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Creusot [Denis et al. 2022]

Prusti [Astrauskas et al. 2019]

RustHorn [Matsushita et al. 2020]

Flux [Lehmann et al. 2023]

Aeneas [Ho et al. 2022]

But what about 
unsafe Rust?
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HOW DO WE VERIFY UNSAFE CODE?

RustBelt [Jung et al. 2019] /
RustHornBelt [Matsushita et al. 2022]
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Kani [Kani Developers 2022]

➔ a semantic model for Rust

➔ used to prove safety/functional 

correctness of several of Rust’s core 
libraries

➔ a model checker for Rust

➔ scalable automatic verification
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pub fn push(&mut self, value: T) {
        // This will panic or abort if we would allocate > isize::MAX bytes
        // or if the length increment would overflow for zero-sized types.
        if self.len == self.buf.capacity() {
            self.buf.reserve_for_push(self.len);
        }
        unsafe {
            let end = self.as_mut_ptr().add(self.len);
            ptr::write(end, value);
            self.len += 1;
        }
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pub fn push(&mut self, value: T) {
        // This will panic or abort if we would allocate > isize::MAX bytes
        // or if the length increment would overflow for zero-sized types.
        if self.len == self.buf.capacity() {
            self.buf.reserve_for_push(self.len);
        }
        unsafe {
            let end = self.as_mut_ptr().add(self.len);
            ptr::write(end, value);
            self.len += 1;
        }
    }Can we get a compositional and automated verification tool for unsafe Rust?

fully manual verification ☹

no compositional specifications ☹
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✓ support for common unsafe operations


✓ a reasonable degree of automation


✓ high-assurance foundational verification (e.g. in Coq)
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➔ shows how to handle Rust’s reference 
types


➔ allows to verify safe encapsulation of 
unsafe code

RustBelt [Jung et al. 2019]

a semantic model for Rust
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➔ refinement types for functional 
correctness reasoning


➔ naturally handles "unsafe code” with 
ownership types


➔ Lithium: efficiently automatable 
separation logic fragment

➔ shows how to handle Rust’s reference 
types


➔ allows to verify safe encapsulation of 
unsafe code

RustBelt [Jung et al. 2019] RefinedC [Sammler et al. 2021]

an ownership-based refinement 
type system for C

a semantic model for Rust

+
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7

Goal: verify functional correctness & UB-freedom & panic-freedom

Radium operational 
semantics for Rust based on 

RefinedC

Refinement type system 
with semantic model inspired 

by RustBelt

Proof automation based on 
RefinedC’s Lithium engine

An automatic translation 
scheme from Rust into 

Radium
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Lift RustBelt’s limitations

✓ allow automatic translation from Rust

✓ handle more borrow patterns

‣develop new place-based type system

‣extend RustBelt’s lifetime logic
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Lift RustBelt’s limitations

✓ allow automatic translation from Rust

✓ handle more borrow patterns

‣develop new place-based type system

‣extend RustBelt’s lifetime logic

Equip RefinedC with references

✓ need to rethink RefinedC’s refinement 

model

✓ develop automation for Rust specifics
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Radium code in Coq

Radium operational 
semantics in Coq (based 

on RefinedC)

(extended) Lifetime 
Logic

RefinedRust type system + 
automation

Iris

Lithium

generates

MIR
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Borrow factsMIRRust 
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USING REFINEDRUST FOR 
VERIFYING SAFE RUST
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refined by (current value, borrow variable)

#[rr::params("x", "γ")]
#[rr::args("(#x, γ)" @ "&mut {'a} (int i32)")]
#[rr::ensures("Obs γ (x + 42)")]
fn mut_ref_add_42(x : &mut i32) {
    *x += 42;
}
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obtain observation on final value of γ

Borrow variables communicate final values

(inspired by prophecy variables [Matsushita et al. 2020])
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#[rr::params("x", "γ")]
#[rr::args("(#x, γ)" @ "&mut {'a} (int i32)")]
#[rr::ensures("Obs γ (x + 42)")]
fn mut_ref_add_42(x : &mut i32) {
    *x += 42;
}

Will this specification work?

Borrow variables communicate final values

(inspired by prophecy variables [Matsushita et al. 2020])
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#[rr::params("x", "γ")]
#[rr::args("(#x, γ)")]
#[rr::requires("⌜x + 42 ∈ i32⌝")]
#[rr::ensures("Obs γ (x + 42)")]
fn mut_ref_add_42(x : &mut i32) {
    *x += 42;
}

Types can be inferred from Rust types! (for safe Rust)
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    assert!(z == 43);
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A CLIENT FOR MUT_REF_ADD_42

14

#[rr::returns("()")]
fn mut_ref_add_client() {
    let mut z = 1;
    let zr = &mut z;
    mut_ref_add_42(zr);
    assert!(z == 43);
}

Type system needs to track that z is borrowed

Type system needs recombine observation Obs



VERIFYING UNSAFE CODE 
WITH REFINEDRUST
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pub struct RawVec<T> {
    ptr: *const T,
    cap: usize,
    _marker: PhantomData<T>,
}

pub struct Vec<T> {
    buf: RawVec<T>,
    len: usize,
}

(we consider a variant of the Rustonomicon Vec implementation)
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pub struct RawVec<T> {
    ptr: *const T,
    cap: usize,
    _marker: PhantomData<T>,
}

pub struct Vec<T> {
    buf: RawVec<T>,
    len: usize,
}

ptr

initialised uninitialised

cap

len

First task: define logical representation of Vec

(we consider a variant of the Rustonomicon Vec implementation)
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pub struct RawVec<T> {
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    ptr: *const T,
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}

(simplified invariant, does not handle the case that T is a ZST)

RawVec just exposes the location and capacity



MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CUSTOM REPRESENTATION INVARIANTS

17

#[rr::refined_by("(l, cap)" : "(loc * nat)")]
#[rr::invariant(#own "freeable l (size_of_array_in_bytes {st_of T} cap)")]
pub struct RawVec<T> {
    #[rr::field("l")]
    ptr: *const T,
    #[rr::field("cap")]
    cap: usize,
    #[rr::field("tt")]

_marker: PhantomData<T>,
}

(simplified invariant, does not handle the case that T is a ZST)

RawVec just exposes the location and capacity



MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CUSTOM REPRESENTATION INVARIANTS

17

#[rr::refined_by("(l, cap)" : "(loc * nat)")]
#[rr::invariant(#own "freeable l (size_of_array_in_bytes {st_of T} cap)")]
pub struct RawVec<T> {
    #[rr::field("l")]
    ptr: *const T,
    #[rr::field("cap")]
    cap: usize,
    #[rr::field("tt")]

_marker: PhantomData<T>,
}

(simplified invariant, does not handle the case that T is a ZST)

RawVec just exposes the location and capacity
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(simplified invariant, does not handle the case that T is a ZST)

Vec exposes the list of its initialised elements

ptr

initialised uninitialised

cap

len

pub struct Vec<T> {
    #[rr::field("(l, cap)")]

buf: RawVec<T>,
    #[rr::field("len")]
    len: usize,
}
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#[rr::exists("cap" : "nat", "l" : "loc", "len" : "nat", "els")]



MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CUSTOM REPRESENTATION INVARIANTS

18

(simplified invariant, does not handle the case that T is a ZST)

#[rr::refined_by("xs" : "list (bor {rt_of T})")]

Vec exposes the list of its initialised elements

ptr

initialised uninitialised

cap

len

pub struct Vec<T> {
    #[rr::field("(l, cap)")]

buf: RawVec<T>,
    #[rr::field("len")]
    len: usize,
}

#[rr::invariant(#type "l" : "els" @ "array_t (maybe_init {T}) cap")]
#[rr::exists("cap" : "nat", "l" : "loc", "len" : "nat", "els")]



MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CUSTOM REPRESENTATION INVARIANTS

18

(simplified invariant, does not handle the case that T is a ZST)

#[rr::refined_by("xs" : "list (bor {rt_of T})")]

Vec exposes the list of its initialised elements

(initialised)

ptr

initialised uninitialised

cap

len

pub struct Vec<T> {
    #[rr::field("(l, cap)")]

buf: RawVec<T>,
    #[rr::field("len")]
    len: usize,
}

#[rr::invariant("⌜∀ i, 0 ≤ i < len → 
                  els !!! i = #(Some (xs !!! i))⌝")]

#[rr::invariant(#type "l" : "els" @ "array_t (maybe_init {T}) cap")]
#[rr::exists("cap" : "nat", "l" : "loc", "len" : "nat", "els")]



MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CUSTOM REPRESENTATION INVARIANTS

18

(simplified invariant, does not handle the case that T is a ZST)

#[rr::refined_by("xs" : "list (bor {rt_of T})")]

Vec exposes the list of its initialised elements

(initialised)

(uninitialised)

ptr

initialised uninitialised

cap

len

pub struct Vec<T> {
    #[rr::field("(l, cap)")]

buf: RawVec<T>,
    #[rr::field("len")]
    len: usize,
}

#[rr::invariant("⌜∀ i, len ≤ i < cap → els !!! i = #None⌝")]

#[rr::invariant("⌜∀ i, 0 ≤ i < len → 
                  els !!! i = #(Some (xs !!! i))⌝")]

#[rr::invariant(#type "l" : "els" @ "array_t (maybe_init {T}) cap")]
#[rr::exists("cap" : "nat", "l" : "loc", "len" : "nat", "els")]



MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer

CUSTOM REPRESENTATION INVARIANTS

18

(simplified invariant, does not handle the case that T is a ZST)

#[rr::refined_by("xs" : "list (bor {rt_of T})")]

Vec exposes the list of its initialised elements

(initialised)

(uninitialised)

ptr

initialised uninitialised

cap

len

pub struct Vec<T> {
    #[rr::field("(l, cap)")]

buf: RawVec<T>,
    #[rr::field("len")]
    len: usize,
}

#[rr::invariant("⌜len = length xs⌝", "⌜len ≤ cap⌝")]
#[rr::invariant("⌜size_of_array_in_bytes {st_of T} cap ≤ max_int isize_t⌝")]

#[rr::invariant("⌜∀ i, len ≤ i < cap → els !!! i = #None⌝")]

#[rr::invariant("⌜∀ i, 0 ≤ i < len → 
                  els !!! i = #(Some (xs !!! i))⌝")]

#[rr::invariant(#type "l" : "els" @ "array_t (maybe_init {T}) cap")]
#[rr::exists("cap" : "nat", "l" : "loc", "len" : "nat", "els")]



MPI-SWS

RefinedRust

L. Gäher, M. Sammler, R. Jung, R. Krebbers, D. Dreyer 19

VERIFYING PUSH

pub fn push(&mut self, elem: T) {
    if self.len == self.cap() {
        self.buf.grow();
    }
    unsafe {
        ptr::write(self.ptr().add(self.len), elem);
        // Can't overflow, we'll OOM first.
        self.len += 1;
    }
}
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#[rr::requires("⌜length xs < max_int usize_t⌝")]
#[rr::requires("⌜size_of_array_in_bytes {st_of T} 

          (2 * length xs) ≤ max_int isize_t⌝")]
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VERIFYING PUSH

#[rr::params("xs", "γ", "x")]
#[rr::args("(#xs, γ)", "x")]

pub fn push(&mut self, elem: T) {
    if self.len == self.cap() {
        self.buf.grow();
    }
    unsafe {
        ptr::write(self.ptr().add(self.len), elem);
        // Can't overflow, we'll OOM first.
        self.len += 1;
    }
}

#[rr::ensures("Obs γ (xs ++ [ #x])")]

#[rr::requires("⌜length xs < max_int usize_t⌝")]
#[rr::requires("⌜size_of_array_in_bytes {st_of T} 
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Representation invariant of Vec broken (ownership moved to ptr::write)!
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EVALUATION
Rust LOC Sideconds Spec + manual proof Verification time

Vec::new 6 20 1 + 0 20s

Vec::push 9 128 5 + 35 7min 25s

Vec::pop 8 79 4 + 17 3min 30s

Vec::get_unchecked_mut 7 47 5 + 10 2min

Vec::get_mut 8 73 7 + 40 1min 05s

Vec::get_unchecked 7 31 4 + 0 55s

Vec::get 8 56 4 + 0 1min 20s

Total (RawVec + Vec) 120 (14 
functions) 400 ++ 75 + 105 8.5min (wall)

(with ~80 lines of common manually proved Coq theory about lists)
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Vec::new 6 20 1 + 0 20s

Vec::push 9 128 5 + 35 7min 25s

Vec::pop 8 79 4 + 17 3min 30s

Vec::get_unchecked_mut 7 47 5 + 10 2min

Vec::get_mut 8 73 7 + 40 1min 05s

Vec::get_unchecked 7 31 4 + 0 55s

Vec::get 8 56 4 + 0 1min 20s

Total (RawVec + Vec) 120 (14 
functions) 400 ++ 75 + 105 8.5min (wall)

(with ~80 lines of common manually proved Coq theory about lists)

Support libraries: mem::{size_of, align_log_of, align_of}, Box::new, 

alloc::{alloc, dealloc, realloc}, 
ptr::{write, read, invalid, copy_nonoverlapping},
mut_ptr::{add, offset}
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TAKEAWAYS FOR FOUNDATIONAL VERIFICATION
foundational verification is expensive

‣small Rust code (120 lines) → huge MIR (900 lines)

foundational verification allows to build intricate but sound type systems

‣  would be very hard to get right without mechanised proofs

foundational verification can be automated

‣but is not yet at the level of non-foundational tools

22
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TAKEAWAYS FOR VERIFYING UNSAFE CODE
Requires a low-level semantics

➔ opposed to high-level semantics sufficient for safe Rust

➔ memory model, value representation, …

➔ low-level byte model absolutely crucial for things like copy_nonoverlapping

ZSTs are a special pain to deal with

➔ regular surprises by unexpected corner cases

➔ e.g. pointer arithmetic rules 

Interaction with references is tricky 

➔ in safe code, have (essentially functional) abstractions

➔ in unsafe code, need to access low-level representation

➔ having a RustBelt-style model helps to seamlessly integrate

23
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REFINEDRUST

✓ Lift limitations of RustBelt

‣allow automatic translation from Rust

‣handle more borrow patterns

‣develop a new notion of place types

‣extend RustBelt’s lifetime logic

24

Radium operational 
semantics for Rust based on 

RefinedC

Refinement type system 
with semantic model inspired 

by RustBelt

Proof automation based on 
RefinedC’s Lithium engine

An automatic translation 
scheme from Rust into 

Radium

✓ Equip RefinedC with references

‣ redesigned RefinedC’s refinement model


