
Data Networks Project 2: Design Document for
Intra-Domain Routing Protocols

Assigned: Wed, 30 May 2007

Due: 11:59pm, Wed, 20 June 2007

1 Introduction

You have just joined Bisco Systems, a networking equipment company, as a Design Engineer. Your
first project is to design and implement intradomain routingprotocols for Bisco’s upcoming product, the
GSR9999 router. Your first step is to write a design document.

In particular, you are to design and implement a variant of the distance vector routing protocol (DV)
and a variant of the link-state routing protocol (LS). The functional specifications of the DV and LS
protocols are provided (see Section 6 and 7) and your implementationmust follow these specifications.
You are also given the GSR9999’s system interfaces (see Section 5) which you must use to implement
the routing protocols.

Note that the routing protocols you are going to implement and the network model in this project
are simplified. The DV and LS protocols have a limited set of features. Every node in the network is
assumed to be a router and is identified by a unique ID. No hierarchical addressing is used. Each node
has a number of ports, which may or may not be connected to a neighbor router. Figure 1 illustrates a
simple network example.

In Project 3, you will actually implement these protocols based on your design in a GSR9999 sim-
ulator. The simulator essentially provides the GSR9999 system interfaces as described in Section 5.
Versions of the simulator are available in C++ and Java, so you may use either of these languages in your
protocol design and implementation. You should also assumethat your two routing protocols will be
encapsulated in a RoutingProtocol object.

Assignment: In this project, we ask you to write a design document ofno more than six pages(ex-
cluding figures and pseudocode listings) to describe the details of your design. The specific requirements
are described in Section 2, 3 and 4. The goal of this project isto give you a chance to carefully think
through the design of the entire system before you start the implementation, which we will ask you to
complete in Project 3.

Grading: Grading of your design document will be based on the correctness and completeness of
your design, as well as the quality and clarity of your writing. Your document must be type-set in
11 point New Times Roman font with 1 inch margins and no more then 45 lines per page (like this
document). Use of appropriate illustrations (tables, figures) is required. A clear, well-organized writeup
with almost no design flaws or missing pieces will earn you full marks. Please pay particular attention to

1



n0

n3

n1

n2
p0

p1

p1

p2

p3

p0

p0

p1

p2

p1

p0

Figure 1: Simple network example.

the organization of your document. A clear, concise, well organized document is far better than a wordy
and confusing one.IMPORTANT : You are strongly encouraged to schedule a meeting with a TA during
the week of June 11, 2007, to discuss a complete draft of your design document. The purpose of this
meeting is to provide you with feedback on your design and your document. Watch the newsgroup for
meeting scheduling instructions.

Working in groups : You need to form groups of two students for this assignment.We suggest that
you use the course mailing list to organize teams.

2 Design Document Guidelines

The purpose of the design document is to provide sufficient design details and implementation instruc-
tions such that a programmer (perhaps a summer intern) can independently and successfully implement
the routing protocols according to your document. Your design document must contain details such as
data structure definitions, parameter definitions, and procedure pseudocode. To complete this document,
you will need to first understand the given information in Section 5, 6, and 7. Your document should
roughly follow the structure below. Again, use of illustrations like figures and tables when appropriate.

Section A. Design Overview- You should describe the overall organization of your system. What
are the major logical components in your design and what is the rationale behind your design? What
are the responsibilities of each component? How do the components interact? You should have a block
diagram to illustrate the different components in your design.

Section B. Core Data Structures- You should describe the core data structures needed to imple-
ment your various components. Give detailed data structuredefinitions in C/Java and pseudocode for
manipulating the data structures if the pseudocode is non-trivial (e.g. forwarding table, distance vector,
etc).

Section C. Component Operations- You should describe the implementation of the operations in
each component of your design using pseudocode and illustrations etc. See Section 3 for some hints.
Here, the focus is on the procedures and algorithms used in your proposed design. How the core data
structures are used should be described. You should describe how common system events (alarm, packet
arrival) are both generated and handled in your components.

2



3 Design Hints

Your design document must address the technical issues described below. Note that this is not an
exhaustive list of issues. These issues are provided to help stimulate and organize your thoughts.

Common System Design Issues- You will need to address design issues that are common to both DV
and LS routing protocols. Below are some items that your document must address.

• Router ID - At bootup time, your routing software is initialized with a unique 16-bit router identi-
fier. 0xffff is reserved as an invalid router ID.

• Routing Procotol Selection - At bootup time, your routing software is initialized with the routing
protocol that should be used in the system (either DV or LS). Once initialized, this selection does
not change.

• Port Status Data Structure - At bootup time, your routing software is initialized with the total
number of ports on the router. The total number of ports does not change over time. A portmay be
connected to a neighbor router, or may be unconnected. A neighbor router is uniquely identified
by its 16-bit identifier. Connections between neighboring routers have a given non-zero round-trip
delay. The round-trip delay to a neighbor router should be used as the link cost in your routing
protocols.

• Port Status Monitoring - In the GSR9999 router, port status information (i.e. neighbor router ID
and link round-trip delay, if connected) must be detected dynamically by software. Use pseu-
docode to describe a port status detection algorithm that attempts to test port status once every
10 seconds and updates the port status data structure accordingly. You will need to use the PING
and PONG packet types and the time() and setalarm() system calls specified in Section 5 to learn
the neighbor router ID and measure the round-trip delay. Youwill need to describe (1) how to
generate PING packets periodically, (2) how to construct PING packets, (3) how PING packets are
processed when received, (4) how PONG packets are processedwhen received.

To determine port status using PING/PONG, you must use an embedded timestamp in the PING/PONG
messages and use the following procedure. When a router generates a PING packet, it must store
the current time in the PING message payload, then send the PING message to a neighbor with
the correct source ID. When the neighbor router receives thePING message, it must update the
received message’s type to PONG, update the source ID to its own, then send the resulting PONG
message (with the original timestamp still in the payload) immediately back to the neighbor. When
the PONG message is received, the timestamp in the message iscompared to the current time to
compute the RTT. This is in fact how theping UNIX tool measures RTT.

Since PING messages are generated every 10 seconds, a port’sstatus is refreshed by PONG mes-
sages approximately once every 10 seconds. A link should be declared dead when the status has
not been refreshed for 15 seconds. The port status should be properly changed within 1 second
of the expiration. That is, if you implement a 1-second periodic check on all the state’s freshness,
that’s sufficient.

3



• Forwarding Table Data Structure - Describe a suitable C/Java data structure for maintaining the
forwarding table. Note that at bootup time, a router in the network does not know how many routers
are in the network. The number of routers in the network can also change dynamically. Your data
structure must support insertion and deletion of forwarding table entries. This forwarding table
structure should be generic such that it can be used by your packet forwarding function no matter
which routing protocols (DV or LS) is being used.

• Packet Forwarding - Use pseudocode to describe how to handlethe forwarding of regular DATA
packets.

• Note that the C/Java definitions of numerical constants for packet types, protocol types, and infinity
cost will eventually be provided to you in Project 3 for uniformity. In this design document,
however, you can define your own.

• Keep in mind that your router implementation will have to interoperate with other router imple-
mentations. Therefore, you need to follow the specifications precisely to ensure interoperability.
Moreover, your implementation should be robust to malformed packets from other routers. Your
implementation should ignore such packets.

DV Protocol Design Issues- See Section 6 for the specification of the protocol you need to implement.
Below are the set of issues you must address.

• Distance Vector Data Structure - Describe a suitable C/Javadata structure for maintaining the
distance vector at a router. Note that an entry in the distance vector must be refreshed periodically
or else it must be removed after a timeout. Your data structure should support dynamic insertion
and deletion.

• Distance Vector Freshness Check - Use pseudocode to describe how you will implement a periodic
check of distance vector freshness.

• Direct Neighbors Maintenance - Use pseudocode to describe how to insert, delete, and refresh
direct neighbors of a router in the distance vector structure.

• DV Announcement - Use pseudocode to describe how to send DV routing update packets.

• DV Routing Update Packet Construction - Use pseudocode and suitable C/Java data structures to
describe how a DV routing update packet can be constructed. Your protocol should implement the
poison reverse DV variant.

Link cost (i.e. round-trip time) should be represented in units of milliseconds in routing update
messages as a 16-bit unsigned integer.

The DV update packet should contain as few entries as possible. That is, if a destination D is not
reachable from router N, then router N’s DV update packets should not include an entry for D. As
a result, the size of the DV updates is minimized, and the withdrawal of a route is implicit. In other
words, you should not have (ID, INFINITYCOST) pairs in your DV update packets except when
necessary for implementing poison reverse.

4



• DV Packet processing - Use pseudocode to describe how to process DV routing update packets
and update the distance vector data structure.

Your DV implementation should only record the best route among all neighbors for a destination,
and not record second best route, third best route, etc. Thatis, when the best route fails, the
only way to discover an alternative route is from getting a new DV update message containing an
alternate route.

• Forwarding Table Maintenance - Use pseudocode to describe how to update the forwarding table
based on information in the distance vector data structure.

• DV update packets are generated periodically every 30 seconds. Triggered updates should be
considered as additional updates separate from the periodic updates. That is, triggered updates
should not affect the schedule of the normal 30 second periodic updates. For example, suppose
periodic updates are sent at time 0, 30, 60, 90, 120... etc. Even if a triggered update occurs at time
42, the regular updates should still occur at time 60, 90, 120, etc.

LS Protocol Design Issues- See Section 7 for the specification of the protocol you need to implement.
Below are the set of issues you must address.

• Link-state data structure - Describe a suitable C/Java datastructure for storing link-state informa-
tion collected from other routers in the network. Note that link-state information must be period-
ically refreshed or else it is removed after a timeout. Your data structure should support dynamic
insertion and deletion. This link-state information will also be used by Dijkstra’s algorithm for
computing shortest paths.

• Link-state Freshness Check - Use pseudocode to describe howyou will implement a periodic
check of link-state freshness.

• LS Announcement - Use pseudocode to describe how to generateLS routing update packets.

• LS routing Update Packet Construction - Use pseudocode to describe how to construct a LS routing
update packet.

Link cost (i.e. round-trip time) should be represented in units of milliseconds in routing update
messages as a 16-bit unsigned integer.

The LS update packet should be as small as possible. You should never have (ID, INFINITYCOST)
pairs in your LS update packets.

• LS Packet processing - Use pseudocode to describe how to process LS routing update packets and
update the link-state data structure.

• Forwarding Table Maintenance - Use pseudocode to describe how to update the forwarding table
based on information in the link-state data structure and Dijkstra’s shortest path algorithm.

• LS update packets are generated periodically every 30 seconds. Triggered updates should be con-
sidered as additional updates separate from the periodic updates. That is, triggered updates should
not affect the schedule of the normal 30 second periodic updates, as with the DV algorithm.

5



4 Submission Instructions

Please submit your design document in Acrobat .pdf format.
You must email your design documentas an attachmentto datanets-projects@mpi-sws.mpg.de by

11:59pm on the due date. In your email, please specify the names of the students in your group and their
immatriculation numbers.
IMPORTANT : In addition, your group is strongly encouraged to see a TA during the week of June 11,
2007, to discuss a complete draft of your design document. Itis each team’s responsibility to schedule
this meeting. Please watch the newsgroup for meeting scheduling instructions.

5 Bisco GSR9999 System Interfaces

You can assume that the GSR9999 operating system has only a single thread of execution for all running
software. That is, a function call to your routing protocol software will be executed without interruption
by the system. Everything happens sequentially on a router.This assumption will greatly reduce the
complexity of your code. An implication is that any pending alarm will be set off only after a function
call is completed and control has been returned to the operating system. You can assume your functions
will take a negligible amount of time to execute, so the impact on the timing of scheduled alarms is
negligible.

5.1 Initialization

On bootup, the system will initialize your routing softwareby calling your init() function with the fol-
lowing information:

• Number of ports

• Your router ID

• Routing protocol used (DV or LS)

5.2 System Call Interfaces

The following system calls are provided by the GSR9999 system.

• set alarm(duration, ∗d) - Set an alarm. You specify an amount of time that the system should
wait before setting off an alarm. When an alarm is set off, your handle alarm(F ) function will be
invoked (see Section 5.3).d is a pointer to an object that is associated with the alarm; itis passed
to yourhandle alarm() function so that you can used to figure out what the alarm is meant for.

When setting an alarm usingset alarm(), the object refered to byd should not be modified by
your code (or freed in C++) until the corresponding alarm hasbeen delivered viahandle alarm().

• send(p, ∗pkt, s) - Send a packetpkt of sizes bytes on the port numberp.

6



When using C++, the memory storing the packet is “owned” by the underlying system, so you
should not free or modify a packet’s memory after passing it to send(). This also implies that
packet memory must be dynamically allocated. On the other hand, on receiving a packet, once
your recv() function is called, the packet memory is owned by your routing software, so it is your
routing software’s duty to free packet memory after a receive if the packet memory is no longer
needed.

• time() - Return the current time of the system in milliseconds sincebootup.

5.3 Handler Interfaces You Must Implement

• handle alarm(∗d) - When an alarm is set off, the system calls yourhandle alarm() function.
Your function should inspect the associated object referedto by d to determine the correct course
of action.

• recv(p, ∗pkt, s) - When a packetpkt of sizes arrives via port numberp, your recv() function is
called. Your function should inspect the content ofpkt to determine the correct course of action.

When a DATA packet originates at a router (the DATA packet will be created by the simulator’s
xmit event), it will be received by your RoutingProtocol’srecv() function with a special incom-
ing port number of 0xffffffff. This indicates that the DATA packet originates locally, rather than
being received from a neighbor.

When a DATA packet is received by its destination, the packetmemory should be freed (C++
only).

5.4 General Packet Format

Figure 2 illustrates the general packet format that you mustuse. Important note: Network byte order
is Big Endian. So you must use byte order conversion functions (e.g. htons() and ntohs() in C++) to
transmit packets with the proper byte ordering. Packet typeis an 8-bit number corresponding to the 5
packet types defined above. The Reserved section is unused. Size is the size of the entire packet in
number of bytes. Source ID is the node that generated the packet. Destination ID is the node that the
packet is destined to.

5.5 Packet Type

There are five packet types in the system:

• DATA - Regular data packet that needs to be forwarded by a router.

• PING - A packet sent only to an immediate neighbor.

• PONG - A packet sent immediately in response to a PING packet to a neighbor. This allows you
to detect the existence of a neighbor as well as measure the round-trip delay (i.e. link cost).

• DV - A distance vector routing update packet.

• LS - A link-state routing update packet.

7



Figure 2: General packet format.

Figure 3: DV update packet format.

5.6 Neighbor Status Detection

You need to use the PING and PONG packet types to periodicallycheck the status of a port and discover
whether a neighbor exists, and any neighbor’s ID and the round-trip delay to the neighbor. The checks
should be performed on every port once every 10 seconds.

6 Specifications of the DV Protocol

6.1 DV Routing Update Packet Format

See Figure 3. You must construct your DV routing update messages according to this format.

6.2 Behavioral Specifications

You must implement the following features:

8



Figure 4: LS update packet format.

• You must implement the poison reverse variant of distance vector protocol.

• The link cost is the round-trip delay (in ms) of a link.

• DV periodic updates are sent every 30 seconds.

• DV entries that are not refreshed within 45 seconds are timedout and removed. You should remove
the expired state within 1 second of the expiration time. That is, if you implement a 1-second
periodic check of all the state’s freshness, that’s sufficient.

• DV triggered updates are sent as soon as a local DV change occurs.

• Your DV protocol should update the forwarding table to always reflect the current best known
paths.

7 Specifications of the LS Protocol

7.1 LS Routing Update Packet Format

See Figure 4. You must construct your LS routing update messages according to this format.

7.2 Behavioral Specifications

You must implement the following features:

• You must implement flooding of LS update packets.

• You must use sequence numbers to correctly implement LS update.

• You do not need to implement reliable flooding. That is, you donot need to send acknowledge-
ments or retransmit LS update packets.

9



• The link cost is the round-trip delay (in ms) of a link.

• LS periodic updates are sent every 30 seconds.

• LS entries that are not refreshed within 45 seconds are timedout. You should remove the expired
state within 1 second of the expiration time. That is, if you implement a 1-second periodic check
of all the state’s freshness, that’s sufficient.

• LS triggered updates are sent as soon as a neighbor status change is detected.

• Dijkstra’s algorithm must be used to compute the correct shortest paths based on the most current
link-state information.

• Your LS protocol should update the forwarding table to always reflect the most current computed
shortest paths.

10


	Introduction
	Design Document Guidelines
	Design Hints
	Submission Instructions
	Bisco GSR9999 System Interfaces
	Initialization
	System Call Interfaces
	Handler Interfaces You Must Implement
	General Packet Format
	Packet Type
	Neighbor Status Detection

	Specifications of the DV Protocol
	DV Routing Update Packet Format
	Behavioral Specifications

	Specifications of the LS Protocol
	LS Routing Update Packet Format
	Behavioral Specifications


