
On Overlay Construction and Random Node Selection in
Heterogeneous Unstructured P2P Networks

Vivek Vishnumurthy and Paul Francis
Department of Computer Science, Cornell University

{vivi, francis}@cs.cornell.edu

Abstract— Unstructured p2p and overlay network applications,
including several that the authors wish to build, often require
that a random graph be constructed, and that some form of
random node selection take place over that graph. A key and
difficult requirement of many such applications is heterogeneity:
peers have different node degrees in the random graph based
on their capacity. Using simulations, this paper compares a
number of techniques—some novel and some variations on
known approaches—for heterogeneous graph construction and
random node selection on top of such graphs. Our focus is on
practical criteria that can lead to a genuinely deployable toolkit
that supports a wide range of applications. These criteria include
simplicity of operation, support for node heterogeneity, quality
(uniformity) of random selection, efficiency and scalability, load
balance, and robustness. We show that all these criteria can
more-or-less be met by all the approaches. Our novel approach,
however, stands out as the best from a practical perspective
because of its simplicity: it achieves the criteria while requiring
each node to set only a single tuning parameter, its desired
relative load.

I. Introduction

Many unstructured P2P and overlay networks are based
on random graphs of one sort or another. There must of
course be some procedure to create and maintain these graphs.
In addition, P2P applications often require that nodes ran-
domly select other nodes. These two requirements—building
a random graph, and doing random node selection within the
graph—typically share a common mechanism: therandom
walk.

This paper is motivated by the fact that we (the authors)
wished to build several new unstructured P2P applications,
e.g., overlay multicast and proximity addressing, that require
the construction ofheterogeneous graphs, andrandom node
selection on top of these graphs. We decided that it would
be preferable to build a single toolkit for graph construction
and random selection, and use it for all the projects. Indeed,
we feel that such a toolkit could potentially serve other P2P
applications as well. When we searched the literature, however,
we could not find a complete solution that satisfied our require-
ments. Since existing approaches were studied in very different
contexts, there was also no apples-to-apples comparison of
them. We also wanted to avoid structured (DHT) approaches,
in spite of the fact that they can potentially be adapted to
be used for heterogeneous overlay construction([1], [2]) and
random selection, because unstructured P2P applications have
been so successful, and because our applications are well-

suited to unstructured graphs1.
The work reported in this paper makes two broad contribu-

tions: (i) We design graph building and random node selection
algorithms that are practical to deploy and that are functional
over a wide range of requirements. Towards that end, we
considered variations on existing approaches as well as new
approaches. (ii) Using simulations, we compare the various
approaches and identify our novel technique Swaplinks as the
most attractive graph construction mechanism. The simulation
results also help in the basic understanding of the approaches,
so that applications that have requirements not satisfied by our
techniques may nevertheless gain from this knowledge.

A. Motivation and Requirements

We develop our set of requirements by discussing the
applications that drive the need for random graph building
and node selection.

In this paper, we refer to the target applications as ‘P2P
applications’, but we use the term P2P broadly to include
overlays or any distributed applications where nodes (end
computers or communications devices) must organize into a
graph. We also assume that the large majority of nodes in the
graph are able to form links with each other. In other words,
the nodes are connected to a physical network that allows
communications between virtually all participating nodes.

Clearly, among the foremost of requirements of an algo-
rithm that supports widely used p2p applications is that it
be scalable. All P2P applications also require a graph that
is robust against partition. Our basic approach to building
graphs is for each nodei in the graph to establish a fixed
number of linksKi, called outlinks, with randomly selected
nodes in the graph2. The reason different nodes would have
different outdegrees is to accommodate heterogeneity in node
capacities. As a result,Ki simultaneous failures are needed
in general to partition nodei from the network, and many
more are needed to partition a group of nodes. If fewer than
Ki simultaneous failures of a node’s neighbors occur, the node
can discover new neighbors to reestablish the constant number
of outlinks. In the worst case, if all of a node’s neighbors
simultaneously fail, the node can rejoin the network from
scratch. Given all this, and the fact that the graphs we build
exhibit good control over node degree so do not have “soft

1Having said that, our intent is certainly to follow this work up with a solid
comparison of our best unstructured approach, Swaplinks, and a DHT-based
approach.

2We make only a logical distinction between outlinks and inlinks, for
control over degree distribution. In particular, message flow can occur in either
direction over any link.

spots” in the form of very few nodes that have very large
degrees, from a practical perspective, our random graphs are
robust to partition, and we do not feel a need to further address
this issue.

One of our requirements, both for building graphs and for
random node selection, is thatthe load on nodes be well-
balanced and controllable. For instance, all nodes should carry
roughly the same load if uniform load balance is desired. On
the other hand, in many cases certain nodes should carry more
load than others, for instance because they have more capacity
or higher access link bandwidth. This desire for control over
load manifests itself in several ways. These include the number
of messages a node handles, and the number of links the node
obtains. Since every node can control its number of outlinks,
this means that our graph building algorithm should give us
control over the number of inlinks(and indeed it should be
roughly the same as the number of outlinks). Note that we
do not assume perfect control over load: after all there is a
significant random component in the algorithms and graphs.
Rather, we expect statistical control, along the lines of what
would be possible with true random selection.

Note that control over node degree is important for several
reasons. One is that we assume that there is a certain cost
to maintaining a link—for instance in the periodic keep-alive
messages used to determine if a neighbor node is still active.
Also important is the fact that the application load on the
node may be proportional or otherwise closely related to its
node degree. An example of such an application is file search
in unstructured file sharing networks like Gnutella, Kazaa, or
GIA [3]. Accordingly, the authors of [3] propose that node
degree be related to capacity, in order to not stress low-
capacity nodes.

Once a graph is built, with control over load and node
degree, we also require similarcontrol over the walks taken
on the graph.Here, we want control over the probability that
a node will bevisited andselectedin random walks. A node
is selected when a random walk ends at that node. A node is
visited when a random walk traverses that node during a walk.

Control over visits is important for two reasons. First, nodes
experience load every time a node visits them. If we wish
to have control over load, then we correspondingly need to
have control over how often nodes are visited. Second, some
applications execute application functionality every time a
node is visited during a walk. For instance, in many file search
algorithms ([4], [5], [3], [6]), each node visited is searched
for the desired key words. Note that much of this effect can
be obtained by establishing the appropriate node degree in the
graph.

A number of applications require random node selection as a
way of configuring application-specific topologies. Examples
of these include overlay multicast or file distribution appli-
cations [7], [8], [9], the file sharing applications mentioned
above [5], [3], and “proximity addressing” applications [10].
(The latter is an application where nodes form addresses that
can be used to indicate how close nodes are to each other in
the network.)

“Random selection in overlay multicast” changed below
Note that some applications(e.g., overlay multicast applica-
tions like Yoid [7]) might need two separate graphs: one for
normal operation (e.g., the multicast graph), and the other
a random graph of the kind we discuss in this paper. The
first graph here might have been built keeping constraints like
network proximity in mind, and thus is not completely random,
and therefore not as robust as a random graph. Maintaining
the second (random) graph thus makes the application more
robust to partition, while also giving the application the ability
to select random nodes in the graph.

BitTorrent is a P2P file distribution protocol whereby nodes
feed each other blocks of a file [9]. BitTorrent uses a central
node called the tracker that keeps track of existing participants,
and provides downloaders with a random subset of participants
with the file they are looking for. While this approach works
reasonably well, in environments where even a tracker cannot
adequately scale, random selection as described in this paper
may be used.

Finally, a key requirement that permeates all of our work
is that of simplicity. This requirement goes beyond the basic
notion that, all other things being equal, simple is better than
complex. We believe that algorithmic simplicity is central to
achieving scalability. Our intuition is that, as networks grow,
more complex algorithms will exhibit more failure modes and
ultimately limit scalability even where the basic algorithms
scale according to traditional measures such as memory and
message overhead. Indeed we would be willing to pay a small
penalty, say in the uniformity of random selection, if we can
gain significant simplifications in doing so.

To summarize, our requirements for a random graph build-
ing and node selection mechanism are: scalability (realistically
millions of nodes), simplicity, robustness, selection indepen-
dence, control over node selection probability, control over
node degree, and control over message load. The first five are
hard requirements, whereas the last two are strong desirables.
A mechanism satisfying these properties can then serve as
a foundation or an accessory for numerous unstructured p2p
applications like file-sharing, overlay multicast, and proximity
addressing.

edited!! The rest of the paper is organized as follows.
Section II describes related work. Section III describes how
joining nodes get to know of already existing nodes in the
graph. Sections IV and V describe the four basic approaches
for both building graphs and walking them. Section VI
presents detailed results of simulations used to evaluate the
performance of the four approaches. Section VII concludes
and outlines next steps.

II. Related Work
No discussion about Narada

GIA [3] is an unstructured file sharing system that uses random
walks rather than flooding to do file searching. Its goal is to
give high capacity nodes more of the application load than
low capacity nodes, both by giving high capacity nodes higher
degrees and more information to store, and by routing more

search queries to them. GIA does not give direct control over
degree or load, and indeed [3] does not indicate how much
load each node gets, and only gives very limited data on node
degree. As such, GIA is tailored to the file sharing application
and its random walks cannot be used as a general purpose
graph building or node selection mechanism. Our approaches,
on the other hand, while being simple, provide an amount of
control that GIA does not currently have. While it is clear that
GIA requires more functionality than our approaches provide
(flow control, for instance), it may well benefit from this work.

SCAMP [11] uses random walks to build graphs suitable for
gossiping. An interesting goal of SCAMP was to build graphs
where the average node degree is proportional to the log of
the number of nodes While the ability to tie node degree to
graph size is a desirable property for some applications, we
wanted more control over node degree than SCAMP allowed
and so did not find it useful (though we do simulate it as a
point of comparison).

Bullet multicast [8] uses a random selection mechanism
called RanSub [12]. RanSub operates in waves of network-
wide coordinated phases, where in each phase lists of random
nodes are distributed through the network. The nodes learned
by a given node at a given time are not random relative
to nodes learned by another node at the same time. The
phases must be run multiple times if different nodes are to
ultimately select different sets of other nodes. This approach
lacks flexibility. For instance, even if given nodes do not need
to select other nodes, they must anyway continue to learn of
other nodes. An approach where any given node, at any time
of its own choosing, can discover one or more random nodes
without burdening other nodes too much, is preferable.

Araneola [13] builds almost regular graphs that could poten-
tially be used for random selection. But [13] does not discuss
the case of heterogeneity, and makes the assumption that the
existing nodes contacted by newly joining nodes are uniformly
picked; this might not be the case in practice. Araneola also
needs to run constant background protocols like gossip of
membership views, exchange of neighbor degrees, etc., and
we would like to avoid this kind of complexities if we can.

Law and Siu [14] give a distributed mechanism to construct
regular random graphs, but their scheme is vulnerable to
unexpected node departures. Our SwapLinks approach builds
on the spirit of this approach to handle unexpected node
departures and do away with the dependence on the rigid
Hamilton cycles structure in [14].

Two random walk approaches that we closely study in this
paper are Self-loops [15] and Iterative Scaling [16]. These
methods are not suitable to use, as is, for graph construction
or to accomodate heterogeneity. In section IV, we discuss how
we extend these techniques to adapt them to our setting.

III. Initial node discovery
Any new node that wants to join the graph needs to know

at least one already existing member in the graph. While
our algorithms work with any scheme that helps new nodes
discover existing nodes, a practical and simple approach we

Biased Random Walks on Unstructured Networks

Biased Forwarding
(Fixed Length)

Biased Halting
(Variable Length)

Link Weights
(Iterative Scaling)

Neighbor Node degree
(InlinkInvProb/TotalInvProb)

Selective Link
Following
(OnlyIn/OnlyOut on
SwapLinks)

Scamp Selfloops

Fig. 1. Classification of Biased Random Walks.

use for this purpose is to establish a rendezvous node at a well
known location (a DNS name or IP address). Joining nodes
first contact the rendezvous node, which tells the joining node
of previously joined nodes. The rendezvous node could tell
joining nodes about the same small set of joined nodes, but
this puts an undue load on those joined nodes. The rendezvous
node could remember all joining nodes, and tell the joining
node of some small random subset, but this puts an undue
burden on the rendezvous node.

Therefore, we assume a very light-weight approach whereby
the rendezvous node remembers a small set(10) of the most
recently joined nodes. New nodes enter the network by con-
tacting some (or all) of these nodes. This approach effectively
spreads the load of node discovery. Note, however, that even
this approach requires caution, because with a naive graph-
building scheme, this approach can lead to “long-thin” (high
diameter) networks. Nevertheless, in the remainder of this
paper, we assume this style of node discovery. This discovery
mechanism can be made more robust by having the rendezvous
node remember an additional small set of stable random nodes
known to be up with high probability (which the rendezvous
node can discover with selection walks). The scenarios we test
in this paper however do not need such a measure, so we do
not use the more robust rendezvous scheme here.

Note that the rendezvous node can be replicated, and one
can be selected by the joining node using DNS or even an
Internet Protocol (IP) form of delivery called IP anycast. In
this case, however, the rendezvous nodes must take care to
keep each other informed of the initial joining nodes so as to
avoid a graph partition in the early stages of its formation.

IV. Algorithms for graph construction
A truly random walk, whereby each node selects uniformly

randomly among its neighbors, will select high degree nodes
proportionally more often than low degree nodes simply
because more links lead to those high degree nodes. Therefore,
unless the graph has perfectly uniform node degrees, the
random walk must somehow be biased against high degree
nodes.

While this is true both for walks used for the purpose of
selecting nodes to build the graph (build walks), and for walks
used for other node selection (selection walks), the problem
is more severe for build walks. This is because any favoring
of high-degree nodes by build walks will compound itself as
the network grows. If a node obtains a slightly higher than
average node degree, the subsequent joining nodes will select

it more often and choose it as their neighbor, thus giving it an
even higher node degree, thus making it a target for yet more
neighbors. Indeed, it is not enough for build walks to simply
negate the effect of node degree, so that selection is uniform.
The reason for this is that early joining nodes participate in
more “selection trials”– they get more chances to be selected
as neighbors by joining nodes than do later nodes. Therefore,
there must be additional bias or mechanisms to ensure high
degree nodes do not keep collecting more links.

Actually, our situation is even more difficult than this.
In addition to the above, our requirement of heterogeneous
node capacities requires random graphs where higher capacity
nodes have proportionally higher node degrees than lower
capacity nodes. Further we require that walks visit and select
nodes in proportion to their capacities. Our basic approach
to heterogeneity is that high-capacity nodes establish more
outlinks than low-capacity nodes. For instance, if the lowest
capacity node establishes 5 outlinks, a node with twice that
capacity will establish 10 outlinks. Our build must therefore
operate in such a way that nodes obtain roughly as many
inlinks as they have outlinks (within random variations). We
refer to this as theexpected node degreeor expected indegree.

There are two fundamental approaches to counteract the
effects of early joiners obtaining more inlinks, and the
self-reinforcing trend of high-indegree nodes becoming even
higher-indegree nodes3. One approach is to simply endow
build walks with an even stronger bias against high-indegree
nodes, so that nodes never get high indegrees. There are
several ways to do this, which are shown in the taxonomy of
Figure 1. The other approach is to actively manage each node’s
indegrees, so that nodes explicitly shed inlinks when they get
too many. The basic mechanism, which we callSwaplinks, is
for nodes with high indegrees to move an inlink to nodes with
low indegrees. We next describe the taxonomy of the biased
walk approaches, and then go on to describe each of the biased
walk approaches we study in this paper. We then discuss the
Swaplinks approach in Section IV-E.
Taxonomy of Biased walks:
In our biased walk approaches, the basic graph building
mechanism is for a joining nodei to establish and maintain
a constant number of outlinksKi with nodes discovered by
takingKi random build walks. If an outlink is lost, for instance
because the neighbor crashes or leaves the network, the node
reestablishes the outlink by taking another biased random walk
and adding an outlink to the discovered neighbor.

Note that in all our biased walk approaches, a node never
has the option of refusing a request to create an inlink. One
could easily imagine a scheme where we could do this, for
instance by not terminating a build walk at a node if its
indegree-to-outdegree ratio is above some constant. We chose
not to consider such approaches in part because the bias tends
to prevent the need for this, and in part because we wanted to
keep our approaches so that we could better understand their

3In general, when we say “high indegree”, we mean “higher-than-expected
indegree”.

fundamental characteristics.
Note also that any given random walk may fail, for instance

because of packet loss or sudden node failure. In this paper,
we assume that any node initiating a walk will repeat it if it
does not succeed within some short time.

Looking at the taxonomy in Figure 1, we see that there are
two fundamental ways to bias a walk, which we call biased-
halting and biased-forwarding. In biased-halting, the next hop
at a node is picked uniformly at random from among all of the
links at the node – there is no weighting in this regard. Instead,
the walk is ended at each node with a random probability that
is weighted inversely to the degree of the node. The result is
that the length of each walk is variable, though the average
length can be fixed. We discuss theSelfloopsstyle of biased-
halting walk in section IV-A. SCAMP, discussed in section II,
also uses biased halting walks to find neighbors for newly
entering nodes.

In biased-forwarding, the random selection of the next hop
in the walk is weighted against high degree nodes. In these
walks, the number of hops is set at a fixed constantH, which
must be long enough to allow the walk tomix into the network
– a constant times the diameter of the network4. The biased-
forwarding walks we study areInlinkInvProb, TotalInvProb,
and Iterative Scaling, discussed in sections IV-B – IV-C.

There are trade-offs between the biased-halting and biased-
forwarding approaches. On the one hand, biased-forwarding
requires nodes to exchange state about their neighbors–their
node degree or a more general weighting. Biased-halting
requires no special knowledge of neighbors. On the other hand,
biased-halting walks tend to unfairly load high-degree nodes,
because walks tend to be forwarded to high-degree nodes, only
to continue on with high probability.

A. Selfloops

Biased-halting approaches are ideal in settings where the
graph is not under one’s control, and the cost of calculating
weightings is high. Indeed, the biased-halting approach we
use is based on work by Bar-Yossef et al [15], who used it
to select web pages with uniform probability. Their approach,
which we callSelfLoops, is elegant and intuitively appealing.
The basic idea is to emulate a graph with perfectly uniform
node degrees by adding virtual links to oneself (i.e. self loops!)
For example, say that the target uniform node degree (the
virtual degree)is 100. A node with 90 real links would add 10
virtual links to itself. A node with 25 real links would add 75
virtual links to itself. Subsequently during a walk, each “link”
is selected with equal probability, and the virtual walks are of
“fixed length”, though the real walks are not. In practice, for
uniform selection, the virtual degree is set to a large constant
at each node, and the value used for the virtual hop length can
be set such that the average real hop length is as needed.

The Bar-Yossef approach, as defined, does not support
heterogeneity or provide the needed bias for build walks.

4Given that the diameter grows slowly with the size of the graph, and
given the range of network sizes and node degrees this paper examines, we
can simply pick a conservative value likeH = 10.

We modified the Bar-Yossef approach as follows to make it
useful in our setting. For selection walks, the virtual degree
of each node is made directly proportional to its outdegree.
For build walks, the virtual degree is directly proportional to
the square of the outdegree and inversely proportional to the
indegree (od2

id) (see Table I). This modification of the virtual
degree for build walks leads to the desired situation where the
expected indegree of each node is equal to its outdegree. To
see why, assume a well refreshed graph that has reached stable
degree distribution5. Now examine the change in indegree of
node i when another noder performs a refresh. Since the
steady state has been reached, the net change in the expected
indegree ofi due to the refresh is zero. Now the probability
that i was an out-neighbor ofr before the refresh is given
by c · indeg(i) · outdeg(r) where c is a constant6. So the
probability that i loses an inlink because of the refresh is
given by c · indeg(i). The probability thati gains an inlink
because of the refresh is given byc′ outdeg(i)2

indeg(i) , wherec′ is
a constant. Thus we getindeg(i) = c′′ · outdeg(i) , where
the constant of proportionality is of course 1. We show later
through simulations that the linear dependence on outdegree
is achieved even without refreshes.

With this modification though, it gets much harder to esti-
mate the virtual hop length to use to achieve a desired average
real hop-length during graph construction. A conservative
option is to use a large enough value, but this results in a
larger average hop-length. In our experiments, we use trial
and error to estimate the virtual hop-length. This lack of tight
control on the average hop-length is one of the drawbacks of
the Selfloops approach.

Note that one of the problems with biased-halting walks
is that any given walk can be quite short. For instance, if the
walk length is set to terminate after an average of 10 hops, then
there is a very small chance that a walk will end at one hop, a
bigger chance the walk will end within two hops, and so on.
Such short walks clearly do not mix well, so we experimented
with a hybrid approach where if the expected walk length
was h hops, the walk could not terminate withinh/2 hops.
For the firsth/2 hops, we use one of the biased-forwarding
walks described below (specifically the TotalInvProb walk),
and for the later half we use SelfLoops. We call this hybrid
TotalInvProb-SelfLoops (Hyb-TIP-SL).

B. The Inverse-Probability walks

In this style of biased-forwarding walks, the bias in forward-
ing a walk is directly proportional to the outdegree of the node
and inversely proportional to either its indegree (InlinkInvProb,
or IP) or the total degree (TotalInvProb, or TIP). The former
produces a stronger bias, and is used for build walks. The
latter is used for selection walks.

Note that one could invent any number of inverse weightings

5A refresh is where a node discards one of its outlinks and chooses another;
a refreshed graph is one where all nodes have performed a large number of
these refreshes. Refreshes are discussed in more detail in Section IV-D.

6This follows from the assumption that each node’s degree is negligibly
small when compared to the total number of links in the network

Name Link Weighting
SwapLinks(SW)-
Normal/Outlink-
loss

wA
N

= 1
indeg(A)

if N ∈In-nbrs(A)

SwapLinks(SW)-
Inlink-loss

wA
N

= 1
outdeg(A)

if N ∈Out-nbrs(A)

InlinkInvProb(IP) wA
N
∝ outdeg(N)

indeg(N)
ΣN∈Nbrs(A)wA

N
= 1

TotalInvProb(TIP) wA
N
∝ outdeg(N)

totaldeg(N)
ΣN∈Nbrs(A)wA

N
= 1

SelfLoops(SL)-
Selection

wA
N
∝ 1

virt−deg(A)
virt − deg(A) ∝ outdeg(A)

SelfLoops(SL)-
Build

wA
N
∝ 1

virt−deg(A)
virt − deg(A) ∝ outdeg(A)2

indeg(A)

Iterative
Scaling(IS)-
Selection

ΣN wA
N

= 1 ΣN (outdeg(N) · wN
A

) =
outdeg(A)

Iterative
Scaling(IS)-
Build

ΣN wA
N

= 1 ΣN

(
wN

A
· outdeg(N)2

indeg(N)

)
=

outdeg(A)2

indeg(A)

TABLE I

SUMMARY OF THE DIFFERENT WALK STRATEGIES FOR A WALK AT

NODE A; NODE N IS A NEIGHBOR OFA, AND wA
N IS THE

PROBABILITY THAT A WALK AT A IS FORWARDED TON .
virt− deg DENOTES THE VIRTUAL DEGREE.

derived from neighbor node degree (square of the degree,
square root of the degree, etc.). Though we did explore these
variations, we found the above approaches (IP and TIP) to be
adequate for our purposes, and therefore do not report any of
the other variations in this paper.

C. Iterative Scaling

In the other style of biased-forwarding walk, an iterative
distributed computation is executed across all nodes that al-
lows each node to assign weights to all links. The computation,
called Iterative Scaling(IS), is based on a technique used to
derive the elements of a matrix when the row and column
sums are known [16]. SCAMP applied this iterative scaling
technique to random walks as a means of randomly selecting
an “introducer” node that helps a newly entering node join
the network [17]. To employ the Iterative Scaling scheme in a
graph setting such as ours, each node (say A) assigns outgoing
and incoming weights to each of its links, where the outgoing
weight of a link corresponds to the probability that the link
is picked during a random walk from A, and the incoming
weight corresponds to A’s perception of the probability that
A is picked during a random walk from the other end of the
link.

Nodes periodically normalize their weights by scaling their
incoming (outgoing) weights so that the incoming (outgoing)
weights add to 1, and exchange weights through updates: when
node A receives a weight update from neighbor B for the link
A-B (denotedl), A would setwtAin(l) = wtBout(l) and vice-
versa. (wtAin(l) denotes the incoming weight assigned by A to
link l). The weight scalings and updates are intended to bring
the system to a state where at every node both the incoming
and outgoing weights add to 1, so a sufficiently long random
walk is equally likely to end at any node.

To accommodate heterogeneity and the different biases for

build and select walks, we modified the Iterative Scaling ap-
proach similarly to how we modified the Bar-Yossef approach.
When used for selection, the ideal probability that a node
is selected is proportional to its outdegree. When used for
building, the ideal value is directly proportional to the square
of the outdegree and inversely proportional to its indegree. So,
when weight updates are performed at a node A, the incoming
weight for each link A-B is scaled by the estimated probability
of a walk reaching B (which isk · outdeg(B) for selections
andk · outdeg(B)2

indeg(B) for graph build) before the normalization is
performed.

D. Some Issues with Biased Walk Approaches

Exchanging neighbor information: Given that the biased-
forwarding schemes require nodes to have knowledge about
their neighbors–explicit with inverse probability (IP), implicit
with iterative scaling (IS)–we must address the question of
how this knowledge is obtained. At one extreme, with IS we
could run the distributed computation to steady state every
time there is a link change somewhere. This is obviously not
practical, as links may come and go at a rapid rate, and not
really necessary either because in any event the effect of a link
change diminishes rapidly with distance from the link. With
IP or IS we could have each node send a message to all of
its neighbors every time it experiences a link change. This is
still somewhat heavyweight, but certainly reasonable. A third
approach is to simply piggyback the neighbor information on
the random walk messages. This will result in less accuracy,
but is simpler and more efficient.

Note that it may or may not be possible to piggyback
neighbor information on the periodic keep-alive messages used
by nodes to determine if neighbors are still up. The reason
is that, for high-degree nodes (or for nodes that belong to a
large number of low-degree graphs), it is easy to imagine an
optimization whereby only a few of a node’s many neighbors
probe for liveness. These few neighbors would then tell the
remaining neighbors if the node went down. In this case, the
node obviously cannot convey periodic information to most of
its neighbors.

Graph refreshes: As described above, build walks have
a stronger bias in order to counteract the effect of early
joining nodes having more opportunities to obtain neighbors.
One of the effects of this bias is that joining nodes have a
higher probability of attaching to more recently joined nodes
than old nodes, thus removing some of the randomness from
the graph. And, in spite of the bias, older nodes inevitably
accumulate more links(as described earlier); this too detracts
from the randomness of the graph. One way to counteract this
is for nodes to periodically remove an outlink and replace
it with another randomly selected node. We call this process
refreshing. As our results show, refreshing can have a strong
improvement on the quality of the graph.

Refreshing has a number of negative aspects though. One
is its overhead. Another is that graph changes may negatively
affect the application using the graph (though to be fair in
none of our example applications is this a problem). A third

is simply that it introduces a new engineering requirement into
the system. With refreshing, one now has to ask how often to
refresh, when it is no longer necessary to refresh, and so on.
All things being equal, it is better not to have to ask and
answer these questions.

Note that churn, where nodes leave the network, has the
same effect as refreshing.

E. SwapLinks

SwapLinks is inspired by, but quite different from, the
approach used to build random graphs by Law and Siu [14].
The basic idea in [14] is that when a joining node A adds an
outlink to a node B discovered during a build walk, one of
the inlinks of node B is transfered to node A. This has the
effect of maintaining a constant number of inlinks at node
B, and of giving the joining node A the same number of
inlinks as outlinks, which is our goal. Indeed, if a graph only
grows (nodes never leave), then every node will have identical
indegrees and outdegrees.

The wrinkle to this approach is when nodes leave. If we
want to maintain the invariant of all nodes having exactly the
expected indegree, as Law and Siu do, then the procedure
becomes quite complex. Law and Siu outline an approach,
but it is not robust to abrupt node departures. Their basic
approach is that each departing node would help all of its
neighbors form new links so that the invariant is maintained
after the departure as well. To make this robust against abrupt
departures, we might need to have each node know some or
all of its neighbors’ neighbors, but then this will fail in the
presence of simultaneous multiple departures. Dealing with all
of this would require additional mechanisms not specified by
[14], and makes this approach unattractive.

However, if we relax the constraint of having to maintain
the perfect indegree invariant at all points of time, then the
problem of handling churn becomes much more tractable.
Before we discuss how our Swaplinks technique handles
churn, we need to provide definitions of two kinds of walks
used solely with Swaplinks:

OnlyInLinks: This is one type of random walk that is
essentially a biased-forwarding walk, but in fact requires no
knowledge about the neighbors. In this fixed-length walk, each
node chooses uniformly randomly among its inlinks only.
The idea here is: when the indegrees of nodes are close
to the outdegrees, walking only inlinks results in selection
roughly proportional to each node’s outdegree. OnlyInLinks
itself though cannot be used to build graphs, because the
rendezvous server would return a list of the most recently
joined nodes, and since all links point from new nodes to
older nodes without refreshes, walking only the inlinks would
never take the walk outside this set of recent nodes. The end
result would be a “long and skinny” network, one with a large
diameter, and therefore not desirable.

OnlyOutLinks: This is the analogous walk where each
node chooses uniformly randomly among its outlinks.

The Swaplinks approach works as follows. When a node
joins, it follows the procedure described above–for every

node with which it forms an outlink, it steals one randomly
selected inlink. The build walk used for selecting the node is
OnlyInLinks. This works in this case because the swapping
of links mixes the graph sufficiently to completely avoid any
trend towards newly joined nodes.

If a nodeA loses an outlink (due to node deletion), then it
replaces the outlink with a new neighborO discovered with an
OnlyInLinks build walk. Unlike the case of a new node join
though, nowO does not donate any of its inlinks toA, asA is
not looking for inlinks here. Analogously, when a nodeB loses
an inlink due to a node departure,B checks if its indegree is
less than its outdegree. If so, it needs to establish a new inlink.
It does this by launching an OnlyOutLinks walk to discover
a nodeI that has high indegree (with high probability). A
randomly selected in-neighbor ofI now discards its outlink
with I, and forms a new outlink withB, thus pushing both
B’s andI ’s indegree toward its ideal value7.

Now consider a sequence of node deletions. Assuming that
the indegrees of the deleted nodes are close to the respective
outdegrees, we will have rougly the same number of broken
outlinks and broken inlinks as a result of the deletions. Now
when a node A repairs its broken outlink, it forms a new
outlink to a new neighbor O, thus increasing O’s indegree,
in turn increasing the likelihood that O is chosen for the
purpose of repairing a broken inlink by some other node,
which results in O’s indegree dropping back to its earlier value!
Thus the churn-handling mechanism described above ensures
that the degree distribution never gets too far from the desired
distribution, even after a long sequence of node departures.
(Section VI has the related results)

Although the biased walk approaches have a certain ele-
gance to them, SwapLinks has a certain engineering appeal. In
particular, there are no engineering decisions required about
how to exchange information between nodes (as in biased-
forwarding), and how often to refresh (as in both biased-
forwarding and biased-halting), and no uncertainty about how
long walks may take (as in biased-halting). Perhaps the only
negative of SwapLinks is that there is extra overhead when a
node leaves, because sometimes two walks must be taken (to
replace both outlinks and inlinks) instead of just one.

V. Selection Walks
The previous section focused on graph building. The four

walks described, however, can be used for selection over any
of the graphs – how a graph is walked is independent of how
it is built (assuming that the necessary neighbor information
is exchanged during building). To summarize, they are Total
Inverse Prob (TIP), Iterative Scaling (IS), SelfLoops (SL), and
the hybrid TIP-SL(Hyb-TIP-SL).

There is an important limitation to the SL and hybrid TIP-
SL approaches that result from the fact that SL is a biased-
halting scheme and therefore has variable length walks. Specif-
ically, the file sharing applications described in Section I-A

7Note that a walk is initiated here only if some node departure led to a
link loss; in the above instance,I will not launch any walks as a result of its
losing its inlink toB.

require long walks where work is done (a local file search) at
each node visited. SL walks, however, do not exhibit uniform
selection during the walk, as each step is unbiased. Rather,
they only exhibit uniform selection upon ending.

While the file sharing application is an important one, more
generally the notion of a node starting a walk from the node
where the last walk ended, instead of from itself, is useful.
We refer to these types of walks ascursor walks, due to the
fact that the last node visited can be seen as a cursor pointing
to where to start next. The cursor walk works as follows: the
node initiating the walk remembers the previously selected
nodeP, and when the next selection is to be performed, takes
a short (1 to a few hops) walk fromP, instead of starting each
walk from itself. The first random selection here is performed
in the usual non-cursor manner, and the subsequent selections
are performed using the cursor.

In addition to being suitable for applications like the file-
sharing application, the cursor approach reduces the imposed
load and latency by an order of magnitude, at the cost of main-
taining information about the cursor. Further, by spreading the
selection load uniformly across the network, it improves the
load balance in scenarios where a small set of nodes initiate
the majority of the random walks, whereas in the non-cursor
approach the initial load during any random walk is necessarily
borne by nodes close to the initiating node.

It should be noted, however, that individual cursor selections
are not very random relative to the immediately preceding cur-
sor selections (see Section VI-F). Over a long walk, however,
the selection does tend towards uniform distribution.

VI. Experimental Results
We start by describing the simulations used to evaluate the

various approaches. We use static (non-time based) simula-
tions. When simulating node additions or deletions, each node
is fully added or deleted before the next node is added or
deleted. Likewise, there is no notion of packet loss. While the
simulations are not therefore fully realistic, we believe that
they reflect the basic characteristics of the various approaches,
and allow them to be legitimately compared. We believe this in
part because of the random nature of our techniques—neither
the order of events or the timing of events are very important.

We examine two graph building scenarios:
(i) Shrink: A graph is built with a given number of nodesN -
without any churn until all nodes have joined- and then nodes
start leaving one at a time until the graph shrinks to 25% its
original size
(ii)Churn: An N -node graph is built - without any churn until
all nodes have joined - and then there are2N churn-events,
where a churn-event consists of either a single node kill or
a single node join, with the same probability. The expected
network size after this sequence of events isN . In all our
measurements, unless otherwise mentioned, we setN to 5000.

When the network only grows, i.e., when nodes only enter
without leaving, SwapLinks’ degree distribution (by design)
is perfect, and therefore is not a fair comparison; we do not
present these results here. On the other hand, the other schemes

perform worse during the grow-only phase than they do under
churn, because of the refreshing nature of churn(see below).

To measure the quality of random selection, we run10.M
selection walks using the algorithm to be evaluated, where
the underlying graph hasM nodes at the time of selection
(i.e., after the churn or shrink has completed), and look at
the distribution of the selected nodes, and the selection load
balance.

To model heterogeneity in our measurements, we use the
following setting: Each of theN nodes in the graph is a
default-degreenode with probability 0.5, and aheterogeneous
node with probability 0.5. Each default-degree node has an
outdegree of 5. Each heterogeneous node chooses its outdegree
uniformly randomly from the range [2,50]. As before, churn
or shrink is performed on the graph after all nodes have joined
and formed all their outlinks.8

The default setting we use in our experiments is:N=5000
nodes, build walk length of 10 hops, and, except in case of
heterogeneity, a constant outdegree of 5 at every node. Ten
hops was chosen because they produced better results than
shorter walks, but longer walks did not perform significantly
better than 10-hop walks. (In Section VI-E, we show that 10-
hop build walks are sufficient for a wide range of network
sizes.)

For simplicity, we ensure that all build walks only find nodes
that are not already neighbors of the initiating node, by storing
the initiator’s neighbor-list in the walks. This could be easily
simulated in a real implementation by having the initiator retry
if a build walk ended at a node that is already a neighbor.

Given that we have four graph-building techniques, four se-
lection walks, heterogeneity, cursor walks, graphs of different
sizes, and numerous parameters to measure, we need a way to
prune down the data set. We do this by first evaluating the four
graph construction techniques in terms of the “goodness” of
the graphs they generate. We look at graph construction when
all nodes have the same outdegrees, i.e., thehomogeneous
case in section VI-A. We evaluate the performance of all the
graph construction algorithms in conditions of heterogeneity
in section VI-B. Looking at these results, we pick the most
promising graph building algorithm, which is SwapLinks, and
do most of our subsequent experiments on that graph. We
examine the quality of random selection: first we execute the
four selection schemes over a homogeneous SwapLinks graph
in section VI-C, and then test all the selection walks over
heterogeneous graphs (in this case over all the build methods)
in section VI-D. We next look at the scaling behavior of the
SwapLinks algorithm in section VI-E. Finally, we evaluate the
cursor mechanism in section VI-F.

A. Graph Building

In this section we compare the different graph building
algorithms in terms of the following parameters: degree distri-

8By contrast, GIA simulated heterogeneity spanning three orders of mag-
nitude. While indeed node capacities vary by this much in measured Gnutella
networks, we do not believe that a node with 1000 times the capacity of a
dial-up would be willing to devote all of that capacity to file sharing!

bution, network diameter and average distance between nodes,
and distribution of the load placed on the network by the
build walks. The graphs we study here are all homogeneous.
We evaluated both graphs with and graphs without refreshes
(except for SwapLinks, which does not benefit from refreshes).
The refreshes are performed after the churn or shrink as
described above has completed. For IS and IP graphs, we
evaluated both the case where all immediate neighbors are
informed immediately of any link change (1-hop updates) and
the case where neighbor information is only piggy-backed on
build walk messages (Piggybacking). We include in the com-
parison graphs built using SCAMP, and TrueRandom graphs,
where each node forms 5 outlinks with distinct uniformly
chosen nodes in the network.

Ideally, at any given time, the load caused by the entry of
new nodes or departure of nodes should be spread uniformly
over the existing nodes in the network. We verify this property
in the following manner: 10 new nodes are added to the system
and the load placed on each previously existing node(barring
the last 10 joiners9), in form of the number of messages
received by it, is logged. This is repeated a total of 100 times
with the load summed over the 100 times, and finally the
average load per nodeAvgbload-addand standard deviation
of the load valuesDev(BLoad-Add)of all nodes is computed.
We chose the comparatively small number of nodes added
(10) here, as we want to focus on the load placed on already
existing nodes: with increase in the number of nodes added,
there is an increase in the load placed on the new nodes
themselves. Since this method of testing imposes the same
load on the network irrespective of the size of the graph, the
per-node load values are going to be higher for smaller graphs.
To evaluate the load caused by node departures, we selectM/5
nodes randomly, where the graph containsM nodes, and delete
them (one by one) from the graph, and log the resulting load
placed on the remaining nodes. We then compute the average
load per nodeAvgbload-killand standard deviation of the load
Dev(BLoad-Kill)caused by the deletions.

Table II shows the results for the homogeneous-capacity
graph building simulations. A noticeable trend is that all
parameters improve with refreshes, the improvement with a
churned graph being more noticeable than that with a shrunk
graph. This is because the effects of shrink ensures that
each node will have refreshed its out-neighbor set multiple
times with high probability, so a shrunk graph is effectively
equivalent to a refreshed graph.

Another key thing to note from the results is that they are
almost all reasonably good as far as the degree distribution
is concerned. For instance, the standard deviation in node
degree for TrueRandom is 2.23, and the only graph that
did significantly worse than that was InlinkInvProb where
neighbor information was only piggy-backed. Most did better
than TrueRandom.

SwapLinks’ policy of neighbor replacement ensures it has

9The last 10 joiners would be unfairly heavily loaded because of the
rendezvous scheme.

Dev
(Deg)

Indeg-
95pc

MaxIndeg Diam Dist Dev(BLoad-
Add)

Dev(BLoad-
Kill)

Avgbload-add Avgbload-kill

Grow TrueRandom 2.23 9 15.03 5.06 3.97 - - - -
N=5K SCAMP* 6.97 28.24 44.68 5.34 3.45 7.81 - 10.6 -

IP-Norefs 2.23 9 15 5.19 3.98 12.32 7.08 15.27 33.68
IP-10refs 1.82 8 13.2 5.03 3.98 6.28 6.93 17.56 33.84

Churn IS-Norefs 2.04 8.05 13.4 5.27 3.99 13.81 6.95 15.49 33.47
N=5K IS-10refs 1.57 8 11.8 5.03 4.01 6.88 6.74 17.58 33.4

SL-Norefs 2.03 8 13.34 5.3 4 5.54 5.36 9.51 14.87
SL-10refs 1.55 8 11.66 5.03 3.99 4.6 4.63 9.58 12.58

SW-NoRefs 1.31 7 11.66 5.01 3.99 4.11 5.19 9.63 17.86
IP-Norefs 1.83 8 12.65 4.75 3.38 18.85 6.95 69.05 33.84
IP-10refs 1.84 8.05 12.5 4.73 3.37 19.11 6.93 69.16 33.85

Shrink IS-Norefs 1.58 8 11.1 4.77 3.38 21.18 6.7 70.75 33.31
N=5K to IS-10refs 1.57 8 10.95 4.75 3.37 20.94 6.63 70.73 33.24
N=1.25 K SL-Norefs 1.55 7.94 11.02 4.78 3.39 16.25 5.14 47.82 15.22

SL-10refs 1.56 7.92 10.86 4.75 3.38 15.24 4.62 39.07 12.56
SW-NoRefs 1.5 7.7 11.64 4.75 3.37 14.97 5.27 39.02 17.6

Piggy- IP-Churn 5.31 12.15 75.45 5.02 3.86 16.66 11.84 6.61 10.98
back IS-Churn 2.24 9 15.85 5.19 3.98 8.44 5.71 7.68 11.12
Only IP-Shrink 2.74 9.5 27.7 4.83 3.38 18.4 4.62 32.53 11.18

NoRefs IS-Shrink 1.85 8 12.9 4.74 3.38 20.16 4.87 34.93 11.15

TABLE II

BUILD PARAMETERS: COMPARISON OF DEGREE DISTRIBUTION, DIAMETER, AND BUILD -LOADS OF THE DIFFERENT MECHANISMS. ALL

GRAPHS EXCEPTSCAMP HAVE EXACTLY 5 OUTLINKS PER NODE, AND USE 10-HOP NEIGHBOR DISCOVERY WALKS. Diam AND Dist
ARE THE AVERAGE ESTIMATED DIAMETER AND THE AVERAGE DISTANCE BETWEEN NODES, ESTIMATED USING A SAMPLE SET OF20

NODES WHERE THE FARTHEST DISTANCE NODE FROM EACH NODE IN THE SAMPLE SET IS FOUND TO GET THE ESTIMATED DIAMETER,
AND THE AVERAGE DISTANCE BETWEEN THE NODES IN THE SAMPLE SET IS USED AS THE ESTIMATED AVERAGE DISTANCE. Dev(Deg)IS

THE STANDARD DEVIATION OF DEGREES, Indeg-95pcIS THE AVG. 95TH PERCENTILE VALUE, AND MaxIndegIS THE AVG. MAXIMUM

VALUE OF THE INDEGREE. (*)SCAMP’S 95TH PERCENTILE AND MAXIMUM DEGREE VALUES CORRESPOND TO THE TOTAL DEGREE,
SINCE ITS OUTDEGREE IS NOT A CONSTANT.

the best indegree distribution10.SwapLinks also has the best
load distribution during node addition, mainly because its
neighbor discovery walks use only inlinks and thus do not
distinguish between nodes based on their degrees, since all
nodes have the same outdegree. SelfLoops unfairly loads high-
degree nodes because it does not bias among links during walk
forwarding, while InlinkInvProb and Iterative Scaling end up
loading low-indegree nodes unfairly heavily as a result of their
random walk weightings. InlinkInvProb and Iterative Scaling
end up with high message load overheads anyway when they
use 1-hop updates. The diameter and distance estimates are
more or less the same for all the four building strategies.

The load during node deletion is the only parameter here
that is worse for SwapLinks than for some of the other strate-
gies. The reason here is SwapLinks’ higher aggregate load
during node deletions: neighbor discovery walks are initiated
for in-neighbors as well as out-neighbors. Nevertheless, the
Dev(BLoad-Kill) parameter with SwapLinks is still quite close
to the other strategies. And, considering that neither refreshes
nor neighbor information is required, SwapLinks may after all
be more efficient as well as simpler.

SCAMP here has the worst degree distribution, partially due
to its larger average total degree of 15.7. We did not run churn
or shrink on SCAMP since SCAMP does not explicitly discuss
handling of unannounced departures.

10In SwapLinks, the entry of new nodes negates, to a certain extent, the bad
effects of prior node deletions, since each new node entry can only improve
the degree distribution.

B. Graph construction under heterogeneity

In this section we study how well the different schemes
adapt to heterogeneity. The setting we will be using here is
one where a 5000 node graph is shrunk or churned. Each
of the 5000 nodes has, with a probability of 0.5 the default
degree of 5, and with a probability of 0.5 a uniformly picked
degree from the range [2,50]. We present results of the shrink
case without refreshes; all the other cases, namely, shrink with
refreshes, churn with and without refreshes give similar results,
which are not shown here. Graphs built using InlinkInvProb
and Iterative Scaling make use of one hop updates.

We show here the average indegree and the build load during
addition as a function of the outdegree. For each outdegree, we
get the set of nodes with that outdegree, and compute averages
from that set to get the figure for the particular outdegree. We
use the same model to measure build load during node addition
as we did in section VI-A. The distribution we want to achieve
is one where all relevant parameters are directly proportional
to the outdegree.

Fig. 2 shows the variation of the indegree and the build
load during addition of new nodes. All strategies result in
a linear dependence of both the indegree and the load on
the outdegree, demonstrating that the modifications made to
the walk probabilities indeed work as intended. In separate
experiments, we found that the load during node deletion (not
shown here) also grows linearly with the outdegree.

In the figure, the IS and IP load curves are much higher
than the other two because of the 1-hop update load: each
node that gains an inlink during the test needs to let all of its

 0

 10

 20

 30

 40

 50

 60

 0 2 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 In
de

gr
ee

Outdegree

5Knodes shrunk to 1.25 K, 10 BuildHops, No refreshes, Default OutDeg=5, DefaultFrac=0.5

SwapLinks
IteratScaling
InlinkInvProb

SelfLoops

(a) Avg. Indegree vs. Outdegree

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 B
ui

ld
Lo

ad

Outdegree

5Knodes shrunk to 1.25 K, 10 BuildHops, No refreshes, Default OutDeg=5, DefaultFrac=0.5

SwapLinks
IteratScaling
InlinkInvProb

SelfLoops

(b) Avg. BldLoad-Add vs. Outdegree

Fig. 2. Heterogeneity : Variation of Build Parameters with Outdegree

neighbors know, and with an expected total degree of 31 here,
this results in a significant overhead. Note here that we could
reduce the frequency of updates to achieve a smaller message
overhead, but this comes at the cost of reduced accuracy of
the maintained state. We do not evaluate this trade-off in this
paper. If we altogether drop the use of 1-hop updates with
IS or IP, we will have to use proactive methods like planned
refreshes, or exchange of neighbor information, or both, to
generate good graphs; these result in overheads of their own.

Nevertheless, all build strategies do exhibit good control
over heterogeneity, but we prefer the SwapLinks strategy over
the others. There are two main reasons. The first is that
it performs well under all conditions. Second, and just as
importantly, it seems the easiest to engineer: Swaplinks has
just one parameter to set, namely the outdegree of each node11.
With the other strategies, in addition to setting the outdegree,
we need to worry about the frequency of exchanging neighbor
information (with IP or IS), or about setting the virtual hop-
length to achieve a target average hop-length(with SL), and
the frequency of refreshing(IP, IS, SL). While none of these
tasks is inherently difficult, it is nice to be able to avoid them
since we can.

C. Quality of Random Selection on Homogeneous Graphs

Having picked SwapLinks as the most promising algorithm
to build graphs (from sections VI-A and VI-B), we now
evaluate the quality of random selection of the four selec-
tion schemes running over a SwapLinks graph. We use two
parameters to measure the quality of selection: the distribution
of the selected nodes, and the distribution of load imposed by
the selection walks. The selection strategies TotalInvProb and
Iterative Scaling make use of only piggybacked information

11Strictly speaking, all the strategies need to also set the walk length to
some value optimal to the number of nodes. Practically speaking, however,
this can be set by default to a conservative large value such as 10 hops–see
VI-E.

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4 6 8 10 12 14 16 18 20

S
td

ev
(H

its
)

#Hops

5K node SwapLinks Graph shrunk to 1.25Knodes, 10 build-hops, 5 outlinks per node

(15.77)TIP
(16.0)IS

(15.87)SL
(15.33)HybTIP-SL

True Random

Fig. 3. Std.dev(hits) vs. #Hops for the SwapLinks graph. Numbers in
parentheses indicate the 95th percentile value of hits at 10 hops (the average
is 10 hits).

sent over build walks, so these do not incur any extra overhead
in terms of state maintenance. We do not employ piggybacking
on the selection walks here because the number of selection
walks we use in the experiments is comparatively large, so
piggybacking on even the selection walks would lead to an
undesirable artificial improvement in the measured quality of
selection.

We refer to the node selected by a random walk as the node
hit by the walk. To evaluate selection quality, we start a set of
random walks from asinglenode, and log the number of hits
each node receives : we use a single start point to avoid the
artificial smoothing introduced by having multiple start nodes.
The number of walks executed is equal to 10 times the current
number of nodes in the graph. We use the standard deviation
of hits as the metric to measure selection quality.

We show the results of the shrink scenario here; results
for the SwapLinks churn graph are similar. The results shown
here correspond to a 5000 node graph before the shrink is
performed. All nodes here have the same outdegree of 5.

Fig. 3 shows the average standard deviation of hits as a
function of the length of the walk. Once again, the main thing

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 60 80 100 120 140

#N
od

es

Load

5K nodes initially, 10 build-hops, 5 outlinks, SwapLinks Graph shrunk to 1.25K

(122.88)TIP/SW
(128.3)IS/SW

(125.2)HybTIP-SL/SW
(132.6)SL/SW

(118.96)IS/IS-10refs(1-hop upds)

Fig. 4. Selection load distribution over the SwapLinks Graph at 10 hops.
Numbers in parentheses indicate the 95th percentile value of the load.

to note is that all of these walks perform satisfactorily well.
The number of hits at the 95th percentile is similar for all
approaches, and not that far from the average of 10. Hyb-TIP-
SL gives the best hit distribution on the SwapLinks graph,
and this is very close to the best hit distribution using any
mechanism on any other graph. TotalInvProb’s selection also
is good, though it stabilizes at a distribution slightly different
from TrueRandom’s distribution. Iterative Scaling’s distribu-
tion is not as good as the others because only piggybacking
on the build walks is insufficient to bring the weights to the
required state of convergence. Because SelfLoops is a variable
walk-length strategy, its performance when the number of hops
is small is poor since quite a few of its walks would be very
short and end very close to the start point. As a benchmark
for selection quality, we use True Random selection, where
each hit node is uniformly randomly picked from the entire
population. True Random selection is just an instance of the
Balls and Bins problem, resulting in a Possion distribution of
selection hits; its standard deviation of hits is given by the
square root of the mean number of hits each node receives.

We measure the selection load seen by a node as the number
of selection walks that pass through or end at the node (Fig. 4).
For selection load, we again execute a given number of walks
(again the number of walks is 10 times the number of nodes in
the graph), this time with the origins of the walks distributed
across the graph such that every node in the graph is selected
as the start node an equal number of times. The idea here is
that the load distribution should be uniform when all nodes
are involved in about the same number of walks - note that
if some nodes start more of the walks than the others, there
will be an unavoidable skew in the selection load seen by the
nodes very close (within 3-4 hops) to the given start nodes.
Fig 4 shows the bell curves of the selection load distribution
when the walk-length is set at 10.

Note here that we have added one curve that is not based
on the SwapLinks graphs: this is IS selection on an IS graph
with neighbor information exchange and ten refreshes. We

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 #
H

its

Outdegree

5Knodes shrunk to 1.25 K, 10 BuildHops, 0 refs, 12.5K selns, ~10 seln hops

SL/SW
TIP/SW

IS/SW
Hyb-TIP-SL/SW

SL/SL
TIP/SL

IS/SL
Hyb-TIP-SL/SL

SL/IP
TIP/IP

IS/IP
Hyb-TIP-SL/IP

SL/IS
TIP/IS

IS/IS
Hyb-TIP-SL/IS

Fig. 5. Heterogeneity: Average Hits vs. Outdegree

show this curve as a point of comparison because it is the
best of all selection/build combinations. Among the remaining,
TotalInvProb gives the best load distribution here, while Hyb-
TIP-SL’s selection load curve is slightly worse. Both of these
curves themselves are reasonably close to the best (IS/IS)
curve. Iterative Scaling as a selection mechanism on top of
SwapLinks again suffers to some extent due to its imperfect
piggybacked state. SelfLoops is the worst in terms of load-
balance, as here the number of walks that pass through a node
increases with its degree.

The decision of which algorithm to use to perform se-
lection on the SwapLinks graph depends on the application.
If each node performs selections relatively infrequently, then
the algorithm to use would be either TotalInvProb or Hyb-
TIP-SL, which are very close to each other here in terms of
performance. If, on the other hand, selection walks are more
frequent, then by using piggybacking on top of the selection
walks, Iterative Scaling will be able to converge to the required
state faster, so it would be the strategy to use. Generally, on
any graph, if Iterative Scaling is given enough time to stabilize,
it gives good selection in terms of both the hit distribution and
load balance.

D. Selection with Heterogeneity

We now look at the quality of selection when nodes have
different outdegrees. We use the same setting we used for
evaluating graph building under heterogeneity (section VI-B),
i.e, a 5000 node graph subjected to shrink, and the same
expected outdegree distribution. We present the results of
running 12,500 random selection walks using each of the four
selection algorithms on top of all the four different graphs. We
measure the distribution of selection hits as a function of the
outdegree.

Fig 5 contains the results. The selection hits vary linearly
with outdegree for all combinations of selection strategies and
build methods. The selection load curve follows a similar
pattern: linear, with smaller variance, which we do not show
here for lack of space. So with regard to heterogeneity, we

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 100 500 1000 5000 10000 50000

#H
op

s
ne

ed
ed

 fo
r

"g
oo

d"
 s

el
ec

tio
n

#Nodes in graph

Churned SwapLinks Graph, 10-hop build-walks, Selection with TotalInvProb

Outdeg=4
Outdeg=5
Outdeg=6
Outdeg=8

Fig. 6. Variation of the required selection walk-length for a range of network
size and average degrees

Deg Dev(Deg) 95pc(Deg) MaxDeg Diam Dist
4 1.22 6.0 11.0 7.0 5.65
5 1.32 7.0 14.0 6.15 4.93
6 1.39 8.0 15.0 6.0 4.63
8 1.52 11.0 16.0 5.05 4.13

TABLE III

GRAPH PARAMETERS FOR50,000NODE CHURNED GRAPHS.

are able to engineer all of the selection methods to function
satisfactorily well.

E. Scaling to larger sizes

In this section we evaluate the scaling behavior of
SwapLinks over a wide range of network sizes and average
degrees: we vary the network size from 100 to 50,000, and
the outdegree per node from 3 to 8, and measure the number
of hops it takes to obtain a random selection distribution
whose standard deviation is within 5% of that of true random
distribution. The graphs are churned before the selections are
performed. We use TotalInvProb as the selection mechanism
here. All build walks are 10 hops in length. Fig. 6 shows the
results.

With only 3 outlinks per node, TotalInvProb was not able to
consistently reach the required quality of selection when the
system size grew beyond 1000, so these results are not shown.
When the outdegree is more than 3 though, TotalInvProb
reaches the desired quality. The number of hops needed grows
with the logarithm of the network size, and, as can be expected,
decreases as the average degree increases. The rate of change
of the number of required hops as the system size increases
is very small. From a practical perspective, this would allow
someone deploying a P2P application to select a conservative
but reasonable value for number of hops given their largest
expected user population.

To verify that our SwapLinks builds good graphs even at
large scale, we show in Table III the indegree distribution and
the estimated diameter and average distance for 50,000 node
churned graphs for different values of outdegree per node.
These results show that the graph building mechanism and
the selection walk procedures both scale well.

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

S
td

 d
ev

(H
its

)

#Hops

5K nodes initially, 5 outlinks per node, 10 build-hops, SwapLinks graph, Selection with TotalInvProb

Churn
Shrink

ideal

Fig. 7. Std Dev(Hits) vs. #Hops in each Cursor Walk

F. The Cursor Approach

In this section, we evaluate the cursor walk described in
Section V. Fig 7 shows the variation of the quality of hit
distribution with increase in the expected walk-length12. The
total number of cursor walks initiated here is equal to ten
times the network size. The result shows that the approach is
indeed viable, with about 3 hops on each small walk needed
to approach the uniform distribution. When the walks are
shorter than this length, the probability of revisiting already
visited nodes increases, affecting the selection distribution.
A trend that can be noticed is that even numbered hops are
local maxima in the plot. We believe this is because with an
even hop length, the probability of the walk backtracking and
returning to the originating node increases.

VII. Conclusions and future work
Our next step is to implement the SwapLinks algorithm, and

test it in a real setting (i.e. planetlab). We plan to compare
this strategy with a random selection strategy that uses DHTs.
In particular, we have focused on unstructured approaches
because of the success of unstructured P2P applications, and
because we ourselves are building unstructured P2P applica-
tions. Our intuition is that unstructured random selection will
be easier to implement and will scale better. But this is only
an intuition: it needs to be tested.

Another important piece of work that needs to be done is
to consider misbehaving nodes. Although not reported, we ran
experiments with the biased-walk approaches where misbehav-
ing nodes would terminate every build walk at themselves.
Even without creating any additional outlinks, these nodes
were able to obtain inlinks with almost every every other
node in the graph! We need to explore simple mechanisms
for preventing this.

A third area we need to explore is that of establishing
proximal neighbors (those with low latency or high bandwidth)
in addition to random neighbors. While this could in theory
be left to the application (once it has a random network to
“explore”), it seems that providing this capability as part of
the toolkit would be broadly useful.

12Here a fractional walk-length of say 1.5 hops corresponds to the set of
cursor random walks where each walk is independently of length 1 or 2, with
probability 0.5 each.

The broad conclusion that we draw from this work, however,
is that our original goal—to find a simple and scalable algo-
rithm for building random graphs and doing random selection,
with good control over heterogeneity—is certainly satisfied!
Specifically, our SwapLinks approach lets us construct graphs
while requiring the setting of only a single parameter by each
node, namely its desired node degree, and enables the desired
random selection on top of the graphs thus built. We are
honestly delighted with the results, and feel confident that we
and others can base a number of interesting P2P applications
on this foundation.

References
[1] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek, “Bandwidth-efficient

management of DHT routing tables,” inProc. NSDI, 2005.
[2] M. Castro, M. Costa, and A. Rowstron, “Debunking some myths about

structured and unstructured overlays,” inProc. NSDI, 2005.
[3] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker,

“Making gnutella-like p2p systems scalable,” inProc. ACM SIGCOMM,
2003.

[4] L. A. Adamic, R. M. Lukose, B. Huberman, and A. R. Puniyani, “Search
in power-law networks,”Phys. Rev. E, vol. 64, no. 046135, 2001.

[5] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication
in unstructured peer-to-peer networks,” inIn ICS’02, 2002.

[6] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A distributed
anonymous information storage and retrieval system,” inProc. Interna-
tional Workshop on Design Issues in Anonymity and Unobservability,
ser. LNCS, vol. 2009. Springer-Verlag, 2001, pp. 46–66.

[7] P. Francis, “Yoid: Extending the internet multicast architecture,” in
Unrefereed report, 2000.

[8] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
bandwidth data dissemination using an overlay mesh,” inProc. ACM
SOSP, 2003.

[9] “Bittorrent, http://www.bittorrent.com/.”
[10] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized

network coordinate system,” inProc. ACM SIGCOMM, 2004.
[11] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie, “Scamp: peer-to-peer

lightweight membership service for large-scale group communication,”
in Proc. 3rd Intnl. Wshop Networked Group Communication (NGC ’01),
2001, pp. 44–55.

[12] D. Kostic, A. Rodriguez, A. B. Jeannie Albrecht, and A. Vahdat, “Using
random subsets to build scalable network services,” inProc. USITS,
2003.

[13] R. Melamed and I. Keidar, “Araneola: A scalable reliable multicast
system for dynamic environments,” inProc. NCA 2004, 2004.

[14] C. Law and K.-Y. Siu, “Distributed construction of random expander
networks,” inProceedings of the IEEE Infocom ’03 Conference, 2003.

[15] Z. Bar-Yossef, A. Berg, S. Chien, J. Fakcharoenphol, and D. Weitz,
“Approximating aggregate queries about web pages via random walks,”
in Proc. VLDB, 2000.

[16] I. Csisźar, “Information theoretic methods in probability and statistics,”
IEEE Information Theory Society Newsletter, vol. 48, pp. 21–30, 1998.

[17] A. J. Ganesh, A.-M. Kermarrec, and L. Massouli, “Peer-to-peer member-
ship management for gossip-based protocols.” inIEEE Trans. Computers
52(2), 2003, pp. 139–149.

