Scaling Up
Relaxed Memory Verification
with Separation Logics

Dissertation zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften

der Fakultat fiir Mathematik und Informatik
der Universitat des Saarlandes

vorgelegt von Hoang-Hai Dang

Saarbriicken, 2024



Draft of August 30, 2024.

TAG DES KOLLOQUIUMS
2024

DEKAN DER FAKULTAT FUR MATHEMATIK UND INFORMATIK
Prof. Dr.

PRUFUNGSAUSSCHUSS
Vorsitzender: Prof. Dr.
Gutachter: Prof. Dr.
Prof. Dr.
Prof. Dr.

Akademischer Mitarbeiter: Dr.



Abstract

Reasoning about concurrency in a realistic, non-toy language like C/C+ + or Rust, which encompasses
many interweaving complex features, is very hard. Yet, realistic concurrency involves relaxed memory
models, which are significantly harder to reason about than the simple, traditional concurrency model
that is sequential consistency. To scale up verifications to realistic concurrency, we need a few ingredients:
(1) strong but abstract reasoning principles so that we can avoid the too tedious details of the underlying
concurrency model; (2) modular reasoning so that we can compose smaller verification results into
larger ones; (3) reasoning extensibility so that we can derive new reasoning principles for both complex
language features and algorithms without rebuilding our logic from scratch; and (4) machine-checked
proofs so that we do not miss potential unsoundness in our verifications. With these ingredients in hand,
a logic designer can flexibly accommodate the intricacy of relaxed memory features and the ingenuity of
programmers who exploit those features.

In this dissertation, I present how to develop strong, abstract, modular, extensible, and machine-
checked separation logics for realistic relaxed memory concurrency in the Iris framework, using multiple
layers of abstractions. I report two main applications of such logics: (i) the verification of the Rust type
system with a relaxed memory model, where relaxed memory effects are encapsulated behind the safe
interface of libraries and thus are not visible to clients, and (ii) the compositional specification and
verification of relaxed memory libraries, in which relaxed memory effects are exposed to clients.

Zusammenfassung

Programmuverifikation von nebenlédufige Programmen in einer realistischen Programmiersprache wie
C/C++ oder Rust, die viele komplexe, miteinander verflochtene Sprachkonstrukte enthélt, ist sehr
schwierig. Realistische nebenldufige Programme basieren auf schwachen Speicherkonsistenzmodellen, in
denen sich die Beweisfithrung im Vergleich zum traditionellen, sequentiellen Speicherkonsistenzmodell
(SC) erheblich schwieriger gestaltet. Um die Verifikation solcher realistischen nebenldufigen Programme
zu ermoglichen bendtigen wir mehrere Voraussetzungen: (1) starke Beweisregeln die die mithsamen
Details des zugrundeliegenden Speicherkonsistenzmodells abstrahieren, (2) modulare Beweistechniken
die es erlauben, die Verifikation in kleinere, mundgerechte Beweise aufzuteilen, (3) eine erweiterbare
Verifikationslogik, in der neue Beweistechniken hinzugefiigt werden kénnen, ohne die Korrektheit der
gesamten Logik erneut beweisen zu miiseen (4) maschinengepriifte Beweise, die die Korrektheit der
Logik und der durchgefiihrten Beweise garantiert. Mit diesen Voraussetzungen kann ein Logikdesigner
die Komplexitit des schwachen Speicherkonsistenzmodells und den Einfallsreichtum der Programmierer,
die sich dessen Funktionenen zu Nutze machen, flexibel beriicksichtigen.

In dieser Dissertation stelle ich vor, wie man starke, abstrakte, modulare, erweiterbare und maschi-
nengepriifte Separationslogiken fiir realistische schwache Speicherkonsistenz in dem Framework Iris mit
Hilfe von mehreren Abstraktionsebenen erstellen kann. Ich berichte {iber zwei Hauptanwendungen dieser
Logiken: (i) die Verifikation des Typsystems von Rust auf Basis eines schwachen Speicherkonsistenzmod-
ells, bei dem die Auswirkungen schwacher Speicherkonsistenz hinter der sicheren Programmschnittstelle
abstrahiert und somit fiir Clients unsichtbar sind, und (ii) die modulare Spezifikation und Verifikation
von Programmbibliotheken mit schwacher Speicherkonsistenz, bei denen die Auswirkungen schwacher
Speicherkonsistenz fiir Clients sichtbar sind.

iii






Acknowledgments







Contents

Abstract iii
Zusammenfassung iii
Acknowledgments v
Contents ix
List of Figures xiii
List of Tables XV
Glossary xvii
1 Introduction 1
1.1 Reasoning about Relaxed Memory CONCUITENCY . . . + « . v v v v v v v v e e e e e e e e 2
1.2 RustBelt Relaxed: Verifying the Soundness of Rust’s Type System in RMC . . . ... ... .. 3
1.3 Compass: Strong and Compositional Specifications of Relaxed-Memory Libraries . . . . . . . 5
1.4 Structure . . . . . . . . . e e e e e e e e e e 8
1.5 Publications and Collaborations . . . . . . . . . . . .. . . . ... 9
I OPERATIONAL SEMANTICS FOR RELAXED MEMORY 11
2 Background: Relaxed Memory Models 15
2.1 Cll,Intuitively . . . . . o o o e e e e e e 15
2.2 RC11,Formally . . . . . . . . e e e e e 17
3 ORC11: Operational Repaired C11 27
3.1 Understanding Relaxed Memory with Views . . . . . . .. ... ... ... ... ...... 27
3.2 Basic Machine State Definitions . . . . . . . . . . . ... .. e 30
3.3 View-based RMC SemantiCs . . . . . . . . v v v v vt e e e e e e e e e e e e 34
3.4 The Data-Race Detector . . . . . . . . . . i i i i ittt e e e e 39
3.5 Comparison with iGPS Race Detector . . . . . . . . . . . it i i ittt e e 42
3.6 The Correspondence between RC11and ORC11 . . . . ... ... .. ... ... ...... 44
4 The Relaxed \gr,s; Language 47
4.1 Language SYNLAX . . . . v v v vt e e e e e e e e e e e e e e e e e e e e e e e e e e 47
4.2 Language Expression Reductions . . .. . ... ... ... ... 50
4.3 The Complete Operational Semantics of Relaxed ARust -+ « « « « « v v v v v v v v e e oo u 54
5 Related Work 57
II SEPARATION LOGIC FOR RELAXED MEMORY 59
6 More Background: Iris, A Framework for Concurrent Separation Logics 63
6.1 BasicRules . . . . . . . . . e e e 64
6.2 Ghost State and Resource Algebras . . . . . . . . . ... ... e 65
6.3 Invariants and Fancy Updates . . . . . . . . . . . . . . . . 67



viii Contents
6.4 Hoare Triples . . . . . . . . L e e e 69
6.5 Adequacy . . . . . . . e e e 69
6.6 Some Common Rules for WPs and Hoare Triples . . . . .. ... ... ... ......... 70
6.7 Weakest Pre-conditions and Invariants . . . . . . . . . .. .. ... 71
6.8 Properties of Propositions . . . . . . . . . . . e e e e e e 72
6.9 The Method of Fictional Separation . . . . . . . ... ... ... ... ... 73
6.10 The Physical State Interpretation . . . . . . . . . . . it 75
6.11 An Instantiation Example for Simple Heaps . . . . . ... . ... ... ... .. .. ..., 75
7 A Base Logic for RMC in Iris 79
7.1 Thread-local Configurations as EXpressions . . . . . . v v v v v v v v v v v v v v e e e e e 79
7.2 Basic Local Assertions for View-based RMC . . . . . . . . . . ... ..., 81
7.3 Primitive Memory Rules . . . . . . . . ... 84
7.4 Resource Algebras for Basic Local ASsertions . . . . . . . . . v v v vttt i 92
7.5 StateInterpretation . . . . . . . . . ... e e e e 93
7.6 Proofs of Some Primitive Rules and Adequacy . . .. ... ... ... ............ 96
8 vProp: View-monotone Predicates 99
8.1 View-monotone Predicates . . . . . . . . . . . . 99
8.2 Model of iRC11 Weakest Pre-conditions . . . . . . . .. ... ... ... .... 101
8.3 Fence Modalities . . . . . . . . . . . . e e e e 102
8.4 Objective Propositions and The Objective Modality . . ... ... ... ... ... .... 105
8.5 View-explicit Modalities . . . . . . . . . . . e e e e 106
8.6 The Subjective Modality . . . . . . . . . . ... 109
9 Non-Atomic Points-To 111
9.1 The Interface of Non-Atomic Points-To . . . . . . . . . . . . v i i i i ittt .. 111
9.2 The Model of Non-Atomic Points-To . . . . . . . . . . ... i i ittt it 112
10 Atomic Points-To 115
10.1 The Interface of the Atomic Points-To Assertion . . . . . . . . . ... ... 116
10.2 The Model of the Atomic Points-To ASSErtion . . . . . . . .. v v v v v v v v v v oo v .. 126
11 Invariants in Relaxed Memory 133
11.1 Objective Invariants . . . . . . . . . . o vt i i i e e e e e 134
11.2 Cancelable Invariants . . . . . . . . . . . 0t i i e e e e e e e e e e 136
11.3 Non-Atomic Invariants . . . . . . . . . . o ottt e e e e e e e e 143
12 Example Verifications with iRC11 145
12.1 Release-Acquire Message-Passing . . . . . . . . . . . ot ittt i e e e 145
12.2 Release-Acquire Message-Passing with Reclamation . . . . .. ... ... ... ...... 149
123 Spawnand Join . . . . . . . ... e e e e e e e 154
12.4 A Release-Acquire Treiber Stack . . . . . . . ... .. ... . 156
13 Related Work 167
IIT RUSTBELT MEETS RELAXED MEMORY 171
14 Challenge: RustBelt and Relaxed Memory 173
14.1 Task 1: Re-prove the Safety of Rust Librariesunder RMC . . . ... ............ 174
14.2 Task 2: Re-prove the Safety of the Ar,st Type System underRMC . . . . . ... ... ... 176

14.3 Contributions of RustBelt Relaxed . . . . . . . . . . . . . . . . e 176



15 The Lifetime Logic of SC RustBelt

15.1 Borrowing in Rust . . . . . .. . . . ... .. .. e
15.2 The Lifetime Logic Primer, inSC. . . . . .. ... ... ... .....

16 Lifetime Logic Meets Relaxed Memory

16.1 More Rules for the Lifetime Logic . . . . ... ... ... .......
16.2 Other Forms of Borrows . . . . . . . .. .. ... ..
16.3 Adaption of the Lifetime Logic’s Model iniRC11 . . . ... ... ...

17 GPS Single-Location Protocols

17.1 Surface-level GPS Protocols iniRC11 . . . . ... ... .. ... ...
17.2 Middleware GPS Protocols iniRC11 . . .. ... .. ... ... ...
17.3 The Model of GPS Protocols . . . . . . . . . . v v v i v i v

18 Verification of RwLock

18.1 RMC Implementation of a Reader-Writer Lock . . . . ... ... ...
18.2 The Semantic Model of the Reader-Writer Lock Type . . . ... ...
18.3 Proof Sketches of the Library’s Operations . . . ... ... ... ...

19 Verification of Arc

19.1 The Core Arclibrary . . . . . ... ... ... . . . . ... .....
19.2 Verification of Core Arc with Cancelable GPS Protocols . . . ... ..
19.3 Verification of Arc’s FUllAPIs . . . . . ... ... .. .........
19.4 Insufficient Synchronization in get_mut . . . . . . . .. ... ... ..

20 Related Work

IV COMPASS

21 Background: Strong Specifications with Logical Atomicity

21.1 Sequential Specifications for Queues . . .. ... ... ... .....
21.2 SC Specifications with Logical Atomicity . . ... ... ... .....
21.3 Logically Atomic Specifications in RMC with Views . . ... .. ...

22 Strong Compass Specifications with Richer Partial Orders

22.1 Graph-Based Specs to Encode Partial Orders . . . . ... .......
22.2 Weaker Specs by Abandoning Abstract States . . . . . ... ... ..
22.3 Implementing Compass Specs iniRC11 . . . .. ... ... ......

23 Verifications of Stacks and Queues
23.1 Queue Specs and Verification of the Michael-Scott Queue

23.2 Stack Specs and Verification of the Treiber Stack . . . . ... ... ..

24 Exchangers and the Elimination Stack

24.1 The Elimination Stack . . . . . ... .. ... ... .. ... ...
24.2 A Strong Spec for Exchangers . . . . . ... ... ... ... ...,
24.3 Verifying the Elimination Stack . . . . . ... ... ... .. .....

25 Related Work
26 Conclusion

Bibliography

Contents ix

179

........... 179
........... 181

187

........... 187
........... 191
........... 195

201

........... 201
........... 218
........... 221

225

........... 225
........... 229
........... 233

237

........... 237
........... 239
........... 245
........... 249

251

253

257

........... 257
........... 258
........... 260

263

........... 263
........... 268
........... 269

273

........... 273
........... 287

291

........... 291
........... 292
........... 295

297

301

305






List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

8.1
8.2
8.3

Dependency graph of this dissertation’s chapters and the concepts that they introduce. . . 7
Message-Passing examples in C11/RC11. . . . . . . . . . .. .. ittt 16
Candidate executions of several MP examples. . . . . . . . . . ... ... ... 20
Ilustrations of derived relations. . . . . . . . . . . . . i e 22
A racy execution of aracy MP Program. . . . . . . . . . v v v v ittt e 23
Several forbidden (inconsistent) executions in C11/RC11. . . . . . ... .. ... ... ... 24
Load-buffering (LB) and Out-of-thin-air (OOTA) behaviors. . . . . . ... ... ... .... 25
View-based explanation of MP behaviors. . . . ... .. ... ... ..... . ... ..... 29
Computations of post thread-views for read and write operations. . . . . .. ... ... .. 36
View-based machine semantics. . . . . . . .. ... L 37
Data-race free (DRF) pre-conditions. . . . . . . . . . . o i i v i i i i et 40
Data-race free (DRF) post-conditions. . . . . . . . . . . . o o v v v it e e e et 42
The relaxed Aryst language syntax. . . . . . . . . . ... e e 48
Some Syntactic SUZArS fOr ARust: « « « « « + v v v v e e e e e e e e e e e e e e e e e e 49
CPS NOotations fOr ARust: « « = « « v v v v e e e e e e e e e e e e e e e e e e e 50
Relaxed Agyst EXPression SEMAantiCs. . . . v v v v v v v v v v v e e e e e e e e e e e e e 52
The combined 1-thread semantics of ORC11 machine semantics and Ag,s; €Xpression semantics. 54
Threadpool semantics. . . . . . . . . . . e e e 55
An excerpt of Iris grammar. . . . . . . . . . oo e e e e e e e e e e e e e e e e e 64
Basic rules of several Iris connectives. . . . . . . . . . ... ..o e 65
Basic rules of Iris ghost ownership and basicupdates. . . . . . . ... ... ......... 66
Some rules for Iris invariants and fancy updates. . . ... ... ... ... ......... 68
Some common rules for Iris weakest pre-conditions and Hoare triples. . ... ... .. .. 71
Some rules for Iris weakest pre-conditions and invariants. . . . ... ... ... ...... 72
Some properties of timeless propositions and persistent propositions. . . . . . ... .. .. 73
Several rules for the AUTH(M ) RA. . . . . . . . . . . i 74
Pure primitive WPs in the RMC base logic . . . . . .. .. ... ... ... .. ...... 80
Main properties of the base logic’s local assertions . . . . . . . ... ... ... ....... 83
The base logic’s primitive Hoare rules forfences . . . . . ... .. .. ............ 85
The base logic’s primitive Hoare rules for non-atomic reads and writes . . . . . ... ... 86
The base logic’s primitive Hoare rules for atomic reads and writes . . . . . ... ... ... 87
The base logic’s primitive Hoare rule for CASes . . . . . ... ... ... ... ....... 88
The base logic’s primitive WP rule for CASes . . . . . . . . .. .. . .. ... 91
Several agreements between the global ghost state and local assertions . . . ... ... .. 95
Several update rules for the global ghost state and local assertions . . . . . ... ...... 95
iRC11 rules for fence modalities . . . . . . . . . . ... ... e 103
iRC11 rules for objective propositions and the objective modality . . . . . .. ... ... .. 106
iRC11 rules for view-explicit modalities . . . . . . . . ... ... ... .. ... ..., 108

Xi



xii  List of Figures

8.4

9.1

10.1
10.2
10.3
10.4
10.5
10.6
10.7

11.1
11.2
11.3
11.4
11.5

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11

14.1

15.1
15.2
15.3

16.1
16.2

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8

18.1

19.1

iRC11 rules for the subjective modality . . . . . .. ... ... ... ... .. .. ...... 110
Rules for iRC11 non-atomic pOintS-to . . . . . . . v v v v v i i e e e e e e e e e e e 112
Basic properties of assertions related to the atomic points-to . . . . ... ... ... .... 117
Conversions between the non-atomic and atomic points-to assertion . . . . . . . . ... .. 119
iRC11 read rules with the atomic points-to assertion . . . . . . . . . . . .. .. ... ... 121
iRC11 write rules with the atomic points-to assertion . . . ... ... ... ......... 123
An iRC11 CAS rule with the atomic points-to assertion . . . . . .. .. ... ........ 125
An iRC11 CAS rule with the atomic points-to in single-writer mode . . ... ... ... .. 126
Several properties of ghost abstractions for the atomicRA . . . . ... ... ... ..... 128
iRC11 rules for objective invariants . . . . . . . . . . . . ... ... . 135
iRC11 rules for cancelable invariants . . . . . . .. ... ... ... ... ..., 137
Stronger iRC11 rules for cancelable invariants . . . . . ... ... ... ... ........ 139
Properties of the RA FRACVIEWR for cancelable invariants . . . ... ... ... ...... 142
The interface of non-atomic invariants . . . . . ... ... ... ... ... ... ... .. 144
Message-Passing with Loops . . . . . . . . . . . . o e 146
Hoare proof outlines formp . . . . . . . . . . . .. 148
Message-Passing with Reclamation . . . . . .. . . . . . . .. ... 150
Hoare proof outlines for mp_reclaim . . . . . . . .. ... .. ... ... 151
Derived iRC11 atomic access rules with the view-join modality . . . . ... ... .. .. .. 153
A Spawn-and-Join library . . . . . ... e 154
Hoare proof outlines for SPAWN-SPEC . . . . . . v v v v v it i e e e e e e e e e e e e 156
A simple release-acquire implementation for Treiber stacks . . . . . . . ... ... ..... 157
Bag or per-element specifications for Treiber stacks . . . . . ... ... ... ... ..... 159
Hoare proof outlines for try_push_swap . . .. ... ... ... ... ... . ... ..... 163
Hoare proof outlines for try_pop . . . . . . . . . . . e e 164
Key rules for cancelable invariants in Iris-SC . . . . . . . ... ... ... .. ... .. ... 175
Selected rules of SC RustBelt’s lifetime logic . . . . ... ... .. ... ........... 182
The life cycle of borrows and lifetimes . . . . . . ... .. ... ... ... ... . . ... . 182
MP verified with the lifetime logicinIris-SC. . . . . . . . . . . ... ... ... ... 184
More selected rules for lifetimes and full borrows, ported to Ag,ss + ORC11 . . . . .. .. 189
Selected rules for other borrow alternatives, sound in Agyse + ORC11 . . . . . . .. .. .. 193
Rules for GPS Persistent Concurrent Protocols . . . . . . . . ... ... ... ... ..... 204
CAS Rules for GPS Persistent Concurrent Protocols . . . . .. ... ... ... ....... 206
Rules for auxillary assertions of GPS Single-Writer Protocols . . . . ... ... ... .... 210
Selected rules for Cancelable Single-Writer GPS Protocols . . . . . . . .. ... ... .. .. 212
Selected basic rules for Atomic-Borrows-based GPS Protocols . . . . . .. ... ... .. .. 215
Selected read and write rules for Atomic-Borrows-based GPS Protocols . . . . ... .. .. 217
A CAS rule for Atomic-Borrows-based GPS Protocols . . . .. ... ... .......... 218
Selected rules for assertions of middleware GPS protocols . . . . . ... ... ....... 220
A Arust Version of Rust’s RMC RWLOCK<T> . . . . o o o v i i e e e e e e e e e e e e e 228

Implementation of Core Arc . . . . . . . . . e e e e e e e e 239



19.2
19.3

21.1
21.2

22.1
22.2

23.1
23.2
23.3
23.4
23.5

24.1

List of Figures xiii

Counting permissions for COre Arc . . . . . . o v v i i i e e e e e e e 241
A truncated history of the Arccounter . . . . . . .. ... ... e 247
Specifications of Queue operations, from sequential, to SC concurrency and strong RMC . 259
A Message-Passing (MP) client with Queues . . . . . ... ... ... ... ......... 261
Compass Specs for QUEUES . . . . . . . . . o it e e e e e e e e 264
A proof sketch of Message Passing with queues . . . ... ... ... ............ 267
Full LAT2PS specs for qUEUE . . . . o v oo 274
A release-acquire Michael-Scott queue . . . . ... ... ... o 275
An RMC Herlihy-Wing Queue . . . . . . . . . . . . ittt et 277
LAT,, specsforstack . . ... ... ... ... ... .. ... 288
LAT,, Stack COnSIStENCY . . . . . . . . o v ittt 289
LAT,, specs for exchangers (excerpt, simplified). . . . . ... .. ...... ... ... ... 293






List of Tables

16.1

18.1

19.1
19.2

Comparison of BOITOW tyPeS . . . . v v v v v i e et e e e e e e e e e e e e e e 192
A summary of Rust types for RwLock<T>and itslock guards . . . . ... ... ........ 226
An excerpt of Rust’s Arc<T>and Weak<T>APIs . . . . . . . . . .. 245
Rust’s implementation (excerpt) of Arc::get_mut and Arc::drop . . .. ... ... .... 246






Glossary

SC Sequential Consistency
RMC Relaxed Memory Consistency/Concurrency
CSL Concurrent Separation Logic

Cl11 C/C++ 2011 Standards
RC11 Repaired C11

ORC11 Operational Repaired C11

xvii






Introduction

Reasoning about concurrency is hard, due to the explosion of possible
interactions between threads running in parallel. In the traditional
concurrency model of sequential consistency®, every thread takes turns to
execute its atomic instructions, and the behavior of a concurrent program
is defined as all interleavings of all threads’ atomic instructions. As
such, if one needs to verify some property of the program, one would
need to check that property for every possible interleaving of the atomic
instructions performed by the threads. This is low level and hard to scale:
if we want to compose our verified libraries, then we would have to look
at the compositions of their interleavings, and we would have to make
sure that the properties they have been verified against are compatible
with interleaving composition. In order to scale verification to more
intricate programming language features and algorithms, we need more
abstract and modular reasoning principles.

CONCURRENT SEPARATION LoGIcs? (hereafter, CSLs) provide a feasible
approach to abstract and modular control of interference: instead of
thinking in terms of interleavings, we can reason about each thread more
modularly by thinking in terms of the resources that the thread owns.
The resources owned by each thread are “separated” from those of other
threads, and encode the thread’s permissions on the shared memory’s
fragments that it owns. As a result, they can restrict how other threads
may interfere with the current thread’s execution. This “separation”
idea has led to long research lines on highly expressive logics or logic
frameworks® that have been applied to various sophisticated concurrency
verification problems. Among these problems includes reasoning about
realistic relaxed memory concurrency*—the main focus of this dissertation.

RELAXED MEMORY CONCURRENCY. Sequential consistency (hereafter,
SC)—the interleaving model of concurrency in which threads take turns
accessing the global state, and all threads share the same view of that
state—does not reflect what is going on in modern multicore program-
ming languages. In reality, multicore hardware employ rich hierarchies
of caches to improve memory access performance, with which a CPU’s
write may not immediately reach the main memory, or may not be im-
mediately visible to all other cores, or may not be visible to all other
cores at the same time. To further improve performance, both hardware

ILamport, “How to Make a Multipro-
cessor Computer That Correctly Executes
Multiprocess Programs” [Lam79].

2(0’Hearn, “Resources, concurrency, and

local reasoning” [O’HO7]; Brookes, ‘A
Semantics for Concurrent Separation
Logic” [Bro07].

3Just to list a few: [VPO7; FFS07; Fen09;
Fu+10; DY+10; JB12; SB14; RPDG14;
RP+16; Nan+14; SWTI18; Kro+20;
TDB13; Jun+15; Jun+18b; Cha+21;
FKB21; G+22].

4[VN13; TVD14; DV16; DV17; Kai+17;
Sve+18; He+18; Dan+20a; MJP20].



2 Introduction

5[Bat+11; Kan+17; Pul+18; Flu+17;
Lah+17; Pul+19; CV19; PIV19; Lee+20;
Cho+21b; Sim+20; Cho+22; Lee+23].

6Batty et al., “Mathematizing C++ con-

currency” [Bat+11].

7potentially partially, with minor modifi-

cations or simplifications.

8[BP19; WRP19; DSM18; Wat+20].

9The word “consistency”, used e.g., in se-

quential consistency or relaxed memory

consistency, can be understood as the con-

sistency among the views of the threads
(or processors) on shared memory.

10[yN13; DV16; DV17; TVD14].

1.1

and compilers can analyze dependencies of memory accesses to apply
optimizations: if the effects of two memory accesses are independent,
they can be executed independently. In short, from the perspective of
programmers, memory accesses instructions can be executed out-of-order
in modern programming languages.

To match this modern reality, we need models of so-called relaxed
memory concurrency (hereafter, RMC) at the programming-language level
that provide an abstraction over different hardware architectures and
compilers. However, due to the complexity of hardware behaviors and
desirable optimizations, the formal semantics of RMC models (at both
hardware level and language level) still require extensive ongoing re-
search.” Nevertheless, the goal of this dissertation is not to find the right
model that captures all relaxed memory features. Here, I take as assump-
tion a language-level memory model whose features have stabilized over
years of research, and present how to build RMC separation logics that
can scale up to very substantial verification efforts.

Reasoning about Relaxed Memory Concurrency

This dissertation focuses on the relaxed memory model of C/C+ +, which
was first proposed in the C++11 standard and was formalized by Batty
et al.,® and is now broadly adopted’ by the RMC models of Rust, Java,
OCaml, JavaScript, and WebAssembly.® The C/C++ RMC model (here-
after, C11) supports a variety of different consistency levels for shared-
memory accesses, which intuitively dictate how much reordering can
be applied to the accesses. For programmers who demand the simpler
SC concurrency model where there is strong synchronization between
threads (so that they have the same view of shared memory), SC accesses
are available.” This strength, however, comes at the cost of disabling
reordering optimizations and inserting expensive memory fences into
the compiled code. The weaker consistency levels of release/acquire and
relaxed allow one to trade off synchronization strength in return for more
efficient compiled code. These different consistency levels are widely
employed in performance-critical concurrency libraries such as locks,
reference-counting, stacks, queues, read-copy-update (RCU), and so on.

Compared to SC, reasoning about RMC is significantly more compli-
cated: relaxed-memory programs have many more behaviors depending
on which consistency levels are employed. In fact, some useful reasoning
principles in SC logics are no longer sound for reasoning about relaxed
behaviors. Furthermore, such behaviors are defined in C11 not in the
familiar style of interleavings, but by an axiomatic semantics, in which the
allowed behaviors of a program are defined by enumerating candidate
executions (represented as “event graphs”) and then restricting attention
to the executions that obey various coherence axioms. Vafeiadis et al.
overcome these challenges and provided the first abstract and modular
reasoning principles for C11 in form of various RMC separation logics.!°

However, in building these logics, Vafeiadis et al. were not able
to use the standard model of Hoare-style program specifications from



RustBelt Relaxed: Verifying the Soundness of Rust’s Type System in RMC 3

prior CSLs because notions like “the machine states before and after
executing a command c¢” do not have a clear meaning in C11’s axiomatic
semantics. Instead, they had to come up with new, non-standard models
of separation logic in terms of predicates on event graphs. Unfortunately,
the complexity of these new models has made them challenging to adapt
and extend to more complex settings, for example in verifying Rust’s
type system. Furthermore, although the soundness of these logics has
been verified formally in Coq, there has thus far been no tool support to
perform machine-checked verifications of RMC programs or libraries in
these logics.

To scale the reasoning principles of concurrent separation logic to
realistic languages like C/C++ or Rust, which encompass many inter-
weaving complex features, we need a few ingredients: (1) strong but
abstract reasoning principles so that we can avoid the too tedious details
of the underlying concurrency model; (2) modular reasoning so that we
can compose smaller verification results into larger ones; (3) reasoning
extensibility so that we can derive new reasoning principles for both
complex language features and algorithms without rebuilding our logic
from scratch; and (4) machine-checked verifications so that we do miss
potential bugs in our proofs—both in soundness proofs of our logics
and in program verifications. Only recently was it possible to acquire
these ingredients at once with the CSL framework Iris,'! which comes
with strong tactic support in Coq.'? Using Iris, Jung et al.'® have verified
the soundness of the Rust’s type system, and thus have demonstrated
the scalability of CSLs to complex languages such as Rust, even though
only for the SC memory model. Meanwhile, my collaborators and I had
previously re-proven the soundness of Vafeiadis et al.’s RSL and GPS
logics in Iris, and demonstrated the possibility of building extensible
RMC separation logics, even though only for a small fragment of the C11
model.'*

I, together with my collaborators, have developed strong, abstract,
modular, extensible, and machine-checked RMC separation logics in
Iris that scale to substantial verification efforts, for an also substantial
fragment of C11 whose features have stabilized over years of research,
namely the RC11 (Repaired C11) model.'® In this dissertation, I present
the abstractions needed to build such logics. I report two main contribu-
tions that rely on those logics:

1. RustBelt Relaxed:'® the soundness proof of the Rust’s type system
in RMC, where relaxed memory effects are encapsulated behind
the safe interface of libraries and thus are not visible to clients; and

2. Compass:!” the compositional specification and verification of re-
laxed memory libraries, where relaxed memory effects are exposed
to clients of such libraries.

1.2 RustBelt Relaxed: Verifying the Soundness of Rust’s Type Sys-

tem in RMC

Rust!® is a young and evolving programming language that aims to

Njung et al, “Iris: Monoids and
Invariants as an Orthogonal Basis for Con-
current Reasoning” [Jun+15]; Jung et al.,
“Higher-order ghost state” [Jun+16];
Krebbers et al.,, “The Essence of
Higher-Order Concurrent Separation
Logic” [Kre+17]; Jung et al., “Iris from
the ground up: A modular foundation
for higher-order concurrent separation
logic” [Jun+18b].

12Krebbers et al.,, “Interactive Proofs
in Higher-Order Concurrent Separation
Logic” [KTB17]; Krebbers et al., “MoSeL:
A General, Extensible Modal Frame-
work for Interactive Proofs in Separation
Logic” [Kre+18].

13Jung et al.,, “RustBelt: Securing the
Foundations of the Rust Programming Lan-
guage” [Jun+18a].

l4Kaiser et al., “Strong Logic for Weak
Memory: Reasoning About Release-
Acquire Consistency in Iris” [Kai+17].

15Lahav et al., “Repairing sequential con-
sistency in C/C++11” [Lah+17].

16Dang et al., “RustBelt Meets Relaxed
Memory” [Dan+20a].

17Dang et al., “Compass: strong and com-
positional library specifications in relaxed
memory separation logic” [Dan+22].

18Klabnik and Nichols, The Rust Program-
ming Language [KN18].



4 Introduction

YJung et al., “RustBelt: Securing the
Foundations of the Rust Programming Lan-
guage” [Jun+18a].

bring safety to systems programming. Specifically, Rust provides low-
level control over data layout and resource management a la modern
C++, while at the same time offering strong high-level guarantees (such
as type and memory safety) that are traditionally associated with safe
languages like Java. In fact, Rust takes a step further, statically preventing
more forms of anomalous behavior, such as data races and iterator
invalidation, that safe languages typically fail to rule out. Rust strikes
its delicate balance between safety and control using a substructural
type system, in which types not only classify data but also represent
ownership of resources, such as the right to read, write, or reclaim a piece
of memory. By tracking ownership in the types, Rust is able to prohibit
dangerous combinations of mutation and aliasing, a well-known source
of programming pitfalls and security vulnerabilities in C/C++ and Java.

Nevertheless, Rust’s ownership-based type system is not always ex-
pressive enough to type-check very delicate programming idioms, e.g.,
some pointer-based data structures, synchronization abstractions, garbage
collection mechanisms. To allow for these mechanisms, Rust supports
extension to the type system via libraries whose implementations inter-
nally utilize unsafe features (e.g., unchecked type casts, array accesses
without bounds checks, or accesses of “raw” pointers who are untracked
by the type system). Given that these libraries are not checked by the
type system, it is now the responsibility of libraries developers to make
sure that these extensions are actually safe, in the sense that they have
properly encapsulated the uses of unsafe features within their “safe APIs”.
Unfortunately, as the language is evolving and libraries are being updated
or created, it is not clear what such encapsulation formally means.

RustBelt!? is the first work on the formal foundations of the Rust
programming language, in which it covers not only the soundness of the
ownership-based type system, but also the safe encapsulation by Rust’s
extensions via libraries. RustBelt managed to formalize such interactions
between the type system and the extensions in the presence of complex
language features like recursive types and higher-order state. Further-
more, all proofs were machine-checked in Coq. Unfortunately, while
ground-breaking, RustBelt assumes the SC memory model. Therefore,
even though RustBelt’s results increase the confidence in the safety of
Rust’s type system and libraries, the results cannot yet be applied to
actual Rust code, which relies on the C11 memory model.

To circumvent this problem, we developed RustBelt Relaxed (or RB 1y,
for short), the first formal validation of the soundness of Rust under RMC.
Although based closely on the original RustBelt, RB,14 takes a significant
step forward by accounting for the safety of the more weakly consistent
memory operations that real concurrent Rust libraries actually use. For
the most part, we were able to verify Rust’s uses of relaxed-memory
operations as is. Only in the implementation of one Rust library (Arc) did
we need to strengthen the consistency level of two memory reads (from
relaxed to acquire) in order to make our verification go through. And
in one of these cases, our attempt to verify the original (more relaxed)
access led us to expose it as the source of a previously undetected data
race in the library. Our fix for this race has since been merged into the



1.3

Compass: Strong and Compositional Specifications of Relaxed-Memory Libraries 5

Rust codebase.??

SYNCHRONIZED GHOST STATE. The main technical challenge of porting
RustBelt to RMC is relevant not just to Rust but to relaxed-memory ver-
ification in general: namely, that existing work on separation logic
does not provide an adequate foundation for reasoning about re-
source reclamation under relaxed memory. Resource reclamation
under relaxed memory intertwines resource accounting and physical syn-
chronization: one needs to make sure that resources provided to every
client thread must be returned completely and with proper synchro-
nization. As a result, more care is needed when designing and proving
relaxed memory reasoning rules. Fortunately, in RB;;, we show that
changes in the rules needed to support reclamation are minimal and can
be handled fairly routinely, thanks to a novel notion of synchronized ghost
state: ghost state that is tied to physical synchronization so that it can be
used for safe, well-synchronized resource accounting.

Compass: Strong and Compositional Specifications of Relaxed-
Memory Libraries

Existing RMC separation logics have been applied to verify tricky RMC
algorithms such as locks, stacks, queues, read-copy-update,?! and ref-
erence counting,?? as well as the RB,1, work. However, these works

23__see more below) only verify implementations against

(except Cosmo
some “reasonable” specifications that are sufficient for their respective
purposes, but do not necessarily capture their full functional correctness.
For example, as we will see, even with unsafe features, the RMC libraries
verified in RB,1, only need specifications strong enough to verify the
soundness of Rust’s type system, which focuses on safety and does not
expose relaxed behaviors to users. As another example, the queue speci-
fication in GPS?* only captures the fact that a dequeue is synchronized
with the enqueue that it is matched with, but not the standard first-in-
first-out (FIFO) property of queues. Stronger functional correctness CSL
specifications (from now on, specs for short) for RMC libraries thus are
needed, especially for clients that build new libraries out of smaller ones
and rely on certain relaxed behaviors of the constituent libraries to verify
their library’s implementation.

However, unlike in the SC setting, in RMC verification research there
is no canonical way to specify full functional correctness of a library
that may expose relaxed behaviors. While linearizability® is the de
facto standard correctness condition for concurrent libraries, it does not
extend to many highly concurrent libraries, including those in RMC:
these libraries tend to have less synchronization or control, and it may
be that a linearization is extremely difficult to construct (e.g., Herlihy-
Wing queue) or that the library has no useful sequential behaviors (e.g.,
exchangers?®). Therefore, various linearizability-like criteria have been
proposed as alternatives,?” especially for relaxed memory.?® These works
essentially share one basic idea in relaxing linearizability: instead of
requiring a total order on a library’s operations, one only requires that

20Jourdan, Insufficient synchronization in
Arc::get_mut [Joul8].

21 Tassarotti et al., “Verifying read-copy-

update in a logic for weak mem-
ory” [TDV15].
22Doko and Vafeiadis, “Tackling

Real-Life Relaxed Concurrency with
FSL++” [DV17].

23Mével et al.,, “Cosmo: a concur-
rent separation logic for multicore
OCaml” [MJP20].

24Turon et al., “GPS: navigating weak
memory with ghosts, protocols, and sep-
aration” [TVD14]; Kaiser et al., “Strong
Logic for Weak Memory: Reasoning
About Release-Acquire Consistency in
Iris” [Kai+17].

25Herlihy and Wing, “Linearizability: A
Correctness Condition for Concurrent Ob-
jects” [HW90].

26[SLS05; HRV15].

27[Hen+13; JR14; Der+14; Haa+16;
Nei94; AKY10; Bur+14; CRR15].

28[Bur+12; BDG13; Jag+13; Doh+18;
Don+18; Raa+19; EE19; Kri+20].



6 Introduction

29Rocha Pinto et al., “TaDA: A Logic for
Time and Data Abstraction” [RPDG14];
Svendsen and Birkedal, “Impredicative
Concurrent Abstract Predicates” [SB14];
Jung et al., “Iris: Monoids and Invariants

as an Orthogonal Basis for Concurrent Rea-

soning” [Jun+15]; Jung et al., “The future
is ours: prophecy variables in separation
logic” [Jun+20].

30Mével and Jourdan, “Formal verification
of a concurrent bounded queue in a weak
memory model” [MJ21].

31Mével et al., “Cosmo: a concur-

rent separation logic for multicore
OCaml” [MJP20].

32Dolan et al., “Bounding data races in
space and time” [DSM18].

33Raad et al., “On library correct-

ness under weak memory consistency:

specifying and verifying concurrent li-
braries under declarative consistency mod-

els” [Raa+19].

operations respect some partial orders. These works, however, have little
support for modular client reasoning. Therefore, we want to improve the
proposed relaxations of linearizability with Hoare-style specs to support
better modular reasoning about clients who rely on strong correctness
guarantees of RMC libraries.

Accordingly, our starting point is logical atomicity,’® a key proof
technique to achieve strong specs and modular client reasoning in (SC)
CSLs. Logically atomic specs are similar to Hoare-triple based specs, but
they allow atomic access to the exact, up-to-date abstract state of the data
structure. As such, they provide the abstraction that an operation takes
effect atomically on the data structure’s abstract state, so that clients
can build a concurrent protocol to govern how the data structure is used
(how the state can evolve). If the client wants to compose multiple data
structures, they can further build a protocol for multiple abstract states,
all the while enjoying the benefits of separation logics.

Logical atomicity has been applied mostly in the SC setting, and only
recently did Mével and Jourdan®® demonstrate its use to give stronger
CSL specs for RMC libraries. Unsurprisingly, the application of the tech-
nique needs to account for relaxed behaviors: Mével and Jourdan needed
to combine logical atomicity with the tracking of some synchronization
information among library operations, reminiscent of the partial orders
from the relaxations of linearizability. But they only needed limited

31 is sound only for

synchronization tracking, because their logic, Cosmo,
the Multicore OCaml memory model,*? and they only gave one spec for
a concurrent queue and verified one client.

Consequently, the Cosmo-style specs does not scale to libraries or
clients that rely on interacting relaxed behaviors. More specifically, while
Cosmo specs expose internal (to the implementation) synchronizations
among operations, they do not take into account how additional exter-
nal synchronizations created by clients or other libraries can affect the

behaviors of the library in question.

LOGICAL ATOMICITY AND RICHER PARTIAL ORDERS. We generalize Mével
and Jourdan’s approach by combining logical atomicity with richer
partial orders inspired by the relaxations of linearizability, so that we
can give stronger specs for more weakly consistent libraries, in the
more relaxed memory model RC11. But, given the plethora of partial
orders from those relaxations of linearizability, which one should we
use? We believe the event-graph based criteria proposed by Raad et al.>3
(“Yacovet”) are the most general, because in that framework a verifier
can give a library stronger or weaker specs by choosing the partial orders
they prefer and by stating suitable library-specific consistency conditions
on the partial orders. Therefore, we decided to encode Yacovet criteria
in our separation logic and enhance them further with logical atomicity.
As such, we can give strong and compositional Hoare-style specs for
RMC libraries, with better support for modular client reasoning, in a new
framework called Compass. We demonstrate the strength, satisfiability,
and support for client reasoning of our specs with multiple mechanized
libraries and client verifications.



Compass: Strong and Compositional Specifications of Relaxed-Memory Libraries 7

Part IV

Stacks and Queues (§23) Exchanger and Elimination Stack (§24)

/

Compass Specs (§22)

!

Logical Atomicity Review (§21)

Arc (819) RwLock (§18)

| =

The Relaxed Lifetime Logic (§16) GPS Protocols (§17)

!

The SC Lifetime Logic Review (§15)

RustBelt Review (§14)

Part I1
Example Verifications (§12)
Non-Atomic Points-To (§9) ——— Atomic Points-To (§10) RMC General Invariants (§11)
vProp (8§8)

!

Base Logic (§7) «———— Iris Review (§6)

e

Part1 Arust (§4)

C11/RC11 Review (§2) ——> ORC11 (§3)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FIGURE 1.1: Dependency graph of this dissertation’s chapters and the concepts that they introduce.



8 Introduction

341t indeed delayed the publication of the
RBr1x work by a year.

35Turon et al., “GPS: navigating weak

memory with ghosts, protocols, and sep-

aration” [TVD14]; Kaiser et al., “Strong
Logic for Weak Memory: Reasoning
About Release-Acquire Consistency in
Iris” [Kai+17].

36Jourdan, Insufficient synchronization in
Arc::get_mut [Joul8].

1.4 Structure

This dissertation is composed of three parts: Part II presents the basic
layers needed to build RMC separation logics with Iris, while Part III
and Part IV discuss how such logics can be extended and/or applied
for RustBelt Relaxed and Compass, respectively. Part III and Part IV are
independent from each other, but both rely on materials presented in
Part II. Each part will discuss the context, the challenges, the solutions,
and the results separately, as well as related and future work in detail.
The conclusion (Chapter 26) provides a high level summary and potential
future research directions. Note that Figure 1.1 (page 7) provides the
dependency graph for the main chapters in this dissertation.

Part I presents ORC11, an operational variant of RC11 that is needed
to instantiate Iris. It provides a brief background review on relaxed
memory models, which readers who are familiar with the topics can skip.
The most important feature of ORC11 is its race detector—an operational
account for data races, which need meticulous care and significantly
complicate the soundness proof of iRC11.34

Part II discusses the features and the construction of iRC11, our ex-
tensible RMC separation logic for ORC11. It first provides a review of
the Iris framework. The main chapters of Part II flesh out the abstraction
layers needed to build the various core reasoning principles of iRC11: its
modalities, and its non-atomic and atomic points-to assertions, and its
forms of invariants, including cancelable invariants that employ synchro-
nized ghost state. The atomic points-to assertion is a novel contribution of
this dissertation that has not been published elsewhere. The extensibility
of the construction will be demonstrated by the fact that iRC11 not only
can incorporate all reasoning principles from all other RMC separation
logics, but also can extend and combine them with iRC11’s own novel
reasoning principles.

Part III discusses the proofs of the RustBelt Relaxed work. It first
provides an overview of Rust and RustBelt, and briefly explains the
soundness proof the Rust’s type system, which crucially depends on the
lifetime logic. The remaining chapters of Part III elaborate on how iRC11’s
synchronized ghost state and cancelable invariants are used in re-proving
the lifetime logic and in re-verifying the concurrent standard libraries of
Rust that use relaxed memory operations (e.g., Mutex, RwLock, or Arc).
The library verifications depend crucially on a combination of cancelable
invariants and GPS single-location protocols.>> A bit of history on how the
bug in Arc was found will be provided.3°

Part IV presents the Compass specification framework. It starts by
reviewing logical atomicity in both SC and RMC settings, as well as
the event-graph based Yacovet specs. It then presents how to encode
Yacovet specs in iRC11 with logical atomicity. The remaining chapters
present the library verifications and client verifications of various RMC
data structures, relying on a general notion of multi-location invariants
in combination with the atomic points-to assertions. I will also touch on
the topic of helping (cooperation) with logical atomicity, and its role in
the specs of exchangers. Some of the specifications and verifications are



the first-ever performed in the relaxed memory setting.

1.5 Publications and Collaborations

This dissertation contains the work of the following two papers:

[Dan+20a]: Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver
Kaiser, Derek Dreyer. “RustBelt Meets Relaxed Memory”, appeared
in POPL 2020.

[Dan+22]: Hoang-Hai Dang, Jachwang Jung, Jaemin Choi, Duc-
Than Nguyen, William Mansky, Jeehoon Kang, and Derek Dreyer.
“Compass: Strong and Compositional Library Specifications in Re-
laxed Memory Separation Logic”, appeared in PLDI 2022.

While reusing much of the text from these two papers, the dissertation
provides substantially more in-depth details—many of which have not

been presented before—in a coherent structure. The following contents

are new and have not been discussed elsewhere:

§3.4: the details of ORC11’s race detector;
§7: the detailed model of the iRC11 base logic;
§8: the models of various iRC11’s modalities;

89: the model of the non-atomic points-to assertion, which depends
tightly on ORC11’s race detector;

§10: the model of the atomic points-to assertion;

§11: the detailed interfaces and models of iRC11 objective invariants
and cancelable invariants;

§12: several example verifications demonstrating many intermedi-
ate abstractions provided by iRC11;

§16: more details on how the lifetime logic was ported to iRC11;

§17: the detailed model of GPS single-location protocols, built atop
atomic points-to;

§19: the detailed verification of Rust’s standard library Arc;

§22: the detailed interpretations of Compass specs in iRC11 with
logical atomicity;

§23: the verifications of stacks and queues against Compass specs;

§24: a more complete spec of the exchanger with helping.

Some of the ideas in this work were originally developed in iGPS
([Kai+17]: Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav,
and Viktor Vafeiadis. “Strong Logic for Weak Memory: Reasoning About
Release-Acquire Consistency in Iris”, appeared in ECOOP 2017) of which
I was a co-author. Although iGPS is not a part of this dissertation, I
contributed to those ideas and have ported them fully into iRC11.

Publications and Collaborations

9



10 Introduction

COLLABORATIONS. The two papers mentioned above, on which this dis-
sertation is based, are the results of delightful collaborations. Although
I led the efforts in both works, they would not have been achievable
without the team efforts of many fellow researchers.

For RBy1x, the ORC11’s race detector and the model of GPS protocols
were inspired by those developed for iGPS, which in turn was the result
of collaborations with Jan-Oliver (Janno) Kaiser. The flaw of the initial
ORC17’s race detector was found by Derek Dreyer, and after I fixed
the design, it was Janno that led the (on-paper) correspondence proof
between RC11 and ORC11. I proved most of the soundness of the iRC11
logic, but I collaborated with Jacques-Henri Jourdan to construct the
models of several iRC11 modalities. It was Jacques-Henri who used
iRC11 to re-prove the soundness of the lifetime logic. I re-verified the
Rust concurrent libraries by substantially extending the original proofs in

%7Jung et al., “RustBelt: Securing the SC RustBelt.?” It was also Jacques-Henri’s original suggestion to re-prove

giirglgf tg?gfliflgl:f{u“ Programming Lan- the model of GPS protocols directly on top of iRC11, instead of on top of
the base logic from Iris’ instantiation as in iGPS. I only completed that
task 2 years later.

For Compass, I encoded the Yacovet specs in iRC11 with logical atom-
icity, and verified library implementations against those specs. I collabo-
rated with Jaechwang Jung and Jaemin Choi to refine those specs to cater
to the linearizablity-style specs, but those specs are not included in this
dissertation. Together with all other co-authors, we performed the client
verifications that used the specs reported in [Dan+22].

CoQ ARTIFACTS. Unless noted explicitly, all definitions and proofs in this
dissertation are formalized in Coq. The follow repositories contain the
respective Coq developments and instructions for how to build and use
them.

* ORC11:
https://gitlab.mpi-sws.org/iris/gpfsl/-/tree/master/orci1
* iRC11:
https://gitlab.mpi-sws.org/iris/gpfsl/-/tree/master/gpfsl
* RBrlx:

https://gitlab.mpi-sws.org/iris/lambda-rust/-/tree/masters/
weak_mem

* Compass:

https://gitlab.mpi-sws.org/iris/gpfsl/-/tree/master/gpfsl-examples


https://gitlab.mpi-sws.org/iris/gpfsl/-/tree/master/orc11
https://gitlab.mpi-sws.org/iris/gpfsl/-/tree/master/gpfsl
https://gitlab.mpi-sws.org/iris/lambda-rust/-/tree/masters/weak_mem
https://gitlab.mpi-sws.org/iris/lambda-rust/-/tree/masters/weak_mem
https://gitlab.mpi-sws.org/iris/gpfsl/-/tree/master/gpfsl-examples

Part I

OPERATIONAL SEMANTICS FOR RELAXED MEMORY






This thesis discusses the features and the construction of iRC11, a
concurrent separation logic that is sound for the relaxed memory model
RC11.38 We do not assume prior knowledge either on relaxed memory
models or concurrent separation logics. Therefore, in this part, we
discuss the semantics of relaxed memory concurrency. We start with
Chapter 2 to review relaxed memory models defined in axiomatic style,
specifically for the C11%° and RC11 models. Readers familiar with RMC
can freely skip this review, unless they are interested in the specific
details of the RC11 model. Then, in Chapter 3, we present our first
contribution: ORC11, an operational version of RC11 that is geared to
complement the Arys; language used in RustBelt,*® which is presented in
Chapter 4. Developing an operational semantics for RC11 is a necessary
prerequisite for instantiating Iris. The bottom half of Figure 1.1 visualizes
the dependency among these chapters.

Publications and Collaborations 13

38Lahav et al., “Repairing sequential con-
sistency in C/C++11” [Lah+17].

39Batty et al., “Mathematizing C++ con-
currency” [Bat+11].

40Jung et al., “RustBelt: Securing the
Foundations of the Rust Programming Lan-
guage” [Jun+18a].






Background: Relaxed Memory Models

The goal of hardware and language relaxed memory models is to give an
abstraction for the possibility (or impossibility) of out-of-order behaviors
for relaxed memory accesses, which are induced by hardware and/or
compiler optimizations. The models can be defined in form of either
operational or axiomatic semantics. RMC operational semantics typically

involve some kind of buffers (e.g., write buffers in x86-TSO)! to delay 1Sewell et al., “x86-TSO: a rigorous and
usable programmer’s model for x86 multi-

the effects of memory accesses and thus make them appear out-of-order. processors” [Sew-+10].

Axiomatic semantics, on the other hand, define a set of constraints

(axioms) on several partial orders among memory accesses in a candidate

execution—accesses not so tightly ordered can thus be executed out-of-

order. In this chapter, we review the axiomatic semantics of C11? and 2Batty et al., “Mathematizing C++ con-
RC11.% More specifically, we review the intuitive semantics of C11 in §2.1, currency” [Bat+11].

then a formal excerpt of RC11’s partial orders and axioms in §2.2. In §3, 3Lahav et al., “Repairing sequential con-

we present ORC11, our operational version of RC11. sistency in C/C++11” [Lah+17].

C11, Intuitively

The C11 memory model offers several different modes of memory ac-
cesses, including non-atomic (na), relaxed (rlx), release (rel), acquire
(acq), and sequentially consistent (sc). Non-atomic accesses are “nor-
mal” data accesses, meaning that it is the programmer’s responsibility
to ensure that they are properly synchronized through other means. If
they are not properly synchronized—i.e., there is a data race involving
non-atomics—then C11 says the whole program has undefined behavior,
or UB for short. The remaining modes, collectively called atomic accesses,
are allowed to be racy and are indeed used to establish synchronization
among non-atomic accesses.

Example 2.1 (Message-Passing). To explain what synchronization ac-
tually means, we explore the Message-Passing examples in Figure 2.1.
In Example 2.1(a), we initialize two memory locations ¢, and ¢, to 0
non-atomically, then spawn two threads = (on the left) and p (on the
right). Thread 7 intends to pass a “message” to p. The message, 42, is
stored in ¢, (line 71). = then sets the boolean flag ¢, to 1 (line 72), to
signal to p that the message is ready to be received. Once p sees the flag
set (line p1), it attempts to read the message from ¢, (line p2). However,
both the intended value of 42 as well as the initial value of 0 could be

15



16 Background: Relaxed Memory Models

Ly i=na O;Ey *=na 0;

7wl lp i=r1x 42;
w2 Ly i=rx 1; p2:

((a)) MP with relaxed accesses.

Ly i=na 0; 4y :=na O;

7wl p i=na 42;
w2 by i=ra1 1; || p2:

pl: if *X¢, 1= 0 then
*xrixg ~ // 0 or 42

ly ‘=na 0§£y *=hna 0;
ml: by i=na 42; || pl: if "¢, 1= 0 then
w2 by =g 1; p2: MY /) 42
((b)) MP with SC accesses.
ly i=na 0§€y *=na 0;

7l by i=pa 42; || pl: if *™%(, 1= 0 then

pl: if**€9f, 1= 0 then
*naex; // 42

w2: fencerer; p2:  fence,cq;

m3: ly =rx 1; || p3: *nag.s // 42

((c)) MP with release-acquire accesses.

FIGURE 2.1: Message-Passing examples in
C11/RC11.

4Note that from thread s point of view,
such reordering does not really matter as
it cannot distinguish the effects, which,
on the contrary, are distinguishable to the
concurrently running thread p.

5According to C11, SC accesses can have
subtle behaviors when mixed with other
kinds of accesses. We refer interested read-
ers to the RC11 paper ([Lah+17]) for
more details. In this dissertation, we do
not focus on SC accesses. We only mention
them here for the purpose of demonstra-
tion.

((d)) MP with relaxed accesses and fences.

read. That is, even though p has read 1 from ¢,, it is not guaranteed
to read 42 from ¢,. This is because the relaxed accesses of ¢, are not
enough to establish synchronization between 7 and p.

In C11, threads are not synchronized by default: they each have their
own perspective on the values in shared memory, and thus may observe
memory events in different order. In Example 2.1(a), thread p may see
that 72 (n’s write to ¢,)) is executed out-of-order, before w1 (7’s write to
£,), and therefore p reads 0 from ¢, in line p2. What is happening under
the hood is that hardware and/or compilers may deduce that 7’s writes
are of independent memory locations, and thus may reorder them.*

C11, however, also provides certain ways of performing accesses such
that all threads can agree that one access is ordered before the other. In
particular, the remaining examples in Figure 2.1 present several ways to
create the happens-before relation between #’s write to £, (w1) and p’s
read from 7, (p2). We say to “establish synchronization” is to guarantee
somehow that two memory events of interest are in the happens-before
relation. Relaxed accesses are the weakest atomic accesses in C11 and
do not guarantee happens-before. Thus, in Example 2.1(a), the relaxed
accesses on ¢, do not establish synchronization between the accesses on
Ly

SC ACCESSES (sc) are the strongest option to establish synchronization,
and we use them in Example 2.1(b) for the accesses of ¢,.> If p’s read
of ¢, (line p1) is not zero, then it reads from =’s write of 1 to ¢, (line
72). By C11’s semantics of SC accesses, 72 happens before pl. Further-
more, SC accesses prevent all reorderings of other intra-thread accesses
around them—i.e., 71 cannot be reordered to after 72, and p2 cannot
be reordered to before pl. As a result, we know that w1 happens before
p2—or in other words, that p’s read of /¢, is synchronized with ’s write
to it. Since the write of 42 is the most recent write to ¢,, we know that
thread p must read 42 in p2.

RELEASE-ACQUIRE ACCESSES. Instead of using the costly SC accesses,
we can use the release-acquire idiom to establish synchronization, as in
Example 2.1(c). Here, 7 uses a release (rel) write in 72, and p uses an



2.2

acquire (acq) read in pl. If p1 reads 1 from 72, C11’s release-acquire
semantics on the location ¢, says that 72 happens before p1. Furthermore,
a release write prevents reordering other intra-thread reads and writes
that appear before it to after it, so, again, w1 cannot be reordered to after
w2. Conversely, an acquire read prevents reordering other intra-thread
reads and writes that appear after it to before it, so p2 cannot be reordered
to before pl. Consequently, we still have w1 happens before p2. Note that
release and acquire accesses are less costly to implement than SC accesses
because they allow more reordering around them. Nevertheless, they are
quite sufficient to establish synchronization in many RMC algorithms.®

RELEASE-ACQUIRE FENCES. We can also achieve release-acquire synchro-
nization using relaxed accesses with fences, as in Example 2.1(d). Here,
thread 7 performs a release fence (fence,e;) after the write to ¢,, and
then relaxedly (rlx) writes to ¢,. Meanwhile, p performs an acquire
fence (fence,cq) once it relaxedly reads 1 from ¢,. Note that there is
no happens-before relation between the relaxed accesses of ¢,, but C11
guarantees happens-before between the accesses of £, (lines 71 and p3)
through chains of the form “release fence — relaxed write — relaxed
read — acquire fence”. That is, synchronization is guaranteed between
the events before the release fence and the events after the acquire fence
if the two fences are connected by the relaxed write and read.

In terms of reordering, a release fence prevents reorderings of other
accesses before it (to after it) and relaxed writes after it (to before it),
while an acquire fence prevents reorderings of other accesses after it
(to before it) and relaxed reads before it (to after it). Combining those
restrictions with the fact that p1 reads from 73, we have that 71 happens
before p3.

DATA RACES. Note that in Example 2.1(a), where we do not have suf-
ficient synchronization between the accesses to /., the worst thing can
happen is that p would read unwanted values. However, if we were to
replace the rlx accesses of ¢, with non-atomic accesses (na), it would
constitute a data race and the program would exhibit undefined behav-
ior. In the remaining examples in Figure 2.1, we always have sufficient
synchronization (and hence no races) between the accesses of /.., so we
can use non-atomic accesses for those.

RC11, Formally

The axiomatic semantics of C11/RC11 relaxed memory models are de-
fined in two steps:

* first, we generate a set of candidate executions for the program
of interest, in form of graphs whose vertices are memory events
generated by the program’s memory accesses and whose edges are
several partial orders among the events;

* then, the behaviors of the program are those candidate executions
that satisfy the model’s consistency axioms.

RC11, Formally 17

6In x86-TSO ([Sew+101), release and ac-
quire accesses are the default and weakest
atomic accesses.



18 Background: Relaxed Memory Models

’Lahav et al., “Repairing sequential con-
sistency in C/C++11” [Lah+17].

2.2.1

8Alternatively, RC11 models an Update
event as a Read event immediately fol-
lowed by a Write event. Here we follow
C11. It is only a matter of presentation.

In the following, we provide an excerpt of the RC11 formalization—
following Lahav et al.” closely with minor presentation deviations—that
are relevant to the features used in this dissertation. Interested readers
can consult the original paper. Note that the formalizations in this chapter
are also not included in our Coq developments. Again, they can be found
in the RC11 paper’s artifacts.

Basic Definitions

A relaxed memory model only concerns about the possible orders between
memory accesses, and thus can be separated from the language syntax.
Therefore, we can delay our language syntax much later (Chapter 4).For
the bare minimum, we assume the abstract types Loc for memory loca-
tions and Val for values stored in memory, with meta-variables ¢ € Loc
and v € Val, respectively.

First, we need the type of memory access consistency mode:

Definition 2.2 (Memory Access Consistency Mode).

o € AccessMode ::= sc | acq | rel | relacq | rlx | na.

AccessMode’s LATTICE

naC o rlx C acq rlx C rel

rel C relacq acq C relacq oLC sc

Definition 2.3 (Memory Access Event). Each memory access generates
an event of type MemEvent, with the meta-variable ¢.

€ € MemEvent ::=R°(£,v) | W2(¢,v) | U7 (£, v, vy ) | FO.
Specifically:
* R°({,v): a Read of v from ¢, with access mode o € {na, rlx, acq, sc}.
* WO(¢,v): a Write of v to ¢, with access mode o € {na, rlx, rel,sc}.

* U°m% (¢, u,.,v,): a read-modify-write (Update) to ¢, with read value
v, and write value v,,, and read access mode o, € {rlx,acq,sc},
and write access mode o,, € {rlx, rel,sc}.®

* F°: a memory Fence, with o € {acq, rel, relacq, sc}.

Definition 2.4 (Memory Event Projections). For a memory event ¢, the
projections loc, mod, val,., and val,, respectively give ¢’s location, access
mode, read value and write value when applicable. More specifically,
locis only applicable for R, W, and U events; val,. is applicable for R and U
events; and val,, is applicable for W and U events.

For U events, mod is defined as follows:

o UTHrIX( ) mod = rlx e U9rX( ) mod ::= acq

o Uxrel( ) mod ::=rel o Uarel( ) mod ::= relacq



2.2.2

e U%%5¢(_).mod ::= sc

Notation 2.5 (Update Event Access Mode). Consequently, we also use
the following shorthand notations for Update events:

° Urlx( )::: Urlx,rlx( ) ° Urelacq( )::: Uacq,rel( )

° Urel(i) e Urlx,rel( ) ° Usc(f) s Usc,sc( )

e [jaca (7) - Urlx,acq (7)

Notation 2.6 (Memory Event Sets). The notations R, W, U, and F respec-
tively denote sets of Read, Write, Update, and Fence events.

We may also combine event sets, e.g., RW ::= R U W. We use subscript
and superscript respectively to filter the sets by accessed location and

access mode, e.g., W2 := {e € W|e.loc = £ A e.mod 3 rel}.

Notation 2.7 (Memory Event Relations). For a binary relation on events
R € MemEvent x MemEvent, R’, Rt, and R* respectively denote its re-
flexive, transitive, and reflexive-transitive closures. dom(R) and codom(R)
denote the domain and co-domain of R, respectively.

The notation R; ; Ry denotes the left composition of two relations
R; and R,. We assume that ; binds stronger than U and \. The notation
[A] stands for the identity relation on the set A. Consequently, [4] ; R
can be understood as filtering R on the left with A, while R ; [B] filters
R on the right with B. That is, [4] ; R = {(e4,€) € R|e, € A}, and
R; [B] = {(ea,e») € R|ep, € B}. Finally, [A] ; R; [B]= RN (A x B).

Given a function f, =; and #; denote the binary relations of pairs
that are f-equal and f-non-equal, respectively:

=7 = {(ca, &) | f(a) = f(ep)}
Ffu= {(easen) | fea) # f(ep)}

Meanwhile, given a relation R’, R|,, denotes the filtering of R with
respectto R, i.e., R|p = RNR'. For example, R\:loc and R| Lo denote
the relation R restricted to same and different locations, respectively.

Execution Graphs

Definition 2.8 (Execution Graph). An execution graph G is a tuple
(E, po, rf, mo):

* E is the set of memory events (MemEvent) in G.

* The program order po is a strict’ partial order that orders each
thread’s event by the program’s control flow. For simplicity, RC11
assumes that for each location /, E contains a Write event &f ::=
W"(¢,0) as the initialization for ¢. po is then required to order
initialization events before all other events, i.e., Eg X (E\ Eg) C po
where Ej ::= {ef € E} is the set of Es initialization events.

* The reads-from relation rf relates a write with a read that reads
from it, i.e.,

RC11, Formally 19

%It is irreflexive, i.e., (¢,€) ¢ po.



20 Background: Relaxed Memory Models

e (e,,0) 22w (e, 0) W ((,,0) — W"(£,,0)
o pon — N\
WX(0,,42) o - BIX(Z,, 1) W(ly,42) < o - R™X(4,1)
po| - pol | rf o rf |
erx(fy,l) T N, RIX(7,,0) erx(gy,l) - T R™X((,,42)
((2)) An execution of Example 2.1(a). ((b)) Another execution of Example 2.1(a).

(L, 0) — W0, 0 ) 2 W00

/ \ W (¢, 42) . /’erx(gwl)

(642) o R, ) RN
| (f > rf | Freb o (f e
rel e \\\ na v e \\\ ¥
W (€y7 1) R (&0742> wrlx(gy’ 1) P N Rna(£x742)

((c)) An execution of Example 2.1(c). .
((d)) An execution of Example 2.1(d).

FIGURE 2.2: Candidate executions of sev-
eral MP examples.

10Recall that an Update event is consid- () rf C [WU] ; =joc ; [RU];*° and
ered both a read and a write.

(ii) rf respects written and read values: ¢,.val,, = ¢,.val, for all
(ew,&r) € rf; and

(iii) rf is injective: if (¢,¢,) € rf and (€2,,¢,) € rf then el, = £2.

* The modification order mo is a strict partial order that gives a strict
total order on the write events of each location. That is, is a
disjoint union of the relations {moy,},;,. where moy is a strict total
order on (WU),.

The components are also used as projections, e.g., G.mo. In cases where
G is clear in the context, we may also drop the “G.” part and just use

Definition 2.9 (Candidate Execution). Execution graphs of a program P
encode prefixes of traces of events generated by the program’s memory
accesses and fences. A execution G is a candidate execution if it represents
a full trace generated by the whole program P.

Example 2.10 (Candidate Executions for MP). Figure 2.2 gives a few
candidate executions for several MP examples in Figure 2.1. We use filled
arrows, arrows, and dashed arrows—with the same colors—for
po, mo, and rf edges, respectively, between events. To avoid cluttering,
we sometimes elide edge labels and instead use the arrow style to make
the edge’s type evident.

Definition 2.11 (Complete Execution). An execution G is complete if ev-
ery read reads some written value, i.e., G.R C codom(G.rf). A candidate
execution is always complete, but the reverse is not always true.



Definition 2.12 (Derived Relations). RC11 defines the following derived
partial orders on execution graphs.

rb = (rf~!; mo) \ [E] (reads before)
eco = (rf Umo Urb)™ (extended coherence order)
rs = [WU] ; po\;oc s WO (o5 [U))* (release sequence)
sw = [EZ" ; ([F] s po)” ;rs; f ; (synchronized-with)

RO (o F) (25
hb ::= (poUsw)™ (happens-before)

psc ::= ... (elided) (partial SC)

e The reads-before relation rb relates a Read event ¢, and a Write
event ¢,,, where ¢, reads from (rf) a write that is mo-before &,,.
The “\ [E]” part is to exclude the case where an Update event reads
from itself.

¢ The extended coherence order eco is the transitive closure of rf, mo,
and rb, and is defined by RC11 to remedy C11’s behaviors for SC
accesses and fences.!!

* The release sequence rs of a Write event ¢,, contains (i) all later
same-thread, same-location (po|:|oc—later) atomic writes (WU=rx)
including the write ¢, itself—hence the reflexive closure (?) of
po|:|oc, as well as (ii) all Updates that recursively read from such
writes.

* The synchronized-with relation sw defines inter-thread synchroniza-
tion. A release event ¢, € EZ"! is synchronized with an acquire
event ¢, € EZ2°9_if ¢, (or, in case ¢, is a Fence event, some atomic
Read event that is po-before ¢;) reads from the release sequence of
€, (or in case ¢, is a Fence event, some atomic Write event that is
po-after £,). Note that the relation rs ; rf is between a Write event
and a Read event. The relations ([F]; po)” and (po; [F])” allow us to
extend rs ; rf to fences that come po-before and po-after the Write
and the Read events in rs ; rf, respectively.

* Most importantly, the happens-before relation hb formally defines
what global synchronization means, as the transitive closure of
the inter-thread synchronization sw relation and the intra-thread
program order po.

* Finally, the partial SC relation psc is defined by RC11 to rectify SC
behaviors, using a diligent combination of mo, rf, rb, eco, and hb.
The exact definition, however, is not in the focus of this dissertation
and therefore elided.

Example 2.13 (Illustrations of Derived Relations). Figure 2.3 demon-
strates the derived relations on several execution graphs. Figure 2.3(e)
especially demonstrates a fairly complex instance of the release sequence
rs relation with 4 threads, of which the middle 2 threads use Updates
(atomic read-modify-write instructions).

RC11, Formally 21

1 ahav et al., “Repairing sequential con-
sistency in C/C++11” [Lah+17].



22 Background: Relaxed Memory Models

W (L, 0) — W (£,,0) W (£, 0) — W"2(£,,0)

~
N

wx(e,,42) _

~

\\ R"lx(ﬁ 1)

N ST N

W(0,,42) S RTIX(L,, 1)

[T b |

-

wrlx(gy7 1) P

((a)) rb on the execution in Figure 2.2(a).

W"(ly,0) — W2 (4,,0)

erx(gm 0) wrlx(eyv 1) -~ s erx(em O)

((b)) eco (transitive closure elided) derived
from Figure 2.3(a).

WM(£,,0) — W (£, 0)
— N\

W"a(y,42) x A RX(4,,1)

Wha(l,,42) v " v R v
. Frel :V Faca
v sw N hb v
rs erlx £y, 1) -~ 4 s (0s,42)

o (vt )

((c)) rs, sw, and a part of hb on the execution

in Figure 2.2(c).

((d) rs, sw, and a part of hb on the execution
in Figure 2.2(d).

W"(L,,0) — W"3( ey,o

/
W (l,,42) :/\)/ Urlx(ﬁ 2,3) erx(éy,él)
¥ ’ 1S \/i v
rs erel (gy’ 1) ol :\\ Urlx &/7 3,4) Faca
v ' § vt
wx(2,,2) e lsiiooooo3 RP(642)

((e)) More complex rs, sw, and hb on an execution with Updates.

FIGURE 2.3: Illustrations of derived rela-

tions.

We use dotted arrows, dash-dot-dotted arrows, filled arrows, filled
arrows, and dash-dotted arrows, respectively for rb, eco, rs, sw, and hb
edges.

2.2.3 Consistency

Definition 2.14 (RC11-consistency). An execution G is RC11-consistent
if it is complete (Definition 2.11) and

e hb; eco’ is irreflexive; and (RC11-COHERENCE)
e psc is acyclic; and (RC11-SC)
e po U rf is acyclic. (RC11-NO-OOTA)

RC11-COHERENCE is the main axiom that give sane behaviors to most
memory operations—see Proposition 2.19 below. RC11-SC is the main
contribution of the RC11 work to give better semantics for SC accesses
and fences, which, again, is not in the focus of this dissertation and is
only stated here for completeness. The RC11-NO-OOTA condition is a
simple fix to forbid load-buffering (LB) behaviors, and therefore forbids

12Boehm and Demsky, “Outlawing ghosts: the out-of-thin-air problem'?—see Remark 2.21 below.
avoiding out-of-thin-air results” [BD14].



RC11, Formally 23

W (£, 0) — W (£, 0)

ly i=na ngy *=ha 0; / \

(£, 42)

|

7l ly =pa 42; || pl: if *™X(, 1= 0 then
w2 by =ax 1; || p2: *nag.; // racy

((a)) A racy MP program.

w(6,, 1) -

- R™X(2,,1)

Gace |

Rna (ZI , 7)

((b)) No hb is established between the accesses of

Ly

2.2.4 Data Races

2.2.5

Definition 2.15 (Races). Two events ¢, and ¢, are conflicting in an
execution G if they are on the same location and one of them is a write,
i.e., g4 # €p and g,.loc = gp.loc and {e,, e} N G.(WU) #£ .

The pair (g4,¢p) is called a race in G, denoted (g,,£5) € G.race,
if they are conflicting in G and neither happens before the other, i.e.,
(€a,€p) € hbUhb™™.

Definition 2.16 (Racy Executions). An execution G is called racy if there
is some conflicting event pair in G such that one of them is a non-atomic
access, i.e., I(eq,6) € G. N{eq,ep} NE™ £ &

Example 2.17 (Racy Execution of MP). A racy MP program and one
of its racy executions is given in Figure 2.4. The race is between the
non-atomic accesses of ¢, where no hb edge is established between the
accesses, because we use only relaxed accesses for ¢,,.

Program Behaviors

Definition 2.18 (RC11 Program Behavior). A program P has undefined
behavior (UB) under RC11 if it has some racy RC11-consistent execution.
Otherwise, its behaviors are defined by the set of RC11-consistent full
executions of P.

Proposition 2.19 (RC11 and C11 Coherence). RC11-COHERENCE is
equivalent to the conjunction of the following C11 axioms:'3

e hb is irreflexive. (C11-HB)
o 1f ; hb is irreflexive. (C11-NO-FUTURE-READ)
. ; rf 5 hb is irreflexive. (C11-CoRW)
° ; hb is irreflexive. (C11-Coww)
. chb; rf =1 is irreflexive. (C11-CowR)
. crf s hb s rf =1 s irreflexive. (C11-CoRR)

Example 2.20 (C11 Coherence). Cl1 coherence axioms are demon-
strated by several forbidden (non-consistent) behaviors'# in Figure 2.5.

* C11-HB ensures that hb is a strict partial order.

* C11-NO-FUTURE-READ (Figure 2.5(a)) says that a read may not
happen before the write that it reads from.

FIGURE 2.4: A racy execution of a racy
MP program.

13Lahav et al., “Repairing sequential con-
sistency in C/C++11” [Lah+17], §3.4,
Proposition 1.

14Batty et al., “Mathematizing C+ + con-
currency” [Bat+11], §2.7.



24 Background: Relaxed Memory Models

R(gmv 1) ~._rf

hb ™~ (s, 1)

((a)) Violation of C11-NO-
FUTURE-READ.

W(l,, 1)

~
~

M s
R({;, 1)

of C11-

((d)) Violation
COWR.

FIGURE 2.5: Several forbidden (inconsis-
tent) executions in C11/RC11.

15Kang et al., “A promising semantics for
relaxed-memory concurrency” [Kan+17];
Chakraborty and Vafeiadis, “Ground-
ing thin-air reads with event struc-
tures” [CV19].

16[VN13; DV16; DV17].

170u and Demsky, “Towards understand-

ing the costs of avoiding out-of-thin-air
results” [OD18].

W(l,,2)

rf
W(ly, 1) ———7»R(€T71) W(l,, 1)
'hb hb-~.
A b~y W(l,,2)
W(ly,2)
((c)) \Violation of C11-
((b)) Violation of C11- COWW.
CORW.
| W(E‘La 1) 77777777777 > R(E‘L; 1)
i rf ,
,he ¢ hb
rf
W(lo,2) "> R(4, 2)
((e)) Violation of C11-CORR.

* C11-CoRW (Figure 2.5(b)) requires that a read may not happen

before a write that mo-before the write it reads from.

* C11-CowWw (Figure 2.5(c)) requires that
agree.

and hb may not dis-

* C11-CoWR (Figure 2.5(d)) requires that a read may not read from
a write that is already hidden by (mo-before) another write that
happens-before it.

* C11-CoRR (Figure 2.5(e)) requires that two reads connected by hb
may not read from writes with the inverse order in

Remark 2.21 (LB and OOTA). The C11 memory model allows the so-
called Load-Buffering (LB) behavior, while the RC11 memory model
simply forbids it with RC11-NO-OOTA. Figure 2.6(a) gives an example
program with an execution demonstrating its LB behavior in Figure 2.6(c).
Here, one can think that the reads (loads) are buffered until the writes are
completed, and then they can both read 1. The execution in Figure 2.6(c)
is consistent in C11, and so such behavior is allowed in C11.

The problem with LB is that, the same execution in Figure 2.6(c)
justifies an undesirable behavior of the program in Figure 2.6(b), where
the reads read 1, even though 1 does not appear in the program: it
appears out of thin air (OOTA)! OOTA behaviors are forbidden by the
informal C11 standard, and are not exhibited in any implementation.
However, it is formally non-trivial to distinguish LB, which is desirable,
from OOTA, which is not. Several solutions are already proposed to
distinguish them, ' but they result in more involved semantics. Further-
more, the LB behavior itself is rather non-local and makes it hard to build
high-level, logic-based reasoning—see [Sve+18] for an attempt.

RC11 resolves to a simpler solution: forbidding LB behaviors alto-
gether, by requiring po U rf to be acyclic (RC11-NO-OOTA). Similar to
existing logics,'® we also adopt this solution in ORC11 (which is an opera-
tional version of RC11), as it simplifies the construction of our separation
logic. Recent work by Ou and Demsky'” suggests that the performance



*rlxg' : // 1 *rlxg/l; // 1
: Y if (a) then if (b) then
fy =rix 1; Ly =px 1
by ==r1x @; Ly = =rx b;

((a)) A program with LB behaviors.

((b)) A program with OOTA behaviors in C11.

overhead of working with RC11 vs. C11 may not be so significant in prac-
tice. Even more recently, Lee et al.'® suggests forbidding LB behaviors
in the source language model (e.g., C and C++) but still allowing LB
in the intermediate representation (IR) semantics. This would result
in a compromising memory model where logics like iRC11 can be used
for verifications the source level, and where all optimizations for non-
atomics can still be performed at the IR level, and therefore imposing no
overhead on non-atomics.

Remark 2.22 (Consume Accesses and Locks). Unlike C11, RC11 does not
consider consume accesses, which is a premature feature not implemented
by major compilers, nor locks, which can be implemented with release-
acquire accesses.

CHAPTER SUMMARY. This chapter reviews the high-level intuition for
the behaviors of C11 atomic accesses, as well as an excerpt of the RC11
formalization in form of axiomatic semantics. The distinctive feature of
the RMC axiomatic semantics is the use of axioms to constrains partial
orders among memory events. While this style results in very concise
definitions,'? it may take time to get used to. Nevertheless, the main
inconvenience of axiomatic semantics is that the behaviors are encoded in
the axioms that are stated rather globally on relations that span multiple
events across multiple threads, making it difficult to prove soundness of
thread-local, Hoare-style CSLs directly on top of those semantics.?’ In
the next chapter, we present ORC11, an operational version of RC11 that
is more convenient to build our separation logic iRC11 in Iris.

= *rlxgz; // 1 b= *rlxgy; // 1

RC11, Formally 25

R({y, 1) R({y, 1)
W\\\\rf////V
l/////r)%\\\\\l
W(ty, 1) W(la, 1)

((c)) An execution with LB behav-
iors.

FIGURE 2.6: Load-buffering (LB) and Out-
of-thin-air (OOTA) behaviors.

181ee et al., “Putting Weak Memory in
Order via a Promising Intermediate Repre-
sentation” [Lee+23].

19In contrast, the formulation of ORC11
in Chapter 3 is much more verbose.

20Yet it is still achievable, by annotat-
ing resources on incoming and outcoming
edges of an event node, as Vafeiadis et al.
demonstrated with RSL and FSL ([VN13;
Dv1e6]).






3.1

ORC11: Operational Repaired C11

Following iGPS,! we need an operational semantics for relaxed memory
so that it can be instantiated in the Iris framework. We extend iGPS’s
operational semantics for release-acquire and non-atomics (RA+NA) to
include relaxed accesses and fences. The result is ORC11—Operational
Repaired C11.2

Features-wise, ORC11 is closely related to the axiomatic semantics
of RC11.2 Most importantly, it forbids load-buffering (LB) behaviors,
i.e., po U rf is acyclic. Construction-wise, ORC11 follows the view-based
approach to operational semantics for relaxed memory.* More concretely,
it follows the promising semantics formalization® but without promises,
and thus forbids LB. The promising semantics, however, does not model
non-atomics.® Meanwhile, ORC11 needs to employ a race detector to
formalize races on non-atomics which, as we will see, in the presence of
relaxed accesses, are more tricky to get right than iGPS’s race detector.

Consequently, ORC11 is defined by two sub-semantics: the view-
based machine semantics that focuses on relaxed behaviors (83.3) and
the race-detector semantics that focuses on UB-triggering races (§3.4). In
§3.6, we sketch a paper proof of correspondence between ORC11 and
RC11.

The expression semantics, which defines the reductions of language ex-
pressions, can fortunately be mostly separated from the relaxed memory
model that is ORC11. Chapter 4 will present the relaxed Agr,s: language
which combines the expression reductions together with ORC11.”

But first, let us give a high-level, intuitive explanation of RMC using
views.

Understanding Relaxed Memory with Views

The view-based approach to operational semantics for relaxed memory
allows for a more thread-local characterization of relaxed effects. In
particular, each thread in the program has its own local view which
represents its subjective observations on the globally-shared memory.
For example, a thread 7’s local view may record (but not limited to)
the writes to memory that the thread has observed, e.g., those writes
that happen before the current program counter PC, of the thread .
More concretely, if we follow the language of iGPS® and track writes to
memory in views, we can defined a view as a map from memory locations

TKaiser et al., “Strong Logic for Weak
Memory: Reasoning About Release-
Acquire Consistency in Iris” [Kai+17].

2The definitions in this chapter are for-
malized in Coq in the repository https:
//gitlab.mpi-sws.org/iris/orci1.

SLahav et al., “Repairing sequential con-
sistency in C/C++11” [Lah+17].

4Steinke and Nutt, “A unified theory
of shared memory consistency” [SN04];
Lahav et al., “Taming release-acquire
consistency” [LGV16]; Podkopaev et al.,
“Operational Aspects of C/C++ Concur-
rency” [PSN16].

5Kang et al., “A promising semantics for
relaxed-memory concurrency” [Kan+17].

61t models plain accesses, who can race
without triggering undefined behaviors.

7And thus the semantics of the relaxed
ARrust language is a combination of three
sub-semantics: the expression semantics,
the view-based machine semantics, and
the race-detector semantics.

8Kaiser et al., “Strong Logic for Weak
Memory: Reasoning About Release-
Acquire Consistency in Iris” [Kai+17].

27


https://gitlab.mpi-sws.org/iris/orc11
https://gitlab.mpi-sws.org/iris/orc11

28 ORC11: Operational Repaired C11

9Timestamps are typically just natural
numbers, but can be more complex de-
pending on the memory model.

to timestamps: View ::= Loc i™ Time, where the timestamps are indices
into an ordering of the writes to a location.” With V (¢) = ¢, we say that
the view V' has seen or observed the write to ¢ identified by the timestamp
t. When thread 7 writes to a location ¢ in shared memory, a new write
event ¢,, is added to the shared memory with some fresh timestamp ¢,,,
and thread = updates its local view (its observations) V. accordingly to
include t,, for /.

However, it is not necessary that another thread p observes that
write ¢, by thread = immediately. In the terminology of views, we say
that thread p’s local view V,, does not include the timestamp ¢,, for ¢.
In order to observe the write ¢, thread p needs to perform physical
synchronization with thread =, so that thread =’s local view V,. (which
includes ¢,,) is incorporated or joined into V,. Then, V; is included
in V,: V; C V,. The view inclusion relation therefore approximates
synchronization, or more formally, the happens-before (hb) relation.
Consequently, as threads execute and their local views grow over time,
they occasionally synchronize with one another by sending their local
views to other threads.

Example 3.1 (Racy MP with Views). Consider again the racy MP example
in Figure 2.4 (Example 2.17), where we use relaxed accesses for ¢, and
therefore we are not guaranteed a happens-before relation between the
conflicting non-atomic accesses to /,, by thread 7 and thread p. In the
language of views, this racy behavior can be explained as follows, using
Figure 3.1(a).

* After thread 7 writes 42 to /,, its local view is V!, as illustrated
in Figure 3.1(a) with an arrow pointing to after the write. As an
approximation of hb, V! also tracks the po relation in 7, and thus
it includes the freshly created timestamp t. for the write 42 to /,,
ie, V3i(l,) =tl.

* Similarly, after thread m writes 1 to ¢, its local view V2 includes the
timestamp ¢,: V,?(¢,) = 2. More importantly, V! C V?: a thread-
local view only grows, so as to maintain that happens-before (hb)
contains program order (po).

* Unfortunately, because we use a relaxed access in writing 1 to /,,
thread m does not release its local view (neither V! nor V;2) with
that write.

* So even if thread p reads that write of 1 to ¢, it does not acquire
the timestamp ¢! (for the write of 42 to £,) into its local view after
the read V.

* Consequently, when reading ¢, non-atomically in the next line,
thread p’s current local view Vp1 is not guaranteed to include ¢..
In the operational semantics, performing a non-atomic operation
without having observed all writes to the same location in the local
view constitutes a race.



Understanding Relaxed Memory with Views

ly i=na Oagy *=ha 0;

V3 otl i, = 42; || if %0, 1= Othen V. Vi,
Vﬂ? t§ 1y =y 1 *mag - // racy VW2 tf, 2l

((a)) Racy MP with relaxed accesses.

Uy i=na 0§€y *=na 0;

1=na 42;

=re1 1;

29

Ly i=na O;Ey *=na 0;

ok 1
if*aag, 1= Othen Y,
*nagr; // 42

((b)) MP with release-acquire accesses.

V2 = 42; || if*%0, 1= Othen V,
V2 fencerer; fence,cq; sz
V3 Ly =r1x 1 *ly; /) 42

((c)) MP with relaxed accesses and fences.

Put it differently, that thread p’s view before the non-atomic read of /,
does not include ¢! approximates the fact that the non-atomic write to ¢,
does not happen before the non-atomic read, hence a race.

Example 3.2 (Release-Acquire MP with Views). Similarly, the release-
acquire synchronization in Figure 2.1(c) (Example 2.1) can also be
explained with views, using Figure 3.1(b). Because we instead use a
release write of 1 to ¢, thread  releases its local view V;? through the
write (which also include the write itself). When thread p reads that
write using an acquire read, it acquires that view into its local view Vpl.
Accordingly, V.2 C Vpl, so thread p has observed all writes to ¢,, and
can safely read /, non-atomically. Furthermore, thread p reads from ¢,’s
latest write, which is 42.

In other words, V2 C Vp1 encodes the synchronized-with (sw) relation
between the release-acquire pair, and transitively the happens-before
relation (hb). Effectively, thread =’s write of 42 to ¢, happens before
thread p’s read from ¢, the race is excluded, and the expected behavior
results.

Example 3.3 (Fence-MP with Views). The view-based explanation for
the MP example with fences in Figure 2.1(d) (Example 2.1) is a bit more
interesting, using Figure 3.1(c).

* Here, thread n’s relaxed write to /,, like in Example 3.1, does
not release the current local view V3 at the point of the write.
However, unlike in Example 3.1, 7’s release fence which comes
before guarantees that the write to ¢, does release 7’s local view
before the fence, i.e., V!

* On the other side, p’s read of ¢, if reads 1, will acquire V1, but does
not immediately join V! into its local view Vp1 right after the read,
ie,V>Z Vpl. Instead, later, thread p’s acquire fence will perform
that join, so that after the acquire fence, V! C VPQ. Consequently,
we again have the hb relation between the non-atomic write and
read of /.

In other words, to explain fences behaviors in terms of views, we requires
more views than just the current thread-local view: a release fence stores

FIGURE 3.1: View-based explanation of
MP behaviors.



30 ORC11: Operational Repaired C11

OLeroy et al., The CompCert Memory
Model, Version 2 [Ler+12].

H1ee et al., “Taming undefined behavior
in LLVM” [Lee+17].

3.2

the current view (by the time of the fence), so that it can be released
through some later relaxed write, while an acquire fence restores (into the
current view) some view that have been acquired by some earlier relaxed
read. This is in agreement with the definition of the synchronized-with
(sw) relation (Definition 2.12).

SUMMARY. Views are an approximation of the happens-before (hb) rela-
tion that is more thread-local and can help simplify the soundness proof
of RMC separation logics. However, we need more intricate uses of views
to handle fences (§3.3), which need multiple views, and to handle data
races (§3.4), which, due to their subtle interactions with relaxed (rlx)
accesses, require views to have a more complex structure than just a map
from locations to timestamps.

Basic Machine State Definitions

We define the basic definitions of ORC11’s machine state, whose most
important components are the globally-shared memory and the thread-
local views. First, we note some extra features that affect the formal
definitions of ORC11.

Pointer Arithmetic The Mg, language (Chapter 4) adopts the Com-
pCert model for locations,'? where allocations and deallocations
are done in blocks, and a location consists of a block index ¢ and
an offset n into that block, and pointer arithmetics can only be
performed within the same block. Consequently, we need to model
explicit allocations and deallocations of blocks.

Uninitialized Memory Mg, also allows memory to be uninitialized,
with the only safe operations are reading and writing to uninitial-
ized memory—other uses of values read from uninitialized memory
are undefined behavior. We follow Aryst, which in turn follows Lee
et al.'! to use a poison value & for uninitialized memory.

Data Races To handle the interactions between races and rlx accesses,
ORC11 views cannot just simply track write events (like in iGPS
and what we have seen in §3.1). Instead, ORC11 views need to
track both read and write events.

Definition 3.4 (ORC11 Basic Types).

7, p € Thread ::= N*
¢€Loc::=(i,n) ie€N" . neZ
veEVal =% |...
w€EMemVal :=1| % |veVa
t € Time == N*

o € Actlds = 2N

* A thread-id 7 or p is a positive number.



* Alocation / is a pair of block index ¢ (which is a positive number)
and an offset n.

* The value type Val can still be abstract, but should include the
poison value #.

¢ The memory value type MemVal is the type for values stored in
locations the global memory, which can be in Val or be the two
additional values t and ¢ to respectively mark the allocated and
deallocated states of a location.

* A timestamp ¢ is a positive number.

* A set of actions « is a set of positive numbers, which will be used to
track sets of reads and writes.

Definition 3.5 (ORC11 Memory Access Event).
e € MemEvent ::= |R°(£,v) | WO (L,v) | U (L, v, 0y,) | FC

| A({,n € NT) | D(¢,n € NT).

We extend memory events (Definition 2.3) to include two new event
types: the allocation event type A and deallocation event type D. Both
event types carry the base location ¢ of a block, and the size n of that
block.

Definition 3.6 (Views).
V € View ::= Loc fim {w : Time, aw : Actlds, nr : Actlds, ar : Actlds}

A (simple) view is a finite, partial map from locations to tuples of one
timestamp and three sets of actions. For a view V' and a location /,

* V(¢).w is the timestamp of the latest write to ¢ that V has seen.
* V(¢).aw is the set of atomic writes to ¢ that V has seen.

* V(¢).nr is the set of non-atomic reads from ¢ that V has seen.

* V(¥).ar is the set of atomic reads from ¢ that V' has seen.

Definition 3.7 (Views’ Join Semi-Lattice). The bottom element of views
is the empty map @. The inclusion relation and the join operation for
views are defined as follows.

VI CVo = VL VI()w < Vo(l).w A Vi(€).aw C Vo(f).aw
AVL().nr C Va(€).nr A Vi(€).ar C Va(£).ar
ViU Vp = M. w = max({Vi(0).w, Va(£).w});
aw := Vi (£).aw U V5 (¢).aw;
Vi(€).nr U Va(£).nr;
Vi(€).arUVa(0).ar }

nr

ar

Note that V; U V5 is only defined for locations that are in the domains of
either V4 or V3, i.e., dom(V; U V3) = dom(V1) U dom(V3). If some location

Basic Machine State Definitions

31



32 ORC11: Operational Repaired C11

12This is inspired by thread-views of the
promising semantics ([Kan+17]).

£ is not in one view, then the value in the other view takes over for the
join.
For view inclusion, we consider by default:

V1(€) C Va(£) if £ ¢ dom(V7)
Vi(€) Z Va(£) if £ € dom(V1) A€ ¢ dom(Va)

Definition 3.8 (Thread-Views).
V € ThreadView ::= {rel : Loc fins View, frel : View, cur : View, acq : View}

A thread-view!? is used to track the observations of a thread, and has
four components. For a thread 7 to have the thread-view V at its current
program counter PC,,

* V.cur is the actual, current view of 7, which includes all reads and
writes that happen before the current counter PC,,.

* V.acq is the acquire view of 7. It tracks the observations acquired
by 7’s earlier relaxed reads, and will be restored into 7’s current
view after the next acquire or SC fence. In other words, it tracks all
reads and writes that happen before 7’s next acquire or SC fence.

* V.frel is the release-fence view of x. It tracks all reads and writes
that happen before 7’s most recent release or SC fence, and it can
be released by =’s later relaxed writes.

* V.rel is a finite, partial function that tracks per-location release views
for 7. For a location ¢, V.rel(¢) is the release view of 7’s most recent
release write to ¢, and can be released by #’s later relaxed writes
to the same location ¢. This view is needed to model the release
sequence (rs, Definition 2.12) for £.

Property 3.9 (Thread-Views Wellformedness). The following properties
must hold for a thread-view V:

e dom(V.rel) C dom(V.cur) (TVIEW-DOM)
o V0. V.rel() C V.cur (TVIEW-REL)
o V.frel C V.cur (TVIEW-FREL)
e V.cur C V.acq (TVIEW-CUR)

Definition 3.10 (Thread-Views’ Join Semi-Lattice). The bottom element
of thread-views, also denoted by @, is the tuple of an empty release map
and empty (bottom) views. The inclusion relation and the join operation
for thread-views are defined as follows.

Vi CVy o= (VL Vyrel(€) T Vaurel(£)) AV .frel T Vs frel
AVi.cur C Vs.cur A Vy.acq C Vs.acq
ViUV, = {rel i= M. Vyrel(€) U Vo rel(€);
frel ;== Vy.frel U Vs frel;
cur := Vy.cur Ll Vs.cur;

acq := Vj.acq U Vs.acq }



Definition 3.11 (Global Memory).
M € MsgPool ::= Loc i Time fins {val : MemVal, view : View?}
m € ExtMsg ::= {ts : Time, val : MemVal, view : View?}

The global memory, or the message pool M contains all write messages
to all locations. It is a finite, partial map from locations to timestamps to
a pair of a written value and an optional view (View").

For a location, M(¢) contains all write messages to ¢, ordered by
timestamps. The timestamp order of M (¢) encodes the per-location
modification order mo, (Definition 2.8) for .

For some timestamp ¢, the pair M (¢)(t) carries the information about
a write to ¢ identified by the timestamp ¢. If the write is an non-atomic
write, then M (¢)(t).view = None. Otherwise, if the write is an atomic
write, then M(¢)(t).view = Some(V') for some view V that is called the
(released) view of the write. As a shorthand notation for the option type,
we write | for None, and simply write V' for Some(V).!3

The message type ExtMsg combines the timestamp with the value and
the optional view into a single message. As such, the message pool can
be seen as a map from locations to messages: MsgPool ~ Loc i™ ExtMsg.

Property 3.12 (View Closedness). \ VeM H VeM \
A view V is said to be closed in M if V only contains write messages
in M, ie., V0, V({).w € M(¢). The definition is lifted point-wise for
thread-views.

Property 3.13 (Global Memory Wellformedness). A global memory M
is wellformed if the following hold.

Vl,m.m € M(£) A m.view # L = m.view({') € M (WF-MEM-CLOSED)
Ve, m.m e ML) AN m.view # L = m.view({).w = m.ts (WF-MSG-VIEW)
Ve, t. M(£)(t).val =t = ¢t = min(dom(M(¢))) (WF-MEM-ALLOC)
Ve, t. M(£)(t).val = ¢ = t = max(dom(M(¥))) (WF-MEM-DEALLOC)

WF-MEM-CLOSED requires that M is closed in itself, i.e., any view of any
write messages in M only refers to messages also in M. WF-MSG-VIEW
requires that the view of a write message contains exactly the timestamp
of that message. WF-MEM-ALLOC (resp. WF-MEM-DEALLOC) require that if a
write is an allocation (resp. deallocation) then it must be the minimum
(resp. maximum) write event for that location.

Definition 3.14 (Global Machine State).

N € RaceView ::= View
¢ € GlobalState ::= MsgPool x RaceView

The global machine state < is a pair (M, N) of the global memory M
and a simple view N that is the state of the race detector (§3.4).

Property 3.15 (Global Machine State Wellformedness). A global state
(M, N) is wellformed if

Basic Machine State Definitions 33

13Note that instead of using the option
type, we can also require that the view V'
of a non-atomic write to be empty ().



34 ORC11: Operational Repaired C11

* M is wellformed (Property 3.13); and
* N is closed in M; and

* N observe the deallocations in M, ie., V¢, t. M(¢)(t).val = ¢ =
t < N(£).w.

3.3 View-based RMC Semantics

We define the view-based semantics of ORC11, which describes the inter-
actions between thread-views V’s and the global memory M. First we
need a few auxiliary definitions.

Definition 3.16 (Memory Value Injection).

The injection of memory values (MemVal) into values (Val) is defined by
the following rules.

MVAL-VAL MVAL-AVAL
v =0 t=%

That is, if the memory value is a value v, then it is returned as is. If the
memory value is the allocated value t, then poison 4 is returned. There
is no injection of the deallocated value ¢ into values.

Definition 3.17 (Unallocated Locations). ’ ¢ € unalloc(M) ‘

A location / is called unallocated in M if it has not been allocated or it
has been deallocated in M.

¢ ¢ dom(M) 3t M(O)(t) = (4,_)

¢ € unalloc(M) ¢ € unalloc(M)

Notation 3.18 (Function Computations). We use the notation (z) 7y : z
to denote the expression that if z is true, then y is returned, otherwise z
is returned.

For a finite, partial function f, the notation f|x < y| denotes the same
function f but with the key = updated to the value y.

For a record r, the notation {r [z := y|} (including braces) denotes
the same record r but with the key = updated to the value .

Remark 3.19 (Conditions on Allocations and Deallocations). C11 only
specifies that the lifetime of an object is from its allocation to dealloca-
tion, but does not specify a synchronization condition or possible races
between allocation/deallocation and normal accesses. Here, we employ
the following conditions that are widely thought to be reasonable.

e The allocation of a block must happen-before all accesses to it.
(ALLOC-SAFE)

e The deallocation of a block must happen-after all accesses to it.
(DEALLOC-SAFE)

We consider violations of these conditions data races and, thus, undefined
behavior. Correspondingly, we will treat the semantics of allocations and
deallocations as that of non-atomic writes.



We now define two functions (written in form of relations) to compute
the resulting thread-view of a thread after a read or a write, in Figure 3.2.

R:0,4,t,Vy,r
—_—

V/

OM-posT-READ-TVIEW (Figure 3.2) computes the thread-view after a read
V' = (Viel, Virel, Viurs Videq) from the thread-view before the read V =
(Vzels Virel, Veurs Vacq), using the read’s access mode o and location ¢, the
timestamp ¢ and the view V. € View™ of the write message that the read
reads from, and a fresh action id » ({r} € Actlds) that identifies the

read.'* The computation is as follows.

Definition 3.20 (Post-Read Thread-Views). v

* Vewr(£).w < ¢: the read only reads a write event (identified by
t) that is not mo-earlier than the current view. Intuitively, this
restriction helps establish axioms like C11-CoWR and C11-CoRR.

* V. (¢) < t: the operational semantics maintains an invariant that
the timestamp ¢ of the write to ¢ is the maximum timestamp in the
write’s view V..

* The view V tracks the identifying information of the read and the
write that the read reads from. In particular, V.w is the timestamp
t of the write. The read id r is added to the non-atomic read
component V.nr if this is a non-atomic read (o0 = na), otherwise r
is added to the atomic read component V.ar.

* Aread only changes the current and acquire (simple) views of V.

* The view V is joined into both the new current and acquire views
V! and V’__, so that both views observe at least the read and the

cur acq?
write.

* If this is an atomic read (rlx C o), then the view V,. of the write is
also joined into the acquire view V... This encodes the delayed
synchronization of relaxed reads, where the view V. sent over the
write is temporarily stored in the acquire view V., and will only

later be restored into the current view with an acquire fence (recall
Example 3.3).

e If this is at least an acquire read (acq C o), then the view V. of
the write is immediately joined into the current view V_,, (recall
Example 3.2).

* The computation maintains wellformedness of thread-views (Prop-

erty 3.9).
. .. . . W:0,0,t, V) V)
Definition 3.21 (Post-Write Thread-Views). y s Y

OM-pPoST-WRITE-TVIEW (Figure 3.2) computes the thread-view after a write
V' = (Viop Vicel, Viurs Viaeq) from the thread-view before the write V =
(Vzels Virel, Veurs Vacq), using the write’s access mode o and location ¢, and
a fresh timestamp ¢ to identify the write, and the view V. € View™ that
the write reads from in case it is an Update (U). Additional, it computes

the view V,,, of the write itself. The computation is as follows.

View-based RMC Semantics 35

14Note that if o = na, then V;. = L
(None).



36 ORCL11: Operational Repaired C11

OM-POST-READ-TVIEW
Vew(O)w <t  Vo(0) <t
V=« {w:=t;jaw:=;nr:=(o=na) ? {r}:g;ar:= (0 C rlx) ? {r}: &}
Vie=(acqC0)? Ve UV UV, : Viu UV

Vi =(FIXE 0) ? Vaeq UV UV, : Ve UV

acq —
! !
(‘/reh Vrfrela ‘/cuh Vacq) V;ely varel; ‘/Cuﬁ Vacq>

R:0,0,t, V1
A AR (

OM-POST-WRITE-TVIEW
V::ur(e)'w <t
V=[l+{w:=t;aw:= (rIx C 0) ? {t} : &; nr := &; ar := J}]
V! =Veu UV 1744 = Vacq UV

cur acq
V' =Via(O)U(rel T o) ? V.,V Vi =Via[t« V']

cur r

Ve =(IxCo)? V' U Vi UV, : L

W:0,0,t,Vy, Vi / / /
(‘/}ela ‘/}relv chura Vacq) E— ( vareh V. V. )

rel» cur’ Vacq

FIGURE 3.2: Computations of post thread-
i fi d and writ tions. . . .
views fol read anc wiite operations * Veur(€).w < t: the fresh timestamp ¢ picked for the write must be

-later than the current view of /.

* The view V tracks the identifying information of the write. In
particular, V.w is the timestamp ¢ of the write. ¢ is also added to
the atomic write component V.aw if this is an atomic write.

The write updates the current and acquire (simple) views, and the
component / of the per-location release view V. of V.

The view V is joined into both the new current and acquire views

Vi and V., so that both views observe at least the write.

e The view V'’ is the new release write for the location ¢, and is
updated into to V;(¢) (V.; = Vial[¢ <= V']). In particular, if this is
at least a release write, then ¢’s new release view V' also includes

(Otherwise, if the write is at most a

relaxed write, then the release views remain unchanged.) This

the new current view V..
means that the write releases its current view immediately (recall
also Example 3.2), and this release write starts a new release
sequence (Definition 2.12) for ¢, so that po-later relaxed writes to
the same ¢ will indeed release V/

cur*

e The view V,, of the write itself is _L if this is a non-atomic write.
Otherwise, it includes at least (i) the new release view V', (¢) for ¢,
and (ii) the view V4. of the most recent same-thread release fence,
and (iii) the view V,. of another write that this write reads from in
case it is an Update. All of these views establish this write’s effects
as a part of a release sequence for ¢ (see also Example 2.13).

* The computation maintains wellformedness of the thread-views
(Property 3.9).

Finally, we can define the view-based semantics of ORC11.



View-based RMC Semantics

OM-WRITE
OM-READ ¢ ¢ unalloc(M)  t ¢ M(0)
¢ ¢ unalloc(M) M Ot =w,V,) w=v M = M[l— MOt v, V)]
V 0,0,t,Vy,r V/ V W:0,0,t, L,V V,
M ‘ V R? ((,v),r,[ M | V/ M | V WO(Z,’U),J_,[(t,’U7Vw)] MI | VI
OM-UPDATE

¢ ¢ unalloc(M) M) (t) = (v, Vi) tw =t +1 tw ¢ M(Y)
M = Ml = M)t (v, Vao)]]

R0 £t Viyr W0y £itw, Vi, Vi

\% V!
M|V U0 (Lvp 0 )1 [ (o 0w, Viw )] M|V
OM- ACQ FENCE
M|V LEERIIN M| (V.rel, V.frel, V.acq, V.acq)
OM- REL FENCE
M \V il Ny Y | (¢ V.cur|f € dom(V.rel)], V.cur, V.cur, V.acq)

OM-ALLOC
0= (i,n’) {i} x N # dom(M)
M = M+ m <[ty «(t, L)]|m € [0,n)]

v Wna,l+0,t0,L, L Wmaltmyty,, L, L Wnadt(n—1)tn o1, L1 V!
ms = [(tm, T, L) | m € [0,n)]
¢n), L,
M|y MO gy
OM-FREE

(= (i,n')  dom(M)nN{i} x N={i} x ([>n',<n’ +n])
Vm € [0,n). ¢+ m ¢ unalloc(M) Vm € [0,n),t € dom(M £+ m)).t < ty,
M = M+ m <[ty (%, L)]|m € [0,n)]

v W:na,l+0,to,L, L W:na, l+m,ty,, L, L W:na, b+ (n—1),t,—1,L,L V/
ms = [(tm, T, L) | m € [0,n)]
M|V M M|V

37

FIGURE 3.3: View-based machine seman-

tics.

Definition 3.22 (ORC11 View-based Reductions). ‘M |V = M|V

?
g,r’ ,ms

The relation M | V
M and a local thread-view V before a machine step that generates a
memory event ¢ to a corresponding pair M’ and V'’ after the step. r is an
optional action id associated with the event if it is a read, and ms is a list
of write messages generated by the event if it is a write. The rules of the
view-based reductions are given in Figure 3.3.

M’ | V' relates a pair of global memory

* OM-READ says that a read R°(¢,v) does not change the global mem-

ory M, and is only possible if ¢ is alive in M,'> whose memory 15see Definition 3.17.

value w is injected into the read value v (so that a read of an unini-

tialized location will return the poison value #).'¢ The thread-view 16see Definition 3.16.

is updated from V to V'’ using the timestamp ¢ and the view V,. of



38 ORCL11: Operational Repaired C11

the write, and the fresh action id r for the read, following Defini-
tion 3.20.

OM-WRITE says that a write W°(¢,v) is only possible if ¢ is alive in
M, and M is updated to M’ with a new message (¢,v,V,,) for
¢, where t is a fresh timestamp in M for ¢, and V,, is computed
following Definition 3.21, which also defines how V' is computed.
Note that there is no other constraint on the timestamp ¢, e.g., it
does not need to be the next largest timestamp for ¢ in M. This
allows “holes” in the set of used timestamps, so that writes to ¢
by other threads may come in later in ORC11 machine execution
order, but actually ends up mo-earlier than the writes made by the
thread in question. But do note also that Definition 3.21 requires
that the timestamp ¢ is at least mo-later than the writes for ¢ seen
by the current thread-view, so as to guarantee that mo, agrees with
the current thread’s po.

OM-UPDATE combines the effects of both OM-rREAD and OM-WRITE,
saying that an update U°°» (¢, v,,v,,) reads from an existing write
message (t,,v., V,.) and updates the memory M with a new write
message (t, vy, V). The new write message’s timestamp ¢,, must
be fresh for ¢ in M, and must be next to the read message’s times-
tamp t.: t, = t. + 1, so as to exclude holes between the two
messages in moy, and thus to disallow other threads’ concurrent
writes to come in between this update and the write that it reads
from. This guarantees the uniqueness of a successful update event
U who represents the effects of RMW instructions: if multiple
RMW instructions are racing on reading the same value, then only
one of them will successfully perform a write. Finally, the new
thread-view V' is computed from V using r, V;., and V,,, following
Definition 3.20 and then Definition 3.21.

OM-AcQ-FENCE simply joins the thread-view’s acquire component
V.acq into the new current component V’.cur, restoring views ac-
quired through earlier relaxed reads and thus establishing synchro-
nizations (recall Example 3.3).

OM-REL-FENCE stores the thread-view’s current component V.cur
into the new release components V' .rel (the per-location release
views) and V' .frel (the release-fence view).

OM-aLLoC says that an allocation A(¢,n) of a fresh block (whose
base is ¢) inserts n write messages ms into the global memory M,
each for a location in the block. The new write messages ms all
have the allocated memory value t. The new thread-view V'’ is
computed by applying Definition 3.21 for n consecutive non-atomic
writes.

Finally, OM-FREE says that a deallocation D(¢, n) requires that / is
indeed the base location of a block whose size is n, and all locations
in the block are alive (Ym € [0,n).£ + m ¢ unalloc(M)). The



3.4

deallocation inserts n write messages ms into the global memory
M, all with the deallocated memory value ¢, and the maximal
timestamps (Ym € [0,n),t € dom(M (€ +m)).t < t,,).

Property 3.23 (Wellformedness of View-based Reductions). The pair M |
Y is wellformed if V is wellformed (Property 3.9) and M is wellformed
(Property 3.13) and V is closed in M (Property 3.12).

Lemma 3.24 (Invariant of ORC11 View-based Reductions). The ORC11
view-based reductions (Definition 3.22) maintain wellformedness (Prop-
erty 3.23), and maintain that the thread-views only grow (V C V).

The Data-Race Detector

The goal of the race detector, as the name suggest, is to raise undefined
behavior (UB) if the program is racy in C11/RC11 (Definition 2.16 and
2.18). That is, if a program may have a RC11-consistent execution graph
that is racy, then the program must also have a ORC11 execution where
the data-race detector (defined in this section) raises UB.

In this work, we model UB as stuckness: we say that the execution
gets stuck if there is no further reduction possible when the reducing
expression has not reaches a value. (If the reducing expression is already
a value, then the execution has safely terminated.)!” We will not see
the expression reductions until §4.2, so in the following, we simply
consider stuckness as “there is no further reduction possible for the
current machine state”.

The aim of the race detector is to make sure locally that conflicting
accesses where at least one is non-atomic must get stuck. For this, the
race detector relies on the global machine state, which includes the global
memory M and the race detector’s state A/ € View, in combination of
the executing thread 7’s thread-view V. In practice, only the current
component V.cur € View will be used, because that view encodes what
have happened before the thread =’s program counter PC,, and recall
that races are due to the lack of hb edges between conflicting accesses.

Recall from Definition 3.6 that both A/ and V.cur tracks, for each
location ¢, the most recent write timestamp and sets of action ids for
atomic writes, non-atomic reads, and atomic reads. The differences are
that (1) A tracks all actions that have been performed globally by all
threads, while V.cur only tracks locally what = has observed, and (2)
N .w(f) only tracks the globally most recent non-atomic write for £, not
the most recent write for £.

The race detector checks for data-race freedom (DRF) for each memory
access on an / that « is going to perform. If it is not data-race free,
then the execution gets stuck. Otherwise, the race detector state N
is updated correspondingly to track the newly performed access. The
race detector is therefore defined using two definitions: the DRF pre-
condition (Definition 3.25) which defines the pre-condition of a data-race
free access, and the DRF post-condition (Definition 3.26) which computes
the post state A/’ for the race detector.

The Data-Race Detector 39

17There may be several ways for an exe-
cution to run into UBs, i.e., to get stuck
(e.g., performing computations on poison
4, see §4.2), so it may be beneficial to
distinguish the different reasons for the
different UB types, rather than collapsing
all of them into a single stuck state. This
can be done by introducing error machine
states. However, in this work, we do not
need such details, and therefore decide to
simply use stuckness.



40 ORCL11: Operational Repaired C11

DRF-READ-NA
N)w < V.eur(f).w Vi e dom(M(0)).t < V.cur(f)w  N(£).aw C V.cur(f).aw

M, N,V + RaceFree(R"(¢,v))

DRF-WRITE-NA
N () C V.cur(d) Vit € dom(M(£)).t < V.cur(€).w

M, N,V + RaceFree(W"(¢,v))

DRF-READ-AT
rixCo  N(0).w < V.cur(f).w

M, N,V I~ RaceFree(R°(¢,v))

DRF-WRITE-AT

rixCo  NWw<V.cur(f)w  N().nr C V.cur(f).nr

DRF-UPDATE

M, N,V + RaceFree(W’(¢,v))

M, N,V I~ RaceFree(R°" (¢, v,.)) M, N,V I~ RaceFree(W" ({,v,))

DRF-DEALLOC

M, N,V I RaceFree (U (£, v, 1))

DRF-ALLOC
M, N,V I RaceFree(A(¢,n))

Vi € [<n],t’ € dom(M (£ +1i)).t' < V.cur({)w Vi€ [<n].N({+i)C V.cur(d +1)

FIGURE 3.4: Data-race free (DRF) pre-
conditions.

M, N,V I RaceFree(D(¢,n))

DRF-FENCE
M, N,V - RaceFree(F°)

Definition 3.25 (DRF Pre-conditions). ‘M,N ,V F RaceFree(e) ‘

M, N,V I RaceFree(¢) says that the memory access ¢ is data-race free
when executed with the global state (M, \) by a thread whose thread-
view is V. The rules are given in Figure 3.4.

* DRF-READ-NA says that a non-atomic read from ¢ is data-race free
if the thread has observed all writes to ¢, atomic and non-atomic,
tracked globally by M and V. Note that the conditions concerning
V.cur(£).w by themselves are not sufficient: they only maintain that
V has observed the mo,-maximum non-atomic write, which is only
sufficient to guarantee observations of all non-atomic writes which
must happen sequentially. The condition N (¢).aw C V.cur({).aw
guarantees the observations of all atomic writes: the atomic writes
can be safely concurrent with one another, so a set of timestamps
are needed instead of just a simple timestamp. Note that a non-
atomic read can be safely executed concurrently with other reads,
atomic or non-atomic.

* DRF-WRITE-NA says that a non-atomic write to / is data-race free if
the thread has observed all memory accesses to £.



Definition 3.26 (DRF Post-conditions). '8 N—— N

DRF-READ-AT says that an atomic read from £ is data-race free if the
thread has observed the latest non-atomic write to £. Note that an
atomic read can be safely executed concurrently with other reads,
atomic or non-atomic, and atomic writes.

DRF-WRITE-AT says that an atomic write to ¢ is data-race free if the
thread has observed all non-atomic accesses, reads or writes.

DRF-UPDATE is simply a combination of DRF-READ-AT and DRF-WRITE-
ar. Note that an Update (U) does not support non-atomic (na)
accesses.

DRF-ALLOC says that the allocation of a fresh block is always data-
race free. Note that we do not model out-of-memory errors.

DRF-DEALLOC is simply an iteration of DRF-wRITE-NA for the whole
block.

DRF-FENCE says that fences are never racy.

?
e,r’,ms

The relation N ;%b N’ defines how a race-free event ¢ for ¢ updates
the global race detector state from A to A/, using the optional action id
r if € is a read, and the list of write messages ms if € is a write. The rules
are given in Figure 3.5. Note that we use the record update notation
defined in Notation 3.18.

DRF-POST-READ-NA requires that the action id r is picked fresh glob-
ally to identify this read, and the race detector’s component for
tracking ¢’s non-atomic reads (N’ (¢).nr) is extended with r.

DRF-POST-WRITE-NA says that a non-atomic write with the message
m simply extends the race detector’s component for tracking ¢’s
non-atomic writes (N’(¢).w) with the write timestamp m.ts.

DRF-POST-READ-AT says that the effect of an atomic read on N is
similar to that of a non-atomic one (DRF-POST-READ-NA), but instead
changes the component for tracking ¢’s atomic reads.

DRF-POST-WRITE-AT says that the effect of an atomic write on A
is similar to that of a non-atomic one (DRF-POST-WRITE-NA), but
instead changes the component for tracking ¢’s atomic writes.

DRF-PosT-UPDATE combines the effects of DRF-POST-READ-AT and
DRF-POST-WRITE-AT.

DRF-PosST-ALLOC says that the race detector state is extended with
simple observations on the non-atomic write timestamps m;.ts for
the whole newly allocated block.

DRF-POST-DEALLOC is an iteration of DRF-PoST-WRITE-NA for the whole
block that is deallocated.

The Data-Race Detector 41

18The racing-ghost notation is due to Jan-
Oliver Kaiser.



42 ORCL11: Operational Repaired C11

DRF-POST-READ-NA

r & N(£).nr

N = N[ {N(0) [nr := N(€).nr U {r}]}]

DRF-POST-READ-AT

R™(Lw),7,(]

/

DRF-POST-WRITE-NA

N = N[+ {N () [w := m.ts]}]

W (Lw),L,[m] ,

rixCo r¢NW.ar N =N+ {N()[ar:=N(£).arU{r}]}]

DRF-POST-WRITE-AT

rlxC o

N = N0 {N () [aw := N (£).aw U {m.ts}]}]

DRF-POST-UPDATE

We(lw),L,[m]

N——= N

ré N(0).ar N =N+ {N()ar:=N(¥).arU {r};aw := N (£).aw U {m.ts}]}]

DRF-POST-ALLOC

U (€ ) [m]

747 N/

N =Nl + i+ {w:=m;.ts,aw := &, nr := &, ar := B} |i € [<n]]

A(l,n),L,[mo...mp—1]

74? N/

DRF-POST-DEALLOC

N =N+ i+ {N({ + i) [w:=m;.ts]}|i € [<n]]

FIGURE 3.5: Data-race free (DRF) post-
conditions.

3.5

9Kaiser et al., “Strong Logic for Weak
Memory: Reasoning About Release-
Acquire Consistency in Iris” [Kai+17].

D(¢,n),L,[mo...mp—_1]

——— ) N’

DRF-POST-FENCE
Fo, L[]

N—=pnN

* DRF-POST-FENCE says that fences do not affect the race detector
state.

Lemma 3.27. The DRF post-conditions (Definition 3.26) only grow the
data-race view, i.e., N' T N’. When combined with the view-based reduc-
tions (Definition 3.22), the DRF post-conditions also maintain wellformed-
ness of the global machine state (Property 3.15).

Comparison with iGPS Race Detector

ORC11 is the first operational semantics that incorporates a race detector
for non-atomic accesses into a language with release-acquire accesses,
relaxed accesses, and fences. ORC11’s race detector extends the race
detector Kaiser et al.!? developed for iGPS, in order to address the extra
effects of relaxed accesses. To explain the necessity of this extension, we



first discuss why the approach of Kaiser et al. does not scale to relaxed
accesses.

The iGPS race detector, introduced by Kaiser et al. for the release-
acquire/non-atomic (RA+NA) fragment of C11, is somewhat unusual
in that it does not in fact detect all races in every execution. Instead,
although iGPS forbids write-before-read races—that is, races where a
write is interleaved before a racing read—it allows read-before-write
races—where a read is interleaved before a racing write.

Example 3.28 (iGPS Race Detector Asymmetry). To illustrate this asym-
metry, consider the following example code:

L, = 0;
U || £y =37

In this program there are two possible interleavings, both of which are
considered racy by C11. The iGPS race detector detects a race in the
interleaving where the read from /,, is executed after the write to ¢, but
it does not detect a race in the interleaving where /¢, is read first.

The upside of iGPS’s approach is that reads do not need to be tracked
by the race detector, which reduces the amount of state in the operational
semantics. The downside, of course, is that some races are not detected—
a seemingly rather severe problem for a race detector! The reason this
is not a problem in iGPS is that Hoare triples imply absence of races
for all executions of a program. In order to be able to claim that the
iGPS logic ensures absence of data races according to C11, it thus suffices
for the race detector in the operational semantics to detect a race on
some execution of every program that is racy according to C11. And
indeed it does: for programs with only release-acquire and non-atomic
accesses (the domain of iGPS), for any execution with a read-before-
write race, there is always a differently interleaved execution with a
write-before-read race, which iGPS’s race detector will detect.

In the presence of relaxed accesses, however, the iGPS race detector is
no longer sufficient, because the property mentioned above is no longer
true. That is, it is possible to construct programs that have executions in
which the read-before-write races happen, but there is no interleaving
where the write will be executed before the read.

Example 3.29 (No Write-before-Read Races). Consider the following
program:

by = 0;¢, := 0;
*Ueily =r1x 1 || while ("¢, == 0); ¢, := 37

Here, the non-atomic read in the left thread is guaranteed to be executed
before the non-atomic write to ¢, in the right thread, and there is no
interleaving where the reverse can happen. The iGPS race detector would
not declare this program racy, but the two accesses to /,. are not related
by happens-before and are thus considered a race by C11.

Comparison with iGPS Race Detector 43



44 ORCL11: Operational Repaired C11

20Kang et al., “A promising semantics for

relaxed-memory concurrency” [Kan+17].

21[Kan+17], Appendix B: Proof of Theo-

rem 5.

22Dang et al., Technical Appendix: RustBelt
Meets Relaxed Memory [Dan+20b], §2.

23which is a proof dischargeable using our
separation logics

24see Definition 2.18

25see Definition 2.14 and Definition 2.16

3.6

To account for such programs, ORC11’s race detector extends iGPS’s,
which already tracked non-atomic writes, to track all memory access
events, including atomic writes, and atomic and non-atomic reads in
the local thread-views (see Definition 3.6). These events then must be
sent across threads to perform synchronization and to ensure data-race
freedom. In Example 3.29 above, the non-atomic read of ¢, by the left
thread, when executed, will add a fresh read event r,, into N’s global
set of non-atomic reads for ¢, (N (¢;).nr). The non-atomic write of ¢, by
the right thread is guaranteed to be executed after the read by the left
thread. However, when the write is executed, the race detector requires
that the right thread must have observed in its local current view all read
events (DRF-WRITE-NA), including ry,, in order to be deemed non-racy.
Since the right thread did not synchronize with the left thread to obtain
rna in its local view, its write to ¢, will be declared racy by the ORC11
race detector.

The Correspondence between RC11 and ORC11

To show a correspondence between ORC11 and RC11, we exploit the fact
that ORC11 is very close to the “promise-free” fragment of Kang et al.?°
extended with non-atomics and a race detector. Kang et al. already
proved a formal correspondence between their promise-free fragment
and C11.%! Building on their result, we show an on-paper correspondence
proof between ORC11 and RC11. This proof has been provided in the
technical appendix of the RB,1, paper,?? and we only sketch its summary
here.

It is woth noting that our language is actually the combination of
the memory model of ORC11 and the \gr,s: expression language (Chap-
ter 4). Together, ORC11 + Agys: is more conservative and declares more
programs as having undefined behaviors than RC11. For example, Aryst
can trigger UBs if we compare two values that are incomparable (Def-
inition 4.9). Furthermore, the race detector in ORC11 is stronger, i.e.,
detects more races, than RC11. In particular, ORC11 does not permit
reducing an RMW operation with the acq access mode in the presence of
an unsynchronized non-atomic read even though the RMW itself synchro-
nizes with the non-atomic read. In contrast, the self-synchronizing nature
of RMW leads to RC11 accepting this particular behavior as non-racy.

Consequently, we cannot show an equivalence in behaviors between
ORC11 + Mrust and RC11. Instead, we also combine RC11 with Aryst,
and relates ORC11 + Agyst with RC11 + Agyst. To simplify the proof, we
allow RC11 to take Aryst’s expression reduction steps that are disallowed
with ORC11. In particular, the declarative semantics in RC11 + Agrys; may
compare arbitrary values with each other, whereas ORC11 + Ag,s will
get stuck in some of these cases.

Ultimately, we want to show that if a program has defined behaviors in
ORC11 + Agyst,2? then it must have defined behaviors in RC11 + Agyet.2?
Conversely, we show that any (UB-triggering) racy RC11-consistent exe-
cution?® can be replayed as a racy execution in ORC11.



The Correspondence between RC11 and ORC11 45

Following Kang et al., we decompose the correspondence proof into 2
steps. First, we prove that any racy RC11 execution of the program can be
replayed as a racy execution in the Operational Graph Semantics (OGS).
Second, we prove that the racy OGS execution can be replayed as a racy
execution in ORC11. The OGS is designed to be an intermediate mixture
of RC11 and ORC11: its state is a RC11-consistent execution graph G, and
every memory access operationally extends G without violating OGS’s
own race detector. OGS’s race detector is stated in terms of execution
graphs, but encodes exactly the rules of ORC11’s race detector.?® OGS is 26see Figure 3.4
then extended with the same \g,’s expression reduction steps as that of
RC11 (which can compare arbitrary values).
We then show that (1a) any non-racy, consistent execution of RC11
+ Arust Can be replayed as a non-racy or racy consistent execution of
OGS + Arust;?” and (1b) any program that has racy executions in RC11 27[Dan+20b], Lemma 3.
+ ARrust also has racy executions in OGS + Agyst.2® Then, to relate OGS
+ Arust and ORC11 + Agys:, we relate OGS’s state with the timestamp
assignments in ORC11’s thread-view and race detector states. We then

28[Dan+20b], Lemma 4.

show that (2a) any non-racy, consistent execution of OGS + Arys; can be

replayed as a non-stuck or stuck execution of ORC11 + ryst;2° and (2b) 29[Dan+20b], Lemma 6.
any racy execution of OGS + Mrust can get stuck in ORCI1 + Agyst.>°
Finally, combining all of those results, we show that any program that
has racy executions in RC11 + Agrus: can get stuck in ORC11 + Agyst.>! 31[Dan+20b], Theorem 1.

30[Dan+20b], Lemma 7.

CHAPTER SUMMARY. This chapter explains the view-based semantics and
the race-detector semantics of ORC11, and illustrates how it is related
to RC11. In the next chapter, we present the Arys: language and explain
how to combine it with ORC11 to achieve our target language that will
be used to instantiate Iris.






The Relaxed \rys: Language

The relaxed \rus: language retrofits the original RustBelt’s Agys:' on top LJung et al., “RustBelt: Securing the
Foundations of the Rust Programming Lan-

of the relaxed memory semantics of ORC11. In this chapter, we briefly guage” [Jun+18al.

review Aryst and formally define how to “plug” it in with ORC11 to obtain
our target language.

It worths noting up front that we (nor the origin RustBelt’s authors)
do not plan to tackle the Herculean task of giving a formal definition
of the complete Rust language: the core Agr,s calculus only captures
central features of the Rust language, and the original semantics assume

a SC memory model,? and we extend the operational semantics to cover 2with a race detector that intuitively
implements reader-writer locks on non-

relaxed memory accesses. Nevertheless, the reasoning principles we atomics locations.

develop in this dissertation are not restricted to Agyst Or Rust, and can
be applied to other languages that employ the RC11 memory model (or
stronger memory models).

Language Syntax

Definition 4.1 (\r,st Grammar). The grammar is given in Figure 4.1.
ARust 1S @ lambda calculus with:

* values that can be poison (#),> a block-based location, an integer 3see §3.2.
(meta-variable z € 7Z), or a recursive function (meta-variable f)
that has a list of binders (Z) for the arguments.

* expressions (meta-variable e) that can be a value; or a variable
(z); or a path operator (e.e) where the second operand (called the
offset) must evaluate to an integer offset of the first operand; or a
binary operator; or function application (e(€)) where the arguments
are a list expressions; or a (switch) case block (caseeof€) that
allows branching into a list of expressions; or a fork operator that
supports forking new (detached) threads; or a memory instruction
which can be a read, a write, a compare-and-swap (CAS), or a
fence instruction with different consistency modes;* or an explicit “see Definition 2.2.
allocation or deallocation instruction.

Definition 4.2 (A\ryst Left-to-Right Evaluation Contexts). The reduction
strategy of A\rust’s expressions is encoded using evaluation contexts K €
ECtx. The approach of evaluation contexts decomposes an expression e
into an evaluation context K and an expression ¢’ that can perform a

47



48 The Relaxed Aryst Language

veVal:=% ||z |recf(T) =e

e€Expr:= |v]|x]ee
letele—ele<e|le==e
| e(e)
| casecofe
| fork{e}
| *?e | e1 1=, ea | CAS®F %% (eg, e1,e2) | fence,
| alloc(e) | free(ey, es)

K e€ECtx::= | e
| K.e |v.K
|K+e|v+K|K—-ce|lv—-K|K<e|v<K|K==c¢|v==
| K(e) | v(@ # [K] +€)
| case K of €
| K| K :=,e|v:=, K
| CASO7 979w (K ey, eq) | CASOT 0% (v, K, e9) | CAS®S O %% (vg, vy, K)
| alloc(K) | free(K, es) | free(ey, K)

FIGURE 4.1: The relaxed Arys language
syntax. primitive reduction and so will be evaluated next, satisfying e = K[e'].
The empty context e is called the “hole” where the next-to-be-evaluated
expression is filled in.

The evaluation strategy is left-to-right call-by-value, and is given in
Figure 4.1. Let us consider an example evaluation of an assignment

e1 ‘=, €3:

* The expression is first decomposed into K; = e :=, e and e,
which allows e; to be evaluated first.

* After e; is evaluated to a value v;, the expression is K;[v] = v :=,
es, which can be decomposed into Ky = v :=, e, which now
allows e, to be evaluated.

* Once ey is evaluated to a value vy, the expression is Ky[vs] = vy 1=,
ve, which is decomposed into e and v; :=, ws.

* The primitive reduction of assignments then can kick in and com-
plete the evaluation.

Notation 4.3 (\rys: Syntactic Sugars). Several syntactic sugars are taken
as-is from the original RustBelt, given in Figure 4.2. Specifically:

* Non-recursive functions (A[Z]. e) simply ignore the recursive func-
tion argument. let bindings are used to declare local variables
in Arust, which are pure and do not occupy memory (they are not
mutable nor addressable). They are simply evaluated and then sub-
stituted into the remaining expression, hence the definition using
functions. Sequential composition is defined using let bindings.



Language Syntax 49

Az].e i=rec_([z]) ==
letz =eine’ == (\z].€')([e]
e/;e = leti = 6/ ine
false ::=0
true =1

ifeq thene; else e, ::= case eg of [e, €]

e ="

€1 ‘= €9 i= €] =pa €2

new ::= \[size]. if size == 0 then (42, 1337) else alloc(size)
delete ::= A[size,ptr]. if size == 0 then & else free(size,ptr)
memcpy ::= recmemcpy([dst, len, src]) :=

iflen < (0then® else

dst.0 := src.0;

memcpy([dst.1,len — 1,src.1])

el i=p *62 = memey(Bhna 62)

inji .
ei—=—()u=el:=1
inj s .
e i=—¢eg i=e1.0 :=1;e1.1 := €9
inji )
e1 =, Teg n=e1.0 :=1;e1.1 :=, ¥es

skip :=letz =®in%®
newlft .= &
endlft ::= skip

FIGURE 4.2: Some syntactic sugars for
We use 0 and 1 as boolean values false and true, respectively. This ARust:
allows us to define if-branching using case: if ¢, is false, then
the expression with index 0 in the list [es, e;], which is e5 is picked
to be evaluated next; and if ¢; is true, then the expression with

index 1, which is ey, is picked.
We suppress the access modes for reads and writes if they are na.

new and delete, unlike alloc and free, never get stuck when the
provided block size is 0. new simply just returns some location in
that case.

memcpy copies len cells from src to dst using the path operator.
The “assign with length” notation (e; :=,, *e3) uses memcpy.

There is no language primitive to define compound data structures.
Instead, they can be implemented in memory using pointer arith-



50 The Relaxed Agryst Language

letcont k(7) := eine’ ::= letk = (reck(T) :=e) in¢e’

jump k() ::= k(e)

funrec f(Z)retk := e =:=rec f([k] H T) :=¢
call f(e)retk = f([k] +¢)

FIGURE 4.3: CPS notations for Agyet.

SMatsakis, Introducing MIR [Mat16].

4.2

metic. In particular, e; 22 ¢, simulates tagged union (sum types):
the location at offset e.0 stores the active tag 7 (the case of the sum)
while the location at offset e.1 stores the actual value evaluated
from es. e :L”n *eo is the notation for writing a tagged union
whose values span multiple locations (memory cells).

* Finally, newlft and endlft are “ghost instructions” that have no
interesting operational behaviors, and are only needed for logical
soundness of the RustBelt type system (Part III).

Notation 4.4 (Continuation-Passing Style). Programs in Agr,s can be
presented in continuation-passing style (CPS). This allows for encoding
more complex control-flow constructs like labeled break or early return.
This also makes Arys; closer to Rust’s Mid-level Intermediate Representation
(MIR)> than to surface Rust. The notations are given in Figure 4.3.

* Continuations (meta-variable k) can be defined with letcont k(%) :=
eine’ where 7 is a list of binders that will be instantiated with the
arguments ¢ when a continuation is called with jump k(e).

* CPS functions can be declared with funrec f(Z) ret k := e where
f is the binder for a recursive function, T the list of binders for
the arguments, and k the binder for the return continuation that
will be called when the function returns. The return continuation
takes only one argument for the return value. Accordingly, CPS
functions can be called using call f(e) ret k where ¢ are the list of
arguments and k the return continuation argument.

Note 4.5. Most syntactic sugars (Notation 4.3) and the CPS notations
(Notation 4.4) are needed for the type system in RustBelt (Part III).

Language Expression Reductions

The complete semantics is defined by three sub semantics: the view-based
machine semantics (§3.3), the race-detector semantics (§3.4), and the
expressions semantics defined in this section. The complete semantics
will be given in §4.3.

We first define some more auxiliary definitions.

Definition 4.6 (Readable Memory Value). w € Readable(¢, M, V) ‘

The predicate Readable(¢, M, V) defines the set of memory values read-
able from ¢ for the global memory M by a thread = whose thread-view is




currently V.
w € Readable(?, M, V) ::= Jt. M(0)(t) = (w,_) At < V.cur(¥)

That is, the thread 7 can only read a memory value w that is in the
memory for ¢ and is not mo-earlier than 7’s current view V.cur for /.
This is the same condition as OM-ReAD (Definition 3.22), but additionally

concerns values.

POINTER COMPARISON is a problem on its own,® especially for dead
pointers. In this work, for simplicity, we follow the original RustBelt work
and assume the most conservative choice that avoids UB:” unallocated
pointers can non-deterministically be compared equal even though their

representations are not.

The results of equality comparison in M are defined by the following
rules. (Recall that z is the meta-variable for integers.)

Definition 4.7 (Value Equality).

{1 € unalloc(M) V ¢5 € unalloc(M)
MELl =14,

MEz=2 MEL=1

Definition 4.8 (Value Inequality).

The results of inequality comparison are defined by the following rules.

0 # 0y

217&22
Fly # 4y

F{#£0
2z # 2 .

FO#/Y

That is, two values compare in-equal if their representations are different,
and locations are never null (0). Note that this means that equality and
inequality are not mutually exclusive for unallocated pointers.

2
l—’l)l = U2

Two values are comparable, and thus may be compared equal and/or

Definition 4.9 (Val (non-UB) Comparability).

in-equal, if they satisfy the following rules.

}_2’1:?22 "612762 }_6270 "0:76

Definition 4.10 ()\rys; Expression Reductions). M VFEes e, ey

The expression reduction relation M,V I e LN e, ey says that under
the global memory M and the thread-view V, the expression e reduces
in one step to ¢, potentially with an optional memory event ¢’ and
an optional expression e}, that will be running concurrently in a newly
forked thread. Only memory operations will generate a memory event ¢,
and only fork { ¢}, } generates the new thread’s expression e}. The rules
for the expression reduction are given in Figure 4.4.

* OE-EcTX is the general rule that drives the evaluation strategy
through evaluation contexts (see Definition 4.2). The remaining
rules are the primitive reductions that only reduce in one step.

Language Expression Reductions 51

6Kang et al, “A formal C mem-
ory model supporting integer-pointer
casts” [Kan+15]; Memarian et al., “Into
the depths of C: elaborating the de facto
standards” [Mem+16]; Lee et al., “Rec-
onciling high-level optimizations and low-
level code in LLVM” [Lee+18]; Besson et
al., “CompCertS: A Memory-Aware Veri-
fied C Compiler Using a Pointer as Inte-
ger Semantics” [BBW19]; Memarian et al.,
“Exploring C semantics and pointer prove-
nance” [Mem+19]; Lepigre et al., “VIP:
verifying real-world C idioms with integer-
pointer casts” [Lep+22].

7UB is not a choice because pointer com-
parison is possible in safe Rust.



52 The Relaxed Agryst Language

OE-ECTX OE-ADD OE-suB
P OE-PrROJ / /
e — ey,6Ey 21+7 220 =2 21 —7 22 =2
— MVELbn—=L+in - p
M,V E Kle] = Klej], ey MYVEzi+20 > 2 MVEz—29 > 2
OE-LE-TRUE OE-LE-FALSE OE-EQ-TRUE
21 <7z 29 21 >7 29 MEuv =1y
M, VE z1 < 29 — true M,V 2z < 29 — false M,V v ==uvy — true
OE-EQ-FALSE OE-APP
Fu # vy |E| = |E|
M,V F v ==u, — false M,V (rec f(T) =€) (V) — e[rec f(T) :=¢/f,v/T]
OE-CASE
0<i< |E| OE-FORK

M,V fork{e} — &, e
M,V I caseiofe — ¢;

OE-READ OE-WRITE

M,V Frop B, MVE 0=, L g
OE-CAS-FAIL
rlx C of, 0y, 0y Vw € Readable(¢, M, V). ' .w=v'AF v =" v £,

.
M,V E CAS®S 0% (0 vy, v5) w false

OE-CAs-sUCC
rlx C of, 0., 0y Vw € Readable(, M, V). ' .w=v'AFuv =" v MbEv =0,

U oW (L, wa)

M,V CAS®H 00w (£ vy 1) ——— 225 true

OE-ALLOC OE-FREE
n>0 n>0

M,V I alloc(n) M 14 M,V I free(n,t) —>D(Z’") 2

OE-FENCE
M,V I fence, e

FIGURE 4.4: Relaxed \g,s; €xpression se-

mantics.

* OE-proJ says that the path operator simply computes a new location
with offset n € Z from ¢, using the meta-level operator +, which
is defined as (i,n’) +¢ n = (¢,n’' +z n). (Note that the offsets are
integers, and use the integer operator +z.)

* OE-ADD, OE-suB, OE-LE-TRUE, and OE-LE-FALSE say that integer oper-
ators reduce according to the meta-level integer operators. Note
that we have no reduction rules for poison (&), which means that
any computation using poison will get stuck. Also recall that true
and false are just notations for 1 and 0, respectively.

* OE-EQ-TRUE and OE-EQ-FALSE say that comparison reduce according

8see Definition 4.7 and Definition 4.8. to equality and inequality comparisons, respectively.® This means

that comparing unallocated locations can non-deterministically
reduce to either true or false.

* OE-cask says that a case block reduces if the choice index i is an
actual index into the list of expressions. Then the expression g; will



Language Expression Reductions 53

be picked to reduce. Note that no expression in the list € is reduced
before the case is reduced.

* OE-ApP says that function application reduces once all arguments

have been evaluated to a list of values #.” It is also required that the 9Recall that by the Definition 4.2 for eval-
uation contexts, the arguments are evalu-

list of binders and the list of arguments have the same length. Then, ated left-to-right,

the reduction substitutes the arguments for the binders, including
the recursive function binder f, in the function’s body.

* OE-ForK says that fork { e } returns poison in the forking thread
(so that the return value should not be used), and e will be used
for the newly forked thread (see §4.3).

* OE-READ says that a read simply reduces to the value v that comes
with the read event that R°(¢, v) it is tied to. The memory event will
be used to match this reduction with the view-based machine (§3.3)
and the race detector (§3.4) in the complete semantics (§4.3).

* OE-wRITE says that a write reduces to poison and is tied to the
corresponding write event.

* A compare-and-swap instruction CAS®#°"°w({ v;,u5) takes three
atomic access modes: oy is the order that will be used when the CAS
fails, in which case it acts like a read with the mode o; otherwise,
if the CAS succeeds, then it acts as both a read with the mode o, and
a write with the mode o,,. The CAS atomically (i) reads the location
¢, (i) compares the value read v, with v;, and (iii) if the values
are equal, writes v, to £. OE-cAs-FalL and OE-cas-succ therefore

both require that for any memory value w readable'? by the CAS, its 1je., those values that are not yet
injected value v’ must be comparable!! with ;. g‘éirihgdowed by V.cur(f)—see Defini-
— In case of failure, OE-cas-FaIL says that it must be that v; is 11gee Definition 4.9.

in-equal to the read value v, and the reduction reduces to
false and is tied to the read event R%7 (¢, v,.).

— In case of success, OE-cAs-succ says that it must be that v; is
equal to the read value v,, and the reduction reduces to true
and is tied to the update event U°°v (£, v, v3).

Note again that this means that the CAS can non-deterministically
fail or succeed if v; and what ¢ stores can be unallocated location
values.

* OE-FENCE says that a fence also reduces to poison and is tied to the
corresponding fence event.

* Finally, OE-arLoc and OE-FREE both require that the provided block
size n is positive, and respectively are tied to the memory events
A(¢,n) and D(¢,n). The allocation call returns the base location ¢
of the newly allocated block, while the deallocation call returns
poison.

Note 4.11. In the expression reductions, the global memory M is used
in equality comparison (OE-EQ-TRUE). Other than that, it is only used



54 The Relaxed Aryst Language

OC-PURE )
_ MViEe—e e}
ForkView(V) == (@, @, V.cur, V.cur) e, Foren())”
(M, N) | (e, V) = t MN) [ (€,V)
OC-MEM
Ve, (M, VFe = [ I)AM |V == | ) = M,N,V I RaceFree(')

”
> 7
e,r’,ms &r ,ms

MVEeSed, L M| VyZ2LEM|Y N—O N
(M,N) | (e,V) 255 (MONY) | (€, V)

FIGURE 4.5: The combined 1-thread se-
mantics of ORC11 machine semantics and
ARust €Xpression semantics.

together with the thread-view V for comparison in CAS (OE-cas-FaIL and
OE-CAS-sUCC).

4.3 The Complete Operational Semantics of Relaxed Arys:

Definition 4.12 (1-Thread Reductions). |< | (e, V) %t (e, V)

The combined 1-thread (single-thread) reductions of ORC11 machine
semantics and Agr,s €xpression semantics is given in Figure 4.5. The
configuration (M, N) | (e, V) is called a 1-thread configuration which
includes the thread’s executing expression e, the thread-view V, and
the global state M and N. The pair (e, V) is also called a thread-local
configuration. The combined 1-thread reductions define how a 1-thread
configuration is transformed in one reduction step, possibly generating
an optional memory event ¢ and an optional pair of expression and
thread-view (es, Vy) for a newly forked thread.

* OC-rURE allows for a pure step that only reduces the expression of
the configuration, and potentially generates an expression e for
a new thread. In that case, the thread-view ForkView(V), derived
from V), is picked for the newly forked thread. The definition of
ForkView()) encodes our choice for fork’s behaviors with respect
to synchronization: the forked (child) thread should be synchro-
nized with the forking thread, but a fork does not act as a release
fence for the forked thread, so its release views are empty ().

* OC-MeM allows for a memory step that simultaneously (i) reduces
the expression e in one step to ¢/ (M,V F e = ¢, L, Defini-
tion 4.10) with a memory event ¢, and (ii) makes a view-based

machine step (M | V RN VT | V', Definition 3.22) and a

”

g,r’,m

S
race detector step (N =7 N, Definition 3.26) with the same
memory event ¢, potentially with an optional read action id 7*

and a list of write messages ms. The reduction needs to be race-
free, i.e., for any potential memory step that the current config-
uration can make and thus generate an event ¢/, it must be that
M, N,V |- RaceFree(¢’) (Definition 3.25).



The Complete Operational Semantics of Relaxed Agyst 55

OT-STEP

T =(@V)  (MN)](eV) Y0 A7) | (V)

(M N)|T = (MON) | Tl (e, V)] [p=(ep, Vi) [ (e, Vi)' # L A p & dom(T)]

Finally, we can lift the 1-thread semantics to the complete, concurrent
semantics with a thread-pool.

Definition 4.13 (Thread-pools). A thread-pool T is a partial, finite map
from thread-ids to pairs of expressions and thread-views, i.e.,

T € ThreadPool ::= Thread i™ (Expr x ThreadView)

Definition 4.14 (Threadpool Reductions). ST —=d|T

The thread-pool semantics is given in Figure 4.6. It defines the reduction
of a thread-pool configuration ¢ | T that includes the global machine state
(Definition 3.14) and the thread-pool for all threads. OT-sTEp says that a
thread-pool reduction just picks some random thread = in the thread-pool
and make a 1-thread step using the 1-thread configuration ¢ | (e, V) for
the global state and thread =. The results of the 1-thread step are then
used to update the thread-pool configuration. In case thread = forks a
new thread with (ef, V), then a fresh thread-id p ¢ dom(7) is picked to
insert the newly forked thread into the thread-pool.

CHAPTER SUMMARY. This chapter presents the Agr,s; language and ex-
plains how to combine it with the machine semantics of ORC11 to achieve
our target language. In the next chapter, we instantiate Iris with this
language to obtain a vanilla separation logic for RMC. Note that Iris takes
as input the 1-thread reductions (Definition 4.12) of a language and
defines its own thread-pool reductions. We only state the thread-pool
reductions (Definition 4.14) for completeness, which is similar to (but
simpler than) that of Iris.

FIGURE 4.6: Threadpool semantics.






Related Work

Podkopaev et al.! develop an operational account of a subset of C11 that
includes relaxed accesses and non-atomics. However, it lacks support for
fences and thus could not be used as is to build a logic to verify libraries
that use fences e.g., Rust’s Arc. Their semantics also does not forbid the
data race in Example 3.29.

Doherty et al.? develop an operational semantics based on event
graphs for the release/acquire/relaxed fragment of RC11. They also
develop an invariant-based logic geared towards automated verification
for programs in that fragment. Their operational semantics supports
neither non-atomics nor fences.

Kang et al.’s promising semantics® proposes using promises to fix C11’s
out-of-thin-air problem without prohibiting load-store reordering on
relaxed accesses, as RC11 and ORC11 do. The promising semantics as
well as its versions 2.0 and 2.1,* however, does not include non-atomic
accesses, as the authors did not consider the problem of undefined
behaviors (UBs). Instead, the semantics has plain accesses that can race
among one another and still have defined semantics.

Recently, Cho et al.> extends version 2.1 (PS2.1) with UB-inducing
non-atomics (dubbed PS™) in order to verify optimizations on non-
atomics across atomics. Non-atomics in PS™ can also be promised, and
write-write races with a non-atomic access invokes UB, while read-write
races results in the read of undef (which is more defined than the poison
& value).® The race detection mechanism of PS™ is similar to that of
ORC11: a non-atomic access is racy if the thread is not locally aware of
another access to the same location with a bigger timestamp (similar
to DRF-READ-NA and DRF-WRITE-NA); and an atomic access is racy if the
thread is not aware of another non-atomic access to the same location
with a bigger timestamp (similar to DRF-READ-AT, DRF-WRITE-AT and DRF-
upDATE). Interestingly, the implementation of PS"®’s race detector is much
simpler: instead of using a global non-atomic view N as in ORC11, PS™
distinguishes between atomic and non-atomic messages in the global
memory M, and the check for races simply looks at the timestamps and
the messages’ types. We believe that ORC11 can benefit from such a
simplification.

The follow-up work of PS™ by Lee et al.” proposes a two-layered
semantics: a source language semantics without promises, and an inter-
mediate representation (IR) semantics that can have promises (dubbed

IPodkopaev et al., “Operational Aspects
of C/C++ Concurrency” [PSN16].

2Doherty et al., “Verifying C11 programs
operationally” [Doh+19].

3Kang et al., “A promising semantics for
relaxed-memory concurrency” [Kan+17].

4Lee et al., “Promising 2.0: global op-
timizations in relaxed memory concur-
rency” [Lee+20]; Cho et al.,, “Modu-
lar data-race-freedom guarantees in the
promising semantics” [Cho+21b].

5Cho et al., “Sequential reasoning for op-
timizing compilers under weak memory
concurrency” [Cho+22].

6Lee et al., “Taming undefined behavior
in LLVM” [Lee+17].

"Lee et al., “Putting Weak Memory in
Order via a Promising Intermediate Repre-
sentation” [Lee+23].

57



58 Related Work

8Cho et al., “Sequential reasoning for op-

timizing compilers under weak memory
concurrency” [Cho+22].

9[Pul+18; Flu+17; Pul+19; Sim+20].

10Cho et al., “Revamping hardware per-
sistency models: view-based and ax-
iomatic persistency models for Intel-x86
and Armv8” [Cho+21a].

Hsimner et al., “ARMv8-A System Seman-
tics: Instruction Fetch in Relaxed Architec-
tures” [Sim+20].

12Simner et al., “Relaxed virtual memory
in Armv8-A’ [Sim+22].

PS™) but only for race-detection purpose. The paper also comes with a
proposal to hardware developers to justify the semantics of PS™. If the
proposal is accepted, it mean that iRC11 can be applied to most C and
C++ RMC programs. As of now, iRC11 can only be used for promise-free
programs (a property which can be checked externally), and the verifica-
tion results can be ported to the full semantics using the DRF theorems
by Cho et al.b.

Meanwhile, semantics for low-level languages, such as that of the
ARM ISA,° do not employ UBs. Regardless, their modern semantics in-
clude hardware optimisations such as speculative execution and multiple
layers of caches, resulting in complex memory models. It remains to be
seen if the view-based approach can be used to model various hardware
features—there have been view-based semantics for non-volatile mem-
ory,'? but, to the best of our knowledge, not for instruction caches'! nor
virtual memory.!?



Part II

SEPARATION LOGIC FOR RELAXED MEMORY






This part discusses the features and the construction of iRC11. We
give a brief review of the Iris separation logic framework in Chapter 6 and
discuss the instantiation of Iris with ORC11 in Chapter 7, which results
in the base logic for ORC11. The base logic, however, is very close to
the operational semantics, and only provides basic separation reasoning
principles. Chapter 8, following iGPS,'® presents the first abstraction
layer that gives rise to the iRC11 logic: view-monotone predicates, or vProp
for short. The chapter also presents several RMC-specific modalities
of iRC11 in vProp, some of which are inspired by FSL and Cosmo.!*
Chapter 9 and Chapter 10 present the construction for the core ownership
assertions of iRC11: the non-atomic and atomic points-to. Chapter 11
introduces invariants—the standard principle for concurrently sharing
resources—but with RMC-specific limitations. Finally, Chapter 12 ends
this part with several simple example verifications of RMC programs
and libraries using iRC11. The bottom half of Figure 1.1 visualizes the
dependency among these chapters.

Related Work 61

13Kaiser et al., “Strong Logic for Weak
Memory: Reasoning About Release-
Acquire Consistency in Iris” [Kai+17].

14Doko and Vafeiadis, “A Program Logic
for C11 Memory Fences” [DV16]; Mével
et al., “Cosmo: a concurrent separation
logic for multicore OCaml” [MJP20].






More Background: Iris, A Framework for
Concurrent Separation Logics

In this chapter, we give a quick review of the concurrent separation logic
framework Iris.! Readers who are familiar with Iris can skip this review,
and jump to Chapter 7 for the instantiation of Iris with our relaxed Aryst
+ ORC11 language. On the other hand, for readers who prefer a deep
dive into the details of Iris, please consult the journal paper [Jun+18b].

Iris as a framework contains (i) a higher-order, resource-aware, step-
indexing base logic with bunched implications (BI),? (ii) extensions®
that support program verification (i.e., program logics with weakest pre-
conditions and impredicative invariants) for an input language with an
operational interleaving semantics, and (iii) a general Iris Proof Mode
(IPM)* that supports interactive resource reasoning and that can be
instantiated with any BI logics.

An excerpt of Iris grammar is given in Figure 6.1. Propositions in Iris
belong to the type iProp, which has a step-indexing model on resources.”

Concept 6.1 (Iris Base Logic). The Iris base logic supports the common
logical connectives (False, True, =, A, V). iProp propositions are to be
interpreted with resources in mind, so the “classical” conjunction P A Q
should be read as P and @ hold relying on the same resources. The base
logic logic allows embedding pure facts ¢ which exist at the meta-level
and which naturally do not occupy resources.

* It is a BI logic: the separating conjunction P * () says that P and @
hold on disjoint resources, and the wand implication P — @ holds
on some resource r that can be combined with some resource s
where P holds to obtain the resource r - s where @ holds.

* The base logic also supports higher-order logical quantification
(¥, 3) and recursive predicates (1) because the quantified variable
x can also be an iProp. Recursive predicates need to be guarded:
occurrences of z in the body need to be under a later modality >.

* The later modality is the materialization of the step-indexing model
in the logic: > P intuitively means that P holds in the next step, so
P only becomes available until the program takes a step (and so
decrements the step-index). Step-indexing guarantees the logic’s
soundness in the presence of recursive higher-order quantifications,
impredicative invariants, and higher-order ghost state.

1Jung et al., “Iris: Monoids and
Invariants as an Orthogonal Basis for Con-
current Reasoning” [Jun+15]; Jung et al.,
“Higher-order ghost state” [Jun+16];
Krebbers et al.,, “The Essence of
Higher-Order Concurrent Separation
Logic” [Kre+17]; Jung et al., “Iris from
the ground up: A modular foundation
for higher-order concurrent separation
logic” [Jun+18b].

20'Hearn and Pym, “The logic of
bunched implications” [OP99]; Ish-
tiaq and O’Hearn, “BI as an Asser-
tion Language for Mutable Data Struc-
tures” [I001].

3derived from the base logic

4Krebbers et al.,, “Interactive Proofs
in Higher-Order Concurrent Separation
Logic” [KTB17]; Krebbers et al., “MoSeL:
A General, Extensible Modal Frame-
work for Interactive Proofs in Separation
Logic” [Kre+18].

5[Jun+18b], §4.

63



64 More Background: Iris, A Framework for Concurrent Separation Logics

P € iProp ::= (* base logic *)

| ¢ | False | True| P=Q|PAQ|PVQ|P+xQ|P—+Q|3z.P|Vz.P|pz. P

R

|>P|OP|la: M |BP]...

(* program logic *)

N & &
[[P]" | B2 P |wpee{v.Q} ...

FIGURE 6.1: An excerpt of Iris grammar.

®Not all connectives in the Iris base logic
are primitives, some are also derived.

“never get stuck

6.1

* The persistent modality (J P says that P is known to hold without
some exclusive resource, so that P can be freely duplicated, i.e.,
P= PxP.

* The proposition @YMP asserts the ownership of an element a of

a resource algebra M for the ghost location ~y. In case the resource
. . . e
algebra M is clear in context, we simply write !a | .

e The basic update modality E> P hides away some ghost updates that
can be performed to achieve P.

Concept 6.2 (Iris Program Logic). To support program verification for a
language, several constructions can be derived from the base logic:®

N . . .
. asserts the existence of some global invariant that holds the
resource P, under some invariant name that is in the namespace N.
Namespaces provide some hierarchy to sets of invariant names.

* The fancy update ' bgz P hides away some logical updates (includ-
ing ghost updates) that can be performed to achieve P. The logical
updates involve accessing (opening and closing) invariants and
therefore trading resources with the involved invariants. The masks
&1 and &, are sets of invariant names that identify the invariants
that hold (unopened) before and after the update, respectively.

* The weakest pre-condition wp, e {v. Q} assert the resources needed
for e to safely execute’” and maintain the invariants in £ at every
step, and if e terminates to a value v, then the post-condition @
holds. Note that the “if” signals that the program logic by default
only guarantee partial, not total correctness.

Basic Rules

Figure 6.2 provides several basic rules of many connectives in the Iris
base logic. The logical entailment P + () says that Q is derivable from
P using the rules of the logic. Intuitively, its interpretation is that for
any resource and step-index where P holds, @) should also hold. The
notation P -+ () stands for P+ Q and Q - P.

The rules in Figure 6.2 are very general rules that apply to all Iris
propositions. For example, they include commutativity, associativity, and
distributivity among connectives and modalities; PErs-ELIM tells us that



Ghost State and Resource Algebras 65

SEP-MONO WAND-INTRO-ELIM
Truex P 4+ P PO Py Qy P+QFR
Px@QA-QxP S —
(PxQ)*R - Px(Q+R) PrxPy b QuxQs PHQ—=R

Several rules for the persistent modality.

P Q PERS-IDEMP PERS-ELIM DP/\DQ +Opr DQ 032, P - 3 Op
— OoP+0OP OPFP * i T
OPFOQ OP+Q)4-0OP+0Q OVz. P+ V. OP

Several rules for the later modality.

LATER-MONO . .
LATER-INTRO LOB 7 inhabited
PF>P ﬂ (bP=P)-P H(PxQ) Ao PaQ 3 P -3 P

SPEo0 0o P 450 P >3z T T >

>Va. P - Vx. > P

FIGURE 6.2: Basic rules of several Iris con-
we can always get P from [ P; or LATER-INTRO says that if we have P now, nectives.

we also have P in the next step; or Lo allows us to do Lob induction:
if having P in the next step is sufficient to achieve P now, then we can
have P now.

6.2 Ghost State and Resource Algebras

a resource algebra M. Resource algebras give the separation structure
for ghost state in separation logics, and are a generalization of Iris for
partial commutative monoids (PCMs).

Definition 6.3 (Resource Algebras). A resource algebra (RA) is a tuple
(M,valid : M — Prop,| —|: M — M?,(-) : M x M — M) where the
type M has a commutative, associative composition (-); a core function
(| — ) that computes a optional per-element unit (in M) for each element
a € M; and a validity predicate (valid) to indicate legal compositions.

Compared to PCMs, RAs force composition to be total, and instead
regain partiality with validity. Furthermore, where a PCM has a single
unit element ¢, an RA can have multiple per-element units |a|, and some
elements may not have a unit, i.e., |a| = L.

The following properties must hold for an RA.

Ya,b.a-b=">b-a (RA-cOMM)
VYa,b,c.(a-b)-c=a-(b-c) (RA-ASSOC)
Va.lal € M = |a|-a=a (RA-CORE-ID)
Va.la] € M = |la|]| = a (RA-CORE-IDEMP)

Va.lal e M ANa<b=1|b|] € M Ala] < |b] (RA-CORE-MONO)
Va,b.valid(a - b) = valid(a) (RA-VALID-OP)
where o L=1-a"=d

axbi=dceM.b=a-c (RA-INCL)



66 More Background: Iris, A Framework for Concurrent Separation Logics

GHOST-ALLOC GHOST-UPDATE-GEN GHOST-UPDATE
. GHOST-VALID GHOST-0OP
valid(a) R . R a~ B a~b
7 [a} :>V311d(a) }Clbj <=>[a} *}b} - Ty Ty - Ty
B3v.a . I ai = Jdbe B.jb] ar = b,
BUPD-MONO
PrQ BUPD-INTRO BUPD-TRANS BUPD-FRAME
_— P-BP BEBPFEBP Q+x=PFE(Qx*P)
BPFBEQ

FIGURE 6.3: Basic rules of Iris ghost own-
ership and basic updates.

where P = Q == (P -+ Q).

RA-CORE-ID says that if a core exists for some a, then it is a unit for a, and
RA-CORE-MONO says that the core function maintains inclusion, defined
by RA-INCL using composition. RA-vALID-0P says that if a composition is
considered valid, all of its components must also be valid.

A unital RA (uRA) has a unit element ¢ satisfying:

valid(e) Vae M.e-a=a le| =€

The rules for ghost ownership are given in Figure 6.3. GHOST-ALLOC
lets us allocate a fresh ghost location ~ with an initial, valid element that
is a. Under the hood, this is a ghost update to the global ghost heap to
insert the fresh ghost location ~, and this update is hidden in the basic
update modality . GHosT-vaLID says that ghost ownership maintains
validity. More importantly, GHOST-0OP says that the RA composition gives
the separation structure to ghost ownership.

Notation 6.4 (Basic Viewshifts).

Intuitively, basic viewshift P = Q says that the resources owned by P
can be turned into the resources owned by @) using some ghost updates.

P= Q=0 +EQ)

GHOST-UPDATE-GEN and GHOST-UPDATE allow us to update some ghost
state, using the basic viewshift. GHosT-UPDATE-GEN allows for an non-
deterministic update: some element in b will be picked after the update.
To maintain consistency of separation, the premises of these rules require
that ghost updates are frame-preserving.

Concept 6.5 (Frame-preserving Ghost Updates). a~b

When doing a ghost update for @]v’ one must remember that one only
has a part of the ghost location ~: with separation (i.e., using GHOST-
op), other parts of v that are compatible with «a, called the frame, are
owned by other parties. As such, for any b that we update a to, one must
maintain that a is also compatible with the frame, i.e., one cannot allow
b composed with the frame being invalid, leading to inconsistency in
the logic (turning a valid state into an invalid one). The relation a ~~ b
encodes the fact that the update from « to b maintains validity of the
whole ghost state, i.e., it is a frame-preserving update.



6.3

a ~ b is derived from the more general definition a ~~ B which says
that a can be frame-preservingly updated to any element in B:

a~s Bu=VYc e M*.valid(a - ¢") = 3b € B.valid(b - ¢")
(RA-FRAME-UPD-GEN)

a~>bi=a~ {b} (RA-FRAME-UPD)
In this definition, “the frame” is universally quantified as c.

Figure 6.3 also provides some structural rules for basic updates.

Invariants and Fancy Updates

Invariants can be seen as logical, global spaces where resources can
be stored for concurrent accesses.® The catch is that accesses must be
(physically) atomic—take place during a single step of computation—and
invariants must be re-established after each access, so that they indeed
hold invariantly (i.e., after each step). As such, invariants are used to
build concurrent protocols on pieces of shared state, i.e., to constrain
how clients can change them.

The construction of Iris invariants, however, is not tied to the notion
of atomic expression. Instead, it uses invariant namespaces and masks
to track which invariants are opened (being accessed), and only subse-
quently tie weakest pre-conditions to masks to enforce atomicity. We will
see that in §6.7. Here, we look at the vanilla rules of Iris invariants.

The proposition N asserts the existence of I in the global invariant
space with some invariant name . in the namespace N.° Several rules
for Iris invariants are given in Figure 6.4, which rely on fancy updates,
which in turn generalize basic updates with masks. Intuitively, &' '382 P
represents ownership of resources such that, assuming that the invariants
in &; are enabled (they are not opened) before, one can perform frame-
preserving updates and afterwards obtaining P and having the invariants
in & enabled. As such, if the masks £ and &, are different, some
invariants may have been opened to achieve P, or some other resources
must have been returned to close some invariants. Furthermore, masks
prevent reentrancy: an invariant cannot be opened again without being
closed first.

This intuition is on display in the invariant access rule INvV-ACC:

¢ If we know that the set of enabled invariants &£; includes the names-
pace N'—meaning that the invariants in A/ are not opened yet,
then we can open all invariants in A/ with the fancy update gbg\N
(so after that only the invariants in 5}35\/\/ are enabled).

. N . . .
¢ Furthermore, if we know that , Le., I is stored in one of those
invariants in NV that are to be opened, then we get access to the
resources of I, but under a later modality (> 7). The later ensures

that [ is guarded, because invariants are impredicative, e.g., I can
N .
refer to itself.

Invariants and Fancy Updates 67

8They are indeed implemented in Iris
as a global chunk of resources, see
([Jun+18b], §7.1).

9The meta-variable I is preferred over
P to indicate resources that are stored in
invariants.



68 More Background: Iris, A Framework for Concurrent Separation Logics

INV-ALLOC INv-ace
e 1" Nee
> N
¢ FEREW (o T x (5 T €WK True))
FUPD-MONO FUPD-INTRO-MASK
FupPD-BuUPD FUPD-INTRO
B PEB,.P Pra PrE.P LEé
€ Gl p fipfg € True - S5 ©225 Trye
FUPD-FRAME FUPD-TRANS
Q * £1§S2P |7 81&)5f§52@5f (Q * P) 51952 52953 P F 51953P

where B, = “p° and P £k Q == P ‘e Q.

FIGURE 6.4: Some rules for Iris invariants
and fancy updates.

* Finally, we also get a “closing” update, (>1 — W '35 True), which
allows us to return the invariant resources, also under a later, > I,
we can close all invariants and re-establish that £ is enabled.

Note that even though all invariants in A/ are opened during the
access, we only take out >/ and so we only need to return /. The
resources of other invariants are untouched and are kept safe under
the “closing” update. However, this means that the access rule does
not support accessing two invariants stored under the same namespace
together. To access two invariants [; and I, together, we need to allocate
them in two disjoint nameﬁpaces N1 # N5 C &. Then we can apply
INV-ACC twice, first with " and &, then with N2 and £ \ Ny, to get
access to > I x> Ip.

Inv-aLLoc allows us to allocate an invariant / with some fresh invariant
name ; picked non-deterministically from N. Note that we only need
to provide I under a later, and that |5 is a notation for a fancy update
that does not change masks. This rule justifies the use of namespaces:
if we had use only invariant names, then when accessing invariants
we would have to deal with disjointness for names which are allocated
dynamically. Instead, in this setup with namespaces, we only have to
deal with disjointness of namespaces which can be picked statically. Note
that this also means that both masks and namespaces need to contain an
infinite number of names.

Figure 6.4 also provides some structural rules for fancy updates.
Importantly, Fupp-Bupp says that a fancy update includes a basic update.

Notation 6.6 (Fancy Updates and Wand Viewshifts). & denotes non-
mask-changing fancy updates %, and P €=k¢’ Q denotes wand view-
shifts, a combination of wand implication and fancy update:

P 53[<‘€, Q=P — g'éng

P =k¢ Q denotes non-mask-changing wand viewshifts.
Plain viewshifts are the persistent version of wand viewshifts:

P £28 Qu=0F + 57 Q)



6.4

6.5

Hoare Triples

Once we instantiate Iris with a language that has an interleaving op-
erational semantics defined in the style of evaluation contexts, the Iris
problem logic provides us a notion of weakest pre-conditions proposi-
tions that encode partial correctness of expressions. (We will see the
instantiation of the relaxed Ag,s language in Chapter 7.) Intuitively, the
proposition wp, e {v. Q} asserts the ownership of some resources with
which e can execute safely (i.e., it never gets stuck) while maintaining
the invariants in £ at every step, and if e evaluates to a value v, then we
arrive at some resources at which the post-condition @) holds.

The goal of program verification for some program e is to prove that
the weakest pre-condition with some suitable target post-condition is
derivable from some sufficient resources—the pre-condition—using the
rules of the program logic. This can be seen more concretely in the Iris
definition of Hoare triples.

Definition 6.7 (Iris Hoare Triples). Hoare triples in Iris are defined in
terms of weakest pre-conditions:

{P}e{v.Q}e :=0O(P = wpg e {v.Q})

The persistent modality () guarantees that the precondition P is suf-
ficient to prove the weakest pre-condition—that is, the wand does not
need extra resources. The intuitive interpretation of Hoare triples is
straightforward: the precondition P is sufficient for the expression e to
safely execute while maintaining the invariants in £, and if e terminates
to v then () holds.

Adequacy

Weakest pre-conditions and Hoare triples are also Iris propositions (iProp),
and are in fact also defined entirely in the logic of Iris to encode the
aforementioned intuition. However, once we have proven a weakest
pre-condition or a Hoare triple for some program, we would like to
achieve a guarantee outside of the logic that the program executes safely
under the target operational semantics. This is called adequacy: for each
instantiation of Iris with some language A, we need to prove once and
for all the following Theorem.

Theorem 6.8 (Iris Adequacy). If + wpy e{v.¢(v)} is derivable in the
Iris program logic for A where ¢(v) is a pure (meta-level) fact, then the
following holds.

Vo, T,o. ([r = €], omit) =x (T,0) =
Yo. T(m) =v = ¢(v) (IRI1S-ADEQUACY-VAL)
A Vp,e,. T(p) =e, = (e, is avalue Vred(e,, o))

(IRIS-ADEQUACY-NO-STUCK)

That is, if we start running e with the initial global configuration
([ — €], oinit)—where the threadpool only has a single thread = with

Hoare Triples

69



70 More Background: Iris, A Framework for Concurrent Separation Logics

1080 that from a wp, e {®} one can, for
example, obtain wp e {#} with the top
(T) mask, and subsequently apply ade-
quacy.

6.6

the expression e and the initial global state oy is typically empty—then
for any configuration reachable (7, o) through the reflexive, transitive
closure of the threadpool reduction —, for A, (IRis-ADEQUACY-VAL) if
thread = has reduces to a value v, the pure fact ¢(v) must hold, and
(Iris-ADEQuUACY-No-STUCK) for any thread p with the expression e, it is
not stuck: either e, is a value, or e,, is still reducible on o (red(e,, 0)).

Note that the mask of the weakest pre-condition is T, which means
that all invariants (any allocated) hold at every step. Note also that
deriving F wp, e {v. ¢(v)} is the same as deriving a Hoare triple with a
trivial pre-condition, i.e., F {True}e{v. Q}+.

Some Common Rules for WPs and Hoare Triples

On the other hand, during program verification, in order to derive
wpg e {v. Q}, one relies on the various rules for weakest pre-conditions
(WP). Many of those rules are language-specific: after instantiate Iris
with our target language A, we need to extend the logic with WP rules
for the primitive instructions of A. We will see those primitive rules for
our relaxed Mgyt + ORC11 language in Chapter 7. Here, we look at some
WP rules that are not so language-specific.

More concretely, these are the typical rules we would expect for a
lambda-calculus based language with an operational semantics using
evaluation contexts and fork-based concurrency. These rules, as well as
their corresponding derived Hoare-triple versions, are given in Figure 6.5.
Note that when reading the WP rules, by reading them backward—as
typically when we use a rule of form wp, e’ {U} - wpg e {@} to turn the
verification goal wp, e {®} into the goal wp, ¢’ { '}, we are driving the
symbolic execution of the program forward: the expression e reduces to
the expression e’. Note that we also use the meta-variables ¢ and ¥ for
predicates on values (Val — iProp) which can be used for post-conditions
(which so far have been written as v. Q).

* WP-vaL says that if the expression has reached a value v, then
we simply have to prove the post-condition ¢(v). HOARE-VAL is
derivable from WP-vAL with @ ::= Aw. w = v.

* WP-mono allows for monotonicity for the post-conditions: to prove
a WP with the post-condition ¥ we may want to prove a WP
with the stronger post-condition &. It also additionally provides
monotonicity for masks: if we can prove a WP relying on fewer
invariants (with the smaller mask &;), then that WP also works
with more invariants (with the bigger mask &5).19 The well-known
consequence rule HoARE-CONs is derivable from WP-MoNo.

* WP-BIND is the core rule to drive sequential composition. It makes
use of evaluation contexts. To prove a WP for K [e], we prove a WP
for e whose post-condition is another WP that plugs the resulting v
into the “continuation” K. This corresponds to executing e first and
then the continuation K. HOARE-BIND is derivable from WP-BIND



Weakest Pre-conditions and Invariants 71

WP-MONO
WP-vAL

&1 C &
P(v) - wpgv {P}

(V. ®(v) = B¢, U(v)) * wpg, € {@} - wpg, e {T}

WP-BIND WP-FRAME
wpg e {v.wpg K[v] {®}} F wpg Kle] {P} P xwpge{P} Fwpge{v.PxP(v)}
WP-LAM WP-FORK
>wpg efv/z] {P} - wpe (Az. e)v {P} >P() «>wpre{_. True} - wpg fork {e} {P}
HOARE-BIND HOARE-FRAME
HOARE-VAL

{True}v {w. w =v}e {P}e{v.Q}¢ Y. {Q} K] {w. R}¢

{P} Kle]{w. R}¢

HOARE-CONS HOARE-LAM
PrP {P'}e{v.Q'}e Y. Q' - Q {P}efv/z] {w.Q}e
{P}e{v.Q}¢ {P} (M\z.e)v{w.Q}¢

and WP-mono. Note that Hoare-triple rules should be read as the
separating conjunction of the premises implies the conclusion.

* WP-rrAME allows for “framing”: if the post-condition requires us
to prove P that has nothing to do with the execution of e, then
we can frame P out and separately prove the WP for ¢ with the
remaining post-condition ¢. The famous frame rule HOARE-FRAME
is derivable from WP-FRAME.

* WP-LAM is a primitive rule for a language with beta-reduction. The
rule says that we need to prove the WP for the expression after beta-
reduction. However, because the reduction takes a step, we only
need to prove the new WP under a later. HoARE-LAM is derivable
from WP-LaM and LATER-INTRO.

* WP-FORK is a primitive rule for a language with fork-based concur-
rency. We need to prove, only under a later because the reduction
takes a step, (i) the current post-condition () for the current
thread (assuming the returned value of fork is unit), and (ii) a
WP for the newly forked thread p (with the expression ¢) with a
trivial post-condition, which signifies that forked threads are “de-
tached” by the default.!! The rule HoARre-FORK is derivable from
WP-FoRK, and in that rule we can see that some resources P can be
transferred from the forking thread to the forked thread.

6.7 Weakest Pre-conditions and Invariants
Figure 6.6 provides some rules for the interaction between WPs (Hoare
triples) and invariants and fancy updates.

* WP-FupD says that we can perform fancy updates around an ex-
pression if our goal is a WP. Combining this rule with Fupp-mMoNo

{P}e{v.Q}g
{PxRyefv.Q* Rie

HOARE-FORK
{P}e{_. True}+
{P}fork{e}{_. True}e

FIGURE 6.5: Some common rules for Iris
weakest pre-conditions and Hoare triples.

M1ris, however, does support picking a
fixed, non-trivial post-condition for all
forked threads. But such a post-condition
only restricts the set of possible final states
of the forked threads. If one wants to com-
municate a post-condition () back to the
forking thread, however, one can imple-
ment a join operation (using an extra lo-
cation) to wait for the thread p to receive
Q—see §12.3.



72 More Background: Iris, A Framework for Concurrent Separation Logics

WP-FupD

Bewpe ¢ {v. B P(v)} - wpg e {}

WP-ATOMIC
atomic(e)

51'352 Wpg, € {v. 52‘351 @(v)} Fwpg, e {®}

WP-INV
> 1= wpgy e {v. > 1% P(v)} atomic(e) N CE&
1" - wpe e {0)
HOARE-VS HOARE-INV
P=¢ P {P'}e{v.Q'}¢ Y. Q' =¢ Q {pIx«Phe{v.>1xQle\n atomic(e) N CE&
{Pyefv.Qle TN {PYefv.Q)e

where P =¢ Q 1= 0O(P - £, Q) (see Notation 6.6).

FIGURE 6.6: Some rules for Iris weakest

pre-conditions and invariants.

and Fupp-rraME (Figure 6.4), around a WP we can eliminate any
hypotheses with fancy updates in our proof context if they have
masks smaller than £. With Fupp-Buprp, we can additionally per-
form ghost updates, and with FuPp-INTRO-MASK and INV-ACC, we can
also open invariants and close them immediately to obtain some du-
plicable knowledge. Furthermore, HoARE-cONS can be strengthened
to HOARE-VS.

* WP-aromic allows us to perform mask-changing updates around
(physically) atomic instructions—those whose execution takes place
in a single step of computation. If e is atomic, then to prove
wpg, e {®}, we can perform a mask-changing fancy update from
the mask &; to the &, and prove a WP for the mask £ whose
post-condition must perform a reverse mask-changing update from
&s back to & before establishing the original post-condition.

* WP-Inv allows us to open invariants around atomic instructions,
and it is derivable from WP-aromic. If welet & = £, and & = E\ W,
we can use WP-atomic and then INv-acc to open the invariant N
around a goal of wp, e {®}, and use > I for the execution of the
atomic expression e, if we can re-establish > I after the step. HoARE-
Inv is easily derivable from WP-Inv.

6.8 Properties of Propositions

There are two important properties of propositions that make proofs in
step-indexing separation logics more convenient. Several rules for these
two properties are given in Figure 6.7.

Property 6.9 (Timeless Propositions). Timeless propositions are those
who are independent of the step index, and thus are not affected by
the later modality. Concretely TIMELESS-DISCRETE allows them to be
used immediately—we say that the later is stripped off —using a fancy
update. Timelessness is maintained structurally in many cases, such



6.9

The Method of Fictional Separation 73

TIMELESS-VS TIMELESS-DISCRETE TIMELESS-PURE
timeless(P) M is discrete ]
- _ — 5 timeless(¢)
>PFEBE:P timeless(a: M)
PERSISTENT-DUP PERSISTENT-CORE
. PERSISTENT-PERS PERSISTENT-PURE PERSISTENT-INV
persistent(P) i i la| = a N
_ persistent(CJ P) persistent () — ==+ persistent( I]" )
P& PxP persistent(a | )
TIMELESS-SEP TIMELESS-PERS PERSISTENT-SEP PERSISTENT-LATER
timeless(P) timeless(Q) timeless(P) persistent(P) persistent(Q) persistent(P)
timeless(P * Q) timeless(O P) persistent(P * Q) persistent(> P)

as in TIMELESS-SEP. Some typical timeless propositions are pure (meta-
level) facts (TiMELESS-PURE), and ownership of a ghost element whose
RA is discrete (TIMELESS-DISCRETE), i.e., the equivalence relation is not
step-indexed.'?

Property 6.10 (Persistent Propositions). Intuitively, persistent propo-
sitions are those who do not consume resources. As such, they can
be freely duplicated and be used many times without being consumed,
as in PERSISTENT-DUP. For this reason, persistent propositions are often
called knowledge, in contrast to non-persistent ones, which are generally
called resources. Persistency is maintained structurally, for example,
as in PERSISTENT-SEP and PERSISTENT-LATER. Naturally, (] P is persistent
(PERSISTENT-PERS). Some typical persistent propositions are pure facts
(PERSISTENT-PURE), the knowledge of some invariant (PERSISTENT-INV), OF
ghost ownership of some core element (PERSISTENT-CORE).

The Method of Fictional Separation

When instantiating Iris with our target language, apart from the expected
WP rules mentioned above, we need to derive WP rules for our language’s
primitives (e.g., for reads and writes). These derivations, as well as most
derivations of rules that we will see in later chapters, all follow the
method of fictional separation.'® It is a method to turn the ownership
of some monolithic, non-splittable resource r into separable ones. The
splitting of r is fictional: we construct some RA that mirrors » and that
has a suitable composition to provide the desirable separation structure.
In other words, we create a ghost copy of r and we split the copy, while
maintaining that the copy is in sync with the original r. For this, we need
the authoritative RA.

Definition 6.11 (The Authoritative Resource Algebra). The authoritative
RA,'* denoted AUTH(M ), assumes a unital RA M, and provides two types
of elements for some element a € M: the authoritative element e a, and
the fragmentary element o a. The elements satisfy (but are not limited
to) the rules given in Figure 6.8.

FIGURE 6.7: Some properties of timeless
propositions and persistent propositions.

12A step-indexing family of equivalence
relations is needed for higher-order ghost
state.

13Jensen and Birkedal, “Fictional Separa-
tion Logic” [JB12].

14Jung et al., “Iris: Monoids and Invari-
ants as an Orthogonal Basis for Concur-
rent Reasoning” [Jun+15].



74 More Background: Iris, A Framework for Concurrent Separation Logics

FIGURE 6.8:

AUTH(M) RA.

Va.|oa| = o|al (AUTH-FRAG-CORE)
Va,b.o(a-b)=o0a-0b (AUTH-FRAG-OP)

Va,b.a < b=oa<ob (AUTH-FRAG-MONO)
Va.valid(e a) < valid(a) (AUTH-AUTH-VALID)
Va.valid(o a) < valid(a) (AUTH-FRAG-VALID)

Ya,b. —valid(ea - e b) (AUTH-AUTH-OP-VALID)
Va,b.valid(ea - ob) < b < a Avalid(a) (AUTH-BOTH-VALID)
Vay,by,az,be. (a1,b1) ~>g (az,b2) = eay -0by ~> eay - 0by (AUTH-UPDATE)

Several rules for the

That is, fragmentary elements preserve core, composition and thus
inclusion of M (AUTH-FRAG-CORE, AUTH-FRAG-OP, and AUTH-FRAG-MONO);
both types of elements preserve validity (AUTH-AUTH-VALID and AUTH-FRAG-
vaLID), and the authoritative element is exclusive (AUTH-AUTH-OP-VALID).
Most importantly, a valid composition of the authoritative element of a
and a fragmentary element of b implies that b is included in a (AUTH-BOTH-
vALID). This is why the RA is named “authoritative”: the authoritative
element includes all fragmentary elements.

We then can use the authoritative element as the ghost copy for our
monolithic resource r, and the fragments as its splittable counterparts.

Concept 6.12 (The Method of Fictional Separation). To fictionally
separate a monolithic, non-splittable resource r:

1. Design an RA M that mirrors the original resource r and that has
the desirable separation structure i.e., an appropriate composition.

2. Apply the authoritative RA to M, i.e., AUTH(M ), and keep the
ownership of the authoritative part e r in sync with r.

3. Use the fragmentary parts o to build local assertions.

4. Derive rules for local assertions that update the splittable fragmen-
tary parts o, in conjunction with e  and thus with r, but having r
and e r hidden, typically by using an invariant.

To update the fragmentary elements together with the authoritative
one, we use AUTH-UPDATE, which says that e a; -0 b; can frame-preservingly
updated to e ay - 0 by if (a1, b1) can be locally updated to (ag, bs).

Definition 6.13 (Local Updates). ’ (a1,b1) ~¢ (ag,bs) ‘
A pair (ay, by) can be locally updated to a pair (as, b2), if for any (optional)

frame af? completing by to a, a}' also complete by to as:
(a1,b1) ~g (a2,b2) ==
Vai.valid(a;) A ay = by - af = valid(ag) A ay = by - af

In the case of AUTH-UPDATE, this means that the frame af is the fragmentary
frame of ob;, and when updating e a; together with ob;, we need to
maintain that the update respects a.



6.10

6.11

Now, Iris allows use to fictionally separate the physical machine state
of our target language through the physical state interpretation.

The Physical State Interpretation

In fact, Iris requires us—the instantiator—to provide the state interpre-
tation predicate S : State — iProp where State is the type of the global
physical state. This predicate is used in the definition of Iris weakest
pre-conditions.

Definition 6.14 (Iris WP, simplified).

wps e {®} =
ecVal A, P(e)
Y (e ¢ Val A\Vo.S (o) —
£ (red(e,0) x Ve', o’ es. (e,0) = (¢, 07, ef) —

> 2B (S(0") * wpg € {@} * wpS ef {v. True})))

Weakest pre-condition is defined as a recursive iProp predicate (guarded
by a later modality), with two cases. In case the expression e is already
a value, then the post-condition ®(e) must hold. Otherwise, assuming
S(o) for the current global physical state o before a step, (i) e must be
safe to take a 1-thread reduction step (—¢) in o, i.e., e is reducible in o
(red(e,0)), and (ii) for any resulting configuration (¢’, o’ er) of such a
1-thread reduction step, the state interpretation S(¢’) for the physical
state ¢’ after the step must hold, and the weakest pre-conditions hold
recursively for ¢’ and the forked expression e;. The fancy updates enable
ghost updates and invariant accesses around a single reduction step.

From this definition, we see that the proposition S(o) is needed to
perform a step and must be re-established afterwards, where o € State is
the current physical state of the machine. As such, we can use .S, whose
definition is up to us (the instantiator) to pick, to fictionally separate the
physical state o. Specifically, we will use S to keep the current state o in
sync with our authoritative ghost copy e o, and give out the fragmentary
element o c—which can be separated into smaller elements—to define
our local assertions. Conveniently through S, the WP definition not only
keeps the physical state and the ghost copy in sync for us, but also hides
them away, so our only remaining tasks are to define a suitable RA that
enable the desirable separation on State and to prove our primitive WP
rules (which will need to update the physical state, thus the authoritative
ghost copy and the corresponding ghost fragments).

An Instantiation Example for Simple Heaps

To make it more concrete, we briefly consider an instantiation example
for an SC language whose physical state is simple heap—a map from
locations to values, i.e., State ::= Loc i™ Val.'® Let us call this language

The Physical State Interpretation 75

15This example is rephrased from
[Jun+18b] and [Kai+17].



76 More Background: Iris, A Framework for Concurrent Separation Logics

165ee §6.7

Aueap- What we want is to derive the small-footprint rules for reads and
writes, using the local points-to assertion.

HEAP-READ HEAP-WRITE

{t v} l{ww=vxluv}t {{—=v}l:=0"{0). 0=}

To do so, we pick a suitable RA to split a heap ¢ into multiple singleton
heaps of the form [¢ < v], which can then be used to define ¢ +— v. This
RA is called SHEAP, whose type is exactly State and composition is union
of finite maps, but composition is only valid between disjoint maps. That
is, valid(c - ¢’) & dom(o) Ndom(c’) = @. The state interpretation and
the points-to assertion are then defined as:

(v =10 [(«]: AUTH(SHEAP) "™

That is, the state interpretation S(o) is the ghost ownership of the au-
thoritative heap e o at the ghost location 7gsp, and the points-to asser-
tion ¢ — v is the ghost ownership of the fragmentary singleton heap
o [¢+v] at the same ghost location ~yyugap. The ghost location ~yg,p is allo-
cated before the program runs (a proof that indeed needs to be done in
Adequacy—see §6.5), and is needed to establish the agreement between
¢ — v and the current physical state o, indirectly through S. To see this
in action, let us look at the proofs of HEAP-READ and HEAP-WRITE. Both
proofs first proceed by unfolding the definitions of Hoare triples (§6.4,
Definition 6.7), and WP (Definition 6.14).

Proof sketch of HEAP-READ. After introducing the assumptions and clear-
ing the fancy update (using Fupp-INTRO-MASK and FUPD-MONO),'® we
arrive at the following goal.

Context: Goal:

Cev(=[o e ™)

S(o) (= ‘riqump) red(*¢,0) AVe o’ e ...

We first need to show that e is reducible on o.

With GHosT-0P and GHOST-VALID (see §6.2), from our assumptions,
we have valid(e o - o [¢ +v]), and then by AUTH-BOTH-VALID,

we have [¢ +v] < ¢ and valid(c), so 0 = [¢ +v] W o for some o%.

By the definition of SHEAP’s composition, we then know o (¢) = v.
Since ¢ € dom(o), we can show red(*/, o). Our remaining goal is
L—v*S(0) Ve', o' ep. ("0, 0) = (¢, 0" er) =TT ‘

Looking at the operational semantics of (*¢,0) — (¢/, 07, ef),

we learn that ¢/ = o({) Ao’ =0 Aef = L, so our goal is
L—vxS(o) DQETS(U)*W[}SFU(E){’LU.’LU:’U*KHU}‘

After clearing the later and fancy update modalities and simplifying

(using LATER-INTRO and FUPD-MONO again),
{—vxS(o) S(a)*a(ﬁ):fu*ﬂr—)v‘

Since we already know o (¢) = v, we are done. O



An Instantiation Example for Simple Heaps

Note that to apply GHOsT-oP in the above proof, it is important that
S(o) and ¢ — v use the same ghost location ~yygap-

Proof sketch of HEAP-WRITE. Similar to the proof of HEAP-WRITE, by owning
¢ — v we know that o(¢) = v where o is the current physical state, so we
can prove red(¢ := v’, o). We then introduce all assumptions and clear
the fancy update and the later from the goal. However, we additionally
need to use FUPD-TRANS to keep a fancy update 5 : we need to update
our ghost copy so that it is in sync with the new physical state after the
step. Our goal then looks as follow.

Context: Goal:
L—vx*S(0)
(C:=2",0) > (¢,0' er) B+ S(0")xwpFe {().l—v'}x... ‘

From the operational semantics of —;, we learn that

e =()No' =c[l+v']ANef =L, soour goal is

s 0% S(0) B (") swpS () {(). £ v} |
After simplifying, we arrive at
L—vx*S(o) B S(0)x =

This goal pins down to an update of our ghost copy to sync with the
new state ¢’. Indeed, after applying GHosT-oP, then Furp-Bupp, and then
GHOST-UPDATE, We have to prove the following frame-preserving update.

00 -0 [lv]~ 00’ 0[]
Applying AUTH-UPDATE, we have to show
(0, [0+ v]) ~g (o', [ "))

This is easy. We know that the frame oy that completes o with [¢ < v] is
disjoint from [{ < v]: 0 = o W [ +—v]. Thus we can show

(oW [0, [lv]) ~e (or W [l<'], [0 +'])

easily by looking at the definition of local updates (Definition 6.13). We
are done because 0’ = o[l +v'] = or W [ +']. O

77






A Base Logic for RMC in Iris

In this chapter, we demonstrate how to instantiate the Iris framework
with our Mg, + ORC11 semantics (defined in Chapter 4) to achieve a
“vanilla” relaxed-memory CSL. Even though vanilla, this so-called base
logic for our target language is already quite expressive, because it is
derived from the Iris program logic: it is a higher-order CSL with higher-
order ghost state, impredicative invariants, and admits the WP and Hoare
rules listed in Chapter 6. In this chapter, we establish more WP and Hoare
rules for our language’s relaxed memory primitives. These rules form the
bottom-most basis of our logic, from which all other constructs of the
higher-level iRC11 logic will be derived.

ROADMAP. §6.11 already gives an instantiation example for a language
with simple heaps, but it worths articulating the process, more specifically
for our Aryst + ORC11 semantics:

1. We instantiate Iris with the 1-thread reductions (Definition 4.12)
of Arust + ORC11. Since we are in a relaxed memory semantics
with views, the resulting base logic will have to expose them. §7.1
discusses how views generally show up in our base-logic WP and
Hoare triple rules.

2. In contrast to an SC logic whose main local assertion is points-to,
we need new local assertions with appropriate separation structure
to handle relaxed effects and data races. §7.2 discusses the design
(interfaces) of those new assertions.

3. §7.3 presents the desired small-footprint, primitive rules that use
the new local assertions.

4. §7.4 presents the resource algebras needed to give a model for the
new local assertions and proves their properties.

5. Finally, §7.5 defines the state interpretation S for our language, and
§7.6 provides proofs of some primitive rules as well as adequacy.

7.1 Thread-local Configurations as Expressions

The Iris framework requires as input a language with a reduction relation
(e,0) —+ (¢/,0', ef)—which we call a 1-thread reduction—where e is the
expression of the thread being evaluated and o is the physical machine

79



80 A Base Logic for RMC in Iris

BL-WP-BIND

wpg (€, V) {(v, V). wpg (K[v], Vo) {@}} F wpg (K[e], V) {®}

BL-WP-FRAME
P xwpg (e, V) {®} - wpg (e, V) {(v,V,). P xP(v,V,)}

BL-WP-VAL
D, V) Fwpg (v, V) {P}

BL-WP-FORK
>P(8, V) *>wpr

BL-WP-pLUS

BL-WP-LAM
>wpg (e[v/z], V) {} - wpg ((Az. e)v, V) {@}

(e, ForkView(V)) {_. True} - wpg (fork { e }, V) {®}

BL-WP-1F

>wpg (n 4z m, V) {P} F wpge (n+m, V) {P} >wpg ((b) 7 ey :eq, V) {P} - wpg (ifbthene; elsees, V) {P}

FIGURE 7.1: Pure primitive WPs in the
RMC base logic

Un fact, Iris supports forking multiple
threads, so ef can be a list of expressions.

state. The resulting ¢’ is the thread’s new expression, and ¢’ the new
physical state, and a new thread may be forked with the expression e;.!
Satisfying this requirement of a 1-thread reduction is rather straightfor-
ward for traditional SC languages, but for our RMC language, we need a
little bit more care: the execution of a thread needs not only the globally-
shared physical state, but also some thread-local state—specifically in this
case, a thread-view. This can be seen clearly in our 1-thread reduction

relation ¢ | (e, V) Mt ¢"| (¢/,V") (Definition 4.12).

Aside from some notation mismatches, we need to fit our 1-thread
reduction relation to what Iris requires. The solution is simple: we
instantiate what Iris considers “expressions” with pairs of expressions
and thread-views (e, V)—our thread-local configurations. This is only
a change of perspective: what Iris really requires is a 1-thread relation
that describes how a thread-local configuration reduces together with the
global state, but Iris has often been instantiated with languages where the
thread-local configuration is just an expression. This perspective applies
to languages with thread-local state, which in our case is a thread-view,
but in other languages can be, for example, a call stack or an abstraction
for some hardware component.

The effects of picking expression-thread-view pairs as “Iris expressions”
are most visible in weakest pre-conditions and Hoare triples. They will
generally have the following forms;

wpg (€, V) {(v, ). @}
{P}(e,V){(v,V2) Q}e

That is, a WP or Hoare triple encodes the behaviors of a thread-local
configuration (e, )) where V is the thread-view that e starts executing
with. Therefore it may be necessary that V satisfies certain properties
that can be stated in the precondition P. The configuration, if terminates,
will reduce to a configuration (v, V,) where V, is the thread-view after
the execution. Properties of V,, like those of v, can be stated in the
post-condition, which now has the type Expr x ThreadView — iProp.
Figure 7.1 presents a few pure WP rules that do not involve memory.



7.2

Basic Local Assertions for View-based RMC 81

They are the expected WP rules from §6.6, but adapted with an arbitrary
thread-view that mostly stays unchanged. Most notably, WP-BIND propa-
gates the thread-view after the expression has finished to the evaluation
context, and BL-WP-FoRK picks the correct thread-view for the forked
thread. Rules for binary operations are in the same form as BL-WP-pLUS,
and the rule for case is similar to BL-WP-1r, and thus are elided.
However, for ORC11 memory operations, we know that expressions
cannot run with arbitrary thread-views, as that may cause data races.
The safety properties of thread-views are therefore unavoidable in the
logic, but we can keep them manageable in form of new local assertions.

Basic Local Assertions for View-based RMC

In traditional separation logics, the points-to assertion is essential to
achieve thread-modular reasoning: when interacting with the shared
global state, it is sufficient to just have a points-to ¢ — v to access the
location ¢, keeping the rest of the global state out of the picture and
in the “frame”. Thanks to the frame rule, traditional separation logics
enjoy the simple, thread-modular, small-footprint rules like HEAP-READ
and HEAP-WRITE (§6.11).

We have the same goal for our RMC base logic: we want to achieve
small-footprint rules that only require minimal ownership of bits of the
global state for the operations in question, and let the frame rule do
its job. Unfortunately, the bits of the global state needed for our RMC
memory accesses are rather involved: we need (i) the memory h of the
location ¢ being accessed, (ii) the thread-view V of the executing thread,
and (iii) the global race detector view for £ (A (¢)). Most importantly, the
safety and the result of an access depends on the relations between the
thread-view V and the location’s memory h and the global race detector
view N. We therefore need more assertions to make those relations
explicit. We present our choice of local assertions below. In §7.4, we
will present the RAs needed to fictionally separate the machine state and
define these local assertions within the logic.

Definition 7.1 (Local Assertions for the Base Logic). These assertions
concern knowledge or resources over the executing thread’s thread-view,
the memory of the location being accessed, the race detector state, and
their relations. All assertions are in iProp.

* The seen thread-view observation Seen(V) is a persistent knowledge
that some thread’s thread-view V is closed in the global memory.?
This assertion is needed to guarantee that a memory access is
grounded in the global memory.

* The history ownership assertion Hist, (¢, k) is a fractional owner-
ship® of the write messages h € History of the location ¢ in the
global memory, where History ::= Time fins {val : Val, view : View?}.
The fraction ¢ € (0, 1] denotes shared or full ownership of ¢’s history.
The allocated assertion Local, (¢, h, V) says that the simple view V'

2see Property 3.12, §3.3

3Boyland, “Checking interference with
fractional permissions” [Boy03].



82 A Base Logic for RMC in Iris

4see §6.8

has observed the knowledge that ¢’s history h has been allocated.
Both assertions are needed to perform any access to /.

* The non-atomic read assertion Read;’ (¢, a) is the fractional owner-
ship of a subset « of £’s non-atomic reads in the global race detector
state. That is, « C N (¢).nr if AV is the global race detector state A
related persistent knowledge is the non-atomic read observation
Localg?(¢, v, V'), which asserts that the simple view V' has observed
a subset « of ’s non-atomic reads. Both assertions are needed to
perform race-free non-atomic reads on /.

* The atomic read assertion Read%rl"(& «) is the fractional ownership
of a subset o of ¢’s atomic reads in the global race detector state.
That is, « C N(¢).ar. The persistent knowledge Local2™ (¢, o, V)
asserts that V has observed a subset « of ¢’s atomic reads. Both
assertions are needed to perform race-free atomic reads on /.

* The atomic write assertion Writqurlx(é, a) is the fractional own-

ership of a subset o of ¢’s atomic writes in the global race de-
tector state. That is, « C AN (f).aw. The persistent knowledge
LocalZ™(¢,a, V) asserts that V has observed a subset o of s
atomic writes. Both assertions are needed to perform race-free

atomic writes on /.

* Last but not least, the block ownership assertion {7 ¢ is inherited
from RustBelt. This ownership is created at allocation of a block
whose base location is ¢, and is only needed at deallocation of
that block. The ownership guarantees that the whole block is
deallocated together, i.e., any thread holding a fraction of the block
knows that the constituent locations are still alive. The assertion
simply tracks the location ¢ and the size n € N of the block.

These assertions satisfy several properties, given in Figure 7.2.

Property 7.2 (Seen Thread-view Observations). The seen thread-view
observation is timeless and persistent (BL-SEEN-TIMELESS and BL-SEEN-
pERS).* As Seen(V) is only a snapshot of some thread’s thread-view at
some point, it can be joined with others (BL-SEEN-JOIN), or can be forked
to get old snapshots (BL-SEEN-DOWNCLOSED). With Seen()), we know that
the thread-view V is closed in the global memory M, but we do not have
a rule for this property here. We will see how the property is established
by the state interpretation in §7.6.

Property 7.3 (History Ownership). The assertion Hist, (¢, h) is timeless
(BL-HisT-TiMELESS) and fractional (BL-HisT-FRAC-VALID and BL-HIST-FRAC).
Owning a fraction of the assertion is sufficient to know the history of
¢, as implied by BL-HisT-AGREE. A change to the history requires the
full fraction, written as Hist(¢, h) without the fraction ¢ = 1, which is
exclusive, as in BL-HisT-ExcL. (BL-HisT-EXcL is derivable from BL-HIST-
FRAC-VALID and BL-HIST-FRAC.)

BL-HIST-DROP-SINGLETON allows us to truncate the current history to
just a singleton of the latest write. This is a convenient abstraction for ¢’s



Basic Local Assertions for View-based RMC 83

BL-SEEN-DOWNCLOSED
ycy

Seen(V') I Seen(V)

BL-SEEN-TIMELESS BL-SEEN-PERS BL-SEEN-JOIN
timeless(Seen(V)) persistent(Seen())) Seen(V) = Seen(V') HF Seen(V LI V')

BL-HIST-TIMELESS BL-HIST-FRAC-VALID BL-HIST-FRAC
timeless(Hist, (¢, h)) Hist, (¢, h) F ¢ € (0,1] Hist, (¢, h) = Histy (¢, h) 4 Histy1q (¢, k)
BL-HIST-AGREE BL-HIST-EXCL BL-HIST-DROP-SINGLETON

h(t) = (v,V) t = max(dom(h))

Hist,(¢, h) * Histy (¢,h') = h =1 Hist(¢, h) = Hist(¢, h') + False : :
Hist(¢, h) =¢ Hist(¢, [t +(v,V)])

BL-NAR-TIMELESS BL-NAR-FRAC-VALID BL-NAR-JOIN
timeless(Read” (¢, o)) Ready’ (4, a) - q € (0,1] Ready” (¢, ) * Ready; (¢,a’) F Readgd (£, U @)
BL-ATR-TIMELESS BL-ATR-FRAC-VALID BL-ATR-JOIN
. Jrl Jrl Jrl Jrlx / Jrlx ’
timeless(Read>="" (¢, a)) Read=""(¢,a) F ¢ € (0,1] Read; "™ (¢, o) * Read "™ (£, ') F Read [ (£, U &)
BL-ATW-TIMELESS BL-ATW-FRAC-VALID BL-ATW-FRAC
timeless(WriteZ™™(¢, )  Write?™(¢,a) I ¢ € (0, 1] Write] ™ (£, ) » Write="™ (¢, o) —F WriteZ! ¥(¢, o)
BL-ATW-AGREE BL-NAL-JOIN
WriteZ ™ (¢, ar) = Writef,rlx(ﬁ7 dYFa=d Localg?(¢,c,, V) * Localg?(¢, o/, V') I Localg? (¢, a U &/, V)
BL-ATRL-JOIN
rlx Jrlx / Jrlx /
Localz™ (¢, 0, V') x Localgy " (¢,a/, V) F Localy (£, aUa/, V)
BL-ALLOC-MONO BL-NAL-MONO
vev vev
Local, (¢, h, V) = Local, (¢, h, V") Localg?(¢, ., V) I Localg?(4, o, V')
BL-ATRL-MONO BL-ATWL-MONO
vev vev
Local2™ (¢, o, V) F Local2™ (¢, a,, V') Local2™ (¢, o, V) F Local?™ (¢, a,, V')
BL-BLOCK-TIMELESS BL-BLOCK-FRAC-VALID BL-BLOCK-JOIN
. n n n n’ =+ !
timeless(f; £) g £ q€(0,1] g Cxty (C+n) A= 170 €

FIGURE 7.2: Main properties of the base
physical write events: while we need to maintain a set of write events logic's local assertions
(instead of a single value like in SC) because they may be still visible to
some threads, once we know that certain writes are no longer visible, we
can simply forget about them. In particular, if one can perform a race-free
non-atomic write, all previous writes must be unreachable and should
be forgotten, because it would be racy to read them then. Consequently,
unlike the physical memory that only grows with more write messages,
the history h in Hist,(¢, k) is not monotone—it grows during a period of
atomic accesses, but will shrink back to a singleton with a non-atomic
write. In later chapters, we will use BL-HIST-DROP-SINGLETON to switch
between non-atomic and atomic access modes.

Property 7.4 (Race Detector Ownership). The ownership assertions for
parts of the race detector state are also timeless and fractional. Like



84 A Base Logic for RMC in Iris

7.3

7.3.1

history ownership, fractions of the atomic write assertion Writeq;rlx(f, @)
maintain agreement on ¢’s set of atomic writes in the race detector (BL-
ATW-FrAC), and the full fraction is required to update the set. A fraction
q of the read assertions Ready’ (¢, a) or Readqgrlx(ﬁ, «) on the other hand
does not maintain agreement. Instead, a fraction only maintains that the
set « is a subset of the race detector’s sets for non-atomic and atomic
reads, respectively. This difference is due to the fact that, while writes
¢) and thus must be updated with the full

fraction, we do not enforce an order among concurrent reads, so each

maintain a total order (

thread needs only some fraction of a read assertion to independently track
its own reads, and sets of reads can be joined together using BL-NAR-JOIN
or BL-ATR-JOIN.

Property 7.5 (Local Observations). The local observations (for allocation,
non-atomic and atomic reads, and atomic writes) are pure facts, and thus
are timeless and persistent. In fact, their definitions are as follow.

Local,(¢,h, V) ::= 3t € dom(h).t C V(£).w
LocalZ™ (¢, a, V) := a C V(£).aw
Localg?(¢,c, V) ::= a« E V' (£).nr
LocalZ2™ (¢, o, V) :i= o T V(£).ar

More importantly, they are view-monotone, i.e., if one holds on a smaller
view, it also holds on a bigger view (e.g., see BL-ALLOC-MONO). View
monotonicity is an important property that we will rely on heavily (see
Chapter 8).

The local observations for reads can be joined together using BL-NAL-
JoIN and BL-ATRL-JOIN.

Property 7.6 (Block Ownership). The block ownership assertion is also
timeless and fractional. BL-BLock-JoIN allows splitting and joining not
just with the fractions, but also with the offsets. As such, for each location
in a block one can own its bit of the block without needing to know the
block size, and is guaranteed that the block is still alive.

Primitive Memory Rules

We now see how the local assertions are meant to be used in our primitive
memory rules, given in Figures 7.3 to 7.6. Recall that in our base
logic, the executing “expression” is a thread-local configuration of the
actual expression and the executing thread’s thread-view. The rules for
allocation and deallocation are similar to that of non-atomic writes (BL-
HOARE-WRITE-NA), but with the block ownership assertions. For the sake
of simplicity, we will present them in a cleaner form in Chapter 9 (see
NA-aLLoc and NA-DEALLOC).

Rules for Fences

Figure 7.3 presents the simplest memory-related primitive rules, for
release and acquire fences. Both BL-HOARE-REL-FENCE and BL-HOARE-ACQ-
FENCE requires Seen()) as the pre-condition for a fence running with the



7.3.2

BL-HOARE-REL-FENCE

Primitive Memory Rules 85

{Seen(V)} (fencere1, V) { (%, V).V TV x Seen(V') x V' .frel = V'.cur}¢

BL-HOARE-ACQ-FENCE

{Seen(V)} (fenceacq, V) {(%,V'). V' TV x Seen(V') * V'.cur = V'.acq}e

thread-view V. Their post-conditions say that the fence instructions will
return poison & with a new thread-view V' J V.> The effects of the
fences are approximated by the properties of V'. In case of an acquire
fence, the current component of V' is updated to include its acquire
component, exactly reflecting OM-AcQ-rFeENCE (§3.3). In case of a release
fence, the release-fence component of V' is updated to include its current
component. This only approximates OM-REL-FENCE (also §3.3) because
it hides away (in the relation V' 13 V) the changes to the per-location
release views )’ .rel. We made this abstraction to keep the rule simple, as
we have never needed such detailed information on V' .rel.

Rules for Reads and Writes

The rules for reads and writes are given in Figure 7.4 and Figure 7.5.

NON-ATOMIC READS. To guarantee data-race freedom, BL-HOARE-READ-NA
requires a pre-condition that implies DRF-REaD-NA (§3.4). That is, the
pre-condition ensures that the executing thread has observed all writes
(non-atomic and atomic) to £. The pre-condition thus includes:

* Seen(V), like in other memory-related rules, to know the lower
bound of the executing thread’s thread-view; and

* a fraction ¢ of the current singleton history Hist, (¢, [t +(v,V")])
where (t,v, V") is £’s latest write; and

* the knowledge Local, (¢, [t +(v, V)], V.cur) that the current thread-
view V.cur has observed not only ¢’s allocation but also its latest
write; and

* a fraction ¢ of the race detector’s atomic writes set Writeq;r1X (4, )
and the knowledge LocalZ™™ (¢, av,, V.cur) that the current thread-
view has observed all atomic writes (a,);® and

* afraction ¢ of the race detector’s non-atomic reads set Read;’ (¢, o),
needed to extend the read set «, with the read to be performed.

The post-condition is simple: the singleton value v is returned, the
history ownership and atomic writes set are unchanged, the non-atomic
reads set is extended with a new action id r representing this read, and
the thread arrives at a new thread-view V'’ represented by Seen(V’). We
can make an abstraction here on how V' is related to V (like in the rule BL-
HoARE-REL-FENCE), but the higher-level rules require a detailed relation
between V' and V, so we simply keep the “raw” relation V R bL LT,y
from the operational semantics.” Note that we do know that V C V.

FIGURE 7.3: The base logic’s primitive
Hoare rules for fences

5see OE-FENCE, §4.2

6Recall that observing the latest write
(the previous part of the precondition)
does not guarantee observation of all
writes—it only guarantees observation of
all non-atomic writes because non-atomic
writes cannot race with one another, while
atomic writes can See also the discussion
in Definition 3.25.

7see OM-POST-READ-TVIEW, §3.3



86 A Base Logic for RMC in Iris

BL-HOARE-READ-NA

Local, (¢, [t (v, V)], V.cur) LocalZ™ (¢, cv,,, V.cur) Localg® (¢, cv,r, V)

{Seen(V) « Hist, (¢, [t +(v, V")]) = Write; ™™ (¢, ., ) * Read(? (¢, ) }

(*na& V)

7

R:na,l,t, 1 ,r

(w, V)ow=vx3Ir. Y ——"5 V" x Localpg® (¢, v, U {r}, V. LUV .cur) *

Seen(V') x Hist, (¢, [t (v, V")]) = Writeq;rlx(f, ) * Readg’ (4, a U{r}) ) .

BL-HOARE-WRITE-NA
Local, (¢, [t+(v, V)], V.cur)

Localg? (¢, a1, V.cur) LocalZ™ (¢, ap, V.cur) LocalZ™ (¢, cv,y, V.cur)

{Seen(V) x Hist (¢, [t +—(v, V)] ) * Write2™* (£, av,, ) * Read™ (¢, 1) * Read="™ (¢, a2) }

(0 :=pa v, V)

W:na,l,t’, L, 1

(&, V). 3t >tV ———"= V' xLocal, (¢, [t' +(v', L)],V .cur) *

Seen(V') x Hist (£, [t' +(v', L)]) * Write=™™ (£, cv,,) * Read™ (¢, a1 ) * Read="™ (¢, vy)

FIGURE 7.4: The base logic’s primitive
Hoare rules for non-atomic reads and
writes

8see DRF-WRITE-NA, §3.4

9Recall that a fraction of Readf?(¢, a1)

or ReadZ™ (¢, ar2) only says that a; or
a2 is only a subset of the global set—we
need a full fraction to be guaranteed that
aq or ag is the global set.

10gee OM-POST-WRITE-TVIEW, §3.3

llsee DRF-READ-AT, §3.4

£

Last but not least, we have an additional assertion Localg? (¢, a-, V;.) in
the pre-condition that is updated to Localy® (¢, o, U{r}, V;- LUV’ .cur) in the
post-condition. This assertion is not needed for the rule per se. It is used
to track the view V,. (which is V. L1V’ .cur after the step) that has observed
the subset «,. of all non-atomic reads performed so far with the fraction
Read;?(¢, o). The view V. will only be needed later when a thread has
recollected the full fraction Read™ (¢, ov,.) where a,. is then the complete
set of ¢’s non-atomic reads. At that point, race-free operations would
require that the executing thread has observed all reads in «,, which
pins down to the thread’s thread-view V including V., i.e., V.. C V.cur.
We will see concretely how this view is used in Chapter 9.

NON-ATOMIC WRITES. BL-HOARE-WRITE-NA is the most demanding rule,
as a non-atomic write cannot race with any other memory accesses to
the same location £.® The pre-condition therefore requires full ownership
(the fraction ¢ = 1) of £ current singleton history, and of the 3 sets of
the race detector’s state, and the knowledge that the current thread-view
V.cur has observed ¢’s allocation, latest write, and those sets of all reads
and all atomic writes to £.°

The post-condition keeps most ownership unchanged, and only up-
dates the singleton history ownership to Hist(¢, [t' < (v’, L)]), where ¢’ is
the new timestamp for the new write message, with the value v" and no
message view. The thread arrives at a new thread-view V' computed from

: R .
V(v Yna bt Loty Y),10 and knows that the new current view }’.cur has
observed the new write (Local, (¢, [t' < (v’, L)], V" .cur)).

ATtoMIC READS. The rule BL-HOARE-READ-AT for atomic reads is rather
simple: it requires as pre-condition fractional ownership ¢ of s cur-
rent history, and of an atomic read subset of the race detector’s state
Readqgrlx(é, «) to add the read to be performed. An atomic read only
needs to avoid race with non-atomic writes,'! so Local, (¢, h, V.cur) is



BL-HOARE-READ-AT

Primitive Memory Rules 87

rixCo  Local,(¢, h,V.cur) LocalZ™ (¢, a, V)

{Seen(V) = Hist, (¢, h) * ReadZ™ (£, )}
(*()g’ V)

R:0,0,t, V' r

(0, V). 3,V h(t) = (0, V) %V 222220 Vo Local2™ (4, a U {r}, V, UV cur) *

Seen(V') x Hist, (¢, h) * Read™™ (£, U {r})

&
BL-HOARE-WRITE-AT
rixCo  Local,(¢, h,V.cur) Localg? (¢, av, V.cur) LocalZ™ (¢, cu, Vi)
{Seen(V) x Hist (£, h) % WriteZ™ (¢, av,, ) * Read™ (¢, ar,.) }
(0:=,0",V)
(%,V"). 3t ¢ dom(h),V'.V o bt LV iy Local?™ (¢, cpy U {t'}, Vi LIV cur) %
Seen(V') * Hist(¢, h[t' « (v, V")]) * WriteZ™ (£, av,, U {t'}) * Read™ (¢, av;.) .

sufficient, because every non-atomic write would reset the history h to a
singleton, and Local, (¢, h,V.cur) guarantees that the current thread-view
V.cur has observed some write in h.

In the post-condition, some value v in the history will be read and
returned, and the atomic reads set is extended with the new action id for
this read (Readq;rlx(é, a U {r})), and the thread arrives at a new thread-

view V' computed from V with V RoLLVIT, 11 12 Note that the relaxed
memory effects are contained within this relation for V', and will be
abstracted later with higher-level rules.

The view V, in Local2™(¢, o, V,.) plays the same role as its counter-
part in BL-HOARE-READ-NA. V. is guaranteed to have observed the subset
« of atomic reads performed so far with the fraction ¢ of Readqgrlx(& ).
We will see concretely how V. is used in Chapter 10.

ATOMIC WRITES. An atomic write must not race with non-atomic accesses,
both reads and writes,® so BL-HOARE-WRITE-AT requires as pre-condition
full fractions of the current history ownership Hist(¢, ) and of the non-
atomic reads set Read™ (¢, a,.), as well as the knowledge Local, (¢, h, V.cur)
and Localg?(¢, o, V.cur) that the current thread-view V.cur has observed
all non-atomic writes and reads to ¢. Additionally, the full ownership
Write="™(¢, a,,) of the race detector’s atomic writes set for ¢ is needed to
extend the set a,, with the write to be performed.

The post-condition keeps the non-atomic reads set unchanged, ex-
tends the atomic writes set with the new timestamp ¢’ (fresh in ), and
updates the history and the atomic writes set to insert the new write
(h[t' +(v', V)] and v, U{t'}). The new thread-view V' is computed from
V accordingly.'*

The view V,, in LocalZ™™ (¢, a,, V,,) plays the same role as the view
V, in BL-HOARE-READ-NA and BL-HOARE-READ-AT. It is the view that has

observed all atomic writes «,, done so far using Writegm(é7 Q). We will

FIGURE 7.5: The base logic’s primitive
Hoare rules for atomic reads and writes

125ee OM-POST-READ-TVIEW, §3.3

13see DRF-WRITE-AT, §3.4

l4gee OM-POST-WRITE-TVIEW, §3.3



88 A Base Logic for RMC in Iris

BL-HOARE-CAS
rlx C oy, 0., 04 Local, (¢, h, V.cur) Localg?(¢, vy, V.cur)
Local2™ (0, a2, V) Local2™ (¢, ay, Vi) Vao € Readable(h, V). Fuy =" v,

Seen(V) * Hist (£, h) * WriteZ™ (¢, cv,,) * Read™ (¢, ary ) * Readqgrlx(ﬁ, Q) *
Perp *O((vr =4;) 7 (Pemp —* Pomp(4r)) = True)
(CAS®7 20w (4,01, 1), V)
(b, V). Pernp * 3N 8,8/ 0", V,V 1V, VEV, TV 5 h(t') = (v, V') x
LocalZ™ (¢, (b) ? (v U {t}) : vy, Viy LI V' cur) * Local2™ (¢, iy U {r} , V- LIV .cur) %

Seen(V') x Hist (¢, h') s Write™™ (¢, (b) ? (v U {t}) : ) * Read™ (£, avy) * Readq;rl"(é7 ag U{r}) x

Riog, 0t V' r
_—

b= falsexv,. £v' *xh' =hx*V Ve
V b=truexuv. =0 xt ¢ dom(h)xt =t +1xV IV xh' = hlt (v, V)] *

R:0.,0,t" V' r W:04,0,t, V',V

1% Ve V!

£

where Pemp (Ur) = (B¢ 3qr, hy. > Histy, (£, hy)) A (VO € Readable(h, V) \ {¢,} . 2¢3q¢', h'. > Histy (¢, h'))

FIGURE 7.6: The base logic’s primitive
Hoare rule for CASes X .
also see concretely how V,, is used in Chapter 10.

7.3.3 A Rule for CASes

We present a Hoare rule BL-HoARE-CAS for CASes in Figure 7.6. Itis a
rather complicated rule, because a CAS is a combination of a read, a
write, and a comparison that can be a pointer comparison.

First of all, a CAS cannot race with non-atomic accesses (reads and

15see DRF-UPDATE, §3.4 writes),'® so the pre-condition requires the full fractions of the history

ownership Hist(¢, h), and of the non-atomic reads set Read™ (¢, o1 ), and
the knowledge Local, (¢, h, V.cur) and Localp® (¢, a1, V.cur) that V.cur has
observed ¢’s allocation and all of its non-atomic reads and writes.

Second, the pre-condition needs the full fraction of the atomic writes
set Write2™(¢, v,,) and a fraction of the atomic reads set Readqgrlx (4, )
in order to potentially extend those sets with a write event and a read
event that are to be generated by this CAS operation. The views V,, and
V,- have observed the sets «,, and «s respectively, and play the similar
role to those in the read and write rules, which we will see in Chapter 10.

Third, the post-condition is a combination of read and write effects.
The operation returns a boolean value b to indicate success or failure. In
any case, a message (t',v’, V') in h will be read, and the atomic reads set
o will be extended with a new action id r for that read. The non-atomic
reads set remains unchanged.

* In case the CAS fails, i.e., b = false, we know that the value read v’

16see Definition 4.8, §4.2 is not equal to the expected value v, (v # v,),'° that the history
h and the atomic writes set «,, also remain unchanged, and that

the thread-view effect is similar to that of a read with the mode oy

Riop, 0.t \ V' r
17see OM-POST-READ-TVIEW, §3.3 v Rkt AMARLELLN V).V



7.3.4

* In case the CAS succeeds, i.e., b = false, the read value v’ is exactly
the expected value v, and a new message (t,v,,, V) is inserted into
h (W = h[t + (v, V)]) right next to the read message (¢t = ¢’ + 1)
which guarantees the atomicity of the read and the write generated
by the CAS. The new thread-view V' and the write message view
V' are computed from the old thread-view V and the read message
view V' accordingly.'® The atomic writes set o, is also extended
with the new timestamp t.

Finally, we look at the rule’s components concerning (pointer) com-
parison. The rule requires safety in the comparison between the ex-
pected value v, and any potential value vy that the CAS may read: Vv, €
Readable(h,V). - vy =’ v,. The set of readable values Readable(h, V)
is lifted for histories from Definition 4.6 for the global memory. The
comparison is safe if the values are comparable (Definition 4.9).

DETERMINISTIC POINTER COMPARISON. If the comparison is between
locations, i.e., if v. is a non-null location /,., the pre-condition of BL-
HOARE-CAS requires some extra resources P.,,, to learn that compared
locations are alive, and thus to guarantee deterministic comparison.'’
Furthermore, P, will only be used to derive facts and will not be
consumed, so it is returned as-is in the post-condition. How Py, will
be used is encoded in the predicate &.,,,(¢,) which employs a classical
conjunction. Intuitively, the persistent implication O(Pemp —* Pemp (¢r))
requires that the resources in P, simultaneously support two goals:

1. using P.,,, and potentially opening some invariant with the fancy
update =, one gets some fraction of the ownership Hist,, (¢;, h;)
of the expected value /,., which is sufficient to learn that ¢, is alive.

2. for any location ¢’ readable from A that is not ¢,.,° using P..,, and
potentially opening some invariant, one also learns that ¢’ is alive.

A Stronger WP Rule for CASes

We present the rule BL-WP-CAS (Figure 7.7) for CASes that is stronger
than BL-HOARE-CAS. Note that this rule is very technical and is only
used to get stronger GPS rules that will be used in Part III. Readers are
welcome to skip this rule and continue with the next section.

The rule is written in form of weakest pre-conditions—a general fash-
ion that is common with Iris WPs, where the post-condition is universally
quantified as ¢. This style is not only more convenient to use in practice
in Coq, but also important to make our CAS rule stronger.

Notation 7.7 (Iris WP-style Rules). Recall Definition 6.7 where Hoare
triples are derived from WPs. In practice (in Coq), Iris rules for Hoare
triples and WPs are usually written with a universally quantified post-
condition @, so that they can be easily applied to a goal with an arbitrarily
shaped WP. For example, if e is not a value,?! a Hoare rule - {P} e {v. Q}
for e can instead be written as:

FO(P = V. (V. Q — &(v)) =+ wpe{d})

Primitive Memory Rules 89

18see OM-UPDATE, §3.3

19Comparability makes sure that we need
not care about the case where the ex-
pected value v, is an integer but the read-
able values can be locations. If that is the
case, v, must be 0, and the comparison
always fails. See also Definition 4.8.

201f the read value ¢ is also ¢,., then the
first part of the classical conjunction is also
the proof that ¢ is alive.

211f it is a value, we do not have a later
modality.



90 A Base Logic for RMC in Iris

That is, the rule intuitively encodes that @ is the strongest post-condition
for e under the pre-condition P. The later modality allows us to prove
the post-condition only after the step, at which point our resources which
are under a later before the step have been made available. This from of
rule is more applicable to a goal of form wp K{e] {¥}: we first apply the
bind rule WP-BIND to focus on the expression e and push the continuation
into the post-condition (i.e., wpg e {v. wpz K[v] {¥}}) which will then be
used to instantiate the predicate ¢ of the rule.
We state our CAS rule in the following form:

R R >YU, V. Q = D(v,V,)
Prwp (e, V) {2}

where P is the pre-condition, @ is the post-condition, and R and R’ are
extra premises. The wand implication >Vv,V,.Q — &(v,V,) is for the
post-condition and is the right-most premise. A rule of this form can be
read as the following Hoare rule:

R R
F{P} (e, V) {(v, V). Q}

Our CAS rule BL-WP-CAS, however, is strengthened by moving the
later inside and adding fancy updates to the post-condition—a combina-
tion called wand step viewshifts.

Notation 7.8 (Wand Step Viewshifts). P %k? Q

The wand step viewshift is a balanced (potentially mask-changing) view-
shift that has a later in between.

P%kg Q=P gbgl Dglng

We can now look at BL-WP-CAS in Figure 7.7. The rule can be applied
with an arbitrary post-condition ¥ which typically is the continuation
after executing the CAS. The rule says that the client can go on proving
U assuming the return value (b,)’) (together with other variables) uni-
versally quantified in the right-most premise, as well as the resources on
the left-hand side of the wand implications. Compared to the alterna-
tive WP-style reading (Notation 7.7) of the Hoare rule BL-HOARE-CAS,
BL-HOARE-CAS are strengthened in several ways.

* The client of the rule does not need to specify and provide P,,, in
the pre-condition. Instead, the client can pick P.,,, after learning
all information about the results of the CAS (e.g., the return value b,
the read and write timestamps, the new history /’, the thread-views
and views). In fact, the client only needs to provide (prove) FPepnyp,
and how it is to be used (@) if the CAS succeeds (b = true).

* Note that the client however does not know that “v, = v’ in case
b = true” before picking and proving Py, because P..,, is needed
to achieve that deterministic comparison result.



BL-WP-CAS
Vb’ V/7 h/7 t? t/7,U/7 ‘/v7 Vl? r? V"L"

VEV, CV xh(t') =0, V')«

rlx C oy, 0., 0y Local?™ (¢, ap U {r}, V, UV .cur)

Local, (¢, h, V.cur)

_ , ; Riof, 0t V' r
Local™ (¢, ar, V.cur) b= falsexuv, #v xh =h*x)V ———— V,
Local2™ (¢, aa, V) V. b=truext¢dom(h)xt=t+1xV IV %
Local‘%rlX(& Qs Vw) R:0,,0,t" V' r W:04,0,t,V',V

LocalZ™ (€, (b) ? cuy U {t} : vy, Vi LUV cur) =

*

Primitive Memory Rules 91

I
Vu, € Readable(h, V). W' = hlt < (ve, V)]V

o
Fu =" v,

V. V!

= IAPemp. Pemp * O (0 A v = £;) ? Pernp (Pemp, br,v") : True) x

((b) ?v, =" : True) * Pepp * Seen(V') x Hist (¢, h') x

Write=™(£, (b) 7 cvyy U {t} : cvy) * Read™ (£, ay) * Readfrlx(ﬂ, azsU{r})

=kE U(b,))

Seen(V) * Hist (£, h) * Write=™ (£, cu,,) % Read™ (¢, oy ) * Read?rlx(é7 ag) F wpg (CASOF 7% (£ vy, 19), V) { T}

Pemp £k 3¢, by > Histy, (£, Ry

where  Pepp (Pemp, £, 0") := A

* After proving P.., and &, the client does get the deterministic
comparison result and P, back. Recall that P, is not consumed
and is only needed to know that compared locations are alive.

The client also acquires the returned resources (i.e., the history
ownership and the ownership of the reads and writes sets), and
then can prove the continuation with the wand step viewshift. The
wand viewshift @ki allows the client to make a mask-changing
viewshift from the mask £ to the mask £’ to open invariants (£’
is of the client’s choice), then to strip a later in any resources that
the client owns at that point, and then to close the invariants and
return to the mask &, all in order to prove the continuation ¥ (b, V’).
Note that if the client uses BL-HoOARE-CAS, they would not have a
later at their disposal, because the results of the CAS operation are
only available after the later is introduced.

Finally, the client can also rely on a later and mask-changing view-
shifts when proving &, i.e., the proof that F,,,, implies that the
compared locations are alive. In particular, the mask &, and the
function &, from locations to masks are also of the client’s choice.
The client only needs to show that expected value ¢, and the read
value ¢’ are alive. Interestingly, the client can do so by opening
invariants (of the client’s choice) without closing them.

VO =0 # by Penp £k o525 3¢/ 1. o Hist, (¢, 1)

FIGURE 7.7: The base logic’s primitive WP
rule for CASes



92 A Base Logic for RMC in Iris

7.4 Resource Algebras for Basic Local Assertions

We briefly explain the resource algebras needed to define our local
assertions and tie them to the physical state. We will need 5 RAs.

Definition 7.9 (Lattice RA for Seen Thread-view Observations). The
lattice RA LAT(A) takes a join semi-lattice A and defines the composition
as the lattice’s join operation, the core function as the identity function
(so that every element is the core of itself), and validity is trivial. That
is, LAT(A) == (A, (A_. True),id, ). If the lattice A has a bottom element
1 Caforanya € A, then L is the unit of LAT(A). Note that RA inclusion
< then coincides with the lattice order C. Most importantly, the RA has
the following properties.

Va,b.valid(ea-ob) = bLC a (AUTH-LAT-VALID)

VYa,b.bC a = eb~~ea-0a (AUTH-LAT-UPDATE)

For Seen(V), we use the RA SEENR = AUTH(LAT(View)). It is an
optimization that we only track a simple view with LAT(View) and not
a thread-view with LAT(ThreadView). Recall that the role of Seen(V) is
to guarantee that V is closed in the global memory, which can be done
instead by just guaranteeing that V.acq is closed in the global memory,
because V.acq includes all other components of a wellformed V. The
closedness condition also means that we need not track one view per
thread: we simply track the upper bound V,,, for all acquire components
of all thread-views and require that V,,;, is closed in the global memory.

In particular, the authoritative element e V,, guarantees that, for any
other fragmentary element o )}’ .acq, thanks to AUTH-LAT-VALID, V'.acq C
Vup. Furthermore, due to AUTH-LAT-UPDATE, e V,,, can only be updated to
a bigger view, mirroring the property that views only grow.

Definition 7.10 (Fractional Agreement Map RA for History). We use the
RA HISTR = AUTH(MAP(Loc, FRAC x AG(History"))) for Hist, (¢, h).

The agree RA AG only provides valid composition between elements
that are the same, and the fractional RA FRAC provides valid composition
between non-negative quotients that sum up to no greater than 1 (i.e.,
they are in the range [0,1)). We use them together using the product
RA (written here as x) which provides valid composition point-wise.
The map RA MAP takes a key type and a value RA, and provides valid
composition key-wise, using the valid composition of the value RA.

As such, our combined use of MApP with FRAC and AG gives per-
location agreement between fractions of history ownership, and with the
full fraction we can change the history. We use the option type History’ to
support deallocation: when a location is deallocated, then its history will
be None. We use AUTH to have the authoritative element be the complete
memory, and the fragmentary elements of singleton maps will be used to
define Hist, (¢, h). More concretely, we have the following properties.

Vm, l,q,h.valid(em - o [(<(q,ag(h))]) = m(¢) = (1,ag(h))
Ve, g, b 1 valid(o [€<—(q, ag(h))] - o [ (¢, ag(h'))]) = h =
Vm,l,h.em o [(+(1,ag(h))] ~ em[l<(1,ag(h'))] - o [£+(1,ag(h"))]



7.5

The injection ag is the constructor of the RA AG.

Definition 7.11 (Fractional Map RA for Atomic Writes Sets). We use
the RA WRITER = AUTH(MAP(Loc, FRAC x AG(Actlds))) for the fractional
per-location ownership of atomic writes sets. This RA is similar to that
for history ownership, but tracks a set of action ids instead.

Definition 7.12 (Fractional Set Lattice RA for Reads Sets). We use
a slightly different RA READR = AUTH(MAP(Loc, FRAC x LAT(Actlds))).
That is, we use LAT(Actlds) in place of AG(Actlds). As such, we do
not have agreement between the fractions of read sets. In exchange,
a fraction is sufficient to grow the set: we can update the element
o [¢+(q,a)] (together with the authoritative element) to o [¢+(g, /)]
where o C o/ without requiring ¢ = 1. Note that because we use the
lattice RA LAT, the sets can only grow. More concretely, we have the
following properties.

Vm, ¢, q, . valid(em - o [{+(q,)]) = Fo'. m(¢) = (1,a') Na C
Vm, l,q,a,a’ . m(l) = (1,) = a Ca’ =

em-o [ (L) ~ emlt(g,a’ Ua")]-o [ +(g,a")]

Definition 7.13 (Fractional Block RA for Block Ownership). We use
the RA BLOCKR = AUTH(MAP(N' FRAC x MAP(Z, Ex(1)))). That is, we
use a map from block indices (in N*) to fractional maps from offsets
(in Z) to exclusive tokens (of type unit 1). The outer map allows us to
have per-block ownership with full fraction, and the inner map allows
use to split that full fraction between the offsets in the same block. The
ownership of every single offset in a block represents the block ownership
of a location and, thanks to the exclusive RA EX, such per-location block
ownership is unique.

State Interpretation

We now define the local assertions and the state interpretation S for our
base logic. We first need a few global ghost locations to store the RAs
defined in the previous section. They are ~ysgen, Viist> Ynar> Yarw, Yarr, and
~sx- These ghost locations will need to be allocated before any program
runs (in the adequacy proof, see Theorem 7.19).

Definition 7.14 (Ghost State Model of Local Assertions). We define our
local assertions purely as ghost ownership of fragmentary elements.

| YHIST

=10 [(<(g,ag(Some(h)))] : HISTR |

)

)

(4,a)
Read™ (¢, ) ::= o [(+(q,@)] : READR| ™

(¢,a)

i

. 17YBLK
q o [ S - 51 SR I W/ E il Rt B 2 it J

The injection ex is the constructor of the RA EX.

State Interpretation 93



94 A Base Logic for RMC in Iris

Definition 7.15 (Ghost Ownership for the Global State). The ghost
ownership GlobalGhost that mirrors the global physical state is defined
with ownership of authoritative elements. It takes as inputs the physical
state (M, N) and the global upper bound V,, of all threads’s thread-
views. Additionally, to support truncating histories with BL-HIST-DROP-
SINGLETON, it also takes as input a view that tracks for each location the
timestamp of its latest write. We call this view the cut view V;.

GlobalGhost(M, N, Vip, Veur) 1=

,,,,,,,,,,,,, .
'@ Vip : SEENR | ™™ «

‘o [0(1,ag(N(¢).aw)) | £ € dom(N)] : WRITERWMW .

[+ (LN (0).ar) | € dom(A)] : READR] ™"

T T T T T T T T T AT T N A AN 7 N S T T T N b A 17YBLK

'o[i+(1,[n+ex()]|(i,n) € dom(M)]) | (¢,_) € dom(M)] : BLOCKR

|
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, !

None if h is deallocated
trunc(h,ty) =

Some([t + h(t) |to <t € dom(h)]) if his alive
So GlobalGhost(M, N, V,,;,, Ve, ) contains:

* the authoritative ownership of the upper-bound view V,,,, for all
thread-views; and

* the authoritative full fraction ownership of all histories in M, trun-

22Note that we also need to convert mem- cated by the cut view Vows;?? and
ory values to values, following Defini-
tion 3.16. * the authoritative full fraction ownership of all atomic writes sets,

non-atomic reads sets, and atomic reads sets in ; and
* the authoritative full fraction ownership of all blocks in M.

We use the map insert notation, e.g., [¢ + (1, N'(¢).nr) | ¢ € dom(N)] to
convert the map A to a map from locations to pairs of fractions and
non-atomic reads sets that come from N.

Lemma 7.16 (Agreements between the Global Ghost State and Local
Assertions). The global ghost state ownership GlobalGhost and the local
assertions satisfy several agreement properties given in Figure 7.8. They are
all derived from validity of the corresponding RAs.

Lemma 7.17 (Updates of the Global Ghost State and Local Assertions).
GlobalGhost can be updated together the local assertions following the rules
in Figure 7.9. They are all derived from frame-preserving updates of the
corresponding RAs, and the properties of trunc.

Most notably, BL-GHOST-UPDATE-HIST-DROP-SINGLETON demonstrates
that shrinking a history to a singleton is simply a logical change (a
viewshift). It is done by bumping the cut view V/,, for ¢ up to its latest
timestamp ¢, which is the input to trunc. The rule is used to prove



State Interpretation 95

BL-GHOST-SEEN
GlobalGhost(M, N, V,p,, Veur) * Seen(V) F V.acq C V,, AV € M
BL-GHOST-HIST
GlobalGhost(M, N, Vups Veur) * Histg (€, h) = trunc(M(€), Veue (€)) = h A £ ¢ unalloc(M)
BL-GHOST-AT-WRITE
GlobalGhost(M, N, Vi, Veur) * WriteZ ™ (¢, a) - N (£).aw = o
BL-GHOST-NA-READ

GlobalGhost(M, N, Vyp, Veur) * Ready” (£, ) = S N (£).nr A (g =1 = N(€).nr

= a)
BL-GHOST-AT-READ

GlobalGhost(M, N, Vi, Veut) * ReadZ™ (£, ) F o C N(€).ar A (g = 1 = N(£).ar = a)
BL-GHOST-BLOCK-FULL

GlobalGhost(M, N, Vi, Veur) * 17" £ F 0 < n* Vm. (£ +,m) € dom(M) < m € [0,n)

FIGURE 7.8: Several agreements between
the global ghost state and local assertions

BL-GHOST-UPDATE-SEEN
Vap & Vi V.eur £V, Vip €M

GlobalGhost(M, N, Vi,p,, Veut) = GlobalGhost(M, N, Viip Veut) * Seen(V)

BL-GHOST-UPDATE-HIST-DROP-SINGLETON

h(t) = (v, V) t = max(dom(h)) = Vewt [l = { Vit (0) [w := 1]}]

GlobalGhost(M, N, Vi, Veur) * Hist (¢, h) = GlobalGhost(M, N, Vi, V2,) * Hist (¢, [t < (v, V)])

BL-GHOST-UPDATE-NA-WRITE

t > max(dom(h)) > Veyue(€).w

M = MULMOt W] N = N {N(0) [w = t]}] cut = Veur[ < {Veur (£) [w :

GlobalGhost(M, N, Vi, Veur) * Hist (€, h) = GlobalGhost(M', N7, V,,,,, V./,.) * Hist (€, [t (v, V)])

t]}]

BL-GHOST-UPDATE-AT-WRITE
t> Vo (O)w M = Ml M)t (v, V)]
N = N[l {N) [aw = N(0).aw U {t}]}] V2 = Vewr[l ¢ {Vewr (€) [aw := Vs (£).aw U {t}]}]
GlobalGhost(M, N, Vi, Veur) * Hist (£, k) * Write="™* (¢, )
= GlobalGhost(M', N, V,,, V2 ) + Hist (€, h[t (v, V)]) * Write="(¢, a U {t})

BL-GHOST-UPDATE-NA-READ
N =N+ {N @) [nr:= N(£).nrU{r}}]
GlobalGhost(M, N, Vi, Veut) * Ready’ (£, ) = GlobalGhost(M, ', Vi, Veur) * Ready’ (£, a U {r})

BL-GHOST-UPDATE-AT-READ
N = N[+ {N (L) [ar .= N(£).arU {r}]}]
GlobalGhost(M, N, Vip, Veut) * Readgrlx(& @) = GlobalGhost(M, N, Vi, Vo) * Readgrl"(@7 aU{r})

FIGURE 7.9: Several update rules for the
global ghost state and local assertions



96 A Base Logic for RMC in Iris

23Note how the “view” in viewshifts is dif-
ferent from views of the relaxed memory
machine.

7.6

BL-HIST-DROP-SINGLETON, by hiding the global ghost state GlobalGhost in
the state interpretation S, as we will see next.

Definition 7.18 (State Interpretation for the Base Logic).

Globallnv(s) ::= 3V, Veyr. GlobalGhost (.M, ¢. N, Vi, Veut) *
¢ is wellformed  V,,, € ¢ M x ¢ N T Ve

NHIST

Tuist 1= ‘ 3. oex(s) j\%m * Globallnv(s) ‘

R N U =y i P | YSTATE

S(s) ::="1eex(s) : AUTH(EX(GlobalState)) | * Lyisr

The global physical state ¢, together with the logical states V,,,, and
V.ut, need to satisfy some basic properties, as written in the global
invariant Globallnv(s): < is wellformed (Property 3.15), V,,;, is closed in
¢.M (Property 3.12), and the cut view V., must be at least the race
detector view N to guarantee that accessing some history £ is not racy.

The definition of the state interpretation is a bit peculiar. We would
simply want S = Globallnv. But recall that S is only accessible with a
weakest pre-condition (Definition 6.14), so if we let S = Globallnv, we
can only prove rules with WPs. This is usually the case: an update to
the physical state needs to be done by some instruction, whose rule will
come with a WP, by which we can access the state interpretation S and
then the global ghost state GlobalGhost, with which we can perform a
ghost update to keep the ghost state and the physical state in sync.

However, what if we simply want to change the ghost state without
changing the physical state, i.e., a “view shift”? For example, the rule BL-
HIST-DROP-SINGLETON is simply a logical move that changes the “view”? of
the logic from a history & to a singleton, without changing the physical
memory for £. To support such rules with not just WPs but also viewshifts,
we put Globallnv inside an invariant with the fixed namespace Nysr,
and employ extra ghost state to maintain that the state ¢ existentially
quantified in the invariant Z¢; is always exactly the parameter ¢ of
S(s), which is the actual physical state. The RA AUTH(EX(GlobalState))
ensures that the states agree: valid(e ex(s) - oex(¢’)) = ¢ =¢'.

Note that we also need another global ghost location ~ysrre, and for
every viewshift 5, that wants to access Globallnv, we implicitly assume
that Nysr C € and the invariant Zysy is known.

Proofs of Some Primitive Rules and Adequacy

Now, we show proof sketches of some base-logic rules. All rules have
been proven and checked by Coq.

Proof sketch of BL-HIST-DROP-SINGLETON (§7.2). Assuming Nysr C £, we
use INv-Acc (§6.3) to open Zysr. Note that since the contents of Z;;g; are
all timeless, the later we get after opening Zy;;s;r can be stripped off right
away. We then use BL-GHOST-UPDATE-HIST-DROP-SINGLETON to truncate the
history with a new cut view V/,, 3 V,,; 3 ¢<.N. The invariant contents
only change in V/ ,. We therefore can easily re-establish invariant and

cut*
close it using the closing wand viewshift we get earlier from Inv-acc. [



Proofs of Some Primitive Rules and Adequacy 97

Proof sketch of BL-HOARE-ACQ-FENCE (§7.3.1). We start by unfolding the
definition of Hoare triples (Definition 6.7 or Notation 7.7), and then of
WPs (Definition 6.14). Our goal then looks as follow.

Context: Goal:
Seen(V) * S(s) £57 (red((fenceacq, V), <) * V(e/, V). ...)

Since we have a fancy update 55’2‘ in the goal, we can open Zys::

leex(s) ™ xloex(s) ™™ % Globallnv () (... Z=KE ...

The obligation red((fence,cq, V), <) is easily discharged.

For the remaining goal, after introducing assumptions, we know
(1) S | (fenceacq,v) Fh7i)t S ‘ (ﬁ\v V/)
’ and the goalis 7B (S(c) * V' TV * Seen(V')  V.cur = V'.acq) ‘

Using BL-GHOST-SEEN, we know V.acq C V,,,,, SO we can use

BL-GHOST-UPDATE-SEEN to get Seen()V’) without updating V,,,,.

We can then use the closing wand viewshift (... =k¢ ...) to

close the invariant without updating ¢. The goal is now:

S(s) x Seen(V’) S(s) * V' EVxSeen(V') x V' .cur = V'.acq

This is easily done by looking at the reduction (i) for acquire fences. [

Proof sketch of BL-HOARE-WRITE-AT (§7.3.2). We have the following as-
sumptions: (1) rlx C o, (2) Local, (¢, h,V.cur), (3) Localg® (¢, -, V.cur),
and (4) Local2™ (¢, a, Vi). After unfolding Hoare triple and WP defini-
tions, we have the following goal.

Context: Goal:
Seen(V) * Hist (£, h) * WriteZ™(¢, ov,,) * Read™ (¢, av,.)
S(s) E7 (red((£ :=4 v, V),¢) * ¥(e/, V). ...)

We unfold S and open the invariant Zys;:
leex(s) ™ xToex(s) ™™  Globallnv(c) x (... @=kf ...)

We first show safety: red((¢ :=,1",V),<)

By BL-GHOST-HisT and BL-GHOST-NA-READ, we have
trunc(c.M(€), Veur (£)) = h A € ¢ unalloc(c.M) A s N (£).nr = a.
Combining these with (2), (3), and ¢<.N C V_,;, we have
SN(0).w < V.cur(€).w A s N(£).nr C V.cur(f).nr.

So we satisfy DRF-wRrITE-AT (§3.4), i.e., we are race-free.
Consequently, we satisfy OC-mMem (§4.3), so we are done.

For the remaining goal, after introducing assumptions, we know
) 6| (€3=o v, V) T2 o] (8,V)

and the goal is

S(s") 3t ¢ dom(h),V'.V Mot LV, V' %
Local2™ (¢, cpy U {t'} , Viyy LIV cur) =
Seen(V’) * Hist (¢, h[t' + (v, V")]) %

Write2™ (¢, i, U {t'}) % Read™ (¢, cv,.)

DGES




98 A Base Logic for RMC in Iris

By looking at the reduction (i), we can get the new timestamp ¢’ and
the write message view V', and the fact V M V', and that
N = N[+ {N (L) [aw := N (£).aw U {t}]}]-

Additionally, by BL-GHosT-AT-WRITE we have ¢.N({).aw = a,. So
we can pick at new cut view V/ ., and use BL-GHOST-UPDATE-AT-WRITE
to update both the history ownership to Hist(¢, h[t' +(v’, V')]) and the
atomic write ownership to Write="(¢, a,,, U {t'}). By using (4), we
also discharge the local observation LocalZ ™™ (¢, cv,, U {t'} , Vi, LIV .cur).
Using BL-GHOST-UPDATE-SEEN, we also get Seen()”’). The non-atomic read
ownership Read™ (¢, o) is returned as-is.

We eventually end up with the following goal.

leex(s) ™ wloex(s) ™™ x Globallnv(¢") % (... P=k® ...)

17YSTATE

|
,,,,,, 1

close the invariant Zygr. O

Finally, we show adequacy for our base logic, which is slightly differ-
ence from Theorem 6.8 in that we do not fix the initial state.

Theorem 7.19 (Base Logic Adequacy). Assuming that the state < is
wellformed and a thread-view V is closed in ¢.M (V € ¢ M), if F
wpr (e, V) {(v,_). ¢(v)} is derivable in the base logic for Aryst + ORC11
where ¢(v) is a pure (meta-level) fact, then the following holds.

v, T, ¢  ([m = (e, V)], ) =7 (T',<) =
Yo. T (m) =v = ¢(v) (BL-ADEQUACY-VAL)

A Vp,ep, Vo T(p) = (ep,V,) = (e, is avalue Vred((ep, V,),<"))
(BL-ADEQUACY-NO-STUCK)

Proof. The proof follows from a Iris-provided adequacy theorem (that
also implies Theorem 6.8). All we need to do is to allocate the various
global ghost locations with the correct RAs, and establish the global
invariant Zysr of the state interpretation S(<), which requires ¢’s well-
formedness and that V € ¢. M. O

CHAPTER SUMMARY. In this chapter, we demonstrated the instantiation
of Iris with the A\gys: + ORC11 language to achieve a RMC base logic.
The most important feature of the logic is the explicit use of thread-views
in conjunction with various local assertions to achieve abstraction for
the relaxed memory effects. In the next chapter, we provide the next
abstractions for thread-views. In Chapter 9 and Chapter 10, we will
provide more abstractions for the local assertions.



8.1

vProp: View-monotone Predicates

Following iGPS!, in this chapter we introduce an abstraction to hide
thread-views in the base logic, and lift the base logic to a surface-level
logic whose propositions have the type vProp, which stands for view
propositions. We call this surface logic of vProp the iRC11 logic. We will,
in this chapter as well as later ones, develop more reasoning principles
for iRC11, within iRC11 itself or on top of the base logic.

The motivation for hiding thread-views and views is that most of the
time, they do not have interesting behaviors, and when they do (in the
relaxed memory operations), the effects are usually that the thread-views
or views have grown in certain ways. If we can provide new assertions
that abstract those ways that views change (e.g., an observation of a value
written or read, or that a thread-view’s current view has been upgraded
to its acquire view), then we can achieve SC-like rules that have been
developed in many previous logics.? In this chapter, we establish some of
such core rules for iRC11.

Note, however, that hiding views is an abstraction that weaken the
logic. While such abstraction is sufficient in many cases, views are
inevitable in order to provide strong reasoning principles or specifications
for very relaxed algorithms. This observation has been made by the RB1
work (Part III), the Cosmo logic,® and the Compass specifications (Part IV),
chronologically. §8.5 will introduce several modalities to restore explicit
view reasoning in the logic of vProp.

View-monotone Predicates

We define vProp as the type of view-monotone predicates over iProp.
Definition 8.1 (vProp).

vProp ::= View ™% iProp

satisfying VP : vProp.VV, V.V C V' = P(V) = P(V') (VPROP-MONO)

An assertion P : vProp is to be interpreted as some resource that holds
at a simple view. This view usually is the current component V.cur of a
thread n’s thread-view V in case P is owned locally by the thread ; or a
view of some write message m in case we attach P to the message m in
order to transfer P from m’s writer to its readers.

IKaiser et al., “Strong Logic for Weak
Memory: Reasoning About Release-
Acquire Consistency in Iris” [Kai+17].

2Vafeiadis and Narayan, “Relaxed sep-
aration logic: a program logic for
C11 concurrency” [VN13]; Doko and
Vafeiadis, “A Program Logic for C11 Mem-
ory Fences” [DV16]; Doko and Vafeiadis,
“Tackling Real-Life Relaxed Concurrency
with FSL++” [DV17]; Turon et al., “GPS:
navigating weak memory with ghosts, pro-
tocols, and separation” [TVD14].

SMével et al.,, “Cosmo: a concur-
rent separation logic for multicore
OCaml” [MJP20].

99



100 vProp: View-monotone Predicates

4This model is also useful elsewhere, and
has been generalized in Iris to monotone
predicates over types that come with a par-
tial order.

Another choice is to define vProp as a predicate of thread-views
(ThreadView ™% iProp), but such a definition does not have an actual
use. Thread-views are tied locally to threads, and so such a definition
is not suitable to represent resources that are not tied to a thread, but
instead, for example, are tied to a message, or are put inside a shared
invariant. Furthermore, resources are typically not tied to a whole thread-
view V, but rather to one of its components (the release-fence, current,
or acquire view). In short, simple view predicates are used pervasively,
while thread-view predicates are not.

The monotonicity requirement is needed to maintain “stability” of
the frame when the view grows. That is, more observations made by
a thread’s step should not invalidate resources that are not relevant to
the step. As a result, we explicitly monotonize vProp propositions when
necessary (i.e., when they are not already monotone). Note that this is a
source of weakening the surface logic compared to the base logic.

We lift the many logical connectives and modalities of the base logic
(which we inherit from Iris) straightforwardly.

Definition 8.2 (Model of vProp propositions). The function [-] provides
a model of vProp propositions into predicates from views to iProp, em-
bedding proofs that the predicates are monotone.*

[¢] == .o
[False] ::= A_. False
[True] ::= A_. True
[P = Q] == \V.YV' 2 V.[P}(V') = [Q](V)
[P AQ] == AV.[P](V) AQI(V)
[PV Q] == AV.[P)(V)VI[QI(V)
[P+ Q] == AV [P[(V) x [Q)(V)
[P — Q] == AV.VV' JV.[P](V') = [Q](V")
[Fz. P] := A\V. 3. [P](V)
[Vz. P] := AV.Vz. [P](V)
[>P] ::= AV. [ P](V)
[OP] == AV. O[P](V)
[a']==2_]a]
[E P] == AV. B[PI(V)
[B% P] o= AV. & B2 [P](V)

Note that, [P * @], for example, is view-monotone assuming P and @
are vProp and thus view-monotone. On the other hand, [P — Q] needs
to be monotonized explicitly. The model of ghost state ownership [[LZI,]’Y]]
interestingly simply ignores the input view.

Lemma 8.3 (Properties of iRC11 connectives). The properties in Fig-
ure 6.2, Figure 6.3, Figure 6.4, and Figure 6.7 are preserved for iRC11
connectives by the encoding of Definition 8.2.



8.2

Model of iRC11 Weakest Pre-conditions

The most interesting encodings are those of weakest pre-conditions
(from which Hoare triples are derived similarly as before), non-atomic
and atomic points-to assertions, and invariants. We will discuss non-
atomic points-to in Chapter 9, atomic points-to in Chapter 10, and invari-
ants in Chapter 11. In the remaining, we discuss the models of iRC11
(vProp) weakest pre-conditions and several RMC-specific modalities.

Model of iRC11 Weakest Pre-conditions

iRC11 WPs are a vProp proposition that is built upon the base logic WPs,
and that hides away thread-views. Nevertheless, we need a way to
refer to the thread-view, specifically to define the release and acquire
modalities (§8.5) that provide the abstraction of fence behaviors. For this
purpose, we expose thread-ids in the WP definition, which are used under
the hood to associate with thread-views. Fortunately, these iRC11-level
thread-ids need not be the same thread-ids of the threadpool, so we
can simply store thread-views in ghost state—with the RA TVIEWR =
AUTH(LAT(ThreadView))), and use ghost locations as thread-ids.

Definition 8.4 (iRC11 Weakest Pre-conditions).

weeeinm{@}f =

— Seen(V) —

|
,,,,,,,,,,,, 1

wpe (e.V) {(©,).[ V"« [0()](V.cur)}
The WP definition takes care of several things.

* It makes sure that the definition is view-monotone explicitly, by
requiring that the underlying base logic WP take a thread-view V
whose current component V.cur is in the upward closure of the
input view V.

« It threads through the authoritative ghost ownershipeV!" of the
thread-view being executed with the expression e, in the pre- and
post-conditions. This also allows for creating snapshots (fragmen-
tary ownership) ‘L;]Z;W for the lower bound of the executing thread
7’s thread-view, which in turn will be used to define release and
acquire modalities.

* By hiding thread-views, it also hides the assertion Seen(V). Accord-
ingly, it also provides Seen(V) as assumption to the base logic WP.
It does not require Seen()’) in the post-condition, because this can
be easily obtained from the state interpretation S (hidden in the
base logic WP) using BL-GHOST-UPDATE-SEEN.

Definition 8.5 (iRC11 Hoare triples). iRC11 Hoare triples are defined
similarly as before.

{P}einm{v.Q}e :=0(P =« wpgeinm{v.Q})

101



102 vProp: View-monotone Predicates

5Doko and Vafeiadis, “A Program Logic
for C11 Memory Fences” [DV16]; Doko
and Vafeiadis, “Tackling Real-Life Relaxed
Concurrency with FSL++” [DV17].

8.3

If we interpret this definition in iProp, we will arrive at the following.

[{P}einm{v.Q}s] ::=
AV. OV, V.VEV'C V.cur = [P](V) «eV!" — Seen(V)

e (e V) {0V) [+ V17« [QU cun)}

As one can see, generally both the pre-condition P and post-condition @
are interpreted at the current components V.cur and V' .cur, respectively,
of the executing thread’s thread-view.

Lemma 8.6 (Properties of iRC11 WPs and Hoare triples). The properties
in Figure 6.5 and Figure 6.6, except those concerning invariants which are
not yet defined, also hold for iRC11 WPs and Hoare triples.

Theorem 8.7 (iRC11 Adequacy). If Vr. - wpr einm {v. ¢(v)} is derivable
in the iRC11 logic for Arust + ORC11 where ¢(v) is a pure (meta-level) fact,
then the following holds.

v, T',6" ([ = (e, Vinit)]s Sinie) =" (T7,¢") =
Yo. T(m) =v = ¢(v) (ADEQUACY-VAL)

A Vp,ep, V. T(p) = (ep,V,) = (e, is avalue Vred((ep, V,),<"))
(ADEQUACY-NO-STUCK)

where Viniy = (2,9, D, &) and it = (I, D).

Proof sketch. The proof follows from the base logic adequacy (Theo-
rem 7.19). Note that the initial thread-view Vi, and state g, are
wellformed and Vi € sinit. We then need to allocate the ghost state
' V" for some 7 and V, and get Seen())), so that we can instantiate and
apply our assumption V7. = wp ein7 {v. ¢(v)} and finish the proof. [

Fence Modalities

To model the effects of relaxed accesses and fences, iRC11 inherits two
modalities from FSL>—the release modality A and the acquire modal-
ity V—which allow us to talk about ownership of resources at a thread’s
release-fence or acquire views. The assertion A, P represents ownership
of P at thread =’s release-fence view, while the assertion V. P represents
ownership of P at thread 7’s acquire view.

The motivation for these modalities as follows. Recall the Message-
Passing example using a pair of a relaxed write and a relaxed read,
together with fences (Example 2.1(d), Figure 2.2(d)). We have some
resource described by the proposition P that we want to transfer from
the left-hand thread = to the right-hand thread p. However, when the
“producer” thread 7 performs its relaxed write, the message view of that
write is drawn from =’s release-fence view, not its current view. Hence,
we need a way of insisting (in the precondition of the relaxed write) that
the P that 7 is sending holds under its release-fence view—that is what
is denoted by A, P. Dually, when the “consumer” thread p performs
its relaxed read, the message view it reads will only be joined into its



HOARE-REL-FENCE
{P} fencere in m{A, P}

HOARE-REL-FENCE-ELIM
{P}einm{P}

Fence Modalities 103

HOARE-ACQ-FENCE
{Vr P} fence,q in 7 {P}

HOARE-ACQ-FENCE-INTRO
{V,P}leinm{d}

{A; P}einm{P} {P}einm{d}
RELMOD-GHOST ACQMOD-GHOST GHOST-RELMoOD GHOST-ACQMoOD
ArlalFlal Velal' Flaf o' S Arla) 0’ S Vilal
RELl\gol_D_QMONO RELMOD-PURE RELMOD-AND RELMOD-OR
m ARG A (PANQFAPANAQ A (PVQ)t+APVA,Q
RELMOD-FORALL RELMOD-EXIST RELMOD-SEP

A Vx.P+Vx. A, P Ardx. P4+ 3z. A, P Ar(PxQ) 4 Ar Px AL Q

RELMOD-UNOPS
N E {D7>7 éa 81582 }

RELMOD-WAND RELMOD-LATER-INTRO
Ar(P+Q)F AP %A Q bA P =g AbP

Ar-PF-AP
AcQgiDgONO ACQMOD-PURE ACQMOD-AND ACQMOD-OR
V.PFV.0 Vet o Vi (PAQ)FVaPAVAQ Ve (PVQ) Vi PVV,Q
ACQMOD-FORALL ACQMOD-EXIST ACQMOD-SEP

VaVz.PF-Vz. VP Vidz. P4 32.V, P Ve(PxQ) 4V, PxV,.Q

AcQMOD-UNOPS
e {De B oE)
Ve-PFH-V.P

ACQMOD-WAND ACQMOD-LATER-INTRO
VW(P—*Q)FVWP—*VWQ >VP =g V> P

FIGURE 8.1: iRC11 rules for fence modali-

ties
acquire view, not its current view. Hence, we need a way of insisting (in

the post-condition of the relaxed read) that p only receives ownership
of P under its acquire view—that is what is denoted by V, P. We will
see how this is materialized in the iRC11 rules for atomic operations in
Chapter 10.

Of course, we need a way of actually introducing A, P and eliminating
V, P. These steps are achieved by rules HoARE-REL-FENCE and HOARE-
AcQ-FENCE (Figure 8.1), which allow one to transfer any proposition into
the release modality at the point of a rel fence, or out of the acquire
modality at the point of an acq fence, because those are the points where
the current and release-fence/acquire views get synchronized.

HOARE-REL-FENCE-ELIM and HOARE-ACQ-FENCE-INTRO are the reverse of
HOARE-REL-FENCE and HOARE-ACQ-FENCE, and demonstrate that the release-
fence view is included in the current view, which in turn is included in
the acquire view of a thread. So A P can be easily turned into P, which
can be turned into V,. P. We note that we need a goal in form of a WP
or a Hoare triple to perform these moves, but this is only an artifact of



104 vProp: View-monotone Predicates

This can be seen clearly in the model of
iRC11 ghost ownership, in Definition 8.2.

8.3.1

our simple model of fence modalities (§8.3.1).

RELMOD-GHOST, ACQMOD-GHOST, GHOST-RELMoOD, and GHOST-ACQMOD
together state that the ghost ownership assertion @]7 can move freely
in and out of the fence modalities. Intuitively, ghost state belongs to
the class of view-agnostic assertions, in the sense that their ownership
interpretation is not tied to any view at all! Since [a| is view-agnostic
and thus does not care at which view it is interpreted,® it is equivalent to
Ay @]V or V @]W. As a result, ‘EL}V can be transferred from one thread
to another without the need for physical synchronization—in particular,
without the need for release/acquire fences.

The remaining rules in Figure 8.1 state various properties between the
fence modalities and other modalities. Some of the rules only have one
direction or need to use basic or fancy updates. This is due to our simple
model of fence modalities—which we will see next—but fortunately they
do not cause any problem in practice.

Model of the Fence Modalities

We rely on the extra ghost state of the RA TVIEWR that we have added to
iRC11 WPs (Definition 8.4) to get access to the executing thread’s hidden
thread-view, so that we can give a model to our fence modalities.

Definition 8.8 (Model of the Fence Modalities).
[Ar P] == A_. EIV.{{]Z;” * [P](V.frel) (RELMOD-MODEL)
[V P] = A_3V.0o V1" % [P](V.acq) (AcQMoD-MODEL)
Note that due to validity of TVIEWR, from (e V'|" 10 V1", we know
that V C V'. Consequently, if we own A, P in a goal of a WP for the
thread =, we know that P holds at the view V.frel where V C V' and V'

is 7’s actual thread-view, and thus by view-monotonicity, P also holds at
V' frel. In fact, let us sketch the proofs of some of the rules in Figure 8.1.

Proof of HoARE-REL-FENCE. We prove the rule in the base logic. After
unfolding the Hoare triples (interpreting them in the base logic, as in
Definition 8.5), we have the following goal.

Context: Goal:
V E V.cur « [P](V) #[e V|" * Seen(V)
wpg (e, V) {(@\, V’).E?ﬂw * [Ax P]](V’.cur)}

We then apply WP-mono (§6.6) and BL-HOARE-REL-FENCE (§7.3.1).

The goal, after unfolding the model of the release modality, is now:
VI V.aurAVEV AV frel =V .cur
[P)(V) * e V]" *Seen(V") oV V0oVl # [P(Vofrel)

We update the ghost thread-view of 7 using AUTH-LAT-UPDATE (§7.4).
We are then left with:

[PI(V) # o V1" Mo- 1o Vol " # [PI(Vo frel)
And then:

[P1(V) [P](V' frel)



8.4

Objective Propositions and The Objective Modality 105

But we know that V' C V.cur C V'.cur = V' frel. By view-monotonicity
(vPrROP-MONO), We are done. O

Proof of HOARE-ACQ-FENCE. The proof is similar to that of HOARE-REL-
FENCE. Eventually we will arrive at the goal [P](Vy.acq) - [P](V'.cur).
But by AUTH-LAT-VALID and BL-HOARE-ACQ-FENCE we know that Vy.acq C
V’.acq = V'.cur. Again this is done by vproP-MONO. O

Proof of RELMoD-GHosT. After unfolding, we arrive at the following base-
logic goal: IV.[o V1" «ia|’ F1a| . This is easily done. O
Proof of GHosT-RELMobD. After unfolding, we arrive at the following base-
logic goal: 'a|’ = 3V.0V1"xa]’. We only need to pick any V for which
we own!oV|", because the ghost ownership does not depend on V. With
a basic update, we can get ownership of an RA’s unit element. In case of
TVIEWR, the unit element is o & for the empty thread-view &. Therefore
we can easily get! o @!" and we are done. O

Proof of RELMoD-FoRALL. After unfolding, we arrive at the following base-
logic goal: IV. 1o V" % V. [P](V.frel) - V. V.10 V" % [P](V frel). This
is easily done.

The result of the unfolding also demonstrates that the reverse direc-
tion RELMOD-FORALL is not provable for our simple model of the release
modality: we would need to go from a V3 assumption to a 3V goal. [

Objective Propositions and The Objective Modality

We previously mentioned that ghost state ownership belongs to the class
of view-agnostic propositions whose interpretations are not tied to any
view at all. That is, relaxed memory has no effects on them. We formally
call this class objective propositions, because they hold regardless of any
subjective views of any threads in the program. They are thus important
to establish global consensus among concurrent threads.

Definition 8.9 (Objective Propositions). A proposition P : vProp is
objective if its interpretation does not depend any view. ”

objective(P) ::= ¥V, V'. [P](V) F [P}(V')

Definition 8.10 (The Objective Modality). The objective modality carries
the proof that some resource P holds at any view.

[(obj) P] ::= A_.VV.[P](V)

Figure 8.2 presents many rules for objective propositions and the
objective modality. Unsurprisingly, pure facts, True, False, ghost own-
ership, and a resource under the objective modality are all objective.
Objectivity is maintained structurally, but it is not always so for the
objective modality, due to our use of a universal quantifier (V) in its
model. OBJMob-INTRO allows one to put objective propositions under
the objective modality, so that one can store the meta-level objectivity

"Note that objectivity and the objective
modality have also been generalized in Iris
for monotone predicates, not just vProp.



106 vProp: View-monotone Predicates

GHOST-OBJ PURE-OBJ TRUE-OBJ FALSE-OBJ OBJ-OBJ
objective(‘[g]w) objective(¢) objective(True) objective(False) objective((obj) P)
OBJ-BOPS OBJ-UOPS .
. . . . H H 1 2
objective(P) objective(Q) <€ {A,V, =, %, >} objective(P) € {D7l>7 = }
objective(P - Q) objective(- P)
OBJ-FORALL OBJ-EXIST OBJMOD-INTRO OBIMOD-ELIM
Vx. objective(P) Jz. objective(P) objective(P) (obj) P I P
Rt A A o
objective(Vzx. P) objective(3x. P) Pt (obj) P !
OBJMOD-MONO OBJMOD-AND OBJMOD-OR

PHQ
(obj) P = {obj) Q@

OBJMOD-FORALL
(obj) Vx. P -+ Va. (obj) P

OBJMOD-RELMOD-INTRO

(obj) P = A, P

FIGURE 8.2: iRC11 rules for objective
propositions and the objective modality

8.5

8Mével et al.,, “Cosmo: a concur-
rent separation logic for multicore
OCaml” [MJP20].

{obj) (P A Q) == {obj) P A (obj) Q

RELMOD-OBJMOD-ELIM
Ay (obj) P+ {obj) P

{obj) PV (obj) @ = {obj) (P V Q)

OBJMOD-SEP
(obj) (P * Q) = {obj) P * (obj) Q

OBJMOD-EXIST
Jz. (obj) P I (obj) 3z. P

OBJMOD-ACQMOD-INTRO
(obj) P = V. P

AcQMoD-OBJMOD-ELIM
V. (obj) P F (obj) P

fact in the logic. OBJMoD-ELIM says that a resource P under an objective
modality can be used any time, because it holds at any view.

Last but not least, OBJMOD-RELMOD-INTRO, RELMOD-OBJMOD-ELIM,
OBJMOD-ACQMOD-INTRO, and AcQMoDp-OBJMoD-ELIM together state that
resources under the objective modality move freely in and out of the
fence modalities, because they do not depend on any view. In fact, the
rules for ghost state interaction with fence modalities (RELMOD-GHOST,
ACQMOD-GHOST, GHOST-RELMoD, and GHOST-AcQMob) are derived from
these rules, together with GHOST-0BJ, OBJMOD-INTRO, and OBJMOD-ELIM.

Note 8.11 (On the objectivity of fence modalities). A resource P under a
fence modality, e.g., A, P, is objective, but that does not mean that P is
objective. P is still interpreted at some snapshot view of the thread =’s
thread-view.

View-explicit Modalities

As mentioned in the beginning of this chapter—and as will be demon-
strated in later chapters, it is not always desirable to hide views. We
therefore would like the ability to briefly perform explicit view reasoning
without dropping back to the base logic. The solution is to introduce
view-explicit modalities. This has been done on an ad hoc basis in the
RB.1x work (Part III), then developed more formally by the Cosmo logic,®
and then used extensively in Compass (Part IV).

In the following, we present a formal account of these modalities, and
their interaction with other modalities as well as among themselves. Note
that this formalization can also be generalized further beyond vProp, to
achieve modalities in a logic with thread-local state.



Definition 8.12 (The View-Seen Observations).

The view-seen observation JV asserts that the implicit view that is being
used to interpret resources is at least V.

[2V] ==V vV

The view-seen observation is similar to the seen thread-view observa-
tion (Definition 7.9), but is a vProp proposition and is not limited to a
view of some thread. It provides a lower bound of the view being used to
interpreted resources at the current point of a proof, regardless whether
that proof is for a program execution (a WP) or not.

Definition 8.13 (The View-At Modality). Qy P

The view-at modality @y, P asserts that P holds explicitly (at least) at the
view V.

[Qy P] == A_.[P](V)

When we progress through a proof—with or without a program execution
(i.e., a WP)—in the iRC11 logic, either due to program execution or due
to possible explicit monotonization of vProp propositions, the view being
used to interpret our resources may grow. The view-at modality @y P
allows us to keep some resource P frozen at some view V' and not affected
by the growth of the implicit interpreting view. This ability is needed in
case the interpreting view grows too big, rendering our ownership of P
useless.

Definition 8.14 (The View-Join Modality). Uy P

The view-join modality LIy P asserts that P holds at the join of V and the
implicit view that is being used to interpret resources.

[uy P] == AV [P|(V' LUV)

The view-join modality is a compromise between a implicit view and
a view-at modality: it remembers the difference between the implicit
interpreting view and the view that justifies P. This allows the view that
justifies P to still grow, but not too far away from the implicit view of the
current proof.

Figure 8.3 lists several important properties of these new propositions.

* The seen-view observation is timeless and persistent. The observa-
tion for the empty view is always available (VS-BoT) and objective.
The seen-view observation lifts the join operation of the view lat-
tice to separation in the logic (VS-join). Observations are also
downward closed (VS-MoNO).

* The view-at modality makes the interpreting view explicit and
therefore is objective. It preserves timelessness and persistency,
and is upward closed (VA-MoNoO), due to view monotonicity. The
modality commutes with most connectives and modalities, almost
in both directions (VA-BoPS, VA-UNOPS, VA-IMPL, and VA-WAND).

View-explicit Modalities

107



108 vProp: View-monotone Predicates

VS-BOT objective( Jo) VS-JOIN VS‘_/MEN‘O/
1E Ve
F Jo timeless( V) J(ViuVe) 4= Oy« OV, _
persistent( JV) S
VA-MONO
timeless(P ersistent( P 1 CV; P+
objective(@Qy P) _— ) _PerRrET) - ) = @
timeless(@Qy P) persistent(Qy P) Qy, P+ @y, Q
VJ-MONO
objective(P) timeless(P) persistent(P) ViCV, PHQ
objective(Uy P) timeless(Ly P) persistent(Uy P) Uy, P+ Uy, Q
VA-INTRO VA-INTRO-INCL VA-ELIM VA-VS
PrH3IV. IV xQyP PxJV' -3V 3 V. 3V« QyP JVs«aQyPrFP Vi C VWV, - @y, JV;
VA-0BJ VA-BOPS
objective(P) VA-.INTRO-OBJ VA-IDEMP e AV, %)
e — <Obj> PH @VP @Vz@le -+ @le
QyP -+ P QyP-Q -1~ QyP-QyQ
VA-UNOPS

- {V$.731'.,|:’,[>7 év 51952}

VA-IMPL VA-WAND

@VPéQF@Vpﬁ@VQ @VP%QF@VP%@VQ

Qy -P - -@yP
VJ-UNFOLD VJ-JOIN VA-VJ VJ-VA
Uy P-4 V=P Uy, Uy, P - U(Vll_lVQ)P Qy, Ly, P 4+ @(vluvz)P Uy, @y, P 4 @y, P
VA-TO-VJ VJ-INTRO-NOW VJ-ELIM VJ-ELIM-VA
QyPFUyP Pr+UyP JVsxuyPHP Vi xUy, P E IV 3V V' « @(V/UVQ)P
VJ-VA-ACC

VJ-INTRO-OBJ

(obj) P+ LUy P

2V1 * UVQP [ EIV/ g ‘/1 QV/ * @(V/L’VQ)P * (VVN. QV” * @(V”L’VQ)P —k |_|V2P)

VJ-0BJ VJ-BOPS VJ-UNOPS e
jecti 1 2
objective(P) € {NV, = %, ] - € {Vm. = I S =S }

Uy P =P Uy P-Q AUy P -Uy@Q Uy -PH--UyP

FIGURE 8.3: iRC11 rules for view-explicit

modalities

Objective propositions often ignore the view-at modality (VA-oBJ
and VA-INTRO-OBJ). VA-IDEMP says that the inner-most view-at
modality dominates. VA-VS says what it means for a view V, to
observe a view V: it is simply that V; C V5.

The two most important rules for the modality are its introduction
and elimination rules. VA-INTRO allows us to freeze an owned
resource P at some view V that we have observed (JV). As such,
we can send @y P and JV away on different routes—a separation
of resources and observations. A receiver once receives both parts
can use VA-ELIM to regain P. VA-INTRO-INCL strengthens VA-INTRO
to know more about the fixed view V.

* The view-join modality preserves timelessness, persistency, and



8.6

objectivity, and is also upward closed. It commutes with most con-
nectives and modalities (VJ-Boprs and VJ-unops). Again, objective
propositions ignore the view-join modality (VJ-oBJ and VJ-INTRO-
OBJ).

VJ-UNFOLD provides an alternative definition for the view-join modal-
ity, which states more clearly that P holds at view whose difference
with the implicit view is V. VA-VJ, VJ-VA, and VA-To-VJ provide
important relations between the view-at and view-join modalities.
VJ-INTRO-NOW allows us to move the owned P to a bigger view and
introduce Uy P. VJ-ELIM allows us to eliminate the modality, in
the same way as VA-eLim. Finally, VJ-ELiM-VA allows us to go from
the view-join modality to the view-at modality. Combining that
with VA-VJ and VA-ELIM, we get the rule VJ-VA-acc that allows us to
switch between the two modalities.

Definition 8.15 (Alternative Model for Fence Modalities). The fence
modalities are in fact defined in vProp using the view-at modality.

Ar P =300V % Qygo P
VP = HV.[:E:]Z}W * @V.ach

After unfolding into the base logic, this is exactly the same as Defini-
tion 8.8.

We note that the release modality and the view-at modality can
interact through the following rule.

RELMOD-VA-REVERT
YV.AQy P+ Ay IV}ieinm{P}e

{Az P}einm{P}¢

That is, with a goal in the form of a WP for the thread =, we can turn the
assumption A, P into Qy P x A, 3V for some view V.

The Subjective Modality

Finally, we introduce the subjective modality, a derivation from the view-
at modality.

Definition 8.16 (The Subjective Modality).
(subj) P :=3V.Qy P

That is, the subjective modality asserts that P : vProp holds at some view
that is hidden from others. The name “subjective” comes from the fact
that P holds in someone’s subjective view.

The subjective modality satisfies the rules in Figure 8.4, which are
derivable from the rules for the view-at modality. Some of these prop-
erties hold for general monotone predicates, but some (e.g., the reverse
direction of SuBJMop-sEP) only hold for monotone predicates on a lattice,
which for vProp is the view lattice.

The Subjective Modality 109



110 vProp: View-monotone Predicates

SUBJMOD-MONO

timeless(P) persistent(P) PFQ SUBJMOD-INTRO

objective((subj) P) P+ (subj) P
timeless((subj) P) persistent((subj) P) (subj) P F (subj) @
SUBJMOD-VA SUBJMOD-ELIM-OBJ SUBJMOD-AND
V. @y P - (subj) P objective(P) (subj) (P A Q) I (subj) P A {subj) Q
. su e — su A su A (Su
v : (subj) P+ P : : :
SUBJMOD-OR SUBJMOD-FORALL SUBJMOD-EXIST
(subj) PV (subj) @ - (subj) (P vV Q) (subj) V. P V. (subj) P Jx. (subj) P 4k (subj) Jz. P
SUBJMOD-SEP SUBJMOD-LATER
(subj) (P x Q) - (subj) P * (subj) @ > (subj) P - (subj)> P

FIGURE 8.4: iRC11 rules for the subjective
modality CHAPTER SUMMARY. In this chapter, we presented view-monotone pred-

icates vProp—the type of iRC11 propositions—and the lifting of many
base-logic connectives and modalities to those of iRC11. We have de-
fined iRC11 WPs also in terms of the base logic WPs, and showed iRC11
adequacy. We have also defined various iRC11 modalities: fence modal-
ities and view-explicit modalities. In the next chapters, we follow the
same approaches to derive more iRC11 assertions and their rules on top
of the base logic: the non-atomic and atomic points-to assertions, and
invariants.



9.1

Non-Atomic Points-To

The points-to assertion £ — v is a well-known feature of separation logics.
It represents unique ownership of the location ¢, which allows for safe,
non-racy operations on ¢. For concurrent reads, the assertion can be
equipped with fractional permission, i.e., £ % v. Ownership of a fraction
q € (0,1] is sufficient to prevent concurrent writes. We would like to have
these features for non-atomic accesses: concretely, the full ownership of
a points-to ¢ — v should be sufficient to safely perform non-atomic writes
(and thus also any atomic operations), while a fractional £ +% v should be
sufficient to safely perform non-atomic reads (and thus also any atomic
reads). In this chapter, we give a model for iRC11’s non-atomic points-to
assertion that satisfies this interface, using the base logic local assertions
defined in Chapter 7. In Chapter 10, we will also discuss iRC11’s ability
to switch between non-atomic and atomic points-to assertions.

The Interface of Non-Atomic Points-To

The interface of iRC11 non-atomic points-to is rather standard, as given in
Figure 9.1. NA-FRAC, NA-FRAC-VALID, and NA-FRAC-AGREE together say that
non-atomic points-to is fractional, and NA-excL says that full ownership
of a non-atomic points-to is exclusive. NA-rReaD allows us to perform
non-racy reads using any access mode o with a fraction ¢ % v, and we
are guaranteed the return value is v. NA-wrITE allows us to perform
non-racy writes also using any access mode o with the full fraction £ — _,
and we know afterwards /¢ has the value just written. The support for an
arbitrary access mode o reflects the fact that if the points-to ownership is
sufficient to safely perform the most demanding mode (non-atomic, na),
then it should also be sufficient for less demanding ones.

Furthermore, NA-ALLOC says that an allocation gives us the full block
ownership (1" (—lifted from the base logic! to vProp—and the full non-
atomic points-to ownership (*mE[O,n) {4+ m — &) for all locations of
the newly allocated block, whose base location is ¢. Conversely, NA-
DEALLOC consumes the block ownership and the points-to ownership of all
locations. We strengthen NA-pEaLLOC slightly by only requiring a weaker
points-to ¢ — 7, which we call an unsynchronized points-to. Intuitively,
the ownership of an unsynchronized points-to ¢ — ? only guarantees
that the owning thread has observed the latest write to ¢, but is not
synchronized with that write, i.e., it has not observed the write’s message

Isee Definition 7.1

111



112 Non-Atomic Points-To

NA-FRAC NA-FRAC-VALID NA-FRAC-AGREE NA-EXCL
0 g s sy - 09 g (v qe(0,1] (vl o' Fo =0 L vxf— v+ False
NA-READ NA-WRITE
vy linm{w.w=v*lLv}e {t— }l:=pvinT{®.L—~0v}e
NA-ALLOC NA-DEALLOC
0<n 0<n NA-UNSYNC
0% e
{True} {T” £ x >l< L+m— ?}
alloc(n)inm melon)
free(/,n)inm
i lx K Lhmes (t:n)
me(0,n) e {®. True}
where (& _ = Fu. 0% v,

FIGURE 9.1: Rules for iRC11 non-atomic
points-to

2see Definition 7.14

9.2

view. On the other hand, ownership of ¢ — v guarantees that the thread
is synchronized with that latest write, which is the write of v. The rule
NA-unsyNc demonstrates that the latter is stronger than the former.

The Model of Non-Atomic Points-To

In order to define the non-atomic points-to assertion purely within vProp,
we first lift the base logic local assertions (either in iProp or in the meta-
level logic, see Definition 7.1) to vProp as follows.

Definition 9.1 (Lifting Local Assertions to vProp).

[Hist(¢, h)] ::= A_. Hist(¢, h)
[WriteZ™ (2, )] ::= A_. WriteZ™(¢, o)
[Read™ (¢, )] := A_. Read™ (¢, o)
[ReadZ™(¢, )] ::= A_. Read="™(¢, )

[Local, (¢, h)] ::= AV. Local,(¢,h, V)
[LocalZ™(¢, )] := AV. Local2™ (¢, o, V)
[LocalZ™ (¢, )] ::= AV. Local2™ (¢, o, V)

[Localg® (¢, o, Vaa)] ::= AV. Localg® (¢, ct, Voa) A Vaa TV

The lifting is straightforward. Recall that the various local ownership for
parts of the race-detector state are purely ghost state,? so in lifting them
to vProp we simply ignore the interpreting view. For local observations,
we use the interpreting view V as the last argument to the meta-level
assertions. Recall Property 7.5 that the local observations are all view-
monotone.

Remark 9.2 (The non-atomic view V,,). Note that unlike the rest of
iRC11 local observations, we do not hide the view V;, of the non-atomic
local observation Localp? (¢, a, Vqa). Instead, we require that the implicit
interpreting view V includes V;,. The view V,, is called the non-atomic
view, and we expose it to record the view of the most recent non-atomic



access period. Intuitively, safe accesses to a location ¢ must alternate
between periods of non-atomic accesses and periods of atomic accesses.
Interestingly, the switch from a non-atomic access period to an atomic
access period of ¢ can happen (logically) much later than the most recent
physical non-atomic operation to ¢. That is, the end of a non-atomic access
period may not logically coincide with the most recent non-atomic access.
Even so, any incoming atomic accesses of the new atomic access period
must synchronize with not only the most recent non-atomic operation,
but with the point of the switch itself. Therefore, we use the view V;, to
track the view of the switch, so as to make more resources available to the
incoming atomic accesses. In short, the non-atomic view V,, is needed to
have strong reasoning principles for switching between non-atomic and
atomic accesses, and its uses will be explained more clearly in Chapter 10.
In this chapter, we can simply ignore this view.

Definition 9.3 (Model of ¢ — v). We define a primitive non-atomic points-
to £ L., h which represents fractional ownership of ¢ with a history h,
and then use it to define the unsynchronized non-atomic points-to £ +% ?
and the actual points-to ¢ L v.

0% 00 b= Jan, ay, ag. Local, (€, h) * LocalZ™ (4, ary) *
LocalZ2™ (¢, cv2) % (IVna- Local®™ (£, iy, Via)) *
Hist, (¢, h) * Write2™™ (£, cu,, ) *

a
Ready’ (¢, 1) * Read%rlx(ﬁ, as)
? = 3t7U7V?.€ 'i>na [t(—(’l), V?)]

N
Ly n= 3, V0D, [t(—(v,V?)] x V7

14
4

A fraction ¢ of the primitive non-atomic points-to for ¢ contains the
corresponding fractions for ¢’s history ownership of i and the parts
of race-detector state. By Local,(¢, h), the owner of ¢ &, h has also
observed the allocation of ¢. The sets «,,, a1, and «» of atomic writes,
non-atomic and atomic reads, respectively, are existentially quantified,
and, due to the local observations, all sets are also observed by the owner
of ¢ %, h.

The unsynchronized non-atomic points-to ¢ +% ? then simply requires
that the history be a singleton [t+<(v,V")] for £’s latest write event
(t,v,V"). The non-atomic points-to £ +% v additionally fixes the value to
be v, and requires that the owner has observed the message view V",

The definitions clearly show that NA-unsync holds. We sketch the
proofs for the remaining rules.

Proof sketch that ¢ — v is fractional. Proofs of NA-FRAC, NA-FRAC-VALID,
and NA-rrAC-AGREE follow from the fact that the ownership history and
the local assertions for parts of the race-detector state are all fractional—
see Figure 7.2. In proving NA-rrac, we will need BL-NAL-joiN and
BL-ATRL-JOIN to join the local observations for reads. O

Proof sketch of NA-ALLoc. We perform the proof in the base logic. Note
that we do not have a base logic rule for allocation and deallocation,
so we will need to prove both NA-aLLoc and NA-peaLLoc by unfolding

The Model of Non-Atomic Points-To 113



114 Non-Atomic Points-To

3see OM-ALLOC, Figure 3.3, §3.3

the both WP definitions of iRC11 (Definition 8.4) and of the base logic
(Definition 6.14), and work directly with the state interpretation (Defini-
tion 7.18), like for other base logic WP rules.

Fortunately, the pre-condition and the race-free condition for allo-
cation is trivial. As the newly allocated block—whose base location is
(—is fresh in the global memory,> we can update the global ghost state
GlobalGhost to mirror the change in the global physical state, namely we
allocate the block ownership 1" ¢, and the history ownership as well as
the local assertions for all locations in the newly allocated block, all of
which are needed to construct the non-atomic points-to for them. Note
that the allocated locations all have the allocated value t, which is lifted
to the poison value % in iRC11. O

Proof sketch of NA-pDEALLOC. After unfolding the WP definitions of both
iRC11 and the base logic, we first need to show that the step is safe (it
reduces). With the full fraction block ownership and the global ghost
ownership GlobalGhost, we can use BL-GHOST-BLOCK-FULL (Figure 7.8,
§7.5) to know that we have collected the ownership of all locations in the
block. Furthermore, the unsynchronized non-atomic points-to of all the
locations guarantee that they are still alive, and that the deallocation is
race-free for all of them, as the deallocation acts like a non-atomic write.
Consequently, we satisfy both OM-FreE (§3.3) and DRF-pEALLOC (§3.4),
so the deallocation reduces. Since we do not need the caller to have
synchronized with all the message views of the locations’ latest writes,
the unsynchronized non-atomic points-to’s £ + m +— ? are sufficient.
After the step, we update the state interpretation to match the
changed global state. Fortunately, the global ghost GlobalGhost are very
loose on deallocated locations—we only need to update the ghost histo-
ries of the deallocated locations to None. O

Proof sketch of NA-ReaDp. We only need to unfold the definitions of the
non-atomic points-to (Definition 9.3) and the iRC11 Hoare triples and
WPs (Definition 8.5 and Definition 8.4), and perform the proof in the base
logic. Recall that by Definition 8.5, all of our resources are interpreted at
the current component V.cur of the thread-view V.

* In case o = na, we apply BL-HOARE-READ-NA (§7.3.2). Note that
V, is instantiated to V,,. In the post-condition we only need to
use the post-condition of BL-HOARE-READ-NA to address the only
change by the read, which is the non-atomic reads set and its local
observation.

* In case o O rlx, we apply BL-HOARE-READ-AT (§7.3.2). Note that
the history in the non-atomic points-to is a singleton, and V. is
instantiated to V.cur, so the proof is straightforward.

O

Proof sketch of NA-wriTE. The proof is similar to that of NA-REaD. We
use BL-HOARE-WRITE-NA in case o = na. Otherwise, if o J rlx, we use
BL-HOARE-WRITE-AT, and then use BL-HIST-DROP-SINGLETON (Figure 7.2,
§7.2) to shrink the history back to a singleton. O



10

Atomic Points-To

The atomic points-to assertion plays the similar role as the non-atomic
points-to assertion, but for atomic accesses. It is iRC11’s first abstraction
for the ownership needed to safely perform atomic accesses. It can be
used directly to verify ORC11 code, but iRC11 also uses it to derive the
higher-level GPS protocols® (Part III). Nevertheless, the atomic points-to
assertion is more flexible than iRC11’s version of GPS protocols because
they work more explicitly with views. Consequently, it is used pervasively
in Compass, in conjunction with logical atomic triples (Part IV).

iRC11 atomic points-to assertion is inspired by Cosmo’s atomic points-
to assertion? to work with explicit views. However, since Cosmo is
sound for the stronger Multicore OCaml memory model, its atomic
points-to assertion is fairly simple: the (potentially fractional) assertion
{ —q (v, V) represents Cosmo’s ownership of an atomic location ¢ with
the value v and view V of the latest write. That is, Cosmo’s atomic points-
to needs only to take care of the latest write, because atomic accesses
in Multicore OCaml are much stronger than the different access modes
supported by C11. In contrast, iRC11 atomic points-to assertion needs to
carry around a history of multiple writes that are still visible to accessing
threads, and to provide multiple rules for the different access modes.

In the presence of concurrent writes to the same location ¢, iRC11
rules for handling ¢’s history are rather cumbersome and hard to use. In
practice, if a client performs arbitrary concurrent writes to a location /,
then the concurrent protocol for £ is often trivial. That is because there
would be no clear order between the writes: in the ORC11 semantics, we
will see that the writes arrive in the history randomly, with holes in the
history.> More specifically, this is the result of adapting C11’s support for
non-multi-copy-atomicity (non-MCA), i.e., the property where writes can
arrive at different threads in different orders.

Fortunately, algorithms tend to avoid concurrent writes where inter-
esting protocols are needed: they either have a single writer and multiple
concurrent readers, or have all participants purely perform compare-and-
swap (CASes) operations to resolve potential contention. In such fashion,
the history has no holes, and the order becomes more meaningful
and can be used to support some well-ordered protocol.

Consequently, iRC11 provides multiple modes for the atomic points-to
assertion to cater to these common cases. In §10.1, we present these
modes for the atomic points-to, the relations among them and with the

ITuron et al., “GPS: navigating weak
memory with ghosts, protocols, and sep-
aration” [TVD14]; Kaiser et al., “Strong
Logic for Weak Memory: Reasoning
About Release-Acquire Consistency in
Iris” [Kai+17].

2Mével et al., “Cosmo: a concur-
rent separation logic for multicore
OCaml” [MJP20].

3see OM-WRITE, §3.3

115



116 Atomic Points-To

10.1

non-atomic points-to, and iRC11 Hoare rules for atomic accesses with
the atomic points-to. In §10.2, we give the model of the atomic points-to
assertion, built atop the local assertions of the base logic (§7.2).

The Interface of the Atomic Points-To Assertion

We support 3 modes for the atomic points-to: arbitrarily concurrent
(con), single-writer (sw), and CAS-only (cas).

6 € AtomicMode ::= con | sw | cas.

The atomic points-to with the arbitrarily concurrent mode con sup-
ports any access mode, but with a weak set of WP or Hoare rules. The
other two modes enjoy stronger WP or Hoare rules. In the single-writer
mode sw, all writes using the atomic points-to must be made sequential
(synchronized), but reads can be arbitrarily concurrent. In the CAS-only
mode cas, the atomic points-to only supports CASes to write, and reads
can be arbitrarily concurrent.

Definition 10.1 (Atomic Points-To Assertion). The atomic points-to asser-
tion has the form ¢ »3%3 h where (1) 0 is one of the 3 atomic modes; and
(2) @ # h € History is ’s current history which contains write events still
visible to accessing threads; and (3) + is a ghost location used to uniquely
identity an atomic period of the atomic points-to and can be ignored
for now; and (4) t,, is the timestamp of the latest exclusive single-writer
write, which will be needed for GPS protocols and can also be ignored
for now.

We write £ —, h ::= 3t. £ £, h to ignore the exclusive single-writer
timestamp.

Definition 10.2 (Atomic Local Ownership and Observations). The atomic
points-to assertion ¢ —, h is needed for every atomic access, and thus
will be put inside an invariant for shared concurrent access. Therefore,
we need to define several local ownership and observations to represent
what a thread knows about the shared history & of the atomic points-to.

* The history-seen observation ¢ J_, h asserts the observation of all
0’s write events in the non-empty history h. This observation is the
minimum requirement to perform an atomic read on /.

* The history-sync observation ¢ J,; h asserts not only the observa-
tion of ¢’s write events of in h, but also the observation of those
writes’ message views.

* The single-writer ownership ¢ 3

—Sw

h asserts the exclusive permis-
sion to write (the single-writer) to ¢, and the history-sync observa-
tion of i (i.e., £ Jg; h). The single-writer ownership guarantees
that h is the current history of /.

* The fractional CAS ownership ¢ J%.9 h asserts the shared per-

mission to CAS to ¢, and the history-seen observation of i (i.e.,
¢ J_. h). A fraction ¢ of the CAS ownership only guarantees that /



persistent(¢ J_, h)
persistent(¢ g, h)
timeless(¢ J,, h)
timeless(¢ Jg, h)

timeless(¢ &, h)
timeless(¢ Jg, h)
timeless(¢ J%4 h)
AT-SW-CAS-EXCL

03, h+¢3% 1 False

—cas

AT-CAS-FRAC-AGREE
sy hx 0 309 W -0 £ conAt=t AR Ch

—cas

AT-CAS-JOIN

028 b 0 D08 W E 0 TLLE (hU )
AT-sy AT-SY-SN
Cgh03 h 3y hH03,h

AT-SY-MONO
W@ KCh

(3, h-e3, 0

AT-SY-UNFOLD

h(t) = (v, V)
€3, hi= 3V« {2 [w:=t]}]

AT-SY-JOIN AT-SN-JOIN

0D hx €3, W Fed,, (hUR)

AT-EXCL
(g hx 0y b+ False

00, hx €D W' FET, (hUR)

The Interface of the Atomic Points-To Assertion 117

AT-SW-EXCL
¢, hx0 3, W+ False

AT-SW-AGREE
E»—>9h*€gswh’l—0:sw/\h:h’

AT-CAS-CAS-FRAC-AGREE
028 bk 30 W -t =t Aq+q €(0,1]

—cas —cas

AT-CAS-SPLIT
¢3bate B 3bL hxe 389 R

—cas —cas
AT-SW-SY AT-CAS-SN
02, L3R (39 _ hbe3 h
AT-SN-MONO

W+o K Ch
¢3d hEe3d R

AT-SN-UNFOLD
t € dom(h)

¢ b= Il { o [w = t]}]

AT-SN-VALID
E»—>9h*€gsnh’l—h’gh

is the sub history of ¢’s current history. The timestamp ¢, is of the
latest exclusive single-writer write to ¢. As usual, we write ¢ J9,_ h

—cas

to ignore this timestamp, and write ¢ J_,_ h for the full ownership

—cas

where ¢ = 1.

Property 10.3 (Basic Properties of Assertions Related to Atomic Points-To).

Figure 10.1 presents several important basic properties of the atomic
points-to assertions and its related assertions. All assertions are time-
less, and the history-seen and history-sync observations are naturally
persistent. The atomic points-to and the single-writer ownership are both
exclusive (AT-excL and AT-SW-EXCL).

AT-sw-CAS-EXCL says that the single-writer ownership and the CAS
ownership are incompatible, implying that the single-writer is indeed
single. AT-sw-AGREE says that the atomic points-to and the single-writer
ownership must agree on the history and the atomic mode. AT-cas-FRAC-
AGREE says that, on the other hand, the CAS ownership only guarantees
that the history A’ owned by the CAS ownership is a sub-history of the
current history h. This is because CAS ownership are used for concurrent
updates, so a fraction should not know the full history. AT-cAs-FRAC-
AGREE additionally says that the CAS ownership guarantees that the
latest exclusive single-writer timestamp is frozen in CAS-only mode

FIGURE 10.1: Basic properties of asser-
tions related to the atomic points-to



118 Atomic Points-To

(t = t'). Interestingly, AT-cas-FRAC-AGREE says that the CAS ownership
only guarantees that the atomic mode 6 is not the concurrent mode con.
We note that this is just a weakness in our model for atomic points-to,
and this weakness does not affect us in practice. A better but slightly
more complex model would give us 6 = cas.

AT-CAS-CAS-FRAC-AGREE, AT-CAS-JOIN, and AT-cAs-spLIT encode the frac-
tional nature of the CAS ownership.

AT-sY, AT-SY-SN, AT-sw-sy, and AT-cAs-sN together state the relations
between the ownership assertions and the observations. AT-sy says that
the atomic points-to naturally has observed and synchronized with all
write events. AT-sw-sy says that this also applies to the single-writer
ownership, because the writes are sequential. AT-cas-sn on the other
hand says that the CAS ownership does not guarantee synchronization.
Recall that the history h in ¢ 3¢, h is only a sub-history of the current
one, and CAS ownership are used for concurrent updates.

AT-sy-MoNo and AT-sN-MONO say that the observations on histories
are downward-closed. AT-sy-UNFoLD and AT-sN-UNFOLD clearly state the
difference between observing a write and synchronizing with that write,
using the view-seen observation (Definition 8.12). AT-sy-JoIN and AT-
sN-JoIN allow us to join observations. Finally, AT-sn-vaLID says that an
observation of i’ guarantees that &’ is a snapshot (a sub-history) of the
current one h.

Property 10.4 (Conversions Between Non-Atomic and Atomic Points-To).
The top three rules of Figure 10.2 present the rules for converting the non-
atomic points-to ownership to the atomic one. The bottom of Figure 10.2
visualizes the possible conversions between the points-to assertions.

NA-AT-sw says that we can go from the non-atomic points-to assertion
to the single-writer atomic one and the single-writer ownership with
a singleton history of the latest write (¢,v, V'), knowing that we have
observed the message view V (JV).

NA-AT-sw-viEw strengthens NA-AT-sw by (1) freezing the atomic points-
to and the single-writer ownership at the latest write message view V'
using the view-at modality (Definition 8.13); and (2) allowing the user
to also freeze arbitrary local resource P at the same view. NA-AT-SW-VIEW
demonstrates that the view V in fact is not the message view of the
latest write in ¢’s history, because ¢’s latest write message view would
not be able to justify P. Instead the view V is the view at which the
switch (from non-atomic points-to to atomic points-to) happens, and the
singleton history [t +(v, V)] is not ¢’s actual history, but an abstraction
of ¢’s actual history. This abstraction allows subsequent atomic accesses
using the atomic points-to assertion to access the view V, and thus the
resource P provided at the switch. In other words, NA-AT-SW-VIEW says
that the atomic accesses to ¢ after the switch are synchronized not only
with the latest write to ¢ before the switch, but also with the switch itself.

AT-NA allows us to go from an atomic points-to back to a non-atomic
one, without knowing the atomic mode 6 nor having any other ownership
(single-writer or CAS ownership). This demonstrates that the atomic
points-to itself contains sufficient resources, and the single-write or CAS



The Interface of the Atomic Points-To Assertion 119

NA-AT-sw

(0= Iy, t, V.V « £ 32, [t—(0, V)] 5 £ 52 [t (0, V)]

NA-AT-SW-VIEW

(—sv%P= 3y, t, V.3V «Qy (Pl 37, [t(, V)] L5 [t (v, V)])

AT-NA

009 h=e 3t > to,v, V. IV L5 v« h(t) = (v, V) * t = max(dom(h))

AT-CON-swW
(457 h = 3t = max(dom(h)). £ ¥s2, hx £ 32, h

con

AT-CAS-SW
CHSY hx 0 3% B = 3t = max(dom(h)). £ vs2, hx £ 32, h
AT-CON-CAS
RS RN I Y A s
¢
l—v (52 h

‘\35/

¢

Visualization of the conversions.

ownership is purely needed to enforce an access protocol (single-writer
or CAS-only). We note that NA-AT-sw and NA-AT-sw-viEw only need a
basic update to switch from non-atomic to atomic, while AT-NA requires a
fancy update to go back. The reader may already have guessed correctly
that the proof of AT-NA relies on BL-HIST-DROP-SINGLETON (§7.2), which
justifies the fancy update. Consequently, the value v we get back for the
non-atomic points-to is the latest write, regardless of how that write is
made (with a CAS or a normal write using any access mode). Thanks to
AT-sy and AT-sy-UNFOLD, we know that we have observed the latest write
message view V (2JV).*

CYCLES OF ALTERNATING NON-ATOMIC AND ATOMIC PERIODS. We note
that we have made the ghost location v explicit in these rules, who signify
its role. In the model of atomic points-to, ~y is used to store the ghost state
to define the protocols (concurrent, single-writer, or CAS-only) for the
atomic points-to ownership assertions. But intuitively, the ghost location
~ uniquely identifies an atomic access period of the location /. When we
use the rule NA-AT-sw (or NA-AT-sw-vIEw) to switch from non-atomic
to atomic points-to, we receive a fresh location « that identifies and
enforces the atomic protocol for the current atomic period of . As such,

con

cas

AT-SW-CON
t t
0B hx 030 K0S R

con

AT-SW-CAS
(s hxt 3 B 05 hxt3t _h

—cas

h

h

FIGURE 10.2: Conversions between the
non-atomic and atomic points-to assertion

4Recall that V is not just the latest write
message view, it also includes the view of
the switch.



120 Atomic Points-To

Swhich can be the case in C/C++ where
mixing atomic and non-atomic accesses
are forbidden. Instead, C/C+ + make the
distinction at the location level: there are
non-atomic locations and atomic ones. Un-
der this restriction, even though we know
that there is no other thread racing with
us, we may still have to use a rlx access
for an atomic location.

S1f one is to perform sequential accesses,
then one would never need to use CASes.

the atomic local ownership and observations (Definition 10.2) with the
ghost location v are only meaningful when we still have access to the
atomic points-to ¢ +%) with the same 7. Once we use AT-NA to turn
1 »@g back to a non-atomic points-to, we can see that the atomic local
ownership and observations with ghost location ~ are not needed, and
in fact v is simply forgotten, and afterwards the atomic local ownership
and observations of v become meaningless. Later, when the non-atomic
points-to is used again to switch to an atomic one, a new atomic period
will be started with another fresh ghost location +'. This life-cycle can
probably be understood better if we look at the visualization graph in
Figure 10.2 as an automaton.

We further note that all assertions appearing in a single rule in this
chapter should be read with the same ghost location ~y. It may not make
sense to have interactions between ownership from different atomic
periods, and we do not have rules for those cases anyway.

Property 10.5 (Conversions Between Modes of Atomic Points-To). The
rest of Figure 10.2 presents the rules for switching between different
modes of the atomic points-to. AT-con-sw and AT-sw-con allow con-
versions between the concurrent mode and the single-writer mode of
the atomic points-to, while AT-cas-sw and AT-sw-cas allow conversions
between the CAS-only mode and the single-writer mode. Both AT-con-
sw and AT-cas-sw need a basic update simply to update the exclusive
single-writer timestamp to the latest one. Finally AT-con-cas allows one
to convert between the concurrent mode and the CAS-only mode.

RULES FOR CONCURRENT ATOMIC ACCESSES. We next look at the rules
for atomic operations using the atomic points-to assertion. We note that
these rules are meant for concurrent accesses. If we simply use atomic
accesses sequentially,> we should locally own an atomic points-to £ —, h,
which we can turn back to a non-atomic one using AT-NA, and then use
the rules NA-rReaD and NA-wriTE (§9.1) which support atomic access
modes.°

In the following, we look at atomic access rules where the atomic
points-to ¢ —, h is meant to be shared for concurrent accesses. The
rules do not enforce exactly how the points-to is shared—that can be
done orthogonally with invariants (Chapter 11). Therefore, they only
assume ownership of the atomic points-to under a view-at modality (Def-
inition 8.13), i.e., @y, (¢ —4 h) where the view V,, has no clear relation
to what the executing thread has observed. In particular, the rules will
have the following form.

{JV«PxQy,(Lyh)einm{v. 3V A IV xQy, 1/ (L4 b)) * Qe

That is, the view V}, is meant to track all relaxed memory effects done
by all participating threads to the shared points-to ¢ —, h, and hence
the executing thread cannot know much about V,, except that it also
contributes to V,. Most importantly, the view V}, will be used later to
enable synchronized, safe switching back to non-atomic points-to (using
AT-NA).



The Interface of the Atomic Points-To Assertion 121

AT-READ-SN
rlxC o

v.EIh’,t,V,V’ _ VE).h() - h/ - h *

. h'(t) = (v,V) * t > max(dom(hg)) *

{QVO*égsn ho*@vb(g ';I?e h)}*oéinw £

(0 Jacq)? VLV :V,(JV)

OV % @y (£ Dy 1) % @y (£ 7254 D)
AT-READ-SN-ACQ

0. 30 6, V,V' I VoUV.hg Ch' C hx

{TOVo * £ 3, ho * Qu, (€254 h)} " U%in{ K (t) = (v, V) %t > max(dom(hg)) * €

IV’ % Qpi (0 3, b)) % Quy Ly (025, h)

AT-READ-CAS
rlxC o

v. 30, t,V,V 3 Vy.hg Ch Chx

. o h'(t) = (v, V) * t > max(dom(hg)) *
(Vo % € 29, ho % @y, (£ 25y )} *Cin ¢
(0 Jacq)?VCEV :V,(JV)

OV % Quo (€ 3% b)) * Quyuys (052 )

—cas

AT-READ-SY
rlxC o

0.3, V,V I Vo UV.H (t) = (v,V) % t = max(dom(h)) * ]
&

OVo* £ 3, hxQy, (£ 42, h)}*Lin T
{ Y ’ oM} V' % Qu, v (€234 h)

AT-READ-SW
rlxC o

v.3t,V,V' I Vo UV.h(t) = (v,V) % t = max(dom(h)) * ]
&

(Vo * £ 3y, hxQy, (£ H=5, B)Y*Ling \
QV/ Y4 st h * @Vbuv/(£ }—1)9 h)

FIGURE 10.3: iRC11 read rules with the
atomic points-to assertion

10.1.1 Atomic Read Rules

Several rules for atomic reads are given in Figure 10.3. AT-READ-SN, AT-
READ-SY, AT-READ-CAS, and AT-READ-sw allow reading with a history-seen
observation, a history-sync observation, a fractional CAS ownership, and
a single-writer ownership, respectively, in addition to the shared atomic
points-to.

AT-READ-SN is the most fundamental read rule for atomic points-to, as
all other rules in Figure 10.3 are derived from it. The rule assumes in the
pre-condition a local history-seen observation ¢ J_  hg for some snapshot
history hg of ¢, and the shared atomic points-to ¢ Lﬂe h of the current
history h at some view Vj,. The pre-condition also includes a view-seen
observation 1V, for some view Vj. The post-condition says that the
executing thread 7 will read a message (¢,v, V') which is no earlier than
what it has observed (¢t > max(dom(hy))), and afterwards the thread will
have observed a bigger snapshot history A’ that contains the read message



122 Atomic Points-To

10.1.2

(¢ 3, 1'). After the read, the current view of 7 will be at least V'’ (JV”),
and if this is an acquire read then we know that the thread has observed
the read message view V, due to V C V'’ and VS-mono (§8.5). We note
that IV’ « @y (¢ J_, h') is stronger than ¢ J_, k', due to VA-ELIM (§8.5).
If this is a relaxed read, then the message view V will only be available
after an acquire fence, i.e., its observation is under an acquire fence
modality: V. (2JV). Last but not least, the atomic points-to £ <=5, h is
returned unchanged, but at the view V}, extended with the view V' (i.e.,
V, U V')—which is 7’s current view after the read—to account for the
observation of the read itself (the action id created by the read).

AT-READ-SN-ACQ is derived from AT-READ-sSN simply by instantiating o
with acq. Since it is an acquire read, we know that the thread’s current
view V' includes the view V' of the read message, i.e., V C V', AT-READ-
cas is derived from AT-rREAD-SN, simply by the rule AT-cas-sn that the CAS
ownership implies the history-seen observation. AT-READ-sY is derived
from AT-READ-SN using AT-sy-sN: assuming that the thread has observed
and synchronized with all write events in ¢’s current history h, the thread
will read the latest write. AT-READ-sw is then derived from AT-READ-SY
using AT-Sw-SY.

Atomic Write Rules

Several rules for atomic writes are given in Figure 10.4. AT-WRITE-SN, AT-
WRITE-CAS, and AT-wriTE-sw allow reading with a history-seen observation,
a full fractional CAS ownership, and a single-writer ownership, respec-
tively, in addition to the shared atomic points-to (in a corresponding
atomic mode).

Again, AT-WRITE-sN is the basic rule from which the other rules are
derived. In the pre-condition, it requires a view-seen observation 1V}
for some view Vj, a history-seen observation ¢ J_, h, for some snapshot
history h of £, and the atomic points-to in the concurrent mode £ =5 ___ h,
shared at some view Vj,. The pre-condition additionally requires, in case
the write is a relaxed write, a view-seen observation JV,..; of some view
Vre1 under the release modality, i.e., A, (2V;e1). This assertion ensures
that the view V1 has been observed by the thread = at its most recent
release fence, so the message view of the relaxed write to be performed
is guaranteed to include V,e;. In other words, V;.; is a lower bound for
the message view of the relaxed write to be performed. If the write to be
performed is at least a release one, 7’s current view is a lower bound.

The post-condition of AT-WRITE-SN says that a new write message
(t,v,V) will be inserted into the history h. That is, after the write, the
ownership ¢ = h[t < (v, V)] is returned, at the extended view V; LUV’
where V' is the thread #’s current view after the write. Note that the
timestamp ¢ for the new write message must be fresh in i (¢ ¢ dom(h)),
and must be mo-later than the events that the thread has observed for
¢ (max(dom(hg)) < t). Since this is the write, we know that the thread’s
current view V" after the step strictly extends the view V;, before: V, C V.
Furthermore, the message view V' cannot be smaller than the view V
before the step (V, 2 V), because V contains at least the new timestamp



The Interface of the Atomic Points-To Assertion 123

AT-WRITE-SN
rlxC o

#.3t,V,V' 3V, 2 V.max(dom(hg)) < t ¢ dom(h) *
;%*egsnho*@%(z@mm*}g . (relCo)?V =V :V,aCVEV %
=,V INT

(0=rlx)? Ay (OVie1) : True V' xQy (0 Dy, [t+(v,V)]) % i
Qur(€ Qg holt (0, V)]) % Quv (€75 o Bt (0, V)])
AT-WRITE-CAS
rlxC o
#.3t,V,V' 3V, 2 V.max(dom(hg)) < t ¢ dom(h) x
OV * £ 39 ho % Qy, (£ — . h)*]g:ovm (relCo)?V=V":V,q CVCV % )
(0=rlx)? Ay (OVie1) : True V' xQy (¢ dg, [t (v,V)]) *

Q- (€ 32, ho[t (v, V)]) * Qu,Ly (£ = u6 At (v, V))])

—cas

AT-WRITE-SW
rlxC o

&.3t,V,V' 2V, 2 V.max(dom(h)) < t x

(relCo)?V=V":ViaCVLCV %V x £
Qy/ (0 3y, hlt—(, V)]) % QL (€, bt (v, V)])

OV s £ 3, hox Qy, (02 h) *
{:=,vinm
(0=rlx)? Ay (DVier) : True

AT-WRITE-SW-RLX
#.3t,V,V' 3V, 2 V.max(dom(h)) < t *

]E::Mm Via CVEV % OV %@y P s ¢

[gvo w0 O, hox @y, (042 h)
Qy (£ Dgy Wt (0, V)]) % Qy,uyr (5, hlt (0, V)])

Ay P x Ar (V1)

AT-WRITE-SW-RLX-SIMPLE

{f Jge hx @y (€ 't_r>sw h) *A‘ITP}E =raxvinm

&.3t,V, V' J V.max(dom(h)) < t* V' xQy P x
&
€ Dy hlt (0, V)] % Quiv (£ gy bt (0, V)

AT-WRITE-SW-REL
. 3t,V I Vy.max(dom(h)) < t+ IV % Qy P x

@y (¢ Dy hlt (o, V)]) % Qo (£ sy, hlt (0, V)])]

{DVo* £ D, hxQy, (£ rti>sw h)* P}l :=rqvinm

FIGURE 10.4: iRC11 write rules with the

. .. . atomic points-to assertion
t which V; cannot have. In case this is at least a release write, then

the message view V is exactly the view V"’ after the write. If it is only a
relaxed write, we know the V;; is a lower bound for V' (V1 C V). In any
case the message view is no more than the thread’s current view after the
step (V' C V). Finally, after the step the thread extends its observation
on ’s history by the write event it has just performed. That is, it owns
¢ J_, holt +(v, V)], with the history hy it has observed before the step
extended with (¢,v,V). The observation is strengthened by being put
at the view V' which the thread has observed. Additionally, the thread
also gets a history-seen observation for the singleton history of the write
message (t,v, V), at exactly its message view (Qy (¢ Jg, [t < (v, V)])).

AT-WRITE-cAS is derived from AT-wWRITE-SN, using AT-cas-sN and an



124 Atomic Points-To

7[VN13; TVD14; DV16; DV17; Kai+17;

MJP20].

10.1.3

extra ghost update to update the CAS ownership from hg to ho[t (v, V)].
This is also the case for AT-WRITE-sw, but using AT-sw-sy and AT-Sy-sN
instead. However, AT-wrITE-sw does update the latest exclusive single-
writer timestamp to the new timestamp t.

RESOURCE TRANSFER. AT-WRITE-SW-RLX, AT-WRITE-SW-RLX-SIMPLE, and AT-
WRITE-SW-REL are all derived from AT-wriTE-sw, and demonstrate the
support for transferring the resource P with a write, a typical pattern in
GPS, RSL, FSL, and Cosmo.” AT-wRITE-SW-RLX specializes AT-WRITE-sw for
the relaxed write case, and assumes P at the view V,.; which we know
will be a lower bound the new write’s message view. Consequently, after
the write, by view-monotonicity P holds at the new write’s message view
V, i.e., we have @y, P. As such, we have released the resource P with
the write, and we can attach it to the message (¢,v, V') with the help of
an invariant (see Chapter 11). Then, when another thread performs an
acquire read (or a relaxed read and then an acquire fence) from (¢,v,V),
by the rule AT-READ-SN-ACQ, the reading thread will obtain JV/, which it
then can combine with @y P (taken from the invariant) and apply the
rule VA-ELm (§8.5) to acquire the resource P locally, and thus conclude
the resource transfer.

AT-WRITE-SW-RLX-SIMPLE simplifies AT-WRITE-sw-RLX further by dropping
most of the views. It is derived from AT-wrITE-sw-RLX with the help of
the rule RELMoD-VA-REVERT (§8.5) concerning the relation between the
release modality and the view-at modality.

For a release write, AT-WRITE-SW-REL simply says that any local resource
P before the step can be released with the write, by putting P at the new
write’s message view V' after the step.

Atomic CAS Rules

The general rule AT-cas-sN-GEN in Figure 10.5 allows us to perform
CASes with the seen-history observation and the shared atomic points-to
assertion in the CAS-only mode. The pre-condition is not so different from
the pre-condition needed to perform a write, i.e., that of AT-WRITE-CAS.
The extra premise Yy, tg > max(dom(hg)). h(to) = (vo,_) = F vy =" v,
is required to guarantee safe comparison between any readable value v
and the expected value v, and the resources concern P, are needed
for deterministic pointer comparison. Please see also the explanation of
the base logic rule BL-HoARE-CAS in §7.3.3.

In particular, if the expected value v, is a location value ¢,., to guaran-
tee deterministic pointer comparison, P, is required to simultaneously
imply (with a basic update) ®@cp(4r, k) that (1) some primitive non-
atomic points-to ownership of ¢, at an arbitrary view, sufficient to show
that /,. is alive; and (2) for any location value ¢’ that the thread may read
from h, Py, is also sufficient to show that ¢ is also alive.

In the post-condition, a boolean value b signaling the success or failure
of the CAS instruction is returned, and a message (t',v’, V,.) will be read
by the instruction. The timestamp ¢ cannot be earlier than what the
thread has already observed through h¢. Regardless of success or failure,



The Interface of the Atomic Points-To Assertion 125

AT-CAS-SN-GEN

rix C of,0r, 0y Yo, to > max(dom(ho)). h(to) = (vo, ) = Fwo =" v,

Vo« £ d_, ho * Qy, (0= h) % (0= rlx) ? Ay (DVer) : True *
Prernp * 0 ((vr =€) ? (Pemp = Pemp(lr, b)) : True)

CAS®F o w (f v, vyy) In T

Pcrnp * gvl * @V’(é en h/O) * @Vbl—lV’ (é 'ti>cas h/) *

x h' = Rt < (v, Vip)] * ho(t) = (v, Vi)

where

Pemp (br, h) = (Fgr, by, Vo > Qy (£ 5 hy)) A (VE > dom(h), £ h(t) =

P.p is returned unchanged, and we know that the thread’s current view
after the step is V.

In case of failure, i.e., b = false, we know that the read value v’ is
definitely not equal to the expected value v,, and that the atomic points-
to ownership is returned unchanged but at the extended view V, UV’
(@y, Ly (¢ =5 h)), and that the thread will have observed the new
snapshot history h{ (Qy- (¢ J,, hy)). Furthermore, the read message
view V. is observed according to the failure read access mode oy. If o
is at least an acquire mode, then V. is included in the view V' after the
step (V,. C V). Otherwise, the observation of V,. is only available after
the next acquire fence (V, JV,.).

If the CAS succeeds, i.e., b = true, then v = v, and a new write
message (t, vy, Vi) Will be inserted into the history h next to the read
message (¢t = t'+1) where ¢ is fresh in h (¢ ¢ dom(h)). V,, strictly extends
V.., and V"’ strictly extends V; and cannot be smaller than V,., because they
contain the new write of the timestamp ¢. The thread will have observed
the new snapshot history A, that contains the new write event. The write
message view V,, is observed according to the read access mode o,.: if o,
is at least an acquire mode, then V,, C V', otherwise the thread only has
V. (V). If the write access mode o,, is at least release, then the write
message view includes the thread’s current view after the step (V' C V,,),
otherwise V. is a lower bound of V,,. Note that if this is a release-acquire
CAS, then the write message view V,, is exactly the thread’s current view
after the step V', i.e., 0,, I rel Ao, Jacq= V' =V,.

Finally, we note that AT-cas-sN-GEN can be used to derive CAS rules
that use other kinds of ownership. Even though the rule requires the
atomic points-to to be in the CAS-only mode (cas), we can apply AT-
coN-cas (Figure 10.2) to support CASes with the atomic points-to in the

b. 3t v Vi, V! 2 Vo, hg, b/ ho C hyy C '« hi(t') = (v, V,) * max(dom(ho)) < t' *

b=false xuv.#v' *h' =h=x(of Jacq)?V, CV':V,(3V,)

b=true xu,=v *3t¢dom(h),V,, IV, 2V 2 Vop.t=t'+1

% (op Jacq) ? Vo C V' : Vo (V) * (00 I rel) 2V EVy : Viad E Vi

(¢, ) =3¢, K, V. > @y (L5 1))

FIGURE 10.5: An iRC11 CAS rule with the
atomic points-to assertion



126 Atomic Points-To

AT-CAS-SW-GEN

rlx C Of,Or, Oy

Vg, to > max(dom(ho)). h(to) = (w,_) = kv =" v,

Vo€ dy hoxQy (0 D, h) x Qu, (£ =g, h) * (0 =rlx)? Ay (dVier) : True
Prernp * 0 ((r =€) ? (Pemp = Pemp(lr, b)) : True)

CAS®F %% (L v vy, ) in

b.3t' W', V., V! D Vo, hg, b/ ho C hi C A % hy(t') = (v',V;) *max(dom(hg)) < t'
Prawp # IV @y (€ Dy 1) % Byiyr(€ Dy 1 5L s, 1) 5
b=false =xuv.#v xh'=hx(of Jacq)?V,CV':V,(3V,)
b=true xv.=v %3t ¢dom(h),V, IV, 2V DI Vot =t +1
x h' = hlt < (v, Vio)] * h(t) = (v, Vi)

¥ (0, Jacq)? Vo, TSV 1V, (OVy) * (0 2 rel) ? V' CEV, : Vel C Vi,

—SW

where $cnp, (4r, h) is defined as in Figure 10.5.

FIGURE 10.6: An iRC11 CAS rule with the

atomic points-to in single-writer mode

10.2

concurrent mode con. With a fractional CAS ownership, we can also
apply AT-cas-sN-GEN, thanks to AT-CAS-SN.

If the atomic points-to is in the single-writer mode (sw), then, together
with the single-writer ownership ¢ J_, h, we can get to the atomic points-
to in CAS-only mode thanks to AT-sw-cas (also in Figure 10.2), then apply
AT-cAs-sN-GEN, and then AT-cas-sw to go back to the single-writer mode.
The result is the CAS rule AT-cas-sw-GeN for the single-writer mode, in
Figure 10.6. Naturally, a single-writer owner never needs to perform
a CAS, because it is not racing in writing with anyone. Furthermore,
the rule is basically useless, as it requires and returns the single-writer
ownership at some view V, and V;, U V’, respectively. Nevertheless, the
rule is a sanity check that shows that, in the single-writer mode, only the

single-writer owner can actually perform a write (in this case, a CAS).

The Model of the Atomic Points-To Assertion

To give a model for the atomic points-to assertion, we rely on the base
logic local assertions (§7.4), in a similar way to the model of non-atomic
points-to assertion (§9.2). However, we need extra ghost state to manage
the “switching” protocols among atomic modes and between the atomic
points-to to the non-atomic points-to. The ghost location v of the asser-
tion /¢ nti>g, which uniquely identifies an atomic period for ¢, will store
this extra ghost state.

Definition 10.6 (Extra RAs for Atomic Points-To). We need 3 RAs: one to
allow creating snapshots of histories, one to store the latest non-atomic
view—needed to switch between non-atomic and atomic points-to, and
one to store the timestamp of the latest exclusive single-writer write—



The Model of the Atomic Points-To Assertion 127

needed to switch from other modes to single-writer mode.

ATHISTR ::= AUTH(MAP(Time, AG(Val x View)))
NAWRITER ::= OPTION(AG(View))
EXWRITER ::= AUTH(OPTION(FRAC x AG(Time)))
ATOMICR ::= ATHISTR x EXWRITER X NAWRITER

The RA ATHISTR supports making snapshots of histories: the authori-
tative element is used to store the up-to-date history, while fragmentary
elements are snapshots of that history. The authoritative element can
only grow.

The RA NAWRITER allows storing permanently a view which is meant
to be a thread’s current view V,, at which the switch from non-atomic
to atomic points-to is performed. All subsequent atomic accesses using
the same atomic points-to identified by the ghost location v will have
synchronized with V,.

The RA EXWRITER allows for fractional fragmentary elements that
agree on the timestamp of the latest exclusive single-writer write, and
only allows updating using the full fraction, together with the authorita-
tive element.

Finally, the RA ATOMICR for the atomic points-to is just a product of
the 3 RAs above.

Definition 10.7 (Ghost Ownership Abstraction for Atomic RAs). We
define the following abstractions for ghost ownership of the atomic RAs
in vProp. All are timeless and objective.

atLastNA” (V, }Zé:&g 7aig7(7‘/7}1;)7)17

a)
atExclTime) (t..) ::= (g, 0 (Some(q, ag(t))), €)
atReader” (h) :: ‘L(oh g.e)l
atWriter? (h) =1 (e 3/4h -0 h,e,€)
) =

atAuth”(h,t,, Via

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

* atlLastNA7(V,,) is persistent, and records the view at the point
of the switch from a non-atomic points-to to the atomic period
identified by ~.

* atExclTime) (t,) is fractional and records the timestamp ¢, of the
latest exclusive single-writer write in the atomic period identified
by . The full fraction atExclTime” (¢, ), which a single-writer would
own, is the exclusive write permission needed to update ¢,.

* atReader”(h) is persistent and records a snapshot history h, i.e., in
the atomic period of v, h is a lower bound of the current history.

* atWriter” (h) is exclusive and records the current history k. It is the
(ghost) writer permission needed to perform a write (a change) to
the history.

* atAuth”(h,t,, Vsa) is the authoritative state of the atomic points-to
protocol. The other ghost ownership abstractions defined above



128 Atomic Points-To

persistent(atLastNA” (Vpa))

persistent(atReader” (h))

atLastNA” (V,,) * atLastNAY (V) F Via = Vi,

atExclTime] (t,) * atExclTime), (t}) - t. = t;, Aq+q' € (0,1]

atEchTimeg

atWriter” (h) * atReader” (W) = ' C h

(tz) * atExclTime), (t,) = atExclTime, ., (t.)

atWriter” (h) * atWriter”(h") - False atWriter” (h) F atReader™ (h)

atAuth? (h, t,, Vpa) * atLastNAY (V,)) F Via = Vi, atAuth? (h, t,, Vna) * atExclTime) (t},) - t, =1,

atAut ts, Vha) * atReader - atAut te, Vha) * atWriter =h
Auth” (h,t,, Vpa) * atReader”(h') = b/ C h Auth” (h,ty, Vpa) * atWriter” (R') = 1/ =k

FIGURE 10.7: Several properties of ghost
abstractions for the atomic RA

must agree or be included in this authoritative state. We note that
we use a setup where the authoritative element is also fractional
(e1/4 in atAuth”, or e3,, in atWriter”). Fractions of the author-
itative element enjoy agreement, and that is how we establish
agreement between atWriter” and atAuth”.

Several properties of these ghost abstractions are given in Figure 10.7.
We can now give the model of the atomic points-to assertion as well
as its local ownership and observation assertions.

Definition 10.8 (Model of Atomic Local Ownership and Observations).
We first define what it means to locally observe a history & of ¢, and to
locally synchronize with that history.

Local, (£, h) == Vt,0, V' h(t) = (0, V") = D[+ {@ [w:=t]}]
Localg, (€, h) ::= Vt, v, VI R(E) = (0, V") = 2V« Jl « {@ [w :=t]}]

That is, the owner of Local,, (¢, h) should have observed the timestamps
of the writes in h, while the owner of Local, (¢, h) should additionally
have observed the message views of those writes. The model of the
atomic local ownership and observations is then given within vProp, as
follows.

€37 h = Local,, (¢, h) x atReader” (h) * FV;,. atLastNA™ (Via) % dVja

¢ 33, h = Localy (£, h) * atReader” (h) * IVpa. atLastNA™ (Voa) * Vs
to b e : ; —
€ 3% ho= € 37, hox atWriter” (h) » atExclTime” () * t, = max(dom(h))
€ 359 b= 0 3, h* atExclTime) (t,) * t, € dom(h)

—cas

* The seen-history observation ¢ 37, h requires that the h is in-
deed a snapshot history of ¢’s atomic points-to identified by ~
(atReader”(h)), and that the owner has observed the writes in h
(Local, (¢, h)). The remaining part 3V;,. atLastNA" (Vi,) * OV,
says that the owner has observed the view V;, of the switch from
the non-atomic points-to to the atomic points-to identified by ~.

* The sync-history observation ¢ 37 h is similar to the seen-history
observation, but additionally requires the synchronization with all
the message views in h (Localg, (¢, h)).



The Model of the Atomic Points-To Assertion 129

* The single-writer ownership ¢ J2%;'= h requires the sync-history
observation ¢ J7, h, and holds the writer permission atWriter” (h)
for the current history h as well as the exclusive writer permission
atExclTime” (¢,) for the timestamp ¢, of the latest exclusive single-
writer write. That is, the single-writer ownership holds both the
permissions to update h and ¢,. Additionally, we know that ¢, is

the maximum timestamp in the current history h.

* The CAS ownership ¢ 32;%=:9 h only requires the seen-history obser-
vation, and its fraction q is the fraction for exclusive single-writer
timestamp atExclTime/ (¢, ), which is sufficient to prevent others
from updating ¢, (and thus prevent any single-writer writes). An-

other requirement is that the owner has observed t,, (¢, € dom(h)).

Definition 10.9 (Model of the Atomic Points-To). We now give the model
of the atomic points-to assertions, also within vProp. It relies on a “lift-
view” function 1iftV(h, V,,) that lifts all #’s message views to include
the view Vj, of the “non-atomic to atomic” switch.

1i£tV(h, Voa) 5= [t (v, ViU Via) ‘ h(t) = (v, V7)]
087 b= 3Ry, i, a2, Voa h = 1iftV(h', Via) # t, € dom(h)
* Localg (4, h) * Local2™ (¢, v,y )
% Local2™ (¢, az) * Local® (¢, ary, Vipa)
s Hist (£, h') * Write=™ (£, av,,)
s Read™ (£, a1 ) * Read="™ (¢, o)
* atAuth” (h, tz, Vaa)

0 = sw x True

* 960 =cas *atWriter”(h)

6 = con x atWriter”(h) x atExclTime” (¢,,)

The model of the atomic points-to ¢ ri%g h is very similar to that of the
non-atomic points-to:® it requires full ownership of (1) the base logic
assertions for history ownership (Hist(¢, %)) of the unlifted history A’
(h =1iftV(Rh/, V4a)) and of (2) the difference parts of the race detector
state (the atomic writes set Write;rlx(& auy), and the non-atomic and
atomic reads sets Read™(/, ;) and Read=™(¢, a)).° Similarly, it re-
quires the base logic’s local observations for all of those sets.'® It also
requires the observation of the non-atomic view V;, of the switch as well
as that V,,, has observed the non-atomic reads set, i.e., Localg® (£, a1, Vya)-

The main difference with the non-atomic points-to is the ghost owner-
ship. The atomic points-to owns the authoritative state atAuth” (h, t,, Vqa)
to hold the authority over the local ownership and observations (given
model in Definition 10.8). It further owns the remaining ghost permis-
sions for different atomic modes: (i) for the single-writer mode sw it owns
nothing more, because all permissions are owned by the single-writer
ownership; (ii) for the CAS-only mode cas it owns the writer permis-
sion atWriter” (h) so as to allow concurrent CASes to update the history,
but it does not own the exclusive write permission, which is owned by

8see Definition 9.3

9see also Definition 7.1 and Defini-
tion 9.1

1%Note that Localgy (¢, h) implies the allo-
cation observation Local, (¢, k).



130 Atomic Points-To

10.2.1

the fractions of CAS ownership themselves; and (iii) for the arbitrarily
concurrent mode con it owns all the ghost permissions, as the clients of
the con mode only have the seen-history or sync-history observations
to work with /. Recall that the atomic points-to assertion is meant to
be shared for concurrent accesses, and participants rely on their local
atomic ownership and observations to relate themselves to the shared
history h and thus to strengthen the behaviors of their own instructions.

We now sketch the proofs of several important rules.

Proof Sketches for Conversions between Non-Atomic and Atomic Points-To

Proof sketch of NA-AT-sw-viw. This proof is done entirely within vProp.
We start by first freezing ¢ — v x P at some view ;) using VA-INTRO (§8.5).
Then we unfold the model of non-atomic points-to (Definition 9.3).
We note that the local observations of the non-atomic points-to are
not objective, while the history ownership and the race detector state
ownership are objective, so the view-at modality can be easily eliminated
using VA-oBJ (§8.5). Our goal then looks as follows.

Context: Goal:

o x Qy, P x @y, IV
@y, (Local, (£, [t +(v, V)]) * LocalZ™ (¢, avy) )
@y, (LocalZ™ (¢, ag)  Localf® (£, ay, Vaa))
Hist (£, [t < (v, V)]) * WriteZ™ (¢, au,y )
Read"™((, ;) * Read=™ (¢, ary)
Iy, t, V. IV % @y (P £ 32, [t (v, V)] % £ 5, [t (v, V)])

From @y Localy®(¢, a1, Vha) and the vProp definition of Localg® (Defi-
nition 9.1), we have V,, C V;.

We then allocate a new ghost location ~ for the RA ATOMICR, using
GHosT-aLLOC (86.2), with the initial history A = [t (v, V U V})], the
exclusive write timestamp ¢, and the new non-atomic view V;. This
allocation will give us these following extra ownership atAuth”(h,t, Vj) *
atLastNA” (Vj) x atExclTime? (¢) * atWriter” (h).

We note that from @y, JV, by VA-VS (§8.5), we have V' C ;. Con-
sequently, V UV = V. We then instantiate the existential quantifiers
respectively with ~, ¢, and V5. Note how Vj, the view of the switch,
indeed becomes the new message view for . We can easily discharge

JV and @y, P, and then arrive at the following goal.

Context: Goal:
Vo * @y, IV

@y, (Local, (£, [t < (v, V)]) * LocalZ™ (¢, ar))

@y, (LocalZ™ (4, a) % Local®™ (¢, ay, Vpa))

Hist (¢, [t < (v, V)]) * WriteZ™ (£, v,y )

Read"™ (¢, ay) * Read=™™ (¢, ary)

atAuth? (h,t, Vp) * atLastNA” (1})

atExclTime” (¢) x atWriter” (h) Quy, (€ 32, hx 057, h)




The Model of the Atomic Points-To Assertion 131

By unfolding the definitions of the atomic points-to and the single-writer
ownership, and then discharge all available assumptions, we arrive at
the goal:

Context: Goal:
V E Vo x Vaa C Vo * @y Localg? (¢, o, Via)
Qy, (¢ 32, hx Local (£, h) * Localg? (£, o, Vo))

This is easily done because h is the singleton [t + (v, V})], and Localg? is
view monotone, so Localp® (¢, a1, Vpa) implies Localg? (¢, a1, Vo) knowing
that Vp, C V4. O]

Proof sketch of AT-NA. The proof is rather straightforward: the model of
the atomic points-to, after dropping the atomic ghost state abstractions,
is almost the same as the model of the non-atomic points-to, except for
the history i’/. We then use BL-HIST-DROP-SINGLETON (which needs the
fancy update, see Figure 7.2) to truncate b’ to the singleton of its latest
write. After sorting out the local observations, we are done. O

10.2.2  Proof Sketches for Conversions among Atomic Modes

Proof sketch of AT-sw-cas. The proof is straightforward—its main proof
step is to move the write permission atWriter” (k) from the single-writer
ownership into the CAS-only atomic points-to. O

Proof sketch of AT-cas-sw. The proof is also straightforward—it has 2
main proof steps. First, we move the write permission atWriter” (h)
from the CAS-only atomic points-to out to construct the single-writer
ownership. Second, we update the full fraction atExclTime” (¢5) from the
CAS ownership, together with the authoritative ghost state in the atomic
points-to, to the latest write timestamp ¢ to complete the single-writer
ownership. O

10.2.3  Proof Sketches for Atomic Operations

The proofs for atomic operations are done in the base logic, after un-
folding iRC11 Hoare triple and WP definitions (Definition 8.5 and Defi-
nition 8.4). We then rely on the base logic rules for atomic operations
(87.3) to proceed.

Proof sketch of AT-reaD-sN. The basis of the proof is to apply BL-HOARE-
READ-AT (Figure 7.5). In the pre-condition we have ¢ J_, ho+@y; (£ 25, h),
and we need to satisfy the pre-condition of BL-HOARE-READ-AT. From ¢ J_,
ho we get Local, (¢, h, V.cur) (after unfolding the models of Hoare triples
and WPs, in the base logic). From @y, (¢ ¥, h) we get (1) Hist(£, h) *
Read="(¢, a2, because they are objective, and (2) Local™ (¢, az, Vj).
Therefore we can call BL-HOARE-READ-AT.

Afterwards, we prove the post-condition of AT-READ-SN from that of
BL-HOARE-READ-AT. The most important new observation that we get
is Local2™ (£, iy U {r}, V}, UV .cur), which fits perfectly in AT-READ-sN’s
requirement of @y, (£ 2, h), where it is the case that V/ =)' .cur.



132 Atomic Points-To

We are then left with the observations and facts about the read

message. Note that due to ¢ J_, ho, the current view V.cur before the step

. -, R:0,4,t,V”,
has observed all events in hg, so by the post-condition V =221y 7

from BL-HOARE-READ-AT, we know that the read timestamp ¢ is not earlier
than the writes in hg, i.e., ¢ > max(dom(hg)). Furthermore inspection

Ri0,0,t, V' r . .. .
of ¥ =222 1, ) is needed to prove the remaining observations, and
while that is not trivial, it is rather routine so we elide it here. O

Proof sketch of AT-WriTE-sN. The proof is similar to that of AT-READ-SN,
but relies on the rule BL-HoARE-WRITE-AT. The main difference is in the
update of the local atomic writes observation, from Local‘%rlx(& Qw, Vi)
to Local2™ (¢, o, U {t}, V, UV’). Naturally, a careful inspection of the
condition V 22550V, 17 s needed to establish the remaining observa-
tions. O

Proof sketch of AT-cas-sN-GEN. The proof is similar to those of AT-READ-SN
and AT-WRITE-SN, but relies on the rule BL-HOARE-CAS. The 3 main tasks
are:

* show that the premise Vg, ty > max(dom(ho)). h(to) = (vo,_) = +
vy =’ v, implies Vv, € Readable(h, V). F vy =" v,; and

* show that AT-cas-SN-GEN’S (Pomp = Domp (¢r, b)) implies BL-HOARE-
CAS’S (Pemp —* Pomp(¢r)); and

» show the observations of AT-cAs-SN-GEN’s post-condition from that
of BL-HOARE-CAS.

The first two tasks are straightforward, mostly by unfolding definitions.
Again, the last task requires careful inspection, but is routine and there-
fore elided here. O

CHAPTER SUMMARY. In this chapter, we presented the interface and the
model of the atomic points-to assertion and its related local ownership
and observations. The atomic points-to construction is designed to not
only support the naturally desired concurrent atomic accesses, but also
support strong reasoning principles in typical usage modes. It also
supports switching between the different modes, as well as alternating
between phases of non-atomic access and of atomic accesses. In the next
chapters, we will see the flexibility of the atomic points-to assertion when
combined with invariants in verifications.



11

Invariants in Relaxed Memory

In §6.3, we have reviewed Iris invariants as the key tool to share resources
for concurrent accesses. In the Iris program logic (and also Iris-derived
SC logics), invariants can be used to build concurrent protocols of data
structures, by putting all shared ownership into a data structure’s in-
variant. The invariant enforces a user-defined relation on the shared
resources, So as to constrain how operations can access and change them.
For example, in verifying a linked-list based concurrent queue, one can
put the points-to ownership of the queue’s head and tail pointers, as well
as all the nodes of the queue, into a single invariant, and state the FIFO
protocol on those points-to assertions, within the same invariant.

In RMC separation logics, we also want the facilities of invariants
to support concurrent resource sharing. The situation is a bit different,
because when moving resources locally owned by a thread—and thus are
being interpreted by that thread’s local views—into the “public domain”
of invariants, we have to know the views used to interpret those resources,
now that they are no longer tied to a thread. The SC-logic idea of putting
all resources in a single invariant then appears intractable in RMC logics:
those resources may be accessed separately and concurrently by multiple
threads, so they may hold at separately different views. If we look at
the concurrent queue example again, we see that an enqueueing thread
would mostly work with the tail pointer, while a dequeuing one would
separately work with the head pointer, so the ownership of the two
pointers are likely to hold at different views. In other words, there is no
single coherent history of updates to all locations shared in an invariant,
and concurrent threads accessing the invariant cannot hope to agree on
a consistent view of the whole invariant content.

As such, RSL, FSL, GPS, and their descendants' opted to restrict
invariants to single-location invariants (or protocols) which restrict the
evolution of a single, shared location. Intuitively, this is sound because
in C11 all threads always share a consistent view on the single-location
modification order mo,: writes to a single location is always totally
ordered. Single-location invariants have proved useful in practice, but
they become cumbersome to use when one works with a set of closely
related locations, such as in the concurrent queue example. Roughly
speaking, one would have a single-location invariant for each of the
queue’s head, tail, and nodes, and if one wants to enforce a property that
spans multiple of those locations, one would have to invent mechanisms

1Vafeiadis and Narayan, “Relaxed sepa-
ration logic: a program logic for C11 con-
currency” [VN13]; Turon et al., “GPS: nav-
igating weak memory with ghosts, pro-
tocols, and separation” [TVD14]; Tas-
sarotti et al., “Verifying read-copy-update
in a logic for weak memory” [TDV15];
Doko and Vafeiadis, “A Program Logic for
C11 Memory Fences” [DV16]; Doko and
Vafeiadis, “Tackling Real-Life Relaxed Con-
currency with FSL++” [DV17]; Kaiser et
al., “Strong Logic for Weak Memory: Rea-
soning About Release-Acquire Consistency
in Iris” [Kai+17]; He et al., “GPS+: Rea-
soning About Fences and Relaxed Atom-
ics” [He+18].

133



134 Invariants in Relaxed Memory

2Michael and Scott, “Simple, Fast, and
Practical Non-Blocking and Blocking Con-

current Queue Algorithms” [MS96].

11.1

to tie those single-location invariants together.

In particular, the verifications done in GPS [TVD14] involve designing
multiple extra ghost state to create permissions that can be owned by
the protocol participants, and thus allow them to restrict interference by
others. For example, the GPS verification for the linked-list based Michael-
Scott concurrent queue? sets up the head’s single-location invariant to
always hold a unique permission, say ¢ to access the first (0) element
in the queue, and every node ¢ holds also a unique permission ¢;; to
access the next node after it. A dequeue requires a CAS to update the
head pointer, and if that is successful, the dequeue caller acquires ¢,
which then can be used to access the first (0) element resources from the
first element’s single-location invariant, including the permission ¢;. The
caller needs to put back ¢; into the head’s invariant, because that is the
permission for the next dequeuer to access the element 1, which is now
the next element to be dequeued. This contrive setup with extra ghost
state would not be needed—and in fact is not needed in SC logics—had we
have all resources stored inside a single invariant, because then we would
have the relation between the nodes clearly stated in one place, instead
of having the relation broken up in form of multiple permissions.

This long discussion is to motivate general invariants for multiple
locations in RMC, whose variants will be presented in this chapter. In
Part III, we will show how these invariants are used to derive GPS single-
location invariants.

The key challenge of general invariants is to identify the views that
justify the different parts of the invariant content. One solution is simple:
let the clients (of invariants) pick those views, explicitly using the view-at
modality (Definition 8.13, §8.5), and then the invariant itself has no
extra work to do. This gives rise to iRC11 objective invariants, a direct
lifting of Iris invariants from iProp to vProp, which we present in §11.1.

However, we also would like to support cancelable invariants, those
that allow reclaiming the invariant content once the invariant is no longer
in use. Instead of the clients, cancelable invariants themselves take care
of the one view that justifies all parts of the invariant content, and thus
guarantee that the cancelation of the invariant is synchronized with all
accesses to the invariant. We present iRC11 cancelable invariants in §11.2.

In §11.3, we provide the interface of another invariant form, called
non-atomic invariants. They are needed for RustBelt Relaxed in the model
of Rust’s type system (Part III).

Objective Invariants

Definition 11.1 (vProp Objective Invariants). The vProp objective invari-
ants directly lift Iris iProp invariants as follows.

("] s= A [ iv]™

That is, the invariant content I : vProp is put inside an Iris invariant at
an arbitrary (universally quantified) view V. This resembles the model
of the objective modality (Definition 8.10), hence the name.



N OINV-ALLOC OInv-ace
objective(( 1)

Objective Invariants 135

NCE

N
bj) I - f% I
persistent(N) g (o J> g

T F5W (5 (obj) I # (i {obj) I E\W=KE True))

OINV-ALLOC-OBJ OINV-ACC-OBJ
objective(I) objective(I) NCE
SN T FR8W (o T s (o1 EW=KE True))

Objective invariants satisfy the rules in Figure 11.1. That is, the
rules are similar to those of Iris iProp invariants (Figure 6.4), except
that they require the invariant content I to be objective, or be placed
under an objective modality. More specifically, with OINv-ALLOC, we can
allocate a vProp objective invariant if we have the invariant content
I under the objective modality, and with OInv-acc we can access the
invariant content atomically, but we only get I also under the objective
modality. The rules OInv-aLLoc-0BJ and OINv-Acc-0BJ are derived from
OInv-aLLoc and OINV-Acc, respectively, using the rules OBJMobp-INTRO and
OBJMoD-ELIM (§8.4).

Intuitively, if a client only stores objective resources, which include
pure facts (¢) and ghost state (@]W)f then objective invariants work the
same as Iris traditional invariants. If the client, however, wishes to put
points-to assertions into an objective invariants, then they should make
those resources objective, by making their interpreting views explicit
using the view-at modality (Definition 8.13). In particular, we can apply
VA-INTRO (Figure 8.3) to turn an atomic points-to /¢ @g h can be turn
into the form @y (¢ »i>g h) (knowing that JV) which is objective (see
Figure 8.3) and thus can be put inside objective invariants using OINV-
arLoc. Fortunately, we have established in sections §10.1.1 to §10.1.3
that the atomic access rules only require and return the atomic points-to
ownership at some arbitrary views V;, and Vj, U V’, respectively.

In other words, the atomic access rules using atomic points-to (§10.1)
are compatible with objective invariants, and are sufficient to verify algo-
rithms with concurrent protocols on shared atomic points-to assertions.
We will see such examples in Chapter 12 and in Part IV.

We note that we can also use VA-INTRO to make non-atomic points-to
assertions objective, and put them in invariants to transfer them to other
threads. However, the non-atomic points-to can only be used without the
view-at modality. Fortunately, the atomic access rules allow us to acquire
the view-seen observations needed to remove the view-at modality from
the non-atomic points-to, using VA-ELIM. For more details, please recall
the discussion about resource transfer at the end of §10.1.2, which uses
the rules AT-WRITE-SW-REL and AT-READ-SN-ACQ. Nevertheless, we will also
see examples for resource transfer in Chapter 12.

FIGURE 11.1: iRC11 rules for objective
invariants

3see PURE-OBJ and GHOST-OBJ, §8.4



136 Invariants in Relaxed Memory

11.2 Cancelable Invariants

11.2.1

4These are called raw cancelable in-
variants in the RustBelt Relaxed pa-
per [Dan+20a].

SPlease see Figure 14.1 for a few key
rules of Iris traditional cancelable invari-
ants. See also [Iri22, §10.1].

If we put some resources in objective invariants, the resources are in the
public domain forever. But there are situations where we want to reclaim
the resources in the invariants, after which point we know that the
invariants are no longer needed any more. For example, we would like
to have a per-object invariant to govern the protocol of a data structure,
but when the data structure object is deallocated, the invariant should
become obsolete.

Iris supports a kind of invariants called cancelable invariants where
an invariant can be canceled to reclaim the invariant. We would like to
support this kind of invariants for vProp, but we need some extra work
to make the returned resources useable: we need to track more carefully
the view at which the resources are put inside the invariant, so that after
the cancelation we can eliminate the view-at modality protecting those
resources, and thus the client can own them locally.

The Interface of vProp Cancelable Invariants

We present the interface of vProp cancelable invariants in Figure 11.2.%
Note that we did not present Iris iProp cancelable invariants, but they

only differ from the vProp ones in the parts concerning views.”

The interface of cancelable invariants involves two kinds of assertions:
(1) a persistent, objective assertion W’N that an invariant with content
I exists in the namespace A with an identifier v; and (2) a fractional
and timeless invariant token assertion O7 (also identified by ~) that is
needed to know that the invariant is not yet canceled.

INVARIANT ALLOCATION. With the invariant content /, we can allocate
a cancelable invariant using CINv-aLLOC. Afterwards, we know that the
invariant exists (%N), and we own the full fraction Q7 of its invariant
token. The invariant token is fractional, as shown in CINV-TOK-FRAC-
vALID and CINV-TOK-FRAC, so that we can split the full fraction into pieces
and give them to multiple threads and they can access the invariant
concurrently. CINv-Tok-0BJ-sPLIT allows us to split a fraction of a token
identified by « into two parts, one of which is objective, which in turn can
be easily put inside an invariant (which could possibly be the invariant
with the same identifier v as the token).

INVARIANT ACCESS. A fraction of the invariant token is needed to open
the invariant with the same identifier -, as can be seen in CINnv-Acc. The
opening is a mask-changing fancy update, after which we receive the
invariant content / under a later. Once we are done, we must return
I and close the invariant with a reverse mask-changing fancy update.
Recall from 6.7 that mask-changing fancy updates are needed to prevent
opening an invariant twice, and to limit the invariant accesses to a single,
atomic step of computation. More concretely, recall that the rules WP-Inv
and Hoare-INv for opening traditional Iris invariants around an atomic
step are derived from WP-aTomic and INv-acc. We apply the same method



Cancelable Invariants 137

N CINV-ALLOC
objective(% ) . N
timeless(Q7 >1F Ty, QY x| T |
persistent(%N) ( q) e ©1
CINV-ACC CINV-CANCEL
NCE NCE
N N
1" w0y - FpEW (av;-. (U, > 1) * ((uvi b 1) E Wk @g)) I AN
CINV-TOK-FRAC-VALID CINV-TOK-FRAC CINV-TOK-OBJ-SPLIT
Oy Fac (0,1] OF * (?g, -+ Q?;ﬂ, @gﬂ, VAR (obj) Q?Z/
WP-CINV HOARE-CINV
atomic(e) N C& atomic(e) N C¢&
VVi.Uy, > I Ewpgpreinm{v. Uy, > * Q} {Uy, oI * Peinm{Uy, > *Q}e\n
N . N .
7 *Q’)gl—wpgelnw{v.@;’*Q} 'y F{O7x Pleinm{v. Q7 xQ}¢

FIGURE 11.2: iRC11 rules for cancelable
with WP-aromic and CINv-Acc to derive the explicit rules WP-CINv and invariants
HOARE-CINV for opening vProp cancelable invariants.

The invariant content / we receive from CINv-Acc, however, unlike
that from the rule Inv-acc for traditional Iris invariants, are protected
under a view-join modality (Definition 8.14), i.e., what we get from
opening the invariant and what we have to return to close the invariant
are both Ly, > I. Recall the intuition of Ly, P: it asserts the ownership of
the resource P which hold at a view whose difference with the implicit
interpreting view V is V;. That is, P holds at V; LI V. This means that a
client of the cancelable invariant only gains access to the invariant content
I at an arbitrary larger view V; UV (Qy,,y > 1), where in practice V;
represents the view at which I is currently justified. During its access to
I, the client can update the current view from V' to some larger view V"’
(V C V'), so long as it returns the invariant content I at the view V; UV’
(Qy,uy > 1), Le., it returns Ly, > 1.

The use of the view-join modality in CInv-acc therefore enforces two
requirements on the clients of cancelable invariants. The first requirement
is that clients of cancelable invariants should be able to work with the
content 7 justified at some arbitrary view V; UV (where V is the client’s
current view at the opening of the invariant). This requirement is the
same as that for clients of objective invariants, and therefore can be
mitigated in the same ways as discussed in the previous section (§11.1):
objective resources do not care about views, and atomic access rules can
work with the atomic points-to ownership at some arbitrary view, while
views for other resources like non-atomic points-to need to be tracked
more carefully and rely on the seen-view observations from the atomic
operations. Again, we will see this point worked out more concretely in
the example verifications in Chapter 12.

The second requirement is that the client cannot return [ at a too
big view: the view V; U V' must be sufficient to justify I (where V’

is the client’s current view at the closing of the invariant).® We note ®Note that if the client returns I at a
view smaller than V; U V', then it can
always return I at V; UV, thanks to view
monotonicity of 1.

that this requirement is only enforced on non-objective resources in I.



138 Invariants in Relaxed Memory

7see Figure 14.1 and [Iri22, §10.1]

Fortunately, the atomic access rules using atomic points-to (in §10.1.1 to
§10.1.3) are also designed to be compatible with this requirement: if we
provides an atomic points-to @y, ¢ v, h to the pre-condition of one of
the rules, we will receive some Qv /¢ ni>9 b’ in the post-condition,
which is indeed @y, /¢ ,L>9 h because V C V’'. We will see this point
more concretely also in Chapter 12.

Note that we can switch between the view-join and view-at modalities
easily using VJ-VA-acc. In fact, with VJ-VA-acc and the rules in §10.1.1
to §10.1.3, we can derive atomic access rules that take an atomic points-
to in the form Lly,¢ %, h in the pre-condition, and return an updated
atomic points-to in the form Ly, ¢ s, b’ in the post-condition. We will
see the derivations of those rules also in §12.2 (see Figure 12.5).

INVARIANT CANCELATION. The second requirement by the access rule
CINv-acc is what guarantees the soundness of the cancelation rule CINv-
cANCEL. Cancelation needs to maintain the following safety guarantee.

Property 11.2 (Cancelation Safety).

An invariant’s cancellation must happen-after all accesses to it.
(CANCEL-SAFE)

Nevertheless, CINv-caNCEL simply says that with we can trade in the
full fraction O] of the invariant token for the invariant W’N to cancel
it and get back the invariant content I locally without any view-explicit
modality (albeit under a later, as usual). As such, except for the uses of
the view-join modality in CINv-acc, the core interface of iRC11 cancelable
invariants (CINv-ALLOC, CINV-ACC, and CINV-CANCEL) is exactly the same
as that of traditional Iris cancel invariants that are sound only for SC
logics.” The reason why the cancelation rule maintains CANCEL-SAFE (i.e.,
race-free and safe) for RMC, and why the relaxed memory effects can be
localized in just the view-join modality used in CInv-acc, is rather hard
to explain intuitively, without looking into the model of invariant tokens.
We therefore delay this explanation until §11.2.2.

STRONGER ALLOCATION RULES. Figure 11.3 provides several stronger
rules for cancelable allocation and access. CINV-ALLOC-OPEN strengthens
CINvV-ALLOC by not requiring the invariant content / upfront. Instead the
client is first given a fresh identifier - for the invariant token, and so the
client can pick the invariant content / that may depend on ~. The client
then receives the the invariant assertion 'Y’N but the invariant does not
hold yet (hence the mask does not include A). Once the client provides
> I, the invariant is established and the client receives the full invariant
token Q7.

CINV-ALLOC-FRAC strengthens CINv-aALLOC in a slightly different way.
The client first receives some fraction ¢ of the invariant token with a fresh
identifier v, the the client can pick and provide the invariant content /
that may contain ©7 itself. After the invariant is established the client
receives the remaining fraction C?Z/, i.e., ¢+ ¢ = 1. Note that ¢ and ¢
are picked by the client.



11.2.2

Cancelable Invariants 139

CINV-ALLOC-OPEN CINV-ALLOC-FRAC

NCE

q+q =1

- B 3y VL SRS (>1 5 W=kf 7) F e O+ (V1. > T ke O *”’N)

CINV-ACC-GEN

NCE

(V7 (Ly, 1)) EWV=kF O

N
" 07 FEREV 0T AV (Une D) % AL WV P (@O (@ 0) ke (Uv, b 1) % P)) EWskE P

O = (gVi * S\NES True)

A STRONGER ACCESS RULE. CINv-acc-GeN (Figure 11.3) generalizes the
access rule CINv-Acc in several non-trivial ways. First, one does not need
to trade in the invariant token O] to access the invariant: one does
need to provide it, but then receives it back immediately together with
the invariant content Uy, > I. Second, there are 3 options to close the
invariant.

The first option is similar to the closing viewshift of CInv-acc: to close
the invariant, the client gives back the invariant content Ly, > I. As the
client did not trade in the invariant token, they need to provide the token
at the closing, which they will get back immediately afterwards.®

The second closing option strengthens the first one further: to close
the invariant, the client provides (1) the invariant token U7 at some view
V' of its choice, and (2) a wand viewshift (@, Q7 =ke\n (Uy, > 1) * P).
Intuitively, the invariant needs (1) to update its internal tracking of
the current invariant view. After that it feeds (1) into (2), a logical
continuation picked by the client that, when receiving the same token,
will produce the invariant content Ly, > I and some remaining resource
P. The invariant then consumes Lly, > I to re-establish and close the
invariant, and returns the remaining resource P to the client.

The last closing option embeds the cancelation rule CINV-CANCEL:
instead of returning the invariant content I, the client can trade the
full fraction O] of the invariant token for (1) a seen-view observation

V; of the same view V; that the client has received at the invariant
opening, so that they can eliminate the view-join modality from I; and
S\N}Q‘g True without additional
requirement to close the invariant. We note that CINV-CANCEL is derivable

(2) a reverse mask-changing fancy update

from CINV-ACC-GEN.

Finally, we note that the stronger rules (CINV-ALLOC-OPEN, CINV-ALLOC-
FRAC, and CINV-AcC-GEN) without the view-join modality are all sound in
traditional Iris SC logics. In those logics, the second closing option of
CINV-AcC-GEN also coincides with the rule’s first option.

The Model of Cancelable Invariants

To model iRC11 cancelable invariants, we need more ghost state to
encode the access and cancelation protocol, which will be stored in the

FIGURE 11.3: Stronger iRC11 rules for
cancelable invariants

8Another possible generalization is that
the fraction ¢ needed at closing does not
need to be the same fraction used for open-
ing the invariant.



140 Invariants in Relaxed Memory

9see Figure 11.1

10see Figure 8.3

llsee GHOST-OBJ, §8.4

ghost location y—the invariant identifier.

Definition 11.3 (RA for iRC11 Cancelable Invariants). We need the frac-
tional view-lattice RA FRACVIEWR = AUTH(OPTION(FRAGC x LAT(View))).
We define notations for two kinds of elements of the RA.

PartialV,(V},) ::= o (Some(gq, V,,))
FullV(Vy) = e (Some(1, V}))

Definition 11.4 (Model of iRC11 Cancelable Invariants). The model
of invariant tokens and cancelable invariants is given directly in vProp,
using the RA and objective invariants, as follows.

r A r N
1] =i @y, (PartialVs (Vegr) | VIFUV(V:) | 1)
(CINV-MODEL)

INVARIANT TOKENS. First of all, invariant tokens O7 are view-dependent
assertions: even though owning a token O means owning only the ghost
element PartialV,(V;ox), this ghost ownership is tied to the current im-
plicit view V' at which the assertion is interpreted through the token view
Viox. In particular, the ghost element PartialV,(V;x) records both the
fraction ¢, which represents how much of the invariant this token owns,
and the token view Vi, which represents what this particular fractional
token has observed, i.e., what invariant accesses this fractional token has
participated in. The model requires that V—the current implicit view at
which the token is interpreted—has also at least observed what O] has
observed: JV;. (the seen-view observation, see Definition 8.12).

INVARIANT ASSERTIONS. The model of invariant assertions W’N simply
encodes the two possible states of the invariant: “active” or “canceled”.
Thus it is an objective invariant (§11.1) of a disjunction (see CINV-MODEL).
The right-hand side of the disjunction encodes the active state, where the
content 7 is still available in the invariant at some content view V;. In the
active state the underlying invariant also owns the authoritative ghost
element FullV(V;) that records the view V; in the ghost location +. The
left-hand side of the disjunction encodes the canceled state, which asserts
ownership of the full fractional element PartialV;(V;). Recall that the
invariant assertion %N itself is objective.” The underlying invariant’s
content is also objective: it is wrapped under a view-at modality of the
content view V;.10 The relation between the content view V; and the
token views V;,,’s is managed entirely by the ghost elements FullV(V;)
and PartialV g (Viox).

Concept 11.5 (Synchronized Ghost State). In essence, by its model in
CINV-MODEL-TOK, cancelable invariant tokens are just ghost state. How-
ever, unlike the vanilla ghost state ownership which is objective,'! in-
variant tokens are not objective as they are tied to their owner’s obser-
vations. We generally call these “synchronized ghost state”. The RA



FRACVIEWR has two interesting kinds of elements that help us implement
the idea of “synchronicity”: (1) the unique element FullV(V}) that is
used to record the full view V, and (2) fractional elements PartialV,(V},)
that are used to associate some partial view V,, with some fraction g.
FRACVIEWR is built to maintain the following property:

The join of all partial views (the V,’s from all PartialV,(V})’s) is

always equal to the full view Vy in FullV(V}).
(SYNC-GHOST)

This property guarantees that the partial view V,, of the full fractional
element PartialV,(V},) is actually equal to the full view V; of FullV(V}):
Vp = V. The SyNc-GHOST property is what we require for view-dependent
ghost state to be synchronized ghost state. By synchronized ghost state
we mean any ghost construction that is built on the notion of fractional
observations. That is, the ghost state has fractional elements that track the
subjective observations of the threads the elements are tied to, and, most
importantly, the full fractional element is guaranteed to have tracked all
observations.

In the case of cancelable invariants, the observations are the views
around which threads access and update the invariant content /. In-
tuitively, we record the view V; of the invariant content [ as the full
view in FullV(V;) (see CInv-MoDEL). The token view V; in the ghost
element PartialV,(V;ox) of some token ©7 tracks the changes to I made
by each access that O} participated in. By Sync-GHosT, the full token
view Viox tu11 Of the full token Q7 will thus be equal to the content view
V;. Consequently a thread owning O] must have observed all changes to
the invariant content I, i.e., it must have JV;. Effectively, CANCEL-SAFE is
maintained and CINvV-CANCEL can safely eliminate the view-at modality
protecting I (using VA-ELIM, §8.5) and return i I at the canceling thread’s
current view.

FORMAL PROPERTIES OF FRACVIEWR . To maintain SyNc-GHOST, the RA
FRACVIEWR admits the rules in Figure 11.4. CINv-MODEL-SYNC says that
any token view V. is included in the content view V;, and the full token
view Vigx su11 Of ©F is exactly V;. CINv-MoDEL-JOIN requires that the
fractions consistently cannot sum up to more than 1, and also allows
us to join together partial token views of the fractions when we are
recollecting them. CINV-MoDEL-UPDATE formalizes a restriction on how
the ghost state can grow: we can update a token view V;; by extending
it with some V'’ only if we simultaneously update the content view V;
in the same way. This makes sure that every change in the full view
V; is accounted for by some token view V., and thus SYNC-GHOST is
maintained.

Formally, CINv-MoODEL-SYNC comes from validity of FRACVIEWR . If
we own both PartialV;(V,) and FullV(V}), by GHOsT-0P and GHOST-VALID
(86.2), we have valid(FullV(V}) - PartialV(V},)) = valid(e (Some(1, V%)) -
o (Some(1,V}))). By AuTH-BOTH-VALID (§6.9), we have that Some(1,V,) <
Some(1, V). By the definition of RA inclusion (RA-INcL, §6.2), it must be
the case that Some(1,V,) = Some(1, Vy), i.e., V, = V.

Cancelable Invariants

141



142 Invariants in Relaxed Memory

CINV MODEL SYNc

———————————————————————

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FIGURE 11.4: Properties of the RA

FRACVIEWR for cancelable invariants .
PROOF SKETCHES. To understand how the model works, we briefly

present the proofs of CINv-caNceL and CINV-ACC.

Proof sketch of CINv-caNcEL. We prove the rule in vProp. After unfolding
the model (Definition 11.4), we have the following goal.

Context: Goal:

,,,,,,,,,,,,,,,,,,,,, 1 ‘ N

=y

We then open the underlying objective invariant using OInv-acc-oBJ and
find a content view V; and the two possibilities for the invariant state. If
the invariant were in the cancelled state (the left disjunct), we would

have two full fractional PartialV,(_) and CINnv-MopEL-JoIN would give us
contradiction from 1 + 1 < 1. Thus the underlying invariant must be in
the active state (the right disjunct).

By owning the full fraction, with CINv-MoDEL-SYNC we know that
Viek = Vi, so by owning IV, the thread must have observed all
changes to the invariant content: JV;. With that, we now can take the
content @y, V; out of the invariant and eliminate the view-at modality
with VA-gLiM, and return > [ for the user. To finish the proof, we put

1 ' PartialVy (V;ok)w‘ in to switch the underlying invariant to the cancelled

state and close it. O

Proof sketch of CINv-acc. We also prove the rule in vProp. As in cance-
lation, we unfold the model, then open the underlying invariant with
OInv-acc-oBJ and deduce that it must be in the active state. Our goal
then looks as follows.

Context: Goal:
(>3V,». . S\Nekg True

LFuHV(Vi); *@ViDI Wi Uy, o T ((Uy, o 1) E\W=kf O)

We instantiate the existential quantification with V;, and then use VA-
T0-VJ (Figure 8.3) to upgrade the invariant content / from the view-at
modality to the view-join modality, so that we can discharge the left-hand
side of the goal. We are then left to prove the closing wand viewshift.



11.3

After introduction, our goal looks as follows.

Context: Goal:

,,,,,,,,,,,,,,,,,,,,,,

We now use VJ-ELIM-VA (also Figure 8.3) to turn Uy, >7 and 3 Vi
into @y, >1 for some V' 3 Vi, that we know JV’. We then

use CINV- MODEL UPDATE to update ‘FuIIV(V)7 ! 'PartialV (Vtok)j to

We then use the closmg viewshift (> Wi ...) EW=kE True with

the view V; UV’ and the resources | FullV(V; U ,V,/l and Qv /> 1 to

re-establish and close the invariant. We are left with the goal for the
invariant token.

Context: Goal:

‘PartlaIV q(Veox U V’)) S VA | A ' PartialV (Vtok)‘ x IV,

From V' 3 V,ox, we know that Vi, LI V' = V| so this is easily done. [
Non-Atomic Invariants

Iris additionally provides a derived form of invariants where the access
can be non-atomic, i.e., it can span multiple steps of execution. The
catch is that each such access can only be done by one thread at a time.
This form of invariants, called non-atomic invariants, is needed to model
unique reference types in RustBelt.'? We will thus also need non-atomic
invariants for our RustBelt Relaxed work (Part III).

Fortunately, Iris non-atomic invariants can be proven sound in relaxed
memory without any change in the interface! Naturally, the model of
iRC11 non-atomic invariants still needs to handle relaxed memory effects,
but it manages to encapsulate them within the interface. This is sound,
intuitively because non-atomic invariants are meant to be thread-local—
i.e. being accessed by only the current thread—so the thread is always
synchronized with the invariant content. The model carefully tracks
the view of the invariant content, employing an RA similar to that of
cancelable invariants. The model and the proofs of iRC11 non-atomic
invariants were constructed by Jacques-Henri Jourdan, as thus are not
considered part of this dissertation and will not be presented here. The
exact definitions are available in the Coq development of iRC11.'3

Nevertheless, we present the interface of iRC11 non-atomic invariants
in Figure 11.5, which, again, is exactly the same as that of Iris-SC.'*
Like cancelable invariants, non-atomic invariants also have two kinds
of assertions: (1) a persistent, objective assertion Nalnv”*" (I) that a
non-atomic invariant with content / exists in the namespace N with of
invariant pool p; and (2) a timeless invariant token assertion [Na : p.£]
that is needed to access the invariants in the set £ under the pool p.

Invariant pools allow us to have separate pools of invariants with
their own namespaces and tokens. Intuitively, we can think of pools as

Non-Atomic Invariants 143

2Jung et al., “RustBelt: Securing the
Foundations of the Rust Programming Lan-
guage” [Jun+18a].

Bhttps://gitlab.mpi-sws.org/iris/
gpfsl/-/blob/master/theories/logic/
na_invariants.v

141ris Team (The), The Iris 3.6 Technical
Appendix [Iri22], §10.3.


https://gitlab.mpi-sws.org/iris/gpfsl/-/blob/master/theories/logic/na_invariants.v
https://gitlab.mpi-sws.org/iris/gpfsl/-/blob/master/theories/logic/na_invariants.v
https://gitlab.mpi-sws.org/iris/gpfsl/-/blob/master/theories/logic/na_invariants.v

144 Invariants in Relaxed Memory

objective(Nalnv?*V (1))
persistent(Nalnv?*V (1))

NAINV-TOK-SPLIT

NAINV-NEW-POOL
timeless([Na : p.£]) FE3p.[Na:p.T]

NAINV-ALLOC

[Na: p.& w&E] - [Na: p.&y] * [Na: p.&) > 1+ e Nalnv?V (1)

NAINV-ACC

NCE NC&

Nalnv? V(1) % [Na: p.&' F Be oI+ [Na: p.& \N|* (> 1+ [Na:pE \ N =ke [Na:p.E'))

FIGURE 11.5: The interface of non-atomic
invariants

threads, and non-atomic invariants as thread-local invariants, where each
thread has its own, local pool of invariants. Every thread also has its
own invariant tokens [Na : p.£], which can be “threaded through” its
execution to access its own invariant pools, without having to worry
about other threads’ interference. Thus the accesses are really sequential,
and can span multiple (non-atomic) instructions.

A fresh invariant pool p can be allocated with NAINV-NEw-POOL, Where
we obtain the invariant token [Na : p.T] for p with the full set of invariant
names (p.T). The token can be split and joined using NAINV-TOK-SPLIT,
which supports accessing disjoint sets of invariants. With some invariant
content I, we can allocate a non-atomic invariant in some namespace N’
of the pool p using NAINV-ALLOC.

Finally, the most important rule is the access rule NAINv-acc: with a
token [Na : p.£’] for some mask p.£’ that includes p.N, we can open the
invariant Nalnv? (I) to access the content > I. During the access, we
lose the ownership of the invariant names in p.\/, so we only have the
remaining token [Na : p.£’ \ NV] that allows us to open more invariants
except those that have already been opened. Once we return the invariant
content I, we can regain the original token [Na : p.£’]. We note that the
access is non-atomic because we are not force to have mask-changing
fancy updates/viewshifts: through out the access the usual atomic in-
variants in £ still hold. Recall that the masks in fancy updates ()
are used to maintain non-reentrancy for atomic invariants, while the
masks in non-atomic invariant tokens ([Na : p.£’]) are used to maintain
non-reentrancy for non-atomic invariants.

CHAPTER SUMMARY. In this chapter we introduce 3 forms of invariants:
(1) objective invariants that are useful to share general, multi-location
resources for concurrent accesses; and (2) cancelable invariants that
support reclaiming concurrently shared resources; and (3) non-atomic
thread-local invariants that allow non-atomic accesses to invariant con-
tents. We will see example uses of (1) and (2) in Chapter 12, and more
of them in the rest of this dissertation. We will see the application of (3)
in Part III, where it is used for the lifetime logic’s non-atomic persistent
borrows (§16.2.3).



12.1

12

Example Verifications with iRC11

In this chapter we demonstrate various features of iRC11 that have been
presented so far, using several simple example verifications concerning
the message-passing idiom. In §12.1 we sketch some verifications of the
message-passing examples that we have seen in Chapter 2 (Figure 2.1)
and demonstrate the uses of non-atomic (Chapter 9) and atomic points-to
(Chapter 10), objective invariants (§11.1), view-explicit modalities (§8.5)
and fence modalities (§8.3). In §12.2 we verify the message-passing
but with resource reclamation (deallocation), demonstrating cancelable
invariants (§11.2) and the switching from atomic back to non-atomic
points-to (§10.5).! In §12.3, we verify a slightly more complex spawn-
and-join library, which allows spawning a computation as a child thread
and then waiting for its completion to receive the computation result. The
transfer of the result is implemented using message-passing.? Finally, in
§12.4, we verify a release-acquire implementation of the linked-list based
Treiber stack® against a simple “bag” specification, which demonstrates
the atomic points-to CAS rule with pointer comparison.* We will revisit
the Treiber stack with a stronger specification in Compass (Part IV).

Release-Acquire Message-Passing

In Figure 12.1(b), we provide two Arust + ORC11 implementations of
the message passing example, together with the desired specification.
Figure 12.1(a) presents the implementation using release-acquire ac-
cesses, and corresponds to Example 2.1(c). The mp program runs on the
main thread =. It allocates a block of size 2 with the base location ¢, and
non-atomically initializes both locations to 0. It then forks a child thread
p which will non-atomically write the message 42 to ¢ + 1, and signal the
message by atomically writing 1 to /. The main thread = waits for the
signal by a loop of acquire reads of /. repeat (e) is implemented as a
recursive function, which keeps executing e until it returns true. Once
the loop ends, 7 should be able to get the message 42 from p, safely using
a non-atomic read on ¢ + 1. The program mp_acq_fence (Figure 12.1(b))
optimizes mp by using only relaxed reads in the loop, and then an acquire
fence after the loop finishes.

Both programs should satisfy the simple specification in MP-spPec: the
returned value is the message 42. We note that both programs should
satisfy the stronger specification MP-SPEC-STRONG, wWhere the ownership

1Coq proofs of these MP examples are

in https://gitlab.mpi-sws.org/iris/
gpfsl/-/blob/master/gpfsl-examples/
mp/proof_gen_inv.v

2Coq proof in  https://gitlab.
mpi-sws.org/iris/lambda-rust/-/
blob/masters/weak_mem/theories/lang/
spawn.v

3Treiber, Systems Programming: Coping
with Parallelism [Tre86].

4Coq proof in https://gitlab.mpi-sws.
org/iris/gpfsl/-/blob/master/
gpfsl-examples/stack/proof_treiber_
at.v

145


https://gitlab.mpi-sws.org/iris/gpfsl/-/blob/master/gpfsl-examples/mp/proof_gen_inv.v
https://gitlab.mpi-sws.org/iris/gpfsl/-/blob/master/gpfsl-examples/mp/proof_gen_inv.v
https://gitlab.mpi-sws.org/iris/gpfsl/-/blob/master/gpfsl-examples/mp/proof_gen_inv.v
https://gitlab.mpi-sws.org/iris/lambda-rust/-/blob/masters/weak_mem/theories/lang/spawn.v
https://gitlab.mpi-sws.org/iris/lambda-rust/-/blob/masters/weak_mem/theories/lang/spawn.v
https://gitlab.mpi-sws.org/iris/lambda-rust/-/blob/masters/weak_mem/theories/lang/spawn.v
https://gitlab.mpi-sws.org/iris/lambda-rust/-/blob/masters/weak_mem/theories/lang/spawn.v
https://gitlab.mpi-sws.org/iris/gpfsl/-/blob/master/gpfsl-examples/stack/proof_treiber_at.v
https://gitlab.mpi-sws.org/iris/gpfsl/-/blob/master/gpfsl-examples/stack/proof_treiber_at.v
https://gitlab.mpi-sws.org/iris/gpfsl/-/blob/master/gpfsl-examples/stack/proof_treiber_at.v
https://gitlab.mpi-sws.org/iris/gpfsl/-/blob/master/gpfsl-examples/stack/proof_treiber_at.v

146 Example Verifications with iRC11

mp ;=
ml: let (¢ := alloc(2) in
w21 £:i=pa 0; (L + 1) :=pa O;
7w3: fork{pl: (£+1) :=p, 42; p2
w4: repeat (**°9 1= 0);
750 "l 41) // 42

mp_acq_fence ::=
mwl: let? := alloc(2) in
w21 0 i=pa 0; (£ + 1) :=pa O;
e 1) w3: fork{pl: ({4 1) :=pa42;p2: £ :=pre 1; }
7 74: repeat (*"/ = 0);
m5: fenceyq;

76: ™04 1) // 42

((a)) MP with release-acquire accesses.

repeat (e) =

MP-SPEC
{True}mpin7{v.v = 42}t

FIGURE 12.1: Message-Passing with Loops

((b)) MP with an acquire fence.

(rec f([]) ;== letv :=ein
ifv == false then f([]) elsev)(][])

MP-SPEC-STRONG
{Trueympin 7 {v.v =42 30. £+ [1,42] x 12}

of the allocated block is returned, to prevent memory leaks. Note that
the notation ¢ — [1,42] stands for £ — 1« £ + 1 — 42. We will look at a
similar proof to that of MP-sPEC-STRONG in §12.2.

A high-level proof sketch of mp . We start in line w1 using NA-aLLoc (§9.1),
from which we get the block ownership 12 ¢ and two non-atomic points-to
assertions for £ and ¢+ 1. The two points-to are sufficient for initialization
in line 72, using NA-wriTE. We then use NA-AT-sw (§10.1) to turn the
non-atomic points-to ¢ — 0 of £ to an atomic one with a single-writer
permission (£ —2¢ _x ¢ J2¢ ). We then use OINv-ALLOC-0BJ (§11.1) to
allocate an objective invariant that contains that atomic points-to ¢ — 2% _
In line 73 when forking p, we give the non-atomic points-to £ + 1 — 0 of
¢ + 1 and the single-writer ownership ¢ J2¢ _ of £ to p, as well as the fact
that the invariant has been established.

In thread p: in line p1, with the non-atomic points-to of ¢ + 1, we
can write the message 42 using NA-wrITE, and then get ¢/ + 1 — 42. In
line p2, we can open the invariant with OINv-Acc to access the atomic
points-to £ —J¢ _ of ¢ so that we can perform the release write of 1 to it,
using AT-wRITE-sw-REL (§10.1.2) and the single-writer ownership ¢ J% _
of £. When closing the invariant we return to the invariant not only /’s
atomic points-to but also ¢ + 1 — 42 at the view of the release write, so
that 7 can regain it.

Back to thread «: in line 74, in the repeat loop we can open the
invariant and access ¢’s atomic points-to and keep reading ¢, using AT-
READ-SN-ACQ (§10.1.1). One we read that ¢ is non-zero and the loop ends,
we know that ¢ + 1 — 42 must be inside the invariant, and thread = has
observed the view of £ + 1 — 42. We need a unique token ¢ to say that =
is the only one who can acquire ¢ + 1 +— 42. This must be prepared in
the beginning before allocating the invariant, and the token ¢ is given to



thread «. At this point, we trade ¢ for £ + 1 — 42 in the invariant, and
use 7r’s view observation of the release write to acquire ¢+ 1 — 42 locally.
With that, in line 75, we use NA-READ to read and return 42. O

To write out the proof more formally, we need to define the exclusive
ghost token ¢ and the objective invariant for mp.

Definition 12.1 (Exclusive Tokens). We use the exclusive RA of unit
Ex(1) to define exclusive tokens.

Exclusive tokens satisfy the following rules.

EXCL-TOK-ALLOC EXCL-TOK-EXCL

timeless(¢7) F 3y, o7 o7 % o7 I False

objective(¢?)

Definition 12.2 (Invariant for mp). The invariant of mp needs to be
objective, and contains the atomic points-to ownership of ¢ in single-
writer mode, since only the thread p is writing.

mpl(¢,~i,7y) : vProp ::=
3h,b,to, Vo, Vi. Qy, (€ =72 h) * let hg := [to +(0,Vp)] in
ifb = falsethenh = hyelse
Ity > to, Vi.h = [to (0, Vo)][t1 (1, V1)] * (o7 V Qy, (£ + 1 — 42))

More concretely, the invariant mpl owns @y, (¢ —2¢ h) for some atomic
period identifier 7, and some history h, at some view Vj. The history h of
¢ can be in two states, dictated by the existential quantified boolean b. If b
is false, then / is still in its initialized state, i.e., it has a singleton history
ho with the write message (to, 0, Vo). Once b is true, ¢ is in its “signaled”
state, where its history h has one extra write message (1,1, V7). When ¢
is in the signaled state, mpl either owns ¢7, or owns £ 4+ 1 — 42 at the
view V3 (of the signaling write). If mpl owns ¢ + 1 — 42, it means that p
has released the non-atomic of ¢ + 1 but 7 has not acquired it yet. Once
7 has acquired ¢ + 1’s non-atomic points-to, mpl will own ¢7.

mpl is clearly objective, because it only contains pure facts, ghost
state, and points-to assertions that are under the view-at modality.

Proof sketch of mp. We present the detailed proof sketch of mp using
Hoare proof outlines, in Figure 12.2. Note that the post-condition of the
proof is almost satisfying the stronger specification MP-SPEC-STRONG: it is
only missing the points-to ¢ +— 1. O

Proof sketch of mp_acq_fence . The proof of mp uses the same invariant
mpl, and follows the proof of mp closely. The main difference is that in
thread p’s read of ¢, which is a relaxed read instead of an acquire read,
we use the rule AT-rREaD-sN. Consequently, in the case where p reads 1
from ¢, we will acquire V, IV’ x Qy, ¢ + 1 — 42, where V' J V;. Then,
with the acquire fence, we apply Hoare-AcQ-FENCE (§8.3) to get IV,

Release-Acquire Message-Passing 147



148 Example Verifications with iRC11

{True}

71: letl:=alloc(2)in {{++ & *(+ 1 % «1>(} // NA-ALLOC

w2 f:i=pa
{t+1-0

0;(£+1) :=pa 0; {{ > 0xl+1+ 01>} // NA-WRITE
#1200 Iy, e, to, Vo. o7 x Vg x £ =25 [to (0, Vo)) = £ 32 [to (0, Vo)) }

—Ssw

Context: JVy // ExcL-Tok-ALLOC and NA-AT-sw

{t+1~0
{t+1~0
Context: ¢
{t+1—0

# 120k 07 % £ T8 [to (0, Vp)] * IVe. Vp * Q0 =7 [t +(0,V)]} // VA-INTRO
* 'i'2 Cxo7 %/ Q;f; [t() (—(0, VE))} x ¢ J7¢ [t() (—(07 VE])] * @wg '—)Zé [t() %(O, ‘/())]}

—sn

T2 [to+—(0,Vp)] // AT-sw-sy and AT-sy-sN

—sn

* J[Qé x0T x 0 37 [to (0, Vp)] * mpl(¢, w,fy)}

{041 0512 0507 5.0 T [t (0, V0)] + [mpl(£,3,7) N} // OINV-ALLOC-0BJ
N
Context: | mpl(¢,ve,7)

7w3: fork {
{t+
pl:

...} // HOARE-FORK
1 0% 32 [to (0, Vo)l } 1

—sw

(0+1) :=pa 42; {0+ 1+ 42 % £ 3¢ [to < (0,Vp)]}+ // NA-WRITE

—Sw

{41 42 £ 32 [to (0, Vo)] > mpl(£,7e,7) }r\pr // OINV-ACC-0BJ

—sw

{04105 42023 [t (0, Vo)) * Gy (€ > o+ (0. Vo)) }

—sw

T\N

Q E // By unfolding mpl and using a stronger version of AT-SW-AGREE
9 00
g k= p2: L =re1 1;
S 8| [3,Vid V. IV +Qy, (0 + 1 42) «
]
< | L@l 2% [to (0, Vo) [tx (1, Va)] * @iy, (0= [to (0, Vo)llt (L, V))) [ 1,
// By applying AT-WRITE-sw-REL with 1/,
{2Vi* @y, € 3L _+mpl(¢,ve,7)} 1\ // By picking the “signaled” state for mpl
{¢ 3% _}+ // VA-ELIM
{True}+
{17007}
74: repeat (**°U 1= 0);
{7}

=
%’ £
S @
& 2
Q (]
i
&
{12050+

{07 x >mpl(¢, w,’y)}-r\N // OINV-ACC-OBJ
{o”f * Vo x £ 3% [to <(0,V0)] * Qyy (€ =1 h) x> if ... then ... else }

- T\W
+acq

0. 30 Cht, V,V' DVoUV.H (t) = (v, V) * IV % Quyy (€ =38 h)
{ *x o7 % if b = false then ... else (o7 V @y, ({ + 1 — 42))
We have v # 0 = b = true A V; = V. If v = 0, we return the invariant content unchanged.
If v # 0 A b = true, by ExcL-Tok-ExcL we have @Qy, (¢ + 1 +— 42). With V/ 3V, UV and JV’, by
VS-monNo we have JV;. With VA-ELIM, we get £ + 1 — 42. We put back 7 to re-establish mpl.

{(v=0%0")V (v #£0%L+1r>42)) xmpl(£,72,7) }r

} // AT-READ-SN-ACQ
T\N

{v=0%0")V (v #0xl+1— 42)}+ // “loop invariant”, we use L6 induction before the loop

1~ 42} // 12 ¢ was framed

75: (0 +1) {v.v =42%* L% ( + 1+ 42} // NA-READ

{v.v =42}

FIGURE 12.2: Hoare proof outlines for mp



Release-Acquire Message-Passing with Reclamation 149

Then we use VS-mMono to get JV;, which allows us to use VA-ELIM and

get/+ 11— 42.
We give the Hoare proof outlines for the part that changes below.

{17007}
74: repeat (**°Y |= 0);

=

§ {7}

= *rIxp // OINv-Acc-0BJ and AT-READ-SN

S| {w=0x")V@#£0x3IV IV.V, OV 5% Qy, ({ + 1 42))}+

{$20xV, IV 5 Qy, (€ + 1 42)}

75: fenceacq; {17+ IV % @y, ({+ 1+ 42)} // HOARE-ACQ-FENCE
{#?¢+ 0+ 1+ 42} // VS-MoNoO then VA-ELIM

76: *™(0+1) {v.v =425 {°€x L+ 1+ 42} // NA-READ

{v.v =42}
O

COMPARISON WITH IGPS PROOFS. The iGPS paper” also presents similar SKaiser et al., “Strong Logic for Weak
Memory: Reasoning About Release-
Acquire Consistency in Iris” [Kai+17],
in its surface logic. The proof presented in Figure 12.2 is slightly less §3.2.2, 84.1.

complicated than the iGPS base-level proof where views are fully explicit,
but is still more complicated than the iGPS surface-level proof, where
views are fully hidden. The proof in Figure 12.2 only hides views around
sequential (non-atomic) steps, but works with explicit views around
atomic access steps, because the proof employs objective invariants and

proofs of the Message-Passing example, once in its base logic and once

atomic points-to assertions. The iGPS surface-level proof for mp employs
GPS single-location protocols in place of objective invariants and atomic
points-to, and so views are hidden completely around atomic accesses.
That proof is thus simpler than our proof here, because the invariant mpl
is indeed a single-location invariant that governs the atomic accesses of
L.

This demonstrates that working with explicit views using atomic
points-to in situations where we only have a single atomic location
(or multiple atomic locations that are unrelated) are counterproductive,
compared to single-location protocols. In §17 (Part III), we will show how
to derive the higher-level abstraction of GPS single-location protocols
from our atomic points-to and general invariants. Atomic points-to and
general invariants, however, significantly simplify the process of stating a
relation that spans multiple atomic locations, as we will see in Compass
(Part IV). Furthermore, as we will see, working with explicit views is not
just a trade-off (for multi-location invariants), but becomes a necessity
to achieve the stronger specifications of Compass.

12.2 Release-Acquire Message-Passing with Reclamation

We now look at the verification of the mp_reclaim, whose implementa-
tion and specification are given in Figure 12.3. The mp_reclaim program
extends mp simply by cleaning up the memory needed to perform the
message passing, in line 76 after reading the message and before return-
ing it. The main difference of the verification is now to show that the



150 Example Verifications with iRC11

mp_reclaim := MP-RECLAIM-SPEC
ml: let/:=alloc(2) in {True}
w2 £:=pa 0; (£ + 1) :=pa O;
w3: fork{pl: ({4 1) :=pa 42;p2: {:=re1 1; }
m4: repeat (**“U 1= 0);
75: letv :=*"({+1)in
w6: free((,2);
w7 v // 42

mp_reclaimin

{v.v =42}

FIGURE 12.3: Message-Passing with Recla-

mation call of free in line 76 is safe. We note that verifying mp_reclaim against

MP-RECLAIM-SPEC is the same as verifying mp against MP-SPEC-STRONG.

Recall that by the end the proof for mp (Figure 12.2), we are missing
only the non-atomic points-to ¢ — 1 of the location ¢, which has been
put in the invariant for shared atomic accesses, in the form of an atomic
points-to. To reclaim the atomic points-to of ¢ from the invariant, we need
to be able to cancel the invariant once thread 7 receives the message after
line w4. Interestingly, at the point the invariant does not hold anymore,
so we do not need the exclusive token ¢” and the disjunction as in mpl
(see Definition 12.2). On the other hand, we now need to deal with the
invariant token O of cancelable invariants (§11.2).

Definition 12.3 (Invariant for mp_reclaim). The invariant of mp_reclaim
does not need to be objective, so it contains the atomic points-to owner-
ship of / in single-writer mode, without being under a view-at modality.

mpcl(¢,v;,7) : vProp ::=
3h, b, to, Vo. £ —2¢ hx let by := [to < (0, Vp)] in
ifb = false thenh = hgelse
3ty > to, Vi h = [to (0, Vo)l[ts 4=(1, Vi)] % @y (V] 1y 5 £+ 1 5 42)

The invariant also has two states (“initialized” and “signaled”) like the
invariant of mp. However, in the signaled state, instead of having a
disjunction between the exclusive token ¢” and the non-atomic points-to
of ¢ + 1, the invariant just holds the points-to together with half of the

cancelable invariant token Q7

1/2> at the message view V;.

Intuitively, at the beginning the invariant token O /2 is split into two
halves, and each participant (threads = and p) will keep one half to
access the invariant. Once thread p is done, it sends back its half 7 /2
together with ¢ + 1 — 42 (by putting them in mpcl so that thread 7 can
acquire both, reconstruct the full token ©7, and cancel the invariant to

get back ¢ —7¢ h.

Proof sketch for mp_reclaim. The Hoare proof outlines for mp_reclaim
are given in Figure 12.4. We note several important points.

e Between line 72 and w3, we allocate a cancelable invariant for
mpcl. But instead of using CINv-ALLOC, we use the stronger rule



Release-Acquire Message-Passing with Reclamation 151

{True}

wl: let/ := alloc(2) in

T2t £i=npa 0;(€+ 1) i=pa 0; {{ > 0% £+ 1 0x1>¢} // NA-aLLOC and NA-WRITE

{041 01205 Ty, to, Vo. Vo * £ =75 [to (0, Vo)) * £ T2 [t +—(0,Vo)]} // NA-AT-sw

Context: JVy « £ JJt [tg <—(0,Vp)] // AT-sw-sy and AT-sy-sN

{E + 1 0% 1205 £ 228 [tg (0, Vp)] % £ =22 [to <(0,Vp)] * I.VI. TET\N . } // CINV-ALLOC-OPEN

—sw

{0415 0472040 3% 1o (0,V0)] + 9] mpel )] )
N
Context: | mpcl(4,7¢,7) !

73: fork{...} // HOARE-FORK
{041 05027 [to (0, Vp) *Q}/Q}T

pli (64 1) i=pa 42; {e 1 42 0 328 [t (0, Vo)] % @y/Z}T // NA-WRITE
{E + 142 ¢ 37 [to<+(0,Vh)] * @Y/z * 3V Uy, (> mpcl(ﬁ,'yg,'y))}

x ... (* closing viewshifts *)

// CINV-ACC-GEN
T\N
{e+ 1o 425 £ 32 [t 4=(0, Vo)) 9] 5 % Liv, (€= [t (0, Vo)) * - }

Q _é_ T\N
?g gO p2: £ i=re1 1;
—= =
..ﬁ § dt, Vi 3 V. ;Vl*@vl(@¥/2*£+le42)
g * @y 0 35 [to (0, Vo)][tr (1, Vi) + Uvi (£ =35 [to (0, Vo)l [t =(L VD)D) % - ) 4

// By applying AT-WRITE-SW-REL-vJ with 2V},

We pick the “signaled” state for mpcl. We use the second closing viewshift option to close and
release @y, O /o tO the invariant at the same time, in addition to @y, (¢ + 1 — 42).

{¢ 3% _}+ // VA-ELIM

—sw —

{True}+

{T2 £ QQ;//2}
m4: repeat ("% 1= 0);

{QY’/Q}T

{o

1*/2 * V. Uy, >mpl (€, vp,7) * ... (* closing viewshifts *)}T\N // CINV-ACC-GEN

{@Y/Q « Vo * € 3L [to+—(0,Vo)] * Uy, (€ =2 h) «>(if ... then ... else ...) * }
acay {U W SR VVI IV UV () = (0, V) IV 5 L (3 )
* @;7/2 # (if b = falsethen ... else @y, (V] £+ 1+ 42)) * ... v

// AT-READ-SN-ACQ-VJ

We have (v # 0 = b = true AV; = V). If v = 0, we return the invariant content unchanged.

If b = true, we have @y, (C?Y/z * { + 1 +— 42). With VS-moNo and VA-ELIM, we get

Q?Y/Q * £+ 1 — 42. Combining with 7’s own @1{/2 we get Q7.

{(v =0x @¥/2 « Uy, mpel(6,70,7)) V (0 # 0% Q7 % £ 4+ 1 — 42 % Uy, (£ — 2 h))}
T\W

x ... (* closing viewshift *)

T\W

Loop body
Accessing mpcl

If v = 0, we use the first closing viewshift option to close the invariant. If v # 0, we use the third
closing viewshift option to cancel the invariant. By the cancelation (CINV-Acc-GEN), we get JV;,
which can be used with VJ-ELIM to get £ —7J¢ h. We then use AT-NA to get £ — 1.

{(v =0+ "WpT Olj2) V(v # 0% [1,42] « TWi T True)}T\N

{(v =0xQ] /2) V(w#£0xl—[1, 42])}T // “loop invariant”, we use L6 induction before the loop

{12 ¢+ 0+ [1,42]} // 1> was framed
75: letv :=*"(¢+1)in {v =42 > (% (s [1,42]} // NA-READ
w6: free((,2); {v =42} // NA-UNsyNC and NA-DEALLOC

w70 v {v.v =42} FIGURE 12.4: Hoare proof outlines for
mp_reclaim



152 Example Verifications with iRC11

CINv-aLLOC-OPEN (Figure 11.3), because our invariant mpcl depends
on the invariant identifier v itself. CInv-aLLOC-OPEN allows us to
get the identifier v before picking the invariant content which can
depend on +. In our case, that is mpcl(¢, e, 7).

After the allocation of | mpcl(4, v¢, ) %N, we also get the full in-

variant token Q7, which we split into two halves of O7 /9> USING
CINv-TOK-FRAC. We then give one half to the thread p, using HOARE-

FORrK. The thread = retains the other half.

In the proof of thread p, around the atomic access in line p2, we
also do not use the simple rule CInv-aAcc, but instead use CINV-Acc-
GEN to access the invariant. The latter gives us several options when
closing the invariant, of which we will use the second option (see
Figure 11.3). The second option allows us to use the half token O /2
(which we have used to open the invariant) to close the invariant
and simultaneously release it into the invariant content mpcl. CINV-
Acc-GeN indeed allows us to keep O7 /2 around after opening (and

does not consume Q7 like CINv-acc), so that when performing the

1/2
release write of 1 to /, we also release O /2 together with /+1 — 42.
That is, after the write, we have @y, (@Y /2 * ¢+ 1+ 42) where V}

is the message view of the write.

The second closing option looks as follows.

vV’ P. (@V/@’ly/2 * (@V/@Y/Q 3]<5\N' (qu >mpcl(€,ve,7)) * P))
5\N3I<5 P

With @V1 (@A/

1/2 * £+ 1+ 42) and the atomic points-to

Uv; (£ =38 [to <=(0, Vo)][t1 (1, V1)])

after the write, we instantiate the second closing option with V"’ :=
Vi and P := True. We give up @y, 7 /2 for the left-hand side of the
separating conjunction before the wand viewshift (£\V=k¢). For
the right-hand side, it is easy to show that

@Vl (f +1~ 42) * Ly, (6 0—)2:, [to (—(0, Vo)][h (—(1, VI)D
F @y, Q1 )y =Ke\w Uy, > mpel(€,7¢,7)

by picking the signaled state (b = true) for mpcl(¢, ¢, v). We note
that @VI(CQY/Q * 0+ 1+ 42) 4+ Um@vl(@Y/Q x{ + 1+ 42), due to
VJ-VA (Figure 8.3).

E\W

After the instantiation, we get £ True that we use to close the

invariant and complete the access.

Note that AT-wriTE-sw-REL allows us the option to also release
the single-writer ownership to the invariant, because we have
@y, ¢ J2¢ _. We do not need this feature here, but it can be useful

elsewhere (see §17).

The same situation applies for thread #’s atomic access in line 74:
we need to use CINV-ACC-GEN to open the invariant, and in case the



Release-Acquire Message-Passing with Reclamation 153

AT-WRITE-SW-REL-VJ
&.3t,V 3 Vy.max(dom(h)) < t* IV x Qy P *

{DVo* £ 3, hxUy, (L2, h)* P}l i=rqvinm . €
Qy (£ Jgy hlt (v, V)]) * Uy, (£ =gy bt (v, V)])

AT-READ-SN-ACQ-VJ
v. 3R t, V.,V I VoUV.hg Ch C hx

{3V % £ 3, ho * Uy, (£ 225 h)} 2% inm{ K (t) = (v,V)*t > max(dom(ho)) * }e

V' 5 @y (€ Dy h') % Uy, (€125 )

FIGURE 12.5: Derived iRC11 atomic ac-
invariant is in the signaled state (b = true), we need to use VJ-VA to cess rules with the view-join modality
get @y, (O ¥+ 1 42). If the invariant is in the signaled state,
we acquire @y, (O prl+le 42) from the invariant, which we
can use VA-ELIM to get (?1* Jo ¥ {41+ 42, because we also have JV;
thanks to the acquire read. Note that we also have #’s half token
o7 /2 locally, so together we have the full token 07 (using CINV-TOK-

FRAC). We then use the third closing option from CINV-ACC-GEN to
cancel the invariant, from which we receive JV; % W '3T True.
We use the fancy update to conclude the access. We combine JV;
with Uy, (¢ —2¢ h) to get £ —2¢ h, using VJ-ELiM. We then use AT-
NA to turn ¢’s atomic points-to to the non-atomic points-to ¢ — 1,

knowing that 1 is the latest write in h.

¢ Last but not least, we note that the atomic access rules AT-WRITE-
sw-REL and AT-READ-SN-ACQ are not directly applicable to this proof,
because the rules require an atomic points-to under a view-at
modality, i.e., Qy, ¢ —, h, while we get a points-to under a view-join
modality from the cancelable invariant access rule, i.e., Ly, ¢ —, h.
Fortunately, in general, rules with the view-join modality can be
derived from those with the view-at modality. We show the derived
versions AT-WRITE-SW-REL-vJ and AT-READ-SN-ACQ-VJ in Figure 12.5.
We demonstrate the derivation of AT-WRITE-SW-REL-VJ below.

O
Proof sketch of AT-wRITE-sw-REL-vJ. With JV; and Uy, (€ £25_, h), we use
VJ-ELIM-VA (Figure 8.3) to get
QV/ * @(V’qu)(Z ’ti)sw h)

for some V' 3 V. We apply AT-wrITE-sw-REL With @ v/ ;) (¢ Hey h). In
the post-condition we get back the atomic points-to in the form

@V/I_IVbUV(Z ésw h[t (—(1), V)])
for some V 1 V; and JV. We can rewrite it using VA-VJ to the form
@V/LJV(I—lVb (é 'L>sw h[t <;(U? V)D)

We now use VA-ELIM to get back Uy, (¢ s, h[t «(v,V)]). Note that we
have J(V’' U V) from 3V’ and JV using VS-JOIN. O



154 Example Verifications with iRC11

spawn 1=
M)
1: let/ := alloc(2)in
2: 0:=p, 0; // initto O
3: fork{ f([¢]) }; // spawn f
4: ¢

SPAWN-SPEC

join =
finish ::= Al].
A4, ). 1: repeat (**9¢ 1= 0);
1: (0+1):=pav; // write result | 2: letv:=""({+1)in
2: ¢ :=e 1// signal done 3: free(¢,2); // clean up
4: v // return result

{(V& p. FinishHandle