
1

Memory-Efficient Mixed-Precision Implementations for
Robust Explicit Model Predictive Control

MAHMOUD SALAMATI∗,MPI-SWS, Germany

ROCCO SALVIA∗, University of Utah, United States

EVA DARULOVA,MPI-SWS, Germany

SADEGH SOUDJANI, Newcastle University, United Kingdom

RUPAK MAJUMDAR,MPI-SWS, Germany

We propose an optimization for space-efficient implementations of explicit model-predictive controllers (MPC)

for robust control of linear time-invariant (LTI) systems on embedded platforms. We obtain an explicit-form

robust model-predictive controller as a solution to a multi-parametric linear programming problem. The

structure of the controller is a polyhedral decomposition of the control domain, with an affine map for each

domain. While explicit MPC is suited for embedded devices with low computational power, the memory

requirements for such controllers can be high. We provide an optimization algorithm for a mixed-precision

implementation of the controller, where the deviation of the implemented controller from the original one is

within the robustness margin of the robust control problem. The core of the mixed-precision optimization is an

iterative static analysis that co-designs a robust controller and a low-bitwidth approximation that is statically

guaranteed to always be within the robustness margin of the original controller. We have implemented our

algorithm and show on a set of benchmarks that our optimization can reduce space requirements by up to

20.9% and on average by 12.6% compared to a minimal uniform precision implementation of the original

controller.

CCS Concepts: • Computer systems organization→ Embedded software.

Additional Key Words and Phrases: model-predictive control, robustness, fixed-point arithmetic

ACM Reference Format:
Mahmoud Salamati, Rocco Salvia, Eva Darulova, Sadegh Soudjani, and Rupak Majumdar. 2019. Memory-

Efficient Mixed-Precision Implementations for Robust Explicit Model Predictive Control. ACM Trans. Embedd.
Comput. Syst. 1, 1, Article 1 (December 2019), 19 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Model predictive control (MPC) is a technique to design control actions by solving finite-horizon

open-loop optimal control problems at each sampling instant [38]. The result of each optimization

gives a sequence of optimal control actions, only the first of which is applied to the process. The

∗
Both authors contributed equally to this research.

This article appears as part of the ESWEEK-TECS special issue and was presented at the International Conference on

Embedded Software (EMSOFT) 2019.

Authors’ addresses: Mahmoud Salamati, MPI-SWS, Kaiserslauterm, Germany, msalamati@mpi-sws.org; Rocco Salvia,

University of Utah, Utah, United States, rocco@cs.utah.edu; Eva Darulova, MPI-SWS, Kaiserslautern, Germany, eva@

mpi-sws.org; Sadegh Soudjani, Newcastle University, Newcastle, United Kingdom, sadegh.soudjani@newcastle.ac.uk; Rupak

Majumdar, MPI-SWS, Kaiserslautern, Germany, rupak@mpi-sws.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1539-9087/2019/12-ART1 $15.00

https://doi.org/10.1145/1122445.1122456

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: December 2019.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

1:2 Salamati et al.

same procedure is applied in the next time instant with a shifted time horizon and a new initial

state, after receiving the updated values of the process state. The optimization problem in MPC

uses a dynamic model of the process, encodes all input and output (state) constraints, and optimizes

a performance index. MPC has shown to be successful in a wide variety of industrial applications

[35], due to its ability to systematically handle processes with many state and input variables as

well as constraints on them.

The main difference between MPC and conventional control is in the nature of the function that

maps the measured outputs to control actions. MPC computes such a function online, whereas
a conventional controller pre-computes the function offline. The online computations required

in MPC limits its applicability to slow processes and fast computation platforms: the sampling

time has to be large enough and the platform fast enough to allow enough time for solving the

optimization problem and obtaining the optimal action for the next time instance. Moreover, the

optimization solver needs to be certified when using MPC in safety critical applications [2].

One way to tackle these problems is through explicit MPC (EMPC) [2, 5], which formulates the

optimization problem but computes offline a symbolic representation of the solution as a function

of the state. At run-time, the solution is evaluated on the current state as in conventional control.

For example, for linear time invariant models with linear constraints and quadratic costs, the

optimization problem for MPC can be modeled as a quadratic program, and EMPC techniques

solve the optimization problem using multi-parametric programming. The explicit solution is

representable as a partition of the controller domain into a number of polyhedral regions, and an

affine map for each region. Given the current state, EMPC draws the corresponding affine mapping

out of a stored lookup table and evaluates the control. Explicit MPC thus expands the class of

systems being controlled by MPC strategies, by taking out the need to perform massive online

computations or to certify a complex optimization routine [17].

However, there are still bottlenecks in implementing EMPC on resource-constrained embedded

micro-controllers. First, implementations of EMPCs on industrial micro-controllers with limited

memory can suffer from large memory usage, because the solution of the optimization problem

can involve many (often hundreds) of regions [17]. Since the memory consumption grows linearly

with the number of regions, this can be a limiting factor in using EMPC on resource-constrained

micro-controllers. Second, many low-end micro-controllers only support fixed-point arithmetic.

Errors in the controller implementation are inversely proportional to the number of bits used for

representing each variable [3]. An implementation of EMPC has to be robust to implementation

errors to be able to enforce hard constraints on the states at run time [41].

In this paper, we consider the problem of implementing EMPC on low-end microcontrollers with

fixed-point arithmetic in amemory-efficient and robust way.We propose an automatic controller and

mixed-precision implementation co-design technique that computes mixed-precision assignments

which minimize bitwidths for all variables while ensuring the resulting implementation error

remains within the robustness margin.

Our proposed method iteratively solves a robust version of MPC that considers finite-precision

implementation errors as disturbances in the dynamics [37]; see Figure 1. Initially, we estimate a

bound ∆ = ∆0 on the implementation error and solve a min-max quadratic program for explicit

robust MPC [11, 37], where the system model has an explicit disturbance bounded by ∆. The
solution is represented as a set of polyhedral regions, and an affine map for each region.

Next, we consider the error in the control input arising out of a fixed-point implementation of

the solution. The error has two sources. First, the fixed point implementation may pick a different

polyhedral region (due to imprecision in checking membership in a polyhedron). Second, the fixed-

precision implementation of the affine function will have a numerical error due to quantization. We

bound both sources of error statically and automatically, by finding the maximum possible error

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: December 2019.

Memory-Efficient Mixed-Precision Implementations for Robust Explicit MPC 1:3

due to incorrect region selection as well as a static bound on the error in computing the affine map.

If the error is at most ∆, we know that the implementation satisfies the robustness margin in the

model and we use an automated mixed-precision tuning tool to find an optimal bitwidth allocation

that keeps the implementation below the error bound. If not, we increase the error bound ∆ and

run the loop again to find a new robust controller and find its best mixed-precision implementation.

In summary, our algorithm automatically and soundly synthesizes a suitable fixed-point mixed-

precision implementation for explicit robust MPC controllers.

We have implemented our algorithm on top of Matlab’s multi-parametric toolbox for robust

explicit MPC [15] and the Daisy tool for multi-precision tuning and fixed-point error analysis [7].

We have applied our technique on a number of standard benchmark examples. Taking all these

benchmarks into account, our algorithm finds mixed-precision implementations that save up to

20.9% memory (on average, 12.6%) in controller implementations over a minimal uniform-precision

implementation (and an average saving of 46.8% over a uniform 32-bit implementation), while

maintaining the correctness of the controller.

For smaller examples, the analysis takes only a few minutes of computation. We also demonstrate

the scalability of our mixed-precision tuning and error bounds analysis: we show that on explicit

MPC controllers with thousands of regions, our tool finishes in a few hours. In absolute terms,

the memory saving corresponds to 21KB over a uniform precision implementation on our largest

benchmark. A large class of EMPC applications implement the controller in processors with limited

computational power and memory; typically, these processors have memory in the order of tens of

kilobytes (e.g., 32 KB). Thus, 21 KB is a significant saving. Also, the memory savings do not affect

the run-time performance since our controller synthesis and the corresponding mixed precision

computations are all performed offline.

In summary, our contributions are:

• We provide an end-to-end automatic tuning algorithm for robust explicit MPC that ensures

satisfaction of hard constraints on the state despite numerical errors;

• We design a static and scalable error analysis algorithm for piecewise affine functions to

bound errors in controller implementations; and

• Through a set of standard control benchmarks, we demonstrate that our tuning algorithm

can achieve up to 20% savings in memory while maintaining robustness.

2 OVERVIEW
As a simple example, consider the standard problem of designing a controller for an inverted

pendulum depicted in Figure 2 (a). The goal of the controller is to keep the pendulum at the vertical

position while satisfying hard constraints on the state variables and control inputs. A model of the

system can be constructed using physical principles. After linearization and time discretization,

the model is [
θk+1

ωk+1

]
=

[
1 Ts
Tsд
L (1 −

Tsb
mL2

)

] [
θk
ωk

]
+

[
0

Ts
mL2

]
uk +wk (1)

where θk , ωk , and uk denote respectively the angular position, angular speed, and the input torque

at time kTs with Ts being an appropriate sampling time. The disturbancewk ∈ R2
, bounded with a

polyhedral setwk ∈ W, captures the modeling error due to linearization and discretization. The

parameter д = 9.81[m/s2] is the gravitational acceleration,m is the ball mass, b is the rotational

friction coefficient, and L is the length of the bar. Starting from an initial state (θ0,ω0), the control

goal is to converge to the equilibrium point θ = 0,ω = 0. Additionally, we require the state

constraints θk ∈ [−π ,π] and ωk ∈ [−π/8,π/8] to hold at all time instances.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: December 2019.

1:4 Salamati et al.

Robust explicit MPC

with disturbance set W∆

∆ = ∆0

MATLAB

High-precision controller (Equation (5))

Incorrect region selection

error
MATLAB

e ≤ ∆

Mixed-precision implementation

Daisy

∆ = e + εSAFE

Low-precision controller (Equation (9))

e

Yes

No

Fig. 1. Overview of the proposed memory-efficient robust EMPC control design.

Our overall goal is to (i) design a robust MPC controller that achieves the performance objectives

including hard constraints in spite of an additional bounded disturbance ∆ modeling the implemen-

tation error (both errors due to choosing a wrong region and the finite-precision computation of

the control action); and at the same time (ii) to minimize the total number of bits that are required

to represent an explicit controller.

Figure 1 gives a high-level overview of our proposed setup. We start by selecting an initial bound

∆0 on the implementation error and enlarge W with ∆0 asW∆0
, where we define

W∆ := {w1 +w2 |w1 ∈ W, ∥w2∥ ≤ ∆} for all ∆ ≥ 0. (2)

For our example, we choose ∆0 = 0.01 andW = {0}. We use Matlab to find a robust explicit MPC

with disturbance setW∆0
. The output of robust EMPC given by Matlab decomposes the control

domain into a finite number of polyhedral domains together with an affine map for each domain. At

each time step, the state vector (θk ,ωk) is read (or estimated), and based on the polyhedral domain

that it belongs to, the corresponding affine map is computed as the control output.

Since the polyhedral regions are implemented in finite precision, it is possible that due to

quantization errors, the polyhedral domain is selected incorrectly, and therefore a different affine

map is computed for the control. We refer to the resulting error as incorrect region selection error.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: December 2019.

Memory-Efficient Mixed-Precision Implementations for Robust Explicit MPC 1:5

!, "

mg L

#

(a) (b)

Fig. 2. (a) Inverted pendulum; (b) 2D plot of polyhedral partitions for an EMPC for the inverted pendulum.

In our example, we compute an incorrect region selection error e = 0.019, which is larger than

∆0 = 0.01. We therefore increase the disturbance bound by a fixed amount εSAFE = 0.031 to

∆1 = 0.05 and enlarge the disturbance set asW∆1
.

Solving the robust explicit MPC problem for this enlarged disturbance set gives the new controller

with 14 regions, shown in Figure 2(b). A sample region with the corresponding affine map is shown

below: 
−0.005 0.999

−0.998 −0.049

0.005 −0.999

0.998 0.049


[
θk
ωk

]
≤


0.416

3.157

0.617

−0.0124

 ⇒ u(

[
θk
ωk

]
) =

[
0.05 −9.67

] [θk
ωk

]
+ 4.02

where the output of robust EMPC at state (θk ,ωk) is denoted by u(θk ,ωk). The remaining mappings

have a similar structure. For this new controller, the incorrect region selection error is approximately

e = 0.019, which is now below the disturbance bound ∆1, so that we can continue with the precision

assignment.

We can implement the controller using uniform 32 bit integers, or by selecting a uniform bitwidth.

These take, respectively, 13824 and 6744 bits. But we can do better. We use the precision tuning

tool Daisy [7] to provide a mixed-precision implementation for all the parameters which satisfies

the error bound ∆1 − e = 0.05 − 0.019 = 0.031. The mixed-precision implementation returned by

Daisy requires 6084 bits. Thus, for this example, the mixed-precision implementation takes about

10% less memory compared to the smallest uniform precision implementation that respects ∆1, and

about 57% less memory than an implementation that uniformly uses 32 bits.

3 BACKGROUND
In this section, we provide relevant background on robust explicit MPC, fixed-point arithmetic and

error analysis.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: December 2019.

1:6 Salamati et al.

3.1 Robust Explicit MPC
We consider the class of linear time-invariant (LTI) systems characterized by the difference equation

xk+1 = Axk + Buk + Ewk , k = 0, 1, 2, . . . (3)

where x ∈ Rn×1
is the state,u ∈ Rm×1

is the control input andw ∈ Rd×1
is the disturbance. Matrices

A ∈ Rn×n , B ∈ Rn×m and E ∈ Rn×d capture respectively the effects of current state, input and

disturbance on the next state. We assume the disturbancew belongs to a setW∆ whereW∆ is a

polyhedral set defined in Equation (2). In this paper, we focus on the robust formulation of MPC

which at each time step minimizes the worst-case value of an objective function with respect to the

disturbances over the control inputs. We assume the objective function is quadratic with respect to

the states and inputs. We assume a linear translation on the input with the form

uk = µxk +vk

and synthesize vk instead of uk . This choice reduces the conservativeness of the optimization

and enlarges the set of feasible input trajectories. The matrix µ is selected such that some desired

property is satisfied under suitable assumptions on the system, e.g., stability if the pair (A,B) is
stabilizable.

The constrained optimization at each time step is of the form

J ∗(x0) = min

v0 ,· · · ,vN−1

max

w0 ,· · · ,wN−1

N−1∑
i=0

(xTi Qxi + u
T
i Rui) + x

T
NQFxN

s.t. xi+1 = Axi + Bui + Ewi , ∀i ∈ {0, 1, · · · ,N − 1}

ui = µxi +vi , ∀i ∈ {0, 1, · · · ,N − 1}

ui ∈ U,xi ∈ X, ∀wi ∈ W∆, ∀i ∈ {0, 1, · · · ,N }, (4)

where U and X are polyhedral sets denoting the feasible sets of inputs and states. Positive definite

matricesQ ∈ Rn×n andQF ∈ Rn×n indicate weights on the states. R ∈ Rm×m
is positive semidefinite

and indicates a weight on the input in the objective function. N denotes the length of the prediction

horizon.

Theorem 3.1 ([11]). The optimization (4) can be translated into a multi-parametric quadratic
problem which admits a closed-form solution. Furthermore, for the case that R > 0, the controller
is uk = µxk + κ(xk) with κ(·) being a continuous piecewise affine (PWA) function over polyhedral
regions:

κ(xk) =


F1xk +G1 if xk ∈ R1

F2xk +G2 if xk ∈ R2

.

.

.

FPxk +GP if xk ∈ RP

(5)

where Ri is a polyhedral region determined by a set of linear inequalities Ri = {x ∈ X |Hix ≤ Ki }.

The proof of this theorem can be found in [11]. The essential idea behind the theorem is to utilize

the closed form xi = Aix0 +
∑i−1

l=0
Ai−l−1Bul and transform the optimization (4) into the following

quadratic program:

J ∗(x0) = min

z ,γ

[
xT

0
Yx0 +

1

2

zTHz + γ

]
(6)

s.t. Gmz + дmγ ≤Wm + Smx0,

Gcz ≤Wc + Scx0

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: December 2019.

Memory-Efficient Mixed-Precision Implementations for Robust Explicit MPC 1:7

if (H1xk ≤ K1) then vk = F1xk +G1

elseif (H2xk ≤ K2) then vk = F2xk +G2

elseif (H3xk ≤ K3) then vk = F3xk +G3

...

elseif (HPxk ≤ KP) then vk = FPxk +GP
return vk

Fig. 3. Structure of an explicit MPC controller

where z ∈ RmN
and γ ∈ R are decision variables, and Y , H , Gm , Gc , Sm , Sc ,Wm ,Wc , and дm are

matrices of proper sizes that can be easily obtained from the original optimization (4) (see [11]).

The optimization (6) can be solved using multi-parametric techniques to compute the explicit

form of κ(·). An efficient implementation of such computations is available in the multi-parametric

toolbox of Matlab [15, 26]. Let us denote the set of states x0 for which the optimization (6) is feasible

by Xs . Then Xs ⊆ X and is the union of all regions Ri :

Xs =
⋃
i

(Hixk ≤ Ki). (7)

The implementation of the controller stores matrices Fi ,Gi ,Hi ,Ki for all i ∈ {1, 2, . . . , P}. At
each time step k , the current state xk is used to detect the polyhedral region such that Hixk ≤ Ki .

Then the control action vk = Fixk +Gi is computed and applied to the system. Several algorithms

are proposed in the literature [20, 28] to find the right polyhedral region i to which the state xk
belong. The most straightforward technique is a linear search over all polyhedral regions (Fig. 3).

More efficiency can be achieved by using binary search tree structures (e.g., [28]).

To keep the implementation cost down, low-end microcontrollers usually have limited computa-

tional power and memory. In general, explicit MPC is well-known for its high-speed implementation

in embedded systems with low computational power. Johansen et al. [19] show that explicit MPCs

with hundreds of regions can be implemented on application specific integrated circuits (ASIC)

with about 20000 gates, leading to computation times in the order of 1µs . It is shown in [4] that for

typical problems evaluating the explicit MPC takes significantly less time in comparison to solving

on-line quadratic programs. In this paper, we present an approach for minimizing the memory

usage of the implementation while satisfying the hard constraints on the states, thus ensuring the

controllers can be implemented in low-memory microcontrollers.

While we focus on linear time invariant systems, EMPC is also applicable to nonlinear systems

by linearization around an appropriately selected equilibrium point and modeling the error in the

linearization as a disturbance. Note that the rest of our analysis in the sequel (over MATLAB and

Daisy) do not rely on the LTI property of the system under study and could be adjusted for other

families of controllers as long as they are presented as piecewise affine functions.

3.2 Finite-Precision Implementation
We now discuss finite-precision issues in the implementation of a controller. The standard choice

for low-power platforms is fixed-point arithmetic. Unlike floating-point arithmetic [16], fixed-point

arithmetic can be implemented efficiently without complex hardware support using only integer

operations. It requires, however, more compilation effort to determine certain operations statically

at compile time that the floating-point hardware unit performs dynamically.

The main task at compile time is to select the fixed-point format for each input and intermediate

value in the program. The format specifies the total word length and how many bits are available

for the integer part of the number. Given ranges on program inputs, a range analysis is usually

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: December 2019.

1:8 Salamati et al.

used to estimate ranges of all intermediate values in the program [24, 31], which in turn determine

how many integer bits are sufficient to avoid overflow. The remaining bits of the total word length

represent the fractional part of a number; more fractional bits provide more precision.

Finite precision introduces roundoff errors, which can accumulate during the course of a compu-

tation. A sound static roundoff error analysis computes a guaranteed upper bound on the error of

the result by tracking worst-case errors at every operation. Given a word length for each value,

several tools, including the tool Daisy which we use, automatically determine the number of integer

bits needed and compute roundoff errors using a dataflow analysis [7, 9]. They track real-valued

ranges at every intermediate operation. These ranges determine the fixed-point formats and thus

also the individual worst-case roundoff errors, which the analyses track separately from the ranges.

To ensure guaranteed error bounds, both the ranges and errors are computed using interval [29] or

affine arithmetic [10], which compute sound enclosures. Affine arithmetic tracks linear correlations

between variables, so for linear expressions the computed ranges are as tight as possible (nonlinear

arithmetic leads to over-approximations).

To reduce memory usage and increase efficiency, we want to choose as short word lengths

as possible. This will minimize the memory footprint without influencing the run-time. Mixed-

precision tuning tools automatically determine possibly different word lengths for different values [8,

25]. Compared to uniform precision (or word length), mixed-precision often leads to improved

resource usage, but due to the complexity of fixed-point arithmetic and the error analysis, is

challenging to do manually. Automated mixed-precision tuning tools, including Daisy, usually

perform a search: they repeatedly select a candidate mixed-precision assignment (i.e. different word

lengths for different values) and check whether the assignment satisfies a given error bound. The

candidate assignments are chosen based on a heuristic which guides the search towards promising

candidates, e.g. using delta-debugging [8] or simulated annealing [25].

In this work, we use the open-source tool Daisy which implements roundoff error analysis [7]

and mixed-precision tuning [8] for fixed-point arithmetic. Fixed-point arithmetic implementations

can choose different rounding modes; here we consider truncation, which is more efficient than

rounding.

4 ERROR ANALYSIS
In this section, we present our error analysis assuming that a fixed word length p is given. Then in

the next section, we explain our optimization algorithm which determines suitable word lengths

for different variables fully automatically.

Consider the controller obtained from explicit MPC according to Theorem 3.1. Define the affine

control functions associated with each polyhedral region Ri , i ∈ {1, 2, . . . , P}, as

vi : Ri → U with vi (x) := Fix +Gi .

Implementation of the controller can be affected by two main sources of error:

(i) incorrect region selection: instead of a correct affine function vi , the implementation may

choose an incorrect affine function vj . This can happen either due to an analog-to-digital

conversion in the measured states or due to the quantization in matrices Hi and Ki of the

region Ri ; and

(ii) approximation in the computation of the affine function: for any selected region Ri , the affine

function vi is evaluated using the quantized versions of Fi and Gi .

We have to ensure that the sum of these two errors remain below the bound ∆ used in the design

of the robust explicit MPC:

max{∥vi −vj ∥, ∀i , j, i , j,Ri ∩ Rj , ∅} +max{err(vi)p , i = 1, 2, . . . , P} ≤ ∆. (8)

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: December 2019.

Memory-Efficient Mixed-Precision Implementations for Robust Explicit MPC 1:9

The first term is the error of incorrect region selection. The maximum is taken over all neighboring

regions Ri ,Rj (two regions are neighboring if their intersection is non-empty). The function norm

∥vi −vj ∥ is taken by maximizing over all possible values of the state x in Ri ∩Rj . The term err(vi)p
in the second part captures the approximation error in the computation of the affine function vi
when a fixed precision p is used.

4.1 Incorrect Region Selection
The first part of the error in Equation (8) captures the error due to selecting of the incorrect region.

This would happen since the matrices Hi ,Ki are stored in the hardware with fixed-point formats.

In order to quantify the error, we define the expanded border
¯Bi j as the tube around the border

between the regions Ri and Rj :

¯Bi j :=
{
x ∈ Rn | ∥Hix − Ki ∥ ≤ ε and ∥Hjx − Kj ∥ ≤ ε

}
,

where ε captures the uncertainty in computing the correct region. The width of the tube ε is due to
two sources of errors:

• analog-to-digital conversion εA/D : the error introduced by using the quantized output of the

analog-to-digital converter x̂ instead of the actual state x . We assume ∥x − x̂ ∥ ≤ εA/D .
• quantization of region bounds in memory εQ : the error introduced by using the quantized

versions Ĥi , K̂i of Hi , Ki with p bits of precision. This is related to the boundaries of the

regions.

Note that the error resulting from using the quantized versions of Fi ,Gi will be discussed in

Section 4.2. We define the fixed point realization of the controller in Equation (5) as

κ̂(x̂k) =


F̂1x̂k + Ĝ1 if x̂k ∈ ˆR1

F̂2x̂k + Ĝ2 if x̂k ∈ ˆR2

.

.

.

F̂Pxk + ĜP if x̂k ∈ ˆRP .

(9)

where
ˆRi is a polyhedral region determined by a set of linear inequalities

ˆRi = {x̂ ∈ X | Ĥi x̂ ≤ K̂i }.

Let us define the sets H := {Hi ,Ki | i = 1, 2, . . . , P} and F := {Fi ,Gi | i = 1, 2, . . . , P}. Similarly,

we define
ˆH := {Ĥi , K̂i | i = 1, 2, . . . , P} and ˆF := {F̂i , Ĝi | i = 1, 2, . . . , P}. Using the triangle

inequality we have:

∥κ(x) − κ̂(x̂)∥ ≤∥κ(H , F ,x) − κ(ˆH , F , x̂)∥ + ∥κ(ˆH , F , x̂) − κ(ˆH ,
ˆF , x̂)∥.

where κ(H ∗
, F ∗

,x∗) denotes the controller defined over the sets F ∗
, H ∗

and the state x∗. The
second term on the right corresponds to the control approximation error and will be discussed in

Section 4.2. The first term can be further decomposed as

∥κ(H ,F ,x) − κ(ˆH , F , x̂)∥

≤ ∥κ(H , F ,x) − κ(H , F , x̂)∥ + ∥κ(H , F , x̂) − κ(ˆH , F , x̂)∥

≤ max

i
{∥Fi ∥2}∥x − x̂ ∥ + εQ

≤ max

i
{∥Fi ∥2}εA/D + εQ .

Therefore, we can compute the tube width ε as:

ε = max

i
{| |Fi | |2}εA/D + εQ . (10)

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: December 2019.

1:10 Salamati et al.

Analog conversion happens just before the controller receives the sensor input from the plant

and is given by:

εA/D =
Vcc

2
r − 1

where Vcc is the reference voltage of the converter (e.g. typically 5V), r is the number of bits

available to quantize the analog signal, and 2
r
is the resolution of the converter.

While εA/D is intrinsic to the capabilities of the device, εQ depends on the precision used to store

the boundaries:

εQ ≥ ∥(Hi − Ĥi)x̂ + (Ki − K̂i)∥, ∀x̂ ,∀i , (11)

where x̂ is the finite-precision value of x . That is, εQ bounds the distance between any hyperplane

in infinite precision (H and K matrices), and its counter-part quantized by p bits (Ĥ and K̂). This
second error can be tuned providing a trade-off between accuracy and memory storage required.

Therefore, the first term in Equation (8) can be computed less conservatively by maximizing only

over the expanded borders:

max

x ,i ,j
{∥Fix +Gi − Fjx −G j ∥, x ∈ ¯Bi j }. (12)

4.2 Approximate Control Output
Once a quantized state x̂ is given and a region Ri is chosen, computing vi itself introduces impreci-

sion, because, vi needs to be evaluated in finite-precision arithmetic:

err (vi)p ≥ |(Fi − F̂i)xk + (Gi − Ĝi)|, ∀xk ∈ Ri ∪ ¯Bi j , ∀j, (13)

where F̂ and Ĝ represent the quantized values (in p bits) for the infinite precision values F and G.
Equation (13) is evaluated for all xk that are inside the region Ri , together with all the values

in the tube surrounding region Ri (union of
¯Bi j for all j). In this way we compute the error also

for those points that belong to a neighbor of Ri , but because of finite-precision errors they are

erroneously mapped to control action vi .

4.3 Implementation
The incorrect region error (Equation (12)) is computed with Matlab. Since vi − vj is also affine,

and because we defined the tube as a convex region surrounding the corresponding hyperplane,

it suffices to evaluate the function only at the corner points of the tube, and keep the result with

the maximal magnitude. To evaluate the incorrect region selection error across the corner points,

we need to first locate the corner points as well as all the regions which share those corner points.

Each region Ri is represented by a set of constraints. We first extract the set of vertices of Ri
using the open source Matlab library lcon2vert [18]. For each computed vertex vi , we compute a

n-dimensional hypercube with the edge length of 2ε . Each of the 2
n
vertices of this hypercube is

counted as a corner point, on which we evaluate ∥ui − uj ∥.
In order to find out which regions share a vertex vi , we implemented two approaches. The

first approach determines the set of neighboring regions via an exhaustive search over the set of

vertices. However, we observed that this algorithm only scales to small numbers of regions. Our

second approach works on the observation that all the regions R j s having vi as their vertex can be

identified if at least n of their hyperplanes cross vi .
The error terms εQ and err (vi)p are computed by Daisy. For this we encode the expressions

in Equation (11) and Equation (13) respectively as straight-line arithmetic expressions and specify

the constraints on the domain of xk in the precondition. Daisy performs a dataflow analysis to

determine the finite-precision roundoff errors.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: December 2019.

Memory-Efficient Mixed-Precision Implementations for Robust Explicit MPC 1:11

1 model = input()

2 ∆ = input()

3 εQ = input()

4 assert (∆ >= 0 and εQ > 0)

5 ε = maxi {| |Fi | |2}εA/D + εQ //width of the tube

6

7 while true:

8 F, G, H, K = design_robust_MPC(model, ∆)
9 errorRegion = incorrect_region_error(F, G, H, K, ε)
10 if ∆ > errorRegion:

11 errorAct = ∆ - errorRegion

12 F̂, Ĝ = precision_tuning(F, G, errorAct)

13 Ĥ, K̂ = precision_tuning(H, K, εQ)

14 return F̂, Ĝ, Ĥ, K̂
15 else:

16 ∆ = errorRegion + εSAFE

Fig. 4. Algorithm for designing memory-efficient robust EMPC controller

While our actual synthesis algorithm (Section 5) does not compute the errors εQ and err (vi)p
explicitly, the error verification is used internally by Daisy to determine a suitable precision p and

can also be called explicitly without the precision optimization.

Note that we use MATLAB and Daisy solely for offline computations during the compilation of

the controller. At runtime, there is no additional cost.

5 CONTROLLER SYNTHESIS
In the previous section, we assumed a given precision p. In this section we present our algorithm

for deriving suitable values of p fully automatically. Further, while Section 4 assumed a uniform

finite precision, our tuning algorithm derives possibly different precisions for different control

values.

Figure 4 shows a high-level view of our optimization algorithm for implementing robust MPC

controllers with guaranteed error bounds. Given a state-spacemodel of a plant (line 1), our algorithm

returns four matrices F̂ , Ĝ, Ĥ , and K̂ , which soundly implement a robust explicit MPC controller

in mixed-precision fixed-point arithmetic. Our algorithm takes two additional inputs, ∆ and εQ
(line 2, 3). The disturbance ∆ provided by the user represents a starting point for the search for

a robust controller. In principle, the user can set ∆ = 0, however note that the finite-precision

implementation of the controller will always incur at least some small error. In practice we thus

start the search with a slightly larger value, e.g. ∆ = 0.1. Our algorithm will perform a linear search

and increase ∆ if needed.

The third input parameter is εQ . In Section 4 we showed that if the user provides a precision p,
then we can automatically compute εQ . Now, we want to derive a suitable precision p, however, and
face an issue. In order to derive p for some expression, Daisy and any other precision tuning tool

requires an error bound which should be satisfied. That is, either a precision p is given, and we can

compute an error bound, or the error bound is given and we can derive a precision p. We cannot do

both at the same time; the problem would be underconstrained. We solve this chicken-and-egg

problem by requiring the user to provide εQ as part of the input.

We need to distribute the available “disturbance budget” among the two error sources: error due

to selecting the wrong region, which is given by the quantization of Ĥ and K̂ , and the error due

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: December 2019.

1:12 Salamati et al.

to quantization of the control action, given by F̂ , Ĝ. The quantization of Ĥ and K̂ is determined

by εQ , thus by providing this input value, the user effectively chooses how much precision to

allow for Ĥ and K̂ . Note that this precision comes at the expense of the precision of F̂ and Ĝ, i.e.
the more accurately Ĥ and K̂ are represented, the more approximate F̂ and Ĝ need to be to fit

into the disturbance budget, and vice versa. We note that one could straight-forwardly extend our

algorithm to include an outer loop which would explore different values for εQ . For our experiments

in Section 6, we vary this value manually.

Unlike the initial ∆, the parameter εQ needs to be strictly positive (line 4) for mixed-precision

tuning tools to work correctly. Typical values for εQ can range from 10
−4

up to 10
−2
. Line 5 computes

the width of the tubes ε as shown in Equation (10), which will be used to bound the error due

to selecting the wrong region (εA/D is a constant parameter dependent on the specifics of the

converter).

The algorithm then calls Matlab’s multi-parametric toolbox to design an explicit MPC controller

for the given state-space model which is robust to the initial disturbance ∆ (line 8). The result is a

controller represented by four matrices F , G, H , K given in high precision.

Assuming that we can implement the polyhedral region partitioning (given by matrices H , K)
with an implementation error of at most εQ , our algorithm proceeds to compute the error due to

selecting the wrong region (line 9). This computation works as explained in Section 4, Equation (12).

The algorithm then checks whether the region error remains below the disturbance bound used

for the synthesis of the controller (line 10). If the error already exceeds ∆, we do not attempt to

compute a finite-precision assignment, as the controller design is already infeasible. In this case,

we increase ∆ by a fixed (small) amount εSAFE (line 16) and design a new controller.

If the region error is smaller than ∆, we still have an error budget errorAct left over to implement

the control actions in finite precision (line 11). For the precision assignment, we first call Daisy

with the expressions for the control actions given by F and G, and the remaining error budget as

the error bound (line 12). Then we call Daisy with the expressions of the region bounds given by H
and K , now with the error bound εQ (line 13).

In both cases, Daisy determines a quantization of the input matrices (Daisy also determines the

fixed-point formats of the arithmetic operations, which we ignore here). Daisy either computes a

minimal uniform fixed-point precision (i.e. word length), or it returns a mixed-precision assignment,

where each value and intermediate operation can potentially have a different word length. To

determine the minimal uniform precision, Daisy performs a linear search. It starts from the smallest

precision (1 bit) and checks whether it satisfies the error bound. If not, the precision is increased by

1 bit and the first precision that satisfies the error bound is returned. Minimal uniform precision is

used as a starting point for mixed-precision tuning, which attempts to assign a lower precision to

some variables. In our experiments in Section 6, we compare the two modes and show that mixed

precision leads to smaller memory footprints.

Note that Daisy always returns a quantization (at least for our linear expressions). If the error

bound given is very small (but larger than zero), Daisy will return a fixed-point precision with a

large number bits, but will not fail.

Termination of the algorithm. From a theoretical point of view, the error due to a wrong region

selection does not necessarily converge since each new designed controller may differ from the

previous ones. Therefore, it is not easy to give an upper bound over the number of times that the

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: December 2019.

Memory-Efficient Mixed-Precision Implementations for Robust Explicit MPC 1:13

robust MPC design needs to be repeated. However, by rewriting Equation (4), we have

ν0(x0,∆), . . .,νN−1(x0,∆) =

argmin max

w0 ,· · · ,wN−1

N−1∑
i=0

(xTi Qxi + u
T
i Rui) + x

T
NQFxN

s.t. xi+1 = Axi + Bui + Ewi , ∀i ∈ {0, 1, · · · ,N − 1}

ui = µxi +vi , ∀i ∈ {0, 1, · · · ,N − 1}

ui ∈ U,xi ∈ X, ∀wi ∈ W∆, ∀i ∈ {0, 1, · · · ,N }.

Assuming the optimization has a unique solution for every ∆, one may use the results on continuity

of the argmin function to compute an upper bound on the Lipschitz constant of the optimal input

ν = κ(x) in Equation (5) that holds for all ∆. The computed bound will only depend on the dynamics

of the system depicted in Equation (3) and hence can be used to evaluate the maximum error over

incorrect region selection. This bound can be quite large, leading to a very conservative bound on

the maximum number of iterations before convergence. From an experimental point of view, our

observations show that for reasonable range of parameters, convergence was always reached after

only a few iterations.

5.1 Implementation
We implemented our algorithm in a Python script which interfaces between Matlab and Daisy and

which implements the high-level structure from Figure 4. The interface parses the output from

Matlab and encodes the matrices F , G, H , K and the error bounds in Daisy’s input format.

We set up the problem with YALMIP [26], and use Matlab’s MPT toolbox [15] to compute the

robust explicit MPC.

We run the precision tuning for control actions (line 12) and hyperplanes (line 13) in parallel,

because the analysis of a single region or hyperplane is completely independent from the others.

We currently first perform precision tuning for control actions and then for hyperplanes. These two

steps could be run concurrently as well, though the impact is likely going to be minimal because

the number of hyperplanes is usually an order of magnitude greater than the number of regions.

6 EXPERIMENTAL RESULTS
We evaluate a prototype implementation of the algorithm in Figure 4 on three examples.

1
For the

first two, we apply the complete pipeline (design and memory optimization) which returns an

end-to-end robust controller. With the third example, we evaluate the scalability of our approach

when the number of regions and hyperplanes are in the order of tens of thousands.

The design of end-to-end robust controllers has been performed on a laptop with Intel i7-6700HQ

CPU at 2.60GHz, with 16GB of RAM. The evaluation of the last benchmark runs on a cluster with

48 Intel Xeon v2 @ 3.00GHz cores with 1TB of RAM, of which our analysis only used 15GB.

6.1 End-to-End Robust Controller
We evaluate our complete pipeline on two benchmarks. The first one is the inverted pendulum

problem depicted in Section 2, where we setm = 0.344 kg, b = 0.48 N s/m, L = 1.703 m andTs = 0.1

s. The gain µ is selected such the Ā has poles at −0.1 and −0.5. Moreover, we select N = 2, R = 1

and Q = QF = 100I , where I denotes the identity matrix of proper size.

Our second benchmark is a well-known 4D example for aircraft controller design [21]. The

control inputs for the aircraft 4-D model are the elevator and flaperon angles, and the attack and

1
Our implementation is available online at https://github.com/rospoly/rmpc-daisy.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: December 2019.

https://github.com/rospoly/rmpc-daisy

1:14 Salamati et al.

Table 1. Inverted Pendulum and Aircraft. Memory requirements in number of bits for storing F , G and H , K
for uniform 32 bit precision (Uni32), uniform custom precision (Uni, word length chosen in parentheses) and
mixed precision (Mix), for different values of ∆ and εQ . %32vsU is the percentage of memory saved using Uni
compared to the baseline Uni32, and %UvsM is the percentage of memory saved using Mix compared to Uni.

F and G H and K

p
e
n
d
u
l
u
m

∆ εQ Uni32 Uni Mix %32vU %UvM Uni32 Uni Mix %32vU %UvM

0.30 0.001 2688 924 (p=11) 759 65.6% 17.9% 11136 5568 (p=16) 4991 50.0% 10.4%

0.20 0.001 2688 924 (p=11) 806 65.6% 12.8% 11136 5568 (p=16) 4992 50.0% 10.3%

0.10 0.001 2688 1008 (p=12) 908 62.5% 9.9% 11136 5568 (p=16) 4992 50.0% 10.3%

0.08 0.001 2688 1092 (p=13) 946 59.4% 13.4% 11136 5568 (p=16) 4992 50.0% 10.3%

0.05 0.001 2688 1176 (p=14) 1030 56.3% 12.4% 11136 5568 (p=16) 4992 50.0% 10.3%

0.1 0.0006 2688 1008 (p=12) 891 62.5% 11.6% 11136 5916 (p=17) 5261 46.9% 11.1%

0.1 0.0008 2688 1008 (p=12) 901 62.5% 10.6% 11136 5568 (p=16) 5135 50.0% 7.8%

0.1 0.0010 2688 1008 (p=12) 908 62.5% 9.9% 11136 5568 (p=16) 4992 50.0% 10.3%

0.1 0.0030 2688 1092 (p=13) 993 59.4% 9.1% 11136 4872 (p=14) 4462 56.3% 8.4%

0.1 0.0050 2688 1680 (p=20) 1527 37.5% 9.1% 11136 4872 (p=14) 4204 56.3% 13.7%

a
i
r
c
r
a
f
t

0.30 0.001 9984 6864 (p=22) 6210 31.3% 9.5% 79872 64896 (p=26) 53059 18.8% 18.2%

0.20 0.001 10368 7452 (p=23) 6725 28.1% 9.8% 82944 67392 (p=26) 55098 18.8% 18.2%

0.10 0.001 10368 7776 (p=24) 7134 25.0% 8.3% 82944 67392 (p=26) 55098 18.8% 18.2%

0.08 0.001 10368 7776 (p=24) 7275 25.0% 6.4% 82944 67392 (p=26) 55098 18.8% 18.2%

0.05 0.001 10368 8424 (p=26) 7840 18.8% 6.9% 82944 67392 (p=26) 55098 18.8% 18.2%

0.1 0.0006 10368 7776 (p=24) 7047 25.0% 9.4% 82944 69984 (p=27) 55705 15.6% 20.4%

0.1 0.0008 10368 7776 (p=24) 7125 25.0% 8.4% 82944 69984 (p=27) 57859 15.6% 17.3%

0.1 0.0010 10368 7776 (p=24) 7134 25.0% 8.3% 82944 67392 (p=26) 55098 18.8% 18.2%

0.112 0.0030 10368 9720 (p=30) 9051 6.3% 6.9% 82944 64800 (p=25) 52754 21.9% 18.6%

0.185 0.0050 10368 9720 (p=30) 9051 6.3% 6.9% 82944 62208 (p=24) 47877 25.0% 23.0%

Table 2. Double Integrator. N is the prediction horizon in RMPC, time gives the execution time in minutes,
Regs is the number of regions of the controller with Hyps hyperplanes. Uni32 is the total number of bits
when all operations are in 32 bits, Uni the minimal uniform precision required, Mix is mixed-precision,

%32vU and %UvM give the improvements of uniform and mixed precisions.

F and G H and K
N time Regs Hyps Uni32 Uni Mix %32vU %UvM Uni32 Uni Mix %32vU %UvM

2 2 9 72 1728 810 (p=15) 628 53.1% 22.5% 13824 7776 (p=18) 7280 43.8% 6.4%

5 9 53 424 10176 5088 (p=16) 3623 50.0% 28.8% 81408 45792 (p=18) 42656 43.8% 6.8%

8 23 143 1144 27456 13728 (p=16) 9864 50.0% 28.1% 219648 123552 (p=18) 114948 43.8% 7.0%

11 47 277 2216 53184 26592 (p=16) 18980 50.0% 28.6% 425472 239328 (p=18) 222616 43.8% 7.0%

14 73 431 3446 82752 41376 (p=16) 28685 50.0% 30.7% 661632 372168 (p=18) 346020 43.8% 7.0%

17 106 621 4968 119232 59616 (p=16) 40503 50.0% 32.1% 953856 536544 (p=18) 498668 43.8% 7.1%

21 150 928 7432 178368 89184 (p=16) 59409 50.0% 33.4% 1426944 802656 (p=18) 745936 43.8% 7.1%

25 223 1299 10392 249408 124704 (p=16) 81889 50.0% 34.3% 1995264 1122336 (p=18) 1043456 43.8% 7.0%

40 314 1829 14632 351168 175584 (p=16) 113979 50.0% 35.1% 2809344 1580256 (p=18) 1469834 43.8% 7.0%

pitch angles are the output states that need to be regulated. The open-loop system is unstable as it

has a pole with positive real part. Both control inputs are constrained between ±25 degrees. The

outputs are only constrained during the first prediction horizon. You also specify scale factors for

outputs. Using the gain µ, the poles of Ā are placed at −5, −3, −1 and −2. The robust MPC problem

is solved for N = 2, R = I and Q = QF = 5I . Note that for both of the examples, matrices R, Q and

QF are selected such that convergence to the origin is given more weight compared to the control

effort as long as constraints are satisfied.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: December 2019.

Memory-Efficient Mixed-Precision Implementations for Robust Explicit MPC 1:15

We do not compare against the existing technique of Suardi et al. [41] which aims to reduce

memory usage in explicit MPC control, as it requires the user to provide a (uniform) fixed-precision

up front. Instead, we let Daisy find the minimum uniform precision needed. Additionally, we

compare against a uniform 32-bit precision baseline, which in the absence of special user insight

would be a reasonable safe choice.

Table 1 shows the total number of bits required to implement each controller using different

precision options: uniform 32 bit precision (‘Uni32’), minimal uniform precision (‘Uni’, chosen

precision in parentheses) and mixed precision (‘Mix’). We split the memory requirement into the

bits required for storing F , G, H and K . We show the results for each benchmark for ten different

combinations of ∆ and εQ , varying one while keeping the other fixed. For the pendulum, the

execution time of the whole analysis is 10 minutes no matter the initial values for ∆ and εQ , while
for the aircraft it is 36 minutes.

For the inverted pendulum, minimal uniform precision saves on average 52.6% of memory

compared to a uniform 32 bit baseline overall, i.e. for F , G, H and K together. Mixed-precision

further reduces the memory requirement by 10.5% on average with respect to the minimal uniform

baseline (and 57.5% w.r.t to uniform 32 bit baseline). Table 1 shows a more detailed breakdown

of the memory requirements and savings between F , G, H and K . The memory requirements for

the storage of hyperplanes H and K depends only on the size of the tubes εQ so that memory

requirements remain constant for fixed εQ .
For the aircraft example, minimal uniform precision saves on average 19.3% overall w.r.t. a uniform

32 bit baseline, and mixed-precision saves an additional 17.7% w.r.t. minimal uniform precision

(33.6% w.r.t to uniform 32 bit). We observe higher relative memory savings by mixed-precision for

storing H and K than for the inverted pendulum example.

For the inverted pendulum MPT toolbox [15] computes a controller consisting of 14 regions with

58 2D hyperplanes in total for all choices of εQ and ∆. For the aircraft model, Matlab computes

a robust EMPC with 27 regions and 217 4D hyperplanes for most values of εQ and ∆. The only
exception is when ∆ = 0.30 and εQ = 0.001 for which we get 26 regions having 208 hyperplanes. In

general, we expect that increasing ∆ results in shrinking of feasible set size.

As expected, when ∆ decreases, the control actions (F ,G) need to be implemented more precisely

and require more memory, because the space for approximation error is reduced. Similarly, when

the value of εQ increases, the memory requirements for H and K can be relaxed.

We note that for the aircraft example, the precision for F and G is almost double with respect

to the pendulum. This is because the magnitude of F and G is on the order of 10
3
while for the

pendulum it is on the order of several units. Note, however, that for F andG the memory gain from

minimal uniform to mixed precision (%UvM) is only slightly less than the one for the pendulum.

For the aircraft example, when εQ = 0.0030, the error due to selecting the wrong region (max |Ui −

Uj |) exceeds the given value of ∆ = 0.1 and our algorithm needs to design a new controller

(corresponding to the else branch in Figure 4). The loop converges after 5 iterations (then branch

in our algorithm) with ∆ = 0.112. In each iteration, the value for ∆ is increased by εSAFE = 10
−3
.

Thus, the algorithm reduces memory demand at the expense of slightly more disturbance for the

controller. When εQ = 0.0050 the analysis converges after 4 iterations. For the other values of ∆
and ε and for the pendulum example, the loop in Figure 4 is executed only once.

6.2 Scalability
The goal of the experiment in this section is to show that our algorithm works well even for the

case that the controller consists of thousands of regions. This experiment is different from the

end-to-end case in the sense that designing robust EMPC for the error bound ∆ is replaced with

designing EMPC that might not account for ∆. Given an EMPC, one can perform robustness analysis

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: December 2019.

1:16 Salamati et al.

to come up with an input error bound ∆ under which the performance specifications are satisfied.

From the implementation point of view, this helps us to generate controllers with thousands of

regions, skiping the restrictions for designing robust EMPC with longer time horizons.

The benchmark in this experiment is the double integrator, a canonical example of a second order

control system. The state space description for the discrete time version of the double integrator is

given by:

xk+1 =

[
1 Ts
0 1

]
xk +

[
0

Ts

]
uk (14)

where, Ts = 0.1 is the sample time. The state and input constraints are[
−5

−5

]
≤xk ≤

[
5

5

]
, −1 ≤ uk ≤ 1

For this example, ∆ and εQ are fixed to 0.1 and 0.001, respectively. By changing the time horizon

N , we evaluate the scalability of our approach for controllers with very large number of regions, as

increasing N generally results in a higher number of regions for the output controller. To compute

the explicit model predictive controllers for different time horizons, we use Matlab’s MPC toolbox.

The design of the controller in Matlab takes a few minutes, then controllers and hyperplanes are

encoded in Daisy for finite-precision assignment. On average, the analysis of a single controller

or hyperplane in Daisy requires less than two minutes and less than 500MB of memory. The

finite-precision assignment is trivially parallelizable, because any controller or hyperplane can be

analyzed independently. We thus run this analysis on a cluster with 48 cores, and note that the

memory consumption remains below 15GB.

Table 2 shows the results of this experiment. We observe that our analysis scales up to 1829

controllers and 14632 hyperplanes in a few hours. The computed minimal uniform precision saves

on average 44.5% of memory compared to a uniform 32 bit baseline overall (for F , G, H and K
together). Moreover, mixed-precision reduces the memory requirement by an additional 9.3% on

average with respect to the minimal uniform baseline (49.6% w.r.t. uniform 32 bit). We further

observe that relative savings remain largely constant for different prediction horizons.

7 RELATEDWORK
Any digital controller can be implemented using a wide range of available platforms. Large-size

manufacturers use industrial digital computers called programmable logic controllers (PLC) for
such implementations. A PLC is able to perform the computations required by a digital controller

using floating-point arithmetic. Low-end applications utilize microcontrollers with limited memory

capacity and computational power to keep the costs of the implementation down. We target

implementations for low-end microcontrollers.

Verification of Finite-precision Controller Implementations. While control design algorithms often

consider disturbance or noise, they usually assume an ideal infinite-precision implementation of the

controller. Several works have explicitly considered the effects of finite-precision implementations

on controller robustness.

Given a precision by the user, Suardi et al. [41] present an algorithm which iteratively designs a

robust MPC controller. Similar to our loop, each iteration bounds the implementation error due

to fixed-point arithmetic and if it exceeds the initial disturbance used for the design, repeats the

process with an adjusted disturbance. This approach does not optimize for the precision and bounds

implementation errors by reduction to an approximate LP problem. The authors further note that

the iterations may diverge, i.e. a controller may not be found. Since our algorithm optimizes and

adjust precision dynamically it will eventually find an implementation.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: December 2019.

Memory-Efficient Mixed-Precision Implementations for Robust Explicit MPC 1:17

Anta et al. [3] take an existing controller and its implementation, derive safe bounds from the

controller under which stability is guaranteed and verify that the implementation in fixed-point

arithmetic satisfies this error bound. Similarly, Park et al. [33] takes an existing floating-point

controller implementation, reconstructs the controller and verifies that roundoff errors due to finite

precision remain below a user-given error bound. The LCV tool [34] additionally checks that the

generated code is equivalent (within an error bound) to a Simulink block diagram model.

Unlike previous work which assumed a given implementation precision, the approach presented

in this paper synthesizes both the controller and the fixed-point implementation at the same time
and thus provides a fully automated approach.

Abate et al. [1] design safe feedback controllers with counterexample guided inductive synthesis

(CEGIS). Safety verification needs to consider quantization errors in the controller and in the plant

model as the algorithm is based on bounded model checking (BMC) and tracks roundoff errors

with interval arithmetic. While this algorithm generates the controller and its implementation, due

to limitations in BMC it only considers uniform fixed-point word length in steps of 8.

Ingole et al. [17] propose to use universal numbers (unums) instead of traditional floating-point

or fixed-point arithmetic for implementing robust controllers, but without an error analysis. While

unums can reduce memory footprint w.r.t. a floating-point implementation, their comparison

against fixed-point arithmetic in terms of memory and performance is unclear.

Controller Synthesis. The problem of controller synthesis under safety requirements on the states

has been investigated mostly for Model Predictive Control (MPC) [6] (also called receding horizon

control). Researchers have investigated designingMPC controllers for satisfying safety requirements

expressed as temporal logic formulas [13, 22, 23, 32, 36, 42]. The main technique is to optimize

the robust satisfaction of the formula [12] (i.e., a quantitative measure of satisfaction). These

works utilize MPC an an online method that requires solving at runtime often computationally

expensive optimization problems. In contrast, the explicit MPC used in our work performs controller

synthesis at the design time. Synthesizing digital controllers with formal guarantees while having

finite-precision implementation is studied in [40] for stochastic systems.

Saha and Majumdar [39] consider memory optimization for event-driven controllers using a

scratchpad to selectively load control parameters based on the current state. Our work, in contrast,

is a static mapping of controller parameters.

Finite-Precision Optimization. General-purpose techniques for synthesizing fixed-point imple-

mentations of arithmetic expressions have been developed in the space of embedded systems, where

resource efficiency is generally important. Some work has used dynamic analyses for estimating

errors [14, 27], which, however, do not provide guarantees. Several approaches [24, 25, 30, 31] use

sound error analysis techniques and perform mixed-precision optimization [25, 31], similar to the

approach implemented in the tool Daisy used in this paper. An alternative way of bounding errors

in fixed-point implementations of EMPC through mixed integer programming is given by Suardi

et al. [41].

8 CONCLUSION
We have described an automatic technique to tune an explicit MPC controller. Our technique im-

plements the controller in mixed-precision fixed-point arithmetic while ensuring that the resulting

loss of precision does not invalidate the constraints of the original control problem. We model

potential fixed-point imprecision explicitly as a disturbance term, and uses robust explicit MPC to

design a controller. A static error analysis and a mixed-precision tuning tool is then used to find an

efficient implementation of the controller function. The implementation maintains the numerical

error to within the disturbance bounds used by the robust controller. In experiments, we show that

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: December 2019.

1:18 Salamati et al.

our technique can yield significant savings in memory, ranging up to 20% in our experiments. In

addition, the static analysis scales to controllers with hundreds of regions. One direction for future

work would be to investigate the effect of stochastic disturbances on the proposed methodology

and find a scheme to statistically reduce the memory footprint of the controller implementation.

REFERENCES
[1] A. Abate, I. Bessa, D. Cattaruzza, L.C. Cordeiro, C. David, P. Kesseli, D. Kroening, and E. Polgreen. 2017. Automated

Formal Synthesis of Digital Controllers for State-Space Physical Plants. In Computer Aided Verification (CAV). 462–482.
[2] A. Alessio and A. Bemporad. 2009. A Survey on Explicit Model Predictive Control. Springer, 345–369.
[3] A. Anta, R. Majumdar, I. Saha, and P. Tabuada. 2010. Automatic Verification of Control System Implementations. In

Proceedings of the Tenth ACM International Conference on Embedded Software (EMSOFT ’10). ACM, New York, NY, USA,

9–18.

[4] Alberto Bemporad. 2006. Model Predictive Control Design: New Trends and Tools. In Proceedings of the 45th IEEE
Conference on Decision and Control. IEEE. https://doi.org/10.1109/cdc.2006.377490

[5] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. 2002. The Explicit Linear Quadratic Regulator for Constrained

Systems. Automatica 38, 1 (Jan. 2002), 3–20.
[6] Eduardo F Camacho and Carlos Bordons Alba. 2013. Model predictive control. Springer Science & Business Media.

[7] E. Darulova, A. Izycheva, F. Nasir, F. Ritter, H. Becker, and R. Bastian. 2018. Daisy - Framework for Analysis and

Optimization of Numerical Programs. In TACAS.
[8] E. Darulova, S. Sharma, and E. Horn. 2018. Sound Mixed-Precision Optimization with Rewriting. In ICCPS.
[9] F. De Dinechin, C.Q. Lauter, and G. Melquiond. 2006. Assisted Verification of Elementary Functions Using Gappa. In

ACM Symposium on Applied Computing.
[10] L. H. de Figueiredo and J. Stolfi. 2004. Affine Arithmetic: Concepts and Applications. Numerical Algorithms 37, 1-4

(2004).

[11] D. Muñoz de la Peña, T. Alamo, D.R. Ramírez, and E.F. Camacho. 2005. Min-Max Model Predictive Control as a

Quadratic Program. IFAC Proceedings Volumes 38, 1 (2005), 263–268.
[12] A. Donzé and O. Maler. 2010. Robust satisfaction of temporal logic over real-valued signals. In International Conference

on Formal Modeling and Analysis of Timed Systems. Springer, 92–106.
[13] S. S. Farahani, R. Majumdar, V. S. Prabhu, and S. Soudjani. 2018. Shrinking Horizon Model Predictive Control with

Signal Temporal Logic Constraints under Stochastic Disturbances. IEEE Trans. Automat. Control (2018), 1–8.
[14] A.A. Gaffar, O. Mencer, W. Luk, and P.Y.K. Cheung. 2004. Unifying Bit-Width Optimisation for Fixed-Point and

Floating-Point Designs. FCCM (2004).

[15] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari. 2013. Multi-Parametric Toolbox 3.0. In 2013 European Control
Conference (ECC). 502–510. https://doi.org/10.23919/ECC.2013.6669862

[16] Computer Society IEEE. 2008. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008 (2008).
[17] Deepak Ingole, Michal Kvasnica, Himeshi De Silva, and John Gustafson. 2017. Reducing Memory Footprints in Explicit

Model Predictive Control using Universal Numbers. IFAC-PapersOnLine (20th IFAC World Congress) 50, 1 (2017), 11595
– 11600.

[18] Matt J. 2017. Analyze N-dimensional Polyhedra in terms of Vertices or (In)Equalities. https://de.mathworks.com/

matlabcentral/fileexchange/30892-analyze-n-dimensional-polyhedra-in-terms-of-vertices-or-in-equalities.

[19] Tor A. Johansen, Warren Jackson, Robert Schreiber, and Petter Tondel. 2007. Hardware Synthesis of Explicit Model

Predictive Controllers. IEEE Transactions on Control Systems Technology 15, 1 (Jan. 2007), 191–197. https://doi.org/10.

1109/tcst.2006.883206

[20] C.N. Jones, P. Grieder, and S.V. Raković. 2006. A logarithmic-time solution to the point location problem for parametric

linear programming. Automatica 42, 12 (dec 2006), 2215–2218.
[21] P. Kapasouris, M. Athans, and G. Stein. 1988. Design of feedback control systems for unstable plants with saturating

actuators. NASA STI/Recon Technical Report N 89 (Nov. 1988).

[22] Sertac Karaman, Ricardo G. Sanfelice, and Emilio Frazzoli. 2008. Optimal control of Mixed Logical Dynamical systems

with Linear Temporal Logic specifications. In Proc. of CDC 2008: the 47th IEEE Conference on Decision and Control. IEEE,
2117–2122.

[23] E.S. Kim, S. Sadraddini, C. Belta, M. Arcak, and S.A. Seshia. 2017. Dynamic contracts for distributed temporal logic

control of traffic networks. In Decision and Control (CDC), 2017 IEEE 56th Annual Conference on. IEEE, 3640–3645.
[24] A. B. Kinsman and N. Nicolici. 2009. Finite Precision Bit-Width Allocation using SAT-Modulo Theory. In DATE.
[25] D. U. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer, W. Luk, and G. A. Constantinides. 2006. Accuracy-Guaranteed

Bit-Width Optimization. Trans. Comp.-Aided Des. Integ. Cir. Sys. 25, 10 (2006).

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: December 2019.

https://doi.org/10.1109/cdc.2006.377490
https://doi.org/10.23919/ECC.2013.6669862
https://de.mathworks.com/matlabcentral/fileexchange/30892-analyze-n-dimensional-polyhedra-in-terms-of-vertices-or-in-equalities
https://de.mathworks.com/matlabcentral/fileexchange/30892-analyze-n-dimensional-polyhedra-in-terms-of-vertices-or-in-equalities
https://doi.org/10.1109/tcst.2006.883206
https://doi.org/10.1109/tcst.2006.883206

Memory-Efficient Mixed-Precision Implementations for Robust Explicit MPC 1:19

[26] J. Lofberg. 2004. YALMIP : a toolbox for modeling and optimization in MATLAB. In 2004 IEEE International Conference
on Robotics and Automation (IEEE Cat. No.04CH37508). 284–289. https://doi.org/10.1109/CACSD.2004.1393890

[27] A. Mallik, D. Sinha, P. Banerjee, and H. Zhou. 2007. Low-Power Optimization by Smart Bit-Width Allocation in a

SystemC-Based ASIC Design Environment. IEEE Trans. on CAD of Integ. Cir. and Sys. (2007).
[28] M. Mönnigmann and M. Kastsian. 2011. Fast explicit MPC with multiway trees. IFAC Proceedings Volumes 44, 1 (jan

2011), 1356–1361.

[29] R.E. Moore. 1966. Interval Analysis. Prentice-Hall.
[30] W. G. Osborne, R. C. C. Cheung, J. Coutinho, W. Luk, and O. Mencer. 2007. Automatic Accuracy-Guaranteed Bit-Width

Optimization for Fixed and Floating-Point Systems. In FPL.
[31] Yu Pang, Katarzyna Radecka, and Zeljko Zilic. 2011. An Efficient Hybrid Engine to Perform Range Analysis and

Allocate Integer Bit-widths for Arithmetic Circuits. In ASPDAC.
[32] Y.V. Pant, H. Abbas, and R. Mangharam. 2017. Smooth operator: Control using the smooth robustness of temporal

logic. In Control Technology and Applications (CCTA), 2017 IEEE Conference on. IEEE, 1235–1240.
[33] J. Park, M. Pajic, O. Sokolsky, and I. Lee. 2017. Automatic Verification of Finite Precision Implementations of Linear

Controllers. In Tools and Algorithms for the Construction and Analysis of Systems TACAS, Uppsala, Sweden, April 22-29.
153–169.

[34] Junkil Park, Miroslav Pajic, Oleg Sokolsky, and Insup Lee. 2019. LCV: A Verification Tool for Linear Controller Software.

In Tools and Algorithms for the Construction and Analysis of Systems (TACAS). 213–225.
[35] S.J. Qin and T.A. Badgwell. 2003. A survey of industrial model predictive control technology. Control engineering

practice 11(7) (2003), 733–764.
[36] V. Raman, A. Donzé, M. Maasoumy, R.M Murray, A. Sangiovanni-Vincentelli, and S.A. Seshia. 2014. Model predictive

control with signal temporal logic specifications. In Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on.
IEEE, 81–87.

[37] D.R. Ramirez and E.F. Camacho. 2006. Piecewise affinity of min-max MPC with bounded additive uncertainties and a

quadratic criterion. Automatica 42(2) (2006), 295–302.
[38] James B. Rawlings, David Q. Mayne, and Moritz M. Diehl. 2017. Model Predictive Control: Theory, Computation, and

Design (2 ed.). Nob Hill Publishing.

[39] I. Saha and R. Majumdar. 2012. Trigger memoization in self-triggered control. In EMSOFT 2012. ACM, 103–112.

[40] Fedor Shmarov, Sadegh Soudjani, Nicola Paoletti, Ezio Bartocci, Shan Lin, Scott A. Smolka, and Paolo Zuliani. 2019.

Automated Synthesis of Safe Digital Controllers for Sampled-Data Stochastic Nonlinear Systems. CoRR abs/1901.03315

(2019). arXiv:1901.03315

[41] A. Suardi, S. Longo, E.C. Kerrigan, and G.A. Constantinides. 2016. Explicit MPC: Hard constraint satisfaction under

low precision arithmetic. Control Engineering Practice 47 (2016), 60 – 69.

[42] T. Wongpiromsarn, U. Topcu, and R.M. Murray. 2012. Receding Horizon Temporal Logic Planning. IEEE Trans. Automat.
Contr. 57, 11 (2012), 2817–2830.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: December 2019.

https://doi.org/10.1109/CACSD.2004.1393890
http://arxiv.org/abs/1901.03315

	Abstract
	1 Introduction
	2 Overview
	3 Background
	3.1 Robust Explicit MPC
	3.2 Finite-Precision Implementation

	4 Error Analysis
	4.1 Incorrect Region Selection
	4.2 Approximate Control Output
	4.3 Implementation

	5 Controller Synthesis
	5.1 Implementation

	6 Experimental Results
	6.1 End-to-End Robust Controller
	6.2 Scalability

	7 Related Work
	8 Conclusion
	References

