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Paul Francis  

Max Planck Institute For Software Systems  

The focus of data anonymity research by computer scientists is almost completely on 

methods with formal guarantees of anonymity, especially differential privacy. The 

usefulness of mechanisms with formal guarantees, however, has so far been 

disappointing. This article argues that computer scientists should be open to and 

encouraged to work on empirical data anonymization mechanisms as well—in much the 

same way that researchers work on both formal and empirical approaches to crypto. This 

article describes differential privacy and explains its benefits and shortcomings. It also 

describes a recently developed empirical data anonymization mechanism called Diffix, 

and describes how transparency and programs that incentivize white-hat attacks, such as 

bounty programs, can build understanding and confidence in empirical approaches. The 

article concludes that there is a need for both formal and empirical research on data 

anonymity. 

Reference to this paper should be made as follows:  

Francis, P. (2019) “Formal versus Empirical Approaches to Data Anonymity”, Data, 

Privacy and the Individual. 

 

This work is licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike 4.0 International (CC BY-NC-SA 4.0) License. To view a copy of the license, 

visit https://creativecommons.org/licenses/by-nc-sa/4.0/” 

 

https://creativecommons.org/licenses/by-nc-sa/4.0/
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The European General Data Protection Regulation (GDPR) says that the principles of data 

protection need not apply to anonymous data, referring to anonymization as: personal 

data rendered anonymous in such a manner that the data subject is not or no longer 

identifiable 

The EU Article 29 Data Protection Working Party Opinion 05/2014 on Anonymization 

Techniques defines criteria for determining whether an anonymization technique is 

indeed anonymous. While there is substantial room for interpretation in these 

documents, the following two points seem clear: 1) there are tremendous benefits to 

anonymizing data; in terms of both reduced liability and increased safety, and 2) the bar 

set by the GDPR is quite high. 

In October 2018, there was an academic workshop at the ACM CCS 2018 conference called 

“Theory and Practice of Differential Privacy.” Here is an excerpt from the workshop’s 

description: 

Differential privacy provides strong worst-case guarantees […] but is also flexible enough to 

allow for a wide variety of data analyses to be performed with a high degree of utility […] it 

has also now been deployed in products at government agencies such as the U.S. Census 

Bureau and companies like Apple and Google. 

Ever since Apple announced its use of differential privacy in 2016, the tech media 

frequently mentions it—a search for “differential privacy” on Google news finds around 

200,000 articles, with 30,000 of them mentioning Apple, nearly all of them in a positive 

light. From these statements, differential privacy sounds like a very good technology for 

implementing anonymization.  

The current reality, however, does not fully match expectations. I work in close research 

collaboration with the startup Aircloak, which markets an anonymization technology 

called Diffix (not differential privacy), and therefore have had numerous conversations 

with organizations looking to anonymize data. By way of full disclosure, I am the primary 

inventor of Diffix and a co-founder of Aircloak. Other than the well-publicized but limited 

use cases at Apple, Google, and Uber, I have yet to find an organization that is satisfied 

with differential privacy even though several have made a serious effort. Later in this 

article, I’ll discuss existing implementations, but the bottom line is that there are very 

few, if any, that offer both acceptable utility and strong anonymity guarantees. 

The vast majority of ‘privacy-protected’ data for analytics is only weakly protected. 

Typically, little more is done than removing personally identifying information like 

names and addresses, more-or-less along the lines for instance of what HIPPA suggests. 

This type of weak anonymization is called pseudonymization by the GDPR, and has been 

dramatically shown to be vulnerable. For example, Sweeney was able to identify the 

https://www.pdpjournals.com/docs/88197.pdf
https://www.pdpjournals.com/docs/88197.pdf
https://www.sigsac.org/ccs/CCS2018/
https://tpdp.cse.buffalo.edu/2018/
http://devstreaming.apple.com/videos/wwdc/2016/709tvxadw201avg5v7n/709/709_engineering_privacy_for_your_users.pdf
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://epic.org/privacy/reidentification/Sweeney_Article.pdf
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Governor of Massachusetts in a pseudonymized medical dataset. When data is strongly 

anonymized, it is generally for specific data with a specific use case in mind, for instance 

the release of census data.  

In short, weak anonymization is widely used, strong anonymization based on formal 

models is rarely usable, and most strong anonymization is custom-built for a specific use 

case. The research agenda of academic computer science (CS) is almost exclusively 

focused on formal approaches, and among these differential privacy dominates (150,000 

hits on Google Scholar since 2017). 

In spite of the tone of this introduction, the purpose of this article is not to argue against 

differential privacy. The purpose is to argue for more acceptance and focus in CS on 

informal or empirical research in data anonymity. The informal approach is anathema to 

many if not most academic researchers. As a reviewer recently said about a rejected paper 

on empirical data anonymity: ‘By not having formal guarantees, the approach proposed 

reenters the arms race that frameworks like differential privacy ended.’ I believe that this 

arms race is both inevitable and manageable. 

This article focuses on two examples of data anonymization technologies, one with 

mathematical guarantees of anonymity (differential privacy), and one without 

mathematical guarantees (Diffix).  

 

It is informative to compare differential privacy and Diffix with two commonly used 

crypto technologies, one with a mathematical foundation (Elliptic Curve Cryptography 

(ECC), a public-key encryption scheme), and one without (Advanced Encryption Standard 

(AES), a symmetric-key encryption scheme). Public-key encryption is used to establish 

shared keys, and symmetric key encryption uses those keys to encrypt the actual data 

being encrypted. 

The art of cryptography—allowing a trusted party to read a message while preventing an 

untrusted party from reading the same message—goes back thousands of years. During 

this time, attackers and defenders have been locked in an arms race, with the attackers 

sometimes having the upper hand—as when  the Allies broke the German Enigma cypher 

system during WWII—and with defenders appearing to have the upper hand in modern 

times. 

 

 

 

https://epic.org/privacy/reidentification/Sweeney_Article.pdf
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/History_of_cryptography
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The holy grail of cryptography is to have a system that is mathematically proven to be 

unbreakable even when the attacker knows how the system works, as illustrated in the 

figure to the right. There is a complete proof that a given mechanism reduces to a known 

hard or impossible math problem. To effectively break the mechanism, an attacker must 

solve the math problem efficiently (much better than brute force)—which nobody in 

history has been able to do. A brute force attack is one in which the attacker simply tries 

every possible key. This is akin to trying every possible combination on a lock. With the 

exception of side-channel attacks and implementation errors (which all systems are 

subject to), ECC meets this ideal. 

 

 

 

 

By contrast, if the mechanism is too complex, then it cannot be reduced to a hard math 

problem. Instead, the best that can be done is to provide proofs or strong evidence that 

specific known attacks fail, as illustrated in the figure to the right. The risk associated 

with these systems is that there may be unknown attacks. AES is this kind of system.  

One might reasonably ask: if we have encryption schemes that reduce to hard math, why 

do we bother with encryption schemes that do not? The answer is simple: performance. 

ECC is very slow compared to AES. Users would rather live with the uncertainty of AES 

than put up with the overhead of ECC. The request for candidate algorithms for AES 

issued by the U.S. National Institute of Standards and Technology (NIST) in 1997 is a case 

in point. The document lays out the requirements for the U.S. standard for symmetric key 

encryption, and yet the document is only eight pages long. Nowhere does the document 

require formal guarantees. By contrast, the document is quite clear about the need for 

high performance, second only to the need for an algorithm that can defend against all 

known attacks. 

All security mechanisms have something they enable and something they prevent. 

Symmetric key crypto (AES) enables a trusted party to read a message at very little 

computational cost. It prevents an untrusted party from reading the message without a 

prohibitive computational cost. Our experience with AES tells us that it is reasonable to 

accept more risk in order to satisfy the enabling requirement. Of course all things being 

equal, less risk is better than more: if it were the case that formally guaranteed encryption 

schemes were fast enough, or say nearly as fast as AES, then certainly it would be the 

preferred solution. If this were possible, NIST would have probably demanded it. 

 

https://en.wikipedia.org/wiki/Side-channel_attack
https://www.gpo.gov/fdsys/pkg/FR-1997-09-12/pdf/97-24214.pdf
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It is clear what anonymization should prevent, at least informally. It prevents an 

untrusted party from learning about individuals in the data. What does it enable? It allows 

an untrusted party to learn as much as possible about the data (while of course still 

preventing what it needs to prevent). In short, anonymization should enable 

analytics by an untrusted party. 

There are thousands of analytic tasks, and data scientists make a career out of learning 

how to do them. This page lists 16 R manuals of less than 100 pages, and 24 manuals of 

more than 100 pages. A PostgreSQL comprehensive manual is 3437 pages long. By 

contrast, the NIST AES request needed only 8 pages to specify its requirements, and even 

then AES is too complex for formal guarantees. The utility side of data anonymization is 

much more complex. Computer scientists in academia are eschewing empirical data 

anonymity research, meaning that a large talent pool is not adequately addressing an 

important societal need. Yet research on technologies that carry some risk can be 

valuable.  

 

With this background in place, let’s take a brief look at Diffix and differential privacy.  

Diffix is an anonymization algorithm that is deployed between an analyst and the 

database that the analyst wishes to query (see figure to right). Diffix acts on each query 

(Structured Queried Language, or SQL). It parses the query and rejects or modifies those 

that could be used in known attacks. It interacts with the raw data, and suppresses or 

distorts the answer so as to satisfy anonymity. Anonymization in Diffix consists of a 

cohesive package of mechanisms, some decades old and some new. Old mechanisms 

include suppressing answers that pertain to too few users, adding “noise” by distorting 

answers, and changing extreme values contributed by individuals so that they match 

those of other individuals. A key new mechanism is layered sticky noise, which ties noise 

values to components of the query and the answer so that repeated queries cannot be 

used to remove noise.  

 

https://cran.r-project.org/other-docs.html
https://cran.r-project.org/other-docs.html
https://arxiv.org/abs/1806.02075
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Our design philosophy for Diffix is to enable as much analytics as possible, with as little 

distortion as possible, while defending against known attacks. We measure the 

effectiveness of an attack according to the criteria of the EU Article 29 Working Party 

opinion: singling-out, linkability, and inference. The kinds of analytics that Diffix enables 

as of this writing are relatively basic. Aggregates such as count, sum, average, and 

standard deviation are computed across multiple attributes, leading to histograms, heat 

maps, probability distributions, and so on. We hope to develop machine learning in the 

future. 

Diffix is certainly not a panacea. The amount of noise can be high when individual users 

contribute disproportionally to an answer, and in some cases it is hard for an analyst to 

know how much noise there is. Large amounts of data can be suppressed. The limitations 

that Diffix places on SQL are at best irritating, and at worst can prevent certain queries 

altogether. One cannot, for instance, simply drop Diffix into an existing SQL-based 

analytics application and expect it to work as is. While Diffix is head-and-shoulders more 

usable than alternatives of arguably comparable anonymity, there is still much to 

improve. 

At its core, differential privacy is a mathematical model. The model expresses the 

abstract concept that if there are two databases that differ by only one user, the two 

databases are to a greater or lesser extent statistically indistinguishable from each other. 

The indistinguishability property holds even if an attacker knows everything about the 

data except whether this one user is included or not. The idea is that if an attacker can’t 

even tell if a user is in the data, he or she will not be able to determine anything else about 

the user. In essence, differential privacy is the hard math problem. Even more, it is an 

impossible math problem, because it expresses uncertainty derived from randomness. One 

can no more “solve” differential privacy math than one can solve a coin toss. 

  

Of course math alone doesn’t protect data. There must be a mechanism and a proof that 

the mechanism reduces down to the math. There are by now hundreds of published 

differentially-private mechanisms. Each one aims to accomplish an analytic task, for 

instance building a histogram, taking an average, releasing micro-data, or generating a 

machine learning model. Invariably these mechanisms involve some form of random 

https://www.pdpjournals.com/docs/88197.pdf
https://www.pdpjournals.com/docs/88197.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/dwork.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2008/04/dwork_tamc.pdf
http://www.ee.iisc.ac.in/people/faculty/pavant/files/papers/C10.pdf
https://petsymposium.org/2018/files/papers/issue1/paper34-2018-1-source.pdf
https://arxiv.org/abs/1607.00133
https://arxiv.org/abs/1607.00133
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perturbation, be it adding noise (i.e. a random number taken from a Laplacian 

distribution with mean zero) to a computed answer, adding noise to individual values in 

the database, or removing random users from the dataset. 

A key characteristic of differential privacy is that each new release of information reduces 

the amount of uncertainty that an analyst has about the data. Or put another way, each 

new release of information increases the mathematical measure of privacy loss. This 

relationship between the number of queries and privacy loss results in the notion of a 

privacy budget—a limit on how much information can be released from a dataset. By way 

of analogy, suppose you are given two coins, a true coin with a 50% probability of landing 

heads, and a biased coin with a 51% probability of landing heads. (This is analogous to 

the abstract concept of two databases differing by one user.) Say you wish to determine 

which coin is which. With a single toss of one coin, you really have no idea which is which. 

If the coin lands heads, you might guess that that coin is the biased coin, but you’ll be 

very uncertain about that. If, however, you can toss the coin hundreds of times, you can 

increase your certainty. If after 10000 tosses you get 5097 heads, you can be almost 

certain that that coin is the biased coin. The differential privacy budget in essence 

prevents attackers from having too many coin tosses. If attackers are allowed to learn too 

much precise information, the privacy of individuals in the database will be compromised. 

The budget places a bound on privacy loss (or, equivalently, uncertainty). With a given 

budget, an attacker cannot cause more privacy loss than that which the budget allows. 

The budget is also a tunable parameter, by convention expressed by the Greek character 

epsilon (ε). An epsilon of zero means no privacy loss whatsoever (and also no data 

whatsoever), and an epsilon of infinity means no bound on privacy loss. The choice of 

epsilon is of critical importance. 

There is a general concensus that epsilon less than one is very safe, and epsilon well above 

one is, not unsafe necessarily, but rather meaningless. Epsilon is not a measure of actual 

privacy loss, it is a measure of worst-case scenario possible privacy loss. Let’s look at 

another analogy. Suppose that we have a measure of the worst-case bound on gas 

mileage, call it zeta (ζ). In other words, given the zeta of a car, I am guaranteed that the 

gas mileage is not less than zeta. Now suppose the zeta for a given compact car is 40 mpg. 

That is excellent! But now suppose instead that zeta is 0.5 mpg. Maybe it is so low because 

the car manufacturer wanted to take into account the worst possible conditions, for 

instance driving up a steep incline in gravel. We can be pretty sure that under normal 

road conditions, the car would have much better gas mileage, so zeta=0.5mpg tells us 

almost nothing. Likewise in differential privacy, epsilon=100 tells us almost nothing. 

My premise is that Diffix is to AES what differential privacy is to ECC. I make this 

comparison to support the argument that, just as research on both formal and informal 
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crypto is important, so is it for both formal and informal data anonymity. Let’s explore 

the extent to which these analogies make sense. 

Diffix is like AES in that both lack mathematical guarantees, and both are evaluated 

against a set of known attacks. The similarity, however, ends there. AES is far simpler 

than Diffix. AES (and other symmetric key crypto) is backed by decades of research by 

hundreds of researchers. Its properties have been rigorously studied and are very well 

understood. The confidence that there are no catastrophic unknown attacks is high. 

By contrast, Diffix has been under development for less than three years, has evolved 

substantially in that time, and is studied by a small handful of people. We are using an 

anonymization bounty program to motivate attacks on the system, but the amount of 

participation pales compared to AES, which is used worldwide. 

Differential privacy is like ECC in that both have mathematical guarantees. One 

important difference is that requirements for ECC are relatively simple. As a result, the 

mechanisms are simple, the proofs are correspondingly simple and few, and therefore 

confidence that the proofs are correct is high. 

Differential privacy mechanisms, on the other hand, can be complex or subtle, and so can 

their proofs be. Furthermore there are so many proofs that they can’t all be thoroughly 

scrutinized. A paper by Lyu et.al., for instance, shows that multiple versions of a 

particular variant of differential privacy had incorrect proofs. It is unfortunately also 

quite easy to build an implementation that doesn’t match the proven mechanism. In the 

provocatively titled blog “Uber’s Differential Privacy … Probably Isn’t”, an early 

differential privacy researcher finds that the implementation of the differentially-private 

system built by researchers at the University of Berkeley  does not match the theory. This 

mismatch is not surprising. Proofs are hard to get right and implementations are hard to 

get right. But any technology that requires a new proof and implementation for each of 

hundreds of analytic tasks is likely to often get it wrong.  

A second important difference is that ECC (and other public-key crypto systems) 

demonstrably satisfies its utility goal. It is widely used. By contrast, differential privacy 

is struggling. There are many experts who would disagree with this statement, so it merits 

discussion. 

The Harvard Privacy Tools Project has a differential privacy implementation called PSI. 

Setting epsilon to 0.5, we could build user-count histograms of 3 columns and take the 

mean of two more. The tool estimated the 95% error on the mean to be 3%, and on the 

counts to be ±60 (around 5% to 10% for most of the histogram bars). These are reasonable 

and useful answers, but those 5 queries exhausted the privacy budget. Were one to adhere 

challenge.aircloak.com
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://arxiv.org/pdf/1603.01699.pdf
https://github.com/frankmcsherry/blog/blob/master/posts/2018-02-25.md
http://www.vldb.org/pvldb/vol11/p526-johnson.pdf
http://www.vldb.org/pvldb/vol11/p526-johnson.pdf
https://privacytools.seas.harvard.edu/
http://psiprivacy.org/static/about/index.html
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strictly to differential privacy, that database (a small portion of the California 

Demographic Dataset) could never be queried again. A dataset with more rows could have 

allowed more queries at similar relative error levels. The privacy budget, however, will 

always set a limit to the number of queries one can do, thereby preventing one from 

getting some or even most of the analytic value from the dataset. 

The ARX Data Anonymization Tool has a feature for generating differentially-private 

microdata. Running this feature with an epsilon of 2 on a dataset with 16 columns and 

5369 rows generates an anonymized dataset with no content whatsoever. Every value was 

replaced by a ‘*’ symbol. 

In the above two examples, I did not look for specific cases that perform exceptionally 

poorly, nor did I look for cases that perform exceptionally well. These are just two 

examples that seem reasonable to try that resulted in limited or no utility. The following 

are examples of specific use cases that do demonstrate some utility. 

Apple’s reported implementation of differential privacy allows for counting the number 

of users with certain values for given attributes (i.e. how many users used certain 

emoticons, the number of users who typed certain terms, etc.). The mechanism fails to 

find infrequently used values, and has absolute errors in the hundreds or thousands. 

Nevertheless, it suits the specific use case: simple counting over very large datasets. 

Google has also demonstrated utility for a similar kind of use case. 

The US census bureau has stated that it will use differential privacy for disclosure of 2020 

census data. The public release of census data is a potential sweet spot for differential 

privacy, because the census bureau can carefully engineer how the privacy budget is used 

so as to maximize utility. A paper published by the Institute for Social Research and Data 

Innovation (ISRDI), however, argues that using differential privacy is overkill, and may 

severely compromise the utility of the census data. This is an important test case for 

differential privacy and it will be very interesting to see how it plays out. 

If differential privacy has thus far proved of limited use, then why does it get so much 

attention? Differential privacy provides tremendous value in ways that have nothing to 

do with its usability per se. First, it has and continues to provide value to academic 

researchers. In general, security papers involving guarantees and proofs are easier to 

publish than those without. Differential privacy is particularly good in this respect, in 

part because it is such a compelling idea intellectually, and in part because there are so 

many use cases to explore and therefore so many proofs to write. Second, it provides value 

to marketing departments, as amply demonstrated by Apple. 

In addition, both marketers and researchers like to interpret facts about their 

products/research in a positive light. As a result, it is hard to separate the hype from the 

reality. For instance, it is widely reported that Apple uses differential privacy to collect 

personal data from its devices. The privacy statement from Apple (taken from my iPhone) 

https://arx.deidentifier.org/
https://en.wikipedia.org/wiki/Microdata_(statistics)
https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/42852.pdf
https://www.census.gov/newsroom/blogs/research-matters/2018/08/protecting_the_confi.html
https://www.census.gov/newsroom/blogs/research-matters/2018/08/protecting_the_confi.html
https://assets.ipums.org/_files/mpc/MPC-Working-Paper-2018-6.pdf
https://assets.ipums.org/_files/mpc/MPC-Working-Paper-2018-6.pdf
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has the phrase “subject to privacy preserving techniques such as differential privacy.” 

This means that they are using other privacy preserving techniques as well. Apple does 

not reveal what percentage of their personal data is protected with differential privacy. 

Perhaps because differential privacy is now a marketing “brand”, several companies have 

started offering products labeled as differentially private. One such company, Immuta, 

describes their mechanism here. The description states that a budget is not practical, so 

to get around this obstacle, Immuta: 

“can capture the fact the question has already been answered, and instead of asking the room 

[sic] to think of a new random number, we give the same noisy response we previously 

calculated.” 

This basic sticky noise concept was tried as early as 1980, and is similar to the sticky part 

of Diffix’ layered sticky noise. From our experience, sticky noise requires substantial 

complexity to defend against known attacks, and is almost certainly not provable as 

differential privacy. 

A relevant question to accurately assess differential privacy is when a mechanism can be 

legitimately be described as differentially private. For instance: 

 Only when epsilon is below a certain threshold. 

 Only when the value of epsilon is proven. 

 Only when the proof has been certified as correct. 

 Only when the assumptions made in the proof are regarded as reasonable by a 

committee of experts, or 

 Only when the assumptions are shown to hold in the deployed setting. 

Today there exist no standards for when to label a mechanism as differentially private, 

nor is there any kind of industry forum for oversight. 

Assumptions are an important part of proofs. For instance, I may have a proof that a 

message written on a piece of paper is secret on the assumption that attackers cannot see 

through the walls of a metal box. On the other hand, I may have a proof that the message 

is secret on the assumption that attackers are blind. Clearly the first proof is more general 

and useful than the second. 

The Apple case provides an insightful example of how assumptions play out in the world 

of differential privacy. In 2016 Apple announced that they use differential privacy. They 

did not offer details—how the mechanism works or what epsilon they use. In 2017 a team 

of researchers reverse engineered Apple's client implementation, and reported that 

Apple’s epsilon was essentially unbounded. In a press article describing the research, 

WIRED magazine describes Apple’s response outlining a number of reasons why the 

researchers’ conclusions about epsilon are wrong. These include that Apple doesn’t 

correlate different data or even know how it could be done, and that it throws away user 

https://www.immuta.com/differential-privacy-in-immuta-2-0/
http://faculty.nps.edu/dedennin/publications/randomsamplequeries.pdf
https://www.apple.com/newsroom/2016/06/apple-previews-major-update-with-macos-sierra/
https://arxiv.org/abs/1709.02753
https://www.wired.com/story/apple-differential-privacy-shortcomings/
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IP addresses. Later Apple published its epsilons (between 2 and 8, which is pretty good 

but worse than the strong threshold of epsilon=1) and its mechanism. 

The big difference between what Apple claims and what the researchers claim is due to 

the difference in assumptions. The researchers did not take into account additional 

mechanisms that happen within Apple’s data centers because they looked only at the 

client implementation. Apple assumes (doesn’t prove) that mechanisms such as dropping 

the IP address and changing the client identifier daily allow the overall system to be 

differentially private. Whether this is true or not is a matter of opinion, though to my 

knowledge no differential privacy experts have offered their views on this case. 

The reviewer quoted in the introduction believes that differential privacy has ended the 

arms race, or at least this thought can be implied from the way the comment was worded. 

This can’t be true, given how seldom differential privacy is used. The arms race goes on 

with practitioners relying mainly on access control and encryption to ensure that only 

trusted parties have access to data that is usually only weakly anonymized. 

One way to improve understanding and strength of empirical data anonymity is to 

encourage white-hat attacks on transparent mechanisms. The NIST AES competition is 

one example of how this was done for crypto. In late 2017 and early 2018, Aircloak ran a 

bounty program for data anonymity. This program was notable not only because it was 

the first ever bounty program for data anonymity, but also because it included a measure 

of anonymity that was used to determine the effectiveness of attacks and resulting 

payout.  

The Aircloak bounty program was transparent: a detailed description of Diffix was openly 

published, and participants could view the source code on request (though none did). 

Participants needed to register to get access to the deployment, and in order to make 

priority claims on planned attacks. Although no signed documents were required, 

participants informally agreed to give Aircloak up to 12 months to fix discovered 

vulnerabilities before going public.  

The measure of anonymity used to determine payout was based on the three EU Article 

29 Working Party criteria for data anonymity. The three criteria—singling-out, inference, 

and linkability—are generally regarded as strong criteria for anonymity. The payout was 

designed such that even attacks that would not be regarded as serious threats could still 

be counted as successful and receive a payout. To mimic the fact that attackers often have 

external knowledge about data, the program allowed attackers to have partial knowledge 

of the data, though with greater knowledge leading to smaller payouts. Attackers could 

make an unlimited number of SQL queries to one of a number of real datasets via the 

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf
https://www.gpo.gov/fdsys/pkg/FR-1997-09-12/pdf/97-24214.pdf
challenge.aircloak.com
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Aircloak data anonymization interface, and could supply their own datasets if they 

wished, so long as the data was real. 

The challenge attracted around 30 attackers, two teams of which were successful (see here 

and here). Both attacks exploited the ability to formulate queries about specific sets of 

users. Aircloak implemented a defense that restricts the types of queries that can be made 

on columns in which a large proportion of values uniquely identify users. These specific 

new restrictions turned out not to be particularly onerous, though it certainly may be the 

case that fixes for future vulnerabilities may result in serious new limitations. 

The experience with the bounty program was overall positive, and additional rounds are 

planned.  

NIST also has a prize challenge on data anonymity, the Differential Privacy Synthetic 

Data Challenge. Unlike the AES competition, this challenge is not to demonstrate 

privacy—other than validating the correctness of the proof, the challenge assumes 

privacy due to the differential privacy guarantees. Rather, the challenge is to demonstrate 

the utility of a synthetic data set for several machine learning operations for several 

values of epsilon (0.1, 1, and 10). 

The juxtaposition of these two challenges illustrates the thesis of this article nicely:  the 

formal mechanisms lack utility, the informal mechanisms lack assurance of protection, 

and both are offering incentives to move towards utility and protection. Both approaches 

are legitimate and should be encouraged. 

The measure of anonymity used for the Aircloak challenge can be generalized to apply to 

any anonymization scheme, including differential privacy. My research group has started 

the Open GDA Score Project to establish a General Data Anonymization (GDA) Score. The 

project can be used as a repository for tools, attacks, datasets, and apples-to-apples 

measurements of all kinds of anonymization technologies. The starting point for this 

project is a method we developed for measuring both anonymity and utility. As with the 

Aircloak Challenge, the method is based on implemented attacks on real anonymized 

datasets. This approach has the drawback that the measure is only as good as the attacks 

themselves, but the hope is that, through community participation, we can build a near-

comprehensive library of attacks and utility measures with which to evaluate 

anonymization technologies.  

Differential privacy is a beautiful theory. If it could be made to provide adequate utility 

while maintaining small epsilon, corresponding complete proofs, and reasonable 

assumptions, it would certainly be a privacy breakthrough. It remains to be seen to what 

extent we can make use of differential privacy. So long as differential privacy is not 

https://arxiv.org/abs/1810.05692
https://www.benthamsgaze.org/2018/10/02/on-location-time-and-membership-studying-how-aggregate-location-data-can-harm-users-privacy/
https://challenge.gov/a/buzz/nist-pscr/differential-privacy-synthetic-data-challenge
https://challenge.gov/a/buzz/nist-pscr/differential-privacy-synthetic-data-challenge
http://www.gda-score.com/
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developed enough to be widely used, industry will continue to use empirical approaches 

to anonymity, and these efforts should be better supported by the academic privacy 

research community. 

Based on the research outlined above, the following recommendations are suggested: 

 That program committees encourage submission of empirical approaches to data 

anonymity. 

 That research funding agencies support empirical approaches to data anonymity. 

 That standards be established regarding the use of the term “differential privacy”, 

these standards encompassing the value of epsilon, the rigor with which the value 

is proven, and the strength of the corresponding assumptions. 

 


