A Segmented Backup Scheme for Dependable Real
Time Communication in Multihop Networks

Gummadi P. Krishna M. Jnana Pradeep and C. Siva Ram Murthy

Department of Computer Science and Engineering
Indian Institute of Technology, Madras - 600 036, INDIA
gphanikrishna@hotmail.com, mjpradeep@yahoo.com, murthy@iitm.ernet.in

Abstract. Several distributed real time applications require fault tolerance
apart from guaranteed timeliness. It is essential to provide hard guarantees
on recovery delays, due to component failures, which cannot be ensured in
traditional datagram services. Several schemes exist which attempt to guar-
antee recovery in a timely and resource efficient manner. These methods
center around a priori reservation of network resources called spare resources
along a backup route. In this paper we propose a method of segmented back-
ups which improves upon the existing methods in terms of resource utilisa-
tion, call acceptance rate and bounded failure recovery time. We demonstrate
the efficiency of our method using simulation studies.

1 Introduction

Any communication network is prone to faults due to hardware failure or soft-
ware bugs. It is essential to incorporate fault tolerance into QoS requirements for
distributed real time multimedia communications such as video conferencing, sci-
entific visualisation, virtual reality and distributed real time control. Conventional
applications which use multihop packet switching easily overcome a local fault but
experience varying delays in the process. However, real time applications with QoS
guaranteed bounded message delays require a priori reservation of resources (link
bandwidth, buffer space) along some path from source to destination. All the mes-
sages of a real time session are routed through over this static path. In this way
the QoS guarantee on timeliness is realised but it brings in the problem of fault
tolerance for failure of components along its predetermined path. Two proactive
approaches are in vogue to overcome this problem. The first approach is forward
recovery method [1,2], in which multiple copies of the same message are sent along
disjoint paths. The second approach is to reserve resources along a path, called
backup path [3,4], which is disjoint with the primary, in anticipation of a fault in
the primary path. The second approach is far more inexpensive than the first if
infrequent transient packet losses are tolerable. We focus on the second proactive
scheme. Establishment of backup channels saves the time required for reestablishing
the channel in reactive methods.

Two different schemes have been widely analysed for the establishment of backup
channels. In the first, the spare resources in the vicinity of failed component are
used to reroute the channel. This method of local detouring [3,4] leads to inefficient
resource utilisation as after recovery, the channel path lengths usually get extended
significantly. The second method end to end detouring was proposed to solve the
problem in a resource efficient manner. But end to end detouring has the additional
requirement that the primary and backup paths be totally disjoint except the source
and destination. This might lead to rejection of a call even when there is considerable
bandwidth available in the network. Further, this method of establishing backups
might be very inefficient for delay critical applications if the delay of the backup is
not within the required limits. In this paper we address these problems by proposing

to have segmented backups rather than a single continuous backup path from source
to destination and show that the proposed method not only solves these problems
but also is more resource efficient than the end to end detouring methods with
resource aggregation through backup multiplezing [5-7].

We now explain our concept of segmented backups. Earlier schemes have used
end to end backups, i.e., backups which run from source to destination of a depend-
able connection, with the restriction that the primary and the backup channels do
not share any components other than the source and destination. In our approach of
segmented backups, we find backups for only parts of the primary path. The primary
path is viewed as made up of smaller contiguous paths, which we call primary seg-
ments as shown in Figure 1. We find a backup path, which we call backup segment,
for each segment independently. Note that successive primary segments of a pri-
mary path overlap on at least one link and that any two non consecutive segments
are disjoint. The primary channel with 9 links shown, has 3 primary segments: the
1st segment spanning the first 3 links, the 2nd spanning link 3 to link 6 and the
3rd the last 4 links, segments overlapping on the 3rd and 6th links. The backup
segments established are also shown. In case of a failure in a component along a
primary segment the message packets are routed through the corresponding backup
segment rather than through the original path, only for the length of this primary
segment as illustrated. In case of a fault in any component of a primary path, we
give the following method of backup segment activation. If only one primary seg-

Backup segments Path after failure recovery

Source 1 2 3 2 5 6 7 8 9 Destination

Initial path Primary channel

Fig. 1. Illustration of Segmented Backups

ment contains the failed component activate the backup segment corresponding to
that primary segment as shown for the failure of link 4. If two successive primary
segments contain the failed component activate any one of the two backup segments
corresponding to the primary segments. Now we illustrate one of the advantages of

N1 N2 N3 N4 NS NG
'y
: | Primary channel 1
N7 | N8 N9 Nlb Dl N11 N12 D2
T [= “Backupchamnd 1
NI N14 N5 N16 N17| N8 Primary channel 2
“Backupchamnd 2
N1 TR NZo N2 | S2 N2z n23| ! N24
S1
A
N2g N26 N27 N28 N29 N3o| |

Fig. 2. Establishment of Segmented Backup Channels

the segmented approach over end to end backup approach with a simple example
of a 5 X 6 mesh in Figure 2. Suppose the capacity of each link on the mesh is only
1 unit. There are 2 dependable connections to be established : S1 to D1 and S2

to D2. The primary paths (shortest paths) of these connections are shown in the
figure. It is not possible to establish end to end backups for both the connections
as both the backups contend for the unit resource along the link between N15 to
N16. However, segmented backups can be established as shown in the figure.

2 Spare Resource Allocation

It is very important to address the issue of minimizing the amount of spare re-
sources reserved. The idea is to reduce the amount of backup resources reserved by
multiplexing the backups passing through the same link. We explain the method
very briefly below. Refer to [5-7] for more detailed discussion. We note that the
resources reserved for backup channels are used only during component failures in
their primary channels. We consider single link failure model for our analysis, under
the assumption that channel failure recovery time i.e., time taken for the fault to be
rectified, is much smaller than the network’s mean time to failure (MTTF). If pri-
mary channels of two connections share no common components and their backup
channels with bandwidths bl and b2 pass through link L, it is sufficient to reserve
max(bl, b2) for both the backup channels on the link L in this failure model, as we
know that both the backup channels can never be activated simultaneously. This is
the idea of multiplexing. We discuss how deterministic multiplezing [5,6] applies to
our scheme in comparison to earlier schemes.

We use deterministic failure model and calculate the minimum amount of extra
resources that are necessary to be reserved to handle all possible cases of failure.
We give below the algorithm we use to calculate the spare resources SpatlinkL
under single link failure model. Let @ denote the set of all primary channels whose
backups traverse L. Let Rp, denote the resource required at each link by the primary
segment, Pg.

Initialise Sy, =0V I, L

loop for each link I,I # L

loop for each primary channel segment Ps € ¢
if Pg contains link I then
Sr,. =S, + Rpg
endif
endloop

endloop

Sp=max{S; }VI#L

It is worth noting the complexity of this multiplexing algorithm. Its execution
time increases steeply with increase in the number of links and connections in the
network. At first sight it appears as if backup segments taken together, require to
reserve more resources than a single end to end backup because segments overlap
over the primary channel. But the backup segments tend to multiplex more as their
primary segments’ lengths are much shorter. Larger the number of backup segments,
shorter the primary segments i.e., smaller the number of components in each primary
segment, and hence, greater the multiplexing among their backup segments. Our
method tends to be more resource efficient since there is a considerable improvement
in backup segments’ multiplexing capability over end to end backup’s capability.
Therefore, our scheme is expected to be more efficient for large networks when a
large number of calls are long distance calls.

3 Backup Route Selection

Several elaborate routing methods have been developed which search for routes
using various QoS metrics. Optimal routing problem of minimizing the amount of

spare resources while providing the guaranteed fault tolerance level is known to be
NP-hard. So we resort to heuristics. Several greedy heuristics for selecting end to end
backup paths are discussed in [5]. A shortest path search algorithm like Dijkstra’s
is enough to find the minimum cost path where the cost value for a link can be
made a function of delay, spare resource reservation needed etc. The complexity of
our problem of selecting segmented backups is far greater as we have to address
additional constraints due to our following design goals.

Improving Call Acceptance Rate: Our scheme tends to improve the call ac-
ceptance rate over end to end backups due to two main reasons. Firstly, it tends to
improve the call acceptance in situations where there exists a primary path but the
call gets rejected due to the lack of an end to end disjoint backup path. We have
already shown this through a simple example in Figure 2. Secondly, by reserving
lesser amount of resources it allows for more calls to be accepted. This method how-
ever, has the problem of choosing the appropriate intermediate nodes (the nodes
chosen should not only allow backup segments but should also economize on the
resource reservation).

Improving Resource Reservation: This sets up two opposing constraints. First,
longer the primary segment of a backup segment, lesser will be the number of backup
segments required. Too short primary segments can lead to a requirement of large
amounts of resources for the large number of backup segments (Note that each
of the backup segments requires more resource than the primary segment which it
spans). On the contrary shorter primary segments lead to more multiplexing among
their backup segments as described before. So we have to choose primary segments
which are neither too short nor too long.

Increase in the Delay Due to Backup: We are interested only in backup
segments which do not lead to an unreasonable increment in delay in case of a
failure in their primary segment, which constrains the choice of intermediary nodes.

Even in case of end to end detouring we face these constraints but we have a very
simple way out. The shortest path algorithm run on the network with the nodes of
the primary path removed should give a very good solution and if it fails there does
not exist any solution. In contrast, for our scheme we do not have the intermediate
destinations fixed and we have to choose among the many possible solutions. In
our heuristic we run Dijkstra’s shortest path algorithm from source to destination
removing all links in the primary path. If in the process, Dijkstra’s search algorithm
comes to any node in the primary path, we mark it as an intermediate node. Then,
we take the node previous to it in the primary path (in the order of increasing
distance from the source) and using it as the new source try to find a shortest path
to the destination recursively. In order to ensure that the primary segment is not
too small we use a parameter MINLEAPLEN which indicates the minimum number
of nodes in any primary segment. Thus, we remove the first MINLEAPLEN nodes
starting from the new source along the primary path every time before beginning
the search for the shortest path to the destination. It is also important that the
delay increment for any backup segment is below a threshold A for the backup to
be of use. This tends to prevent lengthy backups for very small primary segments.
In case the destination cannot be reached or the A condition is violated, we start
Dijkstra’s algorithm again from the first segment, this time avoiding the nodes
which were chosen as the end of first segment, in previous attempts. The number of
times we go back and try again (number of retries) is constant and can be set as a
parameter.It is to be noted that our scheme tends to perform better in comparison
to the scheme in [6] for large networks, with moderate congestion and for long
distance calls. Further, it is important to note that for small networks with short
distance calls this scheme mimics the end to end backup scheme in [6] as we do
allow a backup to be made of just one segment. In case of connections with very

short primary path our heuristic chooses the backup with a single segment.

4 Failure Recovery

When a fault occurs in a component in the network, all dependable connections
passing through it have to be rerouted through their backup paths. This process is
called failure recovery. This has three phases: fault detection, failure reporting and
backup activation. The restoration time, called failure recovery delay, is crucial to
many real time applications, and has to be minimized.

In our model, we assume that when a link fails, its end nodes can detect the
failure. For failure detection techniques and their evaluation refer to [8]. After fault
detection, the nodes which have detected the fault, report it to the concerned nodes
for recovering from the failure. This is called failure reporting. After the failure re-
port reaches certain nodes, the backup is activated by those nodes. Failure reporting
and backup activation need to use control messages. For this purpose, we assume a
real time control channel (RCC) [6] for sending control messages. In RCC, separate
channels are established for sending control messages, and it guarantees a minimum
rate of sending messages.

Failure Reporting and Backup Activation: The nodes adjacent to a failed
component in the primary path of a dependable connection will detect the failure
and send failure reports both towards the source and the destination. In the end to
end backup scheme, these messages have to reach the source and destination before
they can activate the backup path. In our scheme, this is not necessary. Failures
can be handled more locally. The end nodes of the primary segment containing
the faulty component on receiving the failure reports initiate the recovery process.
These two nodes send the activation message along the backup segment, and the
dependable connection service is resumed. This process is illustrated in Figure 3.
If there are k segments in the backup, then this gives about O(k) improvement in
the time for failure reporting. When a fault occurs, not only do we experience a

Backup channel
ault report
Source Destination
J Fault
Primary chanriel
Nctvarion messege

(&) Segmented backups

Backup channel — Activation message

Eault report
Source

Prifmary channel Fault Destination

(b) End to end backup

Fig. 3. Illustration of Failure Recovery

disruption of service for some time, but also packets transmitted during the failure
reporting time are lost. Most real time applications cannot tolerate much message
loss. In our scheme the message loss is reduced to a considerable extent. When a
fault occurs in one segment of the primary, only the packets which have entered
that segment from the time of the occurrence of the fault till the backup segment
activation are lost. Other packets in the segments before and after the failed segment
are not affected and will be delivered normally. This is in contrast to the end to
end backup case, where all packets in transit in the primary path before the failed
component, between occurrence of failure and backup activation, are lost.

5 Delay and Scalability

Delay: In Real Time Communication, it is essential to have the delays along both
the primary and the backup channels to be as low as possible. Hence, we might
have a restriction on the amount by which the delay along the backup exceeds that
along the primary path. Let the total delay along the backup path not exceed the
delay along the primary by A, a specified QoS parameter.
Thus, the constraint for choosing an end to end backup is,

delay(backup path) - delay(primary path) < A.
In the case of segmented backups, this constraint is,

(delay(backup segment i) - delay(primary segment i)) < A, V i.

We see that in our case we have to minimize the delay increase for each segment
independently. Hence call acceptance rate will be better since it is easier to find
small segments than to find big end to end backups satisfying the A constraint.

Scalability: The segmented backup scheme scales well since it does not demand
global knowledge and does not involve any kind of broadcast. There is no necessity
for a network manager and this scheme works well in a distributed network. For
Backup Multiplexing each node needs to know the primary paths of the channels
whose backups pass through it. This is easily accomplished if the information is
sent along with the packet requesting the establishment of backup channel. Upon
encountering faults, control messages are not broadcast, but sent only to a limited
part of the network affected by the fault.

In large networks, the effectiveness of the segmentation increases as the mean
path length of connections increases. Since the calculation of spare resources using
multiplexing has to be done per segment independently, this scheme scales better
than the earlier end to end methods.

6 Performance Evaluation

We evaluated the proposed scheme by carrying out simulation experiments similar
to those in [6], on a 12 X 12 mesh. We also implemented the end to end backup
scheme [6] for comparative study.

In the simulated network, neighbour nodes are connected by two simplex links,
one in each direction, and all links have identical bandwidth. For simplicity, the
bandwidth requirement of all connections was put equal to 1 unit. The delay of
each link was set to 1, thereby making delay along any path equal to its path
length. Primary channels were routed using a sequential shortest-path search al-
gorithm. The end to end backups were also routed using the same shortest-path
search algorithm, with the condition that it does not contain any component of
the primary other than source and destination. The amount by which backup path
delay can exceed primary path delay was used as a parameter, A.

We find the backup segments as described in Section 3. The number of retries
was set to 9 in our simulation experiments. The MINLEAPLEN parameter was set
to 4. Connections were requested incrementally, between a source and destination
chosen randomly, with the condition that no (source, destination) pair is repeated,
and the length of the shortest path between them is at least MINPATHLEN. In
our simulation studies, connections were only established but not torn down since
(i) the computational time required for release of connections is considerably high,
and (ii) earlier studies with end to end backups [5,6] also do the same.

The results are shown in Table 1. In this table, we show the statistics at different
instants of time as in the simulation. The number of connections requested is pro-
portional to the time. The network load at the time is also shown. Table 1 shows the
average amount of spare bandwidth reserved per connection, both for segmented

(seg) and end to end (end) backups, for different values of A. We show the results
for MINPATHLEN=6, and for MINPATHLEN=8. The average path lengths in the
two cases was 10.8 and 12.3. The bandwidth of the links was chosen as 100 units
for MINPATHLEN=6 and 90 units for MINPATHLEN=8. As expected, the spare
bandwidth reserved was much lower for segmented backups. Also, the improvement
is seen to be more in the second case. This illustrates that as the average length of
connections increases, the effectiveness of segmented backups increases.

The cumulative number of requests rejected till an instant of time was also
noted. The number rejected by the segmented backup scheme was seen to be much
lesser than that of the end to end scheme.

Table 1. Average amount of spare bandwidth reserved per connection

MINPATHLEN =6 A=2 | A=4 MINPATHLEN =8| A=2 | A=4

Time| n/wload |end|seg|end|seg|Time| n/wload |end|seg|end|seg
1245 42% 7.55|7.06(7.50|7.07|] 1284 53% 8.72(8.16|8.71|8.16
1559 51% 7.40(6.88|7.42|6.91|| 1488 59% 8.76(8.12|8.74|8.13
1846 57% 7.49(6.93(7.52|6.99(| 1708 63% 8.74(8.09|8.74|8.11
2148 63% 7.51|6.98(7.52(7.11|| 1911 65% 8.69(8.08|8.688.18
2442 67% 7.48(6.99(7.49|7.15(| 2131 66% 8.64(8.10|8.63(8.20

7 Conclusions

In this paper, we have proposed segmented backups: a failure recovery scheme for
dependable real-time communication in distributed networks. This mechanism not
only improves resource utilisation and call acceptance rate but also provides for
faster failure recovery. We evaluated the proposed scheme through simulations and
demonstrated the superior performance of the scheme compared to earlier end to
end backup schemes [5-7]. In order to realise the full potential of the method of
segmented backups, better routing strategies have to be developed for choosing in-
termediate nodes optimally. We also need faster algorithms for backup multiplexing.

References

1. P. Ramanathan and K. G. Shin, “Delivery of time-critical messages using a multiple
copy approach,” ACM Trans. Computer Systems, vol. 10, no. 2, pp. 144-166, May
1992.

2. B. Kao, H. Garcia-Molina, and D. Barbara, “Aggressive transmissions of short mes-
sages over redundant paths,” IEEE Trans. Parallel and Distributed Systems, vol. 5,
no. 1, pp. 102-109, January 1994.

3. Q. Zheng and K. G. Shin, “Fault-tolerant real-time communication in distributed
computing systems,” in Proc. IEEE FTCS, pp. 86-93, 1992.

4. W. Grover. “The self-healing network: A fast distributed restoration technique for
networks using digital crossconnect machines,” in Proc. IEEE GLOBECOM, pp. 1090-
1095, 1987.

5. S. Han and K. G. Shin, “Efficient spare-resource allocation for fast restoration of real-
time channels from network component failures,” in Proc. IEEE RTSS, pp. 99-108,
1997.

6. S. Han and K. G. Shin, “A primary-backup channel approach to dependable real-time
communication in multihop networks,” IEEE Trans. on Computers, vol. 47, no. 1, pp.
46-61, January 1998

7. C. Dovrolis and P. Ramanathan, “Resource aggregation for fault tolerance in inte-
grated services networks,” ACM SIGCOMM Computer Communication Review, 1999.

8. S. Han and K. G. Shin, “Experimental evaluation of failure detection schemes in real-
time communication networks,” in Proc. IEEE FTCS, pp. 122-131, 1997.

This article was processed using the IXTEX macro package with LLNCS style

