
ON THE Π0
2-COMPLETENESS OF CONTEXTUAL

EQUIVALENCE

AKRAM EL-KORASHY

Abstract. In this note, we present a proof of Π0
2-completeness of contextual

equivalence of Turing machines via a reduction of the language FIN to contex-

tual inequivalence. FIN is the language of encodings 〈Mi〉 of Turing machines
Mi for which the set Wi of inputs on which Mi halts (or the set of accepting

inputs of Mi) is finite. FIN is known to be Σ0
2-complete.

1. Introduction

The complexity of contextual equivalence and other similar notions of equiva-
lence of programs (or infinite objects described by λ-terms) has been thoroughly
studied in [1]. In this note, we describe a simple notion of contextual equivalence of
deterministic Turing machines, expressed as co-termination in terms of Kleene’s T
predicate. We show the existence of a reduction to the complement of this notion
of contextual equivalence from the set FIN of indexes 〈Mi〉 of deterministic Tur-
ing machines Mi for which the set Wi of inputs on which Mi halts is finite. The
set FIN is known to be Σ0

2-complete [2]. Showing Σ0
2-completeness of contextual

inequivalence is the same as showing Π0
2-completeness of contextual equivalence

[2]. The significant consequence of proving Π0
2-completeness of contextual equiva-

lence 1 is knowing that the set of pairs of contextually-equivalent Turing machines
is non-recursively enumerable [3].

2. Definitions and Informal Proof

We recall some facts and claims about encodings of Turing machines and Kleene’s
arithmetical hierarchy from [5, 4, 2], and define the notion of contextual equivalence
that we use in the hardness proof.

Membership in Kleene’s arithmetical hierarchy can be described as follows:

Recursive relations: Σ0
0 = Π0

0 = the class of all recursive relations over
natural numbers.

Σ0
n+1-relations: If the relation R(n1, . . . , nl,m1, . . . ,mk) is Π0

n then the re-
lation S(n1, . . . , nl) = ∃m1 · · · ∃mkR(n1, . . . , nl,m1, . . . ,mk) is defined to
be Σ0

n+1.
Π0

n+1-relations: If the relation R(n1, . . . , nl,m1, . . . ,mk) is Σ0
n then the re-

lation S(n1, . . . , nl) = ∀m1 · · · ∀mkR(n1, . . . , nl,m1, . . . ,mk) is defined to
be Π0

n+1.

Key words and phrases. Contextual Equivalence, Arithmetical Hierarchy.
1Proving so is not a novel contribution of this note, but was nevertheless discovered indepen-

dently of [1] and [3], and is done by reduction from a different problem.

1

2 AKRAM EL-KORASHY

Definition 2.1 (Kleene’s predicate). By Kleene’s normal form theorem [5], we
know that for every k there is a recursive (k+ 2)-ary predicate Tk (called Kleene’s
predicate) such that for a Gödel number 〈M〉 of a Turing machine M , inputs
i1, . . . , ik, and a number x, Tk(〈M〉, x, i1, . . . , ik) holds iff x encodes a halting con-
figuration of M on inputs i1, . . . , ik.

Remark 2.2. Tk is in Σ0
0 = Π0

0.

Definition 2.3 (Contextual Equivalence (Co-termination)).

ctxeq(〈M〉, 〈M ′〉) def
= ∀i1, . . . , ik, x,∃xh, x′h.

(¬Tk(〈M〉, x, i1, . . . , ik) ∧ ¬Tk(〈M ′〉, x, i1, . . . , ik))∨
(Tk(〈M〉, xh, i1, . . . , ik) ∧ Tk(〈M〉, x′h, i1, . . . , ik))

where 〈M〉, 〈M ′〉 are Gödel encodings of Turing machines M and M ′ each comput-
ing a k-ary function.

Remark 2.4. ctxeq is a Π0
2-relation (follows from Remark 2.2 and the definition of

a Π0
2-relation).

Remark 2.5. ctxeq is a Σ0
2-relation (follows from Remark 2.4 by observing that

negating a formula in prenex normal form results in a formula with every quantifier
flipped).

Definition 2.6 (Accepting inputs of a Turing machine). For a Turing machine
M computing a unary function, define the set W〈M〉 of accepting inputs as {i |
∃x. T1(〈M〉, i, x)}.

Definition 2.7 (Turing machines with finitely many accepting inputs). The set
FIN = {〈M〉 |W〈M〉 is finite} is given by the following predicate:

FIN(〈M〉) def
= ∃n∀i∀x. |i| < n ∨ ¬T1(〈M〉, i, x)

Definition 2.8 (Σ0
n (Π0

n)-completeness [2]). A set A is Σ0
n-complete if it is in Σ0

n

and each Σ0
n-set B (i.e, B is described by a Σ0

n-relation) is many-one reducible to
A, i.e., there is a recursive function f such that i ∈ B iff f(i) ∈ A. And similarly
for Π0

n-completeness.

Remark 2.9. FIN is Σ0
2-complete [2].

Remark 2.10. A set is Π0
n-complete iff its complement is Σ0

n-complete [2].

Remark 2.11. If a set A is Σ0
n (resp. Π0

n)-complete, and A is many-one reducible
to B, and B is in Σ0

n (resp. Π0
n), then B is Σ0

n (resp. Π0
n)-complete (follows from

Definition 2.8 and composability of recursive functions [5]).

Lemma 2.12 (FIN is many-one reducible to contextual inequivalence). There exist
recursive functions f1, f2 such that ∀i i ∈ FIN ⇐⇒ (f1(i), f2(i)) ∈ ctxeq. 2

Here is an informal proof:

2Many-one reducibility as expressed here with the existence of two functions f1 and f2 can be

described as per Definition 2.8 with just one function f that returns the encoding of a pair of the
results of f1 and f2. But for convenience, we already alternatively defined ctxeq to be a binary

relation.

ON THE Π0
2-COMPLETENESS OF CONTEXTUAL EQUIVALENCE 3

f1 exists: Define f1()
def
= 〈M⊥〉 to be the constant function that ignores

its input and returns the Gödel encoding 〈M⊥〉 where M⊥ is the Turing
machine that computes the everywhere-undefined function f(x) = ⊥ (i.e.,
M⊥ does not halt on any input).

f2 exists: Define f2(〈M〉) def
= 〈Msearch〉 where Msearch is the Turing machine

that computes the function: µ maxlen. ∀n′ ≥ maxlen. ∀w. (|w| = n′ =⇒
¬∃x. T1(〈M〉, w, x))

〈M〉 ∈ FIN =⇒ (f1(〈M〉), f2(〈M〉)) ∈ ctxeq: For an arbitrary number 〈M〉,
under the assumption 〈M〉 ∈ FIN, we get from definition 2.7 that there is a
maximum length n where any input i whose length |i| is ≥ n must satisfy
the formula ∀x ¬T1(〈M〉, i, x). By obtaining such maximum length n, we
show that it satisfies the search criterion for the µmaxlen search operator
that Msearch computes (by putting the search criterion in prenex normal
form). So we know that Msearch will halt. But we also know that M⊥ never
halts, so we conclude by definition 2.3 that ctxeq(〈M⊥〉, 〈Msearch〉) will not
hold. So, (f1(〈M〉), f2(〈M〉)) ∈ ctxeq , which is our thesis.

〈M〉 ∈ FIN ⇐= (f1(〈M〉), f2(〈M〉)) ∈ ctxeq: For an arbitrary number 〈M〉,
under the assumption that (f1(〈M〉), f2(〈M〉)) ∈ ctxeq , we know that M⊥
which is encoded by f1(〈M〉) never halts. And from our assumption that
f2(〈M〉) = 〈Msearch〉 is not contextually equivalent to 〈M⊥〉, then we con-
clude that there must be at least one value for maxlen for which Msearch

halts. Obtaining this value maxlen, we observe that substituting it for the
existentially quantified n in definition 2.7 makes the predicate FIN true for
〈M〉, which satisfies our thesis.

For numbers i ∈ N with ¬∃M. i = 〈M〉: we can just assume since i /∈ FIN

that we can construct f1 = f2 that returns the encoding 〈M1〉 of any arbi-
trary Turing machine M1 (say one computing a constant function) which
then satisfies (f1(i), f1(i)) /∈ ctxeq because ctxeq is irreflexive. And so, it
sufficed for the proof sketch to have otherwise mentioned 〈M〉 in place of i.
Note that checking the predicate “¬∃M. i = 〈M〉”, i.e., whether a number
i is a valid encoding of a Turing machine is decidable. A similar decidabil-
ity result for the encoding of a model called Unlimited Register Machines
(URMs) exists in [5].

This concludes the proof, which is admittedly informal. But it can be made more
rigorous by enhancing it with claims similar to the ones in [5] for URMs about why
f1 and f2 –which construct encodings of Turing machines– are computable.

Theorem 2.13 (Contextual Equivalence is Π0
2-complete). ctxeq is Π0

2-complete.

Proof. By applying remark 2.9, lemma 2.12, and remark 2.5 to remark 2.11, we
conclude that ctxeq is Σ0

2-complete.
So, by remark 2.10, we conclude that ctxeq is Π0

2-complete. �

3. Discussion and Conclusion

Contextual equivalence of Turing machines. In definition 2.3, we present a
rather weak notion of contextual equivalence which assumes that every “experi-
ment” or “context” that attempts to distinguish M and M ′ consists of exactly one
execution of each of M and M ′. In the setting of Turing machines, one might
expect that the notion of contextual equivalence that is familiar from functional

4 AKRAM EL-KORASHY

programming can be modeled by allowing an arbitrary universal Turing machine
(i.e., a context) to take as input the encodings 〈M〉 and 〈M ′〉, and then contextual
equivalence would hold whenever there is no universal Turing machine that halts
on one but not the other. The problem with such a notion is that it would be
too restrictive that it is actually wrong because it would be simply equivalent to
string equality, i.e., equality of the encodings 〈M〉 and 〈M ′〉. We are not aware of
more standard languages (than ctxeq which is defined in 2.3) in the Turing machine
setting that would capture the notion of contextual equivalence more precisely.

Conclusion. In this note, we presented for the notion ctxeq of contextual equiva-
lence for Turing machines a proof of Π0

2-completeness via a reduction from FIN to
its negation ctxeq . After working out the proof, we discovered that the result is
not novel; similar results exist in [3] from 2006 and [1] from 2012. The significance
of the Π0

2-completeness statement is that the set of pairs of contextually equiva-
lent Turing machines is non-recursively enumerable [3]. Another interpretation of
Π0

2-completeness is undecidability even in the existence of a halting problem oracle
[6].

References

1. J. Endrullis, D. Hendriks, R. Bakhshi, On the Complexity of Equivalence of Specifications of
Infinite Objects, ICFP ’12 Proceedings of the 17th ACM SIGPLAN International Conference

on Functional Programming Pages 153-164
2. P. Hajek, Arithmetical Hierarchy and Complexity of Computation, Theoretical Computer

Science 8 (1979) 227-237.

3. G. Rosu, Equality of Streams is a Π0
2-Complete Problem, ICFP ’06 Proceedings of the eleventh

ACM SIGPLAN International Conference on Functional Programming Pages 184-191

4. T. L. Wong MODEL THEORY OF ARITHMETIC Lecture 1: The arithmetic hierarchy,

http://www.logic.univie.ac.at/~wongt9/teach/modelarith/1_arithhier.pdf

5. N.J. Cutland Computability – An introduction to recursive function theory, 1982

6. R. A. Shore, Theodore A. Slaman. Defining the Turing jump. Mathematical Research Letters

6.5/6 (1999): 711-722.

Akram El-Korashy, MPI-SWS
Current address: MPI-SWS

E-mail address: first.last@mpi-sws.org

http://www.logic.univie.ac.at/~wongt9/teach/modelarith/1_arithhier.pdf

	1. Introduction
	2. Definitions and Informal Proof
	3. Discussion and Conclusion
	Contextual equivalence of Turing machines
	Conclusion

	References

