
Efficient and Robust Policy Routing

Using Multiple Hierarchical Addresses

Paul F. Tsuchiya

Bellcore

tsuchiya@thumper.bellcore.com

Abstract

One of the most compelling long term problems facing

the IP and emerging 0S1 Internet is growth, At the

same time, policy routing-the ability of a packet

source to determine the type of path its packets will

take, or the ability of a transit network to restrict

usage—is increasingly required. A hierarchical

addressing format reflecting the hierarchical backbone

structure reduces routing overhead, but restricts paths

to the backbones implied by the address, thus limiting

policy and reducing robustness. To overcome this

restriction, yet keep the efficiency of hierarchical

addressing, this paper proposes the use of multiple

addresses. In this scheme, directory service would

return multiple addresses, and the host would choose

the ones appropriate for its policies, any of which

could be used during a connection, as network

conditions deem appropriate. This paper establishes a

framework for the new technique by exploring the

fundamentals of routing and addressing, describes the

new technique, and discusses its role as a policy

mechanism.

1.0 Introduction

One of the most compelling long term problems facing

the 1P and emerging 0S1 Intemet is growth.1 The

current IP address and resulting routing algorithms

scale poorly. This is because there is no routing

1. From September 1989 to April 1990, the number of net-
works announced by the NSFNET backbone grew from 750
to 1100 [Ka].

Permission to copy without fee all or part of this material is

granted provided that the copias are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.
@ 1991 ACM 0.89791 .44~-9/91 J(3008/(3(353...$J .50

hierarchy above the network level, and many routers

must keep and maintain entries for all other iV

networks [Ro]. Exacerbating this is the fact that policy

routing-the ability of a packet source to determine

the type of path its packets will t&e, or the ability of a

transit network to restrict usage—is increasingly

required. Of course, the introduction of scaling and

policy should not decrease robustness (the ability of

routing to find paths around failures).

Unfortunately, the current approach to network layer

addressing in TCP/IP and 0S1 protocols does not

easily allow for both scaling and policy. The reason is

as follows. To achieve scaling, hierarchical addresses

are required. However, hierarchical addresses tend to

restrict the path found by routing to the hierarchical

components listed in the address. Say for instance, in

ordler to achieve scaling, Intemet hosts that obtained

their primary connectivity through the NSFNET had

an address indicating this affiliation (i.e., the address

read NSFNET.Network. Host). Then packets going to

these hosts would go through the NSFNET. It would

not be possible to send a packet to the host through say

MILNET, because routers would have no way of

knc~wing that the destination was reachable via

MIILNET2. Therefore, policy control is limited. In

order to send packets through either MILNET or

NSFNET, routers would need to keep entries for

individual networks, not just backbones, which limits

stalling, therefore defeating the purpose of the

hierarchical address.

This problem goes away if the host has multiple

addresses, in this case, one from NSFNET and one

from MILNET. The source host picks one address or

the other depending on whether the connection should

go through NSFNET or MILNET, thus achieving

some policy control. The routers still need only keep

entries for NSFNET and MILNET, thus achieving

scaling.

While this notion seems simple enough, it is foreign to

the Intemetworking protocols (especially the TCWIF

2. NSFNET and MILNET are national backbones in the
USA that support different but overlapping communities of
users.

53

protocols) and by and large to the Intemetworking

community. There seems to be a well entrenched

notion that routers and their routing algorithms should

have the sole responsibility for finding various paths

through the Intemetwork, and that hosts and their

addresses should have as little to do with it as possible.

For instance, Shoch’s widely referenced and generally

accepted paper on naming, addressing, and routing

clearly puts the burden of path finding on routing [Sh].

This paper argues that multiple, dynamically chosen

addresses (in addition to current naming and routing

techniques) is a simple way to achieve the disparate

goals of scaling, policy, and robustness. It makes this

argument by breaking down the philosophy that

names, addresses, and routes are three separate

functions, and instead argues that there are in fact only

two functions-naming and routing. Addressing

contain elements of both naming and routing. This

paper also discusses various aspects of policy

routing-in particular, which policies can and cannot

be achieved through the use of multiple addresses.

This paper uses the terms router and ho.sl to refer to

transit nodes and end nodes respectively. Also, while

this paper is applicable to addressing and routing

issues in all kinds of networks, its major focus is on

the TCP/IP and 0S1 Internetwork protocols.

2.0 What are Addresses?

In his paper on Intemetworking architecture [Sh],

Shoch suggests the following taxonomy:

● Name: What the object is

* Address: Where the object is

● Route: ~ to get to the object (the path to the

object)

The idea is that when one wants to communicate with

an object, one starts with the name (usually something

user-friendly), which is used to find an address, which

then is in turn used to find a path. In spite of the wide

acceptance of this taxonomy, I believe that it does

more harm than good in that it implies three separate

domains of operation (naming an object, addressing an

object, routing to an object) when in fact there are only

two: identifying (what) an object, and routing (how)

to an object.

I agree that there are names (what the user normally

types into his workstation or looks-up in a phone

book), addresses (what is given to the network in the

packet header or by dialing a phone), and routes (what

is in the routing tables), but in fact these three things

together only serve two purposes. The name identifies,

and the route routes, but the address identifies @

routes3.

Briefly stated, the problem with this “where”

(addressing) notion is that 1) we tend to think of things

as being in only one place at a time, implying that we

need only one address at a time, and 2) since we

relatively rarely move our computers or telephones,

we tend to think of addresses as rather static. I explain

later how these completely artificial restrictions on

addresses place unnecessary restrictions on the

scalability, robustness, and policy richness of routing.

Now, however, I would like to explore some of the

ambiguities of Shoch’s taxonomy.

First, consider the Ethernet address. It is a flat address,

meaning that the address contains no hierarchical

content in-so-far as routing is concemed.4 Shoch

allows that addresses can be flat. However, a flat

address says nothing about “where” it is in a network.

If I unplug my Ethernet board from my Ethernet in

New Jersey and plug it into a different Ethernet in

Tokyo, it keeps the same address. Clearly there is no

notion of “where” in a flat address. A flat address is

purely an identifier, or name.

3. In another paper on naming, addressing, and routinf
[Ha], Hauzeur also argues that there is only naming anc
routing. However, Hauzeur classifies an address as nothinf
more than a special kind of name, and fails to recognize tht
cruciaI fact that an address is also a route.

4. In fact, the Ethernet address has hierarchical content witl
respect to the address assignment process. Organizations an
given 3 byte blocks of address space from which they assigl
individual addresses. Routing, however, ignores this strut
me.

54

NexL consider a telephone number, which is an

address. It is hierarchical, not flat. Therefore, it seems

to convey a notion of “where”. (Where is the phone

numbered 201-829-4484? In area 201, switch 829.)

But it is more accurate and useful to say that it

conveys a notion of path, or “how”. (How do I route to

201-829-4484? First, route to area 201, then to switch

829.) Clearly, the address 201-829-4484 doesn’t

specify the complete route. There will be multiple

paths to 201 and to 829. Rather, 201-829-4484 is an

incomplete route, but a route just the same.

One might argue that the hierarchical telephone

number is in fact not conveying a notion of “how”,

because a telephone switch can, and often does,

choose to route directly to 829, and not first to 201.

My counter-argument to this is that if a switch routes

directly to 829, then it is treating the string 201829 as

an identifier, and is disregarding the hierarchical

content altogether (that is, it is ignoring any “where”

or “how” that might otherwise be there). Further, if a

telephone switch chooses to take advantage of the

hierarchical content in 201-829, it has no choice but to

route to 201. In other words, to the extent that a router

chooses to take advantage of hierarchical information

in an address, it is treating the address as a route. To

the extent that router chooses to ignore the hierarchical

information in an address, it is treating the address as

an identifier.

Now, consider a source route. This is the set of fields

in for example an IP or 1S0 8473 header that specifies

part (“loose” or “partial” source route) or all

(“complete” source route) of the path that the source

routed packet should take. Shoch calls this a route, not

an address. However, there is very little difference

really between a source route (especially a partial

source route) and a hierarchical address. The main

difference is that a hierarchical address always

concerns only the part of the path from the top of the

hierarchy on down, while the source route can specify

any part of the path. In this sense, a hierarchical

address is

route.

Figure 1

(Shoch’s)

nothing more than a special type of source

shows a comparison of the accepted

taxonomy and my taxonomy. We see that

Shoch chose to classi~ according to what is inside the

packet header (or call setup or out-of-band signaling)

and what is inside the routing table. He gets into

trouble because he doesn’t account for the dual

functionality of the packet header. I believe it is more

appropriate in this case to classify according to

function (identifying and routing). This more clearly

illuminates what is being done where. That being said,

however, I think the practical considerations of routing

indeed have to do with what is done in the packet

header and what is done in the routing tables.

Therefore, I choose to further classify along those

lines, and partition the routing function into header

routing and table routing.

Table routing then is what is conventionally thought of

as routing, and header routing is, for example, source

rc~uting, or the use of hierarchical addresses (which

makes table routing scale better). Table routing and

header routing are two realizations of the same

function. People who champion source routing can be

said to prefer putting the routing functionality into

header routing. People who champion flat routing

prefer putting the routing functionality into table

routing. Hierarchical routing is a combination of

both.5

The reader might ask why I make such a big fuss about

taxonomy if in the end I classify along header/table

boundaries as Shoch does. The reason has to do with

where one perceives that the flexibility and dynamics

of the system lie. Shoch and I believe that the “how”

should be flexible and dynamic. Accordingly, Shoch

says that routing tables should be able to hold multiple

paths between a source and destination, and that the

routing tables should be able to pick new paths

“quickly, even during the course of a connection. I

a,gree with this.

—

5. Note that I also partition the identifying function into the
part that is done in the network-layer packet header (identi-
fying) and the part that is not (naming). The notion here is
that naming is primarily there for the convenience of hu-
rrums, while identifying is mainly a machine function. Since
this paper is not about naming, I don’t further discuss this
point.

55

Figure 1: Comparison of Taxonomies

Inside the ~ Inside the ~
4

packet header ‘~ routing table b;

;

Name (what) I Address (where) I Route (how)
[

::
~
:;

I
Identifying (what) I Routing (how)

~
:

Naming
! A k Table Routing

‘#eader Routing

However, since Shoch doesn’t view the packet header

as contributing to “how”, he (and the majority of the

networking community) believes that addresses should

not be nearly as dynamic as routes. In fact, perhaps

because addresses mean “where”, and because our

hosts are in one (physical) place at a time and don’t

move often, the networking community believes that

addresses should be nearly as static as names.

My assertion here is supported by the protocols that

have been developed by the networking community.

Consider TCP and ISO 8073, Class 4 (TP4). Once a

connection is established, the address used at

connection establishment time cannot change, even

though the route can. Or, consider how difficult it is to

change the address assigned to a host, or to a group of

hosts. There are no protocols that explicitly support

the assignment and reassignment of addresses to hosts,

particularly groups of hosts. This is a reflection of the

fact that addresses are not considered dynamic entities.

Since I do view the packet header as contributing to

“how”, I believe that, in certain respects, header

routing, specifically the address, should be as flexible

and dynamic as table routing. This flexibility and

dynamicity is definitely constrained by the fact that the

address also does the “what” job, which must be

stable. However, as I will show, it is possible and

beneficial to make addresses dynamic in some ways,

and static in others. In fact, I argue that if we do not

make addresses more flexible and dynamic, we cannot

achieve the disparate goals of scaling, robustness, and

policy in routing. That is the point of this paper.

Accepted (Shoch’s)
Taxonomy

My Basic Taxonomy

More detail

3.0 Further Classification of

Header Routing

Notice that in the last paragraph, I specifically point

out that the address, rather than other types of header

routing, should be more dynamic. Indeed, other

proposals, such as Inter Domain Policy Routing

(IDPR) [BE], call for dynamic source routing, which is

another form of header routing. In addition, Quality-

of-Service (QOS) routing, which is yet another form

of header routing, can also be dynamic even using

current IP and 0S1 protocols (although currently

nobody uses them that way). However, of the types of

header routing in common use, only hierarchical

addressing scales well.

In order to shed some light on the various types of

header routing, consider the taxonomy of Figure 2.

The first categorization is between implicit and

explicit header routing. In explicit header routing, the

components of the path are explicitly called out, such

as in a source route. The components do not have to be

routers. They can be higher level entities such as

backbones, but they must be representable as nodes

connected to other nodes. In implicit header routing,

on the other hand, actual components of the path are

not calIed out. Instead, the header route implicitly

influences table routing. An example is QOS routing,

where a type of service is specified (for instance, high

speed), but table routing chooses the actual

components in the path.

56

Fimre 2: Taxonomv for Header Routing

(Header Routing)

7 --L L- Typically

With implicit header routing, it is possible that the

requested QOS is not available. The routers may then

route over a different QOS (flexible), or may instead

not deliver the packets (inflexible). Or, the routers may

be willing to route along a better QOS, but not a worse

QOS (upgrade flexible), and vice versa (downgrade

flexible).

With explicit header routing, either the entire path

(complete), or part of the path (partial) may be

specified. If complete explicit header routing is used,

then there is no table routing. All routing decisions are

dictated by the information in the header. With partial

explicit header routing, table routing is required to

determine the part of the path not specified by the

header route. As discussed in section 2, hierarchical

routing is one form of partial explicit header routing.

With hierarchical routing, the hierarchical components

in the header may be nested or non-nested. If a

hierarchical component is nested, then it is unique

only with respect to the higher component. If it is non-

nested, then it is unique with respect to all components

at its level.

Usually, hierarchical header routes are nested. For

instance, in the example of section 2, the 829 of 201-

829 is only unique under 201. There are 829’s in other

area codes as well. However, the telephone system

offers an example of non-nested hierarchical header

routing. In the USA, one can choose among several

long distance carriers by dialing an access code before

dialing the usual 10-digit number. 6 Therefore, the

complete hierarchical header route within the USA is

<long distance carrier, area code, office code,

telephone>. Since each area code is unique among all

other area codes, regardless of the long distance

carrier, that part of the header route is non-nested.

Interestingly, the long distance access codes

concatenated with the rest of the telephone number is

essentially multiple hierarchical addressing. However,

this fact is largely hidden because 1) we rarely actually

dial the access code, and 2) directory service does not

publish multiple telephone numbers for each

subscriber. This second point is possible only because

wilh high probability any telephone can be reached

thuough any of the major long distance carriers.

Therefore, publishing each access code for each

subscriber would be redundant.

This same style of multiple hierarchical addresses (that

is, non-nested) is not appropriate for data networks.

This is because one cannot assume that any data

terminal will be reachable through any backbone.

6. Normally, a default long distance carrier is chosen, with-
out requiring the access code. However, the default can be
over-ridden by dialing the access code.

57

Indeed, even if any data terminal could be reached

through any backbone, the service offered by the

backbone may not be appropriate. Therefore, in data

networks multiple hierarchical addresses must be

explicitly called out, not assumed as in the USA

telephone network case.

It is also interesting to note that multiple hierarchical

addressing already exists in data networking, but only

by virtue of there being multiple address spaces for

different networking technologies-IP, NSAP, X.121,

and E. 164 as used for ISDN7, to name a few. As

internetworking spreads, the need for a single host to

utilize more than one of these technologies, and

therefore addressing spaces, grows. Indeed, NSAP

addresses encompass X.121 and E. 164 addresses.

Also, even within one addressing space, multiple

addresses are useful for distinguishing backbones of

the same technology but different service or price. The

use of hierarchical addresses must therefore be made

explicit and intentional, rather than ad hoc and

accidental.

There are three types of header routing information

fields found inanIPor1S08473 (ISO’s 1P equivalent,

called CLNP) header—address, QOS, and source

route. Usually, they are encoded as indicated by the

shading in Figure 2. However, it is possible that

hierarchical header routing could be encoded in the

source route or QOS fields. Indeed, since the “what”

fimction is done in the address, and must therefore

have certain static properties, it would make sense to

put hierarchical header routing in a field other than the

address. However, current 1P and CLNP encodings of

source routing are not efficient (with respect to header

size), and neither source routing nor QOS are

commonly implemented. Furthermore, both DNS and

X.500 directory service currently return addresses

[Me], not QOS or source routing fields.

Therefore, to implement flexible and dynamic

hierarchical header routing using the QOS or source

routing fields, significant changes to current systems

7. NSAP means Network Service Access Point. It is the ad-
dress used for 0S1 intemetworking. ISDN is Integrated Ser-
vices Digital Network.

and protocols are required. However, relatively few

changes are required to current systems and protocols

to make addresses more flexible and dynamic. So,

while fundamentally this paper argues for dynamic

hierarchical header routing, using addresses for that

purpose is the most expedient way to do it.

4.0 Scaling and Directory Service

In this section, the role of directory service as a

necessary function for scaling is discussed.

Of the types of header routing, only hierarchical

header routing scales well.8 At first glance, the reason

seems obvious—because hierarchical addresses result

in smaller routing tables. However, source routing, as

specified by IP or CLNP, eliminates the need for

routing tables in routers altogether, but nobody is

under the illusion that (non-hierarchical) source

routing scales well.

Consider a simplistic (and unrealistic) implementation

of non-hierarchical source routing where the routing

tables are eliminated, and instead directory service

returns an entire source route. In this case, directory

service would require R2 entries, one for each path

from each of R routers to all other routers.

This is the same overhead (R2) as in non-hierarchical

table routing, where each of k! routers must keep a next

hop entry for all other routers.g (With non-hierarchical

table routing, directory service is not needed because

the address serves as the name.) Indeed, in a sensible

implementation of source routing where the router

calculates the source route (rather than directory

8. Of course, if a network is small enough with respect to
the memory, bandwidth, processing, and human resources
(to operate and maintain routing), then the overhead of flat
(non-scaling) routing may be perfectly acceptable. This pa-
per is only concerned with networks where the overhead of
flat routing is not acceptable.

9. By overhead, I simply mean number of entries in memo-
ry. While the true overhead of routing also involves messag-
es sent, CPU processing, and human resources for
maintenance, the number of entries as an indication of over-
head suffices for this discussion.

58

service), each router would obtain a complete

topology database (just as is done with a link-state

version of flat routing), and from this derive the full

path to every destination router (rather than derive just

the next hop as would be done with link-state flat

routing [MRR]).

With hierarchical routing, both directory service and

routers get involved. However, the overhead of routing

is (optimally) RHR l’H, because each of R routers must

maintain R l’H entries for each of H hierarchy levels

[KK]. The overhead of directory service is R, because

directory service must store one address for each

router. So, the total overhead is R(l+HR l’H), a

significant reduction compared to R2.

With hierarchical routing, part of the routing function

is in routers (table routing) and part is in directory

service (header routing). However, we have carefully

chosen which functions go where in order to best take

advantage of the characteristics of directory service

and routers. Directory service works efficiently as long

as the answer given by directory service is

independent of the source of the query. This was not

the case in the source routing example. This is the

case, however, with hierarchical addresses, since the

hierarchical address only gives the path from the top of

the hierarchy downl” and is therefore independent of

the source. Table routing, then, finds the paths to the

backbones, which is far more efficient than finding

paths to all routers.

The above analysis considers only one path from

source to destination. Therefore, it does not take policy

routing into consideration. With policy routing, we

want to find P paths between router pairs, not just one.

However, similar arguments apply. With non-

hierarchical routing (source or table), there are PR2

entries (P paths between R2 router pairs). With

hierarchical routing, it is not sufficient for table

routing alone to find P paths. There must be P

It). The hierarchical address can also determine the path

from the bottom of the hierarchy on up, if the source address

is used by routers. This is diSCLISSed in section 6.

addresses as well (that is, header routing must also find

P paths). This is because with single addressing there

will be P paths to the backbone, but routing will still

only be able to route through one backbone (the one in

the address) to reach the destination. The most

common policy in policy routing, however, is to

choose between multiple backbones (see section 6).

Therefore, in addition to P paths in table routing, there

must be P addresses. To reiterate the main point of this

paper, in order to have multiple addresses, addressing

(header routing) must be more dynamic and flexible

than it is currently.

5.0 Dynamic and Flexible
Addresses

There are two well-known ways to implement

dynamic routes in table routing, and both of those

ways apply to header routing as well. The first way is

to statically preassign a set of routes for each

destination, and then allow choices from the

preassigned set to be made dynamically. This is how

routing is done in the telephone system. The second

way is to dynamically calculate one or more routes

from scratch, based on the current network conditions.

This technique is common in connectionless data

networks. In general, the latter technique is more

robust, since it will find routes after any arbitrary set of

failures, whereas the former technique can react only

to limited failures. For networks with good reliability

and stable topologies, however, the two techniques are

for all practical purposes equally robust.

For dynamic header routing, only the statically-

preassigned, dynamically-chosen technique is

appropriate. One reason for this is simply that dynamic

assignment of addresses is largely beyond the state of

the art.ll

—

11. The author has done work in the area of dynamic ad-
dress assignment, called Landmark Routing [Ts]. However,
this work is mainly applicable to networks where static ad-
ministration of addresses has high cost or is not feasible,
such as a rapidly deployed military network.

59

Another reason is that header routing is good for gross

path control, whereas table routing is better for fine

path control. For instance, header routing will

determine which backbone to traverse, while table

routing will determine exactly which routers to use to

traverse the backbone. Therefore, header routes need

only be re-assigned (to a router or host) when gross

topology changes occur, such as establishing or

breaking long-term connectivity with a major

backbone (as opposed to short-term connectivity

changes due for instance to equipment failure). Since

this happens relatively infrequently, compared to the

frequency of connection establishments, the

assignment of header routes can be relatively

infrequent without hampering the effectiveness of

dynamic header routing.

Header routes, therefore, are dynamic in the following

way;

1. Get address set from directory service.

When a source wishes to establish communi-

cations, it obtains multiple header routes (ad-

dresses) from directory service (X.500,

Domain Name System, the phone book, or

whatever). This is the statically pre-assigned

set of addresses for the destination.

2. Prune address set based on policy. Based on

the type of service desired by the source, it

will pick zero or more of the header routes ap-

propriate for this particular communications.

Note that the “source” can be the host or user,

or can be a “policy server” of some kind.

3. Negotiate address set with destination. The

chosen header routes will be conveyed to the

destination, which can reject some or all of

them.

4. Establish communications using one ad-

dress. Communications is established using

the first of the set of header routes.

5. Change address if current address fails. If a

failure or other degradation in path quality oc-

curs that table routing alone cannot resolve,

then another of the addresses is chosen, and

communications continues.

Scaling is provided by the hierarchical addresses.

Policy is provided by the address choosing and

negotiation in steps 1 through 3 (section 6 discusses

this tier). Robustness is provided by the

modification of the header Route in step 5, in concert

with dynamic table routing. The following paragraphs

further discuss the above steps.

First notice that step 1, obtaining multiple addresses

from directory service, does not significantly increase

the overhead of directory service. The number of

queries to directory service does not change, just the

size of the response (several addresses instead of one).

Also, multiple addresses does not change the way

directory service currently operates. Both the Domain

Name System and X.500 can return multiple

addresses.

Steps 2 and 3, pruning the set of addresses based on

policy, is a new function. However, it is a desirable

function. If indeed the choice of one backbone (or set

of backbones) vs. another will influence the quality or

cost of communication, then the endpoints of that

communication would like to be able to make the

choice. If the choice of one backbone vs. another does

not influence the quality or cost of communications,

then the choice is trivial and no changes to current

practice are required. Note that the choice does not

necessarily have to be made at the host, but could be

made by a policy server between the host and directory

service. Policy issues are further discussed in section

6.

Steps 3 and 5 require modification to TCP and its 1S0

counterpart, TP4. Currently, TCP and TP4 use one and

only one network address (IP address and NSAP

address respectively) to identify a connection. If the

network address changes during a connection, TCP

and TP4 will not recognize the newly-addressed

packets as belonging to the same connection. This is

an example of where the address has not been

recognized as serving two functions. The transport

protocol assumes that the entire address is serving the

“what” function only. Put another way, the transport

protocol is perfectly happy to let table routing change

the path a packet takes, but not header routing.

60

The change required to TCP and TP4 is simple. The

connection request packet, rather than carrying one

address, needs to carry a set of addresseslz. This is the

set of addresses that the source is willing to use for the

connection. The connection response packet would

also carry a set of addresses, but pruned by the

destination. This pruned set would be the allowable set

of addresses for the connection. 13 Each endpoint

would then establish connection state so that a packet

received with any of the allowable addresses would be

recognized as belonging to that connection. Notice

that this does not affect fast path header processing,

because the implementation can be optimized to

assume that the incoming packets will use one

particular address. Since the connection will normally

change addresses only due to failure or severe

congestion, this will normally be a good assumption.

Notice also that the absence of these changes would

not prevent the use of multiple addresses as a policy

mechanism. Instead, it would reduce the potential

robustness.

In order to do dynamic address changing during a

connection, there must be some way for routers to

inform hosts that no path can be found using the

current address. This is done with the ICMP Network

Unreachable message and its 1S0 8473 equivalent

error message. The only change to current practice is

that, upon receiving this message, a host would try a

new address rather than give up the connection. Again,

without this change, only robustness suffers, not

policy or scaling.

6.0 Policy Routing Considerations

In this section, policy routing is briefly discussed.

Because of space limitations, this topic is not treated

as thoroughly as it should be.

Simply put, the task of policy routing is to find a path
from source to destination that

1. satisfies the minimum performance
requirements of the application,

2. satisfies any constraints placed on the path by
source, destination, or backbones, and

3. gives the best price/performance (for whoever
is paying-source, destination, both, or
neither).

While in the abstract this policy statement allows for

arbitrarily complex policies, in reality I believe

policies will generally be limited to a relatively simple

subset of all possible policies, This belief is

substantiated below.

The Intemet topology is and will continue to be

predominantly hierarchical, but with a significant

number of lateral and bypass connections PE]. Figure

3 is an example Internet topology similar to that

shown in [BE]. Given the hierarchical topology of the

Internet, we can describe a typical path between two

stubs, say b to k, as going up the hierarchy (b-p-v),

going across the hierarchy (v-w-x), and going down

the hierarchy (x-t-k).

FJiiure 3: Exam~le Internet TODO1OKV

12. This set of addresses could be conveyed in a separate
“out-of-band packet as well.

13. Because the destination can prune the set of addresses,
k is entirely possible that the data packets of the connection
will take a different path from the connection establishment
packets.

- ~~~ie Hierarchical
Link

o Mid-level
Backbone

_ Bypass Link

(’) Stub --------- Lateral Link

61

Generally, the destination hierarchical address

determines the exit top-level backbone (x) and some or

all of the down path from the exit top-level backbone

to the destination stub (t-k). I say generally because

there are several options as to how a hierarchical

*4 If a router is able to lookaddress can be composed.

at both the source and destination addresses when

making the forwarding decision, then the source

hierarchical address generally determines the entry

top-level backbone (v) and some or all of the up path

from the source stub to the entry top-level backbone

(b-p). The only part of the path not determined by the

addresses then is the across path from the entry top-

level backbone to the exit top-level backbone. This

part is determined by table routing.

Because the across path is determined by table routing,

the source and destination do not have explicit control

over the across path, as they do the up and down paths.

However, I argue that in fact the major policy

decisions have to do with choosing the up and down

paths. Once these are chosen, determining the across

path is usually trivial.

First, consider that usually there is no across path at

all. The top-level backbones are usually national or

international backbones. Therefore, many paths will

go to the top level backbone and come right back

down, or will go directly from the entry top-level

backbone to the exit top-level backbone without

transiting a third top-level backbone. In these cases,

the addresses alone determine the entire path.

For the remaining cases, where there are one or more

top-level backbones between the entry and exit top-

level backbones, the following simplifying case

almost always applies. Almost all backbones are one

of a relatively small number of backbone types, and

groups of similar type backbones typically coordinate

14. The terms up, down, and across do not imply that one
backbone is somehow subservient to the other or even
smaller in either geographical scope or number of subscrib-
ers. The terms have only to do with the structure of their ad-
dresses. Indeed, two backbones could be part of each other’s
hierarchical address space, in which case up-ness or down-
ness is determined only by which address is being carried in
a packet.

with each other to forma contiguous backbone system

For instance, there is a system of IP backbones (the

Intemet), of X.25 backbones, of telephony backbones,

and in the future there will be systems of ISDN

backbones and no doubt others. Also, there are

systems of military backbones, commercial

backbones, and research backbones, to name a few. In

the large majority of cases, the entry and exit

backbones denoted by the source and destination

addresses will both belong to one of these systems.

Since these systems typically form contiguous

topologies, the across path will typically consist of

backbones from the same system.

Table routing alone, either of the link-state or distance-

vector variety, can efficiently find homogeneous

backbone paths by identifying the backbone types in

the routing updates, and making routing decisions that

maintain the backbone type of each path.

The type of policy not efficiently handled by table

routing would be one where a stub desires an acress

path that does not match the policies of any backbone

system. For example, assume that the top-level

backbones in Figure 3 (v, w, x, and y) belonged to a

single class, but stub b decided that it didn’t want its

messages going through backbone y (say because y

was known to give poor service), although all other

stubs were willing to go through y. This is inefficient

because it forces backbone v to know the individual

policy of stub b. If many stubs harbored such

individualistic policies towards various backbones,

especially those more than 1 or 2 backbone network

hops away, then backbones would be required to

maintain specific policy information for a IaRe

number of stubs.

I believe this “non-contiguous” type of policy to be

rare. A non-contiguous policy is one where a network

X imposes a policy on a network Y that is not above or

below X, and is not a neighbor of X, and for which the

networks between X and Y do not recognize the policy

as belonging to a comon policy type. Indeed, it is

difficult to construct many plausible non-contiguous

policies. (In the example above, if b didn’t like y’s

service, it is likely that other stubs wouldn’t either.)

Yet, these are the only types of policies that aren’t

62

efficiently handled by multiple addresses combined

with table routing.

One might argue that billing policies can easily be

non-contiguous. For instance, perhaps the reason that

stub b wanted to avoid backbone y is because

backbone y is expensive for b (but not to other stubs

under backbone p). However, even billing policies are

subject to the simplifying observation that billing

relationships are generally formed between networks

close to each other, usually neighbors, or at most

networks above and below each other. In other words,

billing policies tend not to be of the non-contiguous

type.

Indeed, there are two factors that discourage far-away

billing relationships. First, the cost of a single far-

away billing relationship (for instance, in different

states or different countries) is more than the cost of a

single close-by billing relationship. Second, there are

many more far-away things than close-by things. As a

result, a stub will typically be billed by its mid-level

backbone or at worst its top-level backbone, which

will tell the stub how much it charges to reach various

destinations. Since the charges usually depend only on

the distance to the destination and the service

provided, and not on how the destination was reached,

the stub is not concerned with the across path, and

therefore table routing is sufficient.

There are cases where simply choosing the backbone

does not imply the across path. For instance, assume

that a backbone X offers a high speed service for free

to a particular group of stubs. If one of those stubs

chooses an address indicating X, it is not clear whether

the stub wants high speed service or free service. If

table routing has two paths to the destination, one high

speed but expensive, and another free but low speed, it

will not know which path to choose.

There are at least two solutions. The first is to use the

Quality-of-Service (QOS) parameter (implicit header

routing). By indicating “high-speed” or “low-cost” in

the QOS parameter, table routing knows how to route

the packets. The second way is to assign multiple

address spaces to the entry backbone, one for each of

the characteristics that must be distinguished by table

routing. Through table routing, X would advertise one

of its address spaces to the high speed neighbor, and

the other to the low cost neighbor. This way, the return

path would be correct. X would have to look at the

source address to correctly route on the forward path.

While this has the negative effect of proliferating

addresses for the stubs, it has the positive effect of

simplifying the forwarding function for routers, which

wcmld not have to look at the QOS field. I believe that

the latter choice may very well be preferable. In any

event, either solution appears satisfactory.

7,0 Other Aspects of Multiple
Hierarchical Addresses

Perhaps the most serious disadvantage of multiple

hierarchical addresses is the burden it places on the

forwarding algorithm in routers. The forwarding

algorithm is the one that searches the routing table for

the appropriate next hop when a data packet or call

setup is received. With multiple hierarchical

addresses, the router must search multiple entries to

determine even if the packet is destined for a

destination within the router’s private domain. With

single addresses, a single compare will yield this

re~sult.

However, this problem may be minimized if most of

the trafiic in a private domain has its source and

destination in the private domain. In this case, the

search can be optimized for the case where the routing

talble entry for the “internal” address space is checked

first. The internal address space is one that is not

derived from any backbone, and can therefore be

permanently assigned to the private domain. This

acldress space is used for all internal communications,

is not advertised externally, and provides address

stability in an environment where “external”

(backbone derived) addresses may change relatively

often.

Another aspect of multiple hierarchical addresses is

that address assignments to hosts may change often.

Tlhis is mainly a disadvantage if there is no protocol

fcm making these assignments easy. As network

63

management becomes more advanced, address

configuration (as well as the configuration of other

information, such as policy databases, for instance)

becomes easier. However, it may also make sense to

incorporate address assignment into the intra-domain

routing algorithm. This is because one aspect of intra-

domain routing (both link-state and distance-vector) is

database dissemination. With multiple hierarchical

addresses, all hosts and routers in a private domain add

or delete the same address prefix. Therefore, it would

straight-forward to disseminate the addition or

deletion using the intra-domain routing protocol. This

would greatly simplify those aspects of address

assignments peculiar to multiple hierarchical

addresses.

Another concern is the proliferation of addresses due

to complex topologies between a stub and its top-level

backbones. For instance, if there are several levels of

backbone between a stub and the top-level backbone,

and each level has multiple backbones with rich

connectivity above and below, then there may be a

large number of backbone paths between the stub and

the top-level backbones, and therefore a laqge number

of addresses. However, in fact hierarchies tend to be

shallow, thus preventing this address explosion. The

telephone network and Internet have at most three

levels, including stubs 15.

In addition, one does not have to have one address for

every possible path. Since table routing handles what

header routing does not, one can, by not encoding

intermediate hierarchy levels in the address at all,

always increase the overhead of table routing in order

to keep header routing overhead within acceptable

levels.

Finally, there remains the question of how a source or

destination knows, when it is choosing an address,

what type of backbone is represented by that address.

The appropriate solution to this is for directoxy service

to return backbone class information along with each

address. Both the DNS [Me] and X.500 standards are

15. By “level”, I mean levels of separately administered
backbones, not levels of hierarchical address or levels of
switching hierarchy.

flexible as to what kind of information can be returned,

so this is possible without modifying standards.

Current implementations do not return this kind of

information. However, even before backbone class

information is available from directory service, since

1) many backbone systems all fall under a single

address space (for instance, X.25 networks all use

X.121), and 2) there should be a relatively small

number of top-level backbones or backbone systems in

the world (perhaps several hundred), it should not be

difficult for sources to maintain tables of all backbone

class information.

8.0 Summary

This paper has concerned itself with issues of scaling,

robustness, and policy routing. While the focus of this

paper is intemetworking, it applies to large-scale

communications networking of any kind.

This paper argues that the only way to achieve scaling

is through hierarchical addresses. However,

hierarchical addresses constrain the paths found by

routing to follow the backbones denoted by the

hierarchical address. In other words, the hierarchical

address acts like a partial source route. Since both

policy and robustness require that multiple paths be

discovered, the use of hierarchical addresses, and

therefore scaling, is counter to the goals of policy and

robustness.

Since policy and robustness require multiple paths,

and since a hierarchical address by and ltuge

determines a path, it follows that to achieve policy and

robustness and scaling, we need multiple hierarchical

addresses. However, the notion of multiple

hierarchical addresses goes against the grain of

conventional thinking. This paper therefore attacks

certain accepted fundamental principals-specifically,

the notion that an address signifies “where” an

addressed object is (while a name signifies “what” the

object is, and a route signifies “how” to get to the

object). In reality, there is no such thing as “where” in

networking, only “what” and “how”. The role of the

hierarchical address is a combination of “what” and

“how”.

64

In particular, the problem with the notion of “where” is

that it implies that an object is in one “place” at a time

(meaning that it needs only one address), and that the

address changes only when the object “moves”

(meaning that addresses are rather static), The main

point of this paper is that there should be multiple

addresses, and the use of addresses should be dynamic,

meaning that one should be able to change addresses

easily, even during a connection.

Instead of the tri-functional taxonomy of naming,

addressing, and routing, this paper argues for a bi-

functional taxonomy-naming (or identifying), and

routing. This paper then partitions routing into two

types—header routing and table routing. Header

routing is the routing information in the packet header

(mainly the hierarchical address, but also QOS

information and source routing), and table routing is

what is more traditionally thought of as simply

“routing”. That is, the algorithms that establish and

maintain the routing tables.

This paper then considers further aspects of scaling,

and in particular that the function of directory service

returning a hierarchical address is an integral part of

routing, without which routing would not scale. Given

then that directory service and hierarchical addresses

are an integral part of routing, we propose that, to

achieve scaling, policy, and robustness, 1) stub

networks should have multiple addresses, typically

one for each backbone they derive service from, 2)

that directory service should return multiple

hierarchical addresses, 3) that, as a policy decision, the

source and destination choose from the multiple

hierarchical addresses the most appropriate ones, and

4) that all the chosen addresses be used to identify a

transport connection, and that the address can change

during a connection to respond to failures. This

method of operation adds little overhead to directory

service, provides a powerful policy mechanism that

fits in well with traditional networking protocols, and

provides a mechanism for reacting to failures.

Finally, this paper considers in some detail how

multiple hierarchical addresses, combined with table

routing and QOS indicators, provides a rich and

almost always adequate policy fimctionality.

REFERENCES

[BE]

[Ha]

[Ka]

[KK]

[h’lo]

[RIo]

[Sh]

[m]

Breslau, L., Estrin, D., “Design of Inter-

Administrative Domain Routing Protocols”,

proceedings of ACM SIGCOMM ’90,

September 1990, pp. 231-41.

Hauzeur, B.M., “A Model for Naming,

Addressing, and Routing”, ACM Transactions

on Office Information Systems, Vol. 4, No. 4,

October 1986, pp. 293-311

Katz, D., Merit Computer Network, Private

Communications, April, 1990

Kamoun F., Kleinrock L., “Optimal Clustering

Structures for Hierarchical Topological Design

of L~e Computer Networks,” Computer

Networks, Vol. 10, No. 3,1980, pp. 221-248

Mockapetris, P.V., “Domain names -

implementation and specification”, RFC- 1035,

USC/Information Sciences Institute, November

1987.

Rosen, E.C. “Exterior Gateway Protocol

(EGP)”, RFC-827, USC/Information Sciences

Institute, October 1982.

Shoch, J. F., “Inter-Network Naming,
Addressing, and Routing”, Proc. 17th IEEE

Computer Society International Conference,

September 1978, pp. 72-79

Tsuchiya, P.F., “The Landmark Hierarchy: A

New Hierarchy for Routing in Very Large

Networks”, SIGCOMM’88, August 1988, pp.

35-42

65

