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ABSTRACT
There are a number of designs for an online advertising sys-
tem that allow for behavioral targeting without revealing
user online behavior or user interest profiles to the ad net-
work. However, none of the proposed designs have been
deployed in real-life settings. We present an effort to fill
this gap by building and evaluating a fully functional pro-
totype of a practical privacy-preserving ad system at a rea-
sonably large scale. With more than 13K opted-in users,
our system was in operation for over two months serving an
average of 4800 active users daily. During the last month
alone, we registered 790K ad views, 417 clicks, and even a
small number of product purchases. In addition, our proto-
type is equipped with a differentially private data collection
mechanism, which we used as the primary means for gath-
ering experimental data. The data we collected show, for
example, that our system obtained click-through rates com-
parable with those for Google display ads. In this paper,
we describe our first-hand experience and lessons learned in
running the first fully operational“private-by-design”behav-
ioral advertising and analytics system.

Categories and Subject Descriptors
K.4.1 [Public Policy Issues]: Privacy

Keywords
online advertising; privacy-by-design; prototype; deployment;
experiments

1. INTRODUCTION
Several research projects have proposed alternative“private-

by-design” advertising models in an attempt to reconcile be-
havioral targeting and user privacy (Adnostic [21], RePriv [12],
Privad [15], MobiAd [16], and PiCoDa [18]). Each of the
proposed systems makes largely unsubstantiated claims that
they provide both good privacy and high utility at reason-
able cost. The goal of this paper is to test that claim, at least
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for the Privad system, by building, deploying, and evaluat-
ing a fully functional prototype. Our deployment delivered
functional ads in the sense that the ads were targeted to
user interests, displayed on publisher webpages, linked to
real shopping websites, and in fact led to actual purchases.
Side-by-side with Privad, we also deployed a distributed
differentially-private user analytics system, PDDP [7], that
served as our primary means of gathering experimental data.

By bundling our system with a popular Firefox addon, we
deployed it to over 13K opted-in users. Over a period of two
months, the system was used daily by over 4800 active users
on average, with more than 2000 users online at peak. In
October 2013 alone, our backend received 1.1M ad requests
and generated 9.5M ads. During that time, we registered
790K ads views, 417 ad clicks, and 4 product purchases.

While minuscule by commercial standards, our deploy-
ment was big enough to gain real insights into the Privad
and PDDP designs, both positive and negative. Perhaps the
most surprising of the positive insights is that our PDDP
results indicate that the system’s click-through rate (CTR)
compares well with Google display ads CTR (§ 5.2). This is
especially impressive given that ad generation in our system
was fully automated, in contrast to Google where ads are
designed by hand and fine-tuned over time.

Among the negative insights, our experience suggests that
the privacy loss predicted by differential privacy is prohibitively
pessimistic. Based on the relatively small number of queries
we made to our system (159 distinct queries generating 790K
answers from 9395 unique clients), differential privacy’s worst-
case stance would suggest that a substantial proportion of
our user base could have experienced privacy loss. In reality,
not only was no individual user information leaked through
PDDP, even if we had generated malicious queries based on
auxiliary information, at best we could have learned one or
two things about one or two users (§ 5.4). This large dis-
crepancy between the differential private model of privacy
loss, and actual privacy loss, needs somehow to be addressed
by the privacy research community.

Our experience also exposed several shortcomings in the
Privad privacy mechanisms (§ 3.7). First, Privad did not
adequately consider user profiling mechanisms. The practi-
cal profiling mechanism we used required additional privacy
protections (white-listing of user search terms and scraped
product names). Second, Privad didn’t adequately take into
account issues that arise when the user base is relatively
small, such as potential user fingerprinting through reported
timestamps.
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Nevertheless, the high-level take-away is generally posi-
tive: we found no fundamental problems, either with privacy
or with utility. We believe that ultimately a commercial de-
ployment is needed to prove the viability of these private-by-
design advertising and analytics technologies. In particular,
with our limited resources, we were not able to integrate
with existing auction systems or ad exchanges, nor gain any
experience with click-fraud detection.

Altogether, this paper makes the following contributions:
1) It presents the design and analysis of the first deployed
fully-functional private-by-design ad system. While it does
find (and fix) a number of weaknesses in the previous design,
it also finds nothing to disprove the viability of private-by-
design behavioral advertising. 2) It presents our experience
in running a relatively large-scale user-centric research ex-
periment with differentially private analytics as the primary
means of gathering system and user data. It shows that
such an approach is feasible. 3) It analyzes the practical
implications of the privacy deficits accumulated as a result
of differentially private data collection. It concludes that
the differentially private model is overly pessimistic for un-
derstanding privacy loss in our deployment, and that the
noise-adding mechanism alone is too weak to be practical
for long-running analytics.

2. BACKGROUND
In this section, we give a broad overview of the main sys-

tem components in the Privad architecture and describe the
privacy guarantees provided by the system. We then out-
line the design of the PDDP system that leverages the same
underlying architecture to enable differentially private data
collection in distributed settings.

2.1 Basic Privad Architecture
A number of components in the Privad architecture play

the same role as they do in today’s ad deployments. These
include users, publishers, advertisers, and a broker (ad net-
work): users browse publisher webpages, and advertisers
provide ads to brokers for display on those webpages. Privad
defines two new components, the client and the dealer, and
substantially modifies the role of the broker: user profiling
and ad serving are delegated to the client software, which
runs on the user’s device, rather than in the cloud (i.e., at
the broker) as it is done in today’s deployments. The client
monitors user behavior (i.e., the user’s searching, browsing,
purchases, and so on) and over time builds up a user pro-
file. It then uses this behavioral profile to privately fetch ads
from the broker and locally decide which ads should be pre-
sented to the user. The client and the broker are separated
by a proxy-like dealer, which strips away the network layer
address of all clients’ messages. The dealer can also coor-
dinate with the broker to identify and discount fraudulent
clicks as well as block clients suspected of click-fraud.

The broker in Privad is assumed to be honest-but-curious.
While this may be close to reality (brokers like Google can
generally be trusted to do what they claim they are doing),
the system design nevertheless strives to prevent the broker
from obtaining high-value information through simple but
hard-to-detect cheating.

The fundamental design principle in Privad is that private
information about each user is kept on that user’s computer,
not in the cloud [15]. In a sense, users are still tracked.
However, the tracking is done by a software agent running
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Figure 1: The Privad architecture. [x] denotes encryption of x.

on the user’s machine, and the information it gathers (the
user profile) never leaves the user’s machine. The challenge
is to utilize the user profile to deliver targeted ad content
while revealing the minimum amount of information from
the user profile. Concretely, the privacy goals of the Privad
system are formulated as follows [14]:

• Anonymity: the broker cannot associate any unit of
learned information with any user Personally Identifi-
able Information (including network address), and

• Unlinkability: the broker cannot associate separate
units of learned information with a single (anonymous)
client. This prevents the broker from building up a
user profile, and then associating it with a known user
using externally gathered knowledge.

Figure 1 illustrates the basic Privad architecture and mes-
sage exchanges between principal components.

User profiling software runs at the client. This software
monitors the user’s activity, such as search terms, browsing
behavior, purchases made, and so on. When the profiling
software identifies a user interest, it anonymously requests
a set of ads for the given interest category type (i.e., ads
for products or services matching the user interest). The re-
quest must be generic enough that a substantial set of clients
can have legitimately made the request. A set of matching
ads, each with an identifier A and associated targeting in-
formation, are transmitted to the client. The client software
then filters out ads that do not match the profile and locally
stores the rest. When an adbox is presented to the client, for
instance on a webpage, the client selects among the stored
ads those that best match the user profile, and inserts them
in the adbox displayed to the user. The client anonymously
reports the view (and click) for the ad A together with the
webpage URL.

Privad relies on two communication channels between the
client and the broker, one for ad delivery, the other for view
and click reporting. All message exchanges follow the same
basic protocol: the client’s request is encrypted with the bro-
ker’s public key and contains a one-off symmetric key gener-
ated by the client, which is later used to encrypt the broker’s
response (e.g., the stream of ads sent to a client). Since the
encryption is opaque for the dealer, it blindly forwards the
messages without learning anything about the clients. As
long as the broker and the dealer do not collude the system
can offer privacy guarantees: the dealer prevents the broker
from learning the client’s identity or from linking separate
messages from the same client.
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2.2 PDDP Overview
Privad is carefully designed to provide only the minimum

information needed by the broker, advertisers, and publish-
ers to run the ad business: requests for ads and anonymous
reports of clicks and views (i.e., which clicks and views oc-
curred on which ads at which publishers). This minimum
information, however, is not sufficient if the goal is to get
deeper insight into user behavior and system performance.
For instance, key players may want to know more, in the
aggregate, about what activity leads the profiler to detect
an interest in the first place. They may wish to know the
level of interest, or correlations between interests. With cen-
tralized (non-private) tracking, all required information is
available locally, and can simply be mined. With Privad,
this information is all tucked away on user computers, which
precludes broad statistical analysis of user data. Moreover,
once Privad is deployed, it would be virtually impossible for
the system designers themselves to debug the system with-
out infringing on user privacy. To address this issue, Privad
needs to provide support for privacy-preserving statistical
queries over distributed user data.

One approach to supporting privacy-preserving statistical
queries is to add noise to the answers of queries, in such a
way that the privacy of individual users is protected. An
instance of this approach popular in the research commu-
nity is differential privacy (DP) [10, 11]. Specifically, DP
adds noise to the answers for queries to statistical databases
so that the querying system cannot infer the presence or
absence of a single user or a set of users. DP provides a
provable foundation for measuring privacy loss regardless of
what information an adversary may possess.

The traditional deployment model for DP assumes a cen-
tralized database. The system operating the database is
trusted with its content, and is also trusted to add noise
to the information released from the database. The non-
tracking advertising scenario is different in several respects.
First, there is no trusted centralized database; individual
clients maintain their own data. Second, the information
is distributed among potentially millions of clients. There-
fore, the non-tracking advertising settings call for a practical
mechanism that provides some form of distributed differen-
tial privacy.

As it turns out, the existence of the dealer in Privad,
trusted not to collude with other components of the system,
can be leveraged to accommodate the Practical Distributed
Differential Privacy (PDDP) system [7]. Figure 2 shows how
PDDP can be deployed on top of the Privad dealer. In Pri-
vad, an analyst (e.g., a broker, an advertiser), who wishes to
make statistical queries over some number of Privad clients,
can formulate a query and transmit it to the dealer, which
in turn forwards it to the required number of clients. Each
query comes with a number of buckets that specify possible
answer ranges. A client locally executes the query, and for
each bucket it produces a binary value indicating whether
the query result fell within the range of that bucket. Then,
the resulting bit vector is encrypted with the analyst’s pub-
lic key (using Goldwasser-Micali bit-cryptosystem [13]) and
uploaded to the dealer. Meanwhile, the dealer and clients,
using the XOR homomorphic property of the GM cryptosys-
tem, collaboratively and blindly generate noisy answers that
mimic a number of additional client responses to produce
the required amount of differentially private noise. Finally,
the dealer mixes received client answers with noisy answers,

Noisy Answers

Dealer
Query

(cleartext) Dealer
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Figure 2: DP in the context of non-tracking advertising

and forwards everything together to the analyst, who then
decrypts the received answers and computes the statistical
result under the differentially private guarantee.

A major issue with DP in practice is that systematically
repeated queries can be used to eliminate the noise and re-
veal the true answer. Traditional DP systems deal with this
through the notion of a budget. Each query deducts from the
budget, and when the budget is spent, the additional queries
are simply not allowed. However, this approach is not prac-
tical in the advertising context, which requires longitudinal
analytics. Rather than setting a hard limit on the cumu-
lative privacy loss, PDDP treats it as an ongoing measure
referred to as the privacy deficit. The notion of the privacy
deficit makes it possible to address a number of open issues.
First, it provides a quantitative measure of the privacy cost
incurred as a result of a meaningful statistical analysis of the
user population. Second, as described in Section 5, the accu-
mulated deficit can be analyzed under a worst-case scenario
to determine whether it theoretically allows a malicious ana-
lyst to discover a number of sensitive user attributes. Indeed
one question we address in this study is“How far from actual
reality is differential privacy’s worst-case model?”

3. PROTOTYPE DETAILS
While Privad establishes a basic private-by-design archi-

tecture described in the previous section, to put together a
fully functional ad system prototype we had to fill in a num-
ber of gaps. Due to the experimental nature and small scale
of our system, we cannot work directly with advertisers or
ad networks. Instead, we use product information from ma-
jor shopping engines to as a proxy for creating Privad ads.
Given such product-oriented ads, for profiling and target-
ing we focus exclusively on the user purchasing intent. We
rewrite Google ad iframe requests and repurpose resulting
adboxes to render Privad ads, which prevents exposing users
to more ads than they would normally see.

In the rest of this section, we describe in detail the chal-
lenges we tackled while building a private-by-design ad sys-
tem prototype without support from the ad industry. We
also discuss ways in which the private system design evolved
to meet practical concerns. Then, we report privacy issues
identified and addressed along the way. Finally, we describe
implementation details specific to our prototype.

3.1 User Profiling
Since we can only generate product-related ads, our main

goal with respect to user profiling is to identify and cap-
italize on the user transactional (purchasing) intent [17].
Therefore, we focus on two main signals: user browsing ac-
tivity on shopping websites (product-based targeting) and
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product-related searches on major search and shopping en-
gines (search-based targeting). Towards this end, we com-
piled a whitelist of shopping websites containing almost 14K
entries by crawling retailers on Shopping.com that also ap-
pear in Alexa’s top 1M [1]. The whitelist also includes
Alexa’s top 500 websites for a number of top-level shopping
categories, as well as the 5 largest search engines. Addi-
tionally, we built a dictionary of product-related terms by
crawling a random set of ca. 80 million products offered on
Google Products, Amazon and Shopping.com. From the
collected set of 10M terms appearing in product titles, we
removed terms with fewer than 100 occurrences, resulting in
180K whitelisted keywords.

Each time a user issues a search query on one of the
whitelisted websites, Privad client captures the query, ex-
tracts search terms and filters stemmed keywords through
the product-related dictionary. The resulting list of key-
words is then used to establish an ad channel. Additionally,
the identified keywords are cached and used to deduplicate
future product searches.

We profile user shopping activity by monitoring browsing
behavior on whitelisted websites and applying customized
scrapers to identify specific products the user is interested
in. The fundamental challenge of this approach is the ef-
fort required to build specialized product scrapers for the
majority of popular online retailers. In our experimental
prototype, we sidestep this challenge by leveraging scraping
functionality developed by InvisibleHand [4]. InvisibleHand
tries to identify a product the user is browsing for, and then
displays a notification if there are better deals available for
the product. At the moment, InvisibleHand scrapers iden-
tify products on 670 shopping websites. As described in
Section 3.6, neither the whitelists nor the scraping function-
ality is hard-coded in the client. Instead, clients periodically
check with the broker and download updated lists of scrap-
ers and whitelisted domain names as soon as they become
available.

3.2 Ad Generation
The experimental nature of our system dictates that we

neither work with any commercial advertising companies nor
generate any revenue by displaying ads. Instead, we cre-
ate mock-up1 ads using product listings from three major
shopping engines: Amazon.com, Shopping.com and Seman-
tics3.com.2

The series of steps performed to generate Privad ads is
shown in Figure 3. Once the Privad client detects a new
product or product-related search, it uses product title or
whitelisted search keywords to establish a new interest chan-

1The generated ads look like legitimate Google ads and link
to real products. We call them ‘mock-up’ only because they
are not handcrafted.
2While we initially started out with Google.com/shopping
as our third product provider, over the course of the pro-
totype development Google’s Search API for Shopping was
deprecated and then eventually sunset.

Figure 4: Examples of auto-generated Privad ads

nel and request ads from this channel. We do not rely on
any predefined interest hierarchy to map profiling informa-
tion to channels. On the contrary, the interest channels are
generated at runtime and are fully defined by the associated
product information. As such, we distinguish between two
channel types according to targeting parameters (product
and search targeted channels). Targeting information asso-
ciated with each channel is used to request a number of ads
from the broker in an anonymous, privacy-preserving man-
ner. The ad request (step 1 in Figure 3) is relayed by the
dealer to hide the client’s identity. The encryption mecha-
nism described in Section 3.4 is used to prevent the dealer
from eavesdropping.

The dealer batches requests from multiple clients into a
single RPC request, which is uploaded to the broker once ev-
ery 30 seconds (step 2). Upon receiving an ad request, the
broker forwards targeting information to the ad grabbing ser-
vice (in step 3), which then uses it to make a product search
on one of the three shopping engines (steps 4 and 5). Up
to 20 most relevant product offers from the result set are
converted into textual ads and returned to the broker. The
conversion is straightforward and consists of removing stop
words and excessive punctuations from the product title and
description, distributing the remaining terms together with
a price tag over ad head and body (25 and 70 characters
long), and adding a short display URL. Most of the auto-
generated ads produced this way are intelligible and look al-
most indistinguishable from AdSense ads. However, in some
cases products-to-ads conversion fails to produce meaning-
ful output (see examples in Figure 4). Finally, the broker
bundles the resulting set of text ads into a single ad channel
and ships it back to the dealer (step 6). The ad channel is
stored at the dealer until it is eventually retrieved by the
client (step 7).

Shopping engines proved to be the major bottleneck in the
ad generation pipeline (with requests to Shopping.com tak-
ing on the order of several seconds). Additionally, they tend
to impose a limit on the number of allowed search requests
per IP. To address this scalability challenge we replicated the
ad grabbing service on a number of machines and placed a
simple round-robin load-balancer (Scheduler in Figure 3) in
between the Ad Grabbers and the broker.

3.3 Ad Selection and Placement
Since we lack real publishers, we render Privad ads in the

existing Google AdSense adboxes (i.e., adboxes that contain
contextual ads and appear on publisher websites). While
we modify Google ad frame requests to display more tex-
tual advertising (as opposed to flash and image ads), we
avoid exposing users to more ads than they would normally
see. Google allows publishers to specify style parameters for
textual ads so that ads have the same look and feel as the
publisher website. Instead of fully re-writing adbox html
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code, we leverage this functionality by identifying and sur-
gically replacing only relevant ad content (head, body, click
URL, etc.). As a result, apart from a small logo indicating a
Privad adbox, Privad ads look almost indistinguishable from
AdSense text ads. However, while preserving ad style pref-
erences, this approach is ad hoc in nature and depends on
cues in the html code characteristic to various ad elements;
once html code is modified our ad serving modules might
fail to render Privad ads.3

Our client implementation allows us to experiment with
different placement strategies: control mode (only Google
ads), full-on Privad mode (only Privad ads), mixed mode
(a mixture of Privad and Google ads in the same multi-slot
adbox) and random mode (uniform distribution of adboxes
filled with either Privad or Google ads). Additionally, our
client respects user preferences and does not request or dis-
play any ads in Private Browsing Mode, since uploading ad
requests or view/click reports in PBM would clearly violate
user expectations. Also, it does not display Privad ads if
it detects any adblocking mechanisms (browser addons or
DNS-based blocking).

Unfortunately, we lack bid information to run a full-fledged
second price auction. Instead, we conjecture that the click
probability, and hence the user score [19], is inversely related
to the amount of time passed since an interest was detected.
In other words, the click probability on an ad from a partic-
ular channel decreases over time. To verify this observation,
the Privad client allows experimentation with three ranking
mechanisms according to the age of an ad channel: most
recent first, uniform random and binomial (pick the most
recent with probability 1/2, second most recent with 1/4
and so on).

3.4 Message Exchange
Following the original Pub-Sub model [14], the dealer uses

an asynchronous relay protocol to forward messages between
the clients and the broker. Each new Privad client is boot-
strapped by requesting a unique client id from the dealer.
This Uid then is sent to the dealer alongside the encrypted
message payload. For every incoming request that requires
an explicit reply from the broker, the dealer generates a
unique request ID (Rid). It replaces Uid with Rid in the
client’s request and also stores the mapping between them.
Finally, multiple client requests are batched together and
uploaded to the broker at regular intervals. The broker then
attaches the Rid to every response it sends back, which the
dealer uses to look up the intended client and save the bro-
ker’s response tagged with the client’s Uid. A client uses
its Uid to periodically poll the dealer for any new messages
from the broker.

As opposed to the original Privad design, which relies on
a predefined set of channels to map user attributes to ads,
in our prototype channels are established on the fly in re-
sponse to an ad request (as long as the result set of the
corresponding product search is non-empty). This allowed
us to reduce the original Pub-Sub ad dissemination mecha-
nism to an asynchronous request-response, which operates as
follows. Client requests take the form (EPKbroker (Kshared),
EKshared(request)) where the actual message payload is en-
crypted with a randomly generated 128-bit AES keyKshared,
and the symmetric key itself is encrypted with the 1024-

3Unluckily, as described in Section 4.1, this is exactly what
happened during our deployment.

bit public RSA key of the broker PKbroker. Randomized
padding is added to defend against dictionary attacks. The
response from the broker is then EKshared(reply) encrypted
with the symmetric key from the corresponding request. The
request and response messages of this form serve as building
blocks for all client-broker communications, which include
ads delivery, click and view reporting, as well as the new
communication channels required for distributing scrapers,
website and keywords dictionaries and experimental config-
urations (Section 3.6).

3.5 Privad Implementation
We built a fully functional Privad system. Following the

architecture described in Section 2.1, our prototype com-
prises three principal components: the client, the dealer and
the broker. The client is implemented as a 154KB Fire-
fox addon written entirely in JavaScript (8.5K lines of code
not counting the pidCrypt library and autogenerated RPC
client code). All backend components are implemented in
Java, totaling 14K lines of code with the dealer, broker, and
ad generation infrastructure taking roughly equal parts. All
Privad datatypes and interfaces between system components
are defined in 600 lines of Apache Thrift IDL [3], producing
48K and 6K lines of Java and JavaScript code respectively.

We chose to implement the client as a browser addon
to enable us to scrape highly-dynamic AJAX web applica-
tions, which would have been impossible with a standalone
daemon or local browser proxy. Concerned with Javascript
performance for cryptographic operations, we delegated all
CPU-intensive processing to two independent web workers
(one responsible for Privad-related functionality, the other
for PDDP). These background Javascript threads have no
access to the DOM and communicate with the main browser
thread via asynchronous message passing. Also, they serve
as the single gateway between the client and the dealer. By
outsourcing cryptographic operations, data serialization and
network communication to background workers, we ensured
that there was no negative impact on the user’s browsing
experience.

All client-dealer communication is performed over HTTP
to accommodate clients behind firewalls and proxies. We
use JSON since it’s the only format currently supported by
the JavaScript Thrift library. While the dealer is written as
a Jetty [20] server handler, other backend components are
built on top of Thrift servers and communicate using binary
Thrift format.

3.6 Client Details
In addition to the two communication channels between

the client and the broker (ad delivery and view/click report-
ing) required by vanilla Privad, we also introduced a distri-
bution and update mechanism for product scrapers, shop-
ping websites and product term whitelists. To keep their
whitelists and scrapers up-to-date, clients periodically issue
and upload a request containing the hash of the currently
active whitelist. As long as the hashes of the client’s and
broker’s lists match, the request is ignored by the broker. If
hashes do not match (e.g., entries were added or removed
from the whitelist), the new whitelist is sent in response.

A similar mechanism is used to disseminate experiment
configurations. In addition to the hash of the configura-
tion in place, clients also include their configuration class
in the request. This class is randomly selected from 16
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available values during the client’s first launch. By divid-
ing client’s population into 16 groups, we are able to run
multiple experiments in parallel. An experiment configu-
ration contains a number of parameters that specify start
and end timestamps and regulate ad placement strategy
(none, everywhere, mixed, random), channel ranking mode
(random, most recent, binomial), targeting mode (product-
based, search-based, random) and various channel-related
attributes (max channels in place, max channel lifetime, max
view opportunities, etc.).

3.7 Practical Privacy Issues
Running a ‘real’ ad system requires a number of functions

not anticipated in Privad’s design. Consequently, to build
an operational private-by-design system, we had to address
several practical privacy-related concerns that arose as a re-
sult of the added functionality.

Search terms in ad requests. The original Privad de-
sign envisioned that relatively broad product or interest cat-
egories would be conveyed in ad requests. In practice, how-
ever, we had to use search terms and product names derived
from potentially error-prone web page scraping. To miti-
gate possible privacy loss through these search terms and
product names, we implemented the whitelist described in
Section 3.1. In spite of this, in rare cases, it may be pos-
sible to identify users through the ad request. This is an
unanticipated problem that needs further consideration.

Timestamps in ad requests and reports. In or-
der to select relevant configuration parameters when serv-
ing a client’s ad request, the broker needs to know both
the client’s configuration class and the timestamp at which
the request was made. Moreover, view/click/conversion re-
ports are also timestamped, which allows us to find the
delay between the interest detection and the subsequent
view/click/conversion events as well as the temporal dis-
tribution of these events. However, revealing unobscured
client timestamps constitutes a major privacy leak. First,
the broker may exploit these timestamps and try to finger-
print clients based on their clock skew. Second, sending
timestamps in the client’s local timezone breaks channel un-
linkability (e.g., when there are very few online users in a
particular timezone sending view/click reports for ads from
different channels).

We prevent this privacy leakage by uploading client times-
tamps converted to the same timezone (UTC) across all
clients. To be able to compute event distribution over time,
we add a timestamp in the client’s timezone and an event
subtype (ad request, view, click, conversion) as the meta-
info of the encrypted message uploaded to the dealer, and
store it there without forwarding it to the broker. To hide
potential clock skew, we currently use timestamp granular-
ity of 5 minutes. Additionally, it’s possible to add some
amount of noise to the timestamps, introduce longer (cur-
rently only 30 seconds) upload cycles and jitter (i.e., delay
random messages for several upload cycles) at the dealer.

Publisher info in view reports. Using the publisher
domain from the view reports, the broker can track all web-
sites where an ad (or ads from the same channel) were dis-
played, as long as ad and channel ids are unique across all
clients. However, in a commercial Privad deployment the
broker must not generate unique ids for subscriptions to the
same channel, and it should be easy to detect when this as-
sumption is violated. The problem will come up only when

there are very few users subscribed to a channel. Report-
ing publisher domain together with a view timestamp also
breaks channel unlinkability (e.g., when there are multiple
adboxes on a page filled with ads from different channels).
In our prototype, only click and conversion reports contain
publisher info. We break the view report into two parts, one
containing ad specific information and the other publisher
data, and upload them to the broker independently with a
random delay.

Adbox id in view reports. To discover which ads are
displayed together, a randomly generated adbox id is in-
cluded in view reports. Unlinkability then can only be en-
sured, if we populate each adbox exclusively with ads from
a single channel.

3.8 PDDP Implementation
Following the design described in [7], we built the PDDP

private analytics subsystem by retrofitting Privad compo-
nents with additional PDDP functionality. In our imple-
mentation, the broker takes the role of an analyst, the dealer
acts as the PDDP proxy, and the Privad addon as a client.

The query processing funnel contains the following steps.
First, the broker submits a PDDP query to the dealer. A
query includes a number of SQL statements, buckets defi-
nitions (ids, and lower and upper bounds), privacy param-
eter ε, and start and end timestamps. Additionally, it can
specify the required number of answers and the target con-
figuration class. The dealer verifies that the query does not
modify the client database (queries containing keywords like
‘create’, ‘pragma’, ‘delete’, etc. are rejected),4 and adds it
to the list of pending queries.

For every pending query the dealer maintains a set of
clients who already uploaded an answer to the query. Clients
periodically poll the dealer and retrieve a new (random)
PDDP query that they have not yet answered. Upon receiv-
ing a query, the client executes it over its local database and
produces a list of numerical answers, which it then maps to
buckets by assigning a ‘1’ or a ‘0’ to each bucket, depending
on whether or not one of the answers fell within the range
of the bucket. Then the client encrypts each per-bucket bi-
nary value using the broker’s Goldwasser-Micali (GM) [13]
public key. The resulting set of bucket ids together with
encrypted bits make up a PDDP answer that is submitted
to the dealer.

After receiving a client’s answer, the dealer validates the
answer (Jacobi symbol of a valid GM-encrypted value equals
to ‘+1’) and stores it locally. Once the dealer collects the
required number of answers or the query expires, it adds
a number of randomly flipped bits or coins to each bucket
to ensure differential privacy. Given privacy parameter ε
and the number of answers c, the minimum number of per-
bucket coins required to achieve (ε, δ)-differential privacy
is n = b64 ln(2c)/ε2c + 1 [7]. Finally, the dealer shuffles
clients’ answers and random coins together and uploads the
resulting set of (bucket id, encrypted bit)-pairs together with
the value of n to the broker. Upon receiving this message,
the broker decrypts and sums up all binary values for each
bucket id. It then subtracts n/2 from each per-bucket sum
to compute a (noisy) per-bucket count =

∑c+n
i=1 biti − n/2

4However, we allow PDDP queries to store intermediate re-
sults as key-value pairs in a dedicated table, which is wiped
clean after every query execution.
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(i.e., the number of clients that fall within this bucket, under
the guarantees of differential privacy).

By answering a PDDP query a client ultimately reveals
a bit of private information, which over a large number of
trials can potentially allow an attacker to average out noise
and discover private user attributes. In other words, each
PDDP query has an implicit privacy cost associated with it,
which clients pay when they answer the query. Over time,
this leads to accumulation of a privacy deficit (i.e., privacy
loss across all queries). We keep a record of the per-client
privacy deficit at the dealer. To err on the conservative
side, we make no assumptions about possible correlations
between buckets and effectively treat individual buckets as
separate queries bundled together. Thus, for every client
that contributed an answer the dealer adds (ε, 1/c)× num-
ber of buckets to the client’s privacy deficit. While this is an
overly pessimistic approach to tracking deficit, it allows us
to have both overlapping bucket ranges and queries produc-
ing multiple results that are mapped to multiple buckets.
To further reduce the privacy cost, we implemented PDDP
queries keyed on experimental configuration classes to target
only relevant groups of users.

Dogfooding PDDP enables us to collect various advertis-
ing related metrics that cannot be conveyed through Privad
without breaking its privacy guarantees. For example, us-
ing PDDP we can find per-user click-through performance
of Google AdSense ads and compare it with Privad’s. More-
over, using various client-side stats, PDDP allows us to peek
beyond simple views and clicks and analyze user engagement
with the advertising content.

In addition to storing information related to core Privad
functionality (experimental configuration, captured searches
and products, ad requests, active ad channels, view and
click stats, etc.), we also collect a number of additional
metrics. These include performance stats for several types
of Google ads (text, banner, flash), user engagement (time
spent actively browsing a landing page), browsing session
and click-chains (series of visited URLs after an ad click).
Our client also captures user’s shopping activity (products
placed in the shopping cart, purchases made), browsing,
and bookmarking behavior. Additionally, we store general
user information including geographical location and time-
zone, OS, language, adblocking addons, as well as overall
browser usage. All captured information is stored in a local
SQLite database using Firefox’s Storage API, thus allowing
the PDDP analytics system to query for that information in
a differentially private manner.

4. LARGE SCALE DEPLOYMENT
One major challenge in deploying the Privad prototype

is incentivizing users to install it. Since Privad does not
provide immediate tangible benefits for the end users, the
most viable deployment model is bundling with existing free-
ware applications with a well-established user-base. In this
section, we describe our experience in deploying Privad by
bundling it with a popular Firefox addon and present various
deployment statistics collected by the backend servers.

4.1 Deploying Privad at Scale
We deployed Privad by bundling it with Google Docs

Viewer5 – a Firefox addon that uses Google Docs to render

5No affiliation with Google Inc.

online documents (pdf, doc, ppt, etc.) in the browser with-
out downloading them. We decided to bundle with Google
Docs Viewer mainly because the addon is actively supported
and extended, and therefore maintains a sizable population
of almost 80K daily active users.

Experimental ethics. Participation in the Privad ex-
periment follows an opt-in model.6 When users update their
addon to the version containing the Privad bundle, they are
presented with a participation request dialog and are free
to choose to join the experiment or not. The participation
request contains a link to a webpage, which provides a com-
prehensive description of the experiment and informs the
users that a fraction of the Google AdSense ads will be re-
placed with Privad ads during the experiment. Each adbox
containing Privad ads is clearly labeled with a distinct Pri-
vadAds icon, which when clicked leads to the experiment
homepage. In case an opted-in user is no longer willing to
participate in the study, the Privad client provides an easy
way to opt-out.

The system was in continuous operation for more than two
months in September and October 2013 with a two-week gap
during which it did not serve any Privad ads. This hiccup
was caused by a major Google AdSense redesign [5], which
changed the html code that ad servers produce to display
AdSense ads. As a result, Privad’s ad rendering modules
were no longer functioning properly and we had to push
an update to address issues triggered by the new AdSense
design.

Overall, 13K users opted into the study7 and after an ini-
tial bootstrapping period the system was used daily by over
4800 users on average, with more than 2000 users online at
peak. In October alone, the Privad backend received 1.1M
ad requests, generating 960K channels with 9.5M ads in to-
tal. We registered 790K ads views, 417 ad clicks and 4 Ama-
zon purchases (including a“Flower Power Hippie”Halloween
costume, among others). During that time the dealer served
on average 7.9M daily RPC requests, and forwarded 950K
messages from clients to the broker and 60K messages in the
reverse direction on a daily basis. In terms of the network
utilization, this corresponds to 1.2 GB and 115 GB of daily
traffic received and sent to clients. On average, the broker
processed 32K search-based and 5.5K product-based daily
ad requests, generating 280K and 39K ads respectively. At
peak, the load on broker reached 286 requests per second.

To measure the communications overhead at the clients
we parsed server-logs generated by the dealer in October
and selected 6.5K Uids that appear in logs on at least 7
different days. Figure 5 plots the distributions of per-client
daily volume of messages exchanged with broker, including
ad requests and reports, as well as the daily bandwidth con-
sumption. While detailed information logged by the dealer
must not be directly available to the broker, the aggregate
stats presented here can safely be made publicly available
as part of a monthly operational summary. Surprisingly, we
found that the median value for the number of daily ad re-
quests is around 3.2, 11% of the users in our sample never

6Mozilla’s No Surprises policy requires a opt-in with non-
default user action to activate an “unexpected feature”, such
as Privad.
7No pings are sent to the backend before a user has opted
in, as a result we do not know the exact opt-in rate. But
based on the number of daily Google Docs Viewer users, we
estimate it at around 1 in 15.
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Figure 5: CDFs of per-client daily communications overhead

requested any ads, and almost 60% did not generate any ad
views. To uncover the reasons for the observed behavior, we
turned to PDDP analysis, as described later in Section 5.1.

4.2 Privad Advertising
In this section, we report various advertising related stats

computed using reports collected by the Privad broker (i.e.,
not with PDDP). In total, 87% of all requests generated a
channel (with 89% and 79% for search- and product-based
requests respectively), producing on average 9.8 ads per
channel. Overall, we calculated Privad CTR at 0.05%. While
this value may seem discouragingly low, as we discovered us-
ing PDDP analysis (see Section 5.2), in terms of advertising
performance Privad ads are comparable with text ads on
Google Display Network.

With slightly more than 400 clicks, we did not observe
stark variations in CTRs corresponding to different config-
uration parameters (e.g., placement mode, channel lifetime,
channel selection mode, etc.; all produced roughly equal
CTRs). However, we found that the CTR for product-
targeted ads is 2.6 times higher than that for search-targeted
ads (0.12% versus 0.046%). We also found that more than
70% of the Privad clicks were registered in single-slot ad-
boxes (with corresponding CTR of 1.1%), with another 14%
in the first position in multi-slot adboxes (where we observed
an exponential decrease in CTR in lower positions).

Figure 6 plots the distributions of delays between an ad
request and the first ad view for the generated channel, and
between and ad view and the corresponding ad click. The
former is an inherent attribute of the private-by-design ar-
chitecture and depends on the delays between system com-
ponents. Additionally, the request-view delay is affected by
the channel selection and ad placement policy at the client
and is subject to the availability of the adboxes. Overall,
our prototype was able to generate, deliver and display an
ad within an hour of establishing a new interest for 60% of
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Figure 6: CDFs of delays between ad requests and ad views,
and between ad views and ad clicks

all channels. With the most aggressive configuration param-
eters (channel selection = ’most recent’ and ad placement
= ’everywhere’) the 60th percentile of the delay is below 30
minutes. We believe this to a large extent comes from the
time it takes for an adbox to show up.

Additionally, using PDDP we measured the delay between
sending an ad request and receiving ads from the gener-
ated channel (this information is only recorded locally at the
client). This delay for all responded clients was <10 min-
utes. There are several contributing factors to the request-
response delay: length of the upload cycle at the dealer,
polling interval at the client and the ad generation latency.
While the first two are configurable, the latter is implementation-
specific. In our experiments, the observed average ad gener-
ation latency was below 2 seconds (with 99th percentile of
7 second).

While, as Figure 6 shows, the majority of the clicks hap-
pen within minutes after an ad view (the 90th percentile is
less than 10 minutes), we do not have enough data points
to establish the relationship between CTR and time elapsed
since identifying a new user interest. Nonetheless, we found
that CTR is affected by the number of times an ad was
shown (so-called, ‘opportunities to see’), dropping signifi-
cantly after the third ad view.

Overall, we find the achieved CTR to be encouraging given
the fact that we fully relied on shopping engines to match
ad requests to relevant products and that our ad content
was produced automatically from resulting products (which,
despite our best effort, sometimes did not look as intelligi-
ble and appealing as handcrafted ads). Naturally, we could
have seen higher CTR by rendering our ads only in top po-
sitions. Apart from this, we believe that Privad CTR can
be increased by improving targeting heuristics (e.g., reduc-
ing noise in search-based targeting), investing in better re-
quest matching algorithms and serving advertising content
designed by hand, not auto-generated.

5. COLLECTING DATA WITH PDDP
As opposed to the aggregate performance stats maintained

by Privad using view and click reports, PDDP provides a
privacy preserving mechanism to collect per-user stats and
perform user-centric analysis. In this section, we describe
our experience exploring the extent to which a differentially
private data collection system can be used to understand
what is going on behind the scenes in the private-by-design
ad deployment.
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Figure 7: Geographical distribution. Error bars correspond to
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Towards this end, we start out by building confidence
in the differentially private results by collecting attributes
that characterize the Privad’s user population and compar-
ing them with the data available at the server-side. We then
exercise PDDP functionality to get better visibility into the
client-side and understand the reasons for the observed view
and click rates. We also analyze advertising performance for
Google ads and compare it with Privad’s. We examine the
difference between search and display ads in terms of the
before- and after-click user behavior. Finally, we look at the
privacy deficits accumulated as a result of our analysis and
study the privacy implications for the end users.

5.1 Aggregate User Characteristics
We start our PDDP data collection with a simple query

retrieving the user geographical region. To obtain the ge-
ographical data the clients call the Maxmind GeoIP API.
This value is updated whenever the browser restarts and is
stored in the client’s SQLite database. The corresponding
PDDP query is a simple one-line select statement with buck-
ets enumerating the top 20 most represented countries (in
terms of the volume of IPs that appear in the dealer’s logs).
The query was active during a 24-hour time interval. In to-
tal, we collected 4604 answers with 585 random coins added
to each bucket,8 which corresponds to a standard deviation
of 12.09.

Figure 7 plots two distributions of Privad users over a list
of countries. One is based on the noisy answers from the sec-
ond PDDP query, the other is computed using 4607 IPs ex-
tracted from the dealer’s logs from the same 24-hour period.
The tallest bar on the figure corresponds to the US users,
and the more sizable European population is spread over
a number of countries including Germany, Russia, Great
Britain, France and others. Almost all values computed
from back-end data lie within the 95% confidence interval of
respective PDDP values, with the exception of the Spain and
NA ratios. The reason for this minor mismatch is likely to
be that local GeoIP info is captured as soon as the browser
starts and is not updated until the next browser restart,
therefore it can be somewhat stale by the time a client re-
ceived the PDDP query. For example, if a user enabled a
proxy or joined a different network, the IP address recorded
in the dealer’s log can be different from the one used to re-
trieve local GeoIP info. Overall, we find that the back-end

8For all PDDP queries in our analysis we use ε = 1.
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Figure 8: User attributes collected with PDDP. 95% confidence
interval is ±0.6%. PBM stands for private browsing mode.

data confirms trends discovered using the differentially pri-
vate mechanism, which serves as a practical validation of
PDDP results.

We use the rest of this section to describe our experience
in exercising the PDDP functionality to the widest extent
possible in order to learn everything we could about our
deployment.

To build a better picture of Privad users, we used PDDP
to query the operating system installed on the user ma-
chine (also available as a part of Firefox API). We found
that among the 4428 clients who responded to the query,
64.2% run Windows, 21.6% use OSX and 14.4% have a
Linux installed. Clearly, with the ratio of Linux users sig-
nificantly higher than in the general population (1.73% ac-
cording to [22]), this sample is representative of a set of
technically savvy power users.

Finally, we executed a query to find the percentages of
adblocked users as well as users with views and clicks for
all types of ads (both Google and Privad). The query was
active for 96 hours and accumulated a total of 5909 an-
swers. Among the users who submitted their answers ca.
709 spent less than two weeks with the system and their val-
ues were not included in the query results. Figure 8 shows
the distribution of the remaining user answers over queried
attributes. Consistent with the previous observation about
the tech-savvy user population, we found the ratio of ad-
blockers among Privad users to be twice the rate for Firefox
users reported by [8]. Surprisingly, despite a large num-
ber of adblocked users, the vast majority still receive ad
views (mainly because popular ad-blocking addons consider
Google Search ads to be “acceptable” [2] and by default do
not remove them; by contrast, no Privad ads are displayed if
our client detects an adblock). Moreover, more than 63% of
users in the sample have ad clicks (for users who block ads
this ratio is only marginally smaller – 60%). Additionally,
40% and 28% of users have views and clicks registered only
during private browsing mode (PBM). This suggests that
more than a third of Privad users have PBM enabled most
of time, during which Privad client will neither request nor
display any ads.

Overall, our PDDP-enabled analysis reveals a technically
advanced user base, where a large fraction have ad-blocking
addons and browse in private mode. The outcome is far from
unexpected, given our “bundling” deployment mechanism.
On top of that, the users who opt into a study of private-
by-design advertising are likely to be aware of the privacy
concerns related to online advertising and to use all means
available to minimize their privacy exposure on the web.
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Figure 10: Breakdown of users with at least one Google click
by type of the clicked ad. Timespan = 24 hours, total answers =
4624.

5.2 Comparing Privad and Google Performance
In this section, we present the results of PDDP analysis

performed to compare and contrast Privad and Google ads
performance. Figure 9 plots the ratios of users with views
and clicks for both Privad and Google ads. It shows that less
than 5% of sampled users have Privad clicks, whereas more
than 30% have non-PBM Google clicks. We did not store
any details about events that occurred in PBM apart from
the type of event (i.e., ‘view’, ‘click’, ‘search’, etc). But since
no Privad ads are displayed in PBM, all ad-related PBM
events are attributed to Google. In total, we found that
more than 60% of all queried users have registered Google
clicks. Due to lack of information about events in PBM and
to be apples-to-apples with Privad, unless otherwise stated,
we exclude PBM views and clicks from further analysis.

To learn which Google ads are most popular, we break
down users with clicks into groups according to the type of
the clicked ad. As Figure 10a shows, among the approx-
imately 1387 users with Google clicks in this sample, the
vast majority registered a click on a search ad. Display with
almost 40% of all clickers is runner-up. Figure 10b further
breaks down search ads according to location, where top ads
(displayed above organic search results) take the lead with
more than 90% of 1227 users with search ad clicks. Finally,
among display ads (Figure 10c), text and image have roughly
equal shares each with 40% of users with display clicks (ca.
524 users in the sample).

To estimate the distribution of per-user Google click-through
rates, we issued a query computing the ratio of views to
clicks that occurred in October 2013 for all Google ads (in-
cluding ads displayed in PBM). Since every bucket in a
PDDP query incurs a penalty in terms of the added pri-
vacy deficit, we generally strove to use as few buckets as
possible. In particular, in order to cover the whole range of
possible CTR values in this query we used exponentially in-
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Figure 11: Distribution of per-user Google click-through rates.
Timespan = 96 hours, total answers = 5392. Error bars denote
95% confidence interval. Labels along X-axis represent corre-
sponding bucket ranges.
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Figure 12: Distributions of per-user click-through rates for Pri-
vad and Display text ads. Timespan = 96 hours, total answers
= 6317. Zero-CTR ratios (90 ± 1.5% for Privad, 85 ± 1.3% for
display text ads) not shown.

creasing bucket sizes (with every bucket covering twice the
range of its precursor). Among 5392 user who responded
to the query, 865 did not have any views, CTR values for
the remaining ca. 4527 users are distributed as shown in
Figure 11. The first histogram on the figure represents the
ratio of users with no clicks, while the last – the ratio of
users with CTR values ≥ 6.4%. Using the lower endpoint of
a bucket range as a conservative estimate of the CTR value
for a user within the bucket, we compute a lower bound on
the average Google CTR across all users – 1.53%.

Privad is an inherently asynchronous system designed for
behavioral advertising, not search advertising. The proto-
type we built generates and displays only contextual ads.
Therefore, it is most reasonable to compare performance
of Privad ads and text ads on the Google Display Network
(which we refer to as display text ads). To do so, we executed
a query computing per-user CTR values for both types of
ads. The results of this query are presented in Figure 12, ex-
cluding the ratios corresponding to zero-CTR. While domi-
nated by differentially private noise, both CTR are generally
quite similar.

To verify this observation, we used PDDP to compare the
Privad and display text CTR values of each individual user.
We collected 4844 answers with 588 coins added to each
bucket (stdev = 12.1), among which 2994 had no Privad
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Figure 13: Distributions of per-user click-through rates for
Search and Display Google ads (all subtypes). Timespan = 72
hours, total answers = 5272. Zero-CTR ratios (40 ± 1.2% for
Search, 74.4 ± 1.3% for Display) not shown.

or display text views, and 1460 had no clicks. Among the
remaining 391 users, we found that in 210 cases the display
text CTR was higher, and in 181 the Privad CTR was higher.

In addition to detecting views and clicks, Privad clients
use a number of heuristics to identify conversion (i.e., pur-
chases made after a click). Towards this end, clients tag all
pages visited after an ad click with the ad id and try to detect
online payments (e.g., credit cards numbers in post request
parameters that pass through Luhn’s validation) issued on
pages tagged with a valid ad id. To compare how Privad,
with 4 actual conversions, fares against Google, we executed
a PDDP query counting the number of detected Google con-
versions. From 6022 users who responded, 107 users made a
purchase following a click on a Google ad (stdev = 12.3), 23
made a conversion while in PBM and 29 had more than one
conversion. However, the majority of conversions (ca. 92)
were generated by search ads, with display ads accounting
for only 7 conversions (well below the noise level).

In general, using PDDP we found that both in terms of
the click-though rates and conversions Privad ads perform
on a par with text ads on Google Display Network. While
recommendation systems and ad targeting are well studied
in as long as they are performed in the cloud, it still re-
mains a challenging and open question how to do targeting
on the client using only the local profile information. The
preliminary results reported here suggest that even with a
few simple heuristic for targeting from the localhost Privad
is as effective as the ad network, which has a global view
of the user profiles and employs complex machine learning
algorithms.

5.3 Comparing Search and Display Performance
As mentioned in the previous section, our PDDP analysis

reveals a difference in the number of conversions attributed
to search and display ads. The dissimilarity between these
ad types is even more prominent when we compare the dis-
tributions of per-user click-through-rates (Figure 13). More
than half of roughly 2200 users with search ad views have
CTRs ≥ 0.8%, whereas display ad CTRs for almost all users
do not exceed this value. Also, all search clicks were gener-
ated by text ads, but half of the display clicks comes from
text ads and half from image ads.

After observing a stark difference in performance between
search and display ads, one of the remaining questions was
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Figure 14: Distributions of per-user average view-click delay for
Search and Display text ads. Timespan = 48 hours, total answers
= 5239.

1 2 3 4 5 6 7 8 9 10

Average number of followed links

0%

10%

20%

30%

40%

50%

60%

70%
Search ads

Display ads

Figure 15: Distributions of per-user average click-chain length
for Search and Display text ads. Timespan = 48 hours, total
answers = 4895.

whether these two ad types differ in terms of the before- and
after-click user behavior. In other words, we want to find out
how long users linger before clicking on an ad and whether
they remain interested in and engaged with the landing page
content a long time or leave soon after the click. Our pri-
mary goal here was to exercise the PDDP functionality to
the widest extent possible without making any significant
claims regarding observed results. Therefore, we compare
search and display focusing only on text ads. In order to
increase size of the population with display text clicks, we
include Privad clicks in this category, since both display text
and Privad ads are visually similar and share the same per-
formance characteristics.

Figure 14 plots the distribution of the average per-user
delay between an ad view and the subsequent click on the
ad. The mean delay for display ads is around 30 seconds
to 1 minute, while for search ads it is between 8 and 30
seconds. In part, this difference could be explained by the
fact that we register a view at the time of the page load,
and not when an ad is within the visible area of the browser
window. And while top search ads appear immediately on
the screen, oftentimes a user has to scroll down to see a
number of display ads hidden outside of the visible area.

Another metric we use to analyze post-click behaviour is
the length of the “click-chain” – the number of pages vis-
ited by following links on the advertiser’s webpage. The
distributions of the average click-chain length are shown on
Figure 15. On average, the majority of users visit only the
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Figure 17: CCDFs of the attacker’s confidence of discovering k
user attributes given each user’s privacy deficit (theoretical worst-
case).

landing page of a display text ad (click-chain length = 1)
and rarely follow 1-2 additional links (counts corresponding
to buckets with more than 3 visited pages are dominated
by differentially private noise). The same distribution for
search ads is more evenly spread with bucket counts corre-
sponding up to 7 visited pages well above the noise level.

Finally, Figure 16 presents the distributions of time spent
actively browsing advertiser’s content for both ad types.
Again, the figure clearly shows a shift between distributions
with the average engagement reaching a peak at 10 to 20
seconds for display ads and 40 to 80 seconds for search ads.

5.4 Privacy Deficit
Overall, we executed 159 PDDP queries, collecting 790017

answers from 9395 unique clients. For all queries we used
ε = 1 and added a number of coins to satisfy the δ < 1/c
requirement [7]. As already mentioned, we treat individ-
ual buckets as separate queries and, therefore, compute the
(ε, δ)-privacy cost of a query as (1, 1/c)× number of buckets.
The cumulative privacy deficit for each client is recorded at
the dealer. This dataset shows that the maximum per-client
privacy cost of our PDDP analysis is (ε = 3006, δ = 0.6).
Moreover, 20% of the clients who participated in the analy-
sis accumulated a deficit of more than 97% of the maximum.
One way to understand this amount of privacy deficit is to
estimate how many user attributes it will allow an attacker
to learn under a worst-case scenario assumption (i.e., using
the isolation attack described in Appendix A).

The maximum (ε, δ)-privacy deficit of (3006, 0.6) in our
dataset allows an attacker a single query with t = 3006 iden-
tical buckets and n = 590 coins added to each bucket. This
enables the attacker to learn a single sensitive user attribute
with confidence >97% (alternatively, using two queries with
1503 buckets the attacker can learn two attributes with con-
fidence >89%). Figure 17 plots the attacker’s confidence
across all users, based on the number of answers produced
by each user. This shows that, according to the differentially
private model, an attacker could have predicted a single at-
tribute for 40% of the users with 95% confidence (or two
attributes with 83%).

We cannot, however, conceive of any query that would
have allowed us to learn what Figure 17 suggests. Imagine
that we had enough auxiliary information about one of the
clients to formulate a query that isolated that client from
all the others. Then using a malicious 3006-bucket query,
we could have learned one thing about our victim. But
we would have learned nothing about the other clients that
answered the query, even though theoretically those clients
experienced privacy loss.

Admittedly, the differentially private threat model, which
assumes an omniscient adversary, is prohibitively pessimistic.
Relative to our actual usage of PDDP analytics, the pre-
dicted privacy loss is a poor reflection of the de facto privacy
lost during the experiment. Nonetheless, as it has been long
known [9], merely adding zero-mean random noise is inade-
quate in longitudinal analytics. A number of additional mea-
sures must be taken to raise the bar for an attacker. These
range from limiting the number of buckets in a query [6] to
running taint analysis to ensure that the same attribute is
not used to answer repeated queries.

6. SUMMARY AND FUTURE DIRECTIONS
In this paper, we described our experience and challenges

involved in building, deploying and operating a private-by-
design ad system. Much of this work is empirical in nature,
and as such is full of experimental warts and idiosyncrasies
(mostly acknowledged). Overall, we believe that the process
we went through to see our prototype deployed and used by
thousands of users is as much a contribution of this work
as the results we obtained. This experiment provided us
with ample evidence and helped answer several key questions
such as: is the private-by-design technology a non-starter,
what can a researcher do to evaluate a private-by-design
system, short of an actual start-up, and what compromises
are made in the process. We learned several lessons from
this experiment.

First, Search ads, which reflect user interests in real-time,
clearly perform better than Display ads. Therefore, tech-
nologies like Privad, which delay ad delivery, face a serious
limitation. On the other hand, compared with Display text
ads, Privad performed unexpectedly well. A number of ad-
ditional improvements can be made to achieve even higher
click-through rates.

Second, using PDDP analytics we learned that the pop-
ulation of users who opted into the study was biased to-
wards technically advanced power users, many of whom have
ad blocking software, browse in private mode and tend to
rarely click on ads. Therefore, we believe that the observed
performance is an overly conservative estimate of the click-
through-rates in general.
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Third, when used with Privad’s threat model, which as-
sumes an honest-but-curious adversary, differential privacy
produces an excessively pessimistic estimate of privacy loss.
In reality, we came nowhere near learning any attributes
about any specific individual. Additionally, an expected,
but still negative result of this study is that, without addi-
tional measures to raise the attack bar, differential privacy
is inadequate for long-running analytics.

The next step in Privad’s evolution is to build an auc-
tion component [19] and deploy the system within an ad
exchange. However, we do not believe this is feasible in a
purely research setting. Rather, a commercial deployment
is needed.
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APPENDIX
A. PDDP ISOLATION ATTACK

Let’s assume that an attacker can isolate a single client
(for instance, by constructing a query in such a way as to
single out one user) and repeatedly pose the same query
to this client (or alternatively a single query with a large
number of identical buckets). If the system adds at least n
coins to an answer, the noise generated in a single trial is∑n

i xi−n/2, where x is value of an individual coin (0 or 1).
The expected value of the noise in a single trial is 0 (noise
is distributed binomially with success probability p = 0.5).
The average noise value after t trials is 1

t

∑t
k(
∑n

i xi−
n
2

) =
1
t
(
∑nt

i xi − nt
2

), which according to the central limit theo-
rem follows approximately normal distribution N (0, n/4t).
95% of the values of this distribution lie within two stan-
dard deviations of the mean: [−

√
n/t,

√
n/t]. The noise is

effectively cancelled out when the width of this interval is
< 1. In other words, if after t trials an attacker observes
average PDDP value from (−0.5, 0.5) interval, it infers that
the true user value is 0 with 95% confidence (similarly a
value from (0.5, 1.5) interval corresponds to the user value

of 1). Solving
√
n/t < 0.5 for t, gives that if t > 4n the noise

is cancelled out with 95% confidence (for 99% confidence t
> 9n).
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