
Side-channel attacks on query-based data anonymization
Franziska Boenisch

franziska.boenisch@aisec.fraunhofer.de

Fraunhofer AISEC

Garching, Germany

Reinhard Munz

munz@mpi-sws.org

Max Planck Institute for Software

Systems

Saarbruecken, Germany

Marcel Tiepelt

marcel.tiepelt@kit.edu

Karlsruhe Institute of Technology

Karlsruhe, Germany

Simon Hanisch

simon.hanisch@tu-dresden.de

Center for Tactile Internet (CeTI), TU

Dresden

Dresden, Germany

Christiane Kuhn

christiane.kuhn@kit.edu

Karlsruhe Institute of Technology

Karlsruhe, Germany

Paul Francis

francis@mpi-sws.org

Max Planck Institute for Software

Systems

Saarbruecken, Germany

ABSTRACT
A longstanding problem in computer privacy is that of data anony-

mization. One common approach is to present a query interface

to analysts, and anonymize on a query-by-query basis. In practice,

this approach often uses a standard database back end, and presents

the query semantics of the database to the analyst.

This paper presents a class of novel side-channel attacks that

work against any query-based anonymization system that uses a

standard database back end. The attacks exploit the implicit condi-

tional logic of database runtime optimizations. They manipulate

this logic to trigger timing and exception-throwing side-channels

based on the contents of the data.

We demonstrate the attacks on the implementation of the CHO-

RUS Differential Privacy system released by Uber as an open source

project. We obtain perfect reconstruction of millions of data values

even with a Differential Privacy budget smaller than epsilon = 1.0

and no prior knowledge.

The paper also presents the design of a general defense to the

runtime-optimization attacks, and a concrete implementation of the

defense in the latest version of Diffix. The defense works without

modifications to the back end database, and operates by modi-

fying SQL to eliminate the runtime optimization or disable the

side-channels.

In addition, two other attacks that exploit specific flaws in Diffix

and CHORUS are reported. These have been fixed in the respective

implementations.

CCS CONCEPTS
• Security and privacy→ Data anonymization and sanitiza-
tion; Pseudonymity, anonymity and untraceability; Privacy-preserving

protocols; Software security engineering; • Information systems
→ Query optimization.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ACM CCS ’21, November 2021, Seoul, South Korea
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
side-channels, anonymization, privacy, databases

ACM Reference Format:
Franziska Boenisch, Reinhard Munz, Marcel Tiepelt, Simon Hanisch, Chris-

tiane Kuhn, and Paul Francis. 2021. Side-channel attacks on query-based

data anonymization. In Proceedings of ACM CCS 2021 (ACM CCS ’21). ACM,

New York, NY, USA, Article 4, 12 pages. https://doi.org/10.1145/nnnnnnn.

nnnnnnn

1 INTRODUCTION
One of the oldest problems in computer privacy is that of data

anonymity: exposing statistical information about data without ex-

posing information about individuals. The first papers were written

in the early 1970’s [4], and thousands of papers have been published

since.

There are two broad approaches to data anonymity, table-based

and query-based. In table-based approaches, a data set is modified

to produce a new, anonymized data set. The anonymized data set

is made available to analysts, who are free to run any queries they

wish. The majority of practical data anonymization is table-based,

for example national census data releases and medical data releases

like HCUP [5].

In query-based approaches, the anonymization mechanisms op-

erate over individual queries. While query-based anonymization

offers more analytic flexibility than table-based, it also exposes a

larger attack surface. The problem was actively researched in the

late 70’s, but the challenges appeared insurmountable, leading to

Denning in 1981 saying “It seems unlikely that we will ever be able to
efficiently decide at the time of a query whether a requested statistic
could lead to the disclosure of a sensitive statistic.” [2]

Interest in query-based anonymization died down until the devel-

opment of Differential Privacy (DP) in 2006 [3] and its formal guar-

antees of privacy. In 2009 and 2010, two query-based anonymization

tools based on DP, PINQ [17] and Airavat [28] respectively, were

released. Both gave the analyst the ability to compose queries as

code, allowing for arbitrary queries and effectively giving the ana-

lyst a Turing machine as an attack surface. Both were developed

primarily as academic tools: the authors acknowledged the possi-

bility of side-channel attacks on the tools, and indeed side-channel

attacks on both systems were demonstrated by Haeberlen et al. in

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM CCS ’21, November 2021, Seoul, South KoreaOrder to be specified, Franziska Boenisch, Reinhard Munz, Marcel Tiepelt, Simon Hanisch, Christiane Kuhn, and Paul Francis

2011 [11]. Their attacks exploited the underlying Turing machine

to manipulate the observable behavior of the systems.

In 2017 and 2018, two more query-based anonymization tools

were released, Diffix (version Birch) [8] and CHORUS (Uber re-

lease) [12, 30] respectively. Unlike PINQ and Airavat, these tools

were designed to be used in commercial settings to protect real

data. Diffix was built by Aircloak GmbH and sold commercially
1
.

CHORUS was adapted by Uber [20, 26] for internal use. As of this

writing, Uber states that they no longer use CHORUS. The Uber

GitHub repository [30] was archived in December of 2019 and is

no longer actively developed. The last code update was in March

2018. Note that a second open-source version of CHORUS was

released in 2020 and is still actively maintained [14]. We refer to

the Uber implementation as CHORUS-v2, and the currently active

implementation as CHORUS-v3. The attacks were demonstrated

on CHORUS-v2 only.

Although CHORUS is based on DP while Diffix is not, the two

have strong similarities. Both use SQL as the query interface, and

both operate as proxies in front of standard SQL databases (Figure 1).

Both impose limitations on the SQL, and neither allows arbitrary

code, thus offering a smaller attack surface compared to PINQ

and Airavat. Indeed none of the Haeberlen et al. attacks work on

CHORUS or Diffix.

Nevertheless, in this paper we show that even this smaller attack

surface is vulnerable to a variety of powerful side-channel attacks

which an adversary can reconstruct any data with 100% accuracy.

Specifically, this paper reports on a novel class of side-channel

attacks that exploit standard SQL mechanisms in the back end

database.

The attacks can in principlework against any query-based anony-
mization system that uses a standard database in the back end. These

attacks exploit run-time query optimizations where SQL clauses

may or may not be executed depending on the data itself. One class

of attacks uses exception reporting as the side-channel, while the

other uses timing. The attacks are 100% accurate, and allow perfect

reconstruction of millions of database records even, in the case

of CHORUS-v2, with a Differential Privacy budget smaller than

epsilon = 1.0. Our defense (Section 5) is completely effective and is

implemented in Diffix Dogwood.

In addition, we report on several attacks that exploit specific

flaws in the Diffix and CHORUS-v2 proxy implementations. While

not as general as the above-mentioned database attacks, these at-

tacks serve to illustrate the kind of vulnerabilities that can emerge

when building practical anonymization systems. The attacks against

the Diffix proxy exploit a design flaw stemming from how the Air-

cloak implementation reported query progress. One of the attacks

used a timing side-channel, while the other used the query sta-

tus reports themselves as the side-channel. The attack against the

CHORUS-v2 proxy exploits a flaw that was accidentally discovered

while testing the system. The flaw allows the attacker to literally

read out any column value. All of the proxy-targeted attacks al-

lowed perfect reconstruction of millions of records, and all have

been fixed in the latest respective versions.

The main contributions of this paper are:

1
One of the authors, Paul Francis, is a co-founder of Aircloak. Aircloak and MPI-SWS

are research partners working on the development of Diffix.

• A new class of side-channel attacks on query-based anonymi-

zation systems that exploit SQL run-time query optimiza-

tions, use timing and exception reporting as the side-channels,

and can work against any system that uses a standard data-

base back end.

• Demonstration of the attacks on CHORUS-v2 running with

PostgreSQL as the back end database.

• Novel defenses against the side-channel attacks that work

without modifications to the back end databases.

• A description of how the defenses were implemented in

Diffix Dogwoood.

• Novel side-channel attacks on Diffix Dogwood that exploit a

(now fixed) design flaw and use timing and query progress

status reporting as the side-channels.

• A side-channel attack that exploits a flaw in CHORUS-v2

(which is reported not to exist in CHORUS-v3).

Overall, this paper shows that query-based anonymization sys-

tems, including those that place restrictions on SQL, nevertheless

still leave a substantial attack surface that can be exploited with side-

channels unless extreme care is taken. While this paper shows how

to defend against a new class of side-channel attacks, it seems likely

that there are still more attacks to be discovered. Organizations

deploying query-based anonymization systems must be cognizant

of this, and control access to the system interface accordingly.

Ethical Vulnerability Notification. The database-based attacks of

Section 3 were discovered by Aircloak and MPI-SWS as part of the

Diffix design process, and was demonstrated to work against Diffix

Cedar in early 2020. The defenses described in this paper were

implemented before the attacks were made known publicly. These

same attacks, as well as the attack in Section 6.3, were demonstrated

to work against CHORUS-v2 in early 2021. Both Uber and the

developers of CHORUS were promptly notified. Since at the time of

reporting there were no production uses of either CHORUS-v2 or

CHORUS-v3, neither party requested that publication be delayed.

The Diffix proxy attack of Section 6.1 was demonstrated to work

in late 2020 as part of a bounty program operated by MPI-SWS.

The Diffix proxy attack of Section 6.2 was discovered in early 2021

by MPI-SWS and Aircloak. Publication of the attacks were delayed

until Aircloak added a defense.

Outline. Section 2 describes CHORUS-v2 and Diffix Dogwood,

the two query-based anonymization systems targeted in this paper.

Section 3 describes the database attacks in general terms. Section 4

reports on the effectiveness of the attacks against CHORUS-v2,

while section 5 describes how Diffix Dogwood defends against the

attacks. Section 6 describes attacks against the Diffix and CHORUS-

v2 proxy implementations themselves. Section 7 describes related

work, and Section 8 gives some additional observations and conclu-

sions.

2 OVERVIEW OF TARGET SYSTEMS
Figure 1 shows the basic operation of Diffix and our port of CHORUS-

v2. Both systems are deployed as a proxy in front of a standard

backend database. At a high level, both systems offer similar inter-

faces to an analyst. The analyst submits an SQL query. The system

Side-channel attacks on query-based data anonymization ACM CCS ’21, November 2021, Seoul, South Korea

(a) Diffix Dogwood (b) CHORUS-v2 (authors’ port)

Figure 1: Operation of Diffix Dogwood and CHORUS-v2 systems. Both systems operate as a proxy in front of a standard back
end database.

inspects the query to determine if it adheres to the SQL limita-

tions imposed by the system. If not, the query is rejected and an

appropriate error message is returned.

If allowed, the SQL query is modified and submitted to the data-

base. Although both systems are designed to send only error-free

queries to the database, it is always possible that the database re-

turns an error (and in fact some of the attacks exploit this). If so,

the error is passed on to the analyst.

Both systems add noise to the answer’s aggregate values. The

amount of noise is sensitive to the amount that individuals in the

database can contribute to the aggregate. For instance, if the query

computes the sum of salaries, then the amount of noise is propor-

tional to the largest possible salary. CHORUS-v2 adds the noise by

building noise addition into the SQL query itself. Diffix adds noise

to the aggregate returned by the database.

If the database returns an answer, CHORUS-v2 forwards the an-

swer to the analyst. Diffix either suppresses or perturbs the answer,

and returns either an implicit suppression signal or the perturbed

answer.

All of the attacks were executed via the standard interfaces pro-

vided by the two systems from remote locations over the internet.

2.1 Diffix Dogwood
The implementation of Diffix [22, 24] that was attacked in this paper

is the production version Dogwood released by Aircloak in 2020.

The deployment that was attacked was made publicly available for

the anonymization bounty program run in 2020 [23].

Diffix Dogwood
2
perturbs answers in two ways. First, it adds

noise to aggregate values like count or sum. Second, it suppresses

answers that pertain to too few users. The added noise is not rele-

vant to the attack described in this paper, so nothing more is said

about it here.

For suppression to work, Diffix must know how many distinct

users are associated with each aggregate in the answer. For instance,

if the query is

SELECT age , count (*)

FROM table GROUP BY age

Diffix would need to know that there are for instance 12 distinct

users associated with age=1, 28 distinct users associated with age=2,

and so on.

2
Dogwood is the current version of Diffix. Unless otherwise stated, references to Diffix

presume version Dogwood.

One of the several reasons that Diffix modifies the analyst SQL

is so that it may obtain this information from the database. Though

this is a gross simplification, conceptually Diffix changes the above

SQL to

SELECT age , count(*), count(DISTINCT users)

FROM table GROUP BY age

Diffix uses a noisy threshold to determine if a given aggregate

should be suppressed or not. If the number of users is zero or one,

the aggregate is suppressed. If the number of users is greater than

six, then the aggregate is not suppressed. Otherwise Diffix selects a

random threshold between 2 and 6 (Gaussian with mean of 4). If the

number of users is below the threshold, the aggregate is suppressed.

Substantial detail is omitted here, but may be found in [7, 24].

Diffix provides a number of features that aid the analyst in writ-

ing queries. One of these is to report the status of the query execu-

tion progress at various points in the workflow, in particular the

total time spent by the database and the total time spent by the

various anonymizing components. This helps the analyst optimize

long-running queries, but also adds another side-channel to the

attack surface.

Specific workflow reports included database query time, time
ingesting data (pulling the results from the database), and time
processing data. In particular, if the database query results were

empty, then the ingesting data report was suppressed. This was a
serious design flaw, as it reveals direct information about the results

of the query. The two side-channel attacks on Diffix in this paper

exploit this design flaw.

2.2 CHORUS-v2
Our port of CHORUS-v2 is based on the archived Uber SQL Differ-

ential Privacy GitHub repo [30]. The Uber repo does not provide

a complete working query-based anonymization tool. Rather, it

supplies a library of basic DP primitives; Elastic Sensitivity [13] and

Query Rewriting [12]. It is up to the user to package the primitives

into a working anonymization tool. The Uber repo also does not

provide any budget management primitives.

To integrate the CHORUS-v2 library into our tool, we needed to

make a number of design decisions. We believe that the decisions

we made are sensible given the available documentation (the Uber

repo itself [30] and the original CHORUS paper [12]). Figure 2a

shows the architecture of the CHORUS system as published in [12].

Figure 2b shows the setup of our tool. The code for our tool is

ACM CCS ’21, November 2021, Seoul, South KoreaOrder to be specified, Franziska Boenisch, Reinhard Munz, Marcel Tiepelt, Simon Hanisch, Christiane Kuhn, and Paul Francis

available on GitHub [27] and the tool itself is used as part of the

GDA-Score
3
suite of anonymization tools [25].

Our tool implements a web interface to receive SQL queries

from an analyst and return answers or error messages. It has a

simple budget manager which decrements the epsilon supplied

with the query from the budget. If the query would exhaust the

budget, our tool returns a budget-expired error. If not, our tool

queries the CHORUS-v2 re-write library for the modified SQL. If the

library rejects the analyst SQL, the error message from the library

is returned to the analyst. If not, the modified SQL is submitted to

the database.

Our tool takes the result returned from the database, including

any error reported by the database, and sends it directly to the

analyst. Some of our attacks depend on the analyst (attacker) be-

ing able to detect that the database produced an error. Obviously,

returning the error itself makes this easy for the attacker, but in

general it is non-trivial to hide that a database error occurred: an

artificially constructed answer that appears realistic in all cases is

difficult to produce, or the timing change incurred by the error can

be detected.

In any event, given the available documentation, passing the

database error on to the analyst would seem a sensible choice in the

absence of knowledge of our attack. The CHORUS paper itself [12]

suggests this (Figure 2a), and there is no mention of how to handle

database errors, or for that matter any side-channel, one way or

the other. It would be reasonable for a user to assume that the

CHORUS-v2 rewriter ensures that any SQL it produces is safe to

send to the database.

It is important to stress that Uber built and internally deployed

its own tool derived from the Uber repo, with potentially a very

different set of design decisions and a different back end database.

The attack results presented in this paper do not necessarily apply

to Uber’s deployment.

3 GENERAL SIDE-CHANNEL ATTACKS
AGAINST DATABASE SYSTEMS

This section describes attacks that can potentially be executed

against any query-based anonymizing system using standard back

end databases. Subsequent sections drill down on the specific details

of the attacks as applied to CHORUS-v2 and on our defense design

and implementation in Diffix Dogwood.

The attacks against the database are of the following form:

IF isolating_criteria [AND target_attributes]
THEN trigger side-channel

The isolating criteria is one or more conditions that match one

and only one individual (the victim). The isolating criteria might

be a single SQL condition like:

WHERE ssn = '123-45-6789'

(the social security number of the victim), or a quasi-identifier

consisting of a set of SQL clauses like:

3
The General Data Anonymimity (GDA) Score is an open-source project to measure

the strength and utility of data anonymization mechanisms.

Mechanism Component Fixed

Diffix CHORUS-v2

WHERE optimizer Database (Side) not-fixed

JOIN optimizer Database 2020 not-fixed

CASE statement Database disallowed not-fixed

Empty query result Diffix (Side) N/A

Table 1: Summary of If/Then mechanisms, showing in which
system component is the mechanism executes, and whether
or when a defense was built. (Side) means that the defense
is handled at the side-channel. Disallowed means that the
corresponding SQL is not allowed. N/A means that the attack
doesn’t apply.

WHERE birth_day = '1990-01-01' AND

zip = 12345 AND gender = 'M'

The target attributes are what the attacker wishes to learn about

the victim. The SQL clause

WHERE disease = 'condition '

targets the attribute disease and determines if the victim has the

given condition or not, and

WHERE salary BETWEEN 70000 and 80000

targets the attribute salary and determines if the victim’s salary

falls in the specified range.

The target attributes are optional. If not included, then the attack

is a membership inference attack, which simply determines if the

victim is in the database or not. If included, then the attack is an

attribute inference attack, whereby attributes of a victim known to

be in the database are learned.

To run an attack, the attacker must therefore be able to do the

following two things:

(1) Execute If/Then logic.

(2) Execute a side-channel.

This section overviews all of the If/Then logic mechanisms and

side channels described in this paper. They are summarized in tables

1 and 2 respectively.

3.1 If/Then Mechanisms
The If/Then mechanisms described in this section work on virtually

all standard databases.

3.1.1 WHERE Optimization. If/Then can be executed by exploiting

optimizations in the database query engine for processing con-

ditions in a WHERE clause. The optimization is that the query en-

gine will stop processing conditions once the outcome of the WHERE

clause is certain.

For example, consider the WHERE clause

WHERE ssn = '123-45-6789'

AND disease = 'condition '

AND SQRT(age -1000) = 1

Here ssn is the isolating criteria, disease is the target attribute,

and the SQRT expression is the side-channel. If the first or second

Side-channel attacks on query-based data anonymization ACM CCS ’21, November 2021, Seoul, South Korea

(a) CHORUS architecture taken from [12] (b) Authors’ port of CHORUS-v2 (our code in dashed box)

Figure 2: Details of authors’ port of CHORUS-v2 (b) as patterned after the original CHORUS architecture (a)

Mechanism Example Component Fixed

Diffix CHORUS-v2

Exception
Reporting

Divide-by-zero 1/(col*0) = 1 Database 2020 not fixed

SQRT negative SQRT(col-10000) = 1 Database 2020 not fixed

Numeric overflow POWER(2,(10000.01 * col)) = 1 Database 2020 not fixed

Date overflow col + INTERVAL ‘P1000Y’ = ‘1995-06-22’ Database 2020 disallowed

Timing Invoke delay SELECT col FROM table Database (If/Then) not fixed

Query status report (Native to Diffix) Diffix 2021 N/A

Other Query status report (Native to Diffix) Diffix 2021 N/A

SELECT flaw (Native to CHORUS-v2) CHORUS-v2 N/A 2020

Table 2: Summary of side-channels, giving an example of each channel, the system component in which the side-channel
executes, whether or when a defense was built, and the accuracy of the side-channel detection. Disallowed means that the
corresponding SQL is not allowed. (If/Then) means that the defense is handled in the If/Then mechanism. N/A means that the
attack doesn’t apply.

conditions are False, then the entire WHERE expression must be

False, so the query engine will not bother to execute the final

condition. If on the other hand the first and second conditions are

True, then the final condition must also be evaluated. This therefore

acts as an If/Then mechanism.

3.1.2 JOIN Optimization. Similar to the WHERE optimization, the

If/Then mechanism can be executed by exploiting optimizations in

the database query engine for processing JOIN . The optimization

is that if one of the JOIN expressions returns nothing, then there

is no need for the query engine to evaluate the remaining JOIN

expressions because there is nothing for them to JOIN with.

For example, consider the following JOIN:

SELECT count (*) FROM

(SELECT col FROM table

WHERE ssn = '123-45-6789' AND

disease = 'condition ') j1

JOIN

(SELECT col FROM table) j2

ON j1.col = j2.col

If there is no user with that ssn in the table, or if there is such a

user but that user does not have the indicated disease, then the JOIN

expression j1 will return nothing, and the query engine will not

bother to evaluate JOIN expression j2. By contrast, if there is such a

user and the user has the disease, then j1will return something and

j2 will be evaluated. Therefore this acts as an If/Then mechanism.

3.1.3 CASE Statement. The CASE statement in and of itself directly

implements If/Then logic:

CASE WHEN ssn = '123-45-6789' AND

disease = 'condition '

THEN SQRT(age -1000) = 1

3.2 Side-Channels
This section describes the side-channels that operate on the data-

base. Not all of the side-channels work on all databases. We don’t

make an exhaustive survey of which side-channels work on which

databases, but instead give a few examples of databases where the

side-channels work or don’t work.

3.2.1 Exception Reporting. Databases execute mathematical opera-

tions, and can therefore have the arithmetic errors of divide-by-zero

and square root of a negative number. Numeric and date columns

in databases are often limited in size (i.e. 32 bits, year 9999), and are

therefore subject to overflow or underflow errors. Some databases

handle the arithmetic errors silently by evaluating the math expres-

sion as NULL and continuing execution. MySQL and SQLite are two

examples. PostgreSQL, on the other hand, halts query execution

ACM CCS ’21, November 2021, Seoul, South KoreaOrder to be specified, Franziska Boenisch, Reinhard Munz, Marcel Tiepelt, Simon Hanisch, Christiane Kuhn, and Paul Francis

and reports an exception for the arithmetic errors. All three report

exceptions for overflow/underflow errors.

The example exception throwing SQL expressions from Table 2

are repeated here for convenience:

1/(col *0) = 1

SQRT(col -10000) = 1

POWER (2 ,(10000.01 * col)) = 1

col + INTERVAL 'P1000Y ' = '1995-06-22'

Each expression must include a column value (here col) to trigger

the side channel. If no column value is included (i.e. SQRT(-1)),

then the database tries to pre-compute the expression and returns

an error before query execution begins. The right-hand sides of

the expressions are irrelevant: the error takes place before any

comparison can be made.

The first three require a numeric column, and the last a date

or time column. Since the expression executes on rows matching

the victim, the attacker must pick an expression that is sure to

trigger the side-channel for the victim’s corresponding column

value. These are just four of many possible ways of triggering the

error. In this specific example for SQRT, the constant (10000 in this

example) needs to be larger than the largest possible column value.

It is not necessary for the attacker to know the victim’s value per

se. Likewise for the overflow examples (POWER and interval), the

attacker can use a constant that produces an overflow for even the

smallest column value, and again doesn’t need to know the victim’s

value.

3.2.2 Invoke delay. The second side-channel on databases is to

invoke an action that takes long enough to be measurable over a

network with high confidence. As demonstrated in Section 6.1, a

few 10s of milliseconds delay is enough to detect the side-channel

with 100% accuracy. The example in Table 2 gives an expression

that causes a scan of the entire database table:

SELECT col FROM table

An example of how this table scan can be used along with a JOIN

If/Then mechanism is shown in the JOIN query of Section 3.1.2. An

SQL IN clause can be used to invoke a table scan along with a WHERE

If/Then mechanism like this:

WHERE ssn = '123-45-6789'

AND disease = 'condition '

AND col1 IN (SELECT col2 FROM table)

An example with the CASE If/Then is:

CASE WHEN ssn = '123-45-6789' AND

disease = 'condition '

THEN (SELECT sum(col) FROM table)

Note that an aggregate (sum(col)) is being selected rather than a

full column because the THEN clause expects a scalar rather than an

array.

There are no doubt many ways to invoke a measurable delay. For

the purposes of this paper, it is sufficient to give working examples

and is out of scope to try to survey them all.

3.3 Attacker Assumptions
We assume that the attacker has access to the full API offered by

the system over a shared network such as the Internet. The attacker

does not require physical access to the machines themselves, nor

the ability to modify code on the machines.

Both membership inference and attribute inference attacks re-

quire that the attacker is able to isolate the victim with high con-

fidence. This implies having specific knowledge of certain victim

attributes, as well as high confidence that only the victim has those

attributes. This does not necessarily mean, however, that the at-

tacker must have prior knowledge of the victim. In general the

attacker can use the attacks themselves to discover isolating crite-

ria.

For instance, if the attacker knows that a given column contains

unique identifiers, like ssn, then the attacker can query for ssn

values until one is found that has an associated user. A search tree

may be used for efficiency, for instance by selecting ranges for

numeric columns, or substrings for text columns. If there are no

identifying columns, the attacker can search multiple columns that

can serve as a pseudo-identifier with high probability.

4 DATABASE ATTACKS DEMONSTRATED ON
CHORUS-V2

All of the side-channels from the prior section work on CHORUS-v2

in one form or another except for the overflow on dates: CHORUS-

v2 does not allow INTERVAL or math with dates. While CHORUS-v2

does limit SQL, it does so only for the purpose of ensuring that it

applies noise properly, not to defend against side-channels.

Our CHORUS-v2 port does not allow sum(column), which is used

in the invoke delay side-channel in conjunction with the CASE

If/Then mechanism. In this case we can use the IN (SELECT ...

) expression within the THEN (SELECT ...) to invoke delay:

CASE WHEN ...

THEN (SELECT COUNT (*) FROM table

WHERE col IN(SELECT ...))

Note that the COUNT(*) itself does not necessarily produce a table

scan, which is why the additional IN is needed.

4.1 Number of Queries
Differential Privacy systems impose a total privacy budget 𝜖𝑡𝑜𝑡𝑎𝑙 .

This effectively limits the total number of queries relative to the

amount of noise 𝜖 in each query. More noise allows more queries.

It is common for the database owner to set 𝜖𝑡𝑜𝑡𝑎𝑙 , but to allow

the analyst to set 𝜖 per-query. We follow this convention in our

CHORUS-v2 port. In addition, we don’t impose a lower limit on the

value. This allows the analyst to increase the number of queries by

setting a very large noise value (very small epsilon). For instance,

by selecting 𝜖 = 0.0000001 against a total budget of 𝜖𝑡𝑜𝑡𝑎𝑙 = 1.0, we

get 10 million queries before exhausting the budget.

Such a tiny 𝜖 is not needed for any reasonable analytic purpose,

and so a sensible mitigation would be to impose a lower limit on

𝜖 . While this would severely limit the amount of information an

analyst could infer, it doesn’t prevent the attack per se.

The tiny 𝜖 approach worked as expected with all combinations

of side-channel and If/Then mechanisms except those using JOIN. It

so happens that the length of time it takes CHORUS-v2 to compute

the noise parameter for JOIN queries increases with decreasing

𝜖 . A query that takes under one second for 𝜖 = 0.1, increases to

Side-channel attacks on query-based data anonymization ACM CCS ’21, November 2021, Seoul, South Korea

14 seconds with 𝜖 = 0.001 and 284 seconds for 𝜖 = 0.0000053

and appears to grow linearly with decrease in 𝜖 . This delay puts a

practical limit on the number of queries an attacker can execute

using JOIN; an 𝜖 value that allows 10000 queries would take two

weeks to execute all of the queries.

4.2 Demonstration of Arbitrary Data
Reconstruction

The fact that a variety of If/Then mechanisms and side-channels

can be run against CHORUS-v2 implies that virtually any informa-

tion can be extracted from the database. We demonstrated this by

extracting full last names from a database with no prior knowledge

other than knowing that a certain given column (the user ID col-

umn) contains unique identifiers. The database, deployed on our

premises, consisted of a combination of public and synthetic data.

No private data was a risk in this or any of our attacks.

For this demonstration, we used the CASE If/Thenmechanism and

timing side-channel. Our attack wasn’t particularly sophisticated

in that we didn’t implement efficient search algorithms to discover

user IDs, but nevertheless the attack worked.

We started by running membership inference attacks with ran-

dom user IDs. Upon finding an ID, we used it as the isolation criteria

to attack the names. We did this by first attacking the length of

the name using CHARLEN, and then using SUBSTRING to attack each

character in the name one by one until the name was reproduced.

Note that the purpose of this demonstration is not to measure

how efficiently data can be extracted, but rather to simply show

that it can be done. A study of how efficiently data can be extracted

would entail search heuristics optimized for the structure of the

specific data being attacked, and possibly using dictionaries (i.e. a

dictionary of common last names). Such a study is out of scope for

this paper.

5 DEFENSES AGAINST THE DATABASE
ATTACKS

There are broadly three ways to defend against the general database

side-channel attacks of Section 3. They are listed here in order of

preference:

(1) Disable or mask the side-channel itself.

(2) Disable the query optimizations that lead to If/Then logic.

(3) Limit the SQL functionality.

We prefer to avoid limiting SQL for obvious reasons, and do so

only as a last resort. Disabling query optimizations is unattractive

in part because it leads to slower queries, but also because in most

cases it is not clear how to do so without modifying the database

implementation itself. Since a core design goal of both CHORUS

and Diffix is to accommodate unmodified back end databases, this

is not an option.

Disabling the exception side-channel by returning NULL rather

than throwing an exception is an attractive approach. The same

thing, however, cannot be done for the timing side-channel. Mask-

ing the timing side-channel requires adding substantial amounts of

artificial delay to queries [11], which in our experience with real

users leads to unacceptable performance.

Ultimately wewere forced to use all three approaches.Wemodify

the SQL transmitted to the database to disable the exception side

channel. Where possible, we disable query optimizations to prevent

the timing side-channel, but limit SQL functionality otherwise.

These approaches are described in detail in the following sec-

tions.

5.1 Defense against exception reporting
A general approach to defending against exception reporting is to

install user defined functions (UDF) into the database which inserts

NULL rather than throws exceptions, and then rewrite the SQL to

invoke the UDFs instead of the standard equivalent native function.

So for instance POWER() could be replaced with a UDF UDF_POWER,

and col + 1 could be replaced with UDF_SUM(col,1).

With some databases, UDFs are quite performant because they

can be written for instance in C. With other databases, however,

the UDFs must be written in SQL and can be quite slow. Since

execution time is an important performance metric, we developed

the following strategy for avoiding the use of UDFs where possible.

(For readability we limit the following to overflow, but equivalent

mechanisms are used for underflow as well.)

(1) In the background, periodically determine an anonymized

upper bound on values in each numeric and datetime column.

(2) At query time, cast numeric columns to a larger native type

(i.e. 8 bits to 64 bits) by re-writing the SQL.

(3) Statically evaluate the re-cast SQL expressions using the

bound to determine if an overflow would occur.

(4) If yes, then replace the expression with its safe equivalent

UDF.

(5) If no, leave the expression as is but modify the SQL inline

to enforce the upper bound (values exceeding the bound are

replaced by NULL).

(6) Determine if a SQRT or divide-by-zero exception is possible.

If yes, then modify the SQL inline to prevent the exception

and return NULL instead.

To determine the upper (and lower) bound for each numeric

column, Diffix periodically queries for the highest column values

and (re)computes the bound.

The bound needs to be anonymized because an attacker can

potentially learn the bound through a timing attack that detects

whether a (slow) UDF was installed or not. In addition, the Aircloak

system makes the rewritten SQL available to analysts for query

debugging purposes and so can be read directly. The bound should

be high enough that actual column values almost always fall within

the bound, but low enough that it is rarely necessary to invoke the

UDF.

Our design for anonymizing the bound is to first select a per-

column rank value 𝑅 randomly between 10 and 20. Working in

order of highest to lowest column value, the column value 𝑉 of

the 𝑅𝑡ℎ distinct user is selected, and then increased by a factor

of 10. The resulting value is then rounded up to the next higher

number with one significant digit (i.e. 23043 is rounded to 100000).

The resulting anonymized upper bound is usually higher than the

actual highest column value, but not necessarily. For instance it can

be lower if there are extreme outliers in the data or if new data was

inserted after the last bound computation.

ACM CCS ’21, November 2021, Seoul, South KoreaOrder to be specified, Franziska Boenisch, Reinhard Munz, Marcel Tiepelt, Simon Hanisch, Christiane Kuhn, and Paul Francis

At query time, we statically evaluate the SQL expression by

using the upper bound as the column value, and determine if the

upper bound would cause an overflow. In this evaluation, we use

the largest native numeric type. This type is enforced by re-writing

the SQL to CAST the column to the largest type.

The following SQL snippet is an example of this. The original

WHERE condition col * 2 = 1 is replaced in the SQL by the following

expression:

...

(SELECT CASE

WHEN (col < 0) THEN 0

WHEN (col > 1000) THEN 1000

ELSE col END AS bounded_col

FROM table) AS t

WHERE ((CAST(t.bounded_col AS BIGINT)*2) = 1)

Here 0 and 1000 are the anonymized lower and upper bounds (on a

column col whose real lower and upper bounds are 0 and 75). An

inner SELECT is created with a CASE statement to force the column

value to be within the bounds during query execution. The bounded

column bounded_col is CAST up to the largest column type that fits

within the native machine integer type (BIGINT). In this example, a

UDF was not needed.

If SQRT or division operations are in the SQL, then we modify the

SQL to test for the error condition in the SQRT operand (negative

value) or division denominator (zero), and if so replace the entire

expression with NULL using CASE. For example, if a WHERE expres-

sion contains 1/(col*0)=1, we replace the entire left hand side with

this CASE statement:

CASE WHEN col*0 < 1.0e-100 THEN NULL

ELSE 1/(col*0)

END

This effectively mimics how many databases handle these errors

(by inserting NULL rather than throwing an exception).

5.1.1 Performance. Despite our attempts to avoid performance

loss, re-writing SQL to prevent exceptions as described above does

lead to increased query times. As an example, we compared the

execution time of the following two queries on the Aircloak imple-

mentation of Diffix:

SELECT count (*) FROM jan01

WHERE pow(trip_time_in_secs ,2) = 100

SELECT count (*) FROM jan01

WHERE trip_time_in_secs = 100

The first query, which invokes the SQL re-writing described

above, completed in roughly 550ms on average. The second query

completed in roughly 300ms on average. These queries were run

on a database of taxi rides consisting of roughly 400K rows.

5.2 Disabling If/Then with JOIN
As mentioned earlier, defending against timing side-channels by

artificially adding delay to query answers leads to unacceptable

performance. Disabling If/Then logic in WHERE and CASE statements

by re-writing SQL appears extremely difficult if even possible. We

did not seriously attempt to do so.

Instead we chose to limit the SQL to prevent the combination of

timing side-channels with WHERE and CASE statements. Specifically,

we prevent the use of SELECT sub-queries within IN and THEN state-

ments. These SQL constructs are in any event not that commonly

used.

On the other hand, re-writing SQL to disable If/Then logic in

JOIN statements is relatively straight-forward. This is fortunate,

because preventing the use of SELECT sub-queries with JOIN makes

no sense, and preventing JOIN altogether is too limiting.

To disable If/Then with JOIN, we need to ensure that every JOIN

expression is executed by the query engine, which in turn means

that every JOIN expression must return at least one row. To do this,

we use UNION ALL to artificially append an arbitrary “chaff” row

into the JOIN expression.

For example, if the original analyst query is this:

SELECT ... FROM

(SELECT ...) join1

JOIN

(SELECT ...) join2

ON join1.col = join2.col

We force an additional chaff row to the first JOIN expression join1

like this:

SELECT ... FROM

((SELECT ...)

UNION ALL

(SELECT rare_value1 , rare_value2 , ...)

) join1

JOIN

(SELECT ...) join2

ON join1.col = join2.col

As a result, even if the original join1 expression returns zero rows,

the chaff row from the UNION ALL is returned, thus forcing the

execution of the second JOIN expression in all cases. If there are

multiple JOIN expressions, a chaff row is appended to all but the

last.

The SELECT for the chaff row is literally as shown above: a SELECT

followed by a series of constants, one for each column given by

the original analyst query. A value very unlikely to exist in the

original data is used. In this way, the probability that the chaff

row joins with anything is extremely low and so the chaff row

doesn’t effect the query result. In the Diffix implementation, these

are hard-coded values, literally -2147483648 for numeric values

and ’__ac_invalid_value’ for text. These values can be read from

the rewritten queries that the Aircloak system makes available to

analysts. In the rare event that the chaff row does get included in

the JOIN, it is not a disaster since in any event the query result is

noisy.

6 ATTACKS AGAINST THE PROXY
IMPLEMENTATIONS

In contrast to the attacks described in prior sections that exploit

general database mechanisms, this section describes novel attacks

against mechanisms specific to the Diffix and CHORUS proxies

themselves. Although these attacks are less broadly applicable and

Side-channel attacks on query-based data anonymization ACM CCS ’21, November 2021, Seoul, South Korea

therefore less interesting academically, we include them here be-

cause both attacks stem from adding features that on one hand

make the systems more usable, but on the other fall outside of the

core privacy principles of the system. For Diffix these core privacy

principles are answer suppression and perturbation. For CHORUS

the core privacy principle is Differential Privacy. As such, the at-

tacks in this section serve as cautionary tales of how features can

creep into practical query-based anonymization systems, and the

extent to which designers need to guard against vulnerabilities that

result from these features.

6.1 Timing Attack Against the Diffix Proxy
The timing attack described in this section differs from those of Sec-

tion 3.2.2 in two ways. First, the timing difference is not explicitly

invoked by the SQL, but rather exists natively in the implementa-

tion of Diffix. Second, the timing difference is quite small, and so

considerable sophistication is required to detect it. Nevertheless,

we were able to achieve 100% accuracy in a membership inference

attack.

Interestingly, it was only after the attack was demonstrated that

the root cause of the attack, Diffix query status reporting, was

discovered. Our original concept for the attack came from the ob-

servation that Diffix executes different processing steps depending

on whether the database returns some data to Diffix or returns no
data to Diffix. In the former case, Diffix must undergo a number of

processing steps that are not necessary in the latter case. It must

read in the data, determine the number of distinct user identifiers

associated with the data, and if the number is greater than one, seed

a random number, generate a random number, and then use that

value as a noisy threshold to decide whether or not to suppress the

answer. The original goal of the attack, then, was to determine if

the delay incurred by this extra processing could be detected, thus,

revealing if zero or more than zero users match the query.

If the extra processing can be detected, then the isolating crite-

ria alone can be used in a membership inference attack, and the

isolating criteria and target attributes together can be used in an

attribute inference attack (Section 3). There is no need to trigger a

side-channel per se.

6.1.1 Attack Overview. Our attack was designed and executed as

part of an anonymization bounty program offered by the Max

Planck Institute for Software Systems [6]. The bounty program

awards prizes for both membership and attribute inference attacks.

For our attack we chose the former, and that is what we report

on in this paper. The attack can be easily extended to an attribute

inference attack by adding the appropriate isolating criteria to the

queries.

In the setup for the bounty program’s membership inference

attack, there is a public database whose contents are fully known,

and a target database protected by Diffix. The two databases have

the same columns. The records for roughly half of the users in the

public database are also in the target database (randomly selected

and fully replicated), and the goal of the attack is to determine

which public database users are in the target database.

The basic procedure is to establish a ground-truth timing distri-

bution for queries that return zero rows (non-existing users), and

a separate ground-truth for queries that return one or more rows

(existing users). The former requires no prior knowledge, because

it is easy to generate queries with conditions that match no users

with very high probability. The latter requires prior knowledge of

at least one user certain to be in the target database. To determine

if a given user (the victim) is in the target database, we establish

timing distribution using queries whose conditions isolates the vic-

tim. By comparing the victim’s timing distribution with the two

ground-truth distributions, we can deduce whether the victim is a

member of the target database or not.

6.1.2 Attack Details. We chose the user-unique social security

number (ssn) column as the isolating criteria using the following

query:

SELECT count(DISTINCT ssn)

FROM accounts

WHERE ssn = '123-45-6789'

Let Cpublic
be a set of victims from the public database each

identified by the ssn column. Let Cnon-existent
be a set of non-

existing users, each identified by a social security number generated

from a random 15-character strings such that the number does not

exist with very high probability. Finally, let Cprior
be a (small) set

of users known a-priori to exist in the target database.

The attack then consists of the following steps:

(1) For each user in the set Cnon-existent
(respectively Cprior

)

query the target database R times, each resulting in a timing.

Merge all timings into a single list Tnon-existent
(respec-

tively T prior
).

(2) Compute the average distance between the non-existing and

the existing (prior knowledge) timings to define a threshold

used during decision making.

(3) For each victim Cpublic

𝑖
∈ Cpublic

query the target database

R times, resulting in a list of timings T public

𝑖
.

(4) Perform a statistical test on the two data sets Tnon-existent

and T public

𝑖
for each victim, resulting in value 𝑑 which quan-

tifies the distance.

(5) Finally, decide the membership for each victim based on the

𝑑-value and the threshold.

Decision Functions. To assess the success of our attack we bor-

rowed the corresponding measure of confidence improvement (𝐶𝐼)
from the GDA-Score [25] as used in the bounty program: The 𝐶𝐼

measures the success of the attack if a claim is made as the nor-

malized difference between the confidence (𝐶), i.e. the probability

of the attack making a correct claim, and the statistical confidence

(𝑆), i.e. the probability that a simple statistical guess is correct:

𝐶𝐼 = 𝐶−𝑆/1−𝑆 . For example, a 𝐶𝐼 = 0 means that the claim is not

better than guessing a value, whereas 𝐶𝐼 = 1 means that all claims

were correct. This metric is in line with the privacy property Diffix

aims to achieve: The confidence the analyst has in a guess is not
substantially higher than a guess the analyst could have made purely
with external knowledge.

To implement our attack we used the two-sided Kolmogorov-
Smirnov (KS) [15, pp. 392-394] from the Python 3 library SciPy
[31]. The test outputs a 𝑑-value, representing the distance between

the empirical distribution function of the first and the cumulative

distribution of the second data set. Figure 3 depicts an example

of the distributions for our query timings of non-existing entries

ACM CCS ’21, November 2021, Seoul, South KoreaOrder to be specified, Franziska Boenisch, Reinhard Munz, Marcel Tiepelt, Simon Hanisch, Christiane Kuhn, and Paul Francis

#queries CI min [ms] max [ms] avg [ms]

5 0.13
NE 177 225 198

E 188 253 216

50 0.96
NE 167 280 200

E 182 315 228

100 1.0
NE 167 300 202

E 182 328 229

Table 3: Detailed timings for queries of existing (E) and non-
existing (NE) entries in milliseconds. Non-existing values
refer to the random strings for the ground truth. Existing
queries refer to the timings resulting from the single prior
knowledge value. A Confidence Improvement 𝐶𝐼 of 0 corre-
sponds to a 50% success rate (equivalent to a statistical guess).
In the final attack we used R = 100 queries resulting in a
timing difference of about 27ms.

compared to those of the existing entries to visualize the distance.

In general,𝑑 ⇝ 0means that the distributions are equal, and𝑑 ⇝ 1

that the distributions are different.

We defined our threshold for the 𝑑-value based on the average

distance of timings, i.e., 𝑡 = 1 − (1 − 𝑎𝑣𝑔 (Tnon-existent)/𝑎𝑣𝑔 (Tprior)) ·1/3.
To decide the membership, we compared the𝑑-value𝑑𝑖 for a specific

victim Ctarget

𝑖
to the average over all 𝑑-values and claimed that

the user exists in the target database, if this value is greater than

the average 𝑑-value of all victims: 𝑑𝑖 · 𝑡
?

> 𝑎𝑣𝑔({𝑑 𝑗 } 𝑗)

Establishing Attack Parameters. To achieve perfect 𝐶𝐼 we eval-
uated different numbers of users for the ground truth and the

prior knowledge. With no prior knowledge users (and therefore

no ground truth timing distribution for existing users), we were

able to achieve a 𝐶𝐼 of about 0.7 by fixing the threshold to 0.9 of

the average of all victim timing measures. In other words, if a 𝑑-

value is larger than 90% of the average across all victims we claim

membership in the target database database.

After experimenting with different attack parameters, we deter-

mined that R = 100 is enough to average out most timing differ-

ences. Moreover, we required prior knowledge of only a single user

from the target database to get 100% accuracy.

The attack was performed from a virtual machine with a round-

trip delay of about 15ms between the attack machine and the Diffix

machine. Table 3 compares the timings of queries for non-existent

values to the timings for existing values for number R of queries.

The table shows that the average timing difference converges, such

that a larger number of queries allows a better estimation. As a

result, the average timing for non-existing rows is 202 ms and

for existing rows about 229 ms. To decide the membership of 200

victims we performed 300 queries for the ground truth, 300 queries

for the threshold, and 20000 queries for the victims, resulting in an

overall attack time of about 100 minutes.

6.1.3 Mitigation. In debugging the root cause of the timing attack

reported in the previous section, the Aircloak team determined

that the timing difference is caused by differences in the way Diffix

Figure 3: Probability density function of timings for non-
existing values vs existing values after R = 100 queries. The
vertical lines denote the average timings. The curves show a
clear offset for the timing of the existing entries, however,
they also show that multiple queries might be necessary to
identify membership of a target correctly.

reports query status. Prior to being fixed, Diffix would report a

query status of ingesting data if the query answer is not empty, and

would not report that query status otherwise. Reporting this status

required a number of additional steps, such as updating the logging

system and making the status message available over the API. The

additional delays in handling the status message accounted for the

extra 23.5ms delay.

Aircloak modified the system so that the ingesting data status

was disabled altogether. After the fix, our attack could detect no

difference in the timing between queries that return zero rows and

queries that return multiple rows.

6.2 Diffix Query Status Reporting
Once the design flaw with reporting ingesting data was discovered,
we realized that the mere existence or non-existence of the status

report itself could be used as the side-channel rather than timing.

This leads to 100% accuracy using only a single query. The If/Then

logic is then:

IF non-empty query answer
THEN report ingesting data

and the database can be completely reconstructed.

6.3 CHORUS-v2 SELECT flaw
While experimenting with CHORUS-v2, we happened to notice

that queries that simply select a column return the column values.

For example, the query

SELECT col1 , col2

FROM table

is re-written by the CHORUS-v2 implementation to

Side-channel attacks on query-based data anonymization ACM CCS ’21, November 2021, Seoul, South Korea

SELECT "col1", "col2"

FROM "public "." table"

which returns the resulting noiseless column values. We refer to

this as the SELECT flaw in Table 2.

It might seem odd that there is any code path at all that can

output a column value in a Differential Privacy system. After all

Differential Privacy in its pure form can only output the noisy

results of aggregates over numeric functions like count() or sum().

To make Differential Privacy more practical, however, it is useful to

output column values when doing so does not violate some notion

of privacy. For example, the department column of a database may

have values like ’sales’ and ’engineering’. These values are in any

event publicly known and can be released without violating privacy

per se.

CHORUS-v2 has a feature that allows individual columns as

well as whole tables to be configured as ’public’. This allows the

individual column values to be released with SELECT column. In our

port of CHORUS-v2, no column or table was configured as ’public’.

Nevertheless, the mere possibility of allowing such a configuration

creates a code path that can lead to this flaw.

It so happens that in our port of CHORUS-v2, we expected a

single noisy real value as an answer, and that is all we return

(or an error message if the value is not a real). Therefore strictly

speaking we cannot simply request a dump of the data using our

port, although the underlying CHORUS-v2 system allows it.

The developer of CHORUS-v3 [14] reports that this flaw does

not exist in CHORUS-v3.

7 PRIORWORK
Several prior attacks on query-based anonymization systems have

been published. Haeberlen et al. [11] demonstrated three differ-

ent classes of side-channels against two query-based DP systems,

PINQ [17] and Airavat [28]. The If/Then mechanisms of Haeberlen

et al. differ from ours in that Haeberlen et al. could exploit the

language features of C# (PINQ) and Java (Airavat), whereas our

attacks are limited to a subset of SQL. In this regard the attacks of

Haeberlen et al. do not work against CHORUS or Diffix. Haeberlen

et al. exploited three side channels: timing, the value of the answer,

and the DP budget. We likewise use a timing side channel, but our

other side channels differ.

To defend against the timing side channel attacks, Haeberlen

et al. proposes FUZZ [11], which eliminates the side channel it-

self by forcing a fixed timing on the query. The DP-based GUPT

system [19] likewise forces a fixed timing. This approach leads

to massively increased query times. By contrast, Diffix eliminates

the corresponding If/Then mechanism, which in turn leads to a

different trade-off; limiting query expressiveness.

Mironov [18] identified a different type of attack against DP-

based systems that is based on floating point irregularities in the im-

plementation of the underlying Laplacian mechanism. These irreg-

ularities result from finite precision and rounding effects of floating-

point operations. The author demonstrated the attack against both

PINQ and Airavat. Other prior work showed that CHORUS can also

be successfully attacked by the Mironov attack [29]. Although one

participant in the Diffix bounty program tried and failed to execute

this class of attack (unfortunately no details are available), it is of

course unknown whether another variant of the attack could work

against Diffix.

PSI [9] achieves robustness against the Haeberlen et al. [11]

attacks as well as the attacks in this paper by only allowing built-in

differentially private data analyses. To protect against the floating

point attack byMirnov [18], the system includes an implementation

of the snapping algorithm [18].

In prior work on attacks against Diffix, Cohen and Nissim [1]

showed that an earlier version of Diffix (Cedar) is vulnerable to

linear reconstruction attacks. Such attacks rely on queries with

dummy conditions to obtain noise samples that can be used to infer

individual data points. Gadotti et al. [10] proposed an attack on

Diffix Birch to cancel out the noise generated by Diffix to learn

private attributes of the underlying data. These attacks exploited

design weaknesses in the corresponding versions of Diffix itself,

and are not side channel attacks per se. Diffix Dogwood defends

against these specific attacks.

Zheng and Shen [32] propose using machine learning to detect

and block privacy-disclosing queries. Although they demonstrated

this approach against specific Diffix attacks, it is unclear whether

such an approach can work in general.

Kiefer et al. [16] developed general guidelines for the implemen-

tation and audit of Differential Privacy systems to minimize the

attack surface.

8 DISCUSSION AND CONCLUSIONS
There was a period of time when both CHORUS and Diffix were de-

ployed in production environments to analyze real user data during

which the vulnerabilities described in this paper existed. In spite

of this, we believe that it is very unlikely that the vulnerabilities

were ever exploited maliciously. This is in part because the analysts

working on these systems were employees of the companies re-

sponsible for the data, and were therefore unlikely to be motivated

to violate privacy. The number of analysts was also relatively small

(a few 10s at most in the case of Aircloak). Even if one of them were

motivated to violate privacy, he or she would have had to have

independently discovered the vulnerability (and having done so,

would probably benefit more from reporting the vulnerability to

his or her employers than by attacking the users!) Finally, at least

in the case of Aircloak, a log of queries is maintained, adding an

additional deterrent.

It would be tempting at this point to declare that the defense

mechanisms presented in this paper are fully effective, and that

CHORUS could simply adopt them. There are, however, some

unattractive trade-offs associated with our defense mechanisms.

First of all, they are complex. This not only makes them brittle, but

it makes it hard to add new SQL features to the system. Second,

some of the mechanisms are database-specific, especially the UDFs.

Adding a new database to the system is a substantial work effort.

Third, correct operation of the overflow mechanisms requires that

the system makes periodic out-of-band measurements of the data;

yet another complexity and overhead.

Instead, CHORUS could if possible limit itself to databases where

all exceptions can be disabled (i.e. always converted to NULL in the

database). In this case all of the exception reporting attacks would be

ACM CCS ’21, November 2021, Seoul, South KoreaOrder to be specified, Franziska Boenisch, Reinhard Munz, Marcel Tiepelt, Simon Hanisch, Christiane Kuhn, and Paul Francis

eliminated, leaving just the timing attacks. In our experience with

Diffix, SELECT within IN and CASE are relatively low priority SQL

features, and so these could be disallowed in CHORUS as they are

in Diffix. This would leave JOIN, which is in fact a critical feature.

For this, CHORUS could implement the UNION ALL mechanism,

which is relatively simple. Alternatively, CHORUS could disable

JOIN in CHORUS itself, and require instead that the needed JOINs

be implemented as VIEWs by a trusted administrator.

Speaking now as Aircloak, we believe that it may have been a

mistake to design the system as a proxy that can interface with

multiple back end databases. Doing so has led to tremendous com-

plexity, to the point where it is very difficult to add new features.

An alternative approach would be to select a single database and

tightly integrate to that database. This not only makes it easier to

manage errors and query engine optimizations, but simplifies many

other aspects of Diffix. Indeed we have started a project to do just

this, the Open Diffix project [21]. The goal is to integrate Diffix

with PostgreSQL using PostgreSQL extensions, and to release it

under and open source or partial open source license.

A query-based data anonymization systemwith strong anonymiza-

tion and good utility is a kind of holy grail in computer science.

An advantage of query-based anonymization systems is that they

promise more analytic flexibility: different analysts can slice and

dice the data in different ways. By contrast, table-based approaches

invariably require that the analytic purpose is known in advance.

On the other hand, query-based approaches expose a larger attack

surface, and experience shows that it is hard to defend against

everything.

While the defenses presented in this paper indeed defend against

the attacks presented herein, it would be naive to assume that there

are no more attacks, side-channel or otherwise. It is important

that organizations deploying query-based anonymization systems

nevertheless maintain good security practices such as authorization

and access control, contractual oversight, and query logging.

ACKNOWLEDGMENTS
Funded by the German Research Foundation (DFG, Deutsche For-

schungsgemeinschaft) as part of Germany’s Excellence Strategy –

EXC 2050/1 – Project ID 390696704 – Cluster of Excellence “Centre

for Tactile Internet with Human-in-the-Loop” (CeTI) of Technische

Universität Dresden. Funded by the Helmholtz Association (HGF)

through the Competence Center for Applied Security Technology

(KASTEL), topic “46.23.01 Engineering Secure Systems”

REFERENCES
[1] Aloni Cohen and Kobbi Nissim. 2018. Linear program reconstruction in practice.

arXiv preprint arXiv:1810.05692 (2018).
[2] Dorothy E. Denning. 1981. Restricting Queries that Might Lead to Compromise.

In 1981 IEEE Symposium on Security and Privacy, Oakland, CA, USA, April 27-29,
1981. 33–40. https://doi.org/10.1109/SP.1981.10000

[3] Cynthia Dwork. 2006. Differential Privacy. In ICALP.
[4] Ivan P Fellegi. 1972. On the question of statistical confidentiality. J. Amer. Statist.

Assoc. 67, 337 (1972), 7–18.
[5] Agency for Healthcare Research and Quality. 2013. Healthcare Cost and Utiliza-

tion Project (HCUP) . http://www.ahrq.gov/research/data/hcup/index.html. Last

Accessed April 10, 2021.

[6] Paul Francis. 2021. Procedures and Rules for the 2020 Diffix Bounty Program .

Technical Report MPI-SWS-2021-002. MPI-SWS. http://www.mpi-sws.org/tr/

2021-002.pdf

[7] Paul Francis, Sebastian Probst Eide, Pawel Obrok, Cristian Berneanu, Sasa Ju-

ric, and Reinhard Munz. 2018. Diffix-Birch: Extending Diffix-Aspen. CoRR

abs/1806.02075 (2018). arXiv:1806.02075 http://arxiv.org/abs/1806.02075

[8] Paul Francis, Sebastian Probst Eide, and ReinhardMunz. [n.d.]. Diffix: High-Utility

Database Anonymization. In Privacy Technologies and Policy, Erich Schweighofer,

Herbert Leitold, Andreas Mitrakas, and Kai Rannenberg (Eds.). Lecture Notes

in Computer Science, Vol. 10518. Springer International Publishing, 141–158.

https://doi.org/10.1007/978-3-319-67280-9_8

[9] Marco Gaboardi, James Honaker, Gary King, Jack Murtagh, Kobbi Nissim,

Jonathan Ullman, and Salil Vadhan. 2018. PSI ({\Psi}): A Private Data Sharing
Interface. arXiv:1609.04340 [cs, stat] http://arxiv.org/abs/1609.04340

[10] Andrea Gadotti, Florimond Houssiau, Luc Rocher, Benjamin Livshits, and Yves-

Alexandre de Montjoye. 2019. When the Signal is in the Noise: Exploiting Diffix’s

Sticky Noise. In 28th USENIX Security Symposium (USENIX Security 19). USENIX
Association, Santa Clara, CA, 1081–1098. https://www.usenix.org/conference/

usenixsecurity19/presentation/gadotti

[11] Andreas Haeberlen, Benjamin C Pierce, and Arjun Narayan. 2011. Differential

Privacy Under Fire. 33 (2011).

[12] Noah Johnson, Joseph P. Near, Joseph M. Hellerstein, and Dawn Song. 2018.

Chorus: Differential Privacy via Query Rewriting. arXiv:1809.07750 [cs] http:

//arxiv.org/abs/1809.07750

[13] Noah M. Johnson, Joseph P. Near, and Dawn Song. 2018. Towards Practical

Differential Privacy for SQL Queries. Proc. VLDB Endow. 11, 5 (2018), 526–539.
https://doi.org/10.1145/3187009.3177733

[14] Joseph Near. 2020. Github Repo uvm-plaid/chorus. https://github.com/uvm-

plaid/chorus. Last Accessed April 10, 2021.

[15] Marvin Karson. 1968. Handbook of Methods of Applied Statistics. Volume I: Tech-

niques of Computation Descriptive Methods, and Statistical Inference. Volume II:

Planning of Surveys and Experiments. I. M. Chakravarti, R. G. Laha, and J. Roy,

New York, John Wiley; 1967, $9.00. J. Amer. Statist. Assoc. 63 (1968), 1047–1049.
[16] Daniel Kifer, Solomon Messing, Aaron Roth, Abhradeep Thakurta, and Danfeng

Zhang. 2020. Guidelines for Implementing and Auditing Differentially Private
Systems. arXiv:2002.04049 [cs] http://arxiv.org/abs/2002.04049

[17] Frank McSherry. 2009. Privacy Integrated Queries. In Proceedings of the 2009
ACM SIGMOD International Conference on Management of Data. ACM, 19–30.

[18] Ilya Mironov. 2012. On Significance of the Least Significant Bits for Differential

Privacy. In Proceedings of the 2012 ACM Conference on Computer and Commu-
nications Security (Raleigh, North Carolina, USA) (CCS ’12). Association for

Computing Machinery, 650–661. https://doi.org/10.1145/2382196.2382264

[19] PrashanthMohan, Abhradeep Thakurta, Elaine Shi, Dawn Song, and David Culler.

2012. GUPT: Privacy Preserving Data Analysis Made Easy. In Proceedings of the
2012 International Conference on Management of Data - SIGMOD ’12 (Scottsdale,
Arizona, USA). ACM Press, 349. https://doi.org/10.1145/2213836.2213876

[20] Joe Near. 2018. Differential Privacy at Scale: Uber and Berkeley Collaboration.

In Enigma 2018 (Enigma 2018). USENIX Association, Santa Clara, CA. https:

//www.usenix.org/node/208168

[21] Open Diffix Project. 2020. Open Diffix. http://open-diffix.org. Last Accessed

April 10, 2021.

[22] Paul Francis. 2021. Customer Documentation for Aircloak’s Diffix Dogwood .

http://www.mpi-sws.org/tr/2021-003.pdf. Last Accessed April 10, 2021.

[23] Paul Francis. 2021. Procedures and Rules for the 2020 Diffix Bounty Program .

http://www.mpi-sws.org/tr/2021-002.pdf. Last Accessed April 10, 2021.

[24] Paul Francis. 2021. Specification of Diffix Dogwood . http://www.mpi-sws.org/

tr/2021-001.pdf. Last Accessed April 10, 2021.

[25] Paul Francis. 2021. GDA Score Overview. https://www.gda-score.org/what-is-a-

gda-score/. Last Accessed April 10, 2021.

[26] Uber Privacy and Security. 2017. Uber Releases Open Source Project for Differ-

ential Privacy . https://medium.com/uber-security-privacy/differential-privacy-

open-source-7892c82c42b6. Last Accessed April 10, 2021.

[27] Reinhard Munz. 2019. Github code branch for the GDA-Score port of Uber sql-

differential-privacy. https://github.com/gda-score/anonymization-mechanisms/

tree/master/uber. Last Accessed April 10, 2021.

[28] Indrajit Roy, Hany Ramadan, Srinath Setty, Ann Kilzer, Vitaly Shmatikov, and

Emmett Witchel. 2010. Airavat: Security and Privacy for MapReduce. 10 (2010),

297–312.

[29] Amaresh Ankit Siva. 2020. CHORUS Is Porous: Attacking Implementations of

Differential Privacy. (2020).

[30] Uber and UC Berkeley. 2017. Github Repo sql-differential-privacy. https://github.

com/uber-archive/sql-differential-privacy.

[31] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Reddy et

al., and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Algorithms for

Scientific Computing in Python. Nature Methods 17 (2020), 261–272. https:

//doi.org/10.1038/s41592-019-0686-2

[32] Jianguo Zheng and Xinyu Shen. 2021. Pattern Mining and Detection of Malicious

SQL Queries on Anonymization Mechanism. IEEE Access 9 (2021), 15015–15027.

https://doi.org/10.1109/SP.1981.10000
http://www.ahrq.gov/research/data/hcup/index.html
http://www.mpi-sws.org/tr/2021-002.pdf
http://www.mpi-sws.org/tr/2021-002.pdf
http://www.mpi-sws.org/tr/2021-002.pdf
https://arxiv.org/abs/1806.02075
http://arxiv.org/abs/1806.02075
https://doi.org/10.1007/978-3-319-67280-9_8
https://arxiv.org/abs/1609.04340
http://arxiv.org/abs/1609.04340
https://www.usenix.org/conference/usenixsecurity19/presentation/gadotti
https://www.usenix.org/conference/usenixsecurity19/presentation/gadotti
https://arxiv.org/abs/1809.07750
http://arxiv.org/abs/1809.07750
http://arxiv.org/abs/1809.07750
https://doi.org/10.1145/3187009.3177733
 https://github.com/uvm-plaid/chorus
 https://github.com/uvm-plaid/chorus
https://arxiv.org/abs/2002.04049
http://arxiv.org/abs/2002.04049
https://doi.org/10.1145/2382196.2382264
https://doi.org/10.1145/2213836.2213876
https://www.usenix.org/node/208168
https://www.usenix.org/node/208168
http://open-diffix.org
http://www.mpi-sws.org/tr/2021-003.pdf
http://www.mpi-sws.org/tr/2021-002.pdf
http://www.mpi-sws.org/tr/2021-001.pdf
http://www.mpi-sws.org/tr/2021-001.pdf
 https://www.gda-score.org/what-is-a-gda-score/
 https://www.gda-score.org/what-is-a-gda-score/
https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6
https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6
https://github.com/gda-score/anonymization-mechanisms/tree/master/uber
https://github.com/gda-score/anonymization-mechanisms/tree/master/uber
https://github.com/uber-archive/sql-differential-privacy
https://github.com/uber-archive/sql-differential-privacy
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

	Abstract
	1 Introduction
	2 Overview of Target Systems
	2.1 Diffix Dogwood
	2.2 CHORUS-v2

	3 General Side-Channel Attacks Against Database Systems
	3.1 If/Then Mechanisms
	3.2 Side-Channels
	3.3 Attacker Assumptions

	4 Database Attacks Demonstrated on CHORUS-v2
	4.1 Number of Queries
	4.2 Demonstration of Arbitrary Data Reconstruction

	5 Defenses Against the Database Attacks
	5.1 Defense against exception reporting
	5.2 Disabling If/Then with JOIN

	6 Attacks Against the Proxy Implementations
	6.1 Timing Attack Against the Diffix Proxy
	6.2 Diffix Query Status Reporting
	6.3 CHORUS-v2 SELECT flaw

	7 Prior Work
	8 Discussion and Conclusions
	Acknowledgments
	References

