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Abstract. The popularity of handheld devices has created a flurry efneh ac-
tivity into new protocols and applications that can handie exploit the defining
characteristic of this new environment — user mobility. tfdidion to mobility,
another defining characteristic of mobile systems is useiabmteraction. This
paper investigates how mobile systems could exploit péopteial interactions
to improve these systems’ performance and query hit ratethi® we build a
trace-driven simulator that enables us to re-create thav@hof mobile systems
in a social environment. We use our simulator to study thieerse mobile sys-
tems: DTN routing protocols, firewalls preventing a worneictfon, and a mobile
P2P file-sharing system. In each of these three cases, wééinchbbile systems
can benefit substantially from exploiting social infornoati

1 Introduction

Recent news articles are reporting a dramatic increaseeitigh of battery-powered,
mobile, lightweight, handheld devices often equipped witteless interfaces [13,4].
Examples of such ubiquitous devices include cell-phondsPiAs, music players like
Zune, and gaming devices like PSP. The number of mobile mgster these devices
is also quickly growing. Their key challenge is providingfitionality in a dynamic

and often unreliable network environment. This need hasdedflurry of research on
the design and implementation of new protocols and appdicathat can handle (and
perhaps exploit) the primary characteristic of this newimment — user mobility.

In addition to user mobility, another defining charactérisf mobile systems is
user social interaction. A variety of new applications feau facilitating social activ-
ities in pervasive systems. For example, new Internet gatérvices allow clients to
use their cell-phones’ Bluetooth radios to detect when toeyin the proximity of a
person that matches their interests [18]. Other companéesféering file-sharing soft-
ware for mobile phones that allows users to share ring-tomesic, games, photos,
and video [28,17]. In these new mobile systems, informadixchange is driven by the
users’ social interactions: friends use their cell-phaneshare photos or song collec-
tions; strangers with similar dating profiles are notifiecewhhey are near each other.

In this paper, we examine how these mobile systems coulaiy@ople’s social
relations to make more informed decisions, potentiallgieg to substantial perfor-
mance gains and higher query hit rates. We start by clasgifyocial interactions in
two categories. One category is interactions betweendsgetinat is people who meet
more regularly and for longer periods of time. The other gaitg is interactions be-
tween strangers, that is people who meet sporadically, bgipg each other by. Note
that in practice, the spectrum of social interactions igeguomplex. For instance, a
pair of people could be classified as “familiar stranger<][2 two people encoun-
tering regularly without ever interacting or forming an égip relationship of a social
nature. Nevertheless, in this paper, we classify all refethips only as friends or as
strangers; based on our simple definitions, we classifylfanstrangers as friends. We
leave a more complex social classification to future work.

We investigate the potential of incorporating social infiation in three mobile sys-
tems with diverse characteristics. First, we study thegrarénce of routing protocols
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in delay tolerant networks (DTNs) when a sender and a recaneefriends, and when
they are strangers. Our findings show that incorporatingasodormation in routing
decisions significantly improves the performance of sdv@iieN routing protocols.
Second, we examine whether firewalls that discriminate betwraffic sent by friends
and traffic sent by strangers can slow down the propagatiamafrm or virus in a mo-
bile network. We find that worms spread significantly sloviarsmall fraction of nodes
reject traffic sent by strangers. Third, we examine the perémce of file exchange pro-
tocols in a P2P file-sharing application. We find that shafileg only among friends
drastically reduces the rate of successful requests in sggtems. To maintain a high
query hit rate, mobile P2P systems must allow their usersxebange content with
strangers. In summary, we show that separating peoplesgaictions only as friends
and strangers leads to a more efficient routing protocol, @ereffective security mea-
sure, and a higher query hit rate in a mobile application.

We build a trace-driven simulator that enables us to retertb@ behavior of mobile
systems in a social environment. Our simulator recreatemabunters between a large
population of mobile users. To build our simulator, we amalp 101-day trace of en-
counters between people equipped with Bluetooth-enalelbgpbones collected by the
“Reality Mining” project at the MIT Media Lab [23]. To gendemencounters between
friends, we use a well-known social networking model — thét¥¥atrogatz model [33].
To generate encounters between strangers, our simula@smauseavy-tailed model in-
spired from the well-known preferential attachment mo@l By combining encoun-
ters between friends and encounters between strangerajveecurately simulate how
social information can lead to performance gains and highery hit rates in our three
mobile systems.

The paper is organized as follows. Section 2 presents oce-trased analysis of
people encounters. Section 3 uses our observations angsintd develop a social
networking-based simulator of people encounters. In 8eetj we use our simulator
to study the effect of incorporating social information kwee mobile systems: DTN
routing, the spread of worms in a mobile network, and thequarnce of file-sharing
applications. Section 5 summarizes our results and presentlusions.

2 Characterizing People’s Encounters

To perform an evaluation of using social information in nielsiystems, we need a data
trace of a mobile environment together with information attthe social relationship
among the participants. Unfortunately, we are unaware y&anh previously gathered
traces. Instead, we perform a social-based analysis of@dfeBluetooth activity to an-
notate it with the required information. For this, we use &-tlay trace of encounters
between people equipped with Bluetooth-enabled cell-phaollected by the “Reality
Mining” project at the MIT Media Lab [23]. By studying the fyaency of encounters,
we can annotate this trace with social information by cfgs®j pairs of people who
encounter frequently as “friends”, whereas pairs of peepleountering sporadically
are classified as “strangers”. The Reality Mining group Has ased this trace to in-
fer social relationships between participants. Their ysialis focused on identifying
different contexts in which social relationships are fodnastead, our goal is to char-
acterize the key temporal and social parameters of peagiesunters from this trace.

2.1 Trace Description

Gathering a suitable trace to analyze the properties oflpaamounters is very chal-
lenging. Such a trace requires tracking many people simedtasly while recording
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non-participants participants

Fig. 1. The type of encounters present in the traceOne arrow represents one en-
counter. Each pair of people could have more than one eneolErtcounters between
non-participants are not captured in the trace.

all interactions among them. Collecting the data must nobrrenience the individ-
uals being monitored and tracked. The privacy concerngdaiy such experiments
makes it particularly difficult to gather the data at scala. &l these reasons, very few
large-scale traces of people encounters are available.

We use a trace collected by the Reality Mining project at thé Media Lab [23].
This project equipped 100 students with Bluetooth-enabkidphones. The phones
were instrumented to probe and discover all nearby Blubtdevices every five min-
utes. Data was collected for the entire 2004 — 2005 acadeeaic groducing a trace
with over 285,000 Bluetooth-to-Bluetooth contacts.

We use this data as a rough approximation of people encausigece most of
the Bluetooth-to-Bluetooth contacts involve people emters. Many participants used
the instrumented devices as their primary cell-phoness€aguently, these cell-phones
were able to capture these individuals’ encounters acrbssaal range of their day-to-
day activities; the trace is not limited to the time that jzdpaints spent on campus or in
their lab only.

While the trace captures all encounters between partitsghamselves, the major-
ity of encounters present in the trace are between partitsgnd non-participants. A
non-participant appears in the trace whenever their dehp responded to Bluetooth
probes from a participant’s instrumented phone. This datasgis only a partial view
into the behavior of non-participants: we lack additiomdbrmation on how they en-
counter each other. While all encounters with non-pargietp are included in the study,
our analysis’s findings are restricted to the set of pamwictp only. Figure 1 illustrates
the type of encounters present in the trace.

The use of only one trace in our analysis restricts the agipility of our conclusions
to the general population. This problem is further exadedbly the limited scope of
the sample population; it consists entirely of studentsfgssors, and other academic
staff. We hope to validate our findings with larger scaledsaconducted in a variety of
contexts as they become available.

2.2 High-Level Trace Statistics

In all our analysis, we use a trace of people encounters plaaissthe Fall school term
only. Table 1 shows the summary statistics of the trace wd.uBee trace contains
over 155K encounters made by 88 participants over 101 daysav€rage, there is one
encounter every 7 seconds. The peak rate of encounters fratteeis 370 encounters
over 10 minutes, while the longest period with no encourreperted is 4 hours and 24
minutes.
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data source

Bluetooth cell-phones

trace length 101 days, 0 hours, 49 mins
participants 88

non-participants 10,739

total # of encounters 155.321

# of pairs of people encountering 28,166

median # encounters per participant 1,970

Table 1. Summary statistics for trace of people encounters, 09/08i®4 to
12/17/2004.Each participant encounters other people, either paatitip or non-
participants. One pair of people can encounter each othkiphauttimes.
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Fig. 2. The number of encounters over a two week periodEncounters show diurnal
and weekly patterns. This two week period includes a U.Sutstey holiday.

Figure 2 shows the number of encounters per hour for a typiaweek period.
As expected, encounters show diurnal and weekly pattehestwo week period shown
includes a statutory U.S. holiday (Columbus Day) that shilv@same level of activity
as a typical day on a week-end. We checked the MIT school daftethe school is
officially closed during Columbus Day.

2.3 Two Types of People Encounters: Friends and Strangers

We would like to investigate how people’s social relatioffet their encounters. For
this, we use the number of days on which two people encoustefiest-degree approx-
imation of their social relation. Intuitively, people ensdering on many different days
are likely to have a strong social relation (i.e., they arenfils) as opposed to people
who rarely encounter (i.e., they are strangers.)

Figure 3a shows the percentage of pairs of people with ertemias a function of
their encounters frequency. The graph shows that most@igieople (71%) encounter
on only one day. Less than 7% of pairs encounter on 10 or more. d&e classify
encounters into two groups: between pairs of people whowerieced on fewer than 10
days in our trace, and between pairs of people who encouhterat least 10 days. We
chose the value 10 days as a reasonable lower bound for theemaihdays on which
two friends encounter in the trace if they were to meet wedBly trace spans 14 full
weeks.

Figure 3b shows the number of pairs and the number of encsubteken down
by their types: friend versus stranger encounters. Whilg 6r9% of pairs of people
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Fig. 3. There are two types of pairs of people: friends and strangers(a) CDFs of
number of pairs of people as a function of the pairs’ encadfréguency, and (b) num-
ber of pairs and number of encounters as a function of the’paicounter frequency,
split in two groups.

were friends, these pairs account for two-thirds (65.3%glbéncounters in the trace.
This demonstrates that while most pairs of people encomgtare strangers having no
social relation, most encounters made are between frifidss, if our concern is to
propagate information quickly across a mobile network, wechto focus on stranger
encounters since they are rare opportunities for diffepenple to exchange informa-
tion. However, if our concern is to provide more stable anetifotable network links
for an application, then we must focus on friend encounters.

The stark difference between friend encounters and strargmunters lead us to
study their properties independently for much of the analyst follows.

2.4 Weekly and Diurnal Patterns

As previously shown in Figure 2, people encounters preseakly and daily patterns.
In this subsection, we take a closer look at the day-of-tkeknand time-of-the-day
effects present in the trace.

Figure 4 shows the average number of daily encounters biadwn by the day-of-
the-week when they occur. While more encounters occur ok dags than on week-
end days, the number of encounters is roughly the same aallosgeek days. This
suggests that people’s behavior is consistent across egchfdhe week and across
each day of the week-end. Figure 4 also separates friendietess from stranger en-
counters. For each day of the week, two thirds of encountersveen 61 and 68%)
are friend encounters and one third are stranger encouees the week-end, this
behavior is more balanced, only 50 to 55% of encounters @ediencounters.

We also examine the number of daily encounters by hour-efdiy for both week
days and week-end days (these results are not graphed kasflapace.) We find that
most people’s encounters occur on afternoons during wegkwlith a peak at 4:00pm.
There are 50% more encounters on afternoons (2-5pm) cochparaornings (9am-
12pm). The diurnal pattern of week-end days is different tivat of week days: week-
ends have high activity during late afternoons and evennafiets, but relatively little
activity during mornings.

To understand whether people’s encounter rates are pabtictve first calculated
each participant’s rate of encounters for each hour of tiyear each individual, we
measured how consistent their encounter rate is duringaitme $iour across all week
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Fig. 4. Daily encounters.The average number of encounters per day broken down by
day-of-the-week. People have more encounters during wagk tthan week-end days.
Two thirds of the daily encounters are with friends.

days and across all week-end days. For example, we measureftem the number
of encounters between 1pm and 2pm on Monday through Frideysge. We consider
Saturday and Sunday separately since week-ends have rediffiynamic of how peo-
ple encounter. For each pair of consecutive hour slots, wepote the difference in the
number of events for each individual.

Figure 5 shows the distribution of the differences of anvidlial’s number of en-
counters for the same hour-of-the-day for week days and veedkdays. From this
graph, we can see that people’s encounter rates are pigdican average, an indi-
vidual's encounter rate remains the same during two corisedwur slots 64% of the
time Monday through Friday and 76% of the time on Saturdaybk@umndays. Also,
the changes in the rate between consecutive hour slots gremall; this rate changes
by more than 5 encounters less than 7% of the time. Thesdgehdw that people’s
encounter rates are very predictable during the same hdbheafay.

2.5 The Friend and the Stranger Networks Are Scale-Free

Many social networks have been previously found to be sitak={2]. One of the dis-
tinguishing characteristics of scale-free networks is thair node degree distribution
follows a power-law relationship’(k) = k7. In power-law networks, a small number
of nodes are highly connected, while most nodes have lowetdivity.

Figure 6 shows the distributions of the number of friendsthedhumber of strangers
encountered by the 88 participants on a log-log scale. Bathes appear to follow a
similar power-law distribution for most participants (aw-law distribution appears
as a straight line on a log-log plot). We further examinedé¢heurves’ tails since they
do not seem to follow a power-law distribution. We found thainy of these partic-
ipants are not fully active over the entire trace duratios;lvelieve that their lack of
activity makes them encounter fewer friends and fewer gtees) respectively.

2.6 The Friend Network Has High Local Clustering
Many social networks have been shown to have a high localering coefficient [2].

In this section, we examine whether the friend and the stlangtworks are highly
clustered.
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Fig.5. CDF of the differences of each individual’s number of encouters for the
same hour-of-the-day for week days and week-end dayPeople’s encounter rates
are predictable. An individual's number of encounters prIrlremains the same 64%
of the time Monday through Friday and 76% of the time on Satysdind Sundays.
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Fig. 6. Distribution of the number of friends and the number of strangers for each
participant, on a log-log scale These curves appear to follow a power-law distribution,
suggesting that the friend and the stranger network gragghscale-free. Many social
networks have been previously found to be scale-free [2].

Unfortunately, the trace methodology prevents us from m&ag the clustering co-
efficient in both the friend and the stranger networks. Whitehave full information
about participants, we lack complete information abouir thiends or their strangers.
Instead, we measure the similarity of the participantsghbor sets in these two net-
works. We use the Jaccard’s coefficient to measure sinyilasta first order approxi-
mation of the degree of clustering present in these netwdtks Jaccard’s similarity
coefficient of two sets is the size of their intersection dé@d by the size of their union
—J(A, B) = |An BJ|/|AU B|. Two identical sets have a Jaccard’s coefficient of 1, and
two completely disjoint sets have a coefficient of 0.

Figure 7 shows the distribution of the Jaccard’s coeffidierall pairs of friends and
strangers in our data. The data suggests that there is aantibktifference between
these two networks. In the friend network, the neighbor sgisear similar, with a
median Jaccard’s coefficient of 0.43, over five times highantthe median Jaccard’s
coefficient of the stranger network (0.08). In the friendapdr, over 90% of all pairs
have more similar neighbor sets than almost all (95%) pdistrangers.
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Fig. 7. Distribution of Jaccard’s coefficients between the neighbosets of the friend
and the stranger networks, respectivelyWe use the Jaccard’s coefficient to measure
the similarity between the encounter sets of two people.deta shows that the friend
network has more similar neighbor sets than the strangeranket This suggests that
the friend network is more clustered than the stranger nitwo

2.7 Summary

This section used trace data to identify key properties opfeeencounters. From this
data, we find several important observations:

¢ While most pairs of people encounter sporadically, mosbenters are gener-
ated by pairs of people encountering often. This suggestpriiisence of two types of
encounters in the data: encounters between friends andietece between strangers.

e People encounters are driven by diurnal and weekly cycleseQve account
for time-of-day and day-of-the-week effects, the numbeemdounters of an average
person is consistent. People’s encounter rates are pabtiaiuring the same hour of
the day for week days and week-end days.

¢ Both the friend and the stranger graphs are scale-free.ddieedegree distribution
in these networks follow a power-law distribution, suggesthat while few nodes have
many friends (or strangers), most nodes have few friendst{angers, respectively).

¢ In the friend network, the participants’ neighbor sets anailar, where in the
stranger network, they are not. This suggests that thedfmetwork has a high degree
of clustering.

3 A Social Networking-Based Simulator of People’s Encounts

The premise of our work is that the performance of mobile igpfibns and protocols

can improve if they incorporate information about peopesial relations. This section

presents a simulator of a mobile environment that enablée agplore our premise.

Our simulator captures key social and temporal aspects bilenenvironments, such

as friend encounters, stranger encounters, and how the erusfitencounters varies
with the time-of-the-day and the day-of-the-week. Fronsthparameters, it produces
a large-scale synthetic trace of people encounters over tim

3.1 Simulator Description

As previously discussed, a person’s friend encountersiffezeht from their stranger
encounters in important ways. To capture this distinctiam,simulator uses two differ-
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Symbol Meaning Base value
N # of nodes 20,000
f # of friends per node (Watts-Strogatz) 20
a Zipf, pammetezfm sé{;[u;,%er encounters’ 1.129
P probability of encountering a friend 63.1%
A hourly rate of encounters (vector with 24 %) 17 0 056 ?(())36 (()) g;‘ {) é)SS {)?76 ()§)23 {) 032
week day values one for each hour of a week day) 1.76,1.37, 1.62.0.76, G:46. 0.37. 0.2 15)
.15,0.15 3,0.02 2, 0.02,
Meekend hourly raf( of en (mnter\f{vumr with 24 (?)_05’ (())_()GY (())(())?; ?)q() (())(i() (())(:)‘a ()0191 ()0391
‘Gay values one for'each hour of a week-end day) 0.33.031,0.19.0.29. 026 0.25,0.2.0.18

Table 2. Simulator structure and notation. These parameters’ settings reflect the val-
ues seen in the trace we analyzed.

ent models to generate friend and stranger encounters. fa@gVatts-Strogatz small-
world model [33] when generating encounters between fEemthile we use a version
of the Barabasi scale-free model [3] when generating ertessibetween strangers.

The Watts-Strogatz small-world model captures the higlsteling property spe-
cific to the friend social networks. A clustered friend grgmeserves the transitive
nature of friendships: an individual’s friends must be tedto each other in a realis-
tic manner. Our simulator captures this transitive natdifeiendships: if A and B are
friends, and B and C are friends, then the probability of A @ruking friends is higher
than a random chance. This transitivity property of frignigs is important to the flow
of information in social networks [9].

The Watts-Strogatz model placdsnodes on a ring and connects each wittof
its neighbors /2 on each side). To randomize the graph, each edge is rewirad to
random node with a small probability. The resulting grapb hssmall average path
length and a high clustering coefficient relative to a corghyerandom graph with the
same number of nodes and edges, as desired [33]. When thatsingenerates a friend
encounter, it selects a node at random and then selectseamaoithe at random from the
first node’s set of friends. An encounter will then be gerestdietween these two nodes.
Each node’s friend set remains fixed over the course of thelatian, since the friend
network is not altered once the simulation begins to run.

This model’s main limitation is that the nodes’ degree disition is not a power-
law, but more similar to that of a regular graph. Severalmsitins to this model address
this limitation [15,11,8]; we plan to examine more sopluiated small-world models in
future work. However, since friends on average composelhess7% of each individ-
ual’s unigue contacts, the overall degree distributiorheféncounter network is driven
almost entirely by stranger encounters.

We generate stranger encounters using an approach ingpitbe preferential at-
tachment model proposed by Barabasi et al. [3]. Barabasigeingrows a scale-free
network by adding one node at a time. Each new node attagdwdti a fixed num-
ber of existing nodes with a probability proportional to leaxisting node’s degree.
Although each node enters the network with a fixed number gégdhe node may ac-
quire additional edges as new nodes link to it when they adedtb the network. One
side-effect of Barabasi’'s model is that the last opporjufut two nodes to be linked
by an edge is when the second node of the pair is added to thenkeiOnce added
without a link between them, two existing nodes can neveoenter each other.

Our simulator makes a small modification to this model. ladtef growing the
network one node at a time, it assumes a closed populatieh. i@de is pre-assigned
a Zipf-based popularity score that determines the proialoif selecting this device
when generating stranger encounters. The Zipf law is a tfpgower-law commonly
found in nature. To generate a stranger encounter, the gioaruandomly selects two
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Fig. 8. Encounters produced by our simulator. The humber of encounters per hour
for all 20,000 people on the left, and the number of encogrfterone specific person
on the right. Since the number of encounters per hour is fikadgd on the hour of
the day), each week day and each week-end day appear igdistiable on the left.
However, individual persons do not have cyclical behaviorsthe right, we show how
an average person’s number of encounters per hour varies.

nodes with a probability proportional to their respectivpfacores. An encounter will
then be generated between these two devices. The simdatardful not to pick a pair
of friends when generating a stranger encounter.

Our method of generating stranger encounters ensurestthay dime, the proba-
bility of two nodes meeting each other in a stranger encausiteon-zero, except when
the two nodes are friends. While in the long-run this viddtee power-law property of
nodes’ degrees, we believe that it captures adequatelyethavior of a closed popula-
tion: in a fixed set of people, everybody eventually meetsydaly else. However, we
never experience this saturation regime in any of our sitiaula.

Table 2 summarizes the parameters used in our simulatiomsiS&/our simulator
to generate a two week synthetic trace of encounters. Weegterameter values from
a two week period of the MIT Reality Mining trace. We do not glate the encoun-
ters’ durations and we assume a fixed number of people in #tersy Our simulator
generates requests as follows. On average, 63.1% of a fsedaly encounters are
with friends and 36.9% with strangers. To generate an erteguour simulator cre-
ates a friend encounter with probability631 and a stranger encounter with probability
0.369. We hypothesize that the underlying stranger popularityrigen by Zipf's law.
We estimated the Zipf's parameter from a two week portiortthee to bex = 1.129.
The encounter rates vary according to the time-of-the-dalythe day-of-the-week.
Since the number of encounters remains constant on an huasiy, we use 24 hourly
rates during a week day and another 24 hourly rates duringei-enad day.

Despite our ability to estimate many of the input parameters the trace data, it is
not possible to directly estimafé (the number of people) with any confidence. For that
reason, we leav&’ as a free parameter, adjusting it to obtain as tight a cooredgnce
between the simulator and the data trace as possible. Rgliustrates the encounter
patterns captured by our simulator.

3.2 Simulator Validation

Our simulator’s main goal was to capture the specific charatics of friend and
stranger encounters. Many of these properties are buitk@rate of encounters, the
fraction of friend versus stranger encounters, the heaiget distribution of friend and
stranger popularities, and the heavy clustering of thedrieetwork. We validated our
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Fig. 9. Predicted versus measured flow of information in a restricte trace. The
speed of information flow in the network is reflected in thevest slopes. The syn-
thetic curve’s characteristics are close to the real dataeis characteristics.

model by measuring the speed of information propagatioruinsynthetic trace and
comparing it to the data trace. The data trace is restriétebes not capture encoun-
ters between non-participants. In contrast, our syntheze captures all encounters
between all people. To match the data trace’s environmentelected a set of nodes
from our synthetic trace to serve as our instrumented paits. We matched the
number of participants selected to the two week Reality Mjrtrace we used to pa-
rameterize our model. We did not choose the participanthmanty. Instead, we chose a
subgraphin the friend network and we marked all nodes a&jmamnts in our validation
experiment. In this way we ensured that participants haeagtfriendship ties among
them, similar to the the data trace’s participants, who ctnora a single environment
and are likely to be socially related.

Next, we removed all encounters between unselected nodas isynthetic trace
since these correspond to encounters between non-partisiprhus, we were able to
produce a synthetic trace with an experimental restriciorilar to the original trace.
We used the number of encounters in our restricted synttratie to calibrate how to
scale up the rate of encounters in our simulator. Initiallg, scaled up the rate of en-
counters linearly with the size of the population. Howetis led to an unrealistically
high number of encounters. Instead, we calibrated therggédictor so that the number
of encounters in the restricted synthetic trace matchesuh@ber of encounters in the
real trace. The same scaling factor also led to an accursatebdition of encounters
between participant-to-participant and participantitm-participant encounters.

Figure 9 shows how information propagates through ouriotstt synthetic trace
and through the original trace. For this, we simulated howeasage sent by a random
participant spreads through the network over time. Whendta number of people in
the simulation {V) is set to 20,000, the rate of information propagation insyrethetic
network is close to the real trace.

4 Exploiting Social Interactions in Mobile Systems

In this section, we use our social networking-based siroutatinvestigate the potential
benefits of using social networking information to three itogystems: (1) the perfor-
mance of DTN routing protocols, (2) slowing down the propageaof mobile worms,
and (3) improving the query hit rate of a mobile file-sharipgplécation. We examine
each of these applications in turn.
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4.1 Routing in Delay Tolerant Networks (DTN)

In this section, we examine the performance of DTN routingtgeols from a social
networking perspective. After presenting a brief prime@FN routing protocols, we
study their performance in the presence and in the absersmcia information. Our
findings will show that, by using social information, rowgiprotocols can achieve sub-
stantial performance gains.

A Brief Primer on DTN Routing

Various DTN routing protocols make different assumptiolpgug the knowledge avail-
able to network nodes. While some assume that nodes haveavdddge about the
state of the network, others assume that nodes have accéiéetent types of infor-
mation, such as the topology of the network, the average ltiete@een successive en-
counters of two nodes, who the congested nodes are, or therketaffic matrix [14].

Most protocols assuming no knowledge about the network asedon epidemic
routing [14,31,26]. These algorithms are optimal — tladwyays deliver the message
over theshortest available path. They are also well-understood and relgtizasy to
implement and deploy. Although optimal, epidemic routisgxpensive and unscalable
since a message can potentially reach all nodes in the networ

To control the flooding of packets, epidemic protocols taflicassociate a time-
to-live field with each packet or they restrict their forwigl decisions. For example,
in the First Contact protocol [14], a hode only forwards aldhe first available link.
While these techniques reduce the cost of epidemic routiray, also reduce the pro-
tocols’ performance, and they sometimes fail to delivergheket. In fact, the First
Contact protocol has been known to perform poorly in gersrade the chosen next-
hop is essentially random [14]. In summary, the DTN routimgtpcols that assume
no knowledge about the network perform poorly: they areegitmscalable in prac-
tice (uncontrolled epidemic routing) or their delivery sass rates are low (first contact
routing) [16].

Other DTN routing protocols assume some knowledge abousttite of the net-
work [19,14,16,30]. All these protocols try to compute ghst paths to the destination
assuming that certain network information is availablen8@ssume little extra infor-
mation, such as the average waiting time until the next avfita an edge, while others
assume that all nodes know the entire network topology &itadis. The performance of
these DTN routing protocols varies depending on the amouinfarmation available
and the network dynamics. A comprehensive evaluation afethpgotocols for several
DTN scenarios is presented in [14].

Incorporating Social Networking in DTN Routing

Social information is another type of information that iseofreadily available to nodes
in a DTN scenario. This information can help DTN routing jpails make more in-

formed decisions to whom to forward a specific message. Faample, when routing

between friends, a protocol could prefer selecting intaliarées who are friends with

either the source or the destination. Friends are moreylikebe clustered and to en-
counter one another. To quantify the performance of ina@freg social networking in

DTN routing, we used our simulator to evaluate several pa®in the presence and
in the absence of social information.

While we evaluated a suite of DTN protocols, in this paper,present only four
protocols: “direct contact”, “forward-to-1-person”, ‘fiward-to-2-persons”, and “forward-
to-all”’ [32]. In “direct contact”, the sender does not fomglahe message to any interme-
diary; instead it waits to encounter the destination. Imtfard-to-1-person”, the sender
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Fig. 10. The performance of DTN routing protocols. In the “direct contact” proto-
col, the sender does not forward the message to any inteanyedtistead it waits to
encounter the destination. In “forward-to-k-personsefids”, the sender forwards the
message to the first k persons (or friends). The sender anidtrenediaries do not
subsequently forward the message unless they encounteiettimation. “Forward-
to-all” forwards to all persons encountered by the sendgidémic routing floods the
message to all nodes. On the left, the distribution of a ngessdelivery times between
100 pairs of random people is shown. On the right, the saneldigon between 100
pairs of friends is shown; in this experiment, all forwaglishecisions are restricted to
friends only. The routing protocols perform significantbtter in the presence of social
information.

forwards the message only to the first person encounterestei®ino subsequent for-
warding; the message is delivered only when the sender antitrenediary encounters
the destination. The “forward-to-2-persons” works simylathe sender forwarding to

the first two persons encountered. Finally, in “forwardatti-the sender forwards the
message to all persons it encounters. Note that this isreliffehan epidemic routing,

since in “forward-to-all”, none of the intermediaries fawl to any nodes other than
the destination. We also implemented the optimal, epidemiting protocol to serve

as a baseline of comparison.

On the left, Figure 10 shows the distribution of deliveryésof 100 messages sent
between 100 pairs of people randomly chosen. With epidemitiirg, all messages
are successfully routed in less than 16 hours. However,akeaf epidemic routing is
immense: over half a million messages are being forwardexlighout the network.
On the other hand, the other four DTN routing protocols panfeery poorly. In two
weeks, “direct contact” is unable to deliver even one simgéssage.

On the right, Figure 10 shows how these routing protocol&perin the presence
of social information. For this, the simulator selected 1&@dom pairs of friends and it
restricted all the protocols to only forward to a friend of ource or the destination. To
capture the optimal delivery times, we left the epidemidirauprotocol to forward to
any person. As Figure 10 shows, “direct contact” deliver®%0 the messages in less
than 19 hours, taking only an extra 7 hours over the optimidiezpic routing protocol.
Forwarding to one friend reduces the delivery times of hélfhe messages by two
hours and 45 minutes, and forwarding to two friends adds ditiadal two hours of
savings to the delivery times. By forwarding the messagd foi@nds of the source or
the destination, 98% of all messages are delivered in l@sslti.5 hours. These routing
protocols’ performance is close to optimal without the hogerhead of flooding the
entire network — each message is forwarded a small numbienes bnly, at most on the
order of the number of friends of the source and the destinaiVe also evaluated these
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protocols when routing between people with no social rehaéind forwarding to the
source or the destination’s friends; the protocols’ perfance is much more modest.

In summary, our findings show that social information leadsubstantial perfor-
mance gains for DTN routing protocols. While our experinsesily separated friend
from stranger encounters, we believe that a more refinetiviezd of social information
(e.g., identifying social groups and social behavior) kelly to further improve these
protocols’ performance. We plan to investigate this in fatwork.

4.2 Slowing the Spread of Worms

In this section, we examine whether firewalls that discratgrbetween traffic sent by
friends and traffic sent by strangers can slow down the pratay of a worm in a
mobile network. We use the propagation speed of a worm iiofeets a lens to measure
the effectiveness of firewall rules based on social netvngyki

The research community has already started to investigatéetsibility and the
propagation dynamics of worms in mobile networks [5,6,9%,8Vhile no large-scale
mobile worm outbreak has been reported so far, severaltsepioworms spreading over
the Bluetooth protocol in a cell-phone environment exist2]. The consequences of
a malicious program infecting a large number of cell-pharasbe disastrous. For ex-
ample, such a worm could launch a DoS attack by overloadiegment of the cellular
network. Similarly, a spyware program infecting cell-pBsrcould collect personal in-
formation. By slowing the propagation of a worm in a mobiléwark, security experts
can have more time to create and distribute a software papairing the vulnerability
exploited by the worm.

An effective way of slowing the propagation of a worm is tovie#l devices to
prevent them from receiving traffic from all other devicehi®&’ such a measure would
be very effective, this solution is also unappealing — if wikevent devices from using
their radio interfaces for legitimate applications. Ir&tea firewall that allows traffic
only from a select set of devices could greatly slow the gbiafaa worm but allow
many applications to function normally. For example, a fawhat accepts traffic only
from friends would not prevent people from using their degito exchange data with
people they know. In this way, several applications, suckxakanging chat messages
or files with friends, can still function in the presence oflstdirewalls.

We use our simulator to investigate the effectiveness dfi $wewalls in a mobile
network. In our experiments, a worm outbreak occurs byaltiinfecting one ran-
domly chosen node. We randomly select 5% of the populatidretoulnerable; our
fraction of vulnerable devices is low since the most virtillemown worms, such as
Internet worms, only infected a relatively small fractiohatl Internet nodes [25,24].
We select 30% of the vulnerable devices (1.5% of the entipaifadion) to be equipped
with a social networking firewall. We measure the number fddted devices with and
without social networking firewalls.

Figure 11 shows our results. Without a firewall, a worm caad¢bhalf of the vulner-
able devices in 9.5 days. While the worm does not propagaeqeeckly for the first
five days, over 30% of vulnerable devices are infected in opekwT he rate of propaga-
tion is also influenced by the network’s temporal properti¢se worm “slows-down”
during nighttime, but it then resumes a quick infection paicg¢he next day.

Even when a small fraction of devices (1.5%) turn on a so@éalarking firewall,
the worm infection slows down significantly. Only a smalidtian of vulnerable devices
(10%) are infected in the first week of the outbreak. It takesr dwo weeks to infect
half of the vulnerable devices, a delay of over five days wtanpared to the time it
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Fig. 11. The propagation of a mobile worm over time.In this experiment, 5% of de-
vices (out of 20,000) are vulnerable. The rate of infectgypresented when no firewalls
are present in the system and when 30% of vulnerable node% (df.the entire popu-
lation) are firewalled. We show the results when running aviiterejecting all traffic
and when running a firewall rejecting traffic from strangemyoThe two firewalls are
almost as effective suggesting that social based firewatisptovide a good compro-
mise between preventing a worm from infecting devices atavalg some network
applications to still function.

takes to infect half of the population in the absence of suelvlls. The effectiveness
of the social networking firewall is almost close to optima perfect firewall would
only prevent an additional 27 devices from becoming inféateone week.

These results suggest that social networking firewalls twam down the spread of
a worm allowing for extra time to distribute a patch to thenfected but still vulner-
able devices. At the same time, devices running such firewalh continue to use the
network to communicate with their friends. These findings/sthat social networking
firewalls can provide an attractive solution to both usesseturity experts in the face
of a large-scale worm outbreak.

4.3 File-Sharing in Mobile P2P Systems

Recently, several companies have started to offer filehstpaoftware for mobile phones
that allow users to share ring-tones, music, games, phentdsyideo [28,17]. In mobile
P2P systems, content exchange is driven by the users’ soi@edctions — people en-
counter each other in social settings and they use theipbelhes to exchange content.
To understand these systems’ behavior, we need to undénstavhat extent content
propagation is driven by friend versus stranger encournethis section, we examine
the performance of several file exchange protocols in a m&2P file-sharing system
from a social networking perspective.

P2P systems must provide incentives for participants toagphnd share content.
In the absence of such incentives, many peers offer littteoadata to the system. Such
peers are known as “free-riders” [1]. Creating a suitabéeirive mechanism in a P2P
system and enforcing it in a decentralized manner is a aigihg problem and an
active area of research [21,20,27]. On the other hand, miitiheccontent exchange
in a mobile network occurs in social settings: friends sltargent among themselves.
Such environments offer a natural set of incentives: frieack likely to share data
or even forward data on each other’s behalf. If exchangingezd between friends,
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Fig. 12. The fraction of successful requests over time in mobile P2Pystems.We
implemented three file exchange policies: “no wish-listshenged”, “1-hop wish-lists
exchanged”, and “2-hops wish-lists exchanged”. A peer doads a file if either it
wants it or it has previously received a wish-list contagnihis file. On the left, content
is exchanged between all peers. On the right, content anla-hgis are exchanged
between friends only. When restricting content exchangdsiend encounters only,
the rate of successful requests decreases drastically.

without involving strangers, can satisfy most people’aesis, the need for an explicit
incentive mechanism design is greatly diminished.

To examine whether content exchange is driven by friend @meos or by stranger
encounters in a mobile P2P system, we performed the follpexperiment. We started
with a trace of P2P file exchanges in Kazaa, a popular Intét2Btsystem, collected
at the University of Washington [10]. Each of the 24,578 modethis trace has a
“wish-list” and a “have-list”. The wish-list corresponds all of the files that the node
downloads from its peers over the course of the trace, widnave-list is the set of all
files that this node is willing to provide to its peers. Fronstinace, we selected 20,000
peers and we mapped them to the 20,000 people whose encoardgegenerated by
our simulator. The mapping is done according to peers’ pojiids: the peer having
the largest have-list is mapped to the participant with figadst number of encounters
in our simulator. When two peers encounter, a file-exchaogieypdictates which files
and wish-lists the peers should exchange. Since our siordaes not capture contact
durations, we assume that file transfers occur instantaheou

We implemented three file-exchange policies by varying timalmer of hops wish-
lists are exchanged in the network. In the first policy, “nshvlists exchanged”, a
content exchange occurs only if one peer wants a piece oéabptesent on the other
peer. No contentis downloaded on behalf of others. In thiedfhwish-lists exchanged”
policy, wish-lists are exchanged between neighbors onigt{(*hists are flooded with a
time-to-live (TTL) of 1.) A peer downloads a file if either itamts it, or it has previ-
ously received a wish-list containing this file. In this wagntent is replicated on peers
who have previously encountered someone wanting the fileZ4nops wish-lists ex-
changed” policy behaves similarly, except the wish-Ii3tEL is set to 2.

To evaluate whether peers can find content among their Bjeme conducted two
sets of experiments: one in which all peers share contenhgrtiemselves, and one
in which content sharing is restricted to friend encountery. Figure 12 shows our
findings. On the left, we show the fraction of requests satisfiver time when all peers
exchange content. In two weeks, only 27% of requests argisativhen no wish-lists
are exchanged. On the other hand, if wish-lists are exclibingigveen neighbors, 54%
of requests are satisfied. Exchanging wish-lists betweerspan substantially improve
the users’ query hit rate in the system.
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On the right, Figure 12 shows the fraction of requests satisiver time when only
friends exchange content. In two weeks, less than 1% of stg@ee satisfied when
wish-lists are not exchanged. Even if wish-lists are exgedralong two hops, only
15% of requests are satisfied over two weeks. These findirgggestithat restricting
content exchange only to friend encounters drasticallyiced the rate of successful
requests. In our experiments, peers find three times fevear fihen restricting their
content exchange to friend encounters only.

Our findings illustrate that mobile P2P systems cannot relfr@end encounters
to deliver content to their users. Although such a schemédgmovide a natural set
of incentives to a system, it would significantly penalize tisers’ query hit rate. In-
stead, like the file-sharing systems present on the Intel28 systems in mobile en-
vironments must rely on developing alternate incentiveestds to ensure that peers
contribute their content.

5 Conclusions

In this paper we used social networking-based simulatiorshow how three mobile
systems can exploit people’s social relations to improvéopemance and query hit rate.
We first showed that simple DTN routing protocols that avaidvarding to strangers
work very well when routing between friends. Next, we fouhdttfirewalls allow-
ing traffic from friends while rejecting traffic from strangeare effective at slowing
down the spread of worms in mobile environments. Finally,shewed that mobile
P2P file-sharing systems must rely on strangers to exchamgert to satisfy their
users’ requests.
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