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Abstract

Algorithmic decision making systems are
ubiquitous across a wide variety of online as
well as offline services. These systems rely on
complex learning methods and vast amounts
of data to optimize the service functionality,
satisfaction of the end user and profitabil-
ity. However, there is a growing concern that
these automated decisions can lead, even in
the absence of intent, to a lack of fairness,
i.e., their outcomes can disproportionately
hurt (or, benefit) particular groups of peo-
ple sharing one or more sensitive attributes
(e.g., race, sex). In this paper, we introduce
a flexible mechanism to design fair classifiers
by leveraging a novel intuitive measure of de-
cision boundary (un)fairness. We instantiate
this mechanism with two well-known classi-
fiers, logistic regression and support vector
machines, and show on real-world data that
our mechanism allows for a fine-grained con-
trol on the degree of fairness, often at a small
cost in terms of accuracy.
A Python implementation of our mechanism
is available at fate-computing.mpi-sws.org

1 INTRODUCTION

Algorithmic decision making processes are increasingly
becoming automated and data-driven in both online
(e.g., spam filtering, product personalization) as well
as offline (e.g., pretrial risk assessment, mortgage ap-
provals) settings. However, as automated data analy-
sis replaces human supervision in decision making, and
the scale of the analyzed data becomes “big”, there are
growing concerns from civil organizations [Bhandari,
2016], governments [Podesta et al., 2014, Muñoz et al.,
2016], and researchers [Sweeney, 2013] about potential
loss of transparency, accountability and fairness.

Anti-discrimination laws in many countries prohibit
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unfair treatment of people based on certain attributes,
also called sensitive attributes, such as gender or
race [Civil Rights Act, 1964]. These laws typically
evaluate the fairness of a decision making process by
means of two distinct notions [Barocas and Selbst,
2016]: disparate treatment and disparate impact .
A decision making process suffers from disparate treat-
ment if its decisions are (partly) based on the sub-
ject’s sensitive attribute information, and it has dis-
parate impact if its outcomes disproportionately hurt
(or, benefit) people with certain sensitive attribute va-
lues (e.g., females, blacks).

While it is desirable to design decision making sys-
tems free of disparate treatment as well as disparate
impact, controlling for both forms of unfairness simul-
taneously is challenging. One could avoid disparate
treatment by ensuring that the decision making pro-
cess does not have access to sensitive attribute infor-
mation (and hence cannot make use of it). However,
ignoring the sensitive attribute information may still
lead to disparate impact in outcomes: since automated
decision-making systems are often trained on histori-
cal data, if a group with a certain sensitive attribute
value was unfairly treated in the past,1 this unfair-
ness may persist in future predictions through indi-
rect discrimination [Pedreschi et al., 2008], leading to
disparate impact. Similarly, avoiding disparate im-
pact in outcomes by using sensitive attribute informa-
tion while making decisions would constitute disparate
treatment, and may also lead to reverse discrimina-
tion [Ricci vs. DeStefano, 2009].

In this work, our goal is to design classifiers—
specifically, convex margin-based classifiers like logistic
regression and support vector machines (SVMs)—that
avoid both disparate treatment and disparate impact,
and can additionally accommodate the “business ne-
cessity” clause of disparate impact doctrine. Accord-

1Like earlier studies on fairness aware-learning, we as-
sume that while historical class labels may be biased
against group(s) with certain sensitive attribute value(s),
they still contain some degree of information on the true
(unbiased) labels. Assuming the class labels to be com-
pletely biased and having no information on the true labels
would render a learning task on such a dataset pointless.
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ing to the business necessity clause, an employer can
justify a certain degree of disparate impact in order to
meet certain performance-related constraints [Barocas
and Selbst, 2016]. However, the employer needs to en-
sure that the current decision making incurs the least
possible disparate impact under the given constraints.
To the best of our knowledge, this clause has not been
addressed by any prior study on fairness-aware lear-
ning.

While there is no specific numerical formula laid out by
anti-discrimination laws to quantify disparate impact,
here we leverage a specific instantiation supported
by the U.S. Equal Employment Opportunity Com-
mission: the “80%-rule” (or more generally, the p%-
rule) [Biddle, 2005]. The p%-rule states that the ratio
between the percentage of subjects having a certain
sensitive attribute value assigned the positive decision
outcome and the percentage of subjects not having
that value also assigned the positive outcome should
be no less than p:100. Since it is very challenging
to directly incorporate this rule in the formulation of
convex margin-based classifiers, we introduce a novel
intuitive measure of decision boundary (un)fairness as
a tractable proxy to the rule: the covariance between
the sensitive attributes and the (signed) distance be-
tween the subjects’ feature vectors and the decision
boundary of the classifier.

Our measure of fairness allows us to derive two com-
plementary formulations for training fair classifiers:
one that maximizes accuracy subject to fairness con-
straints, and enables compliance with disparate impact
doctrine in its basic form (i.e., the p%-rule); and an-
other that maximizes fairness subject to accuracy con-
straints, and ensures fulfilling the business necessity
clause of disparate impact. Remarkably, both formu-
lations also avoid disparate treatment, since they do
not make use of sensitive attribute information while
making decisions. Our measure additionally satisfies
several desirable properties: (i) for a wide variety of
convex margin-based (linear and non-linear) classifiers,
it is convex and can be readily incorporated in their
formulation without increasing their complexity; (ii)
it allows for clear mechanism to trade-off fairness and
accuracy; and, (iii) it can be used to ensure fairness
with respect to several sensitive attributes. Experi-
ments with two well-known classifiers, logistic regres-
sion and support vector machines, using both synthetic
and real-world data show that our fairness measure al-
lows for a fine-grained control of the level of fairness,
often at a small cost in terms of accuracy, and provides
more flexibility than the state-of-the-art (see Table 1).

Related Work. A number of prior studies have fo-
cused on controlling disparate impact and/or disparate
treatment-based discrimination in the context of bi-

nary classification [Romei and Ruggieri, 2014]. These
studies have typically adopted one of the two following
strategies:

The first strategy consists of pre-processing the train-
ing data [Dwork et al., 2012, Feldman et al., 2015,
Kamiran and Calders, 2009, 2010]. This typically in-
volves (i) changing the value of the sensitive attributes
or class labels of individual items in the training data,
or (ii) mapping the training data to a transformed
space where the dependencies between sensitive attri-
butes and class labels disappear. However, these ap-
proaches treat the learning algorithm as a black box
and, as a consequence, the pre-processing can lead to
unpredictable losses in accuracy.

The second strategy consists of modifying exist-
ing classifiers to limit discrimination [Calders and
Verwer, 2010, Kamishima et al., 2011, Goh et al.,
2016]. Among them, the work by Kamishima et al.
[Kamishima et al., 2011] is the most closely related to
ours: it introduces a regularization term to penalize
discrimination in the formulation of the logistic regres-
sion classifier.

Recently, Zemel et al. [2013], building on Dwork et al.
[2012], combined both strategies by jointly learning a
fair representation of the data and the classifier para-
meters. This approach has two main limitations: i) it
leads to a non-convex optimization problem and does
not guarantee optimality, and ii) the accuracy of the
classifier depends on the dimension of the fair repre-
sentation, which needs to be chosen rather arbitrarily.

Many of the prior studies suffer from one or more of
the following limitations: (i) they are restricted to a
narrow range of classifiers, (ii) they only accommodate
a single, binary sensitive attribute, and (iii) they can-
not eliminate disparate treatment and disparate im-
pact simultaneously. Table 1 compares the capabilities
of different methods while achieving fairness.

Finally, as discussed earlier, disparate impact is partic-
ularly well suited as a fairness criterion when histori-
cal decisions used during the training phase are biased
against certain social groups. In such contexts, propor-
tionality in outcomes (e.g., p%-rule) may help mitigate
these historical biases. However, in cases where the
(unbiased) ground-truth is available for the training
phase, i.e., one can tell whether a historical decision
was right or wrong, disproportionality in outcomes can
be explained by the means of the ground-truth. In
those cases, disparate impact may be a rather mis-
leading notion of fairness, and other recently proposed
criteria like “disparate mistreatment” by Zafar et al.
[2017], may be better suited notions of fairness. For
more discussion into this alternative notion, we point
the reader to our companion paper [Zafar et al., 2017].
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Method
Disp.
Treat.

Disp.
Imp.

Business.
Necessity

Polyvalent
sens. attrs.

Multiple
sens. attrs.

Range of
classifiers

Our method 3 3 3 3 3 Any convex margin-based
Kamiran and Calders [2010] 3 3 7 7 7 Any score-based
Calders and Verwer [2010] 3 3 7 7 7 Naive Bayes
Luong et al. [2011] 3 7 7 7 7 Any score-based
Kamishima et al. [2011] 7 3 7 7 7 Logistic Regression
Zemel et al. [2013] 3 3 7 7 7 Log loss
Feldman et al. [2015] 3 3 7 3 3 Any (only numerical non-sens. attrs.)

Goh et al. [2016] 3 3 7 3 3 Ramp loss

Table 1: Capabilities of different methods in eliminating disparate impact and/or disparate treatment. None of
the prior methods addresses disparate impact’s business necessity clause. Many of the methods do not generalize
to multiple (e.g., gender and race) or polyvalent sensitive attributes (e.g., race, that has more than two values).

2 FAIRNESS IN CLASSIFICATION
For simplicity, we consider binary classification tasks
in this work. However, our ideas can be easily ex-
tended to m-ary classification.

In a binary classification task, one needs to find a
mapping function f(x) between user feature vectors
x ∈ Rd and class labels y ∈ {−1, 1}. This task is
achieved by utilizing a training set, {(xi, yi)}Ni=1, to
construct a mapping that works well on an unseen
test set. For margin-based classifiers, finding this map-
ping usually reduces to building a decision boundary
in feature space that separates users in the training set
according to their class labels. One typically looks for
a decision boundary, defined by a set of parameters θ∗,
that achieves the greatest classification accuracy in a
test set, by minimizing a loss function over a training
set L(θ), i.e., θ∗ = argminθ L(θ). Then, given an un-
seen feature vector xi from the test set, the classifier
predicts fθ(xi) = 1 if dθ∗(xi) ≥ 0 and fθ(xi) = −1
otherwise, where dθ∗(x) denotes the signed distance
from the feature vector x to the decision boundary.

If class labels in the training set are correlated with
one or more sensitive attributes {zi}Ni=1 (e.g., gender,
race), the percentage of users with a certain sensitive
attribute having dθ∗(xi) ≥ 0 may differ dramatically
from the percentage of users without this sensitive at-
tribute value having dθ∗(xi) ≥ 0 (i.e., the classifier
may suffer from disparate impact). Note that this may
happen even if sensitive attributes are not used to con-
struct the decision boundary but are correlated with
one or more of user features, through indirect discrim-
ination [Pedreschi et al., 2008].

2.1 Fairness Definition

First, to comply with disparate treatment criterion
we specify that sensitive attributes are not used in de-
cision making, i.e., {xi}Ni=1 and {zi}Ni=1 consist of dis-
joint feature sets.

Next, as discussed in Section 1, our definition of
disparate impact leverages the “80%-rule” [Biddle,
2005]. A decision boundary satisfies the “80%-rule”

(or more generally the “p%-rule”), if the ratio between
the percentage of users with a particular sensitive at-
tribute value having dθ(x) ≥ 0 and the percentage of
users without that value having dθ(x) ≥ 0 is no less
than 80:100 (p:100). For a given binary sensitive at-
tribute z ∈ {0, 1}, one can write the p%-rule as:

min

(
P (dθ(x)≥0|z=1)
P (dθ(x)≥0|z=0) ,

P (dθ(x)≥0|z=0)
P (dθ(x)≥0|z=1)

)
≥ p

100 .

(1)

Unfortunately, it is very challenging to directly in-
corporate the p%-rule in the formulation of convex
margin-based classifiers, since it is a non-convex func-
tion of the classifier parameters θ and, therefore, it
would lead to non-convex formulations, which are dif-
ficult to solve efficiently. Secondly, as long as the user
feature vectors lie on the same side of the decision
boundary, the p%-rule is invariant to changes in the
decision boundary. In other words, the p%-rule is a
function having saddle points. The presence of sad-
dle points furthers complicate the procedure for solv-
ing non-convex optimization problems [Dauphin et al.,
2014]. To overcome these challenges, we next intro-
duce a novel measure of decision boundary (un)fairness
which can be used as a proxy to efficiently design clas-
sifiers satisfying a given p%-rule.

3 OUR APPROACH

In this section, we first introduce our measure of de-
cision boundary (un)fairness, the decision boundary
covariance. We then derive two complementary for-
mulations. The first formulation ensures compliance
with disparate impact doctrine in its basic form (en-
sure a given p%-rule) by maximizing accuracy sub-
ject to fairness constraints. The second formulation
guarantees fulfilling disparate impact’s “business ne-
cessity” clause by maximizing fairness subject to ac-
curacy constraints.

For conciseness, we append a constant 1 to all fea-
ture vectors (xi) so that the linear classifier decision
boundary equation θTx + b = 0 reduces to θTx = 0.
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3.1 Decision Boundary Covariance
Our measure of decision boundary (un)fairness is de-
fined as the covariance between the users’ sensitive
attributes, {zi}Ni=1, and the signed distance from
the users’ feature vectors to the decision boundary,
{dθ(xi)}Ni=1, i.e.:

Cov(z, dθ(x)) = E[(z− z̄)dθ(x)]− E[(z− z̄)]d̄θ(x)

≈ 1

N

N∑
i=1

(zi − z̄) dθ(xi), (2)

where E[(z− z̄)]d̄θ(x) cancels out since E[(z− z̄)] = 0.
Since in linear models for classification, such as logistic
regression or linear SVMs, the decision boundary is
simply the hyperplane defined by θTx = 0, Eq. (2)

reduces to 1
N

∑N
i=1 (zi − z̄)θTxi.

In contrast with the p%-rule (Eq. 1), the decision
boundary covariance (Eq. 2) is a convex function with
respect to the decision boundary parameters θ, since
dθ(xi) is convex with respect to θ for all linear, con-
vex margin-based classifiers.2 Hence, it can be easily
included in the formulation of these classifiers without
increasing the complexity of their training.

Moreover, note that, if a decision boundary satisfies
the “100%-rule”, i.e.,

P (dθ(x) ≥ 0|z = 0) = P (dθ(x) ≥ 0|z = 1), (3)

then the (empirical) covariance will be approximately
zero for a sufficiently large training set.

3.2 Maximizing Accuracy Under Fairness
Constraints

In this section, we design classifiers that maximize
accuracy subject to fairness constraints (e.g., a specific
p%-rule), and thus may be used to ensure compliance
with the disparate impact doctrine in its basic form.

To this end, we find the decision boundary parameters
θ by minimizing the corresponding loss function over
the training set under fairness constraints, i.e.:

minimize L(θ)

subject to 1
N

∑N
i=1 (zi − z̄) dθ(xi) ≤ c,

1
N

∑N
i=1 (zi − z̄) dθ(xi) ≥ −c,

(4)

where c is the covariance threshold, which specifies an
upper bound on the covariance between each sensitive
attribute and the signed distance from the feature vec-
tors to the decision boundary. In this formulation, c
trades off fairness and accuracy, such that as we de-
crease c towards zero, the resulting classifier will sat-
isfy a larger p%-rule but will potentially suffer from a

2For non-linear convex margin-based classifiers like non-
linear SVM, equivalent of dθ(xi) is still convex in the trans-
formed kernel space. See Appendix A for details.

larger loss in accuracy. Note that since the above op-
timization problem is convex, our scheme ensures that
the trade-off between the classifier loss function and
decision boundary covariance is Pareto optimal.

Remarks. It is important to note that the distance to
the margin, dθ(x), only depends on the non-sensitive
features x and, therefore, the sensitive features z are
not needed while making decisions. In other words, we
account for disparate treatment, by removing the sensi-
tive features from the decision making process and, for
disparate impact, by adding fairness constraints dur-
ing the training process of the classifier. Addition-
ally, the constrained optimization problem (4), can
also be written as a regularized optimization problem
by making use of its dual form, in which the fairness
constraints are moved to the objective and the corre-
sponding Lagrange multipliers act as regularizers.

Next, we specialize problem (4) for logistic regression
classifiers.

Logistic Regression. In logistic regression classi-
fiers, one maps the feature vectors xi to the class labels
yi by means of a probability distribution:

p(yi = 1|xi,θ) =
1

1 + e−θTxi
, (5)

where θ is obtained by solving a maximum like-
lihood problem over the training set, i.e., θ∗ =
argminθ −

∑N
i=1 log p(yi|xi,θ). Thus, the correspond-

ing loss function is given by −
∑N

i=1 log p(yi|xi,θ), and
problem (4) adopts the form:

minimize −
∑N

i=1 log p(yi|xi,θ)

subject to 1
N

∑N
i=1 (zi − z̄)θTxi ≤ c,

1
N

∑N
i=1 (zi − z̄)θTxi ≥ −c,

(6)

Appendix A presents the specialization of our formu-
lation for both linear and non-linear SVM classifiers.

3.3 Maximizing Fairness Under Accuracy
Constraints

In the previous section, we designed classifiers that
maximize accuracy subject to fairness constraints.
However, if the underlying correlation between the
class labels and the sensitive attributes in the train-
ing set is very high, enforcing fairness constraints
may results in underwhelming performance (accuracy)
and thus be unacceptable in terms of business objec-
tives. Disparate impact’s “business necessity” clause
accounts for such scenarios by allowing some degree
of disparate impact in order to meet performance con-
straints. However, the employer needs to ensure that
the decision making causes least possible disparate
impact under the given performance (accuracy) con-
straints [Barocas and Selbst, 2016]. To accommodate
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such scenarios, we now propose an alternative formula-
tion that maximizes fairness (minimizes disparate im-
pact) subject to accuracy constraints.

To this aim, we find the decision boundary parameters
θ by minimizing the corresponding (absolute) decision
boundary covariance over the training set under con-
straints on the classifier loss function, i.e.:

minimize | 1N
∑N

i=1 (zi − z̄) dθ(xi)|
subject to L(θ) ≤ (1 + γ)L(θ∗),

(7)

where L(θ∗) denotes the optimal loss over the training
set provided by the unconstrained classifier and γ ≥ 0
specifies the maximum additional loss with respect to
the loss provided by the unconstrained classifier. Here,
we can ensure maximum fairness with no loss in accu-
racy by setting γ = 0. As in Section 3.2, it is possible
to specialize problem (7) for the same classifiers and
show that the formulation remains convex.

Fine-Grained Accuracy Constraints. In many
classifiers, including logistic regression and SVMs, the
loss function (or the dual of the loss function) is addi-
tive over the points in the training set, i.e., L(θ) =∑N

i=1 Li(θ), where Li(θ) is the individual loss associ-
ated with the i-th point in the training set. Moreover,
the individual loss Li(θ) typically tells us how close
the predicted label f(xi) is to the true label yi, by
means of the signed distance to the decision bound-
ary. Therefore, one may think of incorporating loss
constraints for a certain set of users, and consequently,
prevent individual users originally classified as positive
(by the unconstrained classifier) from being classified
as negative by the constrained classifier. To do so, we
find the decision boundary parameters θ as:

minimize | 1N
∑N

i=1 (zi − z̄)θTxi|
subject to Li(θ) ≤ (1 + γi)Li(θ

∗) ∀i ∈ {1, . . . , N},
(8)

where Li(θ
∗) is the individual loss associated to the

i-th user in the training set provided by the uncon-
strained classifier and γi ≥ 0 is her allowed addi-
tional loss. For example, in the case of logistic re-
gression classifier, θ∗ = argminθ

∑N
i=1− log p(yi|xi,θ)

and the losses for individual points are Li(θ) =
− log p(yi|xi,θ). Now, if we set γi = 0, we are enforc-
ing that the probability of the i-th user to be mapped
in the positive class to be equal or higher than in the
original (unconstrained) classifier.

4 EVALUATION

We evaluate our framework on several synthetic and
real-world datasets. We first experiment with our first
formulation and show that it allows for fine-grained
fairness control, often at a minimal loss in accuracy.
Then, we validate our second formulation, which al-
lows maximizing fairness under accuracy constraints,

and also provides guarantees on avoiding negative clas-
sification of certain individual users or group of users.

Here, we adopt the p%-rule [Biddle, 2005] as our
true measure of fairness. However, as shown in Ap-
pendix B.2, we obtain similar results if we consider
another measure of fairness used by some of the pre-
vious studies in this area.

4.1 Experiments on Synthetic Data
Fairness constraints vs accuracy constraints. To
simulate different degrees of disparate impact in classi-
fication outcomes, we generate two synthetic datasets
with different levels of correlation between a single, bi-
nary sensitive attribute and class labels. We then train
two types of logistic regression classifiers: one type
maximizes accuracy subject to fairness constraints
(Section 3.2), and the other maximizes fairness under
fine-grained accuracy constraints (Section 3.3).

Specifically, we generate 4,000 binary class labels
uniformly at random and assign a 2-dimensional
user feature vector per label by drawing sam-
ples from two different Gaussian distributions:
p(x|y=1) = N([2; 2], [5, 1; 1, 5]) and p(x|y=−1) =
N([−2;−2], [10, 1; 1, 3]). Then, we draw each user’s
sensitive attribute z from a Bernoulli distribution:
p(z = 1) = p(x′|y = 1)/(p(x′|y = 1) + p(x′|y = −1)),
where x′ = [cos(φ), − sin(φ); sin(φ), cos(φ)]x is sim-
ply a rotated version of the feature vector, x.

We generate datasets with two values for the parame-
ter φ, which controls the correlation between the sen-
sitive attribute and the class labels (and hence, the
resulting disparate impact). Here, the closer φ is to
zero, the higher the correlation. Finally, we trained
both types of constrained classifiers on each dataset.

Fig. 1a shows the decision boundaries provided by the
classifiers that maximize accuracy under fairness con-
straints for two different correlation values and two
(successively decreasing) covariance thresholds, c. We
compare these boundaries against the unconstrained
decision boundary (solid line). As expected, given the
data generation process, fairness constraints map into
a rotation of the decision boundary (dashed lines),
which is greater as we decrease threshold value c or
increase the correlation in the original data (from
φ = π/4 to φ = π/8). This movement of the deci-
sion boundaries shows that our fairness constraints are
successfully undoing (albeit in a highly controlled set-
ting) the rotations we used to induce disparate impact
in the dataset. Moreover, a smaller covariance thresh-
old (a larger rotation) leads to a more fair solution,
although, it comes at a larger cost in accuracy.

Fig. 1b shows the decision boundaries provided by the
classifiers that maximize fairness under fine-grained
accuracy constraints. Here, the fine-grained accuracy
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Acc=0.87; p%-rule=45%

Acc=0.82; p%-rule=70%

Acc=0.74; p%-rule=98%

Acc=0.87; p%-rule=24%

Acc=0.71; p%-rule=62%

Acc=0.60; p%-rule=99%

φ = π/4 φ = π/8

(a) Maximizing accuracy under fairness constraints

Acc=0.87; p%-rule=45%

Acc=0.78; p%-rule=76%

Acc=0.64; p%-rule=93%

Acc=0.87; p%-rule=24%

Acc=0.78; p%-rule=54%

Acc=0.53; p%-rule=99%

φ = π/4 φ = π/8

(b) Maximizing fairness under accuracy constraints

Figure 1: The solid light blue lines show the decision boundaries for logistic regressors without fairness constraints.
The dashed lines show the decision boundaries for fair logistic regressors trained (a) to maximize accuracy under
fairness constraints and (b) to maximize fairness under fine-grained accuracy constraints, which prevents users
with z = 1 (circles) labeled as positive by the unconstrained classifier from being moved to the negative class.
Each column corresponds to a dataset, with different correlation value between sensitive attribute values (crosses
vs circles) and class labels (red vs green).

constraints ensure that the users with z = 1 classi-
fied as positive by the unconstrained classifier (circles
above the solid line) are not labeled as negative by
the fair classifier. The decision boundaries provided
by this formulation, in contrast to the previous one,
are rotated and shifted versions of the unconstrained
boundary. Such shifts enable the constrained classi-
fiers to avoid negatively classifying users specified in
the constraints.

We also illustrate how the decision boundary of a non-
linear classifier, a SVM with RBF kernel, changes un-
der fairness constraints in Appendix B.1.

4.2 Experiments on Real Data

Experimental Setup. We experiment with two real-
world datasets: The Adult income dataset [Adult
data, 1996] and the Bank marketing dataset [Bank
data, 2014]. The Adult dataset contains a total of
45,222 subjects, each with 14 features (e.g., age, ed-
ucational level) and a binary label, which indicates
whether a subject’s incomes is above (positive class)
or below (negative class) 50K USD. For this dataset,
we consider gender and race, respectively, as binary
and non-binary (polyvalent) sensitive attributes. The
Bank dataset contains a total of 41,188 subjects, each
with 20 attributes (e.g., marital status) and a bi-
nary label, which indicates whether the client has sub-
scribed (positive class) or not (negative class) to a term
deposit. In this case, we consider age as (binary) sensi-
tive attribute, which is discretized to indicate whether
the client’s age is between 25 and 60 years. For de-
tailed statistics about the distribution of different sen-
sitive attributes in positive class in these datasets, we
refer the reader to Appendix B.2.

For the sake of conciseness, while presenting the results
for binary sensitive attributes, we refer to females and
males, respectively, as protected and non-protected
groups in Adult data. Similarly, in Bank data, we

refer to users between age 25 and 60 as protected and
rest of the users as non-protected group. In our exper-
iments, to obtain more reliable estimates of accuracy
and fairness, we repeatedly split each dataset into a
train (70%) and test (30%) set 5 times and report the
average statistics for accuracy and fairness.

Maximizing accuracy under fairness con-
straints. First, we experiment with a single binary
sensitive attribute, gender and age, for respectively,
the Adult and Bank data. For each dataset, we train
several logistic regression and SVM classifiers (denoted
by ‘C-LR’ and ‘C-SVM’, respectively), each subject
to fairness constraints with different values of covari-
ance threshold c (Section 3.2), and then empirically
investigate the trade-off between accuracy and fair-
ness. Fig. 2a shows the (empirical) decision bound-
ary covariance against the relative loss incurred by
the classifier. The ‘relative loss’ is normalized between
the loss incurred by an unconstrained classifier and by
the classifier with a covariance threshold of 0. Here,
each pair of (covariance, loss) values is guaranteed to
be Pareto optimal, since our problem formulation is
convex. Additionally, Fig. 2b investigates the corre-
spondence between decision boundary covariance and
p%-rule computed on the training set, showing that, as
desired: i) the lower the covariance, the higher the p%-
rule the classifiers satisfy and (ii) a 100%-rule maps to
zero covariance.

Then, we compare our approach to a well-known
competing method from each of the two categories
discussed in Section 1: preferential sampling ap-
proach [Kamiran and Calders, 2010], applied to logis-
tic regression (‘PS-LR’) and SVM (‘PS-SVM’), as an
example of data pre-processing, and the regularized lo-
gistic regression (‘R-LR’) [Kamishima et al., 2011], as
an example of modifying a classifier to limit unfairness.
Fig. 2c summarizes the results: the top panel shows av-
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Figure 2: [Maximizing accuracy under fairness constraints: single, binary sensitive attribute] Panels in (a) show
the trade-off between the empirical covariance in Eq. 2 and the relative loss (with respect to the unconstrained
classifier), for the Adult (top) and Bank (bottom) datasets. Here each pair of (covariance, loss) values is
guaranteed to be Pareto optimal by construction. Panels in (b) show the correspondence between the empirical
covariance and the p%-rule for classifiers trained under fairness constraints. Panels in (c) show the accuracy
against p%-rule value (top) and the percentage of protected (dashed) and non-protected (solid) users in the
positive class against the p%-rule value (bottom).
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Figure 3: [Maximizing accuracy under fairness con-
straints: non-binary and several sensitive attributes]
The figure shows accuracy (top) and percentage of
users in positive class (bottom) against a multiplica-
tive factor a ∈ [0, 1] such that c = ac∗, where c∗ de-
notes the unconstrained classifier covariance.

erage accuracy and the bottom panel the percentage
of protected (dashed lines) and non-protected (solid
lines) users in positive class against the average p%-
rule, as computed on test sets. We observe that: i) the
performance of our classifiers (C-LR, C-SVM) and reg-
ularized logistic regression (R-LR) is comparable, ours
are slightly better for Adult data (left column) while
slightly worse for Bank data (right column). However,

R-LR uses sensitive attribute values from the test set
to make predictions, failing the disparate treatment
test and potentially allowing for reverse discrimina-
tion [Ricci vs. DeStefano, 2009]; ii) the preferential
sampling presents the worst performance and always
achieves p%-rules under 80%; and, (iii) in the Adult
data, all classifiers move non-protected users (males)
to the negative class and protected users (females) to
the positive class to achieve fairness, in contrast, in
the Bank data, they only move non-protected (young
and old) users originally labeled as positive to the neg-
ative class since it provides a smaller accuracy loss.
However, the latter can be problematic: from a busi-
ness perspective, a bank may be interested in finding
potential subscribers rather than losing existing cus-
tomers. This last observation motivates our second
formulation (Section 3.3), which we experiment with
later in this section.

Finally, we experiment with non-binary (race) and
several (gender and race) sensitive attributes in Adult
dataset. We do not compare with competing methods
since they cannot handle non-binary or several sen-
sitive attributes. Fig. 3 summarizes the results by
showing the accuracy and the percentage of subjects
sharing each sensitive attribute value classified as posi-
tive against a multiplicative covariance factor a ∈ [0, 1]
such that c = ac∗, where c∗ is the unconstrained clas-
sifier covariance3 (note that p%-rule is only defined for

3For several sensitive features, we compute the initial
covariance c∗

k for each of the sensitive feature k, and then
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Figure 4: [Maximizing fairness under accuracy constraints] Panels in (a) show accuracy (solid) and p%-rule value
(dashed) against γ. Panels in (b) show the percentage of protected (P, dashed) and non-protected (N-P, solid)
users in the positive class against γ.

a binary sensitive feature). As expected, as the value
of c decreases, the percentage of subjects in the posi-
tive class from sensitive attribute value groups become
nearly equal4 while the loss in accuracy is modest.

Maximizing fairness under accuracy con-
straints. Next, we demonstrate that our second for-
mulation (Section 3.3) can maximize fairness while
precisely controlling loss in accuracy. To this end, we
first train several logistic regression classifiers (denoted
by ‘γ-LR’), which minimize the decision boundary co-
variance subject to accuracy constraints over the en-
tire dataset by solving problem (7) with increasing val-
ues of γ. Then, we train logistic regression classifiers
(denoted by ‘Fine-γ-LR’) that minimize the decision
boundary covariance subject to fine-grained accuracy
constraints by solving problem (8). Here, we prevent
the non-protected users that were classified as positive
by the unconstrained logistic regression classifier from
being classified as negative by constraining that their
decision from distance boundary stays positive while
learning the fair boundary. We then increase γi = γ
for the remaining users. In both cases, we increased
the value of γ until we reach a 100%-rule during train-
ing. Fig. 4 summarizes the results for both datasets,
by showing (a) the average accuracy (solid curves) and
p%-rule (dashed curves) against γ, and (b) the per-
centage of non-protected (N-P, solid curves) and pro-
tected (P, dashed curves) users in the positive class
against γ. We observe that, as we increase γ, the clas-
sifiers that constrain the overall training loss (γ-LR)
remove non-protected users from the positive class and
add protected users to the positive class, in contrast,
the classifiers that prevent the non-protected users
that were classified as positive in the unconstrained
classifier from being classified as negative (Fine-γ-LR)
add both protected and non-protected users to the pos-

compute the covariance threshold separately for each sen-
sitive feature as ac∗

k.
4The scarce representation of the race value ‘Other’

(only 0.8% of the data) hinders an accurate estimation of
the decision boundary covariance and, as a result, the clas-
sifier does not reach perfect fairness with respect to this
sensitive attribute value.

itive class. As a consequence, the latter achieves lower
accuracy for the same p%-rule.

5 DISCUSSION & FUTURE WORK

In this paper, we introduced a novel measure of deci-
sion boundary fairness, which enables us to ensure fair-
ness with respect to one or more sensitive attributes,
in terms of both disparate treatment and disparate im-
pact. We leverage this measure to derive two comple-
mentary formulations: one that maximizes accuracy
subject to fairness constraints, and helps ensure com-
pliance with a non-discrimination policy or law (e.g., a
given p%-rule); and another one that maximizes fair-
ness subject to accuracy constraints, and ensures ful-
filling certain business needs (e.g., disparate impact’s
business necessity clause).

Our framework opens many avenues for future work.
For example, one could include fairness constraints
in other supervised (e.g., regression, recommendation)
as well as unsupervised (e.g., set selection, ranking)
learning tasks. Further, while we note that a decreas-
ing covariance threshold corresponds to an increas-
ing (more fair) p%-rule, the relation between the two
is only empirically observed. A precise mapping be-
tween covariance and p%-rule is quite challenging to
derive analytically since it depends on the specific clas-
sifier and the dataset being used. Such a theoretical
analysis would be an interesting future direction. Fi-
nally, in this paper we consider disparate impact as
our notion of fairness with the assumption that the
historical training data may contain biases against cer-
tain group(s). Since the actual proportions in positive
class from different groups (e.g., males, females) in the
ground-truth dataset are not available (we only have
access to a biased dataset), ensuring equal proportions
from each group in the positive class (removing dis-
parate impact) serves as an attractive notion of fair-
ness. However, in cases where the historical ground
truth decisions are available, disparate impact can be
explained by the means of the ground truth, and al-
ternative notions of fairness, e.g., disparate mistreat-
ment [Zafar et al., 2017], might be more suitable.
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A Particularizing the Fairness Constraints for SVM

One can specialize our fair classifier formulation proposed in (4) as:

Linear SVM. A linear SVM distinguishes among classes using a linear hyperplane θTx = 0. In this case, the
parameter vector θ of the fair linear SVM can be found by solving the following quadratic program:

minimize ‖θ‖2 + C
∑n

i=1 ξi
subject to yiθ

Txi ≥ 1− ξi,∀i ∈ {1, . . . , n}
ξi ≥ 0,∀i ∈ {1, . . . , n},

1
N

∑N
i=1 (zi − z̄)θTxi ≤ c,

1
N

∑N
i=1 (zi − z̄)θTxi ≥ −c,

(9)

where θ and ξ are the variables, ‖θ‖2 corresponds to the margin between the support vectors assigned to different
classes, and C

∑n
i=1 ξi penalizes the number of data points falling inside the margin.

Nonlinear SVM. In a nonlinear SVM, the decision boundary takes the form θT Φ(x) = 0, where Φ(·) is a
nonlinear transformation that maps every feature vector x into a higher dimensional transformed feature space.
Similarly as in the case of a linear SVM, one may think of finding the parameter vector θ by solving a constrained
quadratic program similar to the one defined by Eq. (9). However, the dimensionality of the transformed feature
space can be large, or even infinite, making the corresponding optimization problem difficult to solve. Fortunately,
we can leverage the kernel trick [Schölkopf and Smola, 2002] both in the original optimization problem and the
fairness inequalities, and resort instead to the dual form of the problem, which can be solved efficiently. In
particular, the dual form is given by:

minimize
∑N

i=1 αi +
∑N

i=1 αiyi(gα(xi) + hα(xi))
subject to αi ≥ 0,∀i ∈ {1, . . . , N},∑N

i=1 αiyi = 0,

1
N

∑N
i=1 (zi − z̄) gα(xi) ≤ c,

1
N

∑N
i=1 (zi − z̄) gα(xi) ≥ −c,

(10)

where α are the dual variables, gα(xi) =
∑N

j=1 αjyjk(xi,xj) can still be interpreted as a signed distance to the

decision boundary in the transformed feature space, and hα(xi) =
∑N

j=1 αjyj
1
C δij , where δij = 1 if i = j and

δij = 0, otherwise. Here, k(xi,xj) = 〈φ(xi), φ(xj)〉 denotes the inner product between a pair of transformed
feature vectors and is often called the kernel function.

B Additional Experiments

B.1 Experiments on Non-linear Synthetic Data

Here, we illustrate how the decision boundary of an non-linear classifier, a SVM with radial basis function (RBF)
kernel, changes under fairness constraints. To this end, we generate 4,000 user binary class labels uniformly at
random and assign a 2-dimensional user feature vector per label by drawing samples from p(x|y = 1, β) =
βN([2; 2], [5 1; 1 5]) + (1− β)N([−2;−2], [10 1; 1 3]) if y = 1, and p(x|y = −1, β) = βN([4;−4], [4 4; 2 5]) + (1−
β)N([−4; 6], [6 2; 2 3]) otherwise, where β ∈ {0, 1} is sampled from Bernoulli(0.5). Then, we generate each
user’s sensitive attribute z by applying the same rotation as detailed in Section 4.1.

Figure 5 shows the decision boundaries provided by the SVM that maximizes accuracy under fairness constraints
with c = 0 for two different correlation values, set by φ = π/4 and φ = π/8, in comparison with the unconstrained
SVM. We observe that, in this case, the decision boundaries provided by the constrained SVMs are very different
to the decision boundary provided by the unconstrained SVM, not simple shifts or rotations of the latter, and
successfully reverse engineer the mechanism we used to generate the class labels and sensitive attributes.

B.2 Experiments on Real Data

Additional Data Statistics. In this section, we show the distribution of sensitive features and class labels in
our real-world datasets.
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Acc=0.94; p% rule=42%(π/4),12%(π/8)

(a) Unconstrained

Acc=0.83; p% rule=95%

(b) φ = π/4

Acc=0.60; p% rule=97%

(c) φ = π/8

Figure 5: Decision boundaries for SVM classifier with RBF Kernel trained without fairness constraints (left)
and with fairness constraints (c = 0) on two synthetic datasets with different correlation value between sensitive
attribute values (crosses vs circles) and class labels (red vs green).

Table 2: Datasets details (binary sensitive attributes: gender and age).

Sensitive Attribute y ≤ 50K > 50K Total
Males 20,988 9,539 30,527

Females 13,026 1,669 14, 695
Total 34,014 11,208 45,222

(a) Adult dataset

Sensitive Attribute No Yes Total
25 ≤ age ≤ 60 35,240 3,970 39,210

age < 25 or age > 60 1,308 670 1,978
Total 36,548 4,640 41,188

(b) Bank dataset
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Figure 7: [Maximizing fairness under accuracy constraints] Panels in (a) show the accuracy (solid) and CV score
value (dashed) against γ. Panels in (b) show the percentage of protected (P, dashed) and non-protected (N-P,
solid) users in the positive class against γ.

CV score as fairness measure. While evaluating the performance of our method in Section 4, we used p%-rule
as the true measure of fairness, since it is a generalization of the 80%-rule advocated by US Equal Employment
Opportunity Commission [Biddle, 2005] to quantify disparate impact. We would like to remark that this measure
is closely related to another measure of fairness used by some of the previous works [Kamiran and Calders, 2009,
Kamishima et al., 2011, Zemel et al., 2013] in this area, referred to as Calder-Verwer (CV) score by Kamishima
et al. [2011]. In particular, the CV score is defined as the (absolute value of the) difference between the percentage
of users sharing a particular sensitive attribute value that lie on one side of the decision boundary and the
percentage of users not sharing that value lying on the same side, i.e.,

∣∣P (dθ(x) ≥ 0|z = 0)−P (dθ(x) ≥ 0|z = 1)
∣∣.

In this section, we show that using CV score (instead of p%-rule) as a measure of fairness would yield similar
results.

First, we show that constraining the covariance between users’ sensitive attributes (Fig. 6a and Figure 6b), and
the signed distance from the decision boundary, corresponds to an increasing relative loss and decreasing CV
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Table 3: Adult dataset (Non-binary sensitive attribute: race)
Sensitive Attribute y ≤ 50K > 50K Total

American-Indian/Eskimo 382 53 435
Asian/Pacific-Islander 934 369 1,303

White 28,696 10,207 38, 903
Black 3,694 534 4, 228
Other 308 45 353
Total 34,014 11,208 45,222
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Figure 6: [Maximizing accuracy under fairness constraints: single, binary sensitive attribute] Panels in (a) show
the trade-off between the empirical covariance and the relative loss in accuracy (with respect to the unconstrained
classifier), where each pair of (covariance, loss) values is guaranteed to be Pareto optimal by construction. Panels
in (b) show the correspondence between the empirical covariance in Eq. 2 and the CV score for classifiers trained
under fairness constraints for the Adult (top) and Bank (bottom) datasets. Panels in (c) show the accuracy
against CV score value (top) and the percentage of protected (dashed) and non-protected (solid) users in the
positive class against the CV score value (bottom).

score (a more fair decision boundary).

Next, we show the performance of different methods based on the CV score (Fig, 6c and 7). The results in Fig.6c
and 7 correspond to the ones shown in Fig. 2c and 4, where we took p%-rule as the measure of fairness. It can
be seen that both measures of fairness (p%-rule and CV score) provide very similar trades-off in terms of fairness
and accuracy.

Notice that according to the definitions provided in Section 2.1, a decreasing CV score corresponds to an in-
creasing p%-rule (and hence, a more fair decision boundary).
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