On Overlay Construction and Random Node Selection in
Heterogeneous Unstructured P2P Networks

Vivek Vishnumurthy and Paul Francis
Department of Computer Science, Cornell University
{vivi, francis} @cs.cornell.edu

Abstract— Unstructured p2p and overlay network applications, suited to unstructured graphs
including several that the authors wish to build, often require The work reported in this paper makes two broad contribu-
that a random graph be constructed, and that some form of tjnns: () We design graph building and random node selection

random node selection take place over that graph. A key and . . .
difficult requirement of many such applications is heterogeneity: algorithms that are practical to deploy and that are functional

peers have different node degrees in the random graph based Over a wide range of requirements. Towards that end, we
on their capacity. Using simulations, this paper compares a considered variations on existing approaches as well as new
number of techniques—some novel and some variations on approaches. (ii) Using simulations, we compare the various
known approaches—for heterogeneous graph construction and approaches and identify our novel technique Swaplinks as the

random node selection on top of such graphs. Our focus is on most attractive graph construction mechanism. The simulation
practical criteria that can lead to a genuinely deployable toolkit grap)

that supports a wide range of applications. These criteria include results also help in the basic understanding of the approaches,
simplicity of operation, support for node heterogeneity, quality S0 that applications that have requirements not satisfied by our

(uniformity) of random selection, efficiency and scalability, load techniques may nevertheless gain from this knowledge.
balance, and robustness. We show that all these criteria can

more-or-less be met by all the approaches. Our novel approach, A. Motivation and Requirements

however, stands out as the best from a practical perspective We develop our set of requirements by discussing the
because of its simplicity: it achieves the criteria while requiring

each node to set only a single tuning parameter, its desired @PPlications that drive the need for random graph building
relative load. and node selection.

In this paper, we refer to the target applications as ‘P2P

applications’, but we use the term P2P broadly to include

l. Introduction overlays or any distributed applications where nodes (end
computers or communications devices) must organize into a

graph. We also assume that the large majority of nodes in the
Many unstructured P2P and overlay networks are basginh are able to form links with each other. In other words,

on random graphs of one sort or another. There must g nodes are connected to a physical network that allows
course be some procedure to create and maintain these grapgh$munications between virtually all participating nodes.

In addition, P2P applications often require that nodes ran-cjearly, among the foremost of requirements of an algo-
domly select other nodes. These two requirements—buildifghy that supports widely used p2p applications is that it
a random graph, and doing random node selection within thg scajable All P2P applications also require a graph that

graph—typically share a common mechanism: ta@dom s ropust against partition. Our basic approach to building
walk graphs is for each node in the graph to establish a fixed

This paper is motivated by the fact that we (the authorgfmber of linksk;, called outlinks_ with randomly selected
wished to build several new unstructured P2P applicatio des in the gragh The reason different nodes would have

e.g., overlay multicast and proximity addressing, that requi fferent outdegrees is to accommodate heterogeneity in node

the construction oheterogeneous graphs, andgandom node capacities. As a resultil; simultaneous failures are needed
selection on top of these graphs. We decided that it would general to partition node from the network, and many

be preferable to build a single toolkit for graph constructiolf'°'® ar¢ needed t_o partition a gr?up 9f nodes. If fewer than
and random selection, and use it for all the projects. Inde ; Simultaneous failures of a node’s neighbors occur, the node

we feel that such a toolkit could potentially serve other Pz@a’n discover new neighbors to reestablish the constant number

applications as well. When we searched the literature, howe\}éfr,ou“'nks' In thg worst case, if all gf.a node’s neighbors
we could not find a complete solution that satisfied our requirg_multanequsly fail, .the node can rejoin the network from
ments. Since existing approaches were studied in very diﬁeréﬁfat(_:h' Given all this, and the fact that the graphs we E’u'ld
contexts, there was also no apples-to-apples comparisone%slf“b't good control over node degree so do not have “soft

them. We also wanted to avoid structured (DHT) approachesiyaying said that, our intent is certainly to follow this work up with a solid
in spite of the fact that they can potentially be adapted tomparison of our best unstructured approach, Swaplinks, and a DHT-based
be used for heterogeneous overlay construction([1], [2]) afgProach- o . -

. L \We make only a logical distinction between outlinks and inlinks, for
random selection, because unstructured P2P applications hay

B Yol over degree distribution. In particular, message flow can occur in either
been so successful, and because our applications are wléction over any link.

spots” in the form of very few nodes that have very large “Random selection in overlay multicast” changed below
degrees, from a practical perspective, our random graphs Bi@e that some applications(e.g., overlay multicast applica-
robust to partition, and we do not feel a need to further addrdgms like Yoid [7]) might need two separate graphs: one for
this issue. normal operation (e.g., the multicast graph), and the other
One of our requirements, both for building graphs and fa random graph of the kind we discuss in this paper. The
random node selection, is th#te load on nodes be well-first graph here might have been built keeping constraints like
balanced and controllabld-or instance, all nodes should carrynetwork proximity in mind, and thus is not completely random,
roughly the same load if uniform load balance is desired. Gamd therefore not as robust as a random graph. Maintaining
the other hand, in many cases certain nodes should carry mitwe second (random) graph thus makes the application more
load than others, for instance because they have more capamtyust to partition, while also giving the application the ability
or higher access link bandwidth. This desire for control ovéo select random nodes in the graph.
load manifests itself in several ways. These include the numbeBitTorrent is a P2P file distribution protocol whereby nodes
of messages a node handles, and the number of links the nfel each other blocks of a file [9]. BitTorrent uses a central
obtains. Since every node can control its number of outlinksode called the tracker that keeps track of existing participants,
this means that our graph building algorithm should give wnd provides downloaders with a random subset of participants
control over the number of inlink&nd indeed it should be with the file they are looking for. While this approach works
roughly the same as the number of outlinks). Note that weasonably well, in environments where even a tracker cannot
do not assume perfect control over load: after all there isaglequately scale, random selection as described in this paper
significant random component in the algorithms and graphmay be used.
Rather, we expect statistical control, along the lines of whatFinally, a key requirement that permeates all of our work
would be possible with true random selection. is that of simplicity. This requirement goes beyond the basic
Note that control over node degree is important for sevenabtion that, all other things being equal, simple is better than
reasons. One is that we assume that there is a certain a@shplex. We believe that algorithmic simplicity is central to
to maintaining a link—for instance in the periodic keep-alivachieving scalability. Our intuition is that, as networks grow,
messages used to determine if a neighbor node is still actimeore complex algorithms will exhibit more failure modes and
Also important is the fact that the application load on theltimately limit scalability even where the basic algorithms
node may be proportional or otherwise closely related to iégale according to traditional measures such as memory and
node degree. An example of such an application is file seanmtiessage overhead. Indeed we would be willing to pay a small
in unstructured file sharing networks like Gnutella, Kazaa, @enalty, say in the uniformity of random selection, if we can
GIA [3]. Accordingly, the authors of [3] propose that nodejain significant simplifications in doing so.
degree be related to capacity, in order to not stress low-To summarize, our requirements for a random graph build-
capacity nodes. ing and node selection mechanism are: scalability (realistically
Once a graph is built, with control over load and nodmillions of nodes), simplicity, robustness, selection indepen-
degree, we also require similaontrol over the walks taken dence, control over node selection probability, control over
on the graphHere, we want control over the probability thathode degree, and control over message load. The first five are
a node will bevisited and selectedin random walks. A node hard requirements, whereas the last two are strong desirables.
is selected when a random walk ends at that node. A nodeAismechanism satisfying these properties can then serve as
visited when a random walk traverses that node during a waik foundation or an accessory for numerous unstructured p2p
Control over visits is important for two reasons. First, nodespplications like file-sharing, overlay multicast, and proximity
experience load every time a node visits them. If we wisiddressing.
to have control over load, then we correspondingly need toedited!! The rest of the paper is organized as follows.
have control over how often nodes are visited. Second, soection Il describes related work. Section Il describes how
applications execute application functionality every time jining nodes get to know of already existing nodes in the
node is visited during a walk. For instance, in many file seargiiaph. Sections IV and V describe the four basic approaches
algorithms ([4], [5], [3], [6]), each node visited is searcheébr both building graphs and walking them. Section VI
for the desired key words. Note that much of this effect cggresents detailed results of simulations used to evaluate the
be obtained by establishing the appropriate node degree in pleeformance of the four approaches. Section VII concludes
graph. and outlines next steps.
A number of applications require random node selection as a
way of configuring application-specific topologies. Exampleﬁ' Related Work
of these include overlay multicast or file distribution appli- No discussion about Narada
cations [7], [8], [9], the file sharing applications mentione&IA [3] is an unstructured file sharing system that uses random
above [5], [3], and “proximity addressing” applications [10]walks rather than flooding to do file searching. Its goal is to
(The latter is an application where nodes form addresses thate high capacity nodes more of the application load than
can be used to indicate how close nodes are to each otheloim capacity nodes, both by giving high capacity nodes higher
the network.) degrees and more information to store, and by routing more

. . . Biased Random Walks on Unstructured Networks
search queries to them. GIA does not give direct control o

degree or load, and indeed [3] does not indicate how mt _ _) .
. L. Biased Forwarding Biased Halting
load each node gets, and only gives very limited data on nc (Fixed Length) (Variable Length)
degree. As such, GIA is tailored to the file sharing applicati
and its random walks cannot be used as a general PUrE yeignpor Node degree Link Weights Sdective Link
graph building or node selection mechanism. Our approact trindmerobTotinverob) (terdiveSeaing) Fof|owing Scamp Seffloops
on the other hand, while being simple, provide an amount Sting "
control that GIA does not currently have. While it is clear th: Fig. 1. Classification of Biased Random Walks.
GIA requires more functionality than our approaches provi
(flow control, for instance), it may well benefit from this work
SCAMP [11] uses random walks to build graphs suitable f use for this purpose is to establish a rendezvous node at a well
gossiping. An interesting goal of SCAMP was to build grapl known location (a DNS name or IP address). Joining nodes
where the average node degree is proportional to the log first contact the rendezvous node, which tells the joining node
the number of nodes While the ability to tie node degree of previously joined nodes. The rendezvous node could tell
graph size is a desirable property for some applications, joining nodes about the same small set of joined nodes, but
wanted more control over node degree than SCAMP allow this puts an undue load on those joined nodes. The rendezvous
and so did not find it useful (though we do simulate it as @mode could remember all joining nodes, and tell the joining
point of comparison). node of some small random subset, but this puts an undue
Bullet multicast [8] uses a random selection mechanisburden on the rendezvous node.
called RanSub [12]. RanSub operates in waves of network-Therefore, we assume a very light-weight approach whereby
wide coordinated phases, where in each phase lists of rand rendezvous node remembers a small set(10) of the most
nodes are distributed through the network. The nodes learnedently joined nodes. New nodes enter the network by con-
by a given node at a given time are not random relatitacting some (or all) of these nodes. This approach effectively
to nodes learned by another node at the same time. Tdpgeads the load of node discovery. Note, however, that even
phases must be run multiple times if different nodes are this approach requires caution, because with a naive graph-
ultimately select different sets of other nodes. This approabhilding scheme, this approach can lead to “long-thin” (high
lacks flexibility. For instance, even if given nodes do not neetlameter) networks. Nevertheless, in the remainder of this
to select other nodes, they must anyway continue to learngdper, we assume this style of node discovery. This discovery
other nodes. An approach where any given node, at any timechanism can be made more robust by having the rendezvous
of its own choosing, can discover one or more random nodesde remember an additional small set of stable random nodes
without burdening other nodes too much, is preferable. known to be up with high probability (which the rendezvous
Araneola [13] builds almost regular graphs that could potenede can discover with selection walks). The scenarios we test
tially be used for random selection. But [13] does not discu#s this paper however do not need such a measure, so we do
the case of heterogeneity, and makes the assumption thatribeuse the more robust rendezvous scheme here.
existing nodes contacted by newly joining nodes are uniformly Note that the rendezvous node can be replicated, and one
picked; this might not be the case in practice. Araneola algan be selected by the joining node using DNS or even an
needs to run constant background protocols like gossip Igternet Protocol (IP) form of delivery called IP anycast. In
membership views, exchange of neighbor degrees, etc., ahid case, however, the rendezvous nodes must take care to
we would like to avoid this kind of complexities if we can. keep each other informed of the initial joining nodes so as to
Law and Siu [14] give a distributed mechanism to construgloid a graph partition in the early stages of its formation.
regular random graphs, but their scheme is vulnerable to . .
unexpected node departures. Our SwapLinks approach buli¥s Algorithms for graph construction
on the spirit of this approach to handle unexpected nodeA truly random walk, whereby each node selects uniformly
departures and do away with the dependence on the rigithdomly among its neighbors, will select high degree nodes
Hamilton cycles structure in [14]. proportionally more often than low degree nodes simply
Two random walk approaches that we closely study in thisecause more links lead to those high degree nodes. Therefore,
paper are Self-loops [15] and Iterative Scaling [16]. Thesgless the graph has perfectly uniform node degrees, the
methods are not suitable to use, as is, for graph constructi@mdom walk must somehow be biased against high degree
or to accomodate heterogeneity. In section 1V, we discuss h@wdes.
we extend these techniques to adapt them to our setting. While this is true both for walks used for the purpose of
o ; selecting nodes to build the grapbu{ld walkg, and for walks
lll. Initial node discovery used for other node selectiosglection walks the problem
Any new node that wants to join the graph needs to kno more severe for build walks. This is because any favoring
at least one already existing member in the graph. Whilg high-degree nodes by build walks will compound itself as
our algorithms work with any scheme that helps new nodgge network grows. If a node obtains a slightly higher than
discover existing nodes, a practical and simple approach Wgerage node degree, the subsequent joining nodes will select

it more often and choose it as their neighbor, thus giving it dandamental characteristics.
even higher node degree, thus making it a target for yet moreNote also that any given random walk may fail, for instance
neighbors. Indeed, it is not enough for build walks to simpligecause of packet loss or sudden node failure. In this paper,
negate the effect of node degree, so that selection is unifomve assume that any node initiating a walk will repeat it if it
The reason for this is that early joining nodes participate ooes not succeed within some short time.
more “selection trials"- they get more chances to be selected_ooking at the taxonomy in Figure 1, we see that there are
as neighbors by joining nodes than do later nodes. Therefongo fundamental ways to bias a walk, which we call biased-
there must be additional bias or mechanisms to ensure higgiting and biased-forwarding. In biased-halting, the next hop
degree nodes do not keep collecting more links. at a node is picked uniformly at random from among all of the
Actually, our situation is even more difficult than thislinks at the node — there is no weighting in this regard. Instead,
In addition to the above, our requirement of heterogeneotle walk is ended at each node with a random probability that
node capacities requires random graphs where higher capaidtyeighted inversely to the degree of the node. The result is
nodes have proportionally higher node degrees than lovibat the length of each walk is variable, though the average
capacity nodes. Further we require that walks visit and seldength can be fixed. We discuss tBelfloopsstyle of biased-
nodes in proportion to their capacities. Our basic approabhlting walk in section IV-A. SCAMP, discussed in section Il
to heterogeneity is that high-capacity nodes establish maiso uses biased halting walks to find neighbors for newly
outlinks than low-capacity nodes. For instance, if the lowesttering nodes.
capacity node establishes 5 outlinks, a node with twice thatln biased-forwarding, the random selection of the next hop
capacity will establish 10 outlinks. Our build must thereforin the walk is weighted against high degree nodes. In these
operate in such a way that nodes obtain roughly as mawglks, the number of hops is set at a fixed consfntvhich
inlinks as they have outlinks (within random variations). Wenust be long enough to allow the walkux into the network
refer to this as thexpected node degree expected indegree — a constant times the diameter of the netWorkhe biased-
There are two fundamental approaches to counteract fagwarding walks we study arénlinkinvProb, TotallnvProb
effects of early joiners obtaining more inlinks, and th@ndlterative Scaling discussed in sections IV-B — IV-C.
self-reinforcing trend of high-indegree nodes becoming evenThere are trade-offs between the biased-halting and biased-
higher-indegree nodés One approach is to simply endowforwarding approaches. On the one hand, biased-forwarding
build walks with an even stronger bias against high-indegrégquires nodes to exchange state about their neighbors—their
nodes, so that nodes never get high indegrees. There R@de degree or a more general weighting. Biased-halting
several ways to do this, which are shown in the taxonomy t#quires no special knowledge of neighbors. On the other hand,
Figure 1. The other approach is to actively manage each nodeigsed-halting walks tend to unfairly load high-degree nodes,
indegrees, so that nodes explicitly shed inlinks when they detcause walks tend to be forwarded to high-degree nodes, only
too many. The basic mechanism, which we @Waplinksis to continue on with high probability.
for nodes with high indegrees to move an inlink to nodes witQ Selfloops
low indegrees. We next describe the taxonomy of the biased_ .) .)
walk approaches, and then go on to describe each of the biasediased-halting approaches are ideal in settings where the

walk approaches we study in this paper. We then discuss #{@Ph is not under one's control, and the cost of calculating
Swaplinks approach in Section IV-E. weightings is high. Indeed, the biased-halting approach we

use is based on work by Bar-Yossef et al [15], who used it
i select web pages with uniform probability. Their approach,
ich we callSelfLoopsis elegant and intuitively appealing.

Taxonomy of Biased walks:
In our biased walk approaches, the basic graph buildi

mechanism is for a joining nodeto establish and maintain - :))
The basic idea is to emulate a graph with perfectly uniform

a constant number of outlink&’; with nodes discovered by .) } :
taking K; random build walks. If an outlink is lost, for instance/0de degrees by adding virtual links to_oneself (i.e. self loops!)
because the neighbor crashes or leaves the network, the n%_(are example, say that the target uniform node degree (the

reestablishes the outlink by taking another biased random Wgugual Qegree)is 100. A node With 90 reaI.Iinks would add 10
and adding an outlink to the discovered neighbor. virtual links to itself. A node with 25 real links would add 75

Note that in all our biased walk approaches, a node ne\)/érrtual links to itself. Subsequently during a walk, each “link”

has the option of refusing a request to create an inlink. ol selected with equal probability, and the virtual walks are of

could easily imagine a scheme where we could do this, foP(ecj length”, though ihe real walks are not. In pracice, for

instance by not terminating a build walk at a node if it§|nn‘orm selection, the virtual degree is set to a large constant

indegree-to-outdegree ratio is above some constant. We ch tsgach node, and the value used for the thugl hop length can
et such that the average real hop length is as needed.

not to consider such approaches in part because the bias te edl% Bar-Vi f roach defined. d ot t
to prevent the need for this, and in part because we wanted tQ € bar-Yossel approach, as defined, does not Suppo

keep our approaches so that we could better understand t gltrerogeneity or provide the needed bias for build walks.

4Given that the diameter grows slowly with the size of the graph, and
3In general, when we say “high indegree”, we mean “higher-than-expectgiven the range of network sizes and node degrees this paper examines, we
indegree”. can simply pick a conservative value liké = 10.

We modified the Bar-Yossef approach as follows to make i'g’\fpmi(sw)_ t'piwe'ght'ni?]v S

useful in our setting. For selection walks, the virtual degrgewmaeuni| —~ st

of each node is made directly proportional to its outdegreesuetinssw, vy = oy if N outnbrs(a)

For build walks, the virtual degree is directly proportional t0 .. oonim| wd o cutdeay) S S

the square of the outdegree and inversely proportional to the Y “‘dZ“(N])V NN

indegree ££) (see Table 1). This modification of the virtual ™™™ w3 = Sty Svenvraa R =1

degree for build walks leads to the desired situation where theooessy- | vt « c—dery virt — deg(4) x outdeg(A)
expected indegree of each node is equal to its outdegree| To sutdea(a)?

see why, assume a well refreshed graph that has reached staBffg™ " | “~ = vm—iegeay vt~ deal) = “LGlET-
degree distributioft. Now examine the change in indegree qgf teaive | =nuf =1 En(outaes(N) - wiD =
node i when another node performs a refresh. Since thg setecion

steady state has been reached, the net change in the expectged. Sywd =1 SR °?713§3E§)>2) -
indegree ofi due to the refresh is zero. Now the probability s wutdeg(A)?

that ¢ was an out-neighbor of before the refresh is given indeg(A)

by c - indeg(i) - outdeg(r) wherec is a constanf. So the TABLE |

probability thati loses an inlink because of the refresh iSUMMARY OF THE DIFFERENT WALK STRATEGIES FOR A WALK AT
given by ¢ - indeg(i). The probability that 2gains an inlink NODE A; NODE N IS A NEIGHBOR OF A, AND wj; IS THE
because of the refresh is given be?,§2§§8§ whered’ is PROBABILITY THAT A WALK AT A IS FORWARDED TON.

a constant. Thus we gehdeg(i) = ¢” - outdeg(i) , where virt — deg DENOTES THE VIRTUAL DEGREE

the constant of proportionality is of course 1. We show later
through simulations that the linear dependence on outdegree
is achieved even without refreshes. ,
With this modification though, it gets much harder to estfjerl
mate the virtual hop length to use to achieve a desired avers
real hop-length during graph construction. A conservati
option is to use a large enough value, but this results in
larger average hop-length. In our experiments, we use trm
and error to estimate the virtual hop-length. This lack of tight. Iterative Scaling

control on the average hop-length is one of the drawbacks of
the Selfloops approach. In the other style of biased-forwarding walk, an iterative

Note that one of the problems with biased-halting wal istributed computation is executed across all nodes that al-
is that any given walk can be quite short. For instance, if t Qws each node to assign weights to all links. The computation,

walk length is set to terminate after an average of 10 hops, th Igd It(;ratlvle Scallng(fIS), IS bgsedhon ahtechnlqueduseld to
there is a very small chance that a walk will end at one hop, grive the elements of a matrix w en t € row and column
bigger chance the walk will end within two hops, and so orfUms are known [16]. SCAMP applied this iterative scalln_g
Such short walks clearly do not mix well, so we experimentéﬁChmque to random walks as a means of randomly selecting

with a hybrid approach where if the expected walk Iengt‘i‘\n “introducer” node that helps a ne_wly entgring hode j.oin
was h hops, the walk could not terminate withiry2 hops. the network [17]. To employ the Iterative Scaling scheme in a

For the firsth/2 hops, we use one of the biased-forwardin raph setting such as ours, each node (say A) assigns outgoing

walks described below (specifically the TotallnvProb walk ’nd incoming weights to each of its links, where the outgoing

and for the later half we use SelfLoops. We call this hybri eight of a link corresponds to the probability that the link
TotallnvProb-SelfLoops (Hyb-TIP-SL) Is picked during a random walk from A, and the incoming

- weight corresponds to A's perception of the probability that
B. The Inverse-Probability walks A is picked during a random walk from the other end of the

In this style of biased-forwarding walks, the bias in forwardink.
ing a walk is directly proportional to the outdegree of the node Nodes periodically normalize their weights by scaling their
and inversely proportional to either its indegrégifkinvProb, incoming (outgoing) weights so that the incoming (outgoing)
or IP) or the total degreeTétallnvProh or TIP). The former Weights add to 1, and exchange weights through updates: when
produces a stronger bias, and is used for build walks. TRede A receives a weight update from neighbor B for the link
latter is used for selection walks. A-B (denoted!), A would setwtf, (I) = wt},,(1) and vice-
Note that one could invent any number of inverse weighting§rsa. {vt;,, () denotes the incoming weight assigned by A to
link 7). The weight scalings and updates are intended to bring
5A refresh is where a node discards one of its outlinks and chooses anotithe system to a state where at every node both the incoming

a refreshed graph is one where all nodes have performed a large numbegq§ outgoing weights addto 1, so a sufficiently Iong random
these refreshes. Refreshes are discussed in more detail in Section IV-D. i v likelv t d at d

5This follows from the assumption that each node’s degree is negligib‘f)\/a IS equally likely 1o end at any node.
small when compared to the total number of links in the network To accommodate heterogeneity and the different biases for

ved from neighbor node degree (square of the degree,
are root of the degree, etc.). Though we did explore these
riations, we found the above approaches (IP and TIP) to be
agequate for our purposes, and therefore do not report any of
2 other variations in this paper.

build and select walks, we modified the lIterative Scaling aps simply that it introduces a new engineering requirement into
proach similarly to how we modified the Bar-Yossef approacthe system. With refreshing, one now has to ask how often to
When used for selection, the ideal probability that a nodefresh, when it is no longer necessary to refresh, and so on.
is selected is proportional to its outdegree. When used fall things being equal, it is better not to have to ask and
building, the ideal value is directly proportional to the squaranswer these questions.

of the outdegree and inversely proportional to its indegree. SoNote that churn, where nodes leave the network, has the
when weight updates are performed at a node A, the incomisgme effect as refreshing.

weight for each link A-B is scaled by the estimated probabilitﬁ SwapLinks

of a walk reachlng B (which ig - outdeg(B) for selections

andk- % for graph build) before the normalization is SwapLinks is inspired by, but quite different from, the

performed. approach used to build random graphs by Law and Siu [14].
The basic idea in [14] is that when a joining node A adds an
outlink to a node B discovered during a build walk, one of
Exchanging neighbor information: Given that the biased- the inlinks of node B is transfered to node A. This has the
forwarding schemes require nodes to have knowledge abetifect of maintaining a constant number of inlinks at node
their neighbors—explicit with inverse probability (IP), implicitB, and of giving the joining node A the same number of
with iterative scaling (IS)-we must address the question wilinks as outlinks, which is our goal. Indeed, if a graph only
how this knowledge is obtained. At one extreme, with IS wegrows (nodes never leave), then every node will have identical
could run the distributed computation to steady state evendegrees and outdegrees.
time there is a link change somewhere. This is obviously notThe wrinkle to this approach is when nodes leave. If we
practical, as links may come and go at a rapid rate, and neant to maintain the invariant of all nodes having exactly the
really necessary either because in any event the effect of a leWpected indegree, as Law and Siu do, then the procedure
change diminishes rapidly with distance from the link. Witltbecomes quite complex. Law and Siu outline an approach,
IP or IS we could have each node send a message to allbaf it is not robust to abrupt node departures. Their basic
its neighbors every time it experiences a link change. Thisagproach is that each departing node would help all of its
still somewhat heavyweight, but certainly reasonable. A thirteighbors form new links so that the invariant is maintained
approach is to simply piggyback the neighbor information osfter the departure as well. To make this robust against abrupt
the random walk messages. This will result in less accuradlgpartures, we might need to have each node know some or
but is simpler and more efficient. all of its neighbors’ neighbors, but then this will fail in the
Note that it may or may not be possible to piggybackresence of simultaneous multiple departures. Dealing with all
neighbor information on the periodic keep-alive messages usddhis would require additional mechanisms not specified by
by nodes to determine if neighbors are still up. The reas¢l4], and makes this approach unattractive.
is that, for high-degree nodes (or for nodes that belong to aHowever, if we relax the constraint of having to maintain
large number of low-degree graphs), it is easy to imagine #re perfect indegree invariant at all points of time, then the
optimization whereby only a few of a node’s many neighboryoblem of handling churn becomes much more tractable.
probe for liveness. These few neighbors would then tell tigefore we discuss how our Swaplinks technique handles
remaining neighbors if the node went down. In this case, tisburn, we need to provide definitions of two kinds of walks
node obviously cannot convey periodic information to most efsed solely with Swaplinks:
its neighbors. OnlyInLinks: This is one type of random walk that is
Graph refreshes: As described above, build walks haveessentially a biased-forwarding walk, but in fact requires no
a stronger bias in order to counteract the effect of earlghowledge about the neighbors. In this fixed-length walk, each
joining nodes having more opportunities to obtain neighbonsode chooses uniformly randomly among its inlinks only.
One of the effects of this bias is that joining nodes haveThe idea here is: when the indegrees of nodes are close
higher probability of attaching to more recently joined nodds the outdegrees, walking only inlinks results in selection
than old nodes, thus removing some of the randomness frooughly proportional to each node’s outdegree. OnlylnLinks
the graph. And, in spite of the bias, older nodes inevitabliself though cannot be used to build graphs, because the
accumulate more links(as described earlier); this too detracemdezvous server would return a list of the most recently
from the randomness of the graph. One way to counteract tioghed nodes, and since all links point from new nodes to
is for nodes to periodically remove an outlink and replacglder nodes without refreshes, walking only the inlinks would
it with another randomly selected node. We call this processver take the walk outside this set of recent nodes. The end
refreshing As our results show, refreshing can have a strorigsult would be a “long and skinny” network, one with a large
improvement on the quality of the graph. diameter, and therefore not desirable.
Refreshing has a number of negative aspects though. On®nlyOutLinks: This is the analogous walk where each
is its overhead. Another is that graph changes may negativalyde chooses uniformly randomly among its outlinks.
affect the application using the graph (though to be fair in The Swaplinks approach works as follows. When a node
none of our example applications is this a problem). A thirins, it follows the procedure described above—for every

D. Some Issues with Biased Walk Approaches

node with which it forms an outlink, it steals one randomlyequire long walks where work is done (a local file search) at
selected inlink. The build walk used for selecting the node &ach node visited. SL walks, however, do not exhibit uniform
OnlyinLinks. This works in this case because the swappirsglection during the walk, as each step is unbiased. Rather,
of links mixes the graph sufficiently to completely avoid anyhey only exhibit uniform selection upon ending.

trend towards newly joined nodes. While the file sharing application is an important one, more

If a node A loses an outlink (due to node deletion), then igenerally the notion of a node starting a walk from the node
replaces the outlink with a new neighb@rdiscovered with an where the last walk ended, instead of from itself, is useful.
OnlylinLinks build walk. Unlike the case of a new node joinNe refer to these types of walks aarsor walks, due to the
though, nowO does not donate any of its inlinks #, asA is fact that the last node visited can be seen as a cursor pointing
not looking for inlinks here. Analogously, when a noBldoses to where to start next. The cursor walk works as follows: the
an inlink due to a node departurB, checks if its indegree is node initiating the walk remembers the previously selected
less than its outdegree. If so, it needs to establish a new inlimkadeP, and when the next selection is to be performed, takes
It does this by launching an OnlyOutLinks walk to discovea short (1 to a few hops) walk frof, instead of starting each
a node/ that has high indegree (with high probability). Awalk from itself. The first random selection here is performed
randomly selected in-neighbor df now discards its outlink in the usual non-cursor manner, and the subsequent selections
with I, and forms a new outlink withB, thus pushing both are performed using the cursor.

B’s and I's indegree toward its ideal valle In addition to being suitable for applications like the file-

Now consider a sequence of node deletions. Assuming tishtaring application, the cursor approach reduces the imposed
the indegrees of the deleted nodes are close to the respedtiagl and latency by an order of magnitude, at the cost of main-
outdegrees, we will have rougly the same number of brokesining information about the cursor. Further, by spreading the
outlinks and broken inlinks as a result of the deletions. Nogelection load uniformly across the network, it improves the
when a node A repairs its broken outlink, it forms a newad balance in scenarios where a small set of nodes initiate
outlink to a new neighbor O, thus increasing O’s indegrethe majority of the random walks, whereas in the non-cursor
in turn increasing the likelihood that O is chosen for thapproach the initial load during any random walk is necessarily
purpose of repairing a broken inlink by some other nodeprne by nodes close to the initiating node.
which results in O’s indegree dropping back to its earlier value! It should be noted, however, that individual cursor selections
Thus the churn-handling mechanism described above enswesnot very random relative to the immediately preceding cur-
that the degree distribution never gets too far from the desiredr selections (see Section VI-F). Over a long walk, however,
distribution, even after a long sequence of node departurése selection does tend towards uniform distribution.

(Section VI has the related results) .

Although the biased walk approaches have a certain el\él' Experimental Results
gance to them, SwapLinks has a certain engineering appeal. IfWwe start by describing the simulations used to evaluate the
particular, there are no engineering decisions required abeatious approaches. We use static (non-time based) simula-
how to exchange information between nodes (as in biasdibns. When simulating node additions or deletions, each node
forwarding), and how often to refresh (as in both biaseds fully added or deleted before the next node is added or
forwarding and biased-halting), and no uncertainty about haleleted. Likewise, there is no notion of packet loss. While the
long walks may take (as in biased-halting). Perhaps the ordiynulations are not therefore fully realistic, we believe that
negative of SwapLinks is that there is extra overhead wherthey reflect the basic characteristics of the various approaches,
node leaves, because sometimes two walks must be takenafid allow them to be legitimately compared. We believe this in
replace both outlinks and inlinks) instead of just one. part because of the random nature of our techniques—neither

. the order of events or the timing of events are very important.
V. Selection Walks We examine two graph building scenarios:

The previous section focused on graph building. The fogij) Shrink: A graph is built with a given number of nodég-
walks described, however, can be used for selection over agiyhout any churn until all nodes have joined- and then nodes
of the graphs — how a graph is walked is independent of hayart leaving one at a time until the graph shrinks to 25% its
it is built (assuming that the necessary neighbor informatiastiginal size
is exchanged during building). To summarize, they are Tot@i) Churn: An N-node graph is built - without any churn until
Inverse Prob (TIP), Iterative Scaling (IS), SelfLoops (SL), andll nodes have joined - and then there aré churn-events,
the hybrid TIP-SL(Hyb-TIP-SL). where a churn-event consists of either a single node kill or

There is an important limitation to the SL and hybrid TIPa single node join, with the same probability. The expected
SL approaches that result from the fact that SL is a biasagktwork size after this sequence of eventshis In all our
halting scheme and therefore has variable length walks. Spegifeasurements, unless otherwise mentioned, wa’get5000.
ically, the file sharing applications described in Section I-A When the network only grows, i.e., when nodes only enter
; N _ without leaving, SwapLinks’ degree distribution (by design)
Note that a walk is initiated here only if some node departure led to.a
link loss; in the above instancé,will not launch any walks as a result of its is perfect, and therefore is not a fair comparison; we do not
losing its inlink to B. present these results here. On the other hand, the other schemes

perform worse during the grow-only phase than they do undaution, network diameter and average distance between nodes,
churn, because of the refreshing nature of churn(see belovgnd distribution of the load placed on the network by the
To measure the quality of random selection, we ton)M/ build walks. The graphs we study here are all homogeneous.
selection walks using the algorithm to be evaluated, wheveée evaluated both graphs with and graphs without refreshes
the underlying graph had/ nodes at the time of selection(except for SwapLinks, which does not benefit from refreshes).
(i.e., after the churn or shrink has completed), and look &he refreshes are performed after the churn or shrink as
the distribution of the selected nodes, and the selection lodelscribed above has completed. For IS and IP graphs, we
balance. evaluated both the case where all immediate neighbors are
To model heterogeneity in our measurements, we use ihéormed immediately of any link changé-fop updatesand
following setting: Each of theV nodes in the graph is athe case where neighbor information is only piggy-backed on
default-degresnode with probability 0.5, and laeterogeneous build walk messagesP{ggybacking. We include in the com-
node with probability 0.5. Each default-degree node has parison graphs built using SCAMP, and TrueRandom graphs,
outdegree of 5. Each heterogeneous node chooses its outdegiegre each node forms 5 outlinks with distinct uniformly
uniformly randomly from the range [2,50]. As before, churchosen nodes in the network.
or shrink is performed on the graph after all nodes have joinedideally, at any given time, the load caused by the entry of
and formed all their outlink8. new nodes or departure of nodes should be spread uniformly
The default setting we use in our experiments/is:5000 over the existing nodes in the network. We verify this property
nodes, build walk length of 10 hops, and, except in case iofthe following manner: 10 new nodes are added to the system
heterogeneity, a constant outdegree of 5 at every node. Berd the load placed on each previously existing node(barring
hops was chosen because they produced better results thanlast 10 joined, in form of the number of messages
shorter walks, but longer walks did not perform significantlyeceived by it, is logged. This is repeated a total of 100 times
better than 10-hop walks. (In Section VI-E, we show that 1@vith the load summed over the 100 times, and finally the
hop build walks are sufficient for a wide range of networlaverage load per nodévgbload-addand standard deviation
sizes.) of the load valuePev(BLoad-Addpf all nodes is computed.
For simplicity, we ensure that all build walks only find node$Ve chose the comparatively small humber of nodes added
that are not already neighbors of the initiating node, by storirf$0) here, as we want to focus on the load placed on already
the initiator's neighbor-list in the walks. This could be easilgxisting nodes: with increase in the number of nodes added,
simulated in a real implementation by having the initiator retrshere is an increase in the load placed on the new nodes
if a build walk ended at a node that is already a neighbor. themselves. Since this method of testing imposes the same
Given that we have four graph-building techniques, four skead on the network irrespective of the size of the graph, the
lection walks, heterogeneity, cursor walks, graphs of differeper-node load values are going to be higher for smaller graphs.
sizes, and numerous parameters to measure, we need a wakotevaluate the load caused by node departures, we elé&ct
prune down the data set. We do this by first evaluating the fonpdes randomly, where the graph contaiisiodes, and delete
graph construction techniques in terms of the “goodness” tfem (one by one) from the graph, and log the resulting load
the graphs they generate. We look at graph construction whgaced on the remaining nodes. We then compute the average
all nodes have the same outdegrees, i.e., tbmogeneous load per nodé\vgbload-killand standard deviation of the load
case in section VI-A. We evaluate the performance of all tHeev(BLoad-Kill)caused by the deletions.
graph construction algorithms in conditions of heterogeneity Table Il shows the results for the homogeneous-capacity
in section VI-B. Looking at these results, we pick the mograph building simulations. A noticeable trend is that all
promising graph building algorithm, which is SwapLinks, angarameters improve with refreshes, the improvement with a
do most of our subsequent experiments on that graph. \8lurned graph being more noticeable than that with a shrunk
examine the quality of random selection: first we execute tlggaph. This is because the effects of shrink ensures that
four selection schemes over a homogeneous SwapLinks graalch node will have refreshed its out-neighbor set multiple
in section VI-C, and then test all the selection walks oveimes with high probability, so a shrunk graph is effectively
heterogeneous graphs (in this case over all the build methodquivalent to a refreshed graph.
in section VI-D. We next look at the scaling behavior of the Another key thing to note from the results is that they are
SwapLinks algorithm in section VI-E. Finally, we evaluate thalmost all reasonably good as far as the degree distribution
cursor mechanism in section VI-F. is concerned. For instance, the standard deviation in node
A. Graph Building d_egre_e fc_)r TrueRandom is 2.23, and th_e only graph that
did significantly worse than that was InlinkinvProb where
In this section we compare the different graph buildingejghhor information was only piggy-backed. Most did better
algorithms in terms of the following parameters: degree distihan TrueRandom.

s _ _ , SwapLinks’ policy of neighbor replacement ensures it has
By contrast, GIA simulated heterogeneity spanning three orders of mag-

nitude. While indeed node capacities vary by this much in measured Gnutella
networks, we do not believe that a node with 1000 times the capacity of a®The last 10 joiners would be unfairly heavily loaded because of the
dial-up would be willing to devote all of that capacity to file sharing! rendezvous scheme.

Dev Indeg- MaxIindeg | Diam | Dist | Dev(BLoad- Dev(BLoad- Avgbload-add | Avgbload-kill
(Deg) 95pc Add) Kill)

Grow TrueRandom 2.23 9 15.03 5.06 | 3.97 - - - -

N=5K SCAMP* 6.97 28.24 44.68 5.34 | 3.45 7.81 - 10.6 -
IP-Norefs 2.23 9 15 5.19 | 3.98 12.32 7.08 15.27 33.68
IP-10refs 1.82 8 13.2 5.03 | 3.98 6.28 6.93 17.56 33.84
Churn IS-Norefs 2.04 8.05 13.4 5.27 | 3.99 13.81 6.95 15.49 33.47
N=5K IS-10refs 1.57 8 11.8 5.03 | 4.01 6.88 6.74 17.58 334
SL-Norefs 2.03 8 13.34 5.3 4 5.54 5.36 9.51 14.87
SL-10refs 1.55 8 11.66 5.03 | 3.99 4.6 4.63 9.58 12.58
SW-NoRefs 1.31 7 11.66 5.01 | 3.99 411 5.19 9.63 17.86
IP-Norefs 1.83 8 12.65 475 | 3.38 18.85 6.95 69.05 33.84
IP-10refs 1.84 8.05 125 473 | 3.37 19.11 6.93 69.16 33.85
Shrink IS-Norefs 1.58 8 111 4.77 | 3.38 21.18 6.7 70.75 33.31
N=5K to IS-10refs 1.57 8 10.95 475 | 3.37 20.94 6.63 70.73 33.24
N=1.25 K SL-Norefs 1.55 7.94 11.02 4.78 | 3.39 16.25 5.14 47.82 15.22
SL-10refs 1.56 7.92 10.86 475 | 3.38 15.24 4.62 39.07 12.56
SW-NoRefs 15 7.7 11.64 475 | 3.37 14.97 5.27 39.02 17.6
Piggy- IP-Churn 531 12.15 75.45 5.02 | 3.86 16.66 11.84 6.61 10.98
back IS-Churn 2.24 9 15.85 519 | 3.98 8.44 571 7.68 11.12
Only IP-Shrink 2.74 9.5 27.7 483 | 3.38 18.4 4.62 32.53 11.18
NoRefs 1S-Shrink 1.85 8 12.9 4.74 | 3.38 20.16 4.87 34.93 11.15

TABLE Il

BuiLD PARAMETERS: COMPARISON OF DEGREE DISTRIBUTIONDIAMETER, AND BUILD -LOADS OF THE DIFFERENT MECHANISMS ALL
GRAPHS EXCEPTSCAMP HAVE EXACTLY 5 OUTLINKS PER NODE AND USE 10-HOP NEIGHBOR DISCOVERY WALKS Diam AND Dist
ARE THE AVERAGE ESTIMATED DIAMETER AND THE AVERAGE DISTANCE BETWEEN NODESESTIMATED USING A SAMPLE SET 0F20

NODES WHERE THE FARTHEST DISTANCE NODE FROM EACH NODE IN THE SAMPLE SET IS FOUND TO GET THE ESTIMATED DIAMETER

AND THE AVERAGE DISTANCE BETWEEN THE NODES IN THE SAMPLE SET IS USED AS THE ESTIMATED AVERAGE DISTANCBev(Deg)is
THE STANDARD DEVIATION OF DEGREES Indeg-95pas THE AVG. 95TH PERCENTILE VALUE, AND MaxIndegis THE AVG. MAXIMUM
VALUE OF THE INDEGREE (*)SCAMP’s 95TH PERCENTILE AND MAXIMUM DEGREE VALUES CORRESPOND TO THE TOTAL DEGREE

SINCE ITS OUTDEGREE IS NOT A CONSTANT

the best indegree distributi&hSwapLinks also has the bestB. Graph construction under heterogeneity
load distribution during node addition, mainly because its
neighbor discovery walks use only inlinks and thus do ngty

distinguish between nodes based on their degrees, since where a 5000 node graph is shrunk or churned. Each
nodes have the same outdegree. SelfLoops unfairly loads higa'the 5000 nodes has, with a probability of 0.5 the default
degree nodes because it does not bias among links during W@é@ree of 5. and with a’ probability of 0.5 a uniformly picked
forwarding, while InlinkinvProb and Iterative Scaling end u%egree from’ the range [2,50]. We present results of the shrink
loading low-indegree nodes unfairly heavily as a result of theéf’:\se without refreshes; ail the other cases, namely, shrink with
random walk weightings. InlinkinvProb and lIterative Scalin ' ! !

d ith hiah load head h r?efreshes, churn with and without refreshes give similar results,
end up with hig message load overneads anyway when tvﬁ)(ich are not shown here. Graphs built using InlinkinvProb
use 1-hop updates. The diameter and distance estimates

| h ¢ Il the f buildi ratedi aNE Iterative Scaling make use of one hop updates.
more or less the same 1or all the Tour bullding strategies. We show here the average indegree and the build load during

The load during node deletion is the only parameter hegggition as a function of the outdegree. For each outdegree, we
that is worse for SwapLinks than for some of the other stratget the set of nodes with that outdegree, and compute averages
gies. The reason here is SwapLinks’ higher aggregate 10ggm that set to get the figure for the particular outdegree. We
during node deletions: neighbor discovery walks are initiatgfle the same model to measure build load during node addition
for in-neighbors as well as out-neighbors. Nevertheless, & we did in section VI-A. The distribution we want to achieve

Dev(BLoad-Kill) parameter with SwapLinks is still quite clos§g one where all relevant parameters are directly proportional
to the other strategies. And, considering that neither refreshgshe outdegree.

nor neighbor information is required, SwapLinks may after all Fig 2 shows the variation of the indegree and the build
be more efficient as well as simpler. load during addition of new nodes. All strategies result in
SCAMP here has the worst degree distribution, partially dée linear dependence of both the indegree and the load on
to its larger average total degree of 15.7. We did not run chutie outdegree, demonstrating that the modifications made to
or shrink on SCAMP since SCAMP does not explicitly discusie walk probabilities indeed work as intended. In separate
handling of unannounced departures. experiments, we found that the load during node deletion (not
shown here) also grows linearly with the outdegree.
1) . In the figure, the IS and IP load curves are much higher
In SwapLinks, the entry of new nodes negates, to a certain extent, the

d .
effects of prior node deletions, since each new node entry can only imprgvﬁan the oth_er two _b(_acause_ of the 1-hop update load: Ef’:lCh
the degree distribution. node that gains an inlink during the test needs to let all of its

In this section we study how well the different schemes
pt to heterogeneity. The setting we will be using here is

5Knodes shrunk to 1.25 K, 10 BuildHops, No refreshes, Default OutDeg=5, DefaultFrac=0.5 5Knodes shrunk to 1.25 K, 10 BuildHops, No refreshes, Default OutDeg=5, DefaultFrac=0.5
800

60 T T
" SWapLinks —— ! SwapLinks —— .
IteratScaling ---*--+ IteratScaling ---x--- X

InlinkinvProb +--%---: K 0 InlinkinvProb ------ X X

SelfLoops & 700 - elfLoops &

50

woxx ¥

600

X
7 *x
Vv

40

500

oxx X
Koy %

400 A
XX X
*

30

Average Indegree
Average BuildLoad

300

Xy K
K ¥
X *

XX

20

200 S
K
d
10 100 ﬁ»&«* L geaasas L
A R L
0 o L Epaeoneegm™soT
0 2 5 10 15 20 25 30 35 40 45 50 0 2 5 10 15 20 25 30 35 40 45 50
Outdegree Outdegree
(a) Avg. Indegree vs. Outdegree (b) Avg. BldLoad-Add vs. Outdegree

Fig. 2. Heterogeneity : Variation of Build Parameters with Outdegree

5K node SwapLinks Graph shrunk to 1.25Knodes, 10 build-hops, 5 outlinks per node

neighbors know, and with an expected total degree of 31 here, P e

this results in a significant overhead. Note here that we could “r P
reduce the frequency of updates to achieve a smaller message s2f e Rancom -~ 1

overhead, but this comes at the cost of reduced accuracy of “r
the maintained state. We do not evaluate this trade-off in this
paper. If we altogether drop the use of 1-hop updates with

Stdev(Hits)

IS or IP, we will have to use proactive methods like planned aat ‘

refreshes, or exchange of neighbor information, or both, to a2 S

generate good graphs; these result in overheads of their own. E T
Nevertheless, all build strategies do exhibit good control #Hops

over heterogeneity, but we prefer the SwapLinks strategy O\Er. 3. Std.dev(hits) vs. #Hops for the SwapLinks graph. Numbers in
the others. There are two main reasons. The first is thﬁ%entheses indicate the 95th percentile value of hits at 10 hops (the average
it performs well under all conditions. Second, and just as10 hits).

importantly, it seems the easiest to engineer: Swaplinks has

just one parameter to set, namely the outdegree of eachnode

With the other strategies, in addition to setting the outdegreggnt over build walks, so these do not incur any extra overhead
we need to worry about the frequency of exchanging neighbbrterms of state maintenance. We do not employ piggybacking
information (with IP or IS), or about setting the virtual hopon the selection walks here because the number of selection
length to achieve a target average hop-length(with SL), am@lks we use in the experiments is comparatively large, so
the frequency of refreshing(IP, IS, SL). While none of thega@iggybacking on even the selection walks would lead to an
tasks is inherently difficult, it is nice to be able to avoid thertndesirable artificial improvement in the measured quality of
since we can. selection.

We refer to the node selected by a random walk as the node
hit by the walk. To evaluate selection quality, we start a set of
Having picked SwapLinks as the most promising algorithmandom walks from &inglenode, and log the number of hits
to build graphs (from sections VI-A and VI-B), we noweach node receives : we use a single start point to avoid the

evaluate the quality of random selection of the four seleattificial smoothing introduced by having multiple start nodes.
tion schemes running over a SwapLinks graph. We use tWhe number of walks executed is equal to 10 times the current
parameters to measure the quality of selection: the distributinomber of nodes in the graph. We use the standard deviation
of the selected nodes, and the distribution of load imposed bf/hits as the metric to measure selection quality.
the selection walks. The selection strategies TotallnvProb andye show the results of the shrink scenario here: results
Iterative Scaling make use of only piggybacked informatiofor the SwapLinks churn graph are similar. The results shown

here correspond to a 5000 node graph before the shrink is

Strictly speaking, all the strategies need to also set the walk length gerformed. All nodes here have the same outdegree of 5.
some value optimal to the number of nodes. Practically speaking, however, . - .
ig. 3 shows the average standard deviation of hits as a

this can be set by default to a conservative large value such as 10 hops—se%)) : ’
VI-E. function of the length of the walk. Once again, the main thing

C. Quality of Random Selection on Homogeneous Graphs

5K nodes initially, 10 build-hops, 5 outlinks, SwapLinks Graph shrunk to 1.25K 5Knodes shrunk to 1.25 K, 10 BuildHops, 0 refs, 12.5K selns, ~10 seln hops
50 T T 45 T

(122.88)TIP/SW' —+— SLISW ——

(128.3)IS/ISW -~ TIPISW +-x--+

45 | (125.2)HybTIP-SLISW - | 40 | ISISW -5+
'.F'ﬂ 132.6)SLISW & Hyb-TIP-SLISW &
w (118.96)IS/1S-10refs(1-hop upds) —-#-- SLISL -~
o 4 o TERe
E . [
i L Hyb-TIP-SL/SL & -
35 7‘5@*‘**] o SUIP et
s L TIPIP —v—
AlfB =
30 oy o g 25F Hyb-TIP-g\d:g e
g féé T % TIPAS +-o
B8 25 & T L 20 IS/IS ~--e---1
£) g Hyb-TIP-SL/S & -
20 E 2 15 -
15 -/ 10 g
' 3% L
s *T’ii""‘ ;
pHH
0
5
100 0 2 5 10 15 20 25 30 35 40 45 50
Load Outdegree
Fig. 4. Selection load distribution over the SwapLinks Graph at 10 hops. Fig. 5. Heterogeneity: Average Hits vs. Outdegree

Numbers in parentheses indicate the 95th percentile value of the load.

show this curve as a point of comparison because it is the

to note is that all of these walks perform satisfactorily welbest of all selection/build combinations. Among the remaining,
The number of hits at the 95th percentile is similar for affotalinvProb gives the best load distribution here, while Hyb-
approaches, and not that far from the average of 10. Hyb-TIPHP-SL's selection load curve is slightly worse. Both of these
SL gives the best hit distribution on the SwapLinks graplturves themselves are reasonably close to the best (IS/IS)
and this is very close to the best hit distribution using amyurve. lterative Scaling as a selection mechanism on top of
mechanism on any other graph. TotallnvProb’s selection alSwapLinks again suffers to some extent due to its imperfect
is good, though it stabilizes at a distribution slightly differenpiggybacked state. SelfLoops is the worst in terms of load-
from TrueRandom’s distribution. Iterative Scaling’s distribubalance, as here the number of walks that pass through a node
tion is not as good as the others because only piggybackingreases with its degree.
on the build walks is insufficient to bring the weights to the The decision of which algorithm to use to perform se-
required state of convergence. Because SelfLoops is a varigelgion on the SwapLinks graph depends on the application.
walk-length strategy, its performance when the number of hogseach node performs selections relatively infrequently, then
is small is poor since quite a few of its walks would be venhe algorithm to use would be either TotallnvProb or Hyb-
short and end very close to the start point. As a benchmarkp-SL, which are very close to each other here in terms of
for selection quality, we use True Random selection, wheperformance. If, on the other hand, selection walks are more
each hit node is uniformly randomly picked from the entirgequent, then by using piggybacking on top of the selection
population. True Random selection is just an instance of tilks, Iterative Scaling will be able to converge to the required
Balls and Bins problem, resulting in a Possion distribution gfate faster, so it would be the strategy to use. Generally, on
selection hits; its standard deviation of hits is given by theny graph, if Iterative Scaling is given enough time to stabilize,
square root of the mean number of hits each node receives.gives good selection in terms of both the hit distribution and

We measure the selection load seen by a node as the nunibad balance.
of selection walks that pass through or end at the node (Fig. 4).
For selection load, we again execute a given number of walks
(again the number of walks is 10 times the number of nodes inwWe now look at the quality of selection when nodes have
the graph), this time with the origins of the walks distributedifferent outdegrees. We use the same setting we used for
across the graph such that every node in the graph is seleatedluating graph building under heterogeneity (section VI-B),
as the start node an equal number of times. The idea herg¢ds a 5000 node graph subjected to shrink, and the same
that the load distribution should be uniform when all nodesxpected outdegree distribution. We present the results of
are involved in about the same number of walks - note thatnning 12,500 random selection walks using each of the four
if some nodes start more of the walks than the others, thesglection algorithms on top of all the four different graphs. We
will be an unavoidable skew in the selection load seen by theeasure the distribution of selection hits as a function of the
nodes very close (within 3-4 hops) to the given start nodesutdegree.
Fig 4 shows the bell curves of the selection load distribution Fig 5 contains the results. The selection hits vary linearly
when the walk-length is set at 10. with outdegree for all combinations of selection strategies and

Note here that we have added one curve that is not basedd methods. The selection load curve follows a similar
on the SwapLinks graphs: this is IS selection on an IS graphttern: linear, with smaller variance, which we do not show
with neighbor information exchange and ten refreshes. Were for lack of space. So with regard to heterogeneity, we

Selection with Heterogeneity

Churned SwapLinks Graph, 10-hop build-walks, Selection with TotalinvProb 5K nodes iniially, 5 outlinks per node, 10 build-hops, SwapLinks graph, Selection with TotallnvProb

6

T T T
Outdeg=4 —— Churn —+—
15 Outdeg=5 ---x--- Shrink ---x---

Outdeg=6 ---%-- ideal -
14 | Outdeg=8 & 55

#Hops needed for "good" selection

Fig. 6. Variation of the required selection walk-length for a range of network Fi

L
500 1000

L L
5000 10000

#Nodes in graph

size and average degrees

50000

5|

Std dev(Hits)
IS

S &

T

ke
»

.
05 1 15 2 25 3 35 4 45 5
#Hops

. 7. Std Dev(Hits) vs. #Hops in each Cursor Walk

a

Deg || Dev(Deg) [95pc(Deg)| MaxDeg [Diam | Dist F. The Cursor Approach

g 1%2 38 ﬂ'g ng i'gg In this section, we evaluate the cursor walk described in

6 1.39 8.0 15.0 6.0 | 463 Section V. Fig 7 shows the variation of the quality of hit

8 1.52 11.0 16.0 5.05 | 4.13 distribution with increase in the expected walk-lergthrhe
TABLE III total number of cursor walks initiated here is equal to ten

times the network size. The result shows that the approach is
indeed viable, with about 3 hops on each small walk needed
to approach the uniform distribution. When the walks are
shorter than this length, the probability of revisiting already
visited nodes increases, affecting the selection distribution.
X'trend that can be noticed is that even numbered hops are
local maxima in the plot. We believe this is because with an
even hop length, the probability of the walk backtracking and
returning to the originating node increases.

GRAPH PARAMETERS FOR50,000NODE CHURNED GRAPHS

are able to engineer all of the selection methods to functi
satisfactorily well.

E. Scaling to larger sizes

In this section we evaluate the scaling behavior fI C lusi d fut K
SwapLinks over a wide range of network sizes and avera%{é - Lonclusions and future wor

degrees: we vary the network size from 100 to 50,000, andOur next step is to implement the SwapLinks algorithm, and
the outdegree per node from 3 to 8, and measure the numiest it in a real setting (i.e. planetlab). We plan to compare
of hops it takes to obtain a random selection distributiathis strategy with a random selection strategy that uses DHTSs.
whose standard deviation is within 5% of that of true randoin particular, we have focused on unstructured approaches
distribution. The graphs are churned before the selections aegause of the success of unstructured P2P applications, and
performed. We use TotallnvProb as the selection mechanibecause we ourselves are building unstructured P2P applica-
here. All build walks are 10 hops in length. Fig. 6 shows thgons. Our intuition is that unstructured random selection will
results. be easier to implement and will scale better. But this is only
With only 3 outlinks per node, TotallnvProb was not able tgn intuition: it needs to be tested.
consistently reach the required quality of selection when theAnother important piece of work that needs to be done is
system size grew beyond 1000, so these results are not shd@rtonsider misbehaving nodes. Although not reported, we ran
When the outdegree is more than 3 though, TotallnvPréperiments with the biased-walk approaches where misbehav-
reaches the desired quality. The number of hops needed grdfg nodes would terminate every build walk at themselves.
with the logarithm of the network size, and, as can be expect&¥/en without creating any additional outlinks, these nodes
decreases as the average degree increases. The rate of chafge able to obtain inlinks with almost every every other
of the number of required hops as the system size increag@sle in the graph! We need to explore simple mechanisms
is very small. From a practical perspective, this would allof@r preventing this.
someone deploying a P2P application to select a conservativé\ third area we need to explore is that of establishing
but reasonable value for number of hops given their largggoximal neighbors (those with low latency or high bandwidth)
expected user population. in addition to random neighbors. While this could in theory
To verify that our SwapLinks builds good graphs even &€ left to the application (once it has a random network to
large scale, we show in Table IIl the indegree distribution an§XPlore”), it seems that providing this capability as part of
the estimated diameter and average distance for 50,000 né¥ toolkit would be broadly useful.
churned graphs for different values of outdegree per nOdelzHere a fractional walk-length of say 1.5 hops corresponds to the set of

These res_ults show that the graph building mechanism 3<!Eﬁjsor random walks where each walk is independently of length 1 or 2, with
the selection walk procedures both scale well. probability 0.5 each.

The broad conclusion that we draw from this work, however,
is that our original goal—to find a simple and scalable algo-
rithm for building random graphs and doing random selection,
with good control over heterogeneity—is certainly satisfied!
Specifically, our SwapLinks approach lets us construct graphs
while requiring the setting of only a single parameter by each
node, namely its desired node degree, and enables the desired
random selection on top of the graphs thus built. We are
honestly delighted with the results, and feel confident that we
and others can base a number of interesting P2P applications
on this foundation.

References

[1] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek, “Bandwidth-efficient
management of DHT routing tables,” Proc. NSD| 2005.

[2] M. Castro, M. Costa, and A. Rowstron, “Debunking some myths about
structured and unstructured overlays,”Rroc. NSD| 2005.

[3] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker,
“Making gnutella-like p2p systems scalable,”®moc. ACM SIGCOMM
2003.

[4] L. A. Adamic, R. M. Lukose, B. Huberman, and A. R. Puniyani, “Search
in power-law networks,Phys. Rev. Evol. 64, no. 046135, 2001.

[5] Q. Ly, P.Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication
in unstructured peer-to-peer networks,’ImICS’02, 2002.

[6] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A distributed
anonymous information storage and retrieval systemProc. Interna-
tional Workshop on Design Issues in Anonymity and Unobservability
ser. LNCS, vol. 2009. Springer-Verlag, 2001, pp. 46—66.

[7] P. Francis, “Yoid: Extending the internet multicast architecture,” in
Unrefereed report2000.

[8] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
bandwidth data dissemination using an overlay meshfPioc. ACM
SOSPR 2003.

[9] “Bittorrent, http://www.bittorrent.com/.”

[10] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
network coordinate system,” iRroc. ACM SIGCOMM2004.

[11] A.J. Ganesh, A.-M. Kermarrec, and L. Massoulie, “Scamp: peer-to-peer
lightweight membership service for large-scale group communication,”
in Proc. 3rd Intnl. Wshop Networked Group Communication (NGC,’01)
2001, pp. 44-55.

[12] D. Kostic, A. Rodriguez, A. B. Jeannie Albrecht, and A. Vahdat, “Using
random subsets to build scalable network services,Piac. USITS
2003.

[13] R. Melamed and |I. Keidar, “Araneola: A scalable reliable multicast
system for dynamic environments,” Proc. NCA 2004 2004.

[14] C. Law and K.-Y. Siu, “Distributed construction of random expander
networks,” inProceedings of the IEEE Infocom '03 Conferen2603.

[15] Z. Bar-Yossef, A. Berg, S. Chien, J. Fakcharoenphol, and D. Weitz,
“Approximating aggregate queries about web pages via random walks,”
in Proc. VLDB 2000.

[16] 1. Csisar, “Information theoretic methods in probability and statistics,”
IEEE Information Theory Society Newsletteol. 48, pp. 21-30, 1998.

[17] A.J. Ganesh, A.-M. Kermarrec, and L. Massouli, “Peer-to-peer member-
ship management for gossip-based protocold EEBE Trans. Computers
52(2), 2003, pp. 139-149.

