state
• V π

for some π and V , and get Seen(V), so that we can instantiate and
apply our assumption ∀π. ⊢ wp⊤ e in π {v . ϕ(v)} and finish the proof.

8.3 Fence Modalities

To model the effects of relaxed accesses and fences, iRC11 inherits two
modalities from FSL5—the release modality ∆ and the acquire modal-5Doko and Vafeiadis, “A Program Logic

for C11 Memory Fences” [DV16]; Doko
and Vafeiadis, “Tackling Real-Life Relaxed
Concurrency with FSL++” [DV17].

ity ∇—which allow us to talk about ownership of resources at a thread’s
release-fence or acquire views. The assertion ∆π P represents ownership
of P at thread π’s release-fence view, while the assertion ∇π P represents
ownership of P at thread π’s acquire view.

The motivation for these modalities as follows. Recall the Message-
Passing example using a pair of a relaxed write and a relaxed read,
together with fences (Example 2.1(d), Figure 2.2(d)). We have some
resource described by the proposition P that we want to transfer from
the left-hand thread π to the right-hand thread ρ. However, when the
“producer” thread π performs its relaxed write, the message view of that
write is drawn from π’s release-fence view, not its current view. Hence,
we need a way of insisting (in the precondition of the relaxed write) that
the P that π is sending holds under its release-fence view—that is what
is denoted by ∆π P . Dually, when the “consumer” thread ρ performs
its relaxed read, the message view it reads will only be joined into its
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HOARE-REL-FENCE

{P} fencerel in π {∆π P}
HOARE-ACQ-FENCE

{∇π P} fenceacq in π {P}

HOARE-REL-FENCE-ELIM

{P} e in π {Φ}
{∆π P} e in π {Φ}

HOARE-ACQ-FENCE-INTRO

{∇π P} e in π {Φ}
{P} e in π {Φ}

RELMOD-GHOST

∆π a
γ ⊢ a

γ
ACQMOD-GHOST

∇π a
γ ⊢ a

γ
GHOST-RELMOD

a
γ
⇛̇ ∆π a

γ
GHOST-ACQMOD

a
γ
⇛̇ ∇π a

γ

RELMOD-MONO

P ⊢ Q

∆π P ⊢ ∆π Q

RELMOD-PURE

∆π ϕ ⊢ ϕ

RELMOD-AND

∆π (P ∧Q) ⊢ ∆π P ∧∆π Q

RELMOD-OR

∆π (P ∨Q) ⊣⊢ ∆π P ∨∆π Q

RELMOD-FORALL

∆π ∀x. P ⊢ ∀x.∆π P

RELMOD-EXIST

∆π ∃x. P ⊣⊢ ∃x.∆π P

RELMOD-SEP

∆π (P ∗Q) ⊣⊢ ∆π P ∗∆π Q

RELMOD-WAND

∆π (P −∗ Q) ⊢ ∆π P −∗ ∆π Q

RELMOD-LATER-INTRO

▷∆π P ⇛E ∆π ▷P

RELMOD-UNOPS

· ∈
{
□, ▷, ˙|⇛, |⇛E1 E2

}
∆π ·P ⊢ ·∆π P

ACQMOD-MONO

P ⊢ Q

∇π P ⊢ ∇π Q

ACQMOD-PURE

∇π ϕ ⊢ ϕ

ACQMOD-AND

∇π (P ∧Q) ⊢ ∇π P ∧∇π Q

ACQMOD-OR

∇π (P ∨Q) ⊣⊢ ∇π P ∨∇π Q

ACQMOD-FORALL

∇π ∀x. P ⊢ ∀x.∇π P

ACQMOD-EXIST

∇π ∃x. P ⊣⊢ ∃x.∇π P

ACQMOD-SEP

∇π (P ∗Q) ⊣⊢ ∇π P ∗ ∇π Q

ACQMOD-WAND

∇π (P −∗ Q) ⊢ ∇π P −∗ ∇π Q

ACQMOD-LATER-INTRO

▷∇π P ⇛E ∇π ▷P

ACQMOD-UNOPS

· ∈
{
□, ▷, ˙|⇛, |⇛E1 E2

}
∇π ·P ⊢ ·∇π P

FIGURE 8.1: iRC11 rules for fence modali-
ties

acquire view, not its current view. Hence, we need a way of insisting (in
the post-condition of the relaxed read) that ρ only receives ownership
of P under its acquire view—that is what is denoted by ∇ρ P . We will
see how this is materialized in the iRC11 rules for atomic operations in
Chapter 10.

Of course, we need a way of actually introducing ∆π P and eliminating
∇ρ P . These steps are achieved by rules HOARE-REL-FENCE and HOARE-

ACQ-FENCE (Figure 8.1), which allow one to transfer any proposition into
the release modality at the point of a rel fence, or out of the acquire
modality at the point of an acq fence, because those are the points where
the current and release-fence/acquire views get synchronized.

HOARE-REL-FENCE-ELIM and HOARE-ACQ-FENCE-INTRO are the reverse of
HOARE-REL-FENCE and HOARE-ACQ-FENCE, and demonstrate that the release-
fence view is included in the current view, which in turn is included in
the acquire view of a thread. So ∆π P can be easily turned into P , which
can be turned into ∇π P . We note that we need a goal in form of a WP
or a Hoare triple to perform these moves, but this is only an artifact of
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our simple model of fence modalities (§8.3.1).
RELMOD-GHOST, ACQMOD-GHOST, GHOST-RELMOD, and GHOST-ACQMOD

together state that the ghost ownership assertion a
γ

can move freely
in and out of the fence modalities. Intuitively, ghost state belongs to
the class of view-agnostic assertions, in the sense that their ownership
interpretation is not tied to any view at all! Since a

γ
is view-agnostic

and thus does not care at which view it is interpreted,6 it is equivalent to6This can be seen clearly in the model of
iRC11 ghost ownership, in Definition 8.2.

∆π a
γ

or ∇π a
γ
. As a result, a

γ
can be transferred from one thread

to another without the need for physical synchronization—in particular,
without the need for release/acquire fences.

The remaining rules in Figure 8.1 state various properties between the
fence modalities and other modalities. Some of the rules only have one
direction or need to use basic or fancy updates. This is due to our simple
model of fence modalities—which we will see next—but fortunately they
do not cause any problem in practice.

8.3.1 Model of the Fence Modalities

We rely on the extra ghost state of the RA TVIEWR that we have added to
iRC11 WPs (Definition 8.4) to get access to the executing thread’s hidden
thread-view, so that we can give a model to our fence modalities.

Definition 8.8 (Model of the Fence Modalities).

J∆π P K ::= λ .∃V. ◦ V π ∗ JP K(V.frel) (RELMOD-MODEL)

J∇π P K ::= λ .∃V. ◦ V π ∗ JP K(V.acq) (ACQMOD-MODEL)

Note that due to validity of TVIEWR, from • V ′ π
∗ ◦ V π

, we know
that V ⊑ V ′. Consequently, if we own ∆π P in a goal of a WP for the
thread π, we know that P holds at the view V.frel where V ⊑ V ′ and V ′

is π’s actual thread-view, and thus by view-monotonicity, P also holds at
V ′.frel. In fact, let us sketch the proofs of some of the rules in Figure 8.1.

Proof of HOARE-REL-FENCE. We prove the rule in the base logic. After
unfolding the Hoare triples (interpreting them in the base logic, as in
Definition 8.5), we have the following goal.

Context: Goal:

V ⊑ V.cur ∗ JP K(V ) ∗ • V π ∗ Seen(V)
wpE (e,V)

{
(h,V ′). • V ′ π

∗ J∆π P K(V ′.cur)
}

We then apply WP-MONO (§6.6) and BL-HOARE-REL-FENCE (§7.3.1).

The goal, after unfolding the model of the release modality, is now:

V ⊑ V.cur ∧ V ⊑ V ′ ∧ V ′.frel = V ′.cur

JP K(V ) ∗ • V π ∗ Seen(V ′) • V ′ π
∗ ∃V0. ◦ V0

π ∗ JP K(V0.frel)

We update the ghost thread-view of π using AUTH-LAT-UPDATE (§7.4).

We are then left with:

JP K(V ) ∗ ◦ V ′ π
∃V0. ◦ V0

π ∗ JP K(V0.frel)
And then:

JP K(V ) JP K(V ′.frel)
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But we know that V ⊑ V.cur ⊑ V ′.cur = V ′.frel. By view-monotonicity
(VPROP-MONO), we are done.

Proof of HOARE-ACQ-FENCE. The proof is similar to that of HOARE-REL-

FENCE. Eventually we will arrive at the goal JP K(V0.acq) ⊢ JP K(V ′.cur).
But by AUTH-LAT-VALID and BL-HOARE-ACQ-FENCE we know that V0.acq ⊑
V ′.acq = V ′.cur. Again this is done by VPROP-MONO.

Proof of RELMOD-GHOST. After unfolding, we arrive at the following base-
logic goal: ∃V. ◦ V π ∗ a

γ ⊢ a
γ
. This is easily done.

Proof of GHOST-RELMOD. After unfolding, we arrive at the following base-
logic goal: a

γ
⇛̇ ∃V. ◦ V π ∗ a

γ
. We only need to pick any V for which

we own ◦ V π
, because the ghost ownership does not depend on V . With

a basic update, we can get ownership of an RA’s unit element. In case of
TVIEWR, the unit element is ◦∅ for the empty thread-view ∅. Therefore
we can easily get ◦∅ π

and we are done.

Proof of RELMOD-FORALL. After unfolding, we arrive at the following base-
logic goal: ∃V. ◦ V π ∗ ∀x. JP K(V.frel) ⊢ ∀x.∃V. ◦ V π ∗ JP K(V.frel). This
is easily done.

The result of the unfolding also demonstrates that the reverse direc-
tion RELMOD-FORALL is not provable for our simple model of the release
modality: we would need to go from a ∀∃ assumption to a ∃∀ goal.

8.4 Objective Propositions and The Objective Modality

We previously mentioned that ghost state ownership belongs to the class
of view-agnostic propositions whose interpretations are not tied to any
view at all. That is, relaxed memory has no effects on them. We formally
call this class objective propositions, because they hold regardless of any
subjective views of any threads in the program. They are thus important
to establish global consensus among concurrent threads.

Definition 8.9 (Objective Propositions). A proposition P : vProp is
objective if its interpretation does not depend any view. 7 7Note that objectivity and the objective

modality have also been generalized in Iris
for monotone predicates, not just vProp.

objective(P ) ::= ∀V, V ′. JP K(V ) ⊢ JP K(V ′)

Definition 8.10 (The Objective Modality). The objective modality carries
the proof that some resource P holds at any view.

J⟨obj⟩P K ::= λ .∀V. JP K(V )

Figure 8.2 presents many rules for objective propositions and the
objective modality. Unsurprisingly, pure facts, True, False, ghost own-
ership, and a resource under the objective modality are all objective.
Objectivity is maintained structurally, but it is not always so for the
objective modality, due to our use of a universal quantifier (∀) in its
model. OBJMOD-INTRO allows one to put objective propositions under
the objective modality, so that one can store the meta-level objectivity
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GHOST-OBJ

objective( a
γ
)

PURE-OBJ

objective(ϕ)
TRUE-OBJ

objective(True)
FALSE-OBJ

objective(False)
OBJ-OBJ

objective(⟨obj⟩P )

OBJ-BOPS

objective(P ) objective(Q) · ∈ {∧,∨,⇒, ∗,−∗}
objective(P ·Q)

OBJ-UOPS

objective(P ) · ∈
{
□, ▷, ˙|⇛, |⇛E1 E2

}
objective(·P )

OBJ-FORALL

∀x. objective(P )

objective(∀x. P )

OBJ-EXIST

∃x. objective(P )

objective(∃x. P )

OBJMOD-INTRO

objective(P )

P ⊢ ⟨obj⟩P

OBJMOD-ELIM

⟨obj⟩P ⊢ P

OBJMOD-MONO

P ⊢ Q

⟨obj⟩P ⊢ ⟨obj⟩Q

OBJMOD-AND

⟨obj⟩ (P ∧Q) ⊣⊢ ⟨obj⟩P ∧ ⟨obj⟩Q
OBJMOD-OR

⟨obj⟩P ∨ ⟨obj⟩Q ⊢ ⟨obj⟩ (P ∨Q)

OBJMOD-FORALL

⟨obj⟩ ∀x. P ⊣⊢ ∀x. ⟨obj⟩P
OBJMOD-EXIST

∃x. ⟨obj⟩P ⊢ ⟨obj⟩ ∃x. P
OBJMOD-SEP

⟨obj⟩ (P ∗Q) ⊣⊢ ⟨obj⟩P ∗ ⟨obj⟩Q

OBJMOD-RELMOD-INTRO

⟨obj⟩P ⇛̇ ∆π P

RELMOD-OBJMOD-ELIM

∆π ⟨obj⟩P ⊢ ⟨obj⟩P
OBJMOD-ACQMOD-INTRO

⟨obj⟩P ⇛̇ ∇π P

ACQMOD-OBJMOD-ELIM

∇π ⟨obj⟩P ⊢ ⟨obj⟩P

FIGURE 8.2: iRC11 rules for objective
propositions and the objective modality fact in the logic. OBJMOD-ELIM says that a resource P under an objective

modality can be used any time, because it holds at any view.
Last but not least, OBJMOD-RELMOD-INTRO, RELMOD-OBJMOD-ELIM,

OBJMOD-ACQMOD-INTRO, and ACQMOD-OBJMOD-ELIM together state that
resources under the objective modality move freely in and out of the
fence modalities, because they do not depend on any view. In fact, the
rules for ghost state interaction with fence modalities (RELMOD-GHOST,
ACQMOD-GHOST, GHOST-RELMOD, and GHOST-ACQMOD) are derived from
these rules, together with GHOST-OBJ, OBJMOD-INTRO, and OBJMOD-ELIM.

Note 8.11 (On the objectivity of fence modalities). A resource P under a
fence modality, e.g., ∆π P , is objective, but that does not mean that P is
objective. P is still interpreted at some snapshot view of the thread π’s
thread-view.

8.5 View-explicit Modalities

As mentioned in the beginning of this chapter—and as will be demon-
strated in later chapters, it is not always desirable to hide views. We
therefore would like the ability to briefly perform explicit view reasoning
without dropping back to the base logic. The solution is to introduce
view-explicit modalities. This has been done on an ad hoc basis in the
RBrlx work (Part III), then developed more formally by the Cosmo logic,88Mével et al., “Cosmo: a concur-

rent separation logic for multicore
OCaml” [MJP20]. and then used extensively in Compass (Part IV).

In the following, we present a formal account of these modalities, and
their interaction with other modalities as well as among themselves. Note
that this formalization can also be generalized further beyond vProp, to
achieve modalities in a logic with thread-local state.
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Definition 8.12 (The View-Seen Observations). ⊒V
The view-seen observation ⊒V asserts that the implicit view that is being
used to interpret resources is at least V .

J⊒V K ::= λV ′. V ⊑ V ′

The view-seen observation is similar to the seen thread-view observa-
tion (Definition 7.9), but is a vProp proposition and is not limited to a
view of some thread. It provides a lower bound of the view being used to
interpreted resources at the current point of a proof, regardless whether
that proof is for a program execution (a WP) or not.

Definition 8.13 (The View-At Modality). @V P

The view-at modality @V P asserts that P holds explicitly (at least) at the
view V .

J@V P K ::= λ . JP K(V )

When we progress through a proof—with or without a program execution
(i.e., a WP)—in the iRC11 logic, either due to program execution or due
to possible explicit monotonization of vProp propositions, the view being
used to interpret our resources may grow. The view-at modality @V P

allows us to keep some resource P frozen at some view V and not affected
by the growth of the implicit interpreting view. This ability is needed in
case the interpreting view grows too big, rendering our ownership of P
useless.

Definition 8.14 (The View-Join Modality). ⊔V P
The view-join modality ⊔V P asserts that P holds at the join of V and the
implicit view that is being used to interpret resources.

J⊔V P K ::= λV ′. JP K(V ′ ⊔ V )

The view-join modality is a compromise between a implicit view and
a view-at modality: it remembers the difference between the implicit
interpreting view and the view that justifies P . This allows the view that
justifies P to still grow, but not too far away from the implicit view of the
current proof.

Figure 8.3 lists several important properties of these new propositions.

• The seen-view observation is timeless and persistent. The observa-
tion for the empty view is always available (VS-BOT) and objective.
The seen-view observation lifts the join operation of the view lat-
tice to separation in the logic (VS-JOIN). Observations are also
downward closed (VS-MONO).

• The view-at modality makes the interpreting view explicit and
therefore is objective. It preserves timelessness and persistency,
and is upward closed (VA-MONO), due to view monotonicity. The
modality commutes with most connectives and modalities, almost
in both directions (VA-BOPS, VA-UNOPS, VA-IMPL, and VA-WAND).
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VS-BOT

⊢ ⊒∅
objective(⊒∅)

timeless(⊒V )

persistent(⊒V )

VS-JOIN

⊒(V1 ⊔ V2) ⊣⊢ ⊒V1 ∗ ⊒V2

VS-MONO

V1 ⊑ V2

⊒V2 ⊢ ⊒V1

objective(@V P )
timeless(P )

timeless(@V P )

persistent(P )

persistent(@V P )

VA-MONO

V1 ⊑ V2 P ⊢ Q

@V1P ⊢ @V2Q

objective(P )

objective(⊔V P )

timeless(P )

timeless(⊔V P )

persistent(P )

persistent(⊔V P )

VJ-MONO

V1 ⊑ V2 P ⊢ Q

⊔V1
P ⊢ ⊔V2

Q

VA-INTRO

P ⊢ ∃V. ⊒V ∗@V P

VA-INTRO-INCL

P ∗ ⊒V ′ ⊢ ∃V ⊒ V ′. ⊒V ∗@V P

VA-ELIM

⊒V ∗@V P ⊢ P

VA-VS

V1 ⊑ V2 ⊣⊢ @V2
⊒V1

VA-OBJ

objective(P )

@V P ⊣⊢ P

VA-INTRO-OBJ

⟨obj⟩P ⊢ @V P

VA-IDEMP

@V2
@V1

P ⊣⊢ @V1
P

VA-BOPS

· ∈ {∧,∨, ∗}
@V P ·Q ⊣⊢ @V P ·@V Q

VA-UNOPS

· ∈
{
∀x. ,∃x. ,□, ▷, ˙|⇛, |⇛E1 E2

}
@V ·P ⊣⊢ ·@V P

VA-IMPL

@V P ⇒ Q ⊢ @V P ⇒ @V Q

VA-WAND

@V P −∗ Q ⊢ @V P −∗ @V Q

VJ-UNFOLD

⊔V P ⊣⊢ ⊒V ⇒ P

VJ-JOIN

⊔V1
⊔V2

P ⊣⊢ ⊔(V1⊔V2)P

VA-VJ

@V1
⊔V2

P ⊣⊢ @(V1⊔V2)P

VJ-VA

⊔V2
@V1

P ⊣⊢ @V1
P

VA-TO-VJ

@V P ⊢ ⊔V P
VJ-INTRO-NOW

P ⊢ ⊔V P
VJ-ELIM

⊒V ∗ ⊔V P ⊢ P

VJ-ELIM-VA

⊒V1 ∗ ⊔V2P ⊢ ∃V ′ ⊒ V1. ⊒V ′ ∗@(V ′⊔V2)P

VJ-VA-ACC

⊒V1 ∗ ⊔V2
P ⊢ ∃V ′ ⊒ V1. ⊒V ′ ∗@(V ′⊔V2)P ∗ (∀V

′′. ⊒V ′′ ∗@(V ′′⊔V2)P −∗ ⊔V2
P )

VJ-INTRO-OBJ

⟨obj⟩P ⊢ ⊔V P

VJ-OBJ

objective(P )

⊔V P ⊣⊢ P

VJ-BOPS

· ∈ {∧,∨,⇒, ∗,−∗}
⊔V P ·Q ⊣⊢ ⊔V P · ⊔V Q

VJ-UNOPS

· ∈
{
∀x. ,∃x. ,□, ▷, ˙|⇛, |⇛E1 E2

}
⊔V ·P ⊣⊢ ·⊔V P

FIGURE 8.3: iRC11 rules for view-explicit
modalities

Objective propositions often ignore the view-at modality (VA-OBJ

and VA-INTRO-OBJ). VA-IDEMP says that the inner-most view-at
modality dominates. VA-VS says what it means for a view V2 to
observe a view V1: it is simply that V1 ⊑ V2.

The two most important rules for the modality are its introduction
and elimination rules. VA-INTRO allows us to freeze an owned
resource P at some view V that we have observed (⊒V ). As such,
we can send @V P and ⊒V away on different routes—a separation
of resources and observations. A receiver once receives both parts
can use VA-ELIM to regain P . VA-INTRO-INCL strengthens VA-INTRO

to know more about the fixed view V .

• The view-join modality preserves timelessness, persistency, and
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objectivity, and is also upward closed. It commutes with most con-
nectives and modalities (VJ-BOPS and VJ-UNOPS). Again, objective
propositions ignore the view-join modality (VJ-OBJ and VJ-INTRO-

OBJ).

VJ-UNFOLD provides an alternative definition for the view-join modal-
ity, which states more clearly that P holds at view whose difference
with the implicit view is V . VA-VJ, VJ-VA, and VA-TO-VJ provide
important relations between the view-at and view-join modalities.
VJ-INTRO-NOW allows us to move the owned P to a bigger view and
introduce ⊔V P . VJ-ELIM allows us to eliminate the modality, in
the same way as VA-ELIM. Finally, VJ-ELIM-VA allows us to go from
the view-join modality to the view-at modality. Combining that
with VA-VJ and VA-ELIM, we get the rule VJ-VA-ACC that allows us to
switch between the two modalities.

Definition 8.15 (Alternative Model for Fence Modalities). The fence
modalities are in fact defined in vProp using the view-at modality.

∆π P ::= ∃V. ◦ V π ∗@V.frelP

∇π P ::= ∃V. ◦ V π ∗@V.acqP

After unfolding into the base logic, this is exactly the same as Defini-
tion 8.8.

We note that the release modality and the view-at modality can
interact through the following rule.

RELMOD-VA-REVERT

∀V. {@V P ∗∆π ⊒V } e in π {Φ}E
{∆π P} e in π {Φ}E

That is, with a goal in the form of a WP for the thread π, we can turn the
assumption ∆π P into @V P ∗∆π ⊒V for some view V .

8.6 The Subjective Modality

Finally, we introduce the subjective modality, a derivation from the view-
at modality.

Definition 8.16 (The Subjective Modality).

⟨subj⟩P ::= ∃V.@V P

That is, the subjective modality asserts that P : vProp holds at some view
that is hidden from others. The name “subjective” comes from the fact
that P holds in someone’s subjective view.

The subjective modality satisfies the rules in Figure 8.4, which are
derivable from the rules for the view-at modality. Some of these prop-
erties hold for general monotone predicates, but some (e.g., the reverse
direction of SUBJMOD-SEP) only hold for monotone predicates on a lattice,
which for vProp is the view lattice.
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objective(⟨subj⟩P )
timeless(P )

timeless(⟨subj⟩P )

persistent(P )

persistent(⟨subj⟩P )

SUBJMOD-MONO

P ⊢ Q

⟨subj⟩P ⊢ ⟨subj⟩Q

SUBJMOD-INTRO

P ⊢ ⟨subj⟩P

SUBJMOD-VA

∃V.@V P ⊣⊢ ⟨subj⟩P

SUBJMOD-ELIM-OBJ

objective(P )

⟨subj⟩P ⊢ P

SUBJMOD-AND

⟨subj⟩ (P ∧Q) ⊢ ⟨subj⟩P ∧ ⟨subj⟩Q

SUBJMOD-OR

⟨subj⟩P ∨ ⟨subj⟩Q ⊣⊢ ⟨subj⟩ (P ∨Q)

SUBJMOD-FORALL

⟨subj⟩ ∀x. P ⊢ ∀x. ⟨subj⟩P
SUBJMOD-EXIST

∃x. ⟨subj⟩P ⊣⊢ ⟨subj⟩ ∃x. P

SUBJMOD-SEP

⟨subj⟩ (P ∗Q) ⊣⊢ ⟨subj⟩P ∗ ⟨subj⟩Q
SUBJMOD-LATER

▷ ⟨subj⟩P ⊣⊢ ⟨subj⟩ ▷P

FIGURE 8.4: iRC11 rules for the subjective
modality CHAPTER SUMMARY. In this chapter, we presented view-monotone pred-

icates vProp—the type of iRC11 propositions—and the lifting of many
base-logic connectives and modalities to those of iRC11. We have de-
fined iRC11 WPs also in terms of the base logic WPs, and showed iRC11

adequacy. We have also defined various iRC11 modalities: fence modal-
ities and view-explicit modalities. In the next chapters, we follow the
same approaches to derive more iRC11 assertions and their rules on top
of the base logic: the non-atomic and atomic points-to assertions, and
invariants.



9
Non-Atomic Points-To

The points-to assertion ℓ 7→ v is a well-known feature of separation logics.
It represents unique ownership of the location ℓ, which allows for safe,
non-racy operations on ℓ. For concurrent reads, the assertion can be
equipped with fractional permission, i.e., ℓ q7−→ v . Ownership of a fraction
q ∈ (0, 1] is sufficient to prevent concurrent writes. We would like to have
these features for non-atomic accesses: concretely, the full ownership of
a points-to ℓ 7→ v should be sufficient to safely perform non-atomic writes
(and thus also any atomic operations), while a fractional ℓ q7−→ v should be
sufficient to safely perform non-atomic reads (and thus also any atomic
reads). In this chapter, we give a model for iRC11’s non-atomic points-to
assertion that satisfies this interface, using the base logic local assertions
defined in Chapter 7. In Chapter 10, we will also discuss iRC11’s ability
to switch between non-atomic and atomic points-to assertions.

9.1 The Interface of Non-Atomic Points-To

The interface of iRC11 non-atomic points-to is rather standard, as given in
Figure 9.1. NA-FRAC, NA-FRAC-VALID, and NA-FRAC-AGREE together say that
non-atomic points-to is fractional, and NA-EXCL says that full ownership
of a non-atomic points-to is exclusive. NA-READ allows us to perform
non-racy reads using any access mode o with a fraction ℓ q7−→ v , and we
are guaranteed the return value is v . NA-WRITE allows us to perform
non-racy writes also using any access mode o with the full fraction ℓ 7→ ,
and we know afterwards ℓ has the value just written. The support for an
arbitrary access mode o reflects the fact that if the points-to ownership is
sufficient to safely perform the most demanding mode (non-atomic, na),
then it should also be sufficient for less demanding ones.

Furthermore, NA-ALLOC says that an allocation gives us the full block
ownership (†n ℓ—lifted from the base logic1 to vProp—and the full non- 1see Definition 7.1

atomic points-to ownership (∗m∈[0,n) ℓ +m 7→ h) for all locations of
the newly allocated block, whose base location is ℓ. Conversely, NA-

DEALLOC consumes the block ownership and the points-to ownership of all
locations. We strengthen NA-DEALLOC slightly by only requiring a weaker
points-to ℓ 7→ ?, which we call an unsynchronized points-to. Intuitively,
the ownership of an unsynchronized points-to ℓ 7→ ? only guarantees
that the owning thread has observed the latest write to ℓ, but is not
synchronized with that write, i.e., it has not observed the write’s message

111
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NA-FRAC

ℓ q7−→ v ∗ ℓ q′7−→ v ⊣⊢ ℓ q+q′7−−−→ v

NA-FRAC-VALID

ℓ q7−→ v ⊢ q ∈ (0, 1]

NA-FRAC-AGREE

ℓ q7−→ v ∗ ℓ q′7−→ v ′ ⊢ v = v ′
NA-EXCL

ℓ 7→ v ∗ ℓ 7→ v ′ ⊢ False

NA-READ

{ℓ q7−→ v} ∗oℓ in π {w.w = v ∗ ℓ q7−→ v}E
NA-WRITE

{ℓ 7→ } ℓ :=o v in π {h. ℓ 7→ v}E

NA-ALLOC

0 < n

{True}

alloc(n) in π

{ℓ. †n ℓ ∗ ∗
m∈[0,n)

ℓ+m 7→ h}
E

NA-DEALLOC

0 < n

{†n ℓ ∗ ∗
m∈[0,n)

ℓ+m 7→ ?}
free(ℓ, n) in π

{h.True}E

NA-UNSYNC

ℓ q7−→ ⊢ ℓ 7→ ?

where ℓ q7−→ ::= ∃v . ℓ q7−→ v .

FIGURE 9.1: Rules for iRC11 non-atomic
points-to view. On the other hand, ownership of ℓ 7→ v guarantees that the thread

is synchronized with that latest write, which is the write of v . The rule
NA-UNSYNC demonstrates that the latter is stronger than the former.

9.2 The Model of Non-Atomic Points-To

In order to define the non-atomic points-to assertion purely within vProp,
we first lift the base logic local assertions (either in iProp or in the meta-
level logic, see Definition 7.1) to vProp as follows.

Definition 9.1 (Lifting Local Assertions to vProp).

JHist(ℓ, h)K ::= λ .Hist(ℓ, h)

JWrite⊒rlx(ℓ, α)K ::= λ .Write⊒rlx(ℓ, α)

JReadna(ℓ, α)K ::= λ .Readna(ℓ, α)

JRead⊒rlx(ℓ, α)K ::= λ .Read⊒rlx(ℓ, α)

JLocalA(ℓ, h)K ::= λV. LocalA(ℓ, h, V )

JLocal⊒rlx
W (ℓ, α)K ::= λV. Local⊒rlx

W (ℓ, α, V )

JLocal⊒rlx
R (ℓ, α)K ::= λV. Local⊒rlx

R (ℓ, α, V )

JLocalnaR (ℓ, α, Vna)K ::= λV. LocalnaR (ℓ, α, Vna) ∧ Vna ⊑ V

The lifting is straightforward. Recall that the various local ownership for
parts of the race-detector state are purely ghost state,2 so in lifting them2see Definition 7.14

to vProp we simply ignore the interpreting view. For local observations,
we use the interpreting view V as the last argument to the meta-level
assertions. Recall Property 7.5 that the local observations are all view-
monotone.

Remark 9.2 (The non-atomic view Vna). Note that unlike the rest of
iRC11 local observations, we do not hide the view Vna of the non-atomic
local observation LocalnaR (ℓ, α, Vna). Instead, we require that the implicit
interpreting view V includes Vna. The view Vna is called the non-atomic
view, and we expose it to record the view of the most recent non-atomic
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access period. Intuitively, safe accesses to a location ℓ must alternate
between periods of non-atomic accesses and periods of atomic accesses.
Interestingly, the switch from a non-atomic access period to an atomic
access period of ℓ can happen (logically) much later than the most recent
physical non-atomic operation to ℓ. That is, the end of a non-atomic access
period may not logically coincide with the most recent non-atomic access.
Even so, any incoming atomic accesses of the new atomic access period
must synchronize with not only the most recent non-atomic operation,
but with the point of the switch itself. Therefore, we use the view Vna to
track the view of the switch, so as to make more resources available to the
incoming atomic accesses. In short, the non-atomic view Vna is needed to
have strong reasoning principles for switching between non-atomic and
atomic accesses, and its uses will be explained more clearly in Chapter 10.
In this chapter, we can simply ignore this view.

Definition 9.3 (Model of ℓ 7→ v). We define a primitive non-atomic points-
to ℓ q7−→na h which represents fractional ownership of ℓ with a history h,
and then use it to define the unsynchronized non-atomic points-to ℓ q7−→ ?

and the actual points-to ℓ q7−→ v .

ℓ q7−→na h ::= ∃αw, α1, α2. LocalA(ℓ, h) ∗ Local
⊒rlx
W (ℓ, αw) ∗

Local⊒rlx
R (ℓ, α2) ∗ (∃Vna. Local

na
R (ℓ, α1, Vna)) ∗

Histq(ℓ, h) ∗Write⊒rlx
q (ℓ, αw) ∗

Readnaq (ℓ, α1) ∗ Read⊒rlx
q (ℓ, α2)

ℓ q7−→ ? ::= ∃t,v , V ?. ℓ q7−→na

[
t←(v , V ?)

]
ℓ q7−→ v ::= ∃t, V ?. ℓ q7−→na

[
t←(v , V ?)

]
∗ ⊒V ?

A fraction q of the primitive non-atomic points-to for ℓ contains the
corresponding fractions for ℓ’s history ownership of h and the parts
of race-detector state. By LocalA(ℓ, h), the owner of ℓ q7−→na h has also
observed the allocation of ℓ. The sets αw, α1, and α2 of atomic writes,
non-atomic and atomic reads, respectively, are existentially quantified,
and, due to the local observations, all sets are also observed by the owner
of ℓ q7−→na h.

The unsynchronized non-atomic points-to ℓ q7−→ ? then simply requires
that the history be a singleton

[
t←(v , V ?)

]
for ℓ’s latest write event

(t,v , V ?). The non-atomic points-to ℓ q7−→ v additionally fixes the value to
be v , and requires that the owner has observed the message view V ?.

The definitions clearly show that NA-UNSYNC holds. We sketch the
proofs for the remaining rules.

Proof sketch that ℓ 7→ v is fractional. Proofs of NA-FRAC, NA-FRAC-VALID,
and NA-FRAC-AGREE follow from the fact that the ownership history and
the local assertions for parts of the race-detector state are all fractional—
see Figure 7.2. In proving NA-FRAC, we will need BL-NAL-JOIN and
BL-ATRL-JOIN to join the local observations for reads.

Proof sketch of NA-ALLOC. We perform the proof in the base logic. Note
that we do not have a base logic rule for allocation and deallocation,
so we will need to prove both NA-ALLOC and NA-DEALLOC by unfolding
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the both WP definitions of iRC11 (Definition 8.4) and of the base logic
(Definition 6.14), and work directly with the state interpretation (Defini-
tion 7.18), like for other base logic WP rules.

Fortunately, the pre-condition and the race-free condition for allo-
cation is trivial. As the newly allocated block—whose base location is
ℓ—is fresh in the global memory,3 we can update the global ghost state3see OM-ALLOC, Figure 3.3, §3.3

GlobalGhost to mirror the change in the global physical state, namely we
allocate the block ownership †n ℓ, and the history ownership as well as
the local assertions for all locations in the newly allocated block, all of
which are needed to construct the non-atomic points-to for them. Note
that the allocated locations all have the allocated value �, which is lifted
to the poison value h in iRC11.

Proof sketch of NA-DEALLOC. After unfolding the WP definitions of both
iRC11 and the base logic, we first need to show that the step is safe (it
reduces). With the full fraction block ownership and the global ghost
ownership GlobalGhost, we can use BL-GHOST-BLOCK-FULL (Figure 7.8,
§7.5) to know that we have collected the ownership of all locations in the
block. Furthermore, the unsynchronized non-atomic points-to of all the
locations guarantee that they are still alive, and that the deallocation is
race-free for all of them, as the deallocation acts like a non-atomic write.
Consequently, we satisfy both OM-FREE (§3.3) and DRF-DEALLOC (§3.4),
so the deallocation reduces. Since we do not need the caller to have
synchronized with all the message views of the locations’ latest writes,
the unsynchronized non-atomic points-to’s ℓ+m 7→ ? are sufficient.

After the step, we update the state interpretation to match the
changed global state. Fortunately, the global ghost GlobalGhost are very
loose on deallocated locations—we only need to update the ghost histo-
ries of the deallocated locations to None.

Proof sketch of NA-READ. We only need to unfold the definitions of the
non-atomic points-to (Definition 9.3) and the iRC11 Hoare triples and
WPs (Definition 8.5 and Definition 8.4), and perform the proof in the base
logic. Recall that by Definition 8.5, all of our resources are interpreted at
the current component V.cur of the thread-view V.

• In case o = na, we apply BL-HOARE-READ-NA (§7.3.2). Note that
Vr is instantiated to Vna. In the post-condition we only need to
use the post-condition of BL-HOARE-READ-NA to address the only
change by the read, which is the non-atomic reads set and its local
observation.

• In case o ⊒ rlx, we apply BL-HOARE-READ-AT (§7.3.2). Note that
the history in the non-atomic points-to is a singleton, and Vr is
instantiated to V.cur, so the proof is straightforward.

Proof sketch of NA-WRITE. The proof is similar to that of NA-READ. We
use BL-HOARE-WRITE-NA in case o = na. Otherwise, if o ⊒ rlx, we use
BL-HOARE-WRITE-AT, and then use BL-HIST-DROP-SINGLETON (Figure 7.2,
§7.2) to shrink the history back to a singleton.
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Atomic Points-To

The atomic points-to assertion plays the similar role as the non-atomic
points-to assertion, but for atomic accesses. It is iRC11’s first abstraction
for the ownership needed to safely perform atomic accesses. It can be
used directly to verify ORC11 code, but iRC11 also uses it to derive the
higher-level GPS protocols1 (Part III). Nevertheless, the atomic points-to 1Turon et al., “GPS: navigating weak

memory with ghosts, protocols, and sep-
aration” [TVD14]; Kaiser et al., “Strong
Logic for Weak Memory: Reasoning
About Release-Acquire Consistency in
Iris” [Kai+17].

assertion is more flexible than iRC11’s version of GPS protocols because
they work more explicitly with views. Consequently, it is used pervasively
in Compass, in conjunction with logical atomic triples (Part IV).

iRC11 atomic points-to assertion is inspired by Cosmo’s atomic points-
to assertion2 to work with explicit views. However, since Cosmo is 2Mével et al., “Cosmo: a concur-

rent separation logic for multicore
OCaml” [MJP20].sound for the stronger Multicore OCaml memory model, its atomic

points-to assertion is fairly simple: the (potentially fractional) assertion
ℓ 7→at (v , V ) represents Cosmo’s ownership of an atomic location ℓ with
the value v and view V of the latest write. That is, Cosmo’s atomic points-
to needs only to take care of the latest write, because atomic accesses
in Multicore OCaml are much stronger than the different access modes
supported by C11. In contrast, iRC11 atomic points-to assertion needs to
carry around a history of multiple writes that are still visible to accessing
threads, and to provide multiple rules for the different access modes.

In the presence of concurrent writes to the same location ℓ, iRC11
rules for handling ℓ’s history are rather cumbersome and hard to use. In
practice, if a client performs arbitrary concurrent writes to a location ℓ,
then the concurrent protocol for ℓ is often trivial. That is because there
would be no clear order between the writes: in the ORC11 semantics, we
will see that the writes arrive in the history randomly, with holes in the
history.3 More specifically, this is the result of adapting C11’s support for 3see OM-WRITE, §3.3

non-multi-copy-atomicity (non-MCA), i.e., the property where writes can
arrive at different threads in different orders.

Fortunately, algorithms tend to avoid concurrent writes where inter-
esting protocols are needed: they either have a single writer and multiple
concurrent readers, or have all participants purely perform compare-and-
swap (CASes) operations to resolve potential contention. In such fashion,
the history has no holes, and the mo order becomes more meaningful
and can be used to support some well-ordered protocol.

Consequently, iRC11 provides multiple modes for the atomic points-to
assertion to cater to these common cases. In §10.1, we present these
modes for the atomic points-to, the relations among them and with the
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non-atomic points-to, and iRC11 Hoare rules for atomic accesses with
the atomic points-to. In §10.2, we give the model of the atomic points-to
assertion, built atop the local assertions of the base logic (§7.2).

10.1 The Interface of the Atomic Points-To Assertion

We support 3 modes for the atomic points-to: arbitrarily concurrent
(con), single-writer (sw), and CAS-only (cas).

θ ∈ AtomicMode ::= con | sw | cas.

The atomic points-to with the arbitrarily concurrent mode con sup-
ports any access mode, but with a weak set of WP or Hoare rules. The
other two modes enjoy stronger WP or Hoare rules. In the single-writer
mode sw, all writes using the atomic points-to must be made sequential
(synchronized), but reads can be arbitrarily concurrent. In the CAS-only
mode cas, the atomic points-to only supports CASes to write, and reads
can be arbitrarily concurrent.

Definition 10.1 (Atomic Points-To Assertion). The atomic points-to asser-
tion has the form ℓ tx7−→γ

θ h where (1) θ is one of the 3 atomic modes; and
(2) ∅ ̸= h ∈ History is ℓ’s current history which contains write events still
visible to accessing threads; and (3) γ is a ghost location used to uniquely
identity an atomic period of the atomic points-to and can be ignored
for now; and (4) tx is the timestamp of the latest exclusive single-writer
write, which will be needed for GPS protocols and can also be ignored
for now.

We write ℓ 7−→θ h ::= ∃t. ℓ tx7−→θ h to ignore the exclusive single-writer
timestamp.

Definition 10.2 (Atomic Local Ownership and Observations). The atomic
points-to assertion ℓ 7−→θ h is needed for every atomic access, and thus
will be put inside an invariant for shared concurrent access. Therefore,
we need to define several local ownership and observations to represent
what a thread knows about the shared history h of the atomic points-to.

• The history-seen observation ℓ ⊒sn h asserts the observation of all
ℓ’s write events in the non-empty history h. This observation is the
minimum requirement to perform an atomic read on ℓ.

• The history-sync observation ℓ ⊒sy h asserts not only the observa-
tion of ℓ’s write events of in h, but also the observation of those
writes’ message views.

• The single-writer ownership ℓ ⊒sw h asserts the exclusive permis-
sion to write (the single-writer) to ℓ, and the history-sync observa-
tion of h (i.e., ℓ ⊒sy h). The single-writer ownership guarantees
that h is the current history of ℓ.

• The fractional CAS ownership ℓ ⊒tx,q
cas h asserts the shared per-

mission to CAS to ℓ, and the history-seen observation of h (i.e.,
ℓ ⊒sn h). A fraction q of the CAS ownership only guarantees that h
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persistent(ℓ ⊒sn h)

persistent(ℓ ⊒sy h)

timeless(ℓ ⊒sn h)

timeless(ℓ ⊒sy h)

timeless(ℓ t7−→θ h)

timeless(ℓ ⊒sw h)

timeless(ℓ ⊒t,q
cas h)

AT-EXCL

ℓ t7−→θ h ∗ ℓ t′7−→θ′ h′ ⊢ False
AT-SW-EXCL

ℓ ⊒sw h ∗ ℓ ⊒sw h
′ ⊢ False

AT-SW-CAS-EXCL

ℓ ⊒sw h ∗ ℓ ⊒q
cas h

′ ⊢ False
AT-SW-AGREE

ℓ 7−→θ h ∗ ℓ ⊒sw h
′ ⊢ θ = sw ∧ h = h′

AT-CAS-FRAC-AGREE

ℓ t7−→θ h ∗ ℓ ⊒t′,q′

cas h′ ⊢ θ ̸= con ∧ t = t′ ∧ h′ ⊆ h

AT-CAS-CAS-FRAC-AGREE

ℓ ⊒t,q
cas h ∗ ℓ ⊒t′,q′

cas h′ ⊢ t = t′ ∧ q + q′ ∈ (0, 1]

AT-CAS-JOIN

ℓ ⊒t,q
cas h ∗ ℓ ⊒t′,q′

cas h′ ⊢ ℓ ⊒t,q+q′

cas (h ∪ h′)

AT-CAS-SPLIT

ℓ ⊒t,q+q′

cas h ⊢ ℓ ⊒t,q
cas h ∗ ℓ ⊒t,q′

cas h

AT-SY

ℓ 7−→θ h ⊢ ℓ ⊒sy h

AT-SY-SN

ℓ ⊒sy h ⊢ ℓ ⊒sn h

AT-SW-SY

ℓ ⊒sw h ⊢ ℓ ⊒sy h

AT-CAS-SN

ℓ ⊒q
cas h ⊢ ℓ ⊒sn h

AT-SY-MONO

h′ ̸= ∅ h′ ⊆ h

ℓ ⊒sy h ⊢ ℓ ⊒sy h
′

AT-SN-MONO

h′ ̸= ∅ h′ ⊆ h

ℓ ⊒sn h ⊢ ℓ ⊒sn h
′

AT-SY-UNFOLD

h(t) = (v , V )

ℓ ⊒sy h ⊢ ⊒V ∗ ⊒[ℓ←{∅ [w := t]}]

AT-SN-UNFOLD

t ∈ dom(h)

ℓ ⊒sn h ⊢ ⊒[ℓ←{∅ [w := t]}]

AT-SY-JOIN

ℓ ⊒sn h ∗ ℓ ⊒sy h
′ ⊢ ℓ ⊒sy (h ∪ h′)

AT-SN-JOIN

ℓ ⊒sy h ∗ ℓ ⊒sn h
′ ⊢ ℓ ⊒sn (h ∪ h′)

AT-SN-VALID

ℓ 7−→θ h ∗ ℓ ⊒sn h
′ ⊢ h′ ⊆ h

FIGURE 10.1: Basic properties of asser-
tions related to the atomic points-to

is the sub history of ℓ’s current history. The timestamp tx is of the
latest exclusive single-writer write to ℓ. As usual, we write ℓ ⊒q

cas h

to ignore this timestamp, and write ℓ ⊒cas h for the full ownership
where q = 1.

Property 10.3 (Basic Properties of Assertions Related to Atomic Points-To).
Figure 10.1 presents several important basic properties of the atomic
points-to assertions and its related assertions. All assertions are time-
less, and the history-seen and history-sync observations are naturally
persistent. The atomic points-to and the single-writer ownership are both
exclusive (AT-EXCL and AT-SW-EXCL).

AT-SW-CAS-EXCL says that the single-writer ownership and the CAS
ownership are incompatible, implying that the single-writer is indeed
single. AT-SW-AGREE says that the atomic points-to and the single-writer
ownership must agree on the history and the atomic mode. AT-CAS-FRAC-

AGREE says that, on the other hand, the CAS ownership only guarantees
that the history h′ owned by the CAS ownership is a sub-history of the
current history h. This is because CAS ownership are used for concurrent
updates, so a fraction should not know the full history. AT-CAS-FRAC-

AGREE additionally says that the CAS ownership guarantees that the
latest exclusive single-writer timestamp is frozen in CAS-only mode
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(t = t′). Interestingly, AT-CAS-FRAC-AGREE says that the CAS ownership
only guarantees that the atomic mode θ is not the concurrent mode con.
We note that this is just a weakness in our model for atomic points-to,
and this weakness does not affect us in practice. A better but slightly
more complex model would give us θ = cas.

AT-CAS-CAS-FRAC-AGREE, AT-CAS-JOIN, and AT-CAS-SPLIT encode the frac-
tional nature of the CAS ownership.

AT-SY, AT-SY-SN, AT-SW-SY, and AT-CAS-SN together state the relations
between the ownership assertions and the observations. AT-SY says that
the atomic points-to naturally has observed and synchronized with all
write events. AT-SW-SY says that this also applies to the single-writer
ownership, because the writes are sequential. AT-CAS-SN on the other
hand says that the CAS ownership does not guarantee synchronization.
Recall that the history h in ℓ ⊒q

cas h is only a sub-history of the current
one, and CAS ownership are used for concurrent updates.

AT-SY-MONO and AT-SN-MONO say that the observations on histories
are downward-closed. AT-SY-UNFOLD and AT-SN-UNFOLD clearly state the
difference between observing a write and synchronizing with that write,
using the view-seen observation (Definition 8.12). AT-SY-JOIN and AT-

SN-JOIN allow us to join observations. Finally, AT-SN-VALID says that an
observation of h′ guarantees that h′ is a snapshot (a sub-history) of the
current one h.

Property 10.4 (Conversions Between Non-Atomic and Atomic Points-To).
The top three rules of Figure 10.2 present the rules for converting the non-
atomic points-to ownership to the atomic one. The bottom of Figure 10.2
visualizes the possible conversions between the points-to assertions.

NA-AT-SW says that we can go from the non-atomic points-to assertion
to the single-writer atomic one and the single-writer ownership with
a singleton history of the latest write (t,v , V ), knowing that we have
observed the message view V (⊒V ).

NA-AT-SW-VIEW strengthens NA-AT-SW by (1) freezing the atomic points-
to and the single-writer ownership at the latest write message view V

using the view-at modality (Definition 8.13); and (2) allowing the user
to also freeze arbitrary local resource P at the same view. NA-AT-SW-VIEW

demonstrates that the view V in fact is not the message view of the
latest write in ℓ’s history, because ℓ’s latest write message view would
not be able to justify P . Instead the view V is the view at which the
switch (from non-atomic points-to to atomic points-to) happens, and the
singleton history [t←(v , V )] is not ℓ’s actual history, but an abstraction
of ℓ’s actual history. This abstraction allows subsequent atomic accesses
using the atomic points-to assertion to access the view V , and thus the
resource P provided at the switch. In other words, NA-AT-SW-VIEW says
that the atomic accesses to ℓ after the switch are synchronized not only
with the latest write to ℓ before the switch, but also with the switch itself.

AT-NA allows us to go from an atomic points-to back to a non-atomic
one, without knowing the atomic mode θ nor having any other ownership
(single-writer or CAS ownership). This demonstrates that the atomic
points-to itself contains sufficient resources, and the single-write or CAS
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NA-AT-SW

ℓ 7→ v ⇛̇ ∃γ, t, V. ⊒V ∗ ℓ ⊒γ
sw [t←(v , V )] ∗ ℓ t7−→γ

sw [t←(v , V )]

NA-AT-SW-VIEW

ℓ 7→ v ∗ P ⇛̇ ∃γ, t, V. ⊒V ∗@V (P ∗ ℓ ⊒γ
sw [t←(v , V )] ∗ ℓ t7−→γ

sw [t←(v , V )])

AT-NA

ℓ t07−→γ
θ h⇛E ∃t ≥ t0,v , V. ⊒V ∗ ℓ 7→ v ∗ h(t) = (v , V ) ∗ t = max(dom(h))

AT-CON-SW

ℓ t′7−→γ
con h ⇛̇ ∃t = max(dom(h)). ℓ t7−→γ

sw h ∗ ℓ ⊒γ
sw h

AT-SW-CON

ℓ t7−→γ
sw h ∗ ℓ ⊒γ

sw h
′ ⊢ ℓ t7−→γ

con h

AT-CAS-SW

ℓ t17−→γ
cas h ∗ ℓ ⊒γ,t2

cas h′ ⇛̇ ∃t = max(dom(h)). ℓ t7−→γ
sw h ∗ ℓ ⊒γ

sw h

AT-SW-CAS

ℓ t7−→sw h ∗ ℓ ⊒sw h
′ ⊢ ℓ t7−→cas h ∗ ℓ ⊒t

cas h

AT-CON-CAS

ℓ t7−→γ
con h ⊣⊢ ℓ t7−→γ

cas h ∗ ℓ ⊒γ,t
cas h

ℓ 7→ v ℓ t7−→γ
sw h

ℓ t7−→γ
con h

ℓ t7−→γ
cas h

⇛E

⇛̇

⇛̇

⇛E

⇛E

Visualization of the conversions.

FIGURE 10.2: Conversions between the
non-atomic and atomic points-to assertion

ownership is purely needed to enforce an access protocol (single-writer
or CAS-only). We note that NA-AT-SW and NA-AT-SW-VIEW only need a
basic update to switch from non-atomic to atomic, while AT-NA requires a
fancy update to go back. The reader may already have guessed correctly
that the proof of AT-NA relies on BL-HIST-DROP-SINGLETON (§7.2), which
justifies the fancy update. Consequently, the value v we get back for the
non-atomic points-to is the latest write, regardless of how that write is
made (with a CAS or a normal write using any access mode). Thanks to
AT-SY and AT-SY-UNFOLD, we know that we have observed the latest write
message view V (⊒V ).4 4Recall that V is not just the latest write

message view, it also includes the view of
the switch.

CYCLES OF ALTERNATING NON-ATOMIC AND ATOMIC PERIODS. We note
that we have made the ghost location γ explicit in these rules, who signify
its role. In the model of atomic points-to, γ is used to store the ghost state
to define the protocols (concurrent, single-writer, or CAS-only) for the
atomic points-to ownership assertions. But intuitively, the ghost location
γ uniquely identifies an atomic access period of the location ℓ. When we
use the rule NA-AT-SW (or NA-AT-SW-VIEW) to switch from non-atomic
to atomic points-to, we receive a fresh location γ that identifies and
enforces the atomic protocol for the current atomic period of ℓ. As such,
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the atomic local ownership and observations (Definition 10.2) with the
ghost location γ are only meaningful when we still have access to the
atomic points-to ℓ t7−→γ

θ with the same γ. Once we use AT-NA to turn
ℓ t7−→γ

θ back to a non-atomic points-to, we can see that the atomic local
ownership and observations with ghost location γ are not needed, and
in fact γ is simply forgotten, and afterwards the atomic local ownership
and observations of γ become meaningless. Later, when the non-atomic
points-to is used again to switch to an atomic one, a new atomic period
will be started with another fresh ghost location γ′. This life-cycle can
probably be understood better if we look at the visualization graph in
Figure 10.2 as an automaton.

We further note that all assertions appearing in a single rule in this
chapter should be read with the same ghost location γ. It may not make
sense to have interactions between ownership from different atomic
periods, and we do not have rules for those cases anyway.

Property 10.5 (Conversions Between Modes of Atomic Points-To). The
rest of Figure 10.2 presents the rules for switching between different
modes of the atomic points-to. AT-CON-SW and AT-SW-CON allow con-
versions between the concurrent mode and the single-writer mode of
the atomic points-to, while AT-CAS-SW and AT-SW-CAS allow conversions
between the CAS-only mode and the single-writer mode. Both AT-CON-

SW and AT-CAS-SW need a basic update simply to update the exclusive
single-writer timestamp to the latest one. Finally AT-CON-CAS allows one
to convert between the concurrent mode and the CAS-only mode.

RULES FOR CONCURRENT ATOMIC ACCESSES. We next look at the rules
for atomic operations using the atomic points-to assertion. We note that
these rules are meant for concurrent accesses. If we simply use atomic
accesses sequentially,5 we should locally own an atomic points-to ℓ 7−→θ h,5which can be the case in C/C++ where

mixing atomic and non-atomic accesses
are forbidden. Instead, C/C++ make the
distinction at the location level: there are
non-atomic locations and atomic ones. Un-
der this restriction, even though we know
that there is no other thread racing with
us, we may still have to use a rlx access
for an atomic location.

which we can turn back to a non-atomic one using AT-NA, and then use
the rules NA-READ and NA-WRITE (§9.1) which support atomic access
modes.6

6If one is to perform sequential accesses,
then one would never need to use CASes.

In the following, we look at atomic access rules where the atomic
points-to ℓ 7−→θ h is meant to be shared for concurrent accesses. The
rules do not enforce exactly how the points-to is shared—that can be
done orthogonally with invariants (Chapter 11). Therefore, they only
assume ownership of the atomic points-to under a view-at modality (Def-
inition 8.13), i.e., @Vb

(ℓ 7−→θ h) where the view Vb has no clear relation
to what the executing thread has observed. In particular, the rules will
have the following form.

{⊒V ∗ P ∗@Vb
(ℓ 7−→θ h)} e in π {v .∃V ′, h′. ⊒V ′ ∗@Vb⊔V ′(ℓ 7−→θ h′) ∗Q}E

That is, the view Vb is meant to track all relaxed memory effects done
by all participating threads to the shared points-to ℓ 7−→θ h, and hence
the executing thread cannot know much about Vb, except that it also
contributes to Vb. Most importantly, the view Vb will be used later to
enable synchronized, safe switching back to non-atomic points-to (using
AT-NA).



The Interface of the Atomic Points-To Assertion 121

AT-READ-SN

rlx ⊑ o

{⊒V0 ∗ ℓ ⊒sn h0 ∗@Vb
(ℓ tx7−→θ h)} ∗oℓ in π {v .∃h′, t, V, V ′ ⊒ V0. h0 ⊆ h′ ⊆ h ∗

h′(t) = (v , V ) ∗ t ≥ max(dom(h0)) ∗

(o ⊒ acq) ? V ⊑ V ′ :∇π (⊒V )

⊒V ′ ∗@V ′(ℓ ⊒sn h
′) ∗@Vb⊔V ′(ℓ tx7−→θ h)

}E
AT-READ-SN-ACQ

{⊒V0 ∗ ℓ ⊒sn h0 ∗@Vb
(ℓ tx7−→θ h)} ∗acqℓ in π {v .∃h′, t, V, V ′ ⊒ V0 ⊔ V. h0 ⊆ h′ ⊆ h ∗

h′(t) = (v , V ) ∗ t ≥ max(dom(h0)) ∗

⊒V ′ ∗@V ′(ℓ ⊒sn h
′) ∗@Vb⊔V ′(ℓ tx7−→θ h)

}E
AT-READ-CAS

rlx ⊑ o

{⊒V0 ∗ ℓ ⊒q
cas h0 ∗@Vb

(ℓ tx7−→θ h)} ∗oℓ in π {v .∃h′, t, V, V ′ ⊒ V0. h0 ⊆ h′ ⊆ h ∗

h′(t) = (v , V ) ∗ t ≥ max(dom(h0)) ∗

(o ⊒ acq) ? V ⊑ V ′ :∇π (⊒V )

⊒V ′ ∗@V ′(ℓ ⊒q
cas h

′) ∗@Vb⊔V ′(ℓ tx7−→θ h)

}E
AT-READ-SY

rlx ⊑ o

{⊒V0 ∗ ℓ ⊒sy h ∗@Vb
(ℓ tx7−→θ h)} ∗oℓ in π {v .∃t, V, V ′ ⊒ V0 ⊔ V. h′(t) = (v , V ) ∗ t = max(dom(h)) ∗

⊒V ′ ∗@Vb⊔V ′(ℓ tx7−→θ h) }E
AT-READ-SW

rlx ⊑ o

{⊒V0 ∗ ℓ ⊒sw h ∗@Vb
(ℓ tx7−→θ h)} ∗oℓ in π {v .∃t, V, V ′ ⊒ V0 ⊔ V. h(t) = (v , V ) ∗ t = max(dom(h)) ∗

⊒V ′ ∗ ℓ ⊒sw h ∗@Vb⊔V ′(ℓ tx7−→θ h) }E
FIGURE 10.3: iRC11 read rules with the
atomic points-to assertion

10.1.1 Atomic Read Rules

Several rules for atomic reads are given in Figure 10.3. AT-READ-SN, AT-

READ-SY, AT-READ-CAS, and AT-READ-SW allow reading with a history-seen
observation, a history-sync observation, a fractional CAS ownership, and
a single-writer ownership, respectively, in addition to the shared atomic
points-to.

AT-READ-SN is the most fundamental read rule for atomic points-to, as
all other rules in Figure 10.3 are derived from it. The rule assumes in the
pre-condition a local history-seen observation ℓ ⊒sn h0 for some snapshot
history h0 of ℓ, and the shared atomic points-to ℓ tx7−→θ h of the current
history h at some view Vb. The pre-condition also includes a view-seen
observation ⊒V0 for some view V0. The post-condition says that the
executing thread π will read a message (t,v , V ) which is no earlier than
what it has observed (t ≥ max(dom(h0))), and afterwards the thread will
have observed a bigger snapshot history h′ that contains the read message
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(ℓ ⊒sn h
′). After the read, the current view of π will be at least V ′ (⊒V ′),

and if this is an acquire read then we know that the thread has observed
the read message view V , due to V ⊑ V ′ and VS-MONO (§8.5). We note
that ⊒V ′ ∗@V ′(ℓ ⊒sn h

′) is stronger than ℓ ⊒sn h
′, due to VA-ELIM (§8.5).

If this is a relaxed read, then the message view V will only be available
after an acquire fence, i.e., its observation is under an acquire fence
modality: ∇π (⊒V ). Last but not least, the atomic points-to ℓ tx7−→θ h is
returned unchanged, but at the view Vb extended with the view V ′ (i.e.,
Vb ⊔ V ′)—which is π’s current view after the read—to account for the
observation of the read itself (the action id created by the read).

AT-READ-SN-ACQ is derived from AT-READ-SN simply by instantiating o

with acq. Since it is an acquire read, we know that the thread’s current
view V ′ includes the view V of the read message, i.e., V ⊑ V ′. AT-READ-

CAS is derived from AT-READ-SN, simply by the rule AT-CAS-SN that the CAS
ownership implies the history-seen observation. AT-READ-SY is derived
from AT-READ-SN using AT-SY-SN: assuming that the thread has observed
and synchronized with all write events in ℓ’s current history h, the thread
will read the latest write. AT-READ-SW is then derived from AT-READ-SY

using AT-SW-SY.

10.1.2 Atomic Write Rules

Several rules for atomic writes are given in Figure 10.4. AT-WRITE-SN, AT-

WRITE-CAS, and AT-WRITE-SW allow reading with a history-seen observation,
a full fractional CAS ownership, and a single-writer ownership, respec-
tively, in addition to the shared atomic points-to (in a corresponding
atomic mode).

Again, AT-WRITE-SN is the basic rule from which the other rules are
derived. In the pre-condition, it requires a view-seen observation ⊒V0

for some view V0, a history-seen observation ℓ ⊒sn h0 for some snapshot
history h0 of ℓ, and the atomic points-to in the concurrent mode ℓ tx7−→con h,
shared at some view Vb. The pre-condition additionally requires, in case
the write is a relaxed write, a view-seen observation ⊒Vrel of some view
Vrel under the release modality, i.e., ∆π (⊒Vrel). This assertion ensures
that the view Vrel has been observed by the thread π at its most recent
release fence, so the message view of the relaxed write to be performed
is guaranteed to include Vrel. In other words, Vrel is a lower bound for
the message view of the relaxed write to be performed. If the write to be
performed is at least a release one, π’s current view is a lower bound.

The post-condition of AT-WRITE-SN says that a new write message
(t,v , V ) will be inserted into the history h. That is, after the write, the
ownership ℓ tx7−→con h[t←(v , V )] is returned, at the extended view Vb ⊔ V ′

where V ′ is the thread π’s current view after the write. Note that the
timestamp t for the new write message must be fresh in h (t /∈ dom(h)),
and must be mo-later than the events that the thread has observed for
ℓ (max(dom(h0)) < t). Since this is the write, we know that the thread’s
current view V ′ after the step strictly extends the view V0 before: V0 ⊏ V ′.
Furthermore, the message view V cannot be smaller than the view V0

before the step (V0 ̸⊒ V ), because V contains at least the new timestamp
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AT-WRITE-SN

rlx ⊑ o

{⊒V0 ∗ ℓ ⊒sn h0 ∗@Vb
(ℓ tx7−→con h) ∗

(o = rlx) ? ∆π (⊒Vrel) : True } ℓ :=o v in π {h.∃t, V, V ′ ⊐ V0 ̸⊒ V. max(dom(h0)) < t /∈ dom(h) ∗

(rel ⊑ o) ? V = V ′ : Vrel ⊑ V ⊑ V ′ ∗

⊒V ′ ∗@V (ℓ ⊒sn [t←(v , V )]) ∗

@V ′(ℓ ⊒sn h0[t←(v , V )]) ∗@Vb⊔V ′(ℓ tx7−→con h[t←(v , V )])

}E
AT-WRITE-CAS

rlx ⊑ o

{⊒V0 ∗ ℓ ⊒q
cas h0 ∗@Vb

(ℓ 7−→cas h) ∗

(o = rlx) ? ∆π (⊒Vrel) : True } ℓ :=o v in π {h.∃t, V, V ′ ⊐ V0 ̸⊒ V. max(dom(h0)) < t /∈ dom(h) ∗

(rel ⊑ o) ? V = V ′ : Vrel ⊑ V ⊑ V ′ ∗

⊒V ′ ∗@V (ℓ ⊒sn [t←(v , V )]) ∗

@V ′(ℓ ⊒q
cas h0[t←(v , V )]) ∗@Vb⊔V ′(ℓ 7−→cas h[t←(v , V )])

}E
AT-WRITE-SW

rlx ⊑ o

{⊒V0 ∗ ℓ ⊒sw h ∗@Vb
(ℓ tx7−→sw h) ∗

(o = rlx) ? ∆π (⊒Vrel) : True } ℓ :=o v in π {h.∃t, V, V ′ ⊐ V0 ̸⊒ V. max(dom(h)) < t ∗

(rel ⊑ o) ? V = V ′ : Vrel ⊑ V ⊑ V ′ ∗ ⊒V ′ ∗

@V ′(ℓ ⊒sw h[t←(v , V )]) ∗@Vb⊔V ′(ℓ t7−→sw h[t←(v , V )])
}E

AT-WRITE-SW-RLX

{⊒V0 ∗ ℓ ⊒sw h ∗@Vb
(ℓ tx7−→sw h) ∗

@VrelP ∗∆π (⊒Vrel)
} ℓ :=rlx v in π {h.∃t, V, V ′ ⊐ V0 ̸⊒ V. max(dom(h)) < t ∗

Vrel ⊑ V ⊑ V ′ ∗ ⊒V ′ ∗@V P ∗

@V ′(ℓ ⊒sw h[t←(v , V )]) ∗@Vb⊔V ′(ℓ t7−→sw h[t←(v , V )])
}E

AT-WRITE-SW-RLX-SIMPLE

{ℓ ⊒sw h ∗@Vb
(ℓ tx7−→sw h) ∗∆π P} ℓ :=rlx v in π {h.∃t, V, V ′ ⊒ V. max(dom(h)) < t ∗ ⊒V ′ ∗@V P ∗

ℓ ⊒sw h[t←(v , V )] ∗@Vb⊔V ′(ℓ t7−→sw h[t←(v , V )])}E
AT-WRITE-SW-REL

{⊒V0 ∗ ℓ ⊒sw h ∗@Vb
(ℓ tx7−→sw h) ∗ P} ℓ :=rel v in π {h.∃t, V ⊐ V0. max(dom(h)) < t ∗ ⊒V ∗@V P ∗

@V (ℓ ⊒sw h[t←(v , V )]) ∗@Vb⊔V (ℓ
t7−→sw h[t←(v , V )])}E

FIGURE 10.4: iRC11 write rules with the
atomic points-to assertion

t which V0 cannot have. In case this is at least a release write, then
the message view V is exactly the view V ′ after the write. If it is only a
relaxed write, we know the Vrel is a lower bound for V (Vrel ⊑ V ). In any
case the message view is no more than the thread’s current view after the
step (V ⊑ V ′). Finally, after the step the thread extends its observation
on ℓ’s history by the write event it has just performed. That is, it owns
ℓ ⊒sn h0[t←(v , V )], with the history h0 it has observed before the step
extended with (t,v , V ). The observation is strengthened by being put
at the view V ′ which the thread has observed. Additionally, the thread
also gets a history-seen observation for the singleton history of the write
message (t,v , V ), at exactly its message view (@V (ℓ ⊒sn [t←(v , V )])).

AT-WRITE-CAS is derived from AT-WRITE-SN, using AT-CAS-SN and an



124 Atomic Points-To

extra ghost update to update the CAS ownership from h0 to h0[t←(v , V )].
This is also the case for AT-WRITE-SW, but using AT-SW-SY and AT-SY-SN

instead. However, AT-WRITE-SW does update the latest exclusive single-
writer timestamp to the new timestamp t.

RESOURCE TRANSFER. AT-WRITE-SW-RLX, AT-WRITE-SW-RLX-SIMPLE, and AT-

WRITE-SW-REL are all derived from AT-WRITE-SW, and demonstrate the
support for transferring the resource P with a write, a typical pattern in
GPS, RSL, FSL, and Cosmo.7 AT-WRITE-SW-RLX specializes AT-WRITE-SW for7[VN13; TVD14; DV16; DV17; Kai+17;

MJP20]. the relaxed write case, and assumes P at the view Vrel which we know
will be a lower bound the new write’s message view. Consequently, after
the write, by view-monotonicity P holds at the new write’s message view
V , i.e., we have @V P . As such, we have released the resource P with
the write, and we can attach it to the message (t,v , V ) with the help of
an invariant (see Chapter 11). Then, when another thread performs an
acquire read (or a relaxed read and then an acquire fence) from (t,v , V ),
by the rule AT-READ-SN-ACQ, the reading thread will obtain ⊒V , which it
then can combine with @V P (taken from the invariant) and apply the
rule VA-ELIM (§8.5) to acquire the resource P locally, and thus conclude
the resource transfer.

AT-WRITE-SW-RLX-SIMPLE simplifies AT-WRITE-SW-RLX further by dropping
most of the views. It is derived from AT-WRITE-SW-RLX with the help of
the rule RELMOD-VA-REVERT (§8.5) concerning the relation between the
release modality and the view-at modality.

For a release write, AT-WRITE-SW-REL simply says that any local resource
P before the step can be released with the write, by putting P at the new
write’s message view V after the step.

10.1.3 Atomic CAS Rules

The general rule AT-CAS-SN-GEN in Figure 10.5 allows us to perform
CASes with the seen-history observation and the shared atomic points-to
assertion in the CAS-only mode. The pre-condition is not so different from
the pre-condition needed to perform a write, i.e., that of AT-WRITE-CAS.
The extra premise ∀v0, t0 ≥ max(dom(h0)). h(t0) = (v0, ) ⇒ ⊢ v0 =? vr

is required to guarantee safe comparison between any readable value v0
and the expected value vr, and the resources concern Pcmp are needed
for deterministic pointer comparison. Please see also the explanation of
the base logic rule BL-HOARE-CAS in §7.3.3.

In particular, if the expected value vr is a location value ℓr, to guaran-
tee deterministic pointer comparison, Pcmp is required to simultaneously
imply (with a basic update) Φcmp(ℓr, h) that (1) some primitive non-
atomic points-to ownership of ℓr at an arbitrary view, sufficient to show
that ℓr is alive; and (2) for any location value ℓ′ that the thread may read
from h, Pcmp is also sufficient to show that ℓ′ is also alive.

In the post-condition, a boolean value b signaling the success or failure
of the CAS instruction is returned, and a message (t′,v ′, Vr) will be read
by the instruction. The timestamp t′ cannot be earlier than what the
thread has already observed through h0. Regardless of success or failure,
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AT-CAS-SN-GEN

rlx ⊑ of , or, ow ∀v0, t0 ≥ max(dom(h0)). h(t0) = (v0, )⇒ ⊢ v0 =? vr

{⊒V0 ∗ ℓ ⊒sn h0 ∗@Vb
(ℓ tx7−→cas h) ∗ (o = rlx) ? ∆π (⊒Vrel) : True ∗

Pcmp ∗□
(
(vr = ℓr) ? (Pcmp ⇛̇ Φcmp(ℓr, h)) : True

) }
CASof ,or,ow(ℓ,vr,vw) in π

{b.∃t
′,v ′, Vr, V

′ ⊒ V0, h
′
0, h

′. h0 ⊆ h′
0 ⊆ h′ ∗ h′

0(t
′) = (v ′, Vr) ∗ max(dom(h0)) ≤ t′ ∗

Pcmp ∗ ⊒V ′ ∗@V ′(ℓ ⊒sn h
′
0) ∗@Vb⊔V ′(ℓ tx7−→cas h

′) ∗

∨



b = false ∗vr ̸= v ′ ∗ h′ = h ∗ (of ⊒ acq) ? Vr ⊑ V ′ :∇π (⊒Vr)

b = true ∗vr = v ′ ∗ ∃t /∈ dom(h), Vw ⊐ Vr ̸⊒ V ′ ⊐ V0. t = t′ + 1

∗ h′ = h[t←(vw, Vw)] ∗ h′
0(t) = (vw, Vw)

∗ (or ⊒ acq) ? Vw ⊑ V ′ :∇π (⊒Vw) ∗ (ow ⊒ rel) ? V ′ ⊑ Vw : Vrel ⊑ Vw

}
E

where

Φcmp(ℓr, h) ::= (∃qr, hr, V. ▷@V (ℓr
qr7−→ hr)) ∧ (∀t′ ≥ dom(h), ℓ′. h(t′) = (ℓ′, ) −∗ ∃q′, h′, V. ▷@V (ℓ

′ q′7−→ h′))

FIGURE 10.5: An iRC11 CAS rule with the
atomic points-to assertion

Pcmp is returned unchanged, and we know that the thread’s current view
after the step is V ′.

In case of failure, i.e., b = false, we know that the read value v ′ is
definitely not equal to the expected value vr, and that the atomic points-
to ownership is returned unchanged but at the extended view Vb ⊔ V ′

(@Vb⊔V ′(ℓ tx7−→cas h)), and that the thread will have observed the new
snapshot history h′

0 (@V ′(ℓ ⊒sn h
′
0)). Furthermore, the read message

view Vr is observed according to the failure read access mode of . If of
is at least an acquire mode, then Vr is included in the view V ′ after the
step (Vr ⊑ V ′). Otherwise, the observation of Vr is only available after
the next acquire fence (∇π ⊒Vr).

If the CAS succeeds, i.e., b = true, then v ′ = vr and a new write
message (t,vw, Vw) will be inserted into the history h next to the read
message (t = t′+1) where t is fresh in h (t /∈ dom(h)). Vw strictly extends
Vr, and V ′ strictly extends V0 and cannot be smaller than Vr, because they
contain the new write of the timestamp t. The thread will have observed
the new snapshot history h′

0 that contains the new write event. The write
message view Vw is observed according to the read access mode or: if or
is at least an acquire mode, then Vw ⊑ V ′, otherwise the thread only has
∇π (⊒Vw). If the write access mode ow is at least release, then the write
message view includes the thread’s current view after the step (V ′ ⊑ Vw),
otherwise Vrel is a lower bound of Vw. Note that if this is a release-acquire
CAS, then the write message view Vw is exactly the thread’s current view
after the step V ′, i.e., ow ⊒ rel ∧ or ⊒ acq⇒ V ′ = Vw.

Finally, we note that AT-CAS-SN-GEN can be used to derive CAS rules
that use other kinds of ownership. Even though the rule requires the
atomic points-to to be in the CAS-only mode (cas), we can apply AT-

CON-CAS (Figure 10.2) to support CASes with the atomic points-to in the
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AT-CAS-SW-GEN

rlx ⊑ of , or, ow ∀v0, t0 ≥ max(dom(h0)). h(t0) = (v0, )⇒ ⊢ v0 =? vr

{⊒V0 ∗ ℓ ⊒sn h0 ∗@Vc
(ℓ ⊒sw h) ∗@Vb

(ℓ 7−→sw h) ∗ (o = rlx) ? ∆π (⊒Vrel) : True

Pcmp ∗□
(
(vr = ℓr) ? (Pcmp ⇛̇ Φcmp(ℓr, h)) : True

) }
CASof ,or,ow(ℓ,vr,vw) in π

{b.∃t
′,v ′, Vr, V

′ ⊒ V0, h
′
0, h

′. h0 ⊆ h′
0 ⊆ h′ ∗ h′

0(t
′) = (v ′, Vr) ∗ max(dom(h0)) ≤ t′ ∗

Pcmp ∗ ⊒V ′ ∗@V ′(ℓ ⊒sn h
′
0) ∗@Vb⊔V ′(ℓ ⊒sw h

′ ∗ ℓ 7−→sw h
′) ∗

∨



b = false ∗vr ̸= v ′ ∗ h′ = h ∗ (of ⊒ acq) ? Vr ⊑ V ′ :∇π (⊒Vr)

b = true ∗vr = v ′ ∗ ∃t /∈ dom(h), Vw ⊐ Vr ̸⊒ V ′ ⊐ V0. t = t′ + 1

∗ h′ = h[t←(vw, Vw)] ∗ h′
0(t) = (vw, Vw)

∗ (or ⊒ acq) ? Vw ⊑ V ′ :∇π (⊒Vw) ∗ (ow ⊒ rel) ? V ′ ⊑ Vw : Vrel ⊑ Vw

}
E

where Φcmp(ℓr, h) is defined as in Figure 10.5.

FIGURE 10.6: An iRC11 CAS rule with the
atomic points-to in single-writer mode

concurrent mode con. With a fractional CAS ownership, we can also
apply AT-CAS-SN-GEN, thanks to AT-CAS-SN.

If the atomic points-to is in the single-writer mode (sw), then, together
with the single-writer ownership ℓ ⊒sw h, we can get to the atomic points-
to in CAS-only mode thanks to AT-SW-CAS (also in Figure 10.2), then apply
AT-CAS-SN-GEN, and then AT-CAS-SW to go back to the single-writer mode.
The result is the CAS rule AT-CAS-SW-GEN for the single-writer mode, in
Figure 10.6. Naturally, a single-writer owner never needs to perform
a CAS, because it is not racing in writing with anyone. Furthermore,
the rule is basically useless, as it requires and returns the single-writer
ownership at some view Vc and Vb ⊔ V ′, respectively. Nevertheless, the
rule is a sanity check that shows that, in the single-writer mode, only the
single-writer owner can actually perform a write (in this case, a CAS).

10.2 The Model of the Atomic Points-To Assertion

To give a model for the atomic points-to assertion, we rely on the base
logic local assertions (§7.4), in a similar way to the model of non-atomic
points-to assertion (§9.2). However, we need extra ghost state to manage
the “switching” protocols among atomic modes and between the atomic
points-to to the non-atomic points-to. The ghost location γ of the asser-
tion ℓ tx7−→γ

θ , which uniquely identifies an atomic period for ℓ, will store
this extra ghost state.

Definition 10.6 (Extra RAs for Atomic Points-To). We need 3 RAs: one to
allow creating snapshots of histories, one to store the latest non-atomic
view—needed to switch between non-atomic and atomic points-to, and
one to store the timestamp of the latest exclusive single-writer write—
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needed to switch from other modes to single-writer mode.

ATHISTR ::= AUTH(MAP(Time,AG(Val× View)))

NAWRITER ::= OPTION(AG(View))

EXWRITER ::= AUTH(OPTION(FRAC × AG(Time)))

ATOMICR ::= ATHISTR × EXWRITER × NAWRITER

The RA ATHISTR supports making snapshots of histories: the authori-
tative element is used to store the up-to-date history, while fragmentary
elements are snapshots of that history. The authoritative element can
only grow.

The RA NAWRITER allows storing permanently a view which is meant
to be a thread’s current view Vna at which the switch from non-atomic
to atomic points-to is performed. All subsequent atomic accesses using
the same atomic points-to identified by the ghost location γ will have
synchronized with Vna.

The RA EXWRITER allows for fractional fragmentary elements that
agree on the timestamp of the latest exclusive single-writer write, and
only allows updating using the full fraction, together with the authorita-
tive element.

Finally, the RA ATOMICR for the atomic points-to is just a product of
the 3 RAs above.

Definition 10.7 (Ghost Ownership Abstraction for Atomic RAs). We
define the following abstractions for ghost ownership of the atomic RAs
in vProp. All are timeless and objective.

atLastNAγ(Vna) ::= (ε, ε, ag(Vna))
γ

atExclTimeγq (tx) ::= (ε, ◦ (Some(q, ag(tx))), ε)
γ

atReaderγ(h) ::= (◦h, ε, ε) γ

atWriterγ(h) ::= (• 3/4h · ◦h, ε, ε)
γ

atAuthγ(h, tx, Vna) ::= (• 1/4h · ◦h, • (Some(1, ag(tx))), ag(Vna))
γ

• atLastNAγ(Vna) is persistent, and records the view at the point
of the switch from a non-atomic points-to to the atomic period
identified by γ.

• atExclTimeγq (tx) is fractional and records the timestamp tx of the
latest exclusive single-writer write in the atomic period identified
by γ. The full fraction atExclTimeγ(tx), which a single-writer would
own, is the exclusive write permission needed to update tx.

• atReaderγ(h) is persistent and records a snapshot history h, i.e., in
the atomic period of γ, h is a lower bound of the current history.

• atWriterγ(h) is exclusive and records the current history h. It is the
(ghost) writer permission needed to perform a write (a change) to
the history.

• atAuthγ(h, tx, Vna) is the authoritative state of the atomic points-to
protocol. The other ghost ownership abstractions defined above
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persistent(atLastNAγ(Vna))

persistent(atReaderγ(h))
atLastNAγ(Vna) ∗ atLastNAγ(V ′

na) ⊢ Vna = V ′
na

atExclTimeγq (tx) ∗ atExclTimeγq′(t
′
x) ⊢ tx = t′x ∧ q + q′ ∈ (0, 1]

atExclTimeγq (tx) ∗ atExclTimeγq′(tx) ⊣⊢ atExclTimeγq+q′(tx)

atWriterγ(h) ∗ atReaderγ(h′) ⊢ h′ ⊆ h atWriterγ(h) ∗ atWriterγ(h′) ⊢ False atWriterγ(h) ⊢ atReaderγ(h)

atAuthγ(h, tx, Vna) ∗ atLastNAγ(V ′
na) ⊢ Vna = V ′

na atAuthγ(h, tx, Vna) ∗ atExclTimeγq (t
′
x) ⊢ tx = t′x

atAuthγ(h, tx, Vna) ∗ atReaderγ(h′) ⊢ h′ ⊆ h atAuthγ(h, tx, Vna) ∗ atWriterγ(h′) ⊢ h′ = h

FIGURE 10.7: Several properties of ghost
abstractions for the atomic RA must agree or be included in this authoritative state. We note that

we use a setup where the authoritative element is also fractional
(• 1/4 in atAuthγ , or • 3/4 in atWriterγ). Fractions of the author-
itative element enjoy agreement, and that is how we establish
agreement between atWriterγ and atAuthγ .

Several properties of these ghost abstractions are given in Figure 10.7.
We can now give the model of the atomic points-to assertion as well

as its local ownership and observation assertions.

Definition 10.8 (Model of Atomic Local Ownership and Observations).
We first define what it means to locally observe a history h of ℓ, and to
locally synchronize with that history.

Localsn(ℓ, h) ::= ∀t,v , V ?. h(t) = (v , V ?)⇒ ⊒[ℓ←{∅ [w := t]}]
Localsy(ℓ, h) ::= ∀t,v , V ?. h(t) = (v , V ?)⇒ ⊒V ? ∗ ⊒[ℓ←{∅ [w := t]}]

That is, the owner of Localsn(ℓ, h) should have observed the timestamps
of the writes in h, while the owner of Localsy(ℓ, h) should additionally
have observed the message views of those writes. The model of the
atomic local ownership and observations is then given within vProp, as
follows.

ℓ ⊒γ
sn h ::= Localsn(ℓ, h) ∗ atReader

γ(h) ∗ ∃Vna. atLastNA
γ(Vna) ∗ ⊒Vna

ℓ ⊒γ
sy h ::= Localsy(ℓ, h) ∗ atReader

γ(h) ∗ ∃Vna. atLastNA
γ(Vna) ∗ ⊒Vna

ℓ ⊒γ,tx
sw h ::= ℓ ⊒γ

sy h ∗ atWriterγ(h) ∗ atExclTimeγ(tx) ∗ tx = max(dom(h))

ℓ ⊒γ,tx,q
cas h ::= ℓ ⊒γ

sn h ∗ atExclTimeγq (tx) ∗ tx ∈ dom(h)

• The seen-history observation ℓ ⊒γ
sn h requires that the h is in-

deed a snapshot history of ℓ’s atomic points-to identified by γ

(atReaderγ(h)), and that the owner has observed the writes in h

(Localsn(ℓ, h)). The remaining part ∃Vna. atLastNA
γ(Vna) ∗ ⊒Vna

says that the owner has observed the view Vna of the switch from
the non-atomic points-to to the atomic points-to identified by γ.

• The sync-history observation ℓ ⊒γ
sn h is similar to the seen-history

observation, but additionally requires the synchronization with all
the message views in h (Localsy(ℓ, h)).
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• The single-writer ownership ℓ ⊒γ,tx
sw h requires the sync-history

observation ℓ ⊒γ
sn h, and holds the writer permission atWriterγ(h)

for the current history h as well as the exclusive writer permission
atExclTimeγ(tx) for the timestamp tx of the latest exclusive single-
writer write. That is, the single-writer ownership holds both the
permissions to update h and tx. Additionally, we know that tx is
the maximum timestamp in the current history h.

• The CAS ownership ℓ ⊒γ,tx,q
cas h only requires the seen-history obser-

vation, and its fraction q is the fraction for exclusive single-writer
timestamp atExclTimeγq (tx), which is sufficient to prevent others
from updating tx (and thus prevent any single-writer writes). An-
other requirement is that the owner has observed tx (tx ∈ dom(h)).

Definition 10.9 (Model of the Atomic Points-To). We now give the model
of the atomic points-to assertions, also within vProp. It relies on a “lift-
view” function liftV(h, Vna) that lifts all h’s message views to include
the view Vna of the “non-atomic to atomic” switch.

liftV(h, Vna) ::=
[
t←(v , V ? ⊔ Vna)

∣∣h(t) = (v , V ?)
]

ℓ tx7−→γ
θ h ::= ∃h′, αw, α1, α2, Vna. h = liftV(h′, Vna) ∗ tx ∈ dom(h)

∗ Localsy(ℓ, h) ∗ Local
⊒rlx
W (ℓ, αw)

∗ Local⊒rlx
R (ℓ, α2) ∗ LocalnaR (ℓ, α1, Vna)

∗ Hist(ℓ, h′) ∗Write⊒rlx(ℓ, αw)

∗ Readna(ℓ, α1) ∗ Read⊒rlx(ℓ, α2)

∗ atAuthγ(h, tx, Vna)

∗


θ = sw ∗ True

θ = cas ∗ atWriterγ(h)

θ = con ∗ atWriterγ(h) ∗ atExclTimeγ(tx)

The model of the atomic points-to ℓ tx7−→γ
θ h is very similar to that of the

non-atomic points-to:8 it requires full ownership of (1) the base logic 8see Definition 9.3

assertions for history ownership (Hist(ℓ, h′)) of the unlifted history h′

(h = liftV(h′, Vna)) and of (2) the difference parts of the race detector
state (the atomic writes set Write⊒rlx(ℓ, αw), and the non-atomic and
atomic reads sets Readna(ℓ, α1) and Read⊒rlx(ℓ, α2)).9 Similarly, it re- 9see also Definition 7.1 and Defini-

tion 9.1quires the base logic’s local observations for all of those sets.10 It also
10Note that Localsy(ℓ, h) implies the allo-
cation observation LocalA(ℓ, h).

requires the observation of the non-atomic view Vna of the switch as well
as that Vna has observed the non-atomic reads set, i.e., LocalnaR (ℓ, α1, Vna).

The main difference with the non-atomic points-to is the ghost owner-
ship. The atomic points-to owns the authoritative state atAuthγ(h, tx, Vna)

to hold the authority over the local ownership and observations (given
model in Definition 10.8). It further owns the remaining ghost permis-
sions for different atomic modes: (i) for the single-writer mode sw it owns
nothing more, because all permissions are owned by the single-writer
ownership; (ii) for the CAS-only mode cas it owns the writer permis-
sion atWriterγ(h) so as to allow concurrent CASes to update the history,
but it does not own the exclusive write permission, which is owned by
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the fractions of CAS ownership themselves; and (iii) for the arbitrarily
concurrent mode con it owns all the ghost permissions, as the clients of
the con mode only have the seen-history or sync-history observations
to work with ℓ. Recall that the atomic points-to assertion is meant to
be shared for concurrent accesses, and participants rely on their local
atomic ownership and observations to relate themselves to the shared
history h and thus to strengthen the behaviors of their own instructions.

We now sketch the proofs of several important rules.

10.2.1 Proof Sketches for Conversions between Non-Atomic and Atomic Points-To

Proof sketch of NA-AT-SW-VIEW. This proof is done entirely within vProp.
We start by first freezing ℓ 7→ v ∗P at some view V0 using VA-INTRO (§8.5).
Then we unfold the model of non-atomic points-to (Definition 9.3).
We note that the local observations of the non-atomic points-to are
not objective, while the history ownership and the race detector state
ownership are objective, so the view-at modality can be easily eliminated
using VA-OBJ (§8.5). Our goal then looks as follows.

Context: Goal:

⊒V0 ∗@V0P ∗@V0⊒V
@V0

(LocalA(ℓ, [t←(v , V )]) ∗ Local⊒rlx
W (ℓ, αw))

@V0(Local
⊒rlx
R (ℓ, α2) ∗ LocalnaR (ℓ, α1, Vna))

Hist(ℓ, [t←(v , V )]) ∗Write⊒rlx(ℓ, αw)

Readna(ℓ, α1) ∗ Read⊒rlx(ℓ, α2)

∃γ, t, V. ⊒V ∗@V (P ∗ ℓ ⊒γ
sw [t←(v , V )] ∗ ℓ t7−→γ

sw [t←(v , V )])

From @V0Local
na
R (ℓ, α1, Vna) and the vProp definition of LocalnaR (Defi-

nition 9.1), we have Vna ⊑ V0.
We then allocate a new ghost location γ for the RA ATOMICR, using

GHOST-ALLOC (§6.2), with the initial history h = [t←(v , V ⊔ V0)], the
exclusive write timestamp t, and the new non-atomic view V0. This
allocation will give us these following extra ownership atAuthγ(h, t, V0) ∗
atLastNAγ(V0) ∗ atExclTimeγ(t) ∗ atWriterγ(h).

We note that from @V0⊒V , by VA-VS (§8.5), we have V ⊑ V0. Con-
sequently, V ⊔ V0 = V0. We then instantiate the existential quantifiers
respectively with γ, t, and V0. Note how V0, the view of the switch,
indeed becomes the new message view for t. We can easily discharge
⊒V and @V0P , and then arrive at the following goal.

Context: Goal:

⊒V0 ∗@V0
⊒V

@V0(LocalA(ℓ, [t←(v , V )]) ∗ Local⊒rlx
W (ℓ, αw))

@V0
(Local⊒rlx

R (ℓ, α2) ∗ LocalnaR (ℓ, α1, Vna))

Hist(ℓ, [t←(v , V )]) ∗Write⊒rlx(ℓ, αw)

Readna(ℓ, α1) ∗ Read⊒rlx(ℓ, α2)

atAuthγ(h, t, V0) ∗ atLastNAγ(V0)

atExclTimeγ(t) ∗ atWriterγ(h) @V0
(ℓ ⊒γ

sw h ∗ ℓ
t7−→γ
sw h)
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By unfolding the definitions of the atomic points-to and the single-writer
ownership, and then discharge all available assumptions, we arrive at
the goal:

Context: Goal:

V ⊑ V0 ∗ Vna ⊑ V0 ∗@V0
LocalnaR (ℓ, α1, Vna)

@V0
(ℓ ⊒γ

sy h ∗ Localsy(ℓ, h) ∗ Local
na
R (ℓ, α1, V0))

This is easily done because h is the singleton [t←(v , V0)], and LocalnaR is
view monotone, so LocalnaR (ℓ, α1, Vna) implies LocalnaR (ℓ, α1, V0) knowing
that Vna ⊑ V0.

Proof sketch of AT-NA. The proof is rather straightforward: the model of
the atomic points-to, after dropping the atomic ghost state abstractions,
is almost the same as the model of the non-atomic points-to, except for
the history h′. We then use BL-HIST-DROP-SINGLETON (which needs the
fancy update, see Figure 7.2) to truncate h′ to the singleton of its latest
write. After sorting out the local observations, we are done.

10.2.2 Proof Sketches for Conversions among Atomic Modes

Proof sketch of AT-SW-CAS. The proof is straightforward—its main proof
step is to move the write permission atWriterγ(h) from the single-writer
ownership into the CAS-only atomic points-to.

Proof sketch of AT-CAS-SW. The proof is also straightforward—it has 2
main proof steps. First, we move the write permission atWriterγ(h)

from the CAS-only atomic points-to out to construct the single-writer
ownership. Second, we update the full fraction atExclTimeγ(t2) from the
CAS ownership, together with the authoritative ghost state in the atomic
points-to, to the latest write timestamp t to complete the single-writer
ownership.

10.2.3 Proof Sketches for Atomic Operations

The proofs for atomic operations are done in the base logic, after un-
folding iRC11 Hoare triple and WP definitions (Definition 8.5 and Defi-
nition 8.4). We then rely on the base logic rules for atomic operations
(§7.3) to proceed.

Proof sketch of AT-READ-SN. The basis of the proof is to apply BL-HOARE-

READ-AT (Figure 7.5). In the pre-condition we have ℓ ⊒sn h0∗@Vb
(ℓ tx7−→θ h),

and we need to satisfy the pre-condition of BL-HOARE-READ-AT. From ℓ ⊒sn

h0 we get LocalA(ℓ, h,V.cur) (after unfolding the models of Hoare triples
and WPs, in the base logic). From @Vb

(ℓ tx7−→θ h) we get (1) Hist(ℓ, h) ∗
Read⊒rlx(ℓ, α2), because they are objective, and (2) Local⊒rlx

R (ℓ, α2, Vb).
Therefore we can call BL-HOARE-READ-AT.

Afterwards, we prove the post-condition of AT-READ-SN from that of
BL-HOARE-READ-AT. The most important new observation that we get
is Local⊒rlx

R (ℓ, α2 ∪ {r} , Vb ⊔ V ′.cur), which fits perfectly in AT-READ-SN’s
requirement of @Vb⊔V ′(ℓ tx7−→θ h), where it is the case that V ′ = V ′.cur.
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We are then left with the observations and facts about the read
message. Note that due to ℓ ⊒sn h0, the current view V.cur before the step

has observed all events in h0, so by the post-condition V R:o,ℓ,t,V ?,r−−−−−−−→ V ′

from BL-HOARE-READ-AT, we know that the read timestamp t is not earlier
than the writes in h0, i.e., t ≥ max(dom(h0)). Furthermore inspection

of V R:o,ℓ,t,V ?,r−−−−−−−→ V ′ is needed to prove the remaining observations, and
while that is not trivial, it is rather routine so we elide it here.

Proof sketch of AT-WRITE-SN. The proof is similar to that of AT-READ-SN,
but relies on the rule BL-HOARE-WRITE-AT. The main difference is in the
update of the local atomic writes observation, from Local⊒rlx

W (ℓ, αw, Vb)

to Local⊒rlx
W (ℓ, αw ∪ {t} , Vb ⊔ V ′). Naturally, a careful inspection of the

condition V W:o,ℓ,t,⊥,V−−−−−−−→ V ′ is needed to establish the remaining observa-
tions.

Proof sketch of AT-CAS-SN-GEN. The proof is similar to those of AT-READ-SN

and AT-WRITE-SN, but relies on the rule BL-HOARE-CAS. The 3 main tasks
are:

• show that the premise ∀v0, t0 ≥ max(dom(h0)). h(t0) = (v0, )⇒ ⊢
v0 =? vr implies ∀v0 ∈ Readable(h,V). ⊢ v0 =? vr; and

• show that AT-CAS-SN-GEN’s (Pcmp ⇛̇ Φcmp(ℓr, h)) implies BL-HOARE-

CAS’s (Pcmp −∗ Φcmp(ℓr)); and

• show the observations of AT-CAS-SN-GEN’s post-condition from that
of BL-HOARE-CAS.

The first two tasks are straightforward, mostly by unfolding definitions.
Again, the last task requires careful inspection, but is routine and there-
fore elided here.

CHAPTER SUMMARY. In this chapter, we presented the interface and the
model of the atomic points-to assertion and its related local ownership
and observations. The atomic points-to construction is designed to not
only support the naturally desired concurrent atomic accesses, but also
support strong reasoning principles in typical usage modes. It also
supports switching between the different modes, as well as alternating
between phases of non-atomic access and of atomic accesses. In the next
chapters, we will see the flexibility of the atomic points-to assertion when
combined with invariants in verifications.
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Invariants in Relaxed Memory

In §6.3, we have reviewed Iris invariants as the key tool to share resources
for concurrent accesses. In the Iris program logic (and also Iris-derived
SC logics), invariants can be used to build concurrent protocols of data
structures, by putting all shared ownership into a data structure’s in-
variant. The invariant enforces a user-defined relation on the shared
resources, so as to constrain how operations can access and change them.
For example, in verifying a linked-list based concurrent queue, one can
put the points-to ownership of the queue’s head and tail pointers, as well
as all the nodes of the queue, into a single invariant, and state the FIFO
protocol on those points-to assertions, within the same invariant.

In RMC separation logics, we also want the facilities of invariants
to support concurrent resource sharing. The situation is a bit different,
because when moving resources locally owned by a thread—and thus are
being interpreted by that thread’s local views—into the “public domain”
of invariants, we have to know the views used to interpret those resources,
now that they are no longer tied to a thread. The SC-logic idea of putting
all resources in a single invariant then appears intractable in RMC logics:
those resources may be accessed separately and concurrently by multiple
threads, so they may hold at separately different views. If we look at
the concurrent queue example again, we see that an enqueueing thread
would mostly work with the tail pointer, while a dequeuing one would
separately work with the head pointer, so the ownership of the two
pointers are likely to hold at different views. In other words, there is no
single coherent history of updates to all locations shared in an invariant,
and concurrent threads accessing the invariant cannot hope to agree on
a consistent view of the whole invariant content.

As such, RSL, FSL, GPS, and their descendants1 opted to restrict 1Vafeiadis and Narayan, “Relaxed sepa-
ration logic: a program logic for C11 con-
currency” [VN13]; Turon et al., “GPS: nav-
igating weak memory with ghosts, pro-
tocols, and separation” [TVD14]; Tas-
sarotti et al., “Verifying read-copy-update
in a logic for weak memory” [TDV15];
Doko and Vafeiadis, “A Program Logic for
C11 Memory Fences” [DV16]; Doko and
Vafeiadis, “Tackling Real-Life Relaxed Con-
currency with FSL++” [DV17]; Kaiser et
al., “Strong Logic for Weak Memory: Rea-
soning About Release-Acquire Consistency
in Iris” [Kai+17]; He et al., “GPS+: Rea-
soning About Fences and Relaxed Atom-
ics” [He+18].

invariants to single-location invariants (or protocols) which restrict the
evolution of a single, shared location. Intuitively, this is sound because
in C11 all threads always share a consistent view on the single-location
modification order moℓ: writes to a single location is always totally
ordered. Single-location invariants have proved useful in practice, but
they become cumbersome to use when one works with a set of closely
related locations, such as in the concurrent queue example. Roughly
speaking, one would have a single-location invariant for each of the
queue’s head, tail, and nodes, and if one wants to enforce a property that
spans multiple of those locations, one would have to invent mechanisms
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to tie those single-location invariants together.
In particular, the verifications done in GPS [TVD14] involve designing

multiple extra ghost state to create permissions that can be owned by
the protocol participants, and thus allow them to restrict interference by
others. For example, the GPS verification for the linked-list based Michael-
Scott concurrent queue2 sets up the head’s single-location invariant to2Michael and Scott, “Simple, Fast, and

Practical Non-Blocking and Blocking Con-
current Queue Algorithms” [MS96]. always hold a unique permission, say ⋄0 to access the first (0) element

in the queue, and every node i holds also a unique permission ⋄i+1 to
access the next node after it. A dequeue requires a CAS to update the
head pointer, and if that is successful, the dequeue caller acquires ⋄0,
which then can be used to access the first (0) element resources from the
first element’s single-location invariant, including the permission ⋄1. The
caller needs to put back ⋄1 into the head’s invariant, because that is the
permission for the next dequeuer to access the element 1, which is now
the next element to be dequeued. This contrive setup with extra ghost
state would not be needed—and in fact is not needed in SC logics—had we
have all resources stored inside a single invariant, because then we would
have the relation between the nodes clearly stated in one place, instead
of having the relation broken up in form of multiple permissions.

This long discussion is to motivate general invariants for multiple
locations in RMC, whose variants will be presented in this chapter. In
Part III, we will show how these invariants are used to derive GPS single-
location invariants.

The key challenge of general invariants is to identify the views that
justify the different parts of the invariant content. One solution is simple:
let the clients (of invariants) pick those views, explicitly using the view-at
modality (Definition 8.13, §8.5), and then the invariant itself has no
extra work to do. This gives rise to iRC11 objective invariants, a direct
lifting of Iris invariants from iProp to vProp, which we present in §11.1.

However, we also would like to support cancelable invariants, those
that allow reclaiming the invariant content once the invariant is no longer
in use. Instead of the clients, cancelable invariants themselves take care
of the one view that justifies all parts of the invariant content, and thus
guarantee that the cancelation of the invariant is synchronized with all
accesses to the invariant. We present iRC11 cancelable invariants in §11.2.

In §11.3, we provide the interface of another invariant form, called
non-atomic invariants. They are needed for RustBelt Relaxed in the model
of Rust’s type system (Part III).

11.1 Objective Invariants

Definition 11.1 (vProp Objective Invariants). The vProp objective invari-
ants directly lift Iris iProp invariants as follows.

J I
N

K ::= λ . ∀V. JI KV
N

That is, the invariant content I : vProp is put inside an Iris invariant at
an arbitrary (universally quantified) view V . This resembles the model
of the objective modality (Definition 8.10), hence the name.
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objective( I
N
)

persistent( I
N
)

OINV-ALLOC

▷ ⟨obj⟩ I ⊢ |⇛E I
N

OINV-ACC

N ⊆ E

I
N ⊢ |⇛E E\N (

▷ ⟨obj⟩ I ∗ (▷ ⟨obj⟩ I ≡−∗E\N E True)
)

OINV-ALLOC-OBJ

objective(I )

▷ I ⊢ |⇛E I
N

OINV-ACC-OBJ

objective(I ) N ⊆ E

I
N ⊢ |⇛E E\N (

▷ I ∗ (▷ I ≡−∗E\N E True)
)

FIGURE 11.1: iRC11 rules for objective
invariants

Objective invariants satisfy the rules in Figure 11.1. That is, the
rules are similar to those of Iris iProp invariants (Figure 6.4), except
that they require the invariant content I to be objective, or be placed
under an objective modality. More specifically, with OINV-ALLOC, we can
allocate a vProp objective invariant if we have the invariant content
I under the objective modality, and with OINV-ACC we can access the
invariant content atomically, but we only get I also under the objective
modality. The rules OINV-ALLOC-OBJ and OINV-ACC-OBJ are derived from
OINV-ALLOC and OINV-ACC, respectively, using the rules OBJMOD-INTRO and
OBJMOD-ELIM (§8.4).

Intuitively, if a client only stores objective resources, which include
pure facts (ϕ) and ghost state ( a

γ
),3 then objective invariants work the 3see PURE-OBJ and GHOST-OBJ, §8.4

same as Iris traditional invariants. If the client, however, wishes to put
points-to assertions into an objective invariants, then they should make
those resources objective, by making their interpreting views explicit
using the view-at modality (Definition 8.13). In particular, we can apply
VA-INTRO (Figure 8.3) to turn an atomic points-to ℓ t7−→γ

θ h can be turn
into the form @V (ℓ

t7−→γ
θ h) (knowing that ⊒V ) which is objective (see

Figure 8.3) and thus can be put inside objective invariants using OINV-

ALLOC. Fortunately, we have established in sections §10.1.1 to §10.1.3
that the atomic access rules only require and return the atomic points-to
ownership at some arbitrary views Vb and Vb ⊔ V ′, respectively.

In other words, the atomic access rules using atomic points-to (§10.1)
are compatible with objective invariants, and are sufficient to verify algo-
rithms with concurrent protocols on shared atomic points-to assertions.
We will see such examples in Chapter 12 and in Part IV.

We note that we can also use VA-INTRO to make non-atomic points-to
assertions objective, and put them in invariants to transfer them to other
threads. However, the non-atomic points-to can only be used without the
view-at modality. Fortunately, the atomic access rules allow us to acquire
the view-seen observations needed to remove the view-at modality from
the non-atomic points-to, using VA-ELIM. For more details, please recall
the discussion about resource transfer at the end of §10.1.2, which uses
the rules AT-WRITE-SW-REL and AT-READ-SN-ACQ. Nevertheless, we will also
see examples for resource transfer in Chapter 12.
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11.2 Cancelable Invariants

If we put some resources in objective invariants, the resources are in the
public domain forever. But there are situations where we want to reclaim
the resources in the invariants, after which point we know that the
invariants are no longer needed any more. For example, we would like
to have a per-object invariant to govern the protocol of a data structure,
but when the data structure object is deallocated, the invariant should
become obsolete.

Iris supports a kind of invariants called cancelable invariants where
an invariant can be canceled to reclaim the invariant. We would like to
support this kind of invariants for vProp, but we need some extra work
to make the returned resources useable: we need to track more carefully
the view at which the resources are put inside the invariant, so that after
the cancelation we can eliminate the view-at modality protecting those
resources, and thus the client can own them locally.

11.2.1 The Interface of vProp Cancelable Invariants

We present the interface of vProp cancelable invariants in Figure 11.2.44These are called raw cancelable in-
variants in the RustBelt Relaxed pa-
per [Dan+20a]. Note that we did not present Iris iProp cancelable invariants, but they

only differ from the vProp ones in the parts concerning views.5
5Please see Figure 14.1 for a few key

rules of Iris traditional cancelable invari-
ants. See also [Iri22, §10.1].

The interface of cancelable invariants involves two kinds of assertions:
(1) a persistent, objective assertion I

γ,N
that an invariant with content

I exists in the namespace N with an identifier γ; and (2) a fractional
and timeless invariant token assertion ♡γ

q (also identified by γ) that is
needed to know that the invariant is not yet canceled.

INVARIANT ALLOCATION. With the invariant content I , we can allocate
a cancelable invariant using CINV-ALLOC. Afterwards, we know that the
invariant exists ( I

γ,N
), and we own the full fraction ♡γ

1 of its invariant
token. The invariant token is fractional, as shown in CINV-TOK-FRAC-

VALID and CINV-TOK-FRAC, so that we can split the full fraction into pieces
and give them to multiple threads and they can access the invariant
concurrently. CINV-TOK-OBJ-SPLIT allows us to split a fraction of a token
identified by γ into two parts, one of which is objective, which in turn can
be easily put inside an invariant (which could possibly be the invariant
with the same identifier γ as the token).

INVARIANT ACCESS. A fraction of the invariant token is needed to open
the invariant with the same identifier γ, as can be seen in CINV-ACC. The
opening is a mask-changing fancy update, after which we receive the
invariant content I under a later. Once we are done, we must return
I and close the invariant with a reverse mask-changing fancy update.
Recall from §6.7 that mask-changing fancy updates are needed to prevent
opening an invariant twice, and to limit the invariant accesses to a single,
atomic step of computation. More concretely, recall that the rules WP-INV

and HOARE-INV for opening traditional Iris invariants around an atomic
step are derived from WP-ATOMIC and INV-ACC. We apply the same method
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objective( I
γ,N

)

persistent( I
γ,N

)
timeless(♡γ

q )

CINV-ALLOC

▷ I ⊢ |⇛E ∃γ.♡
γ
1 ∗ I

γ,N

CINV-ACC

N ⊆ E

I
γ,N ∗ ♡γ

q ⊢ |⇛
E E\N

(
∃Vi. (⊔Vi

▷ I ) ∗
(
(⊔Vi

▷ I ) ≡−∗E\N E ♡γ
q

))
CINV-CANCEL

N ⊆ E

I
γ,N ∗ ♡γ

1 ⊢ |⇛E ▷ I

CINV-TOK-FRAC-VALID

♡γ
q ⊢ q ∈ (0, 1]

CINV-TOK-FRAC

♡γ
q ∗ ♡

γ
q′ ⊣⊢ ♡

γ
q+q′

CINV-TOK-OBJ-SPLIT

♡γ
q+q′ ⊢ ♡

γ
q ∗ ⟨obj⟩♡γ

q′

WP-CINV

atomic(e) N ⊆ E
∀Vi.⊔Vi

▷ I ⊢ wpE\N e in π {v .⊔Vi
▷ I ∗Q}

I
γ,N ∗ ♡γ

q ⊢ wpE e in π
{
v .♡γ

q ∗Q
}

HOARE-CINV

atomic(e) N ⊆ E
{⊔Vi

▷ I ∗ P} e in π {⊔Vi
▷ I ∗Q}E\N

I
γ,N ⊢ {♡γ

q ∗ P} e in π {v .♡γ
q ∗Q}E

FIGURE 11.2: iRC11 rules for cancelable
invariants

with WP-ATOMIC and CINV-ACC to derive the explicit rules WP-CINV and
HOARE-CINV for opening vProp cancelable invariants.

The invariant content I we receive from CINV-ACC, however, unlike
that from the rule INV-ACC for traditional Iris invariants, are protected
under a view-join modality (Definition 8.14), i.e., what we get from
opening the invariant and what we have to return to close the invariant
are both ⊔Vi

▷ I . Recall the intuition of ⊔Vi
P : it asserts the ownership of

the resource P which hold at a view whose difference with the implicit
interpreting view V is Vi. That is, P holds at Vi ⊔ V . This means that a
client of the cancelable invariant only gains access to the invariant content
I at an arbitrary larger view Vi ⊔ V (@Vi⊔V ▷ I ), where in practice Vi

represents the view at which I is currently justified. During its access to
I , the client can update the current view from V to some larger view V ′

(V ⊑ V ′), so long as it returns the invariant content I at the view Vi ⊔ V ′

(@Vi⊔V ′ ▷ I ), i.e., it returns ⊔Vi ▷ I .
The use of the view-join modality in CINV-ACC therefore enforces two

requirements on the clients of cancelable invariants. The first requirement
is that clients of cancelable invariants should be able to work with the
content I justified at some arbitrary view Vi ⊔ V (where V is the client’s
current view at the opening of the invariant). This requirement is the
same as that for clients of objective invariants, and therefore can be
mitigated in the same ways as discussed in the previous section (§11.1):
objective resources do not care about views, and atomic access rules can
work with the atomic points-to ownership at some arbitrary view, while
views for other resources like non-atomic points-to need to be tracked
more carefully and rely on the seen-view observations from the atomic
operations. Again, we will see this point worked out more concretely in
the example verifications in Chapter 12.

The second requirement is that the client cannot return I at a too
big view: the view Vi ⊔ V ′ must be sufficient to justify I (where V ′

is the client’s current view at the closing of the invariant).6 We note 6Note that if the client returns I at a
view smaller than Vi ⊔ V ′, then it can
always return I at Vi ⊔V ′, thanks to view
monotonicity of I .

that this requirement is only enforced on non-objective resources in I .
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Fortunately, the atomic access rules using atomic points-to (in §10.1.1 to
§10.1.3) are also designed to be compatible with this requirement: if we
provides an atomic points-to @Vi⊔V ℓ

t7−→θ h to the pre-condition of one of
the rules, we will receive some @Vi⊔V ⊔V ′ℓ t7−→θ h′ in the post-condition,
which is indeed @Vi⊔V ′ℓ t7−→θ h because V ⊑ V ′. We will see this point
more concretely also in Chapter 12.

Note that we can switch between the view-join and view-at modalities
easily using VJ-VA-ACC. In fact, with VJ-VA-ACC and the rules in §10.1.1
to §10.1.3, we can derive atomic access rules that take an atomic points-
to in the form ⊔Viℓ

t7−→θ h in the pre-condition, and return an updated
atomic points-to in the form ⊔Viℓ

t7−→θ h′ in the post-condition. We will
see the derivations of those rules also in §12.2 (see Figure 12.5).

INVARIANT CANCELATION. The second requirement by the access rule
CINV-ACC is what guarantees the soundness of the cancelation rule CINV-

CANCEL. Cancelation needs to maintain the following safety guarantee.

Property 11.2 (Cancelation Safety).

An invariant’s cancellation must happen-after all accesses to it.
(CANCEL-SAFE)

Nevertheless, CINV-CANCEL simply says that with we can trade in the
full fraction ♡γ

1 of the invariant token for the invariant I
γ,N

to cancel
it and get back the invariant content I locally without any view-explicit
modality (albeit under a later, as usual). As such, except for the uses of
the view-join modality in CINV-ACC, the core interface of iRC11 cancelable
invariants (CINV-ALLOC, CINV-ACC, and CINV-CANCEL) is exactly the same
as that of traditional Iris cancel invariants that are sound only for SC
logics.7 The reason why the cancelation rule maintains CANCEL-SAFE (i.e.,7see Figure 14.1 and [Iri22, §10.1]

race-free and safe) for RMC, and why the relaxed memory effects can be
localized in just the view-join modality used in CINV-ACC, is rather hard
to explain intuitively, without looking into the model of invariant tokens.
We therefore delay this explanation until §11.2.2.

STRONGER ALLOCATION RULES. Figure 11.3 provides several stronger
rules for cancelable allocation and access. CINV-ALLOC-OPEN strengthens
CINV-ALLOC by not requiring the invariant content I upfront. Instead the
client is first given a fresh identifier γ for the invariant token, and so the
client can pick the invariant content I that may depend on γ. The client
then receives the the invariant assertion I

γ,N
but the invariant does not

hold yet (hence the mask does not include N ). Once the client provides
▷ I , the invariant is established and the client receives the full invariant
token ♡γ

1 .
CINV-ALLOC-FRAC strengthens CINV-ALLOC in a slightly different way.

The client first receives some fraction q of the invariant token with a fresh
identifier γ, the the client can pick and provide the invariant content I
that may contain ♡γ

q itself. After the invariant is established the client
receives the remaining fraction ♡γ

q′ , i.e., q + q′ = 1. Note that q and q′

are picked by the client.
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CINV-ALLOC-OPEN

N ⊆ E

⊢ |⇛E ∃γ.∀I . |⇛
E E\N

I
γ,N ∗

(
▷ I ≡−∗E\N E ♡γ

1

)
CINV-ALLOC-FRAC

q + q′ = 1

⊢ |⇛E ∃γ.♡
γ
q ∗

(
∀I . ▷ I ≡−∗E ♡γ

q′ ∗ I
γ,N)

CINV-ACC-GEN

N ⊆ E

I
γ,N ∗ ♡γ

q ⊢ |⇛
E E\N ♡γ

q ∗ ∃Vi. (⊔Vi ▷ I ) ∗ ∧


(
♡γ

q ∗ (⊔Vi ▷ I )
)

≡−∗E\N E ♡γ
q

∀V ′, P.
(
@V ′♡γ

q ∗
(
@V ′♡γ

q ≡−∗E\N (⊔Vi
▷ I ) ∗ P

))
≡−∗E\N E P

♡γ
1 −∗

(
⊒Vi ∗ |⇛E\N E True

)
FIGURE 11.3: Stronger iRC11 rules for
cancelable invariantsA STRONGER ACCESS RULE. CINV-ACC-GEN (Figure 11.3) generalizes the

access rule CINV-ACC in several non-trivial ways. First, one does not need
to trade in the invariant token ♡γ

q to access the invariant: one does
need to provide it, but then receives it back immediately together with
the invariant content ⊔Vi ▷ I . Second, there are 3 options to close the
invariant.

The first option is similar to the closing viewshift of CINV-ACC: to close
the invariant, the client gives back the invariant content ⊔Vi ▷ I . As the
client did not trade in the invariant token, they need to provide the token
at the closing, which they will get back immediately afterwards.8 8Another possible generalization is that

the fraction q needed at closing does not
need to be the same fraction used for open-
ing the invariant.

The second closing option strengthens the first one further: to close
the invariant, the client provides (1) the invariant token ♡γ

q at some view
V ′ of its choice, and (2) a wand viewshift

(
@V ′♡γ

q ≡−∗E\N (⊔Vi ▷ I ) ∗ P
)
.

Intuitively, the invariant needs (1) to update its internal tracking of
the current invariant view. After that it feeds (1) into (2), a logical
continuation picked by the client that, when receiving the same token,
will produce the invariant content ⊔Vi ▷ I and some remaining resource
P . The invariant then consumes ⊔Vi

▷ I to re-establish and close the
invariant, and returns the remaining resource P to the client.

The last closing option embeds the cancelation rule CINV-CANCEL:
instead of returning the invariant content I , the client can trade the
full fraction ♡γ

1 of the invariant token for (1) a seen-view observation
⊒Vi of the same view Vi that the client has received at the invariant

opening, so that they can eliminate the view-join modality from I ; and
(2) a reverse mask-changing fancy update |⇛E\N E True without additional
requirement to close the invariant. We note that CINV-CANCEL is derivable
from CINV-ACC-GEN.

Finally, we note that the stronger rules (CINV-ALLOC-OPEN, CINV-ALLOC-

FRAC, and CINV-ACC-GEN) without the view-join modality are all sound in
traditional Iris SC logics. In those logics, the second closing option of
CINV-ACC-GEN also coincides with the rule’s first option.

11.2.2 The Model of Cancelable Invariants

To model iRC11 cancelable invariants, we need more ghost state to
encode the access and cancelation protocol, which will be stored in the
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ghost location γ—the invariant identifier.

Definition 11.3 (RA for iRC11 Cancelable Invariants). We need the frac-
tional view-lattice RA FRACVIEWR = AUTH(OPTION(FRAC×LAT(View))).
We define notations for two kinds of elements of the RA.

PartialVq(Vp) ::= ◦ (Some(q, Vp))

FullV(Vf ) ::= • (Some(1, Vf ))

Definition 11.4 (Model of iRC11 Cancelable Invariants). The model
of invariant tokens and cancelable invariants is given directly in vProp,
using the RA and objective invariants, as follows.

♡γ
q ::= ∃Vtok. PartialVq(Vtok) : FRACVIEWR

γ ∗ ⊒Vtok
(CINV-MODEL-TOK)

I
γ,N

::= ∃Vi.@Vi

(
PartialV1(Vtok)

γ ∨ FullV(Vi)
γ ∗ I

) N

(CINV-MODEL)

INVARIANT TOKENS. First of all, invariant tokens ♡γ
q are view-dependent

assertions: even though owning a token ♡γ
q means owning only the ghost

element PartialVq(Vtok), this ghost ownership is tied to the current im-
plicit view V at which the assertion is interpreted through the token view
Vtok. In particular, the ghost element PartialVq(Vtok) records both the
fraction q, which represents how much of the invariant this token owns,
and the token view Vtok, which represents what this particular fractional
token has observed, i.e., what invariant accesses this fractional token has
participated in. The model requires that V —the current implicit view at
which the token is interpreted—has also at least observed what ♡γ

q has
observed: ⊒Vtok (the seen-view observation, see Definition 8.12).

INVARIANT ASSERTIONS. The model of invariant assertions I
γ,N

simply
encodes the two possible states of the invariant: “active” or “canceled”.
Thus it is an objective invariant (§11.1) of a disjunction (see CINV-MODEL).
The right-hand side of the disjunction encodes the active state, where the
content I is still available in the invariant at some content view Vi. In the
active state the underlying invariant also owns the authoritative ghost
element FullV(Vi) that records the view Vi in the ghost location γ. The
left-hand side of the disjunction encodes the canceled state, which asserts
ownership of the full fractional element PartialV1(Vi). Recall that the

invariant assertion I
γ,N

itself is objective.9 The underlying invariant’s9see Figure 11.1

content is also objective: it is wrapped under a view-at modality of the
content view Vi.10 The relation between the content view Vi and the10see Figure 8.3

token views Vtok’s is managed entirely by the ghost elements FullV(Vi)

and PartialVq(Vtok).

Concept 11.5 (Synchronized Ghost State). In essence, by its model in
CINV-MODEL-TOK, cancelable invariant tokens are just ghost state. How-
ever, unlike the vanilla ghost state ownership which is objective,11 in-11see GHOST-OBJ, §8.4

variant tokens are not objective as they are tied to their owner’s obser-
vations. We generally call these “synchronized ghost state”. The RA
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FRACVIEWR has two interesting kinds of elements that help us implement
the idea of “synchronicity”: (1) the unique element FullV(Vf ) that is
used to record the full view Vf , and (2) fractional elements PartialVq(Vp)

that are used to associate some partial view Vp with some fraction q.
FRACVIEWR is built to maintain the following property:

The join of all partial views (the Vp’s from all PartialVq(Vp)’s) is
always equal to the full view Vf in FullV(Vf ).

(SYNC-GHOST)
This property guarantees that the partial view Vp of the full fractional

element PartialV1(Vp) is actually equal to the full view Vf of FullV(Vf ):
Vp = Vf . The SYNC-GHOST property is what we require for view-dependent
ghost state to be synchronized ghost state. By synchronized ghost state
we mean any ghost construction that is built on the notion of fractional
observations. That is, the ghost state has fractional elements that track the
subjective observations of the threads the elements are tied to, and, most
importantly, the full fractional element is guaranteed to have tracked all
observations.

In the case of cancelable invariants, the observations are the views
around which threads access and update the invariant content I . In-
tuitively, we record the view Vi of the invariant content I as the full
view in FullV(Vi) (see CINV-MODEL). The token view Vtok in the ghost
element PartialVq(Vtok) of some token ♡γ

q tracks the changes to I made
by each access that ♡γ

q participated in. By SYNC-GHOST, the full token
view Vtok_full of the full token ♡γ

1 will thus be equal to the content view
Vi. Consequently a thread owning ♡γ

1 must have observed all changes to
the invariant content I , i.e., it must have ⊒Vi. Effectively, CANCEL-SAFE is
maintained and CINV-CANCEL can safely eliminate the view-at modality
protecting I (using VA-ELIM, §8.5) and return ▷ I at the canceling thread’s
current view.

FORMAL PROPERTIES OF FRACVIEWR . To maintain SYNC-GHOST, the RA
FRACVIEWR admits the rules in Figure 11.4. CINV-MODEL-SYNC says that
any token view Vtok is included in the content view Vi, and the full token
view Vtok_full of ♡γ

1 is exactly Vi. CINV-MODEL-JOIN requires that the
fractions consistently cannot sum up to more than 1, and also allows
us to join together partial token views of the fractions when we are
recollecting them. CINV-MODEL-UPDATE formalizes a restriction on how
the ghost state can grow: we can update a token view Vtok by extending
it with some V ′ only if we simultaneously update the content view Vi

in the same way. This makes sure that every change in the full view
Vi is accounted for by some token view Vtok, and thus SYNC-GHOST is
maintained.

Formally, CINV-MODEL-SYNC comes from validity of FRACVIEWR . If
we own both PartialV1(Vp) and FullV(Vf ), by GHOST-OP and GHOST-VALID

(§6.2), we have valid(FullV(Vf ) · PartialV1(Vp)) = valid(• (Some(1, Vf )) ·
◦ (Some(1, Vp))). By AUTH-BOTH-VALID (§6.9), we have that Some(1, Vp) ≼

Some(1, Vf ). By the definition of RA inclusion (RA-INCL, §6.2), it must be
the case that Some(1, Vp) = Some(1, Vf ), i.e., Vp = Vf .
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CINV-MODEL-SYNC

FullV(Vi)
γ ∗ PartialVq(Vtok)

γ ⊢ Vtok ⊑ Vi ∧ (q = 1⇒ Vtok = Vi)

CINV-MODEL-UPDATE

FullV(Vi)
γ ∗ PartialVq(Vtok)

γ
⇛̇ FullV(Vi ⊔ V ′)

γ
∗ PartialVq(Vtok ⊔ V ′)

γ

CINV-MODEL-JOIN

PartialVq(V )
γ ∗ PartialVq′(V

′)
γ
⊢ PartialVq+q′(V ⊔ V ′)

γ
∗ q + q′ ∈ (0, 1]

FIGURE 11.4: Properties of the RA
FRACVIEWR for cancelable invariants

PROOF SKETCHES. To understand how the model works, we briefly
present the proofs of CINV-CANCEL and CINV-ACC.

Proof sketch of CINV-CANCEL. We prove the rule in vProp. After unfolding
the model (Definition 11.4), we have the following goal.

Context: Goal:

PartialV1(Vtok)
γ ∗ ⊒Vtok

∃Vi.@Vi

(
PartialV1(Vtok)

γ ∨ FullV(Vi)
γ ∗ I

) N
|⇛E ▷ I

We then open the underlying objective invariant using OINV-ACC-OBJ and
find a content view Vi and the two possibilities for the invariant state. If
the invariant were in the cancelled state (the left disjunct), we would
have two full fractional PartialV1( ) and CINV-MODEL-JOIN would give us
contradiction from 1 + 1 ≤ 1. Thus the underlying invariant must be in
the active state (the right disjunct).

By owning the full fraction, with CINV-MODEL-SYNC we know that
Vtok = Vi, so by owning ⊒Vtok, the thread must have observed all
changes to the invariant content: ⊒Vi. With that, we now can take the
content @Vi

Vi out of the invariant and eliminate the view-at modality
with VA-ELIM, and return ▷ I for the user. To finish the proof, we put
PartialV1(Vtok)

γ
in to switch the underlying invariant to the cancelled

state and close it.

Proof sketch of CINV-ACC. We also prove the rule in vProp. As in cance-
lation, we unfold the model, then open the underlying invariant with
OINV-ACC-OBJ and deduce that it must be in the active state. Our goal
then looks as follows.

Context: Goal:

(▷∃Vi. . . .) ≡−∗E\N E True

PartialVq(Vtok)
γ ∗ ⊒Vtok

FullV(Vi)
γ ∗@Vi

▷ I ∃Vi.⊔Vi
▷ I ∗

(
(⊔Vi

▷ I ) ≡−∗E\N E ♡γ
q

)
We instantiate the existential quantification with Vi, and then use VA-

TO-VJ (Figure 8.3) to upgrade the invariant content I from the view-at
modality to the view-join modality, so that we can discharge the left-hand
side of the goal. We are then left to prove the closing wand viewshift.
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After introduction, our goal looks as follows.

Context: Goal:

(▷∃Vi. . . .) ≡−∗E\N E True

PartialVq(Vtok)
γ ∗ ⊒Vtok

FullV(Vi)
γ ∗ ⊔Vi

▷ I |⇛E\N E ∃V ′
tok. PartialVq(V

′
tok)

γ
∗ ⊒V ′

tok

We now use VJ-ELIM-VA (also Figure 8.3) to turn ⊔Vi
▷ I and ⊒Vtok

into @Vi⊔V ′ ▷ I for some V ′ ⊒ Vtok that we know ⊒ V ′. We then
use CINV-MODEL-UPDATE to update FullV(Vi)

γ ∗ PartialVq(Vtok)
γ

to
FullV(Vi ⊔ V ′)

γ
∗ PartialVq(Vtok ⊔ V ′)

γ
.

We then use the closing viewshift (▷ ∃Vi. . . .) ≡−∗E\N E True with
the view Vi ⊔ V ′ and the resources FullV(Vi ⊔ V ′)

γ
and @Vi⊔V ′ ▷ I to

re-establish and close the invariant. We are left with the goal for the
invariant token.

Context: Goal:

PartialVq(Vtok ⊔ V ′)
γ
∗ ⊒V ′ ∃V ′

tok. PartialVq(V
′
tok)

γ
∗ ⊒V ′

tok

From V ′ ⊒ Vtok, we know that Vtok ⊔ V ′ = V ′, so this is easily done.

11.3 Non-Atomic Invariants

Iris additionally provides a derived form of invariants where the access
can be non-atomic, i.e., it can span multiple steps of execution. The
catch is that each such access can only be done by one thread at a time.
This form of invariants, called non-atomic invariants, is needed to model
unique reference types in RustBelt.12 We will thus also need non-atomic 12Jung et al., “RustBelt: Securing the

Foundations of the Rust Programming Lan-
guage” [Jun+18a].invariants for our RustBelt Relaxed work (Part III).

Fortunately, Iris non-atomic invariants can be proven sound in relaxed
memory without any change in the interface! Naturally, the model of
iRC11 non-atomic invariants still needs to handle relaxed memory effects,
but it manages to encapsulate them within the interface. This is sound,
intuitively because non-atomic invariants are meant to be thread-local—
i.e. being accessed by only the current thread—so the thread is always
synchronized with the invariant content. The model carefully tracks
the view of the invariant content, employing an RA similar to that of
cancelable invariants. The model and the proofs of iRC11 non-atomic
invariants were constructed by Jacques-Henri Jourdan, as thus are not
considered part of this dissertation and will not be presented here. The
exact definitions are available in the Coq development of iRC11.13 13https://gitlab.mpi-sws.org/iris/

gpfsl/-/blob/master/theories/logic/
na_invariants.vNevertheless, we present the interface of iRC11 non-atomic invariants

in Figure 11.5, which, again, is exactly the same as that of Iris-SC.14
14Iris Team (The), The Iris 3.6 Technical
Appendix [Iri22], §10.3.Like cancelable invariants, non-atomic invariants also have two kinds

of assertions: (1) a persistent, objective assertion NaInvp.N (I ) that a
non-atomic invariant with content I exists in the namespace N with of
invariant pool p; and (2) a timeless invariant token assertion [Na : p.E ]
that is needed to access the invariants in the set E under the pool p.

Invariant pools allow us to have separate pools of invariants with
their own namespaces and tokens. Intuitively, we can think of pools as

https://gitlab.mpi-sws.org/iris/gpfsl/-/blob/master/theories/logic/na_invariants.v
https://gitlab.mpi-sws.org/iris/gpfsl/-/blob/master/theories/logic/na_invariants.v
https://gitlab.mpi-sws.org/iris/gpfsl/-/blob/master/theories/logic/na_invariants.v
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objective(NaInvp.N (I ))

persistent(NaInvp.N (I ))
timeless([Na : p.E ])

NAINV-NEW-POOL

⊢ ˙|⇛∃p. [Na : p.⊤]

NAINV-TOK-SPLIT

[Na : p.E1 ⊎ E2] ⊣⊢ [Na : p.E1] ∗ [Na : p.E2]
NAINV-ALLOC

▷ I ⊢ |⇛E NaInvp.N (I )

NAINV-ACC

N ⊆ E N ⊆ E ′

NaInvp.N (I ) ∗ [Na : p.E ′] ⊢ |⇛E ▷ I ∗ [Na : p.E ′ \ N ] ∗ (▷ I ∗ [Na : p.E ′ \ N ] ≡−∗E [Na : p.E ′])

FIGURE 11.5: The interface of non-atomic
invariants threads, and non-atomic invariants as thread-local invariants, where each

thread has its own, local pool of invariants. Every thread also has its
own invariant tokens [Na : p.E ], which can be “threaded through” its
execution to access its own invariant pools, without having to worry
about other threads’ interference. Thus the accesses are really sequential,
and can span multiple (non-atomic) instructions.

A fresh invariant pool p can be allocated with NAINV-NEW-POOL, where
we obtain the invariant token [Na : p.⊤] for p with the full set of invariant
names (p.⊤). The token can be split and joined using NAINV-TOK-SPLIT,
which supports accessing disjoint sets of invariants. With some invariant
content I , we can allocate a non-atomic invariant in some namespace N
of the pool p using NAINV-ALLOC.

Finally, the most important rule is the access rule NAINV-ACC: with a
token [Na : p.E ′] for some mask p.E ′ that includes p.N , we can open the
invariant NaInvp.N (I ) to access the content ▷ I . During the access, we
lose the ownership of the invariant names in p.N , so we only have the
remaining token [Na : p.E ′ \ N ] that allows us to open more invariants
except those that have already been opened. Once we return the invariant
content I , we can regain the original token [Na : p.E ′]. We note that the
access is non-atomic because we are not force to have mask-changing
fancy updates/viewshifts: through out the access the usual atomic in-
variants in E still hold. Recall that the masks in fancy updates (|⇛E )
are used to maintain non-reentrancy for atomic invariants, while the
masks in non-atomic invariant tokens ([Na : p.E ′]) are used to maintain
non-reentrancy for non-atomic invariants.

CHAPTER SUMMARY. In this chapter we introduce 3 forms of invariants:
(1) objective invariants that are useful to share general, multi-location
resources for concurrent accesses; and (2) cancelable invariants that
support reclaiming concurrently shared resources; and (3) non-atomic
thread-local invariants that allow non-atomic accesses to invariant con-
tents. We will see example uses of (1) and (2) in Chapter 12, and more
of them in the rest of this dissertation. We will see the application of (3)
in Part III, where it is used for the lifetime logic’s non-atomic persistent
borrows (§16.2.3).



12
Example Verifications with iRC11

In this chapter we demonstrate various features of iRC11 that have been
presented so far, using several simple example verifications concerning
the message-passing idiom. In §12.1 we sketch some verifications of the
message-passing examples that we have seen in Chapter 2 (Figure 2.1)
and demonstrate the uses of non-atomic (Chapter 9) and atomic points-to
(Chapter 10), objective invariants (§11.1), view-explicit modalities (§8.5)
and fence modalities (§8.3). In §12.2 we verify the message-passing
but with resource reclamation (deallocation), demonstrating cancelable
invariants (§11.2) and the switching from atomic back to non-atomic
points-to (§10.5).1 In §12.3, we verify a slightly more complex spawn- 1Coq proofs of these MP examples are

in https://gitlab.mpi-sws.org/iris/
gpfsl/-/blob/master/gpfsl-examples/
mp/proof_gen_inv.v

and-join library, which allows spawning a computation as a child thread
and then waiting for its completion to receive the computation result. The
transfer of the result is implemented using message-passing.2 Finally, in 2Coq proof in https://gitlab.

mpi-sws.org/iris/lambda-rust/-/
blob/masters/weak_mem/theories/lang/
spawn.v

§12.4, we verify a release-acquire implementation of the linked-list based
Treiber stack3 against a simple “bag” specification, which demonstrates

3Treiber, Systems Programming: Coping
with Parallelism [Tre86].

the atomic points-to CAS rule with pointer comparison.4 We will revisit

4Coq proof in https://gitlab.mpi-sws.
org/iris/gpfsl/-/blob/master/
gpfsl-examples/stack/proof_treiber_
at.v

the Treiber stack with a stronger specification in Compass (Part IV).

12.1 Release-Acquire Message-Passing

In Figure 12.1(b), we provide two λRust + ORC11 implementations of
the message passing example, together with the desired specification.
Figure 12.1(a) presents the implementation using release-acquire ac-
cesses, and corresponds to Example 2.1(c). The mp program runs on the
main thread π. It allocates a block of size 2 with the base location ℓ, and
non-atomically initializes both locations to 0. It then forks a child thread
ρ which will non-atomically write the message 42 to ℓ+ 1, and signal the
message by atomically writing 1 to ℓ. The main thread π waits for the
signal by a loop of acquire reads of ℓ. repeat (e) is implemented as a
recursive function, which keeps executing e until it returns true. Once
the loop ends, π should be able to get the message 42 from ρ, safely using
a non-atomic read on ℓ+ 1. The program mp_acq_fence (Figure 12.1(b))
optimizes mp by using only relaxed reads in the loop, and then an acquire
fence after the loop finishes.

Both programs should satisfy the simple specification in MP-SPEC: the
returned value is the message 42. We note that both programs should
satisfy the stronger specification MP-SPEC-STRONG, where the ownership
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mp ::=

π1: let ℓ := alloc(2) in

π2: ℓ :=na 0; (ℓ+ 1) :=na 0;

π3: fork { ρ1: (ℓ+ 1) :=na 42; ρ2: ℓ :=rel 1; }
π4: repeat (∗acqℓ != 0);

π5: ∗na(ℓ+ 1) // 42

((a)) MP with release-acquire accesses.

mp_acq_fence ::=

π1: let ℓ := alloc(2) in

π2: ℓ :=na 0; (ℓ+ 1) :=na 0;

π3: fork { ρ1: (ℓ+ 1) :=na 42; ρ2: ℓ :=rel 1; }
π4: repeat (∗rlxℓ != 0);

π5: fenceacq;

π6: ∗na(ℓ+ 1) // 42

((b)) MP with an acquire fence.

repeat (e) ::= (rec f([]) := letv := e in

ifv == false then f([]) elsev)([])

MP-SPEC

{True} mp in π {v .v = 42}⊤
MP-SPEC-STRONG

{True} mp in π {v .v = 42 ∗ ∃ℓ. ℓ 7→ [1, 42] ∗ †2 ℓ}⊤

FIGURE 12.1: Message-Passing with Loops
of the allocated block is returned, to prevent memory leaks. Note that
the notation ℓ 7→ [1, 42] stands for ℓ 7→ 1 ∗ ℓ+ 1 7→ 42. We will look at a
similar proof to that of MP-SPEC-STRONG in §12.2.

A high-level proof sketch of mp . We start in line π1 using NA-ALLOC (§9.1),
from which we get the block ownership †2 ℓ and two non-atomic points-to
assertions for ℓ and ℓ+1. The two points-to are sufficient for initialization
in line π2, using NA-WRITE. We then use NA-AT-SW (§10.1) to turn the
non-atomic points-to ℓ 7→ 0 of ℓ to an atomic one with a single-writer
permission (ℓ 7−→γℓ

sw ∗ ℓ ⊒γℓ
sw ). We then use OINV-ALLOC-OBJ (§11.1) to

allocate an objective invariant that contains that atomic points-to ℓ 7−→γℓ
sw .

In line π3 when forking ρ, we give the non-atomic points-to ℓ+ 1 7→ 0 of
ℓ+ 1 and the single-writer ownership ℓ ⊒γℓ

sw of ℓ to ρ, as well as the fact
that the invariant has been established.

In thread ρ: in line ρ1, with the non-atomic points-to of ℓ + 1, we
can write the message 42 using NA-WRITE, and then get ℓ + 1 7→ 42. In
line ρ2, we can open the invariant with OINV-ACC to access the atomic
points-to ℓ 7−→γℓ

sw of ℓ so that we can perform the release write of 1 to it,
using AT-WRITE-SW-REL (§10.1.2) and the single-writer ownership ℓ ⊒γℓ

sw

of ℓ. When closing the invariant we return to the invariant not only ℓ’s
atomic points-to but also ℓ+ 1 7→ 42 at the view of the release write, so
that π can regain it.

Back to thread π: in line π4, in the repeat loop we can open the
invariant and access ℓ’s atomic points-to and keep reading ℓ, using AT-

READ-SN-ACQ (§10.1.1). One we read that ℓ is non-zero and the loop ends,
we know that ℓ+ 1 7→ 42 must be inside the invariant, and thread π has
observed the view of ℓ+ 1 7→ 42. We need a unique token ⋄ to say that π
is the only one who can acquire ℓ + 1 7→ 42. This must be prepared in
the beginning before allocating the invariant, and the token ⋄ is given to
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thread π. At this point, we trade ⋄ for ℓ+ 1 7→ 42 in the invariant, and
use π’s view observation of the release write to acquire ℓ+1 7→ 42 locally.
With that, in line π5, we use NA-READ to read and return 42.

To write out the proof more formally, we need to define the exclusive
ghost token ⋄ and the objective invariant for mp.

Definition 12.1 (Exclusive Tokens). We use the exclusive RA of unit
EX(1) to define exclusive tokens.

⋄γ ::= ex() : EX(1)
γ

Exclusive tokens satisfy the following rules.

timeless(⋄γ)
objective(⋄γ)

EXCL-TOK-ALLOC

⊢ ˙|⇛∃γ. ⋄γ
EXCL-TOK-EXCL

⋄γ ∗ ⋄γ ⊢ False

Definition 12.2 (Invariant for mp). The invariant of mp needs to be
objective, and contains the atomic points-to ownership of ℓ in single-
writer mode, since only the thread ρ is writing.

mpI(ℓ, γl, γ) : vProp ::=

∃h, b, t0, V0, Vℓ.@Vℓ
(ℓ 7−→γℓ

sw h) ∗ leth0 := [t0←(0, V0)] in

if b = false thenh = h0 else

∃t1 > t0, V1. h = [t0←(0, V0)][t1←(1, V1)] ∗ (⋄γ ∨@V1
(ℓ+ 1 7→ 42))

More concretely, the invariant mpI owns @Vℓ
(ℓ 7−→γℓ

sw h) for some atomic
period identifier γℓ and some history h, at some view Vℓ. The history h of
ℓ can be in two states, dictated by the existential quantified boolean b. If b
is false, then ℓ is still in its initialized state, i.e., it has a singleton history
h0 with the write message (t0, 0, V0). Once b is true, ℓ is in its “signaled”
state, where its history h has one extra write message (t1, 1, V1). When ℓ

is in the signaled state, mpI either owns ⋄γ , or owns ℓ + 1 7→ 42 at the
view V1 (of the signaling write). If mpI owns ℓ+ 1 7→ 42, it means that ρ
has released the non-atomic of ℓ+ 1 but π has not acquired it yet. Once
π has acquired ℓ+ 1’s non-atomic points-to, mpI will own ⋄γ .

mpI is clearly objective, because it only contains pure facts, ghost
state, and points-to assertions that are under the view-at modality.

Proof sketch of mp . We present the detailed proof sketch of mp using
Hoare proof outlines, in Figure 12.2. Note that the post-condition of the
proof is almost satisfying the stronger specification MP-SPEC-STRONG: it is
only missing the points-to ℓ 7→ 1.

Proof sketch of mp_acq_fence . The proof of mp uses the same invariant
mpI, and follows the proof of mp closely. The main difference is that in
thread ρ’s read of ℓ, which is a relaxed read instead of an acquire read,
we use the rule AT-READ-SN. Consequently, in the case where ρ reads 1

from ℓ, we will acquire ∇π ⊒V ′ ∗@V1ℓ+ 1 7→ 42, where V ′ ⊒ V1. Then,
with the acquire fence, we apply HOARE-ACQ-FENCE (§8.3) to get ⊒V ′.
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{True}
π1: let ℓ := alloc(2) in

{
ℓ 7→ h ∗ ℓ+ 1 7→ h ∗ †2 ℓ

}
// NA-ALLOC

π2: ℓ :=na 0; (ℓ+ 1) :=na 0;
{
ℓ 7→ 0 ∗ ℓ+ 1 7→ 0 ∗ †2 ℓ

}
// NA-WRITE{

ℓ+ 1 7→ 0 ∗ †2 ℓ ∗ ∃γ, γℓ, t0, V0. ⋄γ ∗ ⊒V0 ∗ ℓ 7−→γℓ
sw [t0←(0, V0)] ∗ ℓ ⊒γℓ

sw [t0←(0, V0)]
}

Context: ⊒V0 // EXCL-TOK-ALLOC and NA-AT-SW{
ℓ+ 1 7→ 0 ∗ †2 ℓ ∗ ⋄γ ∗ ℓ ⊒γℓ

sw [t0←(0, V0)] ∗ ∃Vℓ. ⊒Vℓ ∗@Vℓ
ℓ 7−→γℓ

sw [t0←(0, V0)]
}

// VA-INTRO{
ℓ+ 1 7→ 0 ∗ †2 ℓ ∗ ⋄γ ∗ ℓ ⊒γℓ

sw [t0←(0, V0)] ∗ ℓ ⊒γℓ
sn [t0←(0, V0)] ∗@Vℓ

ℓ 7−→γℓ
sw [t0←(0, V0)]

}
Context: ℓ ⊒γℓ

sn [t0←(0, V0)] // AT-SW-SY and AT-SY-SN{
ℓ+ 1 7→ 0 ∗ †2 ℓ ∗ ⋄γ ∗ ℓ ⊒γℓ

sw [t0←(0, V0)] ∗mpI(ℓ, γℓ, γ)
}{

ℓ+ 1 7→ 0 ∗ †2 ℓ ∗ ⋄γ ∗ ℓ ⊒γℓ
sw [t0←(0, V0)] ∗ mpI(ℓ, γℓ, γ)

N}
// OINV-ALLOC-OBJ

Context: mpI(ℓ, γℓ, γ)
N

π3: fork { . . . } // HOARE-FORK

Th
re

ad
ρ

{ℓ+ 1 7→ 0 ∗ ℓ ⊒γℓ
sw [t0←(0, V0)]}⊤

ρ1: (ℓ+ 1) :=na 42; {ℓ+ 1 7→ 42 ∗ ℓ ⊒γℓ
sw [t0←(0, V0)]}⊤ // NA-WRITE

A
cc

es
si

ng
m
p
I

{ℓ+ 1 7→ 42 ∗ ℓ ⊒γℓ
sw [t0←(0, V0)] ∗ ▷mpI(ℓ, γℓ, γ)}⊤\N // OINV-ACC-OBJ{

ℓ+ 1 7→ 42 ∗ ℓ ⊒γℓ
sw [t0←(0, V0)] ∗@V ′

ℓ
(ℓ 7−→γℓ

sw [t0←(0, V0)])
}
⊤\N

// By unfolding mpI and using a stronger version of AT-SW-AGREE

ρ2: ℓ :=rel 1;{
∃t1, V1 ⊐ V0. ⊒V1 ∗@V1

(ℓ+ 1 7→ 42) ∗
@V1

ℓ ⊒γℓ
sw [t0←(0, V0)][t1←(1, V1)] ∗@V ′

ℓ⊔V1
(ℓ 7−→γℓ

sw [t0←(0, V0)][t1←(1, V1)])

}
⊤\N

// By applying AT-WRITE-SW-REL with ⊒V0

{⊒V1 ∗@V1
ℓ ⊒γℓ

sw ∗mpI(ℓ, γℓ, γ)}⊤\N // By picking the “signaled” state for mpI

{ℓ ⊒γℓ
sw }⊤ // VA-ELIM

{True}⊤{
†2 ℓ ∗ ⋄γ

}
π4: repeat (∗acqℓ != 0);

Lo
op

bo
dy

{⋄γ}⊤

A
cc

es
si

ng
m
p
I

{⋄γ ∗ ▷mpI(ℓ, γℓ, γ)}⊤\N // OINV-ACC-OBJ{
⋄γ ∗ ⊒V0 ∗ ℓ ⊒γℓ

sn [t0←(0, V0)] ∗@V ′
ℓ
(ℓ 7−→γℓ

sw h) ∗ ▷ if . . . then . . . else . . .
}
⊤\N

∗acqℓ{
v .∃h′ ⊆ h, t, V, V ′ ⊒ V0 ⊔ V. h′(t) = (v , V ) ∗ ⊒V ′ ∗@V ′

ℓ⊔V ′(ℓ 7−→γℓ
sw h)

∗ ⋄γ ∗ if b = false then . . . else (⋄γ ∨@V1
(ℓ+ 1 7→ 42))

}
⊤\N

// AT-READ-SN-ACQ

We have v ̸= 0⇒ b = true ∧ V1 = V . If v = 0, we return the invariant content unchanged.
If v ̸= 0 ∧ b = true, by EXCL-TOK-EXCL we have @V1

(ℓ+ 1 7→ 42). With V ′ ⊒ V0 ⊔ V and ⊒V ′, by
VS-MONO we have ⊒V1. With VA-ELIM, we get ℓ+ 1 7→ 42. We put back ⋄γ to re-establish mpI.
{((v = 0 ∗ ⋄γ) ∨ (v ̸= 0 ∗ ℓ+ 1 7→ 42)) ∗mpI(ℓ, γℓ, γ)}⊤\N

{(v = 0 ∗ ⋄γ) ∨ (v ̸= 0 ∗ ℓ+ 1 7→ 42)}⊤ // “loop invariant”, we use LÖB induction before the loop{
†2 ℓ ∗ ℓ+ 1 7→ 42

}
// †2 ℓ was framed

π5: ∗na(ℓ+ 1)
{
v .v = 42 ∗ †2 ℓ ∗ ℓ+ 1 7→ 42

}
// NA-READ

{v .v = 42}

FIGURE 12.2: Hoare proof outlines for mp
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Then we use VS-MONO to get ⊒V1, which allows us to use VA-ELIM and
get ℓ+ 1 7→ 42.

We give the Hoare proof outlines for the part that changes below.{
†2 ℓ ∗ ⋄γ

}
π4: repeat (∗acqℓ != 0);

Lo
op

bo
dy {⋄γ}⊤

∗rlxℓ // OINV-ACC-OBJ and AT-READ-SN

{(v = 0 ∗ ⋄γ) ∨ (v ̸= 0 ∗ ∃V ′ ⊒ V1.∇π ⊒V ′ ∗@V1
(ℓ+ 1 7→ 42))}⊤{

†2 ℓ ∗ ∇π ⊒V ′ ∗@V1
(ℓ+ 1 7→ 42)

}
π5: fenceacq;

{
†2 ℓ ∗ ⊒V ′ ∗@V1

(ℓ+ 1 7→ 42)
}

// HOARE-ACQ-FENCE{
†2 ℓ ∗ ℓ+ 1 7→ 42

}
// VS-MONO then VA-ELIM

π6: ∗na(ℓ+ 1)
{
v .v = 42 ∗ †2 ℓ ∗ ℓ+ 1 7→ 42

}
// NA-READ

{v .v = 42}

COMPARISON WITH IGPS PROOFS. The iGPS paper5 also presents similar 5Kaiser et al., “Strong Logic for Weak
Memory: Reasoning About Release-
Acquire Consistency in Iris” [Kai+17],
§3.2.2, §4.1.

proofs of the Message-Passing example, once in its base logic and once
in its surface logic. The proof presented in Figure 12.2 is slightly less
complicated than the iGPS base-level proof where views are fully explicit,
but is still more complicated than the iGPS surface-level proof, where
views are fully hidden. The proof in Figure 12.2 only hides views around
sequential (non-atomic) steps, but works with explicit views around
atomic access steps, because the proof employs objective invariants and
atomic points-to assertions. The iGPS surface-level proof for mp employs
GPS single-location protocols in place of objective invariants and atomic
points-to, and so views are hidden completely around atomic accesses.
That proof is thus simpler than our proof here, because the invariant mpI

is indeed a single-location invariant that governs the atomic accesses of
ℓ.

This demonstrates that working with explicit views using atomic
points-to in situations where we only have a single atomic location
(or multiple atomic locations that are unrelated) are counterproductive,
compared to single-location protocols. In §17 (Part III), we will show how
to derive the higher-level abstraction of GPS single-location protocols
from our atomic points-to and general invariants. Atomic points-to and
general invariants, however, significantly simplify the process of stating a
relation that spans multiple atomic locations, as we will see in Compass

(Part IV). Furthermore, as we will see, working with explicit views is not
just a trade-off (for multi-location invariants), but becomes a necessity
to achieve the stronger specifications of Compass.

12.2 Release-Acquire Message-Passing with Reclamation

We now look at the verification of the mp_reclaim, whose implementa-
tion and specification are given in Figure 12.3. The mp_reclaim program
extends mp simply by cleaning up the memory needed to perform the
message passing, in line π6 after reading the message and before return-
ing it. The main difference of the verification is now to show that the
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mp_reclaim ::=

π1: let ℓ := alloc(2) in

π2: ℓ :=na 0; (ℓ+ 1) :=na 0;

π3: fork { ρ1: (ℓ+ 1) :=na 42; ρ2: ℓ :=rel 1; }
π4: repeat (∗acqℓ != 0);

π5: letv := ∗na(ℓ+ 1) in

π6: free(ℓ, 2);

π7: v // 42

MP-RECLAIM-SPEC

{True}

mp_reclaim in π

{v .v = 42}⊤

FIGURE 12.3: Message-Passing with Recla-
mation call of free in line π6 is safe. We note that verifying mp_reclaim against

MP-RECLAIM-SPEC is the same as verifying mp against MP-SPEC-STRONG.
Recall that by the end the proof for mp (Figure 12.2), we are missing

only the non-atomic points-to ℓ 7→ 1 of the location ℓ, which has been
put in the invariant for shared atomic accesses, in the form of an atomic
points-to. To reclaim the atomic points-to of ℓ from the invariant, we need
to be able to cancel the invariant once thread π receives the message after
line π4. Interestingly, at the point the invariant does not hold anymore,
so we do not need the exclusive token ⋄γ and the disjunction as in mpI

(see Definition 12.2). On the other hand, we now need to deal with the
invariant token ♡γ

q of cancelable invariants (§11.2).

Definition 12.3 (Invariant for mp_reclaim). The invariant of mp_reclaim
does not need to be objective, so it contains the atomic points-to owner-
ship of ℓ in single-writer mode, without being under a view-at modality.

mpcI(ℓ, γl, γ) : vProp ::=

∃h, b, t0, V0. ℓ 7−→γℓ
sw h ∗ leth0 := [t0←(0, V0)] in

if b = false thenh = h0 else

∃t1 > t0, V1. h = [t0←(0, V0)][t1←(1, V1)] ∗@V1
(♡γ

1/2 ∗ ℓ+ 1 7→ 42)

The invariant also has two states (“initialized” and “signaled”) like the
invariant of mp. However, in the signaled state, instead of having a
disjunction between the exclusive token ⋄γ and the non-atomic points-to
of ℓ+ 1, the invariant just holds the points-to together with half of the
cancelable invariant token ♡γ

1/2, at the message view V1.

Intuitively, at the beginning the invariant token ♡γ
1/2 is split into two

halves, and each participant (threads π and ρ) will keep one half to
access the invariant. Once thread ρ is done, it sends back its half ♡γ

1/2

together with ℓ+ 1 7→ 42 (by putting them in mpcI so that thread π can
acquire both, reconstruct the full token ♡γ

1 , and cancel the invariant to
get back ℓ 7−→γℓ

sw h.

Proof sketch for mp_reclaim . The Hoare proof outlines for mp_reclaim

are given in Figure 12.4. We note several important points.

• Between line π2 and π3, we allocate a cancelable invariant for
mpcI. But instead of using CINV-ALLOC, we use the stronger rule
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{True}
π1: let ℓ := alloc(2) in

π2: ℓ :=na 0; (ℓ+ 1) :=na 0;
{
ℓ 7→ 0 ∗ ℓ+ 1 7→ 0 ∗ †2 ℓ

}
// NA-ALLOC and NA-WRITE{

ℓ+ 1 7→ 0 ∗ †2 ℓ ∗ ∃γℓ, t0, V0. ⊒V0 ∗ ℓ 7−→γℓ
sw [t0←(0, V0)] ∗ ℓ ⊒γℓ

sw [t0←(0, V0)]
}

// NA-AT-SW

Context: ⊒V0 ∗ ℓ ⊒γℓ
sn [t0←(0, V0)] // AT-SW-SY and AT-SY-SN{

ℓ+ 1 7→ 0 ∗ †2 ℓ ∗ ℓ ⊒γℓ
sw [t0←(0, V0)] ∗ ℓ 7−→γℓ

sw [t0←(0, V0)] ∗ ∃γ.∀I . |⇛⊤ ⊤\N
. . .

}
// CINV-ALLOC-OPEN{

ℓ+ 1 7→ 0 ∗ †2 ℓ ∗ ℓ ⊒γℓ
sw [t0←(0, V0)] ∗ ♡γ

1 ∗ mpcI(ℓ, γℓ, γ)
γ,N}

Context: mpcI(ℓ, γℓ, γ)
γ,N

π3: fork { . . . } // HOARE-FORK

Th
re

ad
ρ

{
ℓ+ 1 7→ 0 ∗ ℓ ⊒γℓ

sw [t0←(0, V0)] ∗ ♡γ
1/2

}
⊤

ρ1: (ℓ+ 1) :=na 42;
{
ℓ+ 1 7→ 42 ∗ ℓ ⊒γℓ

sw [t0←(0, V0)] ∗ ♡γ
1/2

}
⊤

// NA-WRITE

A
cc

es
si

ng
m
p
cI

{
ℓ+ 1 7→ 42 ∗ ℓ ⊒γℓ

sw [t0←(0, V0)] ∗ ♡γ
1/2 ∗ ∃Vi.⊔Vi

(▷mpcI(ℓ, γℓ, γ))

∗ . . . (* closing viewshifts *)

}
⊤\N

// CINV-ACC-GEN{
ℓ+ 1 7→ 42 ∗ ℓ ⊒γℓ

sw [t0←(0, V0)] ∗ ♡γ
1/2 ∗ ⊔Vi

(ℓ 7−→γℓ
sw [t0←(0, V0)]) ∗ . . .

}
⊤\N

ρ2: ℓ :=rel 1;{
∃t1, V1 ⊐ V0. ⊒V1 ∗@V1

(♡γ
1/2 ∗ ℓ+ 1 7→ 42)

∗@V1
ℓ ⊒γℓ

sw [t0←(0, V0)][t1←(1, V1)] ∗ ⊔Vi
(ℓ 7−→γℓ

sw [t0←(0, V0)][t1←(1, V1)]) ∗ . . .

}
⊤\N

// By applying AT-WRITE-SW-REL-VJ with ⊒V0

We pick the “signaled” state for mpcI. We use the second closing viewshift option to close and
release @V1

♡γ
1/2 to the invariant at the same time, in addition to @V1

(ℓ+ 1 7→ 42).
{ℓ ⊒γℓ

sw }⊤ // VA-ELIM

{True}⊤{
†2 ℓ ∗ ♡γ

1/2

}
π4: repeat (∗acqℓ != 0);

Lo
op

bo
dy

{
♡γ

1/2

}
⊤

A
cc

es
si

ng
m
p
cI

{
♡γ

1/2 ∗ ∃Vi.⊔Vi ▷mpI(ℓ, γℓ, γ) ∗ . . . (* closing viewshifts *)
}
⊤\N

// CINV-ACC-GEN{
♡γ

1/2 ∗ ⊒V0 ∗ ℓ ⊒γℓ
sn [t0←(0, V0)] ∗ ⊔Vi

(ℓ 7−→γℓ
sw h) ∗ ▷(if . . . then . . . else . . .) ∗ . . .

}
⊤\N

∗acqℓ

{
v .∃h′ ⊆ h, t, V, V ′ ⊒ V0 ⊔ V. h′(t) = (v , V ) ∗ ⊒V ′ ∗ ⊔Vi

(ℓ 7−→γℓ
sw h)

∗ ♡γ
1/2 ∗ (if b = false then . . . else@V1(♡

γ
1/2 ∗ ℓ+ 1 7→ 42)) ∗ . . .

}
⊤\N

// AT-READ-SN-ACQ-VJ

We have (v ̸= 0⇒ b = true ∧ V1 = V ). If v = 0, we return the invariant content unchanged.
If b = true, we have @V1

(♡γ
1/2 ∗ ℓ+ 1 7→ 42). With VS-MONO and VA-ELIM, we get

♡γ
1/2 ∗ ℓ+ 1 7→ 42. Combining with π’s own ♡γ

1/2 we get ♡γ
1 .{

(v = 0 ∗ ♡γ
1/2 ∗ ⊔Vi

mpcI(ℓ, γℓ, γ)) ∨ (v ̸= 0 ∗ ♡γ
1 ∗ ℓ+ 1 7→ 42 ∗ ⊔Vi

(ℓ 7−→γℓ
sw h))

∗ . . . (* closing viewshift *)

}
⊤\N

If v = 0, we use the first closing viewshift option to close the invariant. If v ̸= 0, we use the third
closing viewshift option to cancel the invariant. By the cancelation (CINV-ACC-GEN), we get ⊒Vi,
which can be used with VJ-ELIM to get ℓ 7−→γℓ

sw h. We then use AT-NA to get ℓ 7→ 1.{
(v = 0 ∗ |⇛⊤\N ⊤♡γ

1/2) ∨ (v ̸= 0 ∗ ℓ 7→ [1, 42] ∗ |⇛⊤\N ⊤True)
}
⊤\N{

(v = 0 ∗ ♡γ
1/2) ∨ (v ̸= 0 ∗ ℓ 7→ [1, 42])

}
⊤

// “loop invariant”, we use LÖB induction before the loop{
†2 ℓ ∗ ℓ 7→ [1, 42]

}
// †2 ℓ was framed

π5: letv := ∗na(ℓ+ 1) in
{
v = 42 ∗ †2 ℓ ∗ ℓ 7→ [1, 42]

}
// NA-READ

π6: free(ℓ, 2); {v = 42} // NA-UNSYNC and NA-DEALLOC

π7: v {v .v = 42} FIGURE 12.4: Hoare proof outlines for
mp_reclaim
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CINV-ALLOC-OPEN (Figure 11.3), because our invariant mpcI depends
on the invariant identifier γ itself. CINV-ALLOC-OPEN allows us to
get the identifier γ before picking the invariant content which can
depend on γ. In our case, that is mpcI(ℓ, γℓ, γ).

• After the allocation of mpcI(ℓ, γℓ, γ)
γ,N

, we also get the full in-
variant token ♡γ

1 , which we split into two halves of ♡γ
1/2, using

CINV-TOK-FRAC. We then give one half to the thread ρ, using HOARE-

FORK. The thread π retains the other half.

• In the proof of thread ρ, around the atomic access in line ρ2, we
also do not use the simple rule CINV-ACC, but instead use CINV-ACC-

GEN to access the invariant. The latter gives us several options when
closing the invariant, of which we will use the second option (see
Figure 11.3). The second option allows us to use the half token♡γ

1/2

(which we have used to open the invariant) to close the invariant
and simultaneously release it into the invariant content mpcI. CINV-

ACC-GEN indeed allows us to keep ♡γ
1/2 around after opening (and

does not consume ♡γ
1/2 like CINV-ACC), so that when performing the

release write of 1 to ℓ, we also release♡γ
1/2 together with ℓ+1 7→ 42.

That is, after the write, we have @V1
(♡γ

1/2 ∗ ℓ+ 1 7→ 42) where V1

is the message view of the write.

The second closing option looks as follows.

∀V ′, P.
(
@V ′♡γ

1/2 ∗
(
@V ′♡γ

1/2 ≡−∗E\N (⊔Vi
▷mpcI(ℓ, γℓ, γ)) ∗ P

))
≡−∗E\N E P

With @V1
(♡γ

1/2 ∗ ℓ+ 1 7→ 42) and the atomic points-to

⊔Vi
(ℓ 7−→γℓ

sw [t0←(0, V0)][t1←(1, V1)])

after the write, we instantiate the second closing option with V ′ :=

V1 and P := True. We give up @V1
♡γ

1/2 for the left-hand side of the

separating conjunction before the wand viewshift ( ≡−∗E\N E). For
the right-hand side, it is easy to show that

@V1(ℓ+ 1 7→ 42) ∗ ⊔Vi(ℓ 7−→γℓ
sw [t0←(0, V0)][t1←(1, V1)])

⊢ @V1
♡γ

1/2 ≡−∗E\N ⊔Vi
▷mpcI(ℓ, γℓ, γ)

by picking the signaled state (b = true) for mpcI(ℓ, γℓ, γ). We note
that @V1

(♡γ
1/2 ∗ ℓ+ 1 7→ 42) ⊣⊢ ⊔Vi

@V1
(♡γ

1/2 ∗ ℓ+ 1 7→ 42), due to
VJ-VA (Figure 8.3).

After the instantiation, we get |⇛E\N E True that we use to close the
invariant and complete the access.

Note that AT-WRITE-SW-REL allows us the option to also release
the single-writer ownership to the invariant, because we have
@V1

ℓ ⊒γℓ
sw . We do not need this feature here, but it can be useful

elsewhere (see §17).

• The same situation applies for thread π’s atomic access in line π4:
we need to use CINV-ACC-GEN to open the invariant, and in case the
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AT-WRITE-SW-REL-VJ

{⊒V0 ∗ ℓ ⊒sw h ∗ ⊔Vb
(ℓ tx7−→sw h) ∗ P} ℓ :=rel v in π {h.∃t, V ⊐ V0. max(dom(h)) < t ∗ ⊒V ∗@V P ∗

@V (ℓ ⊒sw h[t←(v , V )]) ∗ ⊔Vb
(ℓ t7−→sw h[t←(v , V )])}E

AT-READ-SN-ACQ-VJ

{⊒V0 ∗ ℓ ⊒sn h0 ∗ ⊔Vb
(ℓ tx7−→θ h)} ∗acqℓ in π {v .∃h′, t, V, V ′ ⊒ V0 ⊔ V. h0 ⊆ h′ ⊆ h ∗

h′(t) = (v , V ) ∗ t ≥ max(dom(h0)) ∗

⊒V ′ ∗@V ′(ℓ ⊒sn h
′) ∗ ⊔Vb

(ℓ tx7−→θ h)
}E

FIGURE 12.5: Derived iRC11 atomic ac-
cess rules with the view-join modalityinvariant is in the signaled state (b = true), we need to use VJ-VA to

get @V1
(♡γ

1/2 ∗ ℓ+ 1 7→ 42). If the invariant is in the signaled state,
we acquire @V1(♡

γ
1/2 ∗ ℓ+ 1 7→ 42) from the invariant, which we

can use VA-ELIM to get ♡γ
1/2 ∗ ℓ+1 7→ 42, because we also have ⊒V1

thanks to the acquire read. Note that we also have π’s half token
♡γ

1/2 locally, so together we have the full token ♡γ
1 (using CINV-TOK-

FRAC). We then use the third closing option from CINV-ACC-GEN to
cancel the invariant, from which we receive ⊒Vi ∗ |⇛⊤\N ⊤True.
We use the fancy update to conclude the access. We combine ⊒Vi

with ⊔Vi(ℓ 7−→γℓ
sw h) to get ℓ 7−→γℓ

sw h, using VJ-ELIM. We then use AT-

NA to turn ℓ’s atomic points-to to the non-atomic points-to ℓ 7→ 1,
knowing that 1 is the latest write in h.

• Last but not least, we note that the atomic access rules AT-WRITE-

SW-REL and AT-READ-SN-ACQ are not directly applicable to this proof,
because the rules require an atomic points-to under a view-at
modality, i.e., @Vb

ℓ 7−→θ h, while we get a points-to under a view-join
modality from the cancelable invariant access rule, i.e., ⊔Vb

ℓ 7−→θ h.
Fortunately, in general, rules with the view-join modality can be
derived from those with the view-at modality. We show the derived
versions AT-WRITE-SW-REL-VJ and AT-READ-SN-ACQ-VJ in Figure 12.5.
We demonstrate the derivation of AT-WRITE-SW-REL-VJ below.

Proof sketch of AT-WRITE-SW-REL-VJ. With ⊒V0 and ⊔Vb
(ℓ tx7−→sw h), we use

VJ-ELIM-VA (Figure 8.3) to get

⊒V ′ ∗@(V ′⊔Vb)(ℓ
tx7−→sw h)

for some V ′ ⊒ V0. We apply AT-WRITE-SW-REL with @(V ′⊔Vb)(ℓ
tx7−→sw h). In

the post-condition we get back the atomic points-to in the form

@V ′⊔Vb⊔V (ℓ
t7−→sw h[t←(v , V )])

for some V ⊐ V0 and ⊒V . We can rewrite it using VA-VJ to the form

@V ′⊔V (⊔Vb
(ℓ t7−→sw h[t←(v , V )]))

We now use VA-ELIM to get back ⊔Vb
(ℓ t7−→sw h[t←(v , V )]). Note that we

have ⊒(V ′ ⊔ V ) from ⊒V ′ and ⊒V using VS-JOIN.
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spawn ::=

λ[f ].

1: let ℓ := alloc(2) in

2: ℓ :=na 0; // init to 0

3: fork { f([ℓ]) }; // spawn f

4: ℓ

finish ::=

λ[ℓ,v ].

1: (ℓ+ 1) :=na v ; // write result

2: ℓ :=rel 1 // signal done

join ::=

λ[ℓ].

1: repeat (∗acqℓ != 0);

2: letv := ∗na(ℓ+ 1) in

3: free(ℓ, 2); // clean up

4: v // return result

SPAWN-SPEC

{
(
∀ℓ, ρ.FinishHandleN (ℓ, Φ) −∗ wp f([ℓ]) in ρ { .True}[⊤]

)
} spawn([f ]) in π {ℓ.∃γ. JoinHandleN (ℓ, Φ)}⊤

FINISH-SPEC

{FinishHandleN (ℓ, Φ) ∗ Φ(v)} finish([ℓ,v ]) in π { .True}⊤
JOIN-SPEC

{JoinHandleN (ℓ, Φ)} join([ℓ]) in π {v . Φ(v)}⊤

FIGURE 12.6: A Spawn-and-Join library

12.3 Spawn and Join

We now look at the verification of a spawn-and-join library, which allows
us to spawn an arbitrary computation on a child thread, and wait for the
child thread to receive the computation result. The implementation and
specification are given in Figure 12.6.

The library provides 3 functions: spawn, finish, and join. finish

and join are meant to be used—and indeed are implemented exactly—as
message passing: once the child thread is done with the computation, it
calls finish([ℓ,v ]), which writes the computation result v non-atomically
to ℓ + 1, and signals the completion with a release write of 1 to ℓ. A
waiting thread calls join([ℓ]), which waits with a repeat loop reading ℓ,
and once the loop finishes it reads the result from ℓ+ 1, and cleans up
the memory block of ℓ. The child thread can be spawned with spawn([f ]),
where f is the computation that is to be executed in parallel. spawn

simply allocates the block of size 2. The allocated block with the base
location ℓ is initialized with 0 for ℓ—we do not really need to initialize
ℓ + 1 (this applies to mp too). spawn then forks a new thread with the
computation f , which takes in the location ℓ to report the result. It
is assumed that f will call finish([ℓ,v ]) at the end. If this is not the
case, then f does not need to take ℓ as an argument but we assume f

returns the computation result, and we can then change spawn’s line 3 to
fork { finish([ℓ, f()]) }.

The specifications of the library functions assume a predicate Φ :

Val→ vProp, where the computation is expected to produce not just some
value v , but also the resource Φ(v). The specifications assume a names-
pace N that will be used to allocate the library invariant. The specifica-
tions then involve two assertions: the finish handle FinishHandleN (ℓ, Φ)

and the join handle JoinHandleN (ℓ, Φ). Intuitively, both handles will
be generated by spawn, and then the finish handle will be given to the
computation f , which eventually must call finish, while the join handle
will be given to the caller of join. As such, SPAWN-SPEC says that spawn
(1) assumes for the computation f a weakest pre-condition that will
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consume the finish handle that spawn generates, and (2) returns the join
handle in the post-condition. FINISH-SPEC says that once f produces the
result v and finally calls finish, it consumes the finish handle and release
the resource Φ(v). JOIN-SPEC says that join consumes the join handle
generated by spawn and once it is done the resulting resource Φ(v) is
returned.

Note that we could have stated the pre-condition of SPAWN-SPEC with
a Hoare triple for f , i.e.,

∀ℓ, ρ. {FinishHandleN (ℓ, Φ)} f([ℓ]) in ρ { .True}⊤

However, stating as it in in SPAWN-SPEC, we allow the client to use extra
resources to verify their f . Recall that a Hoare triple is defined with a
persistent modality (□), so if we use a Hoare triple the client can only
use FinishHandleN (ℓ, Φ) for the proof of f .

Definition 12.4 (Invariant for Spawn-and-Join). The invariant of Spawn-
and-Join is almost the same as that for mp_reclaim (Definition 12.3),
except that the message to be sent is now some value v together with the
resource Φ(v).

spawnJoinI(ℓ, γl, γ) : vProp ::=

∃h, b, t0, V0. ℓ 7−→γℓ
sw h ∗ leth0 := [t0←(0, V0)] in

if b = false thenh = h0 else

∃t1 > t0, V1. h = [t0←(0, V0)][t1←(1, V1)]

∗@V1
(♡γ

1/2 ∗ ∃v . ℓ+ 1 7→ v ∗ Φ(v))

Definition 12.5 (Model of Handles).

FinishHandleN (ℓ, Φ) ::= ∃γℓ, γ, t, V. ℓ+ 1 7→ h ∗ ℓ ⊒γℓ
sw [t←(0, V )]

∗ ♡γ
1/2 ∗ spawnJoinI(ℓ, γl, γ)

γ,N

JoinHandleN (ℓ, Φ) ::= ∃γℓ, γ, t, V. ℓ ⊒γℓ
sn [t←(0, V )] ∗ †2 ℓ

∗ ♡γ
1/2 ∗ spawnJoinI(ℓ, γl, γ)

γ,N

The model for the finish and join handles mirror exactly what we have
seen in the proof of mp_reclaim (Figure 12.4). In particular, the finish
handle FinishHandleN (ℓ, Φ) carries the resources needed to send the mes-
sage (but without Φ(v)), mirroring the resources owned by the thread ρ

of mp_reclaim: (1) the non-atomic points-to of the location ℓ+1 that will
be used to store the result, (2) the single-writer ownership of the flag ℓ,
and (3) the half token ♡γ

1/2 and the knowledge of the cancelable invari-

ant spawnJoinI(ℓ, γl, γ)
γ,N

. The join handle JoinHandleN (ℓ, Φ) carries
the resources needed to receive the message and to clean up the memory
locations, mirroring the resources owned by the thread π of mp_reclaim
from line π4: (1) the seen-history observation of the flag ℓ, (2) the block
ownership of ℓ, and (3) the other half token ♡γ

1/2 and the knowledge of
the same cancelable invariant.

The proofs of FINISH-SPEC and JOIN-SPEC then follow almost the same
proof of mp_reclaim in Figure 12.4. The main differences is the extra
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Context: let P :=
(
∀ℓ, ρ.FinishHandleN (ℓ, Φ) −∗ wp f([ℓ]) in ρ { .True}[⊤]

)
{P}
1: let ℓ := alloc(2) in

2: ℓ :=na 0;
{
ℓ 7→ 0 ∗ ℓ+ 1 7→ h ∗ †2 ℓ

}
// NA-ALLOC and NA-WRITE{

P ∗ ℓ+ 1 7→ h ∗ †2 ℓ ∗ ∃γℓ, t0, V0. ⊒V0 ∗ ℓ 7−→γℓ
sw [t0←(0, V0)] ∗ ℓ ⊒γℓ

sw [t0←(0, V0)]
}

// NA-AT-SW{
P ∗ ℓ+ 1 7→ h ∗ †2 ℓ ∗ ℓ ⊒γℓ

sw [t0←(0, V0)] ∗ ♡γ
1 ∗ spawnJoinI(ℓ, γℓ, γ)

γ,N}
// CINV-ALLOC-OPEN

Context: spawnJoinI(ℓ, γℓ, γ)
γ,N{

P ∗ ℓ+ 1 7→ h ∗ ℓ ⊒γℓ
sw [t0←(0, V0)] ∗ ♡γ

1/2 ∗ ℓ ⊒
γℓ
sn [t0←(0, V0)] ∗ †2 ℓ ∗ ♡γ

1/2

}
// AT-SW-SY and AT-SY-SN and CINV-TOK-FRAC{
P ∗ FinishHandleN (ℓ, Φ) ∗ JoinHandleN (ℓ, Φ)

}
3: fork { . . . } // HOARE-FORK

C
hi

ld
th

re
ad

{
P ∗ FinishHandleN (ℓ, Φ)

}
f([ℓ]) in ρ

{ .True} // By applying P{
JoinHandleN (ℓ, Φ)

}
4: ℓ

{
ℓ. JoinHandleN (ℓ, Φ)

}
FIGURE 12.7: Hoare proof outlines for
SPAWN-SPEC releasing and acquiring of the resulting resource Φ(v). In the proof of

FINISH-SPEC, corresponding to line ρ2 of mp_reclaim, when invoking AT-

WRITE-SW-REL-VJ we also release Φ(v) to the view V1, i.e., we get @V1Φ(v)

in the post-condition, which we then put into the invariant. In the proof
of JOIN-SPEC, at the end of the loop in line π4 of mp_reclaim, we acquire
also @V1Φ(v), which again can be used with VA-ELIM to get Φ(v).

The proof of SPAWN-SPEC also follows the proof of mp_reclaim. We
give its Hoare proof outlines in Figure 12.7.

12.4 A Release-Acquire Treiber Stack

We now look at the verification of a linked-list based Treiber stack im-
plementation using release-acquire and relaxed accesses, given in Fig-
ure 12.8. The interface includes 5 functions:

1. new_stack([]) allocates and returns a new, empty stack handle s;

2. push([s,v ]) pushes a new element v into the stack s;

3. pop([s]) pops and returns an element in s , unless s is empty then it
returns 0;

4. try_push([s,v ]) is a try version of push, which returns true if it have
successfully pushed to the stack s, or returns false if it fails to do
so. try_push can fail due to contention by concurrent pushes/pops.
Unlike try_push, push would try again until it succeeds.

5. try_pop([s,v ]) is a try version of pop. It returns an element from
the stack s , or returns empty (0), or returns−1 in case it fails due to
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new_stack ::=

λ[].

1: let s := alloc(1) in

2: s :=na 0;

3: s

try_push_swap ::=

λ[s, n].

1: let sh := ∗rlxs in

2: n :=na sh;

3: CASrel(s, sh, n)

try_push ::=

λ[s,v ].

1: letn := alloc(2) in

2: (n+ 1) :=na v ; // write elem

3: if try_push_swap([s, n])

4: then true

5: else free(n, 2); false

push ::=

λ[s,v ].

1: letn := alloc(2) in

2: (n+ 1) :=na v ; // write elem

3: repeat (try_push_swap([s, n]))

try_pop ::=

λ[s].

1: let sh := ∗acqs in

2: if sh == 0 // null

3: then 0 // EMPTY

4: else

5: letn := ∗nash

6: if CASacq(s, sh, n) // swap

7: then ∗na(sh + 1) // read elem

8: else−1 // FAIL

pop ::=

rec pop([s]) :=

1: letv := try_pop([s]) in

2: ifv == −1
3: then pop([s]) elsev

FIGURE 12.8: A simple release-acquire
implementation for Treiber stackscontention by concurrent pushes/pops. Unlike try_pop, pop would

try again until it succeeds or until it finds that the stack is empty.

12.4.1 A Release-Acquire Implementation of the Treiber Stack

The implementation employs a list-linked based representation of the
stack, which only requires non-atomic (na) accesses, because once a node
is initialized it is never changed. The only atomic location is the location
for the head of the stack. We note that the implementation does not take
care of resource reclamation, and nor do we have an interface for that.
The implementation includes an extra internal function try_push_swap.

• new_stack([]) allocates a location s that will store the pointer to
the head node, i.e., the top of the stack. s is initialized to null, i.e.,
the value 0 (line 2).

• try_push([s,v ]) starts with allocating a node n of size 2 to store the
to-be-pushed element v . The value v is stored at the location n+ 1

(line 2), while the location n will be used to store the pointer to
the next node in the linked list of the stack. try_push then calls
try_push_swap([s, n]) to try to swap n in as the new head (line 3).
The function returns true if the try succeeds. Otherwise, it cleans
up the node n and returns false (line 5).

• try_push_swap([s, n]) tries to read the pointer sh to the (potentially
current) head of the stack s, and then stores sh in the next “field”
of the new node n (which is n) in line 2. Then in 3 it uses a release
compare-and-swap (CAS) instruction to try to swap n for sh in the
location s. The function returns the value returned by the CAS. If
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the CAS succeeds, it returns true, and the stack pointer s points-to
the new head node n, which in turn points-to the old head node sh.

If the CAS fails, it returns false and nothing changes but the node
n’s next field. The CAS may fail if sh was not really the current head
of s. This could be because the relaxed in line 1 may read a stale
value, or because there are concurrent push or pop operations that
have updated the head of the stack while the function was running
between lines 1 and 3.

Note that the CAS is a release (rel) CAS, i.e., it uses only the release
write access mode for the successful write, and it only uses the
relaxed access mode for the reads in both success and failure cases.
The release write mode allows a successful push to release anything
that happens before it to the matching successful pop.

• push([s,v ]) is similar to try_push: it allocates and initializes a new
node n, but instead of calling try_push_swap only once, it will keep
calling try_push_swap until it succeeds.

• try_pop([s]) tries to read the top (first) node of the stack—which
the head pointer points to—and the second node, and swaps the
head pointer to point to the second node. More specifically, in
line 1, it reads the potentially current head of the stack into sh. If
sh is null (0), it returns empty (0) immediately, in line 3. If sh is
not null, then in line 5 the function reads the pointer to sh’s next
node, stored in the location sh, into n. The function then uses an
acquire CAS to swap n for sh in the location s (line 6). If the CAS

succeeds, then n will be the new top of the stack, and the function
can read and return the element value of the old top, from the
location sh + 1, in line 7.

If the CAS fails, then try_pop returns −1 to signal failure due to
possible contention by concurrent operations. The CAS is an acquire
(acq) CAS, i.e., it uses the acquire mode for the successful read, but
uses the relaxed mode for the successful write and the failure read.
This is because a pop does not try to release anything. Instead, it
acquires what the matching push that it reads from was releasing.
In other words, the happens-before hb relation is only established
between matching pairs of a successful push and a successful pop.

• pop([s]) simply calls try_pop. It only returns if try_pop returns
an actual element or the empty value 0. If try_pop fails due to
contention, pop tries again.

We note again the all accesses to the link-list’s nodes are non-atomic.
Furthermore, only the successful write of a push operation uses the
release access mode, and in a pop operation, only the read of the head
in 1 and the successful read by the CAS in 6 use the acquire access mode.
Other memory accesses use relaxed access mode.
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STACK-BAG-NEW

{True} new_stack([]) in π {s. isStackN (s, Φ)}⊤

STACK-BAG-TRY-PUSH

{isStackN (s, Φ) ∗ Φ(v)} try_push([s,v ]) in π {b. (b = false ∗ Φ(v)) ∨ b = true}⊤

STACK-BAG-TRY-POP

{isStackN (s, Φ)} try_pop([s]) in π {v .v = −1 ∨v = 0 ∨ Φ(v)}⊤

STACK-BAG-PUSH

{isStackN (s, Φ) ∗ Φ(v)} push([s,v ]) in π {h.True}⊤
STACK-BAG-POP

{isStackN (s, Φ)} pop([s]) in π {v .v = 0 ∨ Φ(v)}⊤

STACK-BAG-TRY-PUSH-SWAP

{isStackN (s, Φ) ∗ Φ(v) ∗ n 7→ ∗ (n+ 1) 7→ v ∗ †2 n}
try_push_swap([s,v ]) in π

{b. (b = false ∗ Φ(v) ∗ n 7→ ∗ (n+ 1) 7→ v ∗ †2 n) ∨ b = true}⊤

FIGURE 12.9: Bag or per-element specifi-
cations for Treiber stacks

12.4.2 Bag or Per-element Specifications for Stacks

We will verify the implementation in Figure 12.8 against the so-called bag
or per-element specifications, given in Figure 12.9. These specifications
are rather weak: they only establish a connection between matching pairs
of successful push and pop operations. We will verify the implementation
against stronger specifications that establish stack properties, e.g., last-
in-first-out (LIFO), in Part IV. Nevertheless, the bag specifications are
sufficient as a good demonstration for iRC11—they were also used in
GPS/iGPS.6 6Turon et al., “GPS: navigating weak

memory with ghosts, protocols, and sep-
aration” [TVD14]; Kaiser et al., “Strong
Logic for Weak Memory: Reasoning
About Release-Acquire Consistency in
Iris” [Kai+17].

The specifications involve a persistent assertion isStackN (s, Φ) which
says that the location s is a stack tied to a predicate Φ : Val → vProp.
STACK-BAG-NEW says that new_stack([]) returns a new stack s that satisfies
isStackN (s, Φ) for the user-chosen Φ and N . The namespace N is needed
to store the underlying invariant for the stack s. The predicate Φ(v)

dictates the per-element resource that a push operation of v will release.
As can be seen in STACK-BAG-TRY-PUSH and STACK-BAG-PUSH, a successful
push of v to the stack s will consume Φ(v), while a failed try_push will
not. On the other side, STACK-BAG-TRY-POP and STACK-BAG-POP says that a
successful non-empty pop of some element v from the stack s will acquire
the corresponding resource Φ(v) that has been released by the push of v .
As such, the specifications at least recognize the synchronization between
matching pairs of push and pop operations, by which a user-chosen
resource Φ(v) can flow from one thread to another. Under the hood,
this synchronization is established by the release-acquire synchronization
through the stack location s (between line 3 of try_push_swap and line 1

of try_pop).

We also give the specification STACK-BAG-TRY-PUSH-SWAP for the in-
ternal function try_push_swap. The function assumes the non-atomic
ownership of the locations n and n + 1, and requires that n + 1 has
been set to the to-be-pushed value v . Additionally it also assumes the
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per-element resource Φ(v). All of these resources will be consumed if the
function succeeds.

12.4.3 Verification of the Treiber Stack against the Bag Specifications

From the specification STACK-BAG-TRY-PUSH-SWAP for try_push_swap, we
can easily verify try_push and push against STACK-BAG-TRY-PUSH and
STACK-BAG-PUSH. Furthermore, we also can easily verify pop against STACK-

BAG-POP assuming STACK-BAG-TRY-POP for try_pop. We therefore present
the verifications of new_stack, try_push_swap, and try_pop below. As
usual, we start with defining the invariant for the stack implementation.

Definition 12.6 (Invariant for Per-element Treiber Stack).

null0(v) ::= (v = Some(ℓ)) ? ℓ : 0

AllNodes(vs) ::= ∗
(Some(n),V )∈vs

∃q,v .@V (n
q7−→ null0(v))

InNodes(S) ::=

∗
n=S(i)

∃v . n+ 1 7→ v ∗ Φ(v) ∗ †2 n ∗ ∃q. n q7−→ null0(S(i+ 1))

TreiberBI(s, γ) ::=

∃Vs , t0, Vh, vs, S.

letvh : Loc? := hd(S); vs ′ : (Loc?,View) := vs ++ [(vh, Vh)] in

leth :=[t0 + i←(null0(v), V ) | vs ′(i) = (v , V )] in

@Vs
(s 7−→γ

con h) ∗@Vh
InNodes(S) ∗ AllNodes(vs ′) ∗ †1 s

isStackN (s) ::= ∃γ, h. s ⊒γ
sn h ∗ TreiberBI(s, γ)

N

The invariant content TreiberBI(s, γ) for some location s an its atomic
period identifier γ (used by its atomic points-to) is objective, as we will
put it in an objective invariant (§11.1) because we do not care to reclaim
the stack. Nevertheless, we leave the block ownership (free(1, s) for the
stack pointer and †2 n for each node) in the definition as a reminder that
we may want to extend the invariant to support reclamation of the stack.
isStackN (s, Φ) simply asserts the existence of the objective invariant for
TreiberBI(s, γ) in N , and a seen-history observation for s, needed to
perform atomic operations on s.

The definitions rely on a null0 function that turns an optional location
(v ∈ Loc?) into a nullable location value, where null is the value 0.
The invariant content TreiberBI(s, γ) is composed of 3 parts: the atomic
points-to of s, the ownership of nodes (in S) that are currently in the
stack, and the ownership of all nodes (in vs ′) that have ever been in the
stack.

• The atomic points-to ownership s 7−→γ
con h of the stack pointer

is put in the concurrent mode (con) and at some view Vs (to
make it objective). The history h is a contiguous block of writes
because we only use CAS’s on s.7 This contiguous block of writes7Note that we do not use the CAS-only

mode (cas) atomic points-to yet—that
mode was developed mainly for GPS pro-
tocols in Part III. Nevertheless, the contigu-
ous block-of-writes abstraction can also
be a useful feature for CAS-only atomic
points-to, but it has not been incorporated
into atomic points-to.

starts at the timestamp t0, and contains the writes from the list
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vs ′ ∈ (Loc?,View) of pairs of optional locations and views. That is,
the history of s only contains nullable location values.

The top write of the block, which is the latest write to s and
the pointer to the current top node of the stack, is the message
(t0 + |vs| , null0(vh), Vh),8 where vs is the list of non-current writes 8Indices i to a list start at 0.

to s. vh is the head (hd) of the stack’s abstract state S ∈ Loc,
which is a list of pointers to nodes in the stack. We model the
abstract stack as a list whose top element is at index 0 and bottom
element is at index (|S| − 1). If the abstract stack is empty, i.e.,
S = [], then hd(S) = None, and the latest write to s has the value
null0(None) = 0, i.e., the null value.

• InNodes(S) contains ownership of all nodes that are currently in
the stack. It constructs a singly-linked list starting from the top
node of the abstract stack S, which is at index 0, and ending at
the bottom node at index (|S| − 1). The ownership of each node is
grouped together using the big separating conjunction∗.

For each node S(i) = n ∈ Loc that is currently in the stack, we
have: (1) the full non-atomic points-to ownership n + 1 7→ v of
the data field with a pushed value v , and (2) the corresponding
released resource Φ(v) of the push, and (3) a fractional non-atomic
points-ownership n q7−→ null0(S(i+1)) of n’s next field that points-to
the next node in the stack. If (i+ 1) is out-of-bound, then S(i+ 1)

is None and the next field of the bottom node will store the null
value (0).

• AllNodes(vs ′) contains fractional ownership of next fields of all
nodes (vs ′) that have ever been in the stack. For every write to s

with a non-null location n (a node) and message view V , it owns a
fraction of the non-atomic points-to n q7−→ null0(v)) for n’s next field,
which has some nullable location value v . The fractional points-to
is put at the view V of the write message to the stack location s.
AllNodes(vs ′) is needed because a pop operation can read the next
field of any node that has ever been in the stack (line 5 of try_pop).

Remark 12.7 (On Reclaiming Stack Resources). Looking at the defini-
tion of TreiberBI, we can see that the main problem with reclaiming the
stack’s resources is in the non-atomic points-to ownership of the nodes’
next fields: they are split into fractions that are not carefully tracked
(existentially quantified), and there are overlapping ownership between
InNodes(S) and AllNodes(vs ′). AllNodes(vs ′) is needed because of the
non-atomic read of a node’s next field in try_pop’s line 5. More specif-
ically, we need to acquire some fraction q of n’s non-atomic in line 1,
so that at line 5 we can read n. To enable reclamation, we either have
to recollect this fraction q, or avoid giving out a fraction at all. With
the latter choice, we keep the full ownership of n in the invariant, and
turn the non-atomic read in 5 into a relaxed read of n, which now can
open the invariant to access n. Naturally, we have to avoid the overlaps
between InNodes(S) and AllNodes(vs ′), by carefully split the nodes into
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those currently in the stack, and those that have been but are no longer
in the stack. Once all of that is set up, we use a cancelable invariant
(§11.2) to be able to reclaim all resources that have ever been put into
the stack.

We now look at the proof sketches of the most 3 important functions.

Proof sketch of new_stack. The proof is easy. We use NA-ALLOC and NA-

WRITE (§9.1) respectively for allocation and initialization of s. Then we
use NA-AT-SW (Figure 10.2) to turn the non-atomic points-to to an atomic
points-to in single-writer mode (sw) with some atomic period identifier γ,
and AT-SW-CON to switch the mode to concurrent (con). We then use VA-

INTRO to put the atomic points-to of s at some view Vs . From the allocated
resources we can easily construct TreiberBI(s, γ), because the history of
s is a singleton with a null location value. We use OINV-ALLOC-OBJ (§11.1)
to allocate the invariant, and then we are done.

{True}
1: let s := alloc(1) in{
s. †1 s ∗ s 7→ h

}
// NA-ALLOC

2: s :=na 0;
{
†1 s ∗ s 7→ 0

}
// NA-WRITE{

†1 s ∗ ∃γ, t0, Vh. s 7−→γ
sw [t0←(0, Vh)] ∗ s ⊒γ

sw [t0←(0, Vh)]
}{

†1 s ∗ s ⊒γ
sn [t0←(0, Vh)] ∗ ∃Vs .@Vs

(s 7−→γ
con [t0←(0, Vh)])

}
// NA-AT-SW and AT-SW-CON and AT-SW-SY and AT-SY-SN and VA-INTRO

{s ⊒γ
sn [t0←(0, Vh)] ∗ TreiberBI(s, γ)}

3: s
{
s. isStackN (s, Φ)

}
// OINV-ALLOC-OBJ

Proof sketch of try_push_swap. The proof is also easy. We open the in-
variant twice using OINV-ACC-OBJ, in lines 1 and 3 to get access to the
atomic points-to of s to read or CAS on it. In line 1 we do not change the
invariant. In line 3, if the CAS succeeds, then we extend the abstract state
S with our new node n into [n] ++ S and put all of the resources in the
pre-condition to that node in the invariant. The proof outlines are given
in Figure 12.10.

The most important point is that we can easily establish deterministic
pointer comparison (the conditions involving Pcmp) when performing
the CAS, because the location s only stores nullable locations, whose
points-to ownership (if non null) are kept inside the invariant TreiberBI
and thus we know that they are all alive.

Proof sketch of try_pop. The proof is not so complicated. We again open
the invariant twice using OINV-ACC-OBJ, in lines 1 and 6 to get access
to the atomic points-to of s to read or CAS on it. In line 1, we do not
change the invariant, but if we read sh to be non-null, we also acquire
from AllNodes(vs ′) some fraction q of sh’s non-atomic points-to for its
next field, i.e., sh

q7−→ null0(n) for some n. This fraction will be used to
read sh’s next field in line 4.99And it is also the source of leaking own-

ership of nodes in this proof. In line 6, if the CAS succeeds, we know that sh is indeed the top of
the current abstraction S, i.e., S = [sh] ++ S′ for some S′. We then
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{
isStackN (s, Φ) ∗ Φ(v) ∗ n 7→ ∗ (n+ 1) 7→ v ∗ †2 n

}
Context: TreiberBI(s, γ)

N{
s ⊒γ

sn h0 ∗ Φ(v) ∗ n 7→ ∗ (n+ 1) 7→ v ∗ †2 n
}
⊤

O
IN

V-
A

C
C

-O
B

J

{s ⊒γ
sn h0 ∗ ⊒∅ ∗ ▷TreiberBI(s, Φ)}⊤\N // VS-BOT

1: let sh := ∗rlxs in

{sh.∃h′
0, th. h

′
0(th) = (sh, ) ∗ s ⊒γ

sn h
′
0 ∗ TreiberBI(s, Φ)}⊤\N // AT-READ-SN{

s ⊒γ
sn h

′
0 ∗ Φ(v) ∗ n 7→ ∗ (n+ 1) 7→ v ∗ †2 n

}
⊤

2: n :=na sh;
{
Φ(v) ∗ n 7→ sh ∗ (n+ 1) 7→ v ∗ †2 n

}
⊤ // NA-WRITE

O
IN

V-
A

C
C

-O
B

J

{
s ⊒γ

sn h
′
0 ∗ ∃V0. ⊒V0 ∗@V0

(Φ(v) ∗ n 7→ sh ∗ (n+ 1) 7→ v) ∗ †2 n ∗ ▷TreiberBI(s, γ)
}
⊤\N // VA-INTRO{

s ⊒γ
sn h

′
0 ∗ ⊒V0 ∗@V0

(Φ(v) ∗ n 7→ sh ∗ (n+ 1) 7→ v) ∗ †2 n ∗
@Vs

(s 7−→γ
con h) ∗@Vh

InNodes(S) ∗ AllNodes(vs ′)

}
// Unfolding TreiberBI

We know sh is a value written to h at th, because h′
0 ⊆ h.

3: CASrel(s, sh, n)
b.∃h′, V ′ ⊒ V0,v

′. ⊒V ′ ∗@Vs⊔V ′(s 7−→γ
con h

′) ∗
@V ′(Φ(v) ∗ n 7→ sh ∗ (n+ 1) 7→ v) ∗ †2 n ∗@Vh

InNodes(S) ∗ AllNodes(vs ′) ∗ †1 s ∗
((b = false ∗ sh ̸= v ′ ∗ h′ = h) ∨ (b = true ∗ sh = v ′ ∗ ∃Vw ⊒ V ′ ⊔ Vh. h

′ = h[th + 1←(n, Vw)]))


⊤\N

// AT-CAS-SN-GEN Note that any location values readable from s are alive because we store their
fractional non-atomic points-to ownership in AllNodes(vs ′).

(
b = false ∗ Φ(v) ∗ n 7→ ∗ (n+ 1) 7→ v ∗ †2 n ∗
@Vs⊔V ′(s 7−→γ

con h) ∗@Vh
InNodes(S) ∗ AllNodes(vs ′) ∗ †1 s

)
∨
(
b = true ∗@Vs⊔V ′(s 7−→γ

con h
′) ∗@Vw

InNodes([n] ++ S) ∗ AllNodes(vs ′ ++ [(Some(n), Vw)]) ∗ †1 s
)


In the failure case (b = false), we use VA-ELIM to get back the original resources without the view-at
modality.
In the successful case (b = true), the resources are put inside InNodes and AllNodes of the invariant.{ (

b = false ∗ Φ(v) ∗ n 7→ ∗ (n+ 1) 7→ v ∗ †2 n ∗ TreiberBI(s, γ)
)

∨
(
b = true ∗ TreiberBI(s, γ)

) }
⊤\N{

b. (b = false ∗ Φ(v) ∗ n 7→ ∗ (n+ 1) 7→ v ∗ †2 n) ∨ b = true
}
⊤

FIGURE 12.10: Hoare proof outlines for
try_push_swap

can acquire the resources for sh in InNodes(S), and leave the rest as
InNodes(S′) for the new abstract state S′.

We give the Hoare proof outlines in Figure 12.11. We note again that
we always have deterministic pointer comparison with CAS’s, because
ownership of all reachable locations in the stack are stored in the invariant
TreiberBI, so we know they are all alive.

Remark 12.8 (On the Use of Acquire CAS in try_pop). We note that we
do not really need the CAS of try_pop (line 6) to use the acquire access
mode. In fact, the acquire access mode used in the read of the stack
pointer in line 1 alone should be sufficient, and such implementation
should also be verifiable in iRC11. Intuitively, by reading acquire in
try_pop’s line 1, we have been synchronized with the write of n to s,
whose view is Vn, i.e., we acquire ⊒Vn. The view Vn should be bigger
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{
isStackN (s, Φ)

}
⊤

Context: TreiberBI(s, γ)
N

{s ⊒γ
sn h0}⊤

O
IN

V-
A

C
C

-O
B

J

{s ⊒γ
sn h0 ∗ ⊒∅ ∗ ▷TreiberBI(s, Φ)}⊤\N // VS-BOT

1: let sh := ∗acqs in
{sh.∃h′

0, th, V0. h
′
0(th) = (sh, V0) ∗ ⊒V0 ∗ s ⊒γ

sn h
′
0 ∗ TreiberBI(s, Φ) ∗ (sh = 0 ∨ sh ̸= 0 ∗ ∃q, n.@V0

sh
q7−→ n)}⊤\N

// AT-READ-SN-ACQ

Context: h′
0(th) = (sh, V0) ∗ ⊒V0 ∗ s ⊒γ

sn h
′
0

{TreiberBI(s, Φ) ∗ (sh = 0 ∨ sh ̸= 0 ∗ sh q7−→ n)}⊤\N // VA-ELIM

{s ⊒γ
sn h

′
0 ∗ (sh = 0 ∨ sh ̸= 0 ∗ sh q7−→ n)}⊤

2: if sh == 0 // null

Em
pt

y {sh = 0}
3: then 0 {v .v = 0}⊤

4: else

N
on

-e
m

pt
y

{sh q7−→ n}
5: letn := ∗nash {sh q7−→ n}⊤ // NA-READ

O
IN

V-
A

C
C

-O
B

J

{sh q7−→ n ∗ ▷TreiberBI(s, γ)}⊤\N{
sh

q7−→ n ∗ ⊒V0 ∗ s ⊒γ
sn h

′
0 ∗ s 7−→γ

con h ∗@Vh
InNodes(S) ∗ AllNodes(vs ′) ∗ †1 s

}
⊤\N

// Unfolding TreiberBI

We know sh is a value written to h at th, because h′
0 ⊆ h. specifically, h(th) = (sh, V0)

6: if CASacq(s, sh, n)
b. sh

q7−→ n ∗ ∃h′, V ′ ⊒ V0,v
′. ⊒V ′ ∗@Vs⊔V ′(s 7−→γ

con h
′) ∗@Vh

InNodes(S) ∗ AllNodes(vs ′) ∗ †1 s ∗
(b = false ∗ sh ̸= v ′ ∗ h′ = h)

∨ (b = true ∗ sh = v ′ ∗ V0 = Vh ⊑ V ′ ∗ th = max(dom(h)) ∗ ∃Vw ⊒ Vh. h
′ = h[th + 1←(n, Vw)])


⊤\N

// AT-CAS-SN-GEN Noe that any location values readable from s are alive because we store their
fractional non-atomic points-to ownership in AllNodes(vs ′).
b. sh

q7−→ n ∗
(
b = false ∗ TreiberBI(s, γ)

)
∨
(
b = true ∗ S = [(sh, Vh)] ++ S′ ∗@Vs⊔V ′(s 7−→γ

con h
′) ∗

@Vw InNodes(S
′) ∗ AllNodes(vs ′ ++ [(n, Vw)]) ∗ †1 s ∗

@Vh
(∃v , q′. Φ(v) ∗ sh + 1 7→ v ∗ †2 sh ∗ sh q′7−→ n)

)


⊤\N{

b. sh
q7−→ n ∗ TreiberBI(s, γ) ∗ (b = false ∨ (b = true ∗ ∃v , q′. Φ(v) ∗ sh + 1 7→ v ∗ †2 sh ∗ sh q′7−→ n))

}
⊤\N

// VA-ELIM since we have ⊒V ′ and Vh ⊑ V ′

7: then ∗na(sh + 1)
{
v . Φ(v) ∗ sh + 1 7→ v ∗ †2 sh ∗ sh q+q′7−−−→ n

}
⊤

8: else−1 {v .v = −1 ∗ sh q7−→ n}⊤
{v .v = −1 ∨ Φ(v)}⊤ // Dropping points-to and block ownership of sh

{v .v = −1 ∨v = 0 ∨ Φ(v)}⊤

FIGURE 12.11: Hoare proof outlines for
try_pop
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than the view at which the node n was pushed to the stack, so the seen-
view observation ⊒Vn should allow us to access the resources released
together with the push of n, i.e., (∃v . n+1 7→ v ∗Φ(v)∗ . . .) in InNodes(S).

Unfortunately, the twist is that n can be written multiple times to s,
each time with an increasingly bigger view Vn. This can happen when n

keeps coming back as the top of the stack, because some other nodes are
pushed on top of n and then popped. Each time n comes back as the top
of the stack, it is written to s with a bigger view Vn, because we only CAS

on s. As such, when we read n from s with the acquire mode in line 1,
we may have read the i-th write of n to s and acquire some observation
of V i

n, i.e., ⊒V i
n. Meanwhile, the resources (∃v . n+1 7→ v ∗Φ(v) ∗ . . .) we

want to acquire (when the CAS on s line 6 succeeds) hold at the view V 0
n

of the very first write of n to s—the release write of the push of n to s.
That is, we should have @V 0

n
(∃v . n+ 1 7→ v ∗ Φ(v) ∗ . . .) in the invariant.

So if we want to acquire those resources with a fully relaxed CAS in line
6, we need to track the fact that V 0

n ⊑ V i
n for all i. With that, we can use

⊒V i
n we acquired in line 1 to eliminate the view-at modality and acquire

(∃v . n+ 1 7→ v ∗ Φ(v) ∗ . . .). In short, to support the fully relaxed CAS in
line 6 of try_pop, we need to adjust our invariant so that (1) for each
node n, we keep the InNodes resources at the view V 0

n of the first write
of n to s (the write of the push of n to s), and (2) we know that any later
write of n to s has a view V i

n that is bigger than V 0
n .

The invariant TreiberBI(s, γ) (Definition 12.6) on the other hand is
rather simple: we keep all InNodes resources at the view Vh of the latest
write to s. As such, we need an acquire CAS to synchronize with that
view Vh in other to acquire the resources of the top node in InNodes. To
keep the proof simple, we have decided to present this invariant for the
try_pop version with the acquire CAS (Figure 12.8).

CHAPTER SUMMARY. In this chapter we have demonstrated multiple
features of iRC11, using several examples. We show how to switch
from non-atomic to atomic points-to to share locations, how to build
concurrent protocols using atomic and non-atomic points-to, how to
perform atomic accesses with resources under view-explicit modalities,
how to cancel invariants and eliminate the view-explicit modalities to
regain shared resources, and how to convert atomic points-to back to
non-atomic ones to deallocate or reuse them.

We have also seen that working with explicit views and histories are
quite cumbersome, and in Part III we will have how to abstract them
further with GPS protocols, and we will see more complex verifications
of concurrent Rust libraries against their assigned Rust types in RBrlx.
Nevertheless, the GPS abstraction in Part III is not so convenient to work
with when we have multiple atomic locations, and hiding views indeed
weakens the logic. Furthermore, GPS protocols would not be sufficient to
verify the try_pop version that uses a fully relaxed CAS (see Remark 12.8).
In Part IV we will need explicit views and general invariants that can
store and relate multiple atomic locations, in order to verify libraries
against stronger logically-atomic specifications of Compass.
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Related Work

He et al.1 present GPS+, a extension to GPS that supports relaxed ac- 1He et al., “GPS+: Reasoning About
Fences and Relaxed Atomics” [He+18].cesses and release/acquire fences. The logic, however, lacks support for

relaxed RMW operations e.g., CAS/FAA operations. Additionally, their
logic is based on the axiomatic semantics of C11 which cannot be used
together with Iris and thus would not allow us to extend the existing Rust-
Belt development. GPS+ also does not support mechanized verification
of programs.

iGPS2 supports a mechanism called fractional protocols, which is 2Kaiser et al., “Strong Logic for Weak
Memory: Reasoning About Release-
Acquire Consistency in Iris” [Kai+17].closely related to cancelable invariants. However, iGPS’s fractional pro-

tocols are not as powerful as iRC11’s cancelable invariants in that they
cannot reclaim the resources governed by the protocol at the thread’s
local view. This is because the protocol tokens they use are modeled
with unsynchronized ghost state. By using synchronized ghost state, we
can support full reclamation of all resources governed by either iRC11
cancelable invariants or borrow propositions.

Tassarotti et al.3 use GPS to verify an implementation of the Read- 3Tassarotti et al., “Verifying read-copy-
update in a logic for weak mem-
ory” [TDV15].Copy-Update (RCU) technique. With GPS, they are able verify the recla-

mation of clients’ non-atomic locations, but not RCU’s internal atomic
locations because they are governed by GPS’s non-cancelable protocols.
Kaiser et al. fixed this problem by re-verifying RCU in iGPS with their
fractional protocols. However, as mentioned above, fractional protocols
are not a general solution.

FSL and FSL++4 are the first RMC logics to support fences. iRC11 4Doko and Vafeiadis, “A Program Logic
for C11 Memory Fences” [DV16]; Doko
and Vafeiadis, “Tackling Real-Life Relaxed
Concurrency with FSL++” [DV17].

directly inherits the idea of fence modalities from them, but provide a
model for the modalities on top of the operational semantics of ORC11,5

5see Section 8.3whereas FSL and FSL++ are proven directly on top of the axiomatic
semantics of (R)C11. iRC11 also provides better support for mechanized
verification of programs, thanks to the Iris proofmode.

Gotsman et al.6 provide an SC-based logic where ownership of a 6Gotsman et al., “Local Reasoning for
Storable Locks and Threads” [Got+07].location can be turned into a lock with fractional permissions for shared

accesses, and later when the full permission of the lock is collected, the
ownership of the location can be reclaimed. Hobor et al.7 provide a simi- 7Hobor et al., “Oracle Semantics for Con-

current Separation Logic” [HAN08].lar mechanism that additionally allows attaching “invariant resources” to
locks. Our cancelable invariants are more general than these mechanisms
in that our cancelable invariants are not specifically tied to locks and are
proven sound with respect to a much weaker memory model.

Svendsen et al.8 introduce the first program logic for the promising 8Svendsen et al., “A Separation Logic for
a Promising Semantics” [Sve+18].
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semantics. Their logic is based on RSL and supports relaxed accesses but
not fences. Moreover, unlike FSL, it disallows the transfer of ownership
through relaxed accesses, among other reasoning principles that have
proven useful in RBrlx. Extending iRC11 to account for promises is a very
interesting avenue for future work.

It is worth re-iterating that ORC11 and iRC11 currently do not support
SC accesses and SC fences. In fact, we are not aware of any existing RMC
separation logic that does.9 Adding support for SC would enable us to ver-9The abstract of the RSL paper ([VN13])

claims that it supports reasoning about SC
accesses, but according to Vafeiadis [per-
sonal communication], this is a mistake,
and indeed the body of the paper does
not.

ify some interesting and challenging fine-grained concurrent algorithms,
such as the work-stealing queue,10 as well as epoch-based resource recla-

10Chase and Lev, “Dynamic circular work-
stealing deque” [CL05].

mation schemes such as that implemented by Rust’s crossbeam library.11

11Crossbeam: Tools for concurrent pro-
gramming in Rust [Www].

Very recently, Hammond et al.12 introduces the first CSL for the

12Hammond et al., “An Axiomatic Ba-
sis for Computer Programming on the
Relaxed Arm-A Architecture: The AxSL
Logic” [Ham+24].

ARMv8 “user” concurrency memory model,13 named AxSL. AxSL pro-

13Pulte et al., “Simplifying ARM concur-
rency: multicopy-atomic axiomatic and
operational models for ARMv8” [Pul+18].

vides rules similar to those of RSL, where resources can be transferred
among threads following a per-location protocol Φ: a read of value v

from the location ℓ should acquire the resource Φ(ℓ,v), and a write of
v to ℓ should release the resource Φ(ℓ,v). However, unlike RSL which
does not support ghost state as a resource and only allows resource
transfer over release-acquire synchronization, AxSL is built in Iris (so
resources can include arbitrary ghost state) and allows resource transfer
over weaker accesses, such as relaxed ones, although not arbitrary. To be
sound with respect to the ARMv8 RMC memory model, AxSL does not
allow resources to flow along po ∪ rf which can be cyclic. Recall that all
RSL, FSL, FSL++, GPS, iGPS, iRC11 assume po ∪ rf to be acyclic, and,
as a result, resources in these logic can flow implicitly along po ∪ rf, and
we can get simple reasoning principles following program syntax. On
the other hand, in the ARMv8 memory model, intra-thread concurrency
can happen, as independent instructions can be executed and speculated
concurrently. Consequently, while AxSL’s reasoning principles still fol-
low program syntax, the logic maintains that resources can only flow
along dependencies that prevent intra-thread concurrent execution of
instructions. Concretely, the logic supports explicit reasoning about mem-
ory events generated by the program and dependencies among them
(edges among events in candidate execution graphs), and only allows
resources to flow along the memory model’s ordered-before relation ob

(which includes the intra-thread locally-ordered-before relation lob and
the inter-thread observed-by relation obs). The restriction is enforced
by tying resources to events, e.g., a↬ Φ(ℓ,v), and by allowing an event
b to acquire Φ(ℓ,v) only if a is ordered before b. This construction is
similar to FSL modalities, or our view-explicit modalities (§8.5), but at a
finer-grained level of events.

Another impressive achievement of AxSL is that it is proven by instan-
tiating Iris with a simple operationalisation of the axiomatic semantics
of [Pul+18]. The operationalised semantics is very close to the original
axiomatic one. We have conjectured that we can do the same with OGS
(§3.6), but we have not put in the effort to do so. The benefit of this
approach is that we can cut down the trusted code base (TCB), and
avoid doing a correspondence proof as in §3.6. On the other hand, the
model of predicates, such as that of the view-explicit ones or of weakest
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preconditions, would become more complex. In fact, the authors of AxSL
report a non-standard and challenging model and adequacy proof for
their logic, which expectedly should be more complex than those done
by Vafeiadis et al. for RSL and FSL.





Part III

RUSTBELT MEETS RELAXED MEMORY
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Challenge: RustBelt and Relaxed Memory

The Rust programing languages1 strike a delicate balance between safety 1Klabnik and Nichols, The Rust Program-
ming Language [KN18].and control using a substructural type system, in which types not only

classify data but also represent ownership of resources, such as the right
to read, write, or deallocate a piece of memory. By tracking ownership in
the types, Rust is able to prohibit dangerous combinations of mutation
and aliasing, a well-known source of programming pitfalls and security
vulnerabilities in both C/C++ and Java. And yet, the type system is
expressive enough to type-check many common systems programming
idioms. Nonetheless, certain kinds of functionality (e.g., some pointer-
based data structures, synchronization abstractions, garbage collection
mechanisms) cannot be implemented within the strictures of Rust’s type
system. Rust provides these abstractions instead via libraries whose
implementations internally utilize unsafe features (e.g., unchecked type
casts, array accesses without bounds checks, or accesses of “raw” pointers
whose aliasing is untracked by the type system). These libraries are
claimed to be safe extensions to Rust because they encapsulate their uses
of unsafe features in “safe APIs”. However, given that the set of such
extensions is far from fixed—new and surprising “safe APIs” are being
developed all the time—there is a pressing need to understand what
property an internally-unsafe library ought to satisfy to be deemed a safe
extension to Rust.

To formalize Rust’s “extensible” notion of safety, RustBelt2 follows 2Jung et al., “RustBelt: Securing the
Foundations of the Rust Programming Lan-
guage” [Jun+18a].prior work on Foundational Proof-Carrying Code3 by employing a seman-

3Ahmed et al., “Semantic foundations for
typed assembly languages” [Ahm+10].

tic soundness proof. First, it defines a semantic model of Rust types: a
mapping from types T to logical predicates on terms Φ(e), which asserts
what it means for the term e to behave safely at type T (even if internally
e uses unsafe features). Then, the RustBelt proof breaks into two main
parts:

1. Safety of libraries that use unsafe features: For any library that makes
use of unsafe features, the implementation of the library is proven
to satisfy the semantic model of its API, thus establishing that it is
safe for clients to make use of the library. RustBelt proved safety
for a number of widely-used Rust libraries, including Arc, Rc, Cell,
RefCell, Mutex, and RwLock.

2. Safety of the λRust type system: The syntactic typing rules of λRust
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are proven to respect the semantic model, thus establishing that
code written in the “safe” fragment of Rust is in fact observably
safe—i.e., its behavior is well-defined.

Put together, these imply that if a program P is well-typed, and its only
uses of unsafe features appear within the libraries that have been verified
safe (in part 1), then P is observably safe.

In carrying out their semantic soundness proof for RustBelt, Jung et al.
relied on the higher-order concurrent separation logic framework Iris.44Jung et al., “Iris from the ground up: A

modular foundation for higher-order con-
current separation logic” [Jun+18b]. Separation logic is a good fit for modeling Rust because it is designed

around the same notion of ownership as Rust’s type system, and thus
provides built-in support for ownership-based reasoning. One benefit
of using Iris is that it was designed to support the derivation of new
separation logics with domain-specific reasoning principles. Jung et al.
exploited this facility to derive a new logic called the lifetime logic, which
they used extensively in their proofs in order to reason about Rust’s
“lifetimes” and “borrowing” mechanisms at a higher level of abstraction.55Klabnik and Nichols, The Rust Program-

ming Language [KN18], §4.2, §10.3. A second benefit of using Iris is that it comes with tactical support for
developing machine-checked proofs interactively in Coq;6 this support6Krebbers et al., “Interactive Proofs

in Higher-Order Concurrent Separation
Logic” [KTB17]; Krebbers et al., “MoSeL:
A General, Extensible Modal Frame-
work for Interactive Proofs in Separation
Logic” [Kre+18].

made it possible for RustBelt to be fully mechanized in Coq.

RUSTBELT FOR RELAXED MEMORY. In the original RustBelt work, Iris was
instantiated with a sequentially consistent (SC) semantics for λRust. This
SC instantiation of Iris (call it “Iris-SC”) provides a variety of proof rules
that are valid only under SC semantics and not under relaxed-memory
semantics. To adapt RustBelt to relaxed memory, we would like to “port”
RustBelt so that it is built on top of iRC11, which is sound for the λRust +
ORC11 semantics, rather than Iris-SC. Following the structure of RustBelt,
this porting effort breaks down into two major tasks:

Task 1: Re-prove the safety of the Rust libraries considered by RustBelt,
this time verifying their real, relaxed-memory implementations in
iRC11.

Task 2: Re-prove the safety of the λRust type system, this time relying
only on proof rules that are sound in iRC11.

KEY CHALLENGE. As it turns out, both of these tasks require us to over-
come a technical challenge that is relevant not just to Rust but to relaxed-
memory verification in general: namely, that existing previous work
on separation logic does not provide an adequate foundation for
reasoning about resource reclamation under relaxed memory. We
will first explain this challenge in the context of Task 1, before briefly
describing how it also informs Task 2.

14.1 Task 1: Re-prove the Safety of Rust Libraries under RMC

One of the main motivations for using a “systems programming” language
like Rust or C/C++ (as opposed to a garbage-collected language like
Java) is to have more precise control over limited resources such as
memory. In particular, the Rust programmer can be assured that when an
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FIGURE 14.1: Key rules for cancelable in-
variants in Iris-SC

object goes out of scope, the destructor (drop method) associated with
its type will be invoked and any resources it owns will be reclaimed. Yet
the safety of destructors is often quite subtle because objects can contain
references to resources that are shared with other objects. For example,
objects of type Arc<T> are simply aliases to a shared struct containing
an object of type T along with a reference counter, which keeps track of
the current number of active aliases to the object. Consequently, the
destructor for Arc<T> cannot simply reclaim the shared struct that it
points to: rather, it decrements the shared reference counter, and only
if it observes that it was the last remaining alias can it safely reclaim
the memory for the reference counter and invoke the destructor for the
object of type T.

RustBelt showed how to put this subtle kind of resource reclamation
on a sound formal footing using Iris-SC’s mechanism of cancelable in-
variants (Figure 14.1), a generalization of Gotsman et al.7 and Hobor 7Gotsman et al., “Local Reasoning for

Storable Locks and Threads” [Got+07].et al.8’s “storable locks”. A cancelable invariant I
γ,N

is an invariant
8Hobor et al., “Oracle Semantics for Con-

current Separation Logic” [HAN08].
governing a shared resource I which is only “active” for a certain period
of time, after which point it is “cancelled”. To access the shared resource
during an atomic step of computation (SC-CINV-ACC), a thread must prove
that the invariant is still active by exhibiting ownership of a fractional
invariant token ♡γ

q , where q is a fraction in (0,1]. If a thread π can assert
ownership of ♡γ

1 (i.e., the “full” γ token), it knows that no other thread
can assert that the invariant is active; thus it is safe for π to cancel the
invariant and reclaim full ownership of I (SC-CINV-CANCEL), after which it
can free the memory governed by I if it wants to. In RustBelt, cancelable
invariants played a crucial role in verifying the safety of destructors such
as Arc’s.

However, adapting cancelable invariants to the relaxed-memory set-
ting turns out to be quite tricky—tricky enough that no existing relaxed-
memory separation logic supports them.9 The main problem arises in 9iGPS supports a related notion of “frac-

tional protocol”, but it is not nearly as
powerful as cancelable invariants and is
thus not general enough to account for
resource reclamation in Rust.

how to model the cancelable invariant tokens. Under SC, one can simply
model invariant tokens as a form of ghost state. But in existing relaxed-
memory separation logics, ghost state is view-agnostic, meaning that
ownership of it can be transferred between threads without the need for
any physical synchronization. On the one hand (see §19), view-agnostic
ghost state is indispensable for representing globally consistent state, such
as (in the case of Arc) the number of Arc aliases currently in existence.
On the other hand, if invariant tokens are modeled naively as view-
agnostic ghost state, the logic of cancelable invariants becomes unsound!
In particular, the access rule SC-CINV-ACC is not sound in relaxed memory.

Our solution is to instead model invariant tokens using a novel no-
tion of synchronized ghost state: ghost state that implicitly tracks the
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subjective view of the thread that owns it, and that therefore can only
be transferred between threads using physical synchronization. Using
synchronized ghost state, iRC11 offers the first general account of re-
source reclamation in relaxed-memory separation logic. The resulting
interface and model of iRC11 cancelable invariants have been provided
in §11.2. In the subsequent chapters in this part, we will demonstrate its
effectiveness on a number of real Rust libraries.

14.2 Task 2: Re-prove the Safety of the λRust Type System under
RMC

In contrast to RustBelt’s proofs of safety for libraries, its proof of safety
for the λRust type system did not rely directly on cancelable invariants or
any other SC-specific features of Iris-SC. Rather, as mentioned above, the
safety proof for the type system made essential use of a Rust-oriented
logic called the lifetime logic, which was a domain-specific logic derived
within Iris-SC. Thus, if we are able to show that the lifetime logic remains
sound under relaxed memory—by instead deriving its soundness in
iRC11—then RBrlx can inherit RustBelt’s safety proof for the λRust type
system without modification!

Synchronized ghost state is the key to making this modular porting
strategy possible. Specifically, the lifetime logic is centered around a
mechanism called borrow propositions, describing resources that are
borrowed for the duration of a Rust “lifetime” and that can be reclaimed
once the lifetime is over. Borrow propositions are similar in many ways to
cancelable invariants, but also more flexible and more complex in terms
of the protocols they support for sharing and reclamation of resources.
Just as synchronized ghost state enables us to adapt cancelable invariants
to relaxed memory, it plays an analogously central role in adapting
borrow propositions to relaxed memory as well.

14.3 Contributions of RustBelt Relaxed

RustBelt Relaxed, or RBrlx for short, is an adaptation of RustBelt to
ORC11 and, like its predecessor, is fully mechanized in Coq. We use
iRC11 both to re-verify the standard libraries that internally use unsafe
features, and to re-prove the soundness of RustBelt’s lifetime logic. The
safety proof of λRust’s type system, by virtue of being built atop the
lifetime logic, did not need to be changed at all.

RBrlx has ported all verifications done in RustBelt, including the
following concurrency libraries: thread::spawn, rayon::join,10 Mutex,10whose verification we have seen in

§12.3. RwLock, and Arc. For the most part, we were able to verify Rust’s uses
of relaxed-memory operations in these concurrent libraries as is. Only
in the implementation of Arc did we need to strengthen the consistency
level of two memory reads (from relaxed to acquire) in order to make our
verification go through. And in one of these cases, our attempt to verify
the original (more relaxed) access led us to expose it as the source of a
previously undetected data race in the library. Our fix for this race has
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since been merged into the Rust codebase.11 Meanwhile, the verifications 11Jourdan, Insufficient synchronization in
Arc::get_mut [Jou18].of sequential libraries—Rc, Cell, RefCell—remain largely unchanged

from RustBelt.
The structure of the remaining chapters in this part is as follows.

Please also refer to Figure 1.1 for their dependency graph. Chapter 15
briefly reviews the lifetime logic, the core abstraction needed for the
original RustBelt’s soundness proof the Rust’s type system, and Chapter 16
discusses, at a high level, the changes to the interfaces as well as the
model of the lifetime logic, so as to be sound on top of iRC11. Chapter 17
discusses how to construct GPS single-location protocols12 using atomic 12Turon et al., “GPS: navigating weak

memory with ghosts, protocols, and sep-
aration” [TVD14]; Kaiser et al., “Strong
Logic for Weak Memory: Reasoning
About Release-Acquire Consistency in
Iris” [Kai+17].

points-to (§10), and how to combine them with cancelable invariants
(§11.2) to build cancelable GPS protocols. Chapter 18 presents how to
combine cancelable GPS protocols with the lifetime logic to verify safety
of Rust’s RwLock library. Chapter 19 presents how to use iRC11 cancelable
GPS protocols to verify safety of Rust’s Arc library. It also discusses a bit
of history of how the bug in Arc was found.





15
The Lifetime Logic of SC RustBelt

Working with separation logics, one may have become used to being
able to transfer ownership of resources from one piece of a program
(e.g., one thread) to another. In Chapter 12, we have seen this in action,
in relaxed memory even, where ownership of resources are transferred
through synchronization between threads, either by message-passing, or
by joining, or by matching push and pop operations of a stack. These
are all examples of what we call the traditional direct style of ownership
transfer, where it is clear what is being transferred when.

Although direct ownership transfer is fairly simple, it is unfortunately
not sufficient to explain a key feature of the Rust language, namely its
borrowing mechanism. In this chapter, we review what borrowing is,
and why direct ownership transfer does not easily account for it (§15.1).
We will then review in §15.2 how RustBelt’s original lifetime logic (in
SC) comes to the rescue. In Chapter 16, we will discuss how to port the
lifetime logic to relaxed memory.

15.1 Borrowing in Rust

The central tenet of Rust is that the most insidious source of safety
vulnerabilities in systems programming is the unrestricted combination
of mutation and aliasing—when one part of a program mutates some
state in such a way that it corrupts the view of other parts of the program
that have aliases to (i.e., references to) that state. Consequently, Rust’s
type system enforces the discipline of aliasing XOR mutability (AXM,
for short): a value of type T may either have multiple aliases (called
shared references), of type &T, or it may be mutated via a unique, mutable
reference, of type &mut T, but it may not be both aliased and mutable at
the same time.

To create a mutable reference to an object o : T in Rust, one borrows
o for the duration of some lifetime 'a, with the result being a reference
value r of type &'a mut T. Borrowing causes the ownership of o to be
split in time: while the lifetime 'a is alive, the borrower controls the
object and can use r to mutate it; but once 'a is dead, the original owner
of o can reclaim ownership of it. The reclamation that occurs once the
lifetime 'a is over is essentially a form of ownership transfer from the
borrower to the original owner of o. And the natural question that arises
when proving the safety of Rust is: how do we know that this reclamation
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is sound?
One might think that there is an obvious way of modeling this recla-

mation using direct ownership transfer: when the lifetime 'a is over, the
borrower just needs to hand ownership of the borrowed reference back
to the original owner. Unfortunately, it is not always that straightforward.

Example 15.1 (Indirect Reclamation of Resources). Consider the follow-
ing example taken from the RustBelt paper.1 The example makes use of1Jung et al., “RustBelt: Securing the

Foundations of the Rust Programming Lan-
guage” [Jun+18a]. the function index_mut from the Vec library.

1 let mut v = vec![21, 57];

2 { let mut head = v.index_mut(0);

3 // head : &'a mut i32

4 // Cannot access v: v.push(42) rejected

5 *head = 23; }

6 v.push(42);

Lifetime 'a

In this example, we start with a vector r of two elements 21 and
57. Then, in lines 2-5, using index_mut, we get a mutable deep pointer
head into the head element of r and update its contents to 23. Such
a deep aliasing into the vector’s internal is dangerous, because if the
pointer outlives the internal storage, the pointer will be a dangling one
and dereferencing it is undefined behavior. This is why Rust will reject
v.push(42) in line 4, as push may reallocate the internal storage.

But what does this have to do with indirect ownership transfer? What
is happening is that the code block in lines 2-5 borrows the whole vector
r from its parent block. Borrowing the whole vector is due to index_mut,
whose type is

fn(&'a mut Vec<i32>, usize) -> &'a mut i32

This function takes a mutable reference r to an integer vector, along
with an index n, and returns an interior mutable reference e to the n-
th element of the vector. Crucially, thanks to Rust’s substructural type
system, the caller of this function gives up ownership of the argument r in
exchange for the result e. The surrendering of r is quite important here
because otherwise r could be used to subsequently mutate the object in
a way that would invalidate the interior pointer e. On the other hand,
the lifetime 'a ensures that e can only be accessed during the lifetime at
which the original r was accessible.

In our example, index_mut borrows the whole vector v and returns
a single mutable reference into the first index as head, restricted to the
duration of the lifetime 'a. Firstly, the inner block does not need to care
about transferring the vector v back to the parent block once it is done.
The inner block simply knows that it will finish using v before the lifetime
'a ends—the moment after which the vector will be given back to the
parent block indirectly.

Secondly, the inner block effectively declares that it only cares about
one index in the vector and only wants to borrow that single index. But
the life of the index is tied to the life of the whole vector, therefore, to
prevent dangerous aliasing, it is necessary to borrow the whole vector
with the same lifetime 'a. In other words, even when the borrower
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forgets about the borrow &'a mut Vec<i32>, it is still indirectly tied to
the borrow &'a mut i32, which, in our case, is the head pointer. When
the lifetime 'a ends, the ownership of not just the head index but the
whole vector will be indirectly transferred back to the parent block.
Regaining ownership of the whole vector, the parent block can push

again in line 6.

In summary, in addition to direct ownership transfer, Rust also em-
ploys an indirect transfer scheme which (1) uses lifetimes to indirectly
specify when the return transfer happens: all borrowed resources will
be returned at the end of the lifetime which does not need to be di-
rectly agreed on up front; and (2) uses borrows and their relations to
indirectly specify what needs to be returned without bookkeeping every
bit of borrowed resources. Translating this indirect transfer scheme to
separation logics is no easy task, but have been accomplished by Jung et
al. [Jun+18a] with the lifetime logic.

15.2 The Lifetime Logic Primer, in SC

At a high level, the idea of the lifetime logic is to formalize the intuition
mentioned above: borrowing an object o for a lifetime 'a splits owner-
ship of o in time, between a “borrow” assertion, which the borrower can
use to access o while 'a is alive, and an “inheritance” assertion, which
the original owner can use to reclaim ownership of o once 'a is dead.
Although “splitting ownership in time” is not a standard notion in separa-
tion logic, the Iris framework is designed to enable one to derive such
non-standard notions of separation and embed them in the separating
conjunction connective, and that is precisely what Jung et al. did.

The lifetime logic introduces several abstract predicates representing a
variety of capabilities and permissions related to lifetimes and borrowing,
together with axioms (proven sound in Iris-SC) for manipulating them,
as shown in Figure 15.1. Let us begin with an overview of the new
predicates:

• The full borrow &κ
full P asserts temporary ownership of resource P ,

while the lifetime κ is alive. It provides a direct means of modeling
the semantics of Rust’s mutable reference types.

• The timeless lifetime token [κ]q serves as a witness that the lifetime
κ is still alive. Here, q is a fraction in (0, 1]. If q = 1, we say that
this is the full token for κ. The use of fractions allows one to share
the knowledge that a lifetime is alive with multiple parties.

• The killer permission Kill(κ) is a unique permission needed to kill
the lifetime κ.

• The timeless and persistent dead token [†κ] is used to witness the
knowledge that lifetime κ is dead.

• The inheritance Inh(κ, P ) asserts the right to reclaim the ownership
of borrowed resource P once κ is dead.
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timeless([κ]q)
timeless([†κ])

persistent([†κ])

LFTL-BEGIN

True⇛Nlft
∃κ. [κ]1 ∗ Kill(κ)

LFTL-KILL

[κ]1 ∗ Kill(κ)
∅
Nlft

[†κ]
LFTL-TOK-FRAC

[κ]q+q′ ⊣⊢ [κ]q ∗ [κ]q′

LFTL-TOK-NOT-DEAD

[κ]q ∗ [†κ] ⊢ False
LFTL-FULL-BOR

▷P ⇛Nlft
&κ

full P ∗ Inh(κ, P )

LFTL-FULL-INH

[†κ] ∗ Inh(κ, P )⇛Nlft
▷P

LFTL-FULL-ACC

&κ
full P ∗ [κ]q ⇛Nlft

▷P ∗ Ret(κ, P, q)
LFTL-FULL-RET

▷P ∗ Ret(κ, P, q)⇛Nlft
&κ

full P ∗ [κ]q

LFTL-FULL-SEP

&κ
full(P ∗Q)⇚⇛Nlft

&κ
full P ∗ &κ

full Q

FIGURE 15.1: Selected rules of SC Rust-
Belt’s lifetime logic

P Ret(κ,P,q)

ACC RET

Inh(κ,P) [†κ]

P

[κ]q

[κ]q'
[κ]q''

[κ]1

BOR

Kill(κ)

P

P&κ
full

BEGIN

INH

∗

∗ FRACT

…

κ
 d
ea
d

κ
 a
liv
e

KILL

FIGURE 15.2: The life cycle of borrows
and lifetimes • The return policy Ret(κ, P, q) is used as part of the protocol for

accessing the contents of a full borrow.

We briefly explain the rules in Figure 15.1 with the help of Figure 15.2,
which depicts the life cycle of a lifetime and a full borrow. We start from
the right of Figure 15.2, where we create a new lifetime using LFTL-

BEGIN (BEGIN in Figure 15.2). This yields the full token [κ]1 for a new
lifetime κ, as well as the corresponding Kill(κ) permission. Lifetime
tokens are fractional (LFTL-TOK-FRAC, FRACT), so that they can be split
into (and joined back from) smaller pieces which enable multiple threads
to simultaneously witness that κ is still alive.

Next, on the left of Figure 15.2, we see the “flagship” rule of the
lifetime logic: given ownership of any assertion P , and any lifetime κ, we
can use the borrowing rule LFTL-FULL-BOR (BOR in Figure 15.2) to create
a borrow of P for κ. The rule splits ownership of P in time between two
separately ownable assertions: (1) a full borrow &κ

full P that represents
ownership of P while κ is alive; and (2) an inheritance Inh(κ, P ) that can
be used to reclaim P after κ dies. Intuitively, this rule directly models
what happens when an object is borrowed in Rust, with the full borrow
then being given to the borrower and the inheritance given to the object’s
original owner.

A thread owning both the full borrow &κ
full P and a token [κ]q (proving

κ is alive) can trade them to obtain P using the accessing rule LFTL-FULL-

ACC (ACC in Figure 15.2). As part of the trade, the thread is also given
the return policy Ret(κ, P, q). Once the thread is done using P , it trades
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P and Ret(κ, P, q) to get back &κ
full P and [κ]q (LFTL-FULL-RET, RET in

Figure 15.2).
Once all accesses to borrows at lifetime κ are done, we can recollect

the full token [κ]1 and use the killer permission Kill(κ) with LFTL-KILL

(KILL) to end the lifetime. This yields the dead token [†κ]. Since κ is now
dead, the content P in &κ

full P cannot be accessed any more and can thus
be reclaimed. Anyone owning [†κ] and the inheritance Inh(κ, P ) can use
LFTL-FULL-INH (INH in Figure 15.2) to reclaim P . LFTL-TOK-NOT-DEAD says
that a fraction [κ]q of the lifetime token indeed proves that the lifetime is
alive: it is disjoint from the dead token [†κ].

Note that LFTL-KILL uses a wand step viewshift (Notation 7.8), i.e.,
its user needs an actually step to discharge the later in the viewshift.
As such, we use LFTL-KILL around a so-called ghost instruction endlft

(Notation 4.3, Figure 4.2). In fact, λRust code will be populated with
ghost instructions newlft and endlft to mark the beginning and the end
of some lifetime. One can image that these ghost instructions are inserted
by Rust’s type inference, or explicitly by programmers.

In short, borrows are tied to lifetimes’ life cycles. After the lifetime
ended, the inheritor (one who owns the inheritance) can reclaim the
borrowed resources. Note that the inheritance does not need to be used
immediately after the lifetime dies. The inheritor may only receive the
dead token a long time after the lifetime dies, and even then it does
not need to inherit immediately. This supports a part of Rust’s indirect
transfer: participants do not need to agree up front on when the return
transfer happens.

Although not depicted in Figure 15.2, another crucial rule of the
lifetime logic is LFTL-FULL-SEP, which lets one go back and forth between
a borrow of P ∗Q and separate borrows of P and Q. This rule is essential
in verifying the soundness of Rust functions like index_mut (§15.1) that
split a reference to an object into references to its sub-components.

Example 15.2 (MP in the Lifetime Logic). Let us now quickly demon-
strate how the lifetime logic can support a somewhat different verification
of the MP example, albeit with the SC semantics, in Figure 15.3. Here,
instead of transferring the location ℓx from thread 1 to thread 2 directly,
we transfer a lifetime token, which thread 2 then uses to reclaim own-
ership of ℓx. The use of the lifetime logic here is clearly overkill since
direct ownership transfer of ℓx already suffices, but it will nonetheless
give the reader a concrete feel for the lifetime logic in action.

In Figure 15.3(a), we start by creating a lifetime κ (LFTL-BEGIN). Then,
with the ownership of ℓx 7→ 0, we create a borrow &κ

full(ℓx 7→ ) using
LFTL-FULL-BOR. We assume a send-receive protocol SENDRECV for ℓy that
satisfies the rules SENDRECV-CREATE, SC-SEND, and SC-RECV (in the top of
Figure 15.3). We instantiate this protocol with [κ]1/2 as the content to be
sent. Again, we could have instantiated the protocol with ℓx 7→ and be
done with it. Instead, here we want to demonstrate the use of borrows.

When spawning two threads, we give a half token [κ]1/2, the borrow
&κ

full(ℓx 7→ ), and Send to the thread π, and give the other half of the κ

token, the killer, the inheritance, and Recv to thread ρ.
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SENDRECV-CREATE

ℓy 7→ 0 ≡−∗E Sendℓy (P ) ∗ Recvℓy (P )

SC-SEND

{Sendℓy (P ) ∗ P} ℓy :=sc 1 {True}
SC-RECV

{Recvℓy (P )} ∗scℓy {v . v = 0 ∨ P}

{ℓx 7→ 0 ∗ ℓy 7→ 0} newlft; {[κ]1 ∗ Kill(κ) ∗ ℓx 7→ 0 ∗ ℓy 7→ 0} // LFTL-BEGIN

{[κ]1 ∗ Kill(κ) ∗ &κ
full(ℓx 7→ ) ∗ Inh(κ, ℓx 7→ ) ∗ ℓy 7→ 0} // LFTL-FULL-BOR{

[κ]1 ∗ Kill(κ) ∗ &κ
full(ℓx 7→ ) ∗ Inh(κ, ℓx 7→ ) ∗ Sendℓy ([κ]1/2) ∗ Recvℓy ([κ]1/2)

}
// SENDRECV-CREATE

((a)) Proof of initialization.

{
[κ]1/2 ∗ &κ

full(ℓx 7→ ) ∗ Sendℓy ([κ]1/2)
}

{
ℓx 7→ ∗ Ret(κ, ℓx 7→ −, 1/2) ∗ Sendℓy ([κ]1/2)

}
// LFTL-FULL-ACC

ℓx := 42;{
ℓx 7→ ∗ Ret(κ, ℓx 7→ −, 1/2) ∗ Sendℓy ([κ]1/2)

}
// NA-WRITE{
[κ]1/2 ∗ Sendℓy ([κ]1/2)

}
// LFTL-FULL-ACC

ℓy :=sc 1;

{True} // SC-SEND

((b)) Proof of thread π.

{
[κ]1/2 ∗ Kill(κ) ∗ Inh(κ, ℓx 7→ ) ∗ Recvℓy ([κ]1/2)

}
if (∗scℓy != 0)

th
en

ca
se

{
[κ]1/2 ∗ Kill(κ) ∗ Inh(κ, ℓx 7→ ) ∗ [κ]1/2

}
// SC-RECV

{[κ]1 ∗ Kill(κ) ∗ Inh(κ, ℓx 7→ )}
// LFTL-TOK-FRAC

endlft; {[†κ] ∗ Inh(κ, ℓx 7→ )}
// LFTL-KILL

{ℓx 7→ } // LFTL-FULL-INH

ℓx := 57; {ℓx 7→ 57} // NA-WRITE

((c)) Proof of thread ρ.

FIGURE 15.3: MP verified with the life-
time logic in Iris-SC. In Figure 15.3(b), thread π trades the token and the borrow to access

ℓx 7→ with LFTL-FULL-ACC and writes to ℓx. After that, with LFTL-FULL-RET,
thread π trades the return policy and ℓx 7→ to get back the token and
the borrow. Finally, thread π writes to ℓy and sends the token [κ]1/2 to
thread ρ.

In Figure 15.3(c), thread ρ uses Recv to get back the full token. Own-
ing Kill(κ), it ends the lifetime and earns the dead token [†κ] (LFTL-KILL).
Combining that with the inheritance, thread ρ reclaims the ownership of
ℓx 7→ (LFTL-FULL-INH) and can safely write (non-atomically) to ℓx.

Remark 15.3 (Safety of Inheritance). Let us note an important safety
property of the lifetime logic: the inheritance of a borrow can only be used
after all accesses to the borrowed content have finished. The key to ensuring
this is that, during an access of the borrow &κ

full P via the accessing rule
LFTL-FULL-ACC, the lifetime token [κ]q and the borrow assertion are “kept”
by the return policy and are only returned in exchange for the borrowed
content P . By withholding [κ]q and only returning it after the access
finishes, the rule ensures that no party can have the full token [κ]1
needed to kill κ while others are still accessing borrows associated with
κ. Consequently, the inheritance can only be used after all accesses have
finished.

This safety property is no difference from the safety property CANCEL-

SAFE (Property 11.2) of cancelable invariants, both in Iris-SC (Figure 14.1)
and in iRC11 (§11.2). Indeed, we can see that borrows and cancelable
invariants share many similarities in their interfaces: a fractional token
is needed to access some protected resources, and a full fraction of the
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token is sufficient to reclaim those protected resources. In this aspect,
we can in fact see borrows as a generalization of cancelable invariants,
where the generalization is in the flexibility of reclamation, which is now
tied to lifetimes. This allows multiple borrows to be managed by a single
lifetime, and while the borrows become “canceled” when the lifetime is
killed, their reclamation can be done much later than that.

However, when looking at the aspect of concurrent accesses, cance-
lable invariants are more accommodating than full borrows. Full borrows
only allow sequential accesses, by the fact that the full borrow assertion
&κ

full P is unique and cannot be shared. As such, if multiple threads want
to access a full borrow, they need extra synchronization to pass on the
ownership of the full borrow assertion. (In Example 15.2, only the thread
π accesses the full borrow, while the thread ρ simply kills the lifetime
and thus the borrow.) Meanwhile, cancelable invariants support multiple
threads accessing shared resources atomically.

The SC lifetime logic does support other forms of borrows, including
atomic borrows which do allow concurrent atomic accesses. Atomic
borrows then are a true generalization of cancelable invariants. In Chap-
ter 16, we will see that porting atomic borrows to RMC faces the same
challenge as porting cancelable invariants to RMC—we need to maintain
CANCEL-SAFE in the presence of accesses that do not establish synchro-
nization. Fortunately, the solution is also the same, and we needed to
only change the interface of the access rule for atomic borrows. Other
kinds of borrows, including full borrows, maintain the same interfaces
when being ported from SC to RMC. Naturally, we needed to update the
model of the lifetime logic so as to be sound in λRust + ORC11.

Note 15.4 (Rules with Viewshifts). Finally, let us note that the rules given
in Figure 15.1 have been streamlined for better representation, with
the additional concepts of the killer permission Kill(κ), the inheritance
Inh(κ, P ), and the return policy Ret(κ, P, q). In practice, these concepts
are actually just wand viewshifts, and we simply have them bundled in
the rules. We will see the rules in Figure 16.1 (§16.1).

Furthermore, note that the namespace Nlft is a global, public names-
pace that is needed to establish the invariants for the internal model of
the lifetime logic.

CHAPTER SUMMARY. In this chapter, we have reviewed borrows in Rust
and how RustBelt accounts for them by developing the lifetime logic,
which provides separation logic principles for borrows. We have seen the
rules for managing lifetimes and full borrows. In the next chapter, we
will see a more complete interface of the lifetime logic in RMC, and how
to adapt the logic’s model on top of iRC11.





16
Lifetime Logic Meets Relaxed Memory

In this chapter, we present a more complete interface of the lifetime logic
after being ported from Iris-SC to iRC11. Fortunately, almost all proof
rules of the lifetime logic are sound in RMC. The only change in the
proof rules is in LFTL-AT-ACC—the access rule for atomic borrows—which
allows access to the borrowed resource only under the view-join modality.
This is very much similar to how the access rule of cancelable invariants
(CINV-ACC, §11.2.1) needed to be changed in iRC11.

In this adaptation, the models for other borrows as well as the model
of lifetime tokens are extended with instances of synchronized ghost state
(Concept 11.5) to account for synchronization that always exists but
needs to be witnessed explicitly under RMC. Despite these changes, the
borrows enjoy the same proof rules as in SC. In particular, the SC rules in
Figure 15.1 for lifetimes and full borrows still hold in iRC11.

We discuss more rules for lifetimes and full borrows in §16.1, and the
interface of other borrow forms in §16.2. We simultaneously review these
constructs (which are already developed in the original lifetime logic)1 1Jung et al., “RustBelt: Securing the

Foundations of the Rust Programming Lan-
guage” [Jun+18a].and describe the changes due to adaptation as they appear. Readers

interested in more details of the origin lifetime logic are recommended
to refer to the original paper and its technical appendix. In §16.3, we
will discuss how to adapt the lifetime logic’s model on top of iRC11.

16.1 More Rules for the Lifetime Logic

In addition to the rules in Figure 15.1, the relaxed lifetime logic built atop
iRC11 also admits stronger rules, some of which are given in Figure 16.1.
The rule LFTL-BEGIN-BD bundles LFTL-BEGIN and LFTL-KILL together, and
similarly LFTL-FULL-BOR-BD bundles LFTL-FULL-BOR and LFTL-FULL-INH, and
LFTL-FULL-ACC-BD bundles LFTL-FULL-ACC and LFTL-FULL-RET. The rest of
Figure 16.1 presents stronger rules that are originally from SC lifetime
logic, but now adapted to relaxed memory.

16.1.1 Lifetime Tokens Track Observations

LFTL-TOK-OBJ-SPLIT strengthens LFTL-TOK-FRAC by allowing splitting into
two bits where one bit can be objective and thus can be put in invari-
ant. This mirror the same rule CINV-TOK-OBJ-SPLIT (§11.2.1) for iRC11

cancelable invariant tokens ♡γ
q . Intuitively, both types of tokens are now

187



188 Lifetime Logic Meets Relaxed Memory

synchronized ghost state, because they are witnesses not only for the
liveness of a lifetime or a cancelable invariant, but also for what has
happened during accesses2 that the tokens have been used for. As such,2of a borrow for a lifetime token, or of a

cancelable invariant for an invariant token the tokens are view-dependency, so sending them away (by e.g., putting
them in invariants) would require some synchronization. LFTL-TOK-OBJ-

SPLIT helps in this regard: since the part [κ]q of [κ]q+q′ is sufficient to bare
witness for what [κ]q+q′ itself has observed, the other part [κ]q′ can start
afresh with zero observation, i.e., be placed under the objective modality
(Definition 8.10), so that it can be sent to other threads without extra
synchronization. The same situation applies for CINV-TOK-OBJ-SPLIT and
cancelable invariant tokens.

The rule LFTL-TOK-NOT-DEAD-SUBJ strengthens LFTL-TOK-NOT-DEAD: the
fact [†κ] that the lifetime is dead is useful globally without the need
of synchronization. That is, it is still sufficient if we have [†κ] under
a subjective modality (§8.6). In fact, it is often the case that we only
need ⟨subj⟩ [†κ] (see also faking, below). We would need [†κ] locally in
inheritance to ensure the safety of inheritance (see LFTL-FULL-BOR-BD or
LFTL-FULL-INH, and Remark 15.3).

16.1.2 Faking

LFTL-BOR-FAKE witnesses the fact that, once a lifetime has ended, the
borrows tied to it have also ended and the owners of the inheritances
can freely reclaim the borrowed resources without owning the borrow
assertions &κ

full P . In other words, the borrow assertions &κ
full P become

meaningless then. LFTL-BOR-FAKE thus allows us to create fake borrows if
we know that the associated lifetime is dead, even only at the view the
lifetime killer, without synchronization (i.e., with only ⟨subj⟩ [†κ]).

16.1.3 Lifetime Inclusion

The Rust’s type system involves subtyping rules that rely on an inclusion
between lifetime. Intuitively, a lifetime κ is included in a lifetime κ′ if
κ is shorter than κ′—in other words, κ′ outlives κ. The subtyping rule
with respect to lifetime (T-BOR-LFT in [Jun+18a, §3.3]) then allows
a (type-level) borrow associated with κ to be a subtype of the borrow
associated with the longer κ′.

In RustBelt, the (reflexive, transitive) lifetime inclusion relation ⊑
gives rise to a meet semi-lattice for lifetimes, where the meet composition
(⊓) is commutative and associative. In other words, lifetimes κ form a
partial commutative monoid. ⊓ is also called the intersection of lifetimes.
Intersection is useful to create fresh sub-lifetimes: the meet composition
respects lifetime inclusion, following LFTL-INCL-INTER and LFTL-INCL-GLB.
LFTL-FULL-SHORTEN says that a borrow with a lifetime κ′ can be turned
into a borrow with a shorter lifetime κ′. This lifetime-logic-level rule is
the model for the type-level subtyping rule T-BOR-LFT.

LFTL-TOK-INTER and LFTL-DEAD-INTER show the interactions between
lifetime intersection and liveness. To know that the intersected lifetime
κ ⊓ κ′ is alive, we need to know that both component lifetimes are alive.
Reversely, the intersected lifetime is dead, then either κ or κ is dead. This
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Bundled Rules.

LFTL-BEGIN-BD

True⇛E ∃κ. [κ]1 ∗□([κ]1
∅
Nlft

[†κ])
LFTL-FULL-BOR-BD

▷P ⇛Nlft
&κ

full P ∗ ([†κ] ≡−∗Nlft ▷P )

LFTL-FULL-ACC-BD

&κ
full P ∗ [κ]q ⇛Nlft

▷P ∗ (▷P ≡−∗Nlft &κ
full P ∗ [κ]q)

Lifetime Liveness in Relaxed Memory.

LFTL-TOK-OBJ-SPLIT

[κ]q+q′ ⊢ [κ]q ∗ ⟨obj⟩ [κ]q′
LFTL-TOK-NOT-DEAD-SUBJ

[κ]q ∗ ⟨subj⟩ [†κ] ⊢ False
LFTL-BOR-FAKE

⟨subj⟩ [†κ]⇛Nlft
&κ

full P

Lifetime Inclusion.

timeless(κ ⊑ κ′)

persistent(κ ⊑ κ′)

LFTL-INCL-INTER

κ ⊓ κ′ ⊑ κ

LFTL-INCL-GLB

κ ⊑ κ′ κ ⊑ κ′′

κ ⊑ κ′ ⊓ κ′′

LFTL-FULL-SHORTEN

κ′ ⊑ κ ⊢ &κ
full P ⇒ &κ′

full P

LFTL-TOK-INTER

[κ]q ∗ [κ
′]q′ ⊢ ∃q

′′. [κ ⊓ κ′]q′′ ∗
(
[κ ⊓ κ′]q′′ −∗ [κ]q ∗ [κ

′]q

) LFTL-DEAD-INTER

[†κ ⊓ κ′] ⊣⊢ [†κ] ∨ [†κ′]

LFTL-UNIT-STATIC

κ ⊓ ε = κ

LFTL-INCL-STATIC

κ ⊑ ε

LFTL-STATIC-NOT-DEAD

[†ε] ⊢ False
LFTL-TOK-STATIC

⊢ [ε]q

Reborrowing.

LFTL-REBORROW

κ′ ⊑ κ ⊢ &κ
full P ≡−∗Nlft &κ′

full P ∗
(
[†κ′] ≡−∗Nlft &κ

full P
) LFTL-BOR-UNNEST

&κ′

full(&
κ
full P ) Nlft

&κ⊓κ′

full P

Stronger Access Rules.

LFTL-FULL-ACC-STRONG

&κ
full P ∗ [κ]q ⇛Nlft

∃κ′. κ ⊑ κ′ ∗ ▷P ∗
(
∀Q. ▷ (▷Q ∗ ⟨subj⟩ [†κ′] ≡−∗∅ ▷P ) ∗ ▷Q ≡−∗Nlft &κ′

full Q ∗ [κ]q
)

LFTL-FULL-ACC-ATOMIC-STRONG

&κ
full P ⇛Nlft ∅ ∨


∃P ′, κ′. κ ⊑ κ′ ∗ ▷(⌈P ′⌉ ∧ P ) ∗

∀Q. ▷ (▷Q ∗ ⟨subj⟩ [†κ′] ≡−∗∅ ▷P ) ∗ ▷(⌈P ′⌉ ∧Q)

≡−∗∅ Nlft &κ′

full Q


∃κ′. κ ⊑ κ′ ∗ ⟨subj⟩ [†κ′] ∗ |⇛∅ Nlft True

FIGURE 16.1: More selected rules for life-
times and full borrows, ported to λRust +
ORC11
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implies that if the shorter lifetime κ (κ ⊑ κ′) is alive, the κ′ is also alive,
and if κ′ is dead, then κ must also be dead.

The semi-lattice has a unit ε (LFTL-UNIT-STATIC), which is used to model
the static lifetime ('static in Rust). Intuitively, the static lifetime is the
global lifetime that includes all lifetimes (LFTL-INCL-STATIC) and is never
dead (LFTL-STATIC-NOT-DEAD).3 Consequently, we can always acquire a3Intuitively, if the static lifetime is al-

ready dead, then the program has ended. fraction of the static lifetime token (LFTL-TOK-STATIC).

Definition 16.1 (Dynamic Lifetime Inclusion). Lifetime inclusion in
RustBelt is in fact defined semantically or dynamically, using a token
trading scheme. A lifetime κ is included in κ′ if, given a fraction of the
token for κ, we can produce some fraction of the token for κ′.

κ ⊑ κ′ ::= □∀q. [κ]q ≡−∗Nlft

(
∃q′. [κ′]q′ ∗ ([κ

′]q′ ≡−∗Nlft [κ]q)
)

16.1.4 Reborrowing

The rule LFTL-REBORROW strengthens LFTL-FULL-SHORTEN: it lets us re-
borrow a &κ

full P into a borrow &κ
full

′ P where κ′ ⊑ κ. And when the
shorter lifetime κ′ ends, we get our original full borrow back. As such,
while LFTL-FULL-SHORTEN can also be seen as a reborrow, it simply forgets
the difference between κ′ and κ. On the other hand, LFTL-REBORROW

gives us an inheritance, effectively allowing us to regain and use the
original borrow when κ′ is already dead but κ is still alive. Note that the
inheritance requires the observation of κ′’s end locally, i.e., not under a
subjective (⟨subj⟩) modality. LFTL-REBORROW justifies the RustBelt’s type
system rule C-REBORROW (in [Jun+18a, §3.3]).

The related rule LFTL-BOR-UNNEST allows us to turn a full borrow of a
full borrow (&κ′

full &κ
full P ) into a full borrow of the intersected lifetime

&κ′⊓κ
full . The catch is that we need a wand step viewshift (Notation 7.8) to

strip off an extra later modality that appears between the two borrows.

16.1.5 Stronger Access Rules

The rule LFTL-FULL-ACC-STRONG generalizes LFTL-FULL-ACC-BD. It allows
us to close an access by giving back not just the original resource ▷P ,
but some ▷Q if we can show that ▷Q entails ▷P through a view shift.
That view shift is only needed when the lifetime ends, i.e., we can
assume ⟨subj⟩ [†κ] when proving that Q entails P . In exchange, we get
back a full borrow &κ′

full Q of Q. Intuitively, the rule allows us to turn a
full borrow &κ

full P into &κ′

full Q with the access, as long as we can still
guarantee that the inheritance will get back the original resource P , and
hence the viewshift is only needed at inheritance, once the lifetime κ′

is dead ([†κ′]). If LFTL-FULL-ACC-STRONG is invoked multiple times, then
the borrow’s internal invariant will collect as many such viewshifts, and
will apply all of them together at the inheritance to reclaim the original
resource with which the very first borrow was created.

Furthermore, the rule exposes the fact that κ ⊑ κ′, which comes
from a part of RustBelt’s model for the lifetime logic’s borrows. That
is, the model of a full borrow &κ

full P actually ties the resource P to a
bigger lifetime κ′, and hence the borrow assertion is downward-closed
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with respect to lifetime inclusion, and renders the proofs of rules like
LFTL-FULL-SHORTEN easy. This technique is employed quite frequently in
the lifetime logic’s model.

Finally, the rule LFTL-FULL-ACC-ATOMIC-STRONG provides a way to access
a full borrow without having a proof that the lifetime is still ongoing.
As such, with the access, we will find a disjunction, corresponding to
the two cases where the lifetime κ is still alive or is already dead. If
it is already dead, we get that fact subjectively, i.e., ⟨subj⟩ [†κ′]. If the
lifetime is still alive, we get access to the resource P , and we can close the
access in the same way as that of LFTL-FULL-ACC-STRONG. Since we do not
need to provide a lifetime token [κ]q, the access cannot be non-atomic,
because the lifetime κ may be killed during such a non-atomic access.
The atomicity of the access is enforced by the mask-changing viewshifts.

Note than in addition to acquiring P at opening and returning Q at
closing, we also know and then have to show—at opening and closing
of the access—that some resource P ′ : iProp holds simultaneously (i.e.,
with a classical conjunction) with P or Q. The “embed” modality ⌈·⌉
embeds iProp propositions into vProp. This extra requirement is also due
to potential relaxed memory effects. Since we do not have a lifetime
token at hand to witness to possible changes from P to Q, we instead
require that the underlying resource P ′ that may be tied to some view
(hence the use of iProp) needs to be maintained at the same view.

LFTL-FULL-ACC-ATOMIC-STRONG is needed to prove rules for full borrows
that should not require a lifetime token, for examples, to prove commu-
tativity with the later modality or the existential quantifier, or to convert
a full borrow into a fractured borrow—which we will see next.

16.2 Other Forms of Borrows

Full borrows are perfect for modeling mutable references that can only
have one user at a time. This is because accesses to full borrows are
always sequential: at any moment in time, there can be only one ongoing
access to a full borrow. For this reason, however, full borrows are not
suitable for modeling types that are meant to be accessed concurrently by
multiple threads, e.g., shared references. This motivates two alternatives
of full borrows: fractured borrows and atomic borrows.

Furthermore, full borrows are not persistent—they are unique re-
sources and are withheld during an access so as to ensure at most one
access to the underlying protected resource at a time. Non-persistency
makes it difficult to build more complex protocols using full borrows. To
make the borrows persistent but still maintain unique accesses, one can
restrict accesses to a single-threaded manner, by employing non-atomic
thread-local invariants (§11.3). This gives rise to non-atomic persistent
borrows.

All of these different borrows are originally developed in the SC
RustBelt work.4 Table 16.1 compares several of their properties. These 4Jung et al., “RustBelt: Securing the

Foundations of the Rust Programming Lan-
guage” [Jun+18a].differences already exist in RustBelt except for the last column, which is

unique to the relaxed-memory setting. (We will come back to that column
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Borrow type Access type Access
amount

Persistent Communication
among accesses

Access at
local view

Full borrows &κ
full P sequential,

non-atomic
full no yes yes

Non-atomic borrows &κ/p.N
na P sequential,

non-atomic
full yes yes yes

Fractured borrows &κ
frac Φ concurrent,

non-atomic
fractions yes no yes

Atomic borrows &κ/N
at P concurrent,

atomic
full yes yes no

TABLE 16.1: Comparison of borrow types

in §16.3.) All three forms of borrows—&κ
frac Φ, &κ/N

at P , and &κ/p.N
na P

for fractured, atomic and non-atomic borrows, respectively—are created
from a full borrow &κ

full P . All of their borrow assertions are persistent,
so that the same borrow can be referred to and accessed by multiple
parties. Fractured and atomic borrows are in fact accessible concurrently
by multiple threads, but fractured borrows allow non-atomic accesses to
only a fraction of the protected resource—ensuring that enough fractions
remain for all participants at all times, whereas atomic borrows enforce a
strict turn-taking scheme, allowing access to the full resource but only for
a single atomic step of execution. On the other hand, non-atomic borrows
allow non-atomic accesses to the full resource—like full borrows—but
the unique access restriction is instead enforced through the non-atomic
invariant token [Na : p.N ] that ties the borrow to the invariant pool p.N .

We now look more closely at each form of borrows, with their respec-
tive rules given in Figure 16.2.

16.2.1 Fractured Borrows

To meaningfully talk about fractions of resources, fractured borrows
assume a predicate Φ over fractions that is compatible with fraction
addition: Φ(q1 + q2) ⇔ Φ(q1) ∗ Φ(q2). With that, LFTL-FULL-FRACTURE

(Figure 16.2) allows converting a full borrow &κ
full Φ(1) of the full re-

source Φ(1) into a fracture borrow &κ
frac Φ. Note that Φ’s compatibility

with fraction addition can be proven as a persistent vProp fact under a
later, as it will only be used once the resource Φ(1) is stored inside the
internal invariant of the fracture borrow (i.e., , stored under a later).
As mentioned earlier, the creation of a fracture borrow (and similarly,
of an atomic or non-atomic borrow) does not need to know whether
κ is alive or not. This demonstrates again the flexibility of the indirect
resource reclamation scheme with lifetimes: the inheritance will receive
the resource after its associated lifetime ends, regardless of how the
original full borrow may have been transformed or used.

With a lifetime token [κ]q, the access rule LFTL-FRACT-ACC gives access
to Φ(q′) for some fraction q′. Once that exact q′ of Φ is returned, we
regain the lifetime token that we started the access with.

LFTL-FRACT-SHORTEN allows shortening the lifetime of a fractured bor-
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Fractured borrows.

LFTL-FULL-FRACTURE

▷□(∀q1, q2. Φ(q1 + q2)⇔ Φ(q1) ∗ Φ(q2))
&κ

full Φ(1)⇛Nlft
&κ

frac Φ

LFTL-FRACT-ACC

&κ
frac Φ ⊢ [κ]q ⇛Nlft

∃q′. ▷ Φ(q′) ∗
(
▷Φ(q′) ≡−∗Nlft [κ]q

)
LFTL-FRACT-SHORTEN

κ′ ⊑ κ ⊢ &κ
frac Φ⇒ &κ′

frac Φ

LFTL-FRACT-IFF

▷□(∀q. Φ(q)⇔ Ψ(q)) ⊢ &κ
frac Φ⇒ &κ

frac Ψ

Atomic persistent borrows.

LFTL-FULL-AT

N # Nlft

&κ
full P ⇛Nlft

&κ/N
at P

LFTL-AT-ACC

&κ/N
at P ⊢ [κ]q ⇛Nlft⊎N Nlft ∃Vb.⊔Vb

▷P ∗
(
⊔Vb

▷P ≡−∗Nlft Nlft⊎N [κ]q

)
LFTL-AT-SHORTEN

κ′ ⊑ κ ⊢ &κ/N
at P ⇒ &κ′/N

at P

LFTL-AT-IFF

▷□(P ⇔ Q) ⊢ &κ/N
at P ⇒ &κ/N

at Q

Non-atomic persistent borrows.

LFTL-FULL-NA

&κ
full P ⇛Nlft

&κ/p.N
na P

LFTL-NA-ACC

&κ/p.N
na P ⊢ [κ]q ∗ [Na : p.N ]⇛Nlft∪N ▷P ∗

(
▷P ≡−∗Nlft∪N [κ]q ∗ [Na : p.N ]

)
LFTL-NA-SHORTEN

κ′ ⊑ κ ⊢ &κ/p.N
na P ⇒ &κ′/p.N

na P

LFTL-NA-IFF

▷□(P ⇔ Q) ⊢ &κ/p.N
na P ⇒ &κ/p.N

na Q

FIGURE 16.2: Selected rules for other bor-
row alternatives, sound in λRust + ORC11row, like LFTL-FULL-SHORTEN for full borrows. LFTL-FRACT-IFF says that

fractured borrows are closed under the equivalence of the fractional
predicate.

16.2.2 Atomic Persistent Borrows

In contrast to fractured borrows, atomic borrows do provide full access to
the resources contained within, but only for a single, atomic instruction.
This restriction of atomic borrows is encoded in its access rule LFTL-AT-ACC

using mask-changing viewshifts, like INV-ACC or CINV-ACC. Recall that the
namespace Nlft is used for the internal invariant of the lifetime logic’s
model. The client of atomic borrows picks a namespace N disjoint from
Nlft, at the creation of a atomic borrow from a full borrow using LFTL-

FULL-AT, to allocate the underlying invariant that will store the resource P

for concurrent atomic accesses. Of course, an atomic borrow is still tied
to a lifetime specifying its period of validity, so that a lifetime token [κ]q
is still required to guarantee that the lifetime is alive during the access.

Atomicity is crucial, for example, when several threads need to mod-
ify a shared variable, such as a reference counter for shared pointers.
Therefore, while fractured borrows are designed to model immutable
shared resources, atomic borrows are designed to model mutable shared
resources in concurrent libraries. Naturally, these libraries use atomic
memory accesses whose rules 5 are compatible with LFTL-AT-ACC. 5e.g., those in §10

Most importantly, LFTL-AT-ACC only allows accesses to the borrowed
resource P under a view-join modality. That is, the access gives us
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⊔Vb
▷P and requires us to return the same ⊔Vb

▷P at the end of the
access. This is exactly the same requirement as that of the access rule
CINV-ACC for iRC11 cancelable invariants (§11.2.1), for the same reason:
we need to maintain soundness of the rules when porting them from Iris-
SC to iRC11. The view-join modality helps us prevent unsound accidental
synchronization between concurrent accesses.

This leads us back to the last two columns of Table 16.1. Each access
of a fractured borrow does not communicate with another, because
each access obtains an independent fraction of the borrowed contents,
and thus can access that fraction at the accessing thread’s local view.
Meanwhile, each access of an atomic (or non-atomic or full) borrow
obtains the full contents and can modify them and thus can communicate
with other accesses. For atomic borrows, it means that without the view-
join modality, concurrent accesses would transfer resources from one
thread to another without actual physical synchronization, rendering
our logic unsound! Imagine that if LFTL-AT-ACC without the view-join
modality were sound, a thread π would access and modify P (i.e., after
the access P holds at π’s local view), and immediately in the next step
a different thread ρ would get synchronized access to P at its own
local view, including the modifications made by π. In that case, the
logic would allow synchronization from π to ρ without there being any
physical synchronization to support that.

To avoid this unsoundness due to accidental synchronization between
concurrent accesses, it is sufficient to protect P with a view-at modality,
i.e., @Vb

▷P , and this would make atomic borrows roughly related to
objective invariants (§11.1). However, as we also want to reclaim the
borrowed resources, we need to employ the view-join modality to enable
and maintain the safety of inheritance (Remark 15.3), in the same exact
way as how iRC11 cancelable invariants maintains CANCEL-SAFE (§11.2).

Finally, LFTL-AT-SHORTEN and LFTL-AT-IFF say that atomic borrows are
closed with respect to lifetime inclusion and predicate equivalence.

16.2.3 Non-Atomic Persistent Borrows

A non-atomic borrow &κ/p.N
na P can be created from a full borrow &κ

full P

using LFTL-FULL-NA (Figure 16.2). Non-atomic borrows offer the same
sequential, non-atomic access style as that of full borrows, but manages
the unique access restriction through the non-atomic invariant token
[Na : p.N ] (for the namespace N under the pool p),6 instead of the6see §11.3

borrow assertion &κ
full P itself like in the case of full borrows. As such,

non-atomic borrow assertions &κ/p.N
na P are persistent and can be owned

by multiple parties. Non-atomic borrows are thus useful to model single-
threaded “smart pointer” types, e.g., Rc or RefCell.

The access rule LFTL-NA-ACC thus requires the invariant token [Na :

p.N ] in addition to the lifetime token [κ]q. Under the hood, the rule is
supported by the non-atomic invariant access rule NAINV-ACC and the
access rules for borrows.

LFTL-NA-SHORTEN and LFTL-NA-IFF say that non-atomic borrows are
also closed with respect to lifetime inclusion and predicate equivalence.
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16.3 Adaption of the Lifetime Logic’s Model in iRC11

In this section, we briefly discuss the adaptation of the lifetime logic’s
model on top of iRC11. This work was spearheaded by Jacques-Henri
Jourdan, one of the designers of the original Iris-SC lifetime logic. There-
fore, the discussion here is not a contribution of this dissertation, and is
only provided for the sake of completeness.

Concept 16.2 (The Invariant for Lifetimes and Borrows). The model of
the lifetime logic sets up a global invariant that governs the protocols for
all lifetimes and their associated borrows. At a very high-level, the global
invariant LftInv(κ) for each lifetime κ is roughly as follows.

• κ is either alive or dead: LftInv(κ) = LftAlive(κ) ∨ LftDead(κ).

• For each borrow &κ P associated with κ, when κ is already dead,
LftDead(κ) tracks if the inheritance Inh(κ, P )7 has been used. For 7see §15.2

borrows whose inheritance have not been used, LftDead(κ) carries
the resources of those borrows. This part of the protocol is needed
for LFTL-FULL-INH.8 8see Figure 15.1

• When κ is still alive, LftAlive(κ) tracks the states of each borrow
&κ P associated with κ. The borrow can be in one of three states:

– The borrow is not being accessed, and the resource P is still
being hold by LftAlive(κ).

– The borrow is being opened by someone, so the resource
P has been taken out of LftAlive(κ). On the other hand, as
part of the borrowing process, some fraction q of the lifetime
token [κ]q must have been put in LftAlive(κ) as a deposit. This
corresponds to the rules LFTL-FULL-ACC and LFTL-FULL-RET.9 9see Figure 15.1

– The borrow has been reborrowed at a strictly shorter lifetime
κ′. LftAlive(κ) then needs to track how to reclaim resources
for &κ P from the reborrows when κ is killed. This part of the
protocol models the reborrowing rule LFTL-REBORROW.10 10see Figure 16.1

As typical for logics built in Iris, the lifetime invariant LftInv(κ) to-
gether with the lifetime and borrow assertions (e.g., the lifetime token
[κ]q or the borrow assertion &κ

full P , as listed in §15.2) are modeled with
user-defined ghost state that encodes the desirable properties needed
by the protocols. For example, in the Iris-SC model of the lifetime logic,
[κ]q and [†κ] are defined purely with disjoint ghost elements (so as to
satisfy LFTL-TOK-NOT-DEAD),11 and &κ

full P is defined with an exclusive 11see Figure 15.1

ghost element, together with some invariant that ties P to the global
invariant LftInv(κ).

The Iris-SC lifetime logic, however, models the lifetime token [κ]q as
a view-agnostic assertion, simply asserting the ghost ownership of some
fraction q of the ghost location κ:

J[κ]qK ::= q
κ

(LFT-TOK-SC-MODEL)
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This model is insufficient for the RMC lifetime logic, because it does not
guarantee the safety of inheritance (Remark 15.3) in the presence of
concurrent borrow accesses that do not establish synchronization. In
RBrlx, we instead need to enrich this model so that it depends on the
view at which [κ]q is asserted:

J[κ]qK ::= ∃Vtok. (q, Vtok)
κ ∗ ⊒Vtok (LFT-TOK-RLX-MODEL)

In this model, the ghost element is no longer just a fraction q, but a pair
of the fraction and the token view Vtok. The token view Vtok represents
what this particular fraction of the token has observed, i.e., what borrow
accesses the token has participated in. The model requires that the local
view at which the token is interpreted has also at least observed what
[κ]q has observed: ⊒Vtok.

Note that this model of lifetime token is exactly the same as the
model of cancelable invariant token ♡γ

q , given by CINV-MODEL-TOK,1212see Definition 11.4, §11.2.2

because they share the same goal: guaranteeing the safety of inheri-
tance/cancelation. The protocol for borrow inheritance, however, is quite
more elaborate than invariant cancelation, because a lifetime can be
associated with multiple borrows, who in turn can be reborrowed. In
the following, we sketch the proofs for the inheritance and access rules,
for full, fractured, and atomic borrows in iRC11. As we will see shortly,
the key idea of the proofs is to associate views not only with the lifetime
token assertions, but with all the other assertions that play a role in the
lifetime logic.

16.3.1 Full Borrows

PROVING INHERITANCE. To prove LFTL-FULL-INH (Figure 15.1) sound for
RBrlx, we get to assume [†κ] and Inh(κ, P ) at the thread’s current local
view—call it V , and we need to produce ▷P at that same view V . Now,
the lifetime logic is responsible for controlling ownership of the content
of the borrow, P ; so let us assume that, when no threads are accessing
the borrow, P is maintained at a view Vb, which we call the content view.
Furthermore, by owning [†κ], we know that the global lifetime invariant
LftInv(κ) is in the LftDead(κ) disjunct, and by owning Inh(κ, P ), we know
that the inheritance has not been applied yet (we are the one to apply
it), so LftDead(κ) is still holding on to P at the view Vb. In other words,
LftDead(κ) is holding @Vb

▷P .
When we apply the inheritance, we will therefore be trading Inh(κ, P )

for @Vb
▷P from LftDead(κ). If we can show that ⊒Vb, i.e., the current

thread has locally observed Vb, we can use VA-ELIM (Figure 8.3) to obtain
▷P and finish the proof.

The key to proving the goal ⊒Vb is to:

• associate with each lifetime logic assertion a view that represents
what the assertion has observed, i.e., what activities it has been
involved in; and then

• establish and maintain for those associated views sufficiently strong
invariants in LftInv(κ) so that we can prove our goal.
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Below, we summarize a list of some associated views for assertions
that interact with a full borrow &κ

full P :

• the content view Vb at which the lifetime invariant keeps P ;

• the token views Vtok, one for every [κ]q;

• the full token view Vκ of the full token [κ]1, defined as the join of
all token views Vtok;

• the dead token view V† ⊒ Vκ; and

• the borrow view VB of the borrow assertion &κ
full P .

In order to prove ⊒Vb for LFTL-FULL-INH, we enforce the following
property in LftInv(κ) for the borrow in question:

Vb ⊑ Vκ (LFTL-FULL-BOR-INV-1)

By owning [†κ], we have for the current thread ⊒ V†. By view-
monotonicity (i.e., VS-MONO, Figure 8.3), the current thread must have
observed ⊒Vκ and ⊒Vb.

This shows that LFTL-FULL-BOR-INV-1 allows us to prove LFTL-FULL-INH.
But what is the intuition for this invariant? As hinted at before, each
piece of a lifetime token is intended to bear “witness” to any access to
the borrow that the token is used for. Ultimately, the full token [κ]1—
which is the join of all tokens—must have witnessed all accesses to the
borrow (Vb ⊑ Vκ). Therefore, a thread owning the full token should
have observed all modifications made to P by all of those accesses, so it
can safely kill the lifetime and produce the dead token [†κ]. Effectively,
a thread owning [†κ] must have observed all modifications made to P

(Vb ⊑ Vκ ⊑ V†), so it can use the inheritance to reclaim P at its local
view.

How do we maintain LFTL-FULL-BOR-INV-1? Vb ⊑ Vκ is maintained
by the rule LFTL-FULL-RET. Note that the lifetime token [κ]q is withheld
during the access. When the access finishes and P is returned to the
borrow at an updated view V ′

C , the rule uses V ′
C to update the view of

the withheld token [κ]q from Vtok to Vtok ⊔ V ′
C before returning it to the

user. Since Vκ is the join of all lifetime tokens, this effectively updates
Vκ to Vκ ⊔ V ′

C ⊒ V ′
C . With this, the invariant is re-established. Note that

this line of reasoning mirrors that of the proof of the cancelable invariant
access rule CINV-ACC in §11.2.2.

PROVING ACCESSES. To prove the rule for accessing full borrows, LFTL-

FULL-ACC, we assume the lifetime token and the borrow assertion, and we
need to provide the user with synchronized access to P at the thread’s
local view. Assuming that we can prove the return policy Ret(κ, P, q), we
still need to ensure that P holds locally, i.e., we have ⊒Vb. For this, we
rely on the following invariant:

Vb ⊑ VB (LFTL-FULL-BOR-INV-2)

That is, the content view Vb of P is always included in the borrow view
VB of &κ

full P . In other words, owning &κ
full P should imply ⊒VB , which
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in turn implies ⊒Vb. Like LFTL-FULL-BOR-INV-1, LFTL-FULL-BOR-INV-2 is
straightforward to maintain: the borrow assertion &κ

full P is withheld
during the access; and when an access is returned, we update the borrow
assertion’s VB with the new content view V ′

C .

16.3.2 Fractured Borrows

Fractured borrows, like all borrows, need to guarantee that all accesses
happen-before the inheritance is applied. However, unlike full borrows
where all accesses are ordered, accesses to a fractured borrow can happen
independently from one another. Thus, for fractured borrows, we need to
maintain that independent changes to fractions of Φ made by independent
accesses are all observed by the thread performing the inheritance. The
key to achieve this is to recognize that the content view of Φ is no longer
a single view, but consists of two views:

(1) the view VYTBA of the yet-to-be-accessed portion of Φ,

(2) the view VAA of the already-accessed portion of Φ.

VYTBA is the view of the chunk of Φ that has not been given out to any
access, as well as the view at which the fractured borrow was created.
Meanwhile, VAA tracks all the changes made by the accesses to all the
chunks that have been given out to those accesses.

With that in mind, we repeat what we did for full borrows: defining
the invariants for the inheritance and the accesses of fractured borrows.

PROVING INHERITANCE. We enforce an invariant on the two views of a
fractured borrow &κ

frac Φ:

VYTBA ⊔ VAA ⊑ Vκ (LFTL-FRACT-BOR-INV-1)

That is, instead of using a single content view Vb like in LFTL-FULL-BOR-

INV-1, we use the view VYTBA⊔VAA which is the view of the full resource
Φ(1), and require that it is always included in the full token view κ.
Thus, by similar reasoning to LFTL-FULL-BOR-INV-1, any changes to the
fractured borrow’s contents are guaranteed to happen-before the moment
the inheritance is applied.

PROVING ACCESSES. We maintain a second invariant:

VYTBA ⊑ VB (LFTL-FRACT-BOR-INV-2)

This invariant enables the synchronized access to a fraction of Φ in the
accessing rule LFTL-FRACT-ACC: when the rule is applied with a thread
owning a borrow assertion &κ

frac Φ with some borrow view VB , we have
that the thread has observed VB , i.e., ⊒VB . Consequently, the thread has
⊒VYTBA, and it can then obtain some portion Φ(q′) from the yet-to-be-
accessed chunk at its local view.

16.3.3 Atomic Persistent Borrows

The challenge of porting atomic borrows is the same one of porting
cancelable invariants to RMC: atomic borrows allow concurrent accesses
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to the full contents of the borrow, where each access can modify the
contents and thus can communicate with other accesses. While concur-
rent accesses are also possible with fractured borrows, this situation does
not apply to them because each access of a fractured borrow obtains an
independent fraction of the underlying contents.

The content view Vb of the borrow content P can be constantly
changed by different threads with atomic accesses to the borrow &κ/N

at P ,
and there is in general no relationship between threads’ local views and
the content view Vb. This is why, like the cancelable invariant access
rule CINV-ACC, the atomic borrow access rule LFTL-AT-ACC only provides
the borrow content protected under a view-join modality, in the form
⊔Vb

▷P . It is then the obligation of the clients of the atomic borrow to
eliminate the view-join modality in order to get actual access to P . The
main role of the view-join modality is to maintain safety of inheritance:
we still have that Vb ⊑ V†, so with ⊔Vb

▷P and ⊒V†, we can use VJ-ELIM

(Figure 8.3) to safely inherit ▷P . The proofs of inheritance and accesses
for atomic borrows are therefore very similar to the proofs for cancelable
invariants (see §11.2.2).

CHAPTER SUMMARY. In this chapter, we have reviewed the adaptation
of the RustBelt lifetime logic to RMC, on top of our logic iRC11. This
is sufficient to establish “Task 2: re-proving the safety of the λRust type
system under RMC”, due to the fact that the lifetime logic interface
only changes in the atomic borrow access rule. In this part’s remaining
chapters, we demonstrate some of the results in “Task 1”, where we rely
on the facilities of iRC11 as well as atomic persistent borrows to re-verify
the safety of several Rust libraries, considering their real, relaxed-memory
implementations.





17
GPS Single-Location Protocols

In this chapter, we present how to encode GPS single-location protocols1 1Turon et al., “GPS: navigating weak
memory with ghosts, protocols, and sep-
aration” [TVD14]; Kaiser et al., “Strong
Logic for Weak Memory: Reasoning
About Release-Acquire Consistency in
Iris” [Kai+17].

in iRC11, using atomics points-to (Chapter 10). From an organizational
perspective, this encoding should have been introduced as part of iRC11.
However, the encoding was mainly developed to perform verifications
of relaxed memory concurrent libraries for RBrlx (i.e., for Task 2, see
§14.2). In Chapter 18 and Chapter 19, we will demonstrate how GPS
protocols are used to verify respectively, the reader-writer lock and the
atomic reference counting against their RustBelt’s semantic types.

We will start in §17.1 with the interfaces of several different kinds of
GPS protocols in iRC11. The kinds of GPS protocols differ on (1) how
long they can be accessed, and on (2) how much concurrency they allow.
For (2), there are concurrent protocols which allow arbitrary concurrent
accesses, and single-writer protocols which allow either single-writer or
CAS-only writers. For (1), there are persistent protocols which stay alive
forever, cancelable protocols which stay alive as long as the cancelable
invariant token is still available, and atomic-borrows-based protocols
whose lifecycle is tied to a lifetime. Atomic-borrows-based protocols
will be used in the verification of the reader-writer lock (Chapter 18),
while cancelable protocols will be used in the verification of the atomic
reference counting (Chapter 19).

In §17.2, we provide intermediate-level interfaces of GPS protocols,
which we call the middleware. We show how middleware GPS protocols
are a common interface that can be combined with different types of
invariants to derive the surface-level GPS protocols. Specifically, we
define, as examples, the models of persistent/concurrent protocols, of
cancelable/single-writer protocols, and of atomic-borrows-based/single-
writer protocols using the middleware protocols respectively together
with objective invariants (§11.1), cancelable invariants (§11.2), and
atomic borrows (§16.2).

Finally, in §17.3, we briefly explain the model of middleware proto-
cols, which supports both concurrent and single-writer protocols, and
which is built upon the atomic points-to assertion.

17.1 Surface-level GPS Protocols in iRC11

Definition 17.1 (GPS Protocol Type). A GPS protocol for a single location
ℓ restricts how ℓ’s history can grow. The setup therefore lets the user
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pick a type of protocol states, and then pick a state for every write in the
history. The restriction is that, as the history grows, the states picked can
only grow following a pre-order (i.e., it is reflexive and transitive) that
is also picked up front by the user. More concretely, the user needs to
pick S ∈ ProtoState ::= (TS ,⊑) where TS is the state type that enjoys the
pre-order ⊑.

Example 17.2 (GPS Protocol Types). We provide a list of common
protocol types.

S() ::= ((), λ .True)

SB ::= (B, λs1, s2. s2 = true ∨ s1 = false)

SN ::= (N,≤)
S℘(A) ::= (℘(A),⊆)

SList(A) ::= (List(A), prefix)

The unit protocol S() has a single state and a trivial order. The boolean
protocol SB has two states false and true and can only grow from
the former to the latter. The natural protocol SN has states as natural
numbers and can only grow following the natural number order. The set
protocol S℘(A) has states as sets of elements from the type A, and states
can only grow by adding more elements. The list protocol SList(A) has
states as lists of elements from A, and lists can only grow by appending.

17.1.1 Persistent Concurrent Protocols

The interface of persistent concurrent GPS protocols is given in Fig-
ure 17.1 and Figure 17.2.

Definition 17.3 (Persistent Concurrent Protocol Assertion). The proto-

col assertion (ℓ, γ) : (t, s,v) I
N

says that the location ℓ is persistently
(permanently) governed by a GPS protocol interpretation I, under the
namespace N and the ghost location γ.

• The namespace N is picked by the creator (user) of the protocol
to house the protocol invariant. As GPS protocols are built with
Iris invariants, namespaces allow the user to atomically access
multiple invariants (housed in disjoint namespaces). This ability
is particularly important for deterministic pointer comparison in
the semantics of ORC11: when performing a compare-and-swap of
location values,2 if the two compared values are locations governed2for example, see GPS-CON-CAS-LOC

in Figure 17.2 by persistent concurrent protocols in disjoint namespaces, we know
atomically that the two locations are both alive, and hence their
comparison is deterministic.

• The ghost location γ is needed to store the ghost state of the proto-
col’s model. It is important in the case the protocol is cancelable:
multiple protocols can be tied to one location (but only at most one
can be alive at any moment in time), the ghost location γ uniquely
identifies a protocol instance. For persistent concurrent protocols
that are not cancelable, γ never changes and can be safely ignored.
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• The protocol interpretation I is a pair of predicates (Ir, Iw) called
the read and write interpretations, respectively. Both predicates are
of the type (Loc × GName × Time × TS × Val) → vProp, where S

is the protocol type picked by the user. Ir(ℓ, γ, t, s,v) represents
the resources one would get from the protocol when reading the
location’s write message of timestamp t and value v . Meanwhile,
Iw(ℓ, γ, t, s,v) represents the resources one needs to give up to the
protocol when writing a message of of timestamp t and value v to ℓ

and tying the state s to that message.

• In addition to asserting that the protocol exists persistently, the

assertion (ℓ, γ) : (t, s,v) I
N

also says that the current thread has
observed the write message of timestamp t, value v , and state s.

We can now look more closely at some of the rules for persistent
concurrent protocols, first in Figure 17.1 and then in Figure 17.2. We
explain first some simple rules.

• GPS-CON-AGREE says that the pre-order of protocol states are total
per protocol, as it follows the timestamp order—which encodes the
modification order mo—of a location’s history.

• GPS-CON-ATOM-PTSTO says that, by knowing that a persistent pro-
tocol exists for ℓ, we can atomically—due to the mask-changing
fancy update—access the primitive atomic points-to ℓ 7−→ h of ℓ

subjectively. This is sufficient to deduce that ℓ is still alive, and can
be useful in deterministic pointer comparison.

• GPS-CON-INIT allows one to allocate a new GPS protocol from a
non-atomic points-to ℓ 7→ v and the write interpretation Iw of the
latest write (with value v).

The rule GPS-CON-READ shows how persistent GPS protocols allow us
to read the location ℓ with the access mode o. Albeit looking simple, the
rule requires a bit of explanation.

• The read must use an atomic access mode for read, i.e., o ∈
{rlx, acq}. o can also be sc, but we do not provide a stronger
rule for SC accesses in iRC11.

• The rule can be used with the mask E that includes the protocol’s
namespace N , i.e., when the protocol’s invariant is enabled.

• If the reading thread π’s observation for ℓ was at least the mes-
sage (t, s,v), then the read will return a message (t′, s′,v ′) (and its
observation) that is no-mo-earlier than t.

• Additionally, if the user can prove a fancy update ExtractI that can
extract the resource R(t′, s′,v ′) from either the read (Ir) or write
(Iw) interpretation of the protocol for the read message t′, then the
user can get back R in the post-condition.

• The extraction must be proven objectively,3 without changing the 3see §8.4

interpretations.
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persistent(R(ℓ, γ, t, s,v))
timeless(R(ℓ, γ, t, s,v))

persistent( (ℓ, γ) : (t, s,v) I
N
)

GPS-CON-RDR

(ℓ, γ) : (t, s,v) I
N
⊢ R(ℓ, γ, t, s,v)

GPS-CON-AGREE

(ℓ, γ) : (t1, s1,v1) I
N
∗ (ℓ, γ) : (t2, s2,v2) I

N
⇛E (t1 ≤ t2 ⇒ s1 ⊑ s2) ∧ (t2 ≤ t1 ⇒ s2 ⊑ s1)

GPS-CON-ATOM-PTSTO

(ℓ, γ) : (t, s,v) I
N
⇛E E\↑N ∃h. ▷ ⟨subj⟩ ℓ 7−→ h

GPS-CON-INIT

ℓ 7−→ v ∗ (∀γ, t. ▷ Iw(ℓ, γ, t, s,v))⇛E ∃γ, t. (ℓ, γ) : (t, s,v) I
N

∇o?rlx
π P ::= if (o = rlx) then∇π P elseP

∆o?rlx
π P ::= if (o = rlx) then∆π P elseP

ExtractI(ℓ, γ, t
′, s′,v ′, R, E ,N ) ::= ⟨obj⟩ ∧

Ir(ℓ, γ, t
′, s′,v ′)⇛E\↑N Ir(ℓ, γ, t′, s′,v ′) ∗R(t′, s′,v ′)

Iw(ℓ, γ, t′, s′,v ′)⇛E\↑N Iw(ℓ, γ, t′, s′,v ′) ∗R(t′, s′,v ′)

GPS-CON-READ

rlx ⊑ o ↑N ⊆ E

{ (ℓ, γ) : (t, s,v) I N
∗ ∀t′ ≥ t, s′ ⊒ s,v ′.ExtractI(ℓ, γ, t

′, s′,v ′, R, E ,N )}
∗oℓ in π

{v ′.∃t′ ≥ t, s′ ⊒ s. (ℓ, γ) : (t′, s′,v ′) I
N
∗ ∇o?rlx

π R(t′, s′,v ′)}
E

GPS-CON-WRITE

rlx ⊑ o ↑N ⊆ E ∀s. s ⊑ s′

{ (ℓ, γ) : (t, s,v) I N
∗∆o?rlx

π

(
∀t′ > t.R(ℓ, γ, t′, s′,v ′)⇛E\↑N Iw(ℓ, γ, t′, s′,v ′)

)}
ℓ :=o v

′ in π

{h.∃t′ > t. (ℓ, γ) : (t′, s′,v ′) I
N }

E

FIGURE 17.1: Rules for GPS Persistent
Concurrent Protocols
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• If the read access mode is at least acq, then R is acquired as-is.
If the read is only relaxed (rlx), R will be returned protected by
the acquire modality ∇,4 which can later be eliminated by with an 4see §8.3

acquire fence. To succinctly encapsulate both cases in the rule, we
use the conditional notation ∇o?rlx

π for the acquire modality.

GPS-CON-WRITE allows us to write a value v ′ to ℓ and tie the state s′

to that write.

• The write access mode o should be {rlx, rel}.

• The value v ′ will be tied to the timestamp t′ strictly greater than
the writing thread’s observation of timestamp t for ℓ.

• As the protocol states need to grow with respect to the pre-order
⊑, the user needs to guarantee that the new state s′ is greater
than the protocol’s current state. However, as the protocol allows
concurrent writes, it is difficult to know what the current state is.
Consequently, the rule requires the user to prove that s′ is be greater
than any state (∀s. s ⊑ s′). This is quite a strong requirement, and
expectedly, protocols for arbitrarily concurrent locations are often
trivial.

• Most importantly, the user has to provide the write interpretation
Iw for the new write message (t′, s′,v ′). If the write access mode
is at least rel, then the user only has to provide Iw right before
the write. If the mode is relaxed, then the user has to provide Iw
at the most recent release fence, i.e., provide Iw under the release
modality ∆.5 Similarly to the read rule, we use the conditional 5see §8.3

notation ∆o?rlx
π here to combine the two cases.

• Additionally, in proving Iw, the user can assume the pure-ghost
observation R(ℓ, γ, t′, s′,v ′) of the new message v ′ with the state
s′. That is, the write interpretation can include the fact that the
write has been registered in the protocol. Intuitively, the observa-

tion R(ℓ, γ, t′, s′,v ′) is simply the assertion (ℓ, γ) : (t′, s′,v ′) I
N

without asserting the existence of the protocol invariant. As such,
R is both persistent and timeless. The relation between the two
observations is shown in the rule GPS-CON-RDR.

We now look at the rule GPS-CON-CAS-INT in Figure 17.2, which
allows us to perform a compare-exchange from an integer value vr to a
value vw.

• Recall that or and ow are respectively the read and write access
modes in the successful exchange case. Meanwhile, of is the read
access mode in the failure case. Like the read and write rules,
these access modes must be at least rlx, and dictate whether the
resources the user needs to provide or can acquire will be protected
by the release or acquire modality, respectively. As in the read and
write rules, we use the conditional notations ∆o?rlx

π and ∇o?rlx
π to

denote these requirements.
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GPS-CON-CAS-INT

rlx ⊑ of , or, ow ↑N ⊆ E vr ∈ Z

{ (ℓ, γ) : (t, s,v) I
N
∗

▷ ⟨obj⟩
(
∀t′ ≥ t, s′ ⊒ s,v ′. (Ir(ℓ, γ, t′, s′,v ′) ∨ Iw(ℓ, γ, t′, s′,v ′)) −∗ ⊢ v ′ =? vr

)
∗

∆ow?rlx
π P ∗

∆ow?rlx
π ∀t′ ≥ t, s′ ⊒ s. ∧



▷ (∀v ′ ̸= vr.ExtractI(ℓ, γ, t
′, s′,v ′, R, E ,N ))

∗



⟨obj⟩
(
▷ Iw(ℓ, γ, t′, s′,vr)⇛E\↑N (▷Q1(t

′, s′) ∗ ▷Q2(t
′, s′))

)
(P ∗ ▷Q2(t

′, s′))⇛E\↑N ∃s′′ ⊒ s′.∀t′′ > t′.

▷R(ℓ, γ, t′′, s′′,vw)⇛E\↑N

∗

⟨obj⟩
(
▷Q1(t

′, s′)⇛E\↑N Ir(ℓ, γ, t′, s′,v ′)
)

|⇛E\↑N ▷ |⇛E\↑N (Q(t′′, s′′) ∗ Iw(ℓ, γ, t′′, s′′,vw))

}
CASof ,or,ow(ℓ,vr,vw) in π

{b.∃t′,v ′, s′ ⊒ s. ∨

vr ̸= v ′ ∗ t ≤ t′ ∗ (ℓ, γ) : (t′, s′,v ′) I
N
∗ ∇of?rlx

π R(t′, s′,v ′) ∗ ∇ow?rlx
π P b = false

vr = v ′ ∗ t < t′ ∗ (ℓ, γ) : (t′, s′,vw) I
N
∗ ∇or?rlx

π Q(t′, s′) b = true }
E

GPS-CON-CAS-LOC

rlx ⊑ of , or, ow ↑N ⊆ E ℓr ∈ Loc

{ (ℓ, γ) : (t, s,v) I
N
∗

Pcmp ∗□(Pcmp ⇛E\↑N ∃q, hr. ▷ ⟨subj⟩ ℓr q7−→ hr) ∗

▷ ⟨obj⟩
(
∀t′ ≥ t, s′ ⊒ s,v ′. (Ir(ℓ, γ, t′, s′,v ′) ∨ Iw(ℓ, γ, t′, s′,v ′)) −∗ ⊢ v ′ =? ℓr

)
∗

∆ow?rlx
π P ∗

∆ow?rlx
π ∀t′ ≥ t, s′ ⊒ s. ∧



▷ (∀v ′ ̸= ℓr.ExtractI(ℓ, γ, t
′, s′,v ′, R, E ,N ))

∗



⟨obj⟩
(
∀ℓ′ ̸= ℓr. ▷ Iw(ℓ, γ, t′, s′, ℓ′)⇛E\↑N ∃q, h′. ▷ ℓ′ q7−→ h′)

)
⟨obj⟩

(
▷ Iw(ℓ, γ, t′, s′, ℓr)⇛E\↑N (▷Q1(t

′, s′) ∗ ▷Q2(t
′, s′))

)
(P ∗ ▷Q2(t

′, s′))⇛E\↑N ∃s′′ ⊒ s′.∀t′′ > t′.

▷R(ℓ, γ, t′′, s′′,vw)⇛E\↑N

∗

⟨obj⟩
(
▷Q1(t

′, s′)⇛E\↑N Ir(ℓ, γ, t′, s′,v ′)
)

|⇛E\↑N ▷ |⇛E\↑N (Q(t′′, s′′) ∗ Iw(ℓ, γ, t′′, s′′,vw))

}
CASof ,or,ow(ℓ, ℓr,vw) in π

{b.∃t′,v ′, s′ ⊒ s. Pcmp ∗ ∨

ℓr ̸= v ′ ∗ t ≤ t′ ∗ (ℓ, γ) : (t′, s′,v ′) I
N
∗ ∇of?rlx

π R(t′, s′,v ′) ∗∆ow?rlx
π P b = false

ℓr = v ′ ∗ t < t′ ∗ (ℓ, γ) : (t′, s′,vw) I
N
∗ ∇or?rlx

π Q(t′, s′) b = true }
E

FIGURE 17.2: CAS Rules for GPS Persis-
tent Concurrent Protocols
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• Putting the usual pre-condition of the protocol assertion aside, the
first pre-condition requires the user to show, objectively, that any
message (t′, s′,v ′) the CAS can read from would have the value v ′

that is comparable with the expected integer vr, i.e., ⊢ v ′ =? vr.6 6see Definition 4.9

In proving comparability, the user can assume more resources,
specifically the read or write interpretation about the read message
(t′, s′,v ′).

• As the second pre-condition, the user is required to pick and prove
some predicate P—either now or at the most recent release fence—
that will be released with the write effect if the CAS succeeds
(b = true in the post-condition). In case the CAS fails (b = false),
P is returned unchanged in the post-condition.

• The last pre-condition, also needed to be proven either now or
at the most recent release fence depending on ow, requires that
the user can resolve two obligations that represent the failure and
success cases of the CAS, and that consequently are tied together
by the classical conjunction ∧.

(i) If the CAS fails, the situation is similar to that of a read
with the mode of : the user should prove a fancy update
ExtractI that can extract the resource R(t′, s′,v ′) from either
the read (Ir) or write (Iw) interpretation for the read message
t′, whose value v ′ is definitely not the expected integer vr.

(ii) If the CAS succeeds, it has a combined effect of both a read of
the message (t′, s′,vr) and a write of the message (t′′, s′′,vw).
In this obligation, the user can consume the write interpreta-
tion Iw of the read message to produce the write interpreta-
tion Iw of the new write message. The obligation is split into
several steps:

– first, the user shows, objectively, that the write interpre-
tation Iw of the read message (t′, s′,vr) can be split into
two resources Q1 and Q2;

– second, the user shows that, with the pre-condition P and
the 2nd part Q2, the user can pick the new state s′′ that
extends s′ for the new write of timestamp t′′;

– finally; knowing the observationR(ℓ, γ, t′′, s′′,vw) that the
protocol has been extended with the new state, the user
proves both (a) the read interpretation Ir for the read
message, assuming Q1, and (b) the write interpretation
Iw for the new write message (t′′, s′′,vw), assuming the
rest of the resources. If there are still resources left, the
user can choose to keep them in Q, which will be returned
in the post-condition when the CAS succeeds (b = true).

• The laters and fancy updates are put in positions that provide
maximum flexibility for the user in accessing invariants, performing
ghost updates, and eliminating laters.
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• The timestamp t′ and state s′ returned in the post-condition cor-
respond, in the CAS failure case, to the read message’s timestamp
t′ and s′, and in the CAS success case, to the write message’s
timestamp t′′ and state s′′.

The rule GPS-CON-CAS-LOC (Figure 17.2) is very similar to GPS-CON-

CAS-INT, except that it allows to use a pointer (location) ℓr as the expected
value for the comparison. Consequently, the rule has extra obligations
to achieve deterministic pointer comparison. Specifically, the rule now
requires, as the first condition, some resource Pcmp that can be used to
show that ℓr is alive, by showing its primitive atomic points-to ℓr 7−→ hr,
subjectively. The resource Pcmp, however, is only used to for this purpose
and will not be consumed, and will be returned unchanged in the post-
condition. Furthermore, the last pre-condition requires the user to show
that the location value ℓ′ that is to be compared with ℓr is also alive,
also by showing its primitive atomic points-to. Note that, interestingly,
this requirement only applies for ℓ′ and ℓr that are definitionally inequal,
because definitionally equal locations are always compared equal and
never inequal,7 regardless of their liveness status.7see Definition 4.7 and Definition 4.8

17.1.2 Cancelable Single-Writer Protocols

As can be seen from GPS-CON-WRITE, allowing arbitrarily concurrent
writes results in a weak write rule which is often only applicable to a
trivial protocol order, because it is impossible to know what the current
up-to-date state of the protocol is. In more interesting protocols, one
needs more control on how states can change, i.e., how writes can happen.
To provide stronger reasoning principles for some of such interesting
scenarios, iGPS8 introduces single-writer protocols, where only one thread8Kaiser et al., “Strong Logic for Weak

Memory: Reasoning About Release-
Acquire Consistency in Iris” [Kai+17]. can write to the location, while other threads can concurrently read from

it. Intuitively, the setup is that writes can only be performed with the
unique writer permission, which must be transferred explicitly among
multiple threads to write to it, one at a time. As such, the writer always
knows exactly what the current state of the protocol is.

iRC11’s single-writer protocols build upon those of iGPS, but extends
the notion of single-writer to also include CAS-only accesses: when
multiple threads concurrently try to write to the same location ℓ, if they
can resolve their contentions by using only CASes, then the protocol still
maintains a single writer, albeit only atomically. In the following, we
present the cancelable variant of iRC11 single-writer protocols, i.e., they
also allow the user to switch protocols or switch to non-atomic reasoning
if need be.

Definition 17.4 (Cancelable Single-Writer Protocol Assertions). There
are four kinds of assertions.

• The reader assertion (ℓ, γi, γ) : (t, s,v) I
N

says that a cancelable
protocol instance γ with the interpretation I has been established
for the location ℓ, under the namespace N . It is similar to the

assertion (ℓ, γ) : (t, s,v) I
N

of persistent concurrent protocols,99see Definition 17.3
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as it also says that the current thread has observed the write mes-
sage of timestamp t, value v , and state s of the protocol instance γ.
However, it says nothing about the liveness of that instance.

• The cancelable token ♡γi
q asserts that the protocol has not been

canceled, i.e., it is still alive. The token is tied to other protocol
assertions by the ghost location γi, and like the cancelable invariant
token,10 it is needed for any access to the location ℓ through the 10see §11.2.1

protocol instance γ that is tied to γi.11
11Consequently, the pair (γi, γ) uniquely
identifies the protocol instance, and we
should always use the pair as a single
name for the instance. However, here we
choose to state the pair explicitly, to eas-
ily show the similarity with the persistent
concurrent protocol assertion (through γ)
and the cancelable invariant assertions
(through γi).

• The single-writer assertion (ℓ, γi, γ) : (t, s,v) I
N

W
asserts the unique

permission to perform writes on ℓ. It additionally says that the lat-
est write to ℓ is exactly the message (t, s,v), and that the owner
thread has observed that write.

• The CAS-only assertion (ℓ, γi, γ) : (t, s,v) I
N

q
asserts the permis-

sion to perform CASes on ℓ. The assertion is fractional, as it is
indexed by a fraction q. Therefore it can be split and joined, so
as to allow multiple threads to concurrently perform CASes on ℓ.
However, the CAS-only assertion cannot co-exist with the single-
writer assertion, enforcing that the protocol is in the CAS-only
mode, where writes can only be done with CASes.

• Last but not least, in order to support a strong single-writer rule,
we need to extend the protocol interpretation I into a triple of
predicates (Ir, Iw, Im) which are the read, write, and moved inter-
pretations, respectively. The new moved interpretation Im denotes
the leftover resources of a write message that has been overwritten
by a single-writer write. We will see the use of this new interpreta-
tion in the single-writer write rule GPS-SW-WRITE-REL in Figure 17.4.

Some of the relations among the assertions can be found in Fig-
ure 17.3. For example, GPS-SW-W and GPS-SW-RSHR respectively show
that the single-writer assertion and the CAS-only assertion both imply
the reader assertion, so they can both be used to read from the location ℓ.
GPS-SW-W-WSHR-RSHR shows how to convert the single-writer assertion
into the full fraction of the CAS-only assertion, effectively switching the
protocol from the single-writer mode to the CAS-only mode. Dually,
GPS-SW-W-REVERT shows how to convert the full fraction of the CAS-only
assertion back to the single-writer assertion. To fully understand the
rules in Figure 17.3, we need to introduce some new auxillary assertions.

Definition 17.5 (Auxillary Single-Writer Protocol Assertions). The aux-
illary assertions are all pure ghost-state assertions, so they are timeless
and can be put into invariants and can bypass all step-indexing restric-
tions (manifested in the later modality). In fact, they are only needed
specifically for this purpose.

• The read observation R(ℓ, γ, t, s,v), which we already see in the
rule GPS-CON-WRITE, is persistent and asserts that the message
(t, s,v) has been registered in the protocol instance γ.
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persistent(R(ℓ, γ, t, s,v))
timeless(R(ℓ, γ, t, s,v))

persistent( (ℓ, γi, γ) : (t, s,v) I
N
)

timeless(W(ℓ, γ, t, s,v))

timeless(Wshr(ℓ, γ, t, s,v))

timeless(Rq
shr(ℓ, γ, t, s,v))

GPS-SW-W

(ℓ, γi, γ) : (t, s,v) I
N

W
⊣⊢ W(ℓ, γ, t, s,v) ∗ (ℓ, γi, γ) : (t, s,v) I

N

GPS-SW-RSHR

(ℓ, γi, γ) : (t, s,v) I
N

q
⊣⊢ Rq

shr(ℓ, γ, t, s,v) ∗ (ℓ, γi, γ) : (t, s,v) I
N

GPS-SW-R

(ℓ, γi, γ) : (t, s,v) I
N
⊢ R(ℓ, γ, t, s,v)

GPS-W-R

W(ℓ, γ, t, s,v) ⊢ R(ℓ, γ, t, s,v)
GPS-WSHR-R

Wshr(ℓ, γ, t, s,v) ⊢ R(ℓ, γ, t, s,v)
GPS-RSHR-R

Rq
shr(ℓ, γ, t, s,v) ⊢ R(ℓ, γ, t, s,v)

GPS-W-EXCL

W(ℓ, γ, t, s,v) ∗W(ℓ, γ, t′, s′,v ′) ⊢ False
GPS-WSHR-EXCL

Wshr(ℓ, γ, t, s,v) ∗Wshr(ℓ, γ, t
′, s′,v ′) ⊢ False

GPS-W-WSHR-EXCL

W(ℓ, γ, t, s,v) ∗Wshr(ℓ, γ, t
′, s′,v ′) ⊢ False

GPS-W-RSHR-EXCL

W(ℓ, γ, t, s,v) ∗ Rq
shr(ℓ, γ, t

′, s′,v ′) ⊢ False

GPS-RSHR-FRAC-1

Rq
shr(ℓ, γ, t, s,v) ∗ ⟨subj⟩Rq′

shr(ℓ, γ, t
′, s′,v ′) ⊢ Rq+q′

shr (ℓ, γ, t, s,v)

GPS-RSHR-FRAC-2

Rq+q′

shr (ℓ, γ, t, s,v) ⊢ Rq
shr(ℓ, γ, t, s,v) ∗ R

q′

shr(ℓ, γ, t, s,v)

GPS-R-RSHR-JOIN

R(ℓ, γ, t, s,v) ∗ ⟨subj⟩Rq
shr(ℓ, γ, t

′, s′,v ′) ⊢ Rq
shr(ℓ, γ, t, s,v)

GPS-WSHR-RSHR-UPDATE

Wshr(ℓ, γ, t, s,v) ∗ Rq
shr(ℓ, γ, t

′, s′,v ′) ⊢ Wshr(ℓ, γ, t, s,v) ∗ Rq
shr(ℓ, γ, t, s,v)

GPS-W-WSHR-RSHR

W(ℓ, γ, t, s,v) ⊢ Wshr(ℓ, γ, t, s,v) ∗ R1
shr(ℓ, γ, t, s,v)

GPS-SW-W-WSHR-RSHR

(ℓ, γi, γ) : (t, s,v) I
N

W
⊢ Wshr(ℓ, γ, t, s,v) ∗ (ℓ, γi, γ) : (t, s,v) I

N

1

GPS-SW-W-REVERT

↑N ⊆ E

♡γi
q ∗Wshr(ℓ, γ, t, s,v) ∗ (ℓ, γi, γ) : (t

′, s′,v ′) I
N

1
⇛E ♡γi

q ∗ (ℓ, γi, γ) : (t, s,v) I
N

W

FIGURE 17.3: Rules for auxillary asser-
tions of GPS Single-Writer Protocols
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• The single-writer permission W(ℓ, γ, t, s,v) is the unique ghost
permission needed to perform writes when the protocol is in single-
writer mode.

• The shared-writer permissionWshr(ℓ, γ, t, s,v) and the shared-reader
permission Rq

shr(ℓ, γ, t, s,v) are needed to perform CASes when the
protocol is in CAS-only mode. Intuitively, every participant locally
owns a fraction of the shared-reader permission and globally shares
the shared-writer permission in order to perform CASes.

We can now explain the rules in Figure 17.3 in more details. GPS-

SW-W says explicitly that the single-writer assertion is in fact the ghost
single-writer permission combined with the reader assertion—the ghost
single-writer permission maintains that the protocol is in the single-
writer mode and that the observed message (t, s,v) is the latest write.
Meanwhile GPS-SW-RSHR says that the CAS-only assertion is the ghost
shared-reader permission combined with the reader assertion—the ghost
shared-reader permission maintains that the protocol is still in CAS-only
mode. Furthermore, GPS-SW-R says that the reader assertion simply
implies the read observation (in addition to the fact that an invariant
exists for the protocol). The rules GPS-W-R, GPS-WSHR-R, and GPS-RSHR-

R say that all ghost permissions always include the read observation of
their message (t, s,v).

GPS-W-EXCL and GPS-WSHR-EXCL respectively say that the ghost single-
writer permission and shared-writer permission are exclusive. GPS-W-

WSHR-EXCL and GPS-W-RSHR-EXCL say that the single-writer permission
cannot co-exist with the shared-writer permission or the shared-reader
permission, because the protocol can only be either in the single-writer
mode or in the CAS-only mode at a time. GPS-RSHR-FRAC-1 and GPS-

RSHR-FRAC-2 say that the shared-reader permission can be split and join
fractionally. GPS-R-RSHR-JOIN says that we can update the shared-reader
permission Rq

shr(ℓ, γ, t
′, s′,v ′) with the local observation Rq(ℓ, γ, t, s,v).

Meanwhile, GPS-WSHR-RSHR-UPDATE says that we can update the obser-
vation of the shared-reader permission with that of the shared-writer
permission, which always carries the latest write to the protocol.

The rule GPS-W-WSHR-RSHR crucially shows how we can convert the
single-writer permission into the shared-writer permission and the full
fraction of the shared-reader permission. This is the key rule to switch the
protocol from the single-writer mode to the CAS-only mode, and in fact
it establishes the soundness of GPS-SW-W-WSHR-RSHR, which applies the
switch at the level of protocol assertions. The reverse switch—from CAS-
only mode back to single-writer mode—is stated in GPS-SW-W-REVERT and
additionally requires a fancy update as well as a fraction of cancelable
token ♡γi

q . We need these two facilities because the reverse switch needs
to access the internal invariant that supports the model of cancelable
single-writer protocols. We will explain this in more details when we
look at the model of cancelable single-writer protocols in §17.2.

We now turn our eyes to an excerpt of the operational rules for
cancelable single-writer protocols in Figure 17.4.
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GPS-SW-INIT

ℓ 7−→ v ∗ (∀γi, γ, t. ▷ Iw(ℓ, γi, γ, t, s,v))⇛E ∃γi, γ, t.♡γi

1 ∗ (ℓ, γi, γ) : (t, s,v) I
N

W

ExtractI(ℓ, γi, γ, t
′, s′,v ′, R, E ,N ) ::= ⟨obj⟩ ∧


Ir(ℓ, γi, γ, t′, s′,v ′)⇛E\↑N Ir(ℓ, γi, γ, t′, s′,v ′) ∗R(t′, s′,v ′)

Iw(ℓ, γi, γ, t′, s′,v ′)⇛E\↑N Iw(ℓ, γi, γ, t′, s′,v ′) ∗R(t′, s′,v ′)

Im(ℓ, γi, γ, t
′, s′,v ′)⇛E\↑N Im(ℓ, γi, γ, t

′, s′,v ′) ∗R(t′, s′,v ′)

GPS-SW-READ

rlx ⊑ o ↑N ⊆ E

{♡γi
q ∗ (ℓ, γi, γ) : (t, s,v) I

N
∗ (∀t′ ≥ t, s′ ⊒ s,v ′.ExtractI(ℓ, γi, γ, t

′, s′,v ′, R, E ,N ))}
∗oℓ in π

{v ′.∃t′ ≥ t, s′ ⊒ s.♡γi
q ∗ (ℓ, γi, γ) : (t

′, s′,v ′) I
N
∗ ∇o?rlx

π R(t′, s′,v ′)}
E

GPS-SW-WRITER-READ

rlx ⊑ o ↑N ⊆ E

{♡γi
q ∗ (ℓ, γi, γ) : (t, s,v) I

N

W
∗ ⟨obj⟩

(
Iw(ℓ, γi, γ, t, s,v)⇛E\↑N Iw(ℓ, γi, γ, t, s,v) ∗R

)}
∗oℓ in π

{v .♡γi
q ∗ (ℓ, γi, γ) : (t, s,v) I

N

W
∗R}

E

GPS-SW-WRITE-REL

↑N ⊆ E s ⊑ s′

{♡γi
q ∗ (ℓ, γi, γ) : (t, s,v) I

N

W
∗ ▷ ⟨obj⟩

(
Iw(ℓ, γi, γ, t, s,v)⇛E\↑N Q1 ∗Q2

)
∗

∀t′ > t.
(
W(ℓ, γ, t′, s′,v ′) ∗Q2 ∗ ♡γi

q

)
⇛E\↑N ∗

⟨obj⟩Q1 ⇛E\↑N Im(ℓ, γi, γ, t, s,v)

|⇛E\↑N Iw(ℓ, γi, γ, t
′, s′,v ′) ∗Q(t′)

}
ℓ :=rel v

′ in π

{h.∃t′ > t. (ℓ, γi, γ) : (t
′, s′,v ′) I

N
∗Q(t′)}

E

GPS-SW-DEALLOC

↑N ⊆ E

♡γi

1 ∗ (ℓ, γi, γ) : (t
′, s′,v ′) I

N
⇛E ∃t, s,v . ℓ 7−→ v ∗ ▷ Iw(ℓ, γi, γ, t, s,v)

GPS-SW-READ-ACQ-DEALLOC

rlx ⊑ o ↑N ⊆ E

{♡γi
q ∗ (ℓ, γi, γ) : (t, s,v) I

N
∗ (∀t′ ≥ t, s′ ⊒ s,v ′.ExtractI(ℓ, γi, γ, t

′, s′,v ′, R, E ,N )) ∗

P ∗
(
∀t′ ≥ t, s′ ⊒ s,v ′.

(
P ∗ ♡γi

q ∗R(t′, s′,vd)
)
⇛E\↑N ♡γi

1 ∗Q(t′, s′)
) }

∗acqℓ in π

{v ′.∃t′ ≥ t, s′ ⊒ s. (ℓ, γi, γ) : (t
′, s′,v ′) I

N
∗

Q(t′, s′) ∗ ∃t, s,v . ℓ 7−→ v ∗ ▷ Iw(ℓ, γi, γ, t, s,v) v ′ = vd

♡γi
q ∗R(t′, s′,v ′) ∗ P v ′ ̸= vd

}
E

FIGURE 17.4: Selected rules for Cance-
lable Single-Writer GPS Protocols
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• GPS-SW-INIT allows us to allocate a new cancelable single-writer
GPS protocol for ℓ provided the non-atomic points-to ℓ 7−→ v and
the write interpretation Iw for the latest message (t, s,v). The rule
is very similar to the rule GPS-CON-INIT of persistent concurrent
protocols, but in this case we get back the single-writer assertion
as well as the full cancelable token ♡γi

1 .

• GPS-SW-READ shows how we can read from the location using only
the reader assertion. Again, this is almost the same as GPS-CON-

READ, except that we need a fraction ♡γi
q of the token to know that

the protocol instance is still alive. GPS-SW-WRITER-READ shows a
stronger read rule with the single-writer assertion: we always read
the latest write message.

• GPS-SW-WRITE-REL is a release write rule with the single-writer
assertion. The rule is much stronger than the concurrent write rule
GPS-CON-WRITE,12 because it gets access to the latest write. More 12see Figure 17.1. In fact, it has the flavor

of a CAS rule, like GPS-CON-CAS-INT
(in Figure 17.2).specifically, we can use the write interpretation Iw of the latest

write (t, s,v) to establish the write interpretation Iw of the next
latest write (t′, s′,v ′), as follows.

– The protocol state must grow, i.e., s ⊑ s′.

– Iw of (t, s,v) can be split into Q1 and Q2, where Q1 is the
leftover resource that can be used to establish the new moved
interpretation Im of the overwritten message (t, s,v).

– Q2 can be used to establish the write interpretation Iw of the
next latest write (t′, s′,v ′).

– Additionally, the ghost writer permissionW(ℓ, γ, t′, s′,v ′) (up-
dated with the next latest write) as well as the cancelable
token ♡γi

q (needed to know that the protocol is still alive) can
also be used for Iw of the next write (t′, s′,v ′).

– Any unused resources can be returned in Q(t′). For example,
if the ghost writer permissionW(ℓ, γ, t′, s′,v ′) is returned in
Q(t′), we can get back the writer assertion with the updated

latest write, i.e., (ℓ, γi, γ) : (t
′, s′,v ′) I

N

W
. The same also

applies to the cancelable fraction ♡γi
q .

• GPS-SW-DEALLOC is the cancelation rule for the single-writer pro-
tocol. It is derived from CINV-CANCEL,13 so it naturally requires the 13see Chapter 11

full cancelable token. The rule then will return the full non-atomic
points-to of the location, as well as the write interpretation Iw for
the latest write. Note that it is sufficient to have only the reader
assertion of the protocol to cancel it. However, we also have a
variant of the rule (elided here) with the writer assertion, where
we know that we will get back the non-atomic points-to with v

being the latest write from the writer assertion (instead of being
existentially quantified here).

• GPS-SW-READ-ACQ-DEALLOC is a very specific read rule that extends
GPS-SW-READ with the ability to cancel the protocol if it happens to
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be the case that the reader is the only party accessing the protocol.
To do so, the user first picks a special value vd that signals the
end-of-life of the protocol. That is, the reader should prepare
to cancel the protocol if it happens to read vd. Specifically, the
reader should provide as extra pre-conditions (1) some resource P

and (2) a proof that P together with the cancelable fraction ♡γi
q

(used for the read) and the acquired resource R(t′, s′,vd) can be
used to reconstruct the full cancelable token ♡γi

1 . In that case, the
cancelation is performed in the same way as GPS-SW-DEALLOC: we
get back the full non-atomic points-to of the location and the latest
write interpretation Iw. Furthermore, we also get out whatever
leftover resource Q(t′, s′) that comes out of (2). In case that we
do not read the signal value vd, we simply get back the acquired
resource R(t′, s′,v ′) with the original P and the cancelable fraction.

17.1.3 Atomic-Borrows-based Protocols

Finally, we introduce a variant of GPS single-writer protocols that is
tied to a lifetime κ, who effectively is the upper-bound of the protocol’s
lifetime.

Definition 17.6 (Atomic-Borrows-based Single-Writer Protocol Asser-
tions). There are three kinds of assertions that mirror those of cancelable
single-writer protocols. They all simply tie the protocol to a lifetime κ,
instead of to a ghost location γi for the cancelable token.

• The reader assertion &κ (ℓ, γ) : (t, s,v) I
N

• The single-writer assertion &κ (ℓ, γ) : (t, s,v) I
N

W

• The CAS-only assertion &κ (ℓ, γ) : (t, s,v) I
N

q

We present only a small selection of rules for atomic-borrows-based
protocols in Figure 17.5 and Figure 17.6.

• GPS-ATBOR-R, GPS-ATBOR-W, and GPS-ATBOR-RSHR are similar to
the rules GPS-SW-R, GPS-SW-W, and GPS-SW-RSHR in Figure 17.3,
respectively. They show the relations among the protocol assertions
and the ghost permissions (introduced in Definition 17.5).

• GPS-ATBOR-W-WSHR-RSHR is the atomic-borrow-based variant of
GPS-SW-W-WSHR-RSHR, which shows how to convert the single-
writer assertion into the full fraction of the CAS-only assertion,
effectively switching the protocol from the single-writer mode to
the CAS-only mode.

• The reverse rule GPS-ATBOR-W-REVERT, like GPS-SW-W-REVERT, shows
how to switch the protocol from CAS-only mode back to single-
writer mode. Similar to that of cancelable single-writer protocols,
this reverse switch needs to know the internal invariant that sup-
ports the model of GPS protocols is still alive, so it needs the fancy
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persistent( &κ (ℓ, γ) : (t, s,v) I
N
)

GPS-ATBOR-R

&κ (ℓ, γ) : (t, s,v) I
N
⊢ R(ℓ, γ, t, s,v)

GPS-ATBOR-W

&κ (ℓ, γ) : (t, s,v) I
N

W
⊣⊢ W(ℓ, γ, t, s,v) ∗ &κ (ℓ, γ) : (t, s,v) I

N

GPS-ATBOR-RSHR

&κ (ℓ, γ) : (t, s,v) I
N

q
⊣⊢ Rq

shr(ℓ, γ, t, s,v) ∗ &κ (ℓ, γ) : (t, s,v) I
N

GPS-ATBOR-W-WSHR-RSHR

&κ (ℓ, γ) : (t, s,v) I
N

W
⊢ Wshr(ℓ, γ, t, s,v) ∗ &κ (ℓ, γ) : (t, s,v) I

N

1

GPS-ATBOR-W-REVERT

↑N ⊆ E

[κ]q ∗Wshr(ℓ, γ, t, s,v) ∗ &κ (ℓ, γ) : (t′, s′,v ′) I
N

1
⇛E [κ]q ∗ &κ (ℓ, γ) : (t, s,v) I

N

W

GPS-ATBOR-INIT

∗


[κ]q ∗ &κ

full(∃v . ℓ 7−→ v ∗ P (v))

∀γ, t,v . ▷ P (v) ∗W(ℓ, γ, t, s,v)⇛E ▷ Iw(ℓ, γ, t, s,v) ∗Q(γ, t,v)

□∀γ, t, s,v . Iw(ℓ, γ, t, s,v)⇛ ▷P (v)

⇛E [κ]q ∗ ∃γ, t,v . &κ (ℓ, γ) : (t, s,v) I
N
∗Q(γ, t,v)

FIGURE 17.5: Selected basic rules for
Atomic-Borrows-based GPS Protocols

update and a fraction of the lifetime token. (If the lifetime is still
alive, then the invariant is also still alive.)

• GPS-ATBOR-INIT allows us to initialize a atomic-borrows-based pro-
tocol for ℓ. The rule is similar to the rule GPS-SW-INIT of cancelable
protocols,14 but here we cannot simply allocate a new cancelable in- 14see Figure 17.4

variant (and so a cancelable token) for every new protocol instance.
Instead, we need to tie the new protocol instance to some existing
lifetime κ, and therefore we need to integrate the more complex
(but also more general) management of lifetimes and borrows into
the rule.

– First, we need to know that the lifetime κ is alive, so we
require a fraction of the lifetime token [κ]q, which will we
return after the initialization.

– Second, like in GPS-SW-INIT, we need the non-atomic points-to
ℓ 7−→ v and the write interpretation Iw for the write message
(t, s,v). However, unlike GPS-SW-INIT, we make one general-
ization, and we must establish an atomic borrow tied to κ for
the new protocol instance.

– The generalization is the first fancy update where we allow
the write interpretation Iw to use the single-writer ghost per-
missionW(ℓ, γ, t, s,v) immediately at initialization point. Any
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unused resources, which can possibly include the writer per-
mission, is returned in Q(γ, t,v) after the initialization, to-

gether with the read assertion &κ (ℓ, γ) : (t, s,v) I
N

. If the
writer permissionW(ℓ, γ, t, s,v) is indeed unused for Iw and
returned in Q(γ, t,v), then after the initialization the user can

get the single-writer assertion &κ (ℓ, γ) : (t, s,v) I
N

W
, using

GPS-ATBOR-W.1515This generalization has also been ap-
plied in GPS-SW-WRITE-REL in Fig-
ure 17.4, and will also be applied in GPS-
ATBOR-WRITE-REL in Figure 17.6.

– To create an atomic borrow for our protocol, we need to use
LFTL-FULL-AT 16 to turn a full borrow into an atomic borrow.

16see Figure 16.2 As such, our rule here requires that the needed resources
have been put into a full borrow, i.e., &κ

full(∃v . ℓ 7−→ v ∗ P (v)).
However, before applying LFTL-FULL-AT to create an atomic
borrow, we need to transform the non-atomic points-to into
the protocol’s resources under a full borrow. For that purpose,
we need to apply the strong access rule LFTL-FULL-ACC-STRONG

and then show that the transformation can be reversed, i.e.,
from the protocol resources we can get back the original
resources. Since the rule itself takes care of giving back the
non-atomic points-to, it only requires the user to show the
remaining obligation, in the second fancy update, that the
write interpretation Iw(ℓ, γ, t, s,v) can be used to reconstruct
the original resource P (v).

Intuitively, this requirement in LFTL-FULL-ACC-STRONG is to ensure
the lifetime inheritance rule LFTL-FULL-INH,17 where we need to17see Figure 15.1

maintain that once the lifetime is dead, we can reclaim the original
resource picked when the borrow is created with LFTL-FULL-BOR.
As such, any update to a borrow’s resource needs to show that
we can go back to the original resource. Effectively, we see that
GPS-ATBOR-INIT has the flavor of both an initialization rule (like GPS-

SW-INIT) and a cancelation rule (like GPS-SW-DEALLOC). Specifically,
atomic-borrows-based protocols do not have an actual cancelation
rule. Instead, once the lifetime κ is dead, the user will reclaim
the resource ∃v . ℓ 7−→ v ∗ P (v) that they originally put into the full
borrow, regardless of whether that full borrow has ever been used
to construct a GPS protocol.

• GPS-ATBOR-READ and GPS-ATBOR-WRITE-REL are essentially the same
as their cancelable protocol counterparts GPS-SW-READ and GPS-

SW-WRITE-REL in Figure 17.4, respectively. The only difference is
that they require a fraction of the lifetime token [κ]q instead of a
fraction of the cancelable token.

• GPS-ATBOR-WRITE is a strong write rule that supports also relaxed
access mode, using the single-writer assertion.

Finally, Figure 17.7 gives a CAS rule for the atomic-borrows-based
single-writer protocol, which can only be used when the protocol is in
CAS-only mode. GPS-ATBOR-WSHR-CAS-INT is similar to the persistent
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ExtractI(ℓ, γ, t
′, s′,v ′, R, E ,N ) ::= ⟨obj⟩ ∧


Ir(ℓ, γ, t′, s′,v ′)⇛E\↑N Ir(ℓ, γ, t′, s′,v ′) ∗R(t′, s′,v ′)

Iw(ℓ, γ, t′, s′,v ′)⇛E\↑N Iw(ℓ, γ, t′, s′,v ′) ∗R(t′, s′,v ′)

Im(ℓ, γ, t′, s′,v ′)⇛E\↑N Im(ℓ, γ, t′, s′,v ′) ∗R(t′, s′,v ′)

GPS-ATBOR-READ

rlx ⊑ o ↑N ⊆ E

{[κ]q ∗ &κ (ℓ, γ) : (t, s,v) I
N
∗ (∀t′ ≥ t, s′ ⊒ s,v ′.ExtractI(ℓ, γ, t

′, s′,v ′, R, E ,N ))}
∗oℓ in π

{v ′.∃t′ ≥ t, s′ ⊒ s. [κ]q ∗ &κ (ℓ, γ) : (t′, s′,v ′) I
N
∗ ∇o?rlx

π R(t′, s′,v ′)}
E

GPS-ATBOR-WRITE-REL

↑N ⊆ E s ⊑ s′

{[κ]q ∗ &κ (ℓ, γ) : (t, s,v) I
N

W
∗ ▷ ⟨obj⟩

(
Iw(ℓ, γ, t, s,v)⇛E\↑N Q1 ∗Q2

)
∗

∀t′ > t. (W(ℓ, γ, t′, s′,v ′) ∗Q2)⇛E\↑N ∗

⟨obj⟩Q1 ⇛E\↑N Im(ℓ, γ, t, s,v)

|⇛E\↑N Iw(ℓ, γ, t
′, s′,v ′) ∗Q(t′)

}
ℓ :=rel v

′ in π

{h.∃t′ > t. [κ]q ∗ &κ (ℓ, γ) : (t′, s′,v ′) I
N
∗Q(t′)}

E

GPS-ATBOR-WRITE

↑N ⊆ E s ⊑ s′

{[κ]q ∗ &κ (ℓ, γ) : (t, s,v) I
N

W
∗ ▷∆o?rlx

π

(
∀t′ > t. |⇛E\↑N Iw(ℓ, γ, t

′, s′,v ′)
)
∗

▷ ⟨obj⟩
(
Iw(ℓ, γ, t, s,v)⇛E\↑N Im(ℓ, γ, t, s,v) ∗R

) }
ℓ :=o v

′ in π

{h.∃t′ > t. [κ]q ∗ &κ (ℓ, γ) : (t′, s′,v ′) I
N

W
∗R}

E

FIGURE 17.6: Selected read and write
rules for Atomic-Borrows-based GPS Pro-
tocols

concurrent protocol CAS rule GPS-CON-CAS-INT, except for the following
points.

• The rule requires a fraction [κ]q′ to know that that the lifetime κ

is still alive, and a fraction &κ (ℓ, γ) : (t, s,v) I
N

q
of the CAS-only

assertion. These resources are returned (and potentially updated)
in the post-condition.

• In case of a failing CAS, the extraction ExtractI does not require a
case for the moved interpretation Im, because there cannot be a
single-writer write in the CAS-only mode.

• In case of a successful CAS, the user needs to provide the shared-
writer permissionWshr(ℓ, γ, t

′, s′,vr) for the read message, and will
receive the updated shared-writer permissionWshr(ℓ, γ, t

′′, s′′,vw)

for the new write message afterwards.
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ExtractI(ℓ, γ, t
′, s′,v ′, R, E ,N ) ::= ⟨obj⟩ ∧

Ir(ℓ, γ, t
′, s′,v ′)⇛E\↑N Ir(ℓ, γ, t′, s′,v ′) ∗R(t′, s′,v ′)

Iw(ℓ, γ, t′, s′,v ′)⇛E\↑N Iw(ℓ, γ, t′, s′,v ′) ∗R(t′, s′,v ′)

GPS-ATBOR-WSHR-CAS-INT

rlx ⊑ of , or, ow ↑N ⊆ E vr ∈ Z

{[κ]q′ ∗ &κ (ℓ, γ) : (t, s,v) I
N

q
∗

▷ ⟨obj⟩
(
∀t′ ≥ t, s′ ⊒ s,v ′. (Ir(ℓ, γ, t′, s′,v ′) ∨ Iw(ℓ, γ, t′, s′,v ′)) −∗ ⊢ v ′ =? vr

)
∗

∆ow?rlx
π P ∗

∆ow?rlx
π ∀t′ ≥ t, s′ ⊒ s. ∧



▷ (∀v ′ ̸= vr.ExtractI(ℓ, γ, t
′, s′,v ′, R, E ,N ))

∗



⟨obj⟩
(
▷ Iw(ℓ, γ, t′, s′,vr)⇛E\↑N (▷Q1(t

′, s′) ∗ ▷Q2(t
′, s′))

)
(P ∗ ▷Q2(t

′, s′))⇛E\↑N Wshr(ℓ, γ, t
′, s′,vr) ∗ ∃s′′ ⊒ s′.∀t′′ > t′.

▷Wshr(ℓ, γ, t
′′, s′′,vw)⇛E\↑N

∗

⟨obj⟩
(
▷Q1(t

′, s′)⇛E\↑N Ir(ℓ, γ, t′, s′,v ′)
)

|⇛E\↑N ▷ |⇛E\↑N (Q(t′′, s′′) ∗ Iw(ℓ, γ, t′′, s′′,vw))

}
CASof ,or,ow(ℓ,vr,vw) in π

{b. [κ]q′ ∗ ∃t′,v ′, s′ ⊒ s. ∨


b = false ∗vr ̸= v ′ ∗ t ≤ t′ ∗ &κ (ℓ, γ) : (t′, s′,v ′) I

N

q
∗ ∇of?rlx

π R(t′, s′,v ′) ∗ ∇ow?rlx
π P

b = true ∗vr = v ′ ∗ t < t′ ∗ &κ (ℓ, γ) : (t′, s′,vw) I
N

q
∗ ∇or?rlx

π Q(t′, s′) }
E

FIGURE 17.7: A CAS rule for Atomic-
Borrows-based GPS Protocols Intuitively, when in CAS-only mode, every party who wants to perform a

CAS with the protocol needs a fraction of the CAS-only assertion, and all
parties need to share the shared-writer permissionWshr that maintains
the total order of updates to the location’s history.

17.2 Middleware GPS Protocols in iRC11

In this section, we introduce middleware GPS protocols as a common
interface that can be combined with different types of invariants to derive
the various versions of surface-level GPS protocols, some of which we
have seen in the previous section. We first will introduce the assertions of
middleware GPS protocols, and then show how the surface-level protocol
assertions are modeled using those middleware assertions.

Definition 17.7 (Middleware GPS Protocol Assertions). The middleware
assertions include all auxillary ghost permissions in Definition 17.5,
i.e., the read observation R(ℓ, γ, t, s,v), the single-writer permission
W(ℓ, γ, t, s,v), the shared-writer permission Wshr(ℓ, γ, t, s,v) and the
shared-reader permission Rq

shr(ℓ, γ, t, s,v).
Most importantly, these ghost permissions are tied together to the core

GPS invariant construction GPSθ(ℓ, γ, I) where θ ∈ {con, sw}. Intuitively,
the core GPS construction GPSθ(ℓ, γ, I) owns the atomic points-to of ℓ1818where γ is the atomic points-to’s atomic

period identifier—see also Definition 10.1. and enforces that ℓ’s history can only change within a GPS protocol’s
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restrictions, who are manifested in the auxillary ghost permissions. The
core construction will then be put in an invariant or an atomic borrow,
so that it can be accessed concurrently by threads that own the ghost
permissions.

Definition 17.8 (Assertion Model of GPS Persistent Concurrent Proto-
cols). Using the middleware assertions, the model of GPS persistent
concurrent protocol assertions simply (1) picks the construction that sup-
ports arbitrarily concurrent accesses, i.e., GPScon(ℓ, γ, I); and (2) shares
the construction in a persistent, objective invariant.19 The subjective 19see §11.1

modality ⟨subj⟩ 20 turns the core construction into an objective assertion 20see §8.6
such that it can be put inside the invariant.

(ℓ, γ) : (t, s,v) I
N

::= R(ℓ, γ, t, s,v) ∗ ⟨subj⟩GPScon(ℓ, γ, I) N

Definition 17.9 (Assertion Model of Cancelable Single-Writer GPS Proto-
cols). Similarly, the model of GPS cancelable single-writer protocol asser-
tions (1) picks the construction GPSsw(ℓ, γ, I) that supports single-writer
accesses; and (2) shares the construction in a cancelable invariants;21 21see §11.2

and (3) pairs up the invariant assertion with the corresponding ghost
permissions.

(ℓ, γi, γ) : (t, s,v) I
N

::= R(ℓ, γ, t, s,v) ∗ GPSsw(ℓ, γ, I) γi,N

(ℓ, γi, γ) : (t, s,v) I
N

W
::=W(ℓ, γ, t, s,v) ∗ GPSsw(ℓ, γ, I) γi,N

(ℓ, γi, γ) : (t, s,v) I
N

q
::= Rq

shr(ℓ, γ, t, s,v) ∗ GPSsw(ℓ, γ, I) γi,N

Definition 17.10 (Assertion Model of Atomic-Borrows-based Single-Writer
GPS Protocols). The model of GPS atomic-borrows-based single-writer
protocol assertions is also similar to that of cancelable single-writer pro-
tocol assertions, but instead of a cancelable invariant, we put the core
construction GPSsw(ℓ, γ, I) in an atomic borrow.22 22see §16.2.2

&κ (ℓ, γ) : (t, s,v) I
N

::= R(ℓ, γ, t, s,v) ∗ &κ/N
at GPSsw(ℓ, γ, I)

&κ (ℓ, γ) : (t, s,v) I
N

W
::=W(ℓ, γ, t, s,v) ∗ &κ/N

at GPSsw(ℓ, γ, I)

&κ (ℓ, γ) : (t, s,v) I
N

q
::= Rq

shr(ℓ, γ, t, s,v) ∗ &κ/N
at GPSsw(ℓ, γ, I)

From these models, it is easy to see the soundness of rules that relate
the various assertions and the ghost permissions, that is, the rules GPS-

SW-R, GPS-SW-W, GPS-SW-RSHR, GPS-SW-W-WSHR-RSHR, GPS-ATBOR-R,
GPS-ATBOR-W, GPS-ATBOR-RSHR, and GPS-ATBOR-W-WSHR-RSHR.

We now look at several structural rules for middleware GPS assertions
in Figure 17.8 to informally justify the soundness of the other structural
rules for surface-level assertions. We will not attempt to justify the sound-
ness of operational rules here, due to their complexity. (Their soundness
proofs are checked in Coq.)

• GPS-MID-HIST says that the core GPS construction for ℓ owns the
atomic points-to of ℓ. Therefore the core construction is naturally
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GPS-MID-HIST

GPSθ(ℓ, γ, I) ⊢ ∃h. ℓ 7−→θ h

GPS-MID-CON-INIT

ℓ 7−→ v ∗ (∀γ, t. ▷ Iw(ℓ, γ, t, s,v))⇛E ∃γ, t. ▷GPSsw(ℓ, γ, I) ∗ R(ℓ, γ, t, s,v)

GPS-MID-SW-INIT

ℓ 7−→ v ∗ (∀γ, t. ▷ Iw(ℓ, γ, t, s,v))⇛E ∃γ, t. ▷GPSsw(ℓ, γ, I) ∗W(ℓ, γ, t, s,v)

GPS-MID-SW-INIT-STRONG

ℓ 7−→ v ∗ (∀γ, t.W(ℓ, γ, t, s,v)⇛E ▷ Iw(ℓ, γ, t, s,v) ∗Q(γ, t))⇛E ∃γ, t. ▷GPSsw(ℓ, γ, I) ∗Q(γ, t)

GPS-MID-DEALLOC

▷GPS (ℓ, γ, I)⇛E ∃t, s,v . ℓ 7−→ v ∗ ▷ Iw(ℓ, γ, t, s,v)

GPS-MID-SW-DEALLOC

▷GPSsw(ℓ, γ, I) ∗W(ℓ, γ, t, s,v)⇛E ℓ 7−→ v ∗ ▷ Iw(ℓ, γ, t, s,v)

P

Q
[R] ::= P ∗R ⊢ Q ∗R

GPS-R-AGREE

R(ℓ, γ, t1, s1,v1) ∗ R(ℓ, γ, t2, s2,v2)
|⇛E (t1 ≤ t2 ⇒ s1 ⊑ s2) ∧ (t2 ≤ t1 ⇒ s2 ⊑ s1)

[⊔V ▷GPS (ℓ, γ, I)]

GPS-RSHR-AGREE

Rq1
shr(ℓ, γ, t1, s1,v1) ∗ R

q2
shr(ℓ, γ, t2, s2,v2)

|⇛E (t1 ≤ t2 ⇒ s1 ⊑ s2) ∧ (t2 ≤ t1 ⇒ s2 ⊑ s1)
[⊔V ▷GPSsw(ℓ, γ, I)]

GPS-R-RSHR-AGREE

R(ℓ, γ, t1, s1,v1) ∗ Rq2
shr(ℓ, γ, t2, s2,v2)

|⇛E (t1 ≤ t2 ⇒ s1 ⊑ s2) ∧ (t2 ≤ t1 ⇒ s2 ⊑ s1)
[⊔V ▷GPSsw(ℓ, γ, I)]

GPS-W-LATEST

R(ℓ, γ, t2, s2,v2)
|⇛E (t2 ≤ t1 ∧ s2 ⊑ s1)

[W(ℓ, γ, t1, s1,v1) ∗ ⊔V ▷GPSsw(ℓ, γ, I)]

GPS-MID-SW-W-REVERT

Wshr(ℓ, γ, t1, s1,v1) ∗ ⟨subj⟩R1
shr(ℓ, γ, t2, s2,v2)

|⇛EW(ℓ, γ, t1, s1,v1)
[⊔V ▷GPSsw(ℓ, γ, I)]

FIGURE 17.8: Selected rules for assertions
of middleware GPS protocols
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shared to allow multiple threads to use the protocol. Furthermore,
the rule justifies the rule GPS-CON-ATOM-PTSTO (and similar rules
for other protocol variants) that allows us to atomically peek at
the atomic points-to of ℓ and subsequently learn that ℓ is still alive.
Such liveness fact is needed for deterministic pointer comparison
(such as in CASes).

• GPS-MID-CON-INIT intuitively performs the creation of the core
GPS construction for concurrent protocols, by allocating the GPS
ghost state (which will be explained in §17.3) at the ghost location
γ. The rule also suggests that the core construction contains all
interpretations (Iw, Ir, and Im). The rule justifies GPS-CON-INIT.

• GPS-MID-SW-INIT and GPS-MID-SW-INIT-STRONG similarly perform
the creation of the core GPS construction for single-writer protocols.
The rules respectively justifies GPS-SW-INIT and GPS-ATBOR-INIT.

• GPS-MID-DEALLOC and GPS-MID-SW-DEALLOC justify surface-level
deallocation rules, such as GPS-SW-DEALLOC, GPS-SW-READ-ACQ-

DEALLOC, and GPS-ATBOR-INIT.23 23Recall that GPS-ATBOR-INIT incor-
porates both an initialization rule and a
deallocation rule—see the explanation in
§17.1.3.• GPS-R-AGREE says that two read observations are in a total or-

der, provided that we get access to the core construction GPS in
the frame. This is because the two read observations are related
through the ghost state stored in the core construction. The core
construction GPS only needs to be provided under a later modality
and a view-join modality24 ⊔V for some view V , which makes the 24see §8.5

rule compatible with cancelable invariant access rules, e.g., CINV-

ACC.25 The fancy update is needed to eliminate the later modality 25see §11.2

on the ghost state stored in GPS. GPS-R-AGREE justifies the rule
GPS-CON-AGREE and its variants.

• GPS-RSHR-AGREE, GPS-R-RSHR-AGREE, and GPS-W-LATEST work sim-
ilarly to GPS-R-AGREE, and respectively justify surface-level rules
that relate different ghost permissions.26 26Those rules are elided in this chapter.

• GPS-MID-SW-W-REVERT shows how to switch the GPS ghost state
from the shared-writer and shared-reader permissions to the single-
writer permission, effectively switching from CAS-only mode to
single-writer mode. The rule justifies GPS-SW-W-REVERT and GPS-

ATBOR-W-REVERT.

17.3 The Model of GPS Protocols

In this section, we briefly give the model for GPS middleware protocol
assertions (Definition 17.7). More specifically, we give the model of the
ghost reader, writer, shared-writer, and shared-reader permissions, as
well as the model of the core GPS construction GPS. We start with the
resource algebra needed for the GPS ghost state.
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Definition 17.11 (Resource Algebra for GPS Protocol States). Assuming
the protocol state type TS we need the following RA to records how a
write event—identified by a timestamp—is tied to a protocol state.

GPSR ::= AUTH(MAP(Time,AG(TS)))

The fragmentary elements of GPSR will be used to model the ghost
permissions, while the authoritative element will be used in the model of
the core GPS construction GPS.

Definition 17.12 (Model of GPS Ghost Permissions).

R(ℓ, γ, t, s,v) ::= ∃γi, γℓ. γ = (γi, γℓ) ∗ ◦ [t← s]
γi ∗

∃V. ℓ ⊒γℓ
sn [t←(v , V )]

W(ℓ, γ, t, s,v) ::= ∃γi, γℓ. γ = (γi, γℓ) ∗ ◦ [t← s]
γi ∗

∃h. ℓ ⊒γℓ
sw h ∗ h(t) = (v , ) ∗ max(dom(h)) = t

Wshr(ℓ, γ, t, s,v) ::= ∃γi, γℓ. γ = (γi, γℓ) ∗ ◦ [t← s]
γi ∗

∃h. atWriterγℓ(h) ∗ ℓ ⊒γℓ
sy h ∗

h(t) = (v , ) ∗ max(dom(h)) = t

Rq
shr(ℓ, γ, t, s,v) ::= ∃γi, γℓ. γ = (γi, γℓ) ∗ ◦ [t← s]

γi ∗
∃V. ℓ ⊒γℓ

sn [t←(v , V )] ∗
∃h, tx ≤ t, V ′.@V ′ℓ ⊒γℓ,tx,q

cas h

The model of GPS middleware assertions for a protocol instance γ

has the following pattern:

• The instance identifier γ uniquely identifies (1) the ghost location
γi needed to store the GPS ghost state and (2) the current atomic
period identifier γℓ for ℓ’s atomic points-to.2727see Definition 10.1

• Each assertion owns a fragmentary element of the GPS ghost state
◦ [t← s]

γi that tracks that the timestamp t is assigned the protocol
state s.

• Each assertion owns the appropriate assertion for ℓ’s atomic points-
to.

More specifically:

• The reader observation R(ℓ, γ, t, s,v) additionally only carries a
history-seen observation28 ℓ ⊒γℓ

sn [t←(v , V )] of the write (t,v , V ).28see Definition 10.2

• Meanwhile, the single-writer permission carries the single-writer
ownership ℓ ⊒γℓ

sw h of ℓ’s atomic points-to, with (t,v , ) being the
latest write in ℓ’s history h.

• The shared-writer permission Wshr(ℓ, γ, t, s,v) owns the atomic
points-to’s ghost writer permission atWriterγℓ(h),29 which is the29see Definition 10.7

exclusive permission needed to change ℓ’s current history h. The
shared-writer permission also requires the history-sync observation
of h, and requires that t is indeed the latest write.
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• The shared-reader permission is the reader observation extended
with the fractional CAS ownership ℓ ⊒γℓ,t,q

cas h asserted at some
arbitrary view V ′. That the view V ′ can be arbitrary is because we
do not need the fractional CAS ownership assertion’s observation—
we already have the observation ℓ ⊒γℓ

sn [t←(v , V )] locally. On the
other hand, we need the fractional CAS ownership to maintain that
the most recent exclusive write with the timestamp tx is frozen,
and that our observation t is at least tx. This is to ensure that the
shared-reader permission prevents any single-writer writes when
the protocol is in CAS-only mode. And, as we have seen in the
rule GPS-ATBOR-WSHR-CAS-INT in Figure 17.7, the shared-reader
permission can only be used in conjunction with the shared-writer
permission to perform CASes in the GPS single-writer protocol
setup.

We elide the proofs that the model supports various rules on the relations
among the ghost permissions, e.g., GPS-W-R or GPS-WSHR-R.30 30see Figure 17.3

Definition 17.13 (Model of GPS Core Construction).

GPSθ(ℓ, γ, I) ::=

∃γi, γℓ. γ = (γi, γℓ) ∗ ∃µ. •µ
γi ∗

∃h, tx. ℓ tx7−→γℓ

θ h ∗

∗
(t,v ,V )∈block_ends(h)

@V ((tx ≤ t) ? Iw : Im)(ℓ, γ, t, s,v) ∗

∗
(t,v ,V )∈(h\block_ends(h))

@V ((tx ≤ t) ? Iw|r : Iw|r|m)(ℓ, γ, t, s,v) ∗

dom(µ) = dom(h) ∗ state_sorted(µ) ∗ (GPS-CORE-WF)

∀t ∈ disconnected_from(µ, tx). final(µ(t)) ∗ (GPS-CORE-FIN)
θ = sw ∀t ∈ dom(h). tx ≤ t⇒

t /∈ disconnected_from(µ, tx)

θ = con ∀t ∈ dom(h). tx ≤ t

(GPS-CORE-SW-CON)

where

block_ends(h) ::= {(t,v , V ) ∈ h | t+ 1 /∈ dom(h)}
Iw|r(ℓ, γ, t, s,v) ::= Iw(ℓ, γ, t, s,v) ∨ Ir(ℓ, γ, t, s,v)
Iw|r|m(ℓ, γ, t, s,v) ::= Iw|r(ℓ, γ, t, s,v) ∨ Im(ℓ, γ, t, s,v)

state_sorted(µ) ::= ∀t1, t2. t1 ≤ t2 ⇒ µ(t1) ⊑ µ(t2)

final(s) ::= ∀s′ ∈ TS . s
′ ⊑ s

disconnected_from(µ, tx) ::= {t ∈ dom(µ) | ∃td /∈ dom(µ). tx ≤ td ≤ t}

The core GPSθ(ℓ, γ, I) construction is rather simple—it is composed of
several components that are tied together to establish a protocol instance
γ on the location ℓ with the interpretation I.

• the authoritative GPS ghost state •µ at the ghost location γi;
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• the atomic points-to ℓ tx7−→γℓ

θ h;

• the interpretation resources (Iw, Ir, and Im) for the write messages
in ℓ’s history h;

• the various properties (GPS-CORE-WF, GPS-CORE-FIN, and GPS-CORE-

SW-CON) that ties µ and h together.

More specifically,

• Thanks to the authoritative algebra,31 the map µ from timestamps31see Definition 6.11

to protocol states is the upper bound for all ghost permissions.32
32see Definition 17.13

• The atomic points-to has the same mode θ as the protocol’s mode,
and its most recent exclusive write tx dictates which interpretation
resources are variable for a write message in h.

• The write messages in h are split into block-ends and non block-ends.
Intuitively, the messages in h are grouped into contiguous blocks: a
write can always initiate a new block, while a CAS always extends
an existing block. As a CAS can take the write interpretation Iw
of the message it reads from in order to establish Iw for its write
message, Iw is guaranteed for block ends, unless it has been taken
away (“moved”) by an exclusive single-writer write.33. In other33see, e.g., GPS-SW-WRITE-REL in Fig-

ure 17.4 words, for block-ends that are later than the most recent exclusive
write tx we have Iw, and for block-ends that are earlier we only
have the moved interpretation Im. Meanwhile, for non block-ends
that are later than tx we can have either Iw or Ir (in case it has
been CAS-ed on), and for non block-ends that are earlier than tx

we can have any case of Iw, Ir, or Im.

• GPS-CORE-WF requires that µ and h must agree on the current set of
timestamps, and that µ enforces monotonicity on states.

• GPS-CORE-FIN requires that any write disconnected from—i.e., later
than and not from the same block with—tx (must be final. This
property is needed for state monotonicity, as can be seen in the
concurrent write rule GPS-CON-WRITE, but it is not very restrictive,
so as to support single-write rules, e.g., GPS-SW-WRITE-REL.

• GPS-CORE-SW-CON requires that, in a single-writer protocol, any
writes later than tx are not disconnected from tx—effectively en-
forces that ony single-writer writes or CASes can be performed.
Meanwhile, a concurrent protocol forbids single-writer writes: any
writes are later than the most recent exclusive write tx.

CHAPTER SUMMARY. In this chapter, we presented the interfaces and
the models of various GPS protocols. A GPS protocol is built atop the
atomic points-to, and provides some abstraction of write messages into
protocol states that can only grow monotonically. The construction of
a GPS protocol model is done in multiple layers, allowing us to attach
it with different invariant types, including atomic borrows. In the next
chapters, we will see how GPS protocols can be used in RBrlx to verify
concurrent Rust libraries that use unsafe blocks.
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Verification of RwLock

In this chapter, we demonstrate a concrete verification of the Rust’s
reader-writer lock library RwLock as part of RBrlx’s Task 1—proving the
safety of Rust libraries under relaxed memory concurrency. As with
the original RustBelt work,1 we perform the verification with a hand- 1Jung et al., “RustBelt: Securing the

Foundations of the Rust Programming Lan-
guage” [Jun+18a].translated λRust version of RwLock. In the framework of RustBelt, the

obligations of verifying that a type τ satisfies the Rust type system pin
down to (1) giving a separation-logic semantic interpretation of τ that
satisfies certain requirements, and (2) proving that the type’s operations
maintain the semantic interpretation. More specifically, the semantic
interpretation JτK for τ is a triple (JτK.size, JτK.own, JτK.shr) that respec-
tively represents (1) the memory size of τ , (2) the separation-logic unique
ownership of an owned object or a mutable reference to an object of type τ ,
and (3) the separation-logic shared ownership of an immutable reference
to an object of type τ . We will give more details on the requirements
of the predicates when we get to define them for RwLock. However,
we would like to note that for concurrently libraries (which are our
focus here), the most relevant predicate is the shared predicate JτK.shr
which arbitrates concurrent accesses to the underlying resources of the
type, and which encodes the interior mutability of the library through
immutable references. For RwLock, we will use atomic-borrows-based
single-writer GPS protocols2 to define JRwLockK.shr. 2see §17.1.3

In §18.1, we will present the relaxed memory λRust version of RwLock<T>,
which uses the same relaxed memory operations as that of the Rust’s
library. We then give the library the semantic model JRwLockK in §18.2
and sketch how the operations maintain the model in §18.3.

18.1 RMC Implementation of a Reader-Writer Lock

The RMC λRust implementation of RwLock<T> and its related types—
lock guards—RwLockReadGuard<T> and RwLockWriteGuard<T> are given
in Figure 18.1. Intuitively, the reader-writer lock RwLock<T> protects
an underlying object of type T. When acquiring a reader lock or a
writer lock, a corresponding lock guard of type RwLockReadGuard<T> or
RwLockWriteGuard<T> respectively is returned. The lock guard follows
the “Resource Acquisition is initialization” (RAII) idiom, where the life-
time of the lock guard is the duration that a client holds on to the lock:
when the lock is acquired, the lock guard object is created, and when the

225
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RwLock<T>:: new : fn(T) -> RwLock<T>

RwLock<T>:: into_inner : fn(self) -> T

RwLock<T>:: get_mut : fn(&mut self) -> &mut T

RwLock<T>:: try_read : fn(&self) -> Result<RwLockReadGuard<T>>

RwLock<T>:: try_write : fn(&self) -> Result<RwLockWriteGuard<T>>

RwLockReadGuard<T>:: deref : fn(&self) -> &T

RwLockReadGuard<T>:: drop : fn(&mut self)

RwLockWriteGuard<T>:: deref : fn(&self) -> &T

RwLockWriteGuard<T>:: deref_mut : fn(&mut self) -> &mut T

RwLockWriteGuard<T>:: drop : fn(&mut self)

TABLE 18.1: A summary of Rust types for
RwLock<T> and its lock guards lock guard object is destroyed, the lock is released.

Table 18.1 gives a summary of the Rust types for the functions in
Figure 18.1.

• new_lock(τ) is the λRust version of fn new(x: T) -> RwLock<T>

which consumes an object of type T and returns a reader-writer
lock for T. The type τ is the λRust version of T.

• into_inner(τ) consumes the reader-writer lock and returns the
underlying object of type T. self is the Rust idiom to mention the
current object, which, in this case, is of type RwLock<T>.

• get_mut borrows a mutable reference to the underlying object from
a mutable reference to the lock. There is no need to acquire the
lock, because the mutable reference to the lock should guarantee
that no one holds the lock.

• try_read tries to acquire a reader lock from an immutable reference
to the lock. The Result type has two cases: a None means the
function fails to acquire the reader lock, and a Some means the
reader lock has been acquired through a reader lock guard. In the
Rust version, this function’s body uses unsafe.

• try_write tries to acquire a writer lock from an immutable refer-
ence to the lock. If the writer has been acquired then a writer lock
guard is returned. In the Rust version, this function’s body uses
unsafe.

• rdguard_deref borrows an immutable reference to the underlying
object T of the lock from a reader lock guard. (self is of type
RwLockReadGuard<T> here.) In the Rust version, this function’s
body uses unsafe.

• rdguard_drop is the destructor of RwLockReadGuard<T> that also
releases a reader lock. In the Rust version, this function’s body uses
unsafe.
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• wrguard_deref and wrguard_deref_mut respectively borrow an im-
mutable or mutable reference to the underlying object T of the lock
from a writer lock guard. (self is of type RwLockWriteGuard<T>

here.) In the Rust version, this function’s body uses unsafe.

• wrguard_drop is the destructor of RwLockWriteGuard<T> that also
releases a writer lock. In the Rust version, this function’s body uses
unsafe.

We now look more closely at the λRust implementations in Figure 18.1.

• new_lock(τ) shows that the memory layout of a RwLock<T> is a
counter at offset 0 and the memory of τ itself at offset 1. The
counter represents the lock state: if it is −1, the writer lock is being
held, while if it is positive, the number is the number of reader
locks being held. The lock is unlocked when the counter is 0.

Since λRust is call-by-value, it models consumption of the object
of type τ (addressed by the value of x) as mem-copying (non-
atomically) the contents of τ , and then deleting the original input
object.3 3The implementations of new, delete,

and mem-copy have been provided in Fig-
ure 4.2.• Similarly, into_inner(τ) non-atomically mem-copies the underly-

ing object τ from offset 1 of the lock (addressed by the value of x)
into a fresh memory region (of size τ.size), and then deletes the
whole lock object.

• get_mut reads the address y to the lock stored in the argument x,
and updates (non-atomically writes to) x with the address to the
underlying τ (offset by 1 from the lock’s address).

• try_read returns r as the address to a memory region of size 2 for
the type Result<RwLockReadGuard<T>>. The first memory cell of
the memory region stores the variant of the Result type (None or
Some), and the second memory cell in the Some case stores the
value of the type RwLockReadGuard<T>, which is simply the address
y to the lock (stored in the argument x). A reader lock can only be
acquired using an acquire CAS if either the lock is unlocked (the
counter is 0) or there are reader locks (the counter is positive). The
function only retries in case the CAS fails due to contention with
other threads trying to acquire reader locks.4 4The implementation of letcont is also

provided in provided in Figure 4.2.
• try_write does not retry at all. A writer lock can only be acquired

when the lock is unlocked, also by using an acquire CAS.

• rdguard_deref simply returns r that stores the address to the un-
derlying object of type τ .

• rdguard_drop keeps trying until successful decrement the counter.

• wrguard_deref and wrguard_deref_mut are exactly the same as
rdguard_deref—they only differ by types.

• wrguard_drop simply resets the counter to 0 with a release write
and thus releases the writer lock.
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new_lock(τ) ::=

λ[x].1: let r := new[τ.size + 1] in

2: r + 0 := 0;

3: r + 1 :=τ.size
∗x;

3: delete[τ.size, x];

4: r

into_inner(τ) ::=

λ[x].1: let r := new[τ.size] in

2: r :=τ.size
∗(x+ 1);

3: delete[τ.size + 1, x];

4: r

get_mut ::=

λ[x].1: let y := ∗x in

2: x := y + 1;

3: x

rdguard_deref ::=

λ[x].1: let y := ∗x in

2: let r := new[1] in

3: r := ∗(y + 1);

4: delete[1, x];

5: r

rdguard_drop ::=

λ[x].1: let y := ∗x in

2: letcont loop([]) :=

3: letn := ∗rlxy in

4: if CASrel(y, n, n− 1)

5: then

6: delete[1, x]

7: else loop([])

8: in loop([])

try_read ::=

λ[x].1: let r := new[2] in

2: let y := ∗x in

3: letcont k([]) := delete[1, x]; r in

4: letcont loop([]) :=

5: letn := ∗rlxy in

6: ifn ≤ −1
7: then r

inj 0
:== (); k([]) // returns None

8: else

9: if CASacq(y, n, n+ 1)

10: then r
inj 1
:== y; k([]) // returns Some

11: else loop([])

12: in loop([])

try_write ::=

λ[s].1: letcont k([r]) := delete[1, x]; r in

2: let r := new[2] in

3: let y := ∗x in

4: if CASacq(y, 0,−1)
5: then r

inj 1
:== y; k([r]) // returns Some

6: else r
inj 0
:== (); k([r]) // returns None

wrguard_deref ::=

λ[x].1: let y := ∗x in

2: let r := new[1] in

3: r := ∗(y + 1);

4: delete[1, x];

5: r

wrguard_deref_mut ::=

λ[x].1: let y := ∗x in

2: let r := new[1] in

3: r := ∗(y + 1);

4: delete[1, x];

5: r

wrguard_drop ::=

λ[x].1: let y := ∗x in

2: y :=rel 0;

3: delete[1, x]

FIGURE 18.1: A λRust version of Rust’s
RMC RwLock<T>
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18.2 The Semantic Model of the Reader-Writer Lock Type

The general formula of semantically type checking an expression e to
have the type τ is to show that, under an assignment of semantically
well-typed values for all free variables in e, the substituted expression of
e executes without errors, and if the execution terminates, it terminates
with a value that satisfies the semantic interpretation of τ . More formally,
a semantic typing judgment JΓ ⊢ e : τK is typically defined as:

JΓ ⊢ e : τK ::= ∀γ ∈ JΓK.wp γe
{
v . JτKγ(v)

}
where γ is the assignment satisfying the context Γ for free variables

in e, and γe is the substitution of e with γ. The semantic typing for the
function type may also read as:

JΓ ⊢ λx. e : τ1 → τ2K ::=

∀γ ∈ JΓK,v . Jτ1Kγ(v) −∗ wp γ((λx. e)v)
{
v ′. Jτ2Kγ(v

′)
}

That is, for λx. e to be semantically well-typed if when provided with the
interpretation of the arguments Jτ1Kγ(v), the resulting function applica-
tion is also semantically well-typed.

Therefore, to show that the reader-writer lock library is semantically
well-typed, we first need to provide the semantic interpretations for
RwLock<T>, RwLockReadGuard<T>, and RwLockWriteGuard<T>. Then we
need to show that the library’s functions are also semantically well-typed,
which, as explained above, translates to verifications of function bodies
in our separation logic.

The semantic typing judgment of RustBelt is more complicated than
the general intuition above: the type system needs to account for lifetimes
and continuations. However, in the following, we focus on the type
interpretations, and only sketch the verifications of the function bodies,
and avoid going into the details of the semantic typing judgment.

Definition 18.1 (RA for RwLock). We use the unit protocol S() for
RwLock. That is, the protocol is trivial, so we always ignore the state
(which is only unit). Instead, we will use the richer ghost state of the
algebra RWLOCKR to model the lock states.

RWLOCKR ::= AUTH(OPTION(SUM(EX(1),AG(Lft)× FRAC × POS)))

This algebra is already used in the original RustBelt work. The lock’s
ghost state is an option of a sum of two types of sub states. The None case
models the unlocked state. The Some case with the left-hand side of the
sum models the writer lock state, while a Some case with the right-hand
side of the sum models a reader lock state. The writer lock state needs to
be exclusive (EX), while a reader lock state needs to track the lifetimes
(using agreement AG) of all reader locks, the fractions (FRAC) of the lock
being held by all reader locks, and the number (POS—positive numbers)
of reader locks.

Writing ::= ◦ Some(left())

Reading(q, ν) ::= ◦ Some(right(ag(ν), q, 1))
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The writer state Writing will be owned by the one holding the writer lock.
Every piece of reader state Reading(q, ν) will be held by one (1) reader
where q is the fraction of the lock held by the reader, and q is the lifetime
for the reader lock guard.

Definition 18.2 (GPS Protocol for RwLock). We will not rely on the
timestamps exposed by our version of GPS protocols. As we are working
with a concurrent Rust type, it is natural to use an atomic-borrows-based
variant of GPS protocols. We use the single-writer variant introduced in
§17.1.3—the writer lock relies on single-writer writes, while reader locks
rely on CAS-only writes.

I ::= (Iw, Ir, Im)

Ir ::= λℓ, γ, , ,v .True

Im ::= λℓ, γ, , ,v .v = −1

Iw(τ, α, γs, t) ::= λℓ, γ, , ,v .∃a. • a γs ∗

a = None ∗v = 0

∗ &α
full (ℓ+ 1 7−→ JτK.own(t))

∗Wshr(ℓ, γ, , , 0) ∗ R1
shr(ℓ, γ, , , 0)

a = Some(right(ν, q, n)) ∗v = n

∗Wshr(ℓ, γ, , , n)

∗ JτK.shr(α ⊓ ν, t, ℓ+ 1)

∗ □Kill(ν)

∗ Inh(ν,&α
full (ℓ+ 1 7−→ JτK.own(t)))

∗ ∃q′. q + q′ = 1 ∗ [ν]q′ ∗ R
q′

shr(ℓ, γ, , , n)

a = Some(left()) ∗v = −1

where

ℓ 7−→ Φ ::= ∃v . ℓ 7−→ v ∗ Φ(v)

Recall that we need to define the read, write, and move interpretations
(Ir, Iw, Im).5 Since we do not have any interesting read operation for5See Definition 17.3

the lock itself (acquiring and releasing locks are writes), Ir is trivial.
The move interpretation Im encodes the obligation for single-writer
writes, and as we only use single-writer writes to release the writer lock—
switching the lock from −1 to 0—we only require that only writer lock
writes (−1) can be overwritten by single-writer writes that release the
writer lock.

The write interpretation Iw is the most important. It is parameterized
by the underlying type τ , the lifetime upper-bound α of the lock guards
(the upper-bound of e.g., 'a in RwLockReadGuard<'a,T>), the ghost loca-
tion γs for the lock ghost state (whose type is the RWLOCKR algebra), and
the owner’s thread id t. Iw always holds on to the current authoritative
lock state • a (while the clients of the lock hold the fragmentary parts, in
Reading or Writing). Iw enforces that the physical lock state v stored at ℓ
must agree with the ghost state a: if a is None, the lock is unlocked and
v = 0; if the lock is write-locked, a is in the left-hand side of the sum and
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v = −1; if the lock is read-locked by n readers, a is in the right-hand side
of the sum and v = n.

Furthermore, when the lock is unlocked, the invariant holds (1) the
resources for the underlying type τ , in form of a full borrow6 with the 6see §15.2

own part JτK.own of the semantic interpretation of τ (see more below);
(2) the shared-writer and shared-reader permissions of the protocol,7 7see Definition 17.5

both with value 0. These resources will be given to those acquiring a
lock, so that they can access the underlying type τ as well as permissions
to release the lock.

The notation ℓ 7−→ Φ is short for ∃v . ℓ 7−→ v ∗ Φ(v), which represents
the resources that Φ holds for the list of values v that are stored at ℓ.
Effectively, when the lock is unlocked, the invariant holds the points-to
of τ with values v as well as JτK.own(t,v)—the resources of τ that hold
at the owner’s thread t and v .

When the lock is write-locked, all of the resources in (1) and (2) will
be held by the one holding the lock, so the invariant has nothing left.
The one holding the writer lock will have access to JτK.own, which is the
full resources of the underlying type τ .

When the lock is read-locked, the invariant holds (1) the shared-
writer permissionWshr(ℓ, γ, , , n) needed to perform CASes (to acquire
reader locks), with n being the current number of reader locks; (2) the
share part JτK.shr of τ ’s semantic interpretation, which will be given to
any one acquiring a reader lock, so that they can access τ ’s contents in
shared mode; (3) the ability to kill the shared lifetime ν (Kill(ν)) and
to inherit the own resources of τ , which will be used to switch the lock
from sharing (read-lock) mode to unlocked mode; (4) the remaining
available resources that will be given to new reader locks, which include
a fraction q′ of the lifetime token for ν ([ν]q′) and the same fraction q′

for the shared-reader permission (Rq′

shr(ℓ, γ, , , n)) needed to release a
reader lock (performing a CAS). q′ together with q—the fraction of those
resources that have been given out to existing reader lock holders—must
sum up to 1.

The semantic type interpretations for RwLock and its lock guards are
provided by Definition 18.3. In the RustBelt framework, an interpretation
of a type τ is in the form Type {size := . . . ; own := . . . ; shr := . . .}.
JτK.size is the number of values that τ has, i.e., the length of a list of
values v of τ . JτK.own is a predicate of type Thread × Val∗ → vProp,
where JτK.own(t,v) should encode what it means for the thread t to
uniquely own an object of type τ (i.e., owning a T) or a mutable reference
to an object of type τ (i.e., own a &mut T), and the object has the values
v . JτK.shr is a predicate of type Lft × Thread × Loc → vProp, where
JτK.shr(κ, t, ℓ) should encode what it means for the thread t to own, at
the location ℓ, a shared reference, bounded by the lifetime κ, to an object
of type τ (i.e., own a &T). Indeed, the predicate is used for the own
predicate of a shared reference:

J&κ
shr τK.size ::= 1

J&κ
shr τK.own(t,v) ::= ∃ℓ.v = [ℓ] ∗ JτK.shr(κ, t, ℓ)
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JτK.shr(κ, t, ℓ) needs to satisfy several properties: it needs to be per-
sistent and it needs to be closed with respect to shorter lifetimes, because
shared references should be easily copied (shared) for smaller lifetimes.
But most importantly, the predicate needs to satisfy the property that
shared references can be created from mutable references:(

&κ
full (∃w. ℓ 7→ w ∗ JτK.own(t, w)) ∗ [κ]q

)
≡−∗(

JτK.shr(κ, t, ℓ) ∗ [κ]q
)

(TY-SHARE)

Definition 18.3 (Type Interpretations).

Jrwlock(τ)K ::=

Type {size := 1 + JτK.size;

own := λt,v .∃n ≥ −1, w.v = [n] ++ w ∗ JτK.own(t, w);

shr := λκ, t, ℓ. ∃α ⊒ κ, γ, γs. &α (ℓ, γ) : I(τ, α, γs, t)
N
}

Jrwlockreadguard(α, τ)K ::=

Type {size := 1;

own := λt,v .∃ℓ.v = [ℓ] ∗ ∃ν, q, β ⊒ α, to, γ, γs.

JτK.shr(α ⊓ ν, t, ℓ+ 1) ∗ [ν]q ∗□Kill(ν) ∗

Reading(q, ν)
γs ∗ &β (ℓ, γ) : I(τ, β, γs, t)

N

q
;

shr := λκ, t, ℓ. ∃ℓ′. &κ
frac(λq. ℓ

q7−→ [ℓ′]) ∗ ▷ JτK.shr(α ⊓ κ, t, ℓ′ + 1)}

Jrwlockwriteguard(α, τ)K ::=

Type {size := 1;

own := λt,v .∃ℓ.v = [ℓ] ∗ ∃β ⊒ α, γ, γs.

&β
full (ℓ+ 1 7−→ JτK.own(t)) ∗

Writing
γs ∗ &β (ℓ, γ) : ( , ,−1) I(τ, β, γs, t)

N

W
;

shr := λκ, t, ℓ. ∃ℓ′. &κ
frac(λq. ℓ

q7−→ [ℓ′]) ∗ ▷ JτK.shr(α ⊓ κ, t, ℓ′ + 1)}

The interpretations of reader-writer lock types are as follows.

• For rwlock(τ), its size is the size of the underlying type τ plus
one for the counter. Its own interpretation says that the current
list of values v (of length JτK.size) starts with the first value being
the number of locks n, which must always be at least −1. (Recall
that −1 stands for the writer-locked state, 0 for the unlocked state,
and n > 0 for the reader-locked state with n readers.) The rest
of the list w satisfies the underlying type τ ’s own interpretation
(JτK.own(t, w)).

rwlock(τ)’s shared interpretation for a shared reference to the lock
bound by the lifetime κ simply says that the lock state must be
governed by an atomic-borrowed-based GPS protocol—with the
protocol given by Definition 18.2—bound by a lifetime α that is at
least κ. The lifetime inclusion relation α ⊒ κ is typically used to
make sure that the interpretation is closed under smaller lifetimes,
so that it can allow for reborrowing. In case of Jrwlock(τ)K.shr,
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this means that the lock is already governed by a protocol bound
by α, and is then available for any smaller lifetime κ. Note that
when proving TY-SHARE for rwlock(τ), we perform the allocation of
the GPS protocol. Reversely, when the sharing ends with the end
of the lifetime κ, we perform the deallocation of the GPS protocol.

• For rwlockreadguard(α, τ), the size is simply one because it only
records the base location ℓ of the lock. The own interpretation
simply owns the resources that are acquired by a reader lock, as
already mentioned in Definition 18.2: a reader lock owns (1) the
shared interpretation JτK.shr at the intersected lifetime α ⊓ ν, so
that one can access τ ’s contents in shared mode; (2) a fraction q

of the lifetime token for ν ([ν]q) to maintain that ν is alive; and
(3) the ability to kill the shared lifetime ν (Kill(ν)) and to inherit
the own resources of τ , which will be used to switch the lock
from sharing (read-lock) mode to unlocked mode if this is the only
existing reader lock; (4) the same fraction q for the reader state
Reading(q, ν)

γs as well as the shared-reader permission of the
GPS protocol bound by the lifetime β that is at least the lifetime α

that has computed statically by the type system for the guard.

The shared interpretation of the lock guard itself is just sharing
the ownership of the storage to the base location of the lock (now
quantified as ℓ′) and the shared interpretation of the underlying
type τ bound by both the static lifetime α of the lock guard and the
lifetime κ of the shared reference (to the lock guard).

• For rwlockwriteguard(α, τ), the size and the shared interpretation
are similar to those of reader guards.

The own interpretation is rather simple compared to that of the
reader lock guard. In addition to owning the writer state Writing

γs

as well as the writer permission of the GPS protocol—bound by
β, and with the writer-lock state value −1, the interpretation also
holds the own interpretation of the underlying type τ , but under a
full borrow bound by β. Intuitively, the resources ℓ+1 7−→ JτK.own(t)
is under a borrow at β because it is indeed borrowed from the own
interpretation of rwlock(τ) for the writer lock guard when the lock
is acquired (when the writer lock guard is created).

18.3 Proof Sketches of the Library’s Operations

In this section we sketch the proofs that the implementation of the reader-
writer lock’s functions given in Figure 18.1, which uses unsafe code, is
semantically well-typed. That is, we show that the implementation
satisfies the semantic interpretations for their corresponding Rust types
given in Table 18.1, using the core interpretations of Definition 18.3.
More specifically, the proof obligation for a function is typically that,
given the interpretations of the function’s arguments, we need to produce
the interpretation of the function’s return value, while maintaining all
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invariants. Below, we only sketch the proofs for the most interesting
functions.

Proof sketch of new_lock(τ). The type is fn(T) -> RwLock<T>, so we get
to assume JτK.own(t, w) where t is the calling thread and w are the values
of the argument of type τ , and we need to produce Jrwlock(τ)K.own(t,v).
This is easy because Jrwlock(τ)K.own(t,v) contains JτK.own(t, w), and
the implementation only needs to maintain that the lock counter n is
at least −1. In fact, new_lock(τ) initializes the lock counter to 0 (the
unlocked state). Recall that the allocation of the GPS protocol is done
only when one gets a shared reference to the lock, and we have performed
that obligation in TY-SHARE.

Proof sketch of try_read. try_read takes in a &self, a shared reference
of rwlock(τ), and returns a Result<RwLockReadGuard<T>>. We only con-
sider the successful case, where the Result is a Some. In that case, we get
to assume Jrwlock(τ)K.shr(κ, t, ℓ) where κ is the lifetime of the shared
reference and ℓ is the base location of the lock, and we need to produce
Jrwlockreadguard(α, τ)K.own(t, [ℓ]), knowing that α ⊑ κ. We therefore
can pick κ to instantiate β in Jrwlockreadguard(α, τ)K.own(t, [ℓ]).

The success case means that the CAS in line 9 of try_read (see Fig-
ure 18.1) has successfully increased the lock counter by 1. In the proof,

we rely on the GPS protocol assertion &α (ℓ, γ) : I(τ, α, γs, t)
N

from
Jrwlock(τ)K.shr(κ, t, ℓ) to verify the CAS (using e.g., GPS-ATBOR-WSHR-

CAS-INT in Figure 17.7). While doing so, we interact with the write
interpretation Iw(τ, α, γs, t) given in Definition 18.2, knowing that the
state a is Some(right(ν, q, n)). We can then acquire all of the resources
needed for Jrwlockreadguard(α, τ)K.shr(κ, t, ℓ), by carving out some frac-
tion q′′ from the remaining fraction q′ in the write interpretation, and
then updating the state a to Some(right(ν, q + q′′, n+ 1)).

Proof sketch of try_write. The proof is similar to that of try_read: when
performing the CAS from 0 to −1 in 4 of try_write, we also interact
with the write interpretation Iw(τ, α, γs, t), but this time we know that
a = None. We then update the state a to Some(left()) and acquire
Writing

γs . Together with the remaining resources from Iw(τ, α, γs, t),
we can establish Jrwlockwriteguard(α, τ)K.own(t, [ℓ]).

Proof sketch of rdguard_deref. With the type fn(&self) -> &T, we get
to assume Jrwlockreadguard(α, τ)K.shr(κ, t, ℓ) and we need to produce
JτK.shr(κ, t, ℓ′+1). This is straightforward because the latter is contained
in the the former.

Proof sketch of wrguard_deref_mut. With the argument &mut self, we
get to assume Jrwlockwriteguard(α, τ)K.own(t, [ℓ]) under a full borrow
bounded by some lifetime κ, and we need to produce, for &mut T,
JτK.own(t, ℓ + 1) also under a κ-bounded full borrow. Recall that in
RustBelt, J&κ

mut τK.own(t,v) ::= ∃ℓ.v = [ℓ] ∗ &κ
full (ℓ 7−→ JτK.own(t)).

We know that κ ⊑l α. Looking at the own interpretation for the writer
lock guard, we have also α ⊑l β and &β

full (ℓ+ 1 7−→ JτK.own(t)). So
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we can reborrow that into &κ
full (ℓ+ 1 7−→ JτK.own(t)). The remaining re-

sources of the writer lock guard will be withheld by the inheritance of the
reborrow, so that when the reborrow ends, those resources are returned
so that we can reconstruct the own interpretation of the writer lock guard.
(The RustBelt framework requires us to establish such reconstruction
proof when performing the reborrow.)

Proof sketch of rdguard_drop. We get to consume the reader lock guard,
that is Jrwlockreadguard(α, τ)K.own(t, [ℓ]). This is the reverse of the
try_read proof: we use the GPS protocol resources in the own inter-
pretation for the lock guard to perform the CAS that decrements the
lock counter, and we then return all resources from the lock guard’s
own interpretation to the protocol’s write interpretation Iw(τ, α, γs, t).
Additionally, we need to update the ghost state to decrement the ghost
counter. In doing so, we deallocate our reader state Reading(q, ν)

γs .
In case we are the only existing reader lock guard, we kill the lifetime

ν (using □Kill(ν)), so that we can inherit &α
full (ℓ+ 1 7−→ JτK.own(t)), i.e.,

switching the access mode of the underlying type τ from shared to owned.
Note that in this case we also regain the full read and write permissions
of the GPS protocol. All of those resources allow us to set the protocol
ghost state back to a = None, i.e., to unlock the lock.

Proof sketch of wrguard_drop. We get to consume the writer lock guard,
Jrwlockwriteguard(α, τ)K.own(t, [ℓ]). The GPS protocol writer permis-
sion allows us to know that the protocol is in state a = Some(left()), as
well as to simply perform a release write of 0 to release the lock. From the
writer lock guard’s own interpretation, we have all the resources needed
to set the protocol ghost state back to a = None. When performing the
ghost update, we also deallocate our writer state Writing

γs .

CHAPTER SUMMARY. In this chapter, we sketched the semantic type
checking of a λRust version of Rust’s reader-writer lock library (which
employs unsafe blocks), using a combination of the relaxed lifetime logic
and iRC11 GPS protocols.
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Verification of Arc

The verification of the Arc library is by far the most challenging library
verification in RBrlx. In the original RustBelt work, the verification of
Arc is split into 2 steps: first, the implementation is verified against
a sufficiently strong abstract specification, and then the semantic type
checking of Arc’s functions is done using only that abstract specification.
While the latter task is no less challenging, we managed to reuse that
part of proofs entirely for RBrlx. Therefore, in this chapter, we focus on
the first task: reverifying the now-relaxed implementation against the
strong abstract specification. Fortunately, the specification is reasonably
balanced to also admit the relaxed implementation, so we did not need
to change it—we only need to redo the proofs in iRC11.

Regardless, to make the verification go through, we needed to strengthen
two atomic reads from rlx to acq in the implementations of Arc::get_mut
and Arc::make_mut. We conjecture that the relaxed access in Arc::make_mut

is indeed sound but verifying this would have required a significantly
more complex invariant. The relaxed access in Arc::get_mut turned out
to be a bug. We provide more details about this bug in §19.4.

In §19.1, we present the core Arc implementation in λRust + ORC11

and sketch how to verify it using cancelable GPS protocols in §19.2. In
§19.3, we present the full APIs of Arc, which involves the associate type
Weak, and sketch how to verify the full APIs. The synchronization bug
and a bit of history how it was found is mentioned in §19.4.

19.1 The Core Arc library

Arc<T>, short for Atomically Reference Counted, is used to share atomically
an object of type T, whose mutation is disabled by default. To mutate T,
one needs T to support thread-safe mutability, for example with T being
an atomic type, or with T wrapped inside a lock (e.g., Mutex<T>).

Example 19.1 (A Client of Arc). The following Rust example instantiates
Arc with an atomic integer AtomicUsize and demonstrates how Arc is
typically used:

1 let arc1 = Arc::new(AtomicUsize::new(5)); // create the first Arc

2 let arc2 = Arc::clone(&arc1); // clone the second Arc

3 thread::spawn(move || { // give arc2 to child thread

4 println!("child: {:?}", arc2.fetch_add(1, Ordering::Relaxed));

237
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5 // drop(arc2);

6 });

7 println!("main: {:?}", arc1.fetch_add(2, Ordering::Relaxed));

8 // drop(arc1);

In line 1 in the main thread, a new Arc pointer arc1 is created to
govern an atomic integer allocated in shared memory. The Arc’s internal
counter field for the number of references to the content is set to 1. An
Arc pointer acts almost like its underlying content, so in line 4 we can call
fetch_add on arc1 as if on the atomic integer itself. To share the content
with the child thread, we create another arc2 by clone-ing arc1 (line 2),
which effectively increments the internal counter to 2: there are now 2

pointers sharing the atomic integer. Unsurprisingly, to allow concurrent
updates by multiple threads, the internal counter field is implemented
with an atomic integer.

When the Arc pointers go out of scope, in lines 5 and 8, their
destructors—the drop function—are called and the counter field is decre-
mented accordingly. The last call of drop will deallocate the underlying
content and the counter field.

The λRust + ORC11 implementation of Core Arc’s functions is given
in Figure 19.1. The new function allocates two locations, one for the
counter field and one for the data field, then initializes them. Note that
we present Core Arc as a simplification of the actual implementation
verified in our Coq development: we assume here that the type T only has
size 1, but the actual implementation allocates JτK.size locations (memory
cells) to be able to store T. Furthermore, the actual implementation needs
to consume all of those memory cells (copying them into the allocated
memory and freeing the memory for the argument of type T), instead of
just assuming that the argument is just a simple value v .

The deref function provides access to the data field, effectively al-
lowing an Arc<T> to behave like its content T. The clone function does
a relaxed (rlx) fetch-and-add (FAA) by 1 to increment counter and then
return a copy of a.

Finally, the drop function does a release (rel) FAA to decrement
counter. If the value of counter was 1 before the decrement (i.e., this is
the last drop), drop additionally does an acquire (acq) fence before deal-
locating both the counter and data fields. The acquire fence is needed
because the release FAA, although being a release write, is only a relaxed
read.

CORRECTNESS. Intuitively, the main correctness guarantee of Core Arc

is that the deallocation of its data and counter fields is synchronized
with (happens-after) all accesses to those fields. Those accesses happen
between (and including) the construction of an Arc pointer, either by
new or clone, and its destruction by drop. Therefore, the correctness
guarantee translates to making sure that the deallocation done by the
last drop is synchronized with all previous drop’s. In this case, that
synchronization is established between the release FAA’s of all previous
drop’s and the acquire fence of the last drop.
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new(v) ::= let a := alloc(2) in

a.counter :=na 1;

a.data :=na v ;

a

deref(a) ::= ∗naa.data

drop(a) ::= if FAArel(a.counter,−1) == 1

fenceacq;

free(a, 2)

clone(a) ::= FAArlx(a.counter, 1);

a

FIGURE 19.1: Implementation of Core Arc

19.2 Verification of Core Arc with Cancelable GPS Protocols

We demonstrate the verification of the most important functions of Core
Arc: new, clone and drop. For clone, we need to guarantee that any
newly-created pointer arc to an object a can non-atomically read its
data field a.data (so that the deref function can be called on arc), and
perform atomic FAA’s on its counter field a.counter (so that clone and
drop can be called on arc). This means that both fields must be shared
for concurrent accesses by multiple threads.

For drop, we instead show that this sharing of the fields must have
been finished before the deallocation is called. To deallocate a block
a of two locations using free(a, 2), the deallocation rule NA-DEALLOC

(Figure 9.1, §9.1) requires us to have the full ownership of the whole
block i.e., both a.data 7→ and a.counter 7→ .

In short, we start out with the full ownership a.data 7→ v and
a.counter 7→ 1 in the new function, then we share both a.data and
a.counter for concurrent accesses, and at the end reclaim both a.data 7→

and a.counter 7→ in the last drop for deallocation. Our job is to set
up the sharing to satisfy this scheme. Because the data field only needs
concurrent read accesses, we employ fractional ownership1 on the points- 1Boyland, “Checking interference with

fractional permissions” [Boy03].to assertion a.data 7→ v .2 That is, we start out with the full fraction
2To allow concurrent atomic writes to

the underlying object of type T with only
some fractional ownership, the type needs
to support interior mutability. This can be
achieved if we can e.g., also use a cance-
lable GPS protocol for T.

a.data 7→ v = a.data 7→ v and for every newly-created pointer we give
it a small fraction a.data q7−→ v , which is sufficient to perform concurrent
reads. When a pointer goes out of scope, its small fraction a.data q7−→ v

is recollected. Before the very end, we recollect all the small fractions
into the full fraction a.data 7→ v = a.data 7→ v . Then we are ready for
deallocating a.data.

The counter field, on the other hand, needs concurrent FAA accesses,
so we will use a cancelable GPS protocol (Definition 17.4) to share it.
The cancelable protocol is also used for recollecting the small fractions
of the data field.

19.2.1 The Abstract Specifications for Core Arc

We want to prove the following simple specification for Core Arc:

{True} new(v) {a.∃γi, γ.ARCγi,γ(a,v , I)} (ARC-NEW-SPEC)

{ARCγi,γ(a,v , I)} clone(a) {ARCγi,γ(a,v , I) ∗ ARCγi,γ(a,v , I)}
(ARC-CLONE-SPEC)

{ARCγi,γ(a,v , I)} drop(a) {True} (ARC-DROP-SPEC)
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where the abstract predicate ARCγi,γ(a,v , I) represents the logical own-
ership of an Arc pointer to some object a whose data is v . The arguments
γi, γ, and I are used for the cancelable GPS protocol.

ARC-NEW-SPEC says that new(v) allocates a new Arc pointer, and ARC-

CLONE-SPEC says that clone can create two pointers from one. ARC-

DROP-SPEC simply says that a drop is always safe with just a Arc pointer
ownership.

19.2.2 The GPS Protocol for Core Arc

Definition 19.2 (Model of the ARC Assertion). We define the abstract
predicate ARCγi,γ(a,v , I) as follows:

ARCγi,γ(a,v , I) ::=

∃q. a.data q7−→ v ∗ (a.counter, γi, ) : Iγ,v
q
∗ ♡γi

q ∗ Count(q)
γ

Owning an Arc pointer ARCγi,γ(a,v , I) means that we own: (1) some
small fraction q of the data field a.data q7−→ v at the value v , which
allows us to safely read a.data for the value v ;3 (2) the CAS-only asser-3In the general case, this would be frac-

tional ownership of the underlying type
τ ’s interpretation, which may allow more
than read access.

tion (a.counter, γi, ) : Iγ,v
q

that the counter field is governed by

a protocol I protected by γi, as well as the cancelable invariant token
♡γi

q —with the same fraction q—to know that the protocol is still alive,
which allows us to concurrently access a.counter; and finally (3) an un-
synchronized ghost element Count(q)

γ
that represent the 1 single count

of this pointer in the total count (see below).

Definition 19.3 (GPS Protocol for a.counter). The protocol for the
location a.counter is defined as follows:

Iγ,v ::= (Iγ,vw , Ir, Im)

Ir(a, γa, , , n) ::= n ≥ 0

Im(a, γa, , , n) ::= n = 0

Iγ,vw (a, γa, , , n) ::=



False n < 0

TotalCount(0, 0)
γ

n = 0

∃qin, qout ∈ (0, 1). a.data qin7−−→ v ∗ ♡γi
qin

∗Wshr(a, γa, , , n) ∗ Rqin
shr(a, γa, , , n)

∗ qin + qout = 1 ∗ TotalCount(n, qout)
γ

n > 0

(ARC-INV)

First of all, I requires that the value v of the counter field to be
non-negative. When it is positive i.e., when there is some Arc pointers,
the number of pointers is n and the write interpretation Iγ,vw owns the
unsynchronized ghost element TotalCount(v , qout)

γ
. We use this ghost

element to track the protocol state, and so have no need for the GPS
protocol type, which we pick to be the trivial unit protocol S().

The element TotalCount(v , qout)
γ

tracks the globally-consistent knowl-
edge that there are currently n pointers and the sum of all fractional
permissions owned by those pointers is qout.4 The write interpretation4Here, out means ownership of the frac-

tions outside of Iγ,v
w . further requires that the remaining fraction qin = 1− qout must be owned
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COUNTING-START

q ∈ (0, 1] ⊢ ˙|⇛∃γ. TotalCount(1, q) γ ∗ Count(q)
γ

COUNTING-NEW

q + q′ ≤ 1 ⊢ TotalCount(n, q)
γ
⇛̇ TotalCount(n+ 1, q + q′)

γ
∗ Count(q′)

γ

COUNTING-AGREE

TotalCount(n, q)
γ ∗ Count(q′)

γ
⊢ n ≥ 1 ∧ q′ ≤ q ≤ 1

COUNTING-DROP

TotalCount(n+ 1, q + q′)
γ
∗ Count(q′)

γ
⇛̇ TotalCount(n, q)

γ ∧ (n = 0⇒ q = 0)

FIGURE 19.2: Counting permissions for
Core Arc

by the protocol. This includes the fractional ownership of a.data and
the cancelable token ♡γi

qin of a.counter. The fraction qin in fact includes
the used fraction of pointers that have been dropped. Thus the protocol
makes sure that any fractions of the a.data and γi are all accounted for.

Finally, when the counter reaches 0, the protocol is simply trivial
with the ghost element also being 0. Note that the move interpretation
Im allows only for this case, which means that we can perform a single-
writer write once the counter reaches 0. This is simply because there is
no more sharing in this case. Such a single-writer write can be useful in
resetting and reusing the reference counting, which will be needed in
Full Arc (§19.3).

The ghost elements TotalCount(n, q)
γ

and Count(q)
γ

is an instance
of counting permissions,5 used here to track the outside fractions asso- 5Bornat et al., “Permission accounting in

separation logic” [Bor+05].ciated with each single count. They satisfy the axioms in Figure 19.2.
COUNTING-START creates a ghost location γ for the first count and gives us
the total count TotalCount(1, q)

γ
as well as a single count Count(q)

γ
.

With COUNTING-NEW we can increase the total count and produce more
single counts. With COUNTING-DROP we can decrease the total count
by consuming single counts. COUNTING-AGREE ensures that every single
count is always included in the total count. How this ghost construction
comes into play will be revealed next section.

After this long setup, we are finally ready to explain the verification
of Core Arc.

19.2.3 Verifying new

In the proof of ARC-NEW-SPEC, we elide the standard allocation and
initialization of the data and counter fields. Our main obligation here
is to transform the two full ownership a.data 7→ v and a.counter 7→ 1

to the abstract permission ARCγi,γ(a,v , I) for some γi and γ. That is,
turning our unique ownership into sharing mode.

To do so, we initialize an iRC11 cancelable single-writer protocol for
a.counter, using the rule GPS-SW-INIT.6 The rule gives us fresh ghost 6see Figure 17.4

locations γi and γa and the full cancelable token ♡γi

1 . What we need to
provide are the points-to a.counter 7→ 1, which we have, and the write
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interpretation Iγ,vw (a, γa, , , 1) for some γ. Below, we write Iγ,vw (1) as a
short-hand notation for Iγ,vw (a, γa, , , 1).

For γ, we use COUNTING-START to create the total count and the first
single count with q ::= 1/2. That is, we get TotalCount(1, 1/2)

γ
and

Count(1/2)
γ
. We use TotalCount(1, 1/2)

γ
for Iw and Count(1/2)

γ

for ARC. Similarly, we split a.data 7→ v into two halves a.data 1/27−−→ v ’s
and use each for I and ARC.

With a.data 1/27−−→ v and TotalCount(1, 1/2)
γ
, to establish Iγ,v (1),

we need ♡γi

1/2, and Wshr(a, γa, , , 1), and R1/2
shr (a, γa, , , 1). Unfortu-

nately, GPS-SW-INIT does not allow us to use some of the cancelable
token nor the single-writer permission W(ℓ, γ, t, s,v) to establish Iw.
Therefore, we need to use a more general initialization rule that has
the flavors of both CINV-ALLOC-FRAC7 and GPS-MID-SW-INIT-STRONG8 com-7see Figure 11.3

8see Figure 17.8 bined. Concretely, we want keep half of cancelable token (♡γi

1/2) locally,
and use the other half for Iγ,vw (1). Furthermore, we use the rule GPS-W-

WSHR-RSHR9 to turn the single-writer permissionW(a, γa, , , 1) into the9see Figure 17.3

shared-writer permission Wshr(a, γa, , , 1) and the full shared-reader
permission R1

shr(a, γa, , , 1). We use the former and half (1/2) of the
latter to complete Iγ,vw (1).

As a result, we get♡γi

1/2∗ (a.counter, γi, γa) : Iγ,v
1/2

. We combine

these with the remaining a.data 1/27−−→ v and Count(1/2)
γ

to complete
the first ARCγi,γ(a,v , I) permission.

19.2.4 Verifying clone

In proving ARC-CLONE-SPEC, we need to split one ARCγi,γ(a,v , I) into
two. Unfolding the definition of ARCγi,γ(a,v , I),10 we see that the frac-10see Definition 19.2

tions a.data q7−→ v , (a.counter, γi, ) : Iγ,v
q
, and ♡γi

q (for some q)

can be split into halves i.e., a.data q/27−−→ v , (a.counter, γi, ) : Iγ,v
q/2

,

and ♡γi

q/2, each for one new ARC. So we only need to transform one

single count Count(q)
γ

into two. To match the fraction q/2, we actu-
ally need two single counts of the form Count(q/2)

γ
. Unfortunately,

Count(q)
γ

is not splittable into two Count(q/2)
γ
’s. So we can only get

two Count(q/2)
γ
’s with the help of the total count TotalCount( , )

γ
,

which is inside the GPS protocol. To do so, at the relaxed FAA made
by clone (Figure 19.1), we invoke the CAS rule for the single-writer
protocol in the CAS-only mode. We did not present this rule, but it is very
much the same as the rule GPS-ATBOR-WSHR-CAS-INT11 for the Atomic-11see Figure 17.7

Borrows-based single-writer variant of GPS protocols, where we only
need to replace the lifetime token fraction [κ]q with the cancelable token
♡γi

q —which we do have from ARCγi,γ(a,v , I).
Note that, in clone, we use a relaxed FAA which is a relaxed read and

a relaxed write. Therefore, in the successful case of the FAA, we only get
to access the write interpretation Iγ,vw under the release modality ∆ and
we can only get some resource out under the acquire modality ∇.12 But12see §8.3

remember that, if our resource is, however, view-agnostic—for example,
if they are unsynchronized ghost state—then the fence modalities can be
bypassed. We exploit this in our invocation of the CAS rule for clone.
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In particular, as we have Count(q)
γ
, we use GHOST-RELMOD13 to get 13see Figure 8.1

∆ Count(q)
γ
.

Then, we now have to show that
Iγ,vw (n) ∗ Count(q)

γ
⇛̇ Iγ,vw (n + 1) ∗ Count(q/2)

γ ∗ Count(q/2)
γ
,

where n is the value the FAA reads from a.counter.
First, by the definition of Iγ,vw (n) (see ARC-INV), we know that n ≥ 0.

By owning Count(q)
γ
, we also know that n cannot be 0, because if

n = 0, we can combine TotalCount(0, 0)
γ

with Count(q)
γ

and use the
rule COUNTING-AGREE to derive the contradiction that 0 ≥ 1. Thus n > 0.

Now, we are not going to change the fractions (qin/out) and the
fractional ownerships: we will keep them the same (i.e., framing) for
Iγ,v (n+1). Therefore our job is simply transform TotalCount(n, qout)

γ ∗
Count(q)

γ
to TotalCount(n+ 1, qout)

γ ∗ Count(q/2)
γ ∗ Count(q/2)

γ
.

This is simple: we first use COUNTING-DROP to drop the single count
Count(q)

γ
associated with q and get TotalCount(n− 1, qout − q)

γ
. We

then call COUNTING-NEW twice on TotalCount(n− 1, qout − q)
γ
, each

time creating a new single count Count(q/2)
γ

and in the end we get
back TotalCount(n+ 1, qout)

γ
. Note that we always satisfy the side

condition of COUNTING-NEW because qout ≤ 1.
Finally, after the access, we get back the access token ♡γi

q and two
single counts under the acquire modality:

∇
(
Count(q/2)

γ ∗ Count(q/2)
γ
)

Since the single counts are unsynchronized ghost state, we use ACQMOD-

GHOST14 to get Count(q/2)
γ ∗ Count(q/2)

γ
. Now we can split the token 14see Figure 8.1

♡γi
q and the fraction ownership a.data q7−→ v into two halves and gain two

ARCγi,γ(a,v , I)’s.

19.2.5 Verifying drop

The first intuition in the proof of drop is that, if the drop is not the last
drop, we will return all the resources of the current pointer ARCγi,γ(a,v , I)
to the protocol. This includes the fractional ownership a.data q7−→ v , the
shared-reader permission (a.counter, γi, ) : Iγ,v

q
, the cancelable

token ♡γi
q and the single count element Count(q)

γ
. The former three

will be stored in the protocol and will be transferred to the last drop for
deallocation. The single count element will be used to decrease the total
count by 1.

The second intuition is that, in the case of the last drop, we know
from the ARC permission and the protocol’s write interpretation that the
local fractions and the fractions stored in the protocol sum up to 1, so we
can recollect the full fraction for deallocation.

In both cases, we need a stronger rule for release FAA that allow us to
use the token ♡γi

q to access the protocol and simultaneously use the token
to establish the write interpretation. Consequently, we would not regain
♡γi

q in the post-condition of such a rule. While we do not write down this
rule concretely, it has the same flavor as the release single-writer rule
GPS-SW-WRITE-REL.15 15see Figure 17.4
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Now, at the release FAA of drop, using ♡γi
q , we have the following

goal ♡γi
q ∗ P ∗ Iγ,v (n) ≡−∗ Iγ,v (n− 1) ∗Q(n) where n is the old value of

a.counter and

P ::= a.data q7−→ v ∗ (a.counter, γi, ) : Iγ,v
q
∗ Count(q)

γ

Q(n) ::=



True n ̸= 1

a.data 7→ v ∗ ♡γi

1 n = 1

∗Wshr(a, γa, , , 0)

∗ (a.counter, γi, ) : Iγ,v
1

That is, P are the resources we have locally in our pre-condition, and Q

are the resources we will have in our post-condition of the rule.
Similarly to the reasoning in clone, with Count(q)

γ
from P , we

know that n > 0 and the invariant has some fractional permissions ♡γi
qin

and a.data qin7−−→ v for some qin (see ARC-INV).
Now, if this is not the last drop i.e., n− 1 > 0, we need to re-establish

Iγ,v (n − 1) with some new fractions q′in/out. We pick them as follows:
q′in ::= qin + q and q′out ::= qout− q. From ♡γi

q ∗P ∗ Iγ,v (n), we can easily
get ♡γi

q′ in = ♡γi
qin ∗♡

γi
q and a.data q′in7−−→ v = a.data qin7−−→ v ∗ a.data q7−→ v , as

well as (a.counter, γi, ) : Iγ,v
q′in

, which are needed for Iγ,v (n− 1).

Our remaining work is to transform TotalCount(n, qout)
γ ∗ Count(q)

γ

to TotalCount(n− 1, q′out)
γ
. Fortunately, this is but a simple application

of COUNTING-DROP. Then we are done because n ̸= 1.
In the case where this is the last drop’s FAA, we have n = 1 and we

must prove ♡γi
q ∗ P ∗ Iγ,v (1) ≡−∗ Iγ,v (0) ∗ Q(1). From Iγ,v (1) we have

TotalCount(1, qout)
γ

and from P we have Count(q)
γ
. By an application

of COUNTING-DROP, we have TotalCount(0, 0)
γ
, which is exactly Iγ,v (0),

and additionally the fact that qout = q. From Iγ,v (1) we also know that
qin + qout = qin + q = 1. Thus combining what we have left from our
assumption ♡γi

q ∗ P ∗ Iγ,v (1), we have exactly Q(1). So we finish the last
drop’s FAA and gain ∇Q(1).

As the return value is n = 1, we perform an acquire fence (see the
code of drop in Figure 19.1). Thanks to the acquire fence rule HOARE-

ACQ-FENCE,16 we remove the modality and regain Q(1). We are almost16see Figure 8.1

done: we only need to get back the points-to ownership of a.counter.
For this, we cancel the GPS single-writer protocol for a.counter using
the cancellation rule GPS-SW-DEALLOC.17 The rule requires the full token17see Figure 17.4

♡γi

1 , which we do have, to ensure that the cancellation happens after all
accesses to the protocol. At long last, after the cancellation we now have
the full ownership of both fields and can safely use NA-DEALLOC to free
them.

Note that in this proof, before applying GPS-SW-DEALLOC, we can first
use the rule GPS-SW-W-REVERT18 to regain the single-writer assertion18see Figure 17.3

(a.counter, γi, ) : Iγ,v
W

. With that and a stronger variant of GPS-

SW-DEALLOC,19 we can regain exactly Iγ,vw (a, γa, , , 0) which will allow19see the discussion for GPS-SW-
DEALLOC in §17.1.2 us to reuse the counting permissions at the ghost location γ, if needed.
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Arc Weak

new: fn(T) -> Arc<T> new: fn() -> Weak<T>

deref: fn(&Arc<T>) -> &T

clone: fn(&Arc<T>) -> Arc<T> clone: fn(&Weak<T>) -> Weak<T>

downgrade: fn(&Arc<T>) -> Weak<T> upgrade: fn(&Weak<T>) -> Option<Arc<T>>

drop: fn(Arc<T>) -> () drop: fn(Weak<T>) -> ()

get_mut: fn(&mut Arc<T>) -> Option<&mut T>

make_mut: fn(&mut Arc<T>) -> &mut T

TABLE 19.1: An excerpt of Rust’s Arc<T>
and Weak<T> APIs19.3 Verification of Arc’s Full APIs

We discuss the verification of an extended version of Arc, which is also the
version we have verified in RBrlx. Its most interesting APIs are given in
Table 19.1. Here we need to tackle two extra sets of behaviors, presented
as two following challenges.

Arc<T> HAS A SUBORDINATE TYPE Weak<T>. The first challenge involves
a type called Weak<T>. Weak itself is a variant of Arc: it has a counter to
count how many Weak pointers are in existence, and also has the similar
clone and drop functions.20 However, Weak does not guarantee access 20see Table 19.1

to the underlying object of type T: while owning an Arc guarantees that
the object is still available, owning a Weak does not prevent the object to
be reclaimed. In order to access the object with a Weak pointer, one first
calls Weak::upgrade to obtain an Arc pointer. upgrade can fail when the
object has already been reclaimed, that is when there is no Arc pointer
left. A Weak pointer are typically created by calling Arc::downgrade on a
shared reference of Arc.

The challenge for verifying Arc and Weak in the relaxed memory
setting is that they involve two tightly coupled atomic locations—one
for each counter. As multi-location RMC invariants (as presented in
Chapter 11) are consolidated at a much later time after the RBrlx work,
we needed to use separate GPS protocols for each counter and at the
same time maintain their relation. This was a known challenge, as had
been observed earlier by GPS.21 The general solution is to construct ghost 21Turon et al., “GPS: navigating weak

memory with ghosts, protocols, and sepa-
ration” [TVD14].state to encode the relation between the locations and prevent their

protocols from breaking the relation. We were able to set up several
unsynchronized ghost state constructions to encode the relation, but
those, unfortunately, are not enough.

Arc<T> SUPPORTS TEMPORARY BORROWS OF THE UNDERLYING CONTENT.
The second challenge involves the support to temporarily reclaim full
ownership of the underlying content when the thread knows it owns
the last unique Arc and Weak pointers. The functions Arc::get_mut

and Arc::make_mut provide these capabilities: they return a mutable
reference &mut T to the underlying content. The reclamation is temporary
because when the reference goes out of scope (when the lifetime of the
mutable reference ends), the content is returned and the original Arc
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1 fn is_unique(&mut self) -> bool {

2 // lock the weak pointer count if we appear to be the sole weak pointer holder.

3 if self.inner().weak.compare_exchange(1, usize::MAX, Acquire, Relaxed).is_ok() {

4 let unique = self.inner().strong.load(Relaxed) == 1;

5
6 self.inner().weak.store(1, Release); // release the lock

7 unique

8 } else { false }

9 }

10 fn get_mut(this: &mut Self) -> Option<&mut T> {

11 if this.is_unique() {

12 unsafe { Some(&mut this.ptr.as_mut().data) }

13 } else { None }

14 }

15 fn drop(&mut self) {

16 if self.inner().strong.fetch_sub(1, Release) != 1 {

17 return;

18 } ...

19 }

TABLE 19.2: Rust’s implementation (ex-
cerpt) of Arc::get_mut and Arc::drop

pointer can be used again.

The challenge here is to guarantee that if the temporary reclama-
tion is successful, it is synchronized with all accesses to the content of
type T. Again, note that those accesses can only happen between the
construction and the destruction of an Arc pointer. How an Arc pointer
can be constructed is now more complicated than that of Core Arc: an
Arc pointer can now additionally be created by upgrade-ing from a Weak

pointer. Therefore, to establish the synchronization guarantee, we now
need to handle the intertwined life-cycles of Arc and Weak pointers.

To be more concrete, let us look at the implementation of get_mut
in Table 19.2. To return temporary full ownership of the data field, the
function checks that the thread owns the unique Arc and Weak pointers
in two steps, using is_unique.

First, it acquires a “lock” on the Weak counter—a.weak—to make
sure that there is no other Weak pointers. This is done by an acquire
compare-and-swap (CAS) from 1 to −1. The function uses −1 as the
“locked” value to resolve conflicts with other contentious Arc::get_mut
or Arc::downgrade calls. If the CAS succeeds, the thread knows that there
is no Weak pointers left, but there may exist still some Arc pointers. This
comes from the agreed contract between the counters: the Weak counter
implicitly counts 1 for all Arc pointers. So when the thread still owns an
Arc pointer, and the value of the Weak counter is exactly 1, that 1 must be
accountable for the remaining Arc pointers, and there is no Weak pointers
left.

Second, it does an acquire read on the Arc counter—a.strong—and
then checks if the value read is 1. If that value is 1, is_unique succeeds
and get_mut concludes that thread owns the unique Arc pointer, and
gives the thread temporary full access to the underlying content with
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1(a)

2

3

2 2

1(b) 1(c)

clone

upgrade Arc::drop

downgrade
upgrade Arc::drop

FIGURE 19.3: A truncated history of the
Arc countertype &mut T.22 No matter if the second check fails or not, is_unique will 22The Arc::make_mut function also fol-
lows the similar pattern, but the targets
are reversed: it first acquires a “lock” on
the Arc counter and then reads the Weak
counter.

release the lock on the Weak counter with a release write of value 1.

CORRECTNESS OF is_unique. We wish to verify is_unique against the
following abstract specification.

{ARCγi,γ
q (a, I) ∗ Φ(q)}

is_unique(a)

{b. if b then a.strong 7−→ 1 ∗ a.weak 7−→ 1 ∗ Φ(1)
elseARCγi,γ

q (a, I) ∗ Φ(q) }
(ARC-ISUNIQUE-SPEC)

where Φ is a predicate on fractions that may be instantiated with the
interpretation of the underlying type T. The specification says that if the
function returns true, then we should have access to the full fraction
of Φ(1). Therefore, if we have instantiated Φ as the ownership of T, we
should have full access to T (e.g., &mut T) in that case.

The key idea to the correctness of is_unique is that its two checks
ensure the synchronization guarantee for temporary reclamation. The
second check ensures that the thread is synchronized with all other
Arc::drop calls. This means that it is synchronized with all accesses to
the content made by all other Arc pointers. The thread, of course, must
have synchronized with all accesses made by the current Arc pointer
that it owns. Consequently, the thread must have synchronized with all
accesses to the underlying content.

The problem, however, is that the second check uses an acquire read,
instead of a CAS. If it were a CAS, then we would be guaranteed to read
the latest value of the Arc counter, and thus synchronizing with all other
Arc::drop’s. However, an acquire read does not guarantee reading the
latest value: it can read a stale one. Consider a truncated history of
the Arc counter in Figure 19.3, where our call to get_mut was initiated
somewhere before the latest write 1(c) to the counter. Since we do not
know exactly when get_mut was initiated, the second check by is_unique

may read 1 from any events 1(a), 1(b) or 1(c). Had it read from 1(a), we
would not have synchronized with the Arc::drop’s or downgrade’s after
that. Our obligation here is to show that if the second check read 1, it
must have read from 1(c).

By contradiction, we show that it is impossible to read 1 from 1(a),
1(b) or any stale 1 values. Put it another way, we show that the thread
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has observed all updates to the Arc counter from a stale 1 to 2, denoted
as stale(1⇝ 2), and therefore cannot read those stale 1’s again. This is
where the first check comes into play: it gives us the guarantee that the
thread has observed all stale(1 ⇝ 2) updates. Note that these updates
come either from an Arc::clone or from a Weak::upgrade. If the update
is from an Arc::clone, like in 1(a), the thread must have observed it
because that update must have been performed by some Arc pointer—
unique at that time—of which the current Arc pointer (which this thread
owns) is a descendant.

The remaining case is when the update is from a Weak::upgrade, like
in 1(b). By the first check the thread is synchronized with all Weak::drop’s
by all Weak pointers. Note that Weak::drop, similar to Core Arc::drop,2323see Figure 19.1

does a release FAA to decrement the Weak counter. However, unlike in
Core Arc, the last Weak::drop decrements the counter to 1 (instead of 0).
Therefore, when the first check did a successful acquire CAS for value 1

on the Weak counter, it knows that there is no Weak pointers left and it is
synchronized with all Weak::drop’s.

If an update stale(1⇝ 2) is from an Weak::upgrade, it must happen-
before the Weak::drop of the same Weak pointer. Thus, by synchronizing
with all Weak::drop’s, the thread is guaranteed to synchronize with all
stale(1 ⇝ 2) updates from Weak::upgrade’s. It follows that the thread
must have read the latest write to the Arc counter.

ANOTHER INSTANCE OF SYNCHRONIZED GHOST STATE. Thus, our challenge
here pins down to formalizing the observations of stale(1⇝ 2) and the
two sources of those observations. Furthermore, the observations are tied
to the ownership of some Arc or Weak pointer, and when such ownership
is transferred the observations must also be transferred in a synchronized
way.

For this purpose, we use an instance of synchronized ghost state
for those observations. Similar to the ghost state for RMC cancelable
invariants,24 we use the ghost state of form ◦ (q,O)

γ
where O is a set24see §11.2.2

of observations. In the particular case of Arc, an observation is simply
a unique identifier id for each stale(1 ⇝ 2) update event on the Arc

counter. We therefore rely on the iRC11 logic to provide unique identifiers
for update events. Fortunately, we can simply use the timestamp of an
update/write event as the identifier. This is indeed a motivation to expose
timestamps in the logic, and subsequently in GPS protocol assertions.
We thus can tie the logical ghost state to the write events, making the
observations actually physical and so can only be transferred with physical
synchronization.

In the verification of Arc, we use two different constructions: one,
◦ (q,Ou)

µ
, to track the observations coming from Weak::upgrade, and

another, ◦ (q,Oc)
γ
, to track those coming from Arc::clone. The former

construction ◦ (q,Ou)
µ

enjoys similar properties to that of RMC cance-
lable invariants. That is, the observations can be joined (using set union),
and if we own the full fraction ◦ (1, Ou)

µ
, then we are guaranteed that

Ou contains all possible Weak::upgrade’s stale(1 ⇝ 2) events and we
have physically seen them all. Additionally, each owner of each fraction q
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can concurrently add observations to its local set O. This is to reflect the
fact that any Weak pointer can always perform a stale(1⇝ 2) event.

The latter construction ◦ (q,Oc)
γ

is a bit different. Even if we only
own a fraction ◦ (q,Oc)

γ
, we need to know that Oc contains all possible

Arc::clone’s stale(1⇝ 2) events and we have physically seen all of them.
Furthermore, we can only add observations to Oc if we have the full
fraction ◦ (1, Oc)

γ
. This reflects the fact that any Arc pointer must have

seen all Arc::clone’s 1 ⇝ 2 updates, and that any Arc::clone’s 1 ⇝ 2

update can only be done by the one Arc pointer that was unique and
should own the full fraction at the time of the update.

We then set up that the abstract predicate ARC for ownership of Arc
pointers also contains a fraction ◦ (q,Oc)

γ
for some q25 and Oc (because 25the same q in e.g., ♡γi

q and a.data
q7−→

v—see Definition 19.2only Arc pointers can do Arc::clone), and that the abstract predicate
WEAK for ownership of Weak pointers contains a fraction ◦ (q,Ou)

µ

for some q and Ou (because only Weak pointers can do Weak::upgrade).
We further require that Arc::drop also releases the fraction ◦ (q,Oc)

γ

like releasing the other fractions, and similarly that Weak::drop releases
◦ (q,Ou)

µ
.

With that setup, we are ready to show that when the two checks
of is_unique succeed, the thread must have observed all stale(1 ⇝ 2)

updates. First, when acquiring the “lock” on the Weak counter, the thread
also acquire the full fraction ◦ (1, O1)

µ
from the Weak counter protocol.

The full fraction is available in the protocol because all Weak pointers have
been dropped. With ◦ (1, O1)

µ
, the thread is guaranteed to have seen

all Weak::upgrade’s stale(1⇝ 2) updates. Second, since the thread owns
an Arc pointer, it owns a fraction ◦ (q,O2)

γ
, which guarantees that the

thread has seen all Arc::clone’s stale(1⇝ 2) updates. Consequently, the
thread must have read 1 from the latest write to the Arc counter, and
thus is synchronized with all previous accesses to the underlying content
T.

19.4 Insufficient Synchronization in get_mut

Unfortunately, our setup was not strong enough to verify Arc and Weak

without change. The two reads of the counters in the second check of
get_mut and make_mut were rlx in the original code (line 4, Table 19.2),
and we had to strengthen them both to acq in order to make the verifica-
tion go through. The reason is that, while we managed to temporarily
get the full resources out by a read, the rlx reads do not give us those
resources in the current view: they are under an acquire modality ∇, and
we could not move them out of the modality, and got stuck in the proof.

While we conjecture that a rlx read in make_mut is in fact sufficient,
a rlx read in get_mut turned out to be insufficient and we have reported
the bug and the fix has been merged into Rust codebase. The following
example invokes a data race when using get_mut:

1 let mut arc1 = Arc::new(0);

2 let arc2 = Arc::clone(&arc1);

3 thread::spawn(move || {
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4 let _ : u32 = *arc2; /* drop(arc2); */

5 });

6 loop {

7 match Arc::get_mut(&mut arc1) {

8 None => {}

9 Some(m) => { *m = 1u32; return; }

10 }

11 }

In this example there are two non-atomic operations: the read of
the underlying integer in line 4 (child thread) and the write to the
same integer in line 9 (parent thread). The read should be safe because
the child thread owns arc2, thus the underlying integer is shared and
immutable. The write should be safe because get_mut guarantees that the
parent thread owns the unique Arc pointer (arc1) and should temporarily
gain full access to the non-atomic integer. This can only happens after the
child thread finishes and arc2 has been dropped. However, the two non-
atomic operations constitute a data race by C11 standard, because neither
one happens-before the other. More specifically, in line 4 of the child
thread, when arc2 goes out of scope, it will be destructed by Arc::drop,
which uses a release (rel) RMW (see the code at line 16, Table 19.2). This
release RMW will be read by get_mut (line 4, Table 19.2) in the parent
thread (line 7). If this read had been acq, then there would have been a
release-acquire synchronization between the release RMW of drop and
the acquire read of get_mut, and the non-atomic read of the child thread
would have been guaranteed to happen-before the non-atomic write of
the parent thread. However, the read was rlx, thus no happen-before
relationship can be established between the two non-atomic operations.

CHAPTER SUMMARY. In this chapter, we sketched the verification of RBrlx

most substantial example: Arc<T> and Weak<T> libraries from Rust. We
followed the original RustBelt work to verified the libraries against a
sufficiently strong abstract specification, which is then used to perform
the semantic type checking of those libraries. The semantic type checking
proofs are reused as-is from the original RustBelt work, and we have
only discussed the RMC verification of the libraries against the abstract
specification. We reported a synchronization bug in Arc::get_mut.
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Related Work

Doko and Vafeiadis1 verify a subset of the Arc library with FSL++. We 1Doko and Vafeiadis, “Tackling
Real-Life Relaxed Concurrency with
FSL++” [DV17].improve on their results by (1) enlarging the scope of the verification

to include important parts of the API such as the make_mut and get_mut

functions (the latter of which we found to contain a data race) as well as
the Weak reference type, (2) allowing full resource reclamation of both
the contents and the reference-count fields of the Arc data structure,
and (3) embedding our verification effort in the RustBelt framework, so
that we can establish the soundness of Arc when linked with unknown
well-typed λRust code.

Cancelable single-writer protocols given in §17.1 are more general
and support stronger reclamation schemes than any variants from pre-
vious RMC logics, such as FSL/FSL++, GPS, and iGPS. For example,
previous logics would only be able to verify RwLock’s writer-lock release
function where the lock is released with a CAS—but not with a release
write as in the Rust’s implementation. More importantly, previous vari-
ants were not designed to reclaim resources in the fashion of Rust’s
lifetimes.
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COMPASS
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Part IV presents the Compass specification framework. Chapter 21
starts by reviewing specifications with logical atomicity in both SC and
RMC settings. Chapter 22 discusses how to encode Yacovet specs in iRC11

with logical atomicity. Chapter 23 present the proofs of RMC stacks and
queues against the Compass specs, relying on general multi-location
invariants (Chapter 11) and atomic points-to (Chapter 10). Chapter 24
discusses the composition of the stack spec and the exchanger spec to
verify the elimination stack. In doing so, it discusses the role of helping
with logical atomicity in the specs of exchangers. The top of Figure 1.1
presents the dependency between these chapters and with previous
chapters.





21
Background: Strong Specifications with
Logical Atomicity

Strong memory models provide strong guarantees about the ordering
of memory operations, making it easier to write clearly correct library
implementations. More relaxed memory consistency models offer more
opportunities for more efficient implementations, which, on the other
hand, may provide weaker guarantees to clients. In this chapter, using
the Queue data structure as an example, we review existing logically
atomic specifications (from now on, specs for short) in stronger memory
models (Figure 21.1), and in Chapter 22 we will present several of
our logically atomic specs in the RC11 model. We review, in §21.1,
the traditional Hoare-triple-based specs for sequential queues; in §21.2,
logical atomicity1 and its uses to give strong specs for concurrent SC 1Rocha Pinto et al., “TaDA: A Logic for

Time and Data Abstraction” [RPDG14];
Svendsen and Birkedal, “Impredicative
Concurrent Abstract Predicates” [SB14];
Jung et al., “The future is ours: prophecy
variables in separation logic” [Jun+20].

queues; and in §21.3, how Cosmo2 extends those specs for RMC with

2Mével and Jourdan, “Formal verification
of a concurrent bounded queue in a weak
memory model” [MJ21].

thread views.

21.1 Sequential Specifications for Queues

The separation logic sequential specs for queues are given as SEQ-ENQ

and SEQ-DEQ (Figure 21.1). SEQ-ENQ specifies that an enqueue function
call enq([q , v ]) can run safely as long as it has Queue(q , vs), an abstract
separation logic assertion that represents full ownership of the queue
object q (an instance of the data structure). An implementation can
define Queue(q , vs) as arbitrary resources that it specifically needs. But
from the perspective of clients, Queue(q , vs) is abstract because it asserts
that q ’s current state can be seen abstractly as a list of values vs—that is,
the queue’s elements are currently vs, ordered by the list order.

SEQ-ENQ then says that enq([q , v ]) requires and consumes q ’s owner-
ship at the beginning of the call, and at the end of the call it returns
the ownership with the updated abstract state vs ++ [v ], reflecting the
operation’s effects: v has been enqueued to the end of q . Conversely,
by SEQ-DEQ, a dequeue deq([q ]) also consumes q ’s ownership and, if
the queue is not empty, returns the head value v of vs and gives back
the ownership with only its tail vs ′. (The notation {v . Q} denotes the
post-condition with a returned value v .) Otherwise, if q is empty, deq([q ])
returns empty (ϵ) and the fact that the abstract state is also empty ([]).

That an operation is allowed to consume the queue ownership for

257
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the whole duration of its execution is what makes the specs sequential: a
group of threads cannot access the ownership Queue(q , vs) concurrently
in order to perform concurrent enqueues and/or dequeues. To have
strong specs for such fine-grained concurrency, we need logical atomicity.

21.2 SC Specifications with Logical Atomicity

In fine-grained concurrency, a concurrent object’s ownership is shared for
concurrent accesses, and contention is most commonly resolved by atomic
read-modify-write (RMW) instructions, such as compare-and-swap (CAS).
In this case, even if a concurrent object’s operation may not be atomic
(because it is implemented with multiple instructions), its effects are
published by a single atomic instruction. This is the intuition of logical
atomicity: from the perspective of clients, the operation appears to be
atomically updating the object exactly around a single atomic instruction—
often called the commit or linearization point of the operation.

As such, a client only needs to provide ownership of the concurrent
object at the operation’s commit point, and can expect the update to hap-
pen right after the commit point. This idea is encoded in logically atomic
triples (LATs),3 of the form ⟨P ⟩ e ⟨Q⟩, with angle brackets ⟨ ⟩ instead of3Rocha Pinto et al., “TaDA: A Logic for

Time and Data Abstraction” [RPDG14];
Svendsen and Birkedal, “Impredicative
Concurrent Abstract Predicates” [SB14];
Jung et al., “Iris: Monoids and Invariants
as an Orthogonal Basis for Concurrent Rea-
soning” [Jun+15]; Jung et al., “The future
is ours: prophecy variables in separation
logic” [Jun+20].

curly braces. The intuitive interpretation is also a bit more subtle than
normal Hoare triples: ⟨P ⟩ e ⟨Q⟩ means that there exists a commit point
(instruction) c by which e atomically consumes P , transforms it, and
returns Q.

Using LATs, we can give strong specs like SC-ENQ and SC-DEQ (Fig-
ure 21.1) to fine-grained concurrent SC queues. Here we use red font-face
to denote the gradual changes in the specs. One obvious change is the
aforementioned angle brackets ⟨ ⟩. Less obvious is the quantification of
vs in the precondition ⟨vs.Queue(q , vs)⟩: this is a special form of uni-
versal quantification that signifies the possibility that the queue may be
modified concurrently. Specifically, it signifies that during the specified
enqueue/dequeue operation, other threads may be changing the state vs

of the queue arbitrarily, up until the commit point of the operation, when
it atomically updates the state to what is described in the post-condition.
For example, SC-ENQ says that enq([q , v ]) can withstand arbitrary con-
current updates to the state vs of q , up until the commit point when it
atomically transforms Queue(q , vs) (where vs is the state at that instant)
to the new state Queue(q , vs ++ [v ]). In contrast, the sequential spec
SEQ-ENQ implicitly quantifies over vs with a normal universal quantifier
(∀vs) at the outside: this allows the implementation to assume exclusive
ownership of Queue(q , vs) for an arbitrary but unchanging vs, thereby
prohibiting concurrent interference.

Last but not least, we add a local precondition isQueue(q), another
abstract assertion that encodes persistent separation logic facts about
the queue, e.g., facts about its head and tail pointers. Thus, they are
freely duplicable, and they are local in the sense that they are to be
provided at the beginning of a call, so that operations can use them
for the whole execution, more conveniently than Queue(q , vs) which is
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SEQ-ENQ

{Queue(q , vs)} enq([q , v ]) {().Queue(q , vs ++ [v ])}

SEQ-DEQ

{Queue(q , vs)} deq([q ]) {v . (vs = [] ∗ v = ϵ ∗ Queue(q , [])) ∨ (∃vs ′. vs = v :: vs ′ ∗ Queue(q , vs ′))}

SC-ENQ

isQueue(q) ⊢ ⟨vs.Queue(q , vs)⟩ enq([q , v ]) ⟨().Queue(q , vs ++ [v ])⟩

SC-DEQ

isQueue(q) ⊢ ⟨vs.Queue(q , vs)⟩ deq([q ]) ⟨v . (vs = [] ∗ v = ϵ ∗ Queue(q , [])) ∨ (∃vs ′. vs = v :: vs ′ ∗ Queue(q , vs ′))⟩

ABS-SO-ENQ

isQueue(q) ∗ ⊒V ⊢ ⟨vs.Queue(q , vs)⟩ enq([q , v ]) ⟨().Queue(q , vs ++ [(v , V )])⟩

ABS-SO-DEQ

isQueue(q) ∗ ⊒V ⊢
⟨vs.Queue(q , vs)⟩ deq([q ]) ⟨v . (v = ϵ ∗ Queue(q , vs)) ∨ (∃vs ′, V ′. vs = (v , V ′) :: vs ′ ∗ Queue(q , vs ′) ∗ ⊒V ′)⟩

FIGURE 21.1: Specifications of Queue op-
erations, from sequential, to SC concur-
rency and strong RMC

neither duplicable nor local.
Intuitively, it should be clear that ⟨P ⟩ e ⟨Q⟩E is a stronger spec than

{P} e {Q}E , seeing as the former permits concurrent interference whereas
the latter does not. Intuitively, if e only needs P and Q around its commit
point c, then it can also work with having P and Q around the whole
execution, which includes c. But how does a client actually make use
of these LATs to arbitrate concurrent accesses to a shared resource like
Queue(q , vs)? To that end, we need to see the interaction between LATs
and invariants, which can formally explain how LATs are strictly stronger
than normal Hoare triples.

LOGICAL ATOMICITY AND INVARIANTS. We recall the standard access
rule for invariants HOARE-INV given in Figure 6.6: a physically atomic
instruction e can access and rely on I , in addition to P , for its execution,
as long as it gives I back right afterwards. The LAT invariant access rule
LAT-INV strengthens HOARE-INV, as it relaxes the restriction of “accessing
around atomic instructions” (atomic(e)) to “accessing around logically
atomic expressions”.

LAT-INV

⟨▷ I ∗ P ⟩ e ⟨▷ I ∗Q⟩E\N N ⊆ E

I
N ⊢ ⟨P ⟩ e ⟨Q⟩E

With this rule, clients can build protocols to use and combine libraries
with LAT specs. For example, we can allocate an invariant

∃vs1, vs2.Queue(q1, vs1) ∗ Queue(q2, vs2) ∗R(vs1, vs2)
N

that ties together two queues by a relation R, and then use LAT-INV with
SC-ENQ and SC-DEQ to verify clients that use the two queues and adhere
to the “protocol” R. For example, R may require that vs1 and vs2 are
disjoint, or even more specifically, that one queue only contains odd
numbers and the other only contains even numbers.
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In summary, with logical atomicity and invariants, one can give
stronger modular specs for fine-grained concurrent libraries. Further-
more, LAT specs can be seen as giving abstract operational semantics to
a library’s operations. As such, the library should be linearizable, i.e.,
there is a total order of its operations according to which the concurrent
object appears to behave sequentially. In fact, Birkedal et al.4 recently4Birkedal et al., “Theorems for free from

separation logic specifications” [Bir+21]. showed formally that, in SC, logical atomicity implies linearizability. It
is therefore an important tool to achieve full functional correctness and
modular client reasoning.

21.3 Logically Atomic Specifications in RMC with Views

However, linearizability and logical atomicity do not directly extend to
relaxed memory. In RMC, a total order of operations (the linearization)
might not exist, or if it does exist, it may not be very useful. In con-
trast to the SC model where every atomic instruction is synchronized
with each other instruction, in RMC an atomic instruction may only be
synchronized with some other instructions. It is the partially-ordered
synchronizations—formally defined as the happens-before (hb) relation—
between operations that really matter for their correctness, not the total
order. In the terms of logical atomicity, this means that an update to
the state by the commit of an operation o may only be meaningful to
operations that are synchronized with o. Consequently, LAT specs for
RMC libraries have to additionally account for hb.

21.3.1 Cosmo Specs for Queues

ABS-SO-ENQ and ABS-SO-DEQ (in Figure 21.1) are a simplified version
of Cosmo specs for multi-producer multi-consumer queues. They differ
from the SC specs in the extra tracking of views (in red in Figure 21.1):
(1) the specs take the “seen view” assertion ⊒V as a local precondition
(that is, outside of the LAT precondition and needed at the beginning
of the call); and (2) the abstract state is no longer just a list of values,
but a list of value-view pairs, where the view component of a pair is
the view of the enqueue operation (after its commit point). Similar to
the release-acquire rules, the views in the abstract state support view
transfers between matching enqueue-dequeue pairs: by ABS-SO-ENQ, an
enqueue releases its local view V at its commit point, and by ABS-SO-DEQ,
the matching dequeue acquires V into its local view, also at its respective
commit point. Effectively, they expose the so relation between matching
enqueue-dequeue pairs via views in the abstract state. This is why we
call them LATabsso style. (The complete Cosmo specs also track so among
enqueues and among dequeues.)

21.3.2 Abstract State and Read-Only Operations

However, by using just the abstract state, the specs do not specify behav-
iors of read-only operations that do not modify the abstract state. For
example, in ABS-SO-DEQ, a failing empty dequeue is a read-only opera-
tion, and the LATabsso specs do not give us any new facts about vs. This is
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enq([q , 41]); repeat (∗acqflag != 0);

enq([q , 42]); deq([q ]) deq([q ])

flag :=rel 1 // return 41 or 42, not empty

FIGURE 21.2: A Message-Passing (MP)
client with Queuesweaker than in the SC model, where SC-DEQ says that dequeues fail with

ϵ only if the state vs is truly empty (at the commit point).
Realistically, an RMC spec cannot be quite as strong as the SC spec:

recall that in RMC effects can appear to threads differently, so it may be
that the thread π sees the queue as empty and returns ϵ, but the queue
is in fact not empty, because a fresh enqueue by another thread ρ has
not become visible to π yet. But we can do better than the empty case of
ABS-SO-DEQ, which gives the client no useful information.

More concretely, the Cosmo spec’s ABS-SO-DEQ cannot be used to verify
the Message-Passing client with queues, with the expected behavior given
in Figure 21.2. Here, the queue is accessed concurrently by 3 threads:
the left-most thread performs 2 enqueues (enq), the middle one performs
a dequeue (deq), and the right-most thread waits for the signal by the
left-most thread through flag and then performs a dequeue. A weak
implementation of dequeue can return empty even though the queue is
not empty, due to contention. However, in this example, the right-most
thread cannot get an empty dequeue result, because (1) at most one
enqueue could have been consumed concurrently by the middle thread,
and (2) due to the release-acquire synchronization through flag, the
thread has synchronized with the two enqueues.

Unfortunately, the Cosmo spec only exposes internal (to the implemen-
tation) synchronizations among operations, without taking into account
how additional external synchronizations created by the client (such as
the synchronization through flag) can affect the behaviors of dequeues.
It therefore cannot exclude the possibility that the right-most thread’s
dequeue returns empty.

In the next Chapter 22, we present specs that expose more of the hb

relation, enough to cover read-only operations such as failing dequeues.
Using those specs, we can verify the MP client in Figure 21.2: by com-
bining the queue’s richer hb relation with the client’s external hb relation,
we prove that the right-most thread’s dequeue cannot return empty.





22
Strong Compass Specifications with Richer
Partial Orders

In this chapter, we present several of our logically atomic specs that,
by exposing richer partial orders that can be combined with external
synchronizations, can stay reasonably strong and yet still satisfiable by
more relaxed implementations in the weaker ORC11 memory model.
In §22.1 we present the LATabshb style which generalizes the LATabsso style,
and its instance for queues, which suffices to verify the MP client in
Figure 21.2. In §22.2, we present the LAThb spec style, a weakening of
LATabshb . In §22.3, we show how to encode these logically atomic specs in
iRC11.

22.1 Graph-Based Specs to Encode Partial Orders

The LATabshb style extends the LATabsso style by exposing a greater part of
hb. An instance for queues is given in ABS-HB-ENQ, ABS-HB-DEQ, and
ABS-HB-QUEUE-CONSISTENCY (Figure 22.1). That these specs are stronger
than those of Cosmo can be seen easily by ignoring the added red parts.
The main improvement of this instance is in ABS-HB-DEQ’s failure case,
where the caller sees the queue as empty. Here, the spec provides more
information about how the resulting read-only empty dequeue operation
is ordered with other operations in hb.

As read-only operations have no effects on the abstract state, we need
a new component G to identify and relate them to other operations.
The component G ∈ Graph is a general construction inspired by the
declarative specs of Yacovet.1 Yacovet works on whole-program execution 1Raad et al., “On library correct-

ness under weak memory consistency:
specifying and verifying concurrent li-
braries under declarative consistency mod-
els” [Raa+19].

graphs, and abstracts them into per-library event graphs of operations,
where every operation is uniquely identified by an event. A Yacovet spec
for a library encodes the ordering between events in a graph as partial
orders that must satisfy some library-specific consistency conditions. Here,
we encode Yacovet specs with the event graph component G . The main
differences with Yacovet are that (1) G records only the library events
that have happened so far, not complete executions; and (2) our specs
are stated as separation logic LATs, so each operation can access the
current, up-to-date event graph G and only needs to extend G with the
operation’s event and to maintain the graph’s consistency.

The (simplified) types of event graphs are given at the top of Fig-
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V ∈ View ::= Loc→ Time

e ∈ EventId ::= N

QueueEvent ::= Enq(v) | Deq(v) | Deq(ϵ)
M ∈ LogView ::= ℘(EventId)

Event ::= QueueEvent× View× LogView

G ∈ Graph ::= (EventId→ Event, ℘(EventId× EventId))

QueueConsistent(vs,G) :=

∧



∀(e, d) ∈ G .so.∃v .G(e).type = Enq(v) ∧G(d).type = Deq(v) ∧ . . .

(QUEUE-MATCHES)

∀(e, d) ∈ G .so, e ′.G(e ′).type = Enq( )→ (e ′, e) ∈ G .lhb→
∃d ′. (e ′, d ′) ∈ G .so ∧ (d , d ′) /∈ G .lhb (QUEUE-FIFO)

∀d , e.G(d).type = Deq(ϵ)→ G(e).type = Enq( )→
(e, ) /∈ G .so→ (e, d) /∈ G .lhb (QUEUE-EMPDEQ)

. . .

ABS-HB-QUEUE-CONSISTENCY

Queue(q , vs,G) ⊢ QueueConsistent(vs,G)

ABS-HB-ENQ

SeenQueue(q ,G0,M0) ∗ ⊒V ⊢
⟨G , vs.Queue(q , vs,G)⟩

enq([q , v ])

⟨().∃G ′ ⊒ G ,M ′ ⊇ M0, V
′ ⊒ V .Queue(q , vs ++ [(v , V ′)],G ′)

∗ SeenQueue(q ,G ′,M ′) ∗ ⊒V ′ ∗ ∃e /∈ G . e ∈ M ′ ∧G ′ = G [e 7→(Enq(v), V ′,M ′)]⟩
ABS-HB-DEQ

SeenQueue(q ,G0,M0) ∗ ⊒V ⊢
⟨G , vs.Queue(q , vs,G)⟩

deq([q ])

⟨v .∃vs ′,G ′ ⊒ G ,M ′ ⊇ M0, V
′ ⊒ V.Queue(q , vs ′,G ′) ∗ SeenQueue(q ,G ′,M ′) ∗ ⊒V ′

∗ ∨


(v = ϵ ∧ vs ′ = vs ∧ ∃d /∈ G . d ∈ M ′ ∧G ′ = G [d 7→(Deq(ϵ), V ′,M ′)])

(∃Ve . vs = (v , Ve) :: vs
′ ∧ ∃e,Me , d /∈ G .G(e) = (Enq(v), Ve ,Me) ∧ (e, ) /∈ G .so ∧ Ve ⊑ V ′

∧Me ∪ {e, d} ⊆ M ′ ∧G ′ = G [d 7→(Deq(v), V ′,M ′)] ∧G ′.so = {(e, d)} ∪G .so)

⟩
FIGURE 22.1: Compass Specs for Queues
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ure 22.1. A graph G is a pair of (1) a function that maps each event id
e ∈ EventId to event data of type Event, and (2) a set of event id pairs
that encodes the so relation. We use G(e) to denote the event data for e
in G , and G .so to denote the so relation of G .

The type Event is a tuple of (1) an event type (type), (2) a physical
view (view), and (3) a logical view (logview). In Figure 22.1 we give
an instance of the event type for queues: the events can be an enqueue
event of v (Enq(v)), a successful dequeue event of v (Deq(v)), or a failing
(empty) dequeue event (Deq(ϵ)). An event’s physical view is the view
at the commit point of the operation that the event represents, and is
needed in the logic to interact with other memory instructions. The
event’s logical view is also recorded at the commit point of its operation,
and is a set of events for all library operations that happen-before the
operation in question. If an event e is in the logical view of another event
d , i.e., e ∈ G(d).logview, we say that e happens before d . Technically, it
is the commit instruction of e ’s operation that happens before the commit
instruction of d ’s operation.

Intuitively, we use the logical view construction as an approximation
of the hb relation between library operations, just as the physical view
construction is an approximation of hb between memory instructions. The
difference is that while physical views approximate hb globally between
memory instructions, logical views only approximate hb locally for the
library in question. As such, our logical views correspond to the local
happens-before lhb relation of a library object introduced by Yacovet.
Henceforth we use e ∈ G(d).logview and (e, d) ∈ G .lhb interchangeably.

The LATabshb style extends LATabsso following a simple pattern: (1) the
abstract state is accompanied by the graph that tracks all operations
committed so far, and (2) at each operation’s commit point, in addition
to a potential update of the abstract state, a fresh event e representing
the operation is added to the graph. For example, in ABS-HB-ENQ, when
an enqueue of v commits, the current graph G of q is extended atomically
with a fresh event e whose type is Enq(v), into G ′: G ⊑ G ′.

LOCAL ASSERTIONS FOR LOGICAL VIEWS. The partial orders are also ex-
tended at e ’s commit point to relate it to other operations. In ABS-HB-ENQ,
G ′.lhb extends G .lhb by setting G ′(e).logview = M ′, the set containing
all operations that happen before e. M ′ includes M0—the local logical
view of the calling thread, which tracks the operations that happen-
before the enq call. This tracking of thread-local logical views is done
by a new persistent assertion SeenQueue(q ,G0,M0), where G0 is a snap-
shot of the current G (G0 ⊑ G), and together with M0 they accumulate
(a lower bound on) the information about operations that the thread
has synchronized with. For instance, after the call, the thread receives
SeenQueue(q ,G ′,M ′) with the latest snapshot G ′ and a new logical view
M ′, reflecting that the thread has synchronized with more operations
(M0 ⊑ M ′), including the operation e that it has just executed (e ∈ M ′).
By taking SeenQueue as a local pre-condition, the specs can specify that
the operation’s behavior can depend on what has happened before it—we
will shortly see how that allows us to use ABS-HB-DEQ to verify the MP
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client in Figure 21.2.

Compared to the LATabsso style, in LATabshb each library type has a local
logical view assertion like SeenQueue that plays a double role: (1) to
track the thread-local logical view (as explained above) and also (2) to
track persistent facts about the object like the isQueue(q) assertion in
ABS-SO-ENQ. The logical view assertion plays the same role for logical
views as the “seen view” assertion ⊒V does for physical views: the
tracked current local view can be published into the “public domain” (i.e.,
the shared graph for logical views, the shared location history or abstract
state for physical views) so that it can be consumed by other threads.

CONSISTENCY CONDITIONS. The LATabshb style specifies properties of the
abstract state and the partial orders through the library’s consistency
conditions. The consistency conditions are invariant, i.e., should be
maintained by all operations, and are specific to each library type.

For example, an excerpt of QueueConsistent, the consistency condi-
tions for the queue library type, is given at the bottom right of Fig-
ure 22.1. It requires, among other things, that enqueues and dequeues
must follow the first-in-first-out principle (FIFO, QUEUE-FIFO), stated in a
fashion that is not too strong for RMC (more about that below). The fact
that QueueConsistent is maintained by all operations is encoded in ABS-

HB-QUEUE-CONSISTENCY: the queue ownership assertion Queue(q , vs,G),
which is consumed and reproduced around the commit point, always
implies consistency. So when ABS-HB-ENQ and ABS-HB-DEQ extend (vs,G)

to new state (vs ′,G ′), the operations can assume QueueConsistent(vs,G)

and must then re-establish QueueConsistent(vs ′,G ′).

More specifically, if deq succeeds with a value v , ABS-HB-DEQ tells the
client that G ′.so extends G .so with a new pair (e, d) where d is the new
successful event added by the dequeue operation and e is an existing
enqueue event that d dequeues from. Therefore, through ABS-HB-QUEUE-

CONSISTENCY, the spec additionally says that (e, d) satisfies, among other
things,2 (1) QUEUE-MATCHES: the return value v of the dequeue d must2For example, an element can only be

dequeued once. match the value enqueued by e; and (2) QUEUE-FIFO: if there is another
enqueue event e ′ that happens before e, then e ′ must already have been
dequeued by some d ′ ((e ′, d ′) ∈ G .so), and our d cannot happen before
d ′ ((d , d ′) /∈ G .lhb). (The consistency conditions on enqueue events are
elided, so we will not discuss them.)

WEAKER BUT FLEXIBLE. The QUEUE-FIFO condition appears weaker than
what one might expect, i.e., (d ′, d) ∈ G .lhb, but such a condition only
works for strongly synchronized (e.g., SC) implementations. As stated,
QUEUE-FIFO is also satisfiable by implementations that have little synchro-
nization between dequeues. In fact, we have verified that QUEUE-FIFO is
satisfiable by a fairly relaxed implementation (similar to the weak ver-
sion in [Raa+19]) of the Herlihy-Wing queue.3 The implementation only3Herlihy and Wing, “Linearizability: A

Correctness Condition for Concurrent Ob-
jects” [HW90]. ensures lhb between matching enqueue-dequeue pairs, but not among

enqueues or among dequeues. (As one might guess, enqueues only use
release operations, and dequeues only use acquire ones.)

Nonetheless, QUEUE-FIFO is still flexible enough that, for example,
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Invariant: ∃vs,G .Queue(q , vs,G) ∗ deqPerm(size(G .so)) ∗ size(G .so) ≤ 2 ∗ . . . N

{SeenQueue(q , ∅, ∅) ∗ ⊒V1} {SeenQueue(q , ∅, ∅) ∗
⟨Queue(q , ) ∗ . . .⟩ deqPerm(1) ∗ ⊒V3}

enq([q , 41]); {SeenQueue(q , ∅, ∅) ∗ while (∗acqflag == 0){};
⟨Queue(q , ) ∗ . . .⟩ deqPerm(1) ∗ ⊒V2} {SeenQueue(q ,G2, {e1, e2}) ∗

{SeenQueue(q ,G1, {e1}) ∗ . . .} ⟨Queue(q , ) ∗ . . .⟩ deqPerm(1) ∗ ⊒V3}
⟨Queue(q , ) ∗ . . .⟩ deq([q ]) ⟨Queue(q , ) ∗ . . .⟩

enq([q , 42]); ⟨Queue(q , ) ∗ . . .⟩ deq([q ])

⟨Queue(q , ) ∗ . . .⟩ {SeenQueue(q ,G ′
1, {d1}) ∗ . . .} ⟨Queue(q , ) ∗ . . .⟩

{SeenQueue(q ,G2, {e1, e2}) ∗ . . .} {v .SeenQueue(q ,G3, {e1, e2, d2}) ∗
flag :=rel 1 v ∈ {41, 42}}

FIGURE 22.2: A proof sketch of Message
Passing with queues

if a client decides to use the queue in an SC fashion by adding suffi-
cient external synchronization, the client can know that lhb is total, i.e.,
(d ′, d) ∈ G .lhb ∨ (d , d ′) ∈ G .lhb, and can thus exclude the right-hand
side of the disjunction and regain the stronger FIFO condition with
(d ′, d) ∈ G .lhb. This demonstrates the benefits of more detailed partial
orders: by specifying ordering between operations with more complex
but seemingly weaker conditions, we can (1) require only minimal or-
dering from implementations, and at the same time (2) allow clients
the flexibility to strengthen the specs by combining the library’s exposed
internal ordering with the client-generated external ordering.

MESSAGE-PASSING CLIENT VERIFICATION When a call to deq returns
empty (ϵ), consistency demands that the added empty dequeue event d
satisfies QUEUE-EMPDEQ, which is sufficient to verify the MP client (Fig-
ure 21.2). Intuitively, QUEUE-EMPDEQ says that there cannot be another
enqueue e which happens before d but has not been dequeued in G—if
there were, then the dequeue would have successfully returned some
element from the queue. The verification of MP depends on the fact that
both enqueue events e1 and e2 done by the left-most thread, of which
at most one can be consumed by the middle thread, happen before the
dequeue of the right-most thread. By QUEUE-EMPDEQ the dequeue cannot
be an empty one and must dequeue from e1 or e2 and return either 41 or
42.

The proof sketch of this example in Compass is given in Figure 22.2.
Following the pattern mentioned at the end of §21.2, we put the owner-
ship Queue(q , ) in an invariant to enforce a concurrent protocol on the
queue, using a dequeue permission called deqPerm that can be defined
with Iris ghost state. One dequeue permission deqPerm(1) is needed
to perform one successful dequeue. This requirement can be seen in
the invariant: deqPerm(size(G .so)) counts the number of successful de-
queues, and a successful dequeue will extend G .so by 1, so anyone who
successfully dequeues needs to put in a deqPerm(1) to re-establish the
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invariant. For our particular example, we also implement deqPerm such
that there are only two deqPerm(1)’s (i.e., deqPerm(2)) in the whole sys-
tem. We then give one permission to each consumer thread before they
run. Initially the queue is set to be empty, and all threads are given a
persistent observation SeenQueue(q , ∅, ∅) of the initial empty state.

The verification of the left-most thread is straightforward: for each
enqueue, we use LAT-INV to open the invariant and then use ABS-HB-ENQ.
Afterwards the thread has two enqueue events {e1, e2} in its logical view,
and the write to flag releases SeenQueue(q ,G1, {e1, e2}) to the right-most
thread. The verification of the middle thread uses LAT-INV and ABS-

HB-DEQ, and if the dequeue succeeds, deqPerm(1) can be given up to
re-establish the client invariant.

Finally, in the verification of the right-most thread, the acquire read of
1 from flag receives SeenQueue(q ,G1, {e1, e2}) from the left-most thread.
We then use LAT-INV and ABS-HB-DEQ to perform the dequeue, with
M0 := {e1, e2}. Before re-establishing the invariant, we inspect the
resulting dequeue d3. If it is a successful dequeue, we can put deqPerm(1)

in the invariant and finish. If d3 is an empty dequeue, we derive a
contradiction. As there are only two deqPerm(1) permissions in the
whole system, of which one is owned by the current (right-most) thread,
when we open the invariant we know that the most up-to-date (right
before d3) graph G can have at most one dequeue: size(G .so) ≤ 1.
Furthermore, the thread has observed two enqueues, so in G there
must be at least one enqueue that is not dequeued yet, which must be in
{e1, e2}. Due to SeenQueue(q ,G1, {e1, e2}), both e1 and e2 happen before
d3. By QUEUE-EMPDEQ, we have our contradiction.

22.2 Weaker Specs by Abandoning Abstract States

The LATabshb specs are particularly strong and only satisfiable by strong
implementations, because one must be able to construct the abstract
state at commit points. For example, we have verified that a purely
release-acquire implementation of the Michael-Scott queue4 satisfies the4Michael and Scott, “Simple, Fast, and

Practical Non-Blocking and Blocking Con-
current Queue Algorithms” [MS96]. LATabshb specs for queues (and therefore transitively the LATabsso specs).

The release-acquire memory model, though not as strong as the SC
or Multicore OCaml model, still provides sufficient synchronization to
construct the list of values vs in the queue.

However, it is extremely difficult to construct the abstract state for the
relaxed Herlihy-Wing queue implementation mentioned above: it would
require delicate reordering of commit points on the fly, and sometimes
require future-dependent knowledge about dequeue operations. In fact,
the verification of the LAT specs in the SC memory model for Herlihy-
Wing queue relied on prophecy variables,5 whose application in RMC is5Jung et al., “The future is ours:

prophecy variables in separation
logic” [Jun+20]. still an open research problem. In this work we instead verify the relaxed

Herlihy-Wing implementation against LAThb specs, a weakening of the
LATabshb specs where the abstract state is abandoned. In particular, our
instance of the LAThb specs for queues is exactly the specs ABS-HB-ENQ

and ABS-HB-DEQ (Figure 22.1) without vs.
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LAThb specs may appear weak, but they can still take advantage of
external synchronization information, i.e., the argument in §22.1 about
flexibility of the partial orders still applies. Practically, they are sufficient
to verify the MP client in Figure 21.2.

We can also use them to verify the following single-producer single-
consumer (SPSC) client of a queue:{

SeenQueue(q , , ) ∗
ap 7→ [a0, . . . , an−1] ∗ . . .

} {
SeenQueue(q , , ) ∗
ac 7→ [0, . . . , 0] ∗ . . .

}
produce(q , ap, 0, n) consume(q , ac, 0, n)

{ap 7→ [a0, . . . , an−1] ∗ . . .} {ac 7→ [a0, . . . , an−1] ∗ . . .}

Here, there is only one thread performing enqueues—the producer—
and only one thread performing dequeues—the consumer. The producer
reads the array ap for elements with the indices in [0, n) and enqueues
them in that order, while the consumer keeps dequeueing for n elements
and writes them in the indices [0, n) of the array ac in the dequeueing
order. The expected behavior is FIFO: in the end the array ac should
have the same elements as ap.

To verify this example, we use the LAThb specs for queues (i.e., ABS-

HB-ENQ and ABS-HB-DEQ without abstract states) to derive stronger LAThb-
style specs for SPSC queues, simply by building a concurrent SPSC client
protocol. In this derivation, thanks to logical atomicity, at every commit
point of a successful dequeue we can easily match it up with the right
enqueue and thus prove FIFO. With the SPSC LAThb specs, the example’s
verification is straightforward.

22.3 Implementing Compass Specs in iRC11

Surprisingly, it is rather straightforward to implement logical atomicity
specs in iRC11: we reuse the general definition of atomic update that Iris
provides (see Definition 22.1), and RMC effects can be fully accounted
for using the various view modalities introduced in §8.5.

Definition 22.1 (General Iris Atomic Update). ⟨x. P | y. Q⇛ Φ⟩EE′

iRC11 reuses the general logical atomicity setup provided by Iris for all
bunched-implication logics. The key concept in this setup is the atomic
update which encodes the obligations to update some state around an
atomic commit point.

⟨x. P | y. Q⇛ Φ⟩EE′ ::= |⇛E E′
∃x. P ∗ ∧

{
P ⇛E′ E ⟨x. P | y. Q⇛ Φ⟩EE′

∀y.Q ⇛E′ E Φ

The atomic update ⟨x. P | y. Q⇛ Φ⟩EE′ encodes the obligation that one
has to prove—potentially using some invariants in E \ E ′ thanks to the
mask-changing update |⇛E E′

—an atomic pre-condition P that may de-
pend on some existentially quantified value x. One then will have a
choice—thanks to the classical conjunction ∧—either to abort the update
by returning P and get back the atomic update, or to commit the update
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by assuming the atomic post-condition Q (which can depend on some
new value y) to re-establish the invariants in E \ E ′ (due to |⇛E′ E ) as well
as the private post-condition Φ. Note that both Q and Φ may depend on
both x and y.

Intuitively, the client of a logically atomic triple will prove this atomic
update i.e., they will have to produce x and the atomic pre-condition P ,
as well as proving the transformation of Q to Φ. Meanwhile, the prover
of that logically atomic triple will consume this atomic update i.e., they
will consume P and produce y and the atomic post condition Q.

Definition 22.2 (Logically Atomic Triples). A logically atomic triple in
iRC11 is encoded using the atomic update instantiation for vProp (i.e., P ,
Q, Φ are predicates on vProp) and the vProp weakest pre-condition.66see Definition 8.4

⟨x. P ⟩ e in π ⟨y.Q⟩E{R} ::=

∀Φ.
(
⟨x. P | y. Q⇛ (R −∗ Φ)⟩⊤\E

NHIST

)
−∗ wp⊤ e in π {Φ}

To say that e satisfies an atomic triple is to say that an atomic update
for some post-condition (R −∗ Φ) is at least the weakest pre-condition
needed for e to result in a post-condition Φ.
E is the mask used by the prover of the triple to host internal invariants

that are needed to verify the implementation. The client of the triple
therefore can use any invariants outside of E i.e., any invariants in
(⊤ \ E) \ NHIST. Recall that NHIST is the mask needed by the model of the
base logic of iRC11, so it cannot be used by the client either.77see more in Definition 7.18

Furthermore, the atomic triple also supports the private post-condition
R which is produced by the prover of the triple and is only returned to the
client after the invariants are established. This can be seen by unfolding
the atomic update definition:8 R appears after the mask-changing update8see Definition 22.1

|⇛NHIST ⊤\E . The private post-condition support will be needed in the specs
of exchangers (see Chapter 24).

Recall the LATabshb spec ABS-HB-ENQ for queues in Figure 22.1, we have

x ::= G , vs

y ::= (),G ′,M ′, V ′

P ::= Queue(q , vs,G)

Q ::= Queue(q , vs ++ [(v , V ′)],G ′) ∗ . . .
R ::= True

Therefore, ABS-HB-ENQ intuitively says that, given an atomic update that
can atomically provide the queue state Queue(q , vs,G) and in return
receive the updated state Queue(q , vs ++ [(v , V ′)],G ′) at the commit
point, the implementation of enq([q , v ]) can be verified.

Note that we always want to share a library’s state ownership, e.g.,
Queue(q , vs,G), so our specs always require it to be objective.9 Recall9see Definition 8.9

that we can always make some resource objective by using the view-at
modality.10 We will then have to maintain that the local assertions, e.g.,10see Definition 8.13

SeenQueue(q ,G ,M ) are tied to the views of the view-at modality used
in the state ownership, e.g., Queue(q , vs,G).
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Last but not least, unsurprisingly an iRC11 logically atomic triple does
imply a normal iRC11 Hoare triple,11 that is 11see Definition 8.5

⟨x. P ⟩ e in π ⟨y.Q⟩E{R} ⊢ ∀x. {P} e in π {y.Q ∗R}E

This allows use to use iRC11 adequacy12 to extract adequacy for a logi- 12see Theorem 8.7

cally atomic triple.

CHAPTER SUMMARY. In this chapter we have presented a set of concrete
Compass specs for queues, and we have showed how to encode them with
atomic updates in Iris. In the next chapter we will see how to perform
verifications against these specs.
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Verifications of Stacks and Queues

In this chapter, we demonstrate in more details the verifications of stack
and queue implementations against Compass strong specs. In §23.1
we present a more complete version of the LATabshb specs for queues
given in Figure 22.1, and sketch the verification of a release-acquire
implementation of the Michael-Scott queue.1 We will also show how 1Michael and Scott, “Simple, Fast, and

Practical Non-Blocking and Blocking Con-
current Queue Algorithms” [MS96].the specs imply more strongly consistent specs. In §23.2, we present a

complete set of LAThb specs for stacks, and sketch the verification of the
release-acquire implementation of the Treiber stack2 given in Figure 12.8. 2Treiber, Systems Programming: Coping

with Parallelism [Tre86].

23.1 Queue Specs and Verification of the Michael-Scott Queue

23.1.1 Queue Specifications

We present the remaining parts of our LATabshb specs for queues in Fig-
ure 23.1, which complete those in Figure 22.1. We add the specs for the
try versions who can fail due to contention. We also present the compo-
nents of QueueConsistent. Again, the LAThb specs for queues are simply
the LATabshb specs without the abstract state vs. ABS-HB-QUEUE-OBJ says
that the queue’s state assertion is objective, so it can be easily accessed
from an objective invariant. We make explicit the namespace NQUEUE

which is needed to house an implementation’s internal invariants, amd
which can be picked by clients.

23.1.2 RMC Implementations of Queues

As mentioned in §22.2, we have verified two RMC queue implementations
against Compass specs. We have verified a release-acquire implementa-
tion of the Michael-Scott queue3 against the LATabshb spec (see Figure 23.1), 3Michael and Scott, “Simple, Fast, and

Practical Non-Blocking and Blocking Con-
current Queue Algorithms” [MS96].and therefore transitively against the LAThb spec. We have verified an

RMC implementation of the Herlihy-Wing queue4 against the LAThb spec.
4Herlihy and Wing, “Linearizability: A

Correctness Condition for Concurrent Ob-
jects” [HW90].THE RELEASE-ACQUIRE IMPLEMENTATION OF THE MICHAEL-SCOTT QUEUE

is given in Figure 23.2. This implementation follows the implementation
given in the GPS logic.5 The queue is implemented with a singly-linked 5Turon et al., “GPS: navigating weak

memory with ghosts, protocols, and sepa-
ration” [TVD14].list whose node contains a next field and a data field. Elements are

enqueued at the tail and are dequeued from the head of the list.
new_queue allocates a new queue with a sentinel node s without a

data field. Both the head and the tail of the list initially points to the

273
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ABS-HB-NEW-QUEUE

{True} new_queue() {q .SeenQueueNQUEUE(q , ∅, ∅) ∗ Queue(q , [], ∅)}NQUEUE

ABS-HB-TRY-ENQ

SeenQueue(q ,G0,M0) ∗ ⊒V ⊢
⟨G , vs.Queue(q , vs,G)⟩

try_enq([q , v ])

⟨b.∃vs ′,G ′ ⊒ G ,M ′ ⊒ M0, V
′ ⊒ V.Queue(q , vs ′,G ′) ∗ SeenQueue(q ,G ′,M ′) ∗ ⊒V ′

∗ ∨

b = false ∧ vs ′ = vs ∧G ′ = G

b = true ∧ vs ′ = vs ++ [(v , V ′)] ∧ ∃e /∈ G . e ∈ M ′ ∧G ′ = G [e 7→(Enq(v), V ′,M ′)]
⟩
NQUEUE

ABS-HB-TRY-DEQ

SeenQueue(q ,G0,M0) ∗ ⊒V ⊢
⟨G , vs.Queue(q , vs,G)⟩

try_deq([q ])

⟨v .∃vs
′,G ′ ⊒ G ,M ′ ⊒ M0, V

′ ⊒ V.Queue(q , vs ′,G ′) ∗ SeenQueue(q ,G ′,M ′) ∗ ⊒V ′

∗ ∨



v = ⊥ ∧ vs ′ = vs ∧G ′ = G

v = ϵ ∧ vs ′ = vs ∧ ∃d /∈ G . d ∈ M ′ ∧G ′ = G [d 7→(Deq(ϵ), V ′,M ′)]

v /∈ {⊥, ϵ} ∧ ∃e,Me , d /∈ G , Ve . vs = (v , Ve) :: vs
′ ∧G(e) = (Enq(v), Ve ,Me)

∧ (e, ) /∈ G .so ∧ Ve ⊑ V ′ ∧Me ∪ {e, d} ⊑ M ′

∧G ′ = G [d 7→(Deq(v), V ′,M ′)] ∧G ′.so = {(e, d)} ∪G .so

⟩
NQUEUE

ABS-HB-QUEUE-OBJ

objective(Queue(q , vs,G))

QueueConsistent(vs,G) :=

∧



∀(e, d) ∈ G .so.∃v .G(e).type = Enq(v) ∧G(d).type = Deq(v)

∧G(e).view ⊑ G(d).view ∧G(e).logview ⊑ G(d).logview (QUEUE-MATCHES-FULL)

G .so and G .so−1 are functional. (QUEUE-SO-FUNCTIONAL)

∀d .G(d).type = Deq( )→ ( , d) /∈ G .so→ G(d).type = Deq(ϵ) (QUEUE-UNMATCHED-EMPDEQ)

∀(e, d) ∈ G .so, e ′.G(e ′).type = Enq( )→ (e ′, e) ∈ G .lhb

→ ∃d ′. (e ′, d ′) ∈ G .so ∧ (e ′ ̸= e → (d , d ′) /∈ G .lhb) (QUEUE-FIFO-FULL)

∀d , e.G(d).type = Deq(ϵ)→ G(e).type = Enq( )→ (e, d) ∈ G .lhb

→ ∃d ′. (e, d ′) ∈ G .so ∧ (d ′, d) ∈ G .lhb (QUEUE-EMPDEQ-FULL)

FIGURE 23.1: Full LATabshb specs for queue
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next := 0 data := 1

head := 0 tail := 1

new_queue ::=

λ[].

1: let s := alloc(1) in

2: s+ next :=na 0;

3: let q := alloc(2) in

4: q + head :=na s;

5: q + tail :=na s;

6: q

find_tail ::=

λ[q ].

1: letn := ∗acq(q + tail) in

2: letn′ := ∗acq(n+ next) in

3: ifn′ = 0

4: thenn

5: else

6: q + next :=rel n
′;

7: false

try_enq ::=

λ[q ,v ].

1: letn := alloc(2) in

2: n+ next :=na 0;

3: n+ data :=na v ;

4: let t :=

5: repeat (find_tail([q ])) in

6: if CASrelacq(t+ next, 0, n)

7: then

8: q + tail :=rel n; true

9: else free(n, 2); false

enq ::=

rec try([q ,v ]) :=

1: if try_enq([q ,v ])

2: thenh

3: else try([q ,v ])

try_deq ::=

λ[q ].

1: leth := ∗acq(q + head) in

2: letn := ∗acq(h+ next) in

3: ifn == 0

4: then 0 // EMPTY

5: else

6: if CASrelacq(q + head, h, n)

7: then ∗na(n+ 1)

8: else−1 // FAIL

deq ::=

rec try([q ]) :=

1: letv := try_deq([q ]) in

2: if 0 ≤ v

3: thenv else try([q ])

FIGURE 23.2: A release-acquire Michael-
Scott queue

sentinel node.

try_enq([q ,v ]) first allocates a new node n with the data field storing
the to-be-enqueued value v , and with the next field null (0). It then uses
find_tail([q ]) to try to find the “real” tail of the list: in the presence
of concurrent enqueues, the value t one reads from the tail field is
not guaranteed to be the most up-to-date tail. try_enq therefore uses a
release-acquire CAS on t+ next to make sure that t is the real tail—the
invariant is that the real tail’s next field is always null. If the CAS succeeds,
n is the new tail. Otherwise, n is deallocated. enq([q ,v ]) simply calls
try_enq([q ,v ]) until it succeeds. One can consider optimizing enq([q ,v ])

by inlining try_enq to avoid allocating and deallocating n multiple times.

Reversely, try_deq([q ]) reads the value n from the next field of q ’s
head, and uses a release-acquire CAS on q + head to make sure that n is
the first node at the head. If the CAS succeeds, n is dequeued and the
function reads n’s data field non-atomically and returns the read value. n
then becomes the new sentinel node. If the CAS fails, the function returns
−1. Note that when n is null (n == 0), the function subjectively sees that
the queue is empty and returns 0 (empty) immediately. deq([q ]) simply
calls try_deq([q ]) until it succeeds or returns empty. (Technically, this
means that we can only put positive numbers into the queue.)
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THE RMC IMPLEMENTATION OF THE HERLIHY-WING QUEUE is given in
Figure 23.3. This implementation follows the “weak” implementation
from Raad et al.6. The queue has a backing store as an array of size6Raad et al., “On library correct-

ness under weak memory consistency:
specifying and verifying concurrent li-
braries under declarative consistency mod-
els” [Raa+19].

N . When the size N is reached, i.e., the queue is full, any enqueue will
simply diverge. In practice, we may use a circular buffer as the backing
store.

new_queue allocates the array with size N + 1, and uses the first
element of the array as the back counter to indicate the array slot that
will be used for the next-to-be-enqueued element. back is initially set
to 0. The implementation stores the elements from the index buff of
the array. new_queue initialize the element array to all 0’s (conveniently
using back as a loop counter). We use 0 as the sentinel value to indicate
that the array slot is not in used. Therefore the implementation only
supports non-zero queue elements.

enq([q ,v ]) uses a release FAA to increase the back counter by 1 and to
reserve the slot i (the returned value of the FAA) for its enqueue (line 1).
If the previous value i is still in bound (of N), the reservation succeeded,
and the function puts the value v in the slot i using a release write (line
3). Otherwise, the queue is full and the function diverges.

deq([q ]) traverses the array from the index 0 to the minimum of N
and the value b read from back. That is, in line 4 of deq_loop, j starts
from q + buff and ends with q + buff + r. The function then uses an
acquire exchange to swap the element at j with 0. If the swapped value
x from j was 0, it means that the slot j has been either reserved or
dequeued by someone else, and the function continues with the next slot
in the array. If x is non-zero, the dequeue succeeds, and x is returned.
If the function has traversed the whole range r—that is when i is 0 in
line 1 of deq_loop, the function uses the recursion dequeue to restart the
traversal from the index 0.

As we can see, deq commits its effect in line 5 (of deq_loop) with
a successful acquire exchange, and enq in line 3 with a release write.
These are very relaxed operations: while they guarantee that matching
enqueue-dequeue pairs are synchronized through the release-acquire
idiom, they provide no guaranteed synchronization among enqueues nor
among dequeues. Regardless, the queue still enjoys the FIFO property
(QUEUE-FIFO-FULL), thanks to the combination of (1) the reservation
order through back by enqueues and (2) the traversal order from index 0

by dequeues.

23.1.3 The Verification of the Michael-Scott Queue

We sketch the proof of the Michael-Scott queue implementation in Fig-
ure 23.2 against the LATabshb spec in Figure 23.1.7 The gist of the proofs7The proof of the Herlihy-Wing will be

elided, but is available in the Coq develop-
ment. is the definitions of the queue’s state ownership Queue(q , vs,G) (Defini-

tion 23.7) and the queue’s local observation SeenQueue(q ,G ,M ) (Defini-
tion 23.9).

Definition 23.1 (Extra ghost state for Michael-Scott queue). We use the
authoritative RA to create the master-snapshot ghost state for 4 types of
data:
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back := 0 buff := 1

new_queue ::=

λ[].

1: let q := alloc(N + 1) in

2: q + back :=na 0;

3: repeat (

4: let c := ∗(q + back) in

5: q + buff+ c := 0;

6: q + back := c+ 1;

7: c+ 1 == N

8: );

9: q + back := 0; q

enq ::=

λ[q ,v ].

1: let i := FAArel(q + back, 1) in

2: if i < N

3: then q + buff+ i :=rel v

4: else diverge([h])

deq_loop ::=

λ[dequeue, q , r].

rec loop([i]) :=

1: if i == 0

2: then dequeue([q ])

3: else

4: let j :== q + buff+ r − i in

5: letx :== xchgacq(j, 0) in

6: ifx == 0

7: then loop([i− 1])

8: elsex

deq ::=

rec dequeue([q ]) :=

1: let b := ∗acq(q + back) in

2: let r := min(b,N) in

3: deq_loop([dequeue, q , r])([r])

FIGURE 23.3: An RMC Herlihy-Wing
Queue

• We need masterγ(G) to record the current graph G for some ghost
location γ, and snapγ(G ′) for some snapshot G ′ of G (G ′ ⊑ G).
This type of ghost state is needed generally in the graph-based
specs of Compass.

• We need masterγ(T ) to store the persistent mapping from a queue’s
node identified by some ghost location η to some enqueue event e.
That is, T ∈ GName fin−⇀ EventId. The ghost state snapγ(T ′) records
that T ′ is a snapshot of T (T ′ ⊑ T ).

• We need masterγ(L) to store the current list of enqueued nodes,
where L ∈ (GName × Loc)∗ is a list of pairs of a node identifier
and the node’s physical location (η, ℓ). The ghost state snapγ(L′)

records that L′ is a snapshot of L (L′ ⊑ L).

• We need masterγ(D) to store the current list of dequeued nodes,
where D ∈ (GName× Loc)∗. The ghost state snapγ(D′) records that
D′ is a snapshot of D (D′ ⊑ D). Note that we maintain that D ⊑ L.

Definition 23.2 (Ownership of a node). We sketch the ownership of a
node of the queue. Owning a node with identifier η and physical location
ℓ means the atomic ownership of ℓ+ next’s field with the atomic period
η. The history h of η can only be in two states (represented by n): (1)
the initial state where ℓ+ next is null (0), or (2) the “linked” state where
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ℓ+ next points to the next node (η′, ℓ′).

ownNodeG,T (η, ℓ, n) ::=

∃t0, V0, h. ℓ+ next η7−→con h ∗

n = None h = [t0←(0, V0)]

n = Some(η′, ℓ, d′) ∃v ′, V ′, e ′. T (η′) = e ′

∗ h = [t0←(0, V0)][t0 + 1←(ℓ′, V ′)]

∗@V ′

(
seenEnq(G , e ′,v ′) ∗ ℓ′ ⊒η′

sy [ ←(0, )]
)

∗ if d′ thenTrue else@V ′ (ℓ′ + data 7−→ v ′)

where

seenEnq(G , e ′,v ′) ::=

G(e ′).type = Enq(v ′) ∗ seenEvt(G , e ′) ∗
syncEnqLogView(G ,G(e ′).logview)

seenEvt(G , e ′) ::=

⊒G(e ′).view ∗@G(e′).view(seenLogView(G ,G(e ′).logview))

seenLogView(G ,M ) ::= ∀e ∈ M . ⊒G(e).view

syncEnqLogView(G ,M ) ::=

∀e ∈ M .G .(e) = Enq( )⇒ G(e).logview ⊆ M

(QUEUE-MS-SYNC-ENQS)

In the latter case, ownNode of η also owns seenEnq(G , e ′,v ′), the ob-
servation that the next node (η′, ℓ′) has been enqueued by the enqueue
event e ′ in a snapshot graph G , with the value v ′, as well as the obser-
vation ℓ′ + next ⊒η′

sy [ ←(0, )] that ℓ′ + next field has been initialized
to null. Furthermore, if the next node (η′, ℓ′) has not been dequeued—
represented by d′ == false, then the ownership of η holds on to the
data field of η′, i.e., ℓ′ + data 7−→ v ′.

The reason we put the data field of η′ in the ownership of its previous
node η is that, when dequeueing η′, the implementation simply updates
the head pointer from ℓ (of η) to ℓ′ (of η′). Before doing that, the
implementation would have read ℓ+ next and would have acquired only
the value ℓ′ and the view V ′. That is, the dequeue can only acquire the
ownership ℓ′+data 7−→ v ′ safely after having acquired V ′ from the history
h of ℓ + next. It is therefore necessary to tie ℓ′ + data field to ℓ + next

field.

Remark 23.3 (Logical happens-before vs. physical happens-before).
Note that the observation seenEnq(G , e ′,v ′) enforces strong synchroniza-
tion properties that are satisfiable by the release-acquire Michael-Scott
queue implementation in Figure 23.2, but not necessarily all implemen-
tations. It requires seenEvt(G , e ′) that says that the observation also
observes not only the physical view of the event e ′ (⊒G(e ′).view), but
also transitively (through the definition of seenLogView(G ,M )) all phys-
ical views of all events e ’s that logically happen before e ′. We note that
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the fact that e ∈ G(e ′).logview—e logically happens before e ′—does
not necessarily always means that e physically happens before e ′—it
is the seenLogView(G ,M ) condition that enforces such interpretation.
Furthermore, logical happens-before among graph events is not neces-
sarily transitive: e1 ∈ G(e2).logview and e2 ∈ G(e3).logview does not
need to imply e1 ∈ G(e3).logview. In fact, we only require QUEUE-MS-

SYNC-ENQS (see the definition of syncEnqLogView(G ,M )) that says that
logical happens-before is transitive at least for enqueue events. This
generality of allowing logical happens-before to deviate from physical
happens-before is not really needed for our release-acquire implementa-
tion, but can become useful to allow for more relaxed implementations
(e.g., the Herlihy-Wing queue or the Treiber stack) which interpret logical
happens-before more “relaxedly”.

Definition 23.4 (Ownership of all nodes). All nodes of a queue include
the sentinel node (η0, s0), the dequeued nodes D, and the nodes that are
still in the queue Lin

ownNodesG,T (η0, s0,D,Lin) ::=

letL := (η0, s0) ++D ++ Lin in

letL′ := nextNodes(η0, s0,D,Lin) in∗
(η,ℓ,n)∈(L,L′)

ownNodeG,T (η, ℓ, n)

The ownership ownNodes simply collects all ownNode. The definition
relies on the function nextNodes that computes the correct next node
information n for a node. For all but the last node in L, n will be Some

of the next node in the list L. For all but the last node in (η0, s0) ++D, n
will have d′ == true.

We note that all nodes in L are unique, because each is identified by a
logical name η which in turn is uniquely identified by an enqueue event.

Definition 23.5 (Observations of node links). We define the observations
of node links.

seenLinkG,T ,L(η, ℓ, η′, ℓ′, e ′,v ′) ::=

T (η′) = e ′ ∗ seenEnq(G , e ′,v ′) ∗ ℓ′ ⊒η′

sy [ ←(0, )] ∗
(η, ℓ) ++ (η′, ℓ′) ⊑ L ∗ ℓ ⊒η

sy [ ←(ℓ′, )]

seenLinksG,T ,L(M ) ::=

∀e ′ ∈ M ∩G .G(e ′).type = Enq(v ′)⇒
∃η, ℓ, η′, ℓ′. seenLinkG,T ,L(η, ℓ, η′, ℓ′, e ′,v ′)

headLinksG,T ,D(V ) ::=

∗
(η′,ℓ′,V )∈(D,V )

@V (∃e ′. seenLinkG,T ,D( , , η′, ℓ′, e ′, ) ∗ (e ′, ) ∈ G .so ∗ . . .)

tailLinksG,T ,L(h) ::=

∗
(t,v ,V )∈h

@V (∃η′, ℓ′, e ′.v = ℓ′ ∗ seenLinkG,T ,L( , , η′, ℓ′, e ′, ))

• The observation seenLinkG,T ,L(η, ℓ, η′, ℓ′, e ′,v ′) says that the node
(η′, ℓ′) has been enqueued to the graph G with the event e ′ (η′
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is mapped to e ′ in T ) and with the value v ′. We have seen this
information tracked also in ownNode. Additionally, seenLink also
observes that (η′, ℓ′) is linked to the node (η, ℓ), because it immedi-
ately follows (η, ℓ) in the node list L.

• The observation seenLinksG,T ,L(M ) collects all of those single-link
observations for all enqueue events in the logical view M .

• The observation headLinksG,T ,D(V ) collects the single-link observa-
tions for all nodes that the head has seen, i.e., all nodes that have
been dequeued, as signaled by the meta-variable D. The list of views
V will come from the CASes to head. This tracks the fact that every
CAS to the head—which dequeues a node η—is also synchronized
with the enqueue event of η.

• The observation tailLinksG,T ,L(h) collects the single-link observa-
tions for all nodes that the tail has seen, i.e., all nodes that have
been written to the history h of the tail. This will allow the tail

to release those observations to whoever reads the tail with an
acquire read.

Definition 23.6 (Ownership of a queue’s physical locations). The physi-
cal locations of a queue include all nodes and the head and the tail.

ownQueueLocsG,T
γh,γt

(η0, s0,D,Lin) ::=

ownNodesG,T (η0, s0,D,Lin) ∗
∃V . q + head 7−→γh

con ( , s0 ++D.2, V ) ∗ headLinksG,T ,(η0,s0)++D(V ) ∗
∃ht. q + tail 7−→γt

con ht ∗ tailLinksG,T ,(η0,s0)++D++Lin(ht)

Definition 23.7 (Ownership of a queue’s state). The ownership of a
queue’s state Queueγg (q , vs,G) is implemented purely with ghost state.
Since we are verifying the implementation against the LATabshb spec with
an abstract queue vs , we additionally employ a master-snapshot instance
for that abstract state. We expose halves of the master ghost state for
G and vs. The other halves will be governed by the queue’s internal
invariant.

Queueγg (q , vs,G) ::=

QueueConsistent(vs,G) ∗master
γg

1/2(G) ∗master1/2(vs)

Queueγg (q , vs,G) is trivially objective.

Definition 23.8 (The queue’s internal invariant). We define the internal
invariant queueI(q , γ, γg, γh, γt)

NQUEUE that is needed by verification and
that is not exposed to clients of the queue specs.

queueI(q , γ, γg, γh, γt) ::=

∃vs,G .Queueγg (q , vs,G) ∗ ∃T , η0, s0,D,Lin.

letL := (η0, s0) ++D ++ Lin in

masterγ.1(L) ∗masterγ.2(D) ∗masterγ.3(T ) ∗
∃Vb.@Vb

ownQueueLocsG,T
γh,γt

(η0, s0,D,Lin) ∗
queueViews(G , T ,L) ∗ queueProps(vs,G , T , η0, s0,D,Lin)
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where

queueViews(G , T ,L) ::=

∀e ∈ G .@G(e).view

(
seenLinksG,T ,L(G(e).logview)

)
queueProps(vs,G , T , η0, s0,D,Lin) ::=

∧



((η0, s0) ++D ++ Lin).1 does not have duplicated node ids
(QUEUE-MS-NO-DUP)

dom(T ) = (D ++ Lin).1 (QUEUE-MS-ENQ-ONLY-1)

codom(T ) = {e ∈ G |G(e).type = Enq( )}
(QUEUE-MS-ENQ-ONLY-2)

T is injective (QUEUE-MS-MAP-INJ)

{e | T (η) = e ∧ (η, ) ∈ D} = G .so.1

(QUEUE-MS-MAP-DEQ-GRAPH)

∀e1, e2, η1, η2. T (η1) = e1 ⇒ T (η2) = e2 ⇒
η1 precedes η2 in D ++ Lin ⇒ e1 ≤ e2 (QUEUE-MS-ENQ-MO)

∀e1, e2, η1, η2. T (η1) = e1 ⇒ T (η2) = e2 ⇒
η1 precedes η2 in D ++ Lin ⇒ e1 ∈ G(e2).logview

(QUEUE-MS-ENQ-HB)

vs = {v | η ∈ Lin.1 ∧ T (η) = e ∧G(e).type = Enq(v)}
(QUEUE-MS-ABS)

The invariant contains:

• The other halves of the ghost state for the abstract queue vs and
the graph G , collected in Queueγg (q , vs,G). This means that the
invariant is always in agreement on the state with the client, who
owns the “main” halves in their copy of Queueγg (q , vs,G).

• The master (authoritative) ghost state instances for the list L of
enqueued nodes (masterγ.1(L)), the list D of dequeued nodes
(masterγ.2(D)), and the mapping T from node ids to the graph
G ’s event ids (masterγ.3(T )).

• The ownership ownQueueLocsG,T
γh,γt

(η0, s0,D,Lin) of all physical lo-
cations of the queue, put under a view-at modality to make sure
that the invariant is objective.

• The observations queueViews(G , T ,L) of node links per graph
event. Intuitively, we require that the physical view of an event e
in G justifies all single-link observations for all enqueued events
that happen before e (that is, all enqueued events observed by e ’s
logical view).

• The properties queueProps connecting the abstract state vs with the
graph G and the ghost state T and L.

– QUEUE-MS-NO-DUP says that all nodes in a queue are unique.
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– QUEUE-MS-ENQ-ONLY-1 says that the map T tracks all nodes in
(D++Lin) and QUEUE-MS-ENQ-ONLY-2 says that those nodes are
all of those that have ever been put into the queue.

– QUEUE-MS-MAP-INJ makes sure that each enqueue event in G is
tied to exactly on node id.

– QUEUE-MS-MAP-DEQ-GRAPH makes sure that D are all dequeued
nodes.

– QUEUE-MS-ENQ-MO says that the order in the enqueued node
list agrees with the insertion order of event ids into the graph
G .

– QUEUE-MS-ENQ-HB requires that a node η1 enqueued earlier
than η2 (earlier in the order in the enqueued node list) also
happens before η2. This is a very strong synchronization prop-
erty that holds for the release-acquire Michael-Scott queue,
but may not hold for all queue implementations.

– QUEUE-MS-ABS says that the node list Lin indeed is the nodes
that are in the queue and agrees with the abstract queue vs.

Definition 23.9 (Local observation of a queue’s state). The local ob-
servation of a queue’s state SeenQueue(q ,G ,M ) is implemented with
the snapshots of the queue’s ghost state instances, the queue internal
invariant, the observations of the queue’s node links, as well as the
observations of the queue’s head and tail physical locations.

SeenQueueγg (q ,G ,M ) ::=

snapγg (G) ∗ seenLogView(G ,M ) ∗

∃γ, γh, γt. queueI(q , γ, γg, γh, γt)
NQUEUE ∗

∃T , η0, s0,D,Lin. letL := (η0, s0) ++D ++ Lin in

snapγ.1(L) ∗ snapγ.2(D) ∗ snapγ.3(T ) ∗
syncEnqLogView(G ,M ) ∗
seenLinksG,T ,L(M ) ∗
q + tail ⊒γt

sn ∗ ∃D′ ⊑ D. q + head ⊒γh
sn ( , s0 ++D′.2, ) ∗ . . .

More concretely,

• snapγg (G) enforces that G is a snapshot of the current graph (who
is stored in the master ghost state in the internal invariant).

• seenLogView(G ,M ) enforces that the current thread has observed
all physical views of all events in the logical view M . Additionally,
syncEnqLogView(G ,M ) says that the thread observes all enqueue
events that transitively happen-before the events in M .

• snapγ.1(L), snapγ.2(D), and snapγ.3(T ) together show the the cur-
rent thread has extracted the snapshots L, D, and T of the corre-
sponding ghost instances from the internal invariant.

• seenLinksG,T ,L(M ) says that the current thread observes all en-
queuing links for all enqueue events in η, which must already be
included in the snapshot L.
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• q + tail ⊒γt
sn says that the thread has some observation on the

queue tail, which is enough to perform operations on the tail.

• q + head ⊒γh
sn ( , s0 ++D′.2, ) also says that the thread has some

observation on the queue head, and that observation must follow
the dequeued list snapshot D (D′ ⊑ D). This is because dequeues
are done exclusively on the head (using CASes).

Below, we sketch the proofs of ABS-HB-TRY-ENQ and ABS-HB-TRY-DEQ.

Proof sketch of try_enq([q ,v ]). We start by unfolding the logically atomic
triple (Definition 22.2), so we have in our context SeenQueue(q ,G0,M0),
⊒V , and the atomic update ⟨G , vs. Queue(q , vs,G) | b. . . .⇛ Φ⟩⊤\NQUEUE

NHIST
,

and our goal is wp⊤ try_enq([q ,v ]) in π {Φ}.
Lines 1 to 3 (see Figure 23.2) are easy, as they allocate and initialize

a fresh node non-atomically. Afterwards, we have n + data 7−→ v and
n+ next 7−→ 0.

Next, in lines 4 and 5, to make a call to find_tail([q ]), we apply its
specs, given below (and proven separately).

ABS-HB-FIND-TAIL

{q + tail ⊒γt
sn ∗ queueI(q , γ, γg, γh, γt)

NQUEUE}
find_tail([q ]) in π

{t. t = 0 ∨

∃ℓt. t = ℓt ∧ ∃ηt,Gt, Tt,Lt. snap
γg (Gt) ∗ snapγ.1(Lt) ∗ snapγ.3(Tt)

∗ seenLinkGt,Tt,Lt( , , ηt, ℓt, , )
}

That is, when find_tail([q ]) returns a (non-null) location ℓt (which
the current thread sees as a tail because ℓ + next is still 0), it also
returns the observation that ℓt has been enqueued as some node η′ in
the snapshots of Gt, Tt, and Lt. The proof of this spec simply open the
internal invariant queueI(. . .) to access the atomic points-to of the tail.

After line 5, we have t = ℓt and seenLinkGt,Tt,Lt( , , ηt, ℓt, , ). In
line 6, we have a CAS that tries to set ℓt + next from null (0) to n.
To verify this CAS, we use an iRC11 rule with atomic points-to (like
AT-CAS-SN-GEN in Figure 10.5). We therefore need to extract (1) the
seen-history observation ℓt ⊒ηt

sn [ ←(0, )] from ℓt ⊒ηt
sy [ ←(0, )] in

seenLinkGt,Tt,Lt(. . .), and (2) the atomic points-to ℓt + next η7−→con from
ownQueueLocsG,T

γh,γt
(. . .) from the queue invariant queueI(q , γ, γg, γh, γt).

If the CAS fails, we simply return the points-to to the invariant—we
do not update the ghost state instances. Nevertheless, we need to commit
the atomic update ⟨G , vs. Queue(q , vs,G) | b. . . .⇛ Φ⟩⊤\NQUEUE

NHIST
from our

context, with the return value b = false and G ′ = G and M ′ = M0.
On the other hand, if the CAS succeeds, we have to

(1) turn the non-atomic points-to of n into an atomic points-to with a
new node id η which is also the atomic points-to’s ghost location;

(2) update the graph to G ′ = G [e 7→(Enq(v), V ′,M ′)] for some newly
picked event id e /∈ G and logical view M ′;
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(3) map the node id η for the newly enqueued node n to the current
master T (from masterγ.3(T ) in the invariant) to e;

(4) append the current master enqueued list L (from masterγ.1(L) in
the invariant) with (η, n);

(5) establish the updated observations queueViews(. . .) and properties
queueProps(. . .) for the updated queue;

(6) establish the queue consistency QueueConsistent(vs++[(v , V ′)],G ′).

Here, we commit the atomic update with the return value b = true. We
update of the graph (step (2)) using both halves of the graph master
(master

γg

1/2(G)) from the two pieces of Queueγg (q , vs,G), one provided by
the client through our committing of the atomic update and one through
our opening of the invariant queueI.

In step (3), we update masterγ.3(T ) to masterγ.3(T ′) where T ′ =

T [η 7→ e]. In step (4), we update masterγ.1(L) to masterγ.1(L′) where
L′ = L++ [(η, n)].

By accomplishing step (1), we get ownNodeG
′,T ′

(η, n,None) for the
new node (η, n). Furthermore, to update the previous tail (ηt, ℓt) to link
to the new node, we need to produce ownNodeG

′,T ′
(ηt, ℓt,Some(η, n)).

To do so, we need to show @V ′seenEnq(G ′, e, v), which in turn requires us
to show syncEnqLogView(G ′,M ′). In other words, we need to maintain
QUEUE-MS-SYNC-ENQS for the new logical view. For that reason, we pick
M ′ = M0 ∪ {e} ∪ G(et).logview where T (ηt) = et. That is, after the
successful enqueue, the thread extends its logical view (logical happens-
before set) to include not only the new enqueue event e but also all
events from the previous tail ηt. This encodes the fact that, in this
release-acquire implementation, enqueues are synchronized with one
another.

In a related node, in step (5), to show queueViews(G ′, T ′,L′), we
need to show

@V ′seenLinksG
′,T ′,L′

(M ′)

For all the nodes in the η part of M ′, we get the observations from the
original SeenQueue(q ,G0,M0) assumption we have received at the very
beginning. For all the nodes in the G(et).logview part of M ′, we get the
observations the old queueViews(G , T ,L) from the invariant. It remains
to show

@V ′seenLinkG
′,T ′,L′

(ηt, ℓt, η, n, e, v)

which follows from @V ′seenEnq(G ′, e, v) that has been shown right
above.

In step (5), we also need to establish

queueProps(vs ++ [(v , V ′)],G ′, T ′, η0, s0,D,Lin ++ [(η, n)])

The most two important properties are QUEUE-MS-ENQ-MO and QUEUE-MS-

ENQ-HB (see Definition 23.8). We achieve QUEUE-MS-ENQ-MO by maintain-
ing an event id allocating scheme that follows the relation ≤ among event
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ids. We achieve QUEUE-MS-ENQ-HB through the way we pick G(e).logview

for a new enqueue event e: as can be seen from M ′, G(e).logview al-
ways includes e itself, and G(e).logview also includes G(et).logview

of the preceding enqueue event (the previous tail) et. Consequently,
et ∈ G(e).logview.

Step (6) is rather straightforward, because the properties in the queue
consistency mostly concern dequeues. With that, we achieve the two
copies of the queue state Queueγg (q , vs ′,G ′), one needed to re-establish
our internal invariant, and one needed to commit the atomic update
(we have to give back the queue state to the client). This concludes the
successful CAS sub-proof in line 6.

In line 7, we update the queue’s tail to point to the newly en-
queued node n. We can do this simply by opening the internal invariant
queueI(. . .) again to access the atomic points-to of the tail. We also
need a local history-seen observation of q + tail ⊒γt

sn , which we do
have from the assumption SeenQueue. In this step we do not update the
queue’s ghost state, so we can easily re-establish the invariant.

Lastly, before returning, we need to construct SeenQueueγg (q ,G ′,M ′).
Fortunately, this step only accumulates all of the observations we have
proven previously in this proof.

Proof sketch of try_deq([q ]). The proof of try_deq is very similar to that
of try_enq, except that the latter works on the tail, while the former
works on the head. In line 1 when reading q + head, we open the
internal invariant queueI to access the atomic points-to of q + head (from
ownQueueLocs, see Definition 23.6). We also get a local history-seen
observation of q+head ⊒γh

sn from the assumption SeenQueue. In this acq
read, we acquire the observation seenLink( , , ηh, h, eh,vh) for the read
sentinel node h. From that observation we can extract h ⊒ηh

sy [ ←(0, )],
which we need for the read of h+ next in line 2 (recall that next = 0).

For the read in line 2, again, we need to open the invariant queueI
to access the atomic points-to of h + next. We know that the atomic
points-to is indeed in the invariant (in ownNodes, see Definition 23.4)
thanks to the observation seenLink( , , ηh, h, eh,vh) acquired from line 1.

In line 3, we check if the read value n in line 2 is null (0). If it is indeed
the case, the caller thread subjectively sees the queue as empty. We then
commit the atomic update ⟨G , vs. Queue(q , vs,G) | b. . . .⇛ Φ⟩⊤\NQUEUE

NHIST

from our context, with the return value v = ϵ = 0 and vs ′ = vs, and
G ′ = G [d 7→(Deq(ϵ), V ′,M ′)]. We pick the new M ′ = M0 ∪M prev

eh
∪ {d},

where

• d is a fresh event id for our empty dequeue event; and

• M0 is the local logical view of the thread when it started the call to
try_deq; and

• M prev
eh

is the set of enqueue events that are enqueued before eh, i.e.,
M prev

eh
= {e ′ ∈ G(eh).logview |G(e ′).type = Enq( )}.

That is, the empty dequeue d is synchronized with all enqueues that
come before (in L) the sentinel node h that the dequeue reads from. The



286 Verifications of Stacks and Queues

synchronization comes from (1) all enqueues are synchronized with one
another,8 and (2) the write to the next field of a node is a rel write and8see the pick of M ′ in the successful case

of the try_enq proof the read in line 2 is an acq read.
This precise pick of M ′ is crucial to re-establish QUEUE-EMPDEQ-FULL

for QueueConsistent(vs ′,G ′) (see Figure 23.1): we have to show that for
any enqueue event e in G(d).logview9 is already dequeued and that9recall that this is the meaning of

(e, d) ∈ G.lhb dequeue d ′ also happens before d . We can prove this property because

(1) all enqueue events in M ′ must have come before eh in L; and

(2) eh is the enqueue event of (ηh, h) which has been written to q+head,
so (ηh, h) must have been dequeued, i.e., (ηh, h) ∈ D; and

(3) all dequeues (those in D) are synchronized with one another, due
to the use of release-acquire synchronization to q+head in try_deq.

Other obligations for QueueConsistent(vs ′,G ′) are rather straightforward,
so we elide them and conclude this case here.

If n is not null, line 6 uses a CAS on q + head to try to make n the
new head, effectively dequeueing n from the queue. Here we open the
invariant queueI again to access the atomic points-to of q + head. If the
CAS fails, someone already dequeued n, so we commit the atomic update
with v = ⊥ = −1 and without any update to the graph G or the abstract
state vs, and with M ′ = M0.

If the CAS succeeds, we have ownNodeG,T (ηh, h,Some(η, n, d)) of the
node h where d = false, i.e., (η, n) has not been dequeued in G . Here,
we switch n to be dequeued in G ′ = G [d 7→(Deq(v), V ′,M ′)], which
means producing ownNodeG

′,T (ηh, h,Some(η, n, true)). This means that
we can take @V ′ (n+ data 7−→ ) out of the invariant. As the acquire read
in line 2 already gives us ⊒V ′, later in line 7 we can safely read n+ data

non-atomically.
In the proof of line 6 we move (η, n) from the head of Lin to the tail of

D, i.e., Lin = [(η, n)] ++ L′
in and D′ = D ++ [(η, n)]. We also commit the

atomic update with G ′.so = {(e, d)}∪G .so, where e is the enqueue event
of n, and with M ′ = M0 ∪G(e).logview ∪ {d}. That is, the dequeue d is
also synchronized with all events that happen before the enqueue e that
d is synchronized with.

Then, the gist of re-establishing QueueConsistent(vs ′,G ′) is to prove
the FIFO property QUEUE-FIFO-FULL for G ′. This can be achieved because
we track that all enqueues are synchronized with one another, all de-
queues are synchronized with one another, and dequeues are pairwise
synchronized with enqueues.

Note that in all cases we have to establish SeenQueue(q , ,M ′). We
elide these details and conclude the sketch here.

Remark 23.10 (Verification against specs as refinement proofs). We note
that, as can be seen from the proof sketches, the verification is effectively
showing a refinement between the operations of the LATabshb specs and
the implementations: it proves that the abstract state and the graph are
refined by the set of physical locations used by the implementation. In
these proofs, we not only have to show that we maintain the invariant
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of the abstract (e.g., QueueConsistent(vs,G)) as well as the invariant of
the concerete (e.g., queueI) but we also have show that every update in
the state of the abstract (the commit of the atomic update) is always
matched with the corresponding updates of the physical locations of the
nodes and the head or the tail.

23.2 Stack Specs and Verification of the Treiber Stack

We present the LAThb-style specs for stacks, that is, those without an
abstract state, in Figure 23.4. These specs are very similar to those
of queues: we have two basic assertions, the ownership of the stack
state Stack(s,G), which is now only a graph, and the local observation
SeenStack(s,G0,M0) on some snapshot G0 and some logical view M0.
The stack consistency conditions are given in Figure 23.5, which are also
very similar to those of queues.10 Similar to queues, the stack can have 10see Figure 23.1

successful push events (Push(v)), successful pop events (Pop(v)), and
empty pop events (Pop(ϵ)).

We briefly explain the specs of stacks.

• HB-NEW-STACK allocates a new stack s with the empty graph ∅. It
returns the initial stack state Stack(s, ∅) and the initial observation
SeenStackNSTACK(q , ∅, ∅). The namespace NSTACK is picked by the
client to host the internal invariants needed by the implementation.
Recall that Stack(s,G) is objective, so it can be easily put inside
invariants. Just as we have seen in the proof of queues, this can be
achieved by implementing Stack(s,G) with just ghost state.

• HB-TRY-PUSH specifies the try version of the push function. If the
try fails, there is no interesting information about the failure. We
note that, for stacks, queues, or any data structure, the “specifier”
may also choose to include other events, such as failures due to
contention, and specify the conditions on those events accordingly.
If the try succeeds, a new push event is added to the current graph
G , with appropriate physical view V ′ and logical view M ′.

• HB-TRY-POP says that the try version of the pop function can return
empty (ϵ), or fails due to contention (returning ⊥). If the try
succeeds, it pops a value in the stack, which must have been pushed
and has not been popped yet. An appropriate pop event is then
added to the current graph G .

• HB-PUSH and HB-POP just rule out the failure case (due to con-
tention) for a push and a pop, respectively.

• StackConsistent(G) is very similar to the consistency conditions
of queues: the only difference is the rule STACK-LIFO which re-
quires that the push and pop order must follow the last-in-first-out
principle, stated using the local happens-before lhb relation.

The verification of the Treiber stack implementation in Figure 12.8
against the LAThb specs is also very similar to that of the Michael-Scott
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StackEvent ::= Push(v) | Pop(v) | Pop(ϵ)
Event ::= StackEvent× View× LogView

HB-NEW-STACK

{True} new_stack() {s.SeenStackNSTACK(q , ∅, ∅) ∗ Stack(s, ∅)}

HB-TRY-PUSH

SeenStack(s,G0,M0) ∗ ⊒V ⊢
⟨G .Stack(s,G)⟩

try_push(s, v)

⟨b.∃G ′ ⊒ G ,M ′ ⊒ M0, V
′ ⊒ V.Stack(s,G ′) ∗ SeenStack(s,G ′,M ′) ∗ ⊒V ′

∗ ∨

b = false ∧G ′ = G

b = true ∧ ∃e /∈ G . e ∈ M ′ ∧G ′ = G [e 7→(Push(v), V ′,M ′)]
⟩
NSTACK

HB-TRY-POP

SeenStack(s,G0,M0) ∗ ⊒V ⊢
⟨G .Stack(s,G)⟩

try_pop(s)

⟨v .∃G
′ ⊒ G ,M ′ ⊒ M0, V

′ ⊒ V.Stack(s,G ′) ∗ SeenStack(s,G ′,M ′) ∗ ⊒V ′

∗ ∨



v = ⊥ ∧G ′ = G

v = ϵ ∧ ∃d /∈ G . d ∈ M ′ ∧G ′ = G [d 7→(Pop(ϵ), V ′,M ′)]

v /∈ {⊥, ϵ} ∧ ∃e, Ve ,Me , d /∈ G .G(e) = (Enq(v), Ve ,Me) ∧ (e, ) /∈ G .so ∧ Ve ⊑ V ′

∧Me ∪ {e, d} ⊑ M ′ ∧G ′ = G [d 7→(Pop(v), V ′,M ′)] ∧G ′.so = {(e, d)} ∪G .so

⟩
NSTACK

HB-PUSH

SeenStack(s,G0,M0) ∗ ⊒V ⊢
⟨G .Stack(s,G)⟩

push(s, v)

⟨().∃G ′ ⊒ G ,M ′ ⊒ M0, V
′ ⊒ V.Stack(s,G ′) ∗ SeenStack(s,G ′,M ′) ∗ ⊒V ′

∗ ∃e /∈ G . e ∈ M ′ ∧G ′ = G [e 7→(Push(v), V ′,M ′)] ⟩
NSTACK

HB-POP

SeenStack(s,G0,M0) ∗ ⊒V ⊢
⟨G .Stack(s,G)⟩

pop(s)

⟨v .∃G ′ ⊒ G ,M ′ ⊒ M0, V
′ ⊒ V.Stack(s,G ′) ∗ SeenStack(s,G ′,M ′) ∗ ⊒V ′

∗ ∨


v = ϵ ∧ ∃d /∈ G . d ∈ M ′ ∧G ′ = G [d 7→(Pop(ϵ), V ′,M ′)]

v /∈ {⊥, ϵ} ∧ ∃e, Ve ,Me , d /∈ G .G(e) = (Enq(v), Ve ,Me) ∧ (e, ) /∈ G .so ∧ Ve ⊑ V ′

∧Me ∪ {e, d} ⊑ M ′ ∧G ′ = G [d 7→(Pop(v), V ′,M ′)] ∧G ′.so = {(e, d)} ∪G .so

⟩
NSTACK

HB-STK-OBJ

objective(Stack(s,G))

FIGURE 23.4: LAThb specs for stack
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HB-STACK-CONSISTENCY

Stack(s,G) ⊢ StackConsistent(G)

StackConsistent(G) :=

∧



∀(e, d) ∈ G .so.∃v .G(e).type = Push(v) ∧G(d).type = Pop(v)

∧G(e).view ⊑ G(d).view ∧G(e).logview ⊑ G(d).logview (STACK-MATCHES)

G .so and G .so−1 are functional. (STACK-SO-FUNCTIONAL)

∀d .G(d).type = Pop( )→ ( , d) /∈ G .so→ G(d).type = Pop(ϵ) (STACK-UNMATCHED-EMPPOP)

∀(e, d), (e ′, d ′) ∈ G .so, (e, e ′) ∈ G . lhb→ (d , d ′) ∈ G .lhb→ (e ′, d) /∈ G .lhb (STACK-LIFO)

∀d , e.G(d).type = Pop(ϵ)→ G(e).type = Push( )→ (e, ) /∈ G .so→ (e, d) /∈ G .lhb

(STACK-EMPPOP)

FIGURE 23.5: LAThb Stack Consistency

queue (against the LATabshb specs). In fact, the proof is simpler because
we only work with the head of the stack, while for the queue, we have
to coordinate between the head and the tail. As we already presented
another proof of the Treiber stack against the simpler bag specs in §12.4.3,
we elide the proof here. We note that the LAThb specs presented here
imply the bag specs in Figure 12.9.

CHAPTER SUMMARY. In this chapter we have demonstrated concrete
Compass specs and verifications through queues and stacks, which, un-
surprisingly, show the extra proof obligations required by the stronger
logicall-atomic specs.





24
Exchangers and the Elimination Stack

In this chapter, we demonstrate the application of our specs to verify an
RMC implementation of the elimination stack.1 We show that the RMC 1Hendler et al., “A scalable lock-free stack

algorithm” [HSY04].elimination stack satisifies the LAThb specs for stacks given in §23.2. This
verification is both a client verification and a library verification: the elim-
ination stack is a client that composes an underlying base stack and an
exchanger. In §24.1 we give an overview of the RMC implementation for
the elimination stack. In §24.2 we present the strong specs with helping
for exchangers. In §24.3 we sketch the verification of the elimination
stack as a simulation proof using the specs of the base stack and the
exchanger.

24.1 The Elimination Stack

The idea for the elimination stack (ES) comes from a simple observa-
tion: if a push is immediately followed by a pop, then the stack appears
unchanged, and that push and pop are said to eliminate each other. The
elimination mechanism can be implemented with an exchanger (which
in turn can be implemented as an array of exchangers) that supports
concurrent exchanges of data with arbitrary matching. A thread simply
calls exchange(x , v1) on the exchanger object x with some value v1 ̸= ⊥.
If the return value is ⊥, the exchange has failed, but if it is some v2 ̸= ⊥,
then the thread has successfully exchanged v1 for v2 with another thread.
Additionally, the two threads synchronize with each other,2 which from 2Technically, the two commit points of

the matching exchanges are not both in
hb with each other—it is counterintuitive
to have cycles in hb—but it is the case
that the beginning of one exchange call
happens before the end of its matching
exchange call. We needed to extend our
specs to account for this subtlety, but, due
to space constraints, we elide it from the
specs and from the discussion here.

the separation logic perspective supports resource exchanges between the
matching threads.

The ES try operations, which can fail due to contention, can be
implemented simply by composing the two libraries without any extra
synchronization, as follows:

try_push(s, v) ::= if try_push′(s.base, v) then true

else exchange(s.ex, v) == SENTINEL

try_pop(s) ::= let v = try_pop′(s.base) in

if v != FAIL_RACE then v else

let v ′ = exchange(s.ex,SENTINEL) in

if v ′ /∈ {SENTINEL,⊥} then v ′

elseFAIL_RACE

291
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Each operation first tries the base stack’s corresponding operation, and
if that fails due to contention, it tries to use the exchanger to match
another operation without going through the base stack. More specifically,
try_push(s, v) calls the base stack’s own try_push′ and returns true

(signifying success) if that succeeds. Otherwise, it calls exchange (on
s.ex) and returns true only if its exchange is successfully matched with
a pop operation, signified by the SENTINEL value. Similarly, try_pop(s)
calls the base stack’s try_pop′ and returns v only if try_pop′ did not fail
due to contention (FAIL_RACE). (try_pop returns empty ϵ if try_pop′

does.) Otherwise, try_pop calls exchange with SENTINEL, and only
succeeds with the returned value v ′ if it is matched (v ′ ̸= ⊥) with a push
(v ′ ̸= SENTINEL).

24.2 A Strong Spec for Exchangers

An exchanger event carries an additional physical view (view_in) for
recording the input view of the event. It is used for describing the mutual
synchronization of matching exchange events (EXCHANGER-MATCHES).

A simplified LAThb-style spec for the exchange function is shown in
HB-EXCHANGE (Figure 24.1). The spec involves a local logical view as-
sertion SeenExchanges(x ,G0,M0), and an atomically shared ownership
assertion Exchanger(x ,G) for the exchanger object x . At the commit
point, the current graph G is extended with a new event e1 with type
Exchange(v1, v2), where v2 is the returned value. If the exchange fails,
the return value v2 is ⊥ and the event type is Exchange(v1,⊥). If the
exchange succeeds, it can only succeed together with another exchange
identified by e2, and the G .so relation is extended with the two events in
both directions ({(e1, e2), (e2, e1)}), signifying that they are synchronized
with each other.

The remaining part of the spec is to maintain the perspective that a
matching pair of exchanges is committed atomically together: it is important
that there can be no interference between the two commits of the matching
exchanges. In other words, no other thread should be able to observe an
incomplete state of the exchanger where one successful exchange has
been committed but its matching exchange has not. But how can two
commit points be atomic? This conflicts with the intuitive interpretation
of LATs that there exists a committing instruction I within each logical
operation! To resolve this conundrum, we need helping.

HELPING FOR ATOMICITY Helping is a pattern where one operation—the
helper—helps to perform the commit (the update to the shared state)
of another operation—the helpee. This means that the commit point of
the helpee is not within its own execution, but rather within the helper’s
execution. For the matching exchange pairs, the commit points coincide:
at the helper exchange’s commit point, it atomically performs the helpee
exchange’s commit and then its own commit. This is materialized in the
successful case of HB-EXCHANGE with (1) a commit order (<) of the events
and (2) the addition of a local postcondition (in red, { . . . }) that only
holds once the function returns (rather than at the commit point).
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ExchangeEvent ::= Exchange(v1, v2)

Event ::= ExchangeEvent× View× View× LogView

HB-NEW-EXCHANGER

{True} new_exchanger() {x .SeenExchangesNXCHG(x , ∅, ∅) ∗ Exchanger(x , ∅)}

HB-EXCHANGE

SeenExchanges(x ,G0,M0) ∗ v1 ̸= ⊥ ∗ ⊒V0 ⊢
⟨b,G .Exchanger(x ,G)⟩

exchange(x , v1)

⟨v2.∃b
′,G ′ ⊒ G ,M ′ ⊒ M0, V1 ⊒ V0, V21, V22, e1 /∈ G , e2.

Exchanger(x ,G ′) ∗ ⊒V1 ∗ e1 ∈ M ′ ∗G ′ = G [e1 7→(Exchange(v1, v2), V0, V1,M
′)]

∗ ∨



v2 = ⊥ ∗ SeenExchanges(x ,G ′,M ′) ∗ ExchangerConsistent(G ′)

v2 ̸= ⊥ ∧ e1 < e2 ∗ e2 ∈ M ′ ∗ SeenExchanges(x ,G ′,M ′ \ {e2})

v2 ̸= ⊥ ∧ e2 < e1 ∗ e2 ∈ M ′ ∗ SeenExchanges(x ,G ′,M ′) ∗ ExchangerConsistent(G ′)

∗G(e2) = (Exchange(v2, v1), V21, V22,M
′) ∗G ′.so = {(e1, e2), (e2, e1)} ∪G .so

⟩
NXCHG

{(v2 ̸= ⊥ ∧ e1 < e2) =⇒ ∃G ′′ ⊒ G ′.SeenExchanges(x ,G ′′,M ′) ∗ ExchangerConsistent(G ′′)

∗G ′′(e2) = (Exchange(v2, v1), V21, V22,M
′) ∗G ′′.so = {(e1, e2), (e2, e1)} ∪G ′.so}

HB-EXCHANGER-CONSISTENCY

Exchanger(x ,G) −∗ SeenExchanges(x ,G ′,M ′)⇛NXCHG
Exchanger(x ,G) ∗ ExchangerConsistent(G)

ExchangerConsistent(G) :=

∧



∀(e1, e2) ∈ G .so. |e1 − e2| = 1

∧ ∃v1v2.G(e1).type = Exchange(v1, v2) ∧G(e2).type = Exchange(v2, v1)

∧G(e1).view_in ⊑ G(e2).view ∧G(e2).view_in ⊑ G(e1).view

(EXCHANGER-MATCHES)

G .so is symmetric and irreflexive. (EXCHANGER-SO-SYM-IRREFL)

G .so and G .so−1 are functional. (EXCHANGER-SO-FUNCTIONAL)

∀e. (e, ) /∈ G .so→ G(e).type = Exchange( ,⊥) (EXCHANGER-UNMATCHED)

FIGURE 24.1: LAThb specs for exchangers
(excerpt, simplified).
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The commit order < on events is the logical order in which the events
are committed to the shared graph G . In HB-EXCHANGE, the commit order
between a matching exchange pair dictates who the helper is, and how
each commit updates the shared graph G . If the current exchange e1

is committed before the other exchange e2, i.e., e1 < e2, then e2 is the
helper. Otherwise, if e2 < e1, then e1 is the helper.

Since the helper atomically performs the helpee’s update and then
its own update, it always knows the result of the helpee’s update, while
the helpee will only learn about the helper’s update after both com-
mits have been completed. This is the asymmetry in HB-EXCHANGE:
if e1 is the helpee, it only adds itself to the current graph G: G ′ =

G [e1 7→(Exchange(v1, v2), V1,M
′)]; but if e1 is the helper, it knows that

the helpee’s event e2 must already be in the current graph: G(e2) =

(Exchange(v2, v1), V2,M
′), and the helper not only adds itself to the cur-

rent graph G , but also extends G .so with the pairs {(e1, e2), (e2, e1)}.
The client thread of the helper learns all of this information about the
updated G ′ atomically right after the helper’s commit, by which point
it has also locally observed both e1 and e2, via SeenExchanges(x ,G ′,M ′)

and {e1, e2} ⊆ M ′. The client thread of the helpee, on the other hand,
right after its own commit has only locally observed its own event e1,
via SeenExchanges(x ,G ′,M ′ \ {e2}), because the helper commit has not
been performed yet and e2 has not been added to G ′. Only in the local
postcondition (in { . . . }), after both commits have been performed, can
the helpee learn about the new graph G ′′ (e2’s G ′) that completes e1’s
G ′ (e2’s G) with e2 and the so pairs, and locally observe both events, via
SeenExchanges(x ,G ′′,M ′).

INTERMEDIATE STATES That matching exchange pairs are committed
atomically together is also reflected by the fact that we do not al-
ways have consistency: the ownership Exchanger(x ,G) does not imply
ExchangerConsistent(G). Instead, we have ExchangerConsistent(G ′) only
with a completed graph G ′, i.e., after the failure case or after the helper’s
commit. Between the helpee’s commit and the helper’s commit, the
exchanger is in an incomplete intermediate state.

As such, those intermediate states can appear in a client invariant.
However, it is important that the client needs to handle such states
only when it uses the exchanger, and that other non-exchanger-related
operations will never observe those states. For example, the invariant of
the elimination stack needs to consider the intermediate state where a
push event created by a successful exchange is inserted into the graph,
but the matching pop event by the matching exchange is not. A successful
push using the base stack and running concurrently with the exchange
pair should not observe the client invariant in such an intermediate state,
because it would not be able to prove LIFO then.

Our full exchanger spec (in Coq) supports this form of intermediate
state reasoning: when using the exchanger, the client need not maintain
its invariant for the intermediate state between the two commits; it only
needs to re-establish its invariant after both commits. When not using
the exchanger, the client invariant is never in such intermediate states.
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STRENGTH OF THE SPECS To the best of our knowledge, the full exchanger
spec is the first ever proposed CSL spec for RMC exchangers. It is strong
enough for the proof of the elimination stack (§24.1), and we have also
used it to derive a spec that supports resource exchanges, where each
exchange call needs to provide the resources to be exchanged only at its
commit point, and only if the exchange succeeds.

24.3 Verifying the Elimination Stack

VERIFICATION RESULTS. Assuming the LAThb-style specs for the base stack
and the exchanger (Figure 24.1), we have verified that our relaxed ES
implementation satisfies the same LAThb specs as the base stack. Since
we have verified, separately, that our RMC Treiber stack and exchanger
implementations satisfy their LAThb specs, we easily get a closed-proof
verification of an ES built from those two implementations. We assumed
the LAThb specs for the base stack to demonstrate that the verification
does not rely on very strong properties, but, since the proofs are modular
enough, we conjecture that the same proofs can be applied (with minor
modifications) to show that, if the base stack satisfies the stronger LATabshb

specs, then the ES implementation also satisfies the same stronger specs.

COMPOSITIONAL VERIFICATION. The ES verification does not involve RMC
reasoning, because the implementation does not add any new atomic
instructions. The core work is composing the base stack’s events and
the exchanger’s events into the ES events in a way that satisfies the
consistency conditions for stacks. This can be seen as a simulation proof
with a simple simulation relation: every base stack operation is simulated
by a corresponding ES operation, and successful matching exchange pairs
between a non-SENTINEL value and a SENTINEL value are simulated
by an ES push and an ES pop respectively. (Other exchange events are
ignored by the simulation.)

The non-trivial parts of the proof are where the simulation needs
to simulate commit points and maintain consistency: whenever a base
operation commits, the ES operation needs to commit accordingly, and
needs to re-establish the ES consistency conditions using the consistency
conditions of the base stack and the exchanger. The re-establishment
of consistency relies crucially on the fact that eliminations are atomic:
the commits of ES push and pop events that originate from a pair of
matching exchanges need to be performed together at once, so that the
pushed element is popped immediately, and no (commit points of) other
concurrent ES operations can observe the intermediate state where the ES
push has already been committed but the ES pop has not. This atomicity
property of the exchange-based ES event pairs is crucially needed for
LIFO.
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Our specification styles build on extensive prior work in relaxed correct-
ness conditions, and in program logics for fine-grained concurrent SC
and RMC programs.

RELAXED CORRECTNESS CONDITIONS Various alternative correctness con-
ditions to linearizability have been developed,1 particularly for dis- 1[Hen+13; JR14; Der+14; Haa+16;

ON22].tributed systems2 and relaxed memory.3 Most of these were developed
2[Nei94; AKY10; Bur+14; CRR15].

3[Bur+12; BDG13; Jag+13; Doh+18;
Don+18; Raa+19; EE19; Kri+20].

outside a program logic, directly on complex low-level concurrency se-
mantics, and with little support for client reasoning or mechanization. As
discussed in §1.3, we believe the Yacovet approach4 is the most general of

4Raad et al., “On library correct-
ness under weak memory consistency:
specifying and verifying concurrent li-
braries under declarative consistency mod-
els” [Raa+19].

these. By enhancing Yacovet specs in Compass with logical atomicity, we
demonstrate that existing relaxed correctness conditions can be used in
combination with separation logic to achieve stronger and better modular
client reasoning as well as more foundational (mechanized) verifications.
We consider it future work to encode more of these relaxed correctness
conditions in Compass.

Recently, Singh and Lahav5 use abstract programs as specifications for 5Singh and Lahav, “An Operational Ap-
proach to Library Abstraction under Re-
laxed Memory Concurrency” [SL23].RMC libraries, and define the correctness condition as contextual refine-

ment6 between the implementation and the specification programs. To
6where the context must adhere to the

library’s calling policybe sound, the refinement is defined as trace refinement between histories
(event graphs) who additionally track the propagation of method calls
and returns among thread (propagation of observations of library actions,
similar to that of Compass’ logical views). It is interesting to encode such
a correctness condition in CSL, which corresponds to showing contextual
refinements for RMC programs in separation logic.

SC PROGRAM LOGICS Logical atomicity is just one CSL alternative to
linearizability. Another is to avoid identifying commit points and instead
reason directly about refinements between a sequential “specification”
program and the concurrent implementation program.7 However, se- 7[LF13; TDB13; FKB18; KSB17].

quential specs are not always suitable as correctness conditions (e.g., for
exchangers), and non-sequential refinement is still an open problem for
RMC logics. Our work demonstrates the usefulness of logical atomicity
in RMC. As future work, one can consider adapting prophecy variables8 8[AL88; AL91; Jun+20].

to our framework, as they may help simplify our specs.

FCSL9 and the rely-guarantee-based Hoare logics by Hemed et al.10 9[SNB15; Ser+16; Del+17].

10[HRV15].and Khyzha et al.11 support specifying non-linearizable SC data structures

11[Khy+17].
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with histories by encoding histories as auxiliary (ghost) state and by
exposing partial, subjective views of the histories to clients. This is
similar to our construction of graphs or linear histories. Compass can be
seen as extending these logics with logical atomicity and RMC.

RMC PROGRAM LOGICS Dalvandi and Dongol,12 in parallel work, try to12[DD21b; DD21a].

achieve the same goal of providing compositional specs and modular
client reasoning for RMC data structures. Their approach uses an Owicki-
Gries-style Hoare logic13 for a more limited fragment of RC11 called RAR13Dalvandi et al., “Owicki-Gries Reason-

ing for C11 RAR” [Dal+20]. (which only has release-acquire and relaxed accesses, not non-atomics
or fences). They specify libraries with view-based, atomic abstract ob-
ject semantics for the library’s operations, treating the object methods
as primitives of the language. Client verifications rely on Hoare-triple
specs derived directly from the abstract object semantics. To verify an
implementation against a spec, they prove refinement, showing that syn-
chronizations (in the view semantics) of the abstract object are simulated
by synchronizations in the implementation. Their approach therefore
shares similar ideas to ours. The main limitation is in their simulation
method: it applies only to synchronization-free clients, i.e., those who
synchronize only through the library in question. This is because it
is non-trivial to characterize how external synchronizations affect the
simulation relation. Consequently, they cannot obtain an end-to-end
proof for clients that use external synchronizations, e.g., the MP client
in Figure 21.2. Furthermore, the use of Owicki-Gries-style logic means
that they have to deal with additional interference freedom proofs. They
report only one mechanized library verification, for the Treiber stack,
with 12KLOC in Isabelle. In comparison, our mechanization results are
more extensive, and our Treiber stack verification takes only 2.2KLOC in
Iris, in Coq.

Several CSLs for RMC have been developed within Iris.14 Our logic14[Kai+17; Dan+20a; MJP20].

extends iRC11 and follows Cosmo in exposing more view information in
specs. Our key innovation is the use of logical views on library operations,
allowing us to give stronger specifications that can describe interactions
with external synchronization. In retrospect, we believe that views are a
concise, compositional, and user-friendly tool to describe the different
kinds of synchronization that may occur in and around a data structure,
and thus are useful for formulating full functional correctness specs under
RMC.

Very recently, Park et al.15 improve RMC linearizability proofs with15Park et al., “A Proof Recipe for Lin-
earizability in Relaxed Memory Separation
Logic (to appear in PLDI 2024)” [Par+24]. Compass-style specifications by (1) introducing a general object modifi-

cation order (omo) for libraries, (2) introducing a general commit-with
relation to help with the simulation relation between commit points of
the specification and the implementation, and (3) applying proof automa-
tion with Diaframe16 to infer the logical event graph state. The result16Mulder et al., “Diaframe: automated

verification of fine-grained concurrent pro-
grams in Iris” [MKG22]; Mulder and Kreb-
bers, “Proof Automation for Linearizability
in Separation Logic” [MK23].

is that, in some cases, proofs are significantly shortened by an order of
magnitude. This demonstrates the extensibility of Diaframe, and signifies
the benefits of more general relations as well as automation in scaling
RMC verification efforts further—a topic that this thesis did not discuss.

Finally, it would be interesting to apply the Compass approach to
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more sophisticated RMC libraries such as work-stealing queues17 and 17Chase and Lev, “Dynamic circular work-
stealing deque” [CL05]; Lê et al., “Correct
and efficient work-stealing for weak mem-
ory models” [Lê+13].

safe memory reclamation schemes for lock-free data structures.18

18Michael, “Hazard Pointers: Safe
Memory Reclamation for Lock-Free
Objects” [Mic04]; Fraser, “Practical
lock-freedom” [Fra04]; Jung et al.,
“Modular Verification of Safe Memory
Reclamation in Concurrent Separation
Logic” [Jun+23].
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Conclusion

This thesis tries to sketch a recipe to formally build and apply separation
logics for verifying safety and functional correctness of programs with
relaxed memory concurrency (RMC). Undoubtedly, building and applying
such logics require substantial efforts, and are composed of several steps,
which can partly be seen from the thesis structure in Figure 1.1. These
steps can be grouped into the following 4 general tasks.

(1) selecting a trusted semantic model of RMC, combined with other
language features;

(2) constructing a low-level logic that provides core separation reason-
ing principles;

(3) deriving high-level reasoning principles that may be application-
specific;

(4) applying the high-level logic to the target programs.

SELECTING A SEMANTIC MODEL OF RMC. Mutliple RMC semantic models
have been proposed, both the axiomatic style and the operational style.
We proposed to use an operational version of RC11, called ORC11, in
Chapter 3, where we also include non-atomics, whose sematics can invoke
undefined behaviors (UBs). Triggering UBs is enforced by a race detector
on non-atomics. In Chapter 4, we incorporated the ORC11 memory
model with the semantics of λRust, which has other pure expressions,
and which also includes a conservative pointer comparison scheme. The
pure fragment of language can trigger more UBs (such as incompatible
comparison).

The integration of a race detector and a conservative pointer com-
parison scheme shows a serious challenge in formal verifications with
realistic languages. Modern languages have become so complicated
that individual research works on formal semantics have mostly been
contended with only fragments of a language. It is unclear if we can
keep the semantics of those fragments modularly unentangled, or how
much work would be needed to compose their semantics so that we can
consider programs that exploit multiple language features all at once.
In Chapter 4, we saw that the interaction of our conservative pointer
comparison scheme and the RMC semantics resulted in a rather global
semantic of CAS (RMW) operations, whose complication also bubbles up
into the logics.
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We have chosen to use the operational-style semantics of ORC11, and
in §3.6 only provided an on-paper correspondence proof between RC11

and ORC11 + λRust, partly because the resulting semantics encompasses
more features and more UB-triggering behaviors. But the main driver of
such decision is that it is easier to build separation logics with ORC11

(as well as other views-based semantics), because views restructure the
semantic in a more modular way (an effect focuses on a thread’s view)
and therefore are easier to “separated”. Nevertheless, it should still be
possible to build separation logics in Iris using an operational model that
is much closer to the axiomatic model than ORC11. We consider it future
work to build separation logics in Iris directly on the Operational Graph
Semantics (OGS) mentioned in §3.6, which means putting a substantial
part of the correspondence proof inside Iris, and thus cutting down the
TCB.

Finally, very recent work by Lee et al.1 suggests that one could forbid1Lee et al., “Putting Weak Memory in
Order via a Promising Intermediate Repre-
sentation” [Lee+23]. load-buffering (LB), and therefore the out-of-thin-air (OOTA) problem,

at least in the source language memory model.2 That would mean that
2see also Remark 2.21

ORC11 would be more suitable to model C and C++ RMC programs.

CONSTRUCTING A CORE LOGIC. With an operational RMC model, we
then can start constructing the core separation logic iRC11 for our RMC
semantics. In Chapter 7, we demonstrated how to use Iris to acquire a
base logic that provides basic separation on the RMC states. Most impor-
tantly, we introduced thread-local assertions such as the seen thread-view
observation Seen(V) to account for views, the thread-local state of our
RMC semantics. Then, in Chapter 8, we introduced a way to hide views
in the logic, because most of the time when performing intra-thread
reasoning, we do not need to care about views. The interaction with
views only becomes interesting when we have to reason about synchro-
nizations between threads, i.e., when we need inter-thread reasoning.
For inter-thread reasoning, we developed several modalities that allow
us to temporarily expose views again, which we can then use with gen-
eral invariants (Chapter 11) to establish inter-thread communications or
resource transfer. We note that this approach is inspired by the Cosmo
logic,3 and is applicable not only to views-based semantics,4 but can also3Mével et al., “Cosmo: a concur-

rent separation logic for multicore
OCaml” [MJP20].

4for example, see a separation logic
for non-volatile memory by Vindum and
Birkedal ([VB23]).

be generalized to handle other thread-local states, such as call stacks or
physical-virtual address translations.

Finally, respectively in Chapter 9 and Chapter 10, we have developed
abstractions for non-atomic and atomic accesses. The atomic points-to
is general enough to support most usage patterns of atomics, and is
also convertible to non-atomic points-to. This setup therefore should be
applicable to stronger memory models. The key feature of the atomic
points-to is that it interacts well with general invariants (with explicit
views), which makes it easier to state protocols spanning multiple atomic
locations.

DERIVING HIGH-LEVEL REASONING PRINCIPLES. With a solid set of funda-
mental low-level abstractions, we started building higher-level abstrac-
tions that can be application-specific. In Chapter 16, we have integrated
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the SC model of the lifetime logic with our new abstractions to make the
lifetime logic sound in RMC. Most RMC effects can be hidden, except
for atomic borrows, where we have interactions with explicit views, in
the very same fashion as in general invariants. In Chapter 17, we have
combined atomic points-to with general invariants to reconstruct GPS
protocols in iRC11. In Chapter 22, we have combined atomic points-to,
general invariants, and logical atomicity to specify and verify strong
functional correctness for RMC libraries.

APPLYING THE HIGH-LEVEL LOGIC TO VERIFICATIONS. Ultimately, the de-
signs of low-level and high-level reasoning principles were driven by the
goal to verify strong specifications of concrete, realistic RMC programs.
In Chapter 12, we have demonstrated several verifications using the core
logic of iRC11. In Chapter 18 and Chapter 19, we have demonstrated the
semantic type-checking of RwLock and Arc using the lifetime logic and
GPS protocols. In Chapter 23 and Chapter 24, we have demonstrated the
verifications of stacks, queues, and exchangers against strong Compass

specifications. The various applications together have demonstrated the
generality and extensibility of our separation logic iRC11.
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