
MPAT: Aggregate TCP Congestion Management as a Building Block for
Internet QoS

Manpreet Singh, Prashant Pradhan* and Paul Francis
Cornell University, *IBM T.J. Watson Research Center

{manpreet,francis}@cs.cornell.edu, ppradhan@us.ibm.com

Abstract

Today Internet QoS is deployed piecemeal—typically at
known bottleneck links like enterprise access links or wireless
links. A more comprehensive, end-to-end QoS deployment,
for instance across large enterprise networks or the global In-
ternet, remains elusive. There is growing interest in the idea
of using overlay networks to provide differential QoS services
(improve performance for some flows at the expense of other
flows). A necessary building block is the ability to provide dif-
ferential service over a single overlay link that traverses many
IP router hops. This paper presents MPAT, the first truly scal-
able algorithm for fairly providing differential services to TCP
flows that share a bottleneck link. Unlike known schemes,
our approach preserves the cumulative fair share of the aggre-
gated flows even where the number of flows in the aggregate is
large. Specifically we demonstrate, primarily through experi-
ments on the real Internet, that congestion state can be shared
across more than 100 TCP flows with throughput differentials
of 95:1. This is up to five times better than differentials achiev-
able by known techniques. Indeed, MPAT scalability is limited
only by the delay-bandwidth product of the aggregated flows.
With this tool, it is now possible to seriously explore the via-
bility of network QoS through overlay network services.

1 Introduction

After the heady optimism of the vision of a universal QoS in
the form of RSVP [29, 16], we have come to understand that
realistically QoS can only be deployed piecemeal. Rather than
a single ubiquitous QoS architecture, what is evolving is an
arsenal of tools that can be opportunistically deployed where
benefits can clearly be demonstrated. These benefits are most
clear where a bottleneck resource (e.g. a single bottleneck
link) can be identified, there is an identifiable set of user or
traffic classes that would benefit from arbitration of that bottle-
neck, and the organization with a vested interest in providing

QoS has control over the bottleneck resource.
One example is an enterprise network using IP telephony

over the Internet[34], where the bottleneck is the access link
between the enterprise locations and the Internet. Differentia-
tion between voice and non-voice traffic provides clear bene-
fits, and this traffic can be identified by a router, say by looking
for RTP packets. The enterprise has control over the routers
on either end of the access link, either directly or by coordi-
nating with its ISP. Another common example is in wireless
networking, either 802.11 or cellular, where there may be dif-
ferent types of traffic or different classes of users (gold, silver,
bronze customers, or emergency services) vying for scarce ra-
dio spectrum. Here, QoS mechanisms may be implemented at
several layers in the the protocol stack (for instance, [14]), and
the wireless network provider controls these protocols.

In these diverse examples, a single organization (enter-
prise, wireless network provider) was able to apply a QoS tool
(router queuing, radio access control) to an identifiable bottle-
neck resource (enterprise access link, radio spectrum). These
examples represent the “low hanging fruit”, if you will, of QoS
tools—those cases where the opportunity and motivation are
clear. What about the more difficult scenarios where there
is an underlying network of some complexity, and no single
organization has the motivation or wherewithal to implement
QoS services in that network?

An interesting approach to create a network with control-
lable properties, on top of an unstructured Internet, is the over-
lay network. Overlay networks have been produced for reduc-
ing network delays [22], improving network resilience [6], and
providing QoS to network applications like games [9]. The
basic building block for providing QoS over an overlay net-
work is the ability to provide QoS over each logical overlay
link. Flows between the two ends of an overlay link share
the same underlying network path, thus sharing the bottleneck
link. Hence mechanisms to arbitrate the bottleneck link band-
width to provide QoS can be deployed at the ends of the over-
lay link.

Note that the question of whether overlay networks is a valid
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approach to providing QoS is an open question, and this pa-
per does not answer that question. In particular, if the overlay
changes the characteristics of the individual TCP flows that
pass through it, and if multiple overlays try to “compete” un-
der these circumstances, then the overlays may lose their effec-
tiveness, or worse may destabilize the Internet. What is clear,
however, is that if we are to make progress in understanding
what can legitimately be achieved with overlays, we need to
understand the characteristics of a single hop in the overlay.
More specifically, in order to co-exist with Internet traffic (and
with other similar overlays), such a QoS mechanism should
satisfy certain properties. We state these properties below, as-
suming there are N flows belonging to an overlay using a log-
ical overlay link.

• Fairness: The overlay flows should not steal bandwidth
away from other flows (overlay or non-overlay) sharing
the same bottleneck. In particular, other TCP or TCP-
friendly flows using that bottleneck link should get the
same bandwidth as they would with N standard TCP
flows using the overlay. This requirement ensures that the
overlay’s QoS mechanism is “transparent” to the back-
ground flows.

• Utilization: The overlay flows should be able to hold
the fair share of the bottleneck link bandwidth entitled
to them. In particular, the total bandwidth available to the
overlay’s flows should be equal to the total fair share of
N TCP flows. This ensures that the overlay flows do not
lose bandwidth to the background traffic.

• Scalability: The above properties should hold for large
values of N .

The key technical contribution of this paper is an aggregate
TCP congestion management scheme that scales well by the
number of flows in the aggregate (we have demonstrated up
to N=100), that provides large differentiation ratios (we have
demonstrated up to 95:1), and that does so fairly. We call
the scheme MPAT, for Multi-Probe Aggregate TCP, because it
maintains an active AIMD loop (i.e. a “probe”) for every TCP
flow in the aggregate. This can be contrasted with mulTCP[3],
which tries to obtain N fair shares by running a single, more
aggresive AIMD loop. A secondary contribution of this paper
is to provide more experimental data and insights on the exist-
ing schemes (primarily mulTCP). Even though the scalability
and stability of mulTCP is known to be limited, we feel it is
important to provide this data for two reasons. First, contrast-
ing MPAT with mulTCP allows us to clarify and verify our
intuitions as to why MPAT performs well. Second, mulTCP,
in spite of its stated limitations, is nevertheless still being pro-
posed for overlay QoS [9] and so can be considered the incum-

bant. Thus it is important to make more direct comparisons
between MPAT and mulTCP.

The rest of this paper is organized as follows. Section 2 dis-
cusses the existing techniques to provide QoS to TCP or TFRC
flows over a single path or bottleneck link, and demonstrates
that they fall short of meeting the desirable criteria for such a
QoS mechanism. Section 3 presents the proposed aggregate
TCP approach in detail. Section 4 presents a detailed perfor-
mance evaluation of MPAT using experiments in controlled
settings as well as over the Internet, and compares MPAT with
proposed techniques. Section 5 concludes the paper, detailing
our key findings.

2 Existing Approaches

One class of approaches (e.g. pTCP [32]) that provide net-
work QoS in a best-effort network, try to open extra simulta-
neous TCP connections, instead of a single connection, to give
more bandwidth to an application. By contrast, MPAT does
not create extra TCP connections. It tries to provide relative
QoS among only the TCP flows that the applications normally
create. The resulting behavior of schemes like pTCP is clearly
not desirable, and in fact CM[2] proposes to explicitly forbid
this kind of behavior by using one active AIMD loop (i.e. one
congestion “probe”) for multiple flows between two given end-
points. Further, this approach does not scale to higher perfor-
mance ratios between flows, since a large number of flows ac-
tive at a bottleneck lead to significant unfairness in TCP [38].
Of course, the scalability of both MPAT and pTCP is limited
by the delay-bandwidth product of the aggregated flows. But
pTCP would reach this limit much before MPAT. As an ex-
ample, we later show in Section 4.5 (using experiments on the
real Internet) that MPAT can give 95 times more bandwidth
to one application over another using only three TCP connec-
tions. On the other hand, schemes like pTCP would need to
open 95 parallel TCP connections for this.

Key et. al. [5] propose to set different ‘flow control’ lim-
its for various flows in order to provide different bandwidth to
each flow. Please note that such schemes can only give lower
bandwidth to a flow (as compared to its fair share), thus vio-
lating the utilization condition described in Section 1.

TCP Nice [26] is a way of providing only two-level QoS,
while our scheme can provide multi-level QoS. TCP Nice can
only give lower bandwidth to the background traffic. It cannot
give higher bandwidth to the more critical traffic. We want to
design a system that can give more bandwidth to one TCP flow
at the expense of lower bandwidth to another flow, in such a
way that the sum total of the bandwidth that the two flows get
is same as the fair share of two TCP flows.

The idea of providing performance differentiation between
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TCP flows sharing a path has been discussed in the context
of aggregate congestion management approaches [10, 7] like
TCP Session [1, 4], Congestion Manager (CM) [2, 13], TCP
Trunking [21], A TCP trunk is a TCP connection between
two routers, which is shared by multiple TCP flows active
between the two routers. The end-to-end flows terminate at
the end points of the trunk, where data from all the flows is
buffered. The bandwidth available on the trunk is the band-
width available on the TCP trunk, which evolves using the
standard TCP AIMD[30, 31] algorithm. The data from vari-
ous TCP flows can then be sent over the trunk according to any
chosen scheduling policy. CM[2] is a congestion management
scheme that provides unified congestion management to TCP
as well as non-TCP flows, decouples congestion control from
reliability, and ensures that end-points of a connection cannot
hog more than their fair share of network bandwidth by open-
ing multiple connections between them. CM defines an ag-
gregate (termed “macroflow”) as a set of TCP flows between a
source and a destination host (termed “microflows”). Both CM
and TCP Session keep one AIMD bandwidth estimation loop
active per aggregate, and hence the bandwidth available to the
aggregate is that entitled to one TCP flow. Microflows can
share this bandwidth according to any chosen scheduling pol-
icy. Thus, in case of a logical overlay link, flows between the
endpoints of the link could be aggregated into a CM macroflow
or a TCP trunk, and performance differentiation could be pro-
vided between them.

However, by virtue of using one AIMD loop per trunk or
per CM macroflow, both TCP Session and CM, in their cur-
rent form, do not satisfy the utilization requirement. If N
flows constitute an aggregate (trunk or macroflow), and the
aggregate shares a bottleneck link with M background flows,
then with equal sharing within the aggregate, the share of the
bottleneck link bandwidth received by the aggregate’s flows is
1/(N(M + 1)). If the N flows compete for bandwidth like
standard TCP flows, each of the flows would be entitled to a
share of 1/(M +N). This has also been mentioned in Chapter
7 of [1].

The above problem could be addressed by using a variant
of the AIMD loop that acts like N TCP flows, as proposed
in [1]. When a TCP flow has a bottleneck link where the
loss probability p characterizes the congestion state at the link,
TCP’s AIMD algorithm allocates the flow a bandwidth given
by B = K/(RTT ∗ sqrt(p)) [19], where K is proportional to
√

α
β
∗ (1 − β

2
). To achieve performance differentiation among

these flows, one possible approach is to play with the param-
eters α and β in the AIMD algorithm. This is the approach
used by mulTCP [3]. The idea behind mulTCP is that one
flow should be able to get N times more bandwidth than a
standard TCP flow by choosing α = N/2 and β = 1/2N .

Thus, the congestion window increases by N (as opposed to 1)
when a congestion window worth of packets is successfully ac-
knowledged. Losses leading to fast retransmit cause the win-
dow to be cut by (1 - β), and losses leading to a timeout cut
down the window to 1. Analytically, a mulTCP flow achieves
a bandwidth N times that of a standard TCP flow experiencing
the same loss rate. It is thus possible for CM or TCP trunk-
ing to use one mulTCP AIMD loop per aggregate to address
the utilization problem. An equivalent TFRC [23] variant of
mulTCP exists, where the throughput equation of mulTCP can
be used in conjunction with a TFRC rate adjustment loop. A
TFRC variant of mulTCP is used by OverQoS[9] to estimate
the bandwidth entitled to N TCP flows on a logical overlay
link.

Note however, that the loss process induced by a single
mulTCP flow is quite different from that generated by N in-
dependent TCP flows. Hence, it is not clear if a mulTCP
flow, especially for large N , would continue to behave like
N TCP flows in the network. Also note that the ‘amplitude’ of
mulTCP’s AIMD control loop increases with N , leading to an
increasingly unstable controller as N grows. This is in contrast
to N control loops of N independent TCP flows, where each
has a small amplitude and thus tends to be more stable. This
also has implications for a TFRC variant of mulTCP, since
for large N , the analytically derived bandwidth equation of
mulTCP may not represent the actual bandwidth consumed by
a mulTCP flow.

Further, it has been noted in [3] that a mulTCP flow can-
not act exactly like N independent TCP flows because timeout
losses force the entire mulTCP window to be cut down to 1,
whereas with N independent TCP flows, such a loss would
cut down only one TCP connection’s window to 1. In [3], it is
shown that this limits the value of N for which a mulTCP flow
can achieve as much bandwidth as N independent TCP flows
(the recommended value for N is 4 [8]).

The above discussion indicates that QoS approaches based
on mulTCP may not meet the fairness and utilization require-
ments for large N , in turn violating the scalability requirement.
In the remaining part of this section, we experimentally inves-
tigate this hypothesis.

We conducted experiments on the Emulab network testbed
at University of Utah [11] over an emulated link of bandwidth
90Mbps and RTT 50msec. We ran a mulTCP flow along with
10 standard TCP flows through the same bottleneck link. To
create a mulTCP connection equivalent to N TCP flows, we
set the additive increase factor (α) and multiplicative decrease
factor (β) such that α

β
= N2 [37, 36, 32]. We performed all

our experiments with two sets of parameters: α = N (i.e. β =
1/N ), and α =

√
N (i.e. β = N−1.5). We used a TCP-SACK

based implementation of mulTCP.
Figure 1(a) shows how the achieved bandwidth ratio be-
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tween mulTCP and a standard background TCP flow varies
with N . Figures 1(b) and 1(c) show the corresponding num-
ber of fast retransmits and timeouts seen on the mulTCP flow.
Note that for large N , due to multiple losses within the same
window, fast retransmit does not trigger, causing a large num-
ber of timeout-induced window resets. The result is that
mulTCP’s achieved bandwidth ratio flattens out for N > 20
for α =

√
N , and actually falls for α = N .

The 45−degree line in figure 1(a) represents the ideal
achieved bandwidth ratio for a given choice of N . Note that
for small values of N , mulTCP’s achieved bandwidth ratio lies
above this graph, indicating that mulTCP is more aggressive
than N TCP flows to the background TCP flow.

Figure 2(a) shows how the mean and variance in the band-
width achieved by mulTCP varies with N . Note that the vari-
ance increases with N , till it eventually flattens out together
with the bandwidth. This increased variance is a manifestation
of the increasing instability of the modified AIMD controller.
Note that even though mulTCP’s achieved bandwidth flattens
out for large N , figure 2(b) shows that the background TCP
flow is also not able to get the remaining bandwidth, as its
throughput also flattens out. The result, as shown in figure
2(c), is a loss of utilization of the bottleneck link. The rea-
son for this behavior is also an increased number of timeouts
both for mulTCP and for background TCP traffic, induced by
mulTCP’s aggressive control loop for large N .

To analyse the behavior of multiple virtual overlay links us-
ing mulTCP, we measured the bandwidth distribution achieved
between two mulTCP flows with N = N1 and N = N2. As
shown in table 1, the achieved bandwidths are not in the ratio
N1/N2. This suggests that the interaction between two control
loops, both with large amplitudes, does not lead to the ideal
bandwidth distribution. The fairness of the bandwidth distri-
bution tends to be much better with identical control loops, as
used by standard TCP flows. Moreover, the utilization of bot-
tleneck link (given by B1 + B2) keeps decreasing with larger
values of N1 and N2.

Finally, we study the behavior of a TFRC flow using
mulTCP, to verify if the slower responsiveness and averag-
ing effects of TFRC mitigate some of mulTCP’s problems for
large N . In this experiment, 5 mulTCP TFRC flows run si-
multaneously with 5 background TCP flows. Each mulTCP
TFRC flow uses the mulTCP bandwidth equation, and a mea-
surement of the loss probability, to adjust the sending rate in
response to loss events. Table 2 shows the average bandwidths
achieved by a mulTCP flow compared to a TCP flow and their
ratio, for varying N . Note that the ratio grows much faster
than N , which indicates that the mulTCP TFRC flows aggres-
sively take bandwidth away from background TCP flows as N
increases.

The above analysis shows that beyond small values of N ,
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Figure 1: As N increases, due to multiple losses within the
same window, fast retransmit does not trigger, causing a large
number of timeouts, and hence limiting the scalability of the
mulTCP scheme.
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Figure 2: As N increases, variance of a mulTCP flow keeps
increasing, and the total link utilization decreases.

N1 N2 B1 B2 B1/B2

(KBps) (KBps)
4 1 3990 498 8.01
9 1 5519 392 14.07
16 1 6091 307 19.84
25 1 5907 280 21.09
9 4 4876 1795 2.72
16 4 5156 1320 3.91
16 9 4340 2833 1.53
25 4 5596 1171 4.78
25 9 4082 2618 1.56
25 16 2925 2264 1.29

Table 1: Table showing the bandwidth obtained by two
mulTCP flows running simultaneously through the same bot-
tleneck link over Emulab network.

N TFRC TCP TFRC/TCP
(KBps) (KBps)

5 1857 350 5.3
7 2078 166 12.5
8 2153 101 21.3
9 2196 63 34.8
10 2223 37 60
20 2230 22 101
30 2247 13 172
40 2254 7 322

Table 2: Table showing the bandwidth obtained by
TFRC(+mulTCP) connections along with standard TCP con-
nection.

mulTCP does not provide an adequate solution to the problem
of creating an N-TCP abstraction. In particular, QoS schemes
based on mulTCP do not satisfy the scalability requirement.
In the next section, we present an aggregate congestion man-
agement scheme that satisfies the fairness, utilization as well
as scalability requirements mentioned in section 1.

3 QoS through aggregate congestion
management

3.1 An illustration using two flows

Before we discuss how our MPAT scheme exactly works, let us
start with a simple example. Consider the following scenario:
we have two TCP flows running simultaneously between the
same end-hosts, thus sharing the same bottleneck link and ex-
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periencing similar delay. For ease of illustration, we refer to
the first flow as the red flow and the second flow as the blue
flow. 1

Our goal is to provide performance differentation among
these two flows under the following constraints: Firstly, we
should not affect other background flows running in the net-
work at the same time (in terms of bandwidth, delay, loss rate,
etc). This is referred to as the fairness property in Section 1.
Secondly, the sum total of bandwidth acquired by the red flow
and the blue flow should be equal to the fair share of two stan-
dard TCP flows going through the same bottleneck link at the
same time. This is referred to as the utilization property in
Section 1. The reason this problem is hard is that the fair share
of a TCP flow keeps changing dynamically with time, depend-
ing upon the number of background flows going through the
bottleneck link, and the end-hosts do not have an explicit indi-
cation of the amount of such cross-traffic.

Suppose we want to apportion the available bandwidth 2

among these two flows in the ratio 4:1. Assume that the con-
gestion windows for each of the two flows is 5. Thus, the
network allows us to send 10 packets every Round Trip Time
(RTT). In the case of standard TCP, we would have sent 5 red
packets and 5 blue packets every RTT. But the network does
not really care how many red and blue packets we actually
send, as long as the total number of red and blue packets is
10. If we aggregate the congestion information of both these
flows at the end-host (the sender side), we can transmit 8 red
packets and 2 blue packets every RTT, thus giving four times
more bandwidth to the red flow over the blue flow. This would
also make sure that we do not hurt the background traffic at
all.

The above step allows us to split the instantaneous band-
width among the two flows in the ratio 4:1. But will we be
able to achieve that over a long period of time? The answer is
NO, and the reason is as follows. Since the probability of each
packet getting dropped in the network is the same, the red flow
would experience a higher loss rate than the blue flow. This
would force the red flow to cut down its congestion window
more often than the blue flow. In the long run, the total band-
width acquired by the two flows would be much less than the
fair share of two TCP flows, thus violating the utilization prop-
erty.

To overcome this problem, the fundamental invariant that
we try to maintain at all times is that the loss rate experienced
by each congestion window should be the same as in standard
TCP. Standard TCP sends data packets, and receives conges-

1Please note that in contrast to schemes like pTCP, we are not intentionally
opening these flows in order to hog more network bandwidth. These are the
flows that applications normally create.

2In this example, by ’available bandwidth’, we refer to the fair share of
two TCP flows.

tion signals (either explicitly in terms of ECN, or implicitly
in terms of duplicate acks, fast retransmissions, timeouts, etc)
back from the receiver. If we had used standard TCP for each
of the two flows, both the red window and the blue window
would (on an average) experience equal number of congestion
signals. In order to maintain this property, we first separate re-
liability from congestion control, as proposed in CM[2]. Next,
we decouple the actual growth of congestion window from the
identity of the flow whose packets advance the congestion win-
dow.

In the above example, when we get 8 red acks, we send
three of these to the blue congestion window. In other words,
we assign 5 acks to the red window, and 5 to the blue window
(3 red + 2 blue). This ensures that each of the two conges-
tion windows experiences similar loss rate, even though we
can split the available bandwidth in the ratio 4:1. Please note
that since we separate reliability from congestion control, it is
the red flow that is responsible to maintain the reliability of
each of the 8 red packets (in terms of buffering, retransmis-
sion, etc). When we get 8 red acks, we separate each of them
into ’reliability ack’ and ’congestion signal’. For the purpose
of reliability, we send each of the 8 red acks to the red flow.
But for the purpose of congestion control, we apply only 5 of
these red acks to the red window, and apply rest 3 to the blue
window. This ensures that the sum total of bandwidth acquired
by both the flows is equal to the fair share of two TCP flows,
thus satisfying the utilization property.

3.2 The general case

A source of N TCP flows sharing a bottleneck link is entitled
to a total share of the link bandwidth given by the sum of the
fair shares of each of the N TCP flows. The source should
thus be able to arbitrate this total share among the N flows
according to their performance requirements. Each TCP con-
nection opened by an application has a corresponding control
loop which uses the AIMD algorithm to adjust its congestion
window in response to feedback from the network. The key
idea behind our aggregate congestion management scheme is
to keep as many AIMD control loops active in the network as
the number of TCP flows in the aggregate, but to decouple ap-
plication flows from their congestion windows. We call this
scheme MPAT, for Multi-Probe Aggregate TCP, to emphasize
the fact that we keep N AIMD control loops (i.e. “probes”)
active.

Thus, in an aggregate of N flows, the N application data
streams are decoupled from the N congestion windows that
are each evolving using the AIMD algorithm. The N AIMD
control loops allow us to hold the fair share of N TCP flows,
while an additional step of mapping application packets to
congestion windows allows us to arbitrate the aggregate band-
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width to provide the desired QoS. Since the identity of pack-
ets driving a given AIMD loop is irrelevant, this remapping
is transparent to the network. Thus, the aggregate appears as
N standard TCP flows to the network, providing appropriate
fairness to any background TCP or TFRC traffic. Please note
that this is different from all the existing schemes[2, 3, 21],
which keep only one bandwidth estimation probe active in the
network, and hence suffer from problems of scalability and
fairness.

The following section describes MPAT in detail.

3.3 The MPAT Algorithm

Consider N TCP connections running simultaneously as part
of an aggregate, sharing the same bottleneck link in the net-
work. Let these flows be labeled as fi, 1 ≤ i ≤ N . Let Ci

represent the congestion window of flow fi. We introduce an-
other variable Ai which denotes the MPAT window for flow
fi. Let C denote the aggregate congestion window, given by
the sum of the congestion windows of all flows. Let xi de-
note the fraction of the total bandwidth allocated to flow fi,
such that

∑

i xi = 1. The shares xi are derived from the
performance requirement of the flows fi, and could change
dynamically with time.

Note that C represents the product of the bandwidth avail-
able to the aggregate and the round-trip delay (RTT) on the
logical overlay link. While TCP would allocate C among
the N flows roughly equally in every RTT, MPAT would al-
locate C in accordance with the performance requirements of
the flows. In other words,

Ai = xi ∗ C (1)

The actual number of packets that flow fi is allowed to send
every RTT is min(Ai, Wi), where Wi is the minimum of the
sender and receiver window sizes for flow fi. With standard
TCP, flow fi would be allowed to send min(Ci, Wi) packets
every RTT.

Ci Congestion Window for flow i
Ai MPAT Window for flow i
C

∑

i Ci

xi Bandwidth share of flow i
Wi Minimum of sender and receiver

window size for flow i

Table 3: Symbols and their meanings

Each connection i maintains a mapping of the sequence
numbers of its packets to the identifier of the congestion win-
dow through which the packets were sent. We refer to this

mapping as seqno2idi(). This mapping is maintained as a list
ordered by increasing sequence number. For each congestion
window i, we also maintain the inverse of this mapping, i.e.
the list of packet sequence numbers sent through this window.
We refer to this mapping as id2seqnoi(). This mapping is also
maintained as a list ordered by increasing timestamps (i.e., the
time at which the packet was sent). We use a variable per con-
gestion window that keeps track of the number of outstanding
packets that have been sent through that window.

3.3.1 Transmit Processing

Whenever connection fi sends out a packet with sequence
number s, it tries to find a connection (say j) with open con-
gestion window. Congestion window j is said to be open if the
number of outstanding packets sent through it is less than Cj .
Note that the packets sent using congestion window j could
belong to fj , or to any other flow in the aggregate. In practice,
j could be the same as i. Connection i then stores the mapping
of seqno s to congestion window j in seqno2idi(). We also
store the inverse mapping in id2seqnoj()

3.3.2 Receive Processing

Our implementation is based on TCP-SACK. When we receive
an acknowledgement for a packet with sequence number s,
belonging to flow fi, we use the mapping seqno2idi() to find
the congestion window j through which the packet was sent.
We then look at the inverse mapping id2seqnoj() to find if the
ack received is in sequence or not. We then apply the standard
AIMD algorithm to congestion window j. Thus, if the ack is
in sequence, we linearly increase Cj to Cj + 1/Cj . If it is a
duplicate ack (in case of SACK, this would be the ack for a
later packet in sequence), we enter the fast retransmit phase,
halving Cj if we get three duplicate acks (in case of SACK,
three out-of-sequence acks).

3.3.3 Mapping sequence numbers to congestion windows

The choice of the mapping of a sequence number to a con-
gestion window is critical, since it affects the number of fast
retransmit-induced window halvings that an MPAT aggregate
receives over a given interval of time, and hence the total band-
width gained by it. Recall that standard TCP-SACK considers
multiple losses within a single congestion window as one loss
event for fast retransmit, and hence cuts down its window by
half only once. To understand how this affects MPAT, consider
the following example: There are two TCP flows running si-
multaneously as part of an MPAT aggregate. Connection 1 has
a window size of 20, and has packets 1 through 20 outstanding
in the network. Suppose packets 8 and 9 get dropped. Since
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both these packets belong to the same window, standard TCP-
SACK would treat them as one signal for fast retransmit, and
hence cut down its window only once.

MPAT could treat this situation as either one or two fast re-
transmit signals, depending upon the mapping seqno2id

1
().

Consider the case when sequence numbers 8, 10-12 are
mapped to C1, and sequence numbers 9, 13-15 are mapped to
C2. The acks for packets 10-12 will be charged to C1, which
will treat all three of them as duplicate acks for packet 8, and
hence cut down its window by half. But the acks for packets
13-15 will be charged to C2, which will again treat them as
duplicate acks for packet 9, and hence cut down its window
by half. This example shows how two packet losses within the
same window could lead to two fast retransmit signals. On the
other hand, if both packets 8 and 9 were mapped to C1, this
would lead to only one fast retransmit signal. In this case, flow
2 would treat acks for packets 13-15 as if they were received
in sequence, and hence would not reduce its window.

We tried out three different algorithms to map the packet
with sequence number s, belonging to flow fi, to a congestion
window :

• If sequence number s − 1 was sent through congestion
window k, send the current packet s through window k
if it is open. Else, randomly pick an open congestion
window to send the packet. This algorithm turns out to
be aggressive to the background flows since consecutive
packet losses are charged to the same congestion window,
and get absorbed into one loss event for fast retransmit,
reducing the number of window reductions.

• If sequence number s − 1 was sent through congestion
window k, randomly choose an open congestion window
different from k. This scheme turns out to be more con-
servative than standard TCP, since it forcibly maps mul-
tiple losses on a flow to different congestion windows,
causing each one of them to be cut down.

• Map s to an open congestion window picked uniformly at
random. This option turns out to be a reasonable compro-
mise between the two extremes. In fact, it turns out to be
conservative when one of the flows has a very large share
of the aggregate congestion window, since it still spreads
out the losses of packets on that flow to multiple conges-
tion windows. We use this option in our implementation.

Whenever any of the congestion windows in the aggregate
changes, the aggregate congestion window also changes, and
hence we must also update the MPAT windows Ai of all con-
nections using equation 1. Note that this means that when-
ever the congestion window for one of the flows is cut down,
the loss in available bandwidth gets distributed proportionally
among the MPAT windows of all the flows. This has the effect

of reducing the inter-connection variance in throughput, as we
shall see later in section 4.6.

3.3.4 TFRC variant

There exists a TFRC[23] variant of MPAT, in which instead
of N AIMD control loops, we have N rate adjustment loops,
each driven by the standard TCP throughput equation for one
TCP flow. Note that loss probabilities will be measured by
congestion window, i.e. over data sent using a given rate ad-
justment loop, irrespective of which application flow the pack-
ets came from. Loss events will be mapped to congestion win-
dows in the same way as described above. The TFRC variant
enjoys the same transparency properties as the AIMD version,
in that each rate adjustment loop is oblivious to the identity of
the packets driving it. As a result, the TFRC variant of MPAT
appears as a set of N independent TFRC flows to the network.
All of our experiments in this paper are with the AIMD version
of MPAT.

3.4 Implementation

We have prototyped our proposed aggregate congestion man-
agement scheme in Daytona[28], a user-level TCP stack run-
ning on Linux. Daytona can be linked as a library into an
application, and offers the same functions as that provided by
the UNIX socket library. Daytona talks to the network using
a raw IP socket, thus avoiding any processing in the operating
system’s TCP stack. All TCP processing is done at user-level,
and pre-formed TCP packets are handed to the IP layer to be
sent over a raw socket.

Our user-level implementation allowed us to run wide-area
experiments on diverse locations in the Internet, as well as in
controlled public network testbeds like Emulab [11], without
requiring control over the operating system.

A key goal in MPAT is to ensure that we hold the fair share
of N TCP flows in the process. Thus, each AIMD control loop
should be kept running as long as there are packets available to
drive it. Note that if a flow with a high share of the aggregate
congestion window gets send or receive window limited, or
has a period of inactivity, then it may leave some of its share
of the aggregate congestion window unused. Left alone, the
aggregate would lose this unused share to the background traf-
fic. By using a work-conserving scheduler on the aggregate,
however, we make sure that other flows in the aggregate take
up such unused bandwidth, if they have data to send.

An implementation detail concerns the amount of memory
allocated per socket corresponding to a connection. Due to
an unequal apportionment of the total bandwidth among dif-
ferent connections, each connection needs a different amount
of buffer memory at any given instant of time. Currently our
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implementation statically partitions a large chunk of memory
between connections in accordance with their performance re-
quirements. In the future, our implementation would dynami-
cally allocate socket memory, as proposed in [20].

4 Evaluation

In this section, we conduct extensive experimentation to evalu-
ate the fairness, utilization and scalability properties of MPAT.
We have conducted experiments both over the real Internet and
in controlled settings under stable conditions, reverse traffic,
and transient congestion. We built our own wide-area network
testbed consisting of a network of nodes in diverse locations
(including US, Europe and Asia). Our main goal in choosing
these nodes is to test our system across wide-area links which
we believe have losses. For this reason, we made sure that the
whole path is not connected by Internet2 links (known to have
very few losses). We changed the routing tables of our campus
network to make sure that the path to our destination did not
take any of the Internet2 links. We also did experiments on the
Emulab network [11], which provides a more controlled set-
ting for comparing our scheme with other approaches. All of
our experiments used unconstrained send and receive windows
on both ends of the TCP connections, so that flow control does
not kick-in before congestion control. As background traffic
we use long lived TCP connections and bursty web traffic. We
had a Maximum Segment Size (MSS) of 1460 bytes in all our
experiments.

4.1 Scalability

Using experiments on both the Emulab network and the real
Internet, we found that the MPAT scheme can hold the fair
share of 100 TCP flows running simultaneously as part of an
aggregate, irrespective of how the aggregate bandwidth was
apportioned among the aggregate’s flows. The limits on scal-
ability beyond 100 flows arise due to other factors like mini-
mum amount of bandwidth needed per connection, bottleneck
shifting from network to memory, etc.

As noted in section 2, mulTCP scales only up to 20-25 flows
in the Emulab setting. In a real Internet experiment, we found
mulTCP to scale upto 10 to 15 flows.

4.2 Performance differentiation

The MPAT scheme can be used to apportion the total available
bandwidth among different flows in any desired ratio. Even
though the total fair share allocated to the aggregate keeps
changing with time, MPAT can maintain the target perfor-
mance differential at all times. We could give a maximum of
95 times more bandwidth to one TCP flow over another.

The real limits to scalabiliy for large performance differen-
tial arise from the fact that every connection needs to send a
minimum of 1-2 packets every RTT [38]. In the future, we
plan to change this to 1 packet every k RTTs, as proposed in
[26].

As an example, Figure 3(a) shows the bandwidth allocated
to five TCP flows running as part of an MPAT aggregate be-
tween Utah and our campus network on the east coast (RTT
approximately 70 msec). There were five more long-running
standard TCP flows in the background (in both directions). We
tried to split bandwidth in the ratio 1:2:3:4:5. The graph is for
a period of 5 min, with data samples taken every 500msec (ap-
prox 7 RTTs). The average amount of bandwidth that each of
the five flows got was 135 KBps, 265 KBps, 395 KBps, 530
KBps and 640 KBps respectively. We can see that the MPAT
scheme is very effective at maintaining the desired target dif-
ferential among different flows at all times, irrespective of the
total share of bandwidth that the aggregate is entitled to. The
average bandwidth of a standard TCP flow running in back-
ground during this time period was 400 KBps. During the
process of splitting bandwidth, the MPAT aggregate holds its
total fair share of approximately 2000 KBps, as seen in Figure
3(b), thus satisfying the utilization criterion.

4.3 Fairness to background flows

As noted earlier, an MPAT aggregate is naturally fair to back-
ground TCP traffic since the remapping of application packets
to congestion windows is transparent to the N AIMD control
loops in the aggregate, which means that the network effec-
tively see N standard TCP flows. Under the same experimen-
tal conditions as above, Figure 5(c) shows the ratio of total
bandwidth occupied by the MPAT aggregate (N = 16) as com-
pared to the total bandwidth of 10 standard TCP flows running
in background.

4.4 Interaction between multiple MPAT flows

To analyse the behavior of multiple competing virtual over-
lay links using MPAT, we study the bandwidth achieved by
multiple MPAT aggregates running simultaneously. Again, as
noted earlier, the behavior of an MPAT aggregate with N flows
is similar to N independent TCP flows running without any
aggregation. This suggests that each MPAT aggregate should
be able to get a share of the bottleneck bandwidth depending
upon the number of flows in each aggregate, and the number
of background TCP flows.

To verify this hypothesis, we ran 5 MPAT aggregates, each
with a different value of N , together with 5 background TCP
flows between Utah and our campus network on the east coast.
The five MPAT aggregates use N = 2, 4, 6, 8 and 10. We
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Figure 3: MPAT can apportion bandwidth in the desired ratio, while holding its total fair share.

then replaced each aggregate with the same number of inde-
pendent TCP flows. The experiment was repeated during dif-
ferent times of day. Figure 4 shows the bandwidth for each
of the five MPAT aggregates, with data points sampled every
1sec. Tables 4(a) and 5(a) show the number of fast retrans-
mits, (labelled # Fast), number of timeouts and bandwidth for
each flow within the MPAT aggregate over a period of 390 sec-
onds. Tables 4(b) and 5(b) show the corresponding data for
the non-aggregated case. Note that in both cases, the achieved
bandwidth and loss rates seen by the background TCP flows
are similar. The bandwidth obtained by each aggregate is al-
ways proportional to the number of flows it had, and when the
flows within an aggregate were run independently, the sum of
bandwidths achieved by these flows was similar to the band-
width achieved by the aggregate. This shows that MPAT is
not a selfish scheme. Competing MPAT flows cooperate with
each other, and with the background traffic. The experiment
also illustrates that MPAT adequately satisifies the utilization
property.

4.5 Adaptation to changing performance re-
quirements

When the performance requirements of various flows within
an aggregate change, our scheme simply needs to update the
MPAT windows Ai for all flows using equation 1, and thus
should be able to respond very quickly (typically 2-3 RTTs) to
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Figure 4: Competing MPAT aggregates cooperate with each
other.
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N # Fast # Timeouts Bandwidth
(KBps)

2 (MPAT) 511 250 51.4
4 (MPAT) 474 231 49.5
6 (MPAT) 499 235 50.3
8 (MPAT) 495 235 50.1
10 (MPAT) 502 236 49.8
5 (TCP) 401 258 48.6

(a) With Aggregation (day time)

N # Fast # Timeouts Bandwidth
(KBps)

2(TCP) 498 218 56.1
4(TCP) 479 234 58.5
6(TCP) 481 215 58.9
8(TCP) 481 216 57.1
10(TCP) 490 218 57.2
5(TCP) 497 213 56.3

(b) Without Aggregation (day time)

Table 4: Multiple MPAT aggregates running simultaneously cooperate with each other (day time).

N # Fast # Timeouts Bandwidth
(KBps)

2 (MPAT) 565 44 97.6
4 (MPAT) 564 34 98.5
6 (MPAT) 555 39 98.1
8 (MPAT) 535 38 99.3
10 (MPAT) 537 41 97.9
5 (TCP) 577 41 93.6

(a) With Aggregation (night time)

N # Fast # Timeouts Bandwidth
(KBps)

2(TCP) 540 28 106.7
4(TCP) 542 25 110.9
6(TCP) 546 27 108.5
8(TCP) 539 25 106.4
10(TCP) 531 26 109.5
5(TCP) 538 30 107.1

(b) Without Aggregation (night time)

Table 5: Multiple MPAT aggregates running simultaneously cooperate with each other (night-time).
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Figure 5: MPAT exhibits much lower variance due to sharing
of losses, and is friendly to the background traffic.

dynamically changing performance requirements with time.
To test this claim, we ran an MPAT aggregate consisting of

three flows between Utah and our campus network on the east
coast, with 5 more long-running standard TCP flows in the
background (in both directions). We changed the performance
requirements every minute. Figure 6(a) shows how the abso-
lute bandwidth for each of the three connections varies with
time for a period of nine minutes. Data points have been sam-
pled every 500 msec (approx 7 RTTs). Figure 6(b) shows rel-
ative bandwidth of the three flows at all times, along with the
target performance differential. We can see that MPAT very
quickly adapts to changing performance requirements. Note
that during the time interval t = 240 to t = 300 sec, we were
able to split bandwidth in the ratio 95:1.

4.6 Reduced variance

The total bandwidth of an MPAT aggregate is equivalent to the
sum of N independent standard TCP flows, each of which uses
an AIMD control loop. Multiplexing of these control loops
smooths out the bandwidth variations within each AIMD loop,
thus reducing the variance in throughput of an MPAT aggre-
gate drastically. This is in contrast to mulTCP that exhibits
increasing variance with N .

To demonstrate this, we ran an MPAT aggregate consisting
of 16 flows between Utah and our campus network on the east
coast. We had 10 long-running standard TCP flows running in
the background. Figure 5(b) shows how the total bandwidth
occupied by the MPAT aggregate varies with time. Figure 5(a)
shows the bandwidth of a mulTCP flow (with N = 16) un-
der similar conditions. Data points have been sampled every
200msec (3 RTTs).

Comparing Figure 5(a) and Figure 5(b), we see that mulTCP
has a very high variance as compared to that of MPAT. Please
note that the y-axis in Figure 5(b) is shown for the range 1000-
3000 KBps, while that in Figure 5(a) is for the range 0-2000
KBps. This is because a mulTCP connection with N = 16 gets
much less throughput than the fair share of 16 TCP flows.

4.7 Adaptation to Transient Congestion

The MPAT scheme must be robust to transient congestion in
the network, and more generally, to variations in the fair share
of bandwidth available to the aggregate. With transient con-
gestion, an MPAT aggregate must learn about a change in its
total fair share using the AIMD algorithm. The change is ap-
portioned among the aggregate’s flows quickly through an ad-
justment of the MPAT windows Ai of all flows, ensuring that
the desired bandwidth ratio is maintained at all times.

To study the responsiveness of MPAT to transient conges-
tion, we conducted experiments on the Emulab network over
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flows that are part of an MPAT aggregate (N=3) adapts itself when
priorities keep changing dynamically with time.

 0

 20

 40

 60

 80

 100

 0  60  120  180  240  300  360  420  480  540

R
el

at
iv

e 
B

an
dw

id
th

 

Time elapsed (sec)

Relative bandwidth of 3 TCP flows 
 running as part of an MPAT aggregate 

when priorities change every min. 

achieved1
target1

achieved2
target2

(b) This figure shows how the relative bandwidth achieved by
flows that are part of an MPAT aggregate (N=3) adapts itself when
priorities keep changing dynamically with time.

Figure 6: MPAT Scheme can adapt itself very quickly to dynamically changing performance requirements.

an emulated link of bandwidth 90 Mbps and RTT 50msec. We
ran an MPAT aggregate consisting of 10 flows with different
performance requirements. Transient congestion was created
by introducing constant bit rate (CBR) as well as TCP traffic in
the background. We also used 10 long-running standard TCP
flows in both directions. At t=120 sec, we introduce a CBR
flow in the background with rate 30Mbps. As shown in Figure
7(b), MPAT cuts down its total bandwidth in about 4-6 RTTs
(200-300 msec), while still apportioning bandwidth within the
aggregate in the desired ratio at all times. At t=240sec, we
removed the background CBR traffic. As seen in figure 7(c),
MPAT reclaims its fair share of the remaining bandwidth.

When background TCP traffic was introduced to create tran-
sient congestion, it takes about 15-20 (1 sec) RTTs for both
MPAT and the background TCP flows to settle into their re-
spective fair shares, as seen in figures 8(b) and 8(c). This is
because the new TCP flows begin in slow-start mode, and are
also adapting to their fair share together with MPAT. As earlier,
MPAT always apportioned bandwidth within the aggregate in
the desired proportion.

4.8 Bursty background traffic

Most of the results we described above are for long-running
TCP flows in the background. We also tested our scheme with
bursty web traffic running in background. We did this using

a wget loop downloading web pages in the background, to-
gether with MPAT. While bursty traffic increased the absolute
number of retransmits and timeouts proportionally for all ag-
gregates and the background traffic, we did not see any qual-
itative change in the results. In other words, MPAT exhibited
the same scaling, fairness and utilization properties with bursty
traffic.

5 Conclusions

The paper demonstrates for the first time the viability of pro-
viding differential services, at large scale, among a group of
TCP flows that share the same bottleneck link. We demon-
strate this through a range of experiments on the real Internet
which show that an MPAT aggregate can hold its fair share
of the bottleneck bandwidth while treating other flows fairly
(either individual TCP flows or other MPAT aggregates). We
also demonstrate that within an aggregate, MPAT allows sub-
stantial differentiation between flows (up to 95:1). This sug-
gests that MPAT is therefore an appropriate candidate tech-
nology for broader overlay QoS services, both because MPAT
provides the requisite differentiation and scalability, and be-
cause MPAT can co-exist with other TCP flows and with other
MPAT aggregates. This result opens the door to experimenta-
tion with more easily deployable network QoS schemes such
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(a) This figure shows how the total bandwidth achieved by an
MPAT aggregate (N=16) adapts itself with additional UDP traffic
introduced at t=120 and then removed at t=240.
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Figure 7: Behavior of MPAT Scheme with transient congestion
induced by long-running UDP flows.
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(a) This figure shows how the total bandwidth achieved by an
MPAT aggregate (N=16) adapts itself with additional TCP traffic
introduced at t=120 and then removed at t=240.
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(b) This figure shows how the total bandwidth achieved by an
MPAT aggregate (N=16) adapts itself with additional background
TCP traffic introduced at t=120.
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(c) This figure shows how the total bandwidth achieved by an
MPAT aggregate (N=16) adapts itself with additional TCP back-
ground traffic removed at t=240.

Figure 8: Behavior of MPAT Scheme with transient congestion
induced by long-running TCP flows.
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as the overlay.
Having said that, this paper does not make the broader con-

clusion that overlay QoS works. In order to do that, we must
understand the end-to-end behavior of flows (TCP and other-
wise) over a multihop overlay. This means among other things
that we must understand the interactions between the individ-
ual overlay hops (be they TCP or TFRC) of the same overlay,
between aggregates on different overlays, and between all of
these and the end-to-end flow control of the TCP connections
running over the overlay. It is also important to understand
how an overlay QoS could be combined with RON-type over-
lay functionality used to actually enhance performance (not
just provide differentiation).

There may also be other uses for MPAT aggregation. For
instance, in the back end systems of a web service data cen-
ter, MPAT could be used to provide differential service among
different kinds of customers (gold, silver, bronze). This is
possible in part because MPAT only needs to be deployed at
the sending end of a TCP connection. For this to work, how-
ever, the TCP flows must share a bottleneck. This in turns
requires that the server implementing MPAT can determine
which flows, if any, share the bottleneck. These possible uses
of MPAT provide exciting avenues for future research.
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