
Simuliris
A Separation Logic Framework for

Verifying Concurrent Program Optimizations
Lennard Gäher, Michael Sammler, Simon Spies, Ralf Jung,

Hoang-Hai Dang, Robbert Krebbers, Jeehoon Kang, Derek Dreyer

 Hi everyone, my name is Lennard and today I'm going to talk about Simuliris, a framework for verifying concurrent program optimizations using separation logic. This is joint work with Michael, Simon, Ralf, Hai, Robbert, Jeehoon, and Derek.

 Modern compilers are applying a lot of smart optimizations to make our programs run fast.

int mult(int *x, int *y) {

int i = 0; int sum = *y;

while (i != *x - 1) {

i += 1; sum += *y;

}

return sum;

}

int opt(int *x, int *y) {

int n = *x;

int m = *y;

int i = 0; int sum = m;

while (i != n - 1) {

i += 1; sum += m;

}

return sum;

}

implements multiplication of positive integers

Clan
g optimizes

How can we prove correctness of these program
optimizations?

 As an example, consider this C function on the left. It operates on two integer pointers x and y. And while the details of it do not matter, when the value at x is positive, it essentially multiplies the numbers stored at x and y by repeated addition.

 When we ask the Clang C Compiler to translate this function, it will do multiple optimizations, and one of them is to hoist the repeated loads from x and y out of the loop, replacing them by single loads into local variables n and m. This speeds up the program as loads from memory are expensive and n and m can **subsequently** be placed in registers.

 But how we can we prove the correctness of such optimizations?

int mult(int *x, int *y) {

int i = 0; int sum = *y;

while (i != *x - 1) {

i += 1; sum += *y;

}

return sum;

}

int opt(int *x, int *y) {

int n = *x;

int m = *y;

int i = 0; int sum = m;

while (i != n - 1) {

i += 1; sum += m;

}

return sum;

}

implements multiplication of positive integers

Clan
g optimizes

How can we prove correctness of these program
optimizations?

 In this case, you might think that it is obvious: as long as x and y do not change during the loop, the optimization can easily be seen to be correct.

 And that clearly holds true in a sequential setting.

 In a concurrent setting, however, the picture is less clear.
 You might imagine that...

Can concurrent writes break the optimization? 2

unoptimized:

int i = 0; int sum = *y;

while (i != *x - 1) {

i += 1; sum += *y;

}

return sum;

optimized:

int n = *x;

int m = *y;

int i = 0; int sum = m;

while (i != n - 1) {

i += 1; sum += m;

}

return sum;

can produce results not possible
for the unoptimized program!

Data races are undefined behavior (UB) in C/C++/unsafe Rust.
The compiler may assume their absence.

 You might imagine that some other concurrent thread also has access to x and y, and is changing their value by writing to them, such as in the code on the right.

 Then, in fact, the optimized program can produce results that the unoptimized program could not.

 As an example, assume that we execute the optimized program...

Can concurrent writes break the optimization? 2

unoptimized:

int i = 0; int sum = *y;

while (i != *x - 1) {

i += 1; sum += *y;

}

return sum;

optimized:

int n = *x;

int m = *y;

int i = 0; int sum = m;

while (i != n - 1) {

i += 1; sum += m;

}

return sum;

→

*x = 2;

→

*y = 42;

can produce results not possible
for the unoptimized program!

Data races are undefined behavior (UB) in C/C++/unsafe Rust.
The compiler may assume their absence.

 You might imagine that some other concurrent thread also has access to x and y, and is changing their value by writing to them, such as in the code on the right.

 Then, in fact, the optimized program can produce results that the unoptimized program could not.

 As an example, assume that we execute the optimized program...

Can concurrent writes break the optimization? 2

unoptimized:

int i = 0; int sum = *y;

while (i != *x - 1) {

i += 1; sum += *y;

}

return sum;

optimized:

int n = *x;

int m = *y;

int i = 0; int sum = m;

while (i != n - 1) {

i += 1; sum += m;

}

return sum;

→

*x = 2;

→

*y = 42;

can produce results not possible
for the unoptimized program!

Data races are undefined behavior (UB) in C/C++/unsafe Rust.
The compiler may assume their absence.

 You might imagine that some other concurrent thread also has access to x and y, and is changing their value by writing to them, such as in the code on the right.

 Then, in fact, the optimized program can produce results that the unoptimized program could not.

 As an example, assume that we execute the optimized program...

Can concurrent writes break the optimization? 3

current state: *x *y

n m sum

1 99

1 42 42

optimized program:

→int n = *x;

→

int m = *y;

→

int i = 0; int sum = m;

→

while (i != n - 1) {

→

i += 1; sum += m;

→

}

→

return sum;

→*x = 2;

→

*y = 42;

→

The optimized program can produce the result 42
with initial *x = 1 and *y = 99

(by using the old value 1 of x and the new value 42 of y)

 As an example, assume that we execute the optimized program in a state where initially x is 1 and y is 99.

 First, the thread on the left loads from x and n gets the value 1. Then, the scheduler switches to the other thread, and writes the new values of x and y.

 After that, the left thread reads y into m, seeing the new value 42, and the remaining code on the left is executed.

 In this case, the optimized program produces the result 42, by using the old value 1 of x, and the new value 42 of y written by the other thread.

 On the other hand, let's check if the unoptimized program can also produce the result 42!

Can concurrent writes break the optimization? 3

current state: *x *y n

m sum

1 99 1

42 42

optimized program:

→

int n = *x;

→int m = *y;

→

int i = 0; int sum = m;

→

while (i != n - 1) {

→

i += 1; sum += m;

→

}

→

return sum;

→*x = 2;

→

*y = 42;

→

The optimized program can produce the result 42
with initial *x = 1 and *y = 99

(by using the old value 1 of x and the new value 42 of y)

 As an example, assume that we execute the optimized program in a state where initially x is 1 and y is 99.

 First, the thread on the left loads from x and n gets the value 1. Then, the scheduler switches to the other thread, and writes the new values of x and y.

 After that, the left thread reads y into m, seeing the new value 42, and the remaining code on the left is executed.

 In this case, the optimized program produces the result 42, by using the old value 1 of x, and the new value 42 of y written by the other thread.

 On the other hand, let's check if the unoptimized program can also produce the result 42!

Can concurrent writes break the optimization? 3

current state: *x *y n

m sum

2 99 1

42 42

optimized program:

→

int n = *x;

→int m = *y;

→

int i = 0; int sum = m;

→

while (i != n - 1) {

→

i += 1; sum += m;

→

}

→

return sum;

→

*x = 2;

→*y = 42;

→

The optimized program can produce the result 42
with initial *x = 1 and *y = 99

(by using the old value 1 of x and the new value 42 of y)

 As an example, assume that we execute the optimized program in a state where initially x is 1 and y is 99.

 First, the thread on the left loads from x and n gets the value 1. Then, the scheduler switches to the other thread, and writes the new values of x and y.

 After that, the left thread reads y into m, seeing the new value 42, and the remaining code on the left is executed.

 In this case, the optimized program produces the result 42, by using the old value 1 of x, and the new value 42 of y written by the other thread.

 On the other hand, let's check if the unoptimized program can also produce the result 42!

Can concurrent writes break the optimization? 3

current state: *x *y n

m sum

2 42 1

42 42

optimized program:

→

int n = *x;

→int m = *y;

→

int i = 0; int sum = m;

→

while (i != n - 1) {

→

i += 1; sum += m;

→

}

→

return sum;

→

*x = 2;

→

*y = 42;

→

The optimized program can produce the result 42
with initial *x = 1 and *y = 99

(by using the old value 1 of x and the new value 42 of y)

 As an example, assume that we execute the optimized program in a state where initially x is 1 and y is 99.

 First, the thread on the left loads from x and n gets the value 1. Then, the scheduler switches to the other thread, and writes the new values of x and y.

 After that, the left thread reads y into m, seeing the new value 42, and the remaining code on the left is executed.

 In this case, the optimized program produces the result 42, by using the old value 1 of x, and the new value 42 of y written by the other thread.

 On the other hand, let's check if the unoptimized program can also produce the result 42!

Can concurrent writes break the optimization? 3

current state: *x *y n m

sum

2 42 1 42

42

optimized program:

→

int n = *x;

→

int m = *y;

→int i = 0; int sum = m;

→

while (i != n - 1) {

→

i += 1; sum += m;

→

}

→

return sum;

→

*x = 2;

→

*y = 42;

→

The optimized program can produce the result 42
with initial *x = 1 and *y = 99

(by using the old value 1 of x and the new value 42 of y)

 As an example, assume that we execute the optimized program in a state where initially x is 1 and y is 99.

 First, the thread on the left loads from x and n gets the value 1. Then, the scheduler switches to the other thread, and writes the new values of x and y.

 After that, the left thread reads y into m, seeing the new value 42, and the remaining code on the left is executed.

 In this case, the optimized program produces the result 42, by using the old value 1 of x, and the new value 42 of y written by the other thread.

 On the other hand, let's check if the unoptimized program can also produce the result 42!

Can concurrent writes break the optimization? 3

current state: *x *y n m sum

2 42 1 42 42

optimized program:

→

int n = *x;

→

int m = *y;

→

int i = 0; int sum = m;

→

while (i != n - 1) {

→

i += 1; sum += m;

→

}

→return sum;

→

*x = 2;

→

*y = 42;

→

The optimized program can produce the result 42
with initial *x = 1 and *y = 99

(by using the old value 1 of x and the new value 42 of y)

 As an example, assume that we execute the optimized program in a state where initially x is 1 and y is 99.

 First, the thread on the left loads from x and n gets the value 1. Then, the scheduler switches to the other thread, and writes the new values of x and y.

 After that, the left thread reads y into m, seeing the new value 42, and the remaining code on the left is executed.

 In this case, the optimized program produces the result 42, by using the old value 1 of x, and the new value 42 of y written by the other thread.

 On the other hand, let's check if the unoptimized program can also produce the result 42!

The unoptimized program cannot produce the result 42 4

current state: *x *y

sum

1 99

unoptimized program:

→

int i = 0;

→

int sum = *y;

→

while (i != *x - 1) {

→

i += 1; sum += *y;

→

}

→

return sum;

→

*x = 2;

→

*y = 42;

→

The unoptimized program can not produce the result 42
with initial *x = 1 and *y = 99

(if the new value 42 of y is read, also the new value 2 of x is read)

 We can see that the thread on the right will have to execute first, as otherwise the sum will contain 99, which would make it impossible to get to a result of 42.

 But now, since the unoptimized program will always read x after y, also the new value 2 will be read for x, so we will get the result 2 times 42.

 There is no interleaving which can produce the result 42!

 So, the optimized program can produce results that the unoptimized program could not, and the compiler should not be allowed to do such transformations. There must be something more going on here!

The unoptimized program cannot produce the result 42 4

current state: *x *y

sum

1 99

unoptimized program:

→

int i = 0;

→

int sum = *y;

→

while (i != *x - 1) {

→

i += 1; sum += *y;

→

}

→

return sum;

→

*x = 2;

→

*y = 42;

→

The unoptimized program can not produce the result 42
with initial *x = 1 and *y = 99

(if the new value 42 of y is read, also the new value 2 of x is read)

 We can see that the thread on the right will have to execute first, as otherwise the sum will contain 99, which would make it impossible to get to a result of 42.

 But now, since the unoptimized program will always read x after y, also the new value 2 will be read for x, so we will get the result 2 times 42.

 There is no interleaving which can produce the result 42!

 So, the optimized program can produce results that the unoptimized program could not, and the compiler should not be allowed to do such transformations. There must be something more going on here!

The unoptimized program cannot produce the result 42 4

current state: *x *y

sum

2 42

unoptimized program:

→

int i = 0;

→

int sum = *y;

→

while (i != *x - 1) {

→

i += 1; sum += *y;

→

}

→

return sum;

→

*x = 2;

→

*y = 42;

→

The unoptimized program can not produce the result 42
with initial *x = 1 and *y = 99

(if the new value 42 of y is read, also the new value 2 of x is read)

 We can see that the thread on the right will have to execute first, as otherwise the sum will contain 99, which would make it impossible to get to a result of 42.

 But now, since the unoptimized program will always read x after y, also the new value 2 will be read for x, so we will get the result 2 times 42.

 There is no interleaving which can produce the result 42!

 So, the optimized program can produce results that the unoptimized program could not, and the compiler should not be allowed to do such transformations. There must be something more going on here!

The unoptimized program cannot produce the result 42 4

current state: *x *y

sum

2 42

unoptimized program:

→

int i = 0;

→

int sum = *y;

→

while (i != *x - 1) {

→

i += 1; sum += *y;

→

}

→

return sum;

→

*x = 2;

→

*y = 42;

→

The unoptimized program can not produce the result 42
with initial *x = 1 and *y = 99

(if the new value 42 of y is read, also the new value 2 of x is read)

 We can see that the thread on the right will have to execute first, as otherwise the sum will contain 99, which would make it impossible to get to a result of 42.

 But now, since the unoptimized program will always read x after y, also the new value 2 will be read for x, so we will get the result 2 times 42.

 There is no interleaving which can produce the result 42!

 So, the optimized program can produce results that the unoptimized program could not, and the compiler should not be allowed to do such transformations. There must be something more going on here!

The unoptimized program cannot produce the result 42 4

current state: *x *y

sum

2 42

unoptimized program:

→

int i = 0;

→

int sum = *y;

→

while (i != *x - 1) {

→

i += 1; sum += *y;

→

}

→

return sum;

→

*x = 2;

→

*y = 42;

→

The unoptimized program can not produce the result 42
with initial *x = 1 and *y = 99

(if the new value 42 of y is read, also the new value 2 of x is read)

 We can see that the thread on the right will have to execute first, as otherwise the sum will contain 99, which would make it impossible to get to a result of 42.

 But now, since the unoptimized program will always read x after y, also the new value 2 will be read for x, so we will get the result 2 times 42.

 There is no interleaving which can produce the result 42!

 So, the optimized program can produce results that the unoptimized program could not, and the compiler should not be allowed to do such transformations. There must be something more going on here!

The unoptimized program cannot produce the result 42 4

current state: *x *y

sum

2 42

unoptimized program:

→

int i = 0;

→

int sum = *y;

→

while (i != *x - 1) {

→

i += 1; sum += *y;

→

}

→

return sum;

→

*x = 2;

→

*y = 42;

→

The unoptimized program can not produce the result 42
with initial *x = 1 and *y = 99

(if the new value 42 of y is read, also the new value 2 of x is read)

The optimization seems to introduce new program
behavior!

 We can see that the thread on the right will have to execute first, as otherwise the sum will contain 99, which would make it impossible to get to a result of 42.

 But now, since the unoptimized program will always read x after y, also the new value 2 will be read for x, so we will get the result 2 times 42.

 There is no interleaving which can produce the result 42!

 So, the optimized program can produce results that the unoptimized program could not, and the compiler should not be allowed to do such transformations. There must be something more going on here!

Correctness under concurrency: relying on undefined behavior 5

unoptimized:

int i = 0; int sum = *y;

while (i != *x - 1) {

i += 1; sum += *y;

}

return sum;

optimized:

int n = *x;

int m = *y;

int i = 0; int sum = m;

while (i != n - 1) {

i += 1; sum += m;

}

return sum;

→

*x = 2;

→

*y = 42;

Data races are undefined behavior (UB) in C/C++/unsafe Rust.

The compiler may assume their absence.

 The reason why the optimization is still correct is that there is a data race between the two threads in this example, since one thread is reading while the other is writing without any synchronization!

 In C and C++, programs with data races have undefined behavior, or short UB. This means that the programmer has to guarantee the absence of data races, and so the compiler can assume that no concurrent thread is writing to x or y.

 So the optimization is correct, but proving so requires reasoning about concurrent program optimizations relying on UB of data races and involving loops.

Correctness under concurrency: relying on undefined behavior 5

unoptimized:

int i = 0; int sum = *y;

while (i != *x - 1) {

i += 1; sum += *y;

}

return sum;

optimized:

int n = *x;

int m = *y;

int i = 0; int sum = m;

while (i != n - 1) {

i += 1; sum += m;

}

return sum;

→

*x = 2;

→

*y = 42;

Data races are undefined behavior (UB) in C/C++/unsafe Rust.

The compiler may assume their absence.

 The reason why the optimization is still correct is that there is a data race between the two threads in this example, since one thread is reading while the other is writing without any synchronization!

 In C and C++, programs with data races have undefined behavior, or short UB. This means that the programmer has to guarantee the absence of data races, and so the compiler can assume that no concurrent thread is writing to x or y.

 So the optimization is correct, but proving so requires reasoning about concurrent program optimizations relying on UB of data races and involving loops.

Correctness under concurrency: relying on undefined behavior 5

unoptimized:

int i = 0; int sum = *y;

while (i != *x - 1) {

i += 1; sum += *y;

}

return sum;

optimized:

int n = *x;

int m = *y;

int i = 0; int sum = m;

while (i != n - 1) {

i += 1; sum += m;

}

return sum;

→

*x = 2;

→

*y = 42;

Data races are undefined behavior (UB) in C/C++/unsafe Rust.
The compiler may assume their absence.

 The reason why the optimization is still correct is that there is a data race between the two threads in this example, since one thread is reading while the other is writing without any synchronization!

 In C and C++, programs with data races have undefined behavior, or short UB. This means that the programmer has to guarantee the absence of data races, and so the compiler can assume that no concurrent thread is writing to x or y.

 So the optimization is correct, but proving so requires reasoning about concurrent program optimizations relying on UB of data races and involving loops.

Correctness under concurrency: relying on undefined behavior 5

unoptimized:

int i = 0; int sum = *y;

while (i != *x - 1) {

i += 1; sum += *y;

}

return sum;

optimized:

int n = *x;

int m = *y;

int i = 0; int sum = m;

while (i != n - 1) {

i += 1; sum += m;

}

return sum;

→

*x = 2;

→

*y = 42;

Data races are undefined behavior (UB) in C/C++/unsafe Rust.
The compiler may assume their absence.

The optimization is correct. But how can we prove that?

 The reason why the optimization is still correct is that there is a data race between the two threads in this example, since one thread is reading while the other is writing without any synchronization!

 In C and C++, programs with data races have undefined behavior, or short UB. This means that the programmer has to guarantee the absence of data races, and so the compiler can assume that no concurrent thread is writing to x or y.

 So the optimization is correct, but proving so requires reasoning about concurrent program optimizations relying on UB of data races and involving loops.

The problem 6

How can we prove correctness of concurrent program
optimizations relying on data race UB and involving loops?

data race UB concurrent loops

Our approach ✓ ✓ ✓

[Ševč́ık, 2009], [Morisset et al., 2013] ✓ ✓ ∼
[Vafeiadis et al., 2015] ✓ ✓ ∼
CAS/Concurrent CompCert ∼ ∼ ✓

CompCertTSO [Ševč́ık et al., 2013] ✗ ✓ ✓

CCAL (CompCertX) [Gu et al., 2018] ✗ ∼ ✓

[Liang and Feng, 2016] ✗ ✓ ✓

ReLoC [Frumin et al., 2018] ✗ ✓ ✓

[Tassarotti et al., 2017] ✗ ✓ ✓

Transfinite Iris [Spies et al., 2021] ✗ ✗ ✓

Stacked Borrows [Jung et al., 2020] ✗ ✗ ∼

 While there's a lot of interest in verifying compilers, there's only little work involving data races, so let me focus on the works dealing with data races in this overview.

The problem 6

How can we prove correctness of concurrent program
optimizations relying on data race UB and involving loops?

data race UB concurrent loops

Our approach ✓ ✓ ✓

[Ševč́ık, 2009], [Morisset et al., 2013] ✓ ✓ ∼
[Vafeiadis et al., 2015] ✓ ✓ ∼
CAS/Concurrent CompCert ∼ ∼ ✓

CompCertTSO [Ševč́ık et al., 2013] ✗ ✓ ✓

CCAL (CompCertX) [Gu et al., 2018] ✗ ∼ ✓

[Liang and Feng, 2016] ✗ ✓ ✓

ReLoC [Frumin et al., 2018] ✗ ✓ ✓

[Tassarotti et al., 2017] ✗ ✓ ✓

Transfinite Iris [Spies et al., 2021] ✗ ✗ ✓

Stacked Borrows [Jung et al., 2020] ✗ ✗ ∼

 While there's a lot of interest in verifying compilers, there's only little work involving data races, so let me focus on the works dealing with data races in this overview.

The problem 6

How can we prove correctness of concurrent program
optimizations relying on data race UB and involving loops?

data race UB concurrent loops

Our approach ✓ ✓ ✓

[Ševč́ık, 2009], [Morisset et al., 2013] ✓ ✓ ∼
[Vafeiadis et al., 2015] ✓ ✓ ∼
CAS/Concurrent CompCert ∼ ∼ ✓

CompCertTSO [Ševč́ık et al., 2013] ✗ ✓ ✓

CCAL (CompCertX) [Gu et al., 2018] ✗ ∼ ✓

[Liang and Feng, 2016] ✗ ✓ ✓

ReLoC [Frumin et al., 2018] ✗ ✓ ✓

[Tassarotti et al., 2017] ✗ ✓ ✓

Transfinite Iris [Spies et al., 2021] ✗ ✗ ✓

Stacked Borrows [Jung et al., 2020] ✗ ✗ ∼

can only handle finite traces

cannot handle potentially unbounded loops

 Works by Sevcik, Morisset and Vafeiadis have investigated eliminations and reorderings based on data races in different memory models, but only on finite traces. Thus, the approach cannot handle potentially unbounded loops akin to our motivating example.

The problem 6

How can we prove correctness of concurrent program
optimizations relying on data race UB and involving loops?

data race UB concurrent loops

Our approach ✓ ✓ ✓

[Ševč́ık, 2009], [Morisset et al., 2013] ✓ ✓ ∼
[Vafeiadis et al., 2015] ✓ ✓ ∼
CAS/Concurrent CompCert ∼ ∼ ✓

CompCertTSO [Ševč́ık et al., 2013] ✗ ✓ ✓

CCAL (CompCertX) [Gu et al., 2018] ✗ ∼ ✓

[Liang and Feng, 2016] ✗ ✓ ✓

ReLoC [Frumin et al., 2018] ✗ ✓ ✓

[Tassarotti et al., 2017] ✗ ✓ ✓

Transfinite Iris [Spies et al., 2021] ✗ ✗ ✓

Stacked Borrows [Jung et al., 2020] ✗ ✗ ∼

no optimizations involving synchronizing operations
(e.g., atomic reads)

 Another line of work on CAS CompCert and Concurrent CompCert is in principle able to perform optimizations exploiting data races, although it doesn't do them in practice, but cannot justify some known optimizations around synchronizing operations like atomic reads due to the way synchronization is modelled.
 As part of our work we develop an approach that does not have these limitations.

 Our key idea for verifying data race optimizations is to employ the concept of ownership from separation logic.

 Considering the example code again,...

The problem 6

How can we prove correctness of concurrent program
optimizations relying on data race UB and involving loops?

data race UB concurrent loops

Our approach ✓ ✓ ✓
[Ševč́ık, 2009], [Morisset et al., 2013] ✓ ✓ ∼
[Vafeiadis et al., 2015] ✓ ✓ ∼
CAS/Concurrent CompCert ∼ ∼ ✓

CompCertTSO [Ševč́ık et al., 2013] ✗ ✓ ✓

CCAL (CompCertX) [Gu et al., 2018] ✗ ∼ ✓

[Liang and Feng, 2016] ✗ ✓ ✓

ReLoC [Frumin et al., 2018] ✗ ✓ ✓

[Tassarotti et al., 2017] ✗ ✓ ✓

Transfinite Iris [Spies et al., 2021] ✗ ✗ ✓

Stacked Borrows [Jung et al., 2020] ✗ ✗ ∼

 Another line of work on CAS CompCert and Concurrent CompCert is in principle able to perform optimizations exploiting data races, although it doesn't do them in practice, but cannot justify some known optimizations around synchronizing operations like atomic reads due to the way synchronization is modelled.
 As part of our work we develop an approach that does not have these limitations.

 Our key idea for verifying data race optimizations is to employ the concept of ownership from separation logic.

 Considering the example code again,...

Key idea: ownership acquisition on unsynchronized accesses 7

unoptimized: optimized:

int i = 0; int sum = *y;

while (i != *x - 1) {

i += 1; sum += *y;

}

return sum;

int n = *x;

int m = *y;

int i = 0; int sum = m;

while (i != n - 1) {

i += 1; sum += m;

}

return sum;

⪰

{True}
{x 7→ zx}

{y 7→ src zy ∗ y 7→ tgt zy ∗ x 7→ src zx ∗ x 7→ tgt zx}

reach unsynchronized
access to

retain ownership
throughout the loop

 Considering the example code again, with our approach we prove a simulation. Our simulation relation features a pre- and postcondition, starting from a trivial precondition.

 Since an unsynchronized read from y is reachable, our proof rules then allow us to obtain partial ownership of y, since we know that no concurrent thread can be writing to it.

 We express this through the points-to connective of separation logic, and add it to the precondition.

 Similarly, since a read from x is reachable, we also obtain ownership of x. And we can retain this ownership throughout the whole loop, which allows us to justify that the two code segments indeed compute the same result.

 To implement this formally, we have developed Simuliris.

Key idea: ownership acquisition on unsynchronized accesses 7

unoptimized: optimized:

int i = 0; int sum = *y;

while (i != *x - 1) {

i += 1; sum += *y;

}

return sum;

int n = *x;

int m = *y;

int i = 0; int sum = m;

while (i != n - 1) {

i += 1; sum += m;

}

return sum;

⪰

{True}
{x 7→ zx}

{y 7→ src zy ∗ y 7→ tgt zy ∗ x 7→ src zx ∗ x 7→ tgt zx}

reach unsynchronized
access to y

retain ownership
throughout the loop

 Considering the example code again, with our approach we prove a simulation. Our simulation relation features a pre- and postcondition, starting from a trivial precondition.

 Since an unsynchronized read from y is reachable, our proof rules then allow us to obtain partial ownership of y, since we know that no concurrent thread can be writing to it.

 We express this through the points-to connective of separation logic, and add it to the precondition.

 Similarly, since a read from x is reachable, we also obtain ownership of x. And we can retain this ownership throughout the whole loop, which allows us to justify that the two code segments indeed compute the same result.

 To implement this formally, we have developed Simuliris.

Key idea: ownership acquisition on unsynchronized accesses 7

unoptimized: optimized:

int i = 0; int sum = *y;

while (i != *x - 1) {

i += 1; sum += *y;

}

return sum;

int n = *x;

int m = *y;

int i = 0; int sum = m;

while (i != n - 1) {

i += 1; sum += m;

}

return sum;

⪰

{True}
{y 7→ src zy ∗ y 7→ tgt zy}

{y 7→ src zy ∗ y 7→ tgt zy ∗ x 7→ src zx ∗ x 7→ tgt zx}

obtain ownership
with proof rule

reach unsynchronized
access to y

retain ownership
throughout the loop

 Considering the example code again, with our approach we prove a simulation. Our simulation relation features a pre- and postcondition, starting from a trivial precondition.

 Since an unsynchronized read from y is reachable, our proof rules then allow us to obtain partial ownership of y, since we know that no concurrent thread can be writing to it.

 We express this through the points-to connective of separation logic, and add it to the precondition.

 Similarly, since a read from x is reachable, we also obtain ownership of x. And we can retain this ownership throughout the whole loop, which allows us to justify that the two code segments indeed compute the same result.

 To implement this formally, we have developed Simuliris.

Key idea: ownership acquisition on unsynchronized accesses 7

unoptimized: optimized:

int i = 0; int sum = *y;

while (i != *x - 1) {

i += 1; sum += *y;

}

return sum;

int n = *x;

int m = *y;

int i = 0; int sum = m;

while (i != n - 1) {

i += 1; sum += m;

}

return sum;

⪰

{True}
{y 7→ src zy ∗ y 7→ tgt zy}

{y 7→ src zy ∗ y 7→ tgt zy ∗ x 7→ src zx ∗ x 7→ tgt zx}

obtain ownership
with proof rule

reach unsynchronized
access to x

retain ownership
throughout the loop

 Considering the example code again, with our approach we prove a simulation. Our simulation relation features a pre- and postcondition, starting from a trivial precondition.

 Since an unsynchronized read from y is reachable, our proof rules then allow us to obtain partial ownership of y, since we know that no concurrent thread can be writing to it.

 We express this through the points-to connective of separation logic, and add it to the precondition.

 Similarly, since a read from x is reachable, we also obtain ownership of x. And we can retain this ownership throughout the whole loop, which allows us to justify that the two code segments indeed compute the same result.

 To implement this formally, we have developed Simuliris.

Key idea: ownership acquisition on unsynchronized accesses 7

unoptimized: optimized:

int i = 0; int sum = *y;

while (i != *x - 1) {

i += 1; sum += *y;

}

return sum;

int n = *x;

int m = *y;

int i = 0; int sum = m;

while (i != n - 1) {

i += 1; sum += m;

}

return sum;

⪰

{True}
{y 7→ src zy ∗ y 7→ tgt zy ∗ x 7→ src zx ∗ x 7→ tgt zx}

{y 7→ src zy ∗ y 7→ tgt zy ∗ x 7→ src zx ∗ x 7→ tgt zx}

obtain ownership
with proof rule

reach unsynchronized
access to x

retain ownership
throughout the loop

 Considering the example code again, with our approach we prove a simulation. Our simulation relation features a pre- and postcondition, starting from a trivial precondition.

 Since an unsynchronized read from y is reachable, our proof rules then allow us to obtain partial ownership of y, since we know that no concurrent thread can be writing to it.

 We express this through the points-to connective of separation logic, and add it to the precondition.

 Similarly, since a read from x is reachable, we also obtain ownership of x. And we can retain this ownership throughout the whole loop, which allows us to justify that the two code segments indeed compute the same result.

 To implement this formally, we have developed Simuliris.

Key idea: ownership acquisition on unsynchronized accesses 7

unoptimized: optimized:

int i = 0; int sum = *y;

while (i != *x - 1) {

i += 1; sum += *y;

}

return sum;

int n = *x;

int m = *y;

int i = 0; int sum = m;

while (i != n - 1) {

i += 1; sum += m;

}

return sum;

⪰

{True}
{y 7→ src zy ∗ y 7→ tgt zy ∗ x 7→ src zx ∗ x 7→ tgt zx}

{y 7→ src zy ∗ y 7→ tgt zy ∗ x 7→ src zx ∗ x 7→ tgt zx}

obtain ownership
with proof rule

reach unsynchronized
access to

retain ownership
throughout the loop

 Considering the example code again, with our approach we prove a simulation. Our simulation relation features a pre- and postcondition, starting from a trivial precondition.

 Since an unsynchronized read from y is reachable, our proof rules then allow us to obtain partial ownership of y, since we know that no concurrent thread can be writing to it.

 We express this through the points-to connective of separation logic, and add it to the precondition.

 Similarly, since a read from x is reachable, we also obtain ownership of x. And we can retain this ownership throughout the whole loop, which allows us to justify that the two code segments indeed compute the same result.

 To implement this formally, we have developed Simuliris.

Simuliris: a separation logic-based simulation framework 8

Simuliris: separation logic-based simulation framework

• soundness: fair termination-preserving contextual refinement

• proof rules for verifying optimizations: coinduction, . . .

fully mechanized in the Coq proof assistant

based on the Iris framework

logic for data race
based optimizations

Stacked Borrows for Rust
[Jung et al., 2020] + concurrency

https://gitlab.mpi-sws.org/iris/simuliris

Thanks for listening!

 It cannot just be used to verify data-race based optimizations, but rather is a language-generic simulation framework.

 Our simulation relation satisfies a strong soundness result, namely fair termination-preserving contextual refinement.

 Simuliris provides many common proof principles, such as coinduction, and allows the derivation of domain-specific logics on top. And we have used it to develop two such logics: first, a logic for data-race based optimizations.

 And secondly, we have re-implemented the simulation logic from the Stacked Borrows paper by Jung et al. and extended it with support for concurrency and other new reasoning principles.

 Finally, all of this has been fully mechanized in the Coq proof assistant using the Iris framework, and our Coq artifact is freely available and has been deemed reusable.

https://gitlab.mpi-sws.org/iris/simuliris

Simuliris: a separation logic-based simulation framework 8

Simuliris: separation logic-based simulation framework

• soundness: fair termination-preserving contextual refinement

• proof rules for verifying optimizations: coinduction, . . .

fully mechanized in the Coq proof assistant

based on the Iris framework

logic for data race
based optimizations

Stacked Borrows for Rust
[Jung et al., 2020] + concurrency

https://gitlab.mpi-sws.org/iris/simuliris

Thanks for listening!

 It cannot just be used to verify data-race based optimizations, but rather is a language-generic simulation framework.

 Our simulation relation satisfies a strong soundness result, namely fair termination-preserving contextual refinement.

 Simuliris provides many common proof principles, such as coinduction, and allows the derivation of domain-specific logics on top. And we have used it to develop two such logics: first, a logic for data-race based optimizations.

 And secondly, we have re-implemented the simulation logic from the Stacked Borrows paper by Jung et al. and extended it with support for concurrency and other new reasoning principles.

 Finally, all of this has been fully mechanized in the Coq proof assistant using the Iris framework, and our Coq artifact is freely available and has been deemed reusable.

https://gitlab.mpi-sws.org/iris/simuliris

Simuliris: a separation logic-based simulation framework 8

Simuliris: separation logic-based simulation framework

• soundness: fair termination-preserving contextual refinement

• proof rules for verifying optimizations: coinduction, . . .

fully mechanized in the Coq proof assistant

based on the Iris framework

logic for data race
based optimizations

Stacked Borrows for Rust
[Jung et al., 2020] + concurrency

https://gitlab.mpi-sws.org/iris/simuliris

Thanks for listening!

 It cannot just be used to verify data-race based optimizations, but rather is a language-generic simulation framework.

 Our simulation relation satisfies a strong soundness result, namely fair termination-preserving contextual refinement.

 Simuliris provides many common proof principles, such as coinduction, and allows the derivation of domain-specific logics on top. And we have used it to develop two such logics: first, a logic for data-race based optimizations.

 And secondly, we have re-implemented the simulation logic from the Stacked Borrows paper by Jung et al. and extended it with support for concurrency and other new reasoning principles.

 Finally, all of this has been fully mechanized in the Coq proof assistant using the Iris framework, and our Coq artifact is freely available and has been deemed reusable.

https://gitlab.mpi-sws.org/iris/simuliris

Simuliris: a separation logic-based simulation framework 9

Simuliris: separation logic-based simulation framework

• soundness: fair termination-preserving contextual refinement

• proof rules for verifying optimizations: coinduction, . . .

fully mechanized in the Coq proof assistant

based on the Iris framework

logic for data race
based optimizations

Stacked Borrows for Rust
[Jung et al., 2020] + concurrency

 For the rest of this talk, I'd like to tell you more about Simuliris as a framework and the principles underlying it and then focus on our logic for data-race based optimizations. First, let's take a look at our simulation.

Simuliris: a separation logic-based simulation framework 9

Simuliris: separation logic-based simulation framework

• soundness: fair termination-preserving contextual refinement

• proof rules for verifying optimizations: coinduction, . . .

fully mechanized in the Coq proof assistant

based on the Iris framework

logic for data race
based optimizations

Stacked Borrows for Rust
[Jung et al., 2020] + concurrency

 For the rest of this talk, I'd like to tell you more about Simuliris as a framework and the principles underlying it and then focus on our logic for data-race based optimizations. First, let's take a look at our simulation.

Key ingredient: a powerful simulation relation 10

traditional coinductive simulation + modern separation logic

Key ingredient: a powerful simulation relation 10

{P} es ⪰ et {vs ,vt .Q}

precondition postcondition

source expression
(unoptimized)

target expression
(optimized)

coinductive simulation separation logic

• coinduction • compositional proof rules

• reasoning about UB • ownership reasoning

• flexible stuttering

•

with custom resources

 Our powerful simulation relation is the key ingredient of Simuliris. It basically combines the typical shape of a coinductive simulation with features known from modern separation logics.

 Formally, our simulation relation relates a source expresssion for the unoptimized program, and a target expression for the optimized program, ensuring that every behavior of the optimized program can also be exhibited by the unoptimized program. What "behavior" precisely means I will get to later.

 As techniques commonly used in verifying compiler optimizations, our simulation inherits the ability to coinductively reason about loops and recursion, as well as the ability to exploit UB in the source program. And our simulation features a very flexible stuttering mechanism.

Key ingredient: a powerful simulation relation 10

{P} es ⪰ et {vs ,vt .Q}

precondition postcondition

source expression
(unoptimized)

target expression
(optimized)

coinductive simulation separation logic
• coinduction

• compositional proof rules

• reasoning about UB

• ownership reasoning

• flexible stuttering

•

with custom resources

 Our powerful simulation relation is the key ingredient of Simuliris. It basically combines the typical shape of a coinductive simulation with features known from modern separation logics.

 Formally, our simulation relation relates a source expresssion for the unoptimized program, and a target expression for the optimized program, ensuring that every behavior of the optimized program can also be exhibited by the unoptimized program. What "behavior" precisely means I will get to later.

 As techniques commonly used in verifying compiler optimizations, our simulation inherits the ability to coinductively reason about loops and recursion, as well as the ability to exploit UB in the source program. And our simulation features a very flexible stuttering mechanism.

Key ingredient: a powerful simulation relation 10

{P} es ⪰ et {vs ,vt .Q}

precondition postcondition

source expression
(unoptimized)

target expression
(optimized)

coinductive simulation separation logic
• coinduction • compositional proof rules

• reasoning about UB

• ownership reasoning

• flexible stuttering

•

with custom resources

 On the other hand, to easily compose simulations for different program parts, our simulation has pre- and post-conditions, P and Q, that need to hold before and after simulating the source and target expressions. This is known from relational separation logics, and it allows us to give modular proof rules.

 And since P and Q are separation logic assertions, we can use elegant ownership reasoning, with the ability to use custom resources known from Iris to encode new reasoning principles. And in Coq, we can also re-use the Iris proof mode.

 So let me show you some of these features!

Key ingredient: a powerful simulation relation 10

{P} es ⪰ et {vs ,vt .Q}

precondition postcondition

source expression
(unoptimized)

target expression
(optimized)

coinductive simulation separation logic
• coinduction • compositional proof rules

• reasoning about UB • ownership reasoning

• flexible stuttering

•

with custom resources

 On the other hand, to easily compose simulations for different program parts, our simulation has pre- and post-conditions, P and Q, that need to hold before and after simulating the source and target expressions. This is known from relational separation logics, and it allows us to give modular proof rules.

 And since P and Q are separation logic assertions, we can use elegant ownership reasoning, with the ability to use custom resources known from Iris to encode new reasoning principles. And in Coq, we can also re-use the Iris proof mode.

 So let me show you some of these features!

Key ingredient: a powerful simulation relation 11

{P} es ⪰ et {vs ,vt .Q}

precondition postcondition

source expression
(unoptimized)

target expression
(optimized)

coinductive simulation separation logic
• coinduction • compositional proof rules

• reasoning about UB • ownership reasoning

• flexible stuttering

•

with custom resources

 First of all, let's take a look at how flexible stuttering helps to get compositional proof rules.

Source and target reasoning with flexible stuttering 12

{P} es ⪰ et {vs ,vt .Q}

{P} es {e ′s . R}
src {P} et {e ′t . R}

tgt

focus source focus target

with rules of total separation logic

Enabled by a flexible implicit stuttering mechanism without
explicit step counting!

 In particular, in addition to a powerful simulation relation, our framework features source and target triples, to temporarily focus reasoning on one side of the simulation.

 You can imagine these as the triples from a total correctness separation logic.

 We can flexibly switch between simulation, source, and target reasoning at any time.

 In the background this is enabled by a very flexible stuttering mechanism: our simulation allows us to do unbounded but finite stuttering of source and target, without explicitly counting steps.

 But to the user of our logic, this is exposed abstractly through these source and target triples.

Source and target reasoning with flexible stuttering 12

{P} es ⪰ et {vs ,vt .Q}

{P} es {e ′s . R}
src {P} et {e ′t . R}

tgt

focus source focus target

with rules of total separation logic

Enabled by a flexible implicit stuttering mechanism without
explicit step counting!

 In particular, in addition to a powerful simulation relation, our framework features source and target triples, to temporarily focus reasoning on one side of the simulation.

 You can imagine these as the triples from a total correctness separation logic.

 We can flexibly switch between simulation, source, and target reasoning at any time.

 In the background this is enabled by a very flexible stuttering mechanism: our simulation allows us to do unbounded but finite stuttering of source and target, without explicitly counting steps.

 But to the user of our logic, this is exposed abstractly through these source and target triples.

Source and target reasoning with flexible stuttering 12

{P} es ⪰ et {vs ,vt .Q}

{P} es {e ′s . R}
src {P} et {e ′t . R}

tgt

focus source focus target

with rules of total separation logic

Enabled by a flexible implicit stuttering mechanism without
explicit step counting!

 In particular, in addition to a powerful simulation relation, our framework features source and target triples, to temporarily focus reasoning on one side of the simulation.

 You can imagine these as the triples from a total correctness separation logic.

 We can flexibly switch between simulation, source, and target reasoning at any time.

 In the background this is enabled by a very flexible stuttering mechanism: our simulation allows us to do unbounded but finite stuttering of source and target, without explicitly counting steps.

 But to the user of our logic, this is exposed abstractly through these source and target triples.

Key ingredient: a powerful simulation relation 13

{P} es ⪰ et {vs ,vt .Q}

precondition postcondition

source expression
(unoptimized)

target expression
(optimized)

coinductive simulation separation logic
• coinduction • compositional proof rules

• reasoning about UB • ownership reasoning

• flexible stuttering

•

with custom resources

 Next, let me demonstrate with a very simple example what separation logic reasoning brings to the table in terms of justifying optimizations.

Ownership is useful for justifying optimizations 14

let x := new(42) in

call f ();

42

let x := new(42) in

call f ();

*x

⪰

{True}

{x 7→ src 42 ∗ x 7→ tgt 42}

{x 7→ src 42 ∗ x 7→ tgt 42}

{vs ,vt .vs = vt = 42}

Unknown code must respect the ownership principles of our logic!

 For the rest of the talk, we are going to consider programs in our functional example language, SimuLang.

 The unoptimized program on the left allocates a new reference x with value 42, then calls some unknown function f, and afterwards reads from x again. Intuitively, we'd like to optimize the read away, directly using value 42, because f should not have changed x.

 Formally, we prove a simulation starting from a trivial precondition. First, we execute the allocation on both sides, and we obtain ownership of x, expressed through the points-to connective. Since we are working in a relational separation logic, we have two points-to connectives, for source and target.

 Next, we reach the call to f. We use the frame rule of separation logic, retaining the ownership of x over the call.

 And finally, we can perform the load in the source, using the ownership of x to justify that both sides return 42.
 Looking at this, the crucial step is that we could retain ownership of x while calling f.

Ownership is useful for justifying optimizations 14

let x := new(42) in

call f ();

42

let x := new(42) in

call f ();

*x

⪰

{True}

{x 7→ src 42 ∗ x 7→ tgt 42}

{x 7→ src 42 ∗ x 7→ tgt 42}

{vs ,vt .vs = vt = 42}

Unknown code must respect the ownership principles of our logic!

 For the rest of the talk, we are going to consider programs in our functional example language, SimuLang.

 The unoptimized program on the left allocates a new reference x with value 42, then calls some unknown function f, and afterwards reads from x again. Intuitively, we'd like to optimize the read away, directly using value 42, because f should not have changed x.

 Formally, we prove a simulation starting from a trivial precondition. First, we execute the allocation on both sides, and we obtain ownership of x, expressed through the points-to connective. Since we are working in a relational separation logic, we have two points-to connectives, for source and target.

 Next, we reach the call to f. We use the frame rule of separation logic, retaining the ownership of x over the call.

 And finally, we can perform the load in the source, using the ownership of x to justify that both sides return 42.
 Looking at this, the crucial step is that we could retain ownership of x while calling f.

Ownership is useful for justifying optimizations 14

let x := new(42) in

call f ();

42

let x := new(42) in

call f ();

*x

⪰

{True}

{x 7→ src 42 ∗ x 7→ tgt 42}

{x 7→ src 42 ∗ x 7→ tgt 42}

{vs ,vt .vs = vt = 42}

Unknown code must respect the ownership principles of our logic!

 For the rest of the talk, we are going to consider programs in our functional example language, SimuLang.

 The unoptimized program on the left allocates a new reference x with value 42, then calls some unknown function f, and afterwards reads from x again. Intuitively, we'd like to optimize the read away, directly using value 42, because f should not have changed x.

 Formally, we prove a simulation starting from a trivial precondition. First, we execute the allocation on both sides, and we obtain ownership of x, expressed through the points-to connective. Since we are working in a relational separation logic, we have two points-to connectives, for source and target.

 Next, we reach the call to f. We use the frame rule of separation logic, retaining the ownership of x over the call.

 And finally, we can perform the load in the source, using the ownership of x to justify that both sides return 42.
 Looking at this, the crucial step is that we could retain ownership of x while calling f.

Ownership is useful for justifying optimizations 14

let x := new(42) in

call f ();

42

let x := new(42) in

call f ();

*x

⪰

{True}

{x 7→ src 42 ∗ x 7→ tgt 42}

{x 7→ src 42 ∗ x 7→ tgt 42}

{vs ,vt .vs = vt = 42}

Unknown code must respect the ownership principles of our logic!

 For the rest of the talk, we are going to consider programs in our functional example language, SimuLang.

 The unoptimized program on the left allocates a new reference x with value 42, then calls some unknown function f, and afterwards reads from x again. Intuitively, we'd like to optimize the read away, directly using value 42, because f should not have changed x.

 Formally, we prove a simulation starting from a trivial precondition. First, we execute the allocation on both sides, and we obtain ownership of x, expressed through the points-to connective. Since we are working in a relational separation logic, we have two points-to connectives, for source and target.

 Next, we reach the call to f. We use the frame rule of separation logic, retaining the ownership of x over the call.

 And finally, we can perform the load in the source, using the ownership of x to justify that both sides return 42.
 Looking at this, the crucial step is that we could retain ownership of x while calling f.

Ownership is useful for justifying optimizations 14

let x := new(42) in

call f ();

42

let x := new(42) in

call f ();

*x

⪰

{True}

{x 7→ src 42 ∗ x 7→ tgt 42}

{x 7→ src 42 ∗ x 7→ tgt 42}

{vs ,vt .vs = vt = 42}

Unknown code must respect the ownership principles of our logic!

 Oppposed to traditional separation logic reasoning, we did not require any knowledge about f in the precondition: f can be completely unknown to us!

 But, since the call happens on both sides, we can still skip over the call. For this, unknown code needs to respect our ownership, and that is part of the soundness result of our logic.

Key ingredient: a powerful simulation relation 15

{P} es ⪰ et {vs ,vt .Q}

precondition postcondition

source expression
(unoptimized)

target expression
(optimized)

coinductive simulation separation logic
• coinduction • compositional proof rules

• reasoning about UB • ownership reasoning

• flexible stuttering

•

with custom resources

 Now, let's look at how this integrates with coinductive reasoning.

Interaction with coinduction 16

let x := new(42) in

while call f (*x) do

()

od

let x := new(42) in

while call f (42) do

()

od

{True}

{x 7→ src 42 ∗ x 7→ tgt 42}

⪰

{vs ,vt .vs = vt = ()}

Pick invariant I ≜ x 7→ src 42 ∗ x 7→ tgt 42

 This is a slight modification of the previous example. Instead of just calling f once, we loop until f returns false, and we pass it the value read from x. You might imagine that f does some computation on a global variable.

 Again, we'd like to eliminate the redundant loads from x.

 We once again start by allocating ownership, but now we need to reason about the loop.

 For that, Simuliris provides a generic coinduction principle, from which we can derive one for reasoning about loops.

Interaction with coinduction 16

let x := new(42) in

while call f (*x) do

()

od

let x := new(42) in

while call f (42) do

()

od

{True}

{x 7→ src 42 ∗ x 7→ tgt 42}
⪰

{vs ,vt .vs = vt = ()}

Pick invariant I ≜ x 7→ src 42 ∗ x 7→ tgt 42

 This is a slight modification of the previous example. Instead of just calling f once, we loop until f returns false, and we pass it the value read from x. You might imagine that f does some computation on a global variable.

 Again, we'd like to eliminate the redundant loads from x.

 We once again start by allocating ownership, but now we need to reason about the loop.

 For that, Simuliris provides a generic coinduction principle, from which we can derive one for reasoning about loops.

Reasoning about loops: coinduction 17

Ws = while cs do es od Wt = while ct do et od

{I}
if cs then es ;Ws else () ⪰ if ct then et ;Wt else ()

{e ′s , e ′t . (∃vs ,vt . e ′s = vs ∗ e ′t = vt ∗ Q)

∨ (e ′s = Ws ∗ e ′t = Wt ∗ I)

}

{I}Ws ⪰ Wt {vs ,vt .Q}

loop invariant

 Let's assume that we currently have a while loop on both sides of the simulation, with potentially different conditions and bodies.

 Then, we can pick a loop invariant I and instead have to prove a simulation after unfolding the loop for one step. When the loop has terminated in result values, we can prove the old postcondition Q.

 Now, we need some way to encode our coinduction hypothesis: after simulating the loop for one iteration, we should be done with the proof, by coinduction. And this we encode as part of our postcondition: the rule adds a disjunct, which as an alternative to proving the old postcondition Q (when we bottom out of the loop) also allows us to just establish the invariant I again and take another iteration!

 In the case of the small example,...

Reasoning about loops: coinduction 17

Ws = while cs do es od Wt = while ct do et od

{I}
if cs then es ;Ws else () ⪰ if ct then et ;Wt else ()

{e ′s , e ′t . (∃vs ,vt . e ′s = vs ∗ e ′t = vt ∗ Q)

∨ (e ′s = Ws ∗ e ′t = Wt ∗ I)

}
{I}Ws ⪰ Wt {vs ,vt .Q}

loop invariant

new proof goal

 Let's assume that we currently have a while loop on both sides of the simulation, with potentially different conditions and bodies.

 Then, we can pick a loop invariant I and instead have to prove a simulation after unfolding the loop for one step. When the loop has terminated in result values, we can prove the old postcondition Q.

 Now, we need some way to encode our coinduction hypothesis: after simulating the loop for one iteration, we should be done with the proof, by coinduction. And this we encode as part of our postcondition: the rule adds a disjunct, which as an alternative to proving the old postcondition Q (when we bottom out of the loop) also allows us to just establish the invariant I again and take another iteration!

 In the case of the small example,...

Reasoning about loops: coinduction 17

Ws = while cs do es od Wt = while ct do et od

{I}
if cs then es ;Ws else () ⪰ if ct then et ;Wt else ()

{e ′s , e ′t . (∃vs ,vt . e ′s = vs ∗ e ′t = vt ∗ Q) ∨ (e ′s = Ws ∗ e ′t = Wt ∗ I) }
{I}Ws ⪰ Wt {vs ,vt .Q}

loop invariant

new proof goal

allows use of
coinduction hypothesis

 Let's assume that we currently have a while loop on both sides of the simulation, with potentially different conditions and bodies.

 Then, we can pick a loop invariant I and instead have to prove a simulation after unfolding the loop for one step. When the loop has terminated in result values, we can prove the old postcondition Q.

 Now, we need some way to encode our coinduction hypothesis: after simulating the loop for one iteration, we should be done with the proof, by coinduction. And this we encode as part of our postcondition: the rule adds a disjunct, which as an alternative to proving the old postcondition Q (when we bottom out of the loop) also allows us to just establish the invariant I again and take another iteration!

 In the case of the small example,...

Interaction with coinduction 18

let x := new(42) in

while call f (*x) do

()

od

let x := new(42) in

while call f (42) do

()

od

{True}

{x 7→ src 42 ∗ x 7→ tgt 42}
⪰

{vs ,vt .vs = vt = ()}

Pick invariant I ≜ x 7→ src 42 ∗ x 7→ tgt 42

 ... we'd pick the ownership of x for I, and then the rest of the proof is straightforward.

 Now, even though the previous two examples were simple, they show the benefits of ownership reasoning for verifying optimizations.

 Verifying them was quite easy, because it's unsurprising that we can obtain ownership of local variables.

 But what about optimizations on function arguments, such as in the motivating example I showed in the beginning, where the ownership argument is much less clear... par

Interaction with coinduction 18

let x := new(42) in

while call f (*x) do

()

od

let x := new(42) in

while call f (42) do

()

od

{True}

{x 7→ src 42 ∗ x 7→ tgt 42}
⪰

{vs ,vt .vs = vt = ()}

Pick invariant I ≜ x 7→ src 42 ∗ x 7→ tgt 42

Ownership reasoning is a powerful tool in combination
with coinductive simulations!

 ... we'd pick the ownership of x for I, and then the rest of the proof is straightforward.

 Now, even though the previous two examples were simple, they show the benefits of ownership reasoning for verifying optimizations.

 Verifying them was quite easy, because it's unsurprising that we can obtain ownership of local variables.

 But what about optimizations on function arguments, such as in the motivating example I showed in the beginning, where the ownership argument is much less clear... par

Key ingredient: a powerful simulation relation 19

{P} es ⪰ et {vs ,vt .Q}

precondition postcondition

source expression
(unoptimized)

target expression
(optimized)

coinductive simulation separation logic
• coinduction • compositional proof rules

• reasoning about UB • ownership reasoning

• flexible stuttering

•

with custom resources

 ...and relies on undefined behavior?
 For that, let's next turn to our logic for data-race based optimizations.

Simuliris: a separation logic-based simulation framework 20

Simuliris: separation logic-based simulation framework

• soundness: fair termination-preserving contextual refinement

• proof rules for verifying optimizations: coinduction, . . .

fully mechanized in the Coq proof assistant

based on the Iris framework

logic for data race
based optimizations

Stacked Borrows for Rust
[Jung et al., 2020] + concurrency

 And, first, let's focus on a very simple example...

Optimizations with external locations: motivating example 21

in separation logic verification: assume ownership in precondition

fn foo(x) {
x ← 41;

x ← 42;

*x

}

fn foo opt(x) {

x ← 42;

42

}

⪰

in compiler optimizations: surrounding code is not cooperative!

fn foo(x) {
x ← 41;

x ← 42;

*x

}

fn foo opt(x) {

x ← 42;

42

}

⪰

 First, let's focus on a very simple example. In contrast to allocating a memory cell x as in the previous examples,the function on the left takes a pointer x as argument, first writes 41, then 42 to it, and then reads from it again. Intuitively, we'd like to eliminate the first store to x, since it is directly overwritten, and replace the load from x with the value 42 that was just written, and this is what the simulation here says.

 Now, in ordinary separation logic verification, we would assume ownership for the function argument x in the precondition: then the caller would have to provide us with that ownership when calling the function.

 But for compiler optimizations we cannot assume the environment, in particular the caller, to be cooperative:

 the caller might also have passed the pointer x to other threads, but should still be able to call the function with argument x, as long as it is a valid program.

 So we cannot just assume full ownership. Instead, we require a public value relation:
 for the variable x, we get two concrete values xs and xt in the source and target, and they should be in some sense similar.

Optimizations with external locations: motivating example 21

in separation logic verification: assume ownership in precondition

fn foo(x) {
x ← 41;

x ← 42;

*x

}

fn foo opt(x) {

x ← 42;

42

}

{x 7→ src z ∗ x 7→ tgt z}

⪰

in compiler optimizations: surrounding code is not cooperative!

fn foo(x) {
x ← 41;

x ← 42;

*x

}

fn foo opt(x) {

x ← 42;

42

}

⪰

 First, let's focus on a very simple example. In contrast to allocating a memory cell x as in the previous examples,the function on the left takes a pointer x as argument, first writes 41, then 42 to it, and then reads from it again. Intuitively, we'd like to eliminate the first store to x, since it is directly overwritten, and replace the load from x with the value 42 that was just written, and this is what the simulation here says.

 Now, in ordinary separation logic verification, we would assume ownership for the function argument x in the precondition: then the caller would have to provide us with that ownership when calling the function.

 But for compiler optimizations we cannot assume the environment, in particular the caller, to be cooperative:

 the caller might also have passed the pointer x to other threads, but should still be able to call the function with argument x, as long as it is a valid program.

 So we cannot just assume full ownership. Instead, we require a public value relation:
 for the variable x, we get two concrete values xs and xt in the source and target, and they should be in some sense similar.

Optimizations with external locations: motivating example 21

in separation logic verification: assume ownership in precondition

fn foo(x) {
x ← 41;

x ← 42;

*x

}

fn foo opt(x) {

x ← 42;

42

}

{x 7→ src z ∗ x 7→ tgt z}

⪰

in compiler optimizations: surrounding code is not cooperative!

fn foo(x) {
x ← 41;

x ← 42;

*x

}

fn foo opt(x) {

x ← 42;

42

}

{??}

⪰

 First, let's focus on a very simple example. In contrast to allocating a memory cell x as in the previous examples,the function on the left takes a pointer x as argument, first writes 41, then 42 to it, and then reads from it again. Intuitively, we'd like to eliminate the first store to x, since it is directly overwritten, and replace the load from x with the value 42 that was just written, and this is what the simulation here says.

 Now, in ordinary separation logic verification, we would assume ownership for the function argument x in the precondition: then the caller would have to provide us with that ownership when calling the function.

 But for compiler optimizations we cannot assume the environment, in particular the caller, to be cooperative:

 the caller might also have passed the pointer x to other threads, but should still be able to call the function with argument x, as long as it is a valid program.

 So we cannot just assume full ownership. Instead, we require a public value relation:
 for the variable x, we get two concrete values xs and xt in the source and target, and they should be in some sense similar.

Optimizations with external locations: motivating example 21

in separation logic verification: assume ownership in precondition

fn foo(x) {
x ← 41;

x ← 42;

*x

}

fn foo opt(x) {

x ← 42;

42

}

{x 7→ src z ∗ x 7→ tgt z}

⪰

in compiler optimizations: surrounding code is not cooperative!

fn foo(x) {
x ← 41;

x ← 42;

*x

}

fn foo opt(x) {

x ← 42;

42

}

{xs ≈ xt}

⪰

 First, let's focus on a very simple example. In contrast to allocating a memory cell x as in the previous examples,the function on the left takes a pointer x as argument, first writes 41, then 42 to it, and then reads from it again. Intuitively, we'd like to eliminate the first store to x, since it is directly overwritten, and replace the load from x with the value 42 that was just written, and this is what the simulation here says.

 Now, in ordinary separation logic verification, we would assume ownership for the function argument x in the precondition: then the caller would have to provide us with that ownership when calling the function.

 But for compiler optimizations we cannot assume the environment, in particular the caller, to be cooperative:

 the caller might also have passed the pointer x to other threads, but should still be able to call the function with argument x, as long as it is a valid program.

 So we cannot just assume full ownership. Instead, we require a public value relation:
 for the variable x, we get two concrete values xs and xt in the source and target, and they should be in some sense similar.

Interaction protocol with unknown code: public value relation 22

contract: similar values vs ≈ vt in source and target

for integers: zs ≈ zt ≜ zs = zt

for memory locations ℓs ≈ ℓt :

contract: stored values are related by ≈
accessible by anyone as long as the contract is observed

How can we use this to justify optimizations?

 For integers, this just means that two integers should be equal. For pointers, we require the contract that the stored values at these locations are in turn related by the value relation, and thus behave similarly. And as long as this contract is upheld, anyone is allowed to access these locations.

 But how can we use this to perform optimizations? In the previous examples, we crucially relied on having ownership to perform the optimization. Well, despite this contract, we should be able to temporarily break the contract and obtain ownership _as long as_ we can ensure that no other thread will notice us doing so.

 The idea, as I already mentioned, is that we can justify that this is the case whenever conflicting accesses would be data races. **So we can obtain ownership...**

Interaction protocol with unknown code: public value relation 22

contract: similar values vs ≈ vt in source and target

for integers: zs ≈ zt ≜ zs = zt

for memory locations ℓs ≈ ℓt :

contract: stored values are related by ≈
accessible by anyone as long as the contract is observed

How can we use this to justify optimizations?

 For integers, this just means that two integers should be equal. For pointers, we require the contract that the stored values at these locations are in turn related by the value relation, and thus behave similarly. And as long as this contract is upheld, anyone is allowed to access these locations.

 But how can we use this to perform optimizations? In the previous examples, we crucially relied on having ownership to perform the optimization. Well, despite this contract, we should be able to temporarily break the contract and obtain ownership _as long as_ we can ensure that no other thread will notice us doing so.

 The idea, as I already mentioned, is that we can justify that this is the case whenever conflicting accesses would be data races. **So we can obtain ownership...**

Interaction protocol with unknown code: public value relation 22

contract: similar values vs ≈ vt in source and target

for integers: zs ≈ zt ≜ zs = zt

for memory locations ℓs ≈ ℓt :

contract: stored values are related by ≈
accessible by anyone as long as the contract is observed

How can we use this to justify optimizations?

Idea: we can break the contract as long as no other
thread will notice

 For integers, this just means that two integers should be equal. For pointers, we require the contract that the stored values at these locations are in turn related by the value relation, and thus behave similarly. And as long as this contract is upheld, anyone is allowed to access these locations.

 But how can we use this to perform optimizations? In the previous examples, we crucially relied on having ownership to perform the optimization. Well, despite this contract, we should be able to temporarily break the contract and obtain ownership _as long as_ we can ensure that no other thread will notice us doing so.

 The idea, as I already mentioned, is that we can justify that this is the case whenever conflicting accesses would be data races. **So we can obtain ownership...**

Ownership acquisition on unsynchronized accesses 23

When the source program does an unsynchronized access
to ℓs ≈ ℓt , we temporarily obtain ownership of ℓs and ℓt .

 ...on unsynchronized accesses since no other thread is allowed to observe this. So, what kind of ownership can we obtain in this way?

 Well, when an unsynchronized write is reachable in our thread, we know that all concurrent accesses would be data races, so we can obtain exclusive ownership.

 Let us try to formulate this formally.

Ownership acquisition on unsynchronized accesses 23

When the source program does an unsynchronized access
to ℓs ≈ ℓt , we temporarily obtain ownership of ℓs and ℓt .

An unsynchronized write ℓs ← is reachable:
⇒ all concurrent accesses would be conflicting
⇒ obtain exclusive ownership ℓs 7→ srcvs , ℓt 7→ tgtvt

 ...on unsynchronized accesses since no other thread is allowed to observe this. So, what kind of ownership can we obtain in this way?

 Well, when an unsynchronized write is reachable in our thread, we know that all concurrent accesses would be data races, so we can obtain exclusive ownership.

 Let us try to formulate this formally.

Acquiring ownership on writes, formally: first attempt 24

∀vs ,vt . {ℓs 7→ srcvs∗ℓt 7→ tgtvt ∗vs ≈ vt ∗ P}K [ℓs ← v0] ⪰ et {Φ}

{ℓs ≈ ℓt ∗ P}K [ℓs ← v0] ⪰ et {Φ}

unsynchronized write
in the source

public locations

obtain ownership

 Assume that we currently need to prove a simulation, written in the conclusion of the inference rule, where the source expression contains an unsynchronized write to a public location ls that will be executed next.

 Then, we can transform the proof goal to a simulation where we additionally can assume ownership of ls and lt, pointing to related values vs and vt.

 Let's try to apply this to our example...

Acquiring ownership on writes, formally: first attempt 24

∀vs ,vt . {ℓs 7→ srcvs∗ℓt 7→ tgtvt ∗vs ≈ vt ∗ P}K [ℓs ← v0] ⪰ et {Φ}
{ℓs ≈ ℓt ∗ P}K [ℓs ← v0] ⪰ et {Φ}

unsynchronized write
in the source

public locations

obtain ownership

 Assume that we currently need to prove a simulation, written in the conclusion of the inference rule, where the source expression contains an unsynchronized write to a public location ls that will be executed next.

 Then, we can transform the proof goal to a simulation where we additionally can assume ownership of ls and lt, pointing to related values vs and vt.

 Let's try to apply this to our example...

Proving the optimization with ownership 25

xs ← 41;

xs ← 42;

*xs

xt ← 42;

42

{xs ≈ xt}

{xs 7→ src z ∗ xt 7→ tgt z}
{xs 7→ src z ′ ∗ xt 7→ tgt z ′ ∗ xs 7→ src z ∗ xt 7→ tgt z}

{xs 7→ src 41 ∗ xt 7→ tgt z }

⪰

{xs 7→ src 42 ∗ xt 7→ tgt 42}

{vs ,vt .vs = vt = 42 ∗ xs ≈ xt}

What prevents us from acquiring ownership multiple times?

 We start out assuming that xs and xt are in the value relation.

 We know that the next instruction in the source is an unsynchronized write, so we can apply the rule to obtain ownership.

 Then, we can use this ownership to do the first write in the source. At this point, note that the two locations xs and xt point to different values, so we've temporarily broken the contract. Next, we do the writes in source and target, bringing xs and xt in sync again. And finally we can justify that the load in the source will also produce the value 42, since we still have ownership of x.

 So, this all looks well. But there is something odd here:

Proving the optimization with ownership 25

xs ← 41;

xs ← 42;

*xs

xt ← 42;

42

{xs ≈ xt}
{xs 7→ src z ∗ xt 7→ tgt z}

{xs 7→ src z ′ ∗ xt 7→ tgt z ′ ∗ xs 7→ src z ∗ xt 7→ tgt z}

{xs 7→ src 41 ∗ xt 7→ tgt z }

⪰

{xs 7→ src 42 ∗ xt 7→ tgt 42}

{vs ,vt .vs = vt = 42 ∗ xs ≈ xt}

What prevents us from acquiring ownership multiple times?

 We start out assuming that xs and xt are in the value relation.

 We know that the next instruction in the source is an unsynchronized write, so we can apply the rule to obtain ownership.

 Then, we can use this ownership to do the first write in the source. At this point, note that the two locations xs and xt point to different values, so we've temporarily broken the contract. Next, we do the writes in source and target, bringing xs and xt in sync again. And finally we can justify that the load in the source will also produce the value 42, since we still have ownership of x.

 So, this all looks well. But there is something odd here:

Proving the optimization with ownership 25

xs ← 41;

xs ← 42;

*xs

xt ← 42;

42

{xs ≈ xt}
{xs 7→ src z ∗ xt 7→ tgt z}

{xs 7→ src z ′ ∗ xt 7→ tgt z ′ ∗ xs 7→ src z ∗ xt 7→ tgt z}

{xs 7→ src 41 ∗ xt 7→ tgt z }
⪰

{xs 7→ src 42 ∗ xt 7→ tgt 42}

{vs ,vt .vs = vt = 42 ∗ xs ≈ xt}

What prevents us from acquiring ownership multiple times?

contract temporarily broken

 We start out assuming that xs and xt are in the value relation.

 We know that the next instruction in the source is an unsynchronized write, so we can apply the rule to obtain ownership.

 Then, we can use this ownership to do the first write in the source. At this point, note that the two locations xs and xt point to different values, so we've temporarily broken the contract. Next, we do the writes in source and target, bringing xs and xt in sync again. And finally we can justify that the load in the source will also produce the value 42, since we still have ownership of x.

 So, this all looks well. But there is something odd here:

Proving the optimization with ownership 25

xs ← 41;

xs ← 42;

*xs

xt ← 42;

42

{xs ≈ xt}
{xs 7→ src z ∗ xt 7→ tgt z}

{xs 7→ src z ′ ∗ xt 7→ tgt z ′ ∗ xs 7→ src z ∗ xt 7→ tgt z}

{xs 7→ src 41 ∗ xt 7→ tgt z }
⪰

{xs 7→ src 42 ∗ xt 7→ tgt 42}

{vs ,vt .vs = vt = 42 ∗ xs ≈ xt}

What prevents us from acquiring ownership multiple times?

 We start out assuming that xs and xt are in the value relation.

 We know that the next instruction in the source is an unsynchronized write, so we can apply the rule to obtain ownership.

 Then, we can use this ownership to do the first write in the source. At this point, note that the two locations xs and xt point to different values, so we've temporarily broken the contract. Next, we do the writes in source and target, bringing xs and xt in sync again. And finally we can justify that the load in the source will also produce the value 42, since we still have ownership of x.

 So, this all looks well. But there is something odd here:

Proving the optimization with ownership 25

xs ← 41;

xs ← 42;

*xs

xt ← 42;

42

{xs ≈ xt}
{xs 7→ src z ∗ xt 7→ tgt z}

{xs 7→ src z ′ ∗ xt 7→ tgt z ′ ∗ xs 7→ src z ∗ xt 7→ tgt z}

{xs 7→ src 41 ∗ xt 7→ tgt z }
⪰

{xs 7→ src 42 ∗ xt 7→ tgt 42}

{vs ,vt .vs = vt = 42 ∗ xs ≈ xt}

What prevents us from acquiring ownership multiple times?

 We start out assuming that xs and xt are in the value relation.

 We know that the next instruction in the source is an unsynchronized write, so we can apply the rule to obtain ownership.

 Then, we can use this ownership to do the first write in the source. At this point, note that the two locations xs and xt point to different values, so we've temporarily broken the contract. Next, we do the writes in source and target, bringing xs and xt in sync again. And finally we can justify that the load in the source will also produce the value 42, since we still have ownership of x.

 So, this all looks well. But there is something odd here:

Proving the optimization with ownership 25

xs ← 41;

xs ← 42;

*xs

xt ← 42;

42

{xs ≈ xt}
{xs 7→ src z ∗ xt 7→ tgt z}

{xs 7→ src z ′ ∗ xt 7→ tgt z ′ ∗ xs 7→ src z ∗ xt 7→ tgt z}

{xs 7→ src 41 ∗ xt 7→ tgt z }
⪰

{xs 7→ src 42 ∗ xt 7→ tgt 42}

{vs ,vt .vs = vt = 42 ∗ xs ≈ xt}

What prevents us from acquiring ownership multiple times?

 what prevents us from just applying the rule a second time to gain ownership again? Clearly, that is unsound, as the points-to is supposed to be exclusive. The rule I just showed you does not suffice yet.

 To fix this problem, we should track the locations for which the current thread has obtained ownership.

Proving the optimization with ownership 25

xs ← 41;

xs ← 42;

*xs

xt ← 42;

42

{xs ≈ xt}
{xs 7→ src z ∗ xt 7→ tgt z}

{xs 7→ src z ′ ∗ xt 7→ tgt z ′ ∗ xs 7→ src z ∗ xt 7→ tgt z}

{xs 7→ src 41 ∗ xt 7→ tgt z }
⪰

{xs 7→ src 42 ∗ xt 7→ tgt 42}

{vs ,vt .vs = vt = 42 ∗ xs ≈ xt}

What prevents us from acquiring ownership multiple times?

The acquisition rule is unsound! /

 what prevents us from just applying the rule a second time to gain ownership again? Clearly, that is unsound, as the points-to is supposed to be exclusive. The rule I just showed you does not suffice yet.

 To fix this problem, we should track the locations for which the current thread has obtained ownership.

Solution: avoiding duplication of ownership 26

Track locations exploited by the current thread π: exploitπ C

ℓs /∈ C

∀vt ,vs . {ℓs 7→ srcvs∗ℓt 7→ tgtvt ∗vs ≈ vt ∗

exploitπ (C , ℓs 7→ W) ∗

P} K [ℓs ← v0] ⪰π et {Φ}
{ℓs ≈ ℓt ∗

exploitπ C ∗

P} K [ℓs ← v0] ⪰π et {Φ}

unsynchronized write
in the source

public locations

obtain ownership

remember ℓs

track exploited locations
for current thread

exploit once

 Concretely, we extend our simulation relation with a current thread id pi, and then add an exploit assertion that does this tracking.

 For the rule to be applicable, we should be sure that we have not obtained ownership for the source location ls yet. And in the new goal, we remember in the set of exploited locations that ls was exploited through an unsynchronized write.

 With that, we can actually validate the rule! And I should note that we use Simuliris's flexible ghost state mechanism inherited from Iris to define this assertion.

 Now, we can actually generalize this rule a bit more...

Solution: avoiding duplication of ownership 26

Track locations exploited by the current thread π: exploitπ C

ℓs /∈ C
∀vt ,vs . {ℓs 7→ srcvs∗ℓt 7→ tgtvt ∗vs ≈ vt ∗ exploitπ (C , ℓs 7→ W) ∗ P} K [ℓs ← v0] ⪰π et {Φ}

{ℓs ≈ ℓt ∗ exploitπ C ∗ P} K [ℓs ← v0] ⪰π et {Φ}

unsynchronized write
in the source

public locations

obtain ownership remember ℓs

track exploited locations
for current thread

exploit once

 Concretely, we extend our simulation relation with a current thread id pi, and then add an exploit assertion that does this tracking.

 For the rule to be applicable, we should be sure that we have not obtained ownership for the source location ls yet. And in the new goal, we remember in the set of exploited locations that ls was exploited through an unsynchronized write.

 With that, we can actually validate the rule! And I should note that we use Simuliris's flexible ghost state mechanism inherited from Iris to define this assertion.

 Now, we can actually generalize this rule a bit more...

Solution: avoiding duplication of ownership 26

Track locations exploited by the current thread π: exploitπ C

defined with custom
Iris ghost state

ℓs /∈ C
∀vt ,vs . {ℓs 7→ srcvs∗ℓt 7→ tgtvt ∗vs ≈ vt ∗ exploitπ (C , ℓs 7→ W) ∗ P} K [ℓs ← v0] ⪰π et {Φ}

{ℓs ≈ ℓt ∗ exploitπ C ∗ P} K [ℓs ← v0] ⪰π et {Φ}

unsynchronized write
in the source

public locations

obtain ownership remember ℓs

track exploited locations
for current thread

exploit once

 Concretely, we extend our simulation relation with a current thread id pi, and then add an exploit assertion that does this tracking.

 For the rule to be applicable, we should be sure that we have not obtained ownership for the source location ls yet. And in the new goal, we remember in the set of exploited locations that ls was exploited through an unsynchronized write.

 With that, we can actually validate the rule! And I should note that we use Simuliris's flexible ghost state mechanism inherited from Iris to define this assertion.

 Now, we can actually generalize this rule a bit more...

Solution: avoiding duplication of ownership 26

Track locations exploited by the current thread π: exploitπ C

defined with custom
Iris ghost state

ℓs /∈ C
∀vt ,vs . {ℓs 7→ srcvs∗ℓt 7→ tgtvt ∗vs ≈ vt ∗ exploitπ (C , ℓs 7→ W) ∗ P} K [ℓs ← v0] ⪰π et {Φ}

{ℓs ≈ ℓt ∗ exploitπ C ∗ P} K [ℓs ← v0] ⪰π et {Φ}

unsynchronized write
in the source

public locations

obtain ownership remember ℓs

track exploited locations
for current thread

exploit once

generalization: unsynchronized access just needs to be
reachable (not the directly next instruction)

 ...to be also applicable if the unsynchronized write is just reachable, but not necessarily the next instruction.

 And a similar rule also holds for unsynchronized reads, with the difference being that we only obtain fractional read-only ownership instead of full ownership.

 There's one question that remains: do we ever have to give up that ownership again? And the answer is yes: Other threads should not be prohibited forever from using these memory locations.

Solution: avoiding duplication of ownership 26

Track locations exploited by the current thread π: exploitπ C

defined with custom
Iris ghost state

ℓs /∈ C
∀vt ,vs . {ℓs 7→ srcvs∗ℓt 7→ tgtvt ∗vs ≈ vt ∗ exploitπ (C , ℓs 7→ W) ∗ P} K [ℓs ← v0] ⪰π et {Φ}

{ℓs ≈ ℓt ∗ exploitπ C ∗ P} K [ℓs ← v0] ⪰π et {Φ}

unsynchronized write
in the source

public locations

obtain ownership remember ℓs

track exploited locations
for current thread

exploit once

generalization: unsynchronized access just needs to be
reachable (not the directly next instruction)

rule for reads: obtain fractional (read-only) ownership

 ...to be also applicable if the unsynchronized write is just reachable, but not necessarily the next instruction.

 And a similar rule also holds for unsynchronized reads, with the difference being that we only obtain fractional read-only ownership instead of full ownership.

 There's one question that remains: do we ever have to give up that ownership again? And the answer is yes: Other threads should not be prohibited forever from using these memory locations.

Maintaining & releasing ownership on synchronization 27

We can maintain ownership until the thread
observably synchronizes.

action (potentially) visible
by other threads

Example: rule for atomic writes

{ℓs ≈ ℓt ∗vs ≈ vt ∗ exploitπ ∅}
ℓs ←sc vs ⪰π ℓt ←sc vt

{v ′s ,v ′t . exploitπ ∅}

 Effectively, we can maintain ownership until our thread does an action that is observable by other threads. This includes forking, calling unknown code, or doing a synchronizing write.

 For instance, the rule for sequentially consistent writes requires that the exploit set is empty in its precondition.

 So we have another rule for giving up ownership and removing the location from the exploit set again, which you can find in our paper.

 And with that, we have all the ingredients in hand...

Maintaining & releasing ownership on synchronization 27

We can maintain ownership until the thread
observably synchronizes.

action (potentially) visible
by other threads

Example: rule for atomic writes

{ℓs ≈ ℓt ∗vs ≈ vt ∗ exploitπ ∅}
ℓs ←sc vs ⪰π ℓt ←sc vt

{v ′s ,v ′t . exploitπ ∅}

 Effectively, we can maintain ownership until our thread does an action that is observable by other threads. This includes forking, calling unknown code, or doing a synchronizing write.

 For instance, the rule for sequentially consistent writes requires that the exploit set is empty in its precondition.

 So we have another rule for giving up ownership and removing the location from the exploit set again, which you can find in our paper.

 And with that, we have all the ingredients in hand...

Verifying the motivating example 28

int i = 0; int sum = *y;

while (i != *x) {

i += 1; sum += *y;

}

return sum;

int n = *x;

int m = *y;

int i = 0; int sum = m;

while (i != n) {

i += 1; sum += m;

}

return sum;

1. Obtain ownership of x and y due to unsynchronized reads
in the source

2. Initiate coinduction

 And with that, we have all the ingredients in hand to verify a translation of the motivating example into our language.

 We first obtain partial ownership of x and y since unsynchronized reads from them are reachable.

 Then, we initiate coinduction for the loops, using the ownership we just obtained for the coinduction hypothesis.

 And with that, the verification is straightforward, using the ownership we have obtained. Finally, we return the ownership after the loop.

Verifying the motivating example 28

let (m, n) := (*y, *x) in

let (i, sum) := (new(0), new(m)) in

while *i ̸= n do

i ← *i + 1;

sum← *sum + m

od; *sum

let (i, sum) := (new(0), new(*y)) in

while *i ̸= *x do

i ← *i + 1;

sum← *sum + *y

od; *sum

{xs ≈ xt ∗ ys ≈ yt}

⪰π

{vs ,vt .vs ≈ vt}

1. Obtain ownership of x and y due to unsynchronized reads
in the source

2. Initiate coinduction

 And with that, we have all the ingredients in hand to verify a translation of the motivating example into our language.

 We first obtain partial ownership of x and y since unsynchronized reads from them are reachable.

 Then, we initiate coinduction for the loops, using the ownership we just obtained for the coinduction hypothesis.

 And with that, the verification is straightforward, using the ownership we have obtained. Finally, we return the ownership after the loop.

Simuliris: a separation logic-based simulation framework 29

Simuliris: separation logic-based simulation framework

• soundness: fair termination-preserving contextual refinement

• proof rules for verifying optimizations: coinduction, . . .

fully mechanized in the Coq proof assistant

based on the Iris framework

logic for data race
based optimizations

Stacked Borrows for Rust
[Jung et al., 2020] + concurrency

 So, I hope I've convinced you of the usefulness of Simuliris by now. But what are we even proving when showing a simulation in Simuliris?

Soundness: fair termination-preserving contextual refinement 30

fair termination-preserving contextual refinement

can diverge under fair scheduling =⇒ can diverge under fair scheduling

optimized expression unoptimized expression

Core soundness proof: proved once and for all!

 Our soundness result establishes a so-called fair termination-preserving contextual refinement. Let me briefly explain what this means.

 First of all, if the optimized program can terminate with a result, then also the unoptimized program should be able to produce a similar result -- this is a simple result refinement.

 Secondly, optimizations should preserve termination, so the optimized program should only be able to diverge if also the unoptimized program can diverge.

 Importantly, we have verified this under the assumption of fair scheduling. We do not use this to gain new proof rules, but rather because we think that it gives a more realistic soundness result. While fair termination-preservation has incomparable strength to plain termination-preservation, realistic schedulers are fair and don't just starve some threads, so an unfair diverging schedule in the unoptimized program should not allow the compiler to introduce non-termination even under a fair scheduler.

Soundness: fair termination-preserving contextual refinement 30

fair termination-preserving contextual refinement

=⇒can terminate with result can terminate with similar result

can diverge under fair scheduling =⇒ can diverge under fair scheduling

optimized expression unoptimized expression

Core soundness proof: proved once and for all!

 Our soundness result establishes a so-called fair termination-preserving contextual refinement. Let me briefly explain what this means.

 First of all, if the optimized program can terminate with a result, then also the unoptimized program should be able to produce a similar result -- this is a simple result refinement.

 Secondly, optimizations should preserve termination, so the optimized program should only be able to diverge if also the unoptimized program can diverge.

 Importantly, we have verified this under the assumption of fair scheduling. We do not use this to gain new proof rules, but rather because we think that it gives a more realistic soundness result. While fair termination-preservation has incomparable strength to plain termination-preservation, realistic schedulers are fair and don't just starve some threads, so an unfair diverging schedule in the unoptimized program should not allow the compiler to introduce non-termination even under a fair scheduler.

Soundness: fair termination-preserving contextual refinement 30

fair termination-preserving contextual refinement

=⇒can terminate with result can terminate with similar result

can diverge under fair scheduling =⇒ can diverge under fair scheduling

optimized expression unoptimized expression

Core soundness proof: proved once and for all!

 Our soundness result establishes a so-called fair termination-preserving contextual refinement. Let me briefly explain what this means.

 First of all, if the optimized program can terminate with a result, then also the unoptimized program should be able to produce a similar result -- this is a simple result refinement.

 Secondly, optimizations should preserve termination, so the optimized program should only be able to diverge if also the unoptimized program can diverge.

 Importantly, we have verified this under the assumption of fair scheduling. We do not use this to gain new proof rules, but rather because we think that it gives a more realistic soundness result. While fair termination-preservation has incomparable strength to plain termination-preservation, realistic schedulers are fair and don't just starve some threads, so an unfair diverging schedule in the unoptimized program should not allow the compiler to introduce non-termination even under a fair scheduler.

Soundness: fair termination-preserving contextual refinement 30

fair termination-preserving contextual refinement

=⇒can terminate with result can terminate with similar result

can diverge under fair scheduling =⇒ can diverge under fair scheduling

optimized expression unoptimized expression

for any surrounding program, assuming no UB in unoptimized program

Core soundness proof: proved once and for all!

 And finally, all of this should hold for any surrounding program under the assumption that the source program has no UB.

 Let me note that this soundness proof was quite challenging, in particular due to the fairness requirement we impose and due to the flexible stuttering allowed by our simulation.

 Luckily, we have proved this once and forall, so that all domain-specific logics we define using Simuliris can just reuse the hard core of our soundness theorem.

Soundness: fair termination-preserving contextual refinement 30

fair termination-preserving contextual refinement

=⇒can terminate with result can terminate with similar result

can diverge under fair scheduling =⇒ can diverge under fair scheduling

optimized expression unoptimized expression

for any surrounding program, assuming no UB in unoptimized program

Core soundness proof: proved once and for all!

 And finally, all of this should hold for any surrounding program under the assumption that the source program has no UB.

 Let me note that this soundness proof was quite challenging, in particular due to the fairness requirement we impose and due to the flexible stuttering allowed by our simulation.

 Luckily, we have proved this once and forall, so that all domain-specific logics we define using Simuliris can just reuse the hard core of our soundness theorem.

More in the paper . . . 31

Simuliris: separation logic-based simulation framework

• soundness: fair termination-preserving contextual refinement

• proof rules for verifying optimizations: coinduction, . . .

fully mechanized in the Coq proof assistant

based on the Iris framework

logic for data race
based optimizations

Stacked Borrows for Rust
[Jung et al., 2020] + concurrency

https://gitlab.mpi-sws.org/iris/simuliris

Thanks for listening!

 To close this talk, let me mention some of the other things you can find in our paper.

 First, you can find more details about our underlying logic and an overview of the challenging soundness proof.

 As for our data race logic, we present more examples of what our ownership approach can handle and we explain how we have verified its soundness.

 And for our Stacked Borrows logic, you can find an overview over how we extended the optimization proofs from the original paper to concurrency and added additional reasoning principles.

https://gitlab.mpi-sws.org/iris/simuliris

Simuliris: a separation logic-based simulation framework 32

Simuliris: separation logic-based simulation framework

• soundness: fair termination-preserving contextual refinement

• proof rules for verifying optimizations: coinduction, . . .

fully mechanized in the Coq proof assistant

based on the Iris framework

logic for data race
based optimizations

Stacked Borrows for Rust
[Jung et al., 2020] + concurrency

https://gitlab.mpi-sws.org/iris/simuliris

Thanks for listening!

 With that, I'd like to finish this talk and I'm happy to take any questions.

https://gitlab.mpi-sws.org/iris/simuliris

Generalization: reachability of an unsynchronized write 33

The argument even works if the write is just
(unconditionally) reachable!

ℓs /∈ C es→∗
? K [ℓs ← v0]

∀vt ,vs . {ℓs 7→ srcvs∗ℓt 7→ tgtvt ∗vs ≈ vt ∗ exploitπ (C , ℓs 7→ W) ∗ P} es ⪰π et {Φ}
{ℓs ≈ ℓt ∗ exploitπ C ∗ P} es ⪰π et {Φ}

reach unsynchronized write
in the source

public locations

obtain ownership

track exploited locations
for current thread

exploit once

A similar rule holds for reads!

 Now, we can actually generalize this rule a bit: instead of requiring the unsynchronized write to be the directly next instruction, it suffices for it to be just unconditionally reachable.

 Intuitively, this works because there will still be an interleaving which has a datarace with any conflicting access by other threads, just by advancing the current thread to the write first.

 As you would expect, a similar rule holds for unsynchronized reads.

Generalization: reachability of an unsynchronized write 33

The argument even works if the write is just
(unconditionally) reachable!

ℓs /∈ C es→∗
? K [ℓs ← v0]

∀vt ,vs . {ℓs 7→ srcvs∗ℓt 7→ tgtvt ∗vs ≈ vt ∗ exploitπ (C , ℓs 7→ W) ∗ P} es ⪰π et {Φ}
{ℓs ≈ ℓt ∗ exploitπ C ∗ P} es ⪰π et {Φ}

reach unsynchronized write
in the source

public locations

obtain ownership

track exploited locations
for current thread

exploit once

A similar rule holds for reads!

 Now, we can actually generalize this rule a bit: instead of requiring the unsynchronized write to be the directly next instruction, it suffices for it to be just unconditionally reachable.

 Intuitively, this works because there will still be an interleaving which has a datarace with any conflicting access by other threads, just by advancing the current thread to the write first.

 As you would expect, a similar rule holds for unsynchronized reads.

Ownership acquisition on unsynchronized accesses 34

When the source program does an unsynchronized access
to ℓs ≈ ℓt , we temporarily obtain ownership of ℓs and ℓt .

An unsynchronized read *ℓs is reachable:
⇒ concurrent write accesses would be conflicting
⇒ obtain fractional ownership ℓs 7→ src

q vs , ℓt 7→ tgt

q vt

 When we can reach an unsynchronized read in the source, all write accesses by other threads would be data races, while read accesses are allowed, so we only obtain fractional read-only ownership instead of full ownership.

 One question remains: Do we ever have to give up that ownership again? And the answer is yes: Other threads should not be prohibited forever from using these memory locations.

Ownership acquisition on unsynchronized accesses 34

When the source program does an unsynchronized access
to ℓs ≈ ℓt , we temporarily obtain ownership of ℓs and ℓt .

An unsynchronized read *ℓs is reachable:
⇒ concurrent write accesses would be conflicting
⇒ obtain fractional ownership ℓs 7→ src

q vs , ℓt 7→ tgt

q vt

Do we ever have to give up ownership again?

 When we can reach an unsynchronized read in the source, all write accesses by other threads would be data races, while read accesses are allowed, so we only obtain fractional read-only ownership instead of full ownership.

 One question remains: Do we ever have to give up that ownership again? And the answer is yes: Other threads should not be prohibited forever from using these memory locations.

Rule for unsynchronized reads 35

ℓs /∈ C es→∗
? K [*ℓs]

∀vt ,vs , q.
{
ℓs 7→ src

q vs∗ℓt 7→ tgt

q vt ∗vs ≈ vt ∗ exploitπ (C , ℓs 7→ R(q)) ∗ P
}
es ⪰π et {Φ}

{ℓs ≈ ℓt ∗ exploitπ C ∗ P} es ⪰π et {Φ}

reach unsynchronized read
in the source

public locations

obtain ownership

track exploited locations
for current thread

exploit once

Releasing ownership 36

C (ℓs) = W {exploitπ (C \ ℓs) ∗ P} es ⪰π et {Φ}
{ℓs 7→ srcvs ∗ ℓt 7→ tgtvt ∗vs ≈ vt ∗ ℓs ≈ ℓt ∗ exploitπ C ∗ P} es ⪰π et {Φ}

Fair termination-preserving refinement 37

The compiler should not be allowed to perform the following
transformation:

while !lock(l) do

()

od;

unlock(l)

if lock(l)

then unlock(l)

else ()

while true do

()

od

if lock(l)

then unlock(l)

else ()
⪰

The source program only has diverging executions under an
unfair scheduler, while the target program diverges even

under a fair scheduler.

In the paper: proofs of optimizations relying on data races 38

optimization hoisting reads out of a while loop

optimization eliminating reads and writes over unknown read-only
code

eliminations and reorderings using data races by [Ševč́ık, 2009]

let (n,m) := (*xt , *yt) in

let (i, sum) := (new(0), new(m)) in

while *i ̸= n do

i ← *i + 1; sum← *sum + m

od; *sum

let (i, sum) := (new(0), new(*ys)) in

while *i ̸= *xs do

i ← *i + 1; sum← *sum + *ys
od; *sum

⪰π

Requires reasoning about potentially infinite loops!

You can also find a number of examples we have verified for data races....

In the paper: proofs of optimizations relying on data races 38

optimization hoisting reads out of a while loop

optimization eliminating reads and writes over unknown read-only
code

eliminations and reorderings using data races by [Ševč́ık, 2009]

xt ← 42;

eRO;

42

xs ← 42;

eRO;

*xs

⪰π

You can also find a number of examples we have verified for data races....

In the paper: proofs of optimizations relying on data races 38

optimization hoisting reads out of a while loop

optimization eliminating reads and writes over unknown read-only
code

eliminations and reorderings using data races by [Ševč́ık, 2009]

xt ← 42;

*scyt ;

42

xs ← 42;

*scys ;

*xs

⪰π

Not supported by CAS/Concurrent CompCert!

You can also find a number of examples we have verified for data races....

In the paper: proofs of optimizations relying on data races 38

optimization hoisting reads out of a while loop

optimization eliminating reads and writes over unknown read-only
code

eliminations and reorderings using data races by [Ševč́ık, 2009]

You can also find a number of examples we have verified for data races....

In the paper: new optimization proofs for Stacked Borrows 39

Stacked Borrows: an experimental aliasing model for Rust

determines which kinds of memory accesses are allowed

enables powerful optimizations

Finally, you can also find our second case study there, Stacked Borrows.

Briefly, Stacked Borrows is an experimental aliasing model for Rust by Jung et al., that essentially aims to give a formal semantics as to which aliasing memory accesses are allowed, to leverage Rust's safety guarantees for quite strong compiler optimizations that are not possible to do in traditional systems programming languages like C.

Jung et al. have already showed correctness of some compiler optimizations using Stacked Borrows previously, but in a significantly less expressive framework than Simuliris.

We have reimplemented their logic in Simuliris, and used its features to extend their optimizations. First of all, by showing that all of their optimizations, with a slight change to the SB semantics, are also correct in concurrent environments.

And secondly, to develop a new optimization involving whilel loops, where we show that we can hoist a read access.

In the paper: new optimization proofs for Stacked Borrows 39

Stacked Borrows: an experimental aliasing model for Rust

determines which kinds of memory accesses are allowed

enables powerful optimizations

Using Simuliris, we have. . .

extended the optimization proofs by [Jung et al., 2020] to concurrent
environments

developed a new proof of an optimization involving loops:

let r = *x;

while f(r) {

g();

}

// x: &i32, g: &Fn() -> (),

// f: &Fn(i32) -> bool

while f(*x) {

g();

}

⪰

Finally, you can also find our second case study there, Stacked Borrows.

Briefly, Stacked Borrows is an experimental aliasing model for Rust by Jung et al., that essentially aims to give a formal semantics as to which aliasing memory accesses are allowed, to leverage Rust's safety guarantees for quite strong compiler optimizations that are not possible to do in traditional systems programming languages like C.

Jung et al. have already showed correctness of some compiler optimizations using Stacked Borrows previously, but in a significantly less expressive framework than Simuliris.

We have reimplemented their logic in Simuliris, and used its features to extend their optimizations. First of all, by showing that all of their optimizations, with a slight change to the SB semantics, are also correct in concurrent environments.

And secondly, to develop a new optimization involving whilel loops, where we show that we can hoist a read access.

