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Abstract. A large portion of software is used for numerical computation
in mathematics, physics and engineering. Among the aspects that make
verification in this domain difficult is the need to quantify numerical er-
rors, such as roundoff errors and errors due to the use of approximate
numerical methods. Much of numerical software uses self-stabilizing it-
erative algorithms, for example, to find solutions of nonlinear equations.
To support such algorithms, we present a runtime verification technique
that checks, given a nonlinear equation and a tentative solution, whether
this value is indeed a solution to within a specified precision.
Our technique combines runtime verification approaches with informa-
tion about the analytical equation being solved. It is independent of the
algorithm used for finding the solution and is therefore applicable to
a wide range of problems. We have implemented our technique for the
Scala programming language using our affine arithmetic library and the
macro facility of Scala 2.10.

Keywords: solution verification, numerical computation, error estima-
tion, affine arithmetic

1 Introduction

Software manipulating numerical quantities has numerous applications in deci-
sion making, science, and technology. Such software is difficult to validate by
any method—manual inspection, testing, or static analysis. One of the core
challenges in each case is the gap between the approximate nature of numerical
computations and the idealized mathematical models that form their foundation
and specification. Specialized programming languages inside commercial com-
puter algebra systems aim to simplify working with numerical computations.
However, their precision and soundness guarantees compared to the mathemat-
ical meaning are not well documented, and many of the implementations are
closed source. Much of the real-world computation is done in general-purpose
languages, supported by many numerical software libraries written for them.
The work on this paper builds on open-source general-purpose infrastructures,
providing a next step in validated numerical computation for Scala [14].

Existing validation of numerical computations supports estimation of round-
off errors [7,1]; we have previously incorporated computation of roundoff errors
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in Scala using affine arithmetic [5]. Going a step further, we present automated
estimation of not only roundoff errors, but also method errors, which arise, for
example, when using numerical methods to iteratively solve equations. Such
methods are used to solve equations that have no symbolic closed-form solution,
which is often the case in practice. Even if symbolic solutions exist, iterative
approaches can be faster or better-behaved with respect to roundoff errors.

1.1 Contributions

To understand the notion of method errors we address, consider an iterative
method that performs a search for the solution of f(x) = 0 by computing a
sequence of approximations x0, x1, x2, . . . One common stopping criterion for an
iteration is finding xk for which |f(xk)| < ε, for a given error tolerance ε. From
a validation point of view, however, we are ultimately interested not in ε but
in τ such that |x − xk| < τ , where x is the actual solution in real numbers.
Fortunately, we can estimate τ from ε using a bound on the derivative of f in
an interval conservatively enclosing x and xk.

A tempting approach is to perform the entire computation of xk using in-
terval [12] or affine arithmetic. However, this approach would be inefficient, and
would give too pessimistic error bounds. Instead, our method uses a runtime
checking approach. We allow any standard non-validated floating point code to
compute the approximation xk. We perform only the final validation of an indi-
vidual candidate solution xk using a range-based computation. In this way we
achieve efficiency and reusability of existing numerical routines, while still pro-
viding rigorous bounds on the total error. The bounds certified by our system
are always sound for the given execution.

Our system thus realizes a new kind of assertion, appropriate for numerical
computation: an assertion that verifies “this was precise enough” in a way that
takes into account both the numerical algorithm and floating point semantics.

To perform such sound computation, our approach uses static information
about the function and computes derivatives at compile time. For this purpose it
uses the macro facility of Scala, our implementation of symbolic differentiation,
and a method to compute bounds of a function over an interval. A technical
challenge that arises in rigorously estimating the error is that mean value theo-
rems (the foundation for error estimation), refer to an arbitrary point between
the approximate and the unknown exact solution. It is therefore not clear over
which interval one needs to estimate the error. We solve this circularity through
a simple design, which expects a bound on the argument error as the input, and
verifies whether this bound indeed holds. This allows us to perform an estimation
using very narrow intervals, contributing to the precision of our approach.

We integrated our method into the Scala programming language (Section 4).
We demonstrate its applicability and usefulness on a number of examples (sec-
tions 2 and 5). Among the consequences of this development is a Scala framework
that can check runtime assertions in a way consistent with mathematical reals,
while executing on the standard virtual machine, soundly taking into account the
concrete semantics of floating point operations and iterative numerical methods.



2 Examples

We motivate our contribution with examples that model physical processes,
taken from [18,4,15]. These examples illustrate the applicability of our techniques
and introduce the main features of our library. For space reasons we abbreviate
the Scala Double type with D (the code snippets remain valid Scala code us-
ing the rename-on-import Scala feature). We include variable type declarations
for expository purposes, even though the Scala compiler can infer all but the
function parameter types. A function that maps x into e(x) is denoted in Scala
by x ⇒ e(x). Method names printed in bold (e.g., jacobian, assertBound) are
parts of the public interface of our library for certifying solutions of numerical
computations.

Stress on a Turbine Rotor. We illustrate the basic features of our library on
the following system of three non-linear equations with three unknowns (v, ω, r).
An engineer may need to solve such a system to compute the stress on a turbine
rotor [18].
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Given a numerical routine computeRoot and our library for certifying solutions,
the engineer can directly map the above equations into the following code:

val f1 = (v:D,w:D,r:D) ⇒ 3 + 2/(r∗r) − 0.125∗(3−2∗v)∗(w∗w∗r∗r)/(1−v)−4.5
val f2 = (v:D,w:D,r:D) ⇒ 6∗v − 0.5 ∗ v ∗ (w∗w∗r∗r) / (1−v)−2.5
val f3 = (v:D,w:D,r:D) ⇒ 3 − 2/(r∗r) − 0.125∗(1+2∗v)∗(w∗w∗r∗r) / (1−v)−0.5

The engineer can then solve the problem numerically using an off-the-shelf nu-
merical routine that accepts the function and its derivative as an argument:

val x0 = Array(0.75, 0.5, 0.5) // initial value for iteration
val roots: Array[D] = computeRoot(Array(f1,f2,f3), jacobian(f1,f2,f3), x0, 1e−8)

Finally, the engineer can certify the solution using our library:

val errors:Array[Interval] = assertBound(f1,f2,f3, roots(0), roots(1), roots(2), 1e−8)

The method assertBound takes as input the three functions of our system
of equations, the previously computed roots and a tolerance. It returns sound
bounds on the true errors on the roots. In the case where these errors are larger
than the tolerance specified, the method throws an exception and thus acts like
an assertion. Our library also includes the method jacobian, which computes
the Jacobian matrix of the functions f1, f2 and f3 symbolically at compile time
(Section 4.2). The true roots for v, w and r are 0.5, 1.0 and 1.0 respectively. The
roots and maximum absolute errors computed by the above code are

0.5, 1.0000000000018743, 0.9999999999970013

2.3684981521893e-15, 1.8806808806556e-12, 3.0005349681420e-12

Note that the error bounds computed are, in fact, orders of magnitude smaller
than the tolerance 1e−8 given to the numerical routine and to assertBound.



Fig. 1. A double pendulum standing close to an obstacle

Double Pendulum. The following example demonstrates how our library fits
into a runtime assertion framework consistent with mathematical reals. A double
pendulum rotates with angular velocity ω around a vertical axis, like a centrifugal
regulator [4]. At equilibrium, the two pendulums make the angles x1 and x2 to
the vertical axis. It can be shown that the angles are determined by the equations

tanx1 − k(2 sinx1 + sinx2) = 0

tanx2 − 2k(sinx1 + sinx2) = 0
(2)

where k depends on ω, the lengths of the rods and gravity. Suppose the pendulum
is standing close to a wall (as in Figure 1) and we would like to verify that in the
equilibrium position it cannot hit the wall. Also suppose that the distance to the
center of the pendulum is given by a function distancePendulumWall. Then the
following code fragment verifies that a collision is impossible in the real world,
not just in a world with floating-points.

val distancePendulumWall : SmartFloat = ...
val length = ... //length of bars
val tolerance = 1e−13; val x0 = Array(0.18, 0.25)
val f1 = (x1: D, x2: D) ⇒ tan(x1) − k ∗ (2∗sin(x1) + sin(x2))
val f2 = (x1: D, x2: D) ⇒ tan(x2) − 2∗k ∗ (sin(x1) + sin(x2))
val r: Array[D] = computeRoot(Array(f1,f2), jacobian(f1,f2), x0, tolerance)
val roots: Array[SmartFloat] = certify(r, errorBound(f1, f2, r(0), r(1), tolerance))

val L: SmartFloat = sin(roots(0)) ∗ length + sin(roots(1)) ∗ length
if (certainly(L <= distancePendulumWall)) {

// continue computation
} else {

// reduce speed of the pendulum and repeat
}

To account for all sources of uncertainty, we use the SmartFloat data type de-
veloped previously [5]. SmartFloat performs a floating point computation while



additionally keeping track of different sources of errors, including floating point
round-off errors, as well as errors arising from other sources, for example, due to
the approximate nature of physical measurements.

In our example, distancePendulumWall and certify both return a SmartFloat;
the first one captures the uncertainty on a physical quantity, and the second one
the method error due to the approximate iterative method. If the comparison
in line 9 succeeds, we can be sure the pendulum does not touch the wall. This
guarantee takes into account roundoff errors committed during the calculation,
as well as the error committed by the computeRoot method and their propagation
throughout the computation.

State Equation of a Gas. Values of parameters may only be known within
certain bounds but not exactly, for instance if we take inputs from measure-
ments. Our library provides guarantees even in the presence of such uncertain-
ties. Equation 3 below relates the volume V of a gas to the temperature T and
the pressure p, given parameters a and b that depend on the specifics of the gas,
N the number of molecules in the volume V and k the Boltzman constant [15].

[p+ a(N/V )2](V −Nb) = kNT (3)

If T and p are given, one can solve the nonlinear Equation 3 to determine the
volume occupied by the (very low-pressure) gas. Note however, that this is a cubic
equation, for which closed-form solutions are non-trivial, and their approximate
computation may incur substantial roundoff errors. Using an iterative method,
whose result is verified by our library, is thus preferable:

val T = 300; val a = 0.401; val b = 42.7e−6;
val p = 3.5e7; val k = 1.3806503e−23; val x0 = 0.1
val N: Interval = 1000 +/− 5
val f = (V: D) ⇒ (p + a ∗ (N.mid/V) ∗ (N.mid/V)) ∗ (V − N.mid∗b) − k∗N.mid∗T
val V: D = computeRoot(f, derivative(f), x0, 1e−9)
val Vcert: SmartFloat = certify(V, assertBound(f, V, 0.0005))

We make the assumption that we cannot determine the number of molecules
N exactly, but we are sure that our number is accurate at least to within ±5
molecules (line 3). We compute the root as if we knew N exactly, using the
middle value of the interval and the standard Newton’s method. We only check
a posteriori that the result is accurate up to ±0.0005m3, for all N in the interval
[995, 1005]. Our library will confirm this providing us also with the (certified)
bounds on V : [0.0424713, 0.0429287].

3 Computing the Error

Our verification technique is based on several theorems from the area of validated
numerics. It can verify roots of a system of nonlinear equations computed by an
arbitrary black-box solution or estimation method.



In the following, we denote computed approximate solutions by x̃ and true
roots by x. IR denotes the domain of intervals over the real numbers R and vari-
ables written in bold type, e.g. X, denote interval quantities. For a function f ,
we define f(X) = {f(x) | x ∈ X}. All errors are given in absolute terms. Error
tolerance, that is, the maximum acceptable value for |x̃ − x|, will be denoted
by τ or tolerance. We will use the term range arithmetic to mean either interval
arithmetic [12] or affine arithmetic [6]. The material presented in this section is
valid for any such “arithmetic”, as long as it computes guaranteed enclosures
containing the result that would be computed in real numbers. We wish to com-
pute a guaranteed bound on the error of a computed solution, that is, determine
an upper bound on ∆x = x̃ − x. Note that ∆x is different from τ , because ∆
considers the sign of the difference.

Unary Case. For expository purposes, consider first the unary case f : R→ R,
f differentiable, and suppose that we wish to solve the equation f(x) = 0. Then,
by the Mean Value Theorem

f(x̃) = f(x+∆x) = f(x) + f ′(ξ)∆x (4)

where ξ ∈ X and X is a range around x̃ sufficiently large to include the true
root. Since f(x) = 0,

∆x ∈ f(x̃)

f ′(X)
(5)

The set membership instead of equality is because the right-hand side is now a
range-valued expression, which takes into account the fact that ξ in the Mean
Value Theorem is not known exactly. The following theorem (stated in the for-
mulation from [17]) formalizes this idea.

Theorem 1. Let a differentiable function f : R → R, X = [x1, x2] ∈ IR and
x̃ ∈ X be given, and suppose 0 /∈ f ′(X). Define

N(x̃,X) := x̃− f(x̃)/f ′(X). (6)

If N(x̃,X) ⊆ X, then X contains a unique root of f . If N(x̃,X) ∩X = ∅, then
f(x) 6= 0 for all x ∈ X.

Claim. If, following Equation 5, we compute an interval ∆x = f(x̃)/f ′(X) en-
closing the upper bound on the error ∆x, and if ∆x ⊆ [−τ, τ ], then the approx-
imately computed result x̃ is indeed within the specified precision τ .

Indeed, choose X = [x̃ − τ, x̃ + τ ], i.e. the computed approximate solution plus

or minus the tolerance we want to check, and compute ∆x = f(x̃)
f ′(X) . Then the

condition N(x̃,X) ⊆ X from Theorem 1 becomes

N(x̃,X) = x̃−∆x ⊆ X = [x̃− τ, x̃+ τ ] (7)

If ∆x ⊆ [−τ, τ ], this condition holds, and thus the computed result is within the
specified precision.



def assertBound (Function, Derivative, xn, τ)
X = [xn ± τ ]
error = Function(xn) / Derivative(X)
if error ∩ [−τ , τ ] = ∅ throw SolutionNotIncludedException
if ¬(error ⊂ [−τ , τ ]) throw SolutionCannotBeVerifiedException
return error

Fig. 2. Procedure for computing errors in the unary case.

Our assertion library uses the procedure in Figure 2 for unary problems. Note
that we not only check that errors are within a certain error tolerance, but we also
return the computed error bounds. As we show in Section 5, the computed error
bounds tend to be much tighter than the user-required tolerance. As Section 4.3
illustrates, this error bound can be used in subsequent computations to track
overall errors more precisely.

Multivariate Case. Our error estimates for the unary case follow from
the Mean Value Theorem, which extends to n dimensions. Theorem 2 fol-
lows the interval formulation of [17] where Jf is the Jacobian matrix of f .
If D = (x1, . . . ,xn) ∈ IRn, let D̄ denote x1 × . . . × xn. For a, b ∈ D̄, de-
fine convex union as a∪ b = {a + λb | λ ∈ [0, 1]}. For A ⊆ D̄, define
hull(A) :=

⋂
{Z ∈ IRn | A ⊆ Z}.

Theorem 2. Let there be given a continuously differentiable f : D̄ → Rn with
D ∈ IRn and x, x̃ ∈ D̄. Then for X := hull(x∪ x̃)

f(x) ∈ f(x̃) + Jf (X)(x− x̃) (8)

We extend our method for computing the error on each root in a similar manner:

δ ∈ J−1f (X) · (−f(x̃)) (9)

where δ = x − x̃ is the vector of errors on our tentative solution. Since we now
must consider the Jacobian of f instead of a single derivative function, we can no
longer solve for the errors by a simple scalar division. We wish to find the maxi-
mum possible error, so we need a way to compute an upper bound on the right-
hand side of Equation 9. Computing the inverse of a Jacobian matrix in a range
arithmetic typically does not yield a useful result, due to over-approximation.
Instead, we use the following Theorem 3, which is originally due to [11], but we
use the formulation by [17].

Theorem 3 ([17]). Let A,R ∈ Rn×n, b ∈ Rn and E ∈ IRn be given, denote by
I the identity matrix. Assume

Rb+ (I −RA)E ⊂ int(E). (10)

where int(E) denotes the interior of the set E. Then the matrices A and R are
non-singular and A−1b ∈ Rb+ (I −RA)E.



We instantiate Theorem 3 with all possible matrices A such that A ∈ Jf (X) and
all possible vectors b such that b ∈ −f(x̃), where Jf (X) and −f(x̃) are both
evaluated in range arithmetic. Combining with Condition 9, we obtain

δ ∈ J−1f (X) ∗ −f(x̃) ⊆ Rb+ (I −RA)E, (11)

provided that Condition 10 is satisfied in range arithmetic.
Matrix R in Theorem 3 can be chosen arbitrarily as long as Condition 10

holds. A common choice is to use an approximate inverse of A. In our case, A
is range-valued, so we first compute the matrix whose entries are the midpoints
of the intervals of A, and use its inverse as R. It now remains to determine X.
We choose it to be the vector where the ith entry is the interval around x̃i and
width τ . If we can then show that Condition 11 holds, we have proven that X
indeed contains a solution. Moreover, we have computed a tighter upper bound
on the error. We obtain the procedure in Figure 3 for computing error bounds
for systems of equations. The variables Xn, A, b, E, errors are all range valued.

def assertBound (functions, Jacobian, xn, τ)
Xn = [xn ± τ ]
A = Jacobian(Xn)
b = − functions(xn) // goal is to certify that xn is a zero of ’functions’ up to τ
R = inverse(mid(A)) // calculated in ordinary floating points
E = [0 ± τ ]
errors = R∗b + (I − RA)E // Theorem 3
if errors ∩ [−τ , τ ]n = ∅n throw SolutionNotIncludedException
if ¬(errors ⊆ [−τ , τ ]n) throw SolutionCannotBeVerifiedException
return errors

Fig. 3. Procedure for computing errors in the multivariate case.

Our approach requires the derivatives to be non-zero, respectively the Ja-
cobian to be non-singular, in the neighborhood of the root, . This means that,
at present, we can only verify single roots. Verifying multiple roots is an ill-
conditioned problem by itself, and thus requires further approximation tech-
niques, as well as dealing with complex values. We leave this for future work.
Our library does distinguish the cases when an error is provably too large from
the case when our method is unable to ensure the result: we use two different
exceptions for this purpose.

4 Implementation

Given the theoretical building blocks described above, the next question is how
to integrate them into a general-purpose programming language. Our goal is
to obtain an assertion framework for real numbers that is intuitive to use and



efficient. Figures 2 and 3 require the computation of derivatives and their eval-
uation in range arithmetic, but we do not want the user having to provide two
differently typed functions, one in Doubles for the solver and one in Intervals for
our verification method. Also, the solver may not actually require derivatives or
the Jacobian, so this computation should be performed automatically and sym-
bolically at compile time. Fortunately, Scala facilitates this within the existing
compiler framework using a notion of macros.

4.1 Scala Macros

Scala version 2.10 (release candidate) introduces a macro facility [3]. To a user,
macros look like regular methods, but in fact, their code is executed at compile
time and performs a transformation on the Scala compiler abstract syntax tree
(AST). Thus, by passing a regular function to a macro, we can access its AST
and perform transformations, such as computing a derivative of an expression.
The type checker runs after macro expansion, so the resulting code retains all
guarantees from Scala’s strong static typing. Our library provides the following
functions:

def errorBound(f: (Double ⇒ Double), x: Double, tol: Double): Interval
def assertBound(f: (Double ⇒ Double), x: Double, tol: Double): Interval
def certify(root: Double, error: Interval): SmartFloat

and similarly for functions of two, three, and more variables. The function
assertBound computes the guaranteed bounds on the errors using the algo-
rithms in figures 2 and 3. errorBound removes the assertion check and only
provides the computed error; the programmer is then free to define individual
assertions. certify wraps the computed root(s) including their associated errors
into a value of the SmartFloat datatype, thus providing a link to our assertion-
checking framework. We also expose the automatic symbolic derivative compu-
tation facility:

def derivative(f: Double ⇒ Double): (Double ⇒ Double)
def jacobian(f1: (Double, Double) ⇒ Double, f2: (Double, Double) ⇒ Double):

(Array[Array[(Double, Double) ⇒ Double]])

The functions passed to our macros have type (Double∗) => Double and may
be given as anonymous functions, or alternatively defined in the immediately
enclosing method or class. The functions may use parameters, with the same
restrictions on their original definitions. This is particularly attractive, as it
allows us to write concise code as presented in the code snippets from Section
2. Source code including all examples can be downloaded from
http://lara.epfl.ch/~darulova/cerres.zip.

4.2 Computing Derivatives

In this section we explain how we compute derivatives and discuss the effects of
our technique on efficiency and precision. Given the function ASTs, we compute

http://lara.epfl.ch/~darulova/cerres.zip


the derivatives or Jacobian matrices already at compile time, and thus need to do
this symbolically. Our system computes derivatives with the standard derivation
rules, such as the chain rule. Moreover, it performs the following expression
simplifications:

– pull constants outside of multiplications (before differentiation);
– compact multiplications of the same terms into a power function (before

differentiation);
– simplify multiplication and addition of zeros or ones arising from the differ-

entiation (after differentiation);
– evaluate powers with integers by repeated multiplication (at runtime).

Overall, the effect is that the resulting expressions of derivatives do not grow
too large. The second and third column of Table 3 show the impact of our
optimizations on execution times: the cumulative improvement is 28%.

On the other hand, the syntactic algebraic form of the expressions affects
the precision of evaluating them in floating-point, interval or affine arithmetic.
To estimate this impact, we have compared the overall behavior of our sys-
tem with our symbolic differentiation routine against the results obtained with
manually provided derivatives. Manually means that the derivatives have the
syntax one would compute by hand on paper. We did the comparison on our
unary benchmark problems (Table 1), and it turns out that except for two in-
stances, the errors computed are exactly the same. For the two other functions,
our manually computed derivatives actually compute an error that is worse, but
the precision is still sufficient to prove solutions are correct to within the given
tolerance.

A possible alternative to our compile time differentiation is runtime auto-
matic differentiation [9]. Because it does not perform the optimizations listed
above, we would expect it to have performance similar to our unoptimized ver-
sion. Although we have opted for symbolic differentiation at compile time, in
principle one can use any type of function and differentiation method, as long
as the function is differentiable in a sufficiently large neighborhood of the root
and the differentiation method keeps track of the roundoff and method errors it
commits.

4.3 Integration into a Roundoff Error Assertion Framework

We combine the current work with our existing library for tracking roundoff
errors [5] into an assertion language that can be assumed to work with real
numbers. That is, if no exceptions are thrown, the program would take the
same path if real numbers were used instead of floating-points and the values
computed are within the bounds computed by the SmartFloat datatype. This
assertion language thus tracks two sources of errors

– quantization errors due to the discrete floating-point number representation
(this has been implemented in [5]);



– method errors due to the approximate numerical method (this is a contri-
bution of the present paper).

The bounds on computed values are ensured by using SmartFloats throughout
the straight-line computations. Note that the numerical method still uses only
Doubles since we verify the result a posteriori. Path consistency is ensured by
the compare method of the SmartFloat datatype, which takes uncertainties into
account. That is, if a comparison x < y cannot be decided for sure due to
uncertainties on the arguments, an exception is thrown. This behavior can be
adjusted to a particular application by the methods

def certainly(b : ⇒ Boolean) : Boolean =
try b catch { case e: SmartFloatComparisonUndetermined ⇒ false }

def possibly(b : ⇒ Boolean) : Boolean =
try b catch { case e: SmartFloatComparisonUndetermined ⇒ true }

If we cannot be sure a boolean expression involving SmartFloats is true, we
assume it is false in the case of certainly, and that it is true in the case of
possibly. Hence, the following identity holds:

if (certainly(P)) T else E ⇔ if (possibly(!P)) E else T

4.4 Uncertain Parameters

Theorem 3 also holds for range-valued A and b. It is thus natural to extend
our macro functions to also accept range-valued parameters. The SmartFloat

datatype already has the facility to keep track of manually user-added errors
so that we can track external uncertainties as a third source of errors. Consider
again the gas state equation example from Section 2, especially the following
two lines:

val N = 1000 +/− 5
val f = (V:D) ⇒ (p + a∗(N.mid/V)∗(N.mid/V))∗(V − N.mid∗b) − k∗N.mid∗T

The +/− method returns an Interval, which in turn defines the mid method.
Thus, the function typechecks correctly and can be passed for example to a
solver, but inside the macro we can use the interval version of the parameter.

5 Evaluation

Precision Evaluation. The theorems from Section 3 provide us with sound
guarantees regarding upper bounds. In practice however, we also need our
method to be precise. Because our library computes error bounds and not only
binary answers for assertions, we are interested in obtaining as precise error esti-
mates as possible. We have evaluated the precision of our approach in the follow-
ing way. We compute a high-precision estimate of the root(s) using a quadruple
precision library [10], which allows us to compute the true error on the computed
solutions with high confidence. We compare this error to the one provided by our



Table 1. Comparison of errors for unary functions. All numbers are rounded.

Problem (tolerance specified) certified (affine) certified (interval) true errors

system of rods (1e-10) 7.315e-13 1.447e-13 1.435e-13

Verhulst model (1-e9) 4.891e-10 9.783e-11 9.782e-11

predator-prey model (1e-10) 7.150e-11 7.147e-11 7.146e-11

carbon gas state equation (1e-12) 1.422e-17 2.082e-17 1.625e-26

Butler-Volmer equation (1e-10) 4.608e-15 3.896e-15 3.768e-17

(x/2)2 − sin(x) (1e-10) 7.4e-16 5.879e-16 1.297e-16

ex(x− 1)− e−x(x+ 1) (1e-8) 5.000e-10 5.000e-10 5.000e-10

degree 3 polynomial (1e-7) 7.204e-9 1.441e-9 1.441e-9

degree 6 polynomial (1e-5) 2.741e-14 3.538e-14 2.258e-14

Table 2. Comparison of errors for multivariate functions. All numbers are rounded.

Problem (tolerance specified) certified (affine) certified (interval) true errors

stress distribution (1e-10)
3.584e-11
4.147e-11

3.584e-11
4.147e-11

3.584e-11,
4.147e-11

sin-cosine system (1e-7)
6.689e-09
6.655e-09

6.689e-09
6.655e-09

6.689e-9
6.6545e-9

double pendulum (1e-13)
4.661e-15
6.409e-15

5.454e-15
7.449e-15

5.617e-17
9.927e-17

circle-parabola intersection (1e-13)
5.551e-17
1.110e-16

1.110e-16
1.110e-16

8.0145e-51
5.373e-17

quadratic 2d system (1e-6)
2.570e-12
3.025e-09

3.326e-12
3.025e-09

2.192e-12
3.024e-9

turbine rotor (1e-12)

1.517e-13
1.707e-13
1.908e-14

1.523e-13
1.724e-13
1.955e-14

1.514e-13
1.703e-13
1.887e-14

quadratic 3d system (1e-10)

4.314e-16
5.997e-16
4.349e-16

6.795e-16
1.632e-15
5.127e-16

1.2134e-16
7.914e-17
7.441e-17

library. The results on a number of benchmark problems chosen from numerical
analysis textbooks are presented in Tables 1 and 2. We are able to confirm the er-
ror bounds specified by the user in all cases. In fact, of all the examples we tried,
our library failed only in the case of a multiple root for the reasons explained in
Section 3 and never for precision reasons. We split the evaluation between the
unary case and the multivariate case because of their different characteristics.
All numbers are the maximum absolute errors computed. The numbers in paren-
theses are the tolerances given to the solvers and have been chosen randomly to
simulate the different demands of the real world. We highlight the better error
estimates in bold.

Note that the precision of the error estimates we obtain is remarkably good.
Another perhaps surprising result of our experiments is that using interval arith-
metic is generally more precise (in the unary case) or not much worse (in the mul-



Table 3. Average runtimes for the benchmark problems from Tables 1 and 2. Averages
are taken over 1000 runs.

Problem set
solution time

only affine interval

interval w/o

optimizations
quadruple
precision

unary problems 0.032ms 2.170ms 0.459ms 0.733ms 17.196ms

2D problems 0.044ms 2.779ms 0.984ms 1.240ms 4.446ms

3D problems 0.183ms 3.563ms 1.063ms 1.515ms 16.605ms

Table 4. Runtimes for individual problems. Averages are taken over 1000 runs.

Problem affine interval

carbon gas state equation 0.272ms 0.084ms

double pendulum problem 0.784ms 0.228ms

turbine problem 2.643ms 0.644ms

degree 3 polynomial 0.116ms 0.044ms

quadratic 2d system 0.425ms 0.200ms

quadratic 3d system 0.943ms 0.460ms

tivariate case) than affine arithmetic, although the latter is usually presented as
the superior approach. Indeed, for the tracking of roundoff errors we have shown
affine arithmetic to provide (sometimes much) better results than interval arith-
metic [5]. The reason why intervals perform as well is that for transcendental
functions they are able to compute a tighter range, since affine arithmetic has to
compute a linear approximation of those functions. The exceptions in the unary
case are the degree 6 polynomial and the carbon gas state equation example,
which confirms our hypothesis, since in that case the dependency tracking of
affine arithmetic can recover some of the imprecision in the long run.

For the multivariate case, affine arithmetic performs generally better because
the computation consists to a large part of linear arithmetic. Due to the larger
computation cost (see Section 5), however, we leave it as a choice for the user
which arithmetic to use and select interval arithmetic as a default.

Performance Evaluation. Table 3 compares the performance of our imple-
mentation when using affine, interval arithmetic, or interval arithmetic without
the differentiation optimizations listed in Section 4.2. Switching off the opti-
mizations is similar to performing automatic differentiation. We can see that
our optimizations actually make a big difference in the runtimes, improving by
up to 37% for unary functions and 30% for our 3D problems over pure differenti-
ation. On the other hand, the table clearly shows that affine arithmetic is much
less efficient than interval arithmetic (factor 3-4.5 approx.), so it should only
be used if precision is of importance. The first column shows the runtimes for
computing the solutions with Newton’s method without any kind of verification.
We have also included the runtimes of re-computing the root(s) in quadruple
precision [10]. That is we have used approximately 64 decimal digits for all cal-
culations of the numerical method. The runtimes illustrate that this approach



for computing trustworthy results is unsuitable from the performance point of
view, and would not actually provide any guarantees on errors.

Table 4 illustrates the dependence of runtimes on the complexity (operation
count and dimension) of the problems. The first three problems are those from
our example section 2 and the second set comprises relatively short polynomial
equations. Runtimes depend both on the type of equations, as e.g. transcenden-
tal functions are more expensive, and on the size of the system of equations.
We consider the increases appropriate given the increase of complexity of the
problems.

6 Related Work

We are not aware of any work for general-purpose programming languages that
could verify solutions of nonlinear constraints or that provides runtime asser-
tions that are consistent with mathematical reals. Closest to our work are self-
validated methods for solving systems of non-linear equations. [17] contains
a fairly complete overview and an implementation exists in the INTLAB li-
brary [16]. The main difference to our work is that these methods are solution
methods that use interval arithmetic throughout the computation. In contrast,
we use the theorems from Section 3 as a verification method that accepts solu-
tions computed by an arbitrary method. This allows us to leverage the generally
good results and efficiency of numerical methods with sound results. Moreover,
our implementation performs part of the computation already at compile time,
and is thus more efficient.

In the case of systems of linear equations, one can use the linearity for opti-
mizations [13]. The presented algorithm remains an iterative solver. [8] gives an
iterative refinement algorithm for linear systems that uses higher precision arith-
metic to compute the residual. The techniques cannot however be translated to
nonlinear systems. Since we do not compute residuals that suffer heavily from
cancellation errors in our approach, we believe that the additional cost of higher
precision arithmetic is not warranted in order to achieve a slightly better preci-
sion. Another related area is that of approximate computation [19,2], which uses
program transformations to trade accuracy for efficiency. The error bounds are
generally provided by the user in form of trusted specifications or are determined
by simulations. The results show a great potential for improving computation
efficiency while retaining precision sufficient for the application.

7 Conclusion

We have shown how to integrate the theory of error estimation from numer-
ical analysis into a general-purpose programming language. This allows us to
estimate how close computed numerical quantities are from the corresponding
values that would be computed using idealized operations on real numbers. As a
result, it is now possible to use the well-developed theory of reals to reason about
the programs manipulating floating points. The expectations of the programmer



can already be validated using runtime assertions that are easy and intuitive to
use for developers. Static analysis approaches can complement our solution and
can be built to use the same specification language.
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