RefinedRust

Towards high-assurance verification
of unsafe Rust programs

Rust Veritication Workshop 2023, Paris
23.04.2023

Lennard Gaher, Michael Sammler, Ralf Jung, Robbert Krebbers, Derek Dreyer

& _ MAXPLANCK INSTITUTE
D < ~ FOR SOFTWARE SYSTEMS

m Zu r I C h Radboud University %“

L

with generous funding from Amazon AWS

RefinedRust

EXISTING RUST VERIFICATION TOOLS

We want to functionally verify Rust programs!

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

EXISTING RUST VERIFICATION TOOLS

We want to functionally verify Rust programs!

Prusti [Astrauskas et al. 2019]

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

EXISTING RUST VERIFICATION TOOLS

We want to functionally verify Rust programs!

RustHorn [Matsushita et al. 2020]
Prusti [Astrauskas et al. 2019]

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

EXISTING RUST VERIFICATION TOOLS

We want to functionally verify Rust programs!

Creusot [Denis et al. 2022]

RustHorn [Matsushita et al. 2020]
Prusti [Astrauskas et al. 2019]

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

EXISTING RUST VERIFICATION TOOLS

We want to functionally verify Rust programs!

Creusot [Denis et al. 2022]

Aeneas [Ho etal. 2022]

RustHorn [Matsushita et al. 2020]
Prusti [Astrauskas et al. 2019]

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

EXISTING RUST VERIFICATION TOOLS

We want to functionally verify Rust programs!

Creusot [Denis et al. 2022]

Flux [Lehmann et al. 2023]

Aeneas [Ho etal. 2022]

RustHorn [Matsushita et al. 2020]
Prusti [Astrauskas et al. 2019]

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

EXISTING RUST VERIFICATION TOOLS

We want to functionally verify Rust programs!
But what about
unsafe Rust’

Creusot [Denis et al. 2022]

Flux [Lehmann et al. 2023]

Aeneas [Ho et al. 2022]

RustHorn [Matsushita et al. 2020]

Prusti [Astrauskas et al. 2019]

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

HOW DO WE VERIFY UNSAFE CODE?

RustBelt [Jung etal. 2019]/

Kani [Kani Developers 2022)
RustHornBelt [Matsushita et al. 2022]

- a semantic model for Rust - a model checker for Rust

- used to prove safety/functional - scalable automatic verification
correctness of several of Rust's core
libraries

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MOST STANDARD LIBRARY CODE RELIES ON UNSAFE...

Struct std:vec::

pub struct Vec<T, A
where
A: Allocator,

{ /* private fields */ }

[-] A contiguous growable array type, written as Vec<T>, short for “vector’.

-] pub fn (&mut self, value: T)

Appends an element to the back of a collection.

Panics

Panics if the new capacity exceeds isize: :MAX bytes.

Examples

Let mut vec = 13
vec.push(3);

(Vec) I: b b :l);

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer 4

RefinedRust

MOST STANDARD LIBRARY CODE RELIES ON UNSAFE...

Struct std:vec::

pub struct Vec<T, A
where

pub fn push(&mut self, value: T) {

// This will panic or abort if we would allocate > isize::MAX bytes

// or if the length increment would overflow for zero-sized types.

if self.len == self.buf.capacity() {
self.buf.reserve for push(self.len);

}

unsafe {
let end = self.as mut ptr().add(self.len);
ptr::write(end, value);

self.len += 1;

Llet mut vec = 13
vec.push(3);

(vec, [1, 2, 3]);

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MOST STANDARD LIBRARY CODE RELIES ON UNSAFE...

Struct std:vec::

pub struct Vec<T, A
where

pub fn push(&mut self, value: T) {

// This will panic or abort if we would allocate > isize::MAX bytes

// or if the length increment would overflow for zero-sized types.
if self.len == self.buf.capacity() {

self.buf.reserve for push(self.len);

}

unsafe {
let end = self.as mut ptr().add(self.len);
ptr::write(end, value);

self.len += 1;

Llet mut vec = 13
vec.push(3);

(vec, [1, 2, 3]);

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MOST STANDARD LIBRARY CODE RELIES ON UNSAFE...

Struct std:vec::

pub struct Vec<T, A
where

pub fn push(&mut self, value: T) {

// This will panic or abort if we would allocate > isize::MAX bytes

// or if the length increment would overflow for zero-sized types.

if self.len == self.buf.capacity() {
self.buf.reserve for push(self.len);

}

unsafe {
let end = self.as mut ptr().add(self.len);
ptr::write(end, value);

self.len += 1;

Llet mut vec = 13
vec.push(3);

(vec, [1, 2, 3]);

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MOST STANDARD LIBRARY CODE RELIES ON UNSAFE...

Struct std:vec::

pub struct Vec<T, A
where

pub fn push(&mut self, value: T) {

// This will panic or abort if we would allocate > isize::MAX bytes

// or if the length increment would overflow for zero-sized types.

if self.len == self.buf.capacity() {
self.buf.reserve for push(self.len);

}

unsafe {
let end = self.as mut ptr().add(self.len);
ptr::write(end, value);

self.len += 1;

Llet mut vec = 13
vec.push(3);

(vec, [1, 2, 3]);

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MOST STANDARD LIBRARY CODE RELIES ON UNSAFE...

Struct std:vec::

pub struct Vec<T, A
where

pub fn push(&mut self, value: T) {

// This will panic or abort if we would allocate > isize::MAX bytes

// or if the length increment would overflow for zero-sized types.

if self.len == self.buf.capacity() {
self.buf.reserve for push(self.len);

}

unsafe {
let end = self.as mut ptr().add(self.len);
ptr::write(end, value);

self.len += 1;

Llet mut vec = 13
vec.push(3);

(vec, [1, 2, 3]);

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MOST STANDARD LIBRARY CODE RELIES ON UNSAFE...

fully manual verification ¢

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MOST STANDARD LIBRARY CODE RELIES ON UNSAFE...

fully manual verification ¢

% i
& @. kO n I no compositional specifications

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MOST STANDARD LIBRARY CODE RELIES ON UNSAFE...

fully manual verification ¢

% i
& @. kO n I no compositional specifications

Can we get a compositional and automated verification tool for unsafe Rust?

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

A PRACTICAL VERIFICATION TOOL FOR UNSAFE RUST?

We want a deductive verification tool with:
v support for common unsafe operations
v areasonable degree of automation

v high-assurance foundational verification (e.g. in Coq)

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

TURNING RUSTBELT INTO A VERIFICATION TOOL

RustBelt [Jung et al. 2019]

a semantic model for Rust

- shows how to handle Rust's reference
types

> allows to verify safe encapsulation of
unsafe code

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MPI-SWS

TURNING RUSTBELT INTO A VERIFICATION TOOL

RefinedC [Sammler et al. 2021]

RustBelt [Jung et al. 2019]

a semantic model for Rust

- shows how to handle Rust's reference
types

> allows to verify safe encapsulation of
unsafe code

an ownership-based refinement

type system for C

> refinement types for functional

correct
-> natura

ﬂ

ess reasoning

y handles "unsafe code” with

ownership types
> Lithium: efficiently automatable
separation logic fragment

L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

INTRODUCING REFINEDRUST

Goal: verify functional correctness & UB-freedom & panic-freedom

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

INTRODUCING REFINEDRUST

Goal: verify functional correctness & UB-freedom & panic-freedom

a . .)
Radium operational

semantics for Rust based on
RefinedC

& J

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

INTRODUCING REFINEDRUST

Goal: verify functional correctness & UB-freedom & panic-freedom

a)
An automatic translation
scheme from Rust into
Radium

-
AN

Radium operational
semantics for Rust based on
RefinedC

_ J

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MPI-SWS

INTRODUCING REFINEDRUST

Goal: verify functional correctness & UB-freedom & panic-freedom

a)
An automatic translation
scheme from Rust into

Radium

-~
AN

Radium operational
semantics for Rust based on

RefinedC

_ J

Refinement type system

~

with semantic model inspired

by RustBelt

_

J

L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MPI-SWS

INTRODUCING REFINEDRUST

Goal: verify functional correctness & UB-freedom & panic-freedom

a)
An automatic translation
scheme from Rust into

Radium

-
)\

Radium operational
semantics for Rust based on

a)

Proof automation based on
RefinedC’s Lithium engine

_ _J

4 .)
Refinement type system

with semantic model inspired

RefinedC

_ J

by RustBelt

_ _

L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

CHALLENGES IN REFINEDRUST

([) () () () \
Lift RustBelt's limitations

v allow automatic translation from Rust
v handle more borrow patterns
» develop new place-based type system

» extend RustBelt's lifetime logic
_ _J

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MPI-SWS

CHALLENGES IN REFINEDRUST

Lift RustBelt's limitations
v allow automatic translation from Rust
v handle more borrow patterns
» develop new place-based type system
» extend RustBelt's lifetime logic

o

~

(Equip RefinedC with references

v need to rethink RefinedC's refinement
model

v develop automation for Rust specifics

L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

THE REFINEDRUST ARCHITECTURE

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

THE REFINEDRUST ARCHITECTURE

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

THE REFINEDRUST ARCHITECTURE

A
Rust MIR Borrow facts
code
A 4
[Rust compiler J P[Polonius J
MIR

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

THE REFINEDRUST ARCHITECTURE

generates

A

Radium code in Co }
Rust MIR Borrow facts a

code 1

v ~
[Rust compiler J P[Polonius J tional
MIR (based
C)
J

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

THE REFINEDRUST ARCHITECTURE

Specification in RefinedRust’s type
system + annotations

generates

A)
Radium code in Co
Rust MIR Borrow facts d }
code 1
v ™
[Rust compiler J P[Polonius J tional
MIR (based
C)
4

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

THE REFINEDRUST ARCHITECTURE

Specification in RefinedRust’s type

. [Proof]
SyStem + annotations

generates

A

Rust Radium code in Coq

MIR Borrow facts

code
T i ifetime)
v ~ Lithium Lc
[Rust compiler J P[Polonius J tional
MIR (based f h
C) Iris

-
-

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

THE REFINEDRUST ARCHITECTURE

Specification in RefinedRust’s type
system + annotations

generates

A

Rust Radium code in Coq

MIR Borrow facts

— o e e e R M e e R M M e R M M e M M M e M M e e e o

code i 1
\ 4 i .
[Rust compiler J P[Polonius J i tional
MIR | q (based f b
: C) Iris
| J N Y,

——

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

USING REFINEDRUST FOR
VERIFYING SAFE RUST

RefinedRust

MUTABLE REFERENCES IN REFINEDRUST

fn mut ref add 42(x : &mut 132) {
*X += 42;

}

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MUTABLE REFERENCES IN REFINEDRUST

#[rr::params("x")]

fn mut ref add 42(x : &mut 132) {
*X += 42;

}

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MUTABLE REFERENCES IN REFINEDRUST

#[rr::params("x")]
#[rr::args (" " @ "smut {'a} (int i32)")]

fn mut ref add 42(x : &mut 132) {
*X += 42;

}

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MUTABLE REFERENCES IN REFINEDRUST

refined by (current value, borrow variable)

k‘ #[rr::params('x", "Y")]
#[rr::args (" (#x, Y)" @ "&mut {'a} (int i32)")]

fn mut ref add 42(x : &mut 132) {
*X += 42;

}

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MUTABLE REFERENCES IN REFINEDRUST

Borrow variables communicate final values
(inspired by prophecy variables [Matsushita et al. 2020])

obtain observation on final value of y

#lrr::params("x", "Y")]
#[rr::args("(#x, Y)" @ "s&mut {'a} (int 132)")]
#[rr::ensures('Obs Y (x + 42)")]
fn mut ref add 42(x : &mut 132) {
*xX += 42

}

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MUTABLE REFERENCES IN REFINEDRUST

Borrow variables communicate final values
(inspired by prophecy variables [Matsushita et al. 2020])

#lrr::params("x", "Y")]
#[rr::args(" (#x, Y)" @ "a&mut {'a} (int 132)")]
#[rr::ensures("Obs Y (x + 42)")]

fn mut ref add 42(x : &mut 132) {
*X += 42;

}

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MUTABLE REFERENCES IN REFINEDRUST

Borrow variables communicate final values
(inspired by prophecy variables [Matsushita et al. 2020])

#lrr::params("x", "Y")]
#[rr::args("(#x, Y)" @ "s&mut {'a} (int 132)")]
#[rr::ensures("Obs Y (x + 42)")]
fn mut ref add 42(x : &mut 132) {
*xX += 42

}

Will this specification work?

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MPI-SWS

MUTABLE REFERENCES IN REFINEDRUST

#[rr:
#[rr:
#[rr:
#[rr:

cparams('x", "Y")]
cargs (" (#x, Y)" @ "smut {'a}
:requires(""x + 42 € i327")]
:ensures(' Obs Y (x + 42)")]

fn mut ref add 42(x : &mut 132) {

}

*X += 42;

L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

(1nt 132)")]

RefinedRust

MPI-SWS

MUTABLE REFERENCES IN REFINEDRUST

#lrr::params("x", "Y")]
#[rr::args(" (#x, Y)"' @ "a&mut {'a} (int 132)")]
#[rr::requires(""x + 42 € i327")]
#[rr::ensures("Obs Yy (x + 42)")]
fn mut ref add 42(x : &mut 132) {

*xX += 42

}

L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MPI-SWS

MUTABLE REFERENCES IN REFINEDRUST

Types can be inferred from Rust types! (for safe Rust)

#[rr:
#[rr:
#[rr:
#[rr:

:paramS("X", "Y”)]
cargs (" (#x, Y)")]
crequires(""x + 42 € i327")]
:ensures("'Obs YV (x + 42)")]

fn mut ref add 42(x : &mut 132) {

}

*X += 42;

L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

A CLIENTFORMUT REF ADD 42

#lrr::returns("()")]

fn mut ref add client() {
let mut z = 1;
let zr = &mut z;
mut ref add 42(zr);
assert! (z == 43);

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

A CLIENTFORMUT REF ADD 42

#lrr::returns("()")]

fn mut ref add client() {
let mut z = 1;
let zr = &mut z;
mut ref add 42(zr);
assert! (z == 43);

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

A CLIENTFORMUT REF ADD 42

Type system needs to track that z is borrowed

#lrr::returns("()")]

fn mut ref add client() {
let mut z = 1;
let zr = amut z;
mut ref add 42(zr);
assert! (z == 43);

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

A CLIENTFORMUT REF ADD 42

Type system needs to track that z is borrowed

#lrr::returns("()")]

fn mut ref add client() {
let mut z = 1;
let zr = &mut z;
mut ref add 42(zr);
assert! (z == 43);

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

A CLIENTFORMUT REF ADD 42

Type system needs to track that z is borrowed

#lrr::returns("()")]

fn mut ref add client() {
let mut z = 1;
let zr = &mut z;
mut ref add 42(zr);
assert!(z == 43);

Type system needs recombine observation Obs

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

VERIFYING UNSAFE CODE
WITH REFINEDRUST

RefinedRust

VERIFYING VEC: MEMORY REPRESENTATION

pub struct Vec<T> { pub struct RawVec<T> {
buf: RawVec<T>, ptr: *const T,
len: usize, cap: uslze,
} _marker: PhantomData<T>,
}

(we consider a variant of the Rustonomicon Vec implementation)

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

VERIFYING VEC: MEMORY REPRESENTATION

pub struct Vec<T> { pub struct RawVec<T> {
buf: RawVec<T>, ptr: *const T,
len: usize, cap: usize,
} _marker: PhantomData<T>,
}
initialised uninitialised

cap

(we consider a variant of the Rustonomicon Vec implementation)

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

VERIFYING VEC: MEMORY REPRESENTATION

pub struct Vec<T> { pub struct RawVec<T> {
buf: RawVec<T>, ptr: *const T,
len: usize, cap: usize,
} _marker: PhantomData<T>,
}
initialised uninitialised

cap

First task: define logical representation of vec

(we consider a variant of the Rustonomicon Vec implementation)

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

CUSTOM REPRESENTATION INVARIANTS

RawVec just exposes the location and capacity

#[rr::refined by("(1l, cap)" : "(loc * nat)")]
#[rr::invariant (#own "freeable 1 (size of array in bytes {st of T} cap)")]
pub struct RawVec<T> {

#[rr::field("1")]

ptr: *const T,

#[rr::field("cap")]

cap: usize,

#[rr::field("tt")]

_marker: PhantomData<T>,

(simplified invariant, does not handle the case that T is a ZST)

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

CUSTOM REPRESENTATION INVARIANTS

RawVec just exposes the location and capacity

[#[rr::refined_by("(l, cap)"” : "(loc * nat)")ﬂ
#[rr::invariant (#own "freeable 1 (size of array in bytes {st of T} cap)")]
pub struct RawVec<T> {

#[rr::field("1")]

ptr: *const T,

#[rr::field("cap")]

cap: usize,

#[rr::field("tt")]

_marker: PhantomData<T>,

(simplified invariant, does not handle the case that T is a ZST)

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

CUSTOM REPRESENTATION INVARIANTS

RawVec just exposes the location and capacity

#[rr::refined by("(1l, cap)" : "(loc * nat)")]
#[rr::invariant (#own "freeable 1 (size of array in bytes {st of T} cap)")]
pub struct RawVec<T> {

[#[rr::field("l")ﬂ

ptr: *const T,

[#[rr::field("cap")]]

cap: usize,

#[rr::field("tt")]

_marker: PhantomData<T>,

(simplified invariant, does not handle the case that T is a ZST)

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

CUSTOM REPRESENTATION INVARIANTS

RawVec just exposes the location and capacity

#[rr::refined by("(1l, cap)" : "(loc * nat)")]
[#[rr::invariant(#bwn "freeable 1 (size of array in bytes {st of T} cap)")”
pub struct RawVec<T> {

#[rr::field("1")]

ptr: *const T,

#[rr::field("cap")]

cap: usize,

#[rr::field("tt")]

_marker: PhantomData<T>,

(simplified invariant, does not handle the case that T is a ZST)

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

CUSTOM REPRESENTATION INVARIANTS

Vec exposes the list of its initialised elements

pub struct Vec<T> { initialised uninitialised

#[rr::field("(1, cap)")]

buf: RawVec<T>,
#[rr::field("len")]
len: usize,

cap

(simplified invariant, does not handle the case that T is a Z5T)

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

CUSTOM REPRESENTATION INVARIANTS

Vec exposes the list of its initialised elements
[#[rr::refined_by("xs" : "list (bor {rt of T})")]J

pub struct Vec<T> { initialised uninitialised
#[rr::field("(1, cap)")]
buf: RawVec<T>,
#[rr::field("len")]
len: usize,

cap

(simplified invariant, does not handle the case that T is a Z5T)

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

CUSTOM REPRESENTATION INVARIANTS

Vec exposes the list of its initialised elements

#[rr::refined by("'xs" : "list (bor {rt of T})")]
[%[rr::exists("cap" "nat", "1" : "loc", "len" : "nat”, "els")ﬂ

pub struct Vec<T> { initialised uninitialised
#[rr::field("(1, cap)")]
buf: RawVec<T>,
#[rr::field("len")]
len: usize,

cap

(simplified invariant, does not handle the case that T is a Z5T)

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

CUSTOM REPRESENTATION INVARIANTS

Vec exposes the list of its initialised elements

#[rr::refined by("'xs" : "list (bor {rt of T})")]
#[rr: :eXiStS("Cap" : "nat H, Hl) : "lOC”, Hlen) : Hnat H, Hels H)]

{#[rr::invariant(#type "1" : "els" @ "array t (maybe init {T}) cap")]}

pub struct Vec<T> { initialised uninitialised
#[rr::field("(1, cap)")]
buf: RawVec<T>,
#[rr::field("len")]
len: usize,

cap

(simplified invariant, does not handle the case that T is a Z5T)

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

CUSTOM REPRESENTATION INVARIANTS

Vec exposes the list of its initialised elements

#[rr::refined by("'xs" : "list (bor {rt of T})")]
#[rr::exists("cap” : "nat", "1" : "loc", "len" : "nat", "els")]
#[rr::invariant (#type "1" : "els" @ "array t (maybe init {T}) cap")]
#[rr::invariant(""V i, 0 = i < len -

els !!! i = #(Some (xs !!! 1i))'")]

(initialised)

pub struct Vec<T> { initialised uninitialised
#[rr::field("(1, cap)")]
buf: RawVec<T>,
#[rr::field("len")]
len: usize,

cap

(simplified invariant, does not handle the case that T is a Z5T)

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

CUSTOM REPRESENTATION INVARIANTS

Vec exposes the list of its initialised elements

#[rr::refined by("'xs" : "list (bor {rt of T})")]
#[rr::exists("cap” : "nat"”", "1" : "loc", "len" : "nat", "els")]
#[rr::invariant (#type "1" : "els" @ "array t (maybe init {T}) cap")]
#[rr::invariant(""V i, 0 = i < len -

els !!! i = #(Some (xs !!! 1i))'")]
[#[rr::invariant("rv i, len = i < cap -» els !!! 1 = #NOHej")]](mﬂMHdBmﬂ

(initialised)

pub struct Vec<T> { initialised uninitialised
#[rr::field("(1, cap)")]
buf: RawVec<T>,
#[rr::field("len")]
len: usize,

cap

(simplified invariant, does not handle the case that T is a Z5T)

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

CUSTOM REPRESENTATION INVARIANTS

Vec exposes the list of its initialised elements

#[rr::refined by("'xs" : "list (bor {rt of T})")]
#[rr::exists("cap” : "nat", "1" : "loc", "len" : "nat", "els")]
#[rr::invariant (#type "1" : "els" @ "array t (maybe init {T}) cap")]
#[rr::invariant(""V i, 0 5 i < len - | (initialised)

els !!! i = #(Some (xs !!! 1i))'")]
#[rr::invariant(""V i, len = i < cap - els !!! i = #None™")] (uninitialised)
#[rr::invariant("" len length xs'", ""len = cap'")]
#[rr::invariant(" size of array in bytes {st of T} cap = max int isize t'")]

pub struct Vec<T> { initialised uninitialised
#[rr::field("(1, cap)")]
buf: RawVec<T>,
#[rr::field("len")]
len: usize,

cap

(simplified invariant, does not handle the case that T is a Z5T)

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

VERIFYING PUSH

pub fn push(&mut self, elem: T) {
if self.len == self.cap() {
self.buf.grow();

}

unsafe {
ptr::write(self.ptr().add(self.len), elem);
// Can't overflow, we'll OOM first.
self.len += 1;

}

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

VERIFYING PUSH

#[rr::params("xs", "y", "x")]
{#[rr::args(”(#xs, Y)", "x")ﬂ

#[rr::ensures("Obs Y (xs ++ [#x]1)")]
pub fn push(&mut self, elem: T) {
if self.len == self.cap() {
self.buf.grow();

}

unsafe {
ptr::write(self.ptr().add(self.len), elem);
// Can't overflow, we'll OOM first.
self.len += 1;

}

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

VERIFYING PUSH

#[rr::params("xs", "y", "x")]
#[rr::args(" (#xs, Y)", "x")]

#[rr::ensures("Obs Y (xs ++ [#x])")]
pub fn push(&mut self, elem: T) {
if self.len == self.cap() {
self.buf.grow();

}

unsafe {
ptr::write(self.ptr().add(self.len), elem);
// Can't overflow, we'll OOM first.
self.len += 1;

}

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

VERIFYING PUSH

‘rr::params(' 'xs", "Y', "x")]
‘rr::args("(#xs, Y)", "x")]
‘rr::requires(""length xs < max int usize t'")]
‘rr::requires(""'size of array in bytes {st of T}
\ (2 * length xs) = max_int isize t'")]
#[rr::ensures("Obs Y (xs ++ [#x]1)")]
pub fn push(&mut self, elem: T) {
if self.len == self.cap() {

self.buf.grow();

H HFH K H

}

unsafe {
ptr::write(self.ptr().add(self.len), elem);
// Can't overflow, we'll OOM first.
self.len += 1;

}

MPI-SWS

L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

VERIFYING PUSH

‘rr::params(' 'xs", "Y', "x")]
‘rr::args("(#xs, Y)", "x")]
‘rr::requires ("' length xs < max int usize t'")]
‘rr::requires("'size of array in bytes {st of T}
(2 * length xs) = max int isize t'")]

#[rr::ensures("Obs Y (xs ++ [#x]1)")]
pub fn push(&mut self, elem: T) {
if self.len == self.cap() {

self.buf.grow();

H HFH K K

}

unsafe {
[ptr::write(self.ptr().add(self.len), elem);}
// Can't overflow, we'll OOM first.
self.len += 1;

}

}

Representation invariant of Vec broken (ownership moved to ptr: :write)

MPI-SWS

L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CONCLUSIONS

RefinedRust

EVALUATION
oo S o totonine

; 126 5 1 35 Tmin 255

: 79 17 3min 30
Vec::get_unchecked_mut / 47 5+ 10 2min

: 73 74 40 imin 063

8 56 4 + 0 1min 20s

Total (RawVec + Vec) fu1n2c(iig:s) 400 ++ 75 + 105 8.5min (wall)

(with ~80 lines of common manually proved Coq theory about lists)

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MPI-SWS

Vec::get_mut
Vec::get_unchecked

Total (RawVec + Vec)

(with ~80 lines of common manually proved Coq theory about lists)

Support libraries: mem: : {size of, align log of, align of}, Box:

alloc:

EVALUATION

128
79
47
/3
31
50

0 N 0O N 0 O O

120 (14

functions) 400 ++

:{alloc, dealloc, realloc},

ptr::{write, read, invalid, copy nonoverlapping},

mut ptr:

:{add, offset}

L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

1+0
5+ 35
4+ 17
5+ 10
7/ + 40
4 + 0
4 + 0

75 + 105

:new,

oo S o totonine

Vec::get_unchecked_mut

/min 25s
3min 30s
2min
1min 05s
530S

T1min 20s

8.5min (wall)

TAKEAWAYS FOR FOUNDATIONAL VERIFICATION

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

TAKEAWAYS FOR FOUNDATIONAL VERIFICATION

foundational verification is expensive
» small Rust code (120 lines) = huge MIR (900 lines)

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

TAKEAWAYS FOR FOUNDATIONAL VERIFICATION

foundational verification is expensive
» small Rust code (120 lines) = huge MIR (900 lines)

foundational verification allows to build intricate but sound type systems
» would be very hard to get right without mechanised proofs

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

TAKEAWAYS FOR FOUNDATIONAL VERIFICATION

foundational verification is expensive
» small Rust code (120 lines) = huge MIR (900 lines)

foundational verification allows to build intricate but sound type systems
» would be very hard to get right without mechanised proofs

foundational verification can be automated
» but is not yet at the level of non-foundational tools

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

TAKEAWAYS FOR VERIFYING UNSAFE CODE

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

TAKEAWAYS FOR VERIFYING UNSAFE CODE

Requires a low-level semantics

- opposed to high-level semantics sufficient for safe Rust

-> memory model, value representation, ...

> |ow-level byte model absolutely crucial for things like copy nonoverlapping

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MPI-SWS

- opposed to h

—

e 2

ZSTs are a special pain to deal with
> regular surprises by unexpected corner cases
> e.g. pointer arithmetic rules

TAKEAWAYS FOR VERIFYING UNSAFE CODE

Requires a low-level semantics

memory model, valu

ow-level byte mode

igh-level semantics sufficient for safe Rust

e representation, ...
absolutely crucial for things like copy nonoverlapping

L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

MPI-SWS

- opposed to h

—

e 2

ZSTs are a special pain to deal with
> regular surprises by unexpected corner cases
> e.g. pointer arithmetic rules

Interaction with references is tricky

TAKEAWAYS FOR VERIFYING UNSAFE CODE

Requires a low-level semantics

memory model, valu

ow-level byte mode

igh-level semantics sufficient for safe Rust

e representation, ...
absolutely crucial for things like copy nonoverlapping

- in safe code, have (essentially functional) abstractions
- in unsafe code, need to access low-level representation
> having a RustBelt-style model helps to seamlessly integrate

L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

RefinedRust

REFINEDRUST

4 N

Proof automation based on
RefinedC's Lithium engine
_ J
. . N .)

Radium operational Refinement type system
semantics for Rust based on| |with semantic model inspired

a)
An automatic translation
scheme from Rust into
Radium

-
=

RefinedC by RustBelt
L AN Y
v Lift limitations of RustBelt v’ Equip RefinedC with references
» allow automatic translation from Rust » redesigned RefinedC's refinement model

» handle more borrow patterns
» develop a new notion of place types
» extend RustBelt's lifetime logic

MPI-SWS L. Gdher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

