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ABSTRACT
Traditionally, users have discovered information on the Web
by browsing or searching. Recently, word-of-mouth has
emerged as a popular way of discovering the Web, partic-
ularly on social networking sites like Facebook and Twit-
ter. On these sites, users discover Web content by following
URLs posted by their friends. Such word-of-mouth based
content discovery has become a major driver of traffic to
many Web sites today. To better understand this popular
phenomenon, in this paper we present a detailed analysis
of word-of-mouth exchange of URLs among Twitter users.
Among our key findings, we show that Twitter yields propa-
gation trees that are wider than they are deep. Our analysis
on the geo-location of users indicates that users who are ge-
ographically close together are more likely to share the same
URL.

Categories and Subject Descriptors
J.4. [Computer Applications]: Social and behavioral

sciences Miscellaneous; H.3.5 [Online Information Ser-
vices]: Web-based services

General Terms
Human Factors, Measurement

Keywords
Word-of-mouth, information diffusion, social networks,

web content discovery

1. INTRODUCTION
Recently online social networking sites like Facebook and
Twitter have emerged as a popular way of discovering infor-
mation on the World Wide Web. In contrast to traditional
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methods of content discovery such as browsing or searching,
content sharing in social networking sites occurs through
word-of-mouth, where content spreads via conversations be-
tween users. For instance, users share links to content on the
web with personal recommendations like “This is a must-see
video.”

While such word-of-mouth based content discovery existed
long before in the form of emails and web forums, online so-
cial networks (OSNs) have made this phenomenon extremely
popular and globally reaching. In fact, today social network-
ing sites are known to be a major driver of traffic to many
web sites [40]. For certain web sites, Facebook and Twitter
drive, respectively, 44% and 29% of the traffic [35]. These
OSNs are sharing tens of millions of web links every day, [41]
and we expect that the amount of information exchanged by
word-of-mouth in OSNs will grow over time.

In this paper, we present a detailed analysis of the word-
of-mouth based content discovery on the web, by analyzing
the web links (URLs) shared on a popular social platform,
Twitter. We used the Twitter data in [14], which comprises
54 million user profiles, 1.9 billion follow links, and all 1.7 bil-
lion tweets posted by Twitter users between March 2006 and
September 2009. Twitter is an ideal medium to study word-
of-mouth based discovery of web content for several reasons.
First, the core functionality provided by Twitter, tweeting, is
centered around the idea of spreading information by word-
of-mouth. Second, Twitter provides additional mechanisms
like retweet (act of forwarding other people’s tweet), which
enable users to propagate information across multiple hops
in the network through word-of-mouth. Third, thanks to
URL shortening services, sharing URLs has become a com-
mon practice in Twitter. In fact, nearly a quarter of all
tweets in our data contained URLs, and a total of 208 mil-
lion URLs were shared during the three year period.

In order to study how the 54 million users in Twitter col-
laboratively discovered and spread web links, we built an
information propagation tree for every URL that was shared
during a random week in 2009. We considered both explicit
(e.g., retweets) and implicit information flows (e.g., when a
user shares a URL that has already been posted by one of
the contacts she follows, without citing the original tweet).
By accounting for implicit information flows, our method-
ology produces much denser trees than previous work that



considers only explicit links [27, 44]—the number of edges
in a tree has increased by a factor of 23.9.

Based on the propagation trees of URLs, we try to answer
several key questions that are fundamental to understanding
word-of-mouth based web discovery. The questions we ask
include: Can word-of-mouth reach a wide audience? What
kinds of content are popular in social media as opposed to
the web in general? Does word-of-mouth give all content, in-
cluding those published by unpopular domains, a chance to
spread? What are the typical structures of word-of-mouth
propagation trees? We discuss the implications of our find-
ings for the design of word-of-mouth based marketing strate-
gies and the role of social media.

The key findings of our work can be summarized as fol-
lows:

1. Word-of-mouth can be used to spread a single URL to
a large portion of the user population, in some cases
even to an audience of several million users.

2. Popular URLs spread through multiple disjoint prop-
agation trees, with each of the propagation trees in-
volving a large number of nodes.

3. Domains whose URLs or content is spread widely by
word-of-mouth tend to be different from the domains
that are popular on the general Web, where con-
tent is found primarily through browsing or search-
ing. Our analysis shows that word-of-mouth gives all
content—including those published on relatively un-
popular domains—a chance to be propagated to a large
audience.

4. Word-of-mouth in Twitter yields propagation trees
that are wider than they are deep. Our finding is in
sharp contrast to the narrow and deep trees found in
Internet chain letters.

5. Our analysis of the geo-location of users reveals a sig-
nificant correlation between propagation and physical
proximity. Moreover, content tends to spread for short
distances only on the first hops away from the content
creator.

The rest of the paper is organized as follows. Section 2
describes the data and our methodology for constructing in-
formation propagation trees. In Section 3 we examine what
kinds of content is popular in word-of-mouth discovery of
the Web. In Section 4 we characterize several aspects of
word-of-mouth propagation. Section 5 presents an study of
the geo-location of users and how far word-of-mouth content
travels around the globe. We discuss implications of findings
in Section 6 and present related work in Section 7. Finally,
we conclude in Section 8.

2. METHODOLOGY
Twitter is a prime example of an OSN where users discover
Web content through word-of-mouth. In this paper, we used
the Twitter dataset gathered in [14] and study the properties
of word-of-mouth based Web discovery.

2.1 The Twitter Dataset
Data collection utilized the official Application Program-
ming Interface (API) of Twitter and took over a month using
58 servers in Germany [14]. We had these servers whitelisted

by Twitter so that they can send API requests rapidly. The
data comprises the following three types of information: pro-
files of 54,981,152 users, 1,963,263,821 directed follower links
among these users, and all 1,755,925,520 public tweets that
were ever posted by the collected users. The oldest tweet in
our dataset is from March 2006, when the Twitter service
was publicly launched. The dataset does not include any
tweet information about a user who had set his account pri-
vate (8% of all users). Our dataset is near-complete because
user IDs were sequentially queried from all possible ranges
(0–80 million) at the time of data collection in September
2009. Therefore, it provides a unique opportunity to exam-
ine the largest word-of-mouth based URL propagation event
in Twitter.

A Twitter user might follow another user to receive his
tweets, forming a social network of interest. The node in-
degree and out-degree distributions measured on this net-
work are heavy-tailed, and the network topology is similar
to those of other OSNs like Facebook. They can be fit well
with a Power-Law distribution with exponents 2.19 for in-
degree and 2.57 for out-degree (R2=0.05–0.09%). While a
very small fraction of users have an extremely large number
of neighbors, the majority of users have only a few neigh-
bors; 99% of users have no more than 20 in- or out-degree
neighbors. The most popular users include public figures
like Barack Obama, celebrities like Oprah Winfrey, as well
as media sources like BBC. A social link in Twitter is di-
rectional. Unlike other OSNs, the Twitter network exhibits
extremely low reciprocity; only 23% of all links are bidi-
rectional, which means that high in-degree nodes are not
necessarily high out-degree nodes.

2.2 URLs in tweets
We treat a URL as a clean piece of information that spreads
in Twitter. The number of tweets containing URLs has in-
creased rapidly over the years, as shown in Figure 1. Since
2009, on average 22.5% of tweets contain URLs, and as of
September of 2009 more than 30% of tweets contain URLs.
This is equivalent to sharing 1.3 million distinct URLs per
day in 2009. The URL usage is even higher in retweeets:
47%. Interestingly, the number of retweets grew abruptly
after July of 2008. This is because retweeting became a
convention between users around this time [13].
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Figure 1: Usage of URLs on tweets over time

In analyzing the web links within tweets we found that the
majority of the URLs (nearly 75%) were from URL short-
ening services (e.g., bit.ly), which substantially shorten the
length of any web link. Hence we had to take into account



Period Distinct URLs Tweets Retweets Users
Dataset 1 Jan 1, 2009 – Jan 7, 2009 1,239,445 6,028,030 295,665 995,311
Dataset 2 Apr 1, 2009 – Apr 7,2009 4,628,095 17,381,969 1,178,244 2,040,932

Table 1: Statistics of the two Twitter datasets analyzed

several possible confounding factors such as when multiple
short URLs refer to the same long URL or when the short
URLs are recycled after not being used for some time (e.g.,
when there is no human visitor for 120 days, some URL
shortening services allow a short URL to point to a new
content). Therefore, we picked a large pool of URLs over
several short time periods (so that these URLs refer to iden-
tical content), then resolved all the short URLs to the long
URLs for data analysis in this paper.

Table 1 displays the summary of datasets we analyzed.
Each week period contains several million distinct URLs.
Because the samples are from a one week period, certain
URLs were already in the process of word-of-mouth propa-
gation. Hence, we scanned the entire tweet dataset to find
all tweets that contain the URLs in Table 1 and additionally
considered them in our analysis. We made sure that none of
the added URLs were recycled. Due to space constraints, in
the rest of the paper, we present results only for Dataset2
in Table 1. All the conclusions hold for Dataset1 as well.

2.3 Modeling information cascades
Below, we describe the model of URL propagation.

2.3.1 Hierarchical tree model
We build information propagation paths based on Krack-
hardt’s hierarchical tree model [25]. A hierarchical tree is a
directed graph where all nodes are connected and all but one
node, namely the root, have in-degree of one. This means
that all nodes in the graph (except for the root) have a single
parent. Hence, an edge from node A to node B is added to
the tree only when B is not already a part of the tree. An
edge from node A to node B means that a piece of informa-
tion was passed from A to B. While each hierarchical tree
has a single root, there may be multiple users who indepen-
dently share the same URL. In this case, the propagation
pattern of a single URL will contain multiple trees and form
a forest.

While we assume there is only a single parent for any
intermediate nodes, in real life there may be more than one
source who passed the same piece of information to a given
user. In order to resolve the tie, we resort to the pattern
seen in explicit links in our data. We found that, when
users have multiple sources, more than 80% of them cite
their last source. We attribute this pattern to the timeline
interface of Twitter, which work as a stream, showing the
last 200 tweets to the user, chronologically ordered. Hence,
we assumed that each user received a URL from the most
recent source. Our model is different from that proposed by
Sun et al. [38], where they considered all friends who joined
the same group on Facebook within the last 24 hours as valid
sources.

Following the definitions proposed in [42], we call the users
in the root of a hierarchical tree initiators. These users
are the ones who independently shared URLs. We call all
other nodes who participated in URL propagation spread-
ers. Initiators and spreaders make up the hierarchical tree.
We call users who simply received a URL but did not for-

ward it to others receivers. Later when we refer to the
hierarchical tree structure, we do not include these users.
For convenience, we collectively call all three types of users
who potentially read the URL as its audience. Figure 2
depicts this relationship.

Figure 2: Terminology

2.3.2 Explicit vs implicit links
There are two major ways to reconstruct information prop-
agation paths. One approach is to rely solely on the retweet
convention. A retweet typically contains the original tweet
content by someone else along with a “RT @username” or
“via @username” text that cites the person who posted the
tweet. Citation sometimes extends to the intermediary per-
sons who also retweeted the same message. Identifying in-
formation propagation based on explicitly retweeted links
has been a popular approach in previous work [27, 44]. An-
other approach, which we take in this paper, is to consider
implicit links as well. As opposed to the former approach,
implicit URL propagation occurs when a user, without nec-
essarily citing the information source, shares a URL that
has already been shared by one of his followees. In other
words, an implicit URL propagation occurs when a user A
publishes a URL after receiving it from a user B, but user
A does not explicitly cite user B.

Since retweeting was not a built-in mechanism in Twitter
in 2009 but was a convention that people started adopting
over time, some Twitter users did not use the retweeting con-
vention and even when they did, there were many forms of
citation (e.g., via, retweeting, RT). Thus, ignoring these im-
plicit links resulted in a sparsely connected graph as shown
in Figure 3, which is based on a real example from our tweet
data. In fact, we found that considering implicit links (as
opposed to using only explicit retweet links) increases the
number of edges in the information propagation paths by a
factor of 23.9.

In order to verify the impact of using implicit links, we did
some experiments varying the way in which the implicit link
is chosen. Some examples include getting a random source
(when the user received the URL from multiple sources) and
considering an implicit link as valid only if it occurs within a
specific time interval as valid (for example, if the retweet oc-
curs within 24 hours of the tweet). In all the experiments we
found similar results as the ones presented in this paper. As
more than 80% of the users usually retweet (explicity link)
their most recent source, we decided to consider the most re-
cent source in implicit links. Furthermore, as some retweets
happen after a long time interval (for example, more than



a month after the original tweet), we did not use any time
interval limit.

Figure 3: Explicit vs implicit graphs

3. WHAT CONTENT IS POPULAR
In this section, we examine which URL shortening services
are widely used in Twitter, which web domains these short
URLs point to, and what kinds of content is popular in word-
of-mouth discovery of the Web.

3.1 URL shortening services
URL shortening services make it easy for Internet users to
share web addresses by providing a short equivalent [9].
For example, a web link http://topics.nytimes.com/top/

news/business/companies/twitter/ can be shortened to http:

//nyti.ms/1VKbrC by a commercial service Bit.ly [2], which
will redirect any request access to the original NYTimes
website. URL shortening services allow otherwise long web
addresses to be referred to in various OSNs like Twitter
that often impose character limit in tweets and comments.
There are hundreds of commercial URL shortening services.
Hence, the same web address can have several short alter-
natives in services like tinyURL [6] and Ow.ly [4].

In order to identify whether a given web address is a short
or long URL, we took a heuristic approach. We wrote a
Python script to resolve a URL in a tweet by sending a web
access request to that URL and comparing the domain of
the original URL with that of the resolved URL. If the two
domain names were different, we considered the URL in the
tweet to be a short URL, otherwise, we considered it a long
URL.

A total of 30 URL shortening services were in use from
2006 to summer 2009 in Twitter. Table 2 displays the top
10 services and their share of tweets. Usage of the top two
services tinyurl.com and bit.ly make up more than 90% of
the total usage. Between January to April of 2009, we find
that bit.ly doubled its presence. The 3rd ranked service is.gd
also continued to gain presence in Twitter.

Rank Web Domain Dataset2 Dataset1
1 tinyurl.com 4,398,940 (68.2%) 1,883,032 (81.4%)
2 bit.ly 1,530,613 (23.7%) 262,171 (11.3%)
3 is.gd 493,124 (7.6%) 142,497 (6.2%)
4 snipurl.com 27,146 (0.4%) 24,606 (1.1%)
5 hugeurl.com 1,578 (0.0%) 841 (0.0%)
6 ur1.ca 1,116 (0.0%) 451 (0.0%)
7 xrl.in 361 (0.0%) 250 (0.0%)
8 u.nu 282 (0.0%) 139 (0.0%)
9 simurl.com 216 (0.0%) 6 (0.0%)
10 doiop.com 101 (0.0%) 90 (0.0%)

Table 2: Top 10 URL shortening services in 2009

3.2 Popularly linked web domains
We next checked whether URLs popularly shared on Twit-
ter come from major web domains in the Internet (such as

nytimes.com or google.com). Our motivation is to verify
a widely held belief that word-of-mouth can help popular-
ize niche or esoteric information from domains that are not
otherwise very popular. We used the translated long URLs
for this analysis and the rest of the paper, and grouped the
URLs based on their domain names.

In total, there were 4,638,095 long URLs that came from
429,551 distinct web domains. The top 20% of the web
domains accounted for 95% of these URLs. We ranked the
domains based on the number of distinct URLs that belong
to the domain as well as the total size of the audience reached
by URLs belonging to the domain. Experiments using both
ranking methods had similar results. We compared the list
of top domains in the resulting rankings with the list of top
ranked domains in the general Web published by Alexa [1].
Table 3 displays the top-5 domains based on the number of
URLs, their description, the fraction of all URLs that belong
to the domain, and their rank from Alexa.com.

Rank Top list Description URLs Alexa rank
1 twitpic.com photo sharing 8.5% 103
2 blip.fm music sharing 3.0% 6,736
3 youtube.com video sharing 2.1% 3
4 plurk.com social journal 2.1% 1,146
5 tumblr.com blog 1.4% 100

Table 3: Top-5 domains in Twitter (April, 2009)

The most popular domain, twitpic.com, accounted for
8.5% of all URLs in the tweet data. The coverage of the
other top domains quickly drops with decreasing rank. The
Alexa ranking shows that the top-5 domains are quite dif-
ferent from the top list in the Web. Only youtube.com is
within the top 10 sites from alexa.com. The top-5 list in
Alexa includes major portals and search engines (Google)
and portals (Yahoo, Live). We also found that Twitter
users often share user-generated content, as seen in the
table. Twitter users share photos (twitpic.com), videos
(youtube.com), blog articles (techcrunch.com), as well as
participate and promote social events (abolishslavery.com
and earthday.net).
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Figure 4 shows the fraction of top-K domains that also
appear in the top-K domain list from Alexa.com for various
values of K. The bar plot also shows a comparison to the top
URLs identified by the size of the audience reached within
Twitter (including initiators, spreaders, and receivers. The
overlap is minimal; fewer than 30% of the top-K domains in
Twitter overlap with that of the general Web, for all ranges



Rank URL domain Audience Description
1 wefollow.com 28M Social application that suggests list of users to follow
2 facebook.com 14M Social network (warning page)
3 abolishslavery.org 4.5M Social organization dedicated to combating human traffic (initial page)
4 twitpic.com 4.5M Photo sharing (photo published by famous actor Ashton Kutcher)
5 youtube.com 4.5M Video sharing (popular comedy video with title “David After Dentist”)
6 tweetvalue.com 4.3M Application that measures the value of a Twitter account (initial page)
7 techcrunch.com 3.6M Blog (article with rumors about Google in talks to buy Twitter)
8 earthday.net 3.3M Social organization dedicated to the Earth’s natural environment (initial page)
9 twibes.com 3M Application to find people with similar interests on Twitter (initial page)
10 latenightwithjimmyfallon.com 2.4M TV Show from NBC (initial page)

Table 4: Top 10 URLs domains in terms of the audience size reached by the most popular URL

of K=100,· · · ,1000. This finding suggests that as word-of-
mouth becomes a dominant source of discovering informa-
tion, a different set of domains might become popular in the
Web in the near future.

A recent work characterizing the usage of short URLs on
Twitter also presented an analysis comparing the popular-
ity of domains on Twitter and on the general Web [9]. Al-
though the authors of that work considered only the domains
pointed by short URLs, which differs from our analysis, they
also found that the most popular domains shared on Twitter
differs significantly from the general Web case.

3.3 Popular individual URLs
Next we focus on popularity of individual URLs within do-
mains. Of particular interest to us is the hypothesis that
word-of-mouth gives all URLs and content a chance to be-
come popular, independent of popularity of the domain it
comes from. The hypothesis is rooted in the observation
that anyone could identify an interesting URL and start a
viral propagation of the URL, independent of the reputation
or popularity of the domain where it is published.

To verify this hypothesis, we computed the size of the
audience reached by individual URLs within each domain.
Figure 5 plots the minimum, the average, and the maxi-
mum size of the audience for individual URLs within each
domain. Given the large number of domains (over 400,000
of them) we ranked the domains based on number of URLs,
grouped them into bins of 5,000 consecutively ranked do-
mains and plotted one data point for each bin. It is striking
to observe that URLs from some unpopular domains beyond
the rank of 300,000 reached an audience that is comparable
to the size of the audience reached by URLs from the most
popular domains. On average, URLs in the top 5,000 do-
mains reached 49,053 users, while URLs from the bottom
5,000 domains reached 1,107 users. Although URLs from
top domains reached a 44 times larger audience than those
from bottom domains, there do exist individual URLs from
bottom domains that reach as large as audience as the most
popular URL from the top domains.

Thus, word-of-mouth does offer a chance for all content to
become popular, independent of the domain it is published
in. Previous work on book and DVD recommendations [29]
showed that viral marketing is effective for niche products
compared to mass marketing. Our analysis suggests a simi-
lar trend.

3.4 Content types
With millions of URLs published per day on Twitter, several
different types of contents are shared. A natural question
that arises from this observation is whether the type of con-
tent affects the word-of-mouth propagation dynamics.
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In order to identify the content type, we first select sev-
eral interest categories based on Open Directory Project
(DMOZ), which is a human-edited directory of the Web [3].
DMOZ’s content classification relies on the fact that a do-
main name has a hierarchical structure. So, a domain name
of a web address could potentially be used to identify the
specific content category, given the list of predefined clas-
sifications for many web domains as in the DMOZ service.
For example, nytimes.com is classified in the news category;
last.fm is classified as the music category.

Among various categories DMOZ supports, we picked 5
categories of interest: photo sharing, videos, music, news,
and applications, and downloaded the list of web domains
in each of these categories. In total, the DMOZ listing con-
tained 343 domains across all five categories. For the ap-
plication category, we used the list of applications that are
widely used within Twitter, such as tweetdeck.com and we-
follow.com.1

Table 5 displays the share of each topical category in
Dataset2. Matching the domains of the URLs in Dataset2
with the domains listed in these five categories in DMOZ,
we were able to successfully categorize 17.6% of websites,
although a much larger fraction of users (43.7%) were cov-
ered. The most popular category is photo sharing, which has
458,662 URLs, posted by 271,138 users on 735,137 tweets.
The average audience reached by each photo’s URL is 436
users. The second most popular category is music, followed
by videos, news and applications.

While photo sharing seems a dominant activity in Twitter
as opposed to news or application sharing, the set of most
popular individual URLs are from a diverse set of topical
categories as shown in Table 4. The most popular URL

1
http://www.dmoz.org/Computers/Internet/On_the_Web/

Online_Communities/Social_Networking/Twitter/



Category URLs Users Tweets Audience
Photos 458,662 (9.7%) 271,138 (13.3%) 735,137 (4.0%) 436
Music 181,676 (3.8%) 46,483 (2.3%) 338,654 (1.8%) 316
Videos 123,412 (2.6%) 261,081 (12.8%) 509,975 (2.8%) 877
News 58,467 (1.2%) 113,667 (5.6%) 305,911 (1.7%) 2,492
Applications 15,223 (0.3%) 198,499 (9.7%) 370,047 (2.0%) 3,285

Table 5: Summary information of categories of URLs

was the social application, wefollow.com, which reached an
audience of 28 million (i.e., nearly half of the entire Twitter
network).

Although our analysis the different content types shared
on Twitter is an interesting aspect of our study, we note
that our methodology has some limitations. First, we were
able to categorize only 17.6% of the URLs, which might not
be representative. Second, DMOZ is often criticized for its
lacks of representativeness and transparency [7], but it is
not easy to categorize content to begin with, and we man-
ually checked the list of web domains in each category we
used from DMOZ. Moreover, our main interest in the URL
categorization is at understanding the similarities and dif-
ferences between the propagation of different content types
on Twitter. We are not trying to say that Twitter users
share more photos than videos or news, for example.

4. THE SHAPE OF WORD-OF-MOUTH
This section presents an analysis of the size and shape of
word-of-mouth based URL propagation patterns in Twitter.

4.1 How large is the largest word-of-mouth?
We examine the skew in popularity across different URLs.
Figure 6(a) shows the size distribution of spreaders and au-
dience for URL propagations in Twitter. An average URL
was spread by three users and gained an audience of 843
users through word-of-mouth. In contrast, the most popular
URL engaged 426,820 spreaders and reached an audience of
28 million users, which is more than half of the entire Twit-
ter network. The power of word-of-mouth extends beyond
the few most popular URLs. Each of the 100 most popular
URLs reached an audience of more than 1 million users and
15% of the URLs reached an audience of over 1000 users.

The difference between the number of spreaders and the
size of the audience is nearly two orders of magnitude, for
popular URLs as well as niche URLs that have only a
few spreaders. This demonstrates the potential of word-
of-mouth in reaching a large audience. As opposed to a typ-
ical web page that is viewed by individual visitors, content
shared in word-of-mouth fashion is collaboratively shared by
other visitors who liked it and can reach a much larger au-
dience.

Both of the distributions for spreaders and audience ex-
hibit power-law behavior (a straight line waist in a log-log
plot). The best fit power-law exponents of these distribu-
tions y = cx−α were α = 1.71 for spreaders, and α = 1.98
for audience, indicating that the skew in popularity among
the most popular and the least popular URL became slightly
more severe due to audience.

4.2 The role of initiators
We classified users into three types based on their position
within a cascade: initiators, spreaders, and receivers (Fig-
ure 2). Initiators are at the root of each cascade tree and
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(c) Roles of initiators by the largest subtree

Figure 6: Characteristic shape of word-of-mouth in-
formation propagation in Twitter

share URLs to others independently in Twitter. In this sub-
section, we investigate the role of initiators in particular and
ask the following questions: To what extent can initiators
alone reach a large audience (without the help of spread-
ers)? How many initiators share the same URL? Is having
multiple initiators essential for yielding a large cascade?



In Twitter, nearly 90% of all URLs are introduced only
by initiators without involving any spreaders. URLs that
were propagated further by spreaders went multiple hops in
the Twitter social graph and gained a 3.5 times larger au-
dience than those spread by initiators. This implies that
while initiators’ role is dominant and that most URLs prop-
agate only 1-hop in the network, multi-hop propagation by
spreaders can extend the readership of URLs by a significant
amount.

Next we investigated the relationship between the num-
ber of initiators and cascade size. In order to focus on URLs
with multiple initiators, we focus on URLs with at least two
participants (i.e., initiators or spreaders). We group URL
cascades into three types: small (1,10), medium [100,1000),
and large [1000,∞). Figure 6(b) shows the number of initia-
tors per URL for the three types of cascades. The plot shows
the 5th percentile, median, average, and 95th percentile val-
ues. The number of initiators are orders of magnitude larger
over the cascade size. The median number of initiators is
2, 114, and 792 for small, medium, and large cascades, re-
spectively. Furthermore, a very few URLs (0.2%) had more
than 100 initiators who independently shared the same URL.
While certain large cascades only involved a single initiator,
the plot indicates that the number of initiators does affect
the size of the cascade for most URLs—larger cascades likely
involve more users who independently share the URL.

While there seems to be a relationship between the num-
ber of initiators and cascade size in general, it is not clear
whether all of the initiators contributed equally in obtaining
audience, or whether a few major initiators played a signifi-
cant role. Figure 6(c) investigates the fraction of the largest
subtree for each URL over cascade size. The plot shows
much variability, shown by the wider range of the 5th and
95th percentiles. Nonetheless, the median and the average
data points shows a clear trend.

For small cascades, the fraction of total audience reached
in the largest subtree (i.e., by a single major initiator) is
nearly 50%. For larger cascades, however, the fraction of
the largest subtree is marginal (10-20%). This implies that
a single initiator’s role is likely limited in these cases and that
popular content usually propagates through several different
propagation trees. In fact, we observed a strong positive
correlation between the number of initiators and the total
size of the audience (Pearson’s correlation ρ=0.7171).

On Digg, a social news aggregator that allows users to
submit links to and vote on news stories, a story of gen-
eral interest usually spreads from many independent seed
sites, while a story that is interesting to a narrow commu-
nity usually spreads within that community only [28]. This
observation might also be true in the case of URLs propa-
gated in Twitter, but we leave the investigation for future
works.

4.3 The shape of word-of-mouth
Having investigated the size of URL cascades, we next ex-
amine the overall shape of URL propagations. We define
the following terminology. We refer to the maximum hop
count from root to any of the leaf nodes as the height of
the tree. We define the width of the tree as the maximum
number of nodes that are located at any given height level.
For instance, a two-node cascade graph has height of 2. The
cascade graph in Figure 3(b) has a width of 3 and a height
of 4 (i.e., the longest path being A-D-E-F). Because a sin-

gle URL propagation may have multiple tree structures, we
consider only the largest propagation tree for each URL and
examine its width and height.

Figure 7(a) shows the distributions of height and width for
all URLs. Nearly 0.1% of the trees had width larger than 20,
while only 0.005% of the URLs had height larger than 20.
This suggests that cascade trees in Twitter are wider than
they are deep. In fact, the maximum observed width of any
propagation tree was 38,418, while the maximum observed
height was 147—-a difference of two orders of magnitude.

Figure 7(b) shows the relationship between the width and
height level, as the 10th, 50th (median), and 90th percentile
width over every height level. We grouped trees based on
their size (according to the number of spreaders). Small
trees with fewer than 100 spreaders tend to have a very
narrow shape of width 1 or 2 throughout the height level.
Larger trees with more than 100 spreaders were widest at
low heights and the width decreased slowly towards the leaf
nodes. Interestingly, the median width remained near 10
even at heights above 80. A visualization revealed that these
large trees occasionally included bursts at all height levels,
i.e., the branch out factor is suddenly large at particular
spreaders. We found not one but multiple such bursts for
every popular URL.

Finally, Figure 7(c) shows the size of a typical cascade for
the five different types of URLs: photos, music, videos, news
and applications. We find several interesting differences
across content types. Videos propagations likely involve a
larger cascade tree; more than 30% of videos URLs involved
at least two participating users who shared the URL. News
and applications propagation also involved multiple users
(28% and 23%, respectively), while photos and music were
mostly shared by a single initiator (90% and 97%, respec-
tively). These observation indicates that the type of content
affects the potential of the eventual cascade size. The prob-
ability of involving 10 or more users in spreading is around
10% for news, applications and videos, while it is only 1%
for photos and music.

4.4 Comparison of cascade shapes
A large difference between the height and width in Fig-
ure 7(a) indicates that cascade trees are likely shallow and
wide. This word-of-mouth propagation pattern is in stark
contrast to other patterns of cascade.

Recent work [31] demonstrated that massively circulated
Internet chain letters proceed in a narrow but deep tree-like
pattern, continuing for several hundred propagation hops.
The Internet chain letter on the circulation of a petition on
the US-Iraq war reached 18,119 users with a median height
of 288 and the maximum width of 82. Table 6 shows a
comparison between the height and width of Internet chain
letters and the Twitter propagation graph. We estimated
the size of smaller Internet chain letters following the model
described in [31, 5]. In the table, we grouped Twitter prop-
agation graphs of similar sizes (900-1100 nodes and 100-300
nodes) and showed the average height and width of those
trees.

Twitter cascades are much wider than they are deep, un-
like those of the Internet chain letters. We believe the broad-
cast design of Twitter directly influence such difference. As
an example, consider that 5 friends (namely, A, B, C, D
and E) want to exchange messages. On e-mail systems, the
sender of each message needs to choose all receivers for that
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Figure 7: Height and width of the largest cascade
subtree

message. In our example, user A might send an e-mail to
B and C, who decides to forward it to D and E. In this
case, the tree is of height 3 and width 2. What happens
on Twitter is exactly the opposite: the receivers choose all
senders from whom they want to receive messages automat-
ically. The senders just need to send the messages and a
huge audience is reached quickly. In our simple example, if
B, C, D and E follow user A, if A send a tweet all of them
will receive it at once. In this case the tree is of height 2 and
width 4. Another possible explanation for wider cascades
on Twitter is the size of the messages. As Twitter allows
only 140 characters, users can quickly read and forward a
message. If people receive a long email, it is possible that a
lot of recipients will not read and, consequently, not forward
it. We leave in-depth investigation of the reasons for when
wide cascades occur in Twitter as future work.

Data Source Nodes Height Width
PNAS [31] 18,119 288 (med) 82

Twitter 26,227 23 (max) 17,255
PNAS (estimated) 980 16 (med) 4

Twitter (900-1,100) 980±0.02 20±0.25 398±0.27
PNAS (estimated) 162 3 (med) 1
Twitter (100-300) 162±0.02 10±0.03 86±0.03

Table 6: Shape comparison between Internet Chain
letter and the Twitter propagation graph

5. CONTENT DISTRIBUTION
So far we investigated several key characteristics of word-
of-mouth based URL propagation in Twitter. The observed
propagation patterns have direct implications on systems,
especially on content distribution and caching strategies. In
this section, we revisit some of these observations and use
geo-location information of users to examine how far word-
of-mouth content travels around the globe.

For this, we need to know the location of users who post
and receive tweets. The location information written in user
profiles of Twitter is in free text form and often contains
invalid location like “Mars” making it difficult to automate
the process. We filtered out invalid locations and inferred
plausible locations of users by using the Google Geocoding
API [21], which converts addresses or city names written in
free text form into geographic coordinates of latitude and
longitude. In total, we identified the location of 1,096,804
users. In the remainder of this section, we only consider the
network and the URL propagation patterns among these one
million users.

5.1 Content producers and consumers
We first investigate physical proximity between content pro-
ducers and consumers in Twitter. Here, a content producer
represents a user who posts a URL independently of others
(i.e., root nodes in any cascade tree) and a content consumer
represents all other nodes in a cascade tree. Figure 8 shows
the distribution of physical distance between any two users
in the word-of-mouth URL propagation. Physical distance
is computed based on the latitude and longitude information
of two users. The distance is in units of 10km, representing
a local community. The graph shows the probability distri-
bution function for each distance d, which is the physical
distance among all user pairs (u, v), where either (1) user u
explicitly retweeted the URL that another user v shared or
(2) user u follows another user v and shared the same URL
after v posted it on Twitter. If either of these two conditions
holds, we say that there is a propagation link from user u to
user v.

For comparison purposes, Figure 8 also shows the distance
distribution for two users who have a (unidirectional) follow
link between them. We call this a friendship link. The
friendship links represent the full potential of content dis-
tribution through word-of-mouth (i.e., when every follower
actively reads or consumes the URL she receives from oth-
ers).

We observe a significant correlation between the content
propagation probability and physical proximity of users.
That is, users within a short geographical distance (e.g.,
10 km) have a higher probability of posting the same URL
than those users who are physically located farther apart.
The current OSN infrastructures could exploit this phys-
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Figure 8: Physical distance of Twitter friendship
links and URL propagation links

ical proximity between content producers and consumers.
Moreover, a significant correlation between the friendship
and physical proximity is also observed. This is expected as
users tend to interact more with other users who are phys-
ically nearby. Liben-Nowell et al. [32] previously found a
strong correlation between friendship and geographic loca-
tion among LiveJournal users.

Interestingly, the correlation between the content propa-
gation probability and physical proximity of users is slightly
higher than that observed for having a friendship link. This
might be explained by the fact that Twitter users follow not
only their friends, but also media companies and celebrities,
as well as distant users that post content that is valuable
to them. However, when it comes to retweeting other users’
messages, Twitter users chose tweets posted by those geo-
graphically nearby.
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Figure 9: Distribution locality across content types

We tested if the level of locality changes according to the
popularity of content producers and different content types.
The first set of bars in Figure 9 shows the probability that
content producers and consumers are located within a dis-
tance of 50km, which roughly represents a large metropoli-
tan area. In order to separate out the impact of producer
popularity, we grouped content producers into three groups
based on their in-degree. Also, in order to see the repre-
sentativeness of the results, we randomized the location be-
tween all users in our dataset by shuffling the location tags
of users and computed the distance between them (shown
as ‘random’ in the figure).

First, we focus on the impact of content producer’s pop-
ularity on distribution locality and examine the first set of
bars labeled ‘All’ content type in the x-axis. Overall, about
24% of the users who propagated content are physically close
to very popular content producers who had more than 1000
followers, 32% are close to content producers with between
100 and 1000 followers, and 39% are close to content pro-
ducers with less than 100 followers. This result indicates
that producers with a small number of followers tend to in-
cur content propagations to geographically nearby locations.
On the other hand, content producers with a large number
of followers tend to be celebrities or well-known people and
incur content propagations across wider areas.

Next, we focus on the impact of content types on distri-
bution locality. Figure 9 also shows the result for different
types of content (photos, videos, music, news and applica-
tions). Interestingly, the locality for photos is the lowest,
while the locality for music is the highest. News and ap-
plications had much stronger local appeal than photos and
videos. Overall, a non-negligible fraction (15-25%) of con-
tent propagated locally. We do not know the reasons for why
certain content type has more local appeal than the others.
We leave investigating these reasons as exciting future work.
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Figure 10: Distance between initiators and spread-
ers

Motivated by the overall high content locality at 1-hop
users, we look at the distance a URL travels as it is further
propagated by users within 2- and 3-hops away from the
content creator. Figure 10 shows the geographical distance
related to the content creator (initiator) as a function of the
height level of spreaders on the hierarchical trees. Clearly,
content tends to spread short distances on the first hops.
As soon as friends-of-friends join the cascade and shares the
same URL, it reaches users located in different regions and,
consequently, reach distant locations.

The observations that social content produced by users
with a small number of followers is usually consumed by
users that are located within a small physical distance of
the content creator could be exploited for caching design
and content delivery networks (CDNs).

5.2 Expected traffic pattern
Finally, we study the potential traffic pattern of content that
is produced and consumed by users in the Twitter dataset.
In Dataset2, 56% of the users are from the United States.
In order to conduct a more detailed analysis of the traffic
pattern, we inferred a finer grained geo-location information
of these U.S. users. We used publicly available data from the



Rank Country Users Tweets Rank U.S. State Users Tweets
1 United States 613,458 (55.9%) 6,319,585 (34.1%) 1 California 86,532 (19.7%) 910,379 (21.1%)
2 United Kingdom 86,613 (7.9%) 856,318 (4.6%) 2 Texas 36,509 (8.3%) 358,013 (8.3%)
3 Canada 54,021 (4.9%) 525,869 (2.8%) 3 Florida 24,389 (5.5%) 238,558 (5.5%)
4 Brazil 51,047 (4.7%) 395,433 (2.1%) 4 New York 21,191 (4.8%) 194,971 (4.5%)
5 Australia 31,963 (2.9%) 276,762 (1.5%) 5 Illinois 18,070 (4.1%) 167,597 (3.9%)
6 Germany 27,069 (2.5%) 283,733 (1.5%) 6 Washington 17,352 (3.9%) 165,495 (3.8%)
7 Iran 15,827 (1.4%) 149,887 (0.8%) 7 Georgia 16,842 (3.8%) 144,895 (3.4%)
8 Netherlands 15,812 (1.4%) 208,046 (1.1%) 8 Massachusetts 16,817 (3.8%) 159,464 (3.7%)
9 Japan 14,087 (1.3%) 222,825 (1.2%) 9 Pennsylvania 16,027 (3.6%) 142,265 (3.3%)
10 India 12,750 (1.2%) 140,124 (0.8%) 10 Ohio 13,064 (3.0%) 126,457 (2.9%)

Table 7: Summary information of geographical location of users

U.S. National Atlas and the U.S. Geological Survey to map
the inferred latitudes and longitudes into their respective
county and state within the United States. In total, we
were able to obtained county-level information for 440,036
users.

Table 7 displays the distribution of users and their tweets
for the 10 most populated countries and the 10 most pop-
ulated states in the U.S. based on our Twitter data. Users
from United States are well distributed among the states, as
the most popular, California, contain no more than 19.7%
of all U.S. users.

We then estimated the volume of traffic generated from
the U.S. through Twitter by focusing on the subset of URLs
linking to photos and videos. In particular, we focused on
two most popular services: twitpic.com and youtube.com.
For all URLs linking to these services in Dataset2, we col-
lected information about the exact size of each twitpic.com
photo and the duration of each youtube.com video. We
could not get the exact size of the videos through the
YouTube API, hence we estimated the size of each video
based on the play length and the video encoding rate of
each video. Table 8 shows the statistics for the 10 states
that generated the highest traffic volume. The traffic vol-
ume was calculated by multiplying the size of each photo
or video with the number of tweets from users of each state
who posted the URL of the content.

Although the traffic pattern shown in Table 8 is based
on our estimation, we conjecture that the real traffic distri-
bution would look similar because we conservatively chose
active content consumers who actually looked at the content
and decided to share it further. We observe similar distribu-
tions of traffic pattern for both photos and videos. The most
popular state, California, is responsible for 24.2% and 23.9%
of the traffic of photos and videos, respectively. While this
number is slightly higher than the user population (19.7%),
we find that content producers are located widely across dif-
ferent states. In fact, 9 out of the 10 most populated states
appear in Table 8.

Considering that content in Twitter is typically produced
by geographically-diverse users but consumed locally, one
could allow users to upload content to a local server in the
corresponding geographical area, like a server located in a
city center, instead of a national server like in the current
distribution architecture. Such a content distribution mech-
anism could significantly reduce the amount of wide-area
bandwidth needed to upload the same URL to a centralized,
remote server. Additionally, the trend towards local con-
sumption and the fact that users are uniformly distributed
across different locations indicates that placing a server in
every region can reduce the amount of cross-region traffic.

5.3 Summary
Information dissemination among individuals located within
a short physical proximity has been used to explain a num-
ber of phenomena in society, such as the proliferation of
specific industries in a certain region [36] and individuals
employment status [39]. Here, we were particularly inter-
ested in understanding how far and over what distance social
content is generated and consumed. Given that OSNs use
the infrastructure originally designed for web workloads to
deliver social content, understanding geographical aspects
of word-of-mouth propagation patterns can unveil potential
opportunities for improving the current designing of OSN
content delivery [34].

6. DISCUSSION
In this paper, we made several key observations. For two
of these observations we would like to provide additional
explanations. First, we showed that word-of-mouth could
reach a large audience. Second we noted that the shape of
the word-of-mouth propagation tree is more wide than deep.

• The power of word-of-mouth
In Section 3, we showed that URLs could reach a wide audi-
ence of several tens of million users through word-of-mouth.
Most word-of-mouth events, however, involved a single user
who shared URLs and reached only a small audience. This
finding conforms to the observation by Watts [43] that global
cascades are rare, but by definition are extremely large when
they do occur.

In studies of information propagation, a great amount of
attention has been devoted to the cascade size distribution
and the underlying mechanism that shapes it. Unfortu-
nately, due to a lack of empirical data detailing such cascade
size distributions, synthetic distributions have been used to
describe the phenomenon [43]. Largely, power-law and bi-
modal distributions imply the trend of large events occurring
infrequently, although these distributions are quite different
and represent different underlying mechanisms. In this re-
spect, the Twitter data provides a first opportunity to study
size distributions.

The size distribution of word-of-mouth was best fit with
the power-law distribution y = cx−α. In contrast to the ex-
ponents α of 2.19–2.56 seen in the in-degree and out-degree
distributions of the topology, the exponents 1.71–2.23 ob-
served in cascade sizes are smaller. This difference may be
due to the collaborative act of sharing in Twitter. If each
user were to share a URL without the help of any other
user, then the size distribution for such a cascade should be
the same as the in-degree distribution. However, when users
collaboratively spread the same URL, the gap between the



Photos Videos
Rank U.S. State Traffic (GB) Tweets Rank U.S. State Traffic (hours) Tweets
1 California 2,411 (24.2%) 32,395 (24.6%) 1 California 854 (23.9%) 11,813 (24.1%)
2 Texas 985 (9.9%) 13,481 (10.2%) 2 Texas 345 (9.6%) 4,549 (9.3%)
3 Florida 688 (6.9%) 8,951 (6.8%) 3 Florida 209 (5.8%) 2,755 (5.6%)
4 Washington 517 (5.2%) 6,190 (4.7%) 4 Illinois 178 (5.0%) 2,425 (4.9%)
5 Georgia 452 (4.5%) 5,473 (4.2%) 5 Washington 155 (4.3%) 2,093 (4.3%)
6 Illinois 411 (4.1%) 5,571 (4.2%) 6 Massachusetts 152 (4.3%) 2,223 (4.5%)
7 Pennsylvania 392 (3.9%) 5,340 (4.1%) 7 Pennsylvania 148 (4.1%) 1,978 (4.0%)
8 Ohio 338 (3.4%) 4,362 (3.3%) 8 Georgia 140 (3.9%) 2,023 (4.1%)
9 Massachusetts 282 (2.8%) 3,800 (2.9%) 9 Ohio 115 (3.2%) 1,631 (3.3%)
10 Arizona 275 (2.8%) 3,588 (2.7%) 10 Oregon 97 (2.7%) 1,316 (2.7%)

Table 8: Total volume of traffic potentially initiated by Twitter on each state (United States), for Twitpic
photos and YouTube videos

most popular user and the least popular user (based on in-
degree of a user) becomes less important to the success of
cascades, hence yielding a smaller exponent.

• The shape of propagation trees in Twitter
In Section 4, we analyzed the shape of propagation trees
and found that word-of-mouth in Twitter yields trees that
are much wider than they are deep. Our finding is in
sharp contrast to the narrow and deep trees exhibited
by Internet chain letters, as found by Liben-Nowell and
Kleinberg [31]. Internet chain letters showed a narrow
tree shape (width=82) that went several hundred levels
deep (height=288) for a large cascade that involved 18,119
spreaders.

A possible explanation for this discrepancy might be the
difference in the way the two systems work. Twitter does not
allow its users to restrict the recipients of tweets; tweets are
broadcast to all a user’s followers. On the other hand, emails
can be forwarded to a selective set of users, restricting the
propagation to only a fraction of the friends, which creates
narrower and deeper cascades.

Related to the temporal dynamics of word-of-mouth, we
observed that certain URLs spread for several months (or
even several years) in Twitter. This finding could indicate
that social media like Twitter and Flickr encourage the in-
teraction of Internet users with media content by forming
communities of interest in the World Wide Web. The so-
cial media act as channels for distributing content, where
users can generate content themselves, discuss it, and re-
discover old content. Compared to Flickr or blogs, Twitter
showed a much shorter time span for content propagation.
The mean time for information to cross each social link was
much shorter: 53% of the retweets occurred within a day.

This observation on the long delay is unexpected from the
topological structure of the network. Most social networks
exhibit the “small-world” property [33], where the average
path length between people is so small that every pair of
users can be connected in a few hops even when the size
of the network reaches planetary-scale. Hence, in theory,
this structural property allows new information to spread
quickly and widely in the network. The question of which
underlying mechanisms lead to such a long delay remains to
be answered. We expect to gain insight about such mech-
anisms from the studies on the bursty dynamics of human
behavior [11] and the limited attention span of users [17].

7. RELATED WORK
Throughout the paper, we have discussed the references that
closely relate to our work. As our work covers a broad spec-
trum of topics from information flow models to viral market-
ing, in this section, we briefly summarize the related work
on these topics.

A rich set of theoretical work explains the interplay be-
tween the social network structure and information flow.
Granovetter [22] proposed a linear threshold model, where
someone will adopt an innovation only if a large enough pro-
portion of his neighbors have previously adopted the same
innovation. Dodds and Watts [16] studied this model in
the field of disease spreading in an epidemiological setting.
Watts [43] proposed a mathematical model of global cas-
cades based on sparse Erdős-Rényi random networks and
found that global-scale cascade could occur even with few
early adopters. Watts examined the conditions for when
such cascade happens under homogenous thresholds of user
susceptibility. Karsai et al. [26] followed the time evo-
lution of information propagation in small-word networks
and showed that the slowing down of spreading is found to
be caused mainly by weight-topology correlations and the
bursty activity patterns of individuals. Steeg et al. [37] ana-
lyzed information cascades on Digg and concluded that the
highly clustered structure of the Digg network limits the fi-
nal size of cascades observed, as most people who are aware
of a story have been exposed to it via multiple friends.

With the advent of OSN data, a number of researchers
have presented data-driven analysis and measured patterns
of information spreading across social network links. Gruhl
et al. [24] studied the diffusion of information in the blogo-
sphere based on the use of keywords in blog posts. They
presented a pattern of information propagation within blogs
using the theory of infectious diseases to model the flow.
Adar and Adamic [8] further extended the idea of apply-
ing epidemiological models to describe the information flow
and relied on the explicit use of URL links between blogs
to track the flow of information. Bakshy et al. [10] stud-
ied content propagation in the context of the social network
existent in Second Life, a multi-player virtual game. By ex-
amining cascade trees they find that the social network plays
a significant role in the adoption of content.

More recently, Leskovec et al. [30] developed a framework
for tracking short, distinctive phrases that travel relatively
intact through online media. They observed a typical lag of
around 2.5 hours between the peak of attention to a phrase



in the news media compared to blogs. Similarly, Sun et
al. [38] also found long chains by studying cascades on Face-
book pages, but also showed that these diffusion chains on
Facebook are typically started by a substantial number of
users. In contrast to these works, our study unveils differ-
ent aspects of word-of-mouth information, such as not only
of the shape of cascades, but also the impact of publish-
ers and subscribers of content. Gomez-Rodriguez et al. [20]
investigated the problem of tracing paths of diffusion and in-
fluence and proposed an algorithm to decide a near-optimal
set of directed edges that will maximize influence propaga-
tion. Ghosh and Lerman [19] compared a number of in-
fluence metrics over Digg.com data and suggested that a
centrality-based measure is the best predictor of influence.
Scellato et al. [34] studied how geographic information ex-
tracted from social cascades can be exploited to improve
caching of multimedia files in a Content Delivery Network.
Their evaluation showed that cache hits can be improved
with respect to cache policies without geographic and social
information. Wang et al. [42] found that social and organi-
zational context significantly impacts to whom and how fast
people forward information.

Finally, several recent papers focus on characteristics of
the Twitter topology, user influence, and spam. Kwak et
al. [27] studied the Twitter topology, finding a non-power-
law follower distribution, a short effective diameter, and low
reciprocity. They also studied approaches for ranking in-
fluential users based on the Twitter social network struc-
ture. Cha et al. [14] showed that highly influential users
are not necessarily the most followed users, meaning that
aspects of the Twitter topology are not sufficient to capture
a user’s influence. Galuba et al. [18] propose a propagation
model that predicts which users are likely to mention which
URLs in Twitter. Recent efforts identified different forms
of spam [12, 23] and phishing [15] disseminated on Twitter
and obfuscated by URL shortening services.

Compared to this body of work, our interest is in investi-
gating the fundamental properties of word-of-mouth-based
Web discovery by focusing on URL propagation in OSNs.

8. CONCLUSION
We have presented a first-of-a-kind analysis of word-of-
mouth Web discovery using large data gathered from Twit-
ter. Acquisition of such a rich dataset enabled us to recon-
struct the cascade processes of various Web URLs and study
the role that world-of-mouth based propagation played in
making those web links popular within Twitter. Our anal-
ysis highlights several important aspects of word-of-mouth
based URL discovery, including its impact on URL popu-
larity, dependence on users with a large number of follow-
ers, and effect on the diversity of information discovered by
users.

There are various directions in which our work can evolve.
First, we would like to leverage our findings to improve rank-
ing of actual search engines for real-time content based on
the spread patterns of word-of-mouth propagation of URLs.
Second, we would like to be able to determine the topologi-
cal structure of initiators that will speed up the propagation
of content in a social network. Such tools would have an im-
portant impact in the commercial world, such as advertising
and political campaigns, as well as for Web users in general.
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