Complexity Theory - Tutorial

Ivan Gavran

January 31st, 2017

Part 1

1. Decide whether the following statements are true or false and justify your decision.

(a) For every class C and $A \in C$; if A is C-complete under Karp reductions, then $C \subset P^A$

Solution True. Any $B \in C$ can be transformed into instance of A. But this - by the definition - means that B can be decided by polynomial computation (do the transformation into an instance of A) and then asking oracle A.

(b) If L is NP-complete and L' is coNP complete, then $L \cap L'$ is $NP \cap coNP$ complete.

Solution False. SAT is NP-complete. NOSAT is coNP-complete. Their intersection is empty (so that language would trivially always return false, but we know that there are non-trivial languages in $NP \cap coNP$, primality, for example.).

(c) If PH=PSPACE, then PH collapses to some level Σ_k.

Solution True. There is a complete problem for PSPACE (TQBF, for example). Since PH = PSPACE, this problem is in PH and therefore it is in Σ_k, for some k. But now all the problems in PH can be in polynomial time reduced to that one. Therefore, PH collapses to Σ_k.

(d) There is an undecidable language in $P/poly$

Solution True. All unary languages are in $P/poly$, unary variant of halting problem is in $P/poly$.

(e) If P=NP, then NP=coNP.

Solution True. Since NP = P and $P \subset coNP$ it is clear that $NP \subset coNP$. Take $L \in coNP$. This means that $\overline{L} \in NP = P$. Then there exists a poly-time Turing machine M that decides \overline{L}. Create $M' = 1 - M$, that machine decides L in polynomial time. Therefore, $coNP \subset P = NP$.

(f) If #L is #P-complete, then L is NP-complete (you may assume $P \neq NP$).

Solution False. #2-SAT is #P-complete, while 2-SAT is in P.
(g) Show that every circuit with only \land and \lor gates can be replaced by a circuit containing only majority gates.

2. DOUBLE-SAT = \{\phi: \phi is a Boolean formula with 2 satisfying assignments\}. Show that DOUBLE-SAT is NP-complete.

Solution: DOUBLE-SAT is clearly in NP (the two mentioned assignments could be given as a witness. Now we show how to reduce SAT to DOUBLE-SAT. Let ϕ be a 3-CNF formula. We define $\phi'(y, x) = \phi(y) \land (x \lor \bar{x})$.

If $\phi \not\in 3SAT$ then ϕ' is obviously not in SAT. On the other hand, if $\phi \in 3SAT$, it means there is a satisfying assignment for ϕ. But from that one we can derive two satisfying assignments for ϕ'.

NOTE: This is not the final version of the problem list, the new problems might be added throughout this week.