
Chunkyspread: Multi-tree Unstructured Peer-to-Peer
Multicast ∗

Vidhyashankar Venkataraman, Paul Francis†, John Calandrino‡

{vidya, francis}@cs.cornell.edu, jmc@cs.unc.edu

ABSTRACT
The latest debate in P2P and overlay multicast systems is whether
or not to build trees. The main argument on the anti-tree side is that
tree construction is complex, and that trees are fragile. The main
counter-argument is that non-tree systems have a lot of overhead.
In this paper, we argue that you can have it both ways: that one
can build multi-tree systems with simple and scalable algorithms,
and can still yield fast convergence and robustness. This paper
presents Chunkyspread, a multi-tree, heterogeneous P2P multicast
algorithm based on an unstructured overlay. Through simulation,
we show that Chunkyspread can control load to within a few percent
of a heterogeneous target load, and how this can be traded off for
improvements in latency and tit-for-tat incentives.

1. INTRODUCTION
In 1997 and 1998, Francis and Zhang respectively inde-

pendently argued that IP multicast was going nowhere, and
that some form of end-system (P2P) multicast is needed to
bring multicast to the masses ([3], [4]). Nearly a decade
later, P2P multicast has itself gone nowhere, this in spite of
the success of other P2P technologies such as file sharing and
swarming. Part of the reason for this is surely that multicast
is something of a niche application. It is only really needed
for live or near-live streaming, whereas most content distri-
bution is non-live. Nevertheless, there are some multicast
applications out there, which today are largely handled by
infrastructure-based overlays (i.e. Akamai) or IP multicast
(in enterprise settings). We believe, however, that there are
still substantial improvements that can be made to P2P mul-
ticast algorithms, and that these improvements may yet lead
to widespread use of this technology.

In this paper, our focus is on non-interactive multicast
applications that can grow to very large scale (many thou-
sands of recipients) and can handle a wide range of volumes.
A canonical application for us is the broadcast of a sports
event, where the content may be a simple text description of
the score and important events (low volume), an audio play-
by-play (medium volume), or video (high volume). Here,
10 or 20 seconds of delay is tolerable, indeed even neces-
sary in the form of receiver play-out buffer to smooth over
short-term disruptions in network or OS performance [17].
This delay-tolerance also means that we can assume one or
∗This work is supported in part by National Science Foun-
dation grant ANI-0338750, and DARPA project FA8750-04-
2-0011.
†Cornell University
‡University of North Carolina at Chapel Hill

a small number of content streams. Even if there are many
sources, they can first transmit to a tree root, and from there
the aggregated stream can be multicast.

In addition to large scale, an important requirement is to
have fine-grained control over member load. The need for
this stems from fairness, utility, and performance arguments.
Fairness suggests that each member node should transmit the
same volume that it receives. Where utility is valued over
fairness, nodes with more capacity should transmit more,
should they be willing to do this. Good performance requires
that any given node should not be a bottleneck (that is, not
be called on to transmit more than it can). For all of these
factors, a single-tree approach comes up short. It is certainly
not fair: many nodes transmit nothing, while other nodes
transmit at least two times the stream volume1. Nor does a
single tree provide enough granularity to effectively utilize
transmit capacity. A node with enough capacity to transmit
say 150% of the stream volume must nevertheless serve as a
leaf and transmit nothing. As a result, we believe, as others
have argued ([7], [8]), that amulti-path approach is necessary.
By multi-path, we mean where each node receives portions
of the multicast stream via different routes. Multi-path may
be achieved through multiple trees, as in SplitStream [7],
or through a so-calledtreeless approach, as in Bullet [5] or
Chainsaw [8]. We say “so-called” treeless, because the goal
of Bullet or Chainsaw is nevertheless that each individual
packet or block of packets traverses a tree.

The question, then, is not whether to build trees, but rather
at what granularity: per slice, or per block or packet? The
difference is important. With a per-block granularity, each
node explicitly informs its neighbors of which blocks it has,
and explicitly requests from each neighbor which blocks it
would like to receive. This represents a substantial overhead:
with an average node degree of 20 (as used in [8]), this
means an additional 20 packets (10 sent and 10 received on
average), for every data block received. If the stream is low
volume, this overhead can be many times the stream volume.
For higher volume applications, which Bullet and Chainsaw
target, the overhead is more acceptable, but is nevertheless
worth trying to avoid.

With a per-slice granularity, nodes maintain a long-term
parent-child relationship with respect to each slice (where
a slice is defined as everyM th packet of a data stream,M
being the number of slices). As a result, once the trees are
established, there is virtually no per-packet overhead. On the
other hand, if a node crashes or otherwise stops performing
1Assuming all interior nodes have a fanout of at least two.
Otherwise, paths may be unacceptably long.

adequately, all of its offspring in the tree will suddenly stop
receiving some packets until the tree can be re-built. Fur-
thermore, building a tree isn’t instantaneous or free: in case
of high churn, a complex tree-building algorithm may take a
long time to repair completely.

Fortunately, tree-building algorithms do not need to be
complex. There are two aspects to building trees: parent
selection and loop detection and avoidance. In P2P environ-
ments, where one can afford a moderate amount of processing
overhead per packet (in contrast with high-speed routers, for
instance), loop detection is fast and easy. One needs to only
tag all data packets with the identities of every node that
forwarded the packet. This can be made quite efficient in
terms of packet size as well as processing using bloom fil-
ters [16] (with a small probability of false positives). Loops
are detected immediately by the first packet that traverses the
loop. This packet can be either a data packet sent by the ap-
plication, or, in the absence of such packets, a probe packet
transmitted by a node to its children. Loops can be avoided
by having nodes advertise the bloom filters they receive to
their neighbors. A given node does not select a neighbor as
a parent if the node itself appears in the parent’s received
bloom filter.

Using this method of loop avoidance and detection, tree
building is simple. For each stream, each node selects a
loop-free parent from among its neighbors. When a loop is
detected (rarely), the node selects a different parent. Flood-
ing or swarming (as in Chainsaw) may be used to kick start
any given tree. While tree-building this way is indeed fast and
easy, the problem is that inefficient trees may result. Some
nodes may have too much transmit load, and some paths may
be longer than necessary. These inefficiencies, however, can
be improved over time (where time here is measured in sec-
onds, not tens of seconds) by switching to different parents
when doing so improves some measure of efficiency, such as
load, latency, tit-for-tat, path disjointness, link stress, and so
on.

In this paper, we present Chunkyspread, a simple multi-
tree multicast protocol and show through simulations that
it achieves good robustness and a fine-grained control over
heterogeneous load, yet avoiding the per-packet overhead of
treeless approaches. We also show through simulations that
without affecting load by much, we can still fine-tune the
trees with respect to other constraints such as latency and
tit-for-tat.

2. THE CHUNKYSPREAD APPROACH
Given this background, we can now describe our approach.

As with Splitstream, we use striping overM multiple trees to
get fine-grained control over heterogeneous load2. Each node
has a target and a maximum load, both expressed as a number
of stripes from zero upwards. There are no constraints on
which stripes a node transmits: it may transmit any given
stripe any number of times as long as it operates below its
maximum.

As with Yoid [3], all nodes form a random graph. Un-
like Yoid, the node degree of any node in the random graph
2While by load we mean transmit load, nodes in
Chunkyspread can choose to receive fewer than all the slices,
for instance by using Multiple Description Codes, and can
independently set transmit load and receive load. Never-
theless, in this paper and in our current implementation, we
assume that all nodes are receiving all stripes.

is proportional to that node’s target load (with some small
probabilistic error). This requires that each node knows the
minimum target load of all nodes, and the node degree asso-
ciated with that minimum. We assume that this information
is known by the application. The actual set of neighbors
changes with membership churn such that the number of
neighbors for any given node stays roughly the same over
time. We discuss later how these neighbors are found. In
addition to its random neighbors, a node may know of some
number of nearby nodes (probably as measured by latency).

The node (or nodes) that is the source of the multicast
stream also joins the random graph. This node, called thetrue
source, hasM random neighbors, and transmits each slice to
one neighbor. These neighbors are calledslice sources, and
each is effectively the root of a multicast tree.

With this structure in place, each node runs an ongoing
process whereby it periodically exchanges local information
(load, latency, and looping) with its neighbors, and uses this
information to determine the appropriate parent-child rela-
tionships for each tree. Within a set ofconstraints, each node
pair locally tries to determine thebest parent-child configura-
tion. The constraints we currently have are as follows. First,
there must of course be no loops. These are avoided and
detected as described above. Second, any pairwise volume-
based tit-for-tat constraints in force must be satisfied. Third,
no node may transmit more than its maximum load. Other
than the looping constraint, it is conceivable that nodes may
choose to violate these constraints for short periods of time,
for instance to respond quickly to node failures. We currently
do not implement this.

The criteria we use to converge to thebest parent-child
configuration are latency and load. These criteria do not al-
ways align: there may be situations where improving latency
hurts load, or vice versa. As load is the more important of
the two criteria, we first insure that load is good (each node’s
actual load is near its target load), and only then do we try to
improve latency.

In the remainder of this section, we provide more detail
about how to build the random neighbor graph, and how load
and latency are fine tuned.

2.1 Random Graph Construction:
The random neighbor graph is the underpinning of Chunky-

spread (in much the same way as RanSub [14] is the under-
pinning of Bullet). We use an algorithm called Swaplinks [1],
which uses weighted random walks to build random graphs
and to discover random nodes over that graph. The walks are
weighted in such a way that nodes have fine-grained statisti-
cal control over their node degree, as well as the probability
with which they are selected by random walks. Swaplinks
is simple and unstructured, scales easily to any number of
members, and reacts quickly to churn. Note that both Bullet
and Chainsaw could utilize Swaplinks for neighbor discov-
ery, especially if they required heterogeneity.

2.2 Load:
Each node lets its neighbors know the following informa-

tion: its current load (the number of slices it is transmitting),
its target loadTL, its maximum loadML, and upper and
lower load thresholds (ULT and LLT) within which it is
considered “satisfied”, and outside of which it is consid-
ered “overloaded” or “underloaded”. Typical numbers are
TL = 16, ML = 20, ULT = 14, andLLT = 18. Each node

periodically checks to see if it has any overloaded parents and
underloadedpotential parents (neighbors that would not pro-
duce a loop were they chosen as parents) for any given slice.
If so, then there is an opportunity for aswitch: dropping the
current overloaded parent (thus reducing its load) and adding
the underloaded neighbor (thus increasing its load).

To do this, the node informs its overloaded parent of the
loads of a subset of itsbest underloaded potential parents. The
parent, which may receive similar information from multiple
children, picks the best candidate (the child’s neighbor with
the least load), and instructs the selected child to make the
switch. Note that, because conditions may have changed
during this exchange, each request for a switch contains the
parameter in force (either load or latency, as discussed later),
when the switch decision was made. If this parameter has
changed considerably, the switch is aborted. Note also that,
in order to prevent packet loss or duplication, the actual
switch is coordinated in that the child identifies the future
packet at which the old parent should stop transmitting, and
the new parent should start transmitting.

2.3 Latency:
Once each node’s neighbors are satisfied with respect to

load, the node looks for parent switches that can improve the
latency with which it receives packets. We use a novel trick
that allows us to measure the relative latency with which each
neighbor receives each slice without requiring synchronized
clocks. Specifically, each node measures the delay at which
it receives packets from each streamrelative to each other.
The idea is simple: a node close to a slice source in a tree
will receive packets for that slice relativelysooner than it will
receive comparable packets of other slices. If a node has a
parent that is receiving a given slicelate (relative to its other
slices), and a potential parent that is receiving the same slice
relativelyearly, then it should switch parents (as long as both
neighbors’ loads remain satisfactory). Note that nodes only
make such switches if the expected improvement in latency
is beyond a certain threshold.

In our current implementation, as long as all of a node’s
neighbors’ load is in the satisfactory range, no improvements
in load are made even if such improvements could be made
without hurting latency. Because of this, the load balancing
algorithm always makes forward progress and is guaranteed
to converge. We could relax this restriction and potentially
improve load further. However, we would then need to main-
tain a short history of recent switches to prevent rapid oscil-
lations. The latency improving algorithm will almost always
converge. On those occasions where it does not, the oscil-
lation will be relatively slow because of the time required to
produce a confident measure of delay.

3. EVALUATION
We have performed a series of experiments on a packet-

level, event-driven simulator. Our simulation topologies are
created by placing member nodes at random edge locations
on network topologies having 5050 routers, generated by
the GT-ITM topology generator [10]. Message delays are
determined using the resulting distance metric. We did not
simulate message loss. To scale the simulation, the simulator
does not explicitly generate data packets. Control decisions,
however, do take into account the delay that transmitted data
packets would have seen. The random overlay is constructed
using a trace file generated offline by a SwapLinks simula-

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

-40 -20 0 20 40

N
um

be
r

of
 n

od
es

 (
in

 th
ou

sa
nd

s)

Relative Excess Percentage

Load Distribution

No Latency

Tol2

Figure 1: Excess Load Distribution

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10 12 14

N
um

be
r

of
 n

od
es

 (
in

 th
ou

sa
nd

s)

Overlay Avg Stretch

Overlay Stretch Distribution

No LatencyTol2

Figure 2: CDF of average overlay stretch

tor. This trace generates node joins and leaves, and triggers
neighbor add and delete events.

The nodes participating in the multicast in all the simu-
lations have a uniform download of 16 slices. For the het-
erogeneity experiments, we assign each node a target upload
between 5 and 28 slices uniformly at random (representing
total node degrees in Swaplinks between 8 and 50). This
results in an average upload capacity of 16.5, thus giving
the total system adequate capacity to support the multicast
volume. We setULT and LLT to be within 2

16

th of the
target loadTL (denoted asTol2). Maximum loadML is
set to be 5

16

th above the target loadTL. For example, with
target loadTL = 16, ML, ULT , andLLT are 21, 18, and 14
respectively. The heartbeat period is one second, and nodes
are declared down after four seconds of no heartbeat. Parent
switching decisions are made every second.

3.1 Load-latency evaluation
In the first set of experiments, 7500 nodes join the multicast

at the0th second. After the20th second, 2500 additional
nodes join at the rate of 100 joins per second. Figure 1 shows
load accuracy measured as the ratio of the node’s measured
load to its target load. The two CDF curves correspond to
the cases when there is no latency reduction (NoLatency),
and when latency is reduced as long as load is within2

16

th of
the target load (Tol2). We see that Chunkyspread provides
excellent control over load. Even with latency reduction,
only 10% of nodes exceed their target by more than 10%,
and virtually all nodes are within 20% of the target load.

The algorithm fully converged 95 seconds after the last
join. It is to be noted that this is the time taken for the load-

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 n

od
es

 (
in

 th
ou

sa
nd

s)

Disconnect Duration (in s)

CDF of Disconnect Durations With Tol2

Redundancy 0

Redundancy 1

Redundancy 3

Figure 3: Disconnect Durations

latency fine-tuning algorithm to converge; more than 95%
of the nodes establish parents for all slices within their first
10 seconds of joining the network. Fewer than 1% of parent
switches lead to a cycle. Given the extreme churn, this speaks
well of the bloom filter method of loop avoidance. Control
message overhead averaged 250 parent switch messages per
node over the entireTol2 run.

Next, we examine the performance of latency reduction.
We use two parameters to characterize the latency, the net-
work stretch and the overlay stretch. Network stretch is
defined as the ratio of the actual measured latency to the net-
work latency between the true source and the node. Overlay
stretch is the ratio of the actual measured latency experienced
by the node to the shortest path latency in the overlay graph
between the true source and the node. The CDF of the over-
lay stretch is presented in figure 2. WhileNoLatency does
poorly, latency reduction results in 90% of the nodes having
an overlay stretch of two and more than 95% of the nodes
having an overlay stretch within three. The corresponding
network stretch (not shown) has an80th percentile network
stretch around seven.90th percentile hop length is 12.

To get some intuition about how adding locality to the
random graph would improve stretch, we ran a 10000-node
static simulation where, in addition to the random neighbors
selected by Swaplinks, the five nearest neighbors were added
to each node’s neighbor set. In this case, the90th percentile
network stretch was 5 (versus 7 without locality), a noticeable
but not dramatic improvement over the pure random graph.

3.2 Robustness against Node Failures
In this experiment, 10000 nodes join at the first second

of the simulation, and 10% of the nodes fail at the 50th
second. Figure 3 shows the CDF of the disconnection times
for theTol2 case, where the disconnection time is the total
time when a node is not getting the full stream. The three
curves in the graph show the effect of adding varying degrees
of redundancy (for instance using forward-error correction).
For example, the curve denotedRedundancy 1 is the case
where receiving any 15 out of the total 16 slices produces
the full stream. We observe that the90th percentile of the
disconnection time when there is no redundancy is less than
10 seconds (6 seconds beyond the timeout period). We see
that as redundancy is increased to 3 slices, the90th percentile
of the disconnection time is reduced to just over four seconds.

3.3 Effect of tit-for-tat
Till now, we have assumed that nodes do not lie about

their loads to each other. In some environments, however,
there may be free-loaders. Chunkyspread provides a natural
framework for applying incentive-based constraints. To build
an intuition as to how tit-for-tat may affect load and latency,
we simulated a simple "weak" tit-for-tat model whereby the
volume received from each neighbor must be at least within
some percentage of the volume sent to that neighbor3. For
instance, with 25% tolerance, a node that supplies 4 slices to
its neighbor requires that it serves at least 3 slices back. 3-2
or 2-1 ratios are not allowed. In addition, nodes assign an
initial smallcredit to new neighbors, to allow the parent-child
relationships to get started, and give additional credits over
time if a neighbor sends more than is received. Tit-for-tat
constraints are enforced only when the credits are used up.

We tested how this simple tit-for-tat scheme works with the
Tol2 parameters. We used a 10000-nodestatic, homogeneous
setting in which each node has a target load of 16 slices. Each
node periodically checks whether any of its neighbors is vio-
lating tit-for-tat, and withdraws uploaded slices as necessary.
Only parent switches that fall within tit-for-tat constraints
are allowed. We compared tit-for-tat ratios of 50%, 33%
and 25% (corresponding to 1:2, 2:3 and 3:4 relationships
respectively). We find that decreasing the ratio improves
load balance, but at the expense of latency. For instance, the
90th percentile average overlay stretch for 50% tit-for-tat is
2, while for 33% it is 2.7. There are also longer and more
frequent disconnections in the 25% case than in the 50%
case. These experiments are encouraging in that they show
that tit-for-tat constraints can be incorporated to an extent,
though at the expense of other performance measures.

4. RELATED WORK
There has been considerable work in the past on single-tree

multicast protocols. Since none of these effectively support
heterogeneity, we restrict our discussion of related work to
multi-path multicast protocols.

Splitstream [7] is a DHT-based multicast protocol that tries
to resolve the heterogeneity problem by splitting the stream
into stripes and sending them across multiple interior-node-
disjoint trees built over the DHT. But under heterogeneous
environments and node churn, there is a large number of non-
DHT links formed making the system complex and inefficient
[13].

Our preliminary simulations of Splitstream (using the Mi-
crosoft version), indicate that control over heterogeneous
load is quite poor. Unlike Chunkyspread, which allows
both a target and maximum load, Splitstream only allows
the maximum load to be set. In Splitstream simulations of
a 1000 node network with the maximum load values hav-
ing the same range as that of theML values mentioned in
Section 3, we found that about 35% of the nodes are loaded
to the maximum, while close to 10% of the nodes had zero
load. All other performance measures (stretch, disconnect
times, etc.) were similar to or worse than those reported
for Chunkyspread. While we don’t believe it is necessary
to build node-disjoint paths in Chunkyspread, this constraint
could be added.

Bullet [5] splits the stream into multiple blocks and uses
a single tree on top of a mesh. Nodes receive only a subset
of the blocks from their parents in the tree, the remaining

3[12] and [18] argue that strict tit-for-tat is impractical, and
our simulations corroborate this.

blocks retrieved from other nodes randomly chosen using a
distributed algorithm calledRanSub. Bullet however incurs
a high control overhead due to this scheme of orthogonally
retrieving packets.

Chainsaw [8] is a multicast protocol that does away with
trees to improve node resilience in the presence of churn.
Each Chainsaw node employs a simple controlled flooding
mechanism to notify neighbors of data arrivals and a pull-
based approach to retrieve blocks. However, Chainsaw can
potentially incur high network and CPU overheads due to per-
packet notifications. We note that Chainsaw could benefit
from Swaplinks for its random graph construction, and that
this could make Chainsaw more heterogeneity-aware.

[11] assessed the feasibility of overlay multicast protocols
supporting large-scale live streaming applications by analyz-
ing real-world Akamai traces; using these traces along with
online and offline bandwidth measurements, they concluded
that real-world hosts indeed have enough bandwidth to sup-
port themselves in most cases.

Incentive-based p2p protocols try to enforce end-hosts to
contribute resources. There have been many proposals in
the literature that apply to file-sharing and streaming appli-
cations. Bittorrent [9] is a popular file-sharing protocol in
widespread use that divides the file into multiple pieces and
lets the peers download the pieces from one another. Peers
employ a tit-for-tat mechanism to limit free-riding in the sys-
tem. There have also been a number of proposals([19], [18])
in which peers maintain credit with each of their neighbors to
enable fair sharing of resources in a content distribution net-
work. [12] adopts a taxation model on peer-to-peer streaming
multicast applications to encourage resourceful peers to con-
tribute bandwidth to the system and subsidize for the poor
peers. [15] employs a credit-based technique on Splitstream
to detect free-riders. According to this scheme, trees are re-
constructed periodically so that each pair of neighbors gets
opportunities to donate and receive between each other on
successive reconstructions. The protocol does not fully an-
swer how to tackle heterogeneity in the system.

5. CONCLUSION AND FUTURE WORK
Chunkyspread represents a new point in the P2P multicast

design space: one that has the efficiencies associated with
trees and the simplicity and scalability associated with un-
structured networks. At the foundation of Chunkyspread is
the ability to build random sparse overlay graphs with tight
statistical control over heterogeneous node degrees. This
foundation, combined with a simple loop-detection mecha-
nism based on bloom filters, provides a framework whereby
different constraints and optimizations can be emphasized,
depending on the application.

To date, we have focused on large-scale, non-interactive
applications like the broadcast of a sporting event, at a range
of volumes (text, audio, or video formats). Here, control over
load is more important than latency, though in this paper we
show nevertheless that significant improvements in latency
can be made if load control is relaxed slightly. We also show
that a certain amount of pairwise tit-for-tat can be added,
though mainly at the expense of latency. Finally, we show
that Chunkyspread operates well with churn.

As part of our future work, we plan to further explore this
class of application. We will look at more churn scenarios.
We will look at additional mechanisms for improving latency
while controlling load, such as favoring large fan-out. We

will look at a range of tit-for-tat mechanisms, including both
social and irrational behavior. We also plan to do detailed
apples-to-apples comparisons with SplitStream and Chain-
saw. Beyond this, we believe that the generalized constraints-
and-optimizations framework of Chunkyspread allows us to
explore different types of applications and environments.
These include low-latency applications, pub-sub applications
(where nodes may join a large number of groups), and high-
reliability applications where packets much traverse multiple
disjoint paths.

6. ACKNOWLEDGMENTS
We would like to thank Kaoru Yoshida for the preliminary

simulations of Splitstream. We would also like to thank M.
Castro and A. Rowstron for providing us the simulator code
for Splitstream.

REFERENCES
[1] V. Vishnumurthy and P. Francis. On Heterogeneous

Overlay Construction and Random Node Selection in
Unstructured P2P Networks. InProceedings of IEEE
Infocom, Barcelona 2006.

[2] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. InMiddleware,
November 2001.

[3] P. Francis. Yoid: Extending the Internet Multicast
Architecture.http://www.icir.org/yoid/.

[4] Y. Chu, S.G. Rao, and H. Zhang. A Case for End
System Multicast. InProceedings of ACM Sigmetrics,
June 2000.

[5] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat.
Bullet: High Bandwidth Data DisseminationUsing an
Overlay Mesh InProceedings of the 19th ACM
symposium on Operating systems principles
(SOSP’03).

[6] M. Castro, P. Druschel, A. M. Kermarrec, and A.
Rowstron, SCRIBE: A Large-Scale and Decentralized
Application-Level Multicast Infrastructure.IEEE
Journal on Selected Areas in Commmunications
(JSAC), 2002.

[7] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. Splitstream:
High-Bandwidth Multicast in Cooperative
Environments. InSOSP, 2003.

[8] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and
A. E. Mohr. Chainsaw: Eliminating Trees from
Overlay Multicast. InThe Fourth International
Workshop on Peer-to-Peer Systems, February 2005.

[9] B. Cohen. Incentives Build Robustness in BitTorrent.
In The First Workshop on Economics of Peer-to-peer
Systems, June 2003.

[10] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How
to Model an Internetwork. InProceedings of IEEE
Infocom’ 96.

[11] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H.
Zhang. Feasibility of Supporting Large-Scale Live
Streaming Applications with Dynamic Application
End-Points. InThe Proceedings of ACM SIGCOMM,
August 2004.

[12] Y. H. Chu, J. Chuang, and H. Zhang. A Case for

Taxation in Peer-to-Peer Streaming Broadcast. In
ACM SIGCOMM Workshop on Practice and Theory
of Incentives and Game Theory in Networked Systems
(PINS), August 2004.

[13] A. R. Bharambe, S. G. Rao, V. N. Padmanabhan, S.
Seshan, and H. Zhang. The Impact of Heterogeneous
Bandwidth Constraints on DHT-Based Multicast
Protocols. InThe Fourth International Workshop on
Peer-to-Peer Systems, February 2005.

[14] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and
A. Vahdat. Using Random Subsets to Build Scalable
Network Services. InUSENIX USITS, 2003.

[15] T. W. J. Ngan, D. S. Wallach, and P. Druschel.
Incentives-Compatible Peer-to-Peer Multicast. InThe
Second Workshop on the Economics of Peer-to-Peer
Systems, July 2004.

[16] A. Whitaker and D. Wetherall. Forwarding without
loops in Icarus. InProceedings IEEE OPENARCH,
2002.

[17] W. A. Montgomery. Techniques for packet voice
synchronization. InIEEE J Select Areas Commun
6(1):10221028.

[18] K. Tamilmani, V. Pai, and A. E. Mohr. SWIFT: A
system with incentives for trading. InSecond
Workshop on the Economics of Peer-to-Peer Systems,
2004.

[19] A. Nandi, T. W. Ngan, A. Singh, P. Druschel, and D. S.
Wallach. Scrivener: Providing Incentives in
Cooperative Content Distribution Systems. InThe
Proceedings of the Sixth International Middleware
Conference, November 2005.

