
A Distributed Primary-Segmented Backup Scheme for Dependable Real-Time
Communication in Multihop Networks

G. Ranjith
Department of Computer Science and Engg.

Indian Institute of Technology, Madras
Chennai, India 600036
g ranjith@yahoo.com

G. P. Krishna
Department of Computer Science and Engg.

University of Washington
Seattle, WA 98195-3530

gphanikrishna@hotmail.com

C. Siva Ram Murthy
Department of Computer Science and Engg.

Indian Institute of Technology, Madras
Chennai, India 600036

murthy@iitm.ac.in

Abstract

Several distributed real-time applications require fault-
tolerance apart from guaranteed timeliness, at acceptable
levels of overhead. These applications require hard guar-
antees on recovery delays, due to network component fail-
ures, which cannot be ensured in traditional datagram ser-
vices. Several schemes exist which attempt to guarantee
failure recovery in a timely and resource efficient manner.
These methods center around a priori reservation of net-
work resources called spare resources along a backup chan-
nel, in addition to each primary communication channel.
This backup channel is usually routed along a path disjoint
with the primary channel. In this paper, we propose a dis-
tributed method of segmented backups for dependable real-
time communication in multihop networks, which improves
upon existing methods in terms of network resource utiliza-
tion, average call acceptance rate, scalability and provides
better QoS guarantees on bounded failure recovery time
and propagation delays, without any compromise in fault-
tolerance levels. The distributed algorithm is one of finding
a “minimal path” based on flooding with a cut-out mecha-
nism that does not relay messages if they came along longer
paths than those known. We further show that the complex-
ity of the distributed algorithm is bounded and acceptable.

1 Introduction

The rapid development of high speed networking tech-
nology has made possible a plethora of new applications
such as real-time distributed computation, remote con-

trol systems, digital continuous media (audio and motion
video), video conferencing, medical imaging and scientific
visualization. The applications outlined above fall into the
class of distributed real- time applications, where the dead-
lines associated with a data element is as important as the
data element itself. Hence, a minimum “quality of ser-
vice” (QoS) such as delay of communication, availability
and error-rate, is to be contracted with the user(s), for these
applications. Any communication network is prone to faults
due to hardware failure or software bugs. Hence, it is es-
sential to incorporate fault-tolerance capabilities into these
QoS contracts, especially as these applications last for long
durations, thus increasing the probability of a fault occur-
ring in its life-time. Unlike conventional schemes, real-time
applications require special schemes to meet the hard QoS
guarantees like bounded message delays. In these schemes,
resources (link bandwidth, buffer space) are reserved a pri-
ori along some path, and all messages of the real-time ses-
sion follow this path. We shall call this path through the
network, between a source node (which sends data) and the
destination node (which receives data), as the primary path.
But this brings on the issue of failure of components along
this predetermined path.

1.1 Related Work

A simple and effective method to ensure fast and guar-
anteed failure recovery is to reserve a priori spare re-
sources along another path, called abackup path (or
channel)[1, 2, 3], which is disjoint with the primary path.
Activation of these spare resources occur only when the pri-

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02) 
1530-2075/02 $17.00 © 2002 IEEE 



mary channel is disabled.End-to-end detouring [2] is a
simple solution to this in which an end-to-end backup chan-
nel (i.e., a backup channel extending from source to desti-
nation) is set up along with each primary channel. But this
scheme has several drawbacks, the main ones of which are:
1: The backup path should betotally disjoint with the pri-
mary path. As the primary path is decided first and then
another disjoint path is selected as the backup path, the pri-
mary path can be routed (so that it minimizes some metric
like delay or hop-length) in such a way that it “blocks out”
another end-to-end backup, as shown in Figure 2 (explained
later). 2: This method has the further restriction thatboth
the primary and the backup paths separately satisfy all the
QoS requirements like end-to-end delay etc. This is a very
hard restriction, even when there are enough free network
resources.

1.2 The Segmented Backups Approach

A novel and realizable scheme that solves most of the
problems that are briefly outlined above is thesegmented
backups scheme, first proposed in [4]. In [5], we elabo-
rate this scheme, and present a better backup route selec-
tion algorithm. Extensive simulations had also been done
in that paper to bring out the effectiveness of the scheme.
We shall now summarize the work reported in [5]. The ba-
sic idea of segmented backups is to provide backups to the
primary path as segments, rather than a continuous disjoint
path from source to destination. It has been shown that this
method not only solves the problems mentioned above, but
also is very resource efficient. In this paper, we realize the
segmented backups scheme in a fully distributed and scal-
able fashion. Note that in this paper, the first two sections
are a brief overview of [5].

6 7 8 9
54321

Source Destination

Node Fault

Path after Failure Recovery

A
B C D

E

F
G H I

JPrimary Channel
   ( Initial Path )

Backup Segments

Figure 1. Illustration of segmented backups

Earlier schemes have used end- to-end backups,i.e.,
backups which run from source to destination of a depend-
able (fault-tolerant real-time) connection, with the restric-
tion that the primary and the backup channels are disjoint.
In our approach ofsegmented backups, we find backups
for only parts of the primary path. The primary path is
viewed as made up of smaller contiguous paths, which we
call primary segments as shown in Figure 1. We find a
backup path foreach segment, which we callbackup seg-
ment, independently. Bysegmented backup we refer to

Primary Channel 

Segmented  Backup

End  To  End  Backup

S1

                   

N1  N2 N3  N4  N5

N6  N7
N8 N9  N10

N11  N12  N13  N14 N15

N16  N17  N18 N19  N20

N21 N22 N23 N24 N25

D1

( Cannot Exist )

Figure 2. No end-to-end backup but seg-
mented backup exists

these backup segments taken together. Consider Figure
1, where a network of nodes and links are shown, and
where a dependable connection is established between the
nodes markedsource and destination. The primary chan-
nel runs through the links connecting the nodessource, 1
to 9 anddestination. There are two backup segments in-
volved in this setup. The first one runs through the links
that connect the nodes

�
source,A,B,C,D,E,6 � while the

second one runs through the links connecting the nodes�
4,F,G,H,I,J,destination � . The first backup segment “back-

ups” the primary segment given by the nodes (and the
links connecting them)

�
source,1,2,3,4,5,6 � while the sec-

ond backup segment “backups” the primary segment that
runs through the nodes

�
4,5,6,7,8,9,destination � . Note that

we have the condition that the primary segments should al-
ways overlap by at least one link.

Now let us briefly consider that there is a failure at any
one of the nodes on the primary path. Note that any such
node is always on one (or more)primary segment and there
will be one (or more) backup segment that is the “backup”
for this/these primary segment(s). For example, in Figure 1,
when node 3 fails, the first backup segment isactivated, i.e.,
the traffic flows along the new path shown in Figure 1. If
there are more than one backup segment for that particular
node (as in node 5), we can choose the segment that gives
the best QoS (e.g., delay, jitter, error-bound) guarantees.

We shall illustrate the main advantage of backups seg-
ments with Figure 2. Here, a dependable connection is re-
quested between the nodes N1 and N25, in a 4� 4 mesh.
The primary path happens to be established as shown.
Now, we note that with this primary path,there will be no
primary-disjoint backup paths possible whatsoever. But a
segmented backup path is possible, as shown in the figure.
We have shown in [5] that this happens in real-life topolo-
gies like the 28-node USANET.

Now we define the exact criteria for selecting the set of

2

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02) 
1530-2075/02 $17.00 © 2002 IEEE 



links that constitute the segments of the segmented backups.
Note that we are choosing two things: 1) the number of
backup segments used and 2) the links that constitute each
such backup segment. Let us define the weight of a single
segment as sum of the hop counts (or any suitable metric)
of the links that constitute that backup segment (note: this
excludes any link from the primary path). Now, we define
the weight of a segmented backup system as below:

Weight-Segmented-Backup =������
	��������������������� !�#"$�%��
where

%
is the number of segments. Now, we choose the

segmented backup system which gives aminimum value of
this weight. In other words, we try to minimize the Weight-
Segmented-Backup parameter. And henceforth, we shall
call the set of segmented backups that minimize this weight
as the minimum segmented backup. What we achieve
by using this criteria is a segmented backups system that
consumes minimum extra resources, per primary channel.
Note that we have mainly concentrated on the resource-
reservation issues of real-time communication and do not
address issues like message scheduling or queuing at each
node. Here, it can be safely assumed that the real-time
model (which specifies the real-time issues like queuing
and scheduling) assumed in [3] will be applicable in our
case, too. This is because in that work too, the authors try
to achieve QoS guarantees based on end-to-end resource
reservations.

We note that end-to-end backup is also a case of seg-
mented backup with the number of segments equal to one.
Segmented backups tend to be more resource-efficient than
end-to-end backups due to the fact that they are less con-
strained than the former. Hence, there is more freedom to
choose backup paths (that may involve multiple segments)
that are more resource-efficient than end-to-end backup
paths. Also, we explain briefly why using segmented back-
ups is better than using end-to-end backups, as far as deter-
ministic backup multiplexing is concerned. Note that two
backup segments can be multiplexed when theirprimary
segments are disjoint. Primary segments tend to be smaller
than the whole primary path. Hence, there is a greater
probability that they will be disjoint, as smaller paths are
more probable to be disjoint.

In a later section, we shall see how we shall achieve dis-
tributed backup multiplexing by keeping a minimal level of
information at each node, for each link associated with that
node.

The rest of this paper is organized as follows. In Section
2, we briefly outline how the backup route selection is done.
In Section 3, we give the distributed version of the algorithm
used in Section 2. Advantages gained in failure recovery is
mentioned in Section 4. We briefly discuss about the imple-
mentation of our scheme in current computer networks in

Section 5. We conclude our work in Section 6.

2 Backup Route Selection

In this section, we shall describe exactly how we select
the set of links that will serve as the segments of the seg-
mented backup system, so that we get a minimum segmented
backup system (see Section 1.2).
Algorithm Min SegBak:

Let the directed graph&('�)+*-,/. represent the given net-
work topology. Every node

%
in the network is represented

by a unique vertex0 in the vertex set) and every duplex
link 1 between nodes

% 	 '20 	 . and
%43 '20 3 . in the network is

represented in the graph& by two directed edges
 	

and
53

from 0 	 to 0 3 and 0 3 to 0 	 , respectively.
Let

�
and 6 denote the source and destination nodes

in the network. We denote a primary path (already
found out) in graph& with a sequence of vertices798� * � 	 * �:3 *<;�;=;=* � � *
6 . In order to find the shortest segmented
backup, we generate a modified graph&?> as follows:

1. Every directed edge
 '20 � *@0�A�. other than those along

the primary path (i.e., edges between any two succes-
sive vertices in the sequence7 ) is assigned the weightB � A .

2. For edges along the primary path, the weights are as-
signed as follows: Edges directed from a vertex in
the sequence7 to its successor vertex are assigned a
weight of infinity (edge is removed). Edges directed
from a vertex in the sequence7 to its predecessor ver-
tex are assigned a weight of zero (see Figure 3).

3. For every edge
 '20 	 *@0 3 .DCE, , if 0 	GFCH7 and 0 3 C'I7 �J� . , replace


with
 >K'20 	 *@0#>3 . where0#>3 is the pre-

decessor of0 3 in 7 . That is, replace every edge from
any vertex0 	 not in 7 , directed into any intermediate
vertex 0 3 in 7 , with another edge directed from0 	 to0 >3 , predecessor of0 3 .

2 4 5
6’

4’1’

2’ 3’

7’

8’

5’
31 10’

9’

00

S 

0 0 0 0

8 8888 8

D

Figure 3. Illustration of the construction of
the shortest segmented backup from the path
chosen

To find the shortest segmented backup, on the resulting
graph &?> ,

3

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02) 
1530-2075/02 $17.00 © 2002 IEEE 



4. Run the least weight path algorithm for directed
graphs (e.g., Dijkstra’s algorithm) from the source to
destination onL?M . Let the path obtained be denoted by
a sequence of verticesNHOGPRQTS:MUVQ�S:MWYX=X=X�X=QTS:MZ/Q
[ .

5. Assume that the segmented backup consists of backup
segmentsN\P U Q]N^P W X�X=X . As we traverse the sequenceN from P to [ , we generate the vertex sequences for
these segmentsN^P U Q-N^P W Q]N^P�_`QaX=X one after the other.
The phrase open a segment indicates the beginning of
generation of that backup segment, and close a seg-
ment to indicate the ending of the generation of that
backup segment. Hence, in our algorithm we first openN^P U , generate it, close it, then openN\P W , generate it,
close it and so on, until all the backups segments are
generated. At any stage of the traversal, if there is an
opened backup segment being generated, then it is de-
noted as current backup segment. If all the opened seg-
ments are closed, current backup segment isbJc?d+d .
The vertex sequencesN\P U Q]N^P W QaX=X=X are initialized to
be empty when opened. The phrase add vertexe to a
sequence means the vertex is appended at the end of
the sequence.

For constructing backup segments, we traverse the se-
quence N (found in step 4). At every stage of the
traversal, letS:M f denote the current vertex. We perform
the appropriate actions as indicated in (a) to (d) below,
for everyS:Mf . This procedure ends on reaching[ .

(a) If SgMf = P then openN^P U and addS:Mf to it.

(b) If S M f\hOiSkj for any lnmpo , (i.e., S M f does not lie onq
) then

i. If current backup segmenthOrbsctd+d then
add S:Mf to current backup segment.

ii. If current backup segment =bJctd+d then
open next backup segment and addS:M f-u U andS:Mf to it in that order.

(c) If SgM fvOwSkj for any lxmyo , (i.e., S:M f lies on
q

) then

i. If current backup segmenthOzbJctdvd then
add S j|{ U to current backup segment and
close it.

ii. If current backup segment =bJctd+d do
nothing

(d) If S:Mf Oi[ then addSgMf to current backup segment
and close it.

The resulting vertex sequences define backup segments
in L which form the minimum segmented backup for the
primary path

q
.

We explain step 5 of our algorithm in Figure 3. Here,
the primary path runs through nodes 1 through 5. Suppose
the path chosen betweenP and [ in L?M is over the nodes

numbered}!M through }!~�M . We denote by a dotted line, the
edge between��M and 4 in L which is replaced in step 3 with
an edge between��M and 3(=��M ). The backup segments are
generated as follows: First, we openN^P U and add P as
given in case (a). Then we add} M through � M in succession
to N^P U , as given in sub case(i) of case(b). Then when we
traverse ��M (=3) we add 4 and closeN\P U as given in sub
case(i) of case(c). Then we ignore�`M as given in sub case(ii)
of case(c). Then when we come to��M , we openN\P W and add�`M and �VM to it as given in sub case(ii) of case(b). Then we
add ��M , �`M and }!~`M as before, before closingN^P W with [ as
given in case(d).

A proof that the�iSgo P��a��N/��l algorithm given above
finds the minimum segmented backups possible is found in
[5]. The intuition is that as we have found the minimum
path in L?M , it will correspond to the minimum segmented
backups.

3 The Distributed Min SegBakAlgorithm

In this section, we show how the complex routing func-
tion of the �iSKo P �!��N/��l algorithm can be distributed effi-
ciently. The fundamentals of distributed network protocols,
along with an acceptable general model (that this paper
uses) and several examples can be found in [6].

In a distributed environment, nodes in the network model
used are only aware of the local network topology, i.e., the
identity of its neighbors. Minimal message passing is done
between these neighbors, and no broadcasting is used. The
distributed algorithm has to be executed twice, i.e., the first
time for finding a minimal cost primary path between the
source and the destination, and the second time for finding
a set of minimal total weight segmented backups for this
primary path. After the two iterations of the algorithm has
been completed, the nodes on the primary and the backup
segments know that they are so, and also know theirpre-
decessors and successors (explained later). The algorithm
(each iteration) runs in two distinct phases: Phase I imple-
ments running of a shortest path algorithm on the graphL?M
described in the previous sections. Phase II is initiated by
the source and it updates the state information at all the
nodes in which it has to be done so.

As explained above, Phase I implements the running of a
shortest path algorithm on the graphL?M . We do this in the
following manner: 1) Take a well-known and proven dis-
tributed shortest-path algorithm that finds the shortest path
(from a node “source” to all other nodes) on a given graphL , and 2) Modify it in such a way that it finds this shortest
path in L?M , and not in L . This path would correspond to
some path inL . On termination of our algorithm, the state
variables would reflect these paths. Now for point 1 above,
we choose the distributed shortest path algorithm presented
in [7] as it is simple and effective. Coming to point 2, we

4

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02) 
1530-2075/02 $17.00 © 2002 IEEE 



note that it can be affected by changing the way in which
messages are sent and received in the original algorithm.
At the end of the running of our modified shortest path al-
gorithm, all nodes are aware of the neighbor to use as a
predecessor to get to the source in the shortest distance,
with respect to the modified graph�?� .
3.1 Description of State Variables

Consider a network of nodes corresponding to a directed
graph � , with a computational process��� running at each
node � � , and � � and ��� are neighbors if edge (� �-� ��� ) exists
in the network. The term process, vertex and node are used
interchangeably here. We classify every neighbor of� in
the following way: For each node� of � , we use the nota-
tion �5��� �����V� � to denote the “outgoing neighbors” of� , i.e.,
those nodes to which there are edges from� in the digraph
of � , and �K� ������� � to denote the “incoming neighbors” of� . Now we describe how the information about the primary
path and the backup segments to this primary path, of a par-
ticular dependable connection, are stored in the system. We
shall use Figure 1 for further clarifications.

Each node � stores the following three vari-
ables:  $¡� ¢��¡�� £|�5 $ $�����:£|¤��:�:�5� ��¤��@¥�� , ���5¡5¦ §2�k�!� and�a�¨£|£ §I�:�!� . The variable $¡� ¢��¡�� £|�5 x $�����g£a¤��:�:�5� ��¤��@¥ is
a boolean that is�:�5�¨¡ if node � is a member of either the
primary path or any of the backup segments. The variable�a�¨£|£ §I�:�!� is an ordered set of nodes that can have a cardi-
nality of either zero, one or two. Hence,�a�¨£|£ §I�:�!� can be
either ©�ªs«t¬+¬® , ©V��§I¯! , ©5��§I¯ � ��§±°V . For a node that is either
on a primary path or on a backup segment (or both, as is
the case of node 4 of Figure 1), this set represents the set of
nodes thatsucceeds it. Node 4 is succeeded by node 5 on
the primary path and node F on the second backup segment.
Hence,�!�¨£|£ §2�k�!� will be set to © 5,F at node 4. Note that
node 5 is before node F in this list, and as a rule, nodes on
the primary path are put at the beginning. Hence, this is
an ordered set, with the first element representing the node
along the primary path. Note that for a node that lies only
on the primary path or only on a backup segment, the cardi-
nality is equal to one. One such example is node 7 (in Figure
1), where�!��£a£ §2�k�!� is equal to © 8  . If a node is neither on
the primary path nor on any backup segment,�!�¨£|£ §I�:�!� is
equal toªJ«t¬+¬ .

The variable���V¡5¦ §I�k�a� is similar to the �!��£a£ §2�k�!� vari-
able. But, in this case, it represents the predecessor to this
node on either the primary path or on any backup segment,
and has similar properties.

We also note that for this given graph� , there exists a
unique graph�?� that is constructed as described before.
The ¦��:�!�k¤��4£|¡ of a vertex��� is the length of the shortest path
from ² to � � with respect to�?� and is denoted by¬ � . � �
knows the weight³ � � for every outgoinǵI� �@� ��� ) and incom-

ing ´I��� � � �gµ edges. We note that without loss of generality,
we take the source node as��¶ and denote the process run-
ning at it as��¶ . Process� ¯ running at the source initiates
the computation to determine the¦`�k�!�k¤��4£|¡ metric ¬+� at all
vertices. Refer to [7] for a similar approach. Also note that
the main “node algorithm”[6] is subdivided into nine mod-
ules (·¸¶ to ·�¹ ) depending on the input and the type of the
node.

3.2 The Structure of Phase I Computation

Messages used in phase I:
1. A length message is a two-tuple´�� � � µ , where � is the
identity of the process (or node) sending the message and� is a real number.� � sends a message (� � � � ) to ��� to in-
form that there is a path of length� from ��¯ (source) to���
in which � � is the prefinal vertex.
2. An acknowledgment message or ack, which has no other
data associated with it. A process��� sends an¤#£aº to a pro-
cess��� in response to a length message sent by��� , which
means that the§�¡��¨»��@¥ message sent by��� has been, or will
be taken care by all processes reachable from� � .

A process��� maintains a local variable¦ which denotes
the length of the shortest path received so far by��� . Upon
receiving a length� from a predecessor, if�(¼�¦ , ��� sets¦
to � and in this case it sends a§I¡��¨»��@¥ message (¦+½¾³ � � � � � )
to every successor��� .
Local data used by a process� � during phase I:

Each process� � uses three local variables, for phase I:
d: This is the shortest length of paths from��¯ (source) to� � known to this process at this point of time with respect to
the modified graph�?� . ¦�¿ÁÀ if no §I¡��¨»#�@¥ message has
been received.
pred to S in G’ : This is the predecessor from which the§I¡��¨»#�@¥ message corresponding to¦ was received; it also is
the prefinal vertex on the shortest path to��� computed so
far. ���V¡5¦ �k� ² �g� �?� is undefined if¦Â¿�À or � =1.
num: This is the number of unacknowledged messages, that
is, the number of messages sent by this process for which no¤#£aº has been received so far.

Phase I algorithm for process � � , �®Ã¿ 1

M1: Initialization:
01: © No §�¡!�¨»#�@¥ messages have been received; there
02: are no unacknowledged messages
03: begin ¦�ÄÅ¿GÀ ; ���V¡5¦ �k� ² �g� �?� is undefined;
04: ���� ÆÄÇ¿pÈ end;

M2: Upon receiving a§�¡!�¨»#�@¥ message (� � � � ):
01: If �É¼Ê¦ then
02: begin
03: if  $¡� ¢��¡�� �5¥��5�5�k¡5�!� ��¤��@¥��Y¿p�:�5��¡ then

5

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02) 
1530-2075/02 $17.00 © 2002 IEEE 



04: Ë We have to define successor in such a way
05: so that it reflects the topology of G’Ì
06: if ( Í = Î ) Ë node is DestinationÌ then
07: Ï!Ð¨Ñ|Ñ|ÒVÏ5Ï!Ó5Ô/ÕÅÖ�×JØtÙvÙ
08: else if Ú¢ÛÖpÏ�ÜIÝ�Ó�Þ�Ï!Ð¨Ñ|Ñ Ü2ÍkÏ!ß then
09: Ï!Ð¨Ñ|Ñ|ÒVÏ5Ï!Ó5Ô/ÕÅÖáà�ÔVÒ5â ÜIÍkÏaß
10: else Ï!Ð�ÑaÑ|ÒVÏ�Ï�Ó5Ô^ÕÅÖ�Ó5Ð�ß ã�ä�ÔVÏ�å
11: æYÏ!Ð¨Ñ|Ñ Ü2ÍkÏ!ß�çDà�ÔVÒ5â ÜIÍkÏaß
12: For nodeèxé\à�ÔVÒ�â Ü2ÍkÏ!ß�ê useë å=ì Öpí
13: (only for the execution of this moduleM2)
14: else
15: Ï!Ð¨Ñ|Ñ|ÒVÏ5Ï!Ó5Ô/ÕÅÖ�Ó5Ð�ß ã�ä�ÔVÏ å
16: Ë Send an ack toà�ÔVÒ5â ßkÓ î Ígã ï?ð , the prefinal
17: vertex on the previousÏ5ñ�Ó5Ô5ßkÒ5Ï!ß path, if it has
18: not been already sentÌ
19: if ã�Ð�òÆóôí then send anõ#Ñaè to à�ÔVÒ5â ßkÓ î Ígã ï ð
20: Ë updateâ�ê�à�ÔVÒ5â ßkÓ î ÍKã ï ð Ì
21: à�Ô5Ò5â ßkÓ î Ígã ï ð ÕÅÖáà�ö`÷]â(ÕÇÖ�Ï ;
22: Ë Send aÜIÒ�ã¨ø�ß@ñ message to all successors ofù�å
23: and incrementã�Ð�ò appropriately and then
24: return õ#Ñaè to à�ÔVÒ5â ßkÓ î Ígã ï?ð if ã�Ð�ò =0 Ì
25: SendÜIÒ�ã¨ø�ß@ñTúIâYçáë å=ì êIà å ) to everyÏaÐ¨Ñ|Ñ|ÒVÏ5Ï�Ó5Ô à ì .
26: ã�Ð�ò := ã�Ð�ò + the number of successors ofù å .
27: If ã�Ð�ò =0 then send anõ#Ñaè to à�Ô5Ò5â ßkÓ î Ígã ï ð
28: end
29: else Ë5ÏÉûÊâ/ÌüË new ÜIÒ�ã¨ø�ß@ñ message does not denote
30: a shorter pathÌ
31: Sendõ�Ñ!è to à ö .
M3: Upon receiving anõ#Ñaè from processà ì
01: begin
02: Ë decrement number of unacknowledged
03: messagesÌ
04: ã�Ð�ò := ã�Ð�ò - 1;
05: Ë send acknowledgment toà�ÔVÒ�â ßkÓ î Ígã ï ð if
06: õ#Ñaè�Ï have been received for all messagesÌ
07: if ã�Ð�ò =0 then sendõ#Ñaè to à�ÔVÒ5â ßkÓ î Ígã ï ð
08: end
Note: If ã�Ð�òró 0 at any time, this basically means that a
process hasÒ!ý�õ#Ñ�ßkÜ2þ one message to which it has not sent
an õ#Ñaè , and thisõ#Ñaè should go toà�ÔVÒ�â ßkÓ î Ígã ï?ð .
Phase I algorithm for process à Ý , the source
M4: Initialization
01: â :=0; à�ÔVÒ�â ßkÓ î Ígã ï ð is undefined;
02: Ë We have to define successor in such a way so
03: that it reflects the topology of G’Ì
04: Ï!Ð¨Ñ|Ñ|ÒVÏ5Ï!Ó5Ô/ÕÅÖ�Ó5Ð�ß ã�ä�ÔVÏVÝ<æ�Ï!Ð�ÑaÑ Ü2ÍkÏ!ß
05: send (ëYÝ-ì#êIà�Ý ) to all successorsà�ì ; ã�Ð�ò :=
06: number of successors ofù�Ý .
M5: Upon receipt of a length message (Ï`ê�à å ) from any other
node:

01: return õ#Ñaè to à å
M6: Upon receiving anõ�Ñ!è
01: Ë Updateã�Ð�ò ; start phase II if there is no
02: unacknowledged messages remainingÌ
03: ã�Ð�ò := ã�Ð�ò -1;
04: if ã�Ð�ò =0 then terminate phase I and send
05: Ï!ßkõ�Ô5ß à�ñ�õ�Ï!Ò message to destination.

3.3 The Structure of Phase II Computation

Messages used in phase II:
1. A startphase message has no other data associated with
it. It is sent by the source to the destination on termination
of phase I.
2. A ß:ÔVõ#Ñ|Ò ä�õ#Ñaè message, which has no other data asso-
ciated with it. This is sent originally by the destination to
the node that precedes it on the newly-found path. It traces
its way back to the source and appropriately modifies the
information at the nodes to reflect the knowledge about the
backup segments.

Phase II algorithm for process ÎÿÒVÏ!ß:Ígã4õ�ß:ÍgÓ5ã
M7: Upon receiving a startphase from source
01: begin
02: Ë Sendß:ÔVõ#Ñ|Ò ä�õ#Ñaè message to the predecessor;
03: This starts the trace-back processÌ
04: Sendß:ÔVõ�ÑaÒ ä|õ�Ñ!è to à�ÔVÒ5â ßkÓ î ÍKã ï ð
05: end

Phase II algorithm for process à å , ÍYÛÖ 1
M8: Upon receiving a updatestate from processà�ö
01: begin
02: Ë Node type is of node 5 in Figure 1: There is
03: no change of any state variable at this nodeÌ
04: If Úÿé^à�Ô5Ò5â Ü2ÍkÏ!ß and à�ÔVÒ5â ßkÓ î Ígã ï ð éDÏ!Ð¨Ñ|Ñ Ü2ÍkÏ!ß
05: then
06: ×nÓ��<à�Ò�ÔVõ�ß:ÍgÓ5ã
07: Ë Node is of node 6 in Figure 1: Add node
08: à�ÔVÒ�â ßkÓ î Ígã ï ð into à�ÔVÒ5â ÜIÍkÏaß
Ì
09: If Úÿé^à�Ô5Ò5â Ü2ÍkÏ!ß and à�ÔVÒ5â ßkÓ î Ígã ï ð��éDÏ!Ð¨Ñ|Ñ Ü2ÍkÏ!ß
10: then
11: à�ÔVÒ�â Ü2ÍkÏ!ß+ÕÇÖáà�ÔVÒ5â ÜIÍ:Ï!ß�æ\Ú�çÂà�ÔVÒ�â ßkÓ î Ígã ï ð
12: Ë Node type is of node 4 in Figure 1: AddÚ
13: to Ï!Ð¨Ñ|Ñ Ü2ÍkÏ!ßRÌ
14: If Ú �é^à�Ô5Ò5â Ü2ÍkÏ!ß and à�ÔVÒ5â ßkÓ î Ígã ï ð éDÏ!Ð¨Ñ|Ñ Ü2ÍkÏ!ß
15: then
16: Ï!Ð¨Ñ|Ñ Ü2ÍkÏ!ß+ÕÇÖGÏaÐ¨Ñ|Ñ ÜIÍ:Ï!ß�çnÚ
17: Ë Node type is of node� or Î in Figure 1: Add
18: this node as a new node to the primary-backup
19: system, now it is part of the primary path or a
20: backup segmentÌ

6

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02) 
1530-2075/02 $17.00 © 2002 IEEE 



21: If ����
	����� ������� and	����� ��� � ��� � � ��!��"$#%# �&���'�
22: then
23: (  (*) �� ��+����������� 	�,-�.+��0/213�4��"$
24:

	����� �������5/617	����� �������98:	����� ��� � ��� � �
25:

��"9#%# �������5/61;��"9#%# �������98 �
26: < In any case, pass on the message to the
27: next node=
28: Send

�4��,>#% ) ,>#'? to
	����� ��� � ��� � �

29: end

Phase II algorithm for process 	9@ , the source
M9: Upon receiving a traceback from process

	BA
01: begin
02: < Add that node to the

��"9#%# �������
; Now the

03: whole algorithm is completed=
04:

��"9#%# �������5/61;��"9#%# �������98 �
05: end

3.4 Complexity Analysis

For the distributedC ��� �D�E>FG,B? algorithm, we assume
that any message takes at most time

�
for traversal of the

transmission channel between the two nodes involved (as it
is the case with most modern-day communication systems).
In that case, the time bound for the algorithm can be calcu-
lated asH
I �J�>K . A more rigorous analysis of the algorithm
can be obtained by arguing on the same lines as one would
argue for the Asynchronous Bellman-Ford Algorithm [8].
We also note that in the worst case, the total communication
complexity will be exponential in

�
. This is the same case

for the time complexity. But the worst case is quite unlikely
in this case, and the the actual number of messages and the
actual time in the average case will be much smaller.

Note that only a few routers on the network have to store
extra information (those at the beginning or end of the seg-
ments), and hence the number of states is not greatly in-
creased.

Destination

Activation message

Source

Backup channel

Fault

Fault report

Primary channel
(b) End to end backup

(a) Segmented backups

Source Destination

Primary channel

Backup channel

Fault

COMPONENT_FAILURE message

Segment_start_node

Segment_end_node

SEGMENT_ACTIVATE message

Figure 4. Illustration of failure recovery

4 Distributed Failure Recovery

When a fault occurs in a component in the network,
all dependable connections passing through it have to be
rerouted through their backup paths. This process is called
failure recovery. This has the following phases:fault detec-
tion, failure reporting, andbackup activation.

The time taken for reestablishing service is equal to the
sum of the times taken by each of the above phases, and is
called failure recovery delay. This delay is crucial to many
real-time applications and has to be minimized.

Delay of failure recovery is the turn-around time that is
required for migrating the traffic from the failed compo-
nent to the backup segment. We note that this is lower in
our scheme, because the recovery can be local and mes-
sages have to traverse only the length of the segment in-
volved, rather than the whole distance from the source to
the destination, as would have been the case with end-to-
end backups. This can be seen from Figure 4. The total
end-to-end delay along the path of a real-time connection
is another important QoS parameter for real-time commu-
nication which has to be minimized. Note that there will be
an increase in this delay when we switch from the primary
path to a backup path. This increase in the end-to-end delay
that a dependable connection will encounter can be termed
as the failure delay increment. We note that this parameter
will also be lower in our scheme, due to the more localized
failure recovery. We note that localized failure recovery is
an added advantage of our scheme.

When a fault occurs, packets transmitted during the fail-
ure reporting time are lost. In our scheme, when a fault oc-
curs in one segment of the primary, only the packets which
have entered that segment from the time of the occurrence of
the fault till the backup segment activation are lost. This is
in contrast to the end-to-end backup case, whereall packets
in transit are lost.

5 Implementation of our Scheme

In this section, we first describe the relevant scenarios
in the current Internet and other places where our scheme
can be used and then discuss the protocols required to im-
plement it.

Applications of Our Scheme in Current Internet: Our
primary-segmented backup scheme can be used in two dif-
ferent scenarios in today’s Internet.

1. It can be run at the network level between the backbone
routers by Internet backbone providers like UUNET
[10] or between the routers in a single autonomous
system (AS) by any Internet service provider. It is well
known that Internet backbone providers attempt to de-
sign their physical networks to ensure that there are
disjoint paths between any two routers.

7

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02) 
1530-2075/02 $17.00 © 2002 IEEE 



2. It can be run at the application level among a set of
routers forming a logical network (overlay) over exist-
ing physical inter-network such as in resilient overlay
networks (RON) [11], Detour [12].

Applications of Our Scheme in Other Multihop Net-
works: It is also important to note that the scheme can be
implemented in general on any multihop networks, in ad-
dition to the Internet. This can also include VPN(virtual
private networks) based networks that are logically disas-
sociated from the Internet, even if they depend on the In-
ternet at the lower network layers. We also note that as
computer communications become more mission critical,
QoS-demanding and involve more real-time data, there is
a growing interest in “private networks”, i.e., multihop net-
works that are dedicated to a select set of users and which
can provide the required levels of QoS and availability.
These networks should be self-contained and should be free
to deploy any routing and signaling protocols, regardless of
the Internet.

Resource Reservation Protocol: The Resource Reser-
vation Protocol (RSVP) [9] was the first solid proposal for
resource-reservation based schemes for the Internet and for
general multihop networks. It has been outlined in detail in
[5] how RSVP can be used for the resource reservation and
reconfiguration phases of our scheme.

6 Conclusions

In this paper, we presented an efficient, scalable and
distributed method for providing single-component fault-
tolerant communication between nodes in a communication
network. The concept of segmented backups, as opposed
to that of of end-to-end backups for providing this fault-
tolerance has been presented and its superiority has been
discussed. Then, an algorithm by which we can select the
exact links that will participate as redundant resources, was
presented. Later in the paper, it was shown how this algo-
rithm could be implemented in a distributed fashion. We
have discussed issues like failure recovery and complexity
of the proposed algorithm. It has been noted how this al-
gorithm is relevant both to the current Internet and also
for other multihop networks in today’s scenario where both
QoS and network availability are becoming major issues. It
has also been briefly discussed how our algorithm can be
easily implemented on top of current resource reservation
protocols like RSVP.

References

[1] Q. Zheng and K. G. Shin, “Fault-Tolerant Real-Time
Communication in Distributed Computing Systems,”
in Proc. of IEEE FTCS, pp. 86-93, 1992.

[2] R. Kawamura, K. Sato, and I. Tokizawa, “Self-healing
ATM Networks Based on Virtual Path Concept,”IEEE
Journal on Selected Areas in Communications, Vol.
12, No. 1, pp. 120-127, January 1994.

[3] S. Han and K. G. Shin, “A Primary-Backup Channel
Approach to Dependable Real-Time Communication
in Multihop Networks,” IEEE Trans. on Computers,
Vol. 47, No. 1, pp. 46-61, January 1998.

[4] G. P. Krishna, M. J. Pradeep and C. Siva Ram Murthy,
“A Segmented Backup Scheme for Dependable Real-
Time Communication in Multi-Hop Networks”, in
Proc. of IEEE WPDRTS, pp. 678-684, 2000.

[5] G. P. Krishna, M. J. Pradeep, and C. Siva Ram
Murthy, “An Efficient Primary-Segmented Backup
Scheme for Dependable Real-Time Communication in
Multihop Networks”, Revised Version Communicated
to IEEE/ACM Trans. on Networking, 2001.

[6] A. Segall, “Distributed Network Protocols”, IEEE
Trans. on Information Theory, Vol. 29, No. 1, pp. 23-
35, January 1983.

[7] K. M. Chandy and J. Misra, “Distributed Computa-
tion on Graphs: Shortest Path Algorithms”, Commu-
nications of the ACM, Vol. 25, No. 11, pp. 833-837,
November 1982.

[8] N. A. Lynch,Distributed Algorithms, Morgan Kauf-
mann Publishers, 1997.

[9] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D.
Zappala, “RSVP: A New Resource Reservation Proto-
col”, IEEE Network, Vol. 7, No. 5, pp. 8-18, Septem-
ber 1993.

[10] UUNET, “UUNET Technologies”,
http://www.uunet.com/network/maps, October 2001.

[11] D. G. Anderson, H. Bala Krishnan, M. F. Kashooek,
and R. Morris, “Resilient Overlay Networks,” inProc.
of ACM SOSP, October 2001.

[12] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N.
Cardwell, A. Collins, E. Hoffman, J. Snell, A. Vahdat,
G. Voelker, and John Zahorjan, “Detour: A Case for
Informed Internet Routing and Transport,”IEEE Mi-
cro, Vol. 19, No. 1, pp. 50-59, January 1999.

[13] G. Manimaran, H. S. Rahul, and C. Siva Ram
Murthy, “A New Distributed Route Selection Ap-
proach for Channel Establishment in Real-Time Net-
works”, IEEE/ACM Trans. on Networking, Vol. 7,
No. 5, pp. 698-709, 1999.

8

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02) 
1530-2075/02 $17.00 © 2002 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


