Simuliris

A Separation Logic Framework for Verifying Concurrent Program Optimizations

Lennard Gäher, Michael Sammler, Simon Spies, Ralf Jung, Hoang-Hai Dang, Robbert Krebbers, Jeehoon Kang, Derek Dreyer

:89

Radboud Universiteit

SIC Saarland Informatics Campus


```
int mult(int *x, int *y) {
                                  int opt(int *x, int *y) {
                                    int n = *x;
                                    int m = *y;
                                    int i = 0; int sum = m;
  int i = 0; int sum = *y;
 while (i != *x - 1) {
                                   while (i != n - 1) {
   i += 1; sum += *y;
                                       i += 1; sum += m;
 }
                                    }
 return sum;
                                    return sum;
}
                                  }
       implements multiplication of positive integers
```



```
int mult(int *x, int *y) {
                                  int opt(int *x, int *y) {
                                    int n = *x:
                                    int m = *y;
                                    int i = 0; int sum = m;
 int i = 0; int sum = *y;
 while (i != *x - 1) {
                                    while (i != n - 1) {
   i += 1; sum += *y;
                                       i += 1; sum += m;
 }
                                    }
 return sum:
                                    return sum;
}
                                  }
```

implements multiplication of positive integers

How can we prove correctness of these program optimizations?

```
unoptimized:
    int i = 0; int sum = *y;
    while (i != *x - 1) {
        i += 1; sum += *y;
    }
    return sum;
```

optimized:

```
int n = *x;
int m = *y;
int i = 0; int sum = m;
while (i != n - 1) {
    i += 1; sum += m;
}
return sum;
```

```
unoptimized:
   int i = 0; int sum = *y;
   while (i != *x - 1) {
     i += 1; sum += *y;
   }
   return sum;
                                             *x = 2;
*y = 42;
optimized:
   int n = *x;
   int m = *y;
   int i = 0; int sum = m;
   while (i != n - 1) {
       i += 1; sum += m;
    }
   return sum;
```

```
unoptimized:
   int i = 0; int sum = *y;
   while (i != *x - 1) {
     i += 1; sum += *y;
   }
   return sum;
                                              *x = 2;
*y = 42;
optimized:
   int n = *x;
   int m = *y;
   int i = 0; int sum = m;
   while (i != n - 1) {
                                      can produce results not possible
       i += 1; sum += m;
                                        for the unoptimized program!
    3
   return sum; <
```

```
current state: *x *y
1 99
```

optimized program:

```
→int n = *x;

int n = *y;

int i = 0; int sum = m;

while (i != n - 1) {

    i += 1; sum += m;

}

return sum;
→*x = 2;

*y = 42;
```

```
current state: *x *y n

1 99 1

optimized program:

int n = *x;

\rightarrow int m = *y; \rightarrow *x = 2;

*y = 42;
```

```
>int n = *x,

→int m = *y;

int i = 0; int sum = m;

while (i != n - 1) {

    i += 1; sum += m;

}

return sum;
```

*x = 2; $\rightarrow *y = 42:$

current state: *x *y n 2 99 1 optimized program:

```
int n = *x;

→int m = *y;

int i = 0; int sum = m;

while (i != n - 1) {

    i += 1; sum += m;

}

return sum;
```

current state: *x *y n 2 42 1

optimized program:

```
int n = *x;

→int m = *y;

int i = 0; int sum = m;

while (i != n - 1) {

    i += 1; sum += m;

}

return sum;
```

current state: *x *y n m 2 42 1 42 optimized program:

```
int n = *x;
int m = *y;
→int i = 0; int sum = m;
while (i != n - 1) {
    i += 1; sum += m;
}
return sum;
*x = 2;
*y = 42;
→
```

```
current state:
                 *X
                       *y
                            n m
                                            sum
                        42 1 42 42
                  2
optimized program:
                           *x = 2;
*y = 42:
  int n = *x;
 int m = *y;
  int i = 0; int sum = m;
 while (i != n - 1) {
   i += 1; sum += m;
  }
\rightarrowreturn sum;
```

The optimized program can produce the result 42 with initial *x = 1 and *y = 99 (by using the old value 1 of x and the new value 42 of y)

1

current state:

*х *y 99

unoptimized program:

int i = 0; *x = 2;*y = 42;int sum = *y; while (i != *x - 1) { i += 1; sum += *y; } return sum;

current state:

*x *y 1 99

unoptimized program:

int i = 0; int sum = *y; while (i != *x - 1) { i += 1; sum += *y; } return sum;

*x = 2;*y = 42;

current state:

*x *y 2 42

unoptimized program:

int i = 0; int sum = *y; while (i != *x - 1) { i += 1; sum += *y; }
*x = 2; *y = 42; →

return sum;

4

current state:

*x *y 2 42

unoptimized program:

int i = 0; int sum = *y; while (i != *x - 1) { i += 1; sum += *y; }
*x = 2; *y = 42; →

return sum;

current state: *x *y

unoptimized program:

The unoptimized program can **not** produce the result 42 with initial *x = 1 and *y = 99 (if the new value 42 of y is read, also the new value 2 of x is read)

The unoptimized program can **not** produce the result 42 with initial *x = 1 and *y = 99 (if the new value 42 of y is read, also the new value 2 of x is read)

```
unoptimized:
```

```
int i = 0; int sum = *y;
while (i != *x - 1) {
    i += 1; sum += *y;
}
return sum;
optimized:
    int n = *x;
int m = *y;
```

```
return sum;
```

}

int i = 0; int sum = m; while (i != n - 1) { i += 1; sum += m;

Data races are **undefined behavior (UB)** in C/C++/unsafe Rust.

```
unoptimized:
```

```
int i = 0; int sum = *y;
while (i != *x - 1) {
    i += 1; sum += *y;
}
return sum;
optimized:
    int n = *x;
int n = *x;
int m = *y;
int i = 0; int sum = m;
while (i != n - 1) {
    i += 1; sum += m;
}
```

return sum;

Data races are undefined behavior (UB) in C/C++/unsafe Rust. The compiler may assume their absence.

```
int i = 0; int sum = *y;
while (i ! = *x - 1) {
   i += 1; sum += *y;
  The optimization is correct. But how can we prove that?
Int n = \pi X:
int m = *y;
```

Data races are **undefined behavior (UB)** in C/C++/unsafe Rust. The compiler may assume their absence.

	data race UB	concurrent	loops
[Ševčík, 2009], [Morisset et al., 2013]	\checkmark	\checkmark	~
[Vafeiadis et al., 2015]	\checkmark	\checkmark	\sim
CAS/Concurrent CompCert	~	\sim	\checkmark
CompCertTSO [Ševčík et al., 2013]	×	\checkmark	\checkmark
CCAL (CompCertX) [Gu et al., 2018]	×	\sim	\checkmark
[Liang and Feng, 2016]	×	\checkmark	\checkmark
ReLoC [Frumin et al., 2018]	×	\checkmark	\checkmark
[Tassarotti et al., 2017]	×	\checkmark	\checkmark
Transfinite Iris [Spies et al., 2021]	×	×	\checkmark
Stacked Borrows [Jung et al., 2020]	×	×	\sim

	data race UB	concurrent	loops
[Ševčík, 2009], [Morisset et al., 2013]	\checkmark	\checkmark	~
[Vafeiadis et al., 2015]	\checkmark	\checkmark	~
CAS/Concurrent CompCert	~	~	\checkmark
CompCertTSO [Ševčík et al., 2013]	×	\checkmark	\checkmark
CCAL (CompCertX) [Gu et al., 2018]	×		\checkmark
[Liang and Feng, 2016]	×	\checkmark	\checkmark
ReLoC [Frumin et al., 2018]	×	\checkmark	\checkmark
[Tassarotti et al., 2017]	×	\checkmark	\checkmark
Transfinite Iris [Spies et al., 2021]	×	×	\checkmark
Stacked Borrows [Jung et al., 2020]	×	×	

	data race UB	concurrent	loops	
[Ševčík, 2009], [Morisset et al., 2013]	\checkmark	\checkmark	~	
[Vafeiadis et al., 2015]	\checkmark	\checkmark	\sim	
CAS/Concurrent CompCert			\checkmark	
CompCertTSO [Ševčík et al., 2013]	×	\checkmark	\checkmark	
 can only handle finite traces cannot handle potentially unbounded loops 				
[Tassarotti et al., 2017]	^	\checkmark	\vee	-
Transfinite Iris [Spies et al., 2021]	×	×	\checkmark	
Stacked Borrows [Jung et al., 2020]	×	×		

	data race UB	concurrent	loops	
[Ševčík, 2009], [Morisset et al., 2013]	\checkmark	\checkmark		
[Vafeiadis et al., 2015]	\checkmark	\checkmark		
CAS/Concurrent CompCert	~	~	\checkmark	
CompCertTSO [Ševčík et al., 2013]	×	\checkmark	\checkmark	
 no optimizations involving synchronymous (e.g., atomic reads) 	ynchronizing ope	erations		
[Tassarotti et al., 2017]	X	\checkmark	\checkmark	
Transfinite Iris [Spies et al., 2021]	×	×	\checkmark	
Stacked Borrows [Jung et al., 2020]	X	X		

	data race UB	concurrent	loops
Our approach	\checkmark	\checkmark	\checkmark
[Ševčík, 2009], [Morisset et al., 2013]	\checkmark	\checkmark	~
[Vafeiadis et al., 2015]	\checkmark	\checkmark	\sim
CAS/Concurrent CompCert	~	~	\checkmark
CompCertTSO [Ševčík et al., 2013]	×	\checkmark	\checkmark
CCAL (CompCertX) [Gu et al., 2018]	×	~	\checkmark
[Liang and Feng, 2016]	×	\checkmark	\checkmark
ReLoC [Frumin et al., 2018]	×	\checkmark	\checkmark
[Tassarotti et al., 2017]	×	\checkmark	\checkmark
Transfinite Iris [Spies et al., 2021]	×	×	\checkmark
Stacked Borrows [Jung et al., 2020]	×	×	\sim

unoptimized:

optimized:

{True}

 \succeq

int i = 0; int sum = *y; while (i != *x - 1) { i += 1; sum += *y; } return sum; int n = *x; int m = *y; int i = 0; int sum = m; while (i != n - 1) { i += 1; sum += m; } return sum;

{True}

 \succeq

```
unoptimized:
reach unsynchronized
     access to y
    int i = 0; int sum = *y;
    while (i != *x - 1) {
     i += 1; sum += *y;
    }
    return sum;
```

int n = *x; int m = *y; int i = 0; int sum = m; while (i != n - 1) { i += 1; sum += m; } return sum;

optimized:

```
unoptimized:
                                                                optimized:
                                                                   obtain ownership
reach unsynchronized
                             \{\mathsf{True}\} \\ \{y \mapsto {}^{\mathrm{src}} z_y * y \mapsto {}^{\mathrm{tgt}} z_y\} \leftarrow
                                                                   with proof rule
       access to y
                                                       int n = *x:
                                                       int m = *y;
     int i = 0; int sum = *y;
                                                       int i = 0; int sum = m;
                                            \succeq
     while (i ! = *x - 1) {
                                                       while (i != n - 1) {
       i += 1; sum += *y;
                                                           i += 1; sum += m;
     }
                                                       }
     return sum;
                                                       return sum;
```

```
unoptimized:
                                                             optimized:
                                                                obtain ownership
reach unsynchronized
                                      {True}
                                                                with proof rule
      access to x
                             \{y \mapsto^{\text{src}} Z_v * y \mapsto^{\text{tgt}} Z_v\} \in
                                                    int n = *x;
                                                    int m = *y;
    int i = 0; int sum = *y;
while (i != *x - 1) {
                                                    int i = 0; int sum = m;
                                          \geq
                                                    while (i != n - 1) {
      i += 1; sum += *y;
                                                        i += 1; sum += m;
    }
                                                     }
    return sum;
                                                    return sum;
```

```
unoptimized:
                                                                          optimized:
                                                                             obtain ownership
reach unsynchronized
                                              {True}
                                                                             with proof rule
        access to x
                  \left\{ y \mapsto {}^{\mathrm{src}} Z_{v} * y \mapsto {}^{\mathrm{tgt}} Z_{v} * x \mapsto {}^{\mathrm{src}} Z_{x} * x \mapsto {}^{\mathrm{tgt}} Z_{x} \right\} \checkmark
                                                               int n = *x:
                                                               int m = *y;
     int i = 0; int sum = *y;
while (i != *x - 1) {
                                                               int i = 0; int sum = m;
                                                  \succeq
                                                               while (i != n - 1) {
        i += 1; sum += *y;
                                                                    i += 1; sum += m;
     }
                                                               }
     return sum;
                                                               return sum;
```

unoptimized: optimized: obtain ownership {True} with proof rule $\{y \mapsto {}^{\mathrm{src}} Z_v * y \mapsto {}^{\mathrm{tgt}} Z_v * x \mapsto {}^{\mathrm{src}} Z_x * x \mapsto {}^{\mathrm{tgt}} Z_x\}$ int n = *x: int m = *y; int i = 0; int sum = *y; int i = 0; int sum = m; \succeq while (i ! = *x - 1) { while (i != n - 1) { i += 1; sum += *y; i += 1; sum += m; } } return sum; return sum; $\{y \mapsto {}^{\mathrm{src}} Z_v * y \mapsto {}^{\mathrm{tgt}} Z_v * x \mapsto {}^{\mathrm{src}} Z_x * x \mapsto {}^{\mathrm{tgt}} Z_x\}$ retain ownership throughout the loop

Simuliris: a separation logic-based simulation framework

Simuliris: separation logic-based simulation framework

- soundness: fair termination-preserving contextual refinement
- proof rules for verifying optimizations: coinduction, ...

Simuliris: a separation logic-based simulation framework

logic for data race based optimizations

 $\label{eq:stacked} \begin{array}{l} \mbox{Stacked Borrows for Rust} \\ \mbox{[Jung et al., 2020]} + \mbox{concurrency} \end{array}$

Simuliris: separation logic-based simulation framework

- soundness: fair termination-preserving contextual refinement
- proof rules for verifying optimizations: coinduction, ...

Simuliris: a separation logic-based simulation framework

logic for data race based optimizations

 $\label{eq:stacked} \begin{array}{l} \mbox{Stacked Borrows for Rust} \\ \mbox{[Jung et al., 2020]} + \mbox{concurrency} \end{array}$

Simuliris: separation logic-based simulation framework

- soundness: fair termination-preserving contextual refinement
- proof rules for verifying optimizations: coinduction, ...

fully mechanized in the Coq proof assistant $\size{2}$

based on the Iris framework

Simuliris: a separation logic-based simulation framework

logic for data race based optimizations

Stacked Borrows for Rust [Jung et al., 2020] + concurrency

Simuliris: separation logic-based simulation framework

- soundness: fair termination-preserving contextual refinement
- proof rules for verifying optimizations: coinduction, ...

fully mechanized in the Coq proof assistant

based on the Iris framework

Simuliris: a separation logic-based simulation framework

logic for data race based optimizations Stacked Borrows for Rust [Jung et al., 2020] + concurrency

Simuliris: separation logic-based simulation framework

- soundness: fair termination-preserving contextual refinement
- proof rules for verifying optimizations: coinduction, ...

fully mechanized in the Coq proof assistant

based on the Iris framework

traditional coinductive simulation + modern separation logic

coinductive simulation

separation logic

coinductive simulation

separation logic

- \bullet coinduction
- reasoning about UB
- flexible stuttering

coinductive simulation

- coinduction
- reasoning about UB
- flexible stuttering

separation logic

• compositional proof rules

coinductive simulation

- coinduction
- \bullet reasoning about UB
- flexible stuttering

separation logic

- compositional proof rules
- ownership reasoning with custom resources Iris

$\{P\} e_s \succeq e_t \{v_s, v_t, Q\}$

coinductive simulation

- coinduction
- reasoning about UB
- flexible stuttering

separation logic

- compositional proof rules
- ownership reasoning with custom resources

Source and target reasoning with flexible stuttering

$$\{P\} e_s \succeq e_t \{v_s, v_t, Q\}$$

Source and target reasoning with flexible stuttering

Source and target reasoning with flexible stuttering

Enabled by a flexible implicit stuttering mechanism without explicit step counting!

$\{P\} e_s \succeq e_t \{v_s, v_t, Q\}$

coinductive simulation

- coinduction
- reasoning about UB
- flexible stuttering

separation logic

- compositional proof rules
- ownership reasoning with custom resources Iris

call f ()	1	\succeq	call f	()	;

T	~
	~

 $\{\text{True}\}\$ let x := new(42) in let x := new(42) in
call f (); $\succeq \text{ call f ();}$ $*_{X} \qquad 42$ $\{v_{s}, v_{t}. v_{s} = v_{t} = 42\}$

$$\begin{array}{l} \{\text{True}\} \\ \text{let } \mathsf{x} := \mathsf{new}(42) \text{ in } \\ \{\mathsf{x} \mapsto^{\mathsf{src}} 42 * \mathsf{x} \mapsto^{\mathsf{tgt}} 42\} \\ \text{call } \mathsf{f}(\mathsf{)}; & \succeq & \text{call } \mathsf{f}(\mathsf{)}; \end{array}$$

*x 42 $\{v_s, v_t, v_s = v_t = 42\}$

 $\{ \text{True} \}$ $\text{let } x := \text{new}(42) \text{ in } \qquad \text{let } x := \text{new}(42) \text{ in } \\ \{ x \mapsto^{\text{src}} 42 * x \mapsto^{\text{tgt}} 42 \}$ $\text{call } f(); \qquad \succeq \text{ call } f(); \\ \{ x \mapsto^{\text{src}} 42 * x \mapsto^{\text{tgt}} 42 \}$ $*_{X} \qquad 42 \\ \{ v_{s}, v_{t}. v_{s} = v_{t} = 42 \}$

Unknown code must respect the ownership principles of our logic!

$\{P\} e_s \succeq e_t \{v_s, v_t, Q\}$

coinductive simulation

- \bullet coinduction
- reasoning about UB
- flexible stuttering

separation logic

- compositional proof rules
- ownership reasoning with custom resources

Interaction with coinduction

{True} let x := new(42) in let x := new(42) in while call f (*x) do \succeq while call f (42) do () () () od od $\{v_s, v_t, v_s = v_t = ()\}$

Interaction with coinduction

 $\{\text{True}\}\$ let x := new(42) in let x := new(42) in $\{x \mapsto^{\text{src}} 42 * x \mapsto^{\text{tgt}} 42\}$ while call f(*x) do \succeq while call f(42) do
()
od
()
od $\{v_s, v_t, v_s = v_t = ()\}$

Reasoning about loops: coinduction

$$W_s =$$
 while c_s do e_s od $W_t =$ while c_t do e_t od

$$\{I\} W_s \succeq W_t \{v_s, v_t, Q\}$$

Reasoning about loops: coinduction

 $W_{s} = \text{while } c_{s} \text{ do } e_{s} \text{ od} \qquad W_{t} = \text{while } c_{t} \text{ do } e_{t} \text{ od}$ new proof goal $\{I\}$ $\exists I_{s} \text{ if } c_{s} \text{ then } e_{s}; W_{s} \text{ else } () \succeq \text{ if } c_{t} \text{ then } e_{t}; W_{t} \text{ else } ()$ $\underbrace{\{e'_{s}, e'_{t}. (\exists v_{s}, v_{t}. e'_{s} = v_{s} * e'_{t} = v_{t} * Q)}_{\{I\}} W_{s} \succeq W_{t} \{v_{s}, v_{t}. Q\}$ = loop invariant

Reasoning about loops: coinduction

 $W_{s} = \text{while } c_{s} \text{ do } e_{s} \text{ od} \qquad W_{t} = \text{while } c_{t} \text{ do } e_{t} \text{ od}$ new proof goal $\begin{cases} I \\ \rightarrow \text{ if } c_{s} \text{ then } e_{s}; W_{s} \text{ else } () \succeq \text{ if } c_{t} \text{ then } e_{t}; W_{t} \text{ else } () \\ \underbrace{\{e'_{s}, e'_{t}. (\exists v_{s}, v_{t}. e'_{s} = v_{s} * e'_{t} = v_{t} * Q) \lor (e'_{s} = W_{s} * e'_{t} = W_{t} * I) }_{\{I\}} \bigvee \\ \hline \begin{cases} I \\ V_{s} \succeq W_{t} \{v_{s}, v_{t}. Q\} \\ \hline V_{s} \succeq W_{t} \{v_{s}, v_{t}. Q\} \end{cases}$

Interaction with coinduction

 $\{\text{True}\}\$ let x := new(42) in let x := new(42) in $\{x \mapsto^{\text{src}} 42 * x \mapsto^{\text{tgt}} 42\}$ while call f (*x) do \succeq while call f (42) do
()
od
()
od $\{v_s, v_t, v_s = v_t = ()\}$

Pick invariant
$$I \stackrel{\scriptscriptstyle \Delta}{=} x \mapsto {}^{\scriptscriptstyle \mathrm{src}} 42 * x \mapsto {}^{\scriptscriptstyle \mathrm{tgt}} 42$$

Interaction with coinduction

$$\begin{aligned} & \{\mathsf{True}\} \\ \mathsf{let} \ \mathsf{x} := \mathsf{new}(\mathsf{42}) \ \mathsf{in} & \mathsf{let} \ \mathsf{x} := \mathsf{new}(\mathsf{42}) \ \mathsf{in} \\ & \{\mathsf{x} \mapsto^{\mathsf{src}} \mathsf{42} \ast \mathsf{x} \mapsto^{\mathsf{tgt}} \mathsf{42}\} \end{aligned}$$

Ownership reasoning is a powerful tool in combination with coinductive simulations!

 $\{v_s, v_t, v_s = v_t = ()\}$

Pick invariant
$$I \stackrel{\scriptscriptstyle \Delta}{=} x \mapsto {}^{src} 42 * x \mapsto {}^{tgt} 42$$

$\{P\} e_s \succeq e_t \{v_s, v_t, Q\}$

coinductive simulation

- coinduction
- \bullet reasoning about UB
- flexible stuttering

separation logic

- compositional proof rules
- ownership reasoning with custom resources

Simuliris: a separation logic-based simulation framework

logic for data race based optimizations

Stacked Borrows for Rust [Jung et al., 2020] + concurrency

Simuliris: separation logic-based simulation framework

- soundness: fair termination-preserving contextual refinement
- proof rules for verifying optimizations: coinduction, ...

fully mechanized in the Coq proof assistant

based on the Iris framework

in separation logic verification: assume ownership in precondition fn foo(x) { $\{x \mapsto^{src} z * x \mapsto^{tgt} z\}$ fn foo_opt(x) { $x \leftarrow 41;$ $x \leftarrow 42;$ \succeq $x \leftarrow 42;$ *x 42 }

in separation logic verification: assume ownership in precondition fn foo(x) { $\{x \mapsto^{src} z * x \mapsto^{tgt} z\}$ fn foo_opt(x) { $x \leftarrow 41;$ $x \leftarrow 42;$ \succeq $x \leftarrow 42;$ *x 42 }

in compiler optimizations: surrounding code is **not cooperative**! fn foo(x) { { {??}} fn foo_opt(x) { $x \leftarrow 41;$ $x \leftarrow 42;$ \succeq $x \leftarrow 42;$ $*_{x}$ 42 }

in separation logic verification: assume ownership in precondition fn foo(x) { $\{x \mapsto^{src} z * x \mapsto^{tgt} z\}$ fn foo_opt(x) { $x \leftarrow 41;$ $x \leftarrow 42;$ \succeq $x \leftarrow 42;$ *x 42 }

in compiler optimizations: surrounding code is **not cooperative**! fn foo(x) { $\{x_s \approx x_t\}$ fn foo_opt(x) { $x \leftarrow 41;$ $x \leftarrow 42;$ \succeq $x \leftarrow 42;$ $*_X$ 42 }

Interaction protocol with unknown code: public value relation

contract: similar values $v_s \approx v_t$ in source and target

for integers: $z_s \approx z_t \triangleq z_s = z_t$

for memory locations $\ell_s \approx \ell_t$:

- **contract**: stored values are related by \approx
- accessible by anyone as long as the contract is observed

Interaction protocol with unknown code: public value relation

contract: similar values $v_s \approx v_t$ in source and target

for integers: $z_s \approx z_t \triangleq z_s = z_t$

for memory locations $\ell_s \approx \ell_t$:

- **contract**: stored values are related by \approx
- accessible by anyone as long as the contract is observed

How can we use this to justify optimizations?

Interaction protocol with unknown code: public value relation

contract: similar values $v_s \approx v_t$ in source and target

Idea: we can break the contract as long as no other thread will notice

contract: stored values are related by pprox

accessible by anyone as long as the contract is observed

How can we use this to justify optimizations?

Ownership acquisition on unsynchronized accesses

When the source program does an unsynchronized access to $\ell_s \approx \ell_t$, we temporarily obtain ownership of ℓ_s and ℓ_t .

Ownership acquisition on unsynchronized accesses

When the source program does an unsynchronized access to $\ell_s \approx \ell_t$, we temporarily obtain ownership of ℓ_s and ℓ_t .

An **unsynchronized write** $\ell_s \leftarrow _$ is reachable: $\Rightarrow all$ concurrent accesses would be conflicting \Rightarrow obtain **exclusive** ownership $\ell_s \mapsto {}^{src} v_s, \ell_t \mapsto {}^{tet} v_t$
Acquiring ownership on writes, formally: first attempt

$$\begin{array}{c} \{\ell_s \approx \ell_t * P\} \; \mathcal{K}[\ell_s \leftarrow v_0] \succeq e_t \; \{\Phi\} \\ & \swarrow \\ \text{public locations} \\ & \checkmark \\ & \text{unsynchronized write} \\ & \text{in the source} \end{array}$$

Acquiring ownership on writes, formally: first attempt

$$\frac{\forall v_s, v_t. \{\ell_s \mapsto {}^{\text{src}} v_s * \ell_t \mapsto {}^{\text{tgt}} v_t * v_s \approx v_t * P\} K[\ell_s \leftarrow v_0] \succeq e_t \{\Phi\}}{\{\ell_s \approx \ell_t * P\} K[\ell_s \leftarrow v_0] \succeq e_t \{\Phi\}}$$
public locations $\stackrel{\frown}{\longrightarrow}$ unsynchronized write in the source

 $\{x_s \approx x_t\}$

$$x_s \leftarrow 41;$$

42

$$\begin{split} & \left\{ x_{s} \approx x_{t} \right\} \\ & \left\{ x_{s} \mapsto^{\text{\tiny src}} z \ast x_{t} \mapsto^{\text{\tiny tgt}} z \right\} \end{split}$$

$$x_s \leftarrow 41;$$

42

$$\begin{split} & \left\{ X_{S} \approx X_{t} \right\} \\ & \left\{ X_{S} \mapsto^{\text{\tiny src}} Z * X_{t} \mapsto^{\text{\tiny tgt}} Z \right\} \end{split}$$

 $x_s \leftarrow 41;$ contract temporarily broken
 $\{x_s \mapsto {}^{src} 41 * x_t \mapsto {}^{tgt} z \} \leftarrow$ $x_s \leftarrow 42;$ \succeq $x_s \leftarrow 42;$ \succeq $*_{x_s}$ 42

$$\begin{split} & \left\{ X_{S} \approx X_{t} \right\} \\ & \left\{ X_{S} \mapsto^{\text{\tiny src}} Z \ast X_{t} \mapsto^{\text{\tiny tgt}} Z \right\} \end{split}$$

 $\begin{array}{ccc} x_{s} \leftarrow 41; & & \\ & & \left\{ x_{s} \mapsto {}^{\mathrm{src}} 41 \ast x_{t} \mapsto {}^{\mathrm{tgt}} z \right\} \\ x_{s} \leftarrow 42; & & \succeq & \\ & & \left\{ x_{s} \mapsto {}^{\mathrm{src}} 42 \ast x_{t} \mapsto {}^{\mathrm{tgt}} 42 \right\} \\ & & \ast x_{s} & & 42 \end{array}$

$$\begin{split} & \left\{ X_{S} \approx X_{t} \right\} \\ & \left\{ X_{S} \mapsto^{\text{\tiny src}} Z \ast X_{t} \mapsto^{\text{\tiny tgt}} Z \right\} \end{split}$$

 $\begin{array}{l} x_{s} \leftarrow 41; \\ & \left\{ x_{s} \mapsto^{\mathrm{src}} 41 \ast x_{t} \mapsto^{\mathrm{tgt}} z \right\} \\ x_{s} \leftarrow 42; & \succeq & x_{t} \leftarrow 42; \\ & \left\{ x_{s} \mapsto^{\mathrm{src}} 42 \ast x_{t} \mapsto^{\mathrm{tgt}} 42 \right\} \\ \overset{*}{x_{s}} & 42 \\ & \left\{ v_{s}, v_{t}. v_{s} = v_{t} = 42 \ast x_{s} \approx x_{t} \right\} \end{array}$

What prevents us from acquiring ownership multiple times?

What prevents us from acquiring ownership multiple times?

Track locations exploited by the current thread π : exploit_{π} C

obtain ownership

$$\frac{\forall v_t, v_s. \{\ell_s \mapsto {}^{src} v_s * \ell_t \mapsto {}^{tst} v_t * v_s \approx v_t * \qquad P\} \ \mathcal{K}[\ell_s \leftarrow v_0] \succeq_{\pi} e_t \{\Phi\}}{\{\ell_s \approx \ell_t * \qquad P\} \ \mathcal{K}[\ell_s \leftarrow v_0] \succeq_{\pi} e_t \{\Phi\}}$$
public locations $\checkmark \qquad P\} \ \mathcal{K}[\ell_s \leftarrow v_0] \succeq_{\pi} e_t \{\Phi\}$
in the source

Track locations exploited by the current thread π : exploit_{π} C

Maintaining & releasing ownership on synchronization

We can maintain ownership until the thread **observably** synchronizes.

action (potentially) visible by other threads Maintaining & releasing ownership on synchronization

We can maintain ownership until the thread **observably** synchronizes.

action (potentially) visible by other threads

Example: rule for atomic writes

$$\{ \ell_s \approx \ell_t * v_s \approx v_t * \operatorname{exploit}_{\pi} \emptyset \}$$
$$\ell_s \leftarrow^{sc} v_s \succeq_{\pi} \ell_t \leftarrow^{sc} v_t$$
$$\{ v'_s, v'_t. \operatorname{exploit}_{\pi} \emptyset \}$$

Verifying the motivating example

```
int i = 0; int sum = *y;
while (i != *x) {
    i += 1; sum += *y;
}
return sum;
```

```
int n = *x;
int m = *y;
int i = 0; int sum = m;
while (i != n) {
    i += 1; sum += m;
}
return sum;
```

Verifying the motivating example

 $\{x_s \approx x_t * y_s \approx y_t\}$ |et (m, n) := (*y, *x) in |et (i, sum) := (new(0), new(*y)) in |et (i, sum) := (new(0), new(m)) in $while *i \neq *x do$ $i \leftarrow *i + 1;$ $sum \leftarrow *sum + *y$ od; *sum $v_s, v_t. v_s \approx v_t\}$

- 1. Obtain ownership of x and y due to unsynchronized reads in the source
- 2. Initiate coinduction

Simuliris: a separation logic-based simulation framework

logic for data race based optimizations Stacked Borrows for Rust [Jung et al., 2020] + concurrency

Simuliris: separation logic-based simulation framework

- soundness: fair termination-preserving contextual refinement
- proof rules for verifying optimizations: coinduction, ...

fully mechanized in the Coq proof assistant

based on the Iris framework

optimized expression		unoptimized expression
can terminate with result	\Rightarrow	can terminate with similar result

for any surrounding program, assuming no UB in unoptimized program				
optimized expression		unoptimized expression		
can terminate with result	\implies	can terminate with similar result		
can diverge under fair scheduling	\implies	can diverge under fair scheduling		

fair termination-preserving contextual refinement

for any surrounding program, assuming no UB in unoptimized program				
optimized expression		unoptimized expression		
can terminate with result	\implies	can terminate with similar result		
can diverge under fair scheduling	\implies	can diverge under fair scheduling		

Core soundness proof: proved once and for all!

More in the paper ...

logic for data race based optimizations

 $\label{eq:stacked} \begin{array}{l} \mbox{Stacked Borrows for Rust} \\ \mbox{[Jung et al., 2020]} + \mbox{concurrency} \end{array}$

Simuliris: separation logic-based simulation framework

• soundness: fair termination-preserving contextual refinement

 \bullet proof rules for verifying optimizations: coinduction, \ldots

fully mechanized in the Coq proof assistant $\overline{\mathbf{y}}$

based on the Iris framework

Simuliris: a separation logic-based simulation framework

logic for data race based optimizations

Stacked Borrows for Rust [Jung et al., 2020] + concurrency

Simuliris: separation logic-based simulation framework

- soundness: fair termination-preserving contextual refinement
- \bullet proof rules for verifying optimizations: coinduction, \ldots

fully mechanized in the Coq proof assistant

based on the Iris framework

https://gitlab.mpi-sws.org/iris/simuliris

Thanks for listening!

Generalization: reachability of an unsynchronized write

The argument even works if the write is just (unconditionally) reachable!

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{exploit once} \\ \text{obtain ownership} \\ \end{array} \\ \begin{array}{c} \ell_s \notin C \\ \hline \\ V_t, v_s. \left\{ \ell_s \mapsto^{\text{sc}} v_s \ast \ell_t \mapsto^{\text{tst}} v_t \ast v_s \approx v_t \ast \text{exploit}_{\pi} \left(C, \ell_s \mapsto W \right) \ast P \right\} \\ \hline \\ \begin{array}{c} e_s \to^{\ast}_{7} K[\ell_s \leftarrow v_0] \\ \hline \\ \hline \\ \hline \\ \ell_s \approx \ell_t \ast \text{exploit}_{\pi} C \ast P \right\} \\ \hline \\ e_s \succeq_{\pi} e_t \left\{ \Phi \right\} \\ \hline \\ \hline \\ \end{array} \\ \begin{array}{c} e_s \to \ell_t \ast \text{exploit}_{\pi} C \ast P \\ \hline \\ \hline \\ \end{array} \\ \begin{array}{c} e_s \succeq_{\pi} e_t \left\{ \Phi \right\} \\ \hline \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast \text{exploit}_{\pi} C \ast P \\ \hline \\ \hline \\ \end{array} \\ \begin{array}{c} e_s \succeq_{\pi} e_t \left\{ \Phi \right\} \\ \hline \\ \hline \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast \text{exploit}_{\pi} C \ast P \\ \hline \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \hline \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \end{array}$ \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \end{array} \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \end{array} \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \bullet P \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \ast P \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \bullet P \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \bullet P \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \bullet P \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \bullet P \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \bullet P \\ \end{array} \\ \begin{array}{c} e_s \mapsto \ell_t \bullet P \\ \end{array} \\ \begin{array}{c

Generalization: reachability of an unsynchronized write

The argument even works if the write is just (unconditionally) reachable!

A similar rule holds for reads!

Ownership acquisition on unsynchronized accesses

When the source program does an unsynchronized access to $\ell_s \approx \ell_t$, we temporarily obtain ownership of ℓ_s and ℓ_t .

An unsynchronized read $*\ell_s$ is reachable: \Rightarrow concurrent *write* accesses would be conflicting \Rightarrow obtain **fractional** ownership $\ell_s \mapsto_q^{src} v_s, \ell_t \mapsto_q^{tst} v_t$

Ownership acquisition on unsynchronized accesses

When the source program does an unsynchronized access to $\ell_s \approx \ell_t$, we temporarily obtain ownership of ℓ_s and ℓ_t .

Do we ever have to give up ownership again?

Rule for unsynchronized reads

Releasing ownership

$$\frac{C(\ell_s) = W \quad \{\text{exploit}_{\pi} \ (C \setminus \ell_s) * P\} \ e_s \succeq_{\pi} \ e_t \ \{\Phi\}}{\{\ell_s \mapsto^{\text{src}} v_s * \ell_t \mapsto^{\text{tgt}} v_t * v_s \approx v_t * \ell_s \approx \ell_t * \text{exploit}_{\pi} \ C * P\} \ e_s \succeq_{\pi} \ e_t \ \{\Phi\}}$$

Fair termination-preserving refinement

The compiler should not be allowed to perform the following transformation:

The source program only has diverging executions under an unfair scheduler, while the target program diverges even under a fair scheduler.

In the paper: proofs of optimizations relying on data races

optimization hoisting reads out of a while loop

$$\begin{array}{ll} \operatorname{let}(i, \operatorname{sum}) := (\operatorname{new}(0), \operatorname{new}({}^{*}y_{s})) \text{ in} \\ \operatorname{while} {}^{*}i \neq {}^{*}x_{s} \operatorname{do} \\ i \leftarrow {}^{*}i + 1; \operatorname{sum} \leftarrow {}^{*}\operatorname{sum} + {}^{*}y_{s} \\ \operatorname{od}; {}^{*}\operatorname{sum} \end{array} \xrightarrow{} \begin{array}{ll} \operatorname{let}(i, \operatorname{sum}) := (\operatorname{new}(0), \operatorname{new}(\operatorname{m})) \text{ in} \\ \operatorname{let}(i, \operatorname{sum}) := (\operatorname{new}(0), \operatorname{new}(\operatorname{m})) \text{ in} \\ \operatorname{while} {}^{*}i \neq \operatorname{n} \operatorname{do} \\ i \leftarrow {}^{*}i + 1; \operatorname{sum} \leftarrow {}^{*}\operatorname{sum} + \operatorname{m} \\ \operatorname{od}; {}^{*}\operatorname{sum} \end{array} \xrightarrow{} \begin{array}{ll} \operatorname{od} \\ \operatorname{od}; {}^{*}\operatorname{sum} \end{array} \xrightarrow{} \operatorname{od}; {}^{*}\operatorname{sum} \end{array}$$

lot (n m) := (*x *y) in

Requires reasoning about potentially infinite loops!

In the paper: proofs of optimizations relying on data races

- optimization hoisting reads out of a while loop
- optimization eliminating reads and writes over unknown read-only code

$$x_s \leftarrow 42;$$
 $x_t \leftarrow 42;$ $e^{\text{RO}};$ \succeq_{π} $e^{\text{RO}};$ \bigstar_{x_s} 42

In the paper: proofs of optimizations relying on data races

- \blacksquare optimization hoisting reads out of a while loop
- optimization eliminating reads and writes over unknown read-only code

$$\begin{array}{lll} x_s \leftarrow 42; & x_t \leftarrow 42; \\ *^{sc}y_s; & \succeq_{\pi} & *^{sc}y_t; \\ *_{X_s} & & 42 \end{array}$$

Not supported by CAS/Concurrent CompCert!
In the paper: proofs of optimizations relying on data races

- \blacksquare optimization hoisting reads out of a while loop
- optimization eliminating reads and writes over unknown read-only code
- eliminations and reorderings using data races by [Ševčík, 2009]

In the paper: new optimization proofs for Stacked Borrows

Stacked Borrows: an experimental aliasing model for Rust

- determines which kinds of memory accesses are allowed
- enables powerful optimizations

In the paper: new optimization proofs for Stacked Borrows

Stacked Borrows: an experimental aliasing model for Rust

- determines which kinds of memory accesses are allowed
- enables powerful optimizations

Using Simuliris, we have...

- extended the optimization proofs by [Jung et al., 2020] to concurrent environments
- developed a new proof of an optimization involving loops:

```
// x: &i32, g: &Fn() -> (),
// f: &Fn(i32) -> bool
while f(*x) {
    g();
}
let r = *x;
while f(r) {
    g();
}
```