
Diffix: High-Utility Database Anonymization

Paul Francis1, Sebastian Probst Eide2 and Reinhard Munz1

1 Max Planck Institute for Software Systems,
Kaiserslautern and Saarbrücken, Germany

{francis,munz}@mpi-sws.org
2 Aircloak GmbH, Kaiserslautern, Germany

sebastian@aircloak.com

Abstract. In spite of the tremendous privacy and liability benefits of
anonymization, most shared data today is only pseudonymized. The rea-
son is simple: there haven’t been any anonymization technologies that
are general purpose, easy to use, and preserve data quality. This paper
presents the design of Diffix, a new approach to database anonymization
that promises to break new ground in the utility/privacy trade-off. Dif-
fix acts as an SQL proxy between the analyst and an unmodified live
database. Diffix adds a minimal amount of noise to answers—Gaussian
with a standard deviation of only two for counting queries—and places
no limit on the number of queries an analyst may make. Diffix works with
any type of data and configuration is simple and data-independent: the
administrator does not need to consider the identifiability or sensitivity
of the data itself. This paper presents a high-level but complete descrip-
tion of Diffix. It motivates the design through examples of attacks and
defenses, and provides some evidence for how Diffix can provide strong
anonymity with such low noise levels.

Keywords: Privacy, Anonymity, Analytics, Database

1 Introduction

The General Data Protection Regulation (GDPR) makes a distinction between
anonymization and pseudonymization. Anonymized data “are outside the remit
of data protection” [10]: none of the provisions in the GDPR for protecting per-
sonal data need apply. When data is anonymized, individuals cannot be “singled
out”, at least not without undue cost and effort. Pseudonymization — replac-
ing Personally Identifying Information (PII) with irreversible identifiers — still
allows for identifying individuals, typically through the use of external knowl-
edge about those individuals [1]. The GDPR considers pseudonymized data to
be personal data that must be protected, thus limiting its legal use.

The GDPR strongly encourages the use of anonymization, and wants to make
it clear that pseudonymization is not enough. The problem is that anonymization
renders data useless for most analytic needs. At best, substantial expertise and
effort is required to anonymize data, and even then it is extremely difficult to

Fig. 1. Diffix acts as an SQL proxy to an unmodified database

determine whether data has been adequately anonymized or not3. Organizations
that wish to share data are caught in a no-win situation: they can’t share the data
either because anonymization destroys the data, or because they are prevented
from doing so because of concerns over legal liability.

This paper presents Diffix, a new approach to anonymization that substan-
tially increases the utility of anonymized data while at the same time requiring
no specialized expertise to configure. As Figure 1 illustrates, Diffix operates as
an SQL proxy between the analyst and an unmodified database (which does not
have to be a database with an SQL interface). Analysts submit standard SQL
queries to Diffix, which in turn queries the database and computes a noisy an-
swer that it returns to the analyst. The amount of noise is minimal (Section 7):
typically Gaussian with a standard deviation of two for counting queries (those
that count distinct users). Analysts may make an unlimited number of queries to
the database. There is no restriction on the data types in the database, including
for instance free text and event sequences.

Sections 2 through 4 describe the problem, state assumptions, and give re-
lated work. Sections 5 and 6 describe Diffix. Section 7 presents evidence to justify
Diffix’s low noise levels. Finally, Section 8 states the limitations of this work, and
outlines the future research agenda for Diffix.

2 Why is Anonymization so Difficult?

For many decades before the advent of computers, census bureaus had the man-
date to release statistical data while protecting privacy. This was historically
done by releasing aggregate statistics—numbers that pertain to at least K indi-
viduals. Computer technology opened the possibility of releasing far more statis-
tics, indeed of letting the public query data directly to produce whatever statis-
tics might be of interest. As early as 1972, however, it was understood that

3 For example, a state-of-the-art anonymization tool is ARX [9]. Usage of this tool
requires among many other things that the user is able to classify data as identify-
ing, quasi-identifying, sensitive, and insensitive; can create masking-based, interval-
based, or order-based generalization hierarchies; and can understand and configure
privacy models such as δ-presence, l-diversity, t-closeness, δ-disclosure, k-Anonymity,
k-Map, (ϵ,δ)-differential privacy, and risk-based privacy models for prosecutor, jour-
nalist and marketer risks.

simply withholding answers that pertain to fewer than K individuals does not
adequately protect privacy [8].

The central problem is the intersection attack. By way of example, imagine a
database that only returns answers that pertain to more than K = 4 individuals.
Suppose that an analyst makes two queries, one for the number of people in the
CS department, and one for the number of men in the CS department:

SELECT count(*) FROM table SELECT count(*) FROM table
WHERE dept = ’CS’ AND WHERE dept = ’CS’

gender = ’M’

Suppose that there are 34 people in the CS department, and 33 men. Since
both of these numbers are greater than 4, the database returns the answers. The
analyst can trivially conclude that there is one woman in the CS department
even though the database would have refused to provide that answer directly.
Armed with this knowledge, the analyst can then learn more about the woman.
For instance, the analyst can query for the sum of salaries of all people in the
CS department and the sum of salaries of all men in the CS department, and by
taking the difference determine the salary of the woman:

SELECT sum(salary) FROM table SELECT sum(salary) FROM table
WHERE dept = ’CS’ AND WHERE dept = ’CS’

gender = ’M’

In 1979, it was shown that an analyst with no prior knowledge about the
contents of a K-limiting database that gives exact answers can infer substantial
information about individual users using the intersection attack [3]. It was also
shown that one way to prevent the intersection attack is to distort answers
unpredictably, for instance by randomly rounding user counts up or down to a
value divisible by five [8, 7] or removing random rows from the set of matching
rows [2].

The problem of course is that random noise can be eliminated through av-
eraging: causing a given answer to be repeated and taking the average value.
In [2], Denning et.al. make the following statement:

Rounding by adding a zero-mean random value (noise) is insecure since
the correct answer can be deduced by averaging a sufficient number of
responses to the same query. Rounding by adding a pseudorandom value
that depends on the data is preferable, because then a given query always
returns the same response.

Contrary to their own advice, Denning et.al. proposed using a pseudo-random
value that depends not on the data, but rather on the query syntax. In this way,
repetitions of a given query produce the same random sequence and therefore
the same noisy answer. The problem with this solution, which the authors rec-
ognized, is that the analyst can still average out the noise by generating multiple
different queries that all produce the same result, for instance by adding non-
affecting conditions like “age < 1000”.

Since 2003 [4] there has been renewed interest from the CS research commu-
nity in the idea of adding random noise to answers, especially in the context of
differential privacy [5]. With the exception of Rappor [6], however, to our knowl-
edge all differential privacy proposals are susceptible to the averaging attack4.
This inevitably leads to large amounts of noise and/or restrictions on the num-
ber of queries an analyst can make. Arguably these shortcomings are responsible
for the overall lack of practical uptake of differential privacy.

Rappor, which we understand to be deployed by Google, is a distributed
system whereby queries are sent to clients, each of which holds purely local in-
formation nominally about one user. Noise is derived from the fact that clients
may lie about their data (randomized response). Rappor allows repeated an-
swers without additional loss of privacy through a memoization feature: clients
return the same randomized response to the same query as long as the true
answer hasn’t changed. The randomized response approach however results in a
substantial amount of noise—distinct counts may be off by several hundred.

3 Measure of Anonymity

This paper measures anonymity in terms of the confidence with which the analyst
can single out a user; that is determine that a single user has one or more given
attribute values. With an intersection attack, an analyst can single out a user
with a set of exact answers. Therefore, from the point of view of Diffix, anonymity
is defined in terms of the confidence with which an analyst can determine the
exact number of users that have one or more given attribute values. For instance,
in the context of the intersection attack example in Section 1, the analyst wants
to determine the exact number of people in the CS department and the exact
number of men in the CS department. We refer to each such determination as a
guess. We consider Diffix’s anonymity to be strong when:

– The confidence the analyst has in a guess is not substantially higher than a
guess the analyst could have made purely with external knowledge, or

– The probability of a substantially higher-confidence guess is very low.

This definition of privacy is similar to that used by Denning [3] as well as
by the European Union Article 29 Data Protection Working Party Opinion on
Anonymization [1]. Both of these focus on the ability to single out a user. In the
case of Denning; the ability to identify that a given user has (or doesn’t have) a
given attribute value. In the case of Article 29; by identifying a user’s records in a
database. Diffix differs from these in that it incorporates the analyst’s confidence
and the probability of obtaining that confidence.

4 Despite the thousands of papers on anonymity we could only find two that try to
add noise in a way that depends on the data [2, 6]. This is why the paper cites so
little related work.

4 Assumptions and Terminology

Our system setup consists of an analyst that queries a database via Diffix
(Figure 1). The database is conceptually a single table organized as rows and
columns. The columns may be of any type, so long as there are equalities and
inequalities defined for the type (e.g. column = value or column < value) return-
ing TRUE or FALSE. The database holds “raw” data: no perturbation on the
values in the database is required, and no columns need be removed, for instance
those containing personally identifying information like names.

We refer to the entity whose privacy is being protected as the user. The user
may well be a device like a smartphone or a vehicle or even an organization.
We require that each database table with individual user data has a column
containing user identifiers. This is typically nothing more than the Primary Key
or Foreign Key in the relational database. By convention we call this column
the uid. We assume that every distinct user has one and only one distinct uid.
A user may of course have more than one row.

The database may change over time. However, to protect anonymity in the
face of changes, all changes to the database must be timestamped.

Diffix must be configured to know 1) which column contains the timestamps,
and 2) which column contains the uids. No other data-specific configuration is
required. Critically, the system operator need not understand the semantics of
any other columns.

The amount of noise proposed in this paper assumes no strong correlations
between columns among groups of users. If such correlations exist, and there is
a risk that an analyst knows of the correlation, then the amount of noise must
be increased in proportion to the size of the correlated group.

An analyst may make an unlimited number of queries.
Analysts may have substantial knowledge about the contents of the database,

including full knowledge of most columns and full or nearly full knowledge of
most rows.

This paper does not address timing or other side-channel attacks.

5 Diffix: A New Approach to Anonymization

As stated earlier, Diffix is deployed as an SQL proxy sitting between the analyst
and a live database (Figure 1). The analyst could be a human or an application.
The database could have an SQL interface or some other interface. In principle,
Diffix does not have to be SQL-based, but as we discuss later Diffix needs to
understand certain semantics of the query, so the query language should at least
be simple, or composed of a simple subset of a more complex language like SQL.

5.1 Query Syntax

For the purposes of this paper we assume a simple SQL structure as follows:

SELECT columns, stat functions()
FROM table
WHERE condition AND condition [AND ...]
GROUP BY columns

Here stat functions() refers to statistical functions executed by Diffix that
add noise to answers. The current implementation has the statistical functions
count, sum, average, standard deviation, min, max, and median, but in principle
Diffix could compute a wide variety of statistical functions.

The syntax for a condition is limited to ’column operator constant’, where
the operator includes equalities ’=’ and ’<>’ (not equal), inequalities ’>=’ and
’<’. Inequalities must define a range, with ’>=’ on the left and ’<’ on the right.

Our implementation in fact supports a richer though still not complete sub-
set of SQL. Notably, it allows JOIN operations, sub-queries (nested SELECT
statements), a variety of math, string, and date functions, and SQL aggregate
functions with GROUP BY. Diffix also places some limitations on the SQL.
With the exception of the IN statement, the implementation prevents union se-
mantics: OR for instance is disallowed. The implementation also places limits
on the granularity of inequalities (greater than or less than), described further
in Section 5.5.

Ensuring that the analyst cannot bypass these and other limitations entails
considerable complexity and is outside the scope of this paper.

5.2 Key Insights

Our work on Diffix essentially picks up where Denning left off in 1980: that is,
to add noise, but make the noise dependent on the data. In this paper, we refer
to this general idea as sticky noise. Because the intersection attack depends on
the analyst controlling the set of users that comprise a query answer, a natural
design choice would be to make the noise dependent on the set of users that
comprise a given answer. For instance, we could derive the seed for the Pseudo-
Random Number Generator (PRNG) that produces the noise from the distinct
set of users. This would defeat a naive averaging attack because the same answer
would always have the same noise.

There are, however, two classes of attack against which this simple notion
of sticky noise does not defend. The underlying problem is that this simple
sticky noise defends against single repeated answers, but does not defend against
combinations of answers. One class of attack is averaging attacks that exploit
groups of answers. The other class is difference attacks. These exploit the mere
fact that a pair of answers differ. In the following we give one example of each.

Split Averaging Attack Consider the following attack, which we call the split
averaging attack. The analyst produces the pair of queries shown in Figure 2.

The sum of the counts of the two queries gives the number of users in the CS
department, plus noise (here assuming that there is one row per distinct uid).
Now repeat the pair of queries, this time using age=21 and age<>21. This produces

SELECT count(*) FROM table SELECT count(*) FROM table
WHERE dept = ’CS’ AND WHERE dept = ’CS’ AND

age = 20 age <> 20

Fig. 2. One pair of queries from a split averaging attack to learn exact count of people
in the CS dept. Subsequent query pairs use age=21, 22, ...

the same sum, but with a different noise sample because each individual answer
is different. The pairs can be repeated with age=22, 23, 24, and so on. With
enough samples, the noise can be averaged away and a high-confidence exact
count produced. Given exact counts, the analyst could then for instance carry
out an intersection attack [3].

Difference Attack For this attack, suppose that an analyst happens to know
that there is only a single woman in the CS department. Let’s call her the victim.
The analyst could form the two queries shown in Figure 3.

SELECT salary, count(*) FROM table SELECT salary, count(*) FROM table
WHERE dept = ’CS’ AND WHERE dept = ’CS’

gender = ’M’ GROUP BY salary
GROUP BY salary

Fig. 3. Difference attack to learn the woman’s salary

Both queries produce a histogram of salary counts. The left query definitely
excludes the victim from all answers. The right includes the victim only in the
bucket that matches her salary. If there is any pair of answers whose values differ,
regardless of the values of the reported noisy counts, then the analyst knows that
the victim is included in the right-side bucket and therefore knows her salary.

We call this a difference attack, because analysts need only detect a difference
in two answers — they don’t care what the values are.

Key Insight: Noise Layers Looking at both attacks, we observe that the
analyst must modify conditions (e.g. dept=’CS’ or gender=’M’) to carry out the
attack. Suppose that, rather than add a single noise value for a single answer,
we additionally add a noise value per condition?

For the moment, let’s assume that these per-condition noise values are sticky
in that the same condition produces the same noise value. Looking at the split
averaging attack of Figure 2, we see that each query would have three noise
values: one based on the set of users, one based on the condition dept=’CS’, and
one based on the age condition (age=XX or age<>XX). The uid- and age-based
noise values would change with each query, and so could be averaged away. The
dept=’CS’ noise, however, would always be the same and could not be averaged
away. The final averaged count would be perturbed by the dept=’CS’ noise layer.

Let’s refer to this noise layer as the static condition noise layer (or just static
noise layer for short).

The static noise layer prevents the difference attack as executed above: the
queries on the left would have the gender=’M’ noise layer, while the queries on
the right would not. Therefore the right and left answer would vary for every
pair, not just the pair matching the woman’s salary. The analyst, however, could
simply observe that for every pair but one, the difference between the left and
the right is the same. By way of example, suppose that the gender=’M’ layer
always adds 2 to the count. For the buckets not matching the woman’s salary,
the uid- and dept-based noise layers are the same. The only difference is from the
gender=’M’ layer and so for all these buckets the left answer is exactly 2 greater
than the right answer. If this is not the case for one of the bucket pairs, then it
can only be because the woman is in the right-hand bucket. Thus the analyst
learns her salary. We call this the first-derivative difference attack, because the
analyst is looking for a difference in the difference.

The first-derivative difference attack can be solved with one more per-condition
noise layer. This noise layer is dependent on the combination of condition and
distinct set of users. We call this the dynamic condition noise layer, or just dy-
namic noise layer for short. Now, because every bucket has a different set of users,
the dynamic noise layer for gender=’M’ changes with each bucket. This forces a
pseudo-random difference in the count of each bucket pair, thus preventing the
attack.

5.3 Details of Layered Sticky Noise

Figure 4 illustrates the overall anonymization process in Diffix.
Each static noise layer is generated by seeding a PRNG with a hash of the

following parameters concatenated together:

1. The column name (normalized, e.g. all lower case, unicode).
2. One of the following:

(a) If the condition is an equality (= or <>), the value of the constant in
the condition.

(b) Otherwise if the condition is the result of a GROUP BY clause, the
corresponding reported value,

(c) Otherwise if the condition is a range, then the values of the two constants
that define the range.

3. The condition operator (= or <> or ’range’).
4. A secret salt that does not change from query to query.

Each dynamic noise layer additionally includes a value generated from the
XOR of the hashes of the distinct uid’s.

The PRNG, so seeded, then generates a zero-mean value from a Gaussian
distribution5 with a standard deviation appropriate to the required amount of

5 Distributions other than Gaussian may serve better, but in any event the noise is
small and so we haven’t yet explored this question.

Fig. 4. Sticky Noise Layers and Sticky Noisy Threshold.

noise (see Sections 6 and 7). Note that all but the first of any repeated condition
is removed from the query, and does not result in a new noise layer. In our current
implementation, the standard deviation for each noise layer is σ = 1 for counting
queries (counting distinct users). The standard deviation of the summed noise
layers is then σ =

√
N , where N is the number of layers.

This is illustrated in Figure 4. The query requests the sum of salaries for
men in the CS department. Diffix modifies the query to obtain the uid and
salary columns from the database. The query has two conditions, dept=’CS’

and gender<>’F’. These are used to generate the seeds for each condition’s
corresponding static and dynamic noise layers. The four resulting noise layers
are summed to produce a final noise value, which is in turn used by two functions:
one that computes the noisy sum of salaries, and the low-count filter, described
next.

5.4 Sticky Noisy Threshold

A valuable feature of any database system is the ability to discover the contents
of columns. For instance, suppose a database contains the search strings that
users submitted to a search engine. An analyst cannot know in advance the
searches that have been made, and so would like to discover what the strings
are. Diffix supports this feature through the GROUP BY clause, but only reports
a given column value or combination of column values when at least some small
number of distinct users have that value or combination of values. This feature

is called low-count filter : any response is silently suppressed if fewer than some
small number of distinct users have that value.

This “small number” is not a hard-coded constant, but rather a sticky noisy
threshold. Specifically, the threshold is sticky noise with mean K. Only if the
number of distinct users that share a value exceeds the noisy value with mean
K is the value reported.

In our implementation, K = 4, and the standard deviation of each noise layer
is σ = 1/2. For example, if there are four noise layers (i.e. two each from two
conditions), then the standard deviation is σ = 1. In addition, any bucket with
two or fewer users is always filtered.

The reason we use a noisy threshold instead of a hard-coded threshold is that
a hard-coded threshold Kh would allow an analyst to make a 100% confidence
guess in those cases where the analyst knows that a given count of distinct users
is either Kh or Kh + 1. The noisy threshold lowers an analyst confidence with
high probability even when an analyst has this knowledge.

5.5 Layered Sticky Noise with Range Shifting Attacks

The layered noise mechanism described so far defends against difference attacks
that remove conditions from a query. Ranges allow difference attacks that don’t
require removing a condition, but rather that simply adjust the range.

As an example, suppose that the analyst has access to a company database
that includes entry and exit times for all employees. The analyst knows an em-
ployee (the victim) that left the building at 14:26 on a given day, that no other
employees left 2 minutes before and after, and that the employee didn’t again
exit the building until the next day around 17:00. The analyst could then learn
the salary of the victim with pairs of queries like the following:

SELECT count(*) FROM table SELECT count(*) FROM table
WHERE salary = 100000 AND WHERE salary = 100000 AND

exit >= ’2015-06-17 14:27:00’ AND exit >= ’2015-06-17 14:25:00’ AND
exit < ’2015-06-18 16:00:00’ exit < ’2015-06-18 16:00:00’

Fig. 5. Range-based difference attack to learn the victim’s salary. Subsequent pairs of
queries would modify the range a small amount (14:25:01, 14:25:02, ...) so as to
average away the range noise layers.

The query on the left excludes the victim while the query on the right includes
the victim only if the salary is $100K. Note that the time ranges are large enough
that the analyst is confident that there are enough users with that salary to
ensure that the low-count filter is bypassed. With only a single pair of queries,
the noise layers associated with the ranges cause the two queries to (probably)
differ whether or not the victim is present. The analyst, however, can average
away the range noise layers by incrementally modifying the range (e.g. ’14:25:01’,

’14:25:02’, etc.) so that the noise is different but the set of users included in the
range remains the same.

To defend against this, Diffix limits the granularity of ranges by “snapping”
ranges into pre-defined sizes and offsets. Analysts are limited to these pre-defined
snapped alignments. Diffix then adds static and dynamic noise layers based on
the constants that define the boundaries of the range.

The basic idea of snapped alignment is that sizes are confined to an expo-
nentially growing and shrinking set of values, and offsets fall on multiples of the
size. For natural numbers, in our implementation we have chosen sizes from the
set of values ±1x10N , ±2x10N , and ±5x10N where N is any positive or negative
integer. This defines the sequence [..., 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, ...] along with
the corresponding negative numbers. Offsets are set at even multiples of the size,
and are allowed to be shifted left or right by 1/2 the size.

Resulting valid ranges include [1, 2), [20, 40), and [0.01, 0.015). These can
be shifted by 1/2 to create valid ranges [1.5, 2.5), [30, 50), and [0.0125, 0.0175).
Invalid ranges include [1.1, 2.1), [30, 49), and [0.01, 0.014).

There is nothing special about this specific choice of snapped alignment.
They could just as well have been defined as powers of 2. We choose this “125”
sequence because we believe that analysts will find it more natural than powers
of 2. (Money typically comes in these denominations for the same reason.)

For datetimes, it is convenient to use the natural boundaries of for instance
years, months, days, hours, minutes, and seconds. Within these units, we specify
additional natural ranges. For instance, within years we further define 2, 3, 4,
and 6 month intervals, and within days, we define 2, 4, 6, and 12 hour intervals.

In addition, Diffix imposes a maximum allowed range. The purpose is to
prevent the analyst from averaging away the noise layers associated with a range
by using a sequence of queries that grow the range. Diffix computes the maximum
range by executing the anonymized min and max functions (Section 6.2), and
then computing the smallest snapped range that encompasses this max and min.
Any query whose range exceeds the maximum allowed range is rejected.

With snapped alignment, the above attack no longer works because the an-
alyst cannot make a pair of ranges that on the one hand includes and excludes
the victim, but on the other hand includes enough other users that the queries
are not low-count filtered.

Of course there may well be cases where attacks with snapped ranges can
in principle be formed. For instance, suppose that the victim happened to be
the only employee to work on a given Sunday and didn’t work on the following
Monday. The analyst could then generate a query with a 2-day range of Sunday
and Monday, and a second query only covering Monday. Both of these ranges
adhere to snapped alignment, but nevertheless constitute a difference attack.

The noise layers associated with the range defends against this attack. The
two queries would have a differently seeded noise layers, and so the answers may
differ whether or not the victim is present.

Fig. 6. Hierarchy of Time Epochs

5.6 Time Epochs for Difference Attacks on Changing Databases

All of the difference attacks described so far assume that the pair of queries
operates on the same data. If the database changes (data is added, removed, or
modified), and the analyst knows that the change is for only a single user, then
the analyst can potentially execute a difference attack merely by executing the
same query before and after the change.

To deal with this, Diffix defines a hierarchy of time epochs. Updates to the
database after the last complete epoch are not included in answers. If for instance
the smallest epoch is one day, then on any given day, only the database updates
to the end of the previous day can be queried. For example, in Figure 6, a query
made at the time labeled now would query the database as updated at the end
of the day labeled y. For the hierarchy, each higher-level epoch may for instance
double in length. So for instance the 1-day epochs (r - z) may fall under 2-day
epochs (f - j), which fall under 4-day epochs (c - e), and so on.

One way to protect against this difference attack is to add two layers of noise
for every epoch within which the query falls. So for instance the query done
now would have layers of noise seeded by the epochs z, j, e, and b. As a result,
relative to a query made at any previous point in time, there is a level in the
hierarchy where on one hand a noise value differs, while on the other hand there
are not enough differing noise values that the analyst can average away the noise.
For instance, suppose that a single user change occurs during epoch s, and no
change occurs between then and now. Even if the analyst queries every day and
averages away the noise from the 1-day epochs, the 4-day epochs d and e would
force a different noise value without being averaged away. This approach has the
advantage of simplicity, but can result in a substantial amount of noise.

Another approach that doesn’t require noise layers, but is more complex, is
to dynamically determine which is the latest update that may be safely used.
This can be done by finding a pair of adjacent epochs, at any level of the hier-
archy, whereby the difference in distinct users between answers exceeds a noisy
threshold. The query is then answered from the first epoch of the pair.

For example, suppose that the difference in distinct users between 1-day
epochs s and t exceeds the noisy threshold. Later repeats of the query all give
the same answer, that of epoch s. Now suppose that the difference between
epochs x and y exceeds the noisy threshold. Subsequent to this, answers may be

given from epoch x. These answers will differ enough from the epoch s answers
to hide changes due to any single user.

The use of higher-level epochs avoids the situation where the database changes
slowly, but never enough to exceed the noisy threshold between adjacent epochs.
Were this to happen, answers would become less accurate over time. Higher-level
epochs captures these changes. For instance, suppose that a big enough change
occurs between 1-day epochs s and t, but only small changes occurs afterwards.
If the change between for instance 2-day epochs h and i exceeds the noisy thresh-
old, then answers from epoch h may be released.

6 Anonymous Statistical Functions

To this point, we’ve described how we produce sticky noise, but not exactly how
the noise is used in statistical functions. Currently our Diffix implementation
can compute and add noise to the following statistical functions: count, sum,
average, standard deviation, min, max, and median.

Of these, there are two types of statistical functions. One returns a value
for an individual row (i.e. the value of a single user). These include min, max,
and median, which (in the absence of noise) return the value of the single user
with the min, max, or median value. We refer to these as single-row statistical
functions. The other type of statistical function returns an answer that is a
composite of all values. These include count, sum, avg, and stddev, and are
referred to as multi-row statistical functions.

Stated informally, the goal of any anonymous statistical function in Diffix is
to “hide” the presence or absence of any given user under the assumption that the
analyst knows all values except that of the given user. For multi-row functions,
Diffix uses two mechanisms: 1) masking outliers, and 2) adding enough noise so
that there is substantial uncertainty as to the value for users with high values.
For single-row functions, Diffix can return an exact value (i.e. the value of a row
with no noise added). However, it does so only when there are enough distinct
users with the same value. Otherwise, it returns a noisy value.

6.1 Anonymous Sum and Count

Because a count is simply the sum of rows, the same function is used for both sum
and count. The function has two phases, a pre-processing phase and a summing
phase. The input to the summing phase is:

1. A table with two columns, a uid column and a value column. The uid’s are
distinct, and the value contains each user’s total contribution to the count
or sum.

2. A “baseline” sticky noise value Nb derived from the noise layers. Nb has a
standard deviation of σ =

√
N , where N is the number of noise layers (see

Section 7). The actual noise is a multiplicative factor of Nb.

Depending on the function, the pre-processing phase produces the value as
follows:

count(distinct uid): All values are ’1’.
count(*): Each value is the number of rows for the uid.

count(column): Same as count(*), except rows with NULL values
are not counted.

count(distinct column): Same as count(column), except duplicate values
are removed before counting each user’s rows.

sum(column): Each value is the sum of the values for the uid.
sum(distinct column): Same as sum(column), except duplicate values are

removed before summing each user’s values.

The summing phase consists of the following steps:

1. Generate two sticky thresholds T1 and T2.
2. Label the T1 users with the highest values group 1.
3. Label the T2 users with the next highest values group 2.
4. Define A2 as the average of the values from group 2.
5. Replace the group 1 values with A2.
6. Sum the values, and add noise with magnitude Nb ∗A2. Counts are rounded

to the nearest integer.

If there are both positive and negative values, then the above computations
are done separately for the positive and negative values, using lowest values
instead of highest, and using a separate baseline noise Nb for the negative val-
ues. The actual added noise is the sum of the two noise values. Note that for
count(distinct uid), A2 = 1, and the noise has σ = 2.

This approach hides outliers both in terms of their direct effect on the true
sum, and in terms of their effect on the added noise. By using groups of users
from which to derive values, the effect of any one user is hidden in a crowd.
By using noisy thresholds to select the groups of users, the uncertainty of the
analyst is increased. Rounding adds uncertainty in rare cases where the analyst
can learn and exploit the value of a single pair of noise layers.

Both the count(distinct column) and sum(distinct column) functions have a
pre-processing step where duplicate values are removed. In this step, duplicates
are removed in such a way as to maximize the resulting number of distinct uid’s.
This minimizes the contribution of any given user, allowing Diffix to minimize
the noise.

Anonymous Average and Standard Deviation Both the anonymous av-
erage and the anonymous standard deviation use the anonymous sum function.
The anonymous average is computed simply as the anonymous sum divided by
the anonymous count.

To compute the anonymous standard deviation, first the true average is com-
puted. Then, the square of the difference between each value and the true average
is computed. Then the anonymous average of these squared differences is com-
puted. Finally, the final output is the square root of this anonymous average.

6.2 Anonymous Min and Max

To compute the max value, Diffix computes the following two values, and selects
the maximum of these two.

The first value is simply the largest value that has enough distinct uid’s
associated with it to pass the low-count filter.

For the second value:

1. Compute A2 the same as with the sum function in Section 6.1.
2. Compute σ2 as the standard deviation of group 2.
3. The second max value is computed as A2 with noise (Nb ∗ σ2)/8.

This noise effectively eliminates the possibility that the analyst can reverse
engineer the exact values that produced A2 in the case where the values in group
2 differ from each other. The divisor of 8 is chosen to minimize noise while still
providing strong protection against reverse engineering values. Note that if all
the values in group 2 are the same, then σ2 = 0 and no noise is added.

The anonymous min is computed the same as the anonymous max, but sub-
stituting low values for high.

The anonymous min and max functions can output the exact value for a
given user. This value might even be the true min or max (though the analyst
does not know this from the output). This does not reveal any information that
the analyst could not otherwise have discovered with a query of the form:

SELECT column, count(*) FROM table GROUP BY column

and taking the highest (lowest) returned value as the max (min). On the
other hand, the anonymous min and max functions may return a more accurate
value than could be discovered using this query.

6.3 Anonymous Median

A similar approach is taken to compute the anonymous median. Specifically,
the values from groups of distinct users above and below the true median are
selected, and the anonymous median is computed from these values. The details
are omitted due to space constraints.

7 Amount of Noise

Because Diffix does not “leak noise” with repeated answers as most differen-
tial privacy mechanisms do, individual query answers need have only enough
noise to anonymize that given answer. Recall that the system is relatively more
anonymous when the probability of a higher confidence guess is lower. While the
decision of how much noise to add is up to the data owner, we believe that for
sticky noise, a per-layer standard deviation of minimum σ = 1 provides adequate
anonymity for counting queries.

Fig. 7. Confidence C of an analyst’s guess in a difference attack, and the improvement
in confidence Ci over a statistical guess of the attribute probability Pa. Per-layer noise
has σ = 1. Groups of four bars are for 4, 5, and 6 noise layers, left to right. Values are
averages over 108 trials.

To support this claim, we provide the results of two simulations. The first
simulates a difference attack on counting queries where the analyst has no a priori
knowledge about the true count, and is able to exclude the victim with a single
condition (as for instance with the example of Figure 3). Results (Figure 7) are
given for between 4 and 6 noise layers for the query with the excluding condition,
with a per-layer σ = 1. Answers are rounded to the nearest integer.

We define confidence improvement as Ci = 100∗ (C − Pa)/(100− Pa), where
Pa is the probability that a given attribute occurs in the population, and C is
the analyst’s confidence in a guess. For instance, if an attribute occurs in the
population with Pa = 60% probability, and the analyst has C = 80% confidence
in their guess, then the confidence improvement is Ci = 50%.

In the simulation, if the answer for the query that conditionally includes
the victim is greater than the answer for the query that excludes the victim,
the analyst guesses that the victim has the attribute (i.e. a given salary). The
results are shown in Figure 7 for the cases where the attribute probabilities are
Pa = 1%, Pa = 5%, and Pa = 50%.

Starting with the Pa = 50% case, the difference attack improves the analyst’s
confidence to between C = 62% and C = 66%. While somewhat better, the
analyst’s confidence remains acceptably low (in our opinion). Now consider the
case where Pa = 1%. In the case where the analyst guesses that the victim has
the attribute, the analyst’s confidence is C = 1.9%, a 0.9% improvement. A guess
that the victim does not have the attribute improves confidence by Ci = 43%,
from Pa = 99% statistical confidence to C = 99.43%. Put into the perspective
of the difference attack of Figure 3, assuming that the probability of the victim
having any given salary is 1%, the analyst could improve his or her confidence

Fig. 8. Improvement in analyst’s confidence Ci, and probability of getting that im-
provement, when analyst knows the true answer must be one of two possible known
values (x and x+1). Noise is 0 mean Gaussian with standard deviation 2. Three curves
are for cases where lower value x occurs with 1%, 10%, and 50% probability. Points
to the left represent more noise. Points where noisy count is x-6, x+5, and x+9 are
labeled.

in what the victim’s salary is not, but still has very little confidence in what the
victim’s salary is.

The second simulation examines the case where the analyst knows through
external knowledge that a given count is one of two possible values, x or x+ 1.
In this case, the analyst’s confidence in the correct answer is higher when the
noisy answer is further from the two possible counts. For instance, suppose that
the analyst knows that the only two possible answers are 20 and 21, and that
they occur with equal probability. If the noisy answer is 21, then the analyst’s
confidence that the true answer is 21 is only C = 53% (Ci = 6%). If the noisy
answer is 26, however, the analyst’s confidence that the true answer is 21 is
C = 79% (Ci = 59%). On the other hand, the probability of getting a noisy
count of 26 is much smaller than getting 21 (0.06% versus 19%).

Figure 8 plots the confidence improvements and corresponding probability of
improvement for the cases where the probability of the lower value (x) occurring
is Pa = 1%, Pa = 10%, and Pa = 50%. In this simulation, the analyst guesses x
if the noisy count is x or smaller, and guesses x+1 otherwise. Each simulation
tested 1011 trials. The left-most data points represent an average of a few 10’s
of trials, the right-most data points correspondingly more.

The data points on the lower right represent the case where the noisy count is
either x or x+1. This happens with a probability of roughly 36%. In these cases,
the improvement in the analyst’s confidence beyond the statistical probability
of the expected outcome is very little.

Consider the point on the Pa = 50% curve where the noisy count is x+9.
Here the analyst’s confidence improvement is Ci = 78%, but this improvement
happens in only 1 out of roughly 23K trials. From the figure, we can see that
noise with as low as σ = 2 provides good anonymity. Obviously more noise would
provide still better protection, but we don’t believe more noise is necessary. Note
that, as a rule, an effective attack requires several conditions, and therefore we
are not too concerned with queries that have noise less than σ = 2 (i.e. only one
condition).

8 Summary, Limitations, and Future Work

This paper presents a description of Diffix, a database anonymization system
that is easy to configure, is strongly anonymous, allows unlimited queries, adds
minimal distortion to answers, and supports a variety of useful statistical func-
tions.

In the process of describing Diffix, this paper shows how Diffix defends against
certain basic attacks. Due to space limitations, this paper does not provide a
thorough analysis of the attacks and defenses currently known to the authors.
This is a limitation of the paper.

A major limitation of the work overall is the fact that we do not have a formal
treatment of Diffix. As a result, while we are not aware of any attacks that break
Diffix’s anonymity, we cannot make a positive statement that no such attacks
exist. Moving forward, we hope to formalize and prove Diffix as much as possible.
It is not clear how far we can get with a formal approach, so in parallel we plan
to deploy an implementation of Diffix and make it available for attack, possibly
with prizes for successful attacks. This exercise can lead to improvements to
Diffix, a better understanding of how to evaluate risks (should some attacks be
possible), and an overall increase in confidence in this new technology.

A big open question is whether Diffix provides enough utility to be used
widely in practice, and if not, how it’s utility may be improved. Is the accuracy
adequate? Do analysts need richer query semantics? Do analysts need more
statistical functions, and if so can these be provided? How much does the inability
for analysts to “see the data” impede the analytic process overall?

We expect to research these and many other questions in the future, and
hope that Diffix inspires the broader research community to pursue this and
other new architectures.

References

1. Article 29 Data Protection Working Party Opinion 05/2014 on Anonymi-
sation Techniques . http://ec.europa.eu/justice/data-protection/article-
29/documentation/opinion-recommendation/files/2014/wp216 en.pdf .

2. D. E. Denning. Secure statistical databases with random sample queries. ACM
Transactions on Database Systems (TODS), 5(3):291–315, 1980.

3. D. E. Denning, P. J. Denning, and M. D. Schwartz. The tracker: A threat to
statistical database security. ACM Transactions on Database Systems (TODS),
4(1):76–96, 1979.

4. I. Dinur and K. Nissim. Revealing information while preserving privacy. In Pro-
ceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 202–210. ACM, 2003.

5. C. Dwork. Differential Privacy. In ICALP, 2006.
6. Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor: Randomized aggregatable

privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC con-
ference on computer and communications security, pages 1054–1067. ACM, 2014.

7. I. Fellegi and J. Phillips. Statistical confidentiality: Some theory and application
to data dissemination. In Annals of Economic and Social Measurement, Volume
3, number 2, pages 399–409. NBER, 1974.

8. I. P. Fellegi. On the question of statistical confidentiality. Journal of the American
Statistical Association, 67(337):7–18, 1972.

9. F. Prasser and F. Kohlmayer. Putting statistical disclosure control into practice:
The ARX data anonymization tool. In Medical Data Privacy Handbook, pages
111–148. 2015.

10. Waltraut Kotschy. The new General Data Protection Regulation - Is there
sufficient pay-off for taking the trouble to anonymize or pseudonymize
data? https://fpf.org/wp-content/uploads/2016/11/Kotschy-paper-on-
pseudonymisation.pdf, Nov. 2016.

