
Lennard Gäher, Michael Sammler, Ralf Jung, Robbert Krebbers, Derek Dreyer

Rust Verification Workshop 2023, Paris

23.04.2023

RefinedRust
Towards high-assurance verification

of unsafe Rust programs

with generous funding from Amazon AWS

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

EXISTING RUST VERIFICATION TOOLS
We want to functionally verify Rust programs!

2

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

EXISTING RUST VERIFICATION TOOLS
We want to functionally verify Rust programs!

2

Prusti [Astrauskas et al. 2019]

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

EXISTING RUST VERIFICATION TOOLS
We want to functionally verify Rust programs!

2

Prusti [Astrauskas et al. 2019]

RustHorn [Matsushita et al. 2020]

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

EXISTING RUST VERIFICATION TOOLS
We want to functionally verify Rust programs!

2

Creusot [Denis et al. 2022]

Prusti [Astrauskas et al. 2019]

RustHorn [Matsushita et al. 2020]

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

EXISTING RUST VERIFICATION TOOLS
We want to functionally verify Rust programs!

2

Creusot [Denis et al. 2022]

Prusti [Astrauskas et al. 2019]

RustHorn [Matsushita et al. 2020]

Aeneas [Ho et al. 2022]

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

EXISTING RUST VERIFICATION TOOLS
We want to functionally verify Rust programs!

2

Creusot [Denis et al. 2022]

Prusti [Astrauskas et al. 2019]

RustHorn [Matsushita et al. 2020]

Flux [Lehmann et al. 2023]

Aeneas [Ho et al. 2022]

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

EXISTING RUST VERIFICATION TOOLS
We want to functionally verify Rust programs!

2

Creusot [Denis et al. 2022]

Prusti [Astrauskas et al. 2019]

RustHorn [Matsushita et al. 2020]

Flux [Lehmann et al. 2023]

Aeneas [Ho et al. 2022]

But what about
unsafe Rust?

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

HOW DO WE VERIFY UNSAFE CODE?

RustBelt [Jung et al. 2019] /
RustHornBelt [Matsushita et al. 2022]

3

Kani [Kani Developers 2022]

➔ a semantic model for Rust

➔ used to prove safety/functional

correctness of several of Rust’s core
libraries

➔ a model checker for Rust

➔ scalable automatic verification

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

MOST STANDARD LIBRARY CODE RELIES ON UNSAFE…

4

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

MOST STANDARD LIBRARY CODE RELIES ON UNSAFE…

4

pub fn push(&mut self, value: T) {
 // This will panic or abort if we would allocate > isize::MAX bytes
 // or if the length increment would overflow for zero-sized types.
 if self.len == self.buf.capacity() {
 self.buf.reserve_for_push(self.len);
 }
 unsafe {
 let end = self.as_mut_ptr().add(self.len);
 ptr::write(end, value);
 self.len += 1;
 }
 }

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

MOST STANDARD LIBRARY CODE RELIES ON UNSAFE…

4

pub fn push(&mut self, value: T) {
 // This will panic or abort if we would allocate > isize::MAX bytes
 // or if the length increment would overflow for zero-sized types.
 if self.len == self.buf.capacity() {
 self.buf.reserve_for_push(self.len);
 }
 unsafe {
 let end = self.as_mut_ptr().add(self.len);
 ptr::write(end, value);
 self.len += 1;
 }
 }

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

MOST STANDARD LIBRARY CODE RELIES ON UNSAFE…

4

pub fn push(&mut self, value: T) {
 // This will panic or abort if we would allocate > isize::MAX bytes
 // or if the length increment would overflow for zero-sized types.
 if self.len == self.buf.capacity() {
 self.buf.reserve_for_push(self.len);
 }
 unsafe {
 let end = self.as_mut_ptr().add(self.len);
 ptr::write(end, value);
 self.len += 1;
 }
 }

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

MOST STANDARD LIBRARY CODE RELIES ON UNSAFE…

4

pub fn push(&mut self, value: T) {
 // This will panic or abort if we would allocate > isize::MAX bytes
 // or if the length increment would overflow for zero-sized types.
 if self.len == self.buf.capacity() {
 self.buf.reserve_for_push(self.len);
 }
 unsafe {
 let end = self.as_mut_ptr().add(self.len);
 ptr::write(end, value);
 self.len += 1;
 }
 }

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

MOST STANDARD LIBRARY CODE RELIES ON UNSAFE…

4

pub fn push(&mut self, value: T) {
 // This will panic or abort if we would allocate > isize::MAX bytes
 // or if the length increment would overflow for zero-sized types.
 if self.len == self.buf.capacity() {
 self.buf.reserve_for_push(self.len);
 }
 unsafe {
 let end = self.as_mut_ptr().add(self.len);
 ptr::write(end, value);
 self.len += 1;
 }
 }

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

MOST STANDARD LIBRARY CODE RELIES ON UNSAFE…

4

pub fn push(&mut self, value: T) {
 // This will panic or abort if we would allocate > isize::MAX bytes
 // or if the length increment would overflow for zero-sized types.
 if self.len == self.buf.capacity() {
 self.buf.reserve_for_push(self.len);
 }
 unsafe {
 let end = self.as_mut_ptr().add(self.len);
 ptr::write(end, value);
 self.len += 1;
 }
 }

fully manual verification ☹

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

MOST STANDARD LIBRARY CODE RELIES ON UNSAFE…

4

pub fn push(&mut self, value: T) {
 // This will panic or abort if we would allocate > isize::MAX bytes
 // or if the length increment would overflow for zero-sized types.
 if self.len == self.buf.capacity() {
 self.buf.reserve_for_push(self.len);
 }
 unsafe {
 let end = self.as_mut_ptr().add(self.len);
 ptr::write(end, value);
 self.len += 1;
 }
 }

fully manual verification ☹

no compositional specifications ☹

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

MOST STANDARD LIBRARY CODE RELIES ON UNSAFE…

4

pub fn push(&mut self, value: T) {
 // This will panic or abort if we would allocate > isize::MAX bytes
 // or if the length increment would overflow for zero-sized types.
 if self.len == self.buf.capacity() {
 self.buf.reserve_for_push(self.len);
 }
 unsafe {
 let end = self.as_mut_ptr().add(self.len);
 ptr::write(end, value);
 self.len += 1;
 }
 }Can we get a compositional and automated verification tool for unsafe Rust?

fully manual verification ☹

no compositional specifications ☹

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

A PRACTICAL VERIFICATION TOOL FOR UNSAFE RUST?

We want a deductive verification tool with:

5

✓ support for common unsafe operations

✓ a reasonable degree of automation

✓ high-assurance foundational verification (e.g. in Coq)

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

TURNING RUSTBELT INTO A VERIFICATION TOOL

6

➔ shows how to handle Rust’s reference
types

➔ allows to verify safe encapsulation of
unsafe code

RustBelt [Jung et al. 2019]

a semantic model for Rust

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

TURNING RUSTBELT INTO A VERIFICATION TOOL

6

➔ refinement types for functional
correctness reasoning

➔ naturally handles "unsafe code” with
ownership types

➔ Lithium: efficiently automatable
separation logic fragment

➔ shows how to handle Rust’s reference
types

➔ allows to verify safe encapsulation of
unsafe code

RustBelt [Jung et al. 2019] RefinedC [Sammler et al. 2021]

an ownership-based refinement
type system for C

a semantic model for Rust

+

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

INTRODUCING REFINEDRUST

7

Goal: verify functional correctness & UB-freedom & panic-freedom

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

INTRODUCING REFINEDRUST

7

Goal: verify functional correctness & UB-freedom & panic-freedom

Radium operational
semantics for Rust based on

RefinedC

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

INTRODUCING REFINEDRUST

7

Goal: verify functional correctness & UB-freedom & panic-freedom

Radium operational
semantics for Rust based on

RefinedC

An automatic translation
scheme from Rust into

Radium

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

INTRODUCING REFINEDRUST

7

Goal: verify functional correctness & UB-freedom & panic-freedom

Radium operational
semantics for Rust based on

RefinedC

Refinement type system
with semantic model inspired

by RustBelt

An automatic translation
scheme from Rust into

Radium

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

INTRODUCING REFINEDRUST

7

Goal: verify functional correctness & UB-freedom & panic-freedom

Radium operational
semantics for Rust based on

RefinedC

Refinement type system
with semantic model inspired

by RustBelt

Proof automation based on
RefinedC’s Lithium engine

An automatic translation
scheme from Rust into

Radium

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CHALLENGES IN REFINEDRUST

8

Lift RustBelt’s limitations

✓ allow automatic translation from Rust

✓ handle more borrow patterns

‣develop new place-based type system

‣extend RustBelt’s lifetime logic

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CHALLENGES IN REFINEDRUST

8

Lift RustBelt’s limitations

✓ allow automatic translation from Rust

✓ handle more borrow patterns

‣develop new place-based type system

‣extend RustBelt’s lifetime logic

Equip RefinedC with references

✓ need to rethink RefinedC’s refinement

model

✓ develop automation for Rust specifics

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

THE REFINEDRUST ARCHITECTURE

9

Rust code to verify

User-annotated specifications

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

THE REFINEDRUST ARCHITECTURE

9

Rust code to verify

User-annotated specifications

RefinedRust frontend

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

THE REFINEDRUST ARCHITECTURE

9

Rust code to verify

User-annotated specifications

RefinedRust frontend

MIR
Rust compiler Polonius

Borrow factsMIRRust
code

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

THE REFINEDRUST ARCHITECTURE

9

Rust code to verify

User-annotated specifications

RefinedRust frontend

Radium code in Coq

Radium operational
semantics in Coq (based

on RefinedC)

generates

MIR
Rust compiler Polonius

Borrow factsMIRRust
code

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

THE REFINEDRUST ARCHITECTURE

9

Rust code to verify

User-annotated specifications

RefinedRust frontend

Specification in RefinedRust’s type
system + annotations

Radium code in Coq

Radium operational
semantics in Coq (based

on RefinedC)

generates

MIR
Rust compiler Polonius

Borrow factsMIRRust
code

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

THE REFINEDRUST ARCHITECTURE

9

Rust code to verify

User-annotated specifications

RefinedRust frontend

Specification in RefinedRust’s type
system + annotations Proof

Radium code in Coq

Radium operational
semantics in Coq (based

on RefinedC)

(extended) Lifetime
Logic

RefinedRust type system +
automation

Iris

Lithium

generates

MIR
Rust compiler Polonius

Borrow factsMIRRust
code

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

THE REFINEDRUST ARCHITECTURE

9

Rust code to verify

User-annotated specifications

RefinedRust frontend

Specification in RefinedRust’s type
system + annotations Proof

Coq

Radium code in Coq

Radium operational
semantics in Coq (based

on RefinedC)

(extended) Lifetime
Logic

RefinedRust type system +
automation

Iris

Lithium

generates

MIR
Rust compiler Polonius

Borrow factsMIRRust
code

USING REFINEDRUST FOR
VERIFYING SAFE RUST

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

MUTABLE REFERENCES IN REFINEDRUST

11

fn mut_ref_add_42(x : &mut i32) {
 *x += 42;
}

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

MUTABLE REFERENCES IN REFINEDRUST

11

#[rr::params("x", "γ")]
#[rr::args("(#x, γ)" @ "&mut {'a} (int i32)")]
#[rr::ensures("Obs γ (x + 42)")]
fn mut_ref_add_42(x : &mut i32) {
 *x += 42;
}

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

MUTABLE REFERENCES IN REFINEDRUST

11

#[rr::params("x", "γ")]
#[rr::args("(#x, γ)" @ "&mut {'a} (int i32)")]
#[rr::ensures("Obs γ (x + 42)")]
fn mut_ref_add_42(x : &mut i32) {
 *x += 42;
}

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

MUTABLE REFERENCES IN REFINEDRUST

11

refined by (current value, borrow variable)

#[rr::params("x", "γ")]
#[rr::args("(#x, γ)" @ "&mut {'a} (int i32)")]
#[rr::ensures("Obs γ (x + 42)")]
fn mut_ref_add_42(x : &mut i32) {
 *x += 42;
}

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

MUTABLE REFERENCES IN REFINEDRUST

11

#[rr::params("x", "γ")]
#[rr::args("(#x, γ)" @ "&mut {'a} (int i32)")]
#[rr::ensures("Obs γ (x + 42)")]
fn mut_ref_add_42(x : &mut i32) {
 *x += 42;
}

obtain observation on final value of γ

Borrow variables communicate final values

(inspired by prophecy variables [Matsushita et al. 2020])

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

MUTABLE REFERENCES IN REFINEDRUST

11

#[rr::params("x", "γ")]
#[rr::args("(#x, γ)" @ "&mut {'a} (int i32)")]
#[rr::ensures("Obs γ (x + 42)")]
fn mut_ref_add_42(x : &mut i32) {
 *x += 42;
}

Borrow variables communicate final values

(inspired by prophecy variables [Matsushita et al. 2020])

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

MUTABLE REFERENCES IN REFINEDRUST

11

#[rr::params("x", "γ")]
#[rr::args("(#x, γ)" @ "&mut {'a} (int i32)")]
#[rr::ensures("Obs γ (x + 42)")]
fn mut_ref_add_42(x : &mut i32) {
 *x += 42;
}

Will this specification work?

Borrow variables communicate final values

(inspired by prophecy variables [Matsushita et al. 2020])

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

MUTABLE REFERENCES IN REFINEDRUST

12

#[rr::params("x", "γ")]
#[rr::args("(#x, γ)" @ "&mut {'a} (int i32)")]
#[rr::requires("⌜x + 42 ∈ i32⌝")]
#[rr::ensures("Obs γ (x + 42)")]
fn mut_ref_add_42(x : &mut i32) {
 *x += 42;
}

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

MUTABLE REFERENCES IN REFINEDRUST

12

#[rr::params("x", "γ")]
#[rr::args("(#x, γ)" @ "&mut {'a} (int i32)")]
#[rr::requires("⌜x + 42 ∈ i32⌝")]
#[rr::ensures("Obs γ (x + 42)")]
fn mut_ref_add_42(x : &mut i32) {
 *x += 42;
}

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

MUTABLE REFERENCES IN REFINEDRUST

13

#[rr::params("x", "γ")]
#[rr::args("(#x, γ)")]
#[rr::requires("⌜x + 42 ∈ i32⌝")]
#[rr::ensures("Obs γ (x + 42)")]
fn mut_ref_add_42(x : &mut i32) {
 *x += 42;
}

Types can be inferred from Rust types! (for safe Rust)

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

A CLIENT FOR MUT_REF_ADD_42

14

#[rr::returns("()")]
fn mut_ref_add_client() {
 let mut z = 1;
 let zr = &mut z;
 mut_ref_add_42(zr);
 assert!(z == 43);
}

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

A CLIENT FOR MUT_REF_ADD_42

14

#[rr::returns("()")]
fn mut_ref_add_client() {
 let mut z = 1;
 let zr = &mut z;
 mut_ref_add_42(zr);
 assert!(z == 43);
}

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

A CLIENT FOR MUT_REF_ADD_42

14

#[rr::returns("()")]
fn mut_ref_add_client() {
 let mut z = 1;
 let zr = &mut z;
 mut_ref_add_42(zr);
 assert!(z == 43);
}

Type system needs to track that z is borrowed

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

A CLIENT FOR MUT_REF_ADD_42

14

#[rr::returns("()")]
fn mut_ref_add_client() {
 let mut z = 1;
 let zr = &mut z;
 mut_ref_add_42(zr);
 assert!(z == 43);
}

Type system needs to track that z is borrowed

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

A CLIENT FOR MUT_REF_ADD_42

14

#[rr::returns("()")]
fn mut_ref_add_client() {
 let mut z = 1;
 let zr = &mut z;
 mut_ref_add_42(zr);
 assert!(z == 43);
}

Type system needs to track that z is borrowed

Type system needs recombine observation Obs

VERIFYING UNSAFE CODE
WITH REFINEDRUST

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

VERIFYING VEC: MEMORY REPRESENTATION

16

pub struct RawVec<T> {
 ptr: *const T,
 cap: usize,
 _marker: PhantomData<T>,
}

pub struct Vec<T> {
 buf: RawVec<T>,
 len: usize,
}

(we consider a variant of the Rustonomicon Vec implementation)

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

VERIFYING VEC: MEMORY REPRESENTATION

16

pub struct RawVec<T> {
 ptr: *const T,
 cap: usize,
 _marker: PhantomData<T>,
}

pub struct Vec<T> {
 buf: RawVec<T>,
 len: usize,
}

ptr

initialised uninitialised

cap

len

(we consider a variant of the Rustonomicon Vec implementation)

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

VERIFYING VEC: MEMORY REPRESENTATION

16

pub struct RawVec<T> {
 ptr: *const T,
 cap: usize,
 _marker: PhantomData<T>,
}

pub struct Vec<T> {
 buf: RawVec<T>,
 len: usize,
}

ptr

initialised uninitialised

cap

len

First task: define logical representation of Vec

(we consider a variant of the Rustonomicon Vec implementation)

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CUSTOM REPRESENTATION INVARIANTS

17

#[rr::refined_by("(l, cap)" : "(loc * nat)")]
#[rr::invariant(#own "freeable l (size_of_array_in_bytes {st_of T} cap)")]
pub struct RawVec<T> {
 #[rr::field("l")]
 ptr: *const T,
 #[rr::field("cap")]
 cap: usize,
 #[rr::field("tt")]

_marker: PhantomData<T>,
}

(simplified invariant, does not handle the case that T is a ZST)

RawVec just exposes the location and capacity

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CUSTOM REPRESENTATION INVARIANTS

17

#[rr::refined_by("(l, cap)" : "(loc * nat)")]
#[rr::invariant(#own "freeable l (size_of_array_in_bytes {st_of T} cap)")]
pub struct RawVec<T> {
 #[rr::field("l")]
 ptr: *const T,
 #[rr::field("cap")]
 cap: usize,
 #[rr::field("tt")]

_marker: PhantomData<T>,
}

(simplified invariant, does not handle the case that T is a ZST)

RawVec just exposes the location and capacity

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CUSTOM REPRESENTATION INVARIANTS

17

#[rr::refined_by("(l, cap)" : "(loc * nat)")]
#[rr::invariant(#own "freeable l (size_of_array_in_bytes {st_of T} cap)")]
pub struct RawVec<T> {
 #[rr::field("l")]
 ptr: *const T,
 #[rr::field("cap")]
 cap: usize,
 #[rr::field("tt")]

_marker: PhantomData<T>,
}

(simplified invariant, does not handle the case that T is a ZST)

RawVec just exposes the location and capacity

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CUSTOM REPRESENTATION INVARIANTS

17

#[rr::refined_by("(l, cap)" : "(loc * nat)")]
#[rr::invariant(#own "freeable l (size_of_array_in_bytes {st_of T} cap)")]
pub struct RawVec<T> {
 #[rr::field("l")]
 ptr: *const T,
 #[rr::field("cap")]
 cap: usize,
 #[rr::field("tt")]

_marker: PhantomData<T>,
}

(simplified invariant, does not handle the case that T is a ZST)

RawVec just exposes the location and capacity

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CUSTOM REPRESENTATION INVARIANTS

18

(simplified invariant, does not handle the case that T is a ZST)

Vec exposes the list of its initialised elements

ptr

initialised uninitialised

cap

len

pub struct Vec<T> {
 #[rr::field("(l, cap)")]

buf: RawVec<T>,
 #[rr::field("len")]
 len: usize,
}

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CUSTOM REPRESENTATION INVARIANTS

18

(simplified invariant, does not handle the case that T is a ZST)

#[rr::refined_by("xs" : "list (bor {rt_of T})")]

Vec exposes the list of its initialised elements

ptr

initialised uninitialised

cap

len

pub struct Vec<T> {
 #[rr::field("(l, cap)")]

buf: RawVec<T>,
 #[rr::field("len")]
 len: usize,
}

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CUSTOM REPRESENTATION INVARIANTS

18

(simplified invariant, does not handle the case that T is a ZST)

#[rr::refined_by("xs" : "list (bor {rt_of T})")]

Vec exposes the list of its initialised elements

ptr

initialised uninitialised

cap

len

pub struct Vec<T> {
 #[rr::field("(l, cap)")]

buf: RawVec<T>,
 #[rr::field("len")]
 len: usize,
}

#[rr::exists("cap" : "nat", "l" : "loc", "len" : "nat", "els")]

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CUSTOM REPRESENTATION INVARIANTS

18

(simplified invariant, does not handle the case that T is a ZST)

#[rr::refined_by("xs" : "list (bor {rt_of T})")]

Vec exposes the list of its initialised elements

ptr

initialised uninitialised

cap

len

pub struct Vec<T> {
 #[rr::field("(l, cap)")]

buf: RawVec<T>,
 #[rr::field("len")]
 len: usize,
}

#[rr::invariant(#type "l" : "els" @ "array_t (maybe_init {T}) cap")]
#[rr::exists("cap" : "nat", "l" : "loc", "len" : "nat", "els")]

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CUSTOM REPRESENTATION INVARIANTS

18

(simplified invariant, does not handle the case that T is a ZST)

#[rr::refined_by("xs" : "list (bor {rt_of T})")]

Vec exposes the list of its initialised elements

(initialised)

ptr

initialised uninitialised

cap

len

pub struct Vec<T> {
 #[rr::field("(l, cap)")]

buf: RawVec<T>,
 #[rr::field("len")]
 len: usize,
}

#[rr::invariant("⌜∀ i, 0 ≤ i < len →
 els !!! i = #(Some (xs !!! i))⌝")]

#[rr::invariant(#type "l" : "els" @ "array_t (maybe_init {T}) cap")]
#[rr::exists("cap" : "nat", "l" : "loc", "len" : "nat", "els")]

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CUSTOM REPRESENTATION INVARIANTS

18

(simplified invariant, does not handle the case that T is a ZST)

#[rr::refined_by("xs" : "list (bor {rt_of T})")]

Vec exposes the list of its initialised elements

(initialised)

(uninitialised)

ptr

initialised uninitialised

cap

len

pub struct Vec<T> {
 #[rr::field("(l, cap)")]

buf: RawVec<T>,
 #[rr::field("len")]
 len: usize,
}

#[rr::invariant("⌜∀ i, len ≤ i < cap → els !!! i = #None⌝")]

#[rr::invariant("⌜∀ i, 0 ≤ i < len →
 els !!! i = #(Some (xs !!! i))⌝")]

#[rr::invariant(#type "l" : "els" @ "array_t (maybe_init {T}) cap")]
#[rr::exists("cap" : "nat", "l" : "loc", "len" : "nat", "els")]

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CUSTOM REPRESENTATION INVARIANTS

18

(simplified invariant, does not handle the case that T is a ZST)

#[rr::refined_by("xs" : "list (bor {rt_of T})")]

Vec exposes the list of its initialised elements

(initialised)

(uninitialised)

ptr

initialised uninitialised

cap

len

pub struct Vec<T> {
 #[rr::field("(l, cap)")]

buf: RawVec<T>,
 #[rr::field("len")]
 len: usize,
}

#[rr::invariant("⌜len = length xs⌝", "⌜len ≤ cap⌝")]
#[rr::invariant("⌜size_of_array_in_bytes {st_of T} cap ≤ max_int isize_t⌝")]

#[rr::invariant("⌜∀ i, len ≤ i < cap → els !!! i = #None⌝")]

#[rr::invariant("⌜∀ i, 0 ≤ i < len →
 els !!! i = #(Some (xs !!! i))⌝")]

#[rr::invariant(#type "l" : "els" @ "array_t (maybe_init {T}) cap")]
#[rr::exists("cap" : "nat", "l" : "loc", "len" : "nat", "els")]

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer 19

VERIFYING PUSH

pub fn push(&mut self, elem: T) {
 if self.len == self.cap() {
 self.buf.grow();
 }
 unsafe {
 ptr::write(self.ptr().add(self.len), elem);
 // Can't overflow, we'll OOM first.
 self.len += 1;
 }
}

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer 19

VERIFYING PUSH

#[rr::params("xs", "γ", "x")]
#[rr::args("(#xs, γ)", "x")]

pub fn push(&mut self, elem: T) {
 if self.len == self.cap() {
 self.buf.grow();
 }
 unsafe {
 ptr::write(self.ptr().add(self.len), elem);
 // Can't overflow, we'll OOM first.
 self.len += 1;
 }
}

#[rr::ensures("Obs γ (xs ++ [#x])")]

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer 19

VERIFYING PUSH

#[rr::params("xs", "γ", "x")]
#[rr::args("(#xs, γ)", "x")]

pub fn push(&mut self, elem: T) {
 if self.len == self.cap() {
 self.buf.grow();
 }
 unsafe {
 ptr::write(self.ptr().add(self.len), elem);
 // Can't overflow, we'll OOM first.
 self.len += 1;
 }
}

#[rr::ensures("Obs γ (xs ++ [#x])")]

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer 19

VERIFYING PUSH

#[rr::params("xs", "γ", "x")]
#[rr::args("(#xs, γ)", "x")]

pub fn push(&mut self, elem: T) {
 if self.len == self.cap() {
 self.buf.grow();
 }
 unsafe {
 ptr::write(self.ptr().add(self.len), elem);
 // Can't overflow, we'll OOM first.
 self.len += 1;
 }
}

#[rr::ensures("Obs γ (xs ++ [#x])")]

#[rr::requires("⌜length xs < max_int usize_t⌝")]
#[rr::requires("⌜size_of_array_in_bytes {st_of T}

 (2 * length xs) ≤ max_int isize_t⌝")]

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer 19

VERIFYING PUSH

#[rr::params("xs", "γ", "x")]
#[rr::args("(#xs, γ)", "x")]

pub fn push(&mut self, elem: T) {
 if self.len == self.cap() {
 self.buf.grow();
 }
 unsafe {
 ptr::write(self.ptr().add(self.len), elem);
 // Can't overflow, we'll OOM first.
 self.len += 1;
 }
}

#[rr::ensures("Obs γ (xs ++ [#x])")]

#[rr::requires("⌜length xs < max_int usize_t⌝")]
#[rr::requires("⌜size_of_array_in_bytes {st_of T}

 (2 * length xs) ≤ max_int isize_t⌝")]

Representation invariant of Vec broken (ownership moved to ptr::write)!

CONCLUSIONS

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer 21

EVALUATION
Rust LOC Sideconds Spec + manual proof Verification time

Vec::new 6 20 1 + 0 20s

Vec::push 9 128 5 + 35 7min 25s

Vec::pop 8 79 4 + 17 3min 30s

Vec::get_unchecked_mut 7 47 5 + 10 2min

Vec::get_mut 8 73 7 + 40 1min 05s

Vec::get_unchecked 7 31 4 + 0 55s

Vec::get 8 56 4 + 0 1min 20s

Total (RawVec + Vec) 120 (14
functions) 400 ++ 75 + 105 8.5min (wall)

(with ~80 lines of common manually proved Coq theory about lists)

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer 21

EVALUATION
Rust LOC Sideconds Spec + manual proof Verification time

Vec::new 6 20 1 + 0 20s

Vec::push 9 128 5 + 35 7min 25s

Vec::pop 8 79 4 + 17 3min 30s

Vec::get_unchecked_mut 7 47 5 + 10 2min

Vec::get_mut 8 73 7 + 40 1min 05s

Vec::get_unchecked 7 31 4 + 0 55s

Vec::get 8 56 4 + 0 1min 20s

Total (RawVec + Vec) 120 (14
functions) 400 ++ 75 + 105 8.5min (wall)

(with ~80 lines of common manually proved Coq theory about lists)

Support libraries: mem::{size_of, align_log_of, align_of}, Box::new,

alloc::{alloc, dealloc, realloc},
ptr::{write, read, invalid, copy_nonoverlapping},
mut_ptr::{add, offset}

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

TAKEAWAYS FOR FOUNDATIONAL VERIFICATION

22

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

TAKEAWAYS FOR FOUNDATIONAL VERIFICATION
foundational verification is expensive

‣small Rust code (120 lines) → huge MIR (900 lines)

22

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

TAKEAWAYS FOR FOUNDATIONAL VERIFICATION
foundational verification is expensive

‣small Rust code (120 lines) → huge MIR (900 lines)

foundational verification allows to build intricate but sound type systems

‣ would be very hard to get right without mechanised proofs

22

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

TAKEAWAYS FOR FOUNDATIONAL VERIFICATION
foundational verification is expensive

‣small Rust code (120 lines) → huge MIR (900 lines)

foundational verification allows to build intricate but sound type systems

‣ would be very hard to get right without mechanised proofs

foundational verification can be automated

‣but is not yet at the level of non-foundational tools

22

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

TAKEAWAYS FOR VERIFYING UNSAFE CODE

23

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

TAKEAWAYS FOR VERIFYING UNSAFE CODE
Requires a low-level semantics

➔ opposed to high-level semantics sufficient for safe Rust

➔ memory model, value representation, …

➔ low-level byte model absolutely crucial for things like copy_nonoverlapping

23

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

TAKEAWAYS FOR VERIFYING UNSAFE CODE
Requires a low-level semantics

➔ opposed to high-level semantics sufficient for safe Rust

➔ memory model, value representation, …

➔ low-level byte model absolutely crucial for things like copy_nonoverlapping

ZSTs are a special pain to deal with

➔ regular surprises by unexpected corner cases

➔ e.g. pointer arithmetic rules

23

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

TAKEAWAYS FOR VERIFYING UNSAFE CODE
Requires a low-level semantics

➔ opposed to high-level semantics sufficient for safe Rust

➔ memory model, value representation, …

➔ low-level byte model absolutely crucial for things like copy_nonoverlapping

ZSTs are a special pain to deal with

➔ regular surprises by unexpected corner cases

➔ e.g. pointer arithmetic rules

Interaction with references is tricky

➔ in safe code, have (essentially functional) abstractions

➔ in unsafe code, need to access low-level representation

➔ having a RustBelt-style model helps to seamlessly integrate

23

MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

REFINEDRUST

✓ Lift limitations of RustBelt

‣allow automatic translation from Rust

‣handle more borrow patterns

‣develop a new notion of place types

‣extend RustBelt’s lifetime logic

24

Radium operational
semantics for Rust based on

RefinedC

Refinement type system
with semantic model inspired

by RustBelt

Proof automation based on
RefinedC’s Lithium engine

An automatic translation
scheme from Rust into

Radium

✓ Equip RefinedC with references

‣ redesigned RefinedC’s refinement model

