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Abstract. In this paper, we present a fully automated approach for
synthesizing fast numerical kernels with guaranteed error bounds. The
kernels we target contain elementary functions such as sine and loga-
rithm, which are widely used in scientific computing, embedded as well
as machine-learning programs. However, standard library implementa-
tions of these functions are often overly accurate and therefore unnec-
essarily expensive. Our approach trades superfluous accuracy against
performance by approximating elementary function calls by polynomials
and by implementing arithmetic operations in low-precision fixed-point
arithmetic. Our algorithm soundly distributes and guarantees an overall
error budget specified by the user. The evaluation on benchmarks from
different domains shows significant performance improvements of 2.23x
on average compared to state-of-the-art implementations of such kernel
functions.
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1 Introduction

Automated program synthesis promises to simplify and speed up common pro-
gramming tasks: the programmer only needs to write a specification of what
should be computed and a synthesis tool automatically generates an implemen-
tation, whose correctness is guaranteed by construction. Today’s techniques gen-
erate programs over algebraic data structures [24], APIs [19], string manipula-
tion [22], probabilistic programs [39], linear arithmetic computations [25], etc.

Many of these synthesis techniques explicitly or implicitly generate programs
optimized for a particular metric. For instance, enumerative techniques often
choose the program of smallest size which satisfies the specification [3], or use
an explicit static cost model to prune inefficient programs [32].

An additional way to improve the efficiency of a program is to introduce
approximations. We can leverage the fact that many applications are tolerant
to a certain amount of error or noise and thus need not compute their results
exactly, but only as accurately as necessary [46]. Approximations introduce a
tradeoff between accuracy and efficiency, which is in general challenging to nav-
igate. In order to determine whether a particular approximation is suitable, we
need to be able to verify the overall program accuracy. Furthermore, the space
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of possible approximations is in general prohibitively large, making manual pro-
gram optimizations tedious, error prone, and inefficient.

Most of today’s synthesis techniques consider only exact specifications, and
are thus unsuitable to generate programs which are only correct up to some
error bound [24,19,22,39,25,3,32]. Furthermore, most techniques do not explicitly
optimize for efficiency of the generated program. A few approaches exist which
do generate approximate programs, but which check correctness via testing on
a few sample inputs and thus cannot provide accuracy guarantees [18,42].

We propose a fully automated synthesis approach for the domain of numeri-
cal kernels, which approximates both arithmetic operations as well as elementary
functions, and which provides sound end-to-end accuracy guarantees. The user
specifies an ideal, real-valued program together with a maximum error bound.
Our technique generates an efficient finite-precision implementation with poly-
nomial approximations of elementary functions.

The numerical kernels we handle cover widely used applications in various
domains: for instance, embedded control to compute rotations of robotic com-
ponents, scientific computing simulations to determine the state of a periodic
event, and machine learning models with sigmoid activation functions. By de-
fault, programmers today implement the elementary functions in these kernels
using library implementations. While these are convenient and optimized, they
usually provide only a limited set of accuracies, e.g. single and double floating-
point precision, severely limiting optimization opportunities.

We furthermore target fixed-point arithmetic implementations, which allow
arbitrary bit-widths for individual operations and thus provide high flexibility
in the accuracy-efficiency tradeoff space when executed on accelerators such
as FPGAs. Compared to an implementation in floating-point arithmetic, this
choice, however, increases the search space significantly and thus makes code
synthesis more challenging.

In this paper, we present our synthesis algorithm, which distributes the over-
all error budget provided by the user among different operations in the kernel,
and soundly takes care of the error propagation as well as finite-precision roundoff
errors. To generate approximations, our algorithm extends and combines an ex-
isting polynomial approximation technique [27] and roundoff error analysis [14].

We implemented our algorithm and evaluate it on several embedded, scientific
computing and machine learning kernels. Compared to implementations using
default library functions, our synthesized programs on average need 2.23x less
machine cycles to execute.

Contributions To summarize, this paper presents: a) the first sound and auto-
mated synthesis algorithm for efficient numerical kernels with both arithmetic
and elementary function approximations, b) an experimental evaluation using ex-
isting and several new benchmarks, c) a prototype implementation of the synthe-
sis algorithm, which we release as open-source: https://github.com/malyzajko/
daisy/tree/approx.

https://github.com/malyzajko/daisy/tree/approx
https://github.com/malyzajko/daisy/tree/approx
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2 Background

Fixed-Point Arithmetic Floating-point arithmetic [23] is a common and con-
venient choice to implement an approximation of real numbers on today’s dis-
crete computers. However, floating-point units usually support only a limited
set of precisions (e.g. 16, 32, and 64 bit), and the exponent always occupies a
fixed number of bits. For applications which operate over limited ranges, many
of these bits remain unused, effectively wasting resources such as energy or time.

Fixed-point arithmetic allows a programmer to implement a computation
in purely integer arithmetic (i.e. without special hardware) and with exactly
as many bits for the exponent and precision as are actually needed. On an
accelerator such as an FPGA, fixed-point arithmetic thus provides a resource-
efficient implementation.

To compile a fixed-point arithmetic program (e.g. with a high-level synthesis
tool such as Xilinx’ Vivado [45]), the programmer has to select suitable fixed-
point formats for a program’s inputs and operations. A fixed-point format spec-
ifies at least the total wordlengthW and the number of integer bits I. The latter
have to be chosen such that no overflow can occur. The remaining F = W − I
bits are used to represent the fractional part of a number and determine the
accuracy of the computation. A larger F makes the computation more accurate,
but also more costly. Choosing a suitable tradeoff is challenging to do manually
a) due to the large number of format options—we can choose different and ar-
bitrary wordlengths for individual operations—and b) due to the need to verify
the overall accuracy of the computation.

As part of the fixed-point format, usually one can also choose the rounding
mode and the overflow behaviour. In this work, we consider the default trunca-
tion as the rounding mode. We also leave the overflow mode to default (wrap
around), but note that our analysis guarantees that no overflow can occur.

Elementary Functions For both floating-point and fixed-point arithmetic, ele-
mentary functions are supported via library functions. Here, we focus on the
implementation and specification provided and used by Xilinx Vivado, which we
use in our experiments and which is widely used in industry. We note, however,
that our approach is not tied to a particular choice of fixed-point compiler.

Xilinx Vivado supports 32 bit fixed-point implementations for sine and co-
sine, and 8 or 16 bit versions of the exponential function. The compiler further
supports automated conversion to floating-point arithmetic, such that floating-
point implementations of elementary function calls can be used within fixed-point
arithmetic programs. These are provided for precisions 16, 32, and 64 bit. Thus,
while some support for elementary functions is provided, it is only available for
a small variety of precisions, effectively limiting optimization options.

Fixed-point Roundoff Error Analysis and Precision Assignment Cur-
rent static analysis tools [14,21,17,11,15] provide automated dataflow analyses
which compute finite-precision roundoff errors w.r.t. to a real-valued seman-
tics using the interval [35] and affine [20] arithmetic abstract domains. These
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analyses are applicable to both floating-point as well as fixed-point arithmetic,
whereas other tools use a different, global optimization-based approach and only
support floating-point arithmetic [44,33,36]. Several of these tools can analyze
programs with elementary function calls, but always assume library implemen-
tations. Reasoning about loops and conditionals is always reduced to reasoning
about straight-line code, e.g. through loop unrolling [11], special loop invari-
ants [15,21,36], or path-by-path analysis of conditionals [36,15]. In this work we
thus focus on the core issue and consider straight-line programs only.

Because of the nature of fixed-point arithmetic, the error specification is
fundamentally absolute: the fixed-point format for each operation is fixed at
compile time, thus the worst-case error is the same no matter what the magnitude
of the value actually is at runtime. In this work we thus consider absolute errors.

Several tools perform mixed-precision tuning [9,16,10], which assigns different
precisions to individual operations. Due to the large number of possible precision
assignments, the search for such an assignment is necessarily incomplete. These
approaches only consider arithmetic operations, i.e. no elementary functions, and
only Daisy [16] supports fixed-point arithmetic.

Polynomial Approximation in Metalibm Polynomials are a common choice
for approximating complex functions. The approximation accuracy largely de-
pends on the degree of the polynomial, larger degrees incurring a higher exe-
cution cost. Given an elementary function, an input domain and a target error
which the approximation has to satisfy, the recent tool Metalibm [27] selects
a suitable degree fully automatically. It employs Remez’ algorithm [37], which
guarantees the best possible polynomial approximation. It additionally performs
domain splitting [26], which allows different polynomials and degrees to be used
on different parts of the input domain, and supports a number of further features
such as generation of tables for table lookup and range reduction.

Metalibm currently generates double floating-point C implementations which
can outperform highly optimized library implementations [8]. It can be applied
to individual or compound elementary functions as long as they are univariate
(Remez’ algorithm only supports univariate functions), though it usually times
out after several hours on more complex compound functions. To summarize,
Metalibm generates efficient individual floating-point approximations, but can-
not be applied to entire programs and it does not support fixed-point arithmetic.

3 Our Synthesis Algorithm

In this section, we present our approach for synthesizing approximate programs
with error guarantees for straight-line input programs with elementary function
calls. We do not consider loops or branches, but note that our approach can
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def xu1(x1: Real, x2: Real): Real = {

require(0.01 <= x1 && x1 <= 0.75 && 0.01 <= x2 && x2 <= 1.5)

2 * sin(x1) + 0.8 * cos(2 * x1) + 7 * sin(x2) - x1

} ensuring(res => res +/- 4.24e-06)

Fig. 1. Example input program with elementary function calls

be combined with previous techniques which reduce reasoning about loops and
conditionals to straight-line code [11,15,21,36]. 3

To illustrate our approach, Figure 1 shows an example synthesis specification
of a program, which is taken from the benchmark set of the CORPIN project [1].
It consists of: a program with three elementary function calls sin(x1), cos(2*x1)
and sin(x2), input ranges for variables in the require clause, and the maximum
tolerated absolute error for the program in the ensuring clause: 4.24e-6.

Given this specification, our goal is to automatically synthesize a program
which approximates the expensive elementary function calls and implements the
arithmetic operations in a suitable fixed-point precision, while respecting the
specified error bound.

The specified maximum tolerated error for the program can be seen as a
budget, which has to be distributed between all the different sources of errors
in the program, namely the elementary function approximations as well as the
finite-precision arithmetic. Note that the approximation polynomials themselves
have to be implemented in fixed-point arithmetic as well. In our example we thus
need to assign a roundoff error budget to the four multiplications, two additions
and one subtraction of the top-level program, as well as to the yet unknown
polynomial approximations of sin(x1), cos(2*x1) and sin(x2).

Thus, in order to synthesize an approximate program which satisfies the
specified error bound, we need to:

1. distribute the error budget, specified for the whole program, between arith-
metic operations in the top-level function, potentially multiple elementary
function calls, and the finite-precision implementation of the polynomials,

2. find a (piecewise-) polynomial approximation for every elementary function
which stays within limits of the assigned approximation error budget, and

3. assign a finite precision to each arithmetic operation of the top-level function,
as well as the polynomial approximations.

Each of the above challenges involves finding a solution in a large search
space, and the search is furthermore complicated by the fact that individual er-
rors interact in nonlinear and discrete ways. Every error introduced at one point

3 These techniques are applied to underlying roundoff error analysis, and our approach
can be combined with any sound roundoff error analysis. Therefore, the application
domain for our technique is only limited by what a roundoff error analysis can handle.
For programs with discrete decisions – like machine-learning classifiers – the effect
of the approximations on decision errors can be obtained experimentally, or to a
limited extent via static analysis [31].
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Input: S - all variables, arithmetic operations and elementary function calls;

sef - elementary function calls; εg - global error budget

1. ∀s ∈ S assign precision ps wrt. cost of s and εg
2. Based on ps assign local budget εi to all sef
3. ∀sef and k.0 ≤ k ≤ 5 REPEAT:

– Split εi into εi_approx and εi_fp, for k = 0 εi_approx = εi_fp, k ≥ 1:
εi_fp = εi_fp ◦ δ, where δ = εi/2

k+1, ◦ ∈ {+,−}
– Call Metalibm to generate a polynomial approximation wrt. εi_approx
– Generate a finite-precision implementation, such that efp ≤ εi_fp
– Compute cost ck of the obtained finite-precision implementation ik
– Consider following cases:

• ck > ck−1: if k = 1 choose the opposite ◦ ∈ {+,−}, else RETURN ik−1

• ck = ck−1: if k = 1 REPEAT, else RETURN ik
• ck < ck−1: if k < 5 REPEAT, else RETURN ik

Fig. 2. High-level synthesis algorithm

in the program gets propagated through the remaining part of the computation,
in the course of which it may be magnified, or diminished.

Because we are explicitly aiming to synthesize a more efficient program, we
furthermore have to keep in mind the accuracy-efficiency trade off. If we assign
a significant portion of the error budget to elementary function calls, we might
need to use a higher, and thus more expensive, precision for the rest of the
operations in order to satisfy the error budget for the whole program. Thus,
performance gained by approximation might be negated by the need for high
finite precision. This is a multiple-objective optimization task, which is known
to be difficult in general.

Previous work provides only partial solutions to some of these challenges,
which furthermore only exist in isolation. While Metalibm generates polyno-
mial solutions with guaranteed bounds, it requires the user to provide range
bounds and target errors at the call site and thus does not consider the full
program and error propagation. Additionally, Metalibm only generates double-
precision floating-point implementations. The tool Daisy can assign uniform or
mixed fixed-point precisions to arithmetic computations, but does not consider
elementary function calls or their approximations.

3.1 High-level Algorithm

In this paper, we provide a complete solution for the above mentioned chal-
lenges and propose an overall algorithm which takes into account the interac-
tions between different errors and synthesizes efficient numerical kernels, which
are guaranteed to be accurate up to a specified total error bound. 4

We distinguish two error budgets. The global budget covers errors of elemen-
tary function calls and roundoffs of arithmetic operations in the original program.
4 We optimize for running time, but our algorithm is also applicable to other objectives
such as energy, with an appropriate cost function. We note that running time often
correlates with energy.
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The local budget covers the approximation error of individual elementary func-
tion calls and roundoff errors introduced by their polynomial approximations.

Figure 2 shows our high-level algorithm. The algorithm operates top-down.
It first distributes the global error budget (subsection 3.2), which assigns local
error budgets to individual elementary function calls. The local budget is dis-
tributed itself in a feedback loop between approximation and implementation
errors (subsection 3.3). The approximation error, as well as other information
obtained using static analysis is used to call Metalibm to generate polynomial
approximations (subsection 3.4). Finally, the implementation error budget is
used to assign fixed-point precisions to the approximation polynomials (subsec-
tion 3.5). We discuss alternatives to this top-down approach in subsection 3.6.

3.2 Distributing the Global Error Budget

Given the global error budget εg we first distribute it to local budgets for each
arithmetic operation, variable and elementary function call, taking into account
error propagation. Our key observation for this distribution is that the accu-
racy of the elementary function calls is unlikely to be very different from the
other arithmetic operations, otherwise the errors they introduce would domi-
nate the overall error. Based on this observation, we treat the approximation
errors introduced by elementary functions as a kind of roundoff error of a given
finite precision. With this assumption, we can leverage a precision assignment
algorithm to distribute the global error budget.

In particular, we use the two assignment strategies implemented in the tool
Daisy, which provide a uniform- or mixed-precision assignment. They assign a
fixed-point precision to every arithmetic operation and elementary function call.
For elementary functions, we interpret the associated roundoff error with this
fixed-point format as the local error budget.

Daisy’s uniform precision assignment performs a linear search and selects
the smallest uniform precision which satisfies the provided overall error bound.
Mixed-precision tuning is more involved, as it introduces cast operations which
incur a certain cost. Unlike uniform precision assignment, mixed-precision tun-
ing thus requires a cost function to choose between efficient programs. However,
at this point, we do not know the actual implementation of the elementary
function approximations. Furthermore, the performance of fixed-precision im-
plementations on an accelerator depends on the compilation algorithm, which is
a highly complex, and generally unknown function (e.g. the commercial Xilinx
Vivado compiler). Thus the cost function has to estimate the cost of elementary
function calls and arithmetic operations as well as possible.

We extend Daisy’s mixed-precision tuning to be parametric in the cost func-
tion, which allows us to explore different options. We consider three cost func-
tions: 1) an area-based [28] one used by Daisy previously, 2) one obtained with
machine learning, and 3) an equally weighted combination of 1) and 2)5.

5 All cost functions are available in the source code in repo/opt/CostFunctions.scala.
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For 2), we learned a multi-layer perceptron regressor [2] from random preci-
sion assignments on a set of benchmarks, for which we obtained actual perfor-
mance data by compiling them to an FPGA with Xilinx Vivado. We furthermore
extended both the area-based and the machine learned cost function so that el-
ementary function calls incur twice the cost of arithmetic operations. The factor
2 has been found empirically; it confirms our intuition that the error introduced
by the elementary function call is comparable to errors of arithmetic operations.

We have empirically determined that the weighted combination (i.e. option
3) works best in general. We have also observed that whether uniform or mixed
precision is best is highly application specific. Thus, our algorithm tries both
a uniform and a mixed-precision assignment with a weighted cost function and
returns the better result. For our running example, uniform precision assignment
performs best overall and assigns precision Fixed(26) to sin(x1), cos(2*x1) and
sin(x2). From this, we obtain local error budgets ε0 = ε1 = ε2 = 5.96e-8.

3.3 Distributing the Local Error Budget

Once a local error budget εi is assigned to each individual elementary func-
tion call, we have to decide how much of εi will be spent on the approximation
εi_approx and how much on the finite-precision implementation of the approxi-
mation polynomial εi_fp.

To find an optimal split between the two local budgets we use a refinement
loop. We start with an equal split, i.e. εi_approx = εi_fp = 0.5εi, synthesize a
polynomial approximation respecting εi_approx and assign finite precision such
that εi_fp is satisfied (see sections below). We then estimate a cost c0 of the
obtained implementation using a cost function.

Then, our algorithm increases εi_fp by δ = εi/2
k+1, where k is the number

of steps taken in one direction, and decreases εi_approx respectively. We repeat
synthesis of a polynomial and finite-precision assignment for the new values of
εi_fp and εi_approx and compute the updated cost ck. The obtained cost ck is
used to determine the fitness of the local error budget distribution. We accept
an implementation found at the step k − 1 if ck > ck−1 ∧ k > 1. In case the
cost increases at the very first step, we change the direction of the search, i.e.
decrease εi_fp, reset k to 0 and repeat the refinement. If the cost has not changed
ck = ck−1 at the beginning of the search (k = 1), we make one more refinement
iteration, for k > 1 the k-th implementation is accepted. If after the k-th step
we have ck < ck−1, this indicates that the performance of the implementation
at the step k has improved. We then repeat the refinement until the (k−1)-step
implementation has been accepted. To ensure termination we set the maximum
number of steps to k = 5.

The quality of refinement depends on how accurately a cost function reflects
the actual compiler behavior, i.e. how well it can predict the circuit that will
be implemented. Our approach is parametric in the cost function, which allows
flexibility in optimization for different objectives and hardware. Similarly to
global budget distribution with mixed-precision tuning, we evaluated an area-
based, machine-learned and a combined cost function, and found that an equally
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weighted combination of the area-based and machine-learned cost function had
best performance overall.

For our running example, the refinement loop needed two iterations for
sin(x1), meaning that the optimal distribution found was ε0_fp = 3ε0_approx.
The corresponding values are: ε0_fp =4.47e-8 and ε0_approx= 1.49e-8. For cos(2*x1)
and sin(x2) the initial equal split already had a minimum cost, i.e. εi_fp =
εi_approx = 2.98e-8 for i ∈ {1, 2}.

3.4 Synthesizing the Approximation Polynomial

For finding a polynomial approximation of each individual elementary function
we leverage the tool Metalibm. To generate an approximation, we need to specify
the folllowing parameters: a) the elementary function f(x) to be approximated,
b) the domain x ∈ I, on which f(x) will be approximated, c) the assigned local
approximation error budget εi_approx, and d) the maximum polynomial degree.
Note that domain I is not the input domain specified by the user, but the local
input domain of the function’s parameter x. This domain should be computed
as tightly as possible, as this may allow Metalibm to use polynomials of smaller
degree or less internal domain subdivisions. In general, determining these do-
mains is challenging to do manually. Our algorithm uses static analysis of ranges
and finite-precision errors using interval and affine arithmetic to compute this
information fully automatically. Whenever a program contains the same elemen-
tary function call several times, we check whether we have already synthesized
an approximation for a given range and assigned local error budget εi. In this
case, we reuse already generated approximation.

We have empirically found a suitable value for the maximum polynomial
degree to be 7, although Metalibm does not necessarily generate polynomials of
degree 7. If possible, it will choose a smaller degree. Limiting the polynomial
degree influences the number of domain subdivisions, and thus one looks for
a good tradeoff between a reasonable number of subdivisions and polynomial
degrees. We leave the remaining parameters of Metalibm to their default values.

Metalibm generates the approximation as code optimized for double floating-
point precision. Therefore, most of the implemented optimizations for range
reduction, expression decomposition and meta-splitting are not applicable to
fixed-point implementations. Our implementation thus extracts only the gen-
erated piece-wise polynomial from the generated C code, and adds it to our
top-level program as a separate function. The elementary function call is then
replaced by the call to the generated function.

We currently do not support automated range reduction; for some of our
benchmarks we have reduced ranges manually during preprocessing. In general,
many programs implemented in fixed-point arithmetic will not need automatic
range reduction, as many kernels have by design limited ranges. For other cases,
adding the automatic range reduction is only an engineering task, since we al-
ready handle all necessary operations and have the ranges computed by Daisy.
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def cos_0_02to1_5_err2_9802322387695312em08(x: Real): Real = {

require((0.02 <= x) && (x <= 1.5))

if ((x < 1.165)) {

c0 + (c1 + (c2 + (c4 + (c6 + (c7 + c8*x)* x)* x*x)* x)* x)* x*x

} else {

let t = (x - 1.33) in

b0 + (b1 + (b2 + (b3 + (b4 + b5*t)* t)* t)* t)* t

}

} ensuring (res => res +/- 2.9802322387695312e-08) // finite-precision budget

Fig. 3. Approximation polynomial parsed from Metalibm output.
Figure 3 shows the extracted polynomial approximating cos(2*x1) over the

input domain [0.02, 1.5] with an approximation target error of 2.98e-8 for our
running example.

3.5 Assigning Finite Precision

Once the approximation polynomial has been generated, our algorithm assigns a
finite precision to the generated polynomials. The goal is to find an assignment
that satisfies the local roundoff error budget εi_fp, but uses as coarse precision as
possible for performance reasons. The generated polynomials contain branching,
but the branches are always at the top-level. For this simple structure there
are no discontinuity errors, i.e. errors due to diverging control-flow between the
finite-precision and real-valued execution, so that we can safely handle each
branch separately.

For assigning the lowest possible finite precision to obtained polynomials,
such that their roundoff error efp satisfies εi_fp, we again leverage the uniform
or mixed-precision assignment of Daisy. Finally, we re-run the roundoff error
analysis on the whole program, where elementary function errors are replaced by
the sum of efp and eapprox. This error is potentially smaller than the originally
allocated local error budget, as Metalibm or the precision assignment usually
cannot exhaust the budget due to complex, discrete constraints. That is, our
tool in the end reports the actually achieved error of the final implementation.

3.6 Alternative Algorithm Designs

Alternatively to the proposed error distribution strategy, we could have designed
our algorithm bottom-up: first assign local error budgets for both approximation
and roundoff errors for elementary function calls, generate their approximations,
then distribute what is left of the global error budget between other operations
and variables. Or, we could first assign an approximation error budget to each
elementary function call, generate approximations, then use the rest of the global
error budget to assign finite-precisions to the entire generated program at once.
We note that for these alternatives it is unclear how to distribute the initial
error budgets. Crucial information becomes available only later so backtracking
would likely be necessary, which may be costly. In the top-down approach, we
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Target errors small large
Benchmark baseline approx target actual baseline approx target actual

axisRot.X 52-60 24 1.49e-10 7.52e-11 30-34 14 1.49e-6 5.5e-7
axisRot.Y 52-60 24 1.49e-10 7.52e-11 30-34 14 1.49e-6 5.5e-7
fwdk2jX 97-113 23 8.39e-11 2.98e-11 30-34 24 8.39e-7 2.41e-7
fwdk2jY 94-110 22 4.89e-11 1.49e-11 30-34 12 4.89e-7 1.06e-7
xu1 97-113 43 1.89e-10 2.47e-10 53-61 14 1.89e-6 1.93e-6
xu2 96-112 44 1.88e-10 2.3e-10 54-62 13 1.88e-6 1.86e-6
rodriguesRot. 52-60 25 1.70e-8 1.11e-8 31-35 14 1.70e-4 9.07e-5
sinxx10 52-60 28 2.51e-9 1.61e-9 31-35 15 2.51e-5 1.26e-5
pendulum1 33-37 27 4.79e-11 3.74e-11 32-36 16 4.79e-7 3.06e-7
pendulum2 53-61 26 1.07e-10 8.11e-11 32-36 15 1.07e-6 6.64e-7
pred.Gaus. 84 119-125 4.15e-7 4.07e-7 58 77 4.15e-3 4.08e-3
pred.SVC 22 20-28 1.46e-6 1.47e-7 21 21 1.46e-2 6.82e-4
pred.MLPLog. 195 191 2.15e-6 4.14e-10 143 126 2.15e-2 7.21e-7

Table 1. Running time in machine cycles of baseline and synthesized programs, and
error budgets together with the achieved accuracy

still have to distribute the global error budget in the first step, but we do so on
the top-level program, without it being prohibitively large.

4 Experimental Evaluation

We implemented our algorithm on top of the tools Daisy and Metalibm and
evaluate it on several benchmarks from scientific computing, embedded and ma-
chine learning domains. We evaluate our approach on a commonly used FPGA
board (Xylinx Zync 7000 with 10ns clock period), but note that our technique is
not specific to any particular hardware and believe that our results qualitatively
carry over. Synthesis has been performed on a MacBook Pro with an 3.1 GHz
Intel Core i5 processor and 16 GB RAM, macOS Mojave 10.14.

Our set of benchmarks contains programs with up to 5 elementary func-
tion calls in straight-line code (all benchmarks are provided in the appendix).
The number of elementary function calls for each benchmark is shown in Ta-
ble 2. The benchmarks predictGaussianNB, predictSVC and predictMLPLogistic
are machine learning classifiers generated by the python scikit-learn library on
the standard Iris data set. The benchmarks forwardk2j* are taken from the
Axbench approximate computing benchmark suite [47] and compute a forward
kinetics expression. We have created the benchmarks axisRotation*, rodrigues-
Rotation, which rotate coordinate axes and a vector respectively. The pendulum*
benchmarks come from the Rosa project for analysis of finite-precision code [15].
Finally, benchmarks xu* and sinxx10 are from the CORPIN project [1].

We perform all experiments for two different sets of target errors—small
and large. To obtain these error bounds, we first run roundoff analysis on the
benchmarks with uniform fixed-point precision with 32 bits. Small and large
target errors are by two orders of magnitude smaller, resp. larger than these
computed roundoff errors. Both target errors are reported in Table 1.

For performance measurements we compile our generated programs using
Xilinx Vivado HLS v.2019.1, which reports the minimum and maximum number
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Benchmark # elem.
fnc calls

Small errors Large errors
time # arith. ops time # arith. ops

axisRot.X 2 3m 13.26s 142 41.54s 48
axisRot.Y 2 3m 1.61s 142 40.66s 48
fwdk2jX 2 5m 56.5s 222 1m 35.33s 102
fwdk2jY 2 1m 29.16s 71 24.75s 24
xu1 3 3m 50.24s 168 50.97s 61
xu2 3 6m 56.96s 212 1m 31.22s 73
rodriguesRot. 2 2m 40.15s 126 30.73s 45
sinxx10 1 1m 38.28s 71 25.8s 24
pendulum1 1 2m 18.36s 71 27.64s 22
pendulum2 1 1m 43.24s 71 23.98s 24
pred.Gaus. 5 1h 45m 27.7s 708 4m 26.231s 255
pred.SVC 1 21m 33.35s 247 1m 51.62s 95
pred.MLPLog. 1 3h 19m 48.57s 399 57m 29.185s 170

Table 2. Size of the generated polynomials and the running times for program synthesis

of machine cycles of the compiled design, and thus provides an exact performance
measurement. We do not measure actual running time as such a measurement
is necessarily noisy.

The baseline programs against which we compare correspond to the programs
a user can implement with today’s state of the art: by running Daisy on the input
program without approximations to assign a uniform precision to all operations
and then by compiling the generated code using Xilinx’ elementary function
library. The compiled programs can use either the fixed-point or the floating-
point versions of library functions. For our baseline, we evaluate all valid versions
(those which satisfy the overall error bound), and use the smallest number of
cycles obtained.

Performance Improvements Table 1 compares the running time in terms of
machine cycles of programs synthesized by our approach (columns 3 and 7) with
the baseline implementation (columns 2 and 6) for small and large target errors.
A pair ‘52-60’ denotes minimum and maximum cycles; whenever these values
coincide, we show only one number. We report the number of cycles for the
fastest approximated program, obtained by distributing the global error budget
using either uniform or mixed-precision assignment.

For all benchmarks, except predictGaussianNB, we observe a significant per-
formance improvement when elementary function calls are replaced with piece-
wise polynomial approximations. Our synthesized approximate programs run on
average 2.23x faster than the baseline, and up to 4.64x (4.46x) faster for small
(large) target errors respectively.

For 10 out of 13 of the benchmarks the largest speedup was achieved when
using uniform precision assignment for both top-level program and polynomial
approximations. For three predict* benchmarks the best performance has been
achieved using mixed-precision tuning. We believe that mixed-precision can be
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improved further by using a more accurate cost function. Disabling the refine-
ment loop produced slower programs for 3 benchmarks and did not change results
for the rest. We observed the largest speedup when using a combination of the
area-based and the machine-learned cost functions.

We noticed that on the benchmark predictGaussianNB the baseline programs
run faster than the synthesized ones. We suspect the reason is that predictGaus-
sianNB repeatedly calls the log function on slightly different, but largely over-
lapping, domains. Our implementation generates a different polynomial for each
call, when in this scenario reusing the code seems to be beneficial. We leave the
detection of such cases to future work. We noticed that the largest improvements
are observed for benchmarks with sin, cos, whereas for the exp function in the
predictMLPLogistic improvements are smaller, and for predictSVC, our approach
cannot improve the running time. We suspect this effect is due to an efficient
implementation of exp in the Xilinx math library.

Accuracy Comparison In Table 1 we also show the target errors (columns
4 and 8), as well as the errors of the best synthesized approximated programs
(columns 5 and 9), for both the small and large error setting. We observe that not
all of the available error budget is used up by our synthesized programs. This is
to be expected, as the space of precisions is not continuous, and a precision even
1 bit less precise may just not be enough to satisfy the target error. Small error
budgets are used up more than large ones: for small error budgets the average
usage is 62.33%, while for the large budget it is only 41.12%. The coarser a
finite precision gets, the greater becomes the difference between roundoff errors
computed for two neighboring precisions.

Size of Generated Approximations Table 2 shows the number of elemen-
tary functions and the size of the generated polynomials (sum over all elementary
functions) per benchmark (for the setting with the largest performance improve-
ment, as reported in Table 1). Factors that influence the reported total size are:
a) the number of elementary function calls with distinct input ranges and local
error budgets, because we generate an approximation for each of them; b) the
local error budget and thus approximation error budget, which influences the
size of each polynomial inversely, the smaller the error budget, the larger the
polynomial satisfying this budget needs to be. The largest total size of gener-
ated polynomials is 708. (We note that this size exceeds the sizes of benchmarks
usually used in the area of sound roundoff error verification and optimization by
an order of magnitude.)

Running times Table 2 shows the synthesis times of our implementation. As
expected, synthesis of programs with small target errors is significantly slower
than with large ones, but still reasonable as synthesis needs to be run only once.
Smaller target errors usually require polynomial approximations with larger de-
grees and result in larger programs. Additionally, to satisfy smaller roundoff error
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bounds, finite-precision tuning has to consider higher precisions, thus searching
a larger space for a suitable precision assignment.

5 Related Work

Program Synthesis Program synthesis [6] aims to automatically generate pro-
grams from (possibly declarative) specifications, and has had considerable suc-
cess to generate programs from a variety of domains [24,4,12,32,39,19,22,38].
However, the vast majority of these techniques require that the generated pro-
gram satisfies the user-given specification exactly. Furthermore, most approaches
do not explicitly optimize for a non-correctness metric.

A branch of program synthesis – automated repair – allows to modify parts
of a program to satisfy given criteria. The tool AutoRNP [48] repairs numeri-
cal programs by detecting an input subdomain that triggers high floating-point
errors and replacing the matematical function by its piece-wise quadratic ap-
proximation on this subdomain. Opposite to our approach, AutoRNP aims to
increase accuracy while introducing time overhead for repaired programs.

The Metasketches framework [7] searches for an optimal program with small-
est cost according to a cost function. It has been used for synthesizing polynomial
approximations, however, the accuracy of the generated programs is only veri-
fied based on a small set of test inputs, and thus without accuracy guarantees.
In contrast, Metalibm’s polynomial approximation algorithm is guaranteed to
find the best polynomial approximation, and our entire approach guarantees
end-to-end accuracy.

Approximate Computing Our approach trades acceptable accuracy loss for re-
source savings. This idea has been recently pursued extensively under the name
of approximate computing [46]. Techniques in this domain span all layers of the
computing stack from approximate hardware [29] to software-based approxima-
tions such as skipping loop iterations [43] or removing synchronization [41]. Most
related to our work from this domain is another recent combination of Daisy
and Metalibm [13]. However, it only considers floating-point arithmetic and, un-
like our tool, does not optimize obtained approximations. Another approximate
computing tool Chisel [34] optimizes arithmetic programs by selecting which
operations can be run on approximate hardware. Its error analysis is a slightly
simplified version of ours in this work. While Chisel considers also probabilistic
specifications, it only optimizes arithmetic operations.

Other work allows programmers to specify several versions of a program with
different accuracy-efficiency tradeoffs, and let a specialized compiler autotune a
program to a particular environment [5]. While this approach handles programs
of larger size than ours, it requires the library writer to provide the different
versions, together with accuracy specifications. It furthermore ensures accuracy
by testing, i.e. does not provide guarantees.

Approximations can be particularly efficient when run on custom hardware,
such as neural processing units, for which one can learn an approximate program
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which mimics the original imperative one [18]. Verification is again performed
only on a limited set of test inputs. STOKE is an autotuner which operates
on low-level machine code, and has also been applied to generate approximate
floating-point programs [42]. Its scalability is limited as it considers low-level
code, and furthermore it also cannot guarantee accuracy.

Finally, approximations are naturally also applied manually, e.g. for obtain-
ing efficient, low-resource heartbeat classifiers [40]. In particular, this work has
approximated an exponential function by a piece-wise linear function, but due
to the manual process without accuracy guarantees.

Numerical Program Analysis We reviewed roundoff error analysis tools in sec-
tion 2; they all assume fixed library implementations and do not optimize for
efficiency. Library functions themselves have been also verified for accuracy [30].
Mixed-precision tuning approaches do optimize programs, but are only appli-
cable in a relatively restricted space where one floating-point precision is not
enough. Our presented work leverages the much larger tradeoff space of fixed-
point arithmetic and elementary function approximations, and achieves signifi-
cantly larger performance savings.

6 Conclusion

We have presented a fully automated synthesis approach for generating efficient
numerical kernels for accelerator hardware by approximating elementary func-
tion calls as well as individual arithmetic operations, while guaranteeing user-
provided error bounds for the entire program. Our technique relies on an existing
static analysis to verify the end-to-end accuracy of introduced approximations.
The strength of the approach comes as a result of our key intuition that the ap-
proximation errors should not be vastly different from arithmetic errors, and our
experiments confirmed this intuition. To navigate the large search space of pos-
sible approximations, we present a novel error distribution algorithm and extend
existing search techniques for assigning finite precisions, as well as a synthesis
technique which guarantees to generate the best polynomial approximation. In
a suitable combination, these techniques allow us to generate programs which
are significantly more efficient than current default implementations.

A Benchmarks

All benchmarks are provided below. Error specification given in the ensuring
clause corresponds to the small error, the larger errors are given in comments.

def axisRotationX(x: Real, y: Real, theta: Real): Real = {

require(-2 <= x && x <= 2 && -2 <= y && y <= 2 && 0.01 <= theta && theta <= 1.5)

x * cos(theta) + y * sin(theta)

} ensuring (res => res +/- 1.49e-10) // 1.49e-06

def axisRotationY(x: Real, y: Real, theta: Real): Real = {
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require(-2 <= x && x <= 2 && -2 <= y && y <= 2 && 0.01 <= theta && theta <= 1.5)

-x * sin(theta) + y * cos(theta)

} ensuring (res => res +/- 1.49e-10) // 1.49e-06

def forwardk2jX(theta1: Real, theta2: Real): Real = {

require(0.01 <= theta1 && theta1 <= 1.5 && 0.01 <= theta2 && theta2 <= 1.5)

val l1: Real = 0.5

val l2: Real = 0.5

l1 * cos(theta1) + l2 * cos(theta1 + theta2)

} ensuring (res => res +/- 8.39e-11) // 8.39e-07

def forwardk2jY(theta1: Real, theta2: Real): Real = {

require(0.01 <= theta1 && theta1 <= 1.5 && 0.01 <= theta2 && theta2 <= 1.5)

val l1: Real = 0.5

val l2: Real = 0.5

l1 * sin(theta1) + l2 * sin((theta1 + theta2) / 2)

} ensuring (res => res +/- 4.89e-11) //4.89e-07

def rodriguesRotation(v1: Real, v2: Real, v3: Real,

k1: Real, k2: Real, k3: Real, theta: Real): Real = {

require(-2 <= v1 && v1 <= 2 && -2 <= v2 && v2 <= 2 &&

-2 <= v3 && v3 <= 2 && -5 <= k1 && k1 <= 5 && -5 <= k2 &&

k2 <= 5 && -5 <= k3 && k3 <= 5 && 0 <= theta && theta <= 1.5)

val t1 = cos(theta)

v1 * t1 + (k2 * v3 - k3 * v2) * sin(theta) +

k1 * (k1 * v1 + k2 * v2 + k3 * v3) * (1 - t1)

} ensuring (res => res +/- 1.7e-08) // 1.7e-04

def sinxx10(x: Real): Real = {

require(0.01 <= x && x <= 1.5)

val t1 = sin(x)

(3 * x * x * x - 5 * x + 2) * t1 * t1 + (x * x * x + 5 * x) * t1 - 2*x*x - x - 2

} ensuring(res => res +/- 2.51e-09) // 2.51e-05

def xu1(x1: Real, x2: Real): Real = {

require(0.01 <= x1 && x1 <= 0.75 && 0.01 <= x2 && x2 <= 1.5)

2 * sin(x1) + 0.8 * cos(2 * x1) + 7 * sin(x2) - x1

} ensuring(res => res +/- 4.24e-10) // 4.24e-06

def xu2(x1: Real, x2: Real): Real = {

require(0.01 <= x1 && x1 <= 1.5 && 0.01 <= x2 && x2 <= 0.5)

1.4 * sin(3 * x2) + 3.1 * cos(2 * x2) - x2 + 4 * sin(2 * x1)

} ensuring(res => res +/- 5.8e-10) // 5.8e-06

def pendulum1(t: Real, w: Real): Real = {
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require(0.01 <= t && t <= 1.6 && -5 <= w && w <= 5)

val h: Real = 0.01

val L: Real = 2.0

val m: Real = 1.5

val g: Real = 9.80665

val k1w = -g/L * sin(t)

val k2t = w + h/2*k1w

val tNew = t + h*k2t

tNew

} ensuring(res => res +/- 4.79e-11) // 4.79e-07

def pendulum2(t: Real, w: Real): Real = {

require(0.05 <= t && t <= 1.5 && -5 <= w && w <= 5)

val h: Real = 0.01

val L: Real = 2.0

val m: Real = 1.5

val g: Real = 9.80665

val k1t = w

val k2w = -g/L * sin(t + h/2*k1t)

val wNew = w + h*k2w

wNew

} ensuring(res => res +/- 1.07e-10) // 1.07e-06

// Gaussian Naive Bayes classifier

def predictGaussianNB(f0: Real, f1: Real, f2: Real, f3: Real, sigma0: Real,

sigma1: Real, sigma2: Real, sigma3: Real, theta0: Real, theta1: Real,

theta2: Real, theta3: Real, prior: Real): Real = {

require(0.12 <= sigma0 && sigma0 <= 0.40 && 0.09 <= sigma1 && sigma1 <= 0.15 &&

0.02 <= sigma2 && sigma2 <= 0.30 && 0.01 <= sigma3 && sigma3 <= 0.08 &&

5.0 <= theta0 && theta0 <= 6.6 && 2.7 <= theta1 && theta1 <= 3.5 &&

1.4 <= theta2 && theta2 <= 5.6 && 0.2 <= theta3 && theta3 <= 2.1 &&

0.25 <= prior && prior <= 0.5 && 4.0 <= f0 && f0 <= 8.0 &&

2.0 <= f1 && f1 <= 4.5 && 1.0 <= f2 && f2 <= 7.0 && 0.0 <= f3 && f3 <= 2.5)

val pi: Real = 3.141

val sum = log(2.0 * pi * sigma0) + log(2.0 * pi * sigma1) +

log(2.0 * pi * sigma2) + log(2.0 * pi * sigma3)

val nij = -0.5 * sum

val sum2 = (f0 - theta0) * (f0 - theta0) / sigma0 +

(f1 - theta1) * (f1 - theta1) / sigma1 +

(f2 - theta2) * (f2 - theta2) / sigma2 +

(f3 - theta3) * (f3 - theta3) / sigma3

-0.5 * sum - 0.5 * sum2 + log(prior)

} ensuring (res => res +/- 4.15e-07) // 4.15e-03

// C-Support Vector Classification with rbf kernel

def predictSVC(f0: Real, f1: Real, f2: Real, f3: Real, vectors0: Real,

vectors1: Real, vectors2: Real, vectors3: Real, coefficient: Real,

intercept: Real, factor: Real): Real = {
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require(4.0 <= f0 && f0 <= 7.0 && 2.0 <= f1 && f1 <= 4.5 &&

1.0 <= f2 && f2 <= 6.0 && 0.0 <= f3 && f3 <= 2.5 &&

4.5 <= vectors0 && vectors0 <= 5.9 && 2.2 <= vectors1 && vectors1 <= 4.4 &&

1.3 <= vectors2 && vectors2 <= 4.9 && 0.2 <= vectors3 && vectors3 <= 2.3 &&

-0.12 <= intercept && intercept <= 0.06 && -1 <= coefficient && coefficient <= 1.0 &&

5 <= factor && factor <= 50)

val gamma: Real = 0.1

val k = (vectors0 - f0) * (vectors0 - f0) + (vectors1 - f1) * (vectors1 - f1) +

(vectors2 - f2) * (vectors2 - f2) + (vectors3 - f3) * (vectors3 - f3)

val kernel = exp(gamma * k)

factor * coefficient * kernel + intercept

} ensuring (res => res +/- 1.46e-06) // 1.46e-02

// Multi-layer Perceptron with logistic activation function

def predictMLPLogistic(f0: Real, f1: Real, f2: Real, f3: Real, weights_0_0: Real,

weights_0_1: Real, weights_0_2: Real, weights_0_3: Real, weights_1_0: Real,

weights_1_1: Real, weights_1_2: Real, bias_0: Real, bias_1: Real): Real = {

require(4.0 <= f0 && f0 <= 8.0 && 2.0 <= f1 && f1 <= 4.5 &&

1.0 <= f2 && f2 <= 7.0 && 0.0 <= f3 && f3 <= 2.5 &&

-0.3 <= weights_0_0 && weights_0_0 <= 0.3 && -0.5 <= weights_0_1 && weights_0_1 <= 0.0 &&

-0.2 <= weights_0_2 && weights_0_2 <= 0.1 && 0.1 <= weights_0_3 && weights_0_3 <= 0.3 &&

-0.4 <= weights_1_0 && weights_1_0 <= 0.8 && -0.3 <= weights_1_1 && weights_1_1 <= 0.3 &&

0.0 <= weights_1_2 && weights_1_2 <= 0.4 &&

0.0 <= bias_0 && bias_0 <= 0.5 && -0.4 <= bias_1 && bias_1 <= 0.5)

val n1 = f0 * weights_0_0 + f1 * weights_0_1 + f2 * weights_0_2 + f3 * weights_0_3 + bias_0

val hidden = 1.0 / (1.0 + exp(-n1))

val n2 = hidden * weights_1_0 + hidden * weights_1_1 + hidden * weights_1_2 + bias_1

1.0 / (1.0 + exp(-n2))

} ensuring (res => res +/- 2.15e-06) // 2.15e-02
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