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Abstract
Writing accurate numerical software is hard because of many
sources of unavoidable uncertainties, including finite numerical
precision of implementations. We present a programming model
where the user writes a program in a real-valued implementation
and specification language that explicitly includes different types
of uncertainties. We then present a compilation algorithm that gen-
erates a finite-precision implementation that is guaranteed to meet
the desired precision with respect to real numbers. Our compila-
tion performs a number of verification steps for different candidate
precisions. It generates verification conditions that treat all sources
of uncertainties in a unified way and encode reasoning about finite-
precision roundoff errors into reasoning about real numbers. Such
verification conditions can be used as a standardized format for
verifying the precision and the correctness of numerical programs.
Due to their non-linear nature, precise reasoning about these ver-
ification conditions remains difficult and cannot be handled using
state-of-the art SMT solvers alone. We therefore propose a new pro-
cedure that combines exact SMT solving over reals with approx-
imate and sound affine and interval arithmetic. We show that this
approach overcomes scalability limitations of SMT solvers while
providing improved precision over affine and interval arithmetic.
Our implementation gives promising results on several numerical
models, including dynamical systems, transcendental functions,
and controller implementations.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Program Verification

Keywords roundoff error; floating-point arithmetic; fixed-point
arithmetic; verification; compilation; embedded systems; numeri-
cal approximation; scientific computing; sensitivity analysis

1. Introduction
Writing numerical programs is difficult, in part because the pro-
grammer needs to deal not only with the correctness of the algo-
rithm but also with different forms of uncertainties. Program inputs
may not be exactly known because they come from physical exper-
iments or were measured by an embedded sensor. The computation
itself suffers from roundoff errors at each step, because of the use of
finite-precision arithmetic. In addition, resources like energy may
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be scarce so that only a certain number of bits are available for the
numerical data type.

At the same time, the computed results in these domains can
have far-reaching consequences if used to control, for example, a
vehicle or a nuclear power plant. It is therefore becoming increas-
ingly urgent to develop tools that improve confidence in numer-
ical code [38]. One of the first challenges in doing this is that
most of our automated reasoning tools work with real arithmetic,
whereas the code is implemented with finite-precision. Many cur-
rent approaches to verify numerical programs start with the finite-
precision implementation and then try to verify the absence of (run-
time) errors. Not only are such verification results specific to a
given representation of numbers, but the absence of run-time errors
does not guarantee that program behavior matches the desired spec-
ification expressed using real numbers. Fundamentally, the source
code semantics is currently expressed in terms of low-level data
types such as floating-points. This is problematic not only for de-
velopers but also for compiler optimizations, because, e.g., the as-
sociativity law is unsound with respect to such source code seman-
tics.

In this paper we advocate a natural but ambitious alternative:
source code programs should be expressed in terms of mathemati-
cal real numbers. In our system, the programmer writes a program
using a Real data type, states the desired postconditions, and spec-
ifies explicitly the uncertainties as well as the desired target preci-
sion. It is then up to our trustworthy compiler to check, taking into
account all uncertainties and their propagation, that the desired pre-
cision can be soundly realized in a finite-precision implementation.
If so, the compiler chooses and emits one such implementation,
selecting from a range of (software or hardware) floating-point or
fixed-point arithmetic representations.

A key question that such a compiler needs to answer is whether
a given finite-precision representation remains close enough to an
ideal implementation in terms of real numbers. To answer this ques-
tion, we present a method to generate verification conditions that
encode reasoning about finite-precision roundoff errors into rea-
soning about real numbers. Our verification conditions explicitly
model the ideal program without external uncertainties and round-
offs, the actual program, which is executed in finite precision with
possibly noisy inputs, and the relationship between the two. Solv-
ing such verification conditions is one of the key tasks of a sound
compiler for reals.

Our approach is parametric in the bitwidth of the representations
and can thus be used on different platforms, from embedded con-
trollers without floating-point units (where fixed-point implementa-
tions are needed), to platforms that expose high-precision floating-
point arithmetic in their instruction set architecture. Using libraries
we can also emit code that uses precision twice or four times that of
the ubiquitous ’double’ data type. When multiple representations
are available, the compiler can select, e.g., the smallest represen-
tation needed to deliver the desired number of trusted significant
digits.



To summarize, viewing source code as operating on real num-
bers has many advantages:

• Programmers can reason about correctness using real arithmetic
instead of finite-precision arithmetic. We achieve separation
of the design of algorithms (which may still be approximate
for other reasons) from their realization using finite-precision
computations.
• We can verify the ideal meaning of programs using techniques

developed to reason over real numbers, which are more scalable
and better understood than techniques that directly deal with
finite-precision arithmetic.
• The approach allows us to quantify the deviation of implemen-

tation outputs from ideal ones, instead of merely proving e.g.
range bounds of floating-point variables which is used in sim-
pler static analyses.
• The compiler for reals is free to do optimizations as long as

they preserve the precision requirements. This allows the com-
piler to apply, for example, associativity of arithmetic [17], or
even select different approximation schemes for transcendental
functions.
• In addition to roundoff errors, the approach also allows the

developer to quantify program behavior in the face of external
uncertainties such as input measurement errors.

Using our verification conditions, the correctness and the preci-
sion of compilation for small programs can, in principle, be directly
verified using an SMT solver such as Z3 [20] (see Section 5.3).
The capabilities of such solvers are likely continue to improve as
the solvers advance, benefiting our approach. However, the com-
plexity of the generated verification conditions for larger programs
is currently out of reach of such solvers and we believe that spe-
cialized techniques are and will continue to be necessary for this
task. This paper presents two specialized techniques that improve
the feasibility of the verification task. The first technique performs
local approximation and is effective even in benchmarks contain-
ing nonlinear arithmetic. The second technique specifically handles
conditional expressions.

1.1 Solving Non-Linear Constraints. Forward Propagation
Nonlinear arithmetic poses a significant challenge for verification
because it cannot directly be handled using Simplex-like algorithms
embedded inside SMT solvers. Although interesting relevant frag-
ments are decidable and are supported by modern solvers, the com-
plexity of solving such constraints is much higher, in terms of
both worst-case complexity and the experience in practice. Un-
fortunately, non-linear arithmetic is ubiquitous in numerical soft-
ware. Furthermore, our verification conditions add roundoff error
terms to arithmetic expressions, so the resulting constraints grow
further in complexity, often becoming out of reach of solvers. An
alternative to encoding into SMT solver input is to use a sound
and over-approximating arithmetic model such as interval or affine
arithmetic [19]. However, when used by itself on non-linear code,
these approaches yield too pessimistic results, failing to establish
any bounds on precision in a number of useful benchmarks.

We show that we can combine range arithmetic computation
with SMT solving to overcome the limitations of each of the indi-
vidual techniques. From the point of view of the logical encoding of
the problem, range arithmetic becomes a specialized method to per-
form approximate quantifier elimination of bounded variables that
describe the uncertainties. We obtain a sound, precise, and some-
what scalable procedure. During range computation, our technique
also checks for common problems such as overflow, division by
zero or square root of a negative number, emitting the correspond-
ing warnings. Because the procedure is a forward computation, it is

suitable for automatically generating function summaries contain-
ing output ranges and errors of a function. This is a feature that
SMT solvers do not solve by themselves, because their primary
functionality is answering formula satisfiability questions.

1.2 Sound Compilation of Conditionals
In the presence of uncertainties, conditional branches become an-
other verification challenge. Namely, the ideal execution may fol-
low one branch, but, because of input or roundoff errors, the actual
execution follows another. This behavior may be acceptable, how-
ever, if we can show that the error on the output remains within
required bounds. Our approach could benefit from modular au-
tomated analysis of continuity, which was advocated previously
[53]. Because we are interested in concrete bounds, we present
a new method to check that different paths taken by real-valued
and finite-precision versions of the program still preserve the de-
sired precision specification. Our check does not require continuity
(which can be difficult to prove for non-linear code). Instead, it di-
rectly checks that the difference between the two values on different
branches meets the required precision. This technique extends our
method for handling non-linear arithmetic, so it benefits from the
combination of range arithmetic and SMT solving.

1.3 Implementation and Evaluation
We have implemented our compilation and verification procedure,
including the verification condition generation, analysis of possibly
non-linear expressions, and the handling of conditionals. Our sys-
tem is implemented as an extension of the Leon verifier for func-
tional Scala programs [7]. The implementation relies on a range
arithmetic implementation [15] for Scala as well as on the Z3 SMT
solver [20]. We have evaluated the system on a number of diverse
benchmarks, obtaining promising results. Our implementation and
the benchmarks are available from

http://lara.epfl.ch/w/rosa

To support programming of larger code fragments, our system also
supports a basic modular verification technique, which handles
functions by replacing calls with function postconditions or by in-
lining bodies of called functions. We thus expect that our technique
is applicable to larger code bases as well, possibly through refac-
toring code into multiple smaller and annotated functions. Even on
the benchmarks that we release, we are aware of no other available
system that would provide the same guarantees with our level of
automation.

1.4 Summary of Contributions
Our overall contribution is an approach for sound compilation of
real numbers into finite-precision representation. Specifically:

• We present a real-valued implementation and specification lan-
guage for numerical programs with uncertainties; we define its
semantics in terms of verification constraints that they induce.
We believe that such verification conditions can be used as a
standardized format for verifying the precision and the correct-
ness of numerical programs.
• We develop an approximation procedure for computing precise

range and error bounds for nonlinear expressions which com-
bines SMT solving with interval arithmetic. We show that such
an approach significantly improves computed range and error
bounds compared to standard interval arithmetic, and scales
better than SMT solving alone. Our procedure can also be used
independently as a more precise alternative to interval arith-
metic, and thus can perform forward computation without re-
quiring function postconditions to be provided.



• We describe an approach for soundly computing error bounds
in the presence of branches and uncertainties, which ensures
soundness of compilation in case the function defined by a
program with conditionals.
• We have implemented our framework and report our experience

on a set of diverse benchmarks, including benchmarks from
physics, biology, chemistry, and control systems. The results
show that our technique is effective and that it achieves a syn-
ergy of the techniques on which it relies.

2. Example
We demonstrate some aspects of our system on the example writ-
ten in the Scala programming language [45] in Figure 1. The meth-
ods triangle and triangleSorted compute the area of a triangle with
side lengths a, b and c. We consider a particular application where
the user may have two side lengths given, and may vary the third.
She has two functions available to do the computation and wants
to determine whether either or both satisfy the precision require-
ment of 1e−11 on line 8. require and ensuring give the pre- and
postconditions of functions, which are written in Scala. Notation
res +/− 1e−11 denotes that the return value res should have an abso-
lute error of at most 1e−11 compared to the ideal computation over
reals. Our tool determines that such requirement needs at least dou-
ble floating-point precision and emits the corresponding code. In
general, the challenge is to establish that this precision is sufficient
to ensure the required bounds, given that errors in finite-precision
code accumulate and grow without an a priori bound.

Our tool verifies fully automatically that the method triangleSorted
indeed satisfies the postcondition and generates the source code
with the Double data type which also includes a more precise and
complete postcondition on main:

0.01955760940017617 ≤ res ∧ res ≤ 12.51998402556971 ∧
res +/− 8.578997409317759e−12

To achieve this result, our tool first checks that the precondi-
tion of the function call is satisfied using the Z3 solver. Then, it
inlines the body of the function triangleSorted and computes a sound
bound on the result’s uncertainty with our approximation proce-
dure. It uses the computed bounds to show that the postcondition
of main is satisfied. The error computation takes into account in a
sound way the input uncertainty (here: an initial roundoff error on
the inputs), its propagation, and roundoff errors committed at each
arithmetic operation. Additionally, due to the roundoff error, the
comparison on line 21 may give a different truth value in bound-
ary cases. Certain floating-point computations will therefore take
a different branch than their corresponding real-valued computa-
tion. More precisely, the total error when computing the condition
is 2e − 15, as computed by our tool. That is, floating-point val-
ues that satisfy a < b + 2e − 15 may take the else branch, even
though the corresponding real values would follow the then branch,
and similarly in the opposite direction. Our tool verifies that, de-
spite this phenomenon, the difference in the computed result in two
branches remains within the precision requirement. Intuitively, the
values of computed branches are close for the interval where the
truth value of the condition changes, and these values in real-valued
and finite-precision implementation are close to each other. Finally,
our tool uses our novel range computation procedure to also find a
more precise output range than we could have obtained in, e.g.,
interval arithmetic or any static analysis method that does not dif-
ferentiate roundoff error variations from the fact that a program
can be ran over an interval of inputs. Our tool computes the range
[0.0195, 12.52] for both methods, but shows a difference in the ab-
solute error of the computation. For the method triangle, the veri-
fication fails, because the computed error (2.3e − 11) exceeds the

def main(a: Real, b: Real, c: Real): Real = {
2 require(4.500005 ≤ a && a ≤ 6.5)

val b = 4.0
4 val c = 8.5

//val area = triangle(a, b, c)
6 val area = triangleSorted(a, b, c)

area
8 } ensuring(res⇒ res +/− 1e−11)

10 def triangle(a: Real, b: Real, c: Real): Real = {
require(1 < a && a < 9 && 1 < b && b < 9 && 1 < c && c < 9 &&

12 a + b > c + 1e−6 && a + c > b + 1e−6 && b + c > a + 1e−6)
val s = (a + b + c)/2.0

14 sqrt(s ∗ (s − a) ∗ (s − b) ∗ (s − c))
}

16

def triangleSorted(a: Real, b: Real, c: Real): Real = {
18 require(1 < a && a < 9 && 1 < b && b < 9 && 1 < c && c < 9 &&

a + b > c + 1e−6 && a + c > b + 1e−6 && b + c > a + 1e−6 &&
20 a < c && b < c)

if (a < b) {
22 sqrt((c+(b+a)) ∗ (a−(c−b)) ∗ (a+(c−b)) ∗ (c+(b−a)))/4.0

} else {
24 sqrt((c+(a+b)) ∗ (b−(c−a)) ∗ (b+(c−a)) ∗ (c+(a−b))) / 4.0

}
26 }

Figure 1. Computing the area of a triangle with a given precision.

required precision bound. This result is expected—the textbook for-
mula for triangles is known to suffer from imprecision for flat trian-
gles [35], which is somewhat rectified in the method triangleSorted.
On the other hand, our tool proves that using triangleSorted delivers
the desired precision of 10−11 on the result.

3. Programs with Reals
Each program to be compiled consists of one top-level object with
methods written in a functional subset of the Scala programming
language [45]. All methods are functions over the Real data type
and the user annotates them with pre- and postconditions that ex-
plicitly talk about uncertainties. Real represents ideal real num-
bers without any uncertainty. We allow arithmetic expressions over
Reals with the standard arithmetic operators {+,−, ∗, /,√}, and
together with conditionals and function calls they form the body
of methods. Our tool also supports immutable variable declarations
as val x = .... This language allows the user to define a computation
over real numbers. Note that this specification language is not exe-
cutable.

The precondition allows the user to provide a specification of
the environment. A complete environment specification consists of
lower and upper bounds for all method parameters and an upper
bound on the uncertainty or noise. Range bounds are expressed
with regular comparison operators. Uncertainty is expressed with
a predicate such as x +/− 1e−6, which denotes that the variable x
is only known up to 1e − 6. Alternatively, the programmer can
specify the relative error as x +/− 1e−7 ∗ x. If no noise except for
roundoff is present, roundoff errors are automatically added to
input variables.

The postcondition can specify constraints on the output, and in
particular the range and the maximum accepted uncertainty. In ad-
dition to the language allowed in the precondition, the postcondi-
tion may reference the errors on inputs directly in the following
way: res +/− 3.5 ∗ !x, which says that the maximum acceptable error
on the output variable res is bounded from above by 3.5 times the
initial error on x. Whereas the precondition may only talk about the
ideal values, the postcondition can also reference the actual value



directly via ∼x. This allows us to assert that runtime values will not
exceed a certain range, for instance.

Floating-point arithmetic Our tool and technique support in
the generated target code any floating-point precision and in par-
ticular, single and double floating-point precision as defined by
the IEEE 754 floating-point standard [51]. We assume rounding-
to-nearest rounding mode and that basic arithmetic operations
{+,−, ∗, /,√} are rounded correctly, which means that the re-
sult from any such operation must be the closest representable
floating-point number. Hence, provided there is no overflow and
the numbers are not in denormal range, the result of a binary oper-
ation ◦F satisfies

x ◦F y = (x ◦R y)(1 + δ), |δ| ≤ εM , ◦ ∈ {+,−, ∗, /} (1)

where ◦R is the ideal operation in real numbers and εM is the
machine epsilon that determines the upper bound on the relative
error. This model provides a basis for our roundoff error estimates.
When there is a possibility of an overflow or denormal values, our
analysis reports an error. An extension of the analysis to handle
denormals is straightforward, by adding an additional error term in
Equation 1.

Fixed-point arithmetic Our tool and technique also support stan-
dard fixed-point arithmetic; for more details see [3]. Our precision
analysis supports any bit-width. Our code generator generates code
for 16 and 32 bit fixed-point arithmetic, which are the most com-
mon choices, using integers and bit-shifts.

Other finite-precision representations of rationals The tech-
niques described in this paper are general in that they are also
applicable to other arithmetic representations, as long as roundoff
errors can be computed at each computation step from the ranges of
variables. Examples include floating-point implementations with a
different number of bits for the exponent and mantissa, or redun-
dant arithmetic.

4. Compiling Reals to Finite Precision
Given a specification or program over reals and possible target data
type(s), our tool generates code over floating-point or fixed-point
numbers that satisfy the given pre- and postconditions (and thus
meet the target precision). Figure 2 presents a high-level view of
our compilation algorithm. Our tool first analyses the entire speci-
fication and generates one verification condition for each postcon-
dition to be proven. To obtain a modular algorithm, the tool also
generates verification conditions that check that at each function
call the precondition of the called function is satisfied. The meth-
ods are then sorted by occurring function calls. This allows us to re-
use already computed postconditions of function calls in a modular
analysis. If the user specifies one target data type, the remaining
part of the compilation process is performed with respect to this
data type’s precision. If not or in the case the user specified sev-
eral possible types, our tool will perform a binary search over the
possible types to find the least in the list that satisfies all specifica-
tions. The user of our tool can provide the list of possible data types
manually and sort them by her individual preference. Currently, the
analysis is performed separately for each data type, which is not a
big issue due to the relatively small number of alternatives. We did
identify certain shared computations between iterations; we can ex-
ploit them in the future for more efficient compilation. In order for
the compilation process to succeed, the specification has to be met
with respect to a given finite-precision arithmetic, thus the principal
part of our algorithm is spent in verification, which we describe in
Section 5.

We envision that in the future the compilation task will also
include automatic precision-preserving code optimizations, but in

Input: spec: specification over Reals, prec: candidate precisions
for fnc ← spec.fncs

fnc.vcs = generateVCs(fnc)

spec.fncs.sortBy((f1, f2) => f1 ⊆ f2.fncCalls)

while prec 6= ∅ and notProven(spec.fncs)
precision = prec.nextPrecise
for fnc ← spec.fncs
for vc ← fnc.vcs
while vc.hasNextApproximation ∧ notProven(vc)

approx = getNextApproximation(vc, precision)
vc.status = checkWithZ3(approx)

generateSpec(fnc)
generateCode(spec)

Output: floating−point or fixed−point code

Figure 2. Compilation algorithm.

this paper we concentrate on the challenging groundwork of veri-
fying the precision of code.

Our tool can currently generate Scala code over

• fixed-point arithmetic with a 16 or 32 bit width, or
• floating-point arithmetic in single (32 bit), double (64 bit),

double-double (128 bit) and quad-double (256 bit) precision.

We currently do not support mixing of data types in one program,
but plan to explore this avenue in the future. For double-double
and quad-double precision, which were implemented in software
by [5], we provide a Scala interface to the library with the generated
code. In case the verification part of compilation fails, our tool
prints a failure report with the best postconditions our tool was
able to compute. The user can then use the generated specifications
to gain insight why and where her program does not satisfy the
requirements.

While we have implemented our tool to accept specifications
in a domain specific language embedded in Scala and generate
code in Scala, all our techniques apply equally to all programming
languages and hardware that follow the floating-point abstraction
we assume (Equation 1).

5. Verifying Real Programs
We will now describe the verification part of our compilation al-
gorithm. In the following we will call the ideal computation the
computation in the absence of any uncertainties and implemented
in a real arithmetic, and the actual computation the computation
that will finally be executed in finite-precision and with potentially
uncertain inputs.

5.1 Verification Conditions for Loop-Free Programs
For each method with a precondition P and a postcondition Q our
approach considers the following verification condition:

∀~x, ~res, ~y. P (~x) ∧ body(~x, ~y, ~res)→ Q(~x, ~res) (*)

where ~x, ~res, ~y denote the input, output and local variables re-
spectively. Table 1 summarizes how verification constraints are
generated from our specification language for floating-point arith-
metic. Each variable x in the specification corresponds to two real-
valued variables x, x◦, the ideal one in the absence of uncertainties
and roundoff errors and the actual one, computed by the compiled
program. Note that the ideal and actual variables are related only
through the error bounds in the pre- and postconditions, which al-



a <= x && x <= b x ∈ [a, b]

x +/− k x◦ = x+ errx ∧ errx ∈ [−k, k]
x +/− m ∗ x x◦ = x+ errx ∧ errx ∈ [−|mx|, |mx|]
∼x x◦

!x errx

x � y (ideal part) (x � y)
x � y (actual part) (x◦ � y◦)(1 + δ1)

sqrt(x) (ideal part) sqrt(x)

sqrt(x) (actual part) sqrt(x◦)(1 + δ2)

val z = x z = x ∧ z◦ = x◦

if (c(x)) e1(x) ((c(x) ∧ e1(x)) ∨ (¬c(x) ∧ e2(x)))∧
else e2(x) ((c◦(x◦)∧e1◦(x◦))∨(¬c◦(x◦)∧e2◦(x◦)))
g(x) g(x) ∧ g◦(x◦)

� ∈ {+,−, ∗, /}
−εm ≤ δi ∧ δi ≤ εm, all δ are fresh

cond◦ and e◦ denote functions with roundoff errors at each step

Table 1. Semantics of our specification language.

lows for the ideal and actual executions to take different paths. In
the method body we have to take into account roundoff errors from
arithmetic operations and the propagation of existing errors. Our
system currently supports operations {+,−, ∗, /,√}, but these can
be in principle extended to elementary functions, for instance by
encoding them via Taylor expansions [41]. Note that the resulting
verification conditions are parametric in the machine epsilon.

For fixed-point arithmetic constraints such as above can also be
generated, although the translation is more complex due to the fact
that fixed-point formats have to be statically determined. Roundoff
error can thus no longer be encoded by a formula such as Equa-
tion 1. One possible translation is to speculatively assign fixed-
point formats (including the position of the fixed point) based on
real-valued ranges, and then verify that the resulting constraint
with the assigned formats still holds in the presence of roundoff
errors. However, because a direct attempt to solve verification con-
ditions using an off-the-shelf solver alone is not satisfactory (see
Section 5.3), our tool directly uses the approximation procedure
from Section 5.4 and computes sound ranges for fixed-point imple-
mentation, allocating fixed-point formats on the fly.

5.2 Specification Generation
In order to give feedback to developers and to facilitate automatic
modular analysis, our tool also provides automatic specification
generation. By this we mean that the programmer still needs to
provide the environment specification in form of preconditions, but
our tool automatically computes a precise postcondition.

Formally, we can rewrite the constraint (*) as

∀~x, res. (∃~y. P (~x) ∧ body(~x, ~y, res))→ Q(~x, res)

where Q is now unknown. We obtain the most precise post-
condition Q by applying quantifier elimination (QE) to P (~x) ∧
body(~x, ~y, res) and eliminate ~y. The theory of arithmetic over re-
als admits QE so it is theoretically possible to use this approach.
We do not currently use a full QE procedure for specification gen-
eration, as it is expensive and it is not clear whether the returned
expressions would be of a suitable format. Instead, we use our
approximation approach which computes ranges and maximum er-
rors in a forward fashion and computes an (over) approximation of
a postcondition of the form res ∈ [a, b]∧res±u. When proving a

def getNextApproximation(vc, precision):

getRange 
evalWithError 

paths 

path-wise 
merging 

functions 

inlining postcondition 

inlining full function 

arithmetic 

approx. error   
approx. error & range 

first approximation 

getPathError 

Figure 3. Approximation pipeline.

postcondition, our tool automatically generates these specifications
and provides them as feedback to the user.

5.3 Difficulty of Simple Encoding into SMT solvers
For small functions we can already prove interesting properties by
using the exact encoding of the problem just described and dis-
charging the verification constraints with Z3. Consider the follow-
ing code a programmer may write to implement the third B-spline
basic function which is commonly used in signal processing [33].

def bspline3(u: Real): Real = {
require(0 ≤ u && u ≤ 1 && u +/− 1e−13)
−u∗u∗u / 6.0
} ensuring (res⇒−0.17 ≤ res && res ≤ 0.05 && res +/− 1e−11)

Functions and the corresponding verification conditions of this
complexity are already within the possibilities of the nonlinear
solver within Z3. For more complex functions however, Z3 does not
(yet) provide an answer in a reasonable time, or returns unknown.
Whether alternative techniques in SMT solvers can help in such
cases remains to be seen [10, 34]. We here provide an approach
based on step-wise approximation that addresses the difficulty of
general-purpose constraint solving.

5.4 Verification with Approximations
To soundly compile more interesting programs, we have devel-
oped an approximation procedure that computes a sound over-
approximation of the range of an expression and of the uncertainty
on the output. This procedure is a forward computation and we
also use it to generate specifications automatically. We describe the
approximation procedure in detail in Section 6, for now we will as-
sume that it exists and, given a precondition P and an expression
expr, computes a sound bound on the output range and its associ-
ated uncertainty:

([a, b], err) = evalWithError(P, expr)⇒
∀~x, ~x◦, res, res◦.P (~x, ~x◦) ∧ res = expr(~x) ∧ res◦ = expr◦(~x◦)

→ (a ≤ res ∧ res ≤ b) ∧ |res − res◦| < err

We have identified three possibilities for approximation: non-
linear arithmetic, function calls, and paths due to conditionals and
each can be approximated at different levels. We have observed in
our experiments, that “one size does not fit all” and a combina-
tion of different approximations is most successful in proving the
verification conditions we encountered. For each verification con-
dition we thus construct approximations until Z3 is able to prove
one, or until we run out of approximations where we report the
verification as failed. We can thus view verification as a stream
of approximations to be proven. We illustrate the pipeline that
computes the different approximations in Figure 3. The routines
getPathError, getRange and evalWithError are described in the follow-
ing sections in more detail.



The first approximation (indicated by the long arrow in Fig-
ure 3) is to use Z3 alone on the entire constraint constructed by the
rules in Table 1. This is indeed an approximation, as all function
calls are treated as uninterpreted functions in this case. As noted
before, this approach only works in very simple cases or when no
uncertainties and no functions are present. Then, taking all pos-
sible combinations of subcomponents in our pipeline we obtain
the other approximations, which are filtered accordingly depend-
ing on whether the constraint contains function calls or conditional
branches.

Function calls If the verification constraint contains function
calls and the first approximation failed, our tool will attempt to in-
line postconditions and pass on the resulting constraint down the
approximation pipeline. We support inlining of both user-provided
postconditions and postconditions computed by our own specifi-
cation generation procedure. If this still is not precise enough, we
inline the entire function body.

Postcondition inlining is implemented by replacing the function
call with a fresh variable and constraining it with the postcondi-
tion. Thus, if verification succeeds with inlining the postcondition,
we avoid having to consider each path of the inlined function sep-
arately and can perform modular verification avoiding a potential
path explosion problem. Such modular verification is not feasible
when postconditions are too imprecise and we plan to explore the
generation of more precise postconditions in the future. One step
in this direction is to allow postconditions that are parametric in
the initial errors, for example with the operator !x introduced in
Section 3. While our tool currently supports postcondition inlining
with such postconditions, we do not yet generate these automati-
cally.

Arithmetic The arithmetic part of the verification constraints gen-
erated by Table 1 can be essentially divided into the ideal part and
the actual part, which includes roundoff errors at each computation
step. The ideal part determines whether the ideal range constraints
in the postcondition are satisfied and the actual part determines
whether the uncertainty part of the postcondition is satisfied. We
can use our procedure presented in Section 6 to compute a sound
approximation of both the result’s range as well as its uncertainty.

Based on this, our tool first constructs an approximation which
leaves the ideal part unchanged, but replaces the actual part of
the constraint by the computed uncertainty bound. This effectively
removes a large number of variables and is many times a sufficient
simplification for Z3 to succeed in verifying the entire constraint.
If Z3 is still not able to prove the constraint, our tool constructs
the next approximation by also replacing the ideal part, this time
with a constraint of the result’s range which has been computed
by our approximation procedure previously. Note that this second
approximation may not have enough information to prove a more
complex postcondition, as correlation information is lost. We note
that the computation of ranges and errors is the same for both
approximations and thus trying both does not affect efficiency
significantly. In our experiments, Z3 is able to prove the ideal, real-
valued part in most cases, so this second approximation is rarely
used.

Paths In the case of several paths through the program, we have
the option to consider each path separately or to merge results at
each join in the control flow graph. This introduces a tradeoff be-
tween efficiency and precision, since on one hand, considering each
path separately leads to an exponential number of paths to consider.
On the other hand, merging at each join looses correlation informa-
tion between variables which may be necessary to prove certain
properties. Our approximation pipeline chooses merging first, be-
fore resorting to a path-by-path verification in case of failure. We
believe that other techniques for exploring the path space could also

def comparisonValid(x: Real): Real = {
require(−2.0 < x && x < 2.0)
val z1 = sineTaylor(x)
val z2 = sineOrder3(x)
z1 − z2
} ensuring(res⇒ res <= 0.1 && res +/− 5e−14)

def comparisonInvalid(x: Real): Real = {
require(−2.0 < x && x < 2.0)
val z1 = sineTaylor(x)
val z2 = sineOrder3(x)
z1 − z2
} ensuring(res⇒ res <= 0.01 && res +/− 5e−14)

def sineTaylor(x: Real): Real = {
require(−2.0 < x && x < 2.0)
x − (x∗x∗x)/6.0 + (x∗x∗x∗x∗x)/120.0 − (x∗x∗x∗x∗x∗x∗x)/5040.0
} ensuring(res => −1.0 < res && res < 1.0 && res +/− 1e−14)

def sineOrder3(x: Real): Real = {
require(−2.0 < x && x < 2.0)
0.954929658551372 ∗ x − 0.12900613773279798∗(x∗x∗x)
} ensuring(res⇒−1.0 < res && res < 1.0 && res +/− 1e−14)

Figure 4. Different polynomial approximations of sine.

be integrated into our tool [12, 36]. Another possible improvement
are heuristics that select a different order of approximations de-
pending on particular characteristics of the verification condition.

Example We illustrate the verification algorithm on the example
in Figure 4, using double floating-point precision as the target. The
functions sineTaylor and sineOrder3 are verified first since they do not
contain function calls. Verification with the full verification con-
straint fails. Next, our tool computes the errors on the output and
Z3 succeeds to prove the resulting constraint with the ideal part un-
touched. From this approximation our tool directly computes a new,
more precise postcondition, in particular it can narrow the resulting
errors to 1.63e-15 and 1.11e-15 respectively. Next, our tool con-
siders the comparisonValid function. Inlining only the postcondition
is not enough in this case, but computing the error approximation
on the inlined functions succeeds in verifying the postcondition.
Note that our tool does not approximate the real-valued portion
of the constraint, i.e. Z3 is used directly to verify the constraint
z1− z2 ≤ 0.1. This illustrates our separation of the real reasoning
from the finite-precision implementation: with our separation we
can use a real arithmetic solver to deal with algorithmic reasoning
and verify with our error computation that the results are still valid
(within the error bounds) in the implementation. Finally, the tool
verifies that the preconditions of the function calls are satisfied by
using Z3 alone. Verification of the function comparisonInvalid fails
with all approximations. Our tool is able to determine that the ideal
real-valued constraint alone (z1−z2 ≤ 0.01) is not valid, reports a
counterexample (x = 1.875) and returns invalid as the verification
result.

5.5 Soundness
Our procedure is sound because our constraints over-approximate
the actual errors. Furthermore, even in the full constraint as gen-
erated from Table 1, roundoff errors are over-approximated since
we assume the worst-case error bound at each step. While this en-
sures soundness, it also introduces incompleteness, as we may fail
to validate a specification because our over-approximation is too
large. This implies that counterexamples reported by Z3 are in gen-
eral only valid, if they disprove the ideal real-valued part of the
verification constraint. Our tool checks whether this is the case by



constructing a constraint with only the real-valued part, and reports
the counterexamples, if such are returned from Z3.

5.6 Loops and Recursion
In principle, our techniques can be applied to programs with loops
via recursion, however, because of accumulation of roundoff er-
rors only self-stabilizing systems can be expected to have simple
inductive invariants, and such systems can to some extent also be
addressed using runtime verification techniques [16]. For non-self-
stabilizing systems the uncertainties depend on the number of iter-
ations, which makes specifications of such functions very complex.
Note that, for ensuring the stability of certain embedded control
systems, it has been shown that it is sufficient to consider the body
of the control loop only [3].

6. Solving Nonlinear Constraints
Having given an overview of the approximation pipeline, we now
describe the computation of the approximation for nonlinear arith-
metic, which corresponds to the last box in Figure 3. For complete-
ness of presentation, we first review interval and affine arithmetic
which are common choices for performing sound arithmetic com-
putations and which we also use as part of our technique. We then
present our novel procedure for computing the output range of a
nonlinear expression given ranges for its inputs that can be a more
precise substitute for interval or affine arithmetic. Finally, we con-
tinue with a procedure that computes a sound over-approximation
of the uncertainty on the result of a nonlinear expression.

One possibility to perform guaranteed computations is to use
standard interval arithmetic [43]. Interval arithmetic computes a
bounding interval for each basic operation as

x ◦ y = [min(x ◦ y),max(x ◦ y)] ◦ ∈ {+,−, ∗, /}

and analogously for square root.
Affine arithmetic was originally introduced in [19] and ad-

dresses the difficulty of interval arithmetic in handling correlations
between variables. Affine arithmetic represents possible values of
variables as affine forms

x̂ = x0 +

n∑
i=1

xiεi

where x0 denotes the central value (of the represented interval) and
each noise symbol εi is a formal variable denoting a deviation from
the central value, intended to range over [−1, 1]. The maximum
magnitude of each noise term is given by the corresponding xi.
Note that the sign of xi does not matter in isolation, it does,
however, reflect the relative dependence between values. E.g., take
x = x0 + x1ε1, then

x− x = x0 + x1ε1 − (x0 + x1ε1)

= x0 − x0 + x1ε1 − x1ε1 = 0

If we subtracted x′ = x0 − x1ε1 instead, the resulting interval
would have width 2 ∗ x1 and not zero.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =
n∑

i=1

|xi|

A general affine operation αx̂ + βŷ + ζ consists of addition, sub-
traction, addition of a constant (ζ) or multiplication by a constant
(α, β). Expanding the affine forms x̂ and ŷ we get

αx̂+ βŷ + ζ = (αx0 + βy0 + ζ) +

n∑
i=1

(αxi + βyi)εi

def getRange(expr, precondition, precision, maxIterations):
z3.assertConstraint(precondition)
[aInit, bInit] = evalInterval(expr, precondition.ranges);

//lower bound
if z3.checkSat(expr < a + precision) == UNSAT

a = aInit
b = bInit
numIterations = 0
while (b−a) < precision ∧ numIterations < maxIterations

mid = a + (b − a) / 2
numIterations++
z3.checkSat(expr < mid) match
case SAT ⇒ b = mid
case UNSAT ⇒ a = mid
case Unknown ⇒ break

aNew = a
else

aNew = aInit

//upper bound symmetrically
bNew = ...
return: [aNew, bNew]

Figure 5. Algorithm for computing the range of an expression.

An additional motivation for using affine arithmetic is that differ-
ent contributions to the range it represents remain, at least partly,
separated. This information can be used for instance to help iden-
tify the major contributor of a result’s uncertainty or to separate
contributions from external uncertainties from roundoff errors.

6.1 Range Computation
The goal of this procedure is to perform a forward-computation to
determine the real-valued range of a nonlinear arithmetic expres-
sion given ranges for its inputs. Two common possibilities are in-
terval and affine arithmetic, but they tend to over-approximate the
resulting range, especially if the input intervals are not sufficiently
small (order 1). Affine arithmetic improves over interval arithmetic
somewhat by tracking linear correlations, but in the case of nonlin-
ear expressions the results can become actually worse than for in-
terval arithmetic (e.g. x ∗ y, where x = [−5, 3], y = [−3, 1] gives
[−13, 15] in affine arithmetic and [−9, 15] in interval arithmetic).

Observation: A nonlinear theorem prover such as the one that
comes with Z3 can decide with fairly good precision whether a
given bound is sound or not. That is we can check with a prover
whether for an expression e the range [a, b] is a sound interval en-
closure. This observation is the basis of our range computation.

The input to our algorithm is a nonlinear expression expr and a
precondition P on its inputs, which specifies, among possibly other
constraints, ranges on all input variables ~x. The output is an interval
[a, b] which satisfies the following:

[a, b] = getRange(P, expr)⇒
∀~x, res.P (~x) ∧ res = expr(~x)→ (a ≤ res ∧ res ≤ b)

The algorithm for computing the lower bound of a range is given
in Figure 5. The computation for the upper bound is symmetric. For
each range to be computed, our tool first computes an initial sound
estimate of the range with interval arithmetic. It then performs an
initial quick check to test whether the computed first approximation
bounds are already tight. If not, it uses the first approximation as the
starting point and then narrows down the lower and upper bounds



using a binary search. At each step of the binary search our tool
uses Z3 to confirm or reject the newly proposed bound.

The search stops when either Z3 fails, i.e. returns unknown for
a query or cannot answer within a given timeout, the difference
between subsequent bounds is smaller than a precision threshold,
or the maximum number of iterations is reached. This stopping
criterion can be set dynamically.

Additional constraints In addition to the input ranges, the pre-
condition may also contain further constraints on the variables. For
example consider again the method triangle in Figure 1. The pre-
condition bounds the inputs as a, b, c ∈ [1, 9], but the formula is
useful only for valid triangles, i.e. when every two sides together
are longer than the third. If not, we will get an error at the lat-
est when we try to take the square root of a negative number. In
interval-based approaches we can only consider input intervals that
satisfy this constraint for all values, and thus have to check several
(and possibly many) cases. In our approach, since we are using Z3
to check the soundness of bounds, we can assert the additional con-
straints up-front and then all subsequent checks are performed with
respect to all additional and initial constraints. This allows us to
avoid interval subdivisions due to imprecisions or problem specific
constraints such as those in the triangle example. This becomes es-
pecially valuable in the presence of multiple variables, where we
may otherwise need an exponential number of subdivisions.

6.2 Error Approximation
We now describe our approximation procedure which, for a given
expression expr and a precondition P on the inputs, computes
the range and error on the output. More formally, our procedure
satisfies the following:

([a, b], err) = evalWithError(P, expr)⇒
∀~x, ~x◦, res, res◦.P (~x, ~x◦) ∧ res = expr(~x) ∧ res◦ = expr◦(~x◦)

→ (a ≤ res ∧ res ≤ b) ∧ |res − res◦| < err

where expr◦ represents the expression evaluated in finite-precision
arithmetic and ~x, ~x◦ are the ideal and actual variables. The precon-
dition specifies the ranges and uncertainties of initial variables and
other additional constraints on the ideal variables. The uncertainty
specification is necessary, as it relates the ideal and actual variables.

The idea of our procedure is to “execute” a computation while
keeping track of the output range of the current expression and
its associated errors. At each arithmetic operation, we propagate
existing errors, compute an upper bound on the roundoff error
and add it to the overall errors. Since the roundoff error depends
proportionally on the range of values, we need to keep track of the
ranges as precisely as possible.

Our procedure is build on the abstraction that a computation is
an ideal computation plus or minus some uncertainty. The abstrac-
tion of floating-point roundoff errors that we choose also follows
this separation:

fl(x � y) = (x � y)(1 + δ) = (x � y) + (x � y)δ

for δ ∈ [−εm, εm] and � ∈ {+,−, ∗, /}. This allows us to treat
all uncertainties in a unified manner. For fixed-point arithmetic the
situation is similar, but we first determine the fixed-point format
from the current range, and only from this compute the roundoff
error.

Our procedure builds on the idea of the SmartFloat data type [15],
which uses affine arithmetic to track both the range and the errors.
For nonlinear operations, however, the so computed ranges become
quickly very pessimistic and the error computation may also suffer
from this imprecision. We observed that since the errors tend to be
relatively small, this imprecision does not affect the error propaga-
tion itself to such an extent. If the initial errors are small (less than

one), multiplied nonlinear terms tend to be even smaller, whereas
if the affine terms are larger than one, the nonlinear terms grow. We
thus concentrate on improving the ideal range of values and use our
novel range computation procedure for this part and leave the error
propagation with affine arithmetic as in [15].

In our adaptation, we represent every variable and intermediate
computation result as a datatype with the following components:

x : (range : Interval , ˆerr : AffineForm)

where range is the range of this variable, computed as described in
Section 6.1 and ˆerr is the affine form representing the errors. The
(over-approximation) of the actual range including all uncertainties
is then given by totalRange = range+ [ ˆerr], where ˆerr denotes
the interval represented by the affine form.

Roundoff error computation Roundoff errors for floating-point
arithmetic are computed at each computation step as

ρ = δ ∗maxAbs(totalRange)

where δ is the machine epsilon, and added to ˆerr as a fresh noise
term. Note that this roundoff error computation makes our error
computation parametric in the floating-point precision. For fixed-
point arithmetic, roundoff errors are computed as

ρ = getFormat(totalRange, bitWidth).quantizationError

where the getFormat function returns the best fixed-point for-
mat [3] that can accommodate the range. This computation is also
parametric in the bit-width.

Error propagation For affine operations addition, subtraction,
and multiplication by a constant factor the propagated errors are
computed term-wise and thus as for standard affine arithmetic. We
refer the reader to [15, 19] for further details and describe here
only the propagation for nonlinear arithmetic. For multiplication,
division and square root, the magnitude of errors also depends
on the ranges of variables. Since our ranges are not affine terms
themselves, propagation has to be adjusted. In the following, we
denote the range of a variable x by [x] and its associated error by
the affine form ˆerrx. When we write [x] ∗ ˆerry we mean that the
interval [x] is converted into an affine form and the multiplication
is performed in affine arithmetic.

Multiplication is computed as

x ∗ y = ([x] + ˆerrx)([y] + ˆerry)

= [x] ∗ [y] + [x] ∗ ˆerry + [y] ∗ ˆerrx + ˆerrx ∗ ˆerry + ρ

where ρ is the new roundoff error. Thus the first term contributes
to the ideal range and the remaining three to the error affine form.
The larger the factors [x] and [y] are, the larger the finally computed
errors will be. In order to keep the over-approximation as small as
possible, we evaluate [x] and [y] with our new range computation.

Division is computed as

x

y
= x ∗ 1

y
= ([x] + ˆerrx)([1/y] + ˆerr1/y)

= [x] ∗ [ 1
y
] + [x] ∗ ˆerr 1

y
+ [

1

y
] ∗ ˆerrx + ˆerrx ∗ ˆerr 1

y
+ ρ

For square root, we first compute an affine approximation of square
root as in [15]:

√
x = α ∗ x + ζ + θ, and then perform the affine

multiplication term wise.

Overflows and NaN Our procedure allows us to detect potential
overflows, division by zero and square root of a negative value, as
our tool computes ranges of all intermediate values. We currently
report these issues as warnings to the user.



6.3 Limitations
The limitation of this approach is clearly the ability of Z3 to check
our constraints. We found its capabilities satisfactory, although we
expect the performance to still significantly improve. To emphasize
the difference to the constraints that are defined by Table 1, the
constraints we use here do not add errors at each step and thus
the number of variables is reduced significantly. We also found
several transformations helpful, such as rewriting powers (e.g. x ∗
x ∗ x to x3), multiplying out products and avoiding non-strict
comparisons in the precondition, although the benefits were not
entirely consistent. Note that at each step of our error computation,
our tool computes the current range. Thus, even if Z3 fails to tighten
the bound for some expressions, we still compute more precise
bounds than interval arithmetic overall in most cases, as the ranges
of the remaining subexpressions have already been computed more
precisely.

7. Conditional Statements
In this Section we consider the difference between the ideal and
actual computation due to uncertainties on computing branch con-
ditions and the resulting different paths taken. We note that the
full constraint constructed according to Section 3 automatically in-
cludes this error. Recall that the ideal and actual computations are
independent except for the initial conditions, so that it is possible
that they follow different paths through the program.

In the case of using approximation, however, we compute the
error on individual paths and have to consider the error due to
diverging paths separately. We propose the following algorithm to
explicitly compute the difference between the ideal and the actual
computation across paths. Note that we do not assume continuity,
i.e. the algorithm allows us to compute error bounds even in the
case of non-continuous functions.

For simplicity, we present here the algorithm for the case of one
conditional statement: if (c(x)<0) f1(x) else f2(x).
It generalizes readily to more complex expressions. W.l.o.g. we
assume that the condition is of the form c(x) < 0. Indeed, any
conditional of the form c(x) == 0 would yield different results
for the ideal and actual computation for nearly any input, so we do
not allow it in our specification language.

The actual computation commits a certain error when comput-
ing the condition of the branch and it is this error that causes some
executions to follow a different branch than the corresponding ideal
one would take. Consider the case where the ideal computation
evaluates f1, but the actual one evaluates f2. The algorithm in Fig-
ure 6 gives the computation of the path error in this case. The idea
is to compute the ranges of f1 and f2, but only for the inputs that
could be diverging. The final error is then the maximum difference
of these value. The algorithm extends naturally to several variables.
In the case of several paths through the program, this error has to
be, in principle, computed for each pair of paths. We use Z3 to rule
out infeasible paths up front so that the path error computation is
only performed for those paths that are actually feasible.

Our tool implements a refined version of this approach, which
merges paths to avoid having to consider an exponential number
of path combinations. It also uses a higher default precision and
number of iterations threshold during the binary search in the range
computation as this computation requires in general very tight
intervals for each path.

We identify two challenges for performing this computation:

1. As soon as the program has multiple variables, the inputs for the
different branches are not two-dimensional intervals anymore,
which makes an accurate evaluation of the individual paths
difficult.

def getPathError:
2 Input: pre: (x ∈ [a, b] ∧ x± n)

program: (if (cond(x) < 0) f1(x) else f2(x))
4

val pathError1 = computePathError(pre, cond, f1, f2)
6 val pathError2 = computePathError(pre, ¬ cond, f2, f1)

return max (pathError1, pathError2)
8

def computePathError(pre, c, f1, f2):
10 ([c], errc) = evalWithError(pre, c)

12 ([f2]float , errfloat ) =
evalWithError(pre ∧ c(x) ∈ [0, errc], f2)

14 [f1]real =
getRange(pre ∧ c(x) ∈ [−errc, 0], f1)

16 return: max |[f1]real − ([f2]float + errfloat)|

Figure 6. Computing error due to diverging paths. Quantities de-
notes by [x] are intervals.

2. The inputs for the two branches are inter-dependent. Thus,
simply evaluating the two branches with inputs that are in the
correct ranges, but are not correlated, yields pessimistic results
when computing the final difference (line 16).

We overcome the first challenge with our range computation
which takes into account additional constraints. For the second
challenge, we use our range computation as well. Unfortunately,
Z3 fails to tighten the final range to a satisfactory precision due
to timeouts. We still obtain much better error estimates than with
interval arithmetic alone, as the ranges of values for the individual
paths are already computed much more precisely. We report in
Section 8 on the type of programs whose verification is within our
reach today.

8. Experiments
The examples in Figure 1 and 4 and Section 5.3 provide an idea
of the type of programs our tool is currently able to verify fully
automatically. The B-spline example from Section 5.3 is the largest
meaningful example we were able to find that Z3 alone could verify
in the presence of uncertainties. For all other cases, it was necessary
to use our approximation methods.

We have chosen several nonlinear expressions commonly used
in physics, biology and chemistry [44, 48, 54] as benchmark func-
tions, as well as benchmarks used in control systems [2] and suit-
able benchmarks from [22]. Experiments were performed on a
desktop computer running Ubuntu 12.04.1 with a 3.5GHz i7 pro-
cessor and 16GB of RAM.

8.1 Compiling Programs
Which data type is suitable for a given program depends on the
parameter ranges, the code itself but also the precision required
by the application using the code. For example, take the functions
in Figure 7. Depending on which precision on the output the user
needs, our tool will select different data types. For the requirement
res +/− 1e−12, as specified, Double is be a suitable choice for doppler
and turbine, however for the jetEngine example this is not sufficient,
and thus DoubleDouble would be selected by our tool. The user can
influence which data types are preferred by supplying a list to our
tool which is ordered by her preference.

Figure 8 illustrates the tradeoff between the precision achieved
by different data types against the runtime of the compiled code
generated by our tool. We used the Caliper [1] framework for
benchmarking the running times.



Benchmark Our range interval arithmetic Simulated range
doppler1 [-137.639, -0.033951] [-158.720, -0.029442] [-136.346, -0.035273]
doppler2 [-230.991, -0.022729] [-276.077, -0.019017] [-227.841,-0.023235]
doppler3 [-83.066, -0.50744] [-96.295, -0.43773] [-82.624, -0.51570]
rigidBody1 [-705.0, 705.0] [-705.0, 705.0] [-697.132, 694.508]
rigidBody2 [-56010.1, 58740.0] [-58740.0, 58740.0] [-54997.635, 57938.052]
jetEngine [-1997.037, 5109.338] [−∞,∞] [-1779.551, 4813.564]
turbine1 [-18.526, -1.9916] [-58.330, -1.5505] [-18.284, -1.9946]
turbine2 [-28.555, 3.8223] [-29.437, 80.993] [-28.528, 3.8107]
turbine3 [0.57172, 11.428] [0.46610, 40.376] [0.61170, 11.380]
verhulst [0.31489, 1.1009] [0.31489, 1.1009] [0.36685,0.94492]
predatorPrey [0.039677, 0.33550] [0.037277, 0.35711] [0.039669,0.33558]
carbonGas [4.3032 e6, 1.6740 e7] [2.0974 e6, 3.4344 e7] [4.1508 e6, 1.69074 e7]
Sine [-0.9999, 0.9999] [-2.3012, 2.3012] [-0.9999, 0.9999]
Sqrt [1.0, 1.3985] [0.83593, 1.5625] [1.0, 1.3985]
Sine (order 3 approx.) [-1.0001, 1.0001] [-2.9420, 2.9420] [-1.0, 1.0]

Table 2. Comparison of ranges computed with out procedure against interval arithmetic and simulation. Simulations were performed with
107 random inputs. Ranges are rounded outwards. Affine arithmetic does not provide better results than interval arithmetic.

def doppler(u: Real, v: Real, T: Real): Real = {
2 require(−100 < u && u < 100 && 20 < v && v < 20000 &&

−30 < T && T < 50)
4

val t1 = 331.4 + 0.6 ∗ T
6 (− (t1) ∗v) / ((t1 + u)∗(t1 + u))
} ensuring(res⇒ res +/− 1e−12)

8

def jetEngine(x1: Real, x2: Real): Real = {
10 require(−5 < x1 && x1 < 5 && −20 < x2 && x2 < 5)

12 val t = (3∗x1∗x1 + 2∗x2 − x1)
x1 + ((2∗x1∗(t/(x1∗x1 + 1))∗

14 (t/(x1∗x1 + 1) − 3) + x1∗x1∗(4∗(t/(x1∗x1 + 1))−6))∗
(x1∗x1 + 1) + 3∗x1∗x1∗(t/(x1∗x1 + 1)) + x1∗x1∗x1 + x1 +

16 3∗((3∗x1∗x1 + 2∗x2 −x1)/(x1∗x1 + 1)))
} ensuring(res⇒ res +/− 1e−12)

18

def turbine(v: Real, w: Real, r: Real): Real = {
20 require(−4.5 < v && v < −0.3 && 0.4 < w && w < 0.9 &&

3.8 < r && r < 7.8)
22

3 + 2/(r∗r) − 0.125∗(3−2∗v)∗(w∗w∗r∗r)/(1−v) − 4.5
24 } ensuring(res⇒ res +/− 1e−12)

Figure 7. Benchmark functions from physics and control systems.

For our benchmarks with their limited input ranges, 32 bit fixed-
point implementations provide better precision than single floating-
point precision because single precision has to accommodate a
larger dynamic range which reduces the number of bits available for
the mantissa. That said, fixed-point implementations run slower, at
least on the JVM, than the more precise double floating-point arith-
metic with its dedicated hardware support. However, the choice for
fixed-point rather than floating-point may be also due to this hard-
ware being unavailable. Our tool can thus support a wide variety of
applications with different requirements. We also note that across
the three (not specially selected) benchmarks, the results are very
consistent and we expect similar behavior for other applications as
well.
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Figure 8. Runtimes of benchmarks compiled for different preci-
sions in nanoseconds (left) vs. abs. error bounds computed for that
precision by our tool (right).

8.2 Evaluating Effectiveness on Nonlinear Expressions
Range computation Stepwise estimation of errors crucially de-
pends on the estimate of the ranges of variables. The strength of
using a constraint solver such as Z3 is that it can perform such esti-
mation while taking into account the precise dependencies between
variables in preconditions and path conditions. Table 2 compares
results of our range computation procedure described in Section 6
against ranges obtained with standard interval arithmetic. Interval
arithmetic is one of the methods used for step-wise range estima-



tion; an alternative being affine arithmetic, which we found to give
more pessimistic results in our experiments. We believe that this is
due to imprecision in computing nonlinear operations. Note, how-
ever, that we still use affine arithmetic to estimate errors given the
computed ranges.

For our range computation, we set the default precision thresh-
old to 1e−10 and maximum number of iterations for the binary
search to 50. To obtain an idea about the true ranges of our func-
tions, we have also computed a lower bound on the range using
simulations with 107 random inputs and with exact rational arith-
metic evaluation of expressions. We observe that our range com-
putation can significantly improve over standard interval bounds.
The jetEngine benchmark is a notable example, where interval arith-
metic yields the bound [−∞,∞], but our procedure can still pro-
vide bounds that are quite close to the true range.

Error computation Table 3 compares uncertainties computed by
our tool against maximum uncertainties obtained through exten-
sive simulation with 107 random inputs for different precisions. To
obtain (under-approximations of) error bounds, we ran the simula-
tion in parallel with rational and their corresponding floating-point
or fixed-point values and obtained the error by taking the differ-
ence in the result. Selected benchmarks, marked with (*), also have
added uncertainties on the input parameters. To our knowledge this
is the first quantitative comparison of an error computation preci-
sion with (an approximation) of the true errors on such benchmarks.
Our computed uncertainties are mostly within about an order and
many times even closer to the under-approximation of the true er-
rors provided by simulation. In the case of the jetEngine∗ bench-
mark, we believe that the imprecision is mainly due to its complex-
ity and subsequent failures of Z3 in the range computation. The
values in parentheses in the second column indicate errors com-
puted if ranges at each arithmetic operation are computed using
interval arithmetic alone. While we have not attempted to improve
the affine arithmetic-based error computation from [15], we can see
that in some cases a more precise range computation can gain us
improvements. The full effect of the imprecision of standard range
computation appears when, due to this imprecision, we obtain pos-
sible errors such as division-by-zero or square root of a negative
number errors. The first case happens in the case of the non-linear
jetEngine benchmark, so with interval arithmetic alone we would
therefore not obtain any meaningful result. Similarly, for the tri-
angle example from Section 2, without being able to constrain the
inputs to form valid triangles, we cannot compute any error bound,
because the radicand becomes possibly negative.

Table 4 presents another relevant experiment, evaluating the
ability to use additional constraints during our range computation.
For this experiment, we use double precision and the triangle exam-
ple from Section 2 with additional constraints allowing increasingly
flat triangles by setting the threshold on line 12 (a + b > c + 1e−6)
to the different values given in the first column. As the triangles be-
come flatter, we observe an expected increase in uncertainty on the
output since the formula becomes more prone to roundoff errors.
At threshold 1e−10 our range computation fails to provide the nec-
essary precision and the radicand becomes possibly negative. Us-
ing our tool, the developer can therefore go beyond rules of thumb
and informal estimates and be confident that the computed area is
accurate up to seven decimal digits even for triangles that whose
difference a+ b− c is as small as 10−9.

Compilation Running Time Running times for compilation are
below seven seconds for all benchmarks from Table 3 and for the
sine example from Figure 4, except for jetEngine which runs in
about two minutes due to timeouts from Z3 for some intermedi-
ate ranges. Examples that require computation of the path error are
much more computationally challenging: verifying the postcondi-

Benchmark Our error (IA only) Simulated error
doppler1* (dbl) 2.36e-6 5.97e-7
doppler1 (dbl) 4.92e-13 (4.95e-13) 7.11e-14
doppler2 (dbl) 1.29e-12 1.14e-13
doppler2 (32bit) 8.67e-6 (8.79e-6) 1.57e-6
doppler3 (dbl) 2.03e-13 (2.05e-13) 4.27e-14
rigidBody1* (dbl) 9.21e-7 8.24e-7
rigidBody1 (dbl) 5.08e-13 2.28e-13
rigidBody2 (dbl) 6.48e-11 2.19e-11
jetEngine* (dbl) 0.15 (-) 3.58e-5
jetEngine (dbl) 1.62e-8 (-) 5.46e-12
jetEngine (32bit) 0.0972 (-) 1.77e-4
turbine1* (dbl) 4.86e-6 3.71e-7
turbine1 (dbl) 1.25e-13 (1.38e-13) 1.07e-14
turbine1 (16bit) 0.0487 (0.0522) 0.00623
turbine2 (dbl) 1.76e-13 (1.96e-13) 1.43e-14
turbine3 (dbl) 8.50e-14 (9.47e-14) 5.33e-15
verhulst* (dbl) 2.82e-4 2.40e-4
verhulst (dbl) 6.82e-16 2.23e-16
predatorPrey* (dbl) 9.22e-5 8.61e-5
predatorPrey (dbl) 2.94e-16 (2.96e-16) 1.12e-16
carbonGas* (dbl) 2114297.84 168874.70
carbonGas (dbl) 4.64e-8 (5.04e-8) 3.73e-9
Sine (dbl) 9.57e-16 (1.46e-15) 4.45e-16
Sine (fl) 1.03e-6 (1.57e-6) 1.79e-7
Sine (16bit) 2.87e-4 (6.79e-4) 1.55e-4
Sqrt (dbl) 8.41e-16 (8.87e-16) 4.45e-16
Sqrt (fl) 9.03e-7 (9.52e-7) 2.45e-7
Sqrt (16bit) 5.97e-4 1.58e-4
Sine, order 3 (fl) 1.19e-6 (1.55e-6) 2.12e-7
Sine, order 3 (dbl) 1.11e-15 (1.44e-15) 3.34e-16

Table 3. Comparison of errors computed with our procedure against sim-
ulated errors. Simulations were performed with 107 random inputs. (*) in-
dicates that inputs have external uncertainties associated. dbl and fl denotes
double and single floating-point precision respectively, 32 or 16 bit is the
bit-width of the fixed-point implementation.

Benchmark Area Max. abs. error
triangle1 (0.1) [0.29432, 35.0741] 2.72e-11

triangle2 (1e-2) [0.099375, 35.0741] 8.04e-11
triangle3 (1e-3) [3.16031e-2, 35.0741] 2.53e-10
triangle4 (1e-4) [9.9993e-3, 35.0741] 7.99e-10
triangle5 (1e-5) [3.1622e-3, 35.0741] 2.53e-9
triangle6 (1e-6) [9.9988e-4, 35.0741] 7.99e-9
triangle7 (1e-7) [3.1567e-4, 35.0741] 2.54e-8
triangle8 (1e-8) [9.8888e-5, 35.0741] 8.08e-8
triangle9 (1e-9) [3.0517e-5, 35.0741] 2.62e-7

triangle10 (1e-10) - -

Table 4. Area computed and error on the result for increasingly
flat triangles. All values are rounded outwards. Interval arithmetic
alone fails to provide any result.



def cav10(x: Real): Real = {
2 require(0 < x && x < 10)

if (x∗x − x >= 0)
4 x/10

else
6 x∗x + 2
} ensuring(res⇒ 0 <= res && res <= 3.0 && res +/− 3.0)

8

def squareRoot3(x: Real): Real = {
10 require(0 < x && x < 10 && x +/− 1e−10 )

if (x < 1e−5)
12 1 + 0.5 ∗ x

else
14 sqrt(1 + x)
} ensuring(res⇒ res +/− 1e−10)

16

def smartRoot(a: Real, b: Real, c: Real): Real = {
18 require(3 <= a && a <= 3 && 3.5 <= b && b <= 3.5 &&

−2 < c && c < 2 && b∗b − a ∗ c ∗ 4.0 > 0.1)
20

val discr = b∗b − a ∗ c ∗ 4.0
22 if(b∗b − a∗c > 10.0) {

if(b > 0.0) c ∗ 2.0 /(−b − sqrt(discr))
24 else if(b < 0.0) (−b + sqrt(discr))/(a ∗ 2.0)

else (−b + sqrt(discr))/(a ∗ 2.0)
26 } else {

(−b + sqrt(discr))/(a ∗ 2.0)
28 }
} ensuring(res⇒ res +/− 6e−15)

Figure 9. Path error computation examples.

tion on the main function from the initial example takes about one
minute. Running times depend highly on whether Z3 fails to tighten
intermediate ranges and the timeout used for Z3. Our default setting
is one second; we did not find much improvement in the success
rate above this threshold.

8.3 Evaluating Errors across Program Paths
Figure 9 presents several examples to evaluate our error compu-
tation procedure across different paths from Section 7. The first
method cav10 [26] has been used before as a benchmark function
for computing the output range. Our tool can verify the given post-
condition immediately. Note that the error on the result is actually
as large as the result itself, since the method is non-continuous,
an aspect that has been ignored in previous work, but that our
tool detects automatically. The method squareRoot3 is also a non-
continuous function that computes the square root of 1+x using an
approximation for small values and the regular library method oth-
erwise. Note the additional uncertainty on the input, which could
occur for instance if this method is used in an embedded controller.
Our tool can verify the given specification. If we change the con-
dition on line 10 to x < 1e−4 however, verification fails. In this
fashion, we can use our tool to determine the appropriate branch
condition to meet the precision requirement. These two examples
verify in under 5 seconds. Finally, the smartRoot method computes
one root of a quadratic equation using the well-known more precise
method from [27]. Our tool compares the values error across differ-
ent paths in real and finite-precision implementation and succeeds
in verifying the postcondition under 25s.

9. Related work
Current approaches for verifying finite-precision code include ab-
stract interpretation, interactive theorem proving and decision pro-
cedures, which we survey in this section. We are not aware of work

that would automatically integrate reasoning about uncertainties
into a programming model.

Abstract interpretation (AI) Abstract domains that are sound
with respect to floating-point computations can prove bounds on
the ranges of variables [8, 14, 24, 32, 42]. The only work in this area
that can also quantify roundoff errors is the tool Fluctuat [21, 28].
These techniques use interval or affine arithmetic and together with
the required join and meet operations may yield too pessimistic
results. [47] improves the precision of Fluctuat by refining the in-
put domains with a constraint solver. Our approach can be viewed
as approaching the problem from a different end, starting with an
exact constraint and then using approximation until the solver suc-
ceeds. Unlike AI tools in general, our system currently does not
perform widening to ensure convergence. If the user can provide
inductive postconditions, then we can still prove the code correct,
but we do not in general discover these postconditions ourselves.
Our focus is on proving precise bounds on the ranges in the pres-
ence of nonlinear computations and the quantification of roundoff
errors and other uncertainties.

Theorem proving The Gappa tool [18, 39] generates a proof
checkable by the interactive theorem prover Coq from source code
with specifications. It can reason about properties that can be re-
duced to reasoning about ranges and errors, but targets very precise
properties of specialized functions, such as software implementa-
tions of elementary functions. The specification itself requires ex-
pertize and the proofs human intervention. A similar approach is
taken by [4] which generate verification conditions that are dis-
charged by various theorem provers. Harisson has also done signif-
icant work on proving floating-point programs in the HOL Light
theorem prover [30]. Our approach makes a different compromise
on the precision vs. automation tradeoff, by being less precise, but
automatic. The Gappa and interactive theorem provers can be used
as complements to our tool: if our tool detects that more precision is
needed, interactive tools can be employed by an expert user on se-
lected methods; the results can then used by our tool in the context
of the overall program.

Range computation The Gappa tool and most constraint solvers
internally use interval arithmetic for sound range computations,
whose limitations are well-known. [23] describes an arithmetic
based on function enclosures and [41] use an arithmetic based
on taylor series as an alternative. This approach is useful when
checking a constraint, but is not suitable for a forward computation
of ranges and errors.

Decision procedures An alternative approach to verification via
range computation are floating-point decision procedures. Bit-
precise constraints, however, become very large quickly. [11]
addresses this problem by using a combination of over- and under-
approximations. [29] present an alternative approach in combining
interval constraint solving with a CDCL algorithm and [25] is a
decision procedure for nonlinear real arithmetic combining inter-
val constraint solving with an SMT solver for linear arithmetic.[49]
formalizes the floating-points for the SMT-LIB format. While these
approach can check ranges on numeric variables, they do not handle
roundoff errors or other uncertainties and cannot compute specifi-
cations automatically. [46] use a floating-point decision procedure
to detect stability issues and while their approach provides wit-
nesses of instability if such exist, it is not able to prove sound error
bounds with respect to a real-valued semantics. [3] prove fixed-
point constraints with a combination of bit vectors and reals, but
such an encoding is only possible for fixed-points and less efficient
than reals alone. An alternative to our approach is using linear ap-
proximations to solve polynomial constraints [10]. We believe that
such advances are largely orthogonal to our use of range arithmetic
and complement each other.



Testing Symbolic execution is a well-known technique for gener-
ating test inputs. [9] use a combination of meta-heuristic search and
interval constraint solving to solve the floating-point constraints
that arise, whereas [37] combine random search and evolutionary
techniques. [52] test numerical code for precision by perturbing
low-order bits of values and rewriting expressions. The idea is to
exaggerate initial errors and thus make imprecisions more visible.
Probabilistic arithmetic [50] is a similar approach but it does the
perturbation by using different rounding modes. [6] also propose a
testing produce to detect accuracy problems by instrumenting code
to perform a higher-precision computation side by side with the
regular computations. While these approaches are sound with re-
spect to floating-point arithmetic, they only generate or can check
individual inputs and are thus not able to verify or compute output
ranges or their roundoff errors.

Robustness analysis [31] combines abstract interpretation with
model checking to check programs for stability by tracking the evo-
lution of the width of the interval representing a single input. [40]
use concolic execution to find inputs which, given maximum devi-
ations on inputs, maximize the deviation on the outputs. These two
works however, use a testing approach and cannot provide sound
guarantees. [12] presents a framework for continuity analysis of
programs along the mathematical ε− δ definition of continuity and
[13] builds on this work and presents a sound robustness analy-
sis. This framework provides a syntactic proof of robustness for
programs over reals and thus does not consider floating-points. Our
approach describes a quantitative measure of robustness for nonlin-
ear programs with floating-point numbers and other uncertainties,
and we believe that it can complement the cited framework.

10. Conclusion
We have presented a programming model for numerical programs
that decouples the mathematical problem description from its real-
ization in finite precision. The model uses a Real data type that cor-
responds to mathematical real numbers. The developer specifies the
program using reals and indicates the target precision; the compiler
chooses a finite-precision representation while checking that the
desired precision targets are met. We have described the soundness
criteria by translating programs with precision requirements into
verification conditions over mathematical reals. The resulting veri-
fication conditions, while a natural description of the problem being
solved, are difficult to solve using a state-of-the art SMT solver Z3.
We therefore developed an algorithm that combines SMT solving
with range computation. Our notion of soundness incorporates full
input/output behavior of functions, taking into account that, due to
conditionals, small differences in values can lead to different paths
being taken in the program. For such cases our approach estimates
a sound upper bound on the total error of the computation.

We have evaluated our techniques on a number of benchmarks
from the literature, including benchmarks from physics, biology,
chemistry, and control systems. We have found that invocation of an
SMT solver alone is not sufficient to handle these benchmarks due
to scalability issues, whereas the use of range arithmetic by itself
is not precise enough. By combining these two techniques we were
able to show that a finite-precision version of the code conforms to
the real-valued version with reasonable precision requirements.

We believe that our results indicate that it is reasonable to in-
troduce Reals as a data type, following a list of previously intro-
duced mathematical abstractions in programming languages, such
as unbounded integers, rationals, and algebraic data types. The fea-
sibility of verified compilation of our benchmarks suggests that it
is realistic to decouple the verification of executable mathematical
models over reals from their sound compilation. We therefore ex-
pect that this methodology will help advance rigorous formal verifi-

cation of numerical software and enable us to focus more on high-
level correctness properties as opposed to run-time errors alone.
Furthermore, we expect that having real numbers as a data type fa-
cilitates automatic reordering of finite-precision computations [17]
as well as high-level optimizations such as replacing one version of
a numerical algorithm with another to achieve the desired combi-
nation of efficiency and rigorous worst-case bounds on precision.
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[34] D. Jovanović and L. de Moura. Solving Non-linear Arithmetic. In
IJCAR 2012, 2012.

[35] W. Kahan. Miscalculating Area and Angles of a Needle-like Triangle.
Technical report, University of California Berkeley, 2000.

[36] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient State
Merging in Symbolic Execution. In PLDI, 2012.

[37] K. Lakhotia, N. Tillmann, M. Harman, and J. de Halleux. FloPSy
- Search-Based Floating Point Constraint Solving for Symbolic
Execution. In Testing Software and Systems. Springer Berlin /
Heidelberg, 2010.

[38] X. Leroy. Verified squared: does critical software deserve verified
tools? In POPL, 2011.

[39] M. D. Linderman, M. Ho, D. L. Dill, T. H. Meng, and G. P.
Nolan. Towards program optimization through automated analysis of
numerical precision. In CGO, 2010.

[40] R. Majumdar, I. Saha, and Z. Wang. Systematic Testing for Control
Applications. In MEMOCODE, 2010.

[41] K. Makino and M. Berz. Taylor Models and Other Validated
Functional Inclusion Methods. International Journal of Pure and
Applied Mathematics, 4, 2003.
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