
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Scaling Concurrency Reasoning to Relaxed Memory Models
and Beyond

HOANG-HAI DANG,MPI-SWS, Germany

Reasoning about concurrency is hard. Reasoning about concurrency in a full-blown, non-toy language
like C/C++ or Rust, which encompasses many interweaving complex features, is even harder. Yet, realistic
concurrency involves relaxed memory models, which are significantly harder to reason about than the simple,
traditional concurrency model that is sequential consistency. In order to perform verifications with realistic
concurrency in such complex languages, we need a few ingredients: (1) modular reasoning so that we can
compose smaller verification results into larger ones; (2) strong but abstract reasoning principles so that we
can reason about tricky language features without having to deal with the tedious details of the underlying
concurrency model; (3) reasoning extensibility so that we can derive new reasoning principles for both
complex language features and algorithms without rebuilding our logic from scratch; and (4) machine-checked
proofs with strong automation support so that we do miss potential unsoundness in our verifications. Only
recently was it possible to acquire these ingredients at once, with the help of the concurrent separation logics
framework Iris. In this proposal, I will present what we have been achieved in the direction of verifications
for relaxed memory models. In particular, I will summarize our efforts in verifying the type system of Rust
with relaxed memory models. I will then propose several further research directions as potential targets for
completing this thesis. These include: (i) linearizability as stronger specifications for relaxed memory libraries;
(ii) program logics for non-volatile memory models, which extend relaxed memory models; and (iii) program
logics for the most relaxed architectures (e.g., ARM), i.e., the promising semantic.

1 INTRODUCTION
Reasoning about concurrency is hard, due to the explosion of possible interactions between threads
running in parallel. In the traditional concurrency model of sequential consistency [Lamport 1979],
every thread is taking turns to execute its atomic instructions, and the behavior of a concurrent
program is defined as all interleavings of all threads’ atomic instructions. As such, if one needs to
verify some property of the program, one would need to check that property for every possible
interleaving of its threads’ instructions. In coarse-grained concurrency, where threads take turns
using locks, the number of interleavings are smaller because we only need to consider interleavings
of critical sections. However, in fine-grained concurrency, sophisticated algorithms are designed
to allow multiple threads to access different parts of a data structure at the same time (using
more delicate locking schemes or non-blocking operations like compare-and-swap). Therefore,
the number of interleavings increases significantly. Furthermore, working with interleavings is
also non-modular : if we want to compose our verified algorithms, then we would have to look at
interleavings of their composition, and it is likely that our proofs for our algorithms would not be
reuse-able in the proof for their composition. To reason about fine-grained concurrency, we need
more abstract and modular reasoning principles.

Concurrent separation logics (hereafter, CSLs) [Brookes 2007; O’Hearn 2007] provided a feasible
approach to modular control of interferences, such that instead of thinking with interleavings, we
can reason about each thread separately and only need to abstractly take care of interferences
created by other threads. This led to a series of highly expressive logics [da Rocha Pinto et al. 2014;
Dinsdale-Young et al. 2010; Feng 2009; Feng et al. 2007; Fu et al. 2010; Jensen and Birkedal 2012; Jung
et al. 2018b, 2015; Nanevski et al. 2014; Svendsen and Birkedal 2014; Turon et al. 2013; Vafeiadis

Author’s address: Hoang-Hai Dang, MPI-SWS, Saarbrücken, Germany.

2020. 2475-1421/2020/3-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Hoang-Hai Dang

and Parkinson 2007] that have been applied to various sophisticated verification problems. Among
these problems includes reasoning about relaxed memory models [Doko and Vafeiadis 2016, 2017;
Kaiser et al. 2017; Turon et al. 2014; Vafeiadis and Narayan 2013] and proving soundness of the
Rust’s type system [Jung et al. 2018a], which are our main interests in this proposal.

Reasoning about relaxed memory models. Sequential consistency [Lamport 1979]—an interleaving
semantics in which threads take turns accessing the global state, and all threads share the same
view of that state—has long been the standard memory model assumed by research on concurrency
verification. However, this assumption does not match the reality of modernmulticore programming
languages. In reality, C/C++11 (hereafter, C11) provides a relaxed memory model (hereafter, RMM)
that supports a variety of different consistency levels for shared-memory accesses [Batty et al.
2011]. For programmers who demand strong synchronization, SC accesses are available, but this
strength comes at the cost of disabling standard compiler optimizations and inserting expensive
memory fences into the compiled code. The weaker consistency levels of release/acquire and relaxed
allow one to trade off synchronization strength in return for more efficient compiled code. For
example, Rust employs a variety of these different consistency levels in several of its widely-used
concurrency libraries, such as Arc, Mutex, and RwLock.
Compared to SC, reasoning about relaxed memory is significantly more complicated: relaxed-

memory programs have many more behaviors depending on which consistency levels are employed.
In fact, some useful reasoning principles in SC logics are no longer sound for reasoning about
relaxed behaviors. Furthermore, such behaviors are defined in C11 not in the familiar style of
interleavings, but by an axiomatic semantics, in which the allowed behaviors of a program are
defined by enumerating candidate executions (represented as “event graphs”) and then restricting
attention to the executions that obey various coherence axioms. Vafeiadis et al. overcome these
challenges and provided the first abstract and modular reasoning principles for C11 in the form of
various relaxed memory separation logics [Doko and Vafeiadis 2016, 2017; Vafeiadis and Narayan
2013].
However, in building these logics, Vafeiadis et al. were not able to use the standard model of

Hoare-style program specifications from prior CSLs because notions like “the machine states before
and after executing a command C” do not have a clear meaning in C11’s axiomatic semantics.
Instead, they had to come up with new, non-standard models of separation logic in terms of
predicates on event graphs. Unfortunately, the complexity of these new models has made them
challenging to adapt and extend to more complex settings, for example in verifying Rust’s type
system. Furthermore, although the soundness of these logics has been verified formally in Coq,
there has thus far been no tool support to prove RMM programs correct in these logics.

Verifying Rust’s type system. Rust [Klabnik and Nichols 2018] is a young and evolving program-
ming language that aims to bring safety to systems programming. Specifically, Rust provides
low-level control over data layout and resource management à la modern C++, while at the same
time offering strong high-level guarantees (such as type and memory safety) that are traditionally
associated with safe languages like Java. In fact, Rust takes a step further, statically preventing
more forms of anomalous behavior, such as data races and iterator invalidation, that safe lan-
guages typically fail to rule out. Rust strikes its delicate balance between safety and control using a
substructural type system, in which types not only classify data but also represent ownership of
resources, such as the right to read, write, or reclaim a piece of memory. By tracking ownership in
the types, Rust is able to prohibit dangerous combinations of mutation and aliasing, a well-known
source of programming pitfalls and security vulnerabilities in C/C++ and Java.
Nevertheless, Rust’s ownership-based type system is not always expressive enough to type-

check very delicate programming idioms, e.g., some pointer-based data structures, synchronization

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Scaling Concurrency Reasoning to Relaxed Memory Models and Beyond 1:3

abstractions, garbage collection mechanisms. To allow for these mechanisms, Rust supports exten-
sion to the type system via libraries whose implementations internally utilize unsafe features (e.g.,
unchecked type casts, array accesses without bounds checks, or accesses of “raw” pointers who are
untracked by the type system). Given that these libraries are not checked by the type system, it is
now the responsibility of libraries developers to make sure that these extensions are actually safe,
in the sense that they have properly encapsulated the uses of unsafe features within their “safe
APIs”. Unfortunately, as the language is evolving and libraries are being updated or created, it is
not clear what such encapsulation formally means.

RustBelt [Jung et al. 2018a] is the first work on the formal foundations of the Rust programming
language, in which it covers not only the soundness of the ownership-based type system, but
also the safe encapsulation by Rust’s extensions via libraries. RustBelt managed to formalize such
interactions between the type system and the extensions in the presence of complex language
features like recursive types and higher-order states. Furthermore, all proofs were machine-checked
in Coq. Unfortunately, while ground-breaking, RustBelt assumes the sequential consistency memory
model. Therefore, even though RustBelt’s results increase the confidence in the safety of Rust’s
type system and libraries, the results cannot yet be applied to actual Rust code, which relies on
the C11 memory model. In fact, in adapting RustBelt to relaxed memory, we have uncovered a
data-race bug in the Arc library [Dang et al. 2019a] which the original RustBelt work did not find.

Challenges. As we have seen, in order to achieve more realistic guarantees for actual concurrent
code, it is important to scale the reasoning principles of RMM logics to full-blown, non-toy languages
like C/C++ or Rust, which encompass many interweaving complex features. To reach such a goal,
we need a few ingredients: (1) modular reasoning so that we can compose smaller verification results
into larger ones; (2) strong but abstract reasoning principles so that we can reason about tricky
language features without having to deal with the tedious details of the underlying concurrency
model; (3) reasoning extensibility so that we can derive new reasoning principles for both complex
language features and algorithms without rebuilding our logic from scratch; and (4) machine-
checked proofs with strong automation support so that we do miss potential unsoundness in both
our logics and programs verification. Only recently was it possible to acquire these ingredients
at once with the concurrent separation logics framework Iris [Jung et al. 2018b], who has strong
tactics support for performing programs verification in separation logics [Krebbers et al. 2018,
2017]. Using Iris, RustBelt [Jung et al. 2018a] demonstrated that one can have modular, abstract,
extensible, and machine-checked reasoning for a complex language such as Rust. Meanwhile, Kaiser
et al. [2017] showed that, with Iris, it is possible to also build modular, abstract, extensible, and
machine-checked reasoning for RMM.

Extending both of these works, we show that it is possible to scale modular reasoning to languages
as complex as Rust even in the context of relaxed memory, and the results have been reported in
the RustBelt Relaxed work [Dang et al. 2019a]. This requires serious changes to the models of
both RustBelt and RMM logics, and I will discuss them briefly in §2. But, thanking to the modular
nature of CSLs, many parts of those verifications can be reused without change.
The remaining sections will present several challenges that have not been addressed in this

research direction and that are potential targets for completing this thesis: §3 discusses how
logical atomicity [da Rocha Pinto et al. 2014; Jacobs and Piessens 2011; Jung et al. 2015] can be
useful in proving stronger specifications for RMM data structures, such that we can build more
complex RMM data structures from simpler ones; §4 discusses the possibility of extending RMM
logics to persistency logics in order to support reasoning about the new technology of non-volatile
memory [Raad et al. 2020]; and §5 discusses the necessity of supporting the remaining tricky feature

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Hoang-Hai Dang

in RMM, that is promises [Boehm and Demsky 2014; Kang et al. 2017]. In §6, I suggest a timeline to
complete the thesis with one of these directions.

2 RELAXED MEMORY FOR RUST
In [Dang et al. 2019a], we present RustBelt Relaxed (or RBrlx, for short), the first formal vali-
dation of the soundness of Rust under relaxed memory. Although based closely on the original
RustBelt [Jung et al. 2018a], as well as iGPS [Kaiser et al. 2017] and FSL [Doko and Vafeiadis
2016, 2017] logics, RBrlx takes a significant step forward by accounting for the safety of the more
relaxed-memory operations and stricter resource reclamation schemes that real concurrent Rust
libraries actually use. For the most part, we were able to verify Rust’s uses of relaxed-memory
operations as is. Only in the implementation of the Arc library did we need to strengthen the
consistency level of two memory reads (from relaxed to acquire) in order to make our verification
go through. And in one of these cases, our attempt to verify the original (more relaxed) access led
us to expose it as the source of a previously undetected data race in the library. Our fix for this race
has since been merged into the Rust codebase [Jourdan 2018].

2.1 Background on RustBelt
The initial work on RustBelt by Jung et al. [2018a] made two main contributions. First, Jung et al.
proposed a formal definition of a core typed calculus called _Rust, which encapsulates the central
features of the Rust language. Second, they used the Coq proof assistant to verify formally that
Rust’s aforementioned safety guarantees do in fact hold, both for the core _Rust calculus and for a
number of widely-used Rust libraries.

In order to account for Rust’s “extensible” notion of safety via unsafe language features in libraries,
RustBelt employs a semantic soundness proof [Ahmed et al. 2010]. First, it defines a semantic model
of Rust types: a mapping from types T to logical predicates on terms Φ(𝑒), which asserts what it
means for the term 𝑒 to behave safely at type T (even if internally 𝑒 uses unsafe features). Then, the
RustBelt proof breaks into two main parts:

(1) Safety of libraries that use unsafe features: For any library that makes use of unsafe features,
the implementation of the library is proven to satisfy the semantic model of its API, thus
establishing that it is safe for clients to make use of the library. RustBelt proved safety for a
number of widely-used Rust libraries, including Arc, Rc, Cell, RefCell, Mutex, and RwLock.

(2) Safety of the _Rust type system: The syntactic typing rules of _Rust are proven to respect the
semantic model, thus establishing that code written in the “safe” fragment of Rust is in fact
observably safe—i.e., its behavior is well-defined.

Put together, these imply that if a program P is well-typed, and its only uses of unsafe features
appear within the libraries that have been verified safe (in part 1), then P is observably safe.
RustBelt was formalized in the higher-order concurrent separation logic framework Iris [Jung

et al. 2018b], as separation logic is a good fit for modeling Rust because it is designed around the
same notion of ownership as Rust’s type system, and thus provides built-in support for ownership-
based reasoning. Iris was also designed to support the derivation of new separation logics with
domain-specific reasoning principles. Jung et al. exploited this facility to derive a new logic called
the lifetime logic, which they used extensively in their proofs in order to reason about Rust’s
“lifetimes” and “borrowing” mechanisms at a higher level of abstraction [Klabnik and Nichols 2018,
§4.2, §10.3]. Furthermore, Iris’s strong tactical support for developing machine-checked separation
logics proofs [Krebbers et al. 2018, 2017]; this support made it possible for RustBelt to be fully
mechanized in Coq.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Scaling Concurrency Reasoning to Relaxed Memory Models and Beyond 1:5

2.2 Adaptation of RustBelt to Relaxed Memory
The overarching challenge in developing RBrlx is that the logical foundation on which the original
RustBelt is built is unsound for relaxed memory. The reason is as follows. The Iris framework
(on which RustBelt is built) is parameterized by an operational semantics for the language under
consideration, and depending on how this parameter is instantiated, Iris can be used to derive
proof rules of varying strength. In the case of RustBelt, Iris was instantiated with a sequentially
consistent (SC) semantics for _Rust. This SC instantiation of Iris (call it “Iris-SC”) provides a variety
of proof rules that are valid only under SC semantics and not under relaxed-memory semantics. In
particular, Iris-SC enables one to establish general invariants governing arbitrary regions of shared
memory. Unfortunately, under relaxed memory, different threads can observe writes to different
locations in different orders, so one cannot in general maintain an invariant on multiple locations
simultaneously.

To adapt RustBelt to relaxed memory, we must therefore rebuild it using a logic that is suitably
restricted so as to be sound under relaxed memory. We followed the approach by Kaiser et al.
[2017], who showed how Iris could be used to derive a relaxed-memory separation logic called
iGPS, targeting RA+NA (the fragment of C11 comprising release/acquire and non-atomic accesses).
iGPS, inspired by previous relaxed-memory separation logics [Turon et al. 2014; Vafeiadis and
Narayan 2013], accounts for weak memory consistency by weakening the power of invariants: the
user of iGPS may only establish single-location invariants (i.e., invariants that govern a single shared
memory location), the soundness of which is guaranteed by the coherence (or “SC per location”)
property of C11.
Drawing inspiration from FSL [Doko and Vafeiadis 2016, 2017], in RBrlx, we extended iGPS

further to account for the additional features of the C11 memory model that Rust libraries make use
of—specifically, relaxed accesses and release/acquire fences. This extended logic is called iRC11. We
then ported RustBelt so that it is built on top of iRC11 rather than Iris-SC. Following the structure
of RustBelt, this porting effort breaks down into two major tasks:

Task 1: Re-prove the safety of the Rust libraries considered by RustBelt, this time verifying their
real, relaxed-memory implementations in iRC11.

Task 2: Re-prove the safety of the _Rust type system, this time relying only on proof rules that are
sound in iRC11.

Key challenge. As it turns out, both of these tasks require us to overcome a technical challenge
that is relevant not just to Rust but to relaxed-memory verification in general: namely, that existing
work on separation logic does not provide an adequate foundation for reasoning about
resource reclamation under relaxedmemory. We will first explain this challenge in the context
of Task 1, before briefly describing how it also informs Task 2.

Task 1: Re-prove the safety of Rust libraries under relaxed memory. One of the main motivations
for using a “systems programming” language like Rust or C/C++ (as opposed to a garbage-collected
language like Java) is to have more precise control over limited resources such as memory. In
particular, the Rust programmer can be assured that when an object goes out of scope, the destructor
(drop method) associated with its type will be invoked and any resources it owns will be reclaimed.
Yet the safety of destructors is often quite subtle because objects can contain references to resources
that are shared with other objects. For example, objects of type Arc<T> are simply aliases to a
shared struct containing an object of type T along with a reference counter, which keeps track of
the current number of active aliases to the object. Consequently, the destructor for Arc<T> cannot
simply reclaim the shared struct that it points to: rather, it decrements the shared reference

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Hoang-Hai Dang

SC-CInv-Acc
{𝐼 ∗ 𝑃 } 𝑒 {𝑣 . 𝐼 ∗𝑄} phys_atomic(𝑒)

𝜏 𝐼 ⊢ {[𝜏]𝑞 ∗ 𝑃 } 𝑒 {𝑣 . [𝜏]𝑞 ∗𝑄}

SC-CInv-Tok
[𝜏]𝑞+𝑞′ ⇔ [𝜏]𝑞 ∗ [𝜏]𝑞′

SC-CInv-Cancel
𝜏 𝐼 ⊢ [𝜏]1 𝐼

Fig. 1. Key rules for cancellable invariants in Iris-SC.

counter, and only if it observes that it was the last remaining alias can it safely reclaim the memory
for the reference counter and invoke the destructor for the object of type T.

RustBelt showed how to put this subtle kind of resource reclamation on a sound formal footing
using Iris-SC’s mechanism of cancellable invariants (Figure 1), a generalization of Gotsman et al.
[2007] and Hobor et al. [2008]’s “storable locks”. A cancellable invariant 𝜏 𝐼 is an invariant
governing a shared resource (described by proposition 𝐼) which is only “active” for a certain period
of time, after which point it is “cancelled”. To access the shared resource during an atomic step
of computation (SC-CInv-Acc), a thread must prove that the invariant is still active by exhibiting
ownership of an invariant token [𝜏]𝑞 , where 𝑞 is a fraction in (0,1]. This is an instance of the
well-known concept of fractional permissions [Boyland 2003], and correspondingly, ownership of
invariant tokens can be split or combined through fractional arithmetic (SC-CInv-Tok). If a thread
𝜋 can assert ownership of [𝜏]1 (i.e., the “full” 𝜏 token), it knows that no other thread can assert
that the invariant is active; thus it is safe for 𝜋 to cancel the invariant and reclaim full ownership
of 𝐼 (SC-CInv-Cancel), after which it can free the memory governed by 𝐼 if it wants to. In RustBelt,
cancellable invariants played a crucial role in verifying the safety of destructors such as Arc’s.
However, adapting cancellable invariants to the relaxed-memory setting turns out to be quite

tricky—tricky enough that no existing relaxed-memory separation logic supports them.1 Even if,
following iGPS and its predecessors, we restrict invariants to govern a single location, a problem
arises in how to model the cancellable invariant tokens. Under SC, one can simply model invariant
tokens as a form of ghost state, i.e., purely logical state that is manipulated by the proof but does not
appear in the physical program. But in existing relaxed-memory separation logics, ghost state is
unsynchronized, meaning that ownership of it can be transferred between threads without the need
for any physical synchronization. On the one hand, unsynchronized ghost state is indispensable for
representing globally consistent state, such as (in the case of Arc) the number of Arc aliases currently
in existence. On the other hand, if invariant tokens are modeled naively as unsynchronized ghost
state, the logic of cancellable invariants becomes unsound!

Our solution is to instead model invariant tokens using a novel notion of synchronized ghost state:
ghost state that implicitly tracks the subjective view of the thread that owns it, and that therefore
can only be transferred between threads using physical synchronization. Using synchronized
ghost state, iRC11 offers the first general account of resource reclamation in relaxed-
memory separation logic. We have demonstrated its effectiveness on a number of real
Rust libraries.

Task 2: Re-prove the safety of the _Rust type system under relaxed memory. In contrast to RustBelt’s
proofs of safety for libraries, its proof of safety for the _Rust type system did not rely directly on
cancellable invariants or any other SC-specific features of Iris-SC. Rather, as mentioned above, the
safety proof for the type system made essential use of a Rust-oriented logic called the lifetime logic,
which was a domain-specific logic derived within Iris-SC. Thus, if we are able to show that the

1iGPS supports a related notion of “fractional protocol”, but it is not nearly as powerful as cancellable invariants and is thus
not general enough to account for resource reclamation in Rust.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Scaling Concurrency Reasoning to Relaxed Memory Models and Beyond 1:7

lifetime logic remains sound under relaxed memory—by instead deriving its soundness in iRC11—
then RBrlx can inherit RustBelt’s safety proof for the _Rust type system without modification!

Synchronized ghost state is the key to making this modular porting strategy possible. Specifically,
the lifetime logic is centered around a mechanism called borrow propositions, describing resources
that are borrowed for the duration of a Rust “lifetime” and that can be reclaimed once the lifetime is
over. Borrow propositions are similar in many ways to cancellable invariants, but also more flexible
and more complex in terms of the protocols they support for sharing and reclamation of resources.
Just as synchronized ghost state enables us to adapt cancellable invariants to relaxed memory, it
plays an analogously central role in adapting borrow propositions to relaxed memory as well.

2.3 Contributions of RustBelt Relaxed
RBrlx—an adaptation of RustBelt to a relaxed memory model—is fully mechanized in Coq (like its
predecessor). A summary of contributions of that work is as follows.

• We define ORC11, a new operational-semantics-based characterization of a large fragment
of C11, including release/acquire/relaxed/non-atomic accesses and release/acquire fences.2
Developing such an operational semantics for C11 is a necessary prerequisite for instantiating
the Iris framework. Since the C11 model is known to be flawed [Boehm and Demsky 2014],
we instead design ORC11 to match the semantics of RC11 (Repaired C11) [Lahav et al. 2017],
and in the appendix [Dang et al. 2019b] we sketch a proof of correspondence between them.

• We develop iRC11, a logic for ORC11 derived within Iris, which combines elements of iGPS
and FSL, and moreover supports resource reclamation via cancellable invariants in a manner
that is sound for relaxed memory. The soundness of iRC11 relies crucially on our novel
construction of synchronized ghost state.

• We use iRC11 to port RustBelt from SC to relaxed memory. In particular, the major com-
ponents that required re-verification were the library proofs (since we are now verifying
implementations with relaxed-memory operations in them) and the proof of soundness of
RustBelt’s lifetime logic. The proof of safety of _Rust’s type system, by virtue of being built
atop the lifetime logic, did not need to be changed at all.

The adaptation involves many components whose full technical explanation is beyond the scope
of this proposal. I refer the reader to the main paper [Dang et al. 2019a] for more details.

3 STRONG SPECIFICATIONS FOR RMM DATA STRUCTURES
One common question with reasoning about concurrent libraries is that “What is the strongest
specification we can prove for a library?” This is particularly important when our library is being
used by a client to build a new library, where the client would rely on certain strong properties of
our library to prove the specification for their library.

For example, consider the following specification of stacks.

{isStack(𝑠, 𝑃) ∗ 𝑃 (𝑣)} push(𝑠, 𝑣) {isStack(𝑠, 𝑃)} (STACK-Push)
{isStack(𝑠, 𝑃)} pop(𝑠) {𝑣 . isStack(𝑠, 𝑃) ∗ if 𝑣 ≠ EMPTY then 𝑃 (𝑣) else emp} (STACK-Pop)

This specification ties a stack 𝑠 to a predicate 𝑃 : Val → Prop from values to assertions, which
defines the resource 𝑃 (𝑣) that will be transferred from a call of push(𝑠, 𝑣) to its matching successful
pop(𝑠). This per-element specification captures the synchronization between a push and its matching
successful pop, which guarantees the soundness of transferring the resource 𝑃 (𝑣). However, the
specification does not capture any property that relates the stack’s operations other than matching
2Caveat: ORC11 omits SC accesses because (1) they are not used by any of the libraries verified in RustBelt, and (2) it is still
an open question how to develop a separation logic for reasoning about SC accesses in a relaxed-memory setting.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Hoang-Hai Dang

pairs of push and pop. In particular, it cannot guarantee a “historical” property, in which what one
has observed on the library restricts what one can do with the library afterwards. Such a property
can be seen in the following Message-Passing example [Raad et al. 2019a] using a stack and a queue.

enqueue(𝑞, 1);
push(𝑠, 1)

if pop(𝑠) = 1 then
𝑎 := dequeue(𝑞) 𝑎 ≠ EMPTY

(MP-lib)

InMP-lib, we are using the stack 𝑠 to send a message from the left thread to the right thread that the
enqueue of 1 into the queue 𝑞 has happened. Therefore, it should be the case that, assuming there
is no other dequeue, the dequeue of 𝑞 by the right thread cannot return EMPTY. The “historical”
property here is the fact that the right thread has observed the enqueue and such event restricts
what the thread can do with the queue afterwards. Unfortunately, this property cannot be verified
with only STACK-Push/STACK-Pop and the similar per-element specification of the queue.

{isQueue(𝑞, 𝑃) ∗ 𝑃 (𝑣)} enqueue(𝑞, 𝑣) {isQueue(𝑞, 𝑃)} (QUEUE-Enq)
{isQueue(𝑞, 𝑃)} dequeue(𝑞) {𝑣 . isQueue(𝑞, 𝑃) ∗ if 𝑣 ≠ EMPTY then 𝑃 (𝑣) else emp}

(QUEUE-Deq)

The cause of the problem is clear from QUEUE-Deq: the dequeue specification only considers that
𝑞 is in fact a queue (isQueue(𝑞, 𝑃)), but it does not consider the relation of the dequeue with the
history of 𝑞—which may contain enqueues that the caller has previously observed.
Furthermore, the similarity between the per-element specifications of the stack and the queue

also makes another problem apparent: they cannot distinguish between a stack and a queue! This
is because other than capturing the synchronization between matching push-pop’s and enqueue-
dequeue’s, the specifications cannot express that the stack’s history follows the LIFO property and
the queue’s history follows the FIFO property. Unfortunately, most recent RMM logics do not have
support to derive such a stronger specification.

Linearizability. In the SC context, specifying properties over the whole history of a library’s oper-
ations has been achieved through linearizability [Herlihy and Wing 1990]. Intuitively, a concurrent
library is linearizable if every execution of its operations can be abstracted into (read: simulated
by) a sequential execution or history. Then the behaviors of the current library can be specified
easily as properties (for example, LIFO) over its sequential histories. Unfortunately, the requirement
of sequential execution dictates the existence of a total order over the history which does not
always exist for RMM libraries [Hemed et al. 2015; Raad et al. 2019a]. As such, linearizability is only
applicable to strongly consistent RMM libraries, e.g., those whose every operation is synchronizing
with every other operation.

For RMM libraries that do not have a total order on histories, one can only hope to specify enough
restrictions on the histories of operations through partial orders. Raad et al. [2019a] are the first to
propose a formal framework—but not a high-level program logic—to specify properties over such
partial orders for RMM libraries, following the axiomatic-style memory model of C11. In this section
I propose to combine this style of specification (§3.1) with logical atomicity (§3.2)—an approach to
encode linearizability in concurrent separation logics—in order to construct a high-level, abstract
concurrent separation logic that supports stronger specifications for RMM libraries.

3.1 RMM Specifications with Histories and Partial Orders
In the relaxed memory setting, Raad et al. [2019a] are the first to propose a formal framework
to encode modular library specifications as partial orders on the histories of library operations.
Following the axiomatic-style C11 memory model, they specify a RMM library by (1) defining

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Scaling Concurrency Reasoning to Relaxed Memory Models and Beyond 1:9

the set of library events that can be generated by the library’s operations; then (2) enumerating
candidate histories of the library, represented as event graphs (similarly to C11); and (3) defining the
accepted behaviors as only histories that satisfy certain library-specific axioms. For example, assume
that operations of a queue generate the events enq(𝑞, 𝑣)—an enqueue of 𝑣 , deq(𝑞, 𝑣)—a successful
dequeue of 𝑣 , and deq(𝑞, EMPTY)—an unsuccessful dequeue. Then a reasonably strong specification
of queues who requires the FIFO property would accept the history enq(𝑞, 1); enq(𝑞, 2); deq(𝑞, 1),3
but reject the history enq(𝑞, 1); deq(𝑞, 2). The library-specific axioms also allow for the flexibility
in linearizability: if a library is linearizable, then its specification can include a total-order axiom;
otherwise, the library can only specify enough restrictions over its histories with the partial orders.
For example, in their Weak Queue specification, Raad et al. [2019a] only require that ordered
enqueues must be dequeued in the same order, allowing the possibility that some enqueues can be
unordered and thus one cannot say much about their matching dequeues.
To express such axioms, Raad et al. [2019a]’s specifications include, among other relations, a

synchronization order so. As the name suggest, this partial order should be used by the specifier
to denote pairs of library events (representing operations) that have physical synchronizations.
Similarly to C11, the synchronization order together with the program order po contributes to
the happens-before order hb, which ultimately decides what events should be ordered with one
another. Then, linearizability of a library can be expressed as there exists a strict total order to that
agrees with hb: hb ⊆ to. In the case of a non-linearizable queue, we can instead specify that pairs of
enqueue events enq(𝑞, 𝑣) and their matching successful dequeue events deq(𝑞, 𝑣) should be included
in the queue’s so. We can then encode the condition that “ordered enqueues cannot be dequeued
out of order” as: if (enq1, deq1), (enq2, deq2) ∈ so and (enq1, enq2) ∈ hb then (deq2, deq1) ∉ hb.
Obviously, such a condition is not captured in a per-element specification like QUEUE-Enq and
QUEUE-Deq.
Raad et al. [2019a]’s framework is also general enough to allow a client to compose multiple

library specifications and to derive that, due to sufficient synchronizations, certain behaviors of the
client cannot happen, as in the MP-lib example.

3.2 Strong RMM Specifications with Logical Atomicity
While general, Raad et al. [2019a]’s framework has a problem with scalability: its reasoning is too
low level and thus would require too much formalization effort. In particular, their verifications,
albeit done in Coq, work at the level of library events and their relations. With the axiomatic style of
C11, one has to work with the complete execution at once, and tries to construct relations over the
execution such that they satisfy the library-specific axioms. That is, even though the specifications
are modular, their verifications are still somewhat global because we still need to reason about
complete traces. In solving this problem, I propose the following research questions:

• Can we lift Raad et al. [2019a]’s library specifications to a program logic, where we can exploit
powerful features of Hoare-style concurrent separation logics to reason about histories more
incrementally and abstractly?

• Canwe derivemore abstract reasoning principles for library specifications through ownership?
For example, similarly to how RMM logics have derived the abstract reasoning of single-
location invariant, can we also derived single-library invariants?

• Can the more abstract reasoning principles with CSLs really simplify the verifications of
implementations with respect to library specifications? For example, can we significantly
reduce Raad et al. [2019a]’s 2KLOC verification of a queue implementation?

3Note that the specification should accept this sequential history, but it may also accept non-sequential histories.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Hoang-Hai Dang

• In fact, can we prove or at least demonstrate that our library specifications are much stronger
than existing specifications, in the sense that those specifications can be derived from our
specifications?4

In a way, the motivation for this problem is in the same spirit with that of Kaiser et al. [2017]’s
iGPS: can we build a more abstract and extensible framework with strong mechanization support
for reasoning about RMM libraries? In other words, can we lift Kaiser et al. [2017]’s approach from
C11 to library level? I propose to achieve that goal by combining partial-ordered histories with
logical atomicity—an approach to encode linearizability in concurrent separation logics. Following a
preliminary investigation in collaboration with Mansky [2020], I anticipate the following challenges.

Challenge 1: Proving logical atomicity for relaxed memory. The first challenge is how to soundly
abstract a concurrent operation to a single event of a history, where a library operation can
be composed of multiple instructions and thus is not physically atomic. Fortunately, it is very
commonly the case that a concurrent operation is logically atomic [da Rocha Pinto et al. 2014;
Jacobs and Piessens 2011; Jung et al. 2015], in the sense that even the operation performs several
instructions, its effect is committed atomically by a single instruction, which we call the commit
point of the operation. That is, the effect of the operation appears atomically to other concurrent
observers of the data structure. For example, imagine the implementation of the Treiber stack with
linked lists: the push operation needs several instructions to create a new node and link it to the
current list, but the effect of push only becomes visible to others when the head of stack is updated
(physically) atomically to the new node. The update of the stack’s head is push’s commit point, and
is implemented with an atomic compare-and-swap (CAS). Logically, we can see the commit point
as the point where the operation publishes its change into the global history of the data structure.
That is why we can soundly abstract the effect of an operation as a single event in the history: the
event is inserted into the history at the commit point.

Logical atomicity in Iris. In the SC context, the commit point is often referred to as the linearization
point, because the history is supposed to be linearizable. In fact, linearizability is reflected into Iris
through its implementation of logical atomicity. In the logic of Iris, the main power of logically
atomic operations is that they can be used with stronger proof rules that normally only applicable
to physically atomic instructions. For example, recall that the invariant access rule SC-CInv-Acc
(§2.2) allows one to access the shared resources 𝐼 stored in the invariant, but only for the duration
of a physically atomic expression 𝑒 . So such a rule is not applicable to non-atomic operations.
However, a similar rule is applicable to a logically atomic operation, with the access to the invariant
happening around the operation’s linearization point.5 More specifically, Iris supports the logically
atomic Hoare triples of the form ⟨𝑃⟩ 𝑒 ⟨𝑄⟩ , where 𝑃 and𝑄 are not standard pre- and post-conditions,
but are pre- and post-conditions that 𝑒 has access to around its linearization point. That is, 𝑒 is not
supposed to transform 𝑃 to 𝑄 around its whole execution, but only to transform 𝑃 to 𝑄 around its
committing physically atomic instruction. As such, the logically atomic triples admit the following
invariant access rule.

LogAtom-Inv-Acc
⟨𝐼 ∗ 𝑃⟩ 𝑒 ⟨𝐼 ∗𝑄⟩
𝐼 ⊢ ⟨𝑃⟩ 𝑒 ⟨𝑄⟩

4It would be a great result if we can formally prove that our specifications with histories are the strongest, but this appears
very ambitious to me.
5This is a simplification. The Iris implementation of logical atomicity actually supports accessing the invariant many times
before the linearization point, in order to allow for retries.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Scaling Concurrency Reasoning to Relaxed Memory Models and Beyond 1:11

While this rule has proven useful in “internalizing” linearizability proofs in Iris-SC, it is obviously
unsound in relaxed memory. This is due to the fact that, as discussed in §2.2, general invariants
that may span over multiple locations are unsound in relaxed memory, where different threads
can observe writes to different locations in different orders. We can recover the rule by restricting
to single-location invariants (again, see §2.2) or objective invariants where the invariant content
must be objective, meaning that its truthiness is independent of threads’ observations. For example,
unsynchronized ghost state is objective, and indeed can be used to encode the global history of
the data structures (see also Challenge 2 below). However, preliminary investigation shows that
logically atomic specifications with objective invariants are not as strong as we would like, because
they cannot tie the physical synchronization information into the purely-ghost history!
It is also not obvious how useful logically atomic specifications with single-location invariants

would be for RMM data structures. In fact, I believe that logically atomic specifications as in the
current form are not very useful for RMM logics. I instead suggest that such logically atomic
specifications would be useful in the base logics of those logics. More specifically, Kaiser et al.
[2017]’s approach—which we follow—to encode RMM logics in Iris consists of two steps: (1)
building a base logic in Iris where thread-local observations as well as synchronization information
are explicit in the form of views; and then (2) deriving the abstract top-level logic (for example, with
iGPS single-location invariants) on top of the base logic where the tedious views are hidden. As
such details are hidden in top-level logic, it makes more sense to prove specifications that capture
synchronization information at the level of the base logic.

Example logically atomic specification for queues. Below we propose a logically atomic specifica-
tion for queues at the base logic in Iris where views are explicit.

QUEUE-LogAtom-Deq

JQueueLocalView(𝑞,G0,𝐺0)K(𝑉) ⊢

⟨∀G ⊒ G0 .History(𝑞,G)⟩
dequeue(𝑞) @ 𝑉

⟨(𝑣,𝑉 ′).𝑉 ′ ⊒ 𝑉 ∧ ∃G′ ⊒ G ∪ {deq(𝑞, 𝑣)} ,𝐺 ′ ⊒ 𝐺0.

History(𝑞,G′) ∗ JQueueLocalView(𝑞,G′,𝐺 ′)K(𝑉 ′) ∗ . . . ⟩
Here, the thread-local views𝑉 and𝑉 ′ are explicit:𝑉 is the local view of the caller thread at the call
of the function, while𝑉 ′ is its local view after the call. Notice that views can only grow:𝑉 ⊑ 𝑉 ′. In
this specification, the function requires access to the true, current history G of the queue through
the resource History(𝑞,G). The history G is an event graph that is equipped with partial orders as
in Raad et al. [2019a]. History(𝑞,G) restricts G to be consistent, which includes the properties we
want to for the history, for example that matching enqueues and dequeues are synchronizing, or
that the history has the FIFO property.
The specification says that it will update the history to a bigger history G′ (⊒ G) that would

contain the new dequeue event deq(𝑞, 𝑣). The specification also takes into account the caller thread’s
previous observations through the view-dependent assertionQueueLocalView(𝑞,G0,𝐺0), where
G0 is a snapshot (of the actual history G ⊒ G0) that the thread has logically observed, while 𝐺0
is the subgraph of G0 that the thread has physically observed. Intuitively, as the name suggests,
QueueLocalView(𝑞,G0,𝐺0) records the thread’s local view on events of the queue 𝑞, which will
restrict what future behaviors the thread can observe on 𝑞.
The client of QUEUE-LogAtom-Deq, exploiting LogAtom-Inv-Acc, can then put History(𝑞,G)

inside an Iris general invariant, together with its own extra invariant ClientInv(𝑞,G, . . .) that can
enforce further restrictions or protocols on how the queue will be used, or can attach more resources

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Hoang-Hai Dang

to the queue, to derive a more specific specification:

∃G.History(𝑞,G) ∗ ClientInv(𝑞,G, . . .) ⊢
{JQueueLocalView(𝑞,G0,𝐺0)K(𝑉)}
dequeue(𝑞) @ 𝑉

{(𝑣,𝑉 ′).𝑉 ′ ⊒ 𝑉 ∧ ∃G′ ⊒ G0 ∪ {deq(𝑞, 𝑣)} ,𝐺 ′ ⊒ 𝐺0.

JQueueLocalView(𝑞,G′,𝐺 ′)K(𝑉 ′) ∗ . . . }
It should be possible to abstract this specification further to the top-level logic, in the same style

as that of [Dang et al. 2019a; Kaiser et al. 2017], where views are hidden away. Such specification
would then be not only strong enough but also easy enough to use to verify client programs that
compose libraries, for example MP-lib.

In summary, I propose to prove strong library specifications through logically atomic specifica-
tions at the level of the base logic in Iris, where the synchronization information as well as Iris
general invariants are available. I will also explore to see whether the verifications of implementa-
tions with respect to specifications can still be done in the top-level logic i.e., parts of the proofs can
still avoid dealing with tedious base logic details and can instead take advantages of the abstract
reasoning principles from the top-level logic.

Challenge 2: Encoding histories as ghost state and library axioms as invariants. In order to state
and verify logically atomic library specifications, I will encode library histories as ghost state in
Iris. Note that as we are working prefixes of program traces in Iris, we do not assume a complete
history and then building partial orders on it. Here, we are expected to build the history and its
partial orders incrementally, step-by-step (but the history does not need to grow in a single, linear
list). I would need to handle several technical questions.

• I will explore the suitable ghost structures (partial commutative monoids, or CMRAs [Jung
et al. 2018b]) for histories. The structure should be general enough to encode partial orders
on the history, and also to support agreements between history observations, as the history
must be shared between threads and thus they must have compatible observations over the
history.

• I will need to decompose library-specific axioms, which are stated on complete histories, into
inductive invariants over the growing histories, such that library consistency is maintained
at every operation (when a new event added), and also ultimately at the end when we have
the complete history.

• I will investigate how to tie physical synchronization information into the histories to allow
for strong specifications, the like of which can be used to derive more abstract specifications
(see Challenge 3 below).

Remark. In the more general context of RMM, the commit point is simply the point where the
event is inserted into the history, and how the event is ordered with other events is determined by
the various partial orders that can be updated together with the insertion of the event, or can also
be updated in the future when new events are added to the history. It is then also interesting to
explore the relation between partial ordered histories and prophecy variables [Abadi and Lamport
1991; Jung et al. 2020].

Challenge 3: Deriving high-level, abstract library specifications. The logically atomic library
specifications would be expressive enough to capture various stronger properties of a library’s
histories. However, as we expect them to be stated at the base logic level with explicit threads
observations and synchronization information, they would be tedious to work with. The question

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Scaling Concurrency Reasoning to Relaxed Memory Models and Beyond 1:13

is then can we derive more abstract specifications for libraries from the “base-logic” specifications?
This is very similar to how [Kaiser et al. 2017] derived more abstract reasoning principles for C11
in the top-level logic. At the time of this writing, it is unclear to me what such abstract reasoning
principles for library-level would be. I will explore whether single-library invariants in the style
of iGPS and iRC11’s single-location invariants would be useful. Such argument also needs to be
supported by several representative examples, which must include libraries that are constructed
from smaller libraries.

4 PERSISTENCY LOGICS FOR NON-VOLATILE MEMORY
Non-volatile memory (NVM) refers to a set of emerging technologies [Boehm and Chakrabarti
2016; Gogte et al. 2018; Intel 2014; Kolli et al. 2017; Pelley et al. 2014; Raad et al. 2020, 2019b] that
promise comparable performance to volatile RAM, but also guarantee memory persistence on disk
beyond power failures. That is, after a crash, the memory can be recovered and computations can
be resumed quickly. NMV—that is, persistent memory— is expected to eventually replace volatile
memory for fast access to persistent data.
However, using persistent memory correctly, so as to maintain reasonable consistency after

recovery, is not easy. In order to achieve a desirable state after recovery, one is required to understand
how writes are propagated to memory. Modern multi-core architectures already provide hierarchies
of volatile caches between CPUs and the volatile memory, which affects how writes are propagated
one processor to other processors and the volatile memory. Persistent memory introduces further
persistent caches, which affects how writes are persisted to the non-volatile memory. Therefore,
writes may not be persisted at the same time and in the same order as when they are issued
by processors, and can lead to surprising behaviors. To properly exploit persistent memory, one
now has to understand not just memory consistency—the order of writes propagation between
processors, as abstracted by relaxed memory models, but also memory persistency—the order of
writes persistency to memory, now abstracted by memory persistency models.

There have been several proposals for persistency models with varying strength and perfor-
mance [Gogte et al. 2018; Izraelevitz et al. 2016; Joshi et al. 2015; Kolli et al. 2017, 2016; Raad et al.
2020, 2019b]. But only until recently was the persistency semantics of the mainstream Intel x86
architecture [Intel 2019] formalized by Raad et al. [2020]. They developed the Px86 (persistent
x86) model in both axiomatic and operational forms, by extending the relaxed memory model
x86-TSO [Sewell et al. 2010] with persistency semantics. Raad et al. [2020] formalized the semantics
in close collaboration with Intel’s research engineers and followed the Intel reference manual [Intel
2019], allowing for the clarification of several ambiguities in the manual text. The disambiguated
semantics was then formalized in the Px86sim model, which is the target of this section’s proposal:
I propose to explore the research question to achieve modular, abstract, and machine-checked verifi-
cations of programs for persistent programs in Px86sim with concurrent separation logics. In §4.1, I will
give a quick review of persistency semantics, and in §4.2, I will discuss the possible challenges in
resolving this research question.

4.1 Persistency Semantics
As briefly mentioned above, memory consistency models define the order in which the effects
of memory instructions are made visible to other threads (processors). This order is called the
consistency order. Meanwhile, memory persistency models define the persistency order, i.e., the order
in which the effects of of memory instructions are committed to persistent memory and thus can
be recovered after a crash. Naturally, the two orders do not need to coincide or agree. That is, the
effects of memory instructions can appear to threads differently from how they are persisted. In

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Hoang-Hai Dang

Thread
B

u
ff

e
r

Thread

B
u
ff

e
r

Volatile Memory

read read

d
e
b

u
ff

e
r

d
e
b

u
ff

e
r

...

..
.

(a) x86-TSO subsystem

Thread

B
u
ff

e
r

Thread

B
u
ff

e
r

Persistent Buffer

Non-volatile Memory

read read

d
e
b

u
ff

e
r

d
e
b

u
ff

e
r

readread

...

..
.

debuffer

(b) Px86sim subsystem

Fig. 2. Comparing x86 relaxed memory model (x86-TSO) and persistency memory model (Px86sim).

fact, forcing them to agree would hinder performance. Allowing them to disagree, however, makes
reasoning harder.

To make it more concrete, let us look at the consistency order and persistency order of the Intel-
x86 architecture. An illustration of the original x86-TSO model as well as its persistent extension
Px86sim Raad et al. [2020] is given in Figure 2. Both models use various buffers to allow for delaying
effects to reach threads or the persistent memory.

The x86-TSO model. The Intel-x86 architecture’s consistency order follows the total store order
(TSO) [Sewell et al. 2010]. In this context, we then also use the store order to refer to the consistency
order. In the x86-TSO model, each thread is associated with a FIFO store buffer (see Figure 2a).
When a thread issues a write, the write first goes into the store buffer. At non-deterministic points
in time, writes in the store buffer will be debuffered in FIFO order and propagated to the main
volatile memory. When a thread issues a read of a location 𝑋 , it first finds the last buffered write to
𝑋 in its own buffer. If such a write exists, the thread reads the value from that write. Otherwise, the
thread reads the value of 𝑋 directly from the volatile memory. As the writes are delayed while the
reads are executed immediately, this allows for the Store Buffering (SB) behavior, where it appears
as if an earlier write were reordered after a later read:

𝑋 := 1;
𝑎 := !𝑌

𝑌 := 1;
𝑏 := !𝑋

(SB)

𝑎 = 0 ∧ 𝑏 = 0

In this example, 𝑎 and 𝑏 are local variables, and both (global) locations 𝑋 and 𝑌 are initialized with
0. In both threads, the write is delayed in the current thread’s store buffer, and then the read is
executed immediately. As the read is not able to find a write in the current thread’s store buffer,
it consults the volatile memory and thus reads 0. More specifically, in the left thread, the buffer
only contains the write of 1 to 𝑋 and no writes to 𝑌 , so the thread consults the volatile memory,
at which point the write to 𝑌 by the right thread is also buffered and has not reached the volatile
memory, ultimately resulting in the left thread reading 0. This appears as if in both threads the
write is reordered after the read.

To prevent such reordering behavior, programmers can use mfence instructions to flush the store
buffers and debuffer all delayed writes to the memory. In (SB), by inserting mfence between the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Scaling Concurrency Reasoning to Relaxed Memory Models and Beyond 1:15

𝑋 := 1;
𝑌 := 1;

(a)

𝑋 := 1;
flush𝑋 ;
𝑌 := 1;

(b)

𝑋 := 1;
flush𝑋 ;
𝑌 := 1;

𝑎 := !𝑌 ;
if𝑎 = 1 then
𝑍 := 1

(c)

rec: 𝑋,𝑌 ∈ {0, 1} rec: 𝑌 = 1 =⇒ 𝑋 = 1 rec: 𝑍 = 1 =⇒ 𝑋 = 1

Fig. 3. Examples of Px86sim programs with recovery invariants. 𝑋 , 𝑌 and 𝑍 are distinct locations on different
cache lines. Initially 𝑋 = 𝑌 = 𝑍 = 0.

writes and the reads in both threads, we prevent the writes from being reordered after the reads,
thus making the final behavior 𝑎 = 0 ∧ 𝑏 = 0 impossible.

The Px86sim model. Raad et al. [2020] extends x86-TSO with a persistent buffer (see Figure 2b) to
model the persistency order in Px86sim. The persistent buffer contains pending writes that are to
be persisted to the non-volatile memory. Note that the main memory is now non-volatile and will
persist beyond crashes, while the persistent buffer is still volatile and cannot be recovered after a
crash. Similar to x86-TSO, writes first go into the thread-local store buffers, then are debuffered
from store buffers to the persistent buffer at non-deterministic points in time, and then debuffered
from the persistent buffer to be persisted in the memory, also at non-deterministic points in time.
In Intel’s persistency semantics, writes on different locations may persist in any order, while writes
on the same location persist in the store order, i.e., the order in which writes arrive in the persistent
buffer. Therefore Px86sim models the persistent buffer as a queue that propagates writes on the
same location in the FIFO order, but propagates writes on different locations in an arbitrary order.
Reads also need to follow this hierarchy of buffers. When reading from a location 𝑋 , a thread

first finds the last buffered write to 𝑋 in its own store buffer. If such a write exists, the thread
reads the value from that write. Otherwise, it proceeds to find the last buffered write to 𝑋 in the
persistent buffer. If such a write exists, the thread reads the value from that write. Otherwise, it
reads the value of 𝑋 from the non-volatile memory.
Figure 3 shows several examples that demonstrate some interesting behaviors of the Px86sim

semantics. Each example satisfies a recovery invariant rec which constrains the possible values of
locations in the non-volatile memory at the recovery time after a crash. In Figure 3a, after a crash,
the values of 𝑋 and 𝑌 can be any from {0, 1}, because the persistence of distinct locations 𝑋 and 𝑌
can happen in arbitrary order. For example, it is possible that 𝑋 = 0 and 𝑌 = 1, because the write of
1 to 𝑌 was persisted before the crash, but the write of 1 to 𝑋 was not. Note that while this behavior
is allowed in the persistency order, it is disallowed in the consistency (store) order which requires
a total store order: the writes cannot be observed by threads out-of-order. More specifically, if a
thread sees the write of 1 to 𝑌 , it must have seen the write of 1 to 𝑋 .
In Figure 3b, we can use a persist instruction flush to force the ordering of persisting between

𝑋 and 𝑌 . This ensures that the write of 1 to 𝑋 must be persisted before the write of 1 to 𝑌 is
persisted, thus the corresponding recovery invariant. Note that flush does not force the persistence
immediately, it only enforces ordering: persistence happens asynchronously, at some later time. So
if the program crashes right after the code has finished executing, the persistence of the writes does
not necessarily happen, and the recovery state can contain 𝑋 = 𝑌 = 0. This is why the recovery
invariant is conditional on the value of 𝑌 .
Figure 3c combines the consistency order through message-passing with 𝑌 and flush to force

the ordering of persisting 𝑋 and 𝑍 . If the right thread reads 1 from 𝑌 , x86-TSO enforces that

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Hoang-Hai Dang

𝑋 := 1; flush𝑋 must happen before 𝑍 := 1. As such, flush𝑋 enforces that 𝑋 := 1 is persisted
before 𝑍 := 1, so if after a crash 𝑍 = 1 then 𝑋 = 1. Note that there is still no relation between the
persisting of 𝑌 and 𝑍 : even if 𝑍 := 1 is persisted, there is no guarantee that 𝑌 := 1 is also persisted.
Therefore, we cannot have the recovery invariant (𝑍 = 1 =⇒ 𝑋 = 1 ∧ 𝑌 = 1).

More details on the persistency behaviors of other instructions can be found in [Raad et al. 2020].

4.2 Persistency Concurrent Separation Logics
While there have been several proposals for the formalization of persistency semantics, unfor-
tunately there has been no framework to formally verify algorithms and libraries built on those
persistency semantics. Several persistent data structures (like queues, maps, sets) [Friedman et al.
2018; Nawab et al. 2017; Raad and Vafeiadis 2018; Zuriel et al. 2019] only provide pen-and-paper
correctness proofs, or assume sequential consistency as the consistency model, or additionally
reason globally with traces. Through personal communication with Raad [2020], I learned that they
were extending the OGRA (Owicki-Gries for Release-Acquire) proof system [Lahav and Vafeiadis
2015] in order to a build rely-guarantee-style Owicki-Gries proof system for the Px86sim semantics.
However, they were not targeting a machine-checked framework to perform Px86sim program
verifications.

Our goal is to build a modular, abstract, and machine-checked verification framework for persis-
tent algorithms. To achieve this goal, we have to simultaneously explore reasoning principles for
both the consistency model and the persistency model—which do not always agree, while asking
ourselves whether concurrent separation logics are the right tool to construct such modular and
abstract principles. Previous relaxed memory CSLs [Dang et al. 2019a; Doko and Vafeiadis 2016,
2017; Kaiser et al. 2017; Turon et al. 2014; Vafeiadis and Narayan 2013] have demonstrated that
CSLs are useful for the consistency model, but what is the situation for the persistency model?

As we have seen, reasoning about persistency revolves around proving that algorithms maintain
recovery invariants, which need to hold all the time because crashes can happen any time. And,
for now, these recovery invariants appear to be stated as low-level and global properties that only
concern with values of multiple locations. While it is possible to make recovery invariants relatively
modular by encapsulating them with the set of locations used by the persistent library in question,
it is interesting to see if recovery invariants can be phrased in more high-level CSL assertions that
allow for composing smaller recovery invariants into larger ones, in a fashion similar to composing
smaller libraries into larger ones as discussed in §3.

Furthermore, looking at how writes are persisted to the non-volatile memory, it is also not clear if
a separation of ownership on the non-volatile memory exists. We need to explore how to cast such
persistent properties into the form of CSL assertions, and how to make them compatible with the
reasoning of the relaxed memory consistency model. It appears to me that looking at the Px86sim
model with explicit buffers is not the right way to find the separation structure. Fortunately, several
previous works on relaxed memory models [Dang et al. 2019a; Kaiser et al. 2017; Kang et al. 2017;
Lahav et al. 2016] provide an alternative formulation of such semantics by introducing per-location
histories. In these models, each location 𝑋 has a history that is ordered by the consistency order,
and each thread maintains its own local progress on this order which defines what values the
thread would obtain when it reads 𝑋 , as well as where its writes to 𝑋 would end up in 𝑋 ’s history.
Each thread’s collections of its progress on all locations constitutes the thread’s local view of
the histories. Then, separation logics can be built on the separation structure of location histories
and thread-local views. Following this alternative formulation, we can construct both consistency
and persistency per-location histories to encode the consistency order and the persistency order,

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Scaling Concurrency Reasoning to Relaxed Memory Models and Beyond 1:17

and extend thread-local views to accommodate both of them.6 Then it probably will be easier to
identify the separation structures of consistency and persistency histories and thread-local views
and derive a logic for them. This would solve the compatibility problem between consistency and
persistency reasoning, and open the possibility of encoding persistent properties in CSL assertions.
The remaining specific task would be how to state recovery invariants in such a logic.

Below is a list of specific challenges that I can identify to build a persistency logic for Px86sim. I
plan to build the logic in the Iris framework [Jung et al. 2018b], in collaboration with Raad [2020]
and colleagues.

• Handling crash behaviors. It appears that one would need to model crashes to specify
recovery. However, if we only care about recovery invariants which are supposed to hold at
every point in the program, we may not need to model crashes at all.

• Augmenting the semantics with histories and views so that we can identify the separa-
tion structure. This requires encoding the propagation orders of the buffers into histories
and views and proving that they remain in agreement through out program executions.

• Deriving basic, and then more high-level CSL assertions for histories and views, in
such a way that can easily express recovery invariants in a more modular and high-level
fashion.

• Understanding composability of recovery invariants, to see if we can derive more
complex recovery invariants by relating known recovery invariants of the program, and
whether such composability is useful in practice.

• Identifying key examples and performing verifications. Several algorithms exist with-
out a formal treatment and are non-trivial: persistent lock-free queues [Friedman et al. 2018;
Raad and Vafeiadis 2018], hash-maps [Nawab et al. 2017], sets [Zuriel et al. 2019], and trans-
actions algorithms [Kolli et al. 2016; Raad et al. 2019b]. Performing verification for them will
validate the usefulness and/or the need of separation logics.

5 PROMISING LOGICS
Most relaxed memory logics [Dang et al. 2019a; Doko and Vafeiadis 2016, 2017; Kaiser et al. 2017;
Turon et al. 2014; Vafeiadis and Narayan 2013] have been developed with a restriction that, in the
terminology of the C11 axiomatic model, the (po ∪ rf)+ relation must be acyclic. That is, these
logics can only verify programs that do not have cycles between the program-order relation po
and the reads-from relation rf. The restriction forbids the following Load Buffering (LB) behavior.

𝑎 := !𝑌 ;

𝑋 := 1

𝑏 := !𝑋 ;

𝑌 := 𝑏

(LB)

𝑎 = 1 ∧ 𝑏 = 1

po porfrf

𝑎 := !𝑌 ;

𝑋 := 𝑎

𝑏 := !𝑋 ;

𝑌 := 𝑏

(LB-OOTA)

𝑎 = 1 ∧ 𝑏 = 1?

po porfrf

Here, we assume that both locations 𝑋 and 𝑌 are initialized with 0. In (LB), it is possible that
the right thread reads 𝑏 = 1 from the left thread’s write to 𝑋 , then writes 1 to 𝑌 , and the left
thread reads from that write to get 𝑎 = 1. As we can see, this behavior forms a cycle in the
(po ∪ rf)+ relation, and is allowed in C11. Intuitively, it can be explained by executing the left

6In fact, [Raad 2020] and colleagues, even though not using explicit histories and views, are proposing assertions that
involve different versions of a location 𝑋 ’s values: a volatile version 𝑋𝑣 that is the value local to each thread, a store version
𝑋𝑠 that is the value in the persistent buffer and is the result of the store order, and a persistent version 𝑋𝑝 that is the
value in the non-volatile memory and is the result of the persistency order. Then various rules encode how the values are
propagated from 𝑋𝑣 to 𝑋𝑠 to 𝑋𝑝 .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Hoang-Hai Dang

thread’s write of 𝑋 before its read of 𝑌 . (LB) is observable if a compiler decides to reorder the
(apparently independent) write before the read; on ARMv8 [Pulte et al. 2018], it is observable even
without compiler transformations.

However, the C11 model is seriously flawed, because by allowing cycles in (po ∪ rf)+, it also
allows out-of-thin-air (OOTA) behaviors, as demonstrated by the (LB-OOTA) example (see above).
In this example, C11 allows that the reads of 𝑋 and 𝑌 (values returned in the local variables 𝑎 and
𝑏) can be 1, even though there is no write of 1 in the program: the value 1 appears out of thin air!
To avoid handling such weird behaviors, most logics for RMM simply decided to opt out and not
support (LB), which means that they cannot reason about real programs that run on ARM or Power,
or programs that are applicable to certain compiler transformations.
Meanwhile, there have been several proposals at the level of memory models to fix the OOTA

problem while allowing (LB) [Chakraborty and Vafeiadis 2019; Jeffrey and Riely 2016; Kang et al.
2017; Lee et al. 2020; Pichon-Pharabod and Sewell 2016]. However, there is little work on building
high-level program logics for these memory models. To our knowledge, the only published program
logic is the SLR logic by Svendsen et al. [2018], built upon the promising semantics [Kang et al. 2017].
Unfortunately, SLR’s soundness proof is substantially complex in order to handle the behaviors
of promises—the main ingredient of the promising semantics to model reordering writes earlier.
Even so, SLR does not appear to be expressive enough to verify many examples, including those in
RBrlx [Dang et al. 2019a]. Last but not least, SLR’s soundness proof was done only with pen-and-
paper, and it does not have a framework to support machine-checked programs verification in the
logic.

Below, I discuss the main challenge in reasoning about promises, and propose to explore several
ideas that can help overcome the problem.

5.1 The Promising Semantics
Promises are introduced by the operational-style promising semantics [Kang et al. 2017]—a language
level memory model to fix C11—to model reordering writes earlier while disallowing OOTA
behaviors. Its key idea is that a thread can promise its write earlier (in the program order po) so that
its effect can be observed and relied on by other threads. To be consistent, however, the promising
thread cannot rely on its own promise, either directly or indirectly through other threads, until it
has fulfill the promise—that is, eventually performing the write. This means that the promising
thread must prove that it can fulfill the promise without help from other threads. This proof is
materialized in the promising semantics as a local certification execution that comes with the promise.
The certification execution is a sequential execution without promising steps by the promising thread
and is separate from the actual execution. Basically, at every step in the actual execution, the thread
must show that there exists a certification execution where it runs alone without making more
promises (and thus sequentially; all other threads considered frozen) and can reach a point where
all of its outstanding promises are fulfilled.

For example, in (LB), the left thread can promise the write of 1 to 𝑋 , because it can show that in
any later step it will be able construct a certification execution where it writes 1 to 𝑋 eventually
without help from other threads. In the actual execution, after the promise has happened, the right
thread can observe that promise like a normal write, and thus reads 1 from 𝑋 , then writes that
value 1 to 𝑌 , which then in turn allows the left thread to proceed to read 1 from 𝑌 . Finally, still in
the actual execution, the left thread simply writes 1 to 𝑋 to actually fulfill its promise. (While the
(LB) example does not demonstrate it, it is useful to note the fact that the fulfillments in certification
executions are not necessarily the same as the fulfillment in the actual execution.) Meanwhile, in
(LB-OOTA), the left thread cannot promise to write 1 to 𝑋 at all, because at any time it cannot show

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Scaling Concurrency Reasoning to Relaxed Memory Models and Beyond 1:19

that it will eventually write 1 without any help from other threads. The same also applies to the
right thread for its write to 𝑌 .

The formal definition of certification is carefully defined such that it prevents various undesirable
behaviors that are not observable in hardware (where hardware prevents such behaviors through
syntactic dependencies between instructions), while still allowing reordering of instructions that
can be generated by many compiler transformations as well as the hardware themselves. The
promising semantics 2.0 [Lee et al. 2020] fine-tunes the definition of certification further to allow
for global-analysis-based transformations. However, I will not discuss more details within the scope
of this proposal—interested readers can refer to the original papers [Kang et al. 2017; Lee et al.
2020].

5.2 Reasoning About Promises
The main challenge in reasoning about promises is how early a write to a location 𝑋 can be
promised, which determines how early the effect of that write can be visible to other threads. This is
particularly important to building program logics, because if we intend to use𝑋 as a communication
channel between threads, then whatever information we want to communicate through a write of
𝑋 must be available at the point of the promise, not at the point of the fulfillment, such that other
threads can access that information. In separation logics, such information can also be extended
to resources, and then the logic’s design question of whether or not we should allow transferring
resources over promisable writes depends on whether the resources can be made ready by the
time the promise happens. (SLR [Svendsen et al. 2018] decided to disallow resource transfer over
promisable writes altogether.) Another design question concerns the permission to even make
promises: promises are almost as powerful as writes as they represent the intent to insert new
events into the history of the location. In fact, from the perspective of other threads, promises
are no different from writes. So, in separation logics, similarly to how a thread would need some
permission to write to a location, does a thread need to own the permission to make a promise?
If so, does that mean that we require the thread to own that permission by the time the promise
happens? (SLR does not have such requirement, and relies on certification to justify the lack of it,
which is the reason why SLR’s soundness proof is substantially complex—see more below.)

Unfortunately, it is non-trivial to determine how early a write can be promised. In principle, a
write can be promised as early as possible, as long as in the promising thread’s subsequent steps
the promise is always fulfillable. And fulfillment relies on the existence of certification executions,
which are formally defined with respect to the machine’s current whole memory, which makes
it very non-modular, because this means that a thread’s promises may only happen after certain
actions by other threads. For example, in (LB), the right thread can promise to write 1 to 𝑌 , but only
after the left thread has promised or written 1 to 𝑋 , because only from that state of the memory
can the right thread certify that it can read 1 from 𝑋 and thus write 1 to 𝑌 .
A similar situation can be observed in the following Message-Passing (MP) example.

𝑋 := 1;
𝑌 :=rel 1

𝑎 := !acq𝑌 ;
if𝑎 = 1 then
𝑋 := 2

(MP)

Here, from the perspective of a separation logic, we are using a release-acquire synchronization on
𝑌 to transfer (message-passing) the ownership of 𝑋 from the left thread to the right thread so that
the right thread can write to 𝑋 . The question of interest is how early the write of 2 to 𝑋 by the
right thread can be promised. By certification, the right thread can promise to write 2 to 𝑋 as soon
as the left thread has finished writing 1 to 𝑌 , that is, even before the read of 𝑌 and the conditional

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Hoang-Hai Dang

are executed. From the perspective of a logic designer, should we model that the right thread has
acquired the resources of 𝑋 right at the time the promise to 𝑋 is made? This should be sound
because the promise can only be introduced by the semantics with a certification which justifies
that the right thread must have been able to access 𝑋 at that time. But proving the soundness of
such a scheme is non-trivial, because we have to handle not only the actual execution, but also the
certification executions.

In general, if one wants to allow resource transfer over promisable writes, it is unclear where the
resources should be and when they should be transferred, due to the too flexible semantics nature
of promises. This is why the SLR logic [Svendsen et al. 2018] forbids transferring resources over
promisable writes. At first, this appeared to us as too restrictive, because we did not see a clear
way to verify RBrlx examples (like Arc) in such a logic. However, after a long time failing to find a
general resource transfer scheme for promisable writes, I believe a compromise can be made by
disallowing resource transfer over promisable writes in certain cases, while allowing it in other
synchronization schemes (for example, release-acquire synchronization with relaxed accesses and
fences). There is also a possibility to adjust the verifications in RBrlx to fit into this compromise.

SLR also made another design choice: to completely hide reasoning about promises in the logic.
That is, users of SLR logic would prove Hoare triples in the non-promising fragment of the semantics,
where new promises cannot be made. Then, the Herculean soundness proof of SLR guarantees that
any such triple that holds in the non-promising semantics also holds in the promising semantics.
This is only possible thanks to the various restrictions enforced by the reasoning rules of SLR.
While this is an interesting design choice that keep the logic’s reasoning very clean, it is unclear
how it would fit into the compromise mentioned above, where the logic would be less restrictive.
Meanwhile, there is also a development of the promising semantics at hardware level for

ARM [Pulte et al. 2019]. The promising ARM semantics also seems to be a good target for a
logic, as it encodes more syntactic dependencies from ARM, making the behaviors of promises more
constrained. In particular, due to the syntactic dependencies, in many cases, the order in which
writes can be promised earlier actually agrees with the order in which writes should happen. This
means that in many cases, the behaviors of promises follow the non-promising behaviors of writes,
so there is a possibility to start with reasoning in the non-promising machine and replay that
reasoning in the promising machine for promises, thus hiding reasoning about promises in the
logic, like in SLR. This is an interesting direction that can be explored in collaboration with Pulte
et al. [2020].
Having considered the various aspects mentioned above, I propose to explore the following

research questions.

• Are the restrictions of SLR the right ones? Can we relaxed them so as to be able to verify
more complex program verifications, like those in RBrlx?

• Can we achieve the soundness proof of SLR in a machine-checked framework like Iris? This
would require a version of Iris that supports transfinite step-indexing, as SLR’s soundness
proof need to reasoning about both the actual execution and the certification executions.

• Would the more constrained behaviors of the promising ARM semantics give us a simpler
soundness proof, and make its formalization more conceivable in Iris?

• Promises also have the power of predicting future executions, for example, in (MP), the
promise of writing 2 to𝑋 by the right thread proves that the thread must take the true branch
of the conditional. Can such power be exploited for reasoning?

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Scaling Concurrency Reasoning to Relaxed Memory Models and Beyond 1:21

Timeline Action Point
StrongRLX (§3) PerSL (§4) ProSL (§5)

2020 June - July Start exploration,
in collaboration
with Mansky [2020]
and [Kang 2020]

2020 August -
October

Planned internship

2020 November Continue with project Start exploration if
StrongRLX fails,
in collaboration
with [Raad 2020]

Start exploration if
PerSL fails, in collabo-
ration with [Pulte et al.
2020]

2020 December -
2021 June

Continue with the chosen project(s), and prepare for publication(s)

2021 July - Au-
gust

Thesis writing

Fig. 4. Suggested timeline for thesis completion

6 TIMELINE FOR THESIS COMPLETION
I propose the timeline in Figure 4 to complete the thesis, with the options of three projects: stronger
specifications for RMM (StrongRLX, §3), persistency logics (PerSL, §4), and promising logics
(ProSL, §5).

REFERENCES
Martín Abadi and Leslie Lamport. 1991. The existence of refinement mappings. Theoretical Computer Science 82, 2 (1991),

253 – 284. https://doi.org/10.1016/0304-3975(91)90224-P
Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi, Gang Tan, and Daniel C. Wang. 2010. Semantic

foundations for typed assembly languages. TOPLAS 32, 3 (2010), 1–67.
Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ Concurrency. In POPL.

55–66.
Hans-J. Boehm and Dhruva R. Chakrabarti. 2016. Persistence Programming Models for Non-Volatile Memory. ISMM (2016).

https://doi.org/10.1145/3241624.2926704
Hans-J. Boehm and Brian Demsky. 2014. Outlawing ghosts: Avoiding out-of-thin-air results. In MSPC.
John Boyland. 2003. Checking interference with fractional permissions. In SAS (LNCS). https://doi.org/10.1007/

3-540-44898-5_4
Stephen Brookes. 2007. A Semantics for Concurrent Separation Logic. Theoretical Computer Science 375, 1–3 (2007).

https://doi.org/10.1016/j.tcs.2006.12.034
Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding Thin-Air Reads with Event Structures. POPL (2019). https:

//doi.org/10.1145/3290383
Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A Logic for Time and Data Abstraction.

In ECOOP, Richard Jones (Ed.).
Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2019a. RustBelt Meets Relaxed Memory.

Proc. ACM Program. Lang. POPL (2019). https://doi.org/10.1145/3371102
Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2019b. RustBelt meets relaxed memory –

Artifact. https://doi.org/10.5281/zenodo.3539237 Latest version available at http://plv.mpi-sws.org/rustbelt/rbrlx/.
Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor Vafeiadis. 2010. Concurrent

abstract predicates. In ECOOP (LNCS). https://doi.org/10.1007/978-3-642-14107-2_24
Marko Doko and Viktor Vafeiadis. 2016. A Program Logic for C11 Memory Fences. In VMCAI (LNCS). Springer, 413–430.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1145/3241624.2926704
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3371102
https://doi.org/10.5281/zenodo.3539237
http://plv.mpi-sws.org/rustbelt/rbrlx/
https://doi.org/10.1007/978-3-642-14107-2_24

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Hoang-Hai Dang

Marko Doko and Viktor Vafeiadis. 2017. Tackling Real-Life Relaxed Concurrency with FSL++. In ESOP.
Xinyu Feng. 2009. Local Rely-Guarantee Reasoning. In POPL. https://doi.org/10.1145/1594834.1480922
Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. 2007. On the Relationship Between Concurrent Separation Logic and

Assume-Guarantee Reasoning. In ESOP.
Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. 2018. A Persistent Lock-Free Queue for Non-Volatile

Memory. In PPoPP. https://doi.org/10.1145/3178487.3178490
Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. 2010. Reasoning about Optimistic Concurrency Using a Program

Logic for History. In CONCUR.
Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish Narayanasamy, Peter M. Chen, and Thomas F. Wenisch. 2018.

Persistency for Synchronization-Free Regions. PLDI (2018). https://doi.org/10.1145/3296979.3192367
Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv. 2007. Local Reasoning for Storable Locks

and Threads. In APLAS (Singapore). 19–37.
Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis. 2015. Modular Verification of Concurrency-Aware Linearizability. In

DISC. https://doi.org/10.1007/978-3-662-48653-5_25
Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM

Trans. Program. Lang. Syst. (1990). https://doi.org/10.1145/78969.78972
Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. 2008. Oracle Semantics for Concurrent Separation Logic.

In ESOP (Budapest, Hungary). 353–367.
Intel. 2014. Intel architecture instruction set extensions programming reference. (2014). https://software.intel.com/sites/

default/files/managed/07/b7/319433-023.pdf
Intel. 2019. Intel 64 and IA-32 Architectures Software Developer’s Manual (Combined Volumes). (2019). https://software.

intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
Joseph Izraelevitz, Hammurabi Mendes, and Michael Scott. 2016. Linearizability of Persistent Memory Objects Under a

Full-System-Crash Failure Model. In Distributed Computing (DISC). https://doi.org/10.1007/978-3-662-53426-7_23
Bart Jacobs and Frank Piessens. 2011. Expressive Modular Fine-Grained Concurrency Specification. In POPL. https:

//doi.org/10.1145/1926385.1926417
Alan Jeffrey and James Riely. 2016. On Thin Air Reads Towards an Event Structures Model of Relaxed Memory. In LICS.

https://doi.org/10.1145/2933575.2934536
Jonas Braband Jensen and Lars Birkedal. 2012. Fictional Separation Logic. In ESOP (LNCS). https://doi.org/10.1007/

978-3-642-28869-2_19
Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2015. Efficient Persist Barriers for Multicores. In MICRO-48.

https://doi.org/10.1145/2830772.2830805
Jacques-Henri Jourdan. 2018. Insufficient synchronization in Arc::get_mut. Rust issue #51780, https://github.com/rust-lang/

rust/issues/51780.
Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018a. RustBelt: Securing the Foundations of the

Rust Programming Language. PACMPL 2, POPL, Article 66 (2018).
Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018b. Iris from the

Ground Up: A Modular Foundation for Higher-Order Concurrent Separation Logic. Journal of Functional Programming
28, e20 (Nov. 2018), 1–73. https://doi.org/10.1017/S0956796818000151

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs.
2020. The Future is Ours: Prophecy Variables in Separation Logic. Proc. ACM Program. Lang. 4, POPL (2020). https:
//doi.org/10.1145/3371113

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:
Monoids and invariants as an orthogonal basis for concurrent reasoning. In POPL. https://doi.org/10.1145/2676726.2676980

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong Logic for Weak Memory:
Reasoning about Release-Acquire Consistency in Iris. In ECOOP (LIPIcs). 17:1–17:29.

Jeehoon Kang. 2020. Personal communication.
Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promising Semantics for Relaxed-

memory Concurrency. In POPL (Paris, France). ACM, 175–189.
Steve Klabnik and Carol Nichols. 2018. The Rust Programming Language. https://doc.rust-lang.org/stable/book/2018-edition/
Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Peter M. Chen, Satish Narayanasamy, and Thomas F. Wenisch.

2017. Language-Level Persistency. SIGARCH Comput. Archit. News ISCA (2017). https://doi.org/10.1145/3140659.3080229
Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F. Wenisch. 2016. High-Performance Transactions for

Persistent Memories. In ASPLOS. https://doi.org/10.1145/2872362.2872381
Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud,

and Derek Dreyer. 2018. MoSeL: A General, Extensible Modal Framework for Interactive Proofs in Separation Logic.
PACMPL 2, ICFP, Article 77 (2018).

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

https://doi.org/10.1145/1594834.1480922
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3296979.3192367
https://doi.org/10.1007/978-3-662-48653-5_25
https://doi.org/10.1145/78969.78972
https://software.intel.com/sites/default/files/managed/07/b7/319433-023.pdf
https://software.intel.com/sites/default/files/managed/07/b7/319433-023.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1145/1926385.1926417
https://doi.org/10.1145/1926385.1926417
https://doi.org/10.1145/2933575.2934536
https://doi.org/10.1007/978-3-642-28869-2_19
https://doi.org/10.1007/978-3-642-28869-2_19
https://doi.org/10.1145/2830772.2830805
https://github.com/rust-lang/rust/issues/51780
https://github.com/rust-lang/rust/issues/51780
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2676726.2676980
https://doc.rust-lang.org/stable/book/2018-edition/
https://doi.org/10.1145/3140659.3080229
https://doi.org/10.1145/2872362.2872381

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Scaling Concurrency Reasoning to Relaxed Memory Models and Beyond 1:23

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive Proofs in Higher-Order Concurrent Separation Logic.
In POPL. https://doi.org/10.1145/3009837.3009855

Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming Release-Acquire Consistency. POPL (2016). https:
//doi.org/10.1145/2914770.2837643

Ori Lahav and Viktor Vafeiadis. 2015. Owicki-Gries Reasoning for Weak Memory Models. In ICALP.
Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing sequential consistency in

C/C++11. In PLDI.
Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE

Trans. Computers 28, 9 (1979), 690–691.
Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis. 2020.

Promising 2.0: Global Optimizations in Relaxed Memory Concurrency. PLDI (2020).
William Mansky. 2020. Personal communication.
Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. 2014. Communicating state transition

systems for fine-grained concurrent resources. In ESOP (LNCS). https://doi.org/10.1007/978-3-642-54833-8_16
Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey III, Dhruva R. Chakrabarti, and Michael L. Scott. 2017.

Dalí: A Periodically Persistent Hash Map. In DISC. https://doi.org/10.4230/LIPIcs.DISC.2017.37
Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. Theoretical Computer Science 375, 1-3 (2007).

https://doi.org/10.1016/j.tcs.2006.12.035
Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory Persistency. SIGARCH Comput. Archit. News ISCA

(2014). https://doi.org/10.1145/2678373.2665712
Jean Pichon-Pharabod and Peter Sewell. 2016. A Concurrency Semantics for Relaxed Atomics That Permits Optimisation

and Avoids Thin-Air Executions. In POPL. https://doi.org/10.1145/2837614.2837616
Christopher Pulte, Shaked Flur,Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2018. SimplifyingARM concurrency:

multicopy-atomic axiomatic and operational models for ARMv8. POPL (2018). https://doi.org/10.1145/3158107
Christopher Pulte, Jean Pichon-Pharabod, and Jeehoon Kang. 2020. Personal communication.
Christopher Pulte, Jean Pichon-Pharabod, Jeehoon Kang, Sung-Hwan Lee, and Chung-Kil Hur. 2019. Promising-ARM/RISC-V:

A Simpler and Faster Operational Concurrency Model. In PLDI. https://doi.org/10.1145/3314221.3314624
Azalea Raad. 2020. Personal communication.
Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis. 2019a. On Library Correctness under Weak Memory

Consistency: Specifying and Verifying Concurrent Libraries under Declarative Consistency Models. Proc. ACM Program.
Lang. POPL (2019). https://doi.org/10.1145/3290381

Azalea Raad and Viktor Vafeiadis. 2018. Persistence Semantics for Weak Memory: Integrating Epoch Persistency with the
TSO Memory Model. OOPSLA (2018). https://doi.org/10.1145/3276507

Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2020. Persistency Semantics of the Intel-X86 Architecture.
Proc. ACM Program. Lang. 4, POPL (2020). https://doi.org/10.1145/3371079

Azalea Raad, John Wickerson, and Viktor Vafeiadis. 2019b. Weak Persistency Semantics from the Ground up: Formalising
the Persistency Semantics of ARMv8 and Transactional Models. Proc. ACM Program. Lang. OOPSLA (2019). https:
//doi.org/10.1145/3360561

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen. 2010. X86-TSO: A Rigorous
and Usable Programmer’s Model for X86 Multiprocessors. Commun. ACM 53, 7 (July 2010), 89–97. https://doi.org/10.
1145/1785414.1785443

Kasper Svendsen and Lars Birkedal. 2014. Impredicative concurrent abstract predicates. In ESOP (LNCS). https://doi.org/10.
1007/978-3-642-54833-8_9

Kasper Svendsen, Jean Pichon-Pharabod, Marko Doko, Ori Lahav, and Viktor Vafeiadis. 2018. A Separation Logic for a
Promising Semantics. In ESOP.

Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying refinement and Hoare-style reasoning in a logic for
higher-order concurrency. In ICFP. https://doi.org/10.1145/2500365.2500600

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: Navigating Weak Memory with Ghosts, Protocols, and
Separation. In OOPSLA. ACM, 691–707.

Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed Separation Logic: A Program Logic for C11 Concurrency. In OOPSLA.
Viktor Vafeiadis and Matthew J. Parkinson. 2007. A Marriage of Rely/Guarantee and Separation Logic. In CONCUR. 256–271.
Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez Petrank. 2019. Efficient Lock-Free Durable Sets.

OOPSLA (2019). https://doi.org/10.1145/3360554

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: March 2020.

https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/2914770.2837643
https://doi.org/10.1145/2914770.2837643
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.4230/LIPIcs.DISC.2017.37
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1145/2678373.2665712
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3314221.3314624
https://doi.org/10.1145/3290381
https://doi.org/10.1145/3276507
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3360561
https://doi.org/10.1145/3360561
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1145/2500365.2500600
https://doi.org/10.1145/3360554

	Abstract
	1 Introduction
	2 Relaxed Memory for Rust
	2.1 Background on RustBelt
	2.2 Adaptation of RustBelt to Relaxed Memory
	2.3 Contributions of RustBelt Relaxed

	3 Strong Specifications for RMM Data Structures
	3.1 RMM Specifications with Histories and Partial Orders
	3.2 Strong RMM Specifications with Logical Atomicity

	4 Persistency Logics for Non-volatile Memory
	4.1 Persistency Semantics
	4.2 Persistency Concurrent Separation Logics

	5 Promising Logics
	5.1 The Promising Semantics
	5.2 Reasoning About Promises

	6 Timeline for Thesis Completion
	References

