Additional complexity problems

Ivan Gavran

February 20, 2017

1. Here is a diagonalization argument that shows $P \neq NP$. Enumerate all poly-time deterministic Turing machines M_1, M_2, \ldots. Consider the language $L_{\text{diag}} = \{x : M_x(x) = 0\}$. We claim two things:

 - L_{diag} is not accepted by any poly-time machine. Indeed, assume there was a machine M accepting it. Let m be the encoding of M. If $m \in L_{\text{diag}}$, then $M(m) = 0$ which means $m \notin L_{\text{diag}}$. Otherwise, if $m \notin L_{\text{diag}}$, then $M(m) = 1$ and since M is a decider for L_{diag} it means $m \in L_{\text{diag}}$.

 - $L_{\text{diag}} \in NP$: on input x a universal Turing machine can simulate execution of M_x with polynomial overhead.

2. Show: if $NP \subset BPP$ then $NP = RP$ (maybe a bit too difficult for an exam question)

3. Show that DAG (Directed Acyclic Graph) reachability is NL-complete.

4. Show that if $\text{NEXP} \neq \text{EXP}$ then $P \neq NP$

5. Class BPL is defined the following way: $L \in \text{BPL}$ if there is a probabilistic logspace Turing Machine M such that

 - $x \in L \Rightarrow \Pr[M(x) = 1] \geq \frac{2}{3}$
 - $x \notin L \Rightarrow \Pr[M(x) = 1] \leq \frac{1}{3}$

 Show that $\text{BPP} \subset P$

NOTE: This is not the final version of the problem list, the new problems might be added throughout this week.