Daisy - Framework for Analysis and Optimization
of Numerical Programs (Tool Paper)

1®9) - Anastasiia Izycheva?, Fariha Nasir®, Fabian Ritter?,

Heiko Becker!, and Robert Bastian!

Eva Darulova

! MPI-SWS, {eval hbecker} robert}@mpi-sws.org
2 Technische Universitdt Miinchen, izycheva@in.tum.de
3 Saarland University, fnasir@mpi-sws.org, fabian.ritter@cs.uni-saarland.de

Abstract. Automated techniques for analysis and optimization of finite-
precision computations have recently garnered significant interest. Most
of these were, however, developed independently. As a consequence, reuse
and combination of the techniques is challenging and much of the un-
derlying building blocks have been re-implemented several times, in-
cluding in our own tools. This paper presents a new framework, called
Daisy, which provides in a single tool the main building blocks for accu-
racy analysis of floating-point and fixed-point computations which have
emerged from recent related work. Together with its modular structure
and optimization methods, Daisy allows developers to easily recombine,
explore and develop new techniques. Daisy’s input language, a subset
of Scala, and its limited dependencies make it furthermore user-friendly
and portable.

1 Introduction

Floating-point or fixed-point computations are an integral part of many em-
bedded and scientific computing applications, as are the roundoff errors they
introduce. They expose an interesting tradeoff between efficiency and accuracy:
the more precision we choose, the closer the results will be to the ideal real
arithmetic, but the more costly the computation becomes. Unfortunately, the
unintuitive and complex nature of finite-precision arithmetic makes manual op-
timization infeasible such that automated tool support is indispensable.

This has been recognized previously and several tools for the analysis and
optimization of finite-precision computations have been developed. For instance,
the tools Fluctuat |22], Rosa [14], Gappa [17], FPTaylor |[41], Real2Float [31] and
PRECISA [34] automatically provide sound error bounds on floating-point (and
some also on fixed-point) roundoff errors. Such a static error analysis is a pre-
requisite for any optimization technique providing rigorous results, such as re-
cent ones which choose a mixed-precision assignment [10] or an error-minimizing
rewriting of the non-associative finite-precision arithmetic [15}37].

Many of these techniques are complementary. The static analysis techniques
have different strengths, weaknesses, and accuracy/efficiency tradeoffs, and op-

mailto:eva@mpi-sws.org
mailto:hbecker@mpi-sws.org
mailto:robert@mpi-sws.org

timization techniques should ideally be combined for best results [16]. How-
ever, today’s techniques are mostly developed independently, resulting in re-
implementations and making re-combination and re-use challenging and time-
consuming.

In this paper, we present the framework Daisy for the analysis and opti-
mization of finite-precision computations. In contrast to previous work, we have
developed Daisy from the ground up to be modular, and thus easily extensi-
ble. Daisy is being actively developed and currently already provides many of
today’s state-of-the-art techniques — all in one tool. In particular, it provides
dataflow- as well as optimization-based sound roundoff error analysis, support for
mixed-precision and transcendental functions, rewriting optimization, interfaces
to several SMT solvers and code generation in Scala and C. Daisy furthermore
supports both floating-point and fixed-point arithmetic (whenever the techniques
do), making it generally applicable to both scientific computing and embedded
applications.

Daisy is aimed at tool developers as well as non-expert users. To make it user-
friendly, we adopt the input format of Rosa, which is a real-valued functional
domain-specific language in Scala. Unlike other tools today, which have custom
input formats [41] or use prefix notation [12], Daisy’s input is easily human
readabld] and natural to use.

Daisy is itself written in the Scala programming language [35] and has lim-
ited and optional dependencies, making it portable and easy to install. Daisy’s
main design goals are code readability and extensibility, and not necessarily per-
formance. We demonstrate with our experiments that roundoff errors computed
by Daisy are nonetheless competitive with state-of-the-art tools with reasonable
running times.

Daisy has replaced Rosa for our own development, and we are happy to report
that simple extensions (e.g. adding support for fused multiply-add operations)
were integrated quickly by MSc students previously unfamiliar with the tool.

Contributions We present the new tool Daisy which integrates several techniques
for sound analysis and optimization of finite-precision computations:

static dataflow analysis for finite-precision roundoff errors [14] with mixed-
precision support and additional support for the dReal SMT solver [21],

— FPTaylor’s optimization-based absolute error analysis [41],

transcendental function support, for dataflow analysis following [13],
interval subdivision, used by Fluctuat [22] to obtain tighter error bounds,
— rewriting optimization based on genetic programming [15].

We show in that results computed by Daisy are competitive. The code
is available open-source at https://github.com/malyzajko/daisy.

We focus primarily on sound verification techniques. The goal of this effort
is not to develop the next even more accurate technique, rather to consolidate
existing ones and to provide a solid basis for further research. Other efforts

1
We realize a preference for prefix or infix notation is personal.

https://github.com/malyzajko/daisy

import daisy.lang._; import Real._;

object RigidBody {
def rigidBody(x1l: Real, x2: Real, x3: Real): Real = {
require(-15.0 <= x1 && x1 <= 15 && -15.0 <= x2 && x2 <= 15.0 &&
-15.0 <= x3 && x3 <= 15 && x1 +/- 1le-5)

-x1xx2 - 2¥x2*xx3 - x1 - x3

} ensuring(res => res +/- 1.75e-13)

}

Fig. 1. Example input program

related to Daisy, which have been described elsewhere and which we do not
focus on here are the generation and checking of formal certificates [4], relative
error computation [26], and mixed-precision tuning [16].

2 User’s Guide: an Overview of Daisy

We first introduce Daisy’s functionality from a user’s perspective, before review-

ing background in roundoff error analysis (section 3)) and then describing the
Foction 4).

developer’s view and the internals of Daisy |

Installation Daisy is set up with the simple build tool (sbt) [30], which takes
care of installing all Scala-related dependencies fully automatically. This basic
setup was successfully tested on Linux, macOS and Windows. Some of Daisy’s
functionality requires additional libraries, which are also straight-forward to in-
stall: the Z3 and dReal SMT-solvers [19,21], and the MPFR arbitrary-precision
library |20]. Z3 works on all platforms, we have tested MPFR on Linux and Mac,
and dReal on Linux.

Input Specification Language The input to Daisy is a source program written
in a real-valued specification language; shows an example nonlinear
embedded controller [15]. The specification language is not executable (as real-
valued computation is infeasible), but it is a proper subset of Scala. The Real
data type is implemented with Scala’s dedicated support for numerical types.
Each input program consists of a number of functions which are handled by
Daisy separately. In the function’s precondition (the require clause), the user
provides the ranges of all input Variablesﬂ In addition, Daisy allows to specify
an initial error (beyond only roundoff) on input variables with the notation
x1 +/- le-5 as well as additional (non-interval) constraints, e.g. x1 * x2 <= 106.

2 The magnitude of roundoff errors depends on the magnitude of all intermediate
expressions; in general, with unbounded ranges, roundoff errors are also unbounded.

The function body consists of a numerical expression with possibly local vari-
able declarations. Daisy supports arithmetic (+, —, *, /, \/), the standard tran-
scendental functions (sin, cos, tan, log, exp) as well as fused multiply-add (FMA).
Daisy currently does not support conditionals and loops; we discuss the chal-
lenges and possible future avenues in The (optional) postcondition in
the ensuring clause specifies the result’s required accuracy in terms of worst-case
absolute roundoff error. For our controller, this information may be for instance
determined from the specification of the system’s sensors or the analysis of the
controller’s stability [32].

Main Functionality The main mode of interaction with Daisy is through a
command-line interface. Here we review Daisy’s main features through the most
commonly used command-line options. Brackets denote a choice and curly braces
optional parameters. For more options and more fine-grained settings, run - -help.

The main feature of Daisy is the analysis of finite-precision roundoff errors.
For this, Daisy provides several methods:

--analysis=[dataflow:opt:relative] {--subdiv}

Daisy supports forward dataflow analysis (as implemented in Rosa, Fluctuat
and Gappa) and an optimization-based analysis (as implemented in FPTaylor
and Real2Float). These methods compute absolute error bounds, and whenever
a relative error can be computed, it is also reported. Daisy also supports a
dedicated relative error computation [26] which is often more accurate, but also
more expensive. All methods can be combined with interval subdivision, which
can provide tighter error bounds at the expense of larger running times. We
explain these analyses in more detail in

Accuracy and correspondingly cost of both dataflow and optimization-based
analysis can be adjusted by choosing the method which is used to bound ranges:

--rangeMethod=[interval:affine:smt] {--solver=[z3, dReal]}

With the smt option, the user can select between currently two SMT solvers,
which have to be installed separately. For dataflow analysis, one can also select
the method for bounding errors: --errorMethod=[interval, affine].

Daisy performs roundoff error analysis by default w.r.t. to uniform double
floating-point precision, but it also supports various other floating-point and
fixed-point precisions:

--precision=[Fixed8:Fixed1l6:Fixed32:Floatl6:Float32:Float64:Quad:QuadDouble]

Mixed-precision, i.e. choosing different precisions for different variables, is sup-
ported by providing a mapping from variables to precisions in a separate file
(--mixed-precision=file).

Finite-precision arithmetic is not associative, i.e. different rewritings, even
though they are equivalent under a real-valued semantics, will exhibit different
roundoff errors. The --rewrite optimization [15| uses genetic search to find a
rewriting for which it can show the smallest roundoff error.

D Home About

e—————————

RigidBody

import daisy.lang.
import Real.

No Iniial Errors
No Round Off Errors
Code Generator
object Rigidsody {
Select Precision
def rigidBodyl(xl: Real, x2: Real, x3: Real): Real = {
require(-15.0 <= X1 & X1 <= 15 &6 ~15.0 <= X2 && X2 <= 15.0 & -15.0 <= x3 && x3 <= 15) Select Range Method

“x10x2 - 2#x2%x3 - x1 - x3 See Less
)

def rigidBody(xl: Real, x2: Real, x3: Real): Real = {
require(-15.0 <= x1 & x1 <= 15 & -15.0 <= X2 & X2 <= 15.0 &&
-15.0 <= x3 & x3 <= 15)

i
i
i

No analysis method specified, choosing default
evsnseos Starting Dalsy e
) Starting dataflow error phase
analyzing fnc: rigidBody1
) analyzing fnc: rigidBody2

20(x10x24x3) + (30x34x3) - x2*(x14x2%x3) + (34x3*x3) - x2

rigidBody1
abs-ermor: 3.2152058793144533-13, real range: [-705.0, 705.0), rl-
error:

rigidBody2

Fig. 2. Screenshot of Daisy’s online interface

Daisy prints the analysis result to the terminal. If a postcondition is spec-
ified, but the computed error does not satisfy it, Daisy also prints a warning.
Optionally, the user can also choose to generate executable code (--codegen) in
Scala or C, which is especially useful for fixed-point arithmetic, as Daisy’s code
generator includes all necessary bit shifts.

Static analysis computes a sound over-approximation of roundoff errors, but
an under-approximation can also be useful, e.g. to estimate how big the over-
approximation of static analysis is. This is provided by the --dynamic analysis
in Daisy which runs a program in the finite precision of interest and a higher-
precision version side-by-side. For this, the MPFR library is required.

Online Interface We also provide an online interface for Daisy, which allows one
to quickly try it out, although it does not yet support all the options:

daisy.mpi-sws.org, see the screenshot in [Figure 2|

3 Theoretical Foundations

Before describing the inner architecture of Daisy, we review necessary back-
ground on finite-precision arithmetic and static analysis of their roundoff errors.

Floating-point Arithmetic One of the most commonly used finite-precision
representations is floating-point arithmetic, which is standardized by IEEE754 .
The standard defines several precisions as well as rounding operators; here we
will consider the most commonly used ones, i.e. single and double precision with
operations in rounding-to-nearest mode. Then, arithmetic operations satisfy the
following abstraction:

zosy=(zoy)(l+e)+d, le| < emld < m (1)

daisy.mpi-sws.org

where o € +, —, %, / and oy, denotes the respective floating-point version. Square
root follows similarly, and unary minus does not introduce roundoff errors. The
machine epsilon ¢, bounds the maximum relative error for so-called normal
values. Roundoff errors of subnormal values, which provide gradual underflow,
are expressed as an absolute error, bounded by 6,,. €, = 2724, 6,, = 2710 and
€m = 273,08, = 271975 for single and double precision, respectively.

Higher precisions are usually implemented in software libraries on top of
standard double floating-point precision [2|. Daisy supports quad and quad-
double precision, where we assume €,, = 273 and ¢,, = 272!, respectively.
Depending on the library, d,, may or may not be defined, and Daisy can be
adjusted accordingly.

Static analyses usually use this abstraction of floating-point arithmetic, as
bit-precise reasoning does not scale, and furthermore is unsuitable for computing
roundoff errors w.r.t. continuous real-valued semantics (note that is
also real-valued). The abstraction furthermore only holds in the absence of not-
a-number special values (NaN) and infinities. Daisy’s static analysis detects such
cases automatically and reports them as errors.

Fixed-point Arithmetic Floating-point arithmetic requires dedicated sup-
port, either in hardware or software, and depending on the application this
support may be too costly. An alternative is fixed-point arithmetic which can
be implemented with integers only, but which in return requires that the radix
point alignments are precomputed at compile time. While no standard exists,
fixed-point values are usually represented by bit vectors with an integer and a
fractional part, separated by an implicit radix point. At runtime, the alignments
are then performed by bit-shift operations. These shift operations can also be
handled by special language extensions for fixed-point arithmetic [25]. For more
details see |1], whose fixed-point semantics we follow. We use truncation as the
rounding mode for arithmetic operations. The absolute roundoff error at each
operation is determined by the fixed-point format, i.e. the (implicit) number
of fractional bits available, which in turn can be computed from the range of
possible values at that operation.

Range Arithmetic The magnitude of floating-point and fixed-point roundoff
errors depends on the magnitudes of possible values. Thus, in order to accurately
bound roundoff errors, any static analysis first needs to be able to bound the
ranges of all (intermediate) expressions accurately, i.e. tightly. Different range
arithmetics have been developed and each has a different accuracy/efficiency
tradeoff. Daisy supports interval 33| and affine arithmetic [18] as well as a
more accurate, but also more expensive, combination of interval arithmetic and
SMT [14].

Interval arithmetic (IA) [33] is an efficient choice for range estimation, which
computes a bounding interval for each basic operation o € {+,—,x*, /} as

[0, z1] © [yo, y1] = [min(x o y), max(x o y)], where = € [zo,x1],y € [yo, y1]

and analogously for square root. Interval arithmetic cannot track correlations
between variables (e.g. x — x # [0,0]), and thus can introduce significant over-
approximations of the true ranges, especially when the computations are longer.

Affine arithmetic (AA) |18| tracks linear correlations by representing possible
values of variables as affine forms:

n
T =x+ inei, where €; € [—1,1]
i=1

where zg denotes the central value (of the represented interval) and each noise
term x;¢; denotes a deviation from this central value. The range represented by
an affine form is computed as [&] = [xg—rad(Z), xo+rad(Z)], rad(Z) = Y1, |zl
Linear operations are performed term-wise and are computed exactly, whereas
nonlinear ones need to be approximated and thus introduce over-approximations.
Overall, AA can produce tighter ranges in practice (though not universally). In
particular, AA is often beneficial when the individual noise terms (z;’s) are small,
e.g. when they track roundoff errors.

The over-approximation due to nonlinear arithmetic can be mitigated [14]
by refining ranges computed by TA with a binary search in combination with a
SMT solver which supports nonlinear arithmetic such as Z3 [19] or dReal [21].

Static Analysis for Roundoff Error Estimation The worst-case absolute
roundoff error that most static analyses approximate is:
max - |f(z) — f(Z)| (2)
z€la,b]
where [a,b] is the range for x given in the precondition, and f and z are a
mathematical real-valued arithmetic expression and variable, respectively, and f

and Z their finite-precision counterparts. This definition extends to multivariate
f component-wise. i

An automated and general estimation of relative errors (W), though
it may be more desirable, presents a significant challenge today. For instance,
when the range of f(x) includes zero, relative errors are not well defined and
this is often the case in practice. For a more thorough discussion, we refer the
reader to |26]; the technique is also implemented within Daisy.

For bounding absolute errors, two main approaches exist today, which we
review in the following.

Dataflow Analysis One may think that just evaluating a program in interval
arithmetic and interpreting the width of the resulting interval as the error bound
would be sufficient. While this is certainly a sound approach, it computes too
pessimistic error bounds in general. This is especially true if we consider rela-
tively large ranges on inputs; we cannot distinguish which part of the interval
width is due to the input interval or due to accumulated roundoff errors.

Thus, dataflow analysis computes roundoff error bounds in two steps, recur-
sively over the abstract syntax tree (AST) of the arithmetic expression:

1. range analysis computes sound range bounds (for real semantics),
2. error analysis propagates errors from subexpressions and computes the new
worst-case roundoffs using the previously computed ranges.

In practice, these two steps can be performed in a single pass over the AST. A
side effect of this separation is that it provides us with a modular approach: we
can choose different range arithmetics with different accuracy/efficiency tradeoffs
for ranges and errors (and possibly for different parts of a program).

The main challenge of dataflow analysis is to minimize over-approximations
due to nonlinear arithmetic (linear arithmetic can be handled well with AA).
Previous tools chose different strategies. For instance, Rosa [14] employs the
combination of interval arithmetic with a non-linear SMT-solver, which we de-
scribed earlier. Fluctuat 22|, which uses AA for both bounding the ranges as
well as the errors, uses interval subdivision. In Fluctuat, the user can designate
up to two variables whose input ranges will be subdivided into intervals of equal
width. The analysis is performed separately for each and the overall error is
then the maximum error over all subintervals. Interval subdivision increases the
runtime of the analysis, especially for multivariate functions, and the choice of
which variables to subdivide and by how much is usually not straight-forward.

Optimization-based Analysis FPTaylor [41], Real2Float |31] and PRECISA [34],
unlike Daisy, Rosa, Gappa and Fluctuat, formulate the roundoff error bounds
computation as an optimization problem, where the absolute error expression
from is to be maximized, subject to interval constraints on its pa-
rameters. Due to the discrete nature of floating-point arithmetic, FPTaylor op-
timizes the continuous, real-valued abstraction from However, this
expression is still too complex and features too many variables for optimization
procedures in practice.

FPTaylor introduces the Symbolic Taylor approach, where the objective func-
tion is simplified using a first order Taylor approximation with respect to e and
d (the variables representing roundoff errors at each arithmetic operation). To
solve the optimization problem, FPTaylor uses a rigorous branch-and-bound
procedure.

4 Developer’s Guide: Daisy’s Internals

This section provides more details on Daisy’s architecture and explains some
of our design decisions. Daisy is written in the Scala programming language
which provides a strong type system as well as a large collection of (parallel)
libraries. While Scala supports both imperative and functional programming
styles, we have written Daisy functionally as much as possible, which we found
to be beneficial to ensuring correctness and readability of code.

4.1 Input Language and Frontend

Daisy’s input language is implemented as a domain-specific language in Scala,
and Daisy’s frontend calls the Scala compiler which performs parsing and type-

checking. While designing our own simple input format and parser would be
certainly more efficient in terms of Daisy’s running time (and could be done in
the future), we have deliberately chosen not to do this. An existing programming
language provides clear semantics and feels natural to users. Using the Scala
compiler furthermore helps to ensure that Daisy parses the program correctly,
for instance that it indeed conforms e.g. to Scala’s typing rules. Furthermore,
extending the input language is usually straight-forward.

The other major design decision was to make the input program real-valued.
This explicitly specifies the baseline against which roundoff errors should be
computed, but it also makes it easy for the user to explore different options.
For instance, changing the precision only requires changing a flag, whereas a
finite-precision input program (like FPTaylor’s or Fluctuat’s) requires editing
the source code.

Mixed-precision is also supported respecting Scala semantics and is thus
transparent. The user may annotate variables, including local ones, with different
precisions. To specify the precision of every individual operation, the program
can be transformed into three-address form (Daisy can do this automatically),
and then each arithmetic operation can be annotated via the corresponding
variable.

Daisy currently does not support data structures such as arrays or lists in its
input language, mainly because the static analysis of these is largely orthogonal
to the analysis of the actual computation and we believe that standard strategies
like unrolling computations over array elements or abstracting the array as a
single variable can be employed.

4.2 Modular Architecture

Daisy is built up in a modular way by implementing its functionality in phases,
which can be combined. See the overview in [Figure 3] Each phase takes as input
and returns as output a Program and a Context, and can modify both. For instance,
rewriting transforms the program and roundoff error analysis adds the analysis
information to the context. This information is then re-used by later phases,
for instance the analysis information is used to generate fixed-point arithmetic
programs in the code generation phase. This modularity allows, for instance,
the rewriting optimization phase to be combined with any other roundoff error
analysis.

In addition to the modular architecture, Daisy’s main functionality is pro-
vided as a set of library tools, which allows for further reuse across different
phases. It could also be used as a separate library in other tools. Here we high-
light the main functionality provided:

— Rational provides an implementation of rational numbers based on Java's
BigInteger library. Rationals are used throughout Daisy for computations in
order to avoid internal roundoff errors which could affect soundness.

— MPFRFloat is an interface to GNU’s MPFR arbitrary precision library [20].

Frontend

{ Rewriting }
{ TACTransformer }
Dynamic Dataflow TaylorError Relative // Roundoff analyses

\

CodeGeneration

Info

|
Fig. 3. Overview of Daisy’s phases. Phases in curly braces are optional.

— Interval and AffineForm provide implementations of interval and affine arith-
metic. Daisy uses no external libraries for these in order to facilitate exten-
sions and integration.

— SMTRange implements Rosa’s combination of interval arithmetic with an SMT
solver [14] for improved range bounds. Daisy uses the scala-smtlib libraryﬂ
to interface with the Z3 and dReal SMT solvers. Other solvers can be added
with little effort, provided they support the SMT-LIB standard |3].

— RoundoffEvaluators implement dataflow roundoff error analysis. The analysis
is parametric in the range method used, and due to its implementation as a
library function can be easily used in different contexts.

— Taylor provides methods for computing and simplifying partial derivatives.

— GeneticSearch provides a generic implementation of a (simple) genetic search,
which is currently used for the rewriting optimization.

The fixed-point precision class in Daisy supports any bitlength (i.e. only
the frontend has a limited selection) and floating-point types can be straight-
forwardly added by specifying the corresponding machine epsilon and repre-
sentable range.

4.3 Implementation Details

Here we provide details about Daisy’s implementation of previous techniques.
The dataflow analysis approach, e.g. in Rosa, only considered arithmetic oper-
ations without transcendental functions. Daisy extends this support by imple-
menting these operations in interval and affine arithmetic. The former is straight-
forward, whereas for AA Daisy computes sound linear approximations of the
functions, following [13] which used this approach in a dynamic analysis. Fol-
lowing most libraries of mathematical functions, we assume that transcendental
functions are rounded correctly to one unit in the last place. Since internal com-
putations are performed with rational types, the operations for transcendental
functions are approximated with the corresponding outward or upwards round-
ing to ensure soundness. To support the combination of interval arithmetic and

3 https://github.com /regb/scala-smtlib

10

SMT, we integrate the dReal solver in Daisy, which provides support for tran-
scendental functions. Although dReal is only J-complete, this does not affect
Daisy’s soundness as the algorithm relies on UNSAT answers, which are always
sound in dReal.

Interval subdivision can be an effective tool to reduce overapproximations
in static analysis results, which is why Daisy offers it for all its analyses. Daisy
subdivides every input variable range into a fixed number of subintervals (the
number can be controlled by the user) and takes the cartesian product. The
analysis is then performed separately for each set of subintervals. This clearly
increases the running time, but is also trivially parallelizable.

Daisy also includes an initial implementation of FPTaylor’s optimization-
based static analysis. The major difference is that Daisy does not use a branch-
and-bound algorithm for solving the optimization problem, but relies on the
already existing range analyses. We would like to include a proper optimization
solver in the future; currently custom interfaces have been an obstacle.

5 Experimental Evaluation

We have experimentally evaluated Daisy’s roundoff error analysis on a number
of finite-precision verification benchmarks taken from related work |15/161/31,41].
Benchmarks marked with a superscript 7 contain transcendental functions. The
goal of this evaluation is twofold. First, Daisy should be able to compute reason-
ably tight error bounds in a reasonable amount of time to be useful. Secondly,
exploiting the fact that Daisy implements several different analysis methods
within a single tool allows us to provide a direct comparison of their tradeoffs.

We compare Daisy with FPTaylor, which has been shown previously to pro-
vide tight error bounds [41]. It furthermore implements the optimization-based
approach, which we re-implement in Daisy (in an albeit preliminary version). We
do not compare against tools which employ dataflow static analysis, as Daisy’s
analyses essentially subsume those.

Comparison with FPTaylor We first compare roundoff errors computed by
Daisy with different methods against errors computed by FPTaylor (version from
20 Sept 2017) in All errors are computed for uniform double floating-
point precision, assuming roundoff errors on inputs. We abbreviate the settings
used in Daisy by e.g. IA - AA, where IA and AA specify the methods used
for computing the ranges and errors, respectively. ‘sub’ means subdivision, ‘rw’
rewriting and ‘opt’ denotes the optimization-based aproach. We underline the
lowest roundoff errors computed among the different Daisy settings (without
rewriting). The column marked ‘%’ denotes the factor by which the lowest error
computed by Daisy differs from FPTaylor’s computed error.

FPTaylor supports different backend solvers; we have performed experiments
with the internal branch-and-bound and the Gelpia solver, but observed only
minor differences. We thus report results for the Gelpia solver. We furthermore

11

Daisy

benchmark |Dynamic ~ FPTaylor |[IA-AA Z3-AA Z3-IA dReal- AA AA-AA+sub opt-23 |% [Z3-AA+rw
bspline0 2.84e-17 1.07e-16 [1.62e-16 1.62e-16 1.62e-16 1.62e-16 1.62e-16 1.19e-16 [1.11 |1.62e-16
bsplinel 1.74e-16 3.59e-16 |7.96e-16 7.03e-16 8.14e-16 7.03¢-16 5.17e-16 6.5le-16 (144 [4.81e-16
doppler 7.04e-14 1.22e13 |4.19e-13 4.19e-13 4.36e-13 4.19e-13 26le-13 17213 |14l [1.72e-13
himmilbeau |5.27e-13 ~ 1.00e-12 |2.33e-12 1.00e-12 1.00e-12 1.00e-12 1.00e-12 1.42-12 [1.00 [1.01e-12
invertedPend.|2.43¢-14 3.2le-14 [3.67e-14 3.6Te-14 3.67e-14 3.67e-14 3.67e-14 4.4de-14 [114 |2.43e-14
kepler0 40214 585e-14 [1.04e-13 9.06e-14 1.14e-13 9.20e-14 7.88e-14 1.15e-13 |1.35 |5.70e-14
keplerl 1.27¢-13 19613 [4.82e-13 3.97e-13 4.8le-13 39713 3.30e-13 4.92e-13 |1.68 |2.89-13
kepler2 5.2le-13 147e-12 |247e-12 225e-12 2.69e-12 2.25e-12 1.93e-12 2.28e-12 |1.31 [1.73e-12
rigidBodyl [2.00e-13 2.95¢-13 [3.22e-13 3.22e-13 3.22¢-13 3.22¢13 3.22¢13 5.08¢-13 [1.09 [2.24e-13
rigidBody2 [2.03e-11 3.6le-11 [3.65e-11 3.65e-11 3.65e-11 3.65e-11 3.65e-11 6.48e-11 |1.01 |2.91e-11
sine 2.76e-16 4.44e-16 |L13e-15 6.95e-16 7.4le-16 6.95e-16 6.49e-16 6.54e-16 |1.46 |5.91e-16
sineOrder3 [3.38¢-16 5.94e-16 |1.45e-15 1.23e-15 1.34e-15 123e-15 1.02e-15 8.00e-16 135 [1.22¢-15
sqroot 2.35e-13 28le-13 [3.13e-13 3.09e-13 3.2le13 3.09e-13 297e-13 3.97e-13 [1.06 [2.89e-13
traind outl [1.33e-10 3.39e-10 [4.28¢-10 4.28¢-10 4.28¢-10 4.28¢-10 3.99e-10 5.21e-10 118 [3.3de-10
traind state9 |5.93e-15 8.12-15 |8.66e-15 8.66e-15 8.66e-15 8.66e-15 8.66e-15 1.20e-14 |1.07 |3.33e-15
turbinel 6.78¢-15 1.67e-14 [9.49e-14 887e-l4 9.lde-1d 8.87e-14 4.26e-14 2.80e-14 [1.68 [8.68¢-14
turbine2 1.06e-14 2.00e-14 |1.39e-13 1.23e-13 1.29e-13 1.23¢-13 4.35e-14 3.67e-14 [1.84 [1.19e-13
turbine3 |4.38e-15 9.57e-15 |7.07e-14 6.27e-14 6.55e-14 6.27e-14 1.96e-14 1.65e-14 [1.72 5.98¢-14
jetEngine |5.24e-12 8.75e-12 |- 1.15e-08 1.16e-08 1.15e-08 3.64e-08 2.20e-11 [251 [1.12e-08
penduluml” |3.31e-16 3.47¢-16 |4.61e-16 4.6le-16 4.6le-16 4.61e-16 4.6le-16 4.67e-16 |1.33 |4.61e-16
pendulum2” [8.88¢-16 9.15¢-16 [9.42e-16 9.42e-16 9.42e-16 9.42e-16 9.37e-16 1.16e-15 [1.02 |9.41e-16
analysisl” |1.4le-16 1.95¢-16 |1.67e-15 1.67e-15 1.67e-15 1.30e-15 1.6le-15 1.92e-15 |6.67 |1.67e-15
analysis2” [4.40e-16 5.49¢-16 |6.08¢-14 6.08¢-14 6.28¢-14 3.1le-15 3.84e-15 1.28¢-13 [5.66 |6.08-14
logExp” 1.29¢-15 19915 [3.33e-12 3.33e-12 33312 3.33e12 2.18e-13 3.3le12 |109.55 |3.33e-12
sphere” 447e15 8.18e-15 |1.20e-14 1.20e-14 1.20e-14 1.20e-14 3.22e-14 1.63e-14 [1.47 |1.17e-14

Table 1. Roundoff errors for uniform 64-bit double precision by dynamic analysis, FPTaylor and Daisy (subset of benchmarks).

12

benchmark FPTaylor Z3 - AA AA-AA (sub) opt - Z3

bspline 2s 884ms 4s 450ms 2s 190ms 3s 320ms
doppler 1s 465ms 3s 221ms 2s 657ms 2s 939ms
himmilbeau 660ms 3s 545ms 1s 975ms 2s 760ms
invertedPend. 14s 69ms 3s 109ms 2s 31ms 2s 570ms
kepler 18s 629ms 40s 627ms 3s 160ms 21s 893ms
rigidBody 1s 430ms 6s 31ms 2s 206ms 4s 118ms
sine 1s 580ms 4s 49ms 2s 179ms 3s 114ms
sqrt 7s 381ms 4s 92ms 1s 884ms 2s 988ms
traincar 27s 846ms 22s 670ms 7s 452ms 15s 61ms
turbine 2s 452ms 7s 93ms 3s 951ms 5s 522ms
jetEngine 1s 434ms 35s 267ms 3s 583ms 19s 425ms
transcendental 34s 547ms 2s 770ms 2s 959ms 2s 865ms

Table 2. Execution times of FPTaylor and Daisy for different settings

chose the lowest verbosity level in both FPTaylor and Daisy to reduce the exe-
cution time. also shows an underapproximation of roundoff errors com-
puted using Daisy’s dynamic analysis which provides an idea of the tightness of
roundoff errors.

shows the corresponding execution times of the tools. Execution
times are average real time measured by the bash time command. We have
performed all experiments on a Linux desktop computer with an Intel Xeon
3.30GHz processor and 32GB RAM, with Scala version 2.11.11.

The focus when implementing Daisy was to provide a solid framework with
modular and clear code, not to improve roundoff error bounds. Nonetheless,
Daisy’s roundoff error bounds are mostly competitive with FPTaylor’s, with the
notable exception of the jetEngine benchmark (additionally, interval arithmetic
fails to bound the divisor away from zero).

Overall we observe that using an SMT solver for tightening ranges is helpful,
but interval subdivision is preferable. Furthermore, using affine arithmetic for
bounding errors is preferable over interval arithmetic. Finally, rewriting can often
improve roundoff error bounds significantly.

Our optimization-based analysis is not yet quite as good as FPTaylor’s, but
acceptable for a first re-implementation. We suspect the difference is mainly due
to the fact that Daisy does not use a dedicated optimization procedure, which
we hope to include in the future.

Execution times of FPTaylor and Daisy are comparable. It should be noted
that the times are end-to-end, and in particular for Daisy this includes the
Scala compiler frontend, which takes a constant 1.3 seconds (irrespective of in-
put). Clearly, with a hand-written parser this could be improved, but we do not
consider this as critical. Furthermore, Daisy performs overflow checks at every
intermediate subexpression; it is unclear whether FPTaylor does this as well.

13

Z3 - AA 73 - AA + rewriting

benchmark float 32 fixed 32 float 32 fixed 32
bspline0 8.69e-8 2.28e-9 8.69e-8 2.28e-9
bsplinel 3.77e-7 7.86e-9 2.58e-7 6.00e-9
doppler 2.25e-4 3.52e-6 9.26e-5 1.45e-6
himmilbeau 5.37e-4 8.84e-6 6.85e-4 1.13e-5
invertedPendulum 1.97e-5 3.54e-7 1.30e-5 2.03e-7
kepler(4.87e-5 7.60e-7 3.06e-5 4.78e-7
keplerl 2.13e-4 3.33e-6 1.76e-4 2.76e-6
kepler2 1.21e-3 1.88e-5 8.85e-4 1.38e-5
rigidBody1 1.73e-4 3.12e-6 1.20e-4 2.30e-6
rigidBody2 1.96e-2 3.13e-4 1.56e-2 2.51e-4
sine 3.73e-7 7.14e-9 3.17e-7 6.68e-9
sineOrder3 6.58e-7 1.31e-8 6.54e-7 1.39e-8
sqroot 1.66e-4 8.00e-6 1.60e-4 7.68e-6
train4d outl 2.30e-1 4.14e-3 1.79e-1 3.34e-3
train4 state9 4.65e-6 1.45e-7 1.79e-6 1.03e-7
turbinel 4.76e-5 1.05e-6 4.66e-5 1.04e-6
turbine2 6.61e-5 1.19e-6 6.40e-5 1.16e-6
turbine3 3.37e-5 7.42e-7 3.21e-5 7.17e-7
jetEngine 6.22 1.00e-1 1.44e-1 2.46e-3

Table 3. Roundoff errors for 32-bit floating-point and fixed-point arithmetic.

able I seems to suggest that one should use FPTaylor’s optimization-based
approach for bounding roundoff errors. We include dataflow analysis in Daisy
nonetheless for several reasons. First, dataflow analysis computes overflow checks
without extra cost. Secondly, the optimization-based approach is only applicable
when errors can be specified as relative errors, which is not the case for instance
for fixed-point arithmetic, which is important for many embedded applications.

Fixed-point vs Floating-point In we use Daisy to compare round-
off errors for 32-bit fixed-point and 32-bit floating-point arithmetic, with and
without rewriting. For this comparison, we use the dataflow analysis, as the
optimization-based approach is not applicable to fixed-point arithmetic. Not sur-
prisingly, the results confirm that (at least for our examples with limited ranges)
fixed-point arithmetic can provide better accuracy for the same bitlength, and
furthermore that rewriting can improve the error bounds further.

6 Related Work

We have already mentioned the directly related techniques and tools Gappa,
Fluctuat, Rosa, FPTaylor, Real2Float and PRECiSA throughout the paper. Ex-
cept for Fluctuat and Rosa, these tools also provide either a proof script or a

14

certificate for the correctness (of certain parts) of the analysis, which can be
independently checked in a theorem prover. Certificate generation and checking
for Daisy has been described in a separate paper [4].

Daisy currently handles straight-line arithmetic expressions, i.e. it does not
handle conditionals and loops. Abstract interpretation of floating-point programs
handles conditionals by joins, however, for roundoff error analysis this approach
is not sufficient. The real-valued and finite-precision computations can diverge
and a simple join does not capture this ‘discontinuity error’. Programs with
loops are challenging, because roundoff errors in general grow with each loop
iteration and thus a nontrivial fixpoint does not exist in general (loop unrolling
can however be applied). Widening operators compute non-trivial bounds only
for very special cases where roundoff errors decrease with each loop iteration.
These challenges have been (partially) addressed |16L23], and we plan to include
those techniques in Daisy in the future. Nonetheless, conditionals and loops
remain open problems.

Sound techniques have also been applied for both the range and the error
analysis for bitwidth optimization of fixed-point arithmetic, for instance in |28|
29,|36L[38] and Lee et. al. [29] provide a nice overview of static and dynamic
techniques.

Dynamic analysis can be used to find inputs which cause large roundoff er-
rors, e.g. running a higher-precision floating-point program alongside the original
one [5] or with a guided search to find inputs which maximize errors [11]. In com-
parison, Daisy’s dynamic analysis is a straight-forward approach, and some more
advanced techniques could be integrated as well.

Optimization techniques targeting accuracy of floating-point computations,
like rewriting [37] or mixed-precision tuning |10] include some form of round-
off error analysis, and any of the above approaches, including Daisy’s, can be
potentially used as a building block.

More broadly related are abstract interpretation-based static analyses, which
are sound w.r.t. floating-point arithmetic [64/9,27]. These techniques can prove the
absence of runtime errors, such as division-by-zero, but cannot quantify roundoff
errors. Floating-point arithmetic has also been formalized in theorem provers and
entire numerical programs have been proven correct and accurate within these |7
39]. Most of these formal verification efforts are, however, to a large part manual.
Floating-point arithmetic has also been formalized in an SMT-lib 40| theory and
SMT solvers exist which include floating-point decision procedures [8}/19]. These
are, however, not suitable for roundoff error quantification, as a combination
with the theory of reals would be necessary which does not exist today.

7 Conclusion

We have presented the framework Daisy which integrates several state-of-the-
art techniques for the analysis and optimization of finite-precision programs. It
is actively being developed, improved and extended and we believe that it can
serve as a useful building block in future optimization techniques.

15

References

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

. Adolfo Anta, Rupak Majumdar, Indranil Saha, and Paulo Tabuada. Automatic

Verification of Control System Implementations. In EMSOFT, 2010.

David H Bailey, Yozo Hida, Xiaoye S Li, and Brandon Thompson. C++-/Fortran-90
double-double and quad-double package. Technical report, 2015.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Ver-
sion 2.6. Technical report, University of lowa, 2017. www.SMT-LIB.orgl

Heiko Becker, Eva Darulova, and Magnus O. Myreen. A Verified Certificate
Checker for Floating-Point Error Bounds. Technical report, arXiv:1707.02115,
2017.

Florian Benz, Andreas Hildebrandt, and Sebastian Hack. A dynamic program
analysis to find floating-point accuracy problems. In PLDI, 2012.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A Static Ana-
lyzer for Large Safety-Critical Software. In PLDI, 2003.

Sylvie Boldo, Frangois Clément, Jean-Christophe Fillidtre, Micaela Mayero, Guil-
laume Melquiond, and Pierre Weis. Wave Equation Numerical Resolution: A Com-
prehensive Mechanized Proof of a C Program. Journal of Automated Reasoning,
50(4):423-456, 2013.

Martin Brain, Vijay D’Silva, Alberto Griggio, Leopold Haller, and Daniel Kroening.
Deciding floating-point logic with abstract conflict driven clause learning. Formal
Methods in System Design, 45(2):213-245, December 2013.

Ligian Chen, Antoine Miné, and Patrick Cousot. A Sound Floating-Point Polyhe-
dra Abstract Domain. In APLAS, 2008.

Wei-Fan Chiang, Ganesh Gopalakrishnan, Zvonimir Rakamaric, lan Briggs,
Mark S. Baranowski, and Alexey Solovyev. Rigorous Floating-point Mixed Preci-
sion Tuning. In POPL, 2017.

Wei-Fan Chiang, Ganesh Gopalakrishnan, Zvonimir Rakamaric, and Alexey
Solovyev. Efficient Search for Inputs Causing High Floating-point Errors. In
PPoPP, 2014.

Nasrine Damouche, Matthieu Martel, Pavel Panchekha, Chen Qiu, Alexander
Sanchez-Stern, and Zachary Tatlock. Toward a Standard Benchmark Format and
Suite for Floating-Point Analysis. In NSV, 2016.

Eva Darulova and Viktor Kuncak. Trustworthy Numerical Computation in Scala.
In OOPSLA, 2011.

Eva Darulova and Viktor Kuncak. Sound Compilation of Reals. In POPL, 2014.
Eva Darulova, Viktor Kuncak, Rupak Majumdar, and Indranil Saha. Synthesis of
Fixed-point Programs. In EMSOFT, 2013.

Eva Darulova, Saksham Sharma, and Einar Horn. Sound mixed-precision opti-
mization with rewriting. Technical report, arXiv:1707.02118, 2017.

Marc Daumas and Guillaume Melquiond. Certification of Bounds on Expressions
Involving Rounded Operators. ACM Trans. Math. Softw., 37(1):2:1-2:20, 2010.
L. H. de Figueiredo and J. Stolfi. Affine Arithmetic: Concepts and Applications.
Numerical Algorithms, 37(1-4), 2004.

Leonardo De Moura and Nikolaj Bjgrner. Z3: an efficient SMT solver. In TACAS,
2008.

Laurent Fousse, Guillaume Hanrot, Vincent Lefévre, Patrick Pélissier, and Paul
Zimmermann. Mpfr: A multiple-precision binary floating-point library with correct
rounding. ACM Trans. Math. Softw., 33(2), 2007.

16

www.SMT-LIB.org

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An SMT Solver for
Nonlinear Theories over the Reals. In CADE, 2013.

Eric Goubault and Sylvie Putot. Static Analysis of Finite Precision Computations.
In VMCAI 2011.

Eric Goubault and Sylvie Putot. Robustness Analysis of Finite Precision Imple-
mentations. In APLAS, 2013.

Computer Society IEEE. IEEE Standard for Floating-Point Arithmetic. IEEE Std
754-2008, 2008.

ISO/IEC. Programming languages — C — Extensions to support embedded pro-
cessors. Technical Report ISO/IEC TR 18037, 2008.

Anastasiia Izycheva and Eva Darulova. On sound relative error bounds for floating-
point arithmetic. In FMCAD, 2017.

Bertrand Jeannet and Antoine Miné. Apron: A Library of Numerical Abstract
Domains for Static Analysis. In CAV, 20009.

A B Kinsman and N Nicolici. Finite Precision Bit-Width Allocation using SAT-
Modulo Theory. In DATE, 2009.

D U Lee, A A Gaffar, R C C Cheung, O Mencer, W Luk, and G A Constantinides.
Accuracy-Guaranteed Bit-Width Optimization. Trans. Comp.-Aided Des. Integ.
Cir. Sys., 25(10):1990-2000, 2006.

Lightbend. sbt - The interactive build tool. |http://www.scala-sbt.org/, 2017.
Victor Magron, George Constantinides, and Alastair Donaldson. Certified Round-
off Error Bounds Using Semidefinite Programming. ACM Trans. Math. Softw.,
43(4), 2017.

Rupak Majumdar, Indranil Saha, and Majid Zamani. Synthesis of Minimal-error
Control Software. In EMSOFT, 2012.

R.E. Moore. Interval Analysis. Prentice-Hall, 1966.

Mariano Moscato, Laura Titolo, Aaron Dutle, and Cesar Munoz. Automatic Esti-
mation of Verified Floating-Point Round-Off Errors via Static Analysis. In SAFE-
COMP, 2017.

Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A Compre-
hensive Step-by-step Guide. Artima Incorporation, 2008.

W G Osborne, R C C Cheung, J Coutinho, W Luk, and O Mencer. Automatic
Accuracy-Guaranteed Bit-Width Optimization for Fixed and Floating-Point Sys-
tems. In Field Programmable Logic and Applications, pages 617-620, 2007.

Pavel Panchekha, Alex Sanchez-Stern, James R Wilcox, and Zachary Tatlock. Au-
tomatically Improving Accuracy for Floating Point Expressions. In PLDI, 2015.
Yu Pang, Katarzyna Radecka, and Zeljko Zilic. An Efficient Hybrid Engine to
Perform Range Analysis and Allocate Integer Bit-widths for Arithmetic Circuits.
In ASPDAC, 2011.

Tahina Ramananandro, Paul Mountcastle, Benoit Meister, and Richard Lethin. A
Unified Coq Framework for Verifying C Programs with Floating-Point Computa-
tions. In CPP, 2016.

Philipp Riimmer and Thomas Wahl. An SMT-LIB Theory of Binary Floating-
Point Arithmetic. In SMT, 2010.

Alexey Solovyev, Charles Jacobsen, Zvonimir Rakamaric, and Ganesh Gopalakr-
ishnan. Rigorous Estimation of Floating-Point Round-off Errors with Symbolic
Taylor Expansions. In FM, 2015.

17

http://www.scala-sbt.org/

	Daisy - Framework for Analysis and Optimization of Numerical Programs (Tool Paper)
	Introduction
	User's Guide: an Overview of Daisy
	Theoretical Foundations
	Floating-point Arithmetic
	Fixed-point Arithmetic
	Range Arithmetic
	Static Analysis for Roundoff Error Estimation

	Developer's Guide: Daisy's Internals
	Input Language and Frontend
	Modular Architecture
	Implementation Details

	Experimental Evaluation
	Comparison with FPTaylor
	Fixed-point vs Floating-point

	Related Work
	Conclusion

