Data Networks Project 2: Design Document for
Intra-Domain Routing Protocols
Assigned: Wed, 30 May 2007
Due: 11:59pm, Wed, 20 June 2007

1 Introduction

You have just joined Bisco Systems, a networking equipmenpany, as a Design Engineer. Your
first project is to design and implement intradomain roupingtocols for Bisco’s upcoming product, the
GSR9999 router. Your first step is to write a design document.

In particular, you are to design and implement a variant efdistance vector routing protocol (DV)
and a variant of the link-state routing protocol (LS). The fuongl specifications of the DV and LS
protocols are provided (see Sectidn 6 diid 7) and your implatienmust follow these specifications.
You are also given the GSR9999's system interfaces (se@B8&hHtwhich you must use to implement
the routing protocols.

Note that the routing protocols you are going to implement @@ network model in this project
are simplified. The DV and LS protocols have a limited set atdees. Every node in the network is
assumed to be a router and is identified by a unique ID. NofloleiGal addressing is used. Each node
has a number of ports, which may or may not be connected togalmi router. Figurgl1 illustrates a
simple network example.

In Project 3, you will actually implement these protocolséad on your design in a GSR9999 sim-
ulator. The simulator essentially provides the GSR999%sysnterfaces as described in Section 5.
Versions of the simulator are available in C++ and Java, soway use either of these languages in your
protocol design and implementation. You should also assiwateyour two routing protocols will be
encapsulated in a RoutingProtocol object.

Assignment In this project, we ask you to write a desigh documenm@more than six pagegex-
cluding figures and pseudocode listings) to describe traldeif your design. The specific requirements
are described in Sectidh £] 3 afél 4. The goal of this projetct ggve you a chance to carefully think
through the design of the entire system before you startntipdeimentation, which we will ask you to
complete in Project 3.

Grading: Grading of your design document will be based on the canesst and completeness of
your design, as well as the quality and clarity of your watinYour document must be type-set in
11 point New Times Roman font with 1 inch margins and no moenth5 lines per page (like this
document). Use of appropriate illustrations (tables, fglis required. A clear, well-organized writeup
with almost no design flaws or missing pieces will earn yourhdrks. Please pay particular attention to

Figure 1. Simple network example.

the organization of your document. A clear, concise, wajboized document is far better than a wordy
and confusing ondMPORTANT : You are strongly encouraged to schedule a meeting with aufihg
the week of June 11, 2007, to discuss a complete draft of yesigd document. The purpose of this
meeting is to provide you with feedback on your design and yimeument. Watch the newsgroup for
meeting scheduling instructions.

Working in groups: You need to form groups of two students for this assignméfa.suggest that
you use the course mailing list to organize teams.

2 Design Document Guidelines

The purpose of the design document is to provide sufficiegigdedetails and implementation instruc-
tions such that a programmer (perhaps a summer intern) dapémdently and successfully implement
the routing protocols according to your document. Your gleslocument must contain details such as
data structure definitions, parameter definitions, andguoe pseudocode. To complete this document,
you will need to first understand the given information int®edd, [, and[]7. Your document should
roughly follow the structure below. Again, use of illusteats like figures and tables when appropriate.

Section A. Design Overview You should describe the overall organization of your syst&V/hat
are the major logical components in your design and whatagdkionale behind your design? What
are the responsibilities of each component? How do the caergs interact? You should have a block
diagram to illustrate the different components in your gesi

Section B. Core Data Structures- You should describe the core data structures needed t@impl
ment your various components. Give detailed data structefiitions in C/Java and pseudocode for
manipulating the data structures if the pseudocode is naatt(e.g. forwarding table, distance vector,
etc).

Section C. Component Operations You should describe the implementation of the operations i
each component of your design using pseudocode and iliastsaetc. See Sectidi 3 for some hints.
Here, the focus is on the procedures and algorithms usedunproposed design. How the core data
structures are used should be described. You should deswil common system events (alarm, packet
arrival) are both generated and handled in your components.

3 Design Hints

Your design document must address the technical issuesittbgsdelow. Note that this is not an
exhaustive list of issuesThese issues are provided to help stimulate and organiretliyoughts.

Common System Design IssuesYou will need to address design issues that are common toDdt
and LS routing protocols. Below are some items that your dwmnt must address.

e Router ID - At bootup time, your routing software is initizdid with a unique 16-bit router identi-
fier. Oxffff is reserved as an invalid router ID.

e Routing Procotol Selection - At bootup time, your routindtaare is initialized with the routing
protocol that should be used in the system (either DV or L®e0dnitialized, this selection does
not change.

e Port Status Data Structure - At bootup time, your routingvgaife is initialized with the total
number of ports on the router. The total number of ports doéshange over time. A ponhay be
connected to a neighbor router, or may be unconnected. Abeigouter is uniquely identified
by its 16-bit identifier. Connections between neighboriogters have a given non-zero round-trip
delay. The round-trip delay to a neighbor router should helwss the link cost in your routing
protocols.

e Port Status Monitoring - In the GSR9999 router, port statfisrmation (i.e. neighbor router ID
and link round-trip delay, if connected) must be detectedadyically by software. Use pseu-
docode to describe a port status detection algorithm themnats to test port status once every
10 seconds and updates the port status data structure imgtyrdrou will need to use the PING
and PONG packet types and the time() andaatm() system calls specified in Sectidn 5 to learn
the neighbor router ID and measure the round-trip delay. Witluneed to describe (1) how to
generate PING packets periodically, (2) how to construst@packets, (3) how PING packets are
processed when received, (4) how PONG packets are processedreceived.

To determine port status using PING/PONG, you must use ae@dddl timestamp in the PING/PONG
messages and use the following procedure. When a routeragese@ PING packet, it must store
the current time in the PING message payload, then send & Riessage to a neighbor with
the correct source ID. When the neighbor router receive®thils message, it must update the
received message’s type to PONG, update the source ID tavitstben send the resulting PONG
message (with the original timestamp still in the payloaaiediately back to the neighbor. When
the PONG message is received, the timestamp in the messegep@red to the current time to
compute the RTT. This is in fact how ti ng UNIX tool measures RTT.

Since PING messages are generated every 10 seconds, ssfaitsis refreshed by PONG mes-
sages approximately once every 10 seconds. A link shoulceblared dead when the status has
not been refreshed for 15 seconds. The port status shouldoperfy changed within 1 second
of the expiration. That is, if you implement a 1-second pgidacheck on all the state’s freshness,
that’s sufficient.

e Forwarding Table Data Structure - Describe a suitable @/data structure for maintaining the
forwarding table. Note that at bootup time, a router in thenwek does not know how many routers
are in the network. The number of routers in the network can ehange dynamically. Your data
structure must support insertion and deletion of forwagdeble entries. This forwarding table
structure should be generic such that it can be used by yakepforwarding function no matter
which routing protocols (DV or LS) is being used.

e Packet Forwarding - Use pseudocode to describe how to h#melerwarding of regular DATA
packets.

¢ Note that the C/Java definitions of numerical constantsdoket types, protocol types, and infinity
cost will eventually be provided to you in Project 3 for umifaoty. In this design document,
however, you can define your own.

e Keep in mind that your router implementation will have toeiriperate with other router imple-
mentations. Therefore, you need to follow the specificatiprecisely to ensure interoperability.
Moreover, your implementation should be robust to malfatmackets from other routers. Your
implementation should ignore such packets.

DV Protocol Design Issues See Sectiohl6 for the specification of the protocol you neechplement.
Below are the set of issues you must address.

e Distance Vector Data Structure - Describe a suitable C/data structure for maintaining the
distance vector at a router. Note that an entry in the distaector must be refreshed periodically
or else it must be removed after a timeout. Your data stracthould support dynamic insertion
and deletion.

¢ Distance Vector Freshness Check - Use pseudocode to dehoribyou will implement a periodic
check of distance vector freshness.

e Direct Neighbors Maintenance - Use pseudocode to descadbetd insert, delete, and refresh
direct neighbors of a router in the distance vector strectur

e DV Announcement - Use pseudocode to describe how to send Gihgoupdate packets.

¢ DV Routing Update Packet Construction - Use pseudocode @itabke C/Java data structures to
describe how a DV routing update packet can be constructear. pfotocol should implement the
poison reverse DV variant.

Link cost (i.e. round-trip time) should be represented irisuaf milliseconds in routing update
messages as a 16-bit unsigned integer.

The DV update packet should contain as few entries as pesdibiat is, if a destination D is not
reachable from router N, then router N’s DV update packetsiishnot include an entry for D. As
aresult, the size of the DV updates is minimized, and thedsétival of a route is implicit. In other
words, you should not have (ID, INFINITXOST) pairs in your DV update packets except when
necessary for implementing poison reverse.

DV Packet processing - Use pseudocode to describe how teggdaV routing update packets
and update the distance vector data structure.

Your DV implementation should only record the best route agnall neighbors for a destination,

and not record second best route, third best route, etc. i$hathen the best route fails, the
only way to discover an alternative route is from getting & ¥/ update message containing an
alternate route.

Forwarding Table Maintenance - Use pseudocode to desoolvedhupdate the forwarding table
based on information in the distance vector data structure.

DV update packets are generated periodically every 30 siscoiiriggered updates should be
considered as additional updates separate from the penpdiates. That is, triggered updates
should not affect the schedule of the normal 30 second perigutiates. For example, suppose
periodic updates are sent at time 0, 30, 60, 90, 120... etn Ewa triggered update occurs at time
42, the regular updates should still occur at time 60, 90, &0

LS Protocol Design Issues See Sectiofl7 for the specification of the protocol you neechplement.
Below are the set of issues you must address.

Link-state data structure - Describe a suitable C/Javadiaiature for storing link-state informa-

tion collected from other routers in the network. Note thalt-state information must be period-

ically refreshed or else it is removed after a timeout. Yoatadstructure should support dynamic
insertion and deletion. This link-state information wilsa be used by Dijkstra’s algorithm for

computing shortest paths.

Link-state Freshness Check - Use pseudocode to describeydwowvill implement a periodic
check of link-state freshness.

LS Announcement - Use pseudocode to describe how to geneSatmiting update packets.
LS routing Update Packet Construction - Use pseudocodestiée how to construct a LS routing
update packet.

Link cost (i.e. round-trip time) should be represented iitsuaf milliseconds in routing update
messages as a 16-bit unsigned integer.

The LS update packet should be as small as possible. Youshewtr have (ID, INFINITYCOST)
pairs in your LS update packets.

LS Packet processing - Use pseudocode to describe how tegsraS routing update packets and
update the link-state data structure.

Forwarding Table Maintenance - Use pseudocode to descolveadiupdate the forwarding table
based on information in the link-state data structure arkisBa’s shortest path algorithm.

LS update packets are generated periodically every 30 decdiniggered updates should be con-
sidered as additional updates separate from the period&tep. That is, triggered updates should
not affect the schedule of the normal 30 second periodictepdas with the DV algorithm.

4 Submission Instructions

Please submit your design document in Acrobat .pdf format.

You must email your design documeas an attachmentto datanets-projects@mpi-sws.mpg.de by
11:59pm on the due date. In your email, please specify thesaithe students in your group and their
immatriculation numbers.

IMPORTANT : In addition, your group is strongly encouraged to see a Tédnduhe week of June 11,
2007, to discuss a complete draft of your design documeri. ach team’s responsibility to schedule
this meeting. Please watch the newsgroup for meeting stihgdastructions.

5 Bisco GSR9999 System Interfaces

You can assume that the GSR9999 operating system has omigla #iread of execution for all running
software. That is, a function call to your routing protocoftaare will be executed without interruption
by the system. Everything happens sequentially on a rodteis assumption will greatly reduce the
complexity of your code. An implication is that any pendidgren will be set off only after a function
call is completed and control has been returned to the dapgragstem. You can assume your functions
will take a negligible amount of time to execute, so the intpat the timing of scheduled alarms is
negligible.

5.1 Initialization

On bootup, the system will initialize your routing softwdrg calling your init() function with the fol-
lowing information:

e Number of ports
e Your router ID

e Routing protocol used (DV or LS)

5.2 System Call Interfaces

The following system calls are provided by the GSR9999 syste

e set_alarm(duration,xd) - Set an alarm. You specify an amount of time that the systesuldh
wait before setting off an alarm. When an alarm is set offryawndle_alarm(F') function will be
invoked (see Sectidn8.3).is a pointer to an object that is associated with the alarim;gassed
to your handle_alarm() function so that you can uséto figure out what the alarm is meant for.

When setting an alarm usingt_alarm(), the object refered to by should not be modified by
your code (or freed in C++) until the corresponding alarmiyeen delivered vidandle_alarm().

e send(p, xpkt, s) - Send a packetkt of sizes bytes on the port numbex.

5.3

5.4

When using C++, the memory storing the packet is “owned” y uhderlying system, so you
should not free or modify a packet's memory after passing #dénd(). This also implies that
packet memory must be dynamically allocated. On the othedhan receiving a packet, once
your recv() function is called, the packet memory is owned by your rausoftware, so itis your
routing software’s duty to free packet memory after a rexzdithe packet memory is no longer
needed.

time() - Return the current time of the system in milliseconds shmoetup.

Handler Interfaces You Must Implement

handle_alarm(xd) - When an alarm is set off, the system calls ybundle_alarm() function.
Your function should inspect the associated object refevday d to determine the correct course
of action.

recv(p, xpkt, s) - When a packepkt of size s arrives via port numbep, your recuv() function is
called. Your function should inspect the contenpéft to determine the correct course of action.

When a DATA packet originates at a router (the DATA packet bd created by the simulator's
xm t event), it will be received by your RoutingProtocofscu() function with a special incom-

ing port number of Oxffffffff. This indicates that the DATAgeket originates locally, rather than
being received from a neighbor.

When a DATA packet is received by its destination, the padkemory should be freed (C++
only).

General Packet Format

Figure[2 illustrates the general packet format that you magst Important note: Network byte order
is Big Endian. So you must use byte order conversion funsti@yg. htons() and ntohs() in C++) to
transmit packets with the proper byte ordering. Packet tgf@n 8-bit number corresponding to the 5
packet types defined above. The Reserved section is unuseel.isShe size of the entire packet in
number of bytes. Source ID is the node that generated theepaBlestination ID is the node that the
packet is destined to.

5.5

Packet Type

There are five packet types in the system:

DATA - Regular data packet that needs to be forwarded by a&rout
PING - A packet sent only to an immediate neighbor.

PONG - A packet sent immediately in response to a PING paokateighbor. This allows you
to detect the existence of a neighbor as well as measureuhd+tap delay (i.e. link cost).

DV - A distance vector routing update packet.

LS - A link-state routing update packet.

0 78 15 16 31

Packet type | Reserved Size

Source ID Destination ID

Packet Payload

Figure 2: General packet format.

0 78 15 16 31
Packet type | Reserved Size
Source ID Destination ID
Node ID 1 Cost 1
Node ID 2 Cost 2

Figure 3: DV update packet format.

5.6 Neighbor Status Detection

You need to use the PING and PONG packet types to periodichdigk the status of a port and discover
whether a neighbor exists, and any neighbor’s ID and thed<up delay to the neighbor. The checks
should be performed on every port once every 10 seconds.

6 Specifications of the DV Protocol
6.1 DV Routing Update Packet Format

See Figur€l3. You must construct your DV routing update ngessaccording to this format.

6.2 Behavioral Specifications

You must implement the following features:

0 78 15 16 31

Packet type | Reserved Size

Source ID Ignored

Sequence number

Neighbor ID 1 Cost 1

Neighbor ID 2 Cost 2

Figure 4: LS update packet format.

e You must implement the poison reverse variant of distanceoverotocol.
e The link cost is the round-trip delay (in ms) of a link.
e DV periodic updates are sent every 30 seconds.

e DV entries that are not refreshed within 45 seconds are tonednd removed. You should remove
the expired state within 1 second of the expiration time. tThaif you implement a 1-second
periodic check of all the state’s freshness, that’s sufiiicie

e DV triggered updates are sent as soon as a local DV changesoccu

e Your DV protocol should update the forwarding table to alwagflect the current best known
paths.

7 Specifications of the LS Protocol

7.1 LS Routing Update Packet Format
See Figur€l4. You must construct your LS routing update ngessaccording to this format.

7.2 Behavioral Specifications
You must implement the following features:
e You must implement flooding of LS update packets.
e You must use sequence numbers to correctly implement LSepda

e You do not need to implement reliable flooding. That is, yondbneed to send acknowledge-
ments or retransmit LS update packets.

The link cost is the round-trip delay (in ms) of a link.
LS periodic updates are sent every 30 seconds.

LS entries that are not refreshed within 45 seconds are tonedyou should remove the expired
state within 1 second of the expiration time. That is, if ymplement a 1-second periodic check
of all the state’s freshness, that’s sufficient.

LS triggered updates are sent as soon as a heighbor stahgedsaletected.

Dijkstra’s algorithm must be used to compute the correctteBbpaths based on the most current
link-state information.

Your LS protocol should update the forwarding table to alsvesflect the most current computed
shortest paths.

10

	Introduction
	Design Document Guidelines
	Design Hints
	Submission Instructions
	Bisco GSR9999 System Interfaces
	Initialization
	System Call Interfaces
	Handler Interfaces You Must Implement
	General Packet Format
	Packet Type
	Neighbor Status Detection

	Specifications of the DV Protocol
	DV Routing Update Packet Format
	Behavioral Specifications

	Specifications of the LS Protocol
	LS Routing Update Packet Format
	Behavioral Specifications

