Complexity Theory - Tutorial

Ivan Gavran

November 29th 2016

1. STRONGLY-CONNECTED := \{G = (V, E) : G is strongly connected directed graph\}. Prove that STRONGLY-CONNECTED is NL-complete.

2. Prove $NP \neq \text{SPACE}(n)$

3. Assume $P = NP$. Then there is a polynomial-time algorithm for solving SAT. Find in polynomial time an explicit algorithm that outputs a satisfying assignment to Boolean formulas whenever such an assignment exists.

4. Let A be an algorithm that’s supposed to solve SAT in polynomial time (that is, find a satisfying assignment whenever one exists), but that actually fails on some SAT instance of size n. Then if someone gives you the source code of A, you can, in time polynomial in n, find a specific SAT instance that actually witnesses A’s failure.

5. We say that a function is write-once computable if it can be computed by an $O(\log n)$-space Turing machine M whose output-tape is ”write once”, meaning that M can either keep its head in the same position on the tape or write to it a symbol and move to the right. The used space on the output tape is not counted against M’s space bound.
 On the other hand, the implicitly logspace computable function is defined as a function that is polynomially bounded and the languages $L_f = \{(x, i) : f(x)_i = 1 \}$ and $L'_f = \{(x, i) : i < |f(x)| \}$ are in L.
 Prove that f is write-once computable if and only if f is implicitly logspace computable.

6. $M = \{0^k1^k : k \geq 0\}$. Prove that $M \in L$.

NOTE: Sources of the problems and more problems of the same kind:
- http://cse.iitkgp.ac.in/~abhij/course/theory(CC/Spring04/chap3.pdf