
CapablePtrs: Securely Compiling Partial Programs using the
Pointers-as-Capabilities Principle (Technical Report)

Akram El-Korashy1, Stelios Tsampas2, Marco Patrignani3,
Dominique Devriese4, Deepak Garg1 and Frank Piessens2

1 MPI-SWS, Germany;
email {elkorashy, dg}@mpi-sws.org
2 imec-Distrinet, KU Leuven, Belgium;
email name.surname@cs.kuleuven.be

3 CISPA, Germany;
email marco.patrignani@cispa.saarland

4 Vrije Universiteit Brussel, Belgium;
email dominique.devriese@vub.be

Contents
1 The target language (CHERIExp) 10

1.1 Values, expressions, and commands . 10
1.2 Target setup, and initial and terminal states . 16
1.3 Memory Reachability . 19
1.4 Summary of target language features . 70

2 A source language (ImpMod) with pointers and modules 71
2.1 Program and module representation, and well-formedness 71
2.2 Values, expressions, and commands . 71
2.3 Program state . 73
2.4 Initial, terminal and execution states . 76
2.5 Memory Reachability . 87

3 Compiling pointers as capabilities (ImpMod to CHERIExp) 95
3.1 Whole-program compiler correctness . 96
3.2 Compositionality: linking-and-convergence-preserving homomorphism 140

4 A sound trace semantics for CHERIExp 150
4.1 Soundness . 159

5 A complete trace semantics for ImpMod 166
5.1 Completeness using back-translation . 171

6 Security guarantee about the compiler: full abstraction 173
6.1 Lifting compiler forward and backward simulation to trace semantics 176
6.2 Strong and weak similarity . 180
6.3 Stack similarity (successor-preserving isomorphism) 181
6.4 Trace-Indexed Cross-Language (TrICL) simulation relation 245

1

7 Corollaries for free 250
7.1 Completeness of the trace semantics of CHERIExp 250
7.2 Soundness of the trace semantics of ImpMod . 250

8 Note on non-commutative linking 250

9 Example output of the source-to-source transformation 251

List of Definitions and Lemmas
1 Definition (Unforged code/data capability) . 10
2 Definition (Valid code/data capability) . 10
3 Definition (Subset relation and disjoint capabilities) 10
1 Lemma (The subset and disjointness relations are offset oblivious) 10
4 Definition (Comparing a capability to a set of addresses) 10
5 Definition (Membership of a capability’s address in a set of addresses) 10
6 Definition (Equal-bounds capabilities) . 10
2 Lemma (Reduction does not change call frame sizes, imports map or code memory) 13
3 Lemma (A reduction is enabled only on a valid program counter) 14
7 Definition (Code region of an imports map) . 14
4 Lemma (Expression evaluation cannot forge code capabilities) 14
8 Definition (Disjoint object capabilities) . 16
9 Definition (Valid Linking) . 16
10 Definition (Initial state) . 16
11 Definition (Initial state function) . 18
12 Definition (Main module) . 18
1 Claim (The function initial_state and the judgment `i are compatible) 18
13 Definition (Terminal state) . 18
14 Definition (Addition of an offset ω to the data memory) 18
15 Definition (Addition of an offset ω to the imp map) 18
16 Definition (Addition of an offset ω to a program t) 18
17 Definition (Linkability, loadability, and convergence of execution in the target language) 19
18 Definition (Target contextual equivalence) . 19
19 Definition (Valid execution state) . 19
5 Lemma (Initial states are valid execution states) . 19
20 Definition (Accessible addresses) . 19
21 Definition (k-accessible addresses) . 19
22 Definition (Reachable addresses) . 19
6 Lemma (Reachability is not affected by offsets, only bounds) 19
7 Lemma (accessMd

is expansive) . 19
8 Lemma (accessn,Md

is expansive) . 20
9 Lemma (Fixed points lead to convergence of accessk,Md

) 20
10 Lemma (In an empty memory, only the starting addresses are reachable) 20
11 Lemma (k-accessibility either adds a new memory address or a fixed point has been

reached) . 21
12 Lemma (k-accessibility set contains at least k mapped addresses) 21
13 Lemma (|Md|-accessibility suffices) . 22
14 Lemma (Invariance to non-δ-capability values) . 23
15 Lemma (Overwriting a non-δ-capability value does not shrink the accessibility set) . 23
16 Lemma (Additivity of accessMd

) . 24
17 Lemma (Additivity of accessk,Md

) . 25
18 Lemma (Additivity of reachable_addresses in the first argument) 25

2

19 Lemma (Additivity of reachable_addresses in the first argument using addr) 26
20 Lemma (Invariance to capability’s location so long as it is reachable) 26
21 Lemma (Invariance to unreachable memory updates) 30
22 Lemma (Updating k-inaccessible locations does not affect the k-accessibility set) . . 32
23 Lemma (Updating a location does not affect its own k-accessibility) 33
24 Lemma (Updating a location does not affect its own reachability) 33
25 Lemma (Completeness of reachable_addresses) . 33
26 Lemma (Expression evaluation cannot forge data capabilities) 35
23 Definition (Derivable capability) . 36
27 Lemma (Upward closure of derivability) . 36
28 Lemma (Reachability traverses all derivable capabilities) 36
29 Lemma (Preservation of reachability equivalence under safe memory updates) 37
24 Definition (Shrunk access: Access set without using the capability at location a) . . 39
25 Definition (Shrunk k-th access: K-th access set without using the capability at loca-

tion a) . 40
30 Lemma (Additivity of χk) . 40
31 Lemma (χk is upper-bounded by k-accessibility) . 40
32 Lemma (One capability is potentially lost from accessible addresses as a result of a

non-capability update) . 40
33 Lemma (χk captures k-accessibility after potential deletion of a capability) 40
34 Lemma (Reachability is captured by union over χk after potential deletion of a capa-

bility) . 40
35 Lemma (Accessible addresses shrink by non-δ-capability updates) 40
36 Lemma (k-accessible addresses shrink by non-δ-capability updates) 41
37 Lemma (Reachability shrinks by non-δ-capability updates) 41
38 Lemma (Safe memory updates only shrink reachability) 42
39 Lemma (Safe allocation adds only allocated addresses to k-accessibility) 43
40 Lemma (Safe allocation adds only allocated addresses to reachability) 44
41 Lemma (Safe allocation causes reduction of k-accessibility to χk and addition of ex-

actly the allocated addresses) . 44
42 Lemma (Effect of assigning a derivable capability) 45
43 Lemma (Assigning a derivable capability does not enlarge reachability) 45
26 Definition (Sub-capability-closed predicate) . 45
27 Definition (Z-trivial predicate) . 45
28 Definition (Offset-oblivious predicate) . 45
29 Definition (Allocation-compatible predicate) . 45
30 Definition (State-universal predicate) . 45
44 Lemma (Predicates that are guaranteed to hold on the result of expression evaluation) 46
45 Lemma (Preservation of state universality of predicates) 46
31 Definition (Code capabilities have an imports origin) 50
46 Lemma (κ_has_originimp is sub-capability closed) 50
47 Lemma (κ_has_originimp is Z-trivial) . 50
48 Lemma (κ_has_originimp is offset oblivious) . 50
49 Lemma (κ_has_originimp is allocation compatible) 50
50 Lemma (κ_has_originimp is initial-state-universal) 51
51 Lemma (κ_has_originimp is universal for subsequent states) 51
1 Corollary (There is at least one module that is executing at any time) 52
52 Lemma (Preservation of `exec by reduction) . 52
2 Corollary (Preservation of `exec by →∗) . 68
3 Corollary (Data and stack capabilities always hold a data-capability value) 68
53 Lemma (Preservation of `exec by �≈) . 69

3

54 Lemma (At the initial state, the program counter capability pcc and the data capa-
bility ddc are prescribed by some capability object) 69

2 Claim (At the initial state, the data and stack capabilities are disjoint) 69
3 Claim (Uniqueness of the initial state (Existence of at most one initial state for a

given TargetSetup)) . 69
55 Lemma (Preservation of the bounds of stack capabilities) 69
32 Definition (Valid linking) . 71
33 Definition (Set of function definitions of a list of modules) 73
34 Definition (Function ID to function definition map) 73
35 Definition (Module variables map) . 73
36 Definition (Valid execution state of a program) . 76
37 Definition (Initial state) . 76
38 Definition (Initial state function) . 76
39 Definition (Main module) . 76
4 Claim (The function initial_state and the judgment `i are compatible) 76
40 Definition (Terminal state) . 76
41 Definition (Layout places m1 before C) . 76
42 Definition (Layout-ordered linking) . 78
43 Definition (Linkability, loadability, and convergence of execution in the source language) 78
44 Definition (Addition of an offset ω to the data segment’s bounds) 78
45 Definition (Source contextual equivalence) . 78
56 Lemma (Preservation of `exec) . 78
4 Corollary (Preservation of `exec by the reflexive transitive closure) 87
46 Definition (Static Addresses) . 87
47 Definition (Memory accessibility) . 88
48 Definition (Memory k-accessibility) . 88
49 Definition (Reachable Addresses) . 88
57 Lemma (Reachable addresses are static addresses or are memory-stored) 88
58 Lemma (access is expansive) . 88
59 Lemma (accessn is expansive) . 88
60 Lemma (Fixed points lead to convergence of accessk) 88
61 Lemma (In an empty memory, only the starting addresses are reachable) 88
62 Lemma (k-accessibility either adds a new memory address or a fixed point has been

reached) . 88
63 Lemma (k-accessibility set contains at least k mapped addresses) 89
64 Lemma (|Mem|-accessibility suffices) . 89
65 Lemma (Safe allocation adds only allocated addresses to k-accessibility) 89
66 Lemma (Safe allocation adds only allocated addresses to reachability) 89
67 Lemma (Safe allocation causes reduction of k-accessibility to χk and addition of ex-

actly the allocated addresses) . 89
68 Lemma (Invariance to unreachable memory updates) 89
69 Lemma (Updating k-inaccessible locations does not affect the k-accessibility set) . . 90
70 Lemma (Updating a location does not affect its own k-accessibility) 90
71 Lemma (Updating a location does not affect its own reachability) 90
72 Lemma (χk is upper-bounded by k-accessibility) . 90
73 Lemma (One capability is potentially lost from accessible addresses as a result of a

non-capability update) . 90
74 Lemma (χk captures k-accessibility after potential deletion of a capability) 90
75 Lemma (Reachability is captured by union over χk after potential deletion of a capa-

bility) . 90
50 Definition (Derivable capability) . 90
76 Lemma (Reachability traverses all derivable capabilities) 91

4

77 Lemma (Additivity of access) . 91
78 Lemma (Additivity of accessk) . 91
79 Lemma (Effect of assigning a derivable capability) 91
80 Lemma (Assigning a derivable capability does not enlarge reachability) 91
81 Lemma (Completeness of reachable_addresses) . 91
51 Definition (Data segment capability of a module) . 93
52 Definition (Stack capability of a module) . 93
53 Definition (Capabilities of a module) . 94
54 Definition (Static capabilities) . 94
82 Lemma (Static addresses are precisely those of static capabilities) 94
55 Definition (Access to capabilities) . 94
83 Lemma (Accessed addresses are precisely the addresses of accessed capabilities) . . . 94
56 Definition (k-access to capabilities) . 94
84 Lemma (k-accessed addresses are precisely the addresses of k-accessed capabilities) . 94
57 Definition (Reachable capabilities) . 94
85 Lemma (Reachable addresses are precisely the addresses of the reachable capabilities) 94
58 Definition (Expression Translation) . 95
59 Definition (Command Translation) . 95
86 Lemma (Code and data segment capabilities are precise with respect to the code and

data memory initializations) . 95
60 Definition (Source-target value relatedness) . 96
87 Lemma (Expression translation forward simulation - case addr(vid)) 96
88 Lemma (Expression translation forward simulation) 99
89 Lemma (Expression translation backward simulation - case addr(vid)) 102
90 Lemma (Expression translation backward simulation) 103
91 Lemma (Memory bounds are preserved by compilation) 108
92 Lemma (No additional code/data is added by the compiler) 109
93 Lemma (Code memory is the translation of the commands arranged according to

Kmod and Kfun) . 109
61 Definition (Related program counters) . 109
62 Definition (Related stacks) . 109
63 Definition (Related local stack usage) . 109
64 Definition (Cross-language compiled-program state similarity) 110
94 Lemma (Cross-language equi-k-accessibility and memory equality is preserved by

deleting assignments and safe allocation) . 110
95 Lemma (Cross-language equi-reachability and memory equality is preserved by delet-

ing assignments, safe allocation, and assigning derivable capabilities) 111
96 Lemma (Compiled-program state similarity implies equi-reachability) 112
97 Lemma (Compiler forward simulation) . 112
98 Lemma (Compiler backward simulation) . 127
99 Lemma (Compiler forward simulation, multiple steps) 134
1 Theorem (Compiler backward simulation, multiple steps (Compiler correctness)) . . 135
100 Lemma (Source and compiled initial states are cross-language related) 135
65 Definition (Target empty context) . 138
101 Lemma (Target empty context is universally linkable) 138
66 Definition (Target whole-program convergence compatible with partial convergence) 138
67 Definition (Source empty context) . 138
102 Lemma (Source empty context is universally linkable and universally order-preserving)138
68 Definition (Source whole-program convergence compatible with partial convergence) 138
103 Lemma (Cross-language relatedness implies equi-terminality) 138
104 Lemma (Existence of an initial state is preserved and reflected by J·K) 140
105 Lemma (Convergence is preserved and reflected by J·K) 144

5

106 Lemma (Compilation preserves linkability and convergence, i.e., J·K is a linking-
preserving homomorphism and more) . 146

107 Lemma (Compiler is a linking-preserving homomorphism) 149
69 Definition (Alternatingly-communicating finite traces) 150
5 Claim (Extending an alternating prefix to keep it alternating) 150
70 Definition (Reflexive transitive closure of trace actions) 152
71 Definition (Non-silent trace steps) . 152
6 Claim (A non-silent trace is not the empty string) 153
7 Claim (⇀−⇀ eliminates τ actions) . 153
8 Claim (⇀−⇀ is supported by −⇀) . 153
9 Claim (⇀−⇀ decomposes) . 153
10 Claim (Non-silent part of −⇀∗ is supported by ⇀−⇀) 153
72 Definition (A prefix of an execution trace is possible for a component) 154
73 Definition (Trace equivalence) . 154
11 Claim (Termination markers appear only at the end of an execution trace) 154
12 Claim (Prefix-closure of trace set membership) . 154
13 Claim (A state that is reachable by → reduction or by �≈ is also reachable by ⇀) . 154
14 Claim (A non-⊥ state that is reachable by ⇀ is also reachable by → reduction) . . . 154
15 Claim (Silent trace steps correspond to → steps) . 154
16 Claim (Non-stuck trace steps correspond to → execution steps) 154
17 Claim (The set of shared addresses ς does not change by silent trace steps) 155
5 Corollary (Reachability by →∗ implies reachability by −⇀∗) 155
6 Corollary (Reachability by −⇀∗ implies reachability by →∗ when the state is non-⊥) 155
108 Lemma (Non-communication actions do not change context/compiled component’s

ownership of pcc) . 155
7 Corollary (Non-communication actions do not change ownership of pcc (star-closure)) 157
109 Lemma (Traces consist of alternating input/output actions) 157
74 Definition (Alternating Strong-Weak Similarity (ASWS)) 159
110 Lemma (Initial states are ASWS-related) . 159
111 Lemma (Two peripheral terminal states are ASWS-related to only a mixed state that

is also terminal) . 160
75 Definition (View change of a trace step) . 160
1 Fact (View change is an involution) . 160
18 Claim (Existence of a view change of a trace step) 160
112 Lemma (ASWS satisfies the alternating simulation condition) 161
113 Lemma (ASWS satisfies the alternating simulation condition – whole trace) 162
114 Lemma (Soundness of trace equivalence with respect to contextual equivalence) . . 163
76 Definition (Reflexive transitive closure of trace actions) 166
77 Definition (Non-silent trace steps) . 166
19 Claim (A non-silent trace is not the empty string) 166
20 Claim (⇀−⇀ eliminates τ actions) . 166
21 Claim (⇀−⇀ is supported by −⇀) . 168
22 Claim (⇀−⇀ decomposes) . 168
23 Claim (Non-silent part of −⇀∗ is supported by ⇀−⇀) 168
78 Definition (A prefix of an execution trace is possible for a component) 169
79 Definition (Trace equivalence) . 169
24 Claim (Termination markers appear only at the end of an execution trace) 169
25 Claim (Prefix-closure of trace set membership) . 169
26 Claim (A state that is reachable by → reduction or by �≈ is also reachable by ⇀) . 169
27 Claim (A non-⊥ state that is reachable by ⇀ is also reachable by → reduction) . . . 169
28 Claim (Silent trace steps correspond to → steps) . 170
29 Claim (Non-stuck trace steps correspond to → execution steps) 170

6

30 Claim (The set of shared addresses ς does not change by silent trace steps) 170
8 Corollary (Reachability by →∗ implies reachability by −⇀∗) 170
9 Corollary (Reachability by −⇀∗ implies reachability by →∗ when the state is non-⊥) 170
115 Lemma (Non-communication actions do not change context/compiled component’s

ownership of pc) . 170
10 Corollary (Non-communication actions do not change ownership of pc (star-closure)) 171
116 Lemma (Traces consist of alternating input/output actions) 171
117 Lemma (Completeness of trace equivalence with respect to contextual equivalence) . 171
80 Definition (Distinguishing snippet for equi-flow trace actions) 171
118 Lemma (Value cross-relatedness on integers is compatible with ImpMod subtraction) 172
119 Lemma (If two target values are unequal, then distinguishArgs produces code that

terminates on exactly one of them) . 172
81 Definition (Compiler full abstraction) . 173
2 Theorem (J·K is fully abstract) . 173
120 Lemma (J·K reflects contextual equivalence) . 174
121 Lemma (J·K preserves contextual equivalence) . 175
122 Lemma (Compilation preserves trace equivalence) . 175
123 Lemma (Forward simulation of call attempt) . 176
124 Lemma (Forward simulation of call attempt) . 176
125 Lemma (Compiler forward simulation lifted to a trace step) 176
126 Lemma (Compiler backward simulation lifted to a trace step) 177
127 Lemma (Compiler forward simulation lifted to many trace steps) 178
128 Lemma (Compiler backward simulation lifted to many trace steps) 179
129 Lemma (Compiler forward simulation lifted to compressed trace steps) 179
130 Lemma (Compiler backward simulation lifted to compressed trace steps) 180
131 Lemma (No trace is removed by compilation) . 180
82 Definition (Component-controlled memory region) 180
31 Claim (Controlled-region equality implies reachability equality) 181
83 Definition (Similarity of stack capabilities) . 181
32 Claim (Similarity of mstc is an equivalence relation) 181
84 Definition (Strong stack-similarity) . 182
85 Definition (Weak stack-similarity) . 182
132 Lemma (A strictly-monotone function is injective) 182
86 Definition (Trace-state similarity) . 182
133 Lemma (Strong stack-similarity is an equivalence relation) 183
33 Claim (Weak stack-similarity is an equivalence relation) 184
34 Claim (State similarity is an equivalence relation) . 184
134 Lemma (Similarity of stack capabilities compatible with uniform substitution) 184
135 Lemma (Initial states of the program of interest are strongly related) 184
136 Lemma (Initial states of the context are weakly related) 184
137 Lemma (Terminal states are strongly-related to only terminal states) 185
138 Lemma (Equality of expression evaluation between strongly-similar states) 185
139 Lemma (The empty stack is in a singleton equivalence class of strong stack-similarity) 186
140 Lemma (Adequacy of strong stack-similarity (syncing border-crossing return to non-c

call-site)) . 186
141 Lemma (Weak stack-similarity is preserved by a unilateral silent return) 187
142 Lemma (Weak stack-similarity is preserved by a unilateral silent call) 187
143 Lemma (Weakening of strong stack-similarity) . 188
144 Lemma (Strong stack-similarity is preserved by a bilateral call (from same c-call-site)) 188
145 Lemma (Strong stack-similarity is weakened by a bilateral return to a non-c-call-site) 190
146 Lemma (Strong stack-similarity is preserved by a bilateral return to a c-call-site) . . 190
147 Lemma (Strengthening of weak stack-similarity by a bilateral call from non-c call-sites)191

7

148 Lemma (A silent action on strongly-similar states satisfies lock-step simulation) . . . 193
11 Corollary (Star silent actions on strongly-similar states satisfy simulation) 200
149 Lemma (Strong state-similarity determines non-silent output actions and is weakened

by them) . 200
150 Lemma (Option simulation: preservation of stack similarity by a silent action) . . . 203
151 Lemma (Option simulation: preservation of mstc similarity by a silent action) 204
152 Lemma (Option simulation: preservation of weak similarity by a silent action) 206
153 Lemma (Matching input actions retrieve back strong state-similarity) 207
87 Definition (Per-subject state-universal predicate) . 208
154 Lemma (Predicates that are guaranteed to hold on the result of expression evaluation

under the execution of a specific subject) . 209
155 Lemma (Preservation of per-subject state universality of predicates) 209
88 Definition (Four-origin policy) . 209
35 Claim (Border state invariant to silent state invariant - c executing) 210
36 Claim (Border state invariant to silent state invariant - tctx executing) 210
156 Lemma (Possible origins of capability values at border states) 210
157 Lemma (Preservation of the silent-state invariant) 214
158 Lemma (Preservation of the border-state invariant `border) 225
89 Definition (Main module of the emulating context) 228
90 Definition (Context module IDs of a trace) . 228
91 Definition (Context function IDs of a trace) . 228
92 Definition (Number of arguments of a function inferred from either the trace α1 or

the trace α2) . 228
93 Definition (Memory of a trace label) . 228
94 Definition (Allocation status of a trace label) . 229
95 Definition (Shared addresses throughout a trace prefix α) 229
96 Definition (Context addresses collected from a trace) 229
97 Definition (Data segment that the context shares (collected from a trace)) 229
98 Definition (A trace compatible with a program’s data segment) 229
99 Definition (A trace satisfies monotonic sharing) . 229
100 Definition (A trace satisfies no-deallocation) . 229
101 Definition (Syntactically-sane trace) . 229
102 Definition (Global variables of the module mainModule) 229
103 Definition (The function readAndIncrementTraceIdx) 230
104 Definition (The functions saveArgs) . 230
105 Definition (Functions of the module mainModule) . 230
106 Definition (Constructing dereferences from path) . 231
107 Definition (Constructing path to target address) . 231
108 Definition (Construct address back-translation for addresses reachable from a capa-

bility argument) . 231
109 Definition (Construct address back-translation map from a call-/return to- context

label) . 231
110 Definition (Diverging block of code) . 232
111 Definition (Converging block of code) . 232
112 Definition (If-then-else in ImpMod) . 232
113 Definition (Switch-block for integers in ImpMod) 232
114 Definition (Upcoming commands at an execution state) 232
159 Lemma (If-then-else construction is correct) . 232
160 Lemma (Switch construction is correct) . 233
161 Lemma (A converge block leads to a terminal state) 233
162 Lemma (A diverge block does not lead to a terminal state) 233
163 Lemma (Effect of calling readAndIncrementTraceIdx) 233

8

115 Definition (Independent set of assignments) . 237
164 Lemma (Effect of calling saveArgs) . 237
116 Definition (Logged memory correct) . 240
117 Definition (Arguments saved correctly) . 241
118 Definition (Allocation pointers saved) . 241
37 Claim (There is a source function that does allocations according to allocation_pointers_saved)241
119 Definition (Emulate call or return or exit command of i-th output action) 241
120 Definition (Emulate i-th output action) . 242
121 Definition (Responses for suffix) . 242
165 Lemma (Adequacy of emulate_responses_for_suffix) 242
122 Definition (Emulating function) . 242
123 Definition (Emulating module) . 243
124 Definition (Emulating modules) . 243
125 Definition (The emulating context) . 243
166 Lemma (The emulating context is linkable and loadable) 243
126 Definition (Emulate invariants) . 243
167 Lemma (Initial state of emulate satisfies emulate_invariants) 244
168 Lemma (Adequacy of emulate_invariants) . 244
169 Lemma (Preservation of emulate_invariants) . 245
127 Definition (Trace-Indexed Cross-Language (TrICL) simulation relation) 245
170 Lemma (TrICL satisfies the alternating simulation condition) 245
171 Lemma (Initial states are TrICL-related) . 247
172 Lemma (TrICL-related states are co-terminal) . 247
173 Lemma (No trace is added by compilation) . 248
12 Corollary (Completeness of target trace equivalence for contextual equivalence of com-

piled components) . 250
13 Corollary (Soundness of source traces) . 250

9

1 The target language (CHERIExp)
Our target language models a platform that supports memory and object capabilities, and is strongly
inspired by the CHERI system [1, 2], a MIPS-based capability-machine architecture. CHERI offers
fine-grained memory capabilities through hardware support, and it offers object capabilities through
a combination of hardware support, kernel support and a user-space library (libcheri).

Accordingly, we model in this section a low-level target language, which we call CHERIExp.
This language includes abstractions that mimic the interfaces offered by libcheri as well as CHERI’s
capabilities. Our model of capabilities draws heavily from a prior model of a capability machine [3].

1.1 Values, expressions, and commands
Values in CHERIExp are denoted by V = Z ∪ Cap and range over integers Z and memory capa-
bilities Cap = {κ, δ} × Z× Z× Z. Memory capabilities are code or data capabilities, denoted by κ
and δ respectively, where the κ-labeled elements describe a range of the code memory Mc and an
offset within this range, and the δ-labeled elements describe the same for the data memory Md.
We separate capabilities from integers to model unforgeability of capabilities, which is a key design
feature in CHERI [1, 2]. Formal arguments of how this unforgeability is guaranteed by the CHERI
architecture are beyond the scope of this paper, but can be found in [3].

Definition 1 (Unforged code/data capability).
We use the judgment �x (y, s, e, off) to mean that y = x and that (y, s, e, off) ∈ {y} × Z× Z× Z
which means that (y, s, e, off) is an unforged capability value of type x.

Definition 2 (Valid code/data capability).
We use the judgment `x (y, s, e, off) to mean that �x (y, s, e, off) and that s+ off ∈ [s, e) which is
the condition necessary for valid access using this capability.

Validity of a code/data capability (σ, s, e, off) ensures that it is of the intended capability type
x, and that its offset lies within the legal range that it prescribes.

Definition 3 (Subset relation and disjoint capabilities).
We use the judgment (x, s1, e1,_) ⊆ (x, s2, e2,_) to mean [s1, e1) ⊆ [s2, e2) and similarly
(x, s1, e1,_) ∩ (x, s2, e2,_) = ∅ to mean that [s1, e1) ∩ [s2, e2) = ∅.
Lemma 1 (The subset and disjointness relations are offset oblivious).

∀x, σ1, e1, σ2, e2, off 1, off2 off ′1, off ′2.

((x, σ1, e1, off 1) ⊆ (x, σ2, e2, off 2) =⇒ (x, σ1, e1, off ′1) ⊆ (x, σ2, e2, off ′2)) ∧
((x, σ1, e1, off 1) ∩ (x, σ2, e2, off 2) = ∅ =⇒ (x, σ1, e1, off ′1) ∩ (x, σ2, e2, off ′2) = ∅)

Proof.
Immediate by Definition 3.

Definition 4 (Comparing a capability to a set of addresses).
We overload the notation ⊆ to represent a relation over Cap × 2Z between a capability and a set of
integers where (_, s, e,_) ⊆ X means that the interval [s, e) of integers is a subset of X ([s, e) ⊆ X).

Definition 5 (Membership of a capability’s address in a set of addresses).
We similarly use the set membership notation ∈ to mean with (_, s, e, off) ∈ X that the address
s+ off is a member in the set X of natural numbers (i.e., s+ off ∈ X).

Definition 6 (Equal-bounds capabilities).
We use the judgment (x, σ1, e1,_)

.
= (x, σ2, e2,_)

def
= σ1 = σ2 ∧ e1 = e2 to mean that the bounds of

two capabilities are the same (i.e., the two capabilities give authority over the same range of memory
addresses). Notice that a .

= b is equivalent to a ⊆ b ∧ b ⊆ a for any two capabilities a and b.

And we define the function inc: Cap × Z→ Cap as inc((x, s, e, off), z) def
= (x, s, e, off + z) which

increments the offset of a capability by z.

10

Memory notation

Code and data memories (Mc : N fin−⇀ Cmd andMd : Z fin−⇀ V) are finite maps from addresses –that
are natural numbers– to commands and values respectively. Memory values have been described
above. Below we describe expressions and commands. But we first fix some notation regarding code
and data memories:

• We refer to the type N fin−⇀ Cmd as CodeMemory and to the type Z fin−⇀ V as DataMemory .

• The operator] is used to refer to the disjoint union of sets or functions. For functions f and
g with dom(f) ∩ dom(g) = ∅, the function (f] g) has domain dom(f) ∪ dom(g) and is defined
as (f] g)(x)

def
= f(x) if x ∈ dom(f), and g(x) otherwise. We use the notationMc =

⊎
i

Mci to

mean the linking of several code memoriesMci with disjoint mapped addresses into one code
memoryMc, and similarly for other constructs that are maps or functions.

Commands in CHERIExp

Figure 1 shows the semantics of CHERIExp commands. The semantics is given by the reduction
relation → ⊆ TargetState × TargetState. The reduction relation is additionally parameterized by
∇ ∈ Z which prescribes the total amount of memory available for dynamic allocation. We omit it
from the symbol →∇, and always write just → for convenience. Every statement that mentions the
reduction relation→ should be understood to be in the scope of one outermost universal quantifica-
tion over ∇ unless otherwise is explicitly mentioned. The type TargetState is defined in the section
below. An auxiliary relation �≈ is used to describe the behavior of the Cinvoke command in the case
when there is enough stack space. This is useful for re-factoring and proof purposes. Commands
Cmd in CHERIExp are the following:

• Assign EL ER which evaluates the expression ER to a value v ∈ V, evaluates the expression EL
to a data capability value c ∈ {δ} × Z× Z× Z, and stores in the data memoryMd the value
v at the address indicated by c (the address (s+ o) for c = (δ, s, e, o)).

• Alloc EL Esize which allocates new memory and stores a data capability giving authority over
the newly-allocated memory. The parameter ∇ is the first unavailable address indicating the
limit of memory usage. Alloc fails (i.e., execution gets stuck) if this limit is reached.

• JumpIfZero Econd Eoff is a conditional jump which evaluates the expression Econd to a value
v ∈ N, and if v 6= 0, then it evaluates the expression Eoff to an offset that is added to pcc.
Otherwise (v = 0), nothing is done.

• Cinvoke mid fid e 1 , which is used to invoke an object capability. Our target platform is
configured (in the imp component of the initial machine state, see below) with a fixed number
of object capabilities identified by module identifiers mid ∈ ModID , and each object capability
supports invocation of a fixed number of functions specified by function identifiers fid ∈ FunID .
Each secure call to a function fid gets access via stc to a new data stack frame of size φ(fid)
for local use. Argument values are also written by the Cinvoke command in this region. This
latter design choice is a simpler alternative to modeling a register file.

• CReturn, which is used to return from a call that has been performed using Cinvoke. The
rules cinvoke and creturn in fig. 1 specify the exact operations performed to push and pop the
necessary capabilities to/from the trusted stack.

1We use the notation x to denote that x has a list type. And we also use the same notation for types (i.e., as a
type constructor). For instance, we write N to denote the type of lists of natural numbers.

11

Figure 1: Evaluation of commands Cmd in CHERIExp. The reduction relation is parameterized
by ∇. We omit it from the symbol → for convenience.

(assign)

`κ pcc pcc′ = inc(pcc, 1)
Mc(pcc) = Assign EL ER ER,Md, ddc, stc, pcc ⇓ v

EL,Md, ddc, stc, pcc ⇓ c `δ c �δ v =⇒ (v ∩ stc = ∅ ∨ c ⊆ stc) M′d =Md[c 7→ v]

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 → 〈Mc,M′d, stk , imp, φ, ddc, stc, pcc′,mstc, nalloc〉
(allocate)

`κ pcc pcc′ = inc(pcc, 1)
Mc(pcc) = Alloc EL Esize Esize ,Md, ddc, stc, pcc ⇓ v EL,Md, ddc, stc, pcc ⇓ c
v ∈ Z+ `δ c M′d =Md[c 7→ (δ, nalloc− v, nalloc, 0), i 7→ 0 ∀i ∈ [nalloc− v, nalloc)]

nalloc′ = nalloc− v nalloc′ > ∇
〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 → 〈Mc,M′d, stk , imp, φ, ddc, stc, pcc′,mstc, nalloc′〉

(jump0)

`κ pcc Mc(pcc) = JumpIfZero Econd Eoff Econd ,Md, ddc, stc, pcc ⇓ v v = 0
Eoff ,Md, ddc, stc, pcc ⇓ off off ∈ Z pcc′ = inc(pcc, off)

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 → 〈Mc,Md, stk , imp, φ, ddc, stc, pcc′,mstc, nalloc〉
(jump1)

`κ pcc Mc(pcc) = JumpIfZero Econd Eoff

Econd ,Md, ddc, stc, pcc ⇓ v v 6= 0 pcc′ = inc(pcc, 1)

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 → 〈Mc,Md, stk , imp, φ, ddc, stc, pcc′,mstc, nalloc〉
(cinvoke-aux)

`κ pcc Mc(pcc) = Cinvoke mid fid e stk ′ = push(stk , (ddc, pcc,mid ,fid))
φ(mid ,fid) = (nArgs,nLocal) (δ, s, e, off) = mstc(mid) off ′ = off + nArgs + nLocal

stc′ = (δ, s, e, off ′)
e(i),Md, ddc, stc, pcc ⇓ vi ∀i ∈ [0,nArgs) ∀i ∈ [0,nArgs). �δ vi =⇒ vi ∩ stc = ∅
M′d =Md[s+ off + i 7→ vi ∀i ∈ [0,nArgs)][s+ off + nArgs + i 7→ 0 ∀i ∈ [0,nLocal)]

mstc′ = mstc[mid 7→ stc′] (c, d, offs) = imp(mid) ddc′ = d pcc′ = inc(c, offs(fid))

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 �≈ 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′,mstc′, nalloc〉
(cinvoke)

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 �≈ 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′,mstc′, nalloc〉
`δ stc′

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 → 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′,mstc′, nalloc〉
(creturn)

`κ pcc Mc(pcc) = Creturn stk ′, (ddc′, pcc′,mid ,fid) = pop(stk)
φ(mid ,fid) = (nArgs,nLocal) (δ, s, e, off) = mstc(mid) off ′ = off − nArgs − nLocal

mstc′ = mstc[mid 7→ (δ, s, e, off ′)] ∃mid ′. pcc′
.
= imp(mid ′).pcc ∧ stc′ = mstc(mid ′)

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 → 〈Mc,Md, stk ′, imp, φ, ddc′, stc′, pcc′,mstc′, nalloc〉
(cexit)

`κ pcc Mc(pcc) = Exit

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 → 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉

12

CHERIExp program state

A state 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 of a program in CHERIExp consists of:

• code and data memories,Mc andMd as defined earlier (We defineMd((δ, s, e, o))
def
=Md(s+ o),

and similarly for update expressions and forMc with κ-labeled values. We also (ab)use the set
membership notation (_, s,_, off) ∈ X for X ⊆ N to mean s+ off ∈ X. We use it to say that
the capability points to an address within a certain range of addresses, say pcc ∈ dom(Mc).),

• a trusted call stack stk : Cap × Cap ×ModID × FunID , which is a list of 4-tuples; each tuple
consists of two capabilities, a module ID, and a function ID. The trusted call stack stores the
history of the values of ddc, pcc at the call locations. It also stores the identifier of the function
(and module) that is being called. The storing of the function identifier allows us to build into
the target language an assumption that it implements safe management of the data part of
the stack frames.

• a map of imports imp : ModID → CapObj that for each module identifier, keeps an object ca-
pability (CapObj = ({κ} × N× N× Z) ×({δ} × N× N× Z)× (FunID → N)). An object ca-
pability consists of

– a code capability that grants access to the module’s code region inMc,

– a data capability that grants access to the module’s data region inMd,

– and an offsets map, that for each function identifier in the module, specifies the offset
within the module’s code memory at which the function’s code starts (i.e., this map of
offsets describes the legitimate entry points to the module).

• a map of call frame sizes φ : (ModID × FunID)→ (N× N) that for each function (given by the
module identifier and the function identifier) gives the number of arguments and the number
of local variables that this function allocates.

• three capability registers/variables:

– ddc : {δ} × N× N× Z, the data capability (which specifies the region in the data memory
Md that is private to the active module),

– stc : {δ} × N× N× Z, the stack-data capability (which specifies the region in the data
memoryMd that corresponds to the current activation record),

– and pcc : {κ} × N× N× Z, the program counter capability (which specifies the region in
the code memoryMc in which the currently-executing module is defined),

• a map mstc : ModID → Cap that for each module identifier keeps the most recent value of its
stack capability. This value is managed by the trusted Cinvoke and Creturn commands. The
map records the most recent update to the stc capability. Updates to mstc made done by only
the two commands Cinvoke and Creturn.

• a marker nalloc : Z that holds the first non-allocated address inMd in the direction of growth
of the heap (i.e., the dynamically-allocated segment ofMd).

The type ofCHERIExp program states is denoted by TargetState = CodeMemory ×DataMemory
× (Cap × Cap × Cap)× (ModID → CapObj)× ((ModID × FunID)→ (N× N))× ({δ} × N× N× Z)
× ({δ} × N× N× Z) × ({κ} × N× N× Z) × (ModID → Cap) × Z.

It is worth noting that the map of imports imp, and the code memoryMc are fixed at load time,
and their contents are not modified by any instruction.

Lemma 2 (Reduction does not change call frame sizes, imports map or code memory).

∀s, s′. s→∗ s′ =⇒ (s.φ = s′.φ ∧ s.imp = s′.imp ∧ s.Mc = s′.Mc)

13

Proof. By induction on the reduction steps and inspecting the rules of Figure 1.

Lemma 3 (A reduction is enabled only on a valid program counter).

∀s. (∃s′. s→ s′ ∨ s �≈ s′) =⇒ `κ s.pcc

Proof. By inversion of s→ s′ (resp. s �≈ s′).

Definition 7 (Code region of an imports map).

code_region : (ModID → CapObj)→ 2Z

code_region(imp)
def
=

⋃
mid∈dom(imp)

[imp(mid).pcc.σ, imp(mid).pcc.e)

The syntax of the language enables the use of capabilities that are expressible in terms of two
distinguished names, “ddc”, and “stc” denoting data capability, and stack capability respectively.
Notice that the program counter capability register is not addressable. Instead, the jump instruction
can only increment the offset of the capability value in that register. Effectively, there is no way for
code capabilities to live in memory. This is proved in Lemma 52.

Expressions in CHERIExp are denoted by the grammar

E ::=

Z
| ddc
| stc
| inc(E , E)

| deref(E)

| lim(E , E , E)

| capType(E)

| capStart(E)

| capEnd(E)

| capOff(E)

| E ⊕ E

where⊕ ::= + | − | ∗, and Z is the set of integers. The forms ddc and stc are the distinguished names
for the corresponding capabilities. An expression inc(E ,Z) increments the offset of a capability value.
An expression deref(E) evaluates to the value at the memory address pointed to by a capability only
if it is a valid capability according to Definition 2. The expression lim(E , E , E) evaluates to a shrunk
copy of the capability given by its first argument. The second and third arguments determine the
new range of memory prescribed by the shrunk copy. The expressions capType(E), capStart(E),
capEnd(E), and capOff(E) select the corresponding fields of the capability value given by evaluating
their argument expression. The evaluation of expressions E to values V is given by rules of the form
E ,Md, ddc, stc, pcc ⇓ V listed in fig. 2.

Lemma 4 (Expression evaluation cannot forge code capabilities).

∀a, s, E .
s.ddc /∈ {κ} × Z× Z× Z ∧ s.stc /∈ {κ} × Z× Z× Z
∧ (s.Md(a) 6= (κ, σa, ea,_)

∧ E , s.Md, s.ddc, s.stc, s.pcc ⇓ v
=⇒
v 6= (κ,_,_,_)

14

Figure 2: Evaluation of expressions E in CHERIExp

(evalconst)

n ∈ Z
n,Md, ddc, stc, pcc ⇓ n

(evalddc)

ddc,Md, ddc, stc, pcc ⇓ ddc

(evalstc)

stc,Md, ddc, stc, pcc ⇓ stc

(evalCapType)

E ,Md, ddc, stc, pcc ⇓ v v ∈ Z =⇒ v′ = 0
v ∈ {κ} × Z× Z× Z =⇒ v′ = 1 v ∈ {δ} × Z× Z× Z =⇒ v′ = 2

capType(E),Md, ddc, stc, pcc ⇓ v′

(evalCapStart)

E ,Md, ddc, stc, pcc ⇓ v v = (x, s, e, off) ∈ Cap v′ = s

capStart(E),Md, ddc, stc, pcc ⇓ v′

(evalCapEnd)

E ,Md, ddc, stc, pcc ⇓ v v = (x, s, e, off) ∈ Cap v′ = e

capEnd(E),Md, ddc, stc, pcc ⇓ v′

(evalCapOff)

E ,Md, ddc, stc, pcc ⇓ v v = (x, s, e, off) ∈ Cap v′ = off

capOff(E),Md, ddc, stc, pcc ⇓ v′

(evalBinOp)

E1,Md, ddc, stc, pcc ⇓ v1 v1 ∈ Z E2,Md, ddc, stc, pcc ⇓ v2 v2 ∈ Z v′ = v1[⊕]v2

E1 ⊕ E2,Md, ddc, stc, pcc ⇓ v′

(evalIncCap)

E ,Md, ddc, stc, pcc ⇓ v Ez,Md, ddc, stc, pcc ⇓ vz v = (x, s, e, off) ∈ Cap
vz ∈ Z v′ = (x, s, e, off + vz)

inc(E , Ez),Md, ddc, stc, pcc ⇓ v′

(evalDeref)

E ,Md, ddc, stc, pcc ⇓ v v = (x, s, e, off) ∈ Cap `δ v v′ =Md(s+ off)

deref(E),Md, ddc, stc, pcc ⇓ v′

(evalLim)

E ,Md, ddc, stc, pcc ⇓ v Es,Md, ddc, stc, pcc ⇓ s′ Ee,Md, ddc, stc, pcc ⇓ e′
s′ ∈ Z e′ ∈ Z v = (x, s, e,_) ∈ Cap [s′, e′) ⊆ [s, e) v′ = (x, s′, e′, 0)

lim(E , Es, Ee),Md, ddc, stc, pcc ⇓ v′

15

Proof.
Easy by induction on the evaluation E , s.Md, s.ddc, s.stc, s.pcc ⇓ v.

1.2 Target setup, and initial and terminal states
Having defined the program state, we now define a target setup

TargetSetup
def
=

CodeMemory × DataMemory × (ModID → CapObj) × (ModID → Cap) ×
((ModID × FunID)→ (N× N))

as a tuple of code memory, data memory, imports map, stack capabilities map, and call-frame-sizes
map.

Definition 8 (Disjoint object capabilities).
For c, c′ ∈ CapObj , c ∩ c′ = ∅ def

=c.1 ∩ c′.1 = ∅ ∧ c.2 ∩ c′.2 = ∅ where disjointness of capabilities is as
in Definition 3.

We hence define the linking
n : TargetSetup → TargetSetup → Option(TargetSetup) of two target setups t1 and t2 ∈ TargetSetup
as follows:

Definition 9 (Valid Linking). Valid linking of t1, t2 ∈ TargetSetup is the component-wise disjoint
union of code memories t1.Mc, t2.Mc, data memories t1.Md, t2.Md, imports maps t1.imp, t2.imp,
and call-frame-sizes maps t1.φ, t2.φ under the well-formedness conditions given by the rule valid-
linking in Figure 3.

Design choices for linking

The disjointness conditions on the address ranges and on the capability ranges in rule valid-linking
are not surprising. But notice the non-commutativity of the valid linking operator n. The linking
operator is designed to be aware of the context. All the context (i.e., untrusted) modules should be
put on the left-hand side of n. The right-hand side operand should include all and only the trusted
modules (if any). In case only untrusted modules are being linked, the order does not really matter.

There are two noteworthy design choices here that cause the linking operator n to be
non-commutative. They are expressed by the two conditions max(dom(Mc1)) < min(dom(Mc2))
and min(dom(Md1)) > max(dom(Md2)) of the rule valid-linking. The first of these conditions
is a necessary security measure, while the second condition is required only as an artifact of
our security proof techniques. The first condition ensures that the code memory segment of the
context is always placed before the code memory segment of the trusted/compiled program. This
ensures hiding (away from the context) information about the size of the code segment of the trusted
program. The second condition ensures a reverse order on the data segments of the context and the
program. This is a restriction that is required only as a result of our proof technique. In particular,
we want to avoid reasoning about the scenario where the data layout of the program is shifted by
a fixed amount of memory. The reason is that this places an unnecessary restriction on the way we
have to construct a distinguishing context for two programs that we know are distinguishable.

An initial state of a CHERIExp program is one where the trusted stack is empty, the free
memory marker captures the correct amount of dynamically-allocated memory (i.e., zero memory
consumption), and the main function is about to start execution (the local stack of the main module
contains the corresponding frame). We refer to a state s that is initial for setup t as t `i s.

Definition 10 (Initial state). A state s is initial for a target setup t (written t `i s iff the precon-
ditions described by rule initial-state in Figure 3 hold.

16

Figure 3: Valid linking of two TargetSetup’s – Initial state of a TargetSetup – Execution state
invariant

(valid-program)

t = (Mc,Md, imp,mstct, φ) modIDs = dom(imp) = dom(mstct)
∀mid ∈ modIDs. �κ imp(mid).pcc ∧ �δ imp(mid).ddc ∧ �δ mstc(mid)

dom(Mc) =
⊎

mid∈modIDs

[imp(mid).pcc.σ, imp(mid).pcc.e)

dom(Md) =
⊎

mid∈modIDs

[imp(mid).ddc.σ, imp(mid).ddc.e)] [mstct(mid).σ,mstct(mid).e)

dom(Md) ∩ (−∞, 0) = ∅
funIDs = [fid | fid ∈ dom(imp(mid).offs) ∧ mid ∈ modIDs]

all_distinct(funIDs) dom(φ) = {(mid ,fid) | fid ∈ dom(imp(mid).offs) ∧ mid ∈ modIDs}
`valid t

(valid-linking)

∀i ∈ {1, 2}. ti = (Mci,Mdi, impi,mstci, φi) ∧ `valid ti
t = (Mc1]Mc2,Md1]Md2, imp1] imp2,mstc1]mstc2, φ1] φ2)

min(dom(Md1)) > max(dom(Md2)) `valid t

t1 n t2 = btc
(initial-state)

`valid t
t = (Mc,Mdt, imp,mstct, φ) s = 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉

stk = nil Md = {a 7→ 0 | a ∈ dom(Mdt)}
imp(mainMod) = (p, d, offs) main ∈ dom(offs)

pcc = (κ, p.σ, p.e, offs(main)) ddc = d φ(mainMod , main) = (nArgs,nLocal)
stc = mstc(mainMod) = (δ,mstct(mainMod).σ,mstct(mainMod).e,nArgs + nLocal)
∀mid ∈ modIDs \ {mainMod}. mstc(mid) = (δ,mstct(mid).σ,mstct(mid).e, 0)

nalloc = −1

t `i s
(exec-state)

t = (Mc,Mdt, imp,mstct, φ)
`valid t s = 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉

�κ pcc �δ ddc �δ stc nalloc < 0
modIDs = dom(imp) = dom(mstc) = dom(mstct) ∀mid ∈ modIDs. `δ mstc(mid)

∀mid ∈ modIDs. mstc(mid).off =
∑

(_,_,mid,fid)∈stk

φ(mid ,fid).nArgs + φ(mid ,fid).nLocal +

(main ∈ dom(imp(mid).offs) ? φ(mid , main).nArgs + φ(mid , main).nLocal : 0)
∃mid ∈ modIDs. pcc

.
= imp(mid).pcc ∧ ddc

.
= imp(mid).ddc ∧ stc

.
= mstc(mid)

∀(dc, cc,_,_) ∈ elems(stk). �δ dc ∧ �κ cc ∧
∃mid ∈ modIDs. cc

.
= imp(mid).pcc ∧ dc

.
= imp(mid).ddc

∀mid ∈ modIDs. mstc(mid)
.
= mstct(mid)

dom(Md) =
⋃

mid∈modIDs

[imp(mid).ddc.σ, imp(mid).ddc.e) ∪ [mstc(mid).σ,mstc(mid).e) ∪ [nalloc,−1)

reachable_addresses(
⋃

mid∈modIDs

{imp(mid).ddc,mstc(mid)},Md) ⊆ dom(Md)

∀mid , a. a ∈ reachable_addresses({mstc(mid), imp(mid).ddc},Md) =⇒
a /∈

⋃
mid′∈modIDs\{mid}

[mstc(mid ′).σ,mstc(mid ′).e)

∀a,mid ∈ modIDs.Md(a) = (δ, σ, e,_) ∧ [σ, e) ⊆ mstc(mid) =⇒ a ∈ [mstc(mid).σ,mstc(mid).e)
∀a.Md(a) 6= (κ, σ, e,_) ∀a.Md(a) = (δ, σ, e,_) =⇒ [σ, e) ⊆ dom(Md)

stk 6= nil =⇒ pcc
.
= imp(top(stk).mid).pcc

∀i ∈ [1, length(stk)− 1]. stk(i).pcc
.
= imp(stk(i− 1).mid).pcc

t `exec s
17

Definition 11 (Initial state function).

initial_state(t,mainMod)
def
=

〈
t.Mc,

{a 7→ 0 | a ∈ dom(t.Md)},
nil,

t.imp,

t.φ,

t.imp(mainMod).ddc,

(δ, t.mstc(mainMod).σ, t.mstc(mainMod).e, t.φ(mainMod , main).nArgs + t.φ(mainMod , main).nLocal),

t.imp(mainMod).pcc,

{mid 7→ (δ, t.mstc(mid).σ, t.mstc(mid).e, 0) | mid ∈ dom(t.mstc) \ {mainMod} }]
{mainMod 7→ (δ, t.mstc(mainMod).σ, t.mstc(mainMod).e, t.φ(mainMod , main).nArgs + t.φ(mainMod , main).nLocal)},
−1

〉

Definition 12 (Main module).

main_module(t) = mid ⇐⇒ main ∈ dom(t.imp(mid).offs)

Claim 1 (The function initial_state and the judgment `i are compatible).

∀t, s,mainMod .

initial_state(t,mainMod) = s ∧
`valid t ∧
main ∈ dom(t.imp(mainMod).offs)

=⇒
t `i s

Proof. Follows easily after unfolding the assumptions usnig Definition 11, and inversion of the goal
using rule initial-state.

Definition 13 (Terminal state).
A program state s = 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 is terminal, written `t s iff
Mc(pcc) = Exit.

Definition 14 (Addition of an offset ω to the data memory).

Md + ω
def
= {a+ ω 7→ Md(a) | a ∈ dom(Md)}

Definition 15 (Addition of an offset ω to the imp map).

imp + ω
def
= {mid 7→ (pcc, (δ, ddc.σ + ω, ddc.e+ ω, ddc.off), offs) | (mid 7→ (pcc, ddc, offs)) ∈ imp}

Definition 16 (Addition of an offset ω to a program t).

t+ ω
def
= (t.Mc, t.Md + ω, t.imp + ω, t.mstc, t.φ)

Given two target setups t1, t2 ∈ TargetSetup, we write t1[t2] ⇓ (convergence) to mean that t1 n t2
is defined, that there is at least one valid initial state, and that for all possible initial states, there
is a reduction to a terminal state.

18

Definition 17 (Linkability, loadability, and convergence of execution in the target language).

∇ ` C[t1] ⇓ def
= ∃t′. Cn t1 = bt′c ∧
∃st. initial_state(t′,main_module(t′))→∗∇ st ∧ `t st

Definition 18 (Target contextual equivalence).

t1 '∇ t2
def
= ∀C. ∇ ` C[t1] ⇓ ⇐⇒ ∇ ` C[t2] ⇓

Definition 19 (Valid execution state). A state s is a valid execution state for a target setup t
(written t `exec s) iff the preconditions described by rule exec-state in Figure 3 hold.

Lemma 5 (Initial states are valid execution states). ∀t, s. t `i s =⇒ t `exec s

We skip the details here. By inversion of our goal using exec-state, all subgoals follow easily from
preconditions of the rule initial-state.

1.3 Memory Reachability
Definition 20 (Accessible addresses).

accessMd
: 2Z → 2Z

accessMd
A

def
= A ∪

⋃
a∈A, Md(a)=(δ,s,e,_)

[s, e)

Definition 21 (k-accessible addresses).

access0,Md
A

def
= A

accessk+1,Md

def
= accessMd

(accessk,Md
A)

Definition 22 (Reachable addresses).

reachable_addresses : (2{δ}×N×N×Z ×DataMemory)→ 2Z

reachable_addresses(C,Md)
def
=

⋃
k∈[0,|Md|]

accessk,Md
(
⋃
c∈C

[c.s, c.e))

reachable_addresses_closure : (2Z ×DataMemory)→ 2Z

reachable_addresses_closure(A,Md)
def
=

⋃
k∈[0,|Md|]

accessk,Md
A

Lemma 6 (Reachability is not affected by offsets, only bounds).

∀c,Md, c
′. c

.
= c′ =⇒ reachable_addresses({c},Md) = reachable_addresses({c′},Md)

Proof. Immediate by Definitions 6 and 22.

Lemma 7 (accessMd
is expansive).

∀A,Md. accessMd
A ⊇ A

Proof. Immediate by Definition 20 and the reflexivity of ⊇.

19

Lemma 8 (accessn,Md
is expansive).

∀n,A,Md. accessn,Md
A ⊇ A

Proof. We prove it by induction on n.

• Base case n = 0:
Immediate by Definition 21; access0,Md

A = A ⊇ A.

• Inductive case:
Assuming for an arbitrary k that ∀A. accessk,Md

A ⊇ A, we show for an arbitrary B that
accessk+1,Md

B ⊇ B.
By Definition 21, our goal becomes accessMd

(accessk,Md
B) ⊇ B.

But by assumption (the induction hypothesis), we have by universal instantiation that
accessk,Md

B ⊇ B.
And by Lemma 7, we have accessMd

(accessk,Md
(B)) ⊇ accessk,Md

(B).
So, by transitivity of ⊇, we have our goal.

Lemma 9 (Fixed points lead to convergence of accessk,Md
).

∀k,Md, A. k > 0 =⇒ (accessk,Md
A = A =⇒ accessk+1,Md

A = A)

Proof.

• We fix arbitrary k,A,Md and assume both antecedents.

• By the assumptions and Definition 21, we have (*):
A = accessMd

(accessk−1,Md
A).

• Then by expansiveness of accessMd
(Lemma 7), we obtain:

A = accessMd
(accessk−1,Md

A) ⊇ accessk−1,Md
A.

• We also have by expansiveness of accessk−1,Md
(Lemma 8) that:

A = accessMd
(accessk−1,Md

A) ⊇ accessk−1,Md
A ⊇ A.

• Thus, we conclude:
accessk−1,Md

A = A.

• We substitute this equality in (*) to get (**):
accessMd

A = A.

• Our goal is to show the consequent of the lemma statement: accessk+1,Md
A = A.

• By Definition 21, our goal becomes accessMd
(accessk,Md

A) = A.

• And by the assumption accessk,Md
A = A, our goal becomes accessMd

A = A.

• But this goal is exactly statement (**) that we already obtained above.

Lemma 10 (In an empty memory, only the starting addresses are reachable).

∀C,Md.

(∀v. v ∈ range(Md) =⇒ v 6= (δ,_,_,_)) =⇒ reachable_addresses(C,Md) =
⋃
c∈C

[c.σ, c.e)

20

Proof. Immediate by Definitions 20 to 22.

Lemma 11 (k-accessibility either adds a new memory address or a fixed point has been reached).

∀k,A,Md. k > 0 =⇒
accessk+1,Md

A) accessk,Md
A =⇒

(∃a. a ∈ dom(Md) ∧ a ∈ accessk,Md
A \ accessk−1,Md

A)

Proof. We fix arbitrary k,A andMd, and we assume both antecedents.

• By Definitions 20 and 21, we have from the assumption that:
accessk,Md

A ∪
⋃

[s, e)
a∈accessk,Md

A, Md(a)=(δ,s,e,_)

⊃ accessk,Md
A

• So the set
⋃

[s, e)
a∈accessk,Md

A, Md(a)=(δ,s,e,_)

6= ∅, and in particular:

(*) ∃a, a′. a ∈ accessk,Md
A ∧Md(a) = (δ, s, e,_) ∧ a′ ∈ [s, e) ∧ a′ /∈ accessk,Md

A.

• Suppose for the sake of contradiction that a ∈ accessk−1,Md
A.

– By Definitions 20 and 21, we know that
(**) accessk,Md

A = accessk−1,Md
A ∪

⋃
[s, e)

a∈accessk−1,Md
A, Md(a)=(δ,s,e,_)

– From (*), we know that our obtained a satisfies Md(a) = (δ, s, e,_) and that our a′
satisfies a′ ∈ [s, e).

– Thus, we conclude that a′ ∈
⋃

[s, e)
a∈accessk−1,Md

A, Md(a)=(δ,s,e,_)

.

– Thus by (**), a′ ∈ accessk,Md
A. But this contradicts conjunct a′ /∈ accessk,Md

A of (*).

• Thus, necessarily a /∈ accessk−1,Md
A.

• Thus, the obtained a from (*) satisfies our goal:
a ∈ dom(Md) ∧ a ∈ accessk,Md

A \ accessk−1,Md
A.

Lemma 12 (k-accessibility set contains at least k mapped addresses).

∀k,A,Md.

accessk+1,Md
A) accessk,Md

A =⇒
|{a | a ∈ accessk,Md

A ∧ a ∈ dom(Md)}| > k

Proof. We fix arbitrary A andMd.
We prove it by induction on k.

• Base case (k = 0):
Our goal is: |{a | a ∈ access0,Md

A ∧ a ∈ dom(Md)}| > 0.
We have by assuming the antecedent that access1,Md

A) access0,Md
A.

By Definitions 20 and 21, this simplifies to A ∪
⋃

[s, e)
a∈A, Md(a)=(δ,s,e,_)

) A.

Thus, ∃a, a′. a ∈ A ∧Md(a) = (δ, s, e,_) ∧ a′ ∈ [s, e).
Thus, the set {a | a ∈ A ∧ a ∈ dom(Md)} 6= ∅.
By Definition 21, we substitute A by access0,Md

A to get our goal:
{a | a ∈ access0,Md

A ∧ a ∈ dom(Md)} 6= ∅, i.e.,
|{a | a ∈ access0,Md

A ∧ a ∈ dom(Md)}| > 0

21

• Inductive case (k > 0):

Here, we have by the inductive hypothesis:
(*) accessk,Md

A) accessk−1,Md
A =⇒ |{a | a ∈ accessk−1,Md

A ∧ a ∈ dom(Md)}| > k − 1

We have by assuming the antecedent that accessk+1,Md
A) accessk,Md

A.

Thus by Lemma 11, we have that:
(**) ∃a∗. a∗ ∈ dom(Md) ∧ a∗ ∈ accessk,Md

A \ accessk−1,Md
A.

The latter gives us by the definition of) that accessk,Md
A) accessk−1,Md

A.

Thus, by instantiating the induction hypothesis (*), we get:
(***) |{a | a ∈ accessk−1,Md

A ∧ a ∈ dom(Md)}| > k − 1.

We rewrite it as: (***) |{a | a ∈ accessk−1,Md
A ∧ a ∈ dom(Md)}| ≥ k

But by (**), we already also obtained a∗ with:
a∗ ∈ dom(Md) ∧ a∗ ∈ accessk,Md

A \ accessk−1,Md
A.

Thus, we can conclude that:
{a | a ∈ accessk,Md

A ∧ a ∈ dom(Md)} ⊇ {a | a ∈ accessk−1,Md
A ∧ a ∈ dom(Md)}] {a∗}. (The

left operand of] is contained by expansiveness (Lemma 8)).

Thus, we have:
|{a | a ∈ accessk,Md

A ∧ a ∈ dom(Md)}| ≥ |{a | a ∈ accessk−1,Md
A ∧ a ∈ dom(Md)}|+ |{a∗}|.

Thus, by (***) and simplification:
|{a | a ∈ accessk,Md

A ∧ a ∈ dom(Md)}| ≥ k + 1 > k

Lemma 13 (|Md|-accessibility suffices).

∀A,Md, k. k ≥ 0 =⇒ access|Md|+k,Md
A = access|Md|,Md

A

Proof. We fix arbitrary A andMd, and prove it by induction on k.

• Base case (k = 0):

Holds by reflexivity.

• Inductive case (k > 0):

We assume access|Md|+k−1,Md
A = access|Md|,Md

A

Suppose for the sake of contradiction that access|Md|+k,Md
A) access|Md|+k−1,Md

A.

Then, we know by Lemma 12 that necessarily
|{a | a ∈ access|Md|+k−1,Md

A ∧ a ∈ dom(Md)}| > |Md|+ k − 1.

But k > 0. Thus, k − 1 ≥ 0.

So, our statement says
|{a | a ∈ access|Md|+k−1,Md

A ∧ a ∈ dom(Md)}| > |Md|.
But this is immediately a contradiction because
|{a | a ∈ dom(Md)}| = |Md|, and
{a | a ∈ dom(Md)} ⊇ {a | a ∈ access|Md|+k−1,Md

A ∧ a ∈ dom(Md)}.
Thus, necessarily by our contradictory assumption and Lemma 8:
access|Md|+k,Md

A = access|Md|+k−1,Md
A.

So, by substitution from our inductive hypothesis, we get our goal:
access|Md|+k,Md

A = access|Md|,Md
A

22

Lemma 14 (Invariance to non-δ-capability values).

∀C,Md, a, v.

v 6= (δ,_,_,_) ∧ Md(a) = v

=⇒ reachable_addresses(C,Md) = reachable_addresses(C,Md[a 7→ 0])

Proof.

• We fix arbitrary C,Md, a, and v. We assume the antecedents v 6= (δ,_,_,_) ∧ Md(a) = v.

• Our goal is reachable_addresses(C,Md) = reachable_addresses(C,Md[a 7→ 0]).

• By Definition 22, it suffices to show that:
∀n. accessn,Md

A = accessn,Md[a 7→0]A.

• We prove it by induction on n.

– Base case (n = 0):
By Definition 21, access0,Md

A = access0,Md[a 7→0]A = A.

– Inductive case (n > 0):
By the induction hypothesis, we have:
accessn−1,Md

A = accessn−1,Md[a 7→0]A = sind .
By unfolding Definition 21, our goal becomes (after substitution):
accessMd

sind = accessMd[a7→0]sind .
By Definition 20, our goal is:
sind ∪

⋃
[s, e)

a′∈sind , Md(a′)=(δ,s,e,_)

= sind ∪
⋃

[s, e)
a′∈sind , Md[a 7→0](a′)=(δ,s,e,_)

Thus, it suffices to show that:
∀a′, s, e. ∈ sind .Md(a

′) = (δ, s, e,_) ⇐⇒ Md[a 7→ 0](a′) = (δ, s, e,_).
We prove it for an arbitrary a′, s, , e by distinguishing the following cases:

∗ Case a′ 6= a:
In this case, by the definition (stability) of the function update operator, we have:
Md(a

′) =Md[a 7→ 0](a′), which implies our goal:
Md(a

′) = (δ, s, e,_) ⇐⇒ Md[a 7→ 0](a′) = (δ, s, e,_).
∗ Case a′ = a:

“ =⇒ ”: In this case, suppose Md(a) = (δ, s, e,_). Then, we get a contradiction to
our assumption that v 6= (δ,_,_,_). So, any goal is provable.
“ ⇐= ”: In this case, suppose Md[a 7→ 0](a) = (δ, s, e,_). This is immediately a
contradiction by the disjointness of Z and {δ} × Z× Z× Z. So, any goal is provable.

Lemma 15 (Overwriting a non-δ-capability value does not shrink the accessibility set).

∀k,Md, A, a, v.Md(a) 6= (δ,_,_,_) =⇒ accessk,Md
A ⊆ accessk,Md[a 7→v]A

Proof. We fix arbitraryMd, A, and v, and assume the antecedent. We prove it by induction on k.

• Base case (k = 0):

In this case, our goal is to show that
access0,Md

A ⊆ access0,Md[a7→v]A. By Definition 21, we have:
access0,Md

A = access0,Md[a7→v]A = A which satisfies our goal.

23

• Inductive case (k > 0):

Here, the I.H. gives us accessk−1,Md
A ⊆ accessk−1,Md[a7→v]A.

We pick an arbitrary a′ ∈ accessk,Md
A.

By Definitions 20 and 21, we distinguish two cases:

– Case a′ ∈ accessk−1,Md
A:

In this case, by the I.H., we know a′ ∈ accessk−1,Md[a 7→v]A.
So by expansiveness (Lemma 8), we have our goal.

– Case a′ ∈
⋃

[s, e)
a′′∈accessk−1,Md

A,Md(a′′)=(δ,s,e,_)

:

In this case, we obtain a′′ where a′′ ∈ accessk−1,Md
A ∧Md(a

′′) = (δ, s, e,_) ∧ a′ ∈ [s, e).
We now distinguish two cases for a′′:

∗ Case a′′ = a:
This case is impossible because by assumption we knowMd(a) 6= (δ,_,_,_).

∗ Case a′′ 6= a:
In this case, we know thatMd[a 7→ v](a′′) =Md(a

′′) = (δ, s, e,_).
Thus, we have that
a′ ∈

⋃
[s, e)

a′′∈accessk−1,Md
A,Md[a7→v](a′′)=(δ,s,e,_)

.

But by the I.H., this gives us:
a′ ∈

⋃
[s, e)

a′′∈accessk−1,Md[a 7→v]A,Md[a7→v](a′′)=(δ,s,e,_)

.

By Definition 21 of a′ ∈ accessk,Md[a7→v]A, our goal is satisfied.

Lemma 16 (Additivity of accessMd
).

∀A1, A2,Md. accessMd
(A1 ∪A2) = accessMd

A1 ∪ accessMd
A2

Proof.

• By Definition 20, our goal becomes:
A1 ∪A2 ∪

⋃
[s, e)

a∈A1∪A2, Md(a)=(δ,s,e,_)

= A1 ∪
⋃

[s, e)
a∈A1, Md(a)=(δ,s,e,_)

∪A2 ∪
⋃

[s, e)
a∈A2, Md(a)=(δ,s,e,_)

• Then, it suffices to show that:⋃
[s, e)

a∈A1∪A2, Md(a)=(δ,s,e,_)

=
⋃

[s, e)
a∈A1, Md(a)=(δ,s,e,_)

∪
⋃

[s, e)
a∈A2, Md(a)=(δ,s,e,_)

• The above goal can be shown as follows:

– Pick an arbitrary a′ ∈
⋃

[s, e)
a∈A1∪A2, Md(a)=(δ,s,e,_)

.

– Notice that by the definition of ∪, this is equivalent to:
∃a. a ∈ A1 ∪A2 ∧Md(a) = (δ, s, e,_) ∧ a′ ∈ [s, e)

– By the definition of a ∈ A1 ∪A2, this is equivalent to:
∃a. (a ∈ A1 ∨ a ∈ A2) ∧Md(a) = (δ, s, e,_) ∧ a′ ∈ [s, e)

– By distributivity, this is equivalent to:
∃a. (a ∈ A1 ∧Md(a) = (δ, s, e,_) ∧ a′ ∈ [s, e)) ∨ (a ∈ A2 ∧Md(a) = (δ, s, e,_) ∧ a′ ∈ [s, e))

– By folding back the definition of
⋃
, this is equivalent to:

a′ ∈
⋃

[s, e)
a∈A1, Md(a)=(δ,s,e,_)

∪
⋃

[s, e)
a∈A2, Md(a)=(δ,s,e,_)

24

This concludes the proof of our sufficient goal.

Lemma 17 (Additivity of accessk,Md
).

∀k,A1, A2,Md. accessk,Md
A1 ∪A2 = accessk,Md

A1 ∪ accessk,Md
A2

Proof. We fix arbitrary A1, A2, andMd, and prove it by induction on k.

• Base case (k = 0):

Our goal is to show that access0,Md
A1 ∪A2 = access0,Md

A1 ∪ access0,Md
A2.

By unfolding Definition 21, it becomes A1 ∪A2 = A1 ∪A2 which holds by reflexivity.

• Inductive case (k > 0):

By the induction hypothesis, we have:

accessk−1,Md
A1 ∪A2 = accessk−1,Md

A1 ∪ accessk−1,Md
A2.

By Definition 21, our goal is to show that:
accessMd

(accessk−1,Md
A1 ∪A2) = accessMd

(accessk−1,Md
A1) ∪ accessMd

(accessk−1,Md
A2)

By substitution using the induction hypothesis, our goal becomes:
accessMd

(accessk−1,Md
A1 ∪ accessk−1,Md

A2) = accessMd
(accessk−1,Md

A1) ∪ accessMd
(accessk−1,Md

A2)

This goal can be directly satisfied by Lemma 16.

Lemma 18 (Additivity of reachable_addresses in the first argument).

∀C1, C2,Md.

reachable_addresses(C1 ∪ C2,Md) = reachable_addresses(C1,Md) ∪ reachable_addresses(C2,Md)

Proof.

• We fix arbitrary C1, C2, andMd.

• By Definition 22, our goal becomes⋃
n∈[0,|Md|]

accessn,Md
(addr(C1 ∪ C2))

=
⋃

n∈[0,|Md|]
accessn,Md

(addr(C1)) ∪
⋃

n∈[0,|Md|]
accessn,Md

(addr(C2))

where addr(C)
def
=
⋃
c∈C

[c.s, c.e).

• Claim (addr is additive): addr(C1 ∪ C2) = addr(C1) ∪ addr(C2).

• It suffices for our goal to show that:
∀n. accessn,Md

(addr(C1 ∪ C2)) = accessn,Md
(addr(C1)) ∪ accessn,Md

(addr(C2)).

• By the claimed additivity of addr, it suffices to show that:
∀n. accessn,Md

(addr(C1) ∪ addr(C2)) = accessn,Md
(addr(C1)) ∪ accessn,Md

(addr(C2)).

• The latter directly follows by Lemma 17.

25

Lemma 19 (Additivity of reachable_addresses in the first argument using addr).

∀C,C1, C2,Md.

addr(C) = addr(C1) ∪ addr(C2)

=⇒
reachable_addresses(C,Md) = reachable_addresses(C1,Md) ∪ reachable_addresses(C2,Md)

Proof. Similar to the proof of Lemma 18.

Lemma 20 (Invariance to capability’s location so long as it is reachable).

∀C,Md, a, c.

Md(a) 6= (δ,_,_,_) ∧ c = (δ,_,_,_) ∧
a ∈ reachable_addresses(C,Md)

=⇒ reachable_addresses(C ∪ {c},Md) = reachable_addresses(C,Md[a 7→ c])

Proof.

• We fix arbitrary a, c, C, andMd, and assume the antecedent:
Md(a) 6= (δ,_,_,_) ∧ c = (δ,_,_,_) ∧ a ∈ reachable_addresses(C,Md).

• We let A = addr(C) where addr(C)
def
=
⋃
c∈C

[c.s, c.e).

• From the antecedent, and by Definition 22 and the definition of ∪, we thus have:
(*) ∃ka. a ∈ accesska,Md

A

• By Lemma 18, our goal can be rewritten as:
reachable_addresses(C,Md) ∪ reachable_addresses({c},Md)
= reachable_addresses(C,Md[a 7→ c]).

• By Definition 22, it is equivalent to show that:
∀b. b ∈ (

⋃
n∈[0,|Md|]

accessn,Md
A ∪

⋃
n∈[0,|Md|]

accessn,Md
(addr({c})))

⇐⇒ b ∈
⋃

n∈[0,|Md[a 7→c]|]
accessn,Md[a7→c]A

We have two proof obligations:

– Goal “ =⇒ ”:
Here, we assume for an arbitrary b that:
b ∈ (

⋃
n∈[0,|Md|]

accessn,Md
A ∪

⋃
n∈[0,|Md|]

accessn,Md
(addr({c}))).

Our goal is to show that:
b ∈

⋃
n∈[0,|Md[a 7→c]|]

accessn,Md[a7→c]A

We consider the two possible cases from our assumption:

1. Case b ∈
⋃

n∈[0,|Md|]
accessn,Md

A:

By the definition of ∪, we have:
(**) ∃kb. kb ∈ [0, |Md|] ∧ b ∈ accesskb,Md

A.
Under our lemma’s antecedents, we show the following:
∀k, b′. b′ ∈ accessk,Md

A =⇒ b′ ∈ accessk,Md[a7→c]A

26

∗ Case b′ = a:
In this case, our goal already follows by Lemma 23 which states that an update
to a location (in this case, a) does not affect its own accessibility.

∗ Case b′ 6= a:
Here, we prove our statement by induction on k:

(a) Base case k = 0:
We assume b′ ∈ access0,Md

A, i.e., by Definition 21, that b′ ∈ A.
Our goal is to show that b′ ∈ access0,Md[a7→c]A, which by Definition 21 is b′ ∈ A.

(b) Inductive case k > 0:
By the induction hypothesis, we have:
∀b′. b′ ∈ accessk−1,Md

A =⇒ b′ ∈ accessk−1,Md[a7→c]A.
We assume b′ ∈ accessk,Md

A, and our goal is to show that b′ ∈ accessk,Md[a7→c]A.
By unfolding Definition 21, we distinguish two cases:
i. Case b′ ∈ accessk−1,Md

A:
In this case, by instantiating the induction hypothesis, we conclude:
b′ ∈ accessk−1,Md[a 7→c]A.
By Definition 21, and expansiveness (Lemma 7) of accessMd[a7→c], we obtain
our goal: b′ ∈ accessk,Md[a7→c]A.

ii. Case b′ ∈
⋃

[s, e)
a′∈accessk−1,Md

A, Md(a′)=(δ,s,e,_)

:

By the definition of ∪, we have:
∃a′. a′ ∈ accessk−1,Md

A ∧Md(a
′) = (δ, s, e,_) ∧ b′ ∈ [s, e).

By the induction hypothesis, we have: a′ ∈ accessk−1,Md[a 7→c]A.
So, we distinguish two cases:

A. Case a′ 6= a:
Here, by the definition/stability of the function update operator, we have
that:
Md[a 7→ c](a′) =Md(a

′) = (δ, s, e,_).
So our goal is satisfied by seeing that we have the judgment:
∃a′. a′ ∈ accessk−1,Md[a7→c]A ∧Md[a 7→ c](a′) = (δ, s, e,_) ∧ b′ ∈ [s, e).
So, by folding back the definition of ∪ and Definition 21 of accessk,Md[a7→c]A,
we see that indeed b′ ∈ accessk,Md[a 7→c]A.

B. Case a′ = a:
Here, conjunctMd(a

′) = (δ, s, e,_) contradicts our antecedentMd(a) 6= (δ,_,_,_).
So any goal is provable.

Having shown our boxed statement, we now instantiate it with b and kb from (**) to
obtain:
b ∈ accesskb,Md[a 7→c]A.
Thus, by kb ∈ [0, |Md|] of (**), and the definition of ∪, we have our goal:
b ∈

⋃
n∈[0,|Md[a 7→c]|]

accessn,Md[a7→c]A by noticing that |Md[a 7→ c]| ≥ |Md|.

2. Case b ∈
⋃

n∈[0,|Md|]
accessn,Md

(addr({c})):

By the definition of ∪, we have:
(**2) ∃kb. kb ∈ [0, |Md|] ∧ b ∈ accesskb,Md

addr({c}).
From (*), we know ka.
Under our lemma’s antecedents, we show the following:
∀k′a, k′b, b′. b′ ∈ accessk′b,Md

addr({c}) ∧ a ∈ accessk′a,Md
A =⇒ b′ ∈ accessk′a+k′b+1,Md[a7→c]A

We consider two cases:
∗ Case b′ = a:

In this case, by Lemma 23, we know b′ ∈ accessk′a,Md[a 7→c]A. Thus by Lemma 8,
we know b′ ∈ accessk′a+k′b+1,Md[a7→c]A.

27

∗ Case b′ 6= a:
In this case, we prove it by induction on k′a.

(a) Base case k′a = 0:
In this case, we know by the antecedent and unfolding Definition 21 that a ∈ A.
We prove our goal by induction on k′b.
i. Base case (k′b = 0):

In this case, we know by the antecedent and Definition 21 that b′ ∈ addr({c}),
and our goal is to show that:
b′ ∈ A ∪

⋃
[s, e)

a∗∈A, Md[a7→c](a∗)=(δ,s,e,_)

.

We show the goal by choosing a∗ := a. We notice that a satisfies a ∈ A by
our former base case.
And given our lemma’s antecedent c = (δ, s, e,_), all that remains to be
shown is that b′ ∈ [s, e).
But that follows directly from the definition of addr({c}) instantiated with
the singleton set {c}.
So, our goal is satisfied by the definition of ∪ by satisfying membership in
the right-hand-side set.

ii. Inductive case (k′b > 0):
By the induction hypothesis, we have:
∀b′. b′ ∈ accessk′b−1,Md

addr({c}) ∧ a ∈ A =⇒ b′ ∈ accessk′b,Md[a7→c]A
By assumption, we have a ∈ A and b′ ∈ accessk′b,Md

addr({c}), and our goal
is to show that b′ ∈ accessk′b+1,Md[a7→c]A.
From the assumption b′ ∈ accessk′b,Md

addr({c}), we know by Definition 21
that there are two possible cases:
· Case b′ ∈ accessk′b−1,Md

addr({c}):
In this case, we instantiate the induction hypothesis and obtain:
b′ ∈ accessk′b,Md[a7→c]A.
Thus, our goal is satisifed by expansiveness (Lemma 8).
· Case b′ ∈

⋃
[s, e)

a∗∈accessk′
b
−1,Md

addr({c}), Md(a∗)=(δ,s,e,_)

:

In this case we obtain a∗ by the definition of
⋃
, and we distinguish the

following two cases:
- Case a∗ = a:
This case is impossible because the

⋃
-condition Md(a

∗) = (δ,_,_,_)
contradicts our lemma’s assumed antecedent.
- Case a∗ 6= a:
In this case, we conclude from a∗ ∈ accessk′b−1,Md

addr({c}) and the induc-
tion hypothesis that a∗ ∈ accessk′b,Md[a 7→c]A.
Thus, given that b′ ∈ [s, e) whereMd[a 7→ c](a∗) = (δ, s, e,_), we conclude
by folding Definition 21 that b′ ∈ accessk′b+1,Md[a7→c]A by membership in
the right operand of ∪ in Definition 21.
This last conclusion is our goal.

(b) Inductive case k′a > 0:
By the induction hypothesis, we have (IHka):
∀k′b, b′. b′ ∈ accessk′b,Md

addr({c}) ∧ a ∈ accessk′a−1,Md
A =⇒ b′ ∈ accessk′a+k′b,Md[a7→c]A

And, our goal is to show that:
∀k′b, b′. b′ ∈ accessk′b,Md

addr({c}) ∧ a ∈ accessk′a,Md
A =⇒ b′ ∈ accessk′a+k′b+1,Md[a 7→c]A

Again, we prove our goal by induction on k′b.
i. Base case (k′b = 0):

In this case, we know b′ ∈ addr({c}), and a ∈ accessk′a,Md
A, and our goal is

to show that b′ ∈ accessk′a+1,Md[a 7→c]A.

28

By Lemma 15, we know that a ∈ accessk′a,Md[a7→c]A.
For our goal, it suffices to show that:
b′ ∈

⋃
[s, e)

a∗∈accessk′a,Md[a 7→c]A,Md[a 7→c](a∗)=(δ,s,e,_)

.

We pick a∗ := a, so we know from just above that a ∈ accessk′a,Md[a 7→c]A
holds, and then it suffices to show that b′ ∈ [s, e) where c = (δ, s, e,_).
The latter follows by our assumption b′ ∈ addr({c}) by unfolding our defini-
tion of addr given in the beginning.

ii. Inductive case (k′b > 0):
In this case, we know by the I.H. that (IHkb):
∀b′. b′ ∈ accessk′b−1,Md

addr({c}) ∧ a ∈ accessk′a,Md
A =⇒ b′ ∈ accessk′a+k′b,Md[a 7→c]A

We assume the antecedents of our goal for arbitrary b′:
b′ ∈ accessk′b,Md

addr({c}) ∧ a ∈ accessk′a,Md
A.

By Definition 21, we distinguish the following three cases:
· Case a ∈ accessk′a−1,Md

A:
In this case, we obtain by (IHka) that b′ ∈ accessk′a+k′b,Md[a7→c]A.
By Lemma 8, we have our goal.
· Case b′ ∈ accessk′b−1,Md

addr({c}):
In this case, we obtain by (IHkb) that b′ ∈ accessk′a+k′b,Md[a7→c]A.
By Lemma 8, we have our goal.
· Case a /∈ accessk′a−1,Md

A ∧ b′ /∈ accessk′b−1,Md
addr({c}):

Equivalently (from the unfolding of Definition 21 in both of our antecedents),
we know in this case that:
a ∈

⋃
[sa, ea)

a∗∈accessk′a−1,Md
A,Md(a∗)=(δ,sa,ea,_)

∧ b′ ∈
⋃

[sb, eb)
b∗∈accessk′

b
−1,Md

addr({c}),Md(b∗)=(δ,sb,eb,_)

From the right conjunct, we obtain b∗ satisfying
b∗ ∈ accessk′b−1,Md

addr({c}) ∧Md(b
∗) = (δ, sb, eb,_) ∧ b′ ∈ [sb, eb). So, by

(IHkb), we know that b∗ ∈ accessk′a+k′b,Md[a7→c]A.
By Definitions 20 and 21 and the definition of ∪, it suffices for our goal
(b′ ∈ accessk′a+k′b+1,Md[a 7→c]A) to show that
b′ ∈

⋃
[sb, eb)

b∗∈accessk′a+k′
b
,Md[a 7→c]A, Md[a 7→c](b∗)=(δ,sb,eb,_)

.

We satisfy the latter by picking the b∗ we obtained above noticing that
it satisfies b∗ ∈ accessk′a+k′b,Md[a7→c]A by Lemma 15, and that it satis-
fies Md[a 7→ c](b∗) = (δ, sb, eb,_) because b∗ 6= a must hold (otherwise,
we contradict our antecedentMd(a) 6= (δ,_,_,_)).
This concludes our case.

This concludes the proof of our boxed statement; we instantiate it by (**2) and (*)
to obtain (**2*):
b ∈ accesska+kb+1,Md[a7→c]A.
Recall that our goal is to show that ∃n. n ∈ [0, |Md[a 7→ c]|] ∧ b ∈ accessn,Md[a7→c]A.
We distinguish two cases for ka + kb + 1:
∗ Case ka + kb + 1 ≤ |Md[a 7→ c]|:

In this case, our goal follows directly from (**2*).
∗ Case ka + kb + 1 > |Md[a 7→ c]|:

In this case, we know by Lemma 13 that:
accesska+kb+1,Md[a7→c]A = access|Md[a 7→c]|,Md[a 7→c]A.
So, we pick n := |Md[a 7→ c]| satisfying our goal.

This concludes Goal “ =⇒ ” .

– Goal “ ⇐= ”:

29

Here, we assume for an arbitrary b that:
b ∈

⋃
n∈[0,|Md[a7→c]|]

accessn,Md[a 7→c]A

Our goal is to show that:
b ∈ (

⋃
n∈[0,|Md|]

accessn,Md
A ∪

⋃
n∈[0,|Md|]

accessn,Md
(addr({c}))).

By assumption, we know (#):
∃n. n ∈ [0, |Md[a 7→ c]|] ∧ b ∈ accessn,Md[a7→c]A.
We prove the general statement:

∀n, b′. b′ ∈ accessn,Md[a7→c]A =⇒ b′ ∈ accessn,Md
A ∨ b′ ∈ accessn,Md

(addr({c}))
We prove our goal by induction on n.

∗ Base case (n = 0):
In this case, we know b′ ∈ access0,Md[a7→c]A = A = access0,Md

A.
So, our goal is satisfied by satisfying the left disjunct.

∗ Inductive case (n > 0):
The induction hypothesis gives us:
∀b′. b′ ∈ accessn−1,Md[a7→c]A =⇒ b′ ∈ accessn−1,Md

A ∨ b′ ∈ accessn−1,Md
(addr({c}))

By assumption and Definitions 20 and 21, we distinguish two cases:

· Case b′ ∈ accessn−1,Md[a7→c]A:
In this case, we have by the induction hypothesis that:
b′ ∈ accessn−1,Md

A ∨ b′ ∈ accessn−1,Md
(addr({c})).

So, in either case (left disjunct or right disjunct holds), we have our goal by
unfolding Definition 21 in our goal and applying Lemma 7.
· Case ∃b′′. b′′ ∈ accessn−1,Md[a 7→c]A ∧Md[a 7→ c](b′′) = (δ, s, e,_) ∧ b′ ∈ [s, e):
By the induction hypothesis, we know:
b′′ ∈ accessn−1,Md

A ∨ b′′ ∈ accessn−1,Md
(addr({c})).

We distinguish two cases:

- Case b′′ 6= a:
In this case, we know thatMd[a 7→ c](b′′) =Md(b

′′) = (δ, s, e,_).
So, by Definition 21, we can conclude:
b′ ∈ accessn,Md

A in case b′′ ∈ accessn−1,Md
A, and

b′ ∈ accessn,Md
(addr({c})) in case b′′ ∈ accessn−1,Md

(addr({c})).
- Case b′′ = a:
In this case, we know that c =Md[a 7→ c](b′′) = (δ, s, e,_) ∧ b′ ∈ [s, e).
So, in particular, we know b′ ∈ addr({c}).
So, by Definition 21, we know b′ ∈ access0,Md

(addr({c})).
So, by n > 0, and by expansiveness (Lemmas 7 and 8), we conclude:
b′ ∈ accessn,Md

(addr({c})), which satisfies the right disjunct of our goal.

This concludes the proof of our boxed statement.
Instantiating it with (#) gives us by Lemma 13 an n satisfying our goal.
This concludes Goal“ ⇐= ”, which concludes the proof of Lemma 20.

Lemma 21 (Invariance to unreachable memory updates).

∀C,Md, a, v. a /∈ reachable_addresses(C,Md) =⇒
reachable_addresses(C,Md) = reachable_addresses(C,Md[a 7→ v])

30

Proof.

• We fix arbitrary C,Md, a, and v. We assume the antecedent.

• By unfolding Definition 22, and the definition of ∪, our antecedent can be re-written as (‡):
∀n ∈ [0, |Md|]. a /∈ accessn,Md

addr(C),

where addr(C)
def
=
⋃
c∈C

[c.s, c.e).

• Thus, by Lemma 22, we conclude that (‡‡):
∀n ∈ [0, |Md|]. accessn,Md

addr(C) = accessn,Md[a7→v]addr(C).

• Thus, by identities of ∪, we have that (*):⋃
n∈[0,|Md|]

accessn,Md
addr(C) =

⋃
n∈[0,|Md|]

accessn,Md[a7→v]addr(C)

• (Intuition) By looking at the right-hand side, we notice that the set union could be missing
one extra step for the expression to satisfy reachable_addresses(C,Md[a 7→ v]). The intuition
is |Md[a 7→ v]| ∈ [|Md|, |Md|+ 1].

In particular, we distinguish the two possible cases:

– Case a ∈ dom(Md):
In this case, |Md| = |Md[a 7→ v]|.
So statement (*) directly satisfies our goal by folding using Definition 22 and the definition
of addr.

– Case a /∈ dom(Md):
In this case, |Md[a 7→ v]| = |Md|+ 1. So, we assume for the sake of contradiction that:
($) access|Md|+1,Md[a7→v](addr(C))) access|Md|,Md[a 7→v](addr(C)).
(Notice that by Lemma 8, necessarily
access|Md|+1,Md[a7→v](addr(C)) ⊇ access|Md|,Md[a 7→v](addr(C))).

∗ In this case, we know by unfolding Definitions 20 and 21 that (‡ ‡ ‡):
∃a′, a′′. a′ /∈ access|Md|,Md[a7→v](addr(C)) ∧

a′′ ∈ access|Md|,Md[a7→v](addr(C)) ∧Md[a 7→ v](a′′) = (δ, s, e,_) ∧ a′ ∈ [s, e).
∗ We distinguish two cases for a′′:
· Case a′′ = a:
In this case, we know by (‡ ‡ ‡) that a ∈ access|Md|,Md[a7→v](addr(C)).
But by (‡‡), this means that a ∈ access|Md|,Md

(addr(C)).
But this contradicts (‡). So, any goal is provable.
· Case a′′ 6= a:
Again, we know by (‡ ‡ ‡) that a′′ ∈ access|Md|,Md[a 7→v](addr(C)).
And again by (‡‡), this means that a′′ ∈ access|Md|,Md

(addr(C)).
And by conjunctMd[a 7→ v](a′′) = _ of (‡ ‡ ‡) together with our case condition
a′′ 6= a, we know that a′′ ∈ dom(Md).
Thus, we have by (‡ ‡ ‡) that the following expression holds:
a′′ ∈ access|Md|,Md

(addr(C)) ∧Md(a
′′) = (δ, s, e,_) ∧ a′ ∈ [s, e).

This gives us by folding Definition 21 that:
a′ ∈ access|Md|+1,Md

(addr(C)).
But we know from (‡ ‡ ‡) that a′ /∈ access|Md|,Md[a7→v](addr(C)), which by (‡‡)
gives us a′ /∈ access|Md|,Md

(addr(C)).
This means that a′ ∈ access|Md|+1,Md

(addr(C)) \ access|Md|,Md
(addr(C)), i.e.,

access|Md|+1,Md
(addr(C))) access|Md|,Md

(addr(C))

31

By Lemma 12, we, hence, conclude:
($$) |{a∗ | a∗ ∈ access|Md|,Md

(addr(C)) ∧ a∗ ∈ dom(Md)}| > |Md|.
But, {a∗ | a∗ ∈ access|Md|,Md

(addr(C)) ∧ a∗ ∈ dom(Md)} ⊆ dom(Md).
Thus, |{a∗ | a∗ ∈ access|Md|,Md

(addr(C)) ∧ a∗ ∈ dom(Md)}| ≤ |Md|.
This contradicts ($$). So, any goal is provable.

Lemma 22 (Updating k-inaccessible locations does not affect the k-accessibility set).

∀a, k,Md, A, v. a /∈ accessk,Md
A =⇒ accessk,Md

A = accessk,Md[a7→v]A

Proof. We prove it by induction on k.

• Base case (k = 0):

Fix arbitrary a,A, v, andMd.

By Definition 21, we have that access0,_A = A = access0,Md
A = access0,Md[a 7→v]A.

• Inductive case (k > 0):

The induction hypothesis gives us (*):
∀a,Md, A, v. a /∈ accessk−1,Md

A =⇒ accessk−1,Md
A = accessk−1,Md[a7→v]A

We fix arbitrary a,Md, A, and v, and we assume a /∈ accessk,Md
A.

Now, by Definitions 20 and 21, we have:
accessk,Md

A = accessk−1,Md
A ∪

⋃
[s, e)

a′∈accessk−1,Md
A, Md(a′)=(δ,s,e,_)

Thus, by our assumption together with the definition of ∪, we conclude:
(**1) a /∈ accessk−1,Md

A, and
(**2) a /∈

⋃
[s, e)

a′∈accessk−1,Md
A, Md(a′)=(δ,s,e,_)

By (**1) and (*), we have (***):
accessk−1,Md

A = accessk−1,Md[a 7→v]A.

Now, in order to show our goal (accessk,Md
A = accessk,Md[a7→v]A), it suffices by Definitions 20

and 21 to show that both:
(g1) accessk−1,Md

A = accessk−1,Md[a7→v]A, and
(g2)

⋃
[s, e)

a′∈accessk−1,Md
A, Md(a′)=(δ,s,e,_)

=
⋃

[s, e)
a′∈accessk−1,Md[a 7→v]A, Md[a7→v](a′)=(δ,s,e,_)

.

We already have (g1) by (***).

By substitution using (***), our goal (g2) becomes:
(g2)

⋃
[s, e)

a′∈accessk−1,Md[a 7→v]A, Md(a′)=(δ,s,e,_)

=
⋃

[s, e)
a′∈accessk−1,Md[a 7→v]A, Md[a7→v](a′)=(δ,s,e,_)

.

So it suffices to show that ∀a′ ∈ accessk−1,Md[a7→v]A.Md(a
′) =Md[a 7→ v](a′).

– Case a′ 6= a:
By the definition of function update, we have our goal:
Md(a

′) =Md[a 7→ v](a′)

– Case a′ = a:
Impossible because by substituting using (***) in (**1),
we get a contradiction to a′ ∈ accessk−1,Md[a7→v]A.

This concludes the inductive case, which concludes the proof of Lemma 22.

32

Lemma 23 (Updating a location does not affect its own k-accessibility).

∀a,A, ka,Md, v. a ∈ accesska,Md
A =⇒ a ∈ accesska,Md[a7→v]A

Proof. We fix arbitrary a,A, ka,Md, and v. We assume the antecedent a ∈ accesska,Md
A.

Our goal is to show that a ∈ accesska,Md[a 7→v]A.
Assume for the sake of contradiction the contrary of our goal: (a /∈ accesska,Md[a 7→v]A).

Then:

• By Lemma 22, we conclude that:
accesska,Md[a7→v]A = accesska,Md[a7→v][a7→Md(a)]A, which simplifies to:
accesska,Md[a 7→v]A = accesska,Md

A.

• Substituting using this equality into our latest assumption, we get:
a /∈ accesska,Md

A.

• This contradicts our antecedent, so our latest assumption must be false.

This concludes the proof of Lemma 23.

Lemma 24 (Updating a location does not affect its own reachability).

∀C, a, v,Md. a ∈ reachable_addresses(C,Md) =⇒ a ∈ reachable_addresses(C,Md[a 7→ v])

Proof.

• We fix arbitrary C, a, v,Md, and assume the antecedent.

• By assumption and unfolding Definition 22, we have a ∈
⋃

k∈[0,|Md|]
accessk,Md

addr(C),

where addr(C)
def
=
⋃
c∈C

[c.s, c.e).

• Thus, by the definition of ∪, we have (*): ∃ka ∈ [0, |Md|]. a ∈ accesska,Md
addr(C).

• And then by Lemma 23, we conclude that (**): a ∈ accesska,Md[a7→v]addr(C).

• And by the definition of the function update operator, we notice that
ka ∈ [0, |Md|] =⇒ ka ∈ [0, |Md[a 7→ v]|] which gives us ka ∈ [0, |Md[a 7→ v]|] by (*).

• Thus, by definition of ∪, we have from (**) that: a ∈
⋃

k∈[0,|Md[a 7→v]|]
accessk,Md[a7→v]addr(C).

• Thus, by folding using Definition 22, we get our goal: a ∈ reachable_addresses(C,Md[a 7→ v]).

Lemma 25 (Completeness of reachable_addresses).

∀E ,Md, ddc, stc, pcc.

ddc = (δ,_,_,_) ∧ stc = (δ,_,_,_) ∧
E ,Md, ddc, stc, pcc ⇓ (δ, s, e, off) =⇒ [s, e) ⊆ reachable_addresses({stc, ddc},Md)

Proof. We prove it by induction on the evaluation E ,Md, ddc, stc, pcc ⇓ (δ, s, e, off) of the expression
E :

• Case evalconst,

33

• Case evalCapType,

• Case evalCapStart,

• Case evalCapEnd,

• Case evalCapOff, and

• Case evalBinOp:

These are all vacuous cases because of disjointness of the integer values and the data capability
values.

• Case evalddc, and

• Case evalstc:

These two cases are similar. We show the proof for evalddc.

Let ddc = (δ, s, e, off).
By evalddc, our goal is to show that [s, e) ⊆ reachable_addresses({stc, ddc},Md).

By Definition 22, our goal is to show that:
∀a. a ∈ [ddc.s, ddc.e) =⇒ ∃k. k ∈ [0, |Md|] ∧ a ∈ accessk,Md

⋃
c∈{stc,ddc}

[c.s, c.e).

We pick k := 0, and by Definition 21, our goal is satisfied.

• Case evalIncCap:

Here, the goal follows directly from the inductive hypothesis.

We obtain the preconditions E ,Md, ddc, stc, pcc ⇓ v and v = (x, s, e, off) with the inductive
hypothesis being x = δ =⇒ [s, e) ⊆ reachable_addresses({stc, ddc},Md). But this is exactly
our goal because v′.s = v.s and v′.e = v.e.

• Case evalDeref:

We obtain the preconditions E ,Md, ddc, stc, pcc ⇓ v, v = (x, s, e, off) and `δ v,
together with the inductive hypothesis that [s, e) ⊆ reachable_addresses({stc, ddc},Md).

And our goal is to show that:

Md(s+ off) = (δ, s′, e′,_) =⇒ [s′, e′) ⊆ reachable_addresses({stc, ddc},Md).

Re-writing our goal by Definition 22, it is required to show that:

Md(s+ off) = (δ, s′, e′,_) =⇒
∀a ∈ [s′, e′). ∃k. k ∈ [0, |Md|] ∧ a ∈ accessk,Md

⋃
c∈{ddc,stc}

[c.s, c.e).

We observe that s+ off ∈ reachable_addresses({stc, ddc},Md) by the induction hypothesis
and `δ v.
Hence, by Definition 22, we have:

∃k. k ∈ [0, |Md|] ∧ s+ off ∈ accessk,Md

⋃
c∈{ddc,stc}

[c.s, c.e)

Hence, by Definitions 20 and 21 of accessk+1,Md

⋃
c∈{ddc,stc}

[c.s, c.e),

and by assumingMd(s+ off) = (δ, s′, e′,_) (the antecedent of our goal),
we conclude that [s′, e′) ⊆ accessk+1,Md

⋃
c∈{ddc,stc}

[c.s, c.e).

Thus, we can re-write this conclusion as:
∃k. k ∈ [0, |Md|+ 1] ∧ [s′, e′) ⊆ accessk,Md

⋃
c∈{ddc,stc}

[c.s, c.e).

34

But by Lemma 13 about sufficiency of |Md|-accessibility, our conclusion is equivalent to:

∃k. k ∈ [0, |Md|] ∧ [s′, e′) ⊆ accessk,Md

⋃
c∈{ddc,stc}

[c.s, c.e),

which satisfies our goal.

• Case evalLim:

Here, we obtain the preconditions E ′,Md, ddc, stc, pcc ⇓ v′, v′ = (x, σ′, e′,_) ∈ Cap, with the
inductive hypothesis that x = δ =⇒ [σ′, e′) ⊆ reachable_addresses({stc, ddc},Md).

We also obtain the preconditions [σ, e) ⊆ [σ′, e′), and E ,Md, ddc, stc, pcc ⇓ (x, σ, e,_) and our
goal is to show given x = δ that [σ, e) ⊆ reachable_addresses({stc, ddc},Md).

So, our goal follows immediately by transitivity of ⊆.

Lemma 26 (Expression evaluation cannot forge data capabilities).

∀s, E , σ, e.
�δ s.ddc ∧
�δ s.stc ∧
E , s.Md, s.ddc, s.stc, s.pcc ⇓ (δ, σ, e,_)

=⇒
((δ, σ, e,_) ⊆ s.ddc ∨
(δ, σ, e,_) ⊆ s.stc ∨
∃a. (δ, σ, e,_) ⊆ s.Md(a) ∧ a ∈ reachable_addresses({s.ddc, s.stc}, s.Md))

Proof.

• We assume the antecedents

• And we prove our goal by induction on the evaluation of expression E :

1. Case evalconst,

2. Case evalBinOp,

3. Case evalCapType,

4. Case evalCapStart,

5. Case evalCapEnd,

6. Case evalCapOff:
In all of these cases, we notice that E ,_,_,_,_ ⇓ z with z ∈ Z.
This contradicts our assumed antecedent E , s.Md, s.ddc, s.stc, s.pcc ⇓ (δ, σ, e,_)
because (δ,_,_,_) /∈ Z. So these cases are impossible.

7. Case evalddc:
In this case, we choose the leftmost disjunct, so our goal becomes s.ddc ⊆ s.ddc which by
the reflexivity of ⊆ (Definition 3) is immediate.

8. Case evalstc:
In this case, we choose the middle disjunct, so our goal becomes s.stc ⊆ s.stc which by
the reflexivity of ⊆ (Definition 3) is immediate.

35

9. Case evalDeref:
Here, we obtain the preconditions:
E , s.Md, s.ddc, s.stc, s.pcc ⇓ (δ, σ, e, off), `δ v, and v′ = s.Md(σ + off).
By instantiating Lemma 25 using the preconditions E , s.Md, s.ddc, s.stc, s.pcc ⇓ (δ, σ, e, off),
`δ v, and our lemma assumptions, we conclude (*):
σ + off ∈ reachable_addresses({s.ddc, s.stc}, s.Md)

Now, we choose the rightmost disjunct of our goal.
We thus have two subgoals to prove.
The left subgoal (after the choice of a = σ + off) is immediate by the preconditions ob-
tained above.
The right conjunct is exactly (*) that we proved above.

10. Case evalIncCap:
Here, by Lemma 1 about the obliviousness of ⊆ to the capability offset, our goal is
immediate from the induction hypothesis.

11. Case evalLim:
Here, our goal follows by the transitivity of ⊆ from the induction hypothesis, and as-
sumptions.

This concludes the proof of Lemma 26.

Definition 23 (Derivable capability). A capability c∗ = (x, s, e,_) is derivable from a set of capabil-
ities C : 2Cap on memoryMd, written C,Md � c∗ iff ∀a ∈ [s, e). a ∈ reachable_addresses(C,Md).

Lemma 27 (Upward closure of derivability).

∀c, C,C ′,Md. C,Md � c ∧ C ⊆ C ′ =⇒ C ′,Md � c

Proof.

• Take C ′′ such that C ′ = C ∪ C ′′.

• By Definition 23, our goal is to show that:
∀a ∈ [c.σ, c.e). a ∈ reachable_addresses(C ∪ C ′′,Md)

• By additivity (Lemma 18), it is equivalent to show that:
∀a ∈ [c.σ, c.e). a ∈ reachable_addresses(C,Md) ∪ reachable_addresses(C ′′,Md)

• The assumption C,Md � c gives us:
∀a ∈ [c.σ, c.e). a ∈ reachable_addresses(C,Md) (by Definition 23) which suffices for our goal.

Lemma 28 (Reachability traverses all derivable capabilities).

∀C,Md, c. C,Md � c =⇒ reachable_addresses(C,Md) ⊇ reachable_addresses({c},Md)

Proof.

• We fix arbitrary C,Md, and c, and assume the antecedent C,Md � c.

• By Definition 23, we thus have:
∀a ∈ [c.s, c.e). a ∈ reachable_addresses(C,Md).

36

• By Definition 22, we thus have (*):
∀a ∈ [c.s, c.e). ∃k. k ∈ [0, |Md|] ∧ a ∈ accessk,Md

⋃
c′∈C

[c′.s, c′.e).

• Our goal is to show that:
reachable_addresses({c},Md) ⊆ reachable_addresses(C,Md).

• By Definition 22, and the definition of ⊆, our goal becomes:
∀a. (∃k. k ∈ [0, |Md|] ∧ a ∈ accessk,Md

[c.s, c.e)) =⇒
(∃k. k ∈ [0, |Md|] ∧ a ∈ accessk,Md

⋃
c′∈C

[c′.s, c′.e))

• We fix an arbitrary a, assume the antecedent k ∈ [0, |Md|] ∧ a ∈ accessk,Md
[c.s, c.e), and revert

back a and a ∈ accessk,Md
[c.s, c.e) to the goal.

• We prove our statement by induction on k.

– Base case (k = 0):
We fix an arbitrary a.
In this case, by Definition 21, we have from our antecedent that:
a ∈ [c.s, c.e).
In this case, by universal instantiation of (*), we get:
∃k. k ∈ [0, |Md|] ∧ a ∈ accessk,Md

⋃
c′∈C

[c′.s, c′.e), which is our goal.

– Inductive case (k > 0):
Here, by the induction hypothesis, we have:
∀a. a ∈ accessk−1,Md

[c.s, c.e) =⇒ ∃k′. k′ ∈ [0, |Md|] ∧ a ∈ accessk′,Md

⋃
c′∈C

[c′.s, c′.e)

We fix an arbitrary a, and we assume the antecedent:
a ∈ accessk,Md

[c.s, c.e)

We distinguish two cases by Definitions 20 and 21:

∗ Case a ∈ accessk−1,Md
[c.s, c.e):

In this case, the induction hypothesis gives us that:
∃k′. k′ ∈ [0, |Md|] ∧ a ∈ accessk′,Md

⋃
c′∈C

[c′.s, c′.e), which is our goal.

∗ Case a′ ∈ accessk−1,Md
[c.s, c.e) ∧Md(a

′) = (δ, s, e,_) ∧ a ∈ [s, e):
In this case, the induction hypothesis gives us that:
∃k′. k′ ∈ [0, |Md|] ∧ a′ ∈ accessk′,Md

⋃
c′∈C

[c′.s, c′.e)

Thus, by Definition 21 of a ∈ accessk′+1,Md

⋃
c′∈C

[c′.s, c′.e), and by the case conditions

Md(a
′) = (δ, s, e,_) ∧ a ∈ [s, e), we obtain:

∃k′′. k′′ ∈ [1, |Md|+ 1] ∧ a ∈ accessk′′,Md

⋃
c′∈C

[c′.s, c′.e).

By Lemma 13, we know we have:
∃k′′. k′′ ∈ [1, |Md|] ∧ a ∈ accessk′′,Md

⋃
c′∈C

[c′.s, c′.e), which suffices for our goal.

Lemma 29 (Preservation of reachability equivalence under safe memory updates).

∀C,Md1,Md2, r1, r2, â, v.

r1 = reachable_addresses(C,Md1) ∧ r2 = reachable_addresses(C,Md2) ∧
r1 = r2 ∧ Md1|r1 =Md2|r2 ∧ (C,Md1 � v ∨ v /∈ {δ} × Z× Z× Z)

=⇒ reachable_addresses(C,Md1[â 7→ v]) = reachable_addresses(C,Md2[â 7→ v])

37

Proof.

• We fix arbitrary C,Md1,Md2, r1, r2, â, v.

• We assume the antecedents r1 = reachable_addresses(C,Md1), r2 = reachable_addresses(C,Md2),
r1 = r2,Md1|r1 =Md2|r2 , and (C,Md1 � v ∨ v /∈ {δ} × Z× Z× Z), which by r1 = r2 and by
Definition 23 gives us also that (C,Md2 � v ∨ v /∈ {δ} × Z× Z× Z).

We now distinguish two cases:

• Case â ∈ r1:

In this case, we know from the assumptions r1 = r2 andMd1|r1 =Md2|r2 thatMd1(â) =Md2(â).

We distinguish four different cases:

– Case Md1(â) 6= (δ,_,_,_) ∧ v 6= (δ,_,_,_):

∗ In this case, we know by Lemma 14 about irrelevance of non-δ-capability values that
r1 = reachable_addresses(C,Md1[â 7→ 0]) = reachable_addresses(C,Md1[â 7→ v]).
And becauseMd2(â) =Md1(â) 6= (δ,_,_,_), we analogously then have by Lemma 14
that r2 = reachable_addresses(C,Md1[â 7→ 0]) = reachable_addresses(C,Md2[â 7→ v]).

∗ So by substitution in the assumption r1 = r2, we get our goal
reachable_addresses(C,Md1[â 7→ v]) = reachable_addresses(C,Md2[â 7→ v]).

– Case Md1(â) 6= (δ,_,_,_) ∧ v = (δ, s, e,_):

∗ By Lemma 20 about invariance to the location of v, we have:
reachable_addresses(C,Md1[â 7→ v]) = reachable_addresses(C ∪ {v},Md1).

∗ So, by Lemma 18 about “additivity in the first argument”, we get:
reachable_addresses(C,Md1[â 7→ v]) =
reachable_addresses(C,Md1) ∪ reachable_addresses({v},Md1)

∗ By the assumption C,Md1 � v ∨ v /∈ {δ} × Z× Z× Z, we have in this case that
C,Md1 � v, resp. C,Md2 � v.

∗ So, by Lemma 28, we have that: reachable_addresses({v},Md1) ⊆ reachable_addresses(C,Md1).
∗ Thus, we obtain:

reachable_addresses(C,Md1[â 7→ v]) = reachable_addresses(C,Md1) = r1.
∗ By an argument analogous to the above, we have that:

reachable_addresses(C,Md2[â 7→ v]) = reachable_addresses(C,Md2) = r2.
∗ So by substitution in the assumption r1 = r2, we get our goal

reachable_addresses(C,Md1[â 7→ v]) = reachable_addresses(C,Md2[â 7→ v]).

– Case Md1(â) = (δ, sa, ea,_) ∧ v = (δ, s, e,_):
In this case, we break down the memory update operation into two memory updates,
namely, the update λx. x[â 7→ 0] followed by λx. x[â 7→ v].

∗ So, we notice thatMd1[â 7→ v] =Md1[â 7→ 0][â 7→ v].
∗ Thus, by Lemma 20 about invariance to a capability’s location, we get:

reachable_addresses(C,Md1[â 7→ v]) = reachable_addresses(C ∪ {v},Md1[â 7→ 0]).
∗ Thus, by additivity (Lemma 18), we get:

reachable_addresses(C,Md1[â 7→ v]) =
reachable_addresses(C,Md1[â 7→ 0]) ∪ reachable_addresses({v},Md1[â 7→ 0]).

∗ Now recall that by assumption we know C,Md1 � v, so we can use Lemma 28 to get:
(‡ ‡ 1) reachable_addresses(C,Md1[â 7→ v]) = reachable_addresses(C,Md1[â 7→ 0])

∗ By a similar argument, we also have forMd2 that:
(‡ ‡ 2) reachable_addresses(C,Md2[â 7→ v]) = reachable_addresses(C,Md2[â 7→ 0])

38

∗ Next we work out the right-hand side of the Md1 equality to reach the right-hand
side of theMd2 equality, thus satisfying our goal.

∗ First, we notice that by â ∈ r1, and by Lemma 24, we have that:
â ∈ reachable_addresses(C,Md1[â 7→ 0]).

∗ Thus, we can now use Lemma 20 with the instantiationMd :=Md1[â 7→ 0], c :=Md1(â)
to get:
reachable_addresses(C ∪ {Md1(â)},Md1[â 7→ 0]) = reachable_addresses(C,Md1) = r1.

∗ So, by additivity (Lemma 18), we conclude that:
reachable_addresses(C,Md1[â 7→ 0]) ⊆ r1

∗ Thus, we pick an arbitrary a′ /∈ r1, and we know that:
it also satisfies a′ /∈ reachable_addresses(C,Md1[â 7→ 0]).
Thus, we know by Lemma 21 about invariance to unreachable memory updates that:
reachable_addresses(C,Md1[â 7→ 0]) = reachable_addresses(C,Md1[â 7→ 0][a′ 7→ Md2(a′)]).

∗ Now by applying Lemma 21 inductively on the list of successive updates to Md1

at addresses from {a′ | a′ ∈ dom(Md1) ∪ dom(Md2) \ r1}, and by the assumption
Md1|r1 =Md2|r1 , we get the desired transformation:
reachable_addresses(C,Md1[â 7→ 0]) = reachable_addresses(C,Md2[â 7→ 0]).

∗ By substituting the above equality in (‡ ‡ 1), we get our goal by (‡ ‡ 2):
reachable_addresses(C,Md1[â 7→ v]) = reachable_addresses(C,Md2[â 7→ v]).

– Case Md1(â) = (δ, sa, ea,_) ∧ v 6= (δ,_,_,_):
This case is very similar to the case above (unsurprisingly strictly shorter).

∗ First, we notice that by â ∈ r1, and by Lemma 24, we have that:
â ∈ reachable_addresses(C,Md1[â 7→ v]).

∗ Thus, we can now use Lemma 20 with the instantiationMd :=Md1[â 7→ v], c :=Md1(â)
to get:
reachable_addresses(C ∪ {Md1(â)},Md1[â 7→ v]) = reachable_addresses(C,Md1) = r1.

∗ So, by additivity (Lemma 18), we conclude that:
reachable_addresses(C,Md1[â 7→ v]) ⊆ r1

∗ Thus, we pick an arbitrary a′ /∈ r1, and we know that:
it also satisfies a′ /∈ reachable_addresses(C,Md1[â 7→ v]).
Thus, we know by Lemma 21 about invariance to unreachable memory updates that:
reachable_addresses(C,Md1[â 7→ v]) = reachable_addresses(C,Md1[â 7→ v][a′ 7→ Md2(a′)]).

∗ Now by applying Lemma 21 inductively on the list of successive updates to Md1

at addresses from {a′ | a′ ∈ dom(Md1) ∪ dom(Md2) \ r1}, and by the assumption
Md1|r1 =Md2|r1 , we get our goal:
reachable_addresses(C,Md1[â 7→ v]) = reachable_addresses(C,Md2[â 7→ v]).

• Case â /∈ r1:

By assumption r1 = r2, we also have that â /∈ r2.

Thus, by Lemma 21, we have that
reachable_addresses(C,Md1[â 7→ v]) = r1, and reachable_addresses(C,Md2[â 7→ v]) = r2.

By substitution these two claims in the assumption r1 = r2, our goal
reachable_addresses(C,Md1[â 7→ v]) = reachable_addresses(C,Md2[â 7→ v]) follows.

Definition 24 (Shrunk access: Access set without using the capability at location a).

χ(A,Md, a)
def
= A ∪ {a∗ | a∗ ∈ [σ, e) ∧ Md(a

′) = (δ, σ, e,_) ∧ a′ ∈ A \ {a}}

39

Definition 25 (Shrunk k-th access: K-th access set without using the capability at location a).

χ0(A,Md, a)
def
= χ(A,Md, a)

χk(A,Md, a)
def
= χ(χk−1(A,Md, a),Md, a)

Lemma 30 (Additivity of χk).

∀k,A1, A2,Md, a. χk(A1 ∪A2,Md, a) = χk(A1,Md, a) ∪ χk(A2,Md, a)

Proof. By induction on k. Similar to Lemma 17.

Lemma 31 (χk is upper-bounded by k-accessibility).

∀k,Md, A, a. χk(A,Md, a) ⊆ accessk,Md
A

Proof. Immediate by Definitions 21 and 25.

Lemma 32 (One capability is potentially lost from accessible addresses as a result of a non-capability
update).

∀A, a,Md, v. v 6= (δ,_,_,_) =⇒ accessMd[a7→v]A = χ(A,Md, a)

Proof.
Follows from Definitions 20 and 24 by observing thatMd[a 7→ v](a) 6= (δ,_,_,_) and thatMd[a 7→ v](a′) =Md(a

′)
for a′ 6= a.

Lemma 33 (χk captures k-accessibility after potential deletion of a capability).

∀A, a,Md, v. v 6= (δ,_,_,_) =⇒ accessk,Md[a7→v]A = χk(A,Md, a)

Proof.
Follows by induction on k from Definitions 21 and 25 using Lemma 32.

Lemma 34 (Reachability is captured by union over χk after potential deletion of a capability).

∀C,Md, a, v. v 6= (δ,_,_,_) =⇒

reachable_addresses(C,Md[a 7→ v]) =
⋃
k

(χk(
⋃
c∈C

[c.σ, c.e),Md, a))

Proof.
Immediate by Definition 22 and lemma 33.

Lemma 35 (Accessible addresses shrink by non-δ-capability updates).

∀A, a,Md, v. v 6= (δ,_,_,_) =⇒ accessMd[a 7→v]A ⊆ accessMd
A

Proof.
Immediate by Definition 20 and Lemma 32. Here is an alternative proof:

• By Definition 20, our goal is to show that:
A ∪

⋃
a′∈A,Md[a7→v](a′)=(δ,s,e,_)

[s, e) ⊆ A ∪
⋃

a′∈A,Md(a′)=(δ,s,e,_)

[s, e)

• Thus, it suffices to show that:⋃
a′∈A,Md[a 7→v](a′)=(δ,s,e,_)

[s, e) ⊆
⋃

a′∈A,Md(a′)=(δ,s,e,_)

[s, e)

• We consider an arbitrary a′ ∈ A, and distinguish the following two cases:

40

– Case a′ = a:
In this case, the condition Md[a 7→ v](a) = (δ,_,_,_) is not satisfied. So the set [s, e)
is ∅. So, we have ∅ ⊆ [s, e) for any s, e withMd(a) = (δ, s, e,_)

– Case a′ 6= a:
In this case, ⊆ follows by equality: Md[a 7→ v](a′) =Md(a

′) = (δ, s, e,_).

This suffices by set identities (preservation of ⊆ by ∪) to show our goal.

Lemma 36 (k-accessible addresses shrink by non-δ-capability updates).

∀k,A, a,Md, v. v 6= (δ,_,_,_) =⇒ accessk,Md[a7→v]A ⊆ accessk,Md
A

Proof.
We prove it by induction on k:

• Base case (k = 0):

Trivial by A ⊆ A.

• Inductive case (k > 0):

By the inductive hypothesis, we know accessk−1,Md[a 7→v]A ⊆ accessk−1,Md
A.

By Definition 21, our goal is to show that:
accessMd[a7→v](accessk−1,Md[a7→v]A) ⊆ accessMd

(accessk−1,Md
A)

We rewrite the inductive hypothesis as: ∃B. accessk−1,Md
A = B ∪ accessk−1,Md[a7→v]A.

Thus, by substitution, our goal becomes:
accessMd[a7→v](accessk−1,Md[a7→v]A) ⊆ accessMd

(B ∪ accessk−1,Md[a 7→v]A)

By additivity of accessMd
(Lemma 16), it is equivalent to show:

accessMd[a7→v](accessk−1,Md[a7→v]A) ⊆ accessMd
(B) ∪ accessMd

(accessk−1,Md[a7→v]A)

By transitivity of ⊆ (set identities), it suffices to show that:
accessMd[a7→v](accessk−1,Md[a7→v]A) ⊆ accessMd

(accessk−1,Md[a 7→v]A)

The latter follows immediately by Lemma 35, which proves our goal.

Lemma 37 (Reachability shrinks by non-δ-capability updates).

∀C,Md, a, v. v 6= (δ,_,_,_) =⇒
reachable_addresses(C,Md[a 7→ v]) ⊆ reachable_addresses(C,Md)

Proof.

• By Definition 22, it is equivalent to show that:⋃
k∈[0,|Md[a7→v]|]

accessk,Md[a 7→v](
⋃
c∈C

[c.s, c.e)) ⊆
⋃

k∈[0,|Md|]
accessk,Md

(
⋃
c∈C

[c.s, c.e))

• By preservation of ⊆ under ∪ (set identities), it suffices to show that:
∀k ∈ [0, |Md[a 7→ v]|]. accessk,Md[a7→v](

⋃
c∈C

[c.s, c.e)) ⊆ accessk,Md
(
⋃
c∈C

[c.s, c.e))

• But for an arbitrary k, the assertion accessk,Md[a7→v](
⋃
c∈C

[c.s, c.e)) ⊆ accessk,Md
(
⋃
c∈C

[c.s, c.e))

follows immediately by Lemma 36. This concludes the proof.

41

Lemma 38 (Safe memory updates only shrink reachability).

∀C,Md, â, v.

â ∈ reachable_addresses(C,Md) ∧
(C,Md � v ∨ v /∈ {δ} × Z× Z× Z)

=⇒ reachable_addresses(C,Md[â 7→ v]) ⊆ reachable_addresses(C,Md)

Proof. Similarly to the proof of Lemma 29, we distinguish the following four cases:

• Case v 6= (δ,_,_,_) ∧Md(â) 6= (δ,_,_,_), and

• Case v 6= (δ,_,_,_) ∧Md(â) = (δ, σ, e,_):

In these two cases, our goal follows immediately by Lemma 37.

• Case C,Md � v ∧Md(â) 6= (δ,_,_,_):

By Definition 23, we know v = (δ, σv, ev,_).

Thus, by Lemma 20, we know that:
reachable_addresses(C ∪ {v},Md) = reachable_addresses(C,Md[â 7→ v])

Thus, by additivity – Lemma 18, we have (*):
reachable_addresses(C,Md) ∪ reachable_addresses({v},Md) = reachable_addresses(C,Md[â 7→ v])

But by Lemma 28, we know:
reachable_addresses({v},Md) ⊆ reachable_addresses(C,Md).

Thus, we can rewrite (*) as:
reachable_addresses(C,Md) = reachable_addresses(C,Md[â 7→ v]) which suffices for our goal.

• Case C,Md � v ∧Md(â) = (δ, σ, e,_):

By Definition 23, we know v = (δ, σv, ev,_).

Thus, by Lemma 20, we know that:
reachable_addresses(C ∪ {v},Md[â 7→ 0]) = reachable_addresses(C,Md[â 7→ v])

Thus, by additivity – Lemma 18, we have (**):

reachable_addresses(C,Md[â 7→ 0]) ∪ reachable_addresses({v},Md[â 7→ 0]) =
reachable_addresses(C,Md[â 7→ v])

We consider an arbitrary address a ∈ reachable_addresses(C,Md[â 7→ v]). We distinguish the
two possible cases that arise from (**):

– Case a ∈ reachable_addresses(C,Md[â 7→ 0]):
In this case, we know by Lemma 37, and the definition of⊆ that a ∈ reachable_addresses(C,Md),
which by definition of ⊆ gives us our goal.

– Case a ∈ reachable_addresses({v},Md[â 7→ 0]):
Analogously, here, we know by Lemma 37, and the definition of ⊆ that:
a ∈ reachable_addresses({v},Md).
But by Lemma 28, and the definition of ⊆, we know that a ∈ reachable_addresses(C,Md),
which by the definition of ⊆ gives our goal.

42

Lemma 39 (Safe allocation adds only allocated addresses to k-accessibility).

∀A,Md, â, aa, σ, e, k.

∀a ∈ [σ, e).Md[â 7→ (δ, σ, e,_)](a) = v =⇒ v /∈ {δ} × Z× Z× Z ∧
aa ∈ accessk,Md[â7→(δ,σ,e,_)]A

=⇒ aa ∈ accessk,Md
A ∨ aa ∈ [σ, e)

Proof.

• We fix arbitrary A,Md, â, σ, e, and we assume the antecedents.

• We prove our goal by induction on k.

– Base case (k = 0):
We fix arbitrary aa.
By Definition 21, we unfold aa ∈ access0,Md[â7→(δ,σ,e,_)]A to get aa ∈ A.
By Definition 21, we thus conclude aa ∈ access0,Md

A satisfying our goal (the left disjunct).

– Inductive case (k > 0):
By the inductive hypothesis, we have:
∀a. a ∈ accessk−1,Md[â 7→(δ,σ,e,_)]A =⇒ a ∈ accessk−1,Md

A ∨ a ∈ [σ, e).
We fix arbitrary aa.
By Definition 21, we unfold aa ∈ accessk,Md[â 7→(δ,σ,e,_)] to get:
aa ∈ accessMd[â7→(δ,σ,e,_)](accessk−1,Md[â7→(δ,σ,e,_)]A).
By Definition 20, we distinguish two cases:

∗ Case aa ∈ accessk−1,Md[â7→(δ,σ,e,_)]A:
By the inductive hypothesis, we thus have:
aa ∈ accessk−1,Md

A ∨ aa ∈ [σ, e).
Two cases are possible:
· Case aa ∈ accessk−1,Md

A:
By Lemma 8, we immediately obtain our goal (the left disjunct).
· Case aa ∈ [σ, e):
This is immediately the right disjunct of our goal.

∗ Case ∃a∗, σ∗, e∗. aa ∈ [σ∗, e∗) ∧Md[â 7→ (δ, σ, e,_)](a∗) = (δ, σ∗, e∗,_)
∧ a∗ ∈ accessk−1,Md[â 7→(δ,σ,e,_)]A:

By instantiating the inductive hypothesis with a∗ ∈ accessk−1,Md[â7→(δ,σ,e,_)]A, we
obtain: a∗ ∈ accessk−1,Md

A ∨ a∗ ∈ [σ, e).
So, we consider the two possible cases:
· Case a∗ ∈ [σ, e):
In this case, we instantiate this assumed antecedent of our lemma:
∀a ∈ [σ, e).Md[â 7→ (δ, σ, e,_)](a) = v =⇒ v /∈ {δ} × Z× Z× Z and get a con-
tradiction to the conjunctMd[â 7→ (δ, σ, e,_)](a∗) = (δ, σ∗, e∗,_).
So, this case is impossible.
· Case a∗ ∈ accessk−1,Md

A:
Here, we further distinguish two cases:
Case a∗ = â:
In this case, [σ∗, e∗) = [σ, e). Thus, by substitution, we immediately obtain
aa ∈ [σ, e) which satisfies our goal (the right disjunct).
Case a∗ 6= â:
In this case, we know a∗ ∈ dom(Md) andMd(a

∗) = (δ, σ∗, e∗,_).

43

And already we know aa ∈ [σ∗, e∗) and a∗ ∈ accessk−1,Md
A.

So, by Definitions 20 and 21, we have:
aa ∈ accessk,Md

A which satisfies our goal (the left disjunct).
This concludes the two cases arising from the instantiated inductive hypothesis.

This concludes the two cases arising from Definition 20, and thus concludes the inductive
case of our lemma.

• This concludes the proof of Lemma 39.

Lemma 40 (Safe allocation adds only allocated addresses to reachability).

∀C,Md, â, aa, σ, e.

∀a ∈ [σ, e).Md[â 7→ (δ, σ, e,_)](a) = v =⇒ v /∈ {δ} × Z× Z× Z ∧
aa ∈ reachable_addresses(C,Md[â 7→ (δ, σ, e,_)])

=⇒ aa ∈ reachable_addresses(C,Md) ∨ aa ∈ [σ, e)

Proof.

• We fix arbitrary C,Md, â, aa, σ and e, and assume the antecedents.

• From the antecedent aa ∈ reachable_addresses(C,Md[â 7→ (δ, σ, e,_)]) and by Definition 22,
we have:
∃k. k ∈ [0, |Md[â 7→ _]|] ∧ aa ∈ accessk,Md[â7→(δ,σ,e,_)](

⋃
c∈C

[c.σ, c.e))

• Thus, by Lemma 39, we have:
aa ∈ accessk,Md

(
⋃
c∈C

[c.σ, c.e)) ∨ aa ∈ [σ, e)

• We distinguish the following two cases:

– Case aa ∈ accessk,Md
(
⋃
c∈C

[c.σ, c.e)):

In this case, we would like to show the left disjunct of our goal.
By Definition 22, we would like to show that:
∃k. k ∈ [0, |Md|] ∧ aa ∈ accessk,Md

(
⋃
c∈C

[c.σ, c.e))

Since we know our obtained k from above satisfies k ≥ |Md|, then Lemma 13 suffices for
the above re-statement of our goal.

– Case aa ∈ [σ, e):
Here, immediately our goal holds (its right disjunct).

Lemma 41 (Safe allocation causes reduction of k-accessibility to χk and addition of exactly the
allocated addresses).

∀A,Md, â, aa, σ, e, k.

∀a ∈ [σ, e).Md[â 7→ (δ, σ, e,_)](a) = v =⇒ v /∈ {δ} × Z× Z× Z ∧
â ∈ accessk,Md

A

=⇒
accessk,Md[â7→(δ,σ,e,_)]A = χk(A,Md, â) ∪ [σ, e)

44

Proof. The proof should follow by induction on k, and should be similar to the proof of Lemma 39.

Lemma 42 (Effect of assigning a derivable capability).

∀C,Md, a, c.

C,Md � c ∧ a ∈ reachable_addresses(C,Md)

=⇒
reachable_addresses(C,Md[a 7→ c]) =⋃
k

χk(
⋃
c′∈C

[c′.σ, c′.e) ∪ [c.σ, c.e),Md, a)

Proof. Follows from Lemmas 17, 18, 20, 30 and 34.

Lemma 43 (Assigning a derivable capability does not enlarge reachability).

∀C,Md, a, c.

C,Md � c ∧ a ∈ reachable_addresses(C,Md)

=⇒
reachable_addresses(C,Md[a 7→ c]) ⊆ reachable_addresses(C,Md)

Proof. After substitution using Lemma 42, we apply Lemma 30 to get two subgoals that are provable
using Lemma 31 and Lemma 28 respectively.

Definition 26 (Sub-capability-closed predicate). For a predicate P : V → B, sub-capability closure
is defined as follows:

subcap_closed(P)
def
= ∀x, σ, e, off , σ′, e′. P (x, σ, e, off) ∧ [σ′, e′) ⊆ [σ, e) =⇒ P (x, σ′, e′, off)

Definition 27 (Z-trivial predicate). For a predicate P : V → B, Z-triviality is defined as follows:

z_trivial(P)
def
= ∀z ∈ Z. P z

Definition 28 (Offset-oblivious predicate). For a predicate P : V → B, offset obliviousness is
defined as follows:

offset_oblivious(P)
def
= ∀x, σ, e, off , off ′. P (x, σ, e, off) =⇒ P (x, σ, e, off ′)

Definition 29 (Allocation-compatible predicate). For a predicate P : V → B, and an allocation
bound ∇, allocation compatibility is defined as follows:

allocation_compatible(P,∇)
def
= ∀σ, e. [σ, e) ⊆ (∇,−1] =⇒ P (δ, σ, e, 0)

Definition 30 (State-universal predicate). A predicate P : V → B holds universally for all values
of a program state s when:

state_universal(P, s)
def
= ∀a. P (s.Md(a)) ∧

P (s.ddc) ∧ P (s.stc) ∧ P (s.pcc) ∧
∀mid . P (s.imp(mid).pcc) ∧ P (s.imp(mid).dcc) ∧ P (s.mstc(mid)) ∧
∀(cc, dc,_,_) ∈ s.stk . P (cc) ∧ P (dc)

45

Lemma 44 (Predicates that are guaranteed to hold on the result of expression evaluation).

∀E , s, v.
E , s.Md, s.ddc, s.stc, s.pcc ⇓ v ∧
state_universal(P, s) ∧
offset_oblivious(P) ∧
z_trivial(P) ∧
subcap_closed(P)

=⇒
P (v)

Proof.
We assume the antecedents, and prove it by induction on expression evaluation.

1. Case evalconst,

2. Case evalBinOp,

3. Case evalCapType,

4. Case evalCapStart,

5. Case evalCapEnd, and

6. Case evalCapOff:

All of these subgoals follow immediately by assumption z_trivial(P) (unfolding Definition 27).

7. Case evalIncCap:

Follows from the induction hypothesis, and by assumption offset_oblivious(P) (unfolding Def-
inition 28).

8. Case evalDeref:

Follows from the assumption state_universal(P, s) (unfolding Definition 30).

9. Case evalLim:

Follows from the induction hypothesis, and by assumption subcap_closed(P) (unfolding Defi-
nition 26).

10. Case evalddc, and

11. Case evalstc:

Follow from assumption state_universal(P, s) (unfolding Definition 30).

46

Lemma 45 (Preservation of state universality of predicates).

∀P, s, s′.
s.nalloc < 0 ∧
state_universal(P, s) ∧
allocation_compatible(P, s′.nalloc− 1) ∧
offset_oblivious(P) ∧
z_trivial(P) ∧
subcap_closed(P) ∧
s→∗ s′

=⇒
state_universal(P, s′) ∧ s′.nalloc < 0

We prove state_universal(P, s′) by induction on s→∗ s′:

• Base case:

Immediate by assumption.

• Inductive case:

Here, we have s′′ with state_universal(P, s′′), s′′.nalloc < 0, and s′′ → s′. Our goal state_universal(P, s′)
consists of the following subgoals (by unfolding Definition 30):

1. ∀a. P (s′.Md(a))

2. P (s′.ddc)

3. P (s′.stc)

4. P (s′.pcc)

5. ∀mid . P (s′.imp(mid).pcc) ∧ P (s′.imp(mid).dcc) ∧ P (s′.mstc(mid))

6. ∀(cc, dc,_,_) ∈ s′.stk . P (cc) ∧ P (dc)

For each of the possible cases of s′′ → s′, we prove all of these subgoals:

1. Case assign:
Subgoals 2, 3, 5, and 6 are immediate after substitution by the induction hypothesis
state_universal(P, s′′).

For subgoal 4, we apply the assumption offset_oblivious(P) (unfolding Definition 28), so
our generated subgoal is immediate by the induction hypothesis state_universal(P, s′′).

For subgoal 1, we have s′.Md = s′′.Md[c 7→ v] with Er, s′′.Md, s
′′.ddc, s′′.stc, s′′.pcc ⇓ v,

and we distinguish two cases for an arbitrary a ∈ dom(s′.Md):

– Case a = c.σ + c.off :
Here, our goal P (s′.Md(a)) follows by Lemma 44.

– Case a 6= c.σ + c.off :
Here, our goal P (s′.Md(a)) follows by the induction hypothesis state_universal(P, s′′)
(unfolding Definition 30).

2. Case allocate:
Subgoals 2, 3, 5, and 6 are immediate after substitution by the induction hypothesis
state_universal(P, s′′).

47

For subgoal 4, we apply the assumption offset_oblivious(P) (unfolding Definition 28), so
our generated subgoal is immediate by the induction hypothesis state_universal(P, s′′).

For subgoal 1, we have:
s′.Md = s′′.Md[c 7→ (δ, s′.nalloc, s′′.nalloc, 0)][i 7→ 0 | i ∈ [s′.nalloc, s′′.nalloc)], and we dis-
tinguish three cases for an arbitrary a ∈ dom(s′.Md):

– Case a = c.σ + c.off :
Here, our goal P (s′.Md(a)) follows by applying assumption
allocation_compatible(P, s′.nalloc− 1) (unfolding Definition 29) to get the following
subgoal:
[s′.nalloc, s′′.nalloc) ⊆ (s′.nalloc− 1,−1]
for which it suffices to show that:
s′.nalloc− 1 < s′.nalloc
(immediate), and
s′′.nalloc ≤ −1
which is immediate by the induction hypothesis s′′.nalloc < 0.

– Case a ∈ [s′.nalloc, s′′.nalloc):
Here, our goal P (s′.Md(a)) follows by assumption z_trivial(P) (unfolding Defini-
tion 27).

– Case a /∈ [s′.nalloc, s′′.nalloc) ∧ a 6= c.σ + c.off :
Here, our goal follows by the induction hypothesis state_universal(P, s′′) (unfolding
Definition 30).

3. Case jump0:
Subgoals 1, 2, 3, 5, and 6 follow immediately after substitution by the induction hypothesis
state_universal(P, s′′).

Subgoal 4 follows by Lemma 44.

4. Case jump1:
Subgoals 1, 2, 3, 5, and 6 follow immediately after substitution by the induction hypothesis
state_universal(P, s′′).

Subgoal 4 follows after applying assumption offset_oblivious(P) (unfolding Definition 28)
from the induction hypothesis state_universal(P, s′′).

5. Case cinvoke:
For subgoal 1, and by inversion of cinvoke-aux, we distinguish the following three cases
for an arbitrary a ∈ dom(s′.Md):

– Case a ∈ [s+ off , s+ off + nArgs):
Here, our goal follows by applying Lemma 44 (The generated subgoals are available
by the preconditions of rule cinvoke-aux).

– Case a ∈ [s+ off + nArgs, s+ off + nArgs + nLocal):
Here, our goal follows from the assumption z_trivial(P) (unfolding Definition 27).

– Case a /∈ [s+ off , s+ off + nArgs + nLocal):
Here, our goal follows from the induction hypothesis state_universal(P, s′′) (unfolding
Definition 30).

Subgoal 2 follows by applying the induction hypothesis state_universal(P, s′′) (unfolding
Definition 30 and applying conjunct
∀mid . P (s′′.imp(mid).pcc) ∧ P (s′′.imp(mid).dcc) ∧ P (s′′.mstc(mid))).

48

The generated subgoals are immediate by the preconditions of cinvoke-aux defining s′.ddc.

Subgoal 3 follows by applying the induction hypothesis state_universal(P, s′′) (unfolding
Definition 30 and applying conjunct
∀mid . P (s′′.imp(mid).pcc) ∧ P (s′′.imp(mid).dcc) ∧ P (s′′.mstc(mid))).
The generated subgoals are immediate by applying assumption offset_oblivious(P) and
the preconditions of cinvoke-aux defining s′.stc.

Subgoal 4 follows by applying the induction hypothesis state_universal(P, s′′) (unfolding
Definition 30 and applying conjunct
∀mid . P (s′′.imp(mid).pcc) ∧ P (s′′.imp(mid).dcc) ∧ P (s′′.mstc(mid))).
The generated subgoals are immediate by applying assumption offset_oblivious(P) and
the preconditions of cinvoke-aux defining s′.pcc.

For subgoal 5, the first two conjuncts follow by applying the induction hypothesis state_universal(P, s′′)
(unfolding Definition 30 and applying conjunct
∀mid . P (s′′.imp(mid).pcc) ∧ P (s′′.imp(mid).dcc) ∧ P (s′′.mstc(mid))). The generated
subgoals are immediate by substitution.
For the third conjunct, we distinguish two cases:

– Case mid = midcinvoke :
Here, the proof is the same as the proof of subgoal 3 above, after noticing the pre-
condition s′.mstc(mid) = s′.stc of cinvoke-aux, and cinvoke.

– Case mid 6= midcinvoke :
Here, again the goal follows by applying the induction hypothesis state_universal(P, s′′).

For subgoal 6, we distinguish the following cases:

– Case (cc, dc,_,_) = top(s′.stk):
Here, the goal follows by applying the induction hypothesis state_universal(P, s′′)
(the conjuncts about s′′.pcc and s′′.ddc).

– Case (cc, dc,_,_) 6= top(s′.stk):
Here, the goal follows by applying the induction hypothesis state_universal(P, s′′)
(the conjunct about s′′.stk).

6. Case creturn:
Subgoal 1 follows immediately after substitution from the induction hypothesis state_universal(P, s′′).

Subgoal 2 follows by applying the induction hypothesis state_universal(P, s′′) (the con-
junct about s′′.stk).

Subgoal 3 follows by applying the induction hypothesis state_universal(P, s′′) (the con-
junct about s′′.mstc).

Subgoal 4 follows by applying the induction hypothesis state_universal(P, s′′) (the con-
junct about s′′.stk).

Subgoal 5 follows by applying assumption offset_oblivious(P) followed by applying the
induction hypothesis state_universal(P, s′′) (the conjunct about s′′.mstc).

Subgoal 6 follows from the corresponding conjunct of the induction hypothesis state_universal(P, s′′)
after noticing that elems(s′.stk) ⊂ elems(s′′.stk).

49

7. Case cexit:
All subgoals are immediate after substitution by the induction hypothesis state_universal(P, s′′).

Definition 31 (Code capabilities have an imports origin).

κ_has_originimp(v)
def
= �κ v =⇒ ∃mid ∈ dom(imp). v ⊆ imp(mid).pcc

Lemma 46 (κ_has_originimp is sub-capability closed).

∀imp. subcap_closed(κ_has_originimp)

Proof.
By unfolding Definition 26 of sub-capability closure, we assume for arbitrary imp, x, σ, e, off , σ′, e′

that κ_has_originimp(x, σ, e, off), and that [σ′, e′) ⊆ [σ, e).

Our goal is: κ_has_originimp(x, σ′, e′, off).

By unfolding Definition 31, our goal is:
�κ (x, σ′, e′, off) =⇒ ∃mid ∈ dom(imp). (x, σ′, e′, off) ⊆ imp(mid).pcc

Two cases arise (after unfolding Definition 1):

• Case x = κ:
Here, after unfolding Definition 3, our goal holds by applying the transitivity of ⊆ on intervals.
The generated subgoals follow from the assumptions (after unfolding Definitions 3 and 31 in
the assumption).

• Case x 6= κ:
Here, our goal holds vacuously.

Lemma 47 (κ_has_originimp is Z-trivial).

∀imp. z_trivial(κ_has_originimp)

Proof.
Our goal, by unfolding Definitions 27 and 31, then Definition 1 holds vacuously.

Lemma 48 (κ_has_originimp is offset oblivious).

∀imp. offset_oblivious(κ_has_originimp)

Proof.
Our goal, after unfolding Definitions 28 and 31 follows by applying Lemma 1 about the offset
obliviousness of ⊆.

Lemma 49 (κ_has_originimp is allocation compatible).

∀∇, imp. allocation_compatible(κ_has_originimp ,∇)

Proof.
By unfolding Definition 29 of allocation-compatibility, it suffices to show for arbitrary imp that
κ_has_originimp((δ,_,_,_)).

This latter goal is vacuously true after we unfold Definition 31 then Definition 1.

50

Lemma 50 (κ_has_originimp is initial-state-universal).

∀t, s. t `i s =⇒ state_universal(κ_has_origins.imp , s)

Proof.
We assume t `i s for arbitrary t and s.
By Definition 30, we have the following subgoals:

• ∀a. κ_has_origins.imp(s.Md(a))

By unfolding Definitions 1 and 31 and inverting the assumption using initial-state, this subgoal
is vacuously true.

• κ_has_origins.imp(s.ddc)

By unfolding Definitions 1 and 31 and inverting the assumption using initial-state then exec-
state (obtaining �δ s.ddc), this subgoal is vacuously true.

• κ_has_origins.imp(s.stc)

By unfolding Definitions 1 and 31 and inverting the assumption using initial-state then exec-
state (obtaining �δ s.stc), this subgoal is vacuously true.

• κ_has_origins.imp(s.pcc)

By unfolding Definitions 1 and 31 and inverting the assumption using initial-state, our goal is
satisfied by choosing mid = mainMod .

• ∀mid ′. κ_has_origins.imp(s.imp(mid ′).pcc)

By unfolding Definitions 1 and 31, this subgoal holds by the reflexivity of⊆ (choosing mid = mid ′).

• ∀mid ′. κ_has_origins.imp(s.imp(mid ′).ddc)

By unfolding Definitions 1 and 31, and inverting the assumption using initial-state then exec-
state (obtaining �δ s.imp(mid ′).ddc), this subgoal is vacuously true.

• ∀mid ′. κ_has_origins.imp(s.mstc(mid ′))

By unfolding Definitions 1 and 31, and inverting the assumption using initial-state then exec-
state (obtaining �δ s.mstc(mid ′)), this subgoal is vacuously true.

• ∀(cc, dc,_,_) ∈ s.stk . κ_has_origins.imp(cc) ∧ κ_has_origins.imp(dc)

By unfolding Definitions 1 and 31 and inverting the assumption using initial-state, this subgoal
is vacuously true.

This concludes the proof of Lemma 50.

Lemma 51 (κ_has_originimp is universal for subsequent states).

∀t, s, s′. t `i s ∧ s→∗ s′ =⇒ state_universal(κ_has_origins.imp , s
′)

Proof.
By Lemma 50, we know (*):
state_universal(κ_has_origins.imp , s)

We apply Lemma 45 to our goal to get the following subgoals:

• s.nalloc < 0

Immediate by inversion of assumption t `i s using rule initial-state.

51

• state_universal(κ_has_origins.imp , s)

Immediate by (*).

• ∀∇. allocation_compatible(κ_has_origins.imp ,∇)

Immediate by Lemma 49.

• offset_oblivious(κ_has_origins.imp)

Immediate by Lemma 48.

• z_trivial(κ_has_origins.imp)

Immediate by Lemma 47.

• subcap_closed(κ_has_origins.imp)

Immediate by Lemma 46.

• s→∗ s′

Immediate by assumption.

This concludes the proof of Lemma 51.

Corollary 1 (There is at least one module that is executing at any time).

∀t : TargetSetup, s, s′ : TargetState. t `i s ∧ s→∗ s′ =⇒ ∃c ∈ range(s′.imp). s′.pcc ⊆ c.1

Proof.
Follows by applying Lemma 51 after unfolding Definition 30 and Definition 31.

Lemma 52 (Preservation of `exec by reduction).

∀t, s, s′. t `exec s ∧ s→ s′ =⇒ t `exec s
′

Proof. We assume the antecedent t `exec s ∧ s→ s′ for arbitrary t, s, s′.
By inversion using rules exec-state and valid-program, we obtain the following assumptions:

t definition
t = (Mc,_, imp,mstct, φ)

s definition
s = 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉

pcc type
�κ pcc

ddc type
�δ ddc

stc type
�δ stc

nalloc is negative
nalloc < 0

Domains are modIDs
modIDs = dom(imp) = dom(mstc) = dom(mstct)

Static memory is non-negative
(

⋃
mid∈modIDs

[imp(mid).ddc.σ, imp(mid).ddc.e) ∪ [mstc(mid).σ,mstc(mid).e)) ∩ (−∞, 0) = ∅

52

Types of imp and mstc
∀mid ∈ modIDs. �κ imp(mid).pcc ∧ �δ imp(mid).ddc ∧ �δ mstc(mid)

mstc capabilities are in-bounds
∀mid ∈ modIDs. `δ mstc(mid)

mstc offsets correspond to the sizes of frames of the called functions
∀mid ∈ modIDs. mstc(mid).off =

∑
(_,_,mid,fid)∈stk

φ(mid ,fid).nArgs + φ(mid ,fid).nLocal +

(main ∈ dom(imp(mid).offs) ? φ(mid , main).nArgs + φ(mid , main).nLocal : 0)

Capability registers describe a module
∃mid ∈ modIDs. pcc

.
= imp(mid).pcc ∧ ddc

.
= imp(mid).ddc ∧ stc

.
= mstc(mid)

stk frames describe a module
∀(dc, cc,_,_) ∈ elems(stk).
�δ dc ∧ �κ cc ∧ ∃mid ∈ modIDs. cc

.
= imp(mid).pcc ∧ dc

.
= imp(mid).ddc

Capabilities describe parts of the memory domains
∀mid ∈ modIDs. imp(mid).pcc ⊆ dom(Mc) ∧ imp(mid).ddc ⊆ dom(Md)

Stack region is pre-allocated statically
∀mid ∈ modIDs. mstc(mid)

.
= mstct(mid)

Data memory is addressable at static locations and newly-allocated ones
dom(Md) =

⋃
mid∈modIDs

[imp(mid).ddc.σ, imp(mid).ddc.e) ∪ [mstc(mid).σ,mstc(mid).e) ∪ [nalloc,−1)

Reachable addresses are addressable
reachable_addresses(

⋃
mid∈modIDs

{imp(mid).ddc,mstc(mid)},Md) ⊆ dom(Md)

A module does not have access to any other module’s stack
∀mid , a. a ∈ reachable_addresses({mstc(mid), imp(mid).ddc},Md) =⇒
a /∈

⋃
mid′∈modIDs\{mid}

[mstc(mid ′).σ,mstc(mid ′).e)

Stack capabilities do not leak outside the stack
∀a,mid ∈ modIDs.Md(a) = (δ, σ, e,_) ∧ [σ, e) ⊆ mstc(mid) =⇒ a ∈ [mstc(mid).σ,mstc(mid).e)

Stack regions and data segments are disjoint
∀sc ∈ range(mstc), c ∈ range(imp). sc ∩ c.2 = ∅

No code capability lives in memory
∀a.Md(a) 6= (κ, σ, e,_)

Data capabilities in memory describe addressable locations
∀a.Md(a) = (δ, σ, e,_) =⇒ [σ, e) ⊆ dom(Md)

Top of the stack mentions currently-executing module
stk 6= nil =⇒ pcc

.
= imp(top(stk).mid).pcc

Each stack frame describes the module-identity of the pcc of in the next frame
∀i ∈ [1, length(stk)− 1]. stk(i).pcc

.
= imp(stk(i− 1).mid).pcc

Our goal consists of similar subgoals about s′. For brevity, we use for the subgoals the same
names that were used for the assumptions above.

Subgoals t definition, s′ definition are immediate.

53

Subgoals Domains are modIDs, Types of imp and mstc, Stack region is pre-allocated
statically, Stack regions and data segments are disjoint, and Static memory is non-
negative follow from their corresponding assumptions by applying Lemmas 2 and 55 obtaining
subgoals that are immediate by the assumption s→ s′.

By case distinction on the assumption s→ s′, we get the following cases. We prove our remaining
subgoals separately for each of them:

1. Case assign:

We obtain the following preconditions:
(S-PCC-IN-BOUNDS):
`κ s.pcc

(S’-PCC):
s′.pcc = inc(s.pcc, 1)

(S-INSTR):
s.Mc(s.pcc) = Assign EL ER
(ER-EVAL-V):
ER, s.Md, s.ddc, s.stc, s.pcc ⇓ v
(EL-EVAL-C):
EL, s.Md, s.ddc, s.stc, s.pcc ⇓ c
(C-IN-BOUNDS):
`δ c
(STC-PROHIBITION):
�δ v =⇒ (v ∩ s.stc = ∅ ∨ c ⊆ s.stc)

(S’-MEM):
s′.Md = s.Md[c 7→ v]

(S’-DDC):
s′.ddc = s.ddc

(S’-STC):
s′.stc = s.stc

(S’-NALLOC):
s′.nalloc = s.nalloc

(S’-STK):
s′.stk = s.stk

(S’-MSTC):
s′.mstc = s.mstc

Subgoal s′.pcc type follows from the corresponding assumption after unfolding using (S’-PCC)
and the definition of inc.
Subgoal s′.ddc type is immediate from the corresponding assumption after substitution using
(S’-DDC).
Subgoal s′.stc type is immediate from the corresponding assumption after substitution using
(S’-STC).
Subgal s′.nalloc is negative is immediate from the corresponding assumption after substitution
using (S’-NALLOC).
Subgoal mstc capabilities are in-bounds is immediate from the corresponding assumption
after substitution using (S’-MSTC).
Subgoal mstc offsets correspond to the sizes of frames of the called functions is
immediate from the corresponding assumption after substitution using (S’-MSTC).

54

Subgoal Capability registers describe a module follows easily from the corresponding
assumption after substitution using (S’-PCC), (S’-DDC), and (S’-STC) by the definition of
inc and by instantiating Lemma 2.

Subgoal s′.stk frames describe a module follows easily from the corresponding assumption
after substitution using (S’-STK) and instantiation of Lemma 2.

Subgoal Capabilities describe parts of the memory domains follows easily from the cor-
responding assumption after substitution using (S’-MEM) and noticing that dom(s′.Md) ⊇ dom(s.Md)
and instantiation of Lemma 2.

For subgoal Data memory is addressable at static locations and newly-allocated
ones, we have to prove:
dom(s′.Md) =⋃
mid∈modIDs

[s′.imp(mid).ddc.σ, s′.imp(mid).ddc.e) ∪ [s′.mstc(mid).σ, s′.mstc(mid).e) ∪ [s′.nalloc,−1)

By applying transitivity, it suffices to prove the following subgoals:

•
⋃

mid∈modIDs

[s′.imp(mid).ddc.σ, s′.imp(mid).ddc.e) ∪ [s′.mstc(mid).σ, s′.mstc(mid).e) ∪ [s′.nalloc,−1) =⋃
mid∈modIDs

[s.imp(mid).ddc.σ, s.imp(mid).ddc.e) ∪ [s.mstc(mid).σ, s.mstc(mid).e) ∪ [s.nalloc,−1)

This follows easily by substitution using (S’-NALLOC), and by using the instantiated
Lemmas 2 and 55.

• dom(s.Md) = dom(s′.Md)

– We pick an arbitrary a ∈ dom(s.Md), and we show that a ∈ dom(s′.Md).
This is immediate by (S’-MEM).

– We pick an arbitrary a ∈ dom(s′.Md), and we show that a ∈ dom(s.Md).
We distinguish the following two cases:
∗ Case a = c.σ + c.off :

Here, by applying the definition of ⊆ instantiated with assumption Reachable
addresses are addressable, it suffices to instead show that:
c.σ + c.off ∈ reachable_addresses(

⋃
mid∈modIDs

{s.imp(mid).ddc, s.mstc(mid)}, s.Md)

By applying Lemma 18, it suffices by easy set identities to show that:
∃mid ∈ modIDs. c.σ + c.off ∈ reachable_addresses({s.imp(mid).ddc, s.mstc(mid)}, s.Md)
We then apply Lemma 19 obtaining the following subgoal (after applying some
set identities):
∃mid ∈ modIDs, C.
addr(C) ∪ addr({s.ddc, s.stc}) = addr({s.imp(mid).ddc, s.mstc(mid)}) ∧
c.σ + c.off ∈ reachable_addresses({s.ddc, s.stc}, s.Md)
We choose the mid given by assumptionCapability registers describe a mod-
ule.
And choose C := {
(δ, s.imp(mid).ddc.σ, s.ddc.σ,_),
(δ, s.ddc.e, s.imp(mid).ddc.e,_),
(δ, s.mstc(mid).σ, s.stc.σ,_),
(δ, s.stc.e, s.mstc(mid).e,_)
}
The first conjunct is thus immediate by assumption Capability registers de-
scribe a module after unfolding the definition of addr in the goal and the
Definition 3 of ⊆ in the assumption.

For the second conjunct, we apply Lemma 25, and some set identities obtaining
the following subgoals:

55

· E , s.Md, s.ddc, s.stc, s.pcc ⇓ (δ, c.σ, c.e, c.off)
Immediate by (EL-EVAL-C) and (C-IN-BOUNDS), after unfolding Defini-
tion 2.
· c.σ + c.off ∈ [c.σ, c.e)
Immediate by (C-IN-BOUNDS), after unfolding Definition 2.
· s.pcc = (κ,_,_,_)
Immediate by assumption pcc type.
· s.ddc = (δ,_,_,_)
Immediate by assumption ddc type.
· s.stc = (δ,_,_,_)
Immediate by assumption stc type.

∗ Case a 6= c.σ + c.off :
Here, by (S’-MEM), our goal is immediate.

• dom(s.Md) =⋃
mid∈modIDs

[s.imp(mid).ddc.σ, s.imp(mid).ddc.e) ∪ [s.mstc(mid).σ, s.mstc(mid).e) ∪ [s.nalloc,−1)

This is immediate by the assumption Data memory is addressable at static loca-
tions and newly-allocated ones.

For subgoal Reachable addresses are addressable, we have to prove that:

reachable_addresses(
⋃

mid∈modIDs

{s′.imp(mid).ddc, s′.mstc(mid)}, s′.Md) ⊆ dom(s′.Md)

By applying the corresponding assumption, we are left with the following two subgoals:

• dom(s.Md) = dom(s′.Md)

Proved above.

• reachable_addresses(
⋃

mid∈modIDs

{s.imp(mid).ddc, s.mstc(mid)}, s.Md) =

reachable_addresses(
⋃

mid∈modIDs

{s′.imp(mid).ddc, s′.mstc(mid)}, s′.Md)

By substitution using s′.mstc = s.mstc and s′.imp = s.imp, it suffices to show that:
reachable_addresses(

⋃
mid∈modIDs

{s.imp(mid).ddc, s.mstc(mid)}, s.Md) =

reachable_addresses(
⋃

mid∈modIDs

{s.imp(mid).ddc, s.mstc(mid)}, s′.Md)

Here, we apply Lemma 38.
The generated subgoals are easy by (S’-MEM), (EL-EVAL-C) and by Lemma 25 using
(ER-EVAL-V), and (C-IN-BOUNDS), unfolding Definition 23.

For subgoalNo code capability lives in memory, we pick an arbitrary a where a ∈ dom(s′.Md).

Using (S’-MEM), we distinguish the following two cases:

• Case a 6= c.σ + c.off :
Here, our goal follows from assumption No code capability lives in memory.

• Case a = c.σ + c.off :
Here, our goal follows by applying Lemma 4 obtaining subgoals that are immediate by
assumption ddc type, assumption stc type, assumption No code capability lives in
memory, and by (ER-EVAL-V).

For subgoal Data capabilities in memory describe addressable locations,

we pick an arbitrary a where a ∈ dom(s′.Md).

56

Assume s′.Md(a) = (δ, σ, e,_).

Our goal is: [σ, e) ⊆ dom(s′.Md).

Using (S’-MEM), we distinguish the following two cases:

• Case a 6= c.σ + c.off :
Here, our goal follows from assumption Data capabilities in memory describe ad-
dressable locations.

• Case a = c.σ + c.off :
Here, instantiate Lemma 25 using (ER-EVAL-V) and using assumptions pcc type, ddc
type, and stc type obtaining:
v = (δ, σ, e,_) =⇒ [σ, e) ⊆ reachable_addresses({stc, ddc},Md)

Instantiating this using our assumption above, we obtain:
[σ, e) ⊆ reachable_addresses({stc, ddc},Md)

By transitivity of ⊆ and using assumption Reachable addresses are addressable, we
know:
[σ, e) ⊆ dom(Md)

which is our goal.

For subgoal A module does not have access to any other module’s stack, we have to
prove:
∀mid , a. a ∈ reachable_addresses({s′.mstc(mid), imp(mid).ddc}, s′.Md) =⇒
a /∈

⋃
mid′∈modIDs\{mid}

[s′.mstc(mid ′).σ, s′.mstc(mid ′).e)

Fix arbitrary mid , a.

Assume a ∈ reachable_addresses({s.mstc(mid), imp(mid).ddc}, s′.Md) (applied (S’-MSTC))

Our goal is: a /∈
⋃

mid′∈modIDs\{mid}
[s.mstc(mid ′).σ, s.mstc(mid ′).e) (applied (S’-MSTC))

By instantiating Lemma 38, we know that:
a ∈ reachable_addresses({s.mstc(mid), imp(mid).ddc}, s.Md)

which we use to instantiate the corresponding assumption (A module does not have access
to any other module’s stack) immediately obtaining our goal.

For subgoal Stack capabilities do not leak outside the stack, we have to prove:
∀a,mid ∈ modIDs. s′.Md(a) = (δ, σ, e,_) ∧ [σ, e) ⊆ s′.mstc(mid) =⇒ a ∈ [s′.mstc(mid).σ, s′.mstc(mid).e)

Pick arbitrary a, mid where a ∈ dom(s′.Md) and mid ∈ modIDs.

Assume s′.Md(a) = (δ, σ, e,_),

and assume [σ, e) ⊆ s′.mstc(mid).

Our goal is: a ∈ [s′.mstc(mid).σ, s′.mstc(mid).e).

By (S’-MSTC), it suffices to prove:
a ∈ [s.mstc(mid).σ, s.mstc(mid).e)

Using (S’-MEM), distinguish the following cases:

• Case a = c.σ + c.off :
By instantiating (STC-PROHIBITION) using the first assumption, we know (*):
v ∩ s.stc 6= ∅ =⇒ c ⊆ s.stc

We claim: [σ, e) ⊆ s′.mstc(mid) =⇒ s.stc
.
= mstc(mid)

57

– Using assumption Capability registers describe a module, obtain mid∗ with:
s.stc

.
= mstc(mid∗)

– Thus, our claim becomes: ∀mid . [σ, e) ⊆ s′.mstc(mid) =⇒ mid = mid∗

– By Lemma 25, we know [σ, e) ⊆ reachable_addresses({mstc(mid∗), imp(mid∗).ddc}, s.Md)
Thus, by instantiating assumption A module does not have access to any other
module’s stack, we know:
[σ, e) ∩

⋃
mid′∈modIDs\{mid}

[s.mstc(mid ′).σ, s.mstc(mid ′).e) = ∅

Together with assumption [σ, e) ⊆ s.mstc(mid),
we conclude using set identities that mid = mid∗.

But then we know [σ, e) ⊆ s.stc.
Thus, we instantiate (*), obtaining:
c ⊆ s.stc

But by (C-IN-BOUNDS), we know:
c.σ + c.off ∈ s.stc

Thus, by easy substitutions using our case condition, and using the claim above about
mid , we obtain:
a ∈ s.mstc(mid)

which is our goal.

• Case a 6= c.σ + c.off :
Here, by (S’-MEM), know s.Md(a) = s′.Md(a).
By instantiating the corresponding assumption about s.Md, we know:
s′.Md(a) = (δ, σ, e,_) ∧ ∃mid ∈ modIDs. [σ, e) ⊆ s.mstc(mid) =⇒
a ∈ [s.mstc(mid).σ, s.mstc(mid).e)

By instantiation using the assumptions above, we immediately have our goal.

Subgoal Top of the stack mentions currently-executing module is immediate by sub-
stitution using (S’-STK) and (S’-PCC).

Subgoal Each stack frame describes the module-identity of the pcc of in the next
frame is immediate by substitution using (S’-STK) and (S’-PCC).

This concludes the proof of case assign.

2. Case allocate:

We obtain the following preconditions:

(S-PCC-IN-BOUNDS):
`κ s.pcc

(S’-PCC):
s′.pcc = inc(s.pcc, 1)

(S-INSTR):
s.Mc(s.pcc) = Alloc EL ER
(ESIZE-EVAL-V):
Esize , s.Md, s.ddc, s.stc, s.pcc ⇓ v
(EL-EVAL-C):
EL, s.Md, s.ddc, s.stc, s.pcc ⇓ c
(C-IN-BOUNDS):
`δ c
(V-POSITIVE):
v ∈ Z+

58

(S’-MEM):
s′.Md = s.Md[c 7→ (δ, nalloc− v, nalloc, 0), i 7→ 0 ∀i ∈ [nalloc− v, nalloc)]

(S’-DDC):
s′.ddc = s.ddc

(S’-STC):
s′.stc = s.stc

(S’-NALLOC):
s′.nalloc = s.nalloc− v
(S’-NALLOC-INF):
s′.nalloc > ∇
(S’-STK):
s′.stk = s.stk

(S’-MSTC):
s′.mstc = s.mstc

Subgoal s′.pcc type follows from the corresponding assumption after unfolding using (S’-PCC)
and the definition of inc.

Subgoal s′.ddc type is immediate from the corresponding assumption after substitution using
(S’-DDC).

Subgoal s′.stc type is immediate from the corresponding assumption after substitution using
(S’-STC).

Subgal s′.nalloc is negative is immediate from the corresponding assumption after substitution
using (S’-NALLOC) and noting (V-POSITIVE).

Subgoal mstc capabilities are in-bounds is immediate from the corresponding assumption
after substitution using (S’-MSTC).

Subgoal mstc offsets correspond to the sizes of frames of the called functions is
immediate from the corresponding assumption after substitution using (S’-MSTC).

Subgoal Capability registers describe a module follows easily from the corresponding
assumption after substitution using (S’-PCC), (S’-DDC), and (S’-STC) by the definition of
inc and by instantiating Lemma 2.

Subgoal s′.stk frames describe a module follows easily from the corresponding assumption
after substitution using (S’-STK) and instantiation of Lemma 2.

Subgoal Capabilities describe parts of the memory domains follows easily from the cor-
responding assumption after substitution using (S’-MEM) and noticing that dom(s′.Md) ⊇ dom(s.Md)
and instantiation of Lemma 2.

For subgoal Data memory is addressable at static locations and newly-allocated
ones, we have to prove:
dom(s′.Md) =⋃
mid∈modIDs

[s′.imp(mid).ddc.σ, s′.imp(mid).ddc.e) ∪ [s′.mstc(mid).σ, s′.mstc(mid).e) ∪ [s′.nalloc,−1)

59

Using (S’-MEM) and properties about the map update operator, we know that (*):
dom(s′.Md) = dom(s.Md[c 7→ _]) ∪ [s′.nalloc, s.nalloc)

Thus, from (*) and (S’-NALLOC) and (V-POSITIVE) and by set identities, it suffices for our
goal to show:

dom(s.Md[c 7→ _]) =⋃
mid∈modIDs

[s′.imp(mid).ddc.σ, s′.imp(mid).ddc.e) ∪ [s′.mstc(mid).σ, s′.mstc(mid).e) ∪ [s.nalloc,−1)

This is now exactly the same as the corresponding goal in case assign. We omit the proof
here.

For subgoal Reachable addresses are addressable, we have to prove that:

reachable_addresses(
⋃

mid∈modIDs

{s′.imp(mid).ddc, s′.mstc(mid)}, s′.Md) ⊆ dom(s′.Md)

It suffices to show that:

reachable_addresses(
⋃

mid∈modIDs

{s.imp(mid).ddc, s.mstc(mid)}, s′.Md) ⊆ dom(s′.Md)

By instantiating Lemma 40 usingMd := s.Md[i 7→ 0 | i ∈ [s.nalloc− v, s.nalloc)], and â := c.σ + c.off
from (S’-MEM), we know (*):

reachable_addresses(
⋃

mid∈modIDs

{s.imp(mid).ddc, s.mstc(mid)}, s′.Md) =

reachable_addresses(
⋃

mid∈modIDs

{s.imp(mid).ddc, s.mstc(mid)}, s.Md) ∪ [s′.nalloc, s.nalloc)

And by assumption Reachable addresses are addressable, we know (**):

reachable_addresses(
⋃

mid∈modIDs

{s.imp(mid).ddc, s.mstc(mid)}, s.Md) ⊆ dom(s.Md)

From (**) and (*) using set identities, we have:

reachable_addresses(
⋃

mid∈modIDs

{s.imp(mid).ddc, s.mstc(mid)}, s′.Md) ⊆

dom(s.Md) ∪ [s′.nalloc, s.nalloc)

Thus, it suffices for our goal by substitution to show that:

dom(s′.Md) = dom(s.Md) ∪ [s′.nalloc, s.nalloc)

For this, it suffices to show that:
dom(s.Md[c 7→ _]) = dom(s.Md)

That has been proved for the previous subgoal. We avoid repetition.

For subgoalNo code capability lives in memory, we pick an arbitrary a where a ∈ dom(s′.Md).

Our goal is: s′.Md(a) 6= (κ,_,_,_).

Using (S’-MEM), we distinguish the following three cases:

• Case a = c.σ + c.off :
Immediate by (S’-MEM).

• Case a ∈ [s′.nalloc, s.nalloc):
Immediate by (S’-MEM).

• Case a /∈ {c.σ + c.off } ∪ [s′.nalloc, s.nalloc):
Immediate by assumption No code capability lives in memory.

60

For subgoal Data capabilities in memory describe addressable locations,

we pick an arbitrary a where a ∈ dom(s′.Md).

Assume s′.Md(a) = (δ, σ, e,_).

Our goal is: [σ, e) ⊆ dom(s′.Md).

Using (S’-MEM), we distinguish the following three cases:

• Case a = c.σ + c.off :
Here, our goal follows by the map update operator in (S’-MEM).

• Case a ∈ [s′.nalloc, s.nalloc):
Here, our goal is true after deriving a contradiction to assumption s′.Md(a) = (δ,_,_,_).

• Case a /∈ {c.σ + c.off } ∪ [s′.nalloc, s.nalloc):
Here, our goal follows by instantiating assumption Data capabilities in memory de-
scribe addressable locations.

For subgoal A module does not have access to any other module’s stack, we have to
prove:
∀mid , a. a ∈ reachable_addresses({s′.mstc(mid), imp(mid).ddc}, s′.Md) =⇒
a /∈

⋃
mid′∈modIDs\{mid}

[s′.mstc(mid ′).σ, s′.mstc(mid ′).e)

Fix arbitrary mid , a.

Assume a ∈ reachable_addresses({s.mstc(mid), imp(mid).ddc}, s′.Md) (applied (S’-MSTC))

Our goal is: a /∈
⋃

mid′∈modIDs\{mid}
[s.mstc(mid ′).σ, s.mstc(mid ′).e) (applied (S’-MSTC))

By instantiating Lemma 40 usingMd := s.Md[i 7→ 0 | i ∈ [s.nalloc− v, s.nalloc)], and â := c.σ + c.off
from (S’-MEM), we know (*):

reachable_addresses(
⋃

mid∈modIDs

{s.imp(mid).ddc, s.mstc(mid)}, s′.Md) =

reachable_addresses(
⋃

mid∈modIDs

{s.imp(mid).ddc, s.mstc(mid)}, s.Md) ∪ [s′.nalloc, s.nalloc)

Thus, distinguish two cases:

• Case a ∈ reachable_addresses(
⋃

mid∈modIDs

{s.imp(mid).ddc, s.mstc(mid)}, s.Md):

Here, instantiate the corresponding assumption, A module does not have access to
any other module’s stack, obtaining our goal.

• Case a ∈ [s′.nalloc, s.nalloc):
Here, our goal follows from both assumptions Static memory is non-negative and
nalloc is negative.

For subgoal Stack capabilities do not leak outside the stack, we have to prove:
∀a,mid ∈ modIDs. s′.Md(a) = (δ, σ, e,_) ∧ [σ, e) ⊆ s′.mstc(mid) =⇒ a ∈ [s′.mstc(mid).σ, s′.mstc(mid).e)

Pick arbitrary a, mid where a ∈ dom(s′.Md) and mid ∈ modIDs.

Assume s′.Md(a) = (δ, σ, e,_),

and assume [σ, e) ⊆ s′.mstc(mid).

Our goal is: a ∈ [s′.mstc(mid).σ, s′.mstc(mid).e).

61

By (S’-MSTC), it suffices to prove:
a ∈ [s.mstc(mid).σ, s.mstc(mid).e)

Using (S’-MEM), distinguish the following cases:

• Case a = c.σ + c.off :
Here, our goal is provable after deriving a contradiction to assumption [s′.nalloc, s.nalloc) ⊆ s′.mstc(mid)
from assumptions Static memory is non-negative and nalloc is negative.

• Case a ∈ [s′.nalloc, s.nalloc):
Here, our goal is provable after deriving a contradiction to assumption s′.Md(a) = (δ,_,_,_)
using (S’-MEM).

• Case a /∈ [s′.nalloc, s.nalloc) ∪ {c.σ + c.off }:
Follows from the corresponding assumption, Stack capabilities do not leak outside
the stack using (S’-MEM).

Subgoal Top of the stack mentions currently-executing module is immediate by sub-
stitution using (S’-STK) and (S’-PCC).

Subgoal Each stack frame describes the module-identity of the pcc of in the next
frame is immediate by substitution using (S’-STK) and (S’-PCC).

This concludes the proof of case allocate.

3. Case jump0:

We obtain the following preconditions:

(S-PCC-IN-BOUNDS):
`κ s.pcc

(S-INSTR):
s.Mc(s.pcc) = JumpIfZero Econd Eoff

(ECOND-EVAL-V):
Econd , s.Md, s.ddc, s.stc, s.pcc ⇓ v
(V-ZERO):
v = 0

(EOFF-EVAL-OFF):
Eoff , s.Md, s.ddc, s.stc, s.pcc ⇓ off

(OFF-INTEGER):
off ∈ Z
(S’-PCC):
s′.pcc = inc(s.pcc, off)

(S’-MEM):
s′.Md = s.Md

(S’-DDC):
s′.ddc = s.ddc

(S’-STC):
s′.stc = s.stc

(S’-NALLOC):
s′.nalloc = s.nalloc

(S’-STK):
s′.stk = s.stk

62

(S’-MSTC):
s′.mstc = s.mstc

Subgoal s′.pcc type follows from the corresponding assumption after unfolding using (S’-PCC)
and the definition of inc.

Subgoal Capability registers describe a module follows easily from the corresponding
assumption after substitution using (S’-PCC), (S’-DDC), and (S’-STC) by the definition of
inc and by instantiating Lemma 2.

All other subgoals are immediate by the corresponding assumptions after substitution from
the preconditions.

4. Case jump1:

We obtain the following preconditions:

(S-PCC-IN-BOUNDS):
`κ s.pcc

(S-INSTR):
s.Mc(s.pcc) = JumpIfZero Econd Eoff

(ECOND-EVAL-V):
Econd , s.Md, s.ddc, s.stc, s.pcc ⇓ v
(V-NON-ZERO):
v 6= 0

(S’-PCC):
s′.pcc = inc(s.pcc, 1)

(S’-MEM):
s′.Md = s.Md

(S’-DDC):
s′.ddc = s.ddc

(S’-STC):
s′.stc = s.stc

(S’-NALLOC):
s′.nalloc = s.nalloc

(S’-STK):
s′.stk = s.stk

(S’-MSTC):
s′.mstc = s.mstc

Subgoal s′.pcc type follows from the corresponding assumption after unfolding using (S’-PCC)
and the definition of inc.

Subgoal Capability registers describe a module follows easily from the corresponding
assumption after substitution using (S’-PCC), (S’-DDC), and (S’-STC) by the definition of
inc and by instantiating Lemma 2.

All other subgoals are immediate by the corresponding assumptions after substitution from
the preconditions.

63

5. Case cinvoke:

We obtain the following preconditions (after inversion using cinvoke-aux):

(S-PCC-IN-BOUNDS):
`κ s.pcc

(S-INSTR):
s.Mc(s.pcc) = Cinvoke midcall fidcall e

(S’-STK):
s′.stk = push(s.stk , (s.ddc, s.pcc,midcall ,fidcall))

(PHI-MID-FID):
φ(midcall ,fidcall) = (nArgs,nLocal)

(MSTC-MID):
s.mstc(midcall) = (δ, σ, e, off)

(S’-STC):
s′.stc = (δ, σ, e, off + nArgs + nLocal)

(Es-EVAL):
∀i ∈ [0,nArgs). e(i), s.Md, s.ddc, s.stc, s.pcc ⇓ vi
(NO-STC-LEAK):
∀i ∈ [0,nArgs). �δ vi =⇒ vi ∩ s.stc = ∅
(S’-MEM):
s′.Md = s.Md[σ + off + i 7→ vi ∀i ∈ [0,nArgs)][σ + off + nArgs + i 7→ 0 ∀i ∈ [0,nLocal)]

(S’-MSTC):
mstc′ = mstc[midcall 7→ stc′]

(IMP-MID):
(c, d, offs) = imp(midcall)

(S’-DDC):
s′.ddc = d

(S’-PCC):
s′.pcc = inc(c, offs(fid))

(S’-STC-IN-BOUNDS):
`δ s′.stc

Subgoal s′.pcc type follows from assumptionTypes of imp and mstc instantiated with midcall

after substitution from (IMP-MID) in (S’-PCC) and unfolding the definition of inc.

Subgoal s′.ddc type follows from assumption Types of imp and mstc instantiated with
midcall after substitution from (IMP-MID) in (S’-DDC).

Subgoal s′.stc type is immediate from the corresponding assumption and (S’-STC).

Subgal s′.nalloc is negative is immediate from the corresponding assumption after substitution
using (S’-NALLOC).

Subgoal mstc capabilities are in-bounds follows from (S’-MSTC) and (S’-STC-IN-BOUNDS).

Subgoal mstc offsets correspond to the sizes of frames of the called functions follows
by easy arithmetic after substitution using (S’-MSTC), (S’-STC), and (S’-STK).

64

Subgoal Capability registers describe a module follows easily from (S’-PCC), (S’-DDC),
and (S’-STC) after substitution using (MSTC-MID) and (IMP-MID).

For subgoal s′.stk frames describe a module, we distinguish two cases for arbitrary dc, cc
with (dc, cc,_,_) ∈ elems(s.stk):

• Case top(s′.stk) = (dc, cc,_,_):
Here, our goal follows from assumptions pcc type, ddc type, and Capability registers
describe a module after unfolding (S’-STK).

• Case top(s′.stk) 6= (dc, cc,_,_):
Here, our goal follows from the corresponding assumption, stk frames describe a mod-
ule.

Subgoal Capabilities describe parts of the memory domains follows easily from the cor-
responding assumption after substitution using (S’-MEM) and noticing that dom(s′.Md) ⊇ dom(s.Md)
and instantiation of Lemma 2.

For subgoal Data memory is addressable at static locations and newly-allocated
ones, we have to prove:
dom(s′.Md) =⋃
mid∈modIDs

[s′.imp(mid).ddc.σ, s′.imp(mid).ddc.e) ∪ [s′.mstc(mid).σ, s′.mstc(mid).e) ∪ [s′.nalloc,−1)

Notice by Lemma 2 and by substitution using (S’-MSTC), (S’-STC), and (S’-NALLOC) that
it suffices to prove:

dom(s′.Md) =⋃
mid∈modIDs

[s.imp(mid).ddc.σ, s.imp(mid).ddc.e) ∪ [s.mstc(mid).σ, s.mstc(mid).e) ∪ [s.nalloc,−1)

Thus, by substitution using assumption Data memory is addressable at static locations
and newly-allocated ones, it suffices to prove:

dom(s′.Md) = dom(s.Md)

Thus, it suffices by (S’-MEM) to prove [σ + off , σ + off ′) ⊆ dom(s.Md).

By substitution again using assumption Data memory is addressable at static locations
and newly-allocated ones, it suffices to prove:

[σ + off , σ + off ′) ⊆ [s.mstc(midcall).σ, s.mstc(midcall).e).

This follows from (S’-STC-IN-BOUNDS) and from assumption mstc capabilities are in-
bounds.

For subgoal Reachable addresses are addressable, we have to prove that:

reachable_addresses(
⋃

mid∈modIDs

{s′.imp(mid).ddc, s′.mstc(mid)}, s′.Md) ⊆ dom(s′.Md)

By Lemmas 6 and 18 instantiated using (S’-MSTC), it suffices to show that:

reachable_addresses(
⋃

mid∈modIDs

{s.imp(mid).ddc, s.mstc(mid)}, s′.Md) ⊆ dom(s′.Md)

This follows similarly as in case assign.

Subgoal No code capability lives in memory follows similarly as in case assign.

65

Subgoal Data capabilities in memory describe addressable locations follows similarly
as in case assign.

Subgoal A module does not have access to any other module’s stack is similar to the
same subgoal of case assign.

For subgoal Stack capabilities do not leak outside the stack, we have to prove:

∀a,mid ∈ modIDs. s′.Md(a) = (δ, σ, e,_) ∧ [σ, e) ⊆ s′.mstc(mid) =⇒ a ∈ [s′.mstc(mid).σ, s′.mstc(mid).e)

Pick arbitrary a, mid where a ∈ dom(s′.Md) and mid ∈ modIDs.

Assume s′.Md(a) = (δ, σ, e,_),

and assume [σ, e) ⊆ s′.mstc(mid).

Our goal is: a ∈ [s′.mstc(mid).σ, s′.mstc(mid).e).

By (S’-MSTC) and (S’-STC), it suffice to prove:
a ∈ [s.mstc(mid).σ, s.mstc(mid).e)

Using (S’-MEM), distinguish the following cases:

• Case a ∈ [σ + off , σ + off + nArgs):
This is similar, after instantiating (NO-STC-LEAK) to the corresponding sub-case of
case assign.

• Case a ∈ [σ + off + nArgs, σ + off + nArgs + nLocal):
Here, by contradiction from (S’-MEM) to assumption s′.Md(a) = (δ, σ, e,_), our goal
follows vacuously.

• Case a /∈ [σ + off , σ + off + nArgs + nLocal):
Here, have s′.Md(a) = s.Md(a) by (S’-MEM).
Thus, goal follows by instantiating the corresponding assumption Stack capabilities do
not leak outside the stack.

Subgoal Top of the stack mentions currently-executing module follows immediately
from the preconditions (S’-STK), (S’-PCC), and (IMP-MID).

Subgoal Each stack frame describes the module-identity of the pcc of in the next
frame follows in one case from assumptionTop of the stack mentions currently-executing
module after noticing the precondition (S’-STK), and in the other cases from the correspond-
ing assumption.

This concludes the proof of case cinvoke.

6. Case creturn:

We obtain the following preconditions:

(S-PCC-IN-BOUNDS):
`κ s.pcc

(S-INSTR):
s.Mc(s.pcc) = Creturn

(S’-STK-DDC-PCC):
stk ′, (ddc′, pcc′,mid ,fid) = pop(stk)

(PHI-MID-FID):
φ(mid ,fid) = (nArgs,nLocal)

66

(MSTC-MID):
(δ, s, e, off) = mstc(mid)

(OFF’):
off ′ = off − nArgs − nLocal

(S’-MSTC-MID):
mstc′ = mstc[mid 7→ (δ, s, e, off ′)]

(S’-STC):
∃mid ′. pcc′

.
= imp(mid ′).pcc ∧ stc′ = mstc(mid ′)

(S’-MEM):
s′.Md = s.Md

(S’-NALLOC):
s′.nalloc = s.nalloc

Subgoal s′.pcc type follows from assumption stk frames describe a module after substitu-
tion using (S’-STK-DDC-PCC).

Subgoal s′.ddc type follows from assumption stk frames describe a module after substitu-
tion using (S’-STK-DDC-PCC).

Subgoal s′.stc type follows from assumption Types of imp and mstc after substitution using
(S’-STC).

Subgoal s′.nalloc is negative is immediate from the corresponding assumption after substitu-
tion using (S’-NALLOC).

For subgoal mstc capabilities are in-bounds, we fix an arbitrary mid ′ such that mid ′ ∈ modIDs.

Our goal (after unfolding Definition 2, applying arithmetic, and removing the already proven
conjunct, �δ s′.mstc(mid ′)) is:

s′.mstc(mid ′).off ∈ [0, s′.mstc(mid ′).e− s′.mstc(mid ′).σ)

Distinguish two cases:

• Case mid ′ = mid :
Here, our goal follows by arithmetic after substitutions using (S’-STK-DDC-PCC), (PHI-
MID-FID), (OFF’), (S’-MSTC-MID), and assumption mstc offsets correspond to the
sizes of frames of the called functions.

• Case mid ′ 6= mid :
Here, goal follows from the corresponding assumption mstc capabilities are in-bounds.

Subgoal mstc offsets correspond to the sizes of frames of the called functions follows
by arithmetic after substitutions using (S’-STK-DDC-PCC), (S’-MSTC-MID), (OFF)’, and
(PHI-MID-FID).

Subgoal Capability registers describe a module follows from assumptions stk frames
describe a module, and (S’-STC) after substitution using (S’-STK-DDC-PCC).

67

Subgoal stk frames describe a module follows by instantiating the corresponding assump-
tion after noticing from (S’-STK-DDC-PCC) that elems(s′.stk) ⊂ elems(s.stk).

SubgoalCapabilities describe parts of the memory domain follows by substitution using
(S’-MEM) and Lemma 2 from the corresponding assumption.

SubgoalData memory is addressable at static locations and newly-allocated ones fol-
lows from the corresponding assumption after substitution using (S’-MEM) and (S’-NALLOC).

Subgoal Reachable addresses are addressable follows from the corresponding assumption
after substitution using (S’-MEM).

Subgoal A module does not have access to any other module’s stack follows from the
corresponding assumption after substitution using (S’-MEM).

Subgoal Stack capabilities do not leak outside the stack follows from the corresponding
assumption after substitution using (S’-MEM).

Subgoal No code capability lives in memory follows from the corresponding assumption
after substitution using (S’-MEM).

Subgoal Data capabilities in memory describe addressable locations follows from the
corresponding assumption after substitution using (S’-MEM).

SubgoalTop of the stack mentions currently-executing module follows from assumption
Each stack frame describes the module-identity of the pcc of in the next frame by
noticing the precondition (S’-STK-DDC-PCC).

Subgoal Each stack frame describes the module-identity of the pcc of in the next
frame follows immediately from the corresponding assumption after noticing the precondition
(S’-STK).

This concludes the proof of case creturn.

7. Case cexit:

All goals are immediate by substitution. Notice that s′ = s.

This concludes the proof of Lemma 52.

Corollary 2 (Preservation of `exec by →∗).
∀t, s, s′. t `exec s ∧ s→∗ s′ =⇒ t `exec s

′

Proof. Easy by Lemma 52.

Corollary 3 (Data and stack capabilities always hold a data-capability value).

∀t : TargetSetup, s, s′ : TargetState. t `exec s ∧ s→∗ s′ =⇒

(s′.ddc ∈ {δ} × Z× Z× Z ∧ s′.stc ∈ {δ} × Z× Z× Z)

Proof.
Follows by Lemma 52.

68

Lemma 53 (Preservation of `exec by �≈).
∀t, s, s′. t `exec s ∧ s �≈ s′ =⇒ t `exec s

′

Proof. After inversion of the assumptions using rules cinvoke-aux and exec-state, the proof proceeds
similarly to case cinvoke in the proof of Lemma 52. We avoid repetition.

Lemma 54 (At the initial state, the program counter capability pcc and the data capability ddc
are prescribed by some capability object).
∀t, s. t `i s =⇒ ∃(cc, dc,_) ∈ range(s.imp). pcc ⊆ cc ∧ ddc ⊆ dc

Proof. Immediate by inversion using rules initial-state then exec-state.

Claim 2 (At the initial state, the data and stack capabilities are disjoint).
∀t, s. t `i s =⇒ s.stc ∩ s.ddc = ∅

Proof. Immediate by rules initial-state and exec-state.

Claim 3 (Uniqueness of the initial state (Existence of at most one initial state for a given TargetSetup)).

∀t : TargetSetup, funIDs.

funIDs = [fid | fid ∈ dom(offs) ∧ (_,_, offs) ∈ range(t.imp)] ∧
all_distinct(funIDs) ∧
∃s, s′. t `i s ∧ t `i s′

=⇒ s = s′

Proof. Follows from rules initial-state and exec-state.

Lemma 55 (Preservation of the bounds of stack capabilities).
∀s. s→ s′ =⇒ (∀mid , σ, e. s.mstc(mid) = (δ, σ, e,_) =⇒ s′.mstc(mid) = (δ, σ, e,_))

Proof. We fix an arbitrary state s, assume the antecedent s→ s′ and consider all the possible cases
for s→ s′:

1. Case assign,

2. Case allocate,

3. Case jump1, and

4. Case jump0:

In all of these cases, we notice that s.mstc = s′.mstc, and so our goal follows by definition of
equality on maps.

5. Case cinvoke:

Here, we obtain the necessary precondition s �≈ s′, from which by rule cinvoke-aux, we obtain
the following necessary preconditions for some fixed mid :

• s.mstc(mid) = (δ, σ, e, off)

• stc′ = (δ, σ, e, off ′)

• s′.mstc = s.mstc[mid 7→ stc′]

Thus, we can show our goal for an arbitrary mid ′ ∈ dom(s.mstc) by case distinction on mid ′:

• Case mid ′ = mid :
In this case, our goal follows from stc′.σ = s.mstc(mid).σ and stc′.e = s.mstc(mid).e.

69

• Case mid ′ 6= mid :
In this case, the value in the s′.mstc map was not updated, so our goal follows from
s′.mstc(mid ′) = s.mstc(mid ′).

6. Case creturn:

This case is similar to cinvoke.

1.4 Summary of target language features
Our model, CHERIExp, aims to model the essential security features provided by the CHERI hard-
ware architecture and its runtime library, libcheri. In particular, call invocations between mutually
distrustful components is a core feature of CHERI, which can be used to attain compartmentalized
execution [3]. Passing parameters of function calls while ensuring non-retention of access to the stack
frame of the callee after the call has returned is also a core feature of CHERI that we model in our
language using the stack capability, and a restriction on storing the stack capability in memory (note
that the rule assign categorically prohibits storing the stack capability in memory). In the actual
CHERI architecture, these restrictions can be implemented using what is called the “permissions
field” on capabilities. Here, we abstract a bit by modeling specific uses of this field rather than the
field itself. Formal arguments showing that the permissions field can actually be used to attain our
abstractions already exist in prior work [3, 4].

One limitation (to attacker strength) in ourCHERIExpmodel is that the default data capability
(ddc), and the stack capability (stc) are managed by the trusted call (cinvoke) and return (creturn)
instructions, but there is no way to assign them directly. While in the actual CHERI architecture,
only system-reserved registers are protected from arbitrary load operations [2], we still claim that our
additional reservation on the root data and stack capability registers does not significantly weaken
the attacker model. In particular, rather than being able to change the view of the memory by
changing the values of ddc and stc, an attacker code that gets access to unlawful data-capabilities
can still use them to load data from the unlawful memory region and store it in the region referenced
by the current fixed ddc and stc. This way, it (the malicious code) can effectively change the view of
the memory by copying the actual data rather than by directly installing the stolen data capabilities
into the ddc or stc registers.

This built-in trust though (in how ddc and stc are managed) admittedly weakens the attacker
model a bit because it enables for honest code the defense mechanism of checking the integrity of
the data capabilities before executing sensitive code. So, subverting control flow attacks are allowed,
but they are constrained in the sense that data capability registers are not arbitrarily loadable.

70

2 A source language (ImpMod) with pointers and modules
The source language of our transformation is a simple imperative language ImpMod that features
modules and functions with conditional goto statements. By design, ImpMod features protection
of module-private variables.

2.1 Program and module representation, and well-formedness
A program in ImpMod consists of a list of modules. Each module consists of a list of function
definitions, and a list of module-private variables. We skip the syntax of module and function
definitions, and we directly represent them as structures (tuples of lists) that are output by the
parser. We refer to the set of module identifiers as ModID , function identifiers as FunID , variable
identifiers as VarID , and commands as Cmd . We give the syntax for commands and expressions
later. We define the set of functions as FunDef = ModID × FunID ×VarID ×VarID × Cmd where
a function specifies argument names args, local variable names localIDs, and a body (list of
commands). Modules Mod = ModID ×VarID × FunDef where a module specifies a list of module-
private variable names, and a list of function definitions. Programs Prog = Mod are lists of modules
subject to the following well-formedness conditions (formally stated in fig. 4):

1. Module identifiers are unique across the program.

2. Function identifiers are unique across the program.

3. Programs are closed (i.e., the set of all function identifiers existing in a program contains all
the function identifiers that are called by any command in the program).

4. The last command of every function is a Return.

We refer to the operation of linking two lists of modules mods1 and mods2 into one well-formed
program P as P = mods1 nmods2 where n reorders and concatenates the two lists of modules only
if they form a well-formed program P , and is not defined otherwise.

Definition 32 (Valid linking). Two programs (lists of modules) can be linked if there exists m where
judgment m1 nm2 = bmc holds according to rule Valid-linking-src in Figure 7. If that is the case,
then we sometimes write m1[m2] for such m.

2.2 Values, expressions, and commands
Expressions E ::= addr(VarID) | deref(E) | E ⊕ E | Z | VarID | E [E] | addr(E [E])
| start(E) | end(E) | offset(E) | limRange(E , E , E) | capType(E) in ImpMod manipulate integer values
and a bounds-checked version of C pointers. Expressions allow reading and storing addresses of
variables and they allow basic pointer arithmetic (addition) and by definition of the evaluation se-
mantics, they allow only safe dereferencing. Evaluation of an expression that performs an unsafe
memory dereference gets stuck. Values V = Z] ({δ, κ} × Z× Z× Z) are integers, or fat pointer
values (i.e., values that represent the bounds and offset of a memory entity). The labels δ and
κ on fat pointers indicate that the permissions available on the memory entity (the pointee) are
data or code permissions respectively. The availability of code permissions still does not allow the
source language semantics to execute this code; only code that is part of the program definition
is executable (see Jump-zero, Jump-non-zero and Call). The ability to distinguish code pointers
from data pointers though is important for defensive programming (and hence, for enhancing the
expressiveness of the source programs as compared to the target ones, which is needed for proving
that the translation between the two languages is fully abstract). Evaluation of expressions is given
by the rules of the form E ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ V.

The syntax of commands is given by the grammar
Cmd ::= Assign El Er | Alloc El Esize | Call FunID E | Return | JumpIfZero Ec Eoff | Exit.

71

Figure 4: Well-formed programs of ImpMod

(Whole program)

wfp(P)
∀cmd . (cmd = Call fid _ ∧ ∃mod , fd . mod ∈ mods ∧ fd ∈ funDefs(mod)∧

cmd ∈ commands(fd)) =⇒ ∃mod ′, fd ′. mod ′ ∈ mods ∧ fd ′ ∈ funDefs(mod ′) ∧ fid = funID(fd ′)

whole(P)
(Well-formed program)

P = mods ∀mod ∈ mods. MVar(mid) ∩ {localIDs(fd) ∪ args(fd) | fd ∈ funDefs(mod)} = ∅
∀mod ,mod ′ ∈ mods.

moduleID(mod) = moduleID(mod ′) =⇒ mod = mod ′

∀mod , fd ,mod ′, fd ′. (mod ,mod ′ ∈ mods ∧ fd ∈ funDefs(mod) ∧ fd ′ ∈ funDefs(mod ′)∧
funID(fd) = funID(fd ′)) =⇒ (fd = fd ′ ∧mod = mod ′)

wfp(P)
(Well-formed program and parameters)

wfp(mods)
modIDs = {modID | (modID ,_,_) ∈ mods}

∀mid ,mid ′ ∈ modIDs. mid 6= mid ′ =⇒
∆(mid) ∩∆(mid ′) = ∅ ∧Kmod(mid) ∩Kmod(mid ′) = ∅ ∧ Σ(mid) ∩ Σ(mid ′) = ∅⋃

∆(mid) ∩
⋃

Σ(mid) = ∅
(
⋃

∆(mid) ∪
⋃

Σ(mid)) ∩ (−∞, 0) = ∅
dom(Kmod) = dom(MVar) = dom(Σ) = dom(∆) = modIDs

Fd = fd_map(mods) MVar = mvar(mods)
dom(β) = {(vid ,fid ,mid) | mid ∈ modIDs ∧

(vid ∈ MVar(mid) ∧ fid = ⊥ ∨ fid ∈ dom(Fd) ∧ vid ∈ localIDs(Fd(fid)) ∪ args(Fd(fid)))}
∀mid ,fid , vid . vid ∈ args(Fd(fid)) ∧ β(vid ,fid ,mid) = (s, e) =⇒ |s− e| = 1

∀fid ∈ dom(Fd). frameSize(Fd(fid)) ≥ 0
∀mid ∈ modIDs,fid ∈ dom(Fd).

⊎
vid∈localIDs(Fd(fid))∪args(Fd(fid))

β(vid ,fid ,mid) = [−frameSize(Fd(fid)), 0)

∀mid ∈ modIDs.
⊎

vid∈MVar(mid)

β(vid ,⊥,mid) = [0,∆(mid).2−∆(mid).1)

∀mid ∈ modIDs,fid ∈ dom(Fd). |Kfun(fid)| = |commands(Fd(fid))|
∀mid ∈ modIDs.

⊎
fid ∈ {fid | moduleID(Fd(fid)) = mid}

Kfun(fid) = [0, |Kmod(mid)|)

wfp_params(mods,∆,Σ, β,Kmod ,Kfun)

72

2.3 Program state
A program state 〈Mem, stk , pc,Φ,nalloc〉 whose type is denoted by SourceState consists of:

• a data memory Mem : Z fin−⇀ V which is a map from addresses Z to values V.

• a call stack stk : FunID × N which is a list of program counters that record the function
calls history (see pc below),

• Φ : ModID → Z which maintains for every module a pointer to its top-most stack
frame,

• a program counter pc : FunID × N modeling the index of the executing command within
the list of commands of the current function. We define inc((funId ,n))

def
=(funId , n+ 1).

• and an allocation status nalloc : Z which simply represents the first (in descending order) free
memory address (i.e., the first address that was never allocated before).

A program evaluation context Σ; ∆;β; MVar ; Fd consists of:

• Σ : ModID → Z2 which maintains for every module the start and end addresses of its
stack region. Recall that each module in ImpMod has its own stack which stores the local
variables when this module is callee. Notice that return pointers on the other hand are stored
on the trusted stack stk rather than on a module’s own stack. The latter only stores arguments
and local variables,

• ∆ : ModID → Z2 which maps each module to a range of addresses representing the
data segment in which the static data of the module lives. Offsets from β are added to the
first component of the range that is output by this map in order to compute the location in
memory of module-global variables.

• β : (VarID × (FunID] ⊥)×ModID)→ Z2 which maps each variable identifier to bounds
that represent the offsets within the data segment or the stack frame to which the (module-
global or function-local) variable is mapped,

• an immutable map MVar : ModID → VarID of module IDs to module-private variable identi-
fiers,

• and an immutable map Fd : FunID → FunDef of function identifiers to function definitions.

The following are useful representations of a program:

Definition 33 (Set of function definitions of a list of modules).

fun_defs(mods)
def
=
{

mdef
∣∣ mdef ∈ mdefs ∧ (_,_,mdefs) ∈ mods

}
Definition 34 (Function ID to function definition map).

fd_map(mods)
def
=
{

fid 7→ fdef
∣∣ fdef ∈ fun_defs(mods) ∧ fdef = (_,fid ,_,_,_)

}
Definition 35 (Module variables map).

mvar(mods)
def
=
{

mid 7→ vids
∣∣ (mid , vids,_) ∈ mods

}
The semantics of expressions and commands are given in fig. 5 and fig. 6.

73

Figure 5: Evaluation of expressions E in ImpMod

(Evaluate-expr-const)
z ∈ Z

z,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ z

(Evaluate-expr-cast-to-integer-start)

e,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (_, z,_,_)

start(e),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ z
(Evaluate-expr-cast-to-integer-end)

e,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (_,_, z,_)

end(e),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ z
(Evaluate-expr-cast-to-integer-offset)

e,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (_,_,_, z)
offset(e),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ z

(Evaluate-expr-cap-type)
e,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ x

x ∈ Z =⇒ v = 0 x ∈ {κ} × Z× Z× Z =⇒ v = 1 x ∈ {δ} × Z× Z× Z =⇒ v = 2

capType(e),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v
(Evaluate-expr-binop)

e1,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ z1 z1 ∈ Z
e2,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ z2 z2 ∈ Z

zr = z1[⊕]z2

e1 ⊕ e2,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ zr
(Evaluate-expr-addr-local)

(fid ,_) = pc vid ∈ localIDs(Fd(fid)) ∪ args(Fd(fid)) mid = moduleID(Fd(fid))
β(vid ,fid ,mid) = [s, e) φ = Σ(mid).1 + Φ(mid)

addr(vid),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, φ+ s, φ+ e, 0)
(Evaluate-expr-addr-module)

(fid ,_) = pc vid /∈ localIDs(Fd(fid)) ∪ args(Fd(fid)) mid = moduleID(Fd(fid))
vid ∈ MVar(mid) β(vid ,⊥,mid) = [s, e)

addr(vid),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ,∆(mid).1 + s,∆(mid).1 + e, 0)
(Evaluate-expr-var)

vid ∈ VarID addr(vid),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, s, e, off)
s ≤ s+ off < e Mem(s+ off) = v

vid ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v
(Evaluate-expr-addr-arr)

addr(earr),MVar ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, s, e, off)
eidx ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ off ′

off ′ ∈ Z
addr(earr [eidx]),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, s, e, off + off ′)

(Evaluate-expr-arr)

addr(earr [eidx]),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, s, e, off)
s ≤ s+ off < e Mem(s+ off) = v

earr [eidx],Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v
(Evaluate-expr-deref)

e,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, s, e, off)
s ≤ s+ off < e Mem(s+ off) = v

deref(e),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v
(Evaluate-expr-limrange)

e,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (x, s, e,_)
es,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ s′ s′ ∈ Z
ee,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ e′ e′ ∈ Z

[s′, e′) ⊆ [s, e)

limRange(e, es, ee),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (x, s′, e′, 0)

74

Figure 6: Evaluation of commands Cmd in ImpMod

(Assign-to-var-or-arr)

(fid , n) = pc commands(Fd(fid))(n) = Assign el er
el,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, s, e, off) er,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v

modID = moduleID(Fd(fid)) ∀s′, e′. v = (δ, s′, e′,_) =⇒ ([s′, e′) ∩ Σ(modID) = ∅ ∨ [s, e) ⊆ Σ(modID))
s ≤ s+ off < e Mem ′ = Mem[s+ off 7→ v]

Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 → 〈Mem ′, stk , inc(pc),Φ,nalloc〉
(Allocate)

(fid , n) = pc commands(Fd(fid))(n) = Alloc el esize el,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, s, e, off)
esize ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v s ≤ s+ off < e v ∈ Z+ nalloc − v > ∇
nalloc′ = nalloc − v Mem ′ = Mem[s+ off 7→ (δ,nalloc′,nalloc, 0)][a 7→ 0 | a ∈ [nalloc′,nalloc)]

Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 → 〈Mem ′, stk , inc(pc),Φ,nalloc′〉
(Call)

(fid , n) = pc commands(Fd(fid))(n) = Call fidcall e
modID = moduleID(Fd(fidcall)) argNames = args(Fd(fidcall)) localIDs = localIDs(Fd(fidcall))

nArgs = length(argNames) = length(e) nLocal = length(localIDs) frameSize = frameSize(Fd(fidcall))
curFrameSize = frameSize(Fd(fid)) curModID = moduleID(Fd(fid))

Σ(modID).1 + Φ(modID) + frameSize < Σ(modID).2 Φ′ = Φ[modID 7→ Φ(modID) + frameSize]
φ′ = Σ(modID).1 + Φ′(modID)

e(i),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ vi ∀i ∈ [0,nArgs)
∀i ∈ [0,nArgs), s′, e′. vi = (δ, s′, e′,_) =⇒ [s′, e′) ∩ Σ(curModID) = ∅

stk ′= push(stk , pc) pc′ = (fidcall , 0)
Mem ′ = Mem[φ′ + si 7→ vi | si ∈ β(argNames(i),fidcall ,modID) ∧ i ∈ [0,nArgs)]

[φ′ + si 7→ 0 | si ∈ β(localIDs(i),fidcall ,modID) ∧ i ∈ [0,nLocal)]

Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 → 〈Mem ′, stk ′, pc′,Φ′,nalloc〉
(Return)

(fid , n) = pc commands(Fd(fid))(n) = Return (pc′, stk ′) = pop(stk) pc′ = (fid ′,_)
curFrameSize = frameSize(Fd(fid)) curModID = moduleID(Fd(fid))

Φ′ = Φ[curModID 7→ Φ(curModID)− curFrameSize]

Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 → 〈Mem, stk ′, inc(pc′),Φ′,nalloc〉
(Jump-non-zero)

(fid , n) = pc commands(Fd(fid))(n) = JumpIfZero ec eoff ec,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v v 6= 0

Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 → 〈Mem, stk ,inc(pc),Φ,nalloc〉
(Jump-zero)

(fid , n) = pc commands(Fd(fid))(n) = JumpIfZero ec eoff ec,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v
eoff ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ off off ∈ Z v = 0

Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 → 〈Mem, stk ,(fid , n+ off),Φ,nalloc〉
(Exit)

(fid , n) = pc commands(Fd(fid))(n) = Exit

Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 → 〈Mem, stk , pc,Φ,nalloc〉

75

2.4 Initial, terminal and execution states
Definition 36 (Valid execution state of a program).
A state 〈Mem, stk , pc,Φ,nalloc〉 is a valid execution state of a program mods if it satisfies the judg-
ment mods; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 defined in rule Exec-state-src of Fig-
ure 7.

Definition 37 (Initial state).
An initial state of a program mods is any state 〈Mem, stk , pc,Φ,nalloc〉 satisfying
mods; Σ; ∆;β; MVar ; Fd `i 〈Mem, stk , pc,Φ,nalloc〉 which is defined in rule Initial-state-src in Fig-
ure 7.

Definition 38 (Initial state function).

initial_state(m,∆,Σ,mainModID)
def
=

〈

{a 7→ 0 | a ∈
⋃
m∈m

∆(m.mid) ∪ Σ(m.mid)},

nil,

(main, 0),

{mainModID 7→ frameSize(m(mainModID).fds(main))} ∪
⋃

mid∈{m.mid|m∈m}\{mainModID}

{mid 7→ 0},

−1

〉

Definition 39 (Main module).

main_module(m) = mid ⇐⇒ ∃m, fd . m ∈ m ∧ fd ∈ m.fds ∧ main = funID(fd) ∧ moduleID(m) = mid

Claim 4 (The function initial_state and the judgment `i are compatible).

∀Kmod ;Kfun ;m,Σ,∆, β

main_module(m) = mainModuleID ∧
wfp_params(m,∆,Σ, β,Kmod ,Kfun) ∧
initial_state(m,∆,Σ,mainModuleID) = si

=⇒
∃MVar ,Fd . Kmod ;Kfun ; m; Σ; ∆;β; MVar ; Fd `i si

Definition 40 (Terminal state).
A terminal state of a program mods is any state 〈Mem, stk , pc,Φ,nalloc〉 satisfying
fd_map(mods) `t 〈Mem, stk , pc,Φ,nalloc〉 which is defined in rule Terminal-state-src-exit in Fig-
ure 7.

We now define convergence of a programm1 running with a context C as successful linking, successful
loading, and reachability of a terminal state from every loadable initial state.

Definition 41 (Layout places m1 before C).

m1 .L1,L2
C def

=

max
mod∈m1

{L1(moduleID(mod)).2} ∪ {L2(moduleID(mod)).2} <

min
mod∈C

{L1(moduleID(mod)).1} ∪ {L2(moduleID(mod)).1}

76

Figure 7: Valid execution and initial states in ImpMod

(Valid-linking-src)

m = m1]m2 wfp(m)

m1 nm2 = bmc
(Equal-interfaces-src)

modIDs = {mid | (mid ,_,_) ∈ m1} = {mid | (mid ,_,_) ∈ m2}
fDefs1 = {fdef | fdef ∈ fdefs ∧ (_,_, fdefs) ∈ m1}

fDefs2 = {fdef | fdef ∈ fdefs ∧ (_,_, fdefs) ∈ m2}
fSigs1 = {(mid ,fid ,nArgs) | fd ∈ fDefs1 ∧ mid = moduleID(fd) ∧ fid = funID(fd) ∧ nArgs = |args(fd)|}
fSigs2 = {(mid ,fid ,nArgs) | fd ∈ fDefs2 ∧ mid = moduleID(fd) ∧ fid = funID(fd) ∧ nArgs = |args(fd)|}

fSigs1 = fSigs2

m1 _m2

(Exec-state-src)

wfp_params(mods,∆,Σ, β,Kmod ,Kfun)

modIDs = {modID | (modID ,_,_) ∈ mods}
dom(Kmod) = dom(MVar) = dom(Σ) = dom(∆) = modIDs

Fd = fd_map(mods) MVar = mvar(mods)
pc = (funID ,_) ∧ funID ∈ dom(Fd)
∀(fid ,_) ∈ elems(stk). fid ∈ dom(Fd)

static_addresses(Σ,∆,modIDs) ⊆ dom(Mem)
∇ < −1 =⇒ (nalloc > ∇ ∧
∀a ∈ dom(Mem). a > ∇ ∧

∀a, s, e, v. v ∈ range(Mem) ∧ v = (δ, s, e,_) ∧ a ∈ [s, e) =⇒ a > ∇)
∀mid ∈ modIDs. Φ(mid) =∑

fid ∈ {fid | moduleID(Fd(fid)) = mid}
frameSize(Fd(fid))× (countIn((fid ,_), stk) + (pc = (fid ,_) ? 1 : 0))

∀mid ∈ modIDs. Σ(mid).1 + Φ(mid) ≤ Σ(mid).2
stk = nil =⇒ pc.fid = main

stk 6= nil =⇒ stk(0).fid = main

∀mid , a, σ, e. Mem(a) = (δ, σ, e,_) ∧ [σ, e) ∩ Σ(mid) 6= ∅ =⇒ a ∈ Σ(mid)
nalloc < 0

Kmod ;Kfun ; mods; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉
(Initial-state-src)

Kmod ;Kfun ; mods; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉
nalloc = −1 stk = nil Mem = {a 7→ 0 | a ∈

⋃
mid∈dom(∆)

∆(mid) ∪ Σ(mid)}

pc = (main, 0)
Φ = {moduleID(Fd(main)) 7→ frameSize(Fd(main)} ∪

⋃
mid∈dom(∆)\{moduleID(Fd(main))}

{mid 7→ 0}

Kmod ;Kfun ; mods; Σ; ∆;β; MVar ; Fd `i 〈Mem, stk , pc,Φ,nalloc〉
(Terminal-state-src-exit)

pc = (fid ,n) commands(Fd(fid))(n) = Exit

Fd `t 〈Mem, stk , pc,Φ,nalloc〉

77

Definition 42 (Layout-ordered linking).

C[m1]∆,Σ = m ⇐⇒ Cnm1 = bmc ∧ m1 .∆,Σ C

Definition 43 (Linkability, loadability, and convergence of execution in the source language).

Σ,∆, β,∇ ` C[m1] ⇓ def
=

∃m. C[m1]∆,Σ = m ∧
∃st. Σ; ∆;β; mvar(m); fd_map(m) ` initial_state(m,∆,Σ,main_module(m))→∗∇ st ∧
fd_map(m) `t st

where →∗ is the reflexive transitive closure of the evaluation relation defined in fig. 6.

Definition 44 (Addition of an offset ω to the data segment’s bounds).

∆ + ω
def
= {mid 7→ ∆(mid) + ω | mid ∈ dom(∆)}

where ∆(mid) + ω is the addition of a constant to an interval which is given by [a, b) + c
def
= [a+ c, b+ c).

Two programs m1 and m2 that have the same per-module data-segment size ∆̃ and that have
respectively data segment layouts β1 and β2 are said to be contextually equivalent in the execution
environment Σ̃,∇ denoted
∆̃, β1,m1 'Σ̃,∇ ∆̃, β2,m2 when they are equi-linkable, equi-loadable, and equi-convergent in all
contexts C with an arbitrary data segment size ∆, data segment layout β, stack sizes Σ.

Definition 45 (Source contextual equivalence).

∆̃, β1,m1 'Σ̃,ω,∇ ∆̃, β2,m2
def
=

∀∆, β,Σ,C.
wfp(C) =⇒
(Σ] Σ̃, (∆] ∆̃) + ω, β] β1,∇ ` C[m1] ⇓ ⇐⇒
Σ] Σ̃, (∆] ∆̃) + ω, β] β2,∇ ` C[m2] ⇓)

Lemma 56 (Preservation of `exec).

Kmod ;Kfun ; mods; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 ∧
Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 → 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉
=⇒
mods; Σ; ∆;β; MVar ; Fd `exec 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉

Proof. By inversion using rules Exec-state-src and Well-formed program and parameters, we obtain
the following assumptions:

Well formed program and parameters wfp_params(mods,∆,Σ, β,Kmod ,Kfun)

Module IDs modIDs = {modID | (modID ,_,_) ∈ mods}

Equal domains dom(Kmod) = dom(MVar) = dom(Σ) = dom(∆) = modIDs

Function definitions
funDefs = {modFunDef | modFunDef ∈ modFunDefs ∧ (_,_,modFunDefs) ∈ mods}

Fd Fd = {funID 7→ funDef | funDef ∈ funDefs ∧ funDef = (_, funID ,_,_,_)}

78

MVar MVar = {modID 7→ varIDs | (modID , varIDs,_) ∈ mods}

pc points to an existing function pc = (funID ,_) ∧ funID ∈ dom(Fd)

All pc’s on stack point to existing functions
∀(fid ,_) ∈ elems(stk). fid ∈ dom(Fd)

dom(β)
dom(β) = {(vid ,fid ,mid) | mid ∈ modIDs ∧
(vid ∈ MVar(mid) ∧ fid = ⊥ ∨ fid ∈ dom(Fd) ∧ vid ∈ localIDs(Fd(fid)) ∪ args(Fd(fid)))}

Arguments are non-arrays
∀mid ,fid , vid . vid ∈ args(Fd(fid)) ∧ β(vid ,fid ,mid) = (s, e) =⇒ |s− e| = 1

Static addresses are mapped addresses
static_addresses(Σ,∆,modIDs) ⊆ dom(Mem)

No address exists that is out-of-memory
∇ < 0 =⇒ (nalloc > ∇ ∧
∀a ∈ dom(Mem). a > ∇ ∧
∀a, s, e, v. v ∈ range(Mem) ∧ v = (δ, s, e,_) ∧ a ∈ [s, e) =⇒ a > ∇)

No stack overflow
∀mid ∈ modIDs. Σ(mid).1 + Φ(mid) ≤ Σ(mid).2

Frame sizes are non-negative
∀fid ∈ dom(Fd). frameSize(Fd(fid)) ≥ 0

Stack pointers are the sum of all frame sizes on stack
∀mid ∈ modIDs. Φ(mid) =∑
fid ∈ {fid | moduleID(Fd(fid)) = mid}

frameSize(Fd(fid))× (countIn((fid ,_), stk) + (pc = (fid ,_) ? 1 : 0))

Variables occupy exactly the frame
∀mid ∈ modIDs,fid ∈ dom(Fd).

⊎
vid∈localIDs(Fd(fid))∪args(Fd(fid))

β(vid ,fid ,mid) = [−frameSize(Fd(fid)), 0)

Static variables occupy exactly the data segment
∀mid ∈ modIDs.

⊎
vid∈MVar(mid)

β(vid ,⊥,mid) = [0,∆(mid).2−∆(mid).1)

One address per command
∀mid ∈ modIDs,fid ∈ dom(Fd). |Kfun(fid)| = |commands(Fd(fid))|

Module’s code is a contiguous concatenation of its functions
∀mid ∈ modIDs.

⊎
fid ∈ {fid | moduleID(Fd(fid)) = mid}

Kfun(fid) = [0, |Kmod(mid)|)

Data segments are disjoint and code segments are disjoint
∀mid ,mid ′ ∈ modIDs. mid 6= mid ′ =⇒ ∆(mid) ∩∆(mid ′) = ∅ ∧Kmod(mid) ∩Kmod(mid ′) = ∅

If no function has been called, then main is executing
stk = nil =⇒ pc.fid = main

The first function to start executing was main

stk 6= nil =⇒ stk(0).fid = main

Stack addresses (capabilities) only live on the stack
∀mid , a, σ, e. Mem(a) = (δ, σ, e,_) ∧ [σ, e) ∩ Σ(mid) 6= ∅ =⇒ a ∈ Σ(mid)

79

Dynamically-allocated addresses are negative
nalloc < 0

Our goal is mods; Σ; ∆;β; MVar ; Fd `exec 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉. We prove it using rule
Exec-state-src. We use the names that we gave to the assumptions above to also describe the
subgoals about the state 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉.

The following subgoals are immediate:

• Well formed program and parameters (This is a predicate of only the program textmods,
and the static parameters ∆,Σ, β,Kmod ,Kfun .)

• Module IDs,

• Equal domains,

• Function definitions,

• Fd, and

• MVar

It remains to prove the following subgoals:

• pc points to an existing function,

• All pc’s on stack point to existing functions,

• Static addresses are mapped addresses,

• No address exists that is out-of-memory,

• Stack pointers are the sum of all frame sizes on stack,

• No stack overflow,

• Stack addresses (capabilities) only live on the stack, and

• Dynamically-allocated addresses are negative.

We prove them by case distinction over the reduction relation →.

Case Assign-to-var-or-arr:
The goal “pc points to an existing function” is immediate from the corresponding assump-
tion.

The goal “All pc’s on stack point to existing functions” is immediate from the corre-
sponding assumption by substitution.

In this case, the goal “Static addresses are mapped addresses” about Mem ′ holds by
transitivity of ⊆ after noticing that dom(Mem) ⊆ dom(Mem ′).

The goals “No stack overflow” and “Stack pointers are the sum of all frame sizes on
stack” follow by substitution using Φ′ = Φ and stk = stk ′.

The goal “No address exists that is out-of-memory” has three conjuncts:
Conjunct nalloc′ > ∇ holds by substitution using the precondition nalloc′ = nalloc.

80

The second and third conjuncts follow from the corresponding assumption “No address exists
that is out-of-memory” relying on Lemmas 57 and 81. (A detailed proof would be similar
to the one in the next case. We skip it here for brevity.)

The goals “If no function has been called, then main is executing” and “The first
function to start executing was main” are immediate from the corresponding assumptions
after substitution using stk = stk ′ and pc.fid = pc′.fid .

To prove the goal “Stack addresses (capabilities) only live on the stack”, we obtain the
precondition s′.Mem = s.Mem[σ + off 7→ v].

Then, we fix an arbitrary memory address a, and an arbitrary module ID mid . We prove our
goal for the following two cases:

• Case a = σ + off :
Here, we obtain the following preconditions of rule Assign-to-var-or-arr:
(PRECOND-ASSN):
modID = moduleID(Fd(s.pc.fid)), and
v = (δ, σ′, e′,_) =⇒ ([σ′, e′) ∩ Σ(modID) = ∅ ∨ [σ, e) ⊆ Σ(modID))

Assuming (STK-CAP-ASSM):
v = (δ, σ′, e′,_) ∧ [σ′, e′) ∩ Σ(mid) 6= ∅,
our goal is σ + off ∈ Σ(mid).
We distinguish the following two cases:

– Case mid 6= modID:
Here, we obtain a contradiction to the assumption [σ′, e′) ∩ Σ(mid) 6= ∅. Here is how
we show [σ′, e′) ∩ Σ(mid) = ∅.
∗ First, we show [σ′, e′) ⊆ reachable_addresses(Σ,∆, {modID}, s.Mem).
∗ To prove this, we apply Lemma 81 choosing modIDs = {modID} to obtain the

following subgoals:
· er,Σ,∆, β,MVar ,Fd , s.Mem, s.Φ, s.pc ⇓ (δ, σ′, e′,_)
This is immediate by the precondition of Assign-to-var-or-arr together with the
assumption (STK-CAP-ASSM).
· _ `exec s
This is immediate by our lemma’s assumption.
· moduleID(Fd(s.pc.fid)) ∈ {modID}
This is immediate by (PRECOND-ASSN).

∗ Second, we show that reachable_addresses(Σ,∆, {modID}, s.Mem) ∩ Σ(mid) = ∅
By unfolding Definitions 48 and 49, our goal is:
(∆(modID) ∪ Σ(modID) ∪ access|s.Mem|(∆(modID) ∪ Σ(modID), s.Mem)) ∩ Σ(mid) = ∅
It suffices by easy set identities to show individually:
· ∆(modID) ∩ Σ(mid) = ∅
Immediate by Well formed programs and parameters.
· Σ(modID) ∩ Σ(mid) = ∅
Immediate by Well formed programs and parameters.
· access|s.Mem|(∆(modID) ∪ Σ(modID), s.Mem)) ∩ Σ(mid) = ∅
We prove it by induction on k with 0 ≤ k ≤ |s.Mem|.
Base case:
access0(∆(modID) ∪ Σ(modID), s.Mem)) ∩ Σ(mid) = ∅
By Definition 48, it suffices to prove (∆(modID) ∪ Σ(modID)) ∩ Σ(mid) = ∅.
This is the same as the previous cases.

81

Inductive case:
The induction hypothesis is:
accessk(∆(modID) ∪ Σ(modID), s.Mem)) ∩ Σ(mid) = ∅.
And for convenience let:
A = accessk(∆(modID) ∪ Σ(modID), s.Mem))
Our goal is:
accessk+1(∆(modID) ∪ Σ(modID), s.Mem)) ∩ Σ(mid) = ∅
By Definitions 47 and 48 and after simplification using the induction hypoth-
esis, it suffices for the remaining subgoal to prove:
∀a′ ∈ A. s.Mem(a′) = (δ, σ′, e′,_) =⇒ [σ′, e′) ∩ Σ(mid) = ∅
We prove it by contradiction. Assume the contrary, i.e., assume for an arbitrary
address a′ ∈ A that s.Mem(a′) = (δ, σ′, e′,_) ∧ [σ′, e′) ∩ Σ(mid) 6= ∅
Now by assumption “Stack addresses (capabilities) only live on the
stack” , we have (*):
a′ ∈ Σ(mid)
But we know a′ ∈ A, and by the induction hypothesis, we knowA ∩ Σ(mid) = ∅.
Thus, we know that a′ /∈ Σ(mid) (contradiction to (*)).
This concludes our inductive proof that
access|s.Mem|(∆(modID) ∪ Σ(modID), s.Mem)) ∩ Σ(mid) = ∅.

This concludes the proof of Second which concludes the proof of Case mid 6= modID .
– Case mid = modID:

By instantiating (PRECOND-ASSN) using the assumptions above, we obtain the
following two cases:
∗ Case [σ′, e′) ∩ Σ(modID) = ∅:

Here, we obtain a contradiction to our assumptions. So, any goal is provable.
∗ Case [σ, e) ⊆ Σ(modID):

Here, our goal is immediate by compatibility of ∈ and ⊆ because of the precon-
dition σ + off ∈ [σ, e) together with our case condition.

• Case a 6= σ + off :
Here, our goal is immediate by the corresponding assumption.

The goal “Dynamically-allocated addresses are negative” is immediate by substitution
using s′.nalloc = s.nalloc.

Case Allocate:
The goal “pc points to an existing function” is immediate from the corresponding assump-
tion.

The goal “All pc’s on stack point to existing functions” is immediate from the corre-
sponding assumption by substitution.

In this case, the goal “Static addresses are mapped addresses” about Mem ′ holds by
transitivity of ⊆ after noticing that dom(Mem) ⊆ dom(Mem ′).

Next, we prove the goal “ No address exists that is out-of-memory”.
In this case, we obtain the preconditions nalloc − v > ∇ and nalloc′ = nalloc − v which by
substitution in one another prove the first conjunct of the consequent of statementNo address
exists that is out-of-memory.
The second conjunct of No address exists that is out-of-memory is proved by fixing an
arbitrary a ∈ dom(Mem ′) and distinguishing the cases that arise by the precondition
Mem ′ = Mem[s+ off 7→ (δ,nalloc′,nalloc, 0)][a 7→ 0 | a ∈ [nalloc′,nalloc)]:

82

• Case a /∈ {s+ off } ∪ [nalloc′,nalloc):
Follows by the corresponding assumption, i.e., “No address exists that is out-of-
memory”.
• Case a = s + off :

In this case, we know by Lemma 81 that:
a ∈ reachable_addresses(Σ,∆,modIDs,Mem).
Thus, by Lemma 57, we know:
a ∈ static_addresses(Σ,∆,modIDs) ∨ ∃s, e. (δ, s, e,_) ∈ range(Mem) ∧ a ∈ [s, e)

Thus, we consider each case:

– Case a ∈ static_addresses(Σ,∆,modIDs):
Here, by transitivity of ⊆ from assumption “Static addresses are mapped ad-
dresses” , we have:
a ∈ dom(Mem).
So, our conclusion a > ∇ follows by assumption “No address exists that is out
of memory”.

– Case ∃s, e. (δ, s, e,_) ∈ range(Mem) ∧ a ∈ [s, e):
Here, our conclusion a > ∇ follows by assumption “No address exists that is out
of memory”.

• Case a ∈ [nalloc′,nalloc):
In this case, a ≥ nalloc′ and nalloc′ > ∇ (which is a precondition of Allocate) give us our
conclusion a > ∇.

The third conjunct of the goal “No address exists that is out-of-memory” is proved by
fixing arbitrary s, e with (δ, s, e,_) ∈ range(Mem ′) ∧ a ∈ [s, e) and proving that a > ∇.
We distinguish the following cases based on the definition of Mem ′ (similar to the cases above
for a ∈ dom(Mem ′)):

• Case (δ, s, e,_) ∈ range(Mem):
Here, our goal follows by the third conjunct of the corresponding assumption, i.e., “No
address exists that is out-of-memory”.
• Case (δ, s, e,_) = Mem ′(s+ off):

Here, the goal follows by the conclusion nalloc′ > ∇ that we already argued.
• Case (δ, s, e,_) = Mem ′(a′) ∧ a′ ∈ [nalloc′,nalloc):

This is an impossible case because Mem(a′) = 0 in this case by the definition of Mem ′.

This concludes the proof of the goal “No address exists that is out-of-memory”.

The goals “No stack overflow” and “Stack pointers are the sum of all frame sizes on
stack” follow by substitution using Φ′ = Φ and stk = stk ′.

The goals “If no function has been called, then main is executing” and “The first
function to start executing was main” are proved exactly as in the previous case.

We prove the goal “Stack addresses (capabilities) only live on the stack” by fixing
an arbitrary address a where a ∈ dom(Mem ′) and distinguishing the cases that arise by the
precondition
Mem ′ = Mem[σ + off 7→ (δ,nalloc′,nalloc, 0)][a 7→ 0 | a ∈ [nalloc′,nalloc)]:

• Case a /∈ {σ + off } ∪ [s′.nalloc, s.nalloc):
Here, our goal is immediate by the corresponding assumption.

83

• Case a = σ + off :
Here, we know s′.Mem(a) = (δ, s′.nalloc, s.nalloc, 0).
So, we prove our goal vacuously by proving that:
[s′.nalloc, s.nalloc) ∩ Σ(mid) = ∅.
By inversion of rule Well-formed program and parameters in assumption Well formed
programs and parameters, and by applying the obtained precondition:
Σ(mid) ∩ (−∞, 0) = ∅
to our goal, we obtain the following subgoal:
[s′.nalloc, s.nalloc) ⊆ (−∞, 0)

This is immediate by assumption “Dynamically-allocated addresses are negative”.

• Case a ∈ [s′.nalloc, s.nalloc):
Here, our goal is vacuously true.

Case Call:
The goal “pc points to an existing function” follows from the precondition modID = moduleID(Fd(fidcall)).

The goal “All pc’s on stack point to existing functions” follows from both the corre-
sponding assumption and from the assumption pc points to an existing function.

In this case, the goal “Static addresses are mapped addresses” about Mem ′ holds by
transitivity of ⊆ after noticing that dom(Mem) ⊆ dom(Mem ′).

The goal “No address exists that is out-of-memory” has three conjuncts:
Conjunct nalloc′ > ∇ holds by substitution using the precondition nalloc′ = nalloc.

The second and third conjuncts follow from the corresponding assumption “No address exists
that is out-of-memory” relying on Lemmas 57 and 81. (A detailed proof would be similar
to the one in case Allocate. We skip it here for brevity.)

Next, we prove the goal “No stack overflow”, namely:
∀mid ∈ modIDs. Σ(mid).1 + Φ′(mid) ≤ Σ(mid).2.

We obtain from Call the preconditions:

• Σ(modID).1 + Φ(modID) + frameSize ≤ Σ(modID).2

• Φ′ = Φ[modID 7→ Φ(modID) + frameSize]

These are sufficient to immediately prove our goal after case distinction on mid = modID .

Next, we prove the goal “Stack pointers are the sum of all frame sizes on stack”.

Our goal is:
∀mid ∈ modIDs. Φ′(mid) =∑
fid ∈ {fid | moduleID(Fd(fid)) = mid}

frameSize(Fd(fid))× (countIn((fid ,_), stk ′) + (pc′ = (fid ,_) ? 1 : 0))

We distinguish three cases:

• Case mid = moduleID(Fd(fidcall)):
In this case, we further distinguish two cases:

– Case pc.fid = fidcall , and

84

– Case pc.fid 6= fidcall :
In both of these cases, we notice that the right-hand-side factor in the right side of
the equality increases by one for the term corresponding to fidcall .
Thus, by the precondition Φ′(mid) = Φ(mid) + frameSize(Fd(fidcall)), we can sat-
isfy the equality.

• Case mid 6= moduleID(Fd(fidcall)) ∧mid = moduleID(Fd(pc.fid)):
In this case, we notice that all the terms of the right side of the equality remain the same.
And in particular the term for pc.fid remains the same because its right-hand-side factor
remains the same because:
(pc′ = (pc.fid)?1 : 0)− (pc = (pc.fid)?1 : 0) = −1, and
countIn((pc.fid ,_), stk ′)− countIn((pc.fid ,_), stk) = 1

Thus, by substituting using the precondition Φ′(mid) = Φ(mid) in the left side of our
goal equality, our goal holds by assumption.

• Case mid 6= moduleID(Fd(fidcall)) ∧mid 6= moduleID(Fd(pc.fid)):
In this case, our goal holds directly by the assumption.

This concludes the proof of the goal “Stack pointers are the sum of all frame sizes on
stack”.

The goal “If no function has been called, then main is executing” is vacuously true by
noticing that stk ′ 6= nil.

To prove the goal “The first function to start executing was main”, i.e.,
stk ′ 6= nil =⇒ stk ′(0).fid = main, we distinguish the following two cases:

• Case stk = nil:
Here, by assumption “If no function has been called, then main is executing”, we
know pc.fid = main. Thus, by the precondition stk ′ = push(stk , pc), we have our goal.

• Case stk 6= nil:
Here, observe that stk(0) = stk ′(0), so our goal is immediate by the corresponding as-
sumption about stk .

We prove the goal “Stack addresses (capabilities) only live on the stack” by fixing
an arbitrary address a where a ∈ dom(Mem ′) and distinguishing the cases that arise by the
precondition:
s′.Mem = s.Mem[φ′ + si 7→ vi | β(argNames(i),fidcall ,modID) = [si,_) ∧ i ∈ [0,nArgs)]
[φ′ + si 7→ 0 | β(localIDs(i),fidcall ,modID) = [si,_) ∧ i ∈ [0,nLocal)]

• Case ∃i ∈ [0,nArgs). a ∈ φ′ + β(argNames(i),fidcall ,modID):
Here, we obtain the following precondition of rule Call:
(PRECOND-CALL):
curModID = moduleID(Fd(fid)), and
∀i ∈ [0,nArgs), s′, e′. vi = (δ, s′, e′,_) =⇒ [s′, e′) ∩ Σ(curModID) = ∅
We now obtain from our case condition i ∈ [0,nArgs), and we instantiate (PRECOND-
CALL).
The proof then proceeds exactly as in case Assign-to-var-or-arr replacing (PRECOND-
ASSIGN) with (PRECOND-CALL). We avoid repetition.

• Case ∃i ∈ [0,nLocal). a ∈ φ′ + β(localIDs(i),fidcall ,modID):
Here, our goal holds vacuously.

85

• Case @i. i ∈ [0,nArgs) ∧ a ∈ φ′ + β(argNames(i),fidcall ,modID) ∨
i ∈ [0,nLocal) ∧ a ∈ φ′ + β(localIDs(i),fidcall ,modID):
Here, our goal is immediate by the corresponding assumption.

The goal “Dynamically-allocated addresses are negative” is immediate by substitution
using s′.nalloc = s.nalloc.

Case Return:
The goal “pc points to an existing function” follows from the assumption All pc’s on
stack point to existing functions.

The goal “All pc’s on stack point to existing functions” follows from the corresponding
assumption.

In this case, the goal “Static addresses are mapped addresses” about Mem ′ holds by
substitution using Mem ′ = Mem.

The goal “No address exists that is out-of-memory” holds by substitution using the
preconditions nalloc′ = nalloc and Mem ′ = Mem.

Next, we prove the goal “Stack pointers are the sum of all frame sizes on stack”.
Our goal is:
∀mid ∈ modIDs. Φ′(mid) =∑
fid ∈ {fid | moduleID(Fd(fid)) = mid}

frameSize(Fd(fid))× (countIn((fid ,_), stk ′) + (pc′ = (fid ,_) ? 1 : 0))

We distinguish three cases:

• Case mid = moduleID(Fd(pc.fid)):
In this case, we further distinguish two cases:
– Case pc.fid = pc′.fid , and
– Case pc.fid 6= pc′.fid :

In both of these cases, we notice that the right-hand-side factor in the right side of
the equality decreases by one for the term corresponding to pc.fid .
Thus, by the precondition Φ′(mid) = Φ(mid)− frameSize(Fd(pc.fid)), we can sat-
isfy the equality.

• Case mid 6= moduleID(Fd(pc.fid)) ∧mid = moduleID(Fd(pc′.fid)):
In this case, we notice that all the terms of the right side of the equality remain the same.
And in particular the term for pc′.fid remains the same because its right-hand-side factor
remains the same because:
(pc′ = (pc′.fid)?1 : 0)− (pc = (pc′.fid)?1 : 0) = 1, and
countIn((pc′.fid ,_), stk ′)− countIn((pc′.fid ,_), stk) = −1

Thus, by substituting using the precondition Φ′(mid) = Φ(mid) in the left side of our
goal equality, our goal holds by assumption.

• Case mid 6= moduleID(Fd(pc.fid)) ∧mid 6= moduleID(Fd(pc′.fid)):
In this case, our goal holds directly by the assumption.

This concludes the proof of the goal “Stack pointers are the sum of all frame sizes on
stack”.

Next, we prove the goal “No stack overflow”, namely:
∀mid ∈ modIDs. Σ(mid).1 + Φ′(mid) ≤ Σ(mid).2.

86

Here, by case distinction on mid = moduleID(Fd(pc.fid)), our goal follows immediately by
transitivity of ≤ after obtaining the precondition
Φ′(mid) = Φ(mid)− frameSize
in one case, and immediately by assumption in the other case.

(The assumption “Frame sizes are non-negative” was used here.)

The goal “If no function has been called, then main is executing” follows from assump-
tion “The first function to start executing was main” about stk .

The goal “The first function to start executing was main” follows from the corresponding
assumption about stk .

The goal “Stack addresses (capabilities) only live on the stack” is immediate after
substitution using s′.Mem = s.Mem.

The goal “Dynamically-allocated addresses are negative” is immediate by substitution
using s′.nalloc = s.nalloc.

Case Jump-zero:
All remaining goals hold by substitution (using Φ′ = Φ, stk = stk ′, nalloc′ = nalloc, Mem ′ = Mem,
and pc′.1 = pc.1)

Case Jump-non-zero:
All remaining goals hold by substitution (using Φ′ = Φ, stk = stk ′, nalloc′ = nalloc, Mem ′ = Mem,
and pc′.1 = pc.1)

Case Exit:
Here, all goals hold by substitution (using Φ′ = Φ, stk = stk ′, nalloc′ = nalloc, Mem ′ = Mem,
and pc′ = pc).

This concludes the proof of Lemma 56.

Corollary 4 (Preservation of `exec by the reflexive transitive closure).

∀mods, s, s′. mods `exec s ∧ s→∗ s′ =⇒ mods `exec s
′

Proof. Trivial by Lemma 56.

2.5 Memory Reachability
Given a memory context Σ; ∆;β; MVar ; Fd and a ImpMod program state 〈Mem, stk , pc,Φ,nalloc〉,
we would like to characterize the set A ⊆ Z of reachable memory addresses which informally captures
all the addresses that an expression in the given state can evaluate to. In other words, the set A
of reachable addresses should satisfy the condition that whenever an expression e evaluates to an
address in the given state (i.e., e,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ a where a = (δ, st , end ,_)), then
[st , end) ⊆ A.

More formally, Lemma 81 captures the previous intuition.

Definition 46 (Static Addresses).

static_addresses(Σ,∆,modIDs)
def
=

{a | a ∈ ∆(mid) ∧mid ∈ modIDs}
]
{a | a ∈ Σ(mid) ∧mid ∈ modIDs}

87

Definition 47 (Memory accessibility).

access(A,Mem)
def
=

A ∪ {a | a ∈ [s, e) ∧Mem(a′) = (δ, s, e,_) ∧ a′ ∈ A}

Definition 48 (Memory k-accessibility).

access0(A,_) = A

accessk+1(A,Mem)
def
= access(accessk(A,Mem),Mem)

Definition 49 (Reachable Addresses).

reachable_addresses(Σ,∆,modIDs,Mem)
def
=

static_addresses(Σ,∆,modIDs)

∪ access|Mem|(static_addresses(Σ,∆,modIDs),Mem)

Lemma 57 (Reachable addresses are static addresses or are memory-stored).

∀a,Σ,∆,modIDs,Mem.

a ∈ reachable_addresses(Σ,∆,modIDs,Mem) =⇒
a ∈ static_addresses(Σ,∆,modIDs) ∨ ∃s, e. (δ, s, e,_) ∈ range(Mem) ∧ a ∈ [s, e)

Proof. By Definitions 46 to 49.

Lemma 58 (access is expansive).

∀A,Mem. access(A,Mem) ⊇ A

Proof. Similar to Lemma 7

Lemma 59 (accessn is expansive).

∀n,A,Mem. accessn(A,Mem) ⊇ A

Proof. Similar to Lemma 8

Lemma 60 (Fixed points lead to convergence of accessk).

∀k,Mem, A. k > 0

=⇒ (accessk(A,Mem) = A =⇒ accessk+1(A,Mem) = A)

Proof. Similar to Lemma 9

Lemma 61 (In an empty memory, only the starting addresses are reachable).

∀Σ,∆,modIDs,Mem.

(∀v. v ∈ range(Mem) =⇒ v 6= (δ,_,_,_))

=⇒ reachable_addresses(Σ,∆,modIDs,Mem) = static_addresses(Σ,∆,modIDs)

Proof. Similar to Lemma 10. Immediate by Definitions 47 to 49.

Lemma 62 (k-accessibility either adds a new memory address or a fixed point has been reached).

∀k,A,Mem. k > 0 =⇒
accessk(A,Mem)) accessk+1(A,Mem) =⇒
∃a. a ∈ dom(Mem) ∧ a ∈ accessk(A,Mem) \ accessk−1(A,Mem)

88

Proof. Similar to Lemma 11

Lemma 63 (k-accessibility set contains at least k mapped addresses).

∀k,A,Mem.

accessk+1(A,Mem)) accessk(A,Mem) =⇒
|{a | a ∈ accessk(A,Mem) ∧ a ∈ dom(Mem)}| > k

Proof. Similar to Lemma 12

Lemma 64 (|Mem|-accessibility suffices).

∀A,Mem, k. k ≥ 0 =⇒
access|Mem|+k(A,Mem) = access|Mem|(A,Mem)

Proof. Similar to lemma 13

Lemma 65 (Safe allocation adds only allocated addresses to k-accessibility).

∀A,Mem, â, aa, σ, e, k.

∀a ∈ [σ, e). Mem[â 7→ (δ, σ, e,_)](a) = v =⇒ v /∈ {δ} × Z× Z× Z ∧
aa ∈ accessk(A,Mem[â 7→ (δ, σ, e,_)])

=⇒ aa ∈ accessk(A,Mem) ∨ aa ∈ [σ, e)

Proof. Similar to Lemma 39.

Lemma 66 (Safe allocation adds only allocated addresses to reachability).

∀Σ,∆,modIDs,Mem, â, aa, σ, e.

∀a ∈ [σ, e). Mem[â 7→ (δ, σ, e,_)](a) = v =⇒ v /∈ {δ} × Z× Z× Z ∧
aa ∈ reachable_addresses(Σ,∆,modIDs,Mem[â 7→ (δ, σ, e,_)])

=⇒ aa ∈ reachable_addresses(Σ,∆,modIDs,Mem) ∨ aa ∈ [σ, e)

Proof. Similar to Lemma 40.

Lemma 67 (Safe allocation causes reduction of k-accessibility to χk and addition of exactly the
allocated addresses).

∀A,Mem, â, aa, σ, e, k.

∀a ∈ [σ, e). Mem[â 7→ (δ, σ, e,_)](a) = v =⇒ v /∈ {δ} × Z× Z× Z ∧
â ∈ accessk(A,Mem)

=⇒
accessk(A,Mem[â 7→ (δ, σ, e,_)]) = χk(A,Mem, â) ∪ [σ, e)

Proof. Similar to Lemma 41. Should follow by induction on k, and should be similar to the proof
of Lemma 65.

Lemma 68 (Invariance to unreachable memory updates).

∀Σ,∆,modIDs,Mem, a, v. a /∈ reachable_addresses(Σ,∆,modIDs,Mem) =⇒
reachable_addresses(Σ,∆,modIDs,Mem) = reachable_addresses(Σ,∆,modIDs,Mem[a 7→ v])

Proof.
Similar to Lemma 21 using Lemmas 59, 63 and 69.

89

Lemma 69 (Updating k-inaccessible locations does not affect the k-accessibility set).

∀a, k,Mem, A, v. a /∈ accessk(A,Mem) =⇒ accessk(A,Mem) = accessk(A,Mem[a 7→ v])

Proof.
Similar to Lemma 22 using Definitions 47 and 48.

Lemma 70 (Updating a location does not affect its own k-accessibility).

∀a,A, ka,Mem, v. a ∈ accesska(A,Mem) =⇒ a ∈ accesska(A,Mem[a 7→ v])

Proof.
Similar to Lemma 23 using Lemma 69.

Lemma 71 (Updating a location does not affect its own reachability).

∀Σ,∆,modIDs, a, v,Mem.

a ∈ reachable_addresses(Σ,∆,modIDs,Mem) =⇒
a ∈ reachable_addresses(Σ,∆,modIDs,Mem[a 7→ v])

Proof.
Similar to Lemma 24 using Lemma 70 and definition 49.

Lemma 72 (χk is upper-bounded by k-accessibility).

∀k,Mem, A, a. χk(A,Mem, a) ⊆ accessk(A,Mem)

Proof. Immediate by Definitions 25 and 48.

Lemma 73 (One capability is potentially lost from accessible addresses as a result of a non-capability
update).

∀A, a,Mem, v. v 6= (δ,_,_,_) =⇒ access(A,Mem[a 7→ v]) = χ(A,Mem, a)

Proof.
Similar to Lemma 32. Follows from Definitions 24 and 47 by observing that Mem[a 7→ v](a) 6= (δ,_,_,_)
and that Mem[a 7→ v](a′) = Mem(a′) for a′ 6= a.

Lemma 74 (χk captures k-accessibility after potential deletion of a capability).

∀A, a,Mem, v. v 6= (δ,_,_,_) =⇒ accessk(A,Mem[a 7→ v]) = χk(A,Mem, a)

Proof.
Similar to Lemma 33. Follows by induction on k from Definitions 25 and 48 using Lemma 73.

Lemma 75 (Reachability is captured by union over χk after potential deletion of a capability).

∀Σ,∆,modIDs,Mem, a, v. v 6= (δ,_,_,_) =⇒

reachable_addresses(Σ,∆,modIDs,Mem[a 7→ v]) =
⋃
k

(χk(static_addresses(Σ,∆,modIDs,Mem),Mem, a))

Proof.
Similar to Lemma 34. Immediate by Definition 49 and lemma 74.

Definition 50 (Derivable capability). A capability c∗ = (x, σ, e,_) is derivable from reachability
parameters Σ,∆,modIDs on memory Mem, written Σ,∆,modIDs � c∗ iff
∀a ∈ [σ, e). a ∈ reachable_addresses(Σ,∆,modIDs,Mem).

90

Lemma 76 (Reachability traverses all derivable capabilities).

∀Σ,∆,modIDs,Mem, c.

Σ,∆,modIDs,Mem � c =⇒
reachable_addresses(Σ,∆,modIDs,Mem) ⊇ [c.σ, c.e) ∪ access|Mem|([c.σ, c.e),Mem)

Proof. Similar to Lemma 28.

Lemma 77 (Additivity of access).

∀A1, A2,Md. access(A1 ∪A2,Mem) = access(A1,Mem) ∪ access(A2,Mem)

Proof. Similar to Lemma 16.

Lemma 78 (Additivity of accessk).

∀k,A1, A2,Md. accessk(A1 ∪A2,Mem) = accessk(A1,Mem) ∪ accessk(A2,Mem)

Proof. Similar to Lemma 17. Follows by induction on k using Lemma 77.

Lemma 79 (Effect of assigning a derivable capability).

∀Σ,∆,modIDs,Mem, a, c.

Σ,∆,modIDs,Mem � c ∧ a ∈ reachable_addresses(Σ,∆,modIDs,Mem)

=⇒
reachable_addresses(Σ,∆,modIDs,Mem[a 7→ c]) =⋃
k

χk(static_addresses(Σ,∆,modIDs,Mem) ∪ [c.σ, c.e),Mem, a)

Proof. Follows from Lemmas 30, 75 and 78.

Lemma 80 (Assigning a derivable capability does not enlarge reachability).

∀Σ,∆,modIDs,Mem, a, c.

Σ,∆,modIDs,Mem � c ∧ a ∈ reachable_addresses(Σ,∆,modIDs,Mem)

=⇒
reachable_addresses(Σ,∆,modIDs,Mem[a 7→ c]) ⊆ reachable_addresses(Σ,∆,modIDs,Mem)

Proof. After substitution using Lemma 79, we apply Lemma 30 to get two subgoals that are provable
using Lemma 72 and Lemma 76 respectively.

Lemma 81 (Completeness of reachable_addresses).

∀st , end , e,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc,modIDs.

e,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, st , end ,_) ∧
∃mods,nalloc, stk . mods; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 ∧
moduleID(Fd(pc.fid)) ∈ modIDs

=⇒
[st , end) ⊆ reachable_addresses(Σ,∆,modIDs,Mem)

Proof.

91

• We fix arbitrary st , end , e,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc, and assume the antecedent
e,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, st , end ,_).

• We prove the consequent by induction on the evaluation of e.

– Case Evaluate-expr-const:
– Case Evaluate-expr-cast-to-integer-start:
– Case Evaluate-expr-cast-to-integer-end:
– Case Evaluate-expr-cast-to-integer-offset:
– Case Evaluate-expr-cap-type:
– Case Evaluate-expr-binop:

All of these cases are vacuous because in all, the antecedent does not hold because
e,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ z with z /∈ {δ} × Z× Z× Z.

– Case Evaluate-expr-addr-local:
In this case, we obtain the preconditions:
(fid ,_) = pc, vid ∈ localIDs(Fd(fid)) ∪ args(Fd(fid)), mid = moduleID(Fd(fid)),
β(vid ,fid ,mid) = (s, e) and φ = Σ(mid).1 + Φ(mid).
Our goal is to show that:
[φ+ s, φ+ e) ⊆ reachable_addresses(Σ,∆,modIDs,Mem).
We instead show the following goal:
[φ− frameSize, φ) ⊆ reachable_addresses(Σ,∆,modIDs,Mem)
where frameSize = frameSize(Fd(fid)).
The latter follows immediately by Definitions 46 and 49.
And it suffices for our goal by transitivity of ⊆ assuming:
[φ+ s, φ+ e) ⊆ [φ− frameSize, φ).
This latter assumption follows by interval arithmetic identities from:
[s, e) ⊆ [−frameSize, 0).
This last statement follows from:⊎
vid∈localIDs(Fd(fid))∪args(Fd(fid))

β(vid ,fid ,mid) = [−frameSize, 0)

which in turn can be obtained from the assumption
mods; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉
of our lemma by inversion using rule Exec-state-src then inversion using rule Well-formed
program and parameters.
This concludes case Evaluate-expr-addr-local.

– Case Evaluate-expr-addr-module:
This case is similar to the previous one, but not identical.
We obtain the preconditions:
(fid ,_) = pc, vid /∈ localIDs(Fd(fid)) ∪ args(Fd(fid)),
mid = moduleID(Fd(fid)), β(vid ,⊥,mid) = (s, e), and vid ∈ MVar(mid).
Our goal is to show that:
[∆(mid).1 + s,∆(mid).1 + e) ⊆ reachable_addresses(Σ,∆,modIDs,Mem).
We instead show the following goal:
[∆(mid).1,∆(mid).2) ⊆ reachable_addresses(Σ,∆,modIDs,Mem).
The latter follows immediately by Definitions 46 and 49.
And it suffices for our goal by transitivity of ⊆ assuming:
[∆(mid).1 + s,∆(mid).1 + e) ⊆ [∆(mid).1,∆(mid).2).
This last statement follows from:⊎
vid∈MVar(mid)

β(vid ,⊥,mid) = ∆(mid)

92

which in turn can be obtained from the assumption
mods; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉
of our lemma by inversion using rule Exec-state-src then inversion using rule Well-formed
program and parameters.
This concludes case Evaluate-expr-addr-module.

– Case Evaluate-expr-var:
We obtain the preconditions addr(vid),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ a′

and Mem(a′) = v.
We distinguish the following two cases:

∗ Case v /∈ {δ} × Z× Z× Z:
This case is vacuous.

∗ Case v ∈ {δ} × Z× Z× Z:
Here, we know v = (δ, st , end ,_) and our goal is to show that:
[st , end) ⊆ reachable_addresses(Σ,∆,modIDs,Mem).
We first show that a′ ∈ reachable_addresses(Σ,∆,modIDs,Mem) by distinguishing
the following two cases:
· Case vid ∈ localIDs(Fd(fid)) ∪ args(Fd(fid)):
This case is then identical to case Evaluate-expr-addr-local of our current lemma.
· Case id /∈ localIDs(Fd(fid)) ∪ args(Fd(fid)):
This case is then identical to case Evaluate-expr-addr-module of our current
lemma.

Now, having proved that a′ ∈ reachable_addresses(Σ,∆,modIDs,Mem),
we distinguish by unfolding Definition 49 the following cases:
· Case a′ ∈ static_addresses(Σ,∆,modIDs):
In this case, we know by a′ ∈ dom(Mem) which was obtained above that |Mem| ≥ 1
and thus by unfolding Definitions 47 to 49 of our goal, we’re done.
· Case a′ ∈ access|Mem|(static_addresses(Σ,∆,modIDs),Mem):
Here, by unfolding Definitions 47 and 48, we know that:
[st , end) ⊆ access|Mem|+1(static_addresses(Σ,∆,modIDs),Mem)
But then by Lemma 64, we conclude:
[st , end) ⊆ access|Mem|(static_addresses(Σ,∆,modIDs),Mem).
The last statement by Definition 49 gives us our goal.

– Case Evaluate-expr-addr-arr:
Immediate by the induction hypothesis.

– Case Evaluate-expr-arr:
Similar to case Evaluate-expr-var.

– Case Evaluate-expr-deref:
Similar to cases Evaluate-expr-var and Evaluate-expr-arr.

– Case Evaluate-expr-limrange:
Immediate by the induction hypothesis and transitivity of ⊆.

This concludes the proof of Lemma 81.

Definition 51 (Data segment capability of a module).

data_segment_capability(∆,modID)
def
= (δ,∆(modID).1,∆(modID).2, 0)

Definition 52 (Stack capability of a module).

stack_capability(Σ,modID)
def
= (δ,Σ(modID).1,Σ(modID).2, 0)

93

Definition 53 (Capabilities of a module).

module_caps(∆,Σ,modID)
def
=

{data_segment_capability(∆,modID), stack_capability(Σ,modID)}

Definition 54 (Static capabilities).

static_capabilities(Σ,∆,modIDs)
def
=⋃

modID∈modIDs

module_caps(∆,Σ,modID)

Lemma 82 (Static addresses are precisely those of static capabilities).

static_addresses(Σ,∆,modIDs) = addr(static_capabilities(Σ,∆,modIDs))

Proof. Immediate by unfolding addr, Definition 54, Definition 53, Definition 52, Definition 51, and
Definition 46.

Definition 55 (Access to capabilities).

access_cap(C,Mem)
def
=

C ∪ {(δ, σ, e, 0) | Mem(a′) = (δ, σ, e,_) ∧ a′ ∈ addr(C)}

Lemma 83 (Accessed addresses are precisely the addresses of accessed capabilities).

access(addr(C),Mem) = addr(access_cap(C,Mem))

Proof. Straightforward by unfolding addr, Definition 55, and Definition 47.

Definition 56 (k-access to capabilities).

access_cap0(C,Mem)
def
= C

access_capk+1(C,Mem)
def
= access_cap(access_capk(C,Mem),Mem)

Lemma 84 (k-accessed addresses are precisely the addresses of k-accessed capabilities).

accessk(addr(C),Mem) = addr(access_capk(C,Mem))

Proof. Straightforward by induction on k; the base case is immediate then we apply Lemma 83 in
the inductive case, after unfolding the goal using addr, Definition 56, and Definition 48.

Definition 57 (Reachable capabilities).

reachable_caps(Σ,∆,modIDs,Mem)
def
=

static_capabilities(Σ,∆,modIDs)

∪ access_cap|Mem|(static_capabilities(Σ,∆,modIDs),Mem)

Lemma 85 (Reachable addresses are precisely the addresses of the reachable capabilities).

reachable_addresses(Σ,∆,modIDs,Mem) =

addr(reachable_caps(Σ,∆,modIDs,Mem))

Proof. By unfolding Definition 57 and Definition 49, and by applying the linearity of addr, our goal
follows from Lemma 84 and Lemma 82.

94

3 Compiling pointers as capabilities (ImpMod to CHERIExp)
Definition 58 (Expression Translation).

• *z+_
def
= z for z ∈ Z

• *addr(vid)+_,mid,β
def
= lim(ddc, capStart(ddc) + s, capStart(ddc) + e) with β(vid ,⊥,mid) = (s, e)

• *addr(vid)+fid,mid,β
def
= lim(stc, capStart(stc) + capOff(stc) + s, capStart(stc) + capOff(stc) + e)

with fid 6= ⊥, β(vid ,fid ,mid) = (s, e)

• *vid+fid,mid,β
def
= deref(*addr(vid)+fid,mid,β)

• *e1 ⊕ e2+fid,mid,β
def
= *e1+fid,mid,β ⊕ *e2+fid,mid,β

• *deref(e)+fid,mid,β
def
= deref(*e+fid,mid,β)

• *addr(earr [eoff])+fid,mid,β
def
= inc(*addr(earr)+fid,mid,β , *eoff +fid,mid,β)

• *earr [eoff]+fid,mid,β
def
= deref(*addr(earr [eoff])+fid,mid,β)

• *start(e)+fid,mid,β
def
= capStart(*e+fid,mid,β)

• *end(e)+fid,mid,β
def
= capEnd(*e+fid,mid,β)

• *offset(e)+fid,mid,β
def
= capOff(*e+fid,mid,β)

• *capType(e)+fid,mid,β
def
= capType(*e+fid,mid,β)

• *limRange(e, es, ee)+fid,mid,β
def
= lim(*e+fid,mid,β , *es+fid,mid,β , *ee+fid,mid,β)

We also define expression translation for a list of expressions as *e+fid,mid,β
def
= *e0+fid,mid,β ...*en−1+fid,mid,β

where e ≡ e0...en−1.

Definition 59 (Command Translation).

• LAssign el erM_,_,fid,mid,β
def
=Assign *el +fid,mid,β * er+fid,mid,β

• LAlloc el esizeM_,_,fid,mid,β
def
=Alloc *el +fid,mid,β * esize+fid,mid,β

• LCall fidcall eMFd,_,fid,mid,β
def
= Cinvoke moduleID(Fd(fidcall)) fidcall *e+fid,mid,β

• LReturnM_,_,_,_,_
def
= Creturn

• LJumpIfZero ec eoff M_,Kfun ,fid,mid,β
def
= JumpIfZero *ec +fid,mid,β * eoff +fid,mid,β

• LExitM_,_,_,_,_
def
= Exit

Lemma 86 (Code and data segment capabilities are precise with respect to the code and data
memory initializations).

∀Mc,Md, imp. 〈Mc,Md, imp,_,_〉 ∈ range(J·K)
=⇒
∀a. a ∈ dom(Mc) ⇐⇒ ∃c ∈ range(imp). c.1 = (κ, s, e,_) ∧ a ∈ [s, e) ∧
∀a. a ∈ dom(Md) ⇐⇒ ∃c ∈ range(imp). c.2 = (δ, s, e,_) ∧ a ∈ [s, e)

Proof. Follows from rules Module-list-translation, Module-translation and Function-translation.

95

Figure 8: Compilation of functions, modules and module lists

(Function-translation)

istart = Kmod(mid).1 +Kfun(fid).1

Mc =
⊎

i∈[0,|cmd|)
istart + i 7→ Lcmd(i)MFd,Kfun ,fid,mid,β

T(mid ,fid , args, localvars, cmd)U Fd,Kmod ,Kfun ,β = Mc

(Module-translation)

Mc =
⊎

j∈[0,|fundef |)
Tfundef (j)UFd,Kmod ,Kfun ,β

Md = {i 7→ 0 | i ∈ ∆(mid)}
offs = {fid 7→ Kfun(fid).1 | fid ∈ dom(Fd)}

imp = {mid 7→ ((κ,Kmod(mid).1,Kmod(mid).2, 0), (δ,∆(mid).1,∆(mid).2, 0), offs)}
mstc = {mid 7→ (δ,Σ(mid).1,Σ(mid).2, 0)}

φ = {(mid ,fid) 7→ (length(args(Fd(fid))), length(localIDs(Fd(fid)))) | fid ∈ dom(Fd)}
V(mid , privvars, fundef)WFd,∆,Σ,β,Kmod ,Kfun

= (Mc,Md, imp,mstc, φ)

(Module-list-translation)

wfp_params(m,∆,Σ, β,Kmod ,Kfun)
funDefs = {modFunDef | modFunDef ∈ modFunDefs ∧ (_,_,modFunDefs) ∈ m} ∧

Fd = {funID 7→ funDef | funDef ∈ funDefs ∧ funDef = (_, funID ,_,_,_)} ∧
(Mc,Md, imp,mstc, φ) =

⊎
j∈[0,|m|)

Vm(j)WFd,∆,Σ,β,Kmod ,Kfun

JmK∆,Σ,β,Kmod ,Kfun
= (Mc,Md, imp,mstc, φ)

3.1 Whole-program compiler correctness
Compiler correctness is given by Theorem 1 (backward simulation).

Definition 60 (Source-target value relatedness).
Value relatedness ∼= ⊆ V × V is syntactic equality:

∀v. v ∼= v

Lemma 87 (Expression translation forward simulation - case addr(vid)).

∀mods,Σ,∆, β,MVar ,Fd ,Mem, stk , pc,Φ,nalloc,mid ,fid , vid ,Md, stc, ddc.

pc = (fid ,_) ∧ ∆(mid) = (ddc.σ, ddc.e) ∧
Σ(mid) = (stc.σ, stc.e) ∧ Φ(mid) = stc.off ∧
;; mods; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 ∧
∃v. addr(vid),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v
=⇒ ∃v. * addr(vid) +fid,mid,β ,Md, ddc, stc,_ ⇓ v ∧ v ∼= v

Proof.

• From the assumption ∃v. addr(vid),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v, there are two cases for
inversion:

Case Evaluate-expr-addr-local:
Here, we have by inversion:

1. vid ∈ localIDs(Fd(fid)) ∪ args(Fd(fid))

96

2. mid = moduleID(Fd(fid))

3. β(vid ,fid ,mid) = [s, e)

4. φ = Σ(mid).1 + Φ(mid)

5. v = (δ, φ+ s, φ+ e, 0)

Thus, by value relatedness, we would like to show that:
*addr(vid) +fid,mid,β ,Md, ddc, stc,_ ⇓ (δ, φ+ s, φ+ e, 0).
We know that ⊥ /∈ dom(Fd). Thus, we conclude fid 6= ⊥, which by Definition 58 gives us:
*addr(vid)+fid,mid,β = lim(stc, capStart(stc) + capOff(stc) + s, capStart(stc) + capOff(stc) + e).
By substitution, our goal becomes:
lim(stc, capStart(stc) + capOff(stc) + s, capStart(stc) + capOff(stc) + e) ,Md, ddc, stc,_ ⇓
(δ, φ+ s, φ+ e, 0).
By applying evalLim, (and evalstc to some of the subgoals), we obtain three subgoals:

– capStart(stc) + capOff(stc) + s,Md, ddc, stc,_ ⇓ φ+ s

– capStart(stc) + capOff(stc) + e,Md, ddc, stc,_ ⇓ φ+ e

– [φ+ s, φ+ e) ⊆ [stc.σ, stc.e)

These subgoals become (by further applying evalBinOp, evalCapStart, evalCapOff and
evalstc and substitution using the definition of φ, s and e given above):

– stc.σ + stc.off = Σ(mid).1 + Φ(mid)

– [Σ(mid).1 + Φ(mid) + β(vid ,fid ,mid).1,Σ(mid).1 + Φ(mid) + β(vid ,fid ,mid).2)
⊆ [stc.σ, stc.e)

The first subgoal holds immediately by reflexivity after substitution from the assumptions
of our lemma.
The second subgoal after substitution becomes:
[Σ(mid).1 + Φ(mid) + β(vid ,fid ,mid).1,Σ(mid).1 + Φ(mid) + β(vid ,fid ,mid).2)
⊆ [Σ(mid).1,Σ(mid).2).

In order to prove this goal, we invert the assumption
;;mods; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉
using rule Exec-state-src then we invert wfp_params(mods,∆,Σ, β,Kmod ,Kfun) using
rule Well-formed program and parameters to obtain the following:

No stack overflow
∀mid ∈ modIDs. Σ(mid).1 + Φ(mid) ≤ Σ(mid).2

Frame sizes are non-negative
∀fid ∈ dom(Fd). frameSize(Fd(fid)) ≥ 0

Stack pointers are the sum of all frame sizes on stack
∀mid ∈ modIDs. Φ(mid) =∑
fid ∈ {fid | moduleID(Fd(fid)) = mid}

frameSize(Fd(fid))×(countIn((fid ,_), stk) + (pc = (fid ,_) ? 1 : 0))

Variables occupy exactly the frame
∀mid ∈ modIDs,fid ∈ dom(Fd).⊎
vid∈localIDs(Fd(fid))∪args(Fd(fid))

β(vid ,fid ,mid) = [−frameSize(Fd(fid)), 0)

Now, by substituting the assumption:
pc = (fid ,_)
of our lemma into statement:
Stack pointers are the sum of all frame sizes on stack
instantiated with the assumption (obtained above by inversion):
mid = moduleID(Fd(fid)),

97

together with the constraint:
Frame sizes are non-negative,
we can conclude that:
Φ(mid) ≥ frameSize(Fd(fid)).
The latter statement, together with:
Variables occupy exactly the frame
suffice to show that:
Σ(mid).1 + Φ(mid) + β(vid ,fid ,mid).1 ≥ Σ(mid).1.

Thus, it remains to show that:
Σ(mid).1 + Φ(mid) + β(vid ,fid ,mid).2 ≤ Σ(mid).2.
We already know:
Σ(mid).1 + Φ(mid) ≤ Σ(mid).2
by “No stack overflow” .
And we know:
β(vid ,fid ,mid).2 < 0
by “Variables occupy exactly the frame” .
So, we immediately have the desired inequality by arithmetic identities.
This proves the second subgoal, and concludes case Evaluate-expr-addr-local.

Case Evaluate-expr-addr-module:
Here, we have by inversion:

1. vid /∈ localIDs(Fd(fid)) ∪ args(Fd(fid))

2. mid = moduleID(Fd(fid))

3. vid ∈ MVar(mid)

4. β(vid ,⊥,mid) = [s, e)

5. v = (δ,∆(mid).1 + s,∆(mid).1 + e, 0)

Thus, by value relatedness, we would like to show that:
*addr(vid) +fid,mid,β ,Md, ddc, stc,_ ⇓ (δ,∆(mid).1 + s,∆(mid).1 + e, 0).
Here, by the precondition β(vid ,⊥,mid) = (s, e), we know by Definition 58 that:
*addr(vid)+fid,mid,β = lim(ddc, capStart(ddc) + s, capStart(ddc) + e)

Thus, substituting this into our goal, our goal becomes:
lim(ddc, capStart(ddc) + s, capStart(ddc) + e),Md, ddc, stc,_ ⇓
(δ,∆(mid).1 + s,∆(mid).1 + e, 0)

By applying evalLim, we obtain three subgoals:

– capStart(ddc) + s,Md, ddc, stc,_ ⇓ ∆(mid).1 + s

– capStart(ddc) + e,Md, ddc, stc,_ ⇓ ∆(mid).1 + e

– [∆(mid).1 + s,∆(mid).1 + e) ⊆ [ddc.σ, ddc.e)

For each of the first two subgoals, we apply evalBinOp and evalCapStart to end up with
the following subgoal instead:
ddc.σ = ∆(mid).1
which is immediate by our lemma’s assumptions.

For the third subgoal, by substitution from the assumptions, we obtain the following
subgoal instead:
[∆(mid).1 + s,∆(mid).1 + e) ⊆ [∆(mid).1,∆(mid).2)

98

To prove this subgoal, we invert the assumption:
mods; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉
using rule Exec-state-src then by inversion using rule Well-formed program and parame-
ters, we obtain:

Static variables occupy exactly the data segment
∀mid ∈ modIDs.

⊎
vid∈MVar(mid)

β(vid ,⊥,mid) = [0,∆(mid).2−∆(mid).1)

from which we conclude:
[s, e) ⊆ [0,∆(mid).2−∆(mid).1).
In this last statement, by adding ∆(mid).1 to both components of the intervals on each
side, we immediately obtain our goal.
This concludes case Evaluate-expr-addr-module.

This concludes the proof of Lemma 87.

Lemma 88 (Expression translation forward simulation).

∀mods,Σ,∆, β,MVar ,Fd ,Mem, stk , pc,Φ,nalloc,mid ,fid , vid ,Md, stc, ddc.

pc = (fid ,_) ∧ ∆(mid) = (ddc.σ, ddc.e) ∧
Σ(mid) = (stc.σ, stc.e) ∧ Φ(mid) = stc.off ∧
imp(mid).ddc

.
= ddc ∧ mstc(mid)

.
= stc ∧

;; mods; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 ∧
moduleID(Fd(fid)) ∈ modIDs ∧
As = reachable_addresses(Σ,∆,modIDs,Mem) ∧

At = reachable_addresses(
⋃

mid∈modIDs

{imp(mid).ddc,mstc(mid)},Md) ∧

As = At ∧ Mem|As =Md|At ∧
∃v. e,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v

=⇒ ∃v. * e +fid,mid,β ,Md, ddc, stc,_ ⇓ v ∧ v ∼= v

Proof.
Our goal by Definition 60 is:

*e +fid,mid,β ,Md, ddc, stc,_ ⇓ v

We assume the antecedents and prove it by induction on the evaluation of the source expression e.

Case Evaluate-expr-const:
By substitution in Definition 58, our goal becomes:
z,Md, ddc, stc,_ ⇓ z
which is immediate by evalconst.

Case Evaluate-expr-cast-to-integer-start:
By substitution in Definition 58, our goal becomes:
capStart(* e′ +fid,mid,β),Md, ddc, stc,_ ⇓ z
where we have the induction hypothesis:
*e′ +fid,mid,β ,Md, ddc, stc,_ ⇓ (_, z,_,_).

Thus, by applying rule evalCapStart to the goal, we can immediately show our goal using the
induction hypothesis on e′.

99

Case Evaluate-expr-cast-to-integer-end:
By substitution in Definition 58, our goal becomes:
capEnd(* e′ +fid,mid,β),Md, ddc, stc,_ ⇓ z
where we have the induction hypothesis:
*e′ +fid,mid,β ,Md, ddc, stc,_ ⇓ (_,_, z,_).

Thus, by applying rule evalCapEnd to the goal, we can immediately show our goal using the
induction hypothesis on e′.

Case Evaluate-expr-cast-to-integer-offset:
By substitution in Definition 58, our goal becomes:
capOff(* e′ +fid,mid,β),Md, ddc, stc,_ ⇓ z
where we have the induction hypothesis:
*e′ +fid,mid,β ,Md, ddc, stc,_ ⇓ (_,_,_, z).

Thus, by applying rule evalCapOff to the goal, we can immediately show our goal using the
induction hypothesis on e′.

Case Evaluate-expr-cap-type:
By substitution in Definition 58, our goal becomes:
capType(* e′ +fid,mid,β),Md, ddc, stc,_ ⇓ v
where we have the induction hypothesis:
*e′ +fid,mid,β ,Md, ddc, stc,_ ⇓ (x,_,_,_).

and the assumptions:
x = κ =⇒ v = 0 and x = δ =⇒ v = 1.

Thus, by applying rule evalCapType to the goal, we can immediately show our goal using the
induction hypothesis on e′ and the assumptions on x and v.

Case Evaluate-expr-binop:
By substitution in Definition 58, our goal becomes:
*e1 +fid,mid,β ⊕ * e2 +fid,mid,β ,Md, ddc, stc,_ ⇓ z
where we have the induction hypotheses:
*e1 +fid,mid,β ,Md, ddc, stc,_ ⇓ z1 and

*e2 +fid,mid,β ,Md, ddc, stc,_ ⇓ z2

and the assumption:
z = z1[⊕]z2.

Thus, by applying rule evalBinOp to the goal, we can immediately show our generated subgoals
using the induction hypotheses on e1 and e2 and the assumption on z, z1 and z2.

Case Evaluate-expr-addr-local and

Case Evaluate-expr-addr-module:
These two cases are proved by Lemma 87.

Case Evaluate-expr-var:
By substitution in Definition 58, our goal becomes:
deref(* addr(vid) +fid,mid,β),Md, ddc, stc,_ ⇓ v
And we have the assumptions:

• addr(vid),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, s, e, off)

• s ≤ s+ off < e

• Mem(s+ off) = v

100

By Lemma 87, we have that:
*addr(vid) +fid,mid,β ,Md, ddc, stc,_ ⇓ (δ, s, e, off)

Thus, from the assumption s+ off < e, it follows by substitution that s ≤ s+ off < e.

Applying rule evalDeref to our goal, we get the following goals:

1. s ≤ s+ off < e which is immediate.

2. Md(s+ off) = v

For the latter goal, we notice first from assumptions:
addr(vid),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, s, e, off) and
s ≤ s+ off < e
and by Lemma 81 that:
s+ off ∈ reachable_addresses(Σ,∆,modIDs,Mem) = As

And, also by the definition of the value (δ, s, e, off), we have using Lemma 25 that:
s+ off ∈ reachable_addresses({ddc, stc},Md).

Applying Lemma 18, and using the assumptions imp(mid).ddc
.
= ddc, and mstc(mid)

.
= stc,

we hence conclude that:
s+ off ∈ At. (Here, we used Lemmas 6 and 18, and a little hand-waving to prove that the
offsets of both ddc and stc do not affect the function reachable_addresses.)

So, by assumptions
As = At and Mem|As =Md|At ,
we conclude:
Md(s+ off) = Mem(s+ off)

This last statement together with assumption Mem(s+ off) = v immediately prove our re-
maining goal.

Case Evaluate-expr-addr-arr:
By substitution in Definition 58, our goal becomes:
inc(* addr(earr) +fid,mid,β , * eoff +fid,mid,β),Md, ddc, stc,_ ⇓ (δ, s, e, off + off ′)

with the induction hypotheses and assumptions:

• off ′ ∈ Z
• *addr(earr) +fid,mid,β ,Md, ddc, stc,_ ⇓ (δ, s, e, off)

• *eoff +fid,mid,β ,Md, ddc, stc,_ ⇓ off ′

Thus, by applying rule evalIncCap to our goal, we get five subgoals which are immediately
satisfiable by our induction hypotheses and assumptions.

Case Evaluate-expr-arr:
By substitution in Definition 58, our goal becomes:
deref(* addr(earr [eoff]) +fid,mid,β),Md, ddc, stc,_ ⇓ v
with the assumptions:

• addr(earr [eoff]),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, s, e, off)

• s ≤ s+ off < e

• Mem(s+ off) = v

From the first assumption using an argument exactly the same as case Evaluate-expr-addr-arr,
we conclude that:
*addr(earr [eoff]) +fid,mid,β ,Md, ddc, stc,_ ⇓ (δ, s, e, off)

101

Thus, by applying rule evalDeref to our goal, we obtain three subgoals.
Two of them are immediate by our conclusions so far (after unfolding `δ (δ, s, e, off) using
Definition 2).
The subgoalMd(s+ off) = v is proved by using the assumptions:
As = At and Mem|As =Md|At ,
and Lemma 81 as in case Evaluate-expr-var.

Case Evaluate-expr-deref:
By substitution in Definition 58, our goal becomes:
deref(* e +fid,mid,β),Md, ddc, stc,_ ⇓ v
with the induction hypothesis and assumptions:

• *e +fid,mid,β ,Md, ddc, stc,_ ⇓ (δ, s, e, off)

• s ≤ s+ off < e

• Mem(s+ off) = v

Thus, by applying rule evalDeref to our goal, we obtain three subgoals.
Two of them are immediate by our conclusions so far (after unfolding `δ (δ, s, e, off) using
Definition 2).
The subgoalMd(s+ off) = v is proved by using the assumptions:
As = At and Mem|As =Md|At ,
and Lemmas 18, 25 and 81 as in case Evaluate-expr-var.

Case Evaluate-expr-limrange:
By substitution in Definition 58, our goal becomes:
lim(*e+fid,mid,β , *es+fid,mid,β , *ee+fid,mid,β),Md, ddc, stc,_ ⇓ (x, s′, e′, off)

with the induction hypotheses and assumptions:

• *e +fid,mid,β ,Md, ddc, stc,_ ⇓ (x, s, e, off)

• *es +fid,mid,β ,Md, ddc, stc,_ ⇓ s′

• *ee +fid,mid,β ,Md, ddc, stc,_ ⇓ e′

• [s′, e′) ⊆ [s, e)

Thus, by applying rule evalLim to our goal, we obtain four subgoals which are immediate by
our four assumptions/hypotheses above.

This concludes the proof of Lemma 88.

Lemma 89 (Expression translation backward simulation - case addr(vid)).

∀mods,Σ,∆, β,MVar ,Fd ,Mem, stk , pc,Φ,nalloc,mid ,fid , vid ,Md, stc, ddc.

pc = (fid ,_) ∧ ∆(mid) = (ddc.σ, ddc.e) ∧
Σ(mid) = (stc.σ, stc.e) ∧ Φ(mid) = stc.off ∧
;; mods; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 ∧
_ `exec 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
∃v. * addr(vid) +fid,mid,β ,Md, ddc, stc,_ ⇓ v
=⇒ ∃v. addr(vid),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v ∧ v ∼= v

Proof.
We assume the antecedents, and by Definition 58, we consider the following two cases:

102

• Case β(vid ,fid ,mid) = (s, e):

In this case, we know, by Definition 58 and by assumption that:
lim(stc, capStart(stc) + capOff(stc) + s, capStart(stc) + capOff(stc) + e),Md, ddc, stc,_ ⇓ v
Thus, by rule evalLim, we have (ANTECS-evalLim):
stc,Md, ddc, stc, pcc ⇓ v′,
capStart(stc) + capOff(stc) + s,Md, ddc, stc, pcc ⇓ s′,
capStart(stc) + capOff(stc) + e,Md, ddc, stc, pcc ⇓ e′,
s′ ∈ Z,
e′ ∈ Z,
v′ = (x, s, e,_) ∈ Cap,
[s′, e′) ⊆ [s, e), and
v = (x, s′, e′, 0)

Thus, by applying rules evalCapStart, evalCapOff, and evalstc to the first three statements of
(ANTECS-evalLim), we conclude by substitution from the assumption that:
v = (δ,Σ(mid).1 + Φ(mid) + s,Σ(mid).1 + Φ(mid) + e, 0)

Thus, our goal is to show that:
addr(vid),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ,Σ(mid).1 + Φ(mid) + s,Σ(mid).1 + Φ(mid) + e, 0)

By rule Evaluate-expr-addr-local, it suffices to show that:
vid ∈ localIDs(Fd(fid)) ∪ args(Fd(fid))

This follows from the case condition β(vid ,fid ,mid) = (s, e) together with assumption
_; _; mods; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 after inversion using rule Exec-
state-src then rule Well-formed program and parameters and Well-formed program.

• Case β(vid ,⊥,mid) = (s, e):

In this case, we know, by Definition 58 and by assumption that:
lim(ddc, capStart(ddc) + s, capStart(ddc) + e),Md, ddc, stc,_ ⇓ v
Thus, by rule evalLim, we have (ANTECS-evalLim-2):
stc,Md, ddc, stc, pcc ⇓ v′,
capStart(ddc) + s,Md, ddc, stc, pcc ⇓ s′,
capStart(ddc) + e,Md, ddc, stc, pcc ⇓ e′,
s′ ∈ Z,
e′ ∈ Z,
v′ = (x, s, e,_) ∈ Cap,
[s′, e′) ⊆ [s, e), and
v = (x, s′, e′, 0)

Thus, by applying rules evalCapStart, and evalddc to the first three statements of (ANTECS-
evalLim-2), we conclude by substitution from the assumption that:
v = (δ,∆(mid).1 + s,∆(mid).1 + e, 0)

Thus, our goal is to show that:
addr(vid),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ,∆(mid).1 + s,∆(mid).1 + e, 0)

By rule Evaluate-expr-addr-module, it suffices to show that:
vid /∈ localIDs(Fd(fid)) ∪ args(Fd(fid))

This follows from the side condition β(vid ,⊥,mid) = (s, e) together with assumption
_; _; mods; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 after inversion using rule Exec-
state-src then rule Well-formed program and parameters and Well-formed program.

This concludes the proof of Lemma 89.

103

Lemma 90 (Expression translation backward simulation).

∀mods,Σ,∆, β,MVar ,Fd ,Mem, stk , pc,Φ,nalloc,mid ,fid , vid ,Md, stc, ddc.

pc = (fid ,_) ∧ ∆(mid) = (ddc.σ, ddc.e) ∧
Σ(mid) = (stc.σ, stc.e) ∧ Φ(mid) = stc.off ∧
imp(mid).ddc

.
= ddc ∧ mstc(mid)

.
= stc ∧

;; mods; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 ∧
_ `exec 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
moduleID(Fd(fid)) ∈ modIDs ∧
As = reachable_addresses(Σ,∆,modIDs,Mem) ∧

At = reachable_addresses(
⋃

mid∈modIDs

{imp(mid).ddc,mstc(mid)},Md) ∧

As = At ∧ Mem|As =Md|At ∧
∃v. * e +fid,mid,β ,Md, ddc, stc,_ ⇓ v
=⇒ ∃v. e,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v ∧ v ∼= v

Proof.
We assume the antecedents and prove our goal by induction on the expression evaluation *e+fid,mid,β

,Md, ddc, stc,_ ⇓ v.

Case evalconst:
Here, *e+fid,mid,β = z.

By Definition 58, we thus know e = z.

Thus, by rule Evaluate-expr-const, we have our goal.

Case evalddc:
Here, *e+fid,mid,β = ddc.

By Definition 58, we thus know this case is impossible.

Case evalstc:
Here, *e+fid,mid,β = stc.

By Definition 58, we thus know this case is impossible.

Case evalCapType:
Here, *e+fid,mid,β = capType(E ′),
with E ′,Md, ddc, stc,_ ⇓ v′,
and by Definition 58, we know:
∃e′. e = capType(e′) ∧ E ′ = *e′+fid,mid,β .

Thus, by the induction hypothesis, we know (IH):

e′,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v′.
Now, we consider the following cases:

• Case v′ ∈ Z:
In this case, our goal is: e,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ 0.
But this is immediate by (IH), and rule Evaluate-expr-cap-type.

• Case v′ ∈ {κ} × Z× Z× Z:
In this case, our goal is: e,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ 1.
But this is immediate by (IH), and rule Evaluate-expr-cap-type.

104

• Case v′ ∈ {δ} × Z× Z× Z:
In this case, our goal is: e,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ 2.
But this is immediate by (IH), and rule Evaluate-expr-cap-type.

Case evalCapStart:
Here, *e+fid,mid,β = capStart(E ′),
with E ′,Md, ddc, stc,_ ⇓ v′,
and by Definition 58, we know:
∃e′. e = start(e′) ∧ E ′ = *e′+fid,mid,β .

Thus, by the induction hypothesis, we know (IH):

e′,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v′.
Our goal is thus immediate by (IH) and rule Evaluate-expr-cast-to-integer-start.

Case evalCapEnd:
Here, *e+fid,mid,β = capEnd(E ′),
with E ′,Md, ddc, stc,_ ⇓ v′,
and by Definition 58, we know:
∃e′. e = end(e′) ∧ E ′ = *e′+fid,mid,β .

Thus, by the induction hypothesis, we know (IH):

e′,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v′.
Our goal is thus immediate by (IH) and rule Evaluate-expr-cast-to-integer-end.

Case evalCapOff:
Here, *e+fid,mid,β = capOff(E ′),
with E ′,Md, ddc, stc,_ ⇓ v′,
and by Definition 58, we know:
∃e′. e = offset(e′) ∧ E ′ = *e′+fid,mid,β .

Thus, by the induction hypothesis, we know (IH):

e′,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v′.
Our goal is thus immediate by (IH) and rule Evaluate-expr-cast-to-integer-offset.

Case evalBinOp:
By rule evalBinOp and by Definition 58, we know e = e1 ⊕ e2, so we know:
*e+fid,mid,β = *e1 ⊕ e2+fid,mid,β = *e1 +fid,mid,β ⊕ * e2+fid,mid,β ,
*e1 +fid,mid,β ,Md, ddc, stc,_ ⇓ v1, and
*e2 +fid,mid,β ,Md, ddc, stc,_ ⇓ v2.

Thus, by the induction hypothesis, we know (IH1):
e1,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v1,
and (IH2):
e2,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v2

Thus, our goal is immediate by (IH1), (IH2), and rule Evaluate-expr-binop.

Case evalIncCap:
Here, by Definition 58, we know:
*e+fid,mid,β = *addr(earr [eoff])+ fid,mid,β = inc(*earr+fid,mid,β , *eoff +fid,mid,β)

And by rule evalIncCap, we know:

*earr+fid,mid,β ,Md, ddc, stc, pcc ⇓ v ∈ Cap, and
*eoff +fid,mid,β ,Md, ddc, stc, pcc ⇓ vz ∈ Z

105

By the induction hypothesis, we thus know (IH1):
earr ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v,
and (IH2):
eoff ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ vz
Our goal is to show that:
addr(earr [eoff]),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, v.σ, v.e, v.off + vz),
This is immediate by rule Evaluate-expr-addr-arr.

Case evalDeref:
By rule evalDeref, we know (DEREF-ASSMS):
E ′,Md, ddc, stc, pcc ⇓ v′, `δ v′, and v =Md(v

′.σ + v′.off)
Our goal is to show that:
e,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v
By Definition 58, we distinguish the following cases:

• Case e = deref(e′):
Here, by Definition 58, we also know:
*e′+fid,mid,β = E ′

Thus, together, with the assumption above, we have by the induction hypothesis that:
e′,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v′

By rule Evaluate-expr-deref, we thus have the following two subgoals:
– v′.σ ≤ v′.σ + v′.off < v′.e

This is immediate by (DEREF-ASSMS)’s `δ v′ (unfolding Definition 2).
– Mem(v′.σ + v′.off) = v

Here, by (DEREF-ASSMS)’s v =Md(v
′.σ + v′.off), and `δ v′, and the antecedents,

it suffices to show that:
v′.σ + v′.off ∈ As.
This is immediate by Lemma 81.

• Case e = vid :
By inverting our goal using rule Evaluate-expr-var, we obtain the following subgoals:
– addr(vid),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, s, e, off)

By Definition 58, we know:
E ′ = *addr(vid)+fid,mid,β

Thus, by Lemma 89, we know (ADDR-EVAL):
addr(vid),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v′
which together with the knowledge of `δ v′ (DEREF-ASSMS) immediately satisfy
our subgoal.

– v′.σ ≤ v′.σ + v′.off < v′.e
Immediate by `δ v′ (unfolding Definition 2).

– Mem(v′.σ + v′.off) = v
Here, by (DEREF-ASSMS)’s v =Md(v

′.σ + v′.off), and `δ v′, and the antecedents,
it suffices to show that:
v′.σ + v′.off ∈ As.
This is immediate by Lemma 81.

• Case e = earr [eoff]:
Here, by Definition 58, we have:
E ′ = *addr(earr [eoff])+fid,mid,β = inc(* earr +fid,mid,β , * eoff +fid,mid,β)

Thus, by (DEREF-ASSMS), and inversion using rule evalIncCap, we obtain (INC-ASSMS):
*earr +fid,mid,β ,Md, ddc, stc,_ ⇓ (δ, σa, ea, off a),
*eoff +fid,mid,β ,Md, ddc, stc,_ ⇓ vz ∈ Z, and
v′.off = off a + vz

106

By the induction hypothesis (instantiated with (INC-ASSMS)), we thus have (IH-E-
ARR):
earr ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, σa, ea, off a),
and (IH-E-OFF):
eoff ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ vz ∈ Z,
By inverting our goal using rule Evaluate-expr-arr, we obtain the following subgoals:
– addr(earr [eidx]),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v′

By inversion using rule Evaluate-expr-addr-arr, we obtain the following subgoals:
∗ earr ,MVar ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, σa, ea, off a)

Immediate by (IH-E-ARR).
∗ eoff ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ vz, and
∗ vz ∈ Z

Immediate by (IH-E-OFF).
– v′.σ ≤ v′.σ + v′.off < v′.e

Immediate by `δ v′ of (DEREF-ASSMS).
– Mem(v′.σ + v′.off) = v

Here, by (DEREF-ASSMS)’s v =Md(v
′.σ + v′.off), and `δ v′, and the antecedents,

it suffices to show that:
v′.σ + v′.off ∈ As.
This is immediate by Lemma 81.

Case evalLim:
Here, *e+fid,mid,β = lim(E , Es, Ee)
By rule evalLim, we know (LIM-ASSMS):
E ,Md, ddc, stc, pcc ⇓ v,
Es,Md, ddc, stc, pcc ⇓ s′,
Ee,Md, ddc, stc, pcc ⇓ e′,
s′ ∈ Z,
e′ ∈ Z,
v = (x, s, e,_) ∈ Cap,
[s′, e′) ⊆ [s, e), and
v′ = (x, s′, e′, 0)

By Definition 58, we distinguish the following cases:

• Case e = limRange(ecap , es, ee):
Here, E = *ecap+fid,mid,β , Es = *es+fid,mid,β , and Ee = *ee+fid,mid,β

We thus get the following induction hypotheses (IH-limRange):
ecap ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v,
es ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ s′, and
ee ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ e′
By inverting our goal using rule Evaluate-expr-limrange, we get the following subgoals
instead:

ecap ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (x, s, e,_),
es,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ s′,
s′ ∈ Z,
ee,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ e′,
e′ ∈ Z,
[s′, e′) ⊆ [s, e), and
v′ = (x, s′, e′, 0)

which are all immediate by (IH-limRange) and (LIM-ASSMS).

107

• Case e = addr(vid) ∧ β(vid ,⊥,mid) = (st , end):
Here, E = ddc, Es = capStart(ddc) + st , and Ee = capStart(ddc) + end

Thus, by (LIM-ASSMS), inversion using rules evalddc and evalCapStart, and by our
lemma assumptions, we conclude:
v = (x, s, e,_) = (δ,∆(mid).1,∆(mid).2,_),
s′ = ∆(mid).1 + st , and
e′ = ∆(mid).1 + end

Thus, v′ = (δ,∆(mid).1 + st ,∆(mid).1 + end , 0)

Thus, by inverting our goal using rule Evaluate-expr-addr-module, only the following
subgoals are not immediate:

– vid /∈ localIDs(Fd(fid)) ∪ args(Fd(fid)), and
– vid ∈ MVar(mid)

They both follow by assumption
_; _; mods; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 after inversion using
rule Exec-state-src then rule Well-formed program and parameters and Well-formed
program.

• Case e = addr(vid) ∧ β(vid ,fid ,mid) = (st , end):
Here, E = stc, Es = capStart(stc) + capOff(stc) + st , and
Ee = capStart(stc) + capOff(stc) + end .
Thus, by (LIM-ASSMS), inversion using rules evalstc, evalCapStart, and evalCapOff, and
by our lemma assumptions, we conclude:
v = (x, s, e,_) = (δ,Σ(mid).1,Σ(mid).2,Φ(mid)),
s′ = Σ(mid).1 + Φ(mid) + st , and
e′ = ∆(mid).1 + Φ(mid) + end

Thus, v′ = (δ,Σ(mid).1 + Φ(mid) + st ,Σ(mid).1 + Φ(mid) + end , 0)

Thus, by inverting our goal using rule Evaluate-expr-addr-local, only the following subgoal
is not immediate: vid ∈ localIDs(Fd(fid)) ∪ args(Fd(fid))

This follows by assumption
_; _; mods; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 after inversion using rule
Exec-state-src then rule Well-formed program and parameters and Well-formed program.

This concludes case evalLim.

This concludes the proof of Lemma 90.

Lemma 91 (Memory bounds are preserved by compilation).

∀mods,mid ,fid ,∆,Σ, β,Kmod ,Kfun ,Mc, imp,mstc, φ.

JmodsK∆,Σ,β,Kmod ,Kfun
= 〈Mc,Md, imp,mstc, φ〉 ∧

funDefs = {modFunDef | modFunDef ∈ modFunDefs ∧ (_,_,modFunDefs) ∈ mods} ∧
Fd = {funID 7→ funDef | funDef ∈ funDefs ∧ funDef = (_, funID ,_,_,_)} ∧
(mid ,_,_) ∈ mods

=⇒
∀a ∈ ∆(mid).Md(a) = 0 ∧
offs = {funId 7→ Kfun(fid).1 | funId ∈ dom(Fd)} ∧
imp(mid) = ((κ,Kmod(mid).1,Kmod(mid).2, 0), (δ,∆(mid).1,∆(mid).2, 0), offs) ∧
mstc(mid) = (δ,Σ(mid).1,Σ(mid).2, 0) ∧
∀fid . mid = moduleID(Fd(fid)) =⇒ φ(mid ,fid) = (length(args(Fd(fid))), length(localIDs(Fd(fid))))

108

Proof. Immediate from the assumptions after inversion using rules Module-list-translation and Module-
translation.

Lemma 92 (No additional code/data is added by the compiler).

∀mods,∆,Σ, β,Kmod ,Kfun ,Mc, imp,mstc, φ.

JmodsK∆,Σ,β,Kmod ,Kfun
= 〈Mc,Md, imp,mstc, φ〉 ∧

funDefs = {modFunDef | modFunDef ∈ modFunDefs ∧ (_,_,modFunDefs) ∈ mods} ∧
Fd = {funID 7→ funDef | funDef ∈ funDefs ∧ funDef = (_, funID ,_,_,_)}
=⇒
(mid ∈ dom(imp) =⇒ ∃fid . mid = moduleID(Fd(fid)) ∧
mid ∈ dom(mstc) =⇒ ∃fid . mid = moduleID(Fd(fid)) ∧
(mid ,fid) ∈ dom(φ) =⇒ mid = moduleID(Fd(fid)) ∧
a ∈ dom(Md) =⇒ ∃fid . mid = moduleID(Fd(fid)) ∧ a ∈ ∆(mid) ∧
a ∈ dom(Mc) =⇒ ∃mid ,fid ,n. mid = moduleID(Fd(fid)) ∧ n ∈ [0, |commands(Fd(fid))|) ∧

a = Kmod(mid).1 +Kfun(fid).1 + n)

Proof. Immediate from the assumptions after inversion using rules Module-list-translation and Module-
translation.

Lemma 93 (Code memory is the translation of the commands arranged according to Kmod and
Kfun).

∀mods,∆,Σ, β,Kmod ,Kfun ,mid ,fid ,n,Mc.

JmodsK∆,Σ,β,Kmod ,Kfun
= 〈Mc,_,_,_〉 ∧

funDefs = {modFunDef | modFunDef ∈ modFunDefs ∧ (_,_,modFunDefs) ∈ mods} ∧
Fd = {funID 7→ funDef | funDef ∈ funDefs ∧ funDef = (_, funID ,_,_,_)} ∧
mid = moduleID(Fd(fid)) ∧ n ∈ [0, |commands(Fd(fid))|)
=⇒
Mc(Kmod(mid).1 +Kfun(fid).1 + n) = Lcommands(Fd(fid))(n)MFd,Kfun ,fid,mid,β

Proof. Immediate from the assumptions after inversion using rules Module-list-translation, Module-
translation, and Function-translation.

Definition 61 (Related program counters).

Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; pc ∼= pcc
def
=

Kmod(moduleID(Fd(pc.fid))).1 +Kfun(pc.fid).1 + pc.n = pcc.σ + pcc.off ∧
Kmod(moduleID(Fd(pc.fid))) = [pcc.σ, pcc.e)]

Definition 62 (Related stacks).

Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; stks ∼= stk t
def
=

length(stks) = length(stk t) ∧
∀i ∈ dom(stks)Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; stks(i) ∼= stk t(j).pcc

Definition 63 (Related local stack usage).
The usage of local stacks is related between a candidate pair of source and target states when 1. the
stack usage Φ(mid) in the source state is equal to that given by the capability offset mstc(mid).off

109

of the stack capability of the target state, and 2. for all functions fid , fid is callable (i.e., there is
enough stack space to call it according to Φ) in the source state iff it is callable in the target state
(according to mstc). Additionally, the number of arguments specified in the source interface by the
function definitions map Fd matches the number of arguments given by the implementation of the
target functions specified by the map φ of call frame sizes.

Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; Φ ∼= mstc, φ

def
=

∀mid ∈ dom(Φ). Φ(mid) = mstc(mid).off

∧
∀fid ∈ dom(Fd),mid . moduleID(Fd(fid)) = mid =⇒
(frameSize(Fd(fid)) + Σ(mid).1 + Φ(mid) < Σ(mid).2 ⇐⇒
φ(mid ,fid).1 + φ(mid ,fid).2 + mstc(mid).σ + mstc(mid).off < mstc(mid).e)

∧
∀fid ∈ dom(Fd),mid . moduleID(Fd(fid)) = mid =⇒
length(args(Fd(fid))) = φ(mid ,fid).1

∧
∀(mid ,fid) ∈ dom(φ). fid ∈ dom(Fd) ∧ mid = moduleID(Fd(fid))

Definition 64 (Cross-language compiled-program state similarity).

Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉
def
=

nalloc = nalloc ∧
As = reachable_addresses(Σ,∆,modIDs,Mem) ∧

At = reachable_addresses(
⋃

mid∈modIDs

{imp(mid).ddc,mstc(mid).stc},Md) ∧

As = At ∧ Mem|As =Md|At ∧
∆(moduleID(Fd(pc.fid))) = [ddc.σ, ddc.e) ∧
Σ(moduleID(Fd(pc.fid))) = [stc.σ, stc.e) ∧
Φ(moduleID(Fd(pc.fid))) = stc.off ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; pc ∼= pcc ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; stk ∼= stk ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; Φ ∼= mstc, φ

∨
(pc = ⊥ ∧ Mc(pcc) = ⊥)

Lemma 94 (Cross-language equi-k-accessibility and memory equality is preserved by deleting as-

110

signments and safe allocation).

∀A, a, v,Mem,Md.

∀k, ∃A′. A′ = accessk(A,Mem) = accessk,Md
A ∧

Mem|A′ =Md|A′ ∧
(v 6= (δ,_,_,_) ∨
(v = (δ, σ, e,_) ∧ ∀a∗ ∈ [σ, e).Md[a 7→ v](a∗) 6= (δ,_,_,_) ∧ Mem[a 7→ v](a∗) 6= (δ,_,_,_)))

=⇒
(∀k, ∃A′. A′ = accessk(A,Mem[a 7→ v]) = accessk,Md[a7→v]A ∧
Mem[a 7→ v]|A′ =Md[a 7→ v]|A′)

Proof.
We fix arbitrary A, a, v,Mem,Md and consider the following two cases from the disjunctive assump-
tion:

• Case v 6= (δ,_,_,_):

In this case, by Lemma 33, we know accessk,Md[a 7→v]A = χk(A,Md, a).

Also, by Lemma 74, we know accessk(A,Mem[a 7→ v]) = χk(A,Mem, a).

Then, our first subgoal becomes:
∀k. χk(A,Mem, a) = χk(A,Md, a).

This can be shown by an easy induction on k with the help of Lemmas 31 and 72, Definitions 24
and 25 and the assumptions:
∀k, ∃A′. A′ = accessk(A,Mem) = accessk,Md

A ∧ Mem|A′ =Md|A′
Our next subgoal ∀k. ∃A′. Mem[a 7→ v]|A′ =Md[a 7→ v]|A′ (now with A′ = χk(A,Mem, a) =
χk(A,Md, a)) follows again immediately from Lemmas 31 and 72, and the assumptions.

• Case v = (δ, σ, e,_) ∧ ∀a∗ ∈ [σ, e).Md[a 7→ v](a∗) 6= (δ,_,_,_) ∧Mem[a 7→ v](a∗) 6= (δ,_,_,_)):

Here, we distinguish two cases:

– Case a ∈ accessk(A,Mem) = accessk,Md
A:

In this case, our goals follow by Lemmas 41 and 67 together with Lemmas 31 and 72 and
the assumptions.

– Case a /∈ accessk(A,Mem) = accessk,Md
A:

In this case, our goals follow immediately from the assumptions after applying Lemmas 22
and 69.

Lemma 95 (Cross-language equi-reachability and memory equality is preserved by deleting assign-

111

ments, safe allocation, and assigning derivable capabilities).

∀a, v,Σ,∆,modIDs,Mem, C,Md.

A = static_addresses(Σ,∆,modIDs) =
⋃
c∈C

[c.σ, c.e) ∧

∃Ar. Ar = reachable_addresses(Σ,∆,modIDs,Mem) = reachable_addresses(C,Md) ∧
Mem|Ar =Md|Ar ∧
a ∈ Ar ∧
(v 6= (δ,_,_,_) ∨
(v = (δ, σ, e,_) ∧ ∀a∗ ∈ [σ, e).Md[a 7→ v](a∗) 6= (δ,_,_,_) ∧ Mem[a 7→ v](a∗) 6= (δ,_,_,_)) ∨
(v = (δ, σ, e,_) ∧ Σ,∆,modIDs,Mem � v ∧ C,Md � v))

=⇒
∃A′r. A′r = reachable_addresses(Σ,∆,modIDs,Mem[a 7→ v]) = reachable_addresses(C,Md[a 7→ v])

Mem[a 7→ v]|A′r =Md[a 7→ v]|A′r

Proof.
Here, we can use Lemma 13, and by an easy argument using assumptions Mem|Ar = Md|Ar and
Ar = reachable_addresses(Σ,∆,modIDs,Mem) = reachable_addresses(C,Md), we obtain the an-
tecedent of Lemma 94, which proves two cases of our goal (again after applying Lemma 13 to pick
a finite k).

The remaining case of our goal is proved by applying Lemmas 42 and 79 which give the first
subgoal, and then applying Lemmas 43 and 80 to get the second subgoal from the assumptions.

Lemma 96 (Compiled-program state similarity implies equi-reachability).

∀Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉, 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉.
Kmod ,Kfun ,Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉
=⇒

reachable_addresses(Σ,∆,modIDs,Mem) = reachable_addresses(
⋃

mid∈modIDs

{imp(mid).ddc,mstc(mid).stc},Md)

Proof.
Immediate by Definition 64.

Lemma 97 (Compiler forward simulation).

∀Kmod ,Kfun ,Σ; ∆;β; MVar ; Fd , 〈Mem, stk , pc,Φ,nalloc〉,mods1,

Mc,Md, imp,mstc, φ.

Jmods1 K∆,Σ,β,Kmod ,Kfun
= t ∧

Kmod ;Kfun ; mods1 ; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 ∧
t `exec 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
modIDs = {modID | (modID ,_,_) ∈ mods1} ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 → 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉

=⇒
〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 → 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′,mstc′, nalloc′〉 ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′,mstc′, nalloc′〉

112

Proof.
We assume the antecedents, and we unfold assumption
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉
using Definition 64 to obtain:

Equal allocation
nalloc = nalloc

Equal reachable memories
As = reachable_addresses(Σ,∆,modIDs,Mem) ∧
At = reachable_addresses(

⋃
mid∈modIDs

{imp(mid).ddc,mstc(mid).stc},Md) ∧

As = At ∧ Mem|As =Md|At

Equal data segments
∆(moduleID(Fd(pc.fid))) = (ddc.σ, ddc.e)

Equal stack regions
Σ(moduleID(Fd(pc.fid))) = (stc.σ, stc.e)

Equal stack pointers
Φ(moduleID(Fd(pc.fid))) = stc.off

Related program counters
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; pc ∼= pcc

Related trusted stacks
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; stk ∼= stk

Related local stack usage
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; Φ ∼= mstc, φ

Static addresses are the same as module’s capabilities
We let C =

⋃
mid∈modIDs

{imp(mid).ddc,mstc(mid).stc}.

Then, using assumption Jmods1 K∆,Σ,β,Kmod ,Kfun
= 〈Mc1,Md1, imp1,mstc1, φ1〉 and by Lem-

mas 91 and 92, we have: static_addresses(Σ,∆,modIDs) =
⋃
c∈C

[c.σ, c.e)

Then, we prove our goal by case distinction on the source reduction
(Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 → 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉).

Case Assign-to-var-or-arr:
In this case, by inversion, we have the following assumptions:

1. (fid , n) = pc

2. commands(Fd(fid))(n) = Assign el er

3. frameSize = frameSize(Fd(fid))

4. el,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, s, e, off)

5. er,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v
6. modID = moduleID(Fd(fid))

7. φ = Σ(modID).1 + Φ(modID)

8. ∀s′, e′. v = (δ, s′, e′,_) =⇒ ([s′, e′) ∩ Σ(modID) = ∅ ∨ [s, e) ⊆ Σ(modID))

9. s ≤ s+ off < e

10. Mem ′ = Mem[s+ off 7→ v]

113

11. pc′ = inc(pc)

And we would like to prove the first subgoal:

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 → 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉
By inversion using rule assign, we obtain the following subgoals:

(a) `κ pcc

By unfolding Definition 2, the condition on the capability type follows from assumption
t `exec 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 by inversion using exec-state.
It remains to show the condition on the bounds:
pcc.σ ≤ pcc.σ + pcc.off < pcc.e

By substitution using assumption Related program counters after unfolding Defini-
tion 61, our goal is:
pcc.σ ≤ Kmod(moduleID(Fd(pc.fid))).1 +Kfun(pc.fid).1 + pc.n < pcc.e

By assumption Related program counters after unfolding Definition 61,
we know uniquely the values of pcc.σ and pcc.e:
[pcc.σ, pcc.e) = Kmod(moduleID(Fd(pc.fid)))
Thus, by substitution and a simple rewriting into interval notation, our goal becomes:
Kmod(moduleID(Fd(pc.fid))).1 +Kfun(pc.fid).1 + pc.n ∈ Kmod(moduleID(Fd(pc.fid)))
This goal can now be proved by substitution and interval arithmetic:
first by obtaining the condition on Kfun(pc.fid) and Kmod(moduleID(Fd(pc.fid))) from
Exec-state-src,
then by noticing that pc.n ∈ |commands(Fd(fid))| which we have from assumption (2.)
obtained above.

The argument above proves `κ pcc.
(b) Mc(pcc) = Assign EL ER

This follows immediately by Lemma 93 and definition 59
after replacing pcc.σ + pcc.off as in the previous goal.
By unrolling Definition 59, we immediately get the following substitutions which we use
in the coming goals:
ER = *er+pc.fid,moduleID(Fd(fid)),β

and EL = *el+pc.fid,moduleID(Fd(fid)),β .

By assumption Equal reachable memories, we can apply Lemma 88 for the next two
goals (we have all the assumptions).

(c) ER,Md, ddc, stc, pcc ⇓ v and
(d) EL,Md, ddc, stc, pcc ⇓ c

are proved by Lemma 88.
(e) `δ c

This follows by Lemma 88, then by assumptions (4.) and (9.).
(f) �δ v =⇒ (v ∩ stc = ∅ ∨ c ⊆ stc)

After substitution using the assumption [Equal stack regions]:
Σ(moduleID(Fd(pc.fid))) = (stc.σ, stc.e),
this goal is immediately satisfied by using assumption (8.).

(g) pcc′ = inc(pcc, 1), and
(h) M′d =Md[c 7→ v]

These are inevitable by noticing that only rule assign applies after having proved the
precondition

114

Mc(pcc) = Assign EL ER.

We also have to prove:
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs

〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉.
By unfolding Definition 64, we obtain the following subgoals:

(i) nalloc′ = nalloc′

Immediate by assumption after substitution using the preconditions nalloc′ = nalloc and
nalloc′ = nalloc.

(j) A′s = reachable_addresses(Σ,∆,modIDs,Mem ′) ∧
A′t = reachable_addresses(

⋃
mid∈modIDs

{imp′(mid).ddc,mstc′(mid)},M′d) ∧

A′s = A′t ∧ Mem ′|A′s =M′d|A′t
First, we obtain the following statement (*):
imp(moduleID(Fd(pc.fid))).ddc

.
= ddc and mstc(moduleID(Fd(pc.fid)))

.
= stc)

which follows from rule exec-state together with Lemmas 91 and 93.
Then, we distinguish two cases:

• Case v 6= (δ,_,_,_):
In this case, we apply Lemma 95 to obtain the following subgoals:
– c = (δ, s, e, off), and
– v = v

These two follow from the successful application of Lemma 88 in the proof of
subgoals (c) and (d) above.

– The remaining subgoals follow immediately from the assumptions Equal reach-
able memories and Static addresses are the same as module’s capabili-
ties.

• Case v = (δ, σ, e,_):
In this case, by Lemmas 18, 25 and 81 (using assumption moduleID(Fd(pc.fid)) ∈ modIDs
for Lemma 81 and statement (*) for Lemmas 18 and 25), we know:
[σ, e) ⊆ As = At
which by folding Definitions 23 and 50, gives us (**):
Σ,∆,modIDs,Mem � v, and⋃
mid∈modIDs

{imp(mid).ddc,mstc(mid)},Md � v

Now, we apply Lemma 95 to obtain the following subgoals:
– c = (δ, s, e, off), and
– v = v

These two follow from the successful application of Lemma 88 in the proof of
subgoals (c) and (d) above.

– The remaining subgoals follow immediately from (**) and the assumptions Equal
reachable memories and Static addresses are the same as module’s ca-
pabilities.

(k) ∆(moduleID(Fd(pc′.fid))) = (ddc′.σ, ddc′.e)

Immediate by assumptions after rewriting using ddc′ = ddc and pc′.fid = pc.fid .

(l) Σ(moduleID(Fd(pc′.fid))) = (stc′.σ, stc′.e)

Immediate by assumptions after rewriting using stc′ = stc and pc′.fid = pc.fid .

115

(m) Φ(moduleID(Fd(pc′.fid))) = stc′.off

Immediate by assumptions after rewriting using stc′ = stc and pc′.fid = pc.fid .

(n) Kmod(moduleID(Fd(pc′.fid))).1 +Kfun(pc′.fid).1 + pc′.n = pcc′.σ + pcc′.off ∧
Kmod(moduleID(Fd(pc′.fid))) = [pcc′.σ, pcc′.e)]

This is immediate after substitution using the assumptions on pcc and pc and after having
proved
pcc′ = inc(pcc, 1).

(o) Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; stk ′ ∼= stk ′

Immediate by assumption after rewriting using stk ′ = stk and stk ′ = stk .

(p) Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; Φ′ ∼= mstc′, φ

Immediate by assumption after rewriting using Φ′ = Φ and mstc′ = mstc.

Case Allocate:
In this case, by inversion, we have the following assumptions:

1. (fid , n) = pc

2. commands(Fd(fid))(n) = Alloc el esize

3. el,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, s, e, off)

4. esize ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v
5. s ≤ s+ off < e

6. v ∈ Z+

7. nalloc − v > ∇
8. nalloc′ = nalloc − v
9. Mem ′ = Mem[s+ off 7→ (δ,nalloc′,nalloc, 0)][a 7→ 0 | a ∈ [nalloc′,nalloc)]

And we would like to prove the first subgoal:

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 → 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉
By inversion using rule allocate, we obtain the following subgoals:

(a) `κ pcc

Same as in the previous case.

(b) pcc′ = inc(pcc, 1)

Same as in the previous case.

(c) Mc(pcc) = Alloc EL Esize

This follows immediately by Lemma 93 and definition 59
after replacing pcc.σ + pcc.off .
By unrolling Definition 59, we immediately get the following substitutions which we use
in the coming goals:
Esize = *esize+pc.fid,moduleID(Fd(fid)),β

and EL = *el+pc.fid,moduleID(Fd(fid)),β .

By assumption Equal reachable memories, we can apply Lemma 88 for the next two
goals (we have all the assumptions).

(d) Esize ,Md, ddc, stc, pcc ⇓ v and

(e) EL,Md, ddc, stc, pcc ⇓ c
are proved by Lemma 88.

116

(f) v ∈ Z+

This follows by Lemma 88, then by assumption (6.).
(g) `δ c

This follows by Lemma 88, then by assumptions (3.) and (5.).
(h) M′d =Md[c 7→ (δ, nalloc− v, nalloc, 0), i 7→ 0 ∀i ∈ [nalloc− v, nalloc)]

Same as in the previous case (i.e., inevitable after proving that only rule allocate applies).
(i) nalloc′ = nalloc− v
(j) nalloc′ > ∇

The definition of nalloc′ is inevitable by rule allocate.
The check follows from Lemma 88 and the corresponding check of precondition (7.).

We also have to prove:
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs

〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉.
By unfolding Definition 64, we obtain the following subgoals:

(k) nalloc′ = nalloc′

This follows from Lemma 88 together with the assumption nalloc = nalloc.
(l) A′s = reachable_addresses(Σ,∆,modIDs,Mem ′) ∧

A′t = reachable_addresses(
⋃

mid∈modIDs

{imp′(mid).ddc,mstc′(mid)},M′d) ∧

A′s = A′t ∧ Mem ′|A′s =M′d|A′t
First, we claim that (*):
reachable_addresses(

⋃
mid∈modIDs

{imp(mid).ddc,mstc(mid),Md[i 7→ 0 | i ∈ [nalloc− v, nalloc)]) = At

We prove (*) by applying Lemma 21, so we must prove:
[nalloc− v, nalloc′) ∩At = ∅
This can be proved by using Lemma 18, to obtain subgoals that are provable using both
(**1) ∀(_, dc,_) ∈ range(imp), a ∈ reachable_addresses({dc},Md) =⇒ a ≥ nalloc, and
(**2) ∀a, st . st ∈ range(mstc) ∧ a ∈ reachable_addresses({st},Md) =⇒ a ≥ nalloc

We obtain (**1) and (**2) by inverting assumption
t `exec 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉
using rule exec-state.
Thus, having (*), we can now apply Lemma 95 to our goal which immediately proves it.

(m) ∆(moduleID(Fd(pc′.fid))) = (ddc′.σ, ddc′.e)

Immediate by assumptions after rewriting using ddc′ = ddc and pc′.fid = pc.fid .
(n) Σ(moduleID(Fd(pc′.fid))) = (stc′.σ, stc′.e)

Immediate by assumptions after rewriting using stc′ = stc and pc′.fid = pc.fid .
(o) Φ(moduleID(Fd(pc′.fid))) = stc′.off

Immediate by assumptions after rewriting using stc′ = stc and pc′.fid = pc.fid .
(p) Kmod(moduleID(Fd(pc′.fid))).1 +Kfun(pc′.fid).1 + pc′.n = pcc′.σ + pcc′.off ∧

Kmod(moduleID(Fd(pc′.fid))) = [pcc′.σ, pcc′.e)]

This is immediate after substitution using the assumptions on pcc and pc and after having
proved
pcc′ = inc(pcc, 1).

117

(q) Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; stk ′ ∼= stk ′

Immediate by assumption after rewriting using stk ′ = stk and stk ′ = stk .
(r) Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; Φ′ ∼= mstc′, φ

Immediate by assumption after rewriting using Φ′ = Φ and mstc′ = mstc.

Case Call:
In this case, by inversion, we have the following assumptions:

1. (fid , n) = pc

2. commands(Fd(fid))(n) = Call fidcall e

3. modID = moduleID(Fd(fidcall))

4. argNames = args(Fd(fidcall))

5. localIDs = localIDs(Fd(fidcall))

6. nArgs = length(argNames) = length(e)

7. nLocal = length(localIDs)

8. frameSize = frameSize(Fd(fidcall))

9. curFrameSize = frameSize(Fd(fid))

10. curModID = moduleID(Fd(fid))

11. Σ(modID).1 + Φ(modID) + frameSize < Σ(modID).2

12. Φ′ = Φ[modID 7→ Φ(modID) + frameSize]

13. φ = Σ(curModID).1 + Φ(curModID)

14. φ′ = Σ(modID).1 + Φ′(modID)

15. e(i),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ vi ∀i ∈ [0,nArgs)

16. ∀i ∈ [0,nArgs), s′, e′. vi = (s′, e′,_) =⇒ [s′, e′) ∩ Σ(modID) = ∅
17. stk ′ = push(stk , pc)

18. pc′ = (fidcall , 0)

19. Mem ′ = Mem[φ′ + si 7→ vi | β(argNames(i)) = [si,_) ∧ i ∈ [0,nArgs)]
[φ′ + si 7→ 0 | β(localIDs(i)) = [si,_) ∧ i ∈ [0,nLocal)]

And we would like to prove the first subgoal:
〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 → 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉
By inversion using rule cinvoke then cinvoke-aux, we obtain the following subgoals:

(a) `κ pcc

Same as in the previous cases.
(b) Mc(pcc) = Cinvoke modID fidcall e

This follows immediately by Lemma 93 and definition 59
after replacing pcc.σ + pcc.off .
By unrolling Definition 59, we immediately get the following substitutions which we use
in the coming goals:
(EXPR-TRANS):
e = *e+pc.fid,moduleID(Fd(fid)),β

and
modID = moduleID(Fd(fidcall)).

By assumption Equal reachable memories, we can apply Lemma 88 for the next goal
(we have all the assumptions).

118

(c) e(i),Md, ddc, stc, pcc ⇓ vi ∀i ∈ [0,nArgs)

• First, we need to prove that (*) nArgs = nArgs.
This follows from assumption Related local stack usage after unfolding Defini-
tion 63 and obtaining conjunct
∀fid ∈ dom(Fd),mid . moduleID(Fd(fid)) = mid =⇒ length(args(Fd(fid))) = φ(mid ,fid).1
which we instantiate using fidcall from assumption (2.) and the substitution (EXPR-
TRANS) from the previous subgoal’s proof.

• Then, for an arbitrary i ∈ [0,nArgs), we apply Lemma 88 to the i-th goal (namely,
e(i), Md, ddc, stc, pcc ⇓ vi) obtaining subgoals that are immediate by assumptions
(including crucially assumption (15.) and the substitutions (EXPR-TRANS) from
the previous subgoal’s proof).

(d) φ(modID ,fidcall) = (nArgs,nLocal)

Here, we just need to prove that φ(modID ,fidcall) is defined and that φ(modID ,fidcall).1 = nArgs.
This argument was given in the previous subgoal’s proof.

(e) (δ, σ, e, off) = mstc(modID)

That the entry modID exists in the domain of mstc follows by inversion of the antecedent
using rule exec-state from the fact that φ(modID ,fidcall) is defined which is proven in
previous subgoals.

(f) ∀i ∈ [0,nArgs). �δ vi =⇒ vi ∩ stc = ∅
Here, we need to prove that nArgs = nArgs. This fact is proven in previous subgoals.
Then, after substituting using that equality, the stated goal follows by assumption (16.)
and subgoal (c) after substituting using assumption Equal stack regions.

(g) (c, d, offs) = imp(modID)

That the entry modID exists in the domain of imp follows by Lemma 91 and by assumption
moduleID(Fd(pc′.fid)) ∈ modIDs.

(h) off ′ = off + nArgs + nLocal ,

(i) stc′ = (δ, s, e, off ′),

(j) stk ′ = push(stk , (ddc, pcc,modID ,fidcall)),

(k) M′d =Md[s+ off + i 7→ vi ∀i ∈ [0,nArgs)][s+ off + nArgs + i 7→ 0 ∀i ∈ [0,nLocal)],

(l) mstc′ = mstc[modID 7→ stc′],

(m) ddc′ = d, and

(n) pcc′ = inc(c, offs(fidcall))

Nothing to prove. (Immediate by cinvoke-aux after knowing that only rule cinvoke pos-
sibly applies).

(o) `δ stc′

By Definition 2, we have to prove that:
mstc(modID).σ + off + nArgs + nLocal ∈ [mstc(modID).σ,mstc(modID).e).
By unfolding assumption Related local stack usage using Definition 63, we obtain (*):

∀fid ∈ dom(Fd),mid . moduleID(Fd(fid)) = mid =⇒
(frameSize(Fd(fid)) + Σ(mid).1 + Φ(mid) < Σ(mid).2 ⇐⇒
φ(mid ,fid).1 + φ(mid ,fid).2 + mstc(mid).σ + mstc(mid).off < mstc(mid).e)

which we instantiate using fidcall and assumptions (3.) and (11.) respectively to imme-
diately obtain our goal (after simple interval arithmetic).

119

We also have to prove:
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs

〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉.
By unfolding Definition 64, we obtain the following subgoals:

(p) nalloc′ = nalloc′

Immediate from the assumption Equal allocation after substitution.

(q) A′s = reachable_addresses(Σ,∆,modIDs,Mem ′) ∧
A′t = reachable_addresses(

⋃
mid∈modIDs

{imp′(mid).ddc,mstc′(mid)},M′d) ∧

A′s = A′t ∧ Mem ′|A′s =M′d|A′t
This is similar to the corresponding subgoal (i.e., (j)) of case Assign-to-var-or-arr.
We sketch the differences:

• First, we prove that φ(modID ,fidcall) = (nArgs,nLocal) (i.e., we prove that nLocal
= nLocal)
After unfolding the definitions of argNames and localIDs, we can apply Lemma 91
to our goal to obtain subgoals that are provable using:
assumption (6.), and
Jmods1 K∆,Σ,β,Kmod ,Kfun

= t.
• We then prove our goal by induction on nArgs + nLocal .
• In the k-th induction step, we distinguish two cases:

– Case k ∈ [0,nArgs):
Here, we know from subgoal (c) about vi that we can apply Lemma 95 obtaining
subgoals that are provable similarly to subgoal (j) of case Assign-to-var-or-arr.

– Case k ∈ [nArgs,nArgs + nLocal)
Here, we know from subgoal (k) that we can apply Lemma 95 obtaining subgoals
that are provable similarly to subgoal (j) of case Assign-to-var-or-arr.

(r) ∆(moduleID(Fd(pc′.fid))) = (ddc′.σ, ddc′.e)

This is immediate by Lemma 91.

(s) Σ(moduleID(Fd(pc′.fid))) = (stc′.σ, stc′.e)

This is also immediate by Lemma 91.

(t) Φ(moduleID(Fd(pc′.fid))) = stc′.off

This is provable using assumption Related local stack usage.

(u) Kmod(moduleID(Fd(pc′.fid))).1 +Kfun(pc′.fid).1 + pc′.n = pcc′.σ + pcc′.off ∧
Kmod(moduleID(Fd(pc′.fid))) = [pcc′.σ, pcc′.e)]

Immediate by the already-established subgoals ((n) and (g)), and Lemma 91.

(v) Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; stk ′ ∼= stk ′

By unfolding Definition 62, our goal follows easily from assumption Related program
counters.

(w) Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; Φ′ ∼= mstc′, φ

120

By Definition 63, our goal is:

∀mid ∈ dom(Φ′). Φ′(mid) = mstc′(mid).off

∧
∀fid ∈ dom(Fd),mid . moduleID(Fd(fid)) = mid =⇒
(frameSize(Fd(fid)) + Σ(mid).1 + Φ′(mid) < Σ(mid).2 ⇐⇒
φ(mid ,fid).1 + φ(mid ,fid).2 + mstc′(mid).σ + mstc′(mid).off < mstc′(mid).e)

∧
∀fid ∈ dom(Fd),mid . moduleID(Fd(fid)) = mid =⇒
length(args(Fd(fid))) = φ(mid ,fid).1

∧
∀(mid ,fid) ∈ dom(φ). fid ∈ dom(Fd) ∧ mid = moduleID(Fd(fid))

• The first conjunct is immediate by assumption Related local stack usage (after
unfolding Definition 63) together with assumption (12.) and subgoals (l), (i) and (h).

• For the second conjunct, we fix arbitrary fid and mid , then we distinguish two cases:
– Case mid = moduleID(Fd(fidcall)):

Here, the “ =⇒ ” direction of our goal follows from subgoal (o) after substitution
using subgoal (l).
And the “ ⇐= ” direction follows from assumptions (11.) and (12.).

– Case mid 6= moduleID(Fd(fidcall)):
Here, our goal is immediate by assumption Related local stack usage after
substitution using mstc′(mid) = mstc(mid) of subgoal (l), and Φ′(mid) = Φ(mid)
of assumption (12.).

• The remaining subgoals are immediate by assumption Related local stack usage.

Case Return:
In this case, by inversion, we have the following assumptions:

1. (fid , n) = pc

2. commands(Fd(fid))(n) = Return

3. (pc′, stk ′) = pop(stk)

4. pc′ = (fid ′,_)

5. curFrameSize = frameSize(Fd(fid))

6. curModID = moduleID(Fd(fid))

7. Φ′ = Φ[curModID 7→ Φ(curModID)− curFrameSize]

And we would like to prove the first subgoal:

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 → 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉
By inversion using rule creturn, we obtain the following subgoals:

(a) `κ pcc

Same as in the previous cases.

(b) Mc(pcc) = Creturn

This follows immediately by Lemma 93 and definition 59
after replacing pcc.σ + pcc.off .

121

(c) stk ′, (ddc′, pcc′,mid ,fid) = pop(stk)

The fact that pop(stk) is defined can be proved by showing that:
stk 6= nil

Assume for the sake of contradiction that (STK-NIL):
stk = nil

Thus, length(stk) = 0.
Thus, by assumption Related trusted stacks (unfolding Definition 62), we obtain
f with f(−1) = −1 and
f(length(stk)) = 0.
Since we know by assumption 3 that length(stk) > 0,
we instantiate the “ ⇐= ” direction of conjunct “+1 preservation” of assumption Related
trusted stacks (unfolding Definition 62), obtaining a contradiction.
Thus, assumption (STK-NIL) must be false which is our goal.

(d) φ(mid ,fid) = (nArgs,nLocal)

Using assumption Execution in compile code, and from Lemma 91, we know that
φ(moduleID(Fd(pc.fid)), pc.fid) exists.
Furthermore, by the definition of frameSize, we can conclude that (##):
nArgs + nLocal = curFrameSize (from assumption (5.))

(e) (δ, s, e, off) = mstc(mid)

Again, from Lemma 91, we know that mstc(mid) exists.

(f) off ′ = off − nArgs − nLocal ,

(g) mstc′ = mstc[mid 7→ (δ, s, e, off ′)]

Nothing to prove.

(h) ∃mid ′. pcc′
.
= imp(mid ′).pcc ∧ stc′ = mstc(mid ′)

For the first conjunct, it suffices by rule exec-state to prove:
t `exec 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′,mstc′, nalloc′〉.
The latter follows from the assumption t `exec 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉
by Lemma 52.
For second conjunct, all we need is to prove that mid ′ ∈ dom(mstc).
This follows from the precondition dom(imp) = dom(mstc) of also rule exec-state.

We also have to prove:
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs

〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉.
By unfolding Definition 64, we obtain the following subgoals:

(i) nalloc′ = nalloc′

This is immediate by assumption Equal allocation after substitution.

(j) A′s = reachable_addresses(Σ,∆,modIDs,Mem ′) ∧
A′t = reachable_addresses(

⋃
mid∈modIDs

{imp′(mid).ddc,mstc′(mid)},M′d) ∧

A′s = A′t ∧ Mem ′|A′s =M′d|A′t
This is immediate (after substitution) by assumption Equal reachable memories.

(k) ∆(moduleID(Fd(pc′.fid))) = (ddc′.σ, ddc′.e)

122

By assumption Related trusted stacks (unfolding Definition 62), we know that:
Kmod(moduleID(Fd(pc′.fid))) = [pcc′.σ, pcc′.e)

Thus, immediately, by exec-state, and the disjointness constraints of valid-linking, we
know that:
imp(moduleID(Fd(pc′.fid))).ddc

.
= ddc′

This (after unfolding Definition 6) suffices for our goal by Lemma 91.

(l) Σ(moduleID(Fd(pc′.fid))) = (stc′.σ, stc′.e)

Again, by assumption Related trusted stacks (unfolding Definition 62), we know that:
Kmod(moduleID(Fd(pc′.fid))) = [pcc′.σ, pcc′.e)

Thus, immediately, by exec-state, and the disjointness constraints of valid-linking, we
know that:
mstc(moduleID(Fd(pc′.fid)))

.
= stc′

This (after unfolding Definition 6) suffices for our goal by Lemma 91.

(m) Φ(moduleID(Fd(pc′.fid))) = stc′.off

This follows from the assumption Related local stack usage.

(n) Kmod(moduleID(Fd(pc′.fid))).1 +Kfun(pc′.fid).1 + pc′.n = pcc′.σ + pcc′.off ∧
Kmod(moduleID(Fd(pc′.fid))) = [pcc′.σ, pcc′.e)]

This follows from assumption Related trusted stacks (unfolding Definition 62). here
is how:
Using assumption 3 and subgoal (c), together with folding Definition 61, it suffices to
show that:
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; stk(length(stk)− 1) ∼= stk(length(stk)− 1).pcc

The latter is immediate by unfolding assumption Related trusted stacks using Defini-
tion 62.

(o) Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; stk ′ ∼= stk ′

Follows easily from assumption Related trusted stacks (unfolding Definition 62), as-
sumption 3, and subgoal (c).

(p) Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; Φ′ ∼=modIDs mstc′, φ

By Definition 63, our goal is:

∀mid ∈ dom(Φ′). Φ′(mid) = mstc′(mid).off

∧
∀fid ∈ dom(Fd),mid . moduleID(Fd(fid)) = mid =⇒
(frameSize(Fd(fid)) + Σ(mid).1 + Φ′(mid) < Σ(mid).2 ⇐⇒
φ(mid ,fid).1 + φ(mid ,fid).2 + mstc′(mid).σ + mstc′(mid).off < mstc′(mid).e)

∧
∀fid ∈ dom(Fd),mid . moduleID(Fd(fid)) = mid =⇒
length(args(Fd(fid))) = φ(mid ,fid).1

∧
∀(mid ,fid) ∈ dom(φ). fid ∈ dom(Fd) ∧ mid = moduleID(Fd(fid))

• For the first conjunct, we fix an arbitrary mid and distinguish the following two cases:
– Case mid = moduleID(Fd(pc.fid)):

Here, after substitution using assumptions (5.), and (7.), and subgoals (e) and
(h), our goal follows from assumption Related local stack usage.

123

– Case mid 6= moduleID(Fd(pc.fid)):
Here, our goal follows after substitution using assumption (7.) and subgoal (h)
from assumption Related local stack usage.

• For the second conjunct, we fix arbitrary fid and mid and again distinguish the
following two cases:
– Case mid = moduleID(Fd(pc.fid)):

Here, both the “ =⇒ ” and “ ⇐= ” directions follow by substitution using
Lemma 91.

– Case mid 6= moduleID(Fd(pc.fid)):
Here, our goal follows after substitution using assumption (7.) and subgoal (h)
from assumption Related local stack usage.

• The remaining conjuncts are immediate by assumption Related local stack usage.

Case Jump-non-zero:
In this case, by inversion, we have the following assumptions:

1. (fid , n) = pc

2. commands(Fd(fid))(n) = JumpIfZero ec eoff

3. ec,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v
4. v 6= 0

5. pc′ = inc(pc)

And we would like to prove the first subgoal:
〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 → 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉
By inversion using rule jump1, we obtain the following subgoals:

(a) `κ pcc

Same as in the previous cases.
(b) Mc(pcc) = JumpIfZero Econd Eoff

This follows immediately by Lemma 93 and definition 59
after replacing pcc.σ + pcc.off .
By Definition 59, we have the following substitution which we use in the coming goals:
Econd = *ec+fid,mid,β

(c) Econd ,Md, ddc, stc, pcc ⇓ v, and
(d) v 6= 0

After the substitution, and by assumption Equal reachable memories, we can apply
Lemma 88 for these two subgoals (we have all the assumptions).
From assumption v 6= 0, we thus conclude v 6= 0.

(e) pcc′ = inc(pcc, 1)

Immediate by rule jump1.

We also have to prove:
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs

〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉.
By unfolding Definition 64, we obtain the following subgoals:

124

(f) nalloc′ = nalloc′

Immediate by assumption after substitution using the preconditions nalloc′ = nalloc and
nalloc′ = nalloc (of rule jump1).

(g) A′s = reachable_addresses(Σ,∆,modIDs,Mem ′) ∧
A′t = reachable_addresses(

⋃
mid∈modIDs

{imp′(mid).ddc,mstc′(mid)},M′d) ∧

A′s = A′t ∧ Mem ′|A′s =M′d|A′t
Immediate by assumptions after rewriting usingM′d =Md and Mem ′ = Mem.

(h) ∆(moduleID(Fd(pc′.fid))) = (ddc′.σ, ddc′.e)

Immediate by assumptions after rewriting using ddc′ = ddc and pc′.fid = pc.fid .
(i) Σ(moduleID(Fd(pc′.fid))) = (stc′.σ, stc′.e)

Immediate by assumptions after rewriting using stc′ = stc and pc′.fid = pc.fid .
(j) Φ(moduleID(Fd(pc′.fid))) = stc′.off

Immediate by assumptions after rewriting using stc′ = stc and pc′.fid = pc.fid .
(k) Kmod(moduleID(Fd(pc′.fid))).1 +Kfun(pc′.fid).1 + pc′.n = pcc′.σ + pcc′.off ∧

Kmod(moduleID(Fd(pc′.fid))) = [pcc′.σ, pcc′.e)]

This is immediate after substitution using the assumptions on pcc and pc and after having
proved
pcc′ = inc(pcc, 1).

(l) Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; stk ′ ∼= stk ′

Immediate by assumption after rewriting using stk ′ = stk and stk ′ = stk .
(m) Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; Φ′ ∼= mstc′, φ

Immediate by assumption after rewriting using Φ′ = Φ and mstc′ = mstc.

Case Jump-zero:
In this case, by inversion, we have the following assumptions:

1. (fid , n) = pc

2. commands(Fd(fid))(n) = JumpIfZero ec eoff

3. ec,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v
4. eoff ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ off

5. v = 0

6. off ∈ Z
7. pc′ = (fid , n+ off)

And we would like to prove the first subgoal:

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 → 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉
By inversion using rule jump0, we obtain the following subgoals:

(a) `κ pcc

Same as in the previous cases.
(b) Mc(pcc) = JumpIfZero Econd Eoff

This follows immediately by Lemma 93 and definition 59
after replacing pcc.σ + pcc.off .
By Definition 59, we have the following substitutions which we use in the coming goals:
Econd = *ec+fid,mid,β , and
Eoff = *eoff +fid,mid,β

125

(c) Econd ,Md, ddc, stc, pcc ⇓ v,
(d) Eoff ,Md, ddc, stc, pcc ⇓ off , and

(e) v = 0

After the substitution, and by assumption Equal reachable memories, we can apply
Lemma 88 for each of these subgoals (we have all the assumptions).
From assumption v = 0, we thus conclude v = 0.
From assumption off ∈ Z, we conclude off ∈ Z.

(f) pcc′ = inc(pcc, off)

Immediate by rule jump0.

We also have to prove:
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs

〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉.
By unfolding Definition 64, we obtain the following subgoals:

(g) nalloc′ = nalloc′

Immediate by assumption after substitution using the preconditions nalloc′ = nalloc and
nalloc′ = nalloc (of rule jump0).

(h) A′s = reachable_addresses(Σ,∆,modIDs,Mem ′) ∧
A′t = reachable_addresses(

⋃
mid∈modIDs

{imp′(mid).ddc,mstc′(mid)},M′d) ∧

A′s = A′t ∧ Mem ′|A′s =M′d|A′t
Immediate by assumptions after rewriting usingM′d =Md and Mem ′ = Mem.

(i) ∆(moduleID(Fd(pc′.fid))) = (ddc′.σ, ddc′.e)

Immediate by assumptions after rewriting using ddc′ = ddc and pc′.fid = pc.fid .

(j) Σ(moduleID(Fd(pc′.fid))) = (stc′.σ, stc′.e)

Immediate by assumptions after rewriting using stc′ = stc and pc′.fid = pc.fid .

(k) Φ(moduleID(Fd(pc′.fid))) = stc′.off

Immediate by assumptions after rewriting using stc′ = stc and pc′.fid = pc.fid .

(l) Kmod(moduleID(Fd(pc′.fid))).1 +Kfun(pc′.fid).1 + pc′.n = pcc′.σ + pcc′.off ∧
Kmod(moduleID(Fd(pc′.fid))) = [pcc′.σ, pcc′.e)]

This is immediate after substitution using the assumptions on pcc and pc and after having
proved
pcc′ = inc(pcc, off).

(m) Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; stk ′ ∼= stk ′

Immediate by assumption after rewriting using stk ′ = stk and stk ′ = stk .

(n) Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; Φ′ ∼= mstc′, φ

Immediate by assumption after rewriting using Φ′ = Φ and mstc′ = mstc.

Case Exit:
In this case, by inversion, we have the following assumptions:

1. (fid , n) = pc

2. commands(Fd(fid))(n) = Exit

126

And we would like to prove the first subgoal:

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 → 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉
By inversion using rule cexit, we obtain the following subgoals:

(a) `κ pcc

Same as in the previous cases.

(b) Mc(pcc) = Exit

This follows immediately by Lemma 93 and definition 59
after replacing pcc.σ + pcc.off .
(All the remaining subgoals are immediate from the assumptions after substitution.)

This concludes the proof of Lemma 97.

Lemma 98 (Compiler backward simulation).

∀Kmod ,Kfun ,Σ; ∆;β; MVar ; Fd , 〈Mem, stk , pc,Φ,nalloc〉,mods1, t

Mc,Md, imp,mstc, φ.

Jmods1 K∆,Σ,β,Kmod ,Kfun
= t ∧

Kmod ;Kfun ; mods1 ; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 ∧
t `exec 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
modIDs = {modID | (modID ,_,_) ∈ mods1} ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 → 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉

=⇒
Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 → 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉

Proof.

• We assume the antecedents, and we assume for the sake of contradiction that
(ASSM-NO-SRC-STEP):
@Mem ′, stk ′, pc′,nalloc′. Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 → 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉

• Using assumptions
Jmods1 K∆,Σ,β,Kmod ,Kfun

= t,
modIDs = {modID | (modID ,_,_) ∈ mods1}, and
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉,
we know by Lemma 93, and Definitions 61 and 64 that
(CURR-COM-COMPILED):
Mc(pcc) = Lcommands(Fd(pc.fid))(pc.n)MFd,Kfun ,pc.fid,moduleID(pc.fid),β

• We consider the following possible cases of the assumption
(TRG-STEPS):
〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 → 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉,
and derive a contradiction to (ASSM-NO-SRC-STEP) for each case.

Case assign:
In this case, by inversion, we have the following assumptions:

127

1. `κ pcc

2. pcc′ = inc(pcc, 1)

3. Mc(pcc) = Assign EL ER
4. ER,Md, ddc, stc, pcc ⇓ v
5. EL,Md, ddc, stc, pcc ⇓ c
6. `δ c
7. �δ v =⇒ (v ∩ stc = ∅ ∨ c ⊆ stc)

8. M′d =Md[c 7→ v]

By unfolding assumption (CURR-COM-COMPILED) using Definition 59, we conclude:

commands(Fd(pc.fid))(pc.n) = Assign el er
with EL = *el+pc.fid,moduleID(pc.fid),β , and
ER = *er+pc.fid,moduleID(pc.fid),β

To contradict (ASSM-NO-SRC-STEP), we have the following subgoals using rule Assign-
to-var-or-arr:

– (fid , n) = pc, and
– commands(Fd(fid))(n) = Assign el er

Proved above.
– frameSize = frameSize(Fd(fid))

Nothing to prove.
– el,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, s, e, off), and
– er,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v

Follow from Lemma 90, and we obtain v = v and (δ, s, e, off) = c.
– modID = moduleID(Fd(fid))

Existence of Fd(fid) is immediate by assumption.
– φ = Σ(modID).1 + Φ(modID)

Nothing to prove.
– ∀s′, e′. v = (δ, s′, e′,_) =⇒ ([s′, e′) ∩ Σ(modID) = ∅ ∨ [s, e) ⊆ Σ(modID))

Follows from assumption (7), after substitution using assumption
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 (unfolding Definition 64).
– s ≤ s+ off < e

Immediate by assumption (6) after substitution using (δ, s, e, off) = c (obtained
above).

– Mem ′ = Mem[s+ off 7→ v]
Nothing to prove.

Case allocate:
In this case, by inversion, we have the following assumptions:

1. `κ pcc

2. pcc′ = inc(pcc, 1)

3. Mc(pcc) = Alloc EL Esize

4. Esize ,Md, ddc, stc, pcc ⇓ v
5. EL,Md, ddc, stc, pcc ⇓ c
6. v ∈ Z+

7. `δ c
8. M′d =Md[c 7→ (δ, nalloc− v, nalloc, 0), i 7→ 0 ∀i ∈ [nalloc− v, nalloc)]

9. nalloc′ = nalloc− v

128

10. nalloc′ > ∇
By unfolding assumption (CURR-COM-COMPILED) using Definition 59, we conclude:

commands(Fd(pc.fid))(pc.n) = Alloc el esize

with EL = *el+pc.fid,moduleID(pc.fid),β , and
Esize = *esize+pc.fid,moduleID(pc.fid),β

To contradict (ASSM-NO-SRC-STEP), we have the following subgoals using rule Allo-
cate:

– (fid , n) = pc, and
– commands(Fd(fid))(n) = Alloc el esize

Proved above.
– el,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, s, e, off), and
– esize ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v

Follow from Lemma 90, and we obtain v = v and (δ, s, e, off) = c.
– s ≤ s+ off < e

Immediate (after substitution) by assumption (7) (unfolding Definition 2).
– v ∈ Z+

Immediate by assumption (6) after substitution using v = v.
– nalloc − v > ∇

Immediate by assumption nalloc′ > ∇ after substitution.
– nalloc′ = nalloc − v, and
– Mem ′ = Mem[s+ off 7→ (δ,nalloc′,nalloc, 0)][a 7→ 0 | a ∈ [nalloc′,nalloc)]

Nothing to prove.

Case jump0:
In this case, by inversion, we have the following assumptions:

1. `κ pcc

2. Mc(pcc) = JumpIfZero Econd Eoff

3. Econd ,Md, ddc, stc, pcc ⇓ v
4. v = 0

5. Eoff ,Md, ddc, stc, pcc ⇓ off

6. off ∈ Z
7. pcc′ = inc(pcc, off)

By unfolding assumption (CURR-COM-COMPILED) using Definition 59, we conclude:

commands(Fd(pc.fid))(pc.n) = JumpIfZero ec ndest

with Econd = *ec+pc.fid,moduleID(pc.fid),β , and Eoff = *eoff +pc.fid,moduleID(pc.fid),β

To contradict (ASSM-NO-SRC-STEP), we have the following subgoals using rule Jump-
zero:

– (fid , n) = pc, and
– commands(Fd(fid))(n) = JumpIfZero ec eoff

Proved above.
– ec,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v, and
– v = 0

Follow from Lemma 90 by assumptions (3.) and (4.).

Case jump1:
In this case, by inversion, we have the following assumptions:

129

1. `κ pcc

2. Mc(pcc) = JumpIfZero Econd Eoff

3. Econd ,Md, ddc, stc, pcc ⇓ v
4. v 6= 0

5. pcc′ = inc(pcc, 1)

By unfolding assumption (CURR-COM-COMPILED) using Definition 59, we conclude:

commands(Fd(pc.fid))(pc.n) = JumpIfZero ec ndest

with Econd = *ec+pc.fid,moduleID(pc.fid),β , and Eoff = *eoff +pc.fid,moduleID(pc.fid),β

To contradict (ASSM-NO-SRC-STEP), we have the following subgoals using rule Jump-
non-zero:

– (fid , n) = pc, and
– commands(Fd(fid))(n) = JumpIfZero ec ndest

Proved above.
– ec,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v, and
– v 6= 0

Follow from Lemma 90 by assumptions (3.) and (4.).

Case cinvoke:
In this case, by inversion, we have the following assumptions:

1. `κ pcc

2. Mc(pcc) = Cinvoke mid fid e

3. stk ′ = push(stk , (ddc, pcc,mid ,fid))

4. φ(mid ,fid) = (nArgs,nLocal)

5. (δ, s, e, off) = mstc(mid)

6. off ′ = off + nArgs + nLocal

7. stc′ = (δ, s, e, off ′)

8. e(i),Md, ddc, stc, pcc ⇓ vi ∀i ∈ [0,nArgs)

9. ∀i ∈ [0,nArgs). �δ vi =⇒ vi ∩ stc = ∅
10. M′d =Md[s+ off + i 7→ vi ∀i ∈ [0,nArgs)][s+ off + nArgs + i 7→ 0 ∀i ∈ [0,nLocal)]

11. mstc′ = mstc[mid 7→ stc′]

12. (c, d, offs) = imp(mid)

13. ddc′ = d

14. pcc′ = inc(c, offs(fid))

15. `δ stc′

By unfolding assumption (CURR-COM-COMPILED) using Definition 59, we conclude:

commands(Fd(pc.fid))(pc.n) = Call fidcall e

with mid = moduleID(Fd(fidcall)),
fid = fidcall , and
e = *e+pc.fid,moduleID(pc.fid),β

To contradict (ASSM-NO-SRC-STEP), we have the following subgoals using rule Call:

– (fid , n) = pc, and
– commands(Fd(fid))(n) = Call fidcall e

Proved above.
– modID = moduleID(Fd(fidcall)),
– argNames = args(Fd(fidcall)),

130

– localIDs = localIDs(Fd(fidcall)),
– nArgs = length(argNames) = length(e),
– nLocal = length(localIDs),
– frameSize = frameSize(Fd(fidcall)),
– curFrameSize = frameSize(Fd(fid)), and
– curModID = moduleID(Fd(fid))

Nothing to prove.
– Σ(modID).1 + Φ(modID) + frameSize < Σ(modID).2

By unfolding assumption
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 using Definition 64 then Definition 63,
we obtain (*):
∀fid ∈ dom(Fd),mid . moduleID(Fd(fid)) = mid =⇒
(frameSize(Fd(fid)) + Σ(mid).1 + Φ(mid) < Σ(mid).2 ⇐⇒
φ(mid ,fid).1 + φ(mid ,fid).2 + mstc(mid).σ + mstc(mid).off < mstc(mid).e)
We apply (*) to our goal, then it suffices to show (after substitution using fid = fidcall

and mid = moduleID(Fd(fidcall))) that:
φ(mid ,fid).1 + φ(mid ,fid).2 + mstc(mid).σ + mstc(mid).off < mstc(mid).e
This is immediate by assumptions (4.), (5.), (6.), (7.), and (15.).

– Φ′ = Φ[modID 7→ Φ(modID) + frameSize], and
– φ′ = Σ(modID).1 + Φ′(modID)

Nothing to prove.
– e(i),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ vi ∀i ∈ [0,nArgs)

Follows from Lemma 90 after noticing that:
φ(modID ,fidcall).1 = length(args(Fd(fidcall)))
(from unfolding assumption
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 using Definition 64 then Definition 63)
– ∀i ∈ [0,nArgs), s′, e′. vi = (s′, e′,_) =⇒ [s′, e′) ∩ Σ(curModID) = ∅

Follows from Lemma 90 and assumptions (9.) and “Σ(curModID) = [stc.σ, stc.e)”
which is obtained by unfolding the assumptions using Definition 64.

– stk ′ = push(stk , pc),
– pc′ = (fidcall , 0), and
– Mem ′ = Mem[φ′ + si 7→ vi | β(argNames(i)) = [si,_) ∧ i ∈ [0,nArgs)]

[φ′ + si 7→ 0 | β(localIDs(i)) = [si,_) ∧ i ∈ [0,nLocal)]
Nothing to prove.

Case creturn:
In this case, by inversion, we have the following assumptions:
1. `κ pcc

2. Mc(pcc) = Creturn

3. stk ′, (ddc′, pcc′,mid ,fid) = pop(stk)

4. φ(mid ,fid) = (nArgs,nLocal)

5. (δ, s, e, off) = mstc(mid)

6. off ′ = off − nArgs − nLocal

7. mstc′ = mstc[mid 7→ (δ, s, e, off ′)]

8. ∃mid ′. imp(mid ′).pcc
.
= pcc′ ∧ stc′ = mstc(mid ′)

By unfolding assumption (CURR-COM-COMPILED) using Definition 59, we conclude:

commands(Fd(pc.fid))(pc.n) = Return

To contradict (ASSM-NO-SRC-STEP), we have the following subgoals using rule Return:

131

– (fid , n) = pc, and
– commands(Fd(fid))(n) = Return

Proved above.
– (pc′, stk ′) = pop(stk)

Here, we need to show that stk 6= nil.
This follows easily by assumptions unfolding Definition 64 then Definition 62, and
substituting using assumption (3).

– pc′ = (fid ′,_),
– curFrameSize = frameSize(Fd(fid)),
– curModID = moduleID(Fd(fid)), and
– Φ′ = Φ[curModID 7→ Φ(curModID)− curFrameSize]

The fact that Φ(curModID) exists follows from Lemma 91, and assumption (6.)
after rewriting “curModID ∈ dom(Φ)” using the preconditions of rule Exec-state-src
applied to our lemma’s assumptions.

Case cexit:
In this case, by inversion, we have the following assumptions:

1. `κ pcc

2. Mc(pcc) = Exit

By unfolding assumption (CURR-COM-COMPILED) using Definition 59, we conclude:

commands(Fd(pc.fid))(pc.n) = Exit

To contradict (ASSM-NO-SRC-STEP), we have the following subgoals using rule Exit:

– (fid , n) = pc, and
– commands(Fd(fid))(n) = Exit

Proved above.

• By having considered all the possible cases for
〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 → 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉,
and having derived a contradiction to (ASSM-NO-SRC-STEP) for each case, we proved the
first subgoal:
(SUBGOAL-SRC-STEP-PROVED):
Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 → 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉

• Now we are required to prove: Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs

〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉

• For this, we apply Lemma 97 obtaining the following subgoals:

1. Jmods1 K∆,Σ,β,Kmod ,Kfun
= 〈Mc1,Md1, imp1,mstc1, φ1〉

Immediate by the corresponding assumption of our lemma.

2. Kmod ;Kfun ; mods2 nmods1 ; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉
Immediate by the corresponding assumption of our lemma.

3. t = 〈Mc2,Md2, imp2,mstc2, φ2〉n〈Mc1,Md1, imp1,mstc1, φ1〉
Immediate by the corresponding assumption of our lemma.

4. t `exec 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉
Immediate by the corresponding assumption of our lemma.

5. modIDs = {modID | (modID ,_,_) ∈ mods1}
Immediate by the corresponding assumption of our lemma.

132

6. moduleID(Fd(pc.fid)) ∈ modIDs

Immediate by the corresponding assumption of our lemma.
7. Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉
Immediate by the corresponding assumption of our lemma.

8. Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 → 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉
Immediate by the previously proven subgoal (SUBGOAL-SRC-STEP-PROVED).

9. moduleID(Fd(pc′.fid)) ∈ modIDs

Here, we prove it by case analysis on (SUBGOAL-SRC-STEP-PROVED):
Case Assign-to-var-or-arr:
Case Allocate:
Case Jump-non-zero:
Case Jump-zero:
Case Exit:

In these five cases, we observe that pc′.fid = pc.fid .
Thus, our goal (by substitution) becomes:
moduleID(Fd(pc.fid)) ∈ modIDs
But this is immediate by assumption.

Case Call:
Here, we obtain the following preconditions:
commands(Fd(fid))(n) = Call fidcall e, and
pc′ = (fidcall , 0)
By (CURR-COM-COMPILED), and the first precondition obtained above, we know:
Mc(pcc) = Cinvoke moduleID(Fd(fidcall)) fidcall _
From assumption (TRG-STEPS), and by inversion using rules cinvoke then cinvoke-
aux, we know:
(PCC’-BOUNDS):
pcc′

.
= imp(moduleID(Fd(fidcall))).1

Our goal (by substitution from the second precondition) becomes:
moduleID(Fd(fidcall)) ∈ modIDs
which is immediate by assumptions.

Case Return:
Here, we deduce the following from the preconditions:
pc′ = stk(length(stk)− 1)
Thus, our goal (by substitution) becomes:
moduleID(Fd(stk(length(stk)− 1)).fid) ∈ modIDs
By unfolding our lemma assumption using Definition 64 then Definition 62, we know
that it suffices for our goal to prove:
∃mid ∈ modIDs. Kmod(mid) = [stk(length(stk)− 1).pcc.σ, stk(length(stk)− 1).pcc.e)

– By inversion of our lemma assumption using rule creturn, we know
(PCC’-IS-STK-TOP-ASSM):
stk(length(stk)− 1).pcc = pcc′, and
(PCC’-IS-SOME-MODULE-CODE):
∃mid ′. imp(mid ′).pcc = pcc′

– We obtain mid ′ from (PCC’-IS-SOME-MODULE-CODE).

– But then by Lemmas 91 and 92, and valid-linking, we know:
mid ′ ∈ modIDs ∧ imp(mid ′).pcc = (κ,Kmod(mid ′).1,Kmod(mid ′).2, 0)

– By simple rewriting, we know:
mid ′ ∈ modIDs ∧ Kmod(mid ′) = [imp(mid ′).pcc.σ, imp(mid ′).pcc.e)

133

– Now by substitution using (PCC’-IS-SOME-MODULE-CODE) then (PCC’-IS-
STK-TOP-ASSM), we obtain:
mid ′ ∈ modIDs ∧
Kmod(mid ′) = [stk(length(stk)− 1).pcc.σ, stk(length(stk)− 1).pcc.e)

– This satisfies our goal by choosing mid ′.

This concludes our case analysis on (SUBGOAL-SRC-STEP-PROVED) proving subgoal
moduleID(Fd(pc′.fid)) ∈ modIDs.

• This concludes the proof of Lemma 98.

Lemma 99 (Compiler forward simulation, multiple steps).

∀Kmod ,Kfun ,Σ; ∆;β; MVar ; Fd , 〈Mem, stk , pc,Φ,nalloc〉,mods1,

t, 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉.
Jmods1 K∆,Σ,β,Kmod ,Kfun

= t ∧

Kmod ;Kfun ; mods1 ; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 ∧
t `exec 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
modIDs = {modID | (modID ,_,_) ∈ mods1} ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 →∗ 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉

=⇒
〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 →∗ 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉 ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉

Proof.
We assume the antecedents, and we prove it by induction on the relation →∗.

• Base case (reflexivity):

Here, our goal is immediate by the lemma assumptions.

• Inductive case (transitivity):

Here, we obtain s′′s such that (ASSM1):
Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 →∗ s′′s , and
Σ; ∆;β; MVar ; Fd ; s′′s → 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉.
And by the inductive hypothesis, we have s′′t such that (ASSM2):
〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 →∗ s′′t ,
Σ; ∆;β; MVar ; Fd ; s′′s

∼=modIDs s
′′
t

By induction on the relation →∗ in (ASSM2) and by using Lemma 52, we know (*):
t `exec s

′′
t

By induction on the relation →∗ in (ASSM1) and by using Lemma 56, we know (**):
Kmod ;Kfun ; mods1 nmods2 ; Σ; ∆;β; MVar ; Fd `exec s

′′
s

Our goal is:

∃M′d, stk ′, ddc′, stc′, pcc′, nalloc′. s′′t → 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉 ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉
We apply Lemma 97 obtaining the following subgoals:

134

– Σ; ∆;β; MVar ; Fd ; s′′s → 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉.
Immediate by (ASSM1).

– Σ; ∆;β; MVar ; Fd ; s′′s
∼=modIDs s

′′
t

Immediate by (ASSM2).

– t `exec s
′′
t

Immediate by (*).

– Kmod ;Kfun ; mods1 nmods2 ; Σ; ∆;β; MVar ; Fd `exec s
′′
s

Immediate by (**).

– The remaining subgoals are immediate by the antecedents of the current lemma.

This concludes the proof of Lemma 99.

Theorem 1 (Compiler backward simulation, multiple steps (Compiler correctness)).

∀Kmod ,Kfun ,Σ; ∆;β; MVar ; Fd , 〈Mem, stk , pc,Φ,nalloc〉,mods1,

t, 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉.
Jmods1 K∆,Σ,β,Kmod ,Kfun

= t ∧

Kmod ;Kfun ; mods1 ; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 ∧
t `exec 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
modIDs = {modID | (modID ,_,_) ∈ mods1} ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 →∗ 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉

=⇒
Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 →∗ 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉

Proof. Similar to the proof of Lemma 99. Follows from Lemma 98, Lemma 52, and Lemma 56.

Lemma 100 (Source and compiled initial states are cross-language related).

∀ω ∈ N,m1,m, si,∆,Σ, β,Kmod ,Kfun ,MVar ,Fd ,modIDs, t, t′si.

modIDs = {modID | (modID ,_,_) ∈ m} ∧
Kmod ;Kfun ; m; Σ; ∆ + ω;β; MVar ; Fd `i si ∧
t′ = JmK∆,Σ,β,Kmod ,Kfun

∧

t = t′ + ω ∧
t `i si ∧
=⇒
Kmod ;Kfun ; Σ; ∆ + ω;β; MVar ; Fd ; si ∼=modIDs si

Proof.
By inverting assumption t `i si using rule initial-state, and by instantiating Lemma 5 then inversion
using rule exec-state together with assumption si.pcc ⊆ dom(t′.Mc), we know (ASSM1):

∃mainMod . (t′.imp + ω)(mainMod) = (p, d, offs) ∧ main ∈ dom(offs) ∧
si.pcc = (κ, p.σ, p.e, offs(main)) ∧ si.ddc = d ∧ si.stc = si.mstc(mainMod) ∧ t′.φ(mainMod , main) = (nArgs,nLocal)

si.stc = (δ,_,_,nArgs + nLocal)

135

Also, by inverting assumptionKmod ;Kfun ; m; Σ; ∆ + ω;β; MVar ; Fd `i si using rule Initial-state-
src, we know (ASSM2):

si.pc = (main, 0) ∧

si.Φ = {moduleID(Fd(main)) 7→ frameSize(Fd(main)} ∪
⋃

mid∈dom(∆)\{moduleID(Fd(main))}

{mid 7→ 0}

Furthermore, by Lemma 91, and by inversion of the assumptionKmod ;Kfun ; m; Σ; ∆ + ω;β; MVar ; Fd `i si
using rules Initial-state-src then Well-formed program and parameters then Well-formed program,
we know mainMod of (*) is unique.

Our goal (by unfolding Definition 64) consists of the following subgoals:

• si.nalloc = si.nalloc

From the assumptions and by inverting rules initial-state and Initial-state-src, we know si.nalloc =
si.nalloc = −1.

• As = reachable_addresses(Σ,∆ + ω,modIDs, si.Mem) ∧
At = reachable_addresses(

⋃
mid∈modIDs

{(t′.imp + ω)(mid).ddc, t′.mstc(mid)}, t′.Md + ω) ∧

As = At ∧ si.Mem|As = (t′.Md + ω)|At
From the assumptions, and by inverting rules initial-state, and Initial-state-src, we get the
following substitutions:

t′.Md + ω = {a 7→ 0 | a ∈ dom(t′.Md + ω)}, and
si.Mem = {a 7→ 0 | a ∈

⋃
mid∈modIDs

∆(mid)}

Thus, by Lemma 10 and Lemma 61, we observe that (*):
As = static_addresses(Σ,∆ + ω,modIDs), and

At = {a | a ∈ [c.σ, c.e) ∧ c ∈
⋃

mid∈modIDs

{(t′.imp + ω)(mid).ddc, t′.mstc(mid)}}

By Definition 46, we thus know (**):
As = {a | a ∈ (∆ + ω)(mid) ∧mid ∈ modIDs}] {a | a ∈ Σ(mid) ∧mid ∈ modIDs}
The first conjunct of our goal is As = At.

Substituting using (*) and (**), it suffices to show that:
∀mid ∈ modIDs. (∆ + ω)(mid) = [(t′.imp + ω)(mid).ddc.σ, (t′.imp + ω)(mid).ddc.e) ∧ Σ(mid) =
[t′.mstc(mid).σ, t′.mstc(mid).e)

By applying Definitions 15 and 44, and using simple arithmetic, it suffices to show that:
∀mid ∈ modIDs.∆(mid) = [t′.imp(mid).ddc.σ, t′.imp(mid).ddc.e) ∧ Σ(mid) = [t′.mstc(mid).σ, t′.mstc(mid).e)

This follows immediately by Lemma 91.

• (∆ + ω)(moduleID(Fd(si .pc.fid))) = (si.ddc.σ, si.ddc.e)

By (ASSM1) and (ASSM2), it suffices to show that:

(∆ + ω)(main) = [(t′.imp + ω)(mainMod).ddc.σ, (t′.imp + ω)(mainMod).ddc.e)

Again, by applying Definitions 15 and 44, and using simple arithmetic, it suffices to show that:
∆(main) = [t′.imp(mainMod).ddc.σ, t′.imp(mainMod).ddc.e)

By the uniqueness of mainMod argued above, this goal is immediate by Lemma 91.

• Σ(moduleID(Fd(si .pc.fid))) = (si.stc.σ, si.stc.e)

By (ASSM1) and (ASSM2), and by rule initial-state giving t′mstc
.
= si.mstc, it suffices to show

that:

136

Σ(main) = [t′.mstc(mainMod).σ, t′.mstc(mainMod).e)

By the uniqueness of mainMod argued above, this goal is immediate by Lemma 91.

• Φ(moduleID(Fd(si .pc.fid))) = si.stc.off

By (ASSM1) and (ASSM2), it suffices to show that:
frameSize(Fd(main)) = t′.φ(mainMod , main).nArgs + t′.φ(mainMod , main).nLocal

By the definition of frameSize, it is equivalent to show that:
length(args(Fd(main))) + length(localIDs(Fd(main))) =
t′.φ(mainMod , main).nArgs + t′.φ(mainMod , main).nLocal

By the uniqueness of mainMod argued above, this goal is immediate by Lemma 91.

• Kmod(moduleID(Fd(si .pc.fid))).1 +Kfun(si .pc.fid).1 + si .pc.n = si.pcc.σ + si.pcc.off ∧
Kmod(moduleID(Fd(si .pc.fid))) = [si.pcc.σ, si.pcc.e)]

By (ASSM1) and (ASSM2), it suffices to show that:
Kmod(moduleID(Fd(main))).1 +Kfun(main).1 + 0 =
(t′.imp + ω)(mainMod).pcc.σ + (t′.imp + ω)(mainMod).offs(main) ∧
Kmod(moduleID(Fd(main))) = [(t′.imp + ω)(mainMod).pcc.σ, (t′.imp + ω)(mainMod).pcc.e)]

By Definition 15, it is equivalent to show:

Kmod(moduleID(Fd(main))).1 + compilation− bounds− preservedKfun(main).1 =
t′.imp(mainMod).pcc.σ + t′.imp(mainMod).offs(main) ∧
Kmod(moduleID(Fd(main))) = [t′.imp(mainMod).pcc.σ, t′.imp(mainMod).pcc.e)]

By the uniqueness of mainMod argued above, this goal is immediate by Lemma 91.

• Kmod ;Kfun ; Σ; ∆ + ω;β; MVar ; Fd ; si.stk ∼=modIDs si.stk

Here, by unfolding Definition 62, and choosing f = ∅, we satisfy all the conjuncts of our goal
because si.stk = nil and si.stk = nil.

• Kmod ;Kfun ; Σ; ∆ + ω;β; MVar ; Fd ; si.Φ ∼=modIDs si.mstc, si.φ

By unfolding Definition 63, it suffices to show:

– ∀mid ∈ modIDs. si.Φ(mid) = si.mstc(mid).off

Using the definition of si.Φ given by (ASSM2), we distinguish two cases:

∗ Case mid = main:
In this case, our goal follows by (ASSM1), and the uniqueness of mainMod argued
above together with Lemma 91.

∗ Case mid 6= main:
In this case, our goal is immediate by (ASSM1) and the precondition
∀sc. sc ∈ range(mstc) \ {stc} =⇒ sc = (δ,_,_, 0) of rule initial-state which we get
by inversion of our assumption t `i si.

– ∀fid ∈ dom(Fd),mid . moduleID(Fd(fid)) = mid =⇒
(frameSize(Fd(fid)) + Σ(mid).1 + si.Φ(mid) < Σ(mid).2 ⇐⇒
si.φ(mid ,fid).1 + si.φ(mid ,fid).2 + si.mstc(mid).σ + si.mstc(mid).off < si.mstc(mid).e)

– ∀fid ∈ dom(Fd),mid . moduleID(Fd(fid)) = mid =⇒
length(args(Fd(fid))) = si.φ(mid ,fid).1

– ∀(mid ,fid) ∈ dom(si.φ). fid ∈ dom(Fd) ∧ mid = moduleID(Fd(fid))

All of these three subgoals are immediate after substitution using Lemma 91.

This concludes the proof of Lemma 100.

137

Definition 65 (Target empty context).

∅ def
= ({}, {}, {}, {}, {})

Lemma 101 (Target empty context is universally linkable).

∀t : TragetSetup. ∅n t = btc

Proof.
Immediate by Definition 65 and rule valid-linking.

Definition 66 (Target whole-program convergence compatible with partial convergence).

ω,∇ ` t ⇓ def
= ω,∇ ` ∅[t] ⇓

Definition 67 (Source empty context).

∅ def
= nil

Lemma 102 (Source empty context is universally linkable and universally order-preserving).

∀p : Prog . wfp(p) =⇒ ∅n p = bpc

∀p,Kmod . ∅ .Kmod
p

∀p,∆. p .∆ ∅

Proof.
Immediate by Definition 67 and (rule Valid-linking-src + definition 41).

Definition 68 (Source whole-program convergence compatible with partial convergence).

Kmod ,Kfun ,Σ,∆ + ω, β,∇ ` m ⇓ def
= Kmod ,Kfun ,Σ,∆ + ω, β,∇ ` ∅[m] ⇓

Lemma 103 (Cross-language relatedness implies equi-terminality).

∀Kmod ,Kfun ,Σ; ∆;β; MVar ; Fd , ss,mods1,mods2, t1, t2, t, st.

Jmods1 K∆,Σ,β,Kmod ,Kfun
= t1 ∧

Kmod ;Kfun ; mods1 nmods2 ; Σ; ∆;β; MVar ; Fd `exec ss ∧
t = t1 n t2 ∧
t `exec st ∧
modIDs = {modID | (modID ,_,_) ∈ mods1} ∧
moduleID(Fd(ss .pc.fid)) ∈ modIDs ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; ss ∼=modIDs st

=⇒
`t ss ⇐⇒ `t st

Proof.
We assume the antecedents.

138

• “ =⇒ ” direction:
We assume `t ss, and our goal by unfolding Definition 13 is to show thatMc(st.pcc) = Exit.
Here, it suffices by assumption t = t1 n t2 and rule valid-linking to show that:
t1.Mc(st.pcc) = Exit

assuming that:
st.pcc ∈ dom(t1.Mc)

The latter follows from the assumptions:
moduleID(Fd(pc.fid)) ∈ modIDs, Kmod ;Kfun ; mods1 nmods2 ; Σ; ∆;β; MVar ; Fd `exec ss, and
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; ss ∼=modIDs st after unfolding Definitions 61 and 64.
For the former goal (t1.Mc(st.pcc) = Exit), we apply Lemma 93, to instead get the following
three subgoals:

– ∃mods,∆,Σ, β,Kmod ,Kfun . JmodsK∆,Σ,β,Kmod ,Kfun
= 〈t1.Mc,_,_,_〉

We choose mods = mods1, and ∆,Σ, β,Kmod ,Kfun from our assumptions.
– ∃mid ,fid ,n. st.pcc.σ + st.pcc.off = Kmod(mid).1 +Kfun(fid).1 + n

which follows immediately by choosing fid = ss .pc.fid , n = ss .pc.n,mid = moduleID(ss .pc.fid)

from assumption Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; ss ∼=modIDs st after unfolding Defini-
tions 61 and 64.

– Lcommands(Fd(ss .pc.fid))(ss.pc.n)M_ = Exit
which is immediate by Definition 59 and by inverting assumption `t ss using Terminal-
state-src-exit.

This concludes the “ =⇒ ” direction.

• “ ⇐= ” direction:
Here, we assume `t st, and our goal is to show `t ss.
(Similarly to the “ =⇒ ” direction, here we know st.pcc ∈ dom(t1.Mc), and we know we have
all the assumptions of Lemma 93.)
By inversion using rule Terminal-state-src-exit, our goal is to show that:
commands(Fd(ss .pc.fid))(ss.pc.n) = Exit

We assume for the sake of contradiction that (*):
commands(Fd(ss .pc.fid))(ss.pc.n) 6= Exit

By Lemma 93 though, we know:
Lcommands(Fd(ss .pc.fid))(ss.pc.n)MFd,Kfun ,ss .pc.fid,moduleID(Fd(ss .pc.fid)),β =
t1.Mc(Kmod(moduleID(Fd(ss .pc.fid))).1 + Kfun(ss .pc.fid).1 + n)

Equivalently, by assumptions
moduleID(Fd(pc.fid)) ∈ modIDs,
Kmod ;Kfun ; mods1 nmods2 ; Σ; ∆;β; MVar ; Fd `exec ss,
and Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; ss ∼=modIDs st after unfolding Definitions 61 and 64, we
thus know:
Lcommands(Fd(ss .pc.fid))(ss.pc.n)MFd,Kfun ,ss .pc.fid,moduleID(Fd(ss .pc.fid)),β = t1.Mc(pcc)

Equivalently, by assumption `t st after unfolding Definition 13, we thus know:
Lcommands(Fd(ss .pc.fid))(ss.pc.n)MFd,Kfun ,ss .pc.fid,moduleID(Fd(ss .pc.fid)),β = Exit

Thus, by inversion using Definition 59, we know:
commands(Fd(ss .pc.fid))(ss.pc.n) = Exit

This contradicts assumption (*), so our goal is proved.

This concludes the proof of Lemma 103.

139

3.2 Compositionality: linking-and-convergence-preserving homomorphism
Lemma 104 (Existence of an initial state is preserved and reflected by J·K).

∀ω ∈ N,∇ < −1,∆,Σ, β,Kmod ,Kfun ,m, t, t
′.

wfp_params(m,∆,Σ, β,Kmod ,Kfun) ∧
t′ = JmK∆,Σ,β,Kmod ,Kfun

∧

t = (t′.Mc, t
′.Md + ω, t′.imp + ω, t′.mstc, t′.φ)

=⇒
(∃si,MVar ,Fd . Kmod ;Kfun ; m; Σ; ∆ + ω;β; MVar ; Fd `i si
⇐⇒
∃si. t `i si)

Proof.
We assume the antecedents.

• “ =⇒ ” direction:

Here we have si,MVar ,Fd with Kmod ;Kfun ; m; Σ; ∆ + ω;β; MVar ; Fd `i si.
By inversion using rules Initial-state-src and Exec-state-src, we obtain the following assump-
tions:

1. si.pc = (main, 0)

2. si.pc = (funID ,_) ∧ funID ∈ dom(Fd)

3. wfp_params(m,∆ + ω,Σ, β,Kmod ,Kfun)

And our goal is to show ∃si. t `i si.
We claim ∃mainMod . t.imp(mainMod) = (p, d, offs) ∧ main ∈ dom(offs).

This claim holds by assumptions 1 and 2 together with Lemma 91.

We pick:

si = 〈t.Mc, t.Md, nil, t.imp, t.φ, t.imp(mainMod).ddc,

t.mstc(mainMod), t.imp(mainMod).pcc, t.mstc,−1〉

Our goal using rules initial-state and exec-state consists of the following subgoals, all of which
we prove below:

– si.pcc = (κ,_,_,_) ∧ si.ddc = (δ,_,_,_) ∧ si.stc = (δ,_,_,_):
This is immediate by Lemmas 91 and 92 which describe the range of t.imp (after unfolding
Definition 15) and the range of t.mstc.

– si.nalloc < 0:
Immediate by si.nalloc = −1.

– modIDs = dom(si.imp) = dom(si.mstc) = dom(t.mstc)

This is immediate by substitution then by Lemmas 91 and 92 which describe the domain
of t.imp (after unfolding Definition 15).

– ∀mid ∈ modIDs. si.mstc(mid)
.
= t.mstc(mid)

Immediate by substitution and the reflexivity of .=.

140

– ∀sc ∈ range(si.mstc), c ∈ range(si.imp). sc = (δ,_,_,_) ∧ sc ∩ c.2 = ∅:
The first conjunct is easy by Lemmas 91 and 92.
For the second conjunct, it is equivalent (after unfolding Definition 3, and unfolding the
definition of si that we gave above) to show the following:⋃
sc∈range(t′.mstc)

[sc.σ, sc.e) ∩
⋃

c∈range(t′.imp+ω)

[c.2.σ, c.2.e) = ∅

By Definition 15, it is equivalent to show that:⋃
sc∈range(t′.mstc)

[sc.σ, sc.e) ∩
⋃

c∈range(t′.imp)

[c.2.σ + ω, c.2.e+ ω) = ∅

And by easy axioms, it is equivalent to show that:⋃
mid∈dom(t′.mstc)

[t′.mstc(mid).σ, t′.mstc(mid).e) ∩⋃
mid∈dom(t′.imp)

[t′.imp(mid).2.σ + ω, t′.imp(mid).2.e+ ω) = ∅

By Lemmas 91 and 92 (together with our assumption about t′), and by folding Defini-
tion 44, it is equivalent to show that:⋃
mid∈dom(t′.mstc)

Σ(mid) ∩
⋃

mid∈dom(t′.imp)

(∆ + ω)(mid) = ∅

But by inverting assumption 3 using rule Well-formed program and parameters, we get
the precondition (*):⋃

(∆ + ω)(mid) ∩
⋃

Σ(mid) = ∅
(*) immediately satisfies our goal by Lemma 92 which describes dom(t′.mstc) and dom(t′.imp).

– ∀a, st . st ∈ range(si.mstc) ∧ a ∈ reachable_addresses({st}, si.Md) =⇒ a ≥ si.nalloc:
Here, assuming the antecedents, by Lemma 10, we know a ∈ [st .σ, st .e).
And by Lemmas 91 and 92, we know a ∈

⋃
Σ(mid).

And by condition (
⋃

∆(mid) ∪
⋃

Σ(mid)) ∩ (−∞, 0) = ∅ which we get by inverting rule
Module-list-translation then rule Well-formed program and parameters, we know a ≥ 0.
Thus from 0 > sinalloc which we proved above, we have our goal: a ≥ si.nalloc by tran-
sitivity of ≥.

– si.pcc ⊆ dom(si.Mc):
This holds by assumptions 1 and 2 together with Lemma 93.

– ∀a. si.Md(a) = (κ, σ, e,_) =⇒ [σ, e) ⊆ dom(si.Mc)

Vacuously true by noticing the definition of si.Md.
– ∃mid ∈ modIDs. si.imp(mid) = (cc, dc,_) ∧ si.pcc ⊆ cc ∧ si.ddc

.
= dc ∧ si.mstc(mid)

.
= si.stc:

Pick mid = mainMod from above. Then this is immediate by the definition of si and
reflexivity of .=.

– ∀(cc, dc,_) ∈ range(si.imp). (cc = (κ, σ, e,_) ∧ [σ, e) ⊆ dom(si.Mc))
∧ (dc = (δ, σ, e,_) ∧ [σ, e) ⊆ dom(si.Md)) ∧ ∀a. a ∈ reachable_addresses({dc},Md) =⇒ a ≥ si.nalloc

Fix arbitrary mid and (cc, dc,_) where si.imp(mid) = (cc, dc,_).
The first two conjuncts are immediate by Lemmas 91 to 93.
For the third conjunct, we fix arbitrary a ∈ reachable_addresses({dc},Md)

Then by Lemma 10, we know a ∈ [dc.σ, dc.e).
And by Lemmas 91 and 92, we know a ∈

⋃
(∆ + ω)(mid).

And by condition (
⋃

(∆ + ω)(mid) ∪
⋃

Σ(mid)) ∩ (−∞, 0) = ∅ which we get by inverting
assumption 3 using rule Well-formed program and parameters, we know a ≥ 0.
Thus from 0 > sinalloc which we proved above, we have our goal: a ≥ si.nalloc by tran-
sitivity of ≥.

– ∀_ ∈ elems(si.stk). _:
Vacuously true because si.stk = nil.

141

This concludes the proof of the “ =⇒ ” direction.

• “ ⇐= ” direction:

Here we have si with t `i si.
By inversion using rules initial-state and exec-state, we obtain the following assumptions:

1. ∃mainMod . imp(mainMod) = (p, d, offs) ∧ main ∈ dom(offs) ∧
pcc = (κ, p.σ, p.e, offs(main)) ∧ ddc = d ∧ stc = mstc(mainMod)

2. ∀sc ∈ range(si.mstc), c ∈ range(si.imp). sc = (δ,_,_,_) ∧ sc ∩ c.2 = ∅

And our goal is to show ∃si,MVar ,Fd . Kmod ;Kfun ; m; Σ; ∆ + ω;β; MVar ; Fd `i si.
We pick si = 〈{a 7→ 0 | a ∈

⋃
mid∈dom(∆)

(∆ + ω)(mid) ∪ Σ(mid)}, nil, (main, 0),Φ,−1〉

where Φ = {moduleID(Fd(main)) 7→ frameSize(Fd(main)} ∪
⋃

mid∈dom(∆)\{moduleID(Fd(main))}
{mid 7→ 0}

Our goal by inversion of rules Initial-state-src and Exec-state-src consists of the following
subgoals, which we prove next (The preconditions of Initial-state-src are immediate by the
definition of si. The preconditions of Exec-state-src remain.):

– wfp_params(m,∆ + ω,Σ, β,Kmod ,Kfun)

Using rule Well-formed program and parameters, we need to prove the following subgoals:

∗ ∀mid ,mid ′ ∈ modIDs. mid 6= mid ′ =⇒ (∆ + ω)(mid) ∩ (∆ + ω)(mid ′) = ∅
By unfolding the definition of ∩ on intervals obtaining the characterizing inequalities,
and by unfolding Definition 44, it is easy to show that it is equivalent to show that:
∀mid ,mid ′ ∈ modIDs. mid 6= mid ′ =⇒ (∆)(mid) ∩ (∆)(mid ′) = ∅
But the latter follows immediately from the assumption t′ = JmK∆,Σ,β,Kmod ,Kfun

af-
ter inversion using rule Module-list-translation then rule Well-formed program and
parameters.
∗
⋃

(∆ + ω)(mid) ∩
⋃

Σ(mid) = ∅
By Lemma 92 which describes dom(t′.mstc) and dom(t′.imp), together with the pre-
conditions defining domains of Σ and ∆ which we get from the assumptions by
inversion using rule Module-list-translation then rule Well-formed program and pa-
rameters, it is equivalent to show that:⋃
mid∈dom(t′.mstc)

Σ(mid) ∩
⋃

mid∈dom(t′.imp)

(∆ + ω)(mid) = ∅

By Lemmas 91 and 92, and by unfolding Definition 44, it is equivalent to show that:⋃
mid∈dom(t′.mstc)

[t′.mstc(mid).σ, t′.mstc(mid).e) ∩⋃
mid∈dom(t′.imp)

[t′.imp(mid).2.σ + ω, t′.imp(mid).2.e+ ω) = ∅

And by easy axioms about the domain and range of a function, it is equivalent to
show that:⋃
sc∈range(t′.mstc)

[sc.σ, sc.e) ∩
⋃

c∈range(t′.imp)

[c.2.σ + ω, c.2.e+ ω) = ∅

By folding Definition 15, it is equivalent to show that:⋃
sc∈range(t′.mstc)

[sc.σ, sc.e) ∩
⋃

c∈range(t′.imp+ω)

[c.2.σ, c.2.e) = ∅

But this is immediate by assumption 2.
∗ (
⋃

(∆ + ω)(mid) ∪
⋃

Σ(mid)) ∩ (−∞, 0) = ∅
By assumption, ω ≥ 0. Thus, this subgoal follows from the corresponding statement
about ∆ which can be obtained from the assumption t′ = JmK∆,Σ,β,Kmod ,Kfun

after
inversion using rule Module-list-translation then rule Well-formed program and pa-
rameters.

142

∗ ∀mid ∈ modIDs.
⊎

vid∈MVar(mid)

β(vid ,⊥,mid) = [0, (∆ + ω)(mid).2− (∆ + ω)(mid).1)

By unfolding Definition 44, it is equivalent to show that:
∀mid ∈ modIDs.

⊎
vid∈MVar(mid)

β(vid ,⊥,mid) = [0,∆(mid).2 + ω − (∆(mid).1 + ω))

By simple arithmetic, it is equivalent to show:
∀mid ∈ modIDs.

⊎
vid∈MVar(mid)

β(vid ,⊥,mid) = [0,∆(mid).2−∆(mid).1)

The latter is immediate from the assumption t′ = JmK∆,Σ,β,Kmod ,Kfun
after inversion

using rule Module-list-translation then rule Well-formed program and parameters.
∗ The remaining subgoals are immediate from the assumption t′ = JmK∆,Σ,β,Kmod ,Kfun

after inversion using rule Module-list-translation then rule Well-formed program and
parameters.

– modIDs = {modID | (modID ,_,_) ∈ m} ∧
funDefs = {modFunDef | modFunDef ∈ modFunDefs ∧ (_,_,modFunDefs) ∈ m} ∧
Fd = {funID 7→ funDef | funDef ∈ funDefs ∧ funDef = (_, funID ,_,_,_)}
Nothing to prove.

– dom(Kmod) = dom(MVar) = dom(Σ) = dom(∆ + ω) = modIDs

After unfolding Definition 44, this subgoal is immediate from wfp_params(m,∆,Σ, β,Kmod ,Kfun)
which we get from the assumption t′ = JmK∆,Σ,β,Kmod ,Kfun

after inversion using rule
Module-list-translation.

– MVar = {modID 7→ varIDs | (modID , varIDs,_) ∈ m}
Nothing to prove.

– si.pc = (funID ,_) ∧ funID ∈ dom(Fd)

The first conjunct is immediate. The second conjunct follows from assumption 1 together
with Lemma 92.

– ∀(fid ,_) ∈ elems(si.stk). fid ∈ dom(Fd)

Vacuously true because si.stk = nil by construction.

– static_addresses(Σ,∆ + ω,modIDs) ⊆ dom(si.Mem)

By unfolding Definition 46, and by the choice of si.Mem, it is immediate that
static_addresses(Σ,∆ + ω,modIDs) = dom(si.Mem).

– ∇ < −1 =⇒ (si.nalloc > ∇ ∧
∀a ∈ dom(si.Mem). a > ∇ ∧
∀a, s, e, v. v ∈ range(si.Mem) ∧ v = (δ, s, e,_) ∧ a ∈ [s, e) =⇒ a > ∇)

Conjunct si.nalloc > ∇ is immediate by assumption∇ < −1 and the choice si.nalloc = −1.
Conjunct ∀a ∈ dom(si.Mem). a > ∇ is immediate by the previously proved subgoal
(
⋃

(∆ + ω)(mid) ∪
⋃

Σ(mid)) ∩ (−∞, 0) = ∅ and the definition of dom(si.Mem).
The last conjunct is vacuously true by noticing that range(si.Mem) = {0}.

– ∀mid ∈ modIDs. Σ(mid).1 + si.Φ(mid) ≤ Σ(mid).2

Immediate by the interval type after noticing the definition of si.Φ which ensures si.Φ(mid) = 0.

– ∀mid ∈ modIDs. si.Φ(mid) =∑
fid ∈ {fid | moduleID(Fd(fid)) = mid}

frameSize(Fd(fid)) ×

(countIn((fid ,_), si.stk) + (si.pc = (fid ,_) ? 1 : 0))

Here, first notice that the sub-term countIn((fid ,_), si.stk) is always equal to 0 because
si.stk = nil and countIn(_, nil) = 0.
Next, we distinguish two cases for mid :

143

∗ Case mid = moduleID(Fd(main)):
In this case, si.Φ(mid) = frameSize(Fd(main)).
The right-hand side evaluates also to a non-zero value that corresponds to:
frameSize(Fd(main))
due to the choice on the value of si.pc.

∗ Case mid 6= moduleID(Fd(main)):
In this case, the sub-term (si.pc = (fid ,_) ? 1 : 0) is 0 for all the summation terms.
Also, the countIn(· · ·) sub-term is 0 as explained above.
Thus in this case, both sides of the equality evaluate to 0: one side because si.Φ(mid) = 0,
and the other as explained above.

– stk = nil =⇒ pc.fid = main

Immediate by the choice of si.pc made above.

– si.stk 6= nil =⇒ si .stk(0).fid = main

Vacuously true because si.stk = nil.

– ∀mid , a, σ, e. si.Mem(a) = (δ, σ, e,_) ∧ [σ, e) ∩ Σ(mid) 6= ∅ =⇒ a ∈ Σ(mid)

Vacuously true by choice of si.Mem.

– si.nalloc < 0

Immediate by the choice si.nalloc = −1 made above.

This concludes the proof of the “ ⇐= ” direction.

This concludes the proof of Lemma 104.

Lemma 105 (Convergence is preserved and reflected by J·K).

∀ω ∈ N,∇ ∈ Z−,∆,Σ, β,Kmod ,Kfun ,m, t
′.

t′ = JmK∆,Σ,β,Kmod ,Kfun
=⇒

(Kmod ,Kfun ,Σ,∆ + ω, β,∇ ` m ⇓
⇐⇒
ω,∇ ` t′ ⇓)

Proof.

We assume t′ = JmK∆,Σ,β,Kmod ,Kfun
.

• We prove the “ =⇒ ” direction.

Assume Kmod ,Kfun ,Σ,∆ + ω, β,∇ ` m ⇓.
Thus, we have–by unfolding Definitions 43 and 68 and eliminating the tautologies resulting
from Lemma 102 that:

∃st. initial_state(m,main_module(m))→∗∇ st ∧
∃MVar ,Fd . Kmod ;Kfun ; m; Σ; ∆ + ω;β; MVar ; Fd `t st

(1)

Our goal (by unfolding Definitions 17 and 66 and eliminating the tautologies re-
sulting from Lemma 101) is:

∃t. t = (t′.Mc, t
′.Md + ω, t′.imp + ω, t′.mstc, t′.φ) ∧

∃si. t `i si ∧
∀si. t `i si =⇒ ∃st. si →∗∇ st ∧ `t st

144

– Subgoal ∃t. t = (t′.Mc, t
′.Md + ω, t′.imp + ω, t′.mstc, t′.φ):

By the totality of the operator + ω (Definitions 14 and 15), this subgoal is immediate.
– Subgoal ∃si. t `i si:

This follows immediately from Lemma 104.
– Subgoal ∀si. t `i si =⇒ ∃st. si →∗∇ st ∧ `t st:

Fix an arbitrary si and assume t `i si.
From Proposition (1), we obtain si,MVar ,Fd with:
Kmod ;Kfun ; m; Σ; ∆ + ω;β; MVar ; Fd `i si.
Thus, we can now conclude from Lemma 100 that (INIT-REL):
Kmod ;Kfun ; Σ; ∆ + ω;β; MVar ; Fd ; si ∼=modIDs si
with modIDs = {modID | (modID ,_,_) ∈ m}
Now, again from Proposition (1), we obtain st with (SOURCE-STEPS):
si →∗∇ st.
For the first conjunct of our goal (si →∗∇ st), we apply Lemma 99.
The generated subgoals are provable by:
∗ (INIT-REL),
∗ (SOURCE-STEPS),
∗ obtaining the necessary source `exec statement through inversion of conjunct `i of

Proposition (1) using rule Initial-state-src,
∗ obtaining the necessary target `exec statement through inversion of already proved

statement t `i si using rule initial-state,
∗ choosing mods1 = m,
∗ choosing mods2 = ∅ (Definition 67), and
∗ inversion of `exec (once before and once after using Lemma 56 to obtain the sub-

goals moduleID(Fd(si .pc.fid)) ∈ modIDs and moduleID(Fd(st .pc.fid)) ∈ modIDs re-
spectively).

For the second conjunct of our goal (`t st), we apply Lemma 103.
The generated subgoals are provable by:
∗ (for subgoal Kmod ;Kfun ; Σ; ∆ + ω;β; MVar ; Fd ; st ∼=modIDs st) applying Lemma 99

which is possible as described above,
∗ choosing mods1 = m,
∗ choosing mods2 = ∅ (Definition 67),
∗ (for subgoal `t st) using Proposition (1),
∗ (for subgoal t `exec st) applying Lemma 52, and
∗ (for subgoal _ `exec st) applying Lemma 56.

Using Lemma 103, we conclude from `t st of Proposition (1) that `t st which satisfies
our subgoal.
This concludes the proof of conjunct ∀si. t `i si =⇒ ∃st. si →∗∇ st ∧ `t st.

This concludes all subgoals of the “ =⇒ ” direction.

• We prove the “ ⇐= ” direction.
Assume ω,∇ ` JmK∆,Σ,β,Kmod ,Kfun

⇓.
Thus, we have–by unfolding Definitions 17 and 66 and eliminating the tautologies resulting
from Lemma 101–that:

∃t. t = (t′.Mc, t
′.Md + ω, t′.imp + ω, t′.mstc, t′.φ) ∧

∃si. t `i si ∧
∀si. t `i si =⇒ ∃st. si →∗∇ st ∧ `t st

(2)

145

Our goal (by unfolding Definitions 43 and 68 and eliminating the tautologies re-
sulting from Lemma 102) is:

∃st. initial_state(m,main_module(m))→∗∇ st ∧
∃MVar ,Fd . Kmod ;Kfun ; m; Σ; ∆;β; MVar ; Fd `t st

– Subgoal ∃si,MVar ,Fd . Kmod ;Kfun ; m; Σ; ∆ + ω;β; MVar ; Fd `i si:
Here, we apply Lemma 104.
The generated subgoals are proved using:
∗ Proposition (2),
∗ assumption t′ = JmK∆,Σ,β,Kmod ,Kfun

, and
∗ (for subgoal wfp_params(m,∆,Σ, β,Kmod ,Kfun)) inversion of assumption t′ = JmK∆,Σ,β,Kmod ,Kfun

using rule Module-list-translation.
– Subgoal ∀si,MVar ,Fd .
Kmod ;Kfun ; m; Σ; ∆ + ω;β; MVar ; Fd `i si =⇒
∃st. si →∗∇ st ∧Kmod ;Kfun ; m; Σ; ∆ + ω;β; MVar ; Fd `t st:
We fix arbitrary si,MVar ,Fd and assume Kmod ;Kfun ; m; Σ; ∆ + ω;β; MVar ; Fd `i si.
From Proposition (2), we obtain si with t `i si.
This enables us to use Lemma 100 to conclude that (INIT-RELATED):
Kmod ;Kfun ; Σ; ∆ + ω;β; MVar ; Fd ; si ∼=modIDs si
Thus, instantiate Theorem 1 to obtain:
∃st. si →∗∇ st ∧ Kmod ;Kfun ; Σ; ∆ + ω;β; MVar ; Fd ; si ∼=modIDs st
Now, the remaining conjunct follows from Lemma 103 as in the proof of the “ =⇒ ”
direction.

This concludes all the subgoals of the “ ⇐= ” direction.

One key property of many (compositional) compilers is that they are compatible with source and
target linking. In particular, our compiler is a linking-preserving homomorphism (Lemma 106).

Lemma 106 (Compilation preserves linkability and convergence, i.e., J·K is a linking-preserving
homomorphism and more).

ω,∇ ` JCK∆,Σ,β,Kmod ,Kfun
[Jm1K∆̃,Σ̃,β1,Kmod1 ,Kfun1

]⇓ ⇐⇒

ω,∇ ` JC[m1]∆]∆̃,Σ]Σ̃K
∆]∆̃,Σ]Σ̃,β]β1,Kmod]Kmod1 ,Kfun]Kfun1

⇓

Proof.
We let

C = JCK∆,Σ,β,Kmod ,Kfun

t1 = Jm1K∆̃,Σ̃,β1,Kmod1 ,Kfun1

t′c = JC[m1]∆]∆̃,Σ]Σ̃K
∆]∆̃,Σ]Σ̃,β]β1,Kmod]Kmod1 ,Kfun]Kfun1

• We prove the “ =⇒ ” direction.
From the assumption and by unfolding Definition 17 of convergence, we have the following:

∃t′. Cn t1 = bt′c ∧
∃t. t = (t′.Mc, t

′.Md + ω, t′.imp + ω, t′.mstc, t′.φ) ∧
∃si. t `i si ∧
∀si. t `i si =⇒ ∃st. si →∗∇ st ∧ `t st

(3)

146

Our goal, by unfolding Definitions 17 and 66 and after substituting using Lemma 101 is thus:

∃tc. tc = (t′c.Mc, t
′
c.Md + ω, t′c.imp + ω, t′c.mstc, t′c.φ) ∧

∃s′i. tc `i s′i ∧
∀s′i. tc `i s′i =⇒ ∃s′t. s′i →∗∇ s′t ∧ `t s′t

The first conjunct of our goal is always true (see Definition 14).

For the second conjunct, we pick s′i = si from Proposition (3), and we also pick tc = t from
Proposition (3). This allows conjunct tc `i si and conjunct ∀s′i. tc `i s′i =⇒ ∃s′t. s′i →∗∇ s′t ∧ `t s′t
of our goal to follow immediately from the corresponding ones of Proposition (3).

So, it remains to show that t = (t′c.Mc, t
′
c.Md + ω, t′c.imp, t′c.mstc, t′c.φ). Here are all the sub-

goals:

– Subgoal (Cn t1).Mc = t′c.Mc:
From rule valid-linking, we know:

(Cn t1).Mc = C.Mc] t1.Mc

By Lemma 93, and Definition 32 of source linking, we conclude our subgoal.
– Subgoal (Cn t1).Md + ω = t′c.Md + ω:

After unfolding Definition 14, it suffices to show that:

(Cn t1).Md = t′c.Md

From rule valid-linking, we know:

(Cn t1).Md = C.Md] t1.Md

Our subgoal then follows from Definition 32 of source linking and rules Module-list-
translation and Module-translation.

– Subgoal (Cn t1).imp + ω = t′c.imp + ω:
After unfolding Definition 15, it suffices to show that:

(Cn t1).imp = t′c.imp

From rule valid-linking, we know:

(Cn t1).imp = C.imp] t1.imp

By Lemma 91, and Definition 32 of source linking, we conclude our subgoal.
– Subgoal (Cn t1).mstc = t′c.mstc:

From rule valid-linking, we know:

(Cn t1).mstc = C.mstc] t1.mstc

By Lemma 91, and Definition 32 of source linking, we conclude our subgoal.
– Subgoal (Cn t1).φ = t′c.φ:

From rule valid-linking, we know:

(Cn t1).φ = C.φ] t1.φ

By Lemma 91, and Definition 32 of source linking, we conclude our subgoal.

147

This concludes the proof of the “ =⇒ ” direction.

• We prove the “ ⇐= ” direction.
From the assumption and by unfolding Definitions 17 and 66 of whole program convergence
and partial convergence, we obtain:

∃tc. tc = (t′c.Mc, t
′
c.Md + ω, t′c.imp + ω, t′c.mstc, t′c.φ) ∧

∃s′i. tc `i s′i ∧
∀s′i. tc `i s′i =⇒ ∃s′t. s′i →∗∇ s′t ∧ `t s′t

(4)

Also, by unfolding Definition 42 of layout-ordered linking, we obtain:

Cnm1 = bmc ∧
m1 .∆]∆̃,Σ]Σ̃ C

(5)

Our goal, after unfolding Definition 17, is:

∃t′. Cn t1 = bt′c ∧
∃t. t = (t′.Mc, t

′.Md + ω, t′.imp + ω, t′.mstc, t′.φ) ∧
∃si. t `i si ∧
∀si. t `i si =⇒ ∃st. si →∗∇ st ∧ `t st

To prove the first conjunct, we pick t′ = t′c, the latter we have from Proposition (4) and we
hence verify that all the assumptions of rule valid-linking hold:

– Subgoal disjointness
(t′c = (C.Mc] t1.Mc,C.Md] t1.Md,C.imp] t1.imp,C.mstc] t1.mstc,C.φ] t1.φ)):
Here, we apply Lemmas 91 to 93 to both the left- and right-hand sides of our goal and thus,
we are left with disjointness subgoals that are provable by inversion of rules Valid-linking-
src and Well-formed program (both we get by first inverting rule Module-list-translation).

– Subgoal order condition min(dom(C.Md)) > max(dom(t1.Md))):
Follows from conjunct m1 .∆]∆̃,Σ]Σ̃ C (Definition 41) of Proposition (5) after applying
Lemma 92.

– Subgoal distinct function IDs
(funIDs = [fid | fid ∈ dom(offs) ∧ (_,_, offs) ∈ range(C.imp) ∪ range(t1.imp)] ∧ all_distinct(funIDs)):
Follows from the corresponding condition after inverting rule Well-formed program which
we get by first applying Lemmas 91 and 92 and then inverting rule Module-list-translation
then inverting the precondition wfp_params(m, · · ·) using rule Well-formed program and
parameters.

– Subgoal disjointness of capabilities
∀c1 ∈ range(C.imp), c2 ∈ range(t1.imp). c1 ∩ c2 = ∅:
Follows from the checks obtained by inverting rule Module-list-translation and inverting
the precondition wfp_params(m, · · ·) using rule Well-formed program and parameters
after first applying Lemmas 91 and 92.

– Subgoal disjointness of capabilities
∀c1 ∈ range(C.mstc), c2 ∈ range(t1.mstc). c1 ∩ c2 = ∅:
Follows from the checks obtained by inverting rule Module-list-translation and inverting
the precondition wfp_params(m, · · ·) using rule Well-formed program and parameters
after first applying Lemmas 91 and 92.

148

The next three conjuncts of our goal thus follow immediately from the corresponding conjuncts
of Proposition (4).

This concludes the proof of Lemma 106.

Lemma 107 (Compiler is a linking-preserving homomorphism).

JCK∆,Σ,β,Kmod ,Kfun
n Jm1K∆̃,Σ̃,β1,Kmod1 ,Kfun1

=

JC[m1]∆]∆̃,Σ]Σ̃K
∆]∆̃,Σ]Σ̃,β]β1,Kmod]Kmod1 ,Kfun]Kfun1

Proof.
Similar to Lemma 106.

149

4 A sound trace semantics for CHERIExp
We give a sound and complete trace semantics for CHERIExp. In this section, we prove soundness
only (Lemma 114). Completeness, on the other hand, follows as an immediate corollary (Corol-
lary 12) from results about the compiler of Section 3.

We first give the trace actions λ ∈ Λ:

λ ::= X

| τ
| call(mid ,fid)v?Md, n

| ret?Md, n

| call(mid ,fid)v!Md, n

| ret!Md, n

termination marker
silent internal action
receive a call
receive a return
issue a call
issue a return

We next state useful definitions and lemmas about the trace semantics which we give in Figure 9
and about CHERIExp and the compiler.

Trace prefixes α ∈ Λ+ are finite sequences of actions. They describe an abstraction of the behavior
of the program as given by a finite sequence of its reduction steps. The emphasis that is made by
the abstraction is on the so-called “boundary-crossing” actions. In the interesting case when the
boundary is set to be “compiled part of the program” vs. “arbitrary CHERIExp linked context”,
the trace behavior of a program helps in reasoning about the boundary-crossing actions which turn
out to be sufficient to capture the observable behavior of compiled programs.

The action X indicates that execution has reached a terminal state. Silent actions τ are actions
that do not change ownership of the program counter capability pcc. Ownership of pcc is whether it
points to an address in one partition of the code memory (out of two designated partitions). Actions
that are marked with a ? indicate incoming function calls or returns (with respect to a designated
partition of the program), and actions that are marked with a ! indicate on the other hand the
outgoing-directed function calls or returns. In our proofs, the partition is such that the actions
performed by the part of the program that is compiled with our compiler are distinguished from the
actions that are performed by the CHERIExp context that is linked with the compiled program.

An incoming call action call(mid ,fid)?Md, n records, as indicated by rule cinvoke-context-to-
compiled in Figure 9 that a Cinvoke command has been executed, where the function fid in module
mid is being called, and the projectionMd of the data memory is the recording of the values in all the
data memory locations that have in the past been shared between the two parts of the program. The
number n indicates the memory consumption of the program so far. The return action ret?Md, n
also records the same about the data memory and the memory consumption. And outgoing call and
return actions are analogous to incoming ones.

Alternating traces

Let
•
? ::= call (mid ,fid)?Md, n | ret?Md, n and

•
! ::= call(mid ,fid)!Md, n | ret!Md, n. And let

α|6τ
def
= πΛ\{τ}(α). And define the set Alt of finite alternating traces as follows:

Definition 69 (Alternatingly-communicating finite traces). We define the set Alt of finite traces

where communication is alternating as follows: Alt def
= (

•
?|ε) (

•
!
•
?)∗ (

•
!|ε)

Claim 5 (Extending an alternating prefix to keep it alternating).

1. (αλ ∈ Alt ∧ λ ∈
•
? ∧ λ′ ∈

•
!) =⇒ αλλ′ ∈ Alt

2. (αλ ∈ Alt ∧ λ ∈
•
! ∧ λ′ ∈

•
?) =⇒ αλλ′ ∈ Alt

150

Figure 9: Trace semantics for CHERIExp for an arbitrary compiled component c : TargetSetup

(assign-silent)

Mc(pcc) = Assign EL ER 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉→∇s′

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉, ς τ−⇀[c],∇ s′, ς

(alloc-silent)

Mc(pcc) = Alloc EL Esize 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉→∇s′

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉, ς τ−⇀[c],∇ s′, ς

(jump-silent)

Mc(pcc) = JumpIfZero Econd Eoff 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉→∇s′

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉, ς τ−⇀[c],∇ s′, ς

(cinvoke-silent-compiled)

Mc(pcc) = Cinvoke mid fid e 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉→∇s′
c = (Mc[c] ,Md[c]

, imp[c]) pcc ⊆ dom(Mc[c]) mid ∈ dom(imp[c])

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉, ς τ−⇀[c],∇ s′, ς

(cinvoke-silent-context)

Mc(pcc) = Cinvoke mid fid e 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉→∇s′
c = (Mc[c] ,Md[c]

, imp[c]) pcc * dom(Mc[c]) mid /∈ dom(imp[c])

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉, ς τ−⇀[c],∇ s′, ς

(cinvoke-context-to-compiled)

s = 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉
s′ = 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′,mstc′, nalloc′〉 s �≈ s′

s⊥ = s′[Mc 7→ s′.Mc[s
′.pcc 7→ ⊥]] s 6→∇ s′ =⇒ s′′ = s⊥ s→∇ s′ =⇒ s′′ = s′

Mc(pcc) = Cinvoke mid fid e v = [i 7→ vi | ∀i ∈ [0,nArgs) e(i),Md, ddc, stc, pcc ⇓ vi]
r = reachable_addresses({v(i) | i ∈ [0,nArgs) ∧ v(i) = (δ,_,_,_)},M′d)

ς ′ = reachable_addresses_closure(ς ∪ r,M′d)
c = (Mc[c] ,Md[c]

, imp[c]) pcc * dom(Mc[c]) mid ∈ dom(imp[c])

s, ς
call(mid,fid)v?M′d|ς′ ,nalloc′

−−−−−−−−−−−−−−−−−−⇀[c],∇ s′′, ς ′

(cinvoke-compiled-to-context)

s = 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉
s′ = 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′,mstc′, nalloc′〉 s �≈ s′

s⊥ = s′[Mc 7→ s′.Mc[s
′.pcc 7→ ⊥]] s 6→∇ s′ =⇒ s′′ = s⊥ s→∇ s′ =⇒ s′′ = s′

Mc(pcc) = Cinvoke mid fid e v = [i 7→ vi | ∀i ∈ [0,nArgs) e(i),Md, ddc, stc, pcc ⇓ vi]
r = reachable_addresses({v(i) | i ∈ [0,nArgs) ∧ v(i) = (δ,_,_,_)},M′d)

ς ′ = reachable_addresses_closure(ς ∪ r,M′d)
c = (Mc[c] ,Md[c]

, imp[c]) pcc ⊆ dom(Mc[c]) mid /∈ dom(imp[c])

s, ς
call(mid,fid)v!M′d|ς′ ,nalloc′

−−−−−−−−−−−−−−−−−−⇀[c],∇ s′′, ς ′

(creturn-silent-compiled)

Mc(pcc) = Creturn s = 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉
s′ = 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′,mstc′, nalloc′〉

s→∇ s′ c = (Mc[c] ,Md[c]
, imp[c]) pcc ⊆ dom(Mc[c]) pcc′ ⊆ dom(Mc[c])

s, ς
τ−⇀[c],∇ s′, ς

151

Figure 9 (Cont.): Trace semantics for CHERIExp for an arbitrary compiled component
c : TargetSetup

(creturn-silent-context)

Mc(pcc) = Creturn s = 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉
s′ = 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′,mstc′, nalloc′〉

s→∇ s′ c = (Mc[c] ,Md[c]
, imp[c]) pcc * dom(Mc[c]) pcc′ * dom(Mc[c])

s, ς
τ−⇀[c],∇ s′, ς

(creturn-to-compiled)

Mc(pcc) = Creturn s = 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉
s→∇ s′ s′ = 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′,mstc′, nalloc〉

c = (Mc[c] ,Md[c]
, imp[c]) pcc * dom(Mc[c]) pcc′ ⊆ dom(Mc[c])

ς ′ = reachable_addresses_closure(ς,M′d)

s, ς
ret?M′d|ς′ ,nalloc
−−−−−−−−−−⇀[c],∇ s′, ς ′

(creturn-to-context)

Mc(pcc) = Creturn s = 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 s→∇ s′
s′ = 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′,mstc′, nalloc〉

c = (Mc[c] ,Md[c]
, imp[c]) pcc ⊆ dom(Mc[c]) pcc′ * dom(Mc[c])

ς ′ = reachable_addresses_closure(ς,M′d)

s, ς
ret!M′d|ς′ ,nalloc
−−−−−−−−−−⇀[c],∇ s′, ς ′

(terminate-checkmark)

`t s

s, ς
X−⇀[c],∇ s, ς

Definition 70 (Reflexive transitive closure of trace actions).
We write s α−⇀

∗
[c],∇ s

′ where −⇀∗[c],∇⊆ (TargetState × 2Z)× Λ× (TargetState × 2Z) to denote the re-
flexive transitive closure of the trace actions reduction relation
−⇀[c],∇⊆ (TargetState × 2Z)× Λ× (TargetState × 2Z) where α collects the individual trace actions in
succession.

(trace-closure-refl)

s, ς
ε−⇀
∗
[c],∇ s, ς

(trace-closure-trans)

s, ς
α−⇀
∗
[c],∇ s

′′, ς ′′ s′′, ς ′′
λ−⇀[c],∇ s

′, ς ′

s, ς
αλ−−⇀
∗
[c],∇ s

′, ς ′

where ⇀[c],∇⊆ (TargetState × 2Z)× Λ× (TargetState × 2Z) is as defined in Figure 9.

Definition 71 (Non-silent trace steps).
We write s ⇀α−⇀[c],∇ s

′ where ⇀−⇀[c],∇⊆ (TargetState × 2Z)× Λ× (TargetState × 2Z) to denote that ex-
ecution on state s generates a sequence α of non-silent trace actions (i.e., excluding τ actions) and
reaches state s′. We sometimes drop the parameter ∇ (which is the upper limit on memory alloca-
tion) for convenience.

(trace-steps-lambda)

s, ς
τ∗−⇀
∗

[c],∇ s
′′, ς ′′ s′′, ς ′′

λ−⇀[c],∇ s
′, ς ′ λ 6= τ

s, ς ⇀
λ−⇀[c],∇ s

′, ς ′

152

(trace-steps-alternating)

s, ς ⇀
α−⇀[c],∇ s

′′′, ς ′′′ s′′′, ς ′′′
τ∗−⇀
∗

[c],∇ s
′′, ς ′′ s′′, ς ′′

λ−⇀[c],∇ s
′, ς ′ λ 6= τ

s, ς ⇀
αλ−−⇀[c],∇ s

′, ς ′

Claim 6 (A non-silent trace is not the empty string).

∀c, α, s, ς, s′, ς ′,∇.

s, ς ⇀
α−⇀[c],∇ s

′, ς ′

=⇒
|α| > 1

Claim 7 (⇀−⇀ eliminates τ actions).

∀c, α, s, ς, s′, ς ′,∇.

s, ς ⇀
αλ−−⇀[c],∇ s

′, ς ′

=⇒
λ 6= τ

Claim 8 (⇀−⇀ is supported by −⇀).

∀c, α, λ, s, ς, s′, ς ′,∇.

s, ς ⇀
αλ−−⇀[c],∇ s

′, ς ′

=⇒
∃s′′, ς ′′.

s′′, ς ′′
λ−⇀[c],∇ s

′, ς ′ ∧

s, ς
α−⇀
∗
[c],∇ s

′′, ς ′′

Claim 9 (⇀−⇀ decomposes).

∀c, α1, α2, s, ς, s
′, ς ′,∇.

s, ς ⇀
α1α2−−−⇀[c],∇ s

′, ς ′

=⇒
∃s1, ς1.

s, ς ⇀
α1−⇀[c],∇ s1, ς1 ∧

s1, ς1 ⇀
α2−⇀[c],∇ s

′, ς ′ ∧

Claim 10 (Non-silent part of −⇀∗ is supported by ⇀−⇀).

∀c, α, s, ς, s′, ς ′,∇.
| α| 6τ | ≥ 1 ∧

s, ς
α−⇀
∗
[c],∇ s

′, ς ′

=⇒

∃s′′, ς ′′. s, ς ⇀α| 6τ−−⇀[c],∇ s
′′, ς ′′

For a target program c : TargetSetup, we define the set TR(c) ⊆ Λ+ of finite non-empty prefixes
of c’s possible execution traces as follows:

153

Definition 72 (A prefix of an execution trace is possible for a component).
A finite prefix α belonging to a component c’s set TRω,∇(c) of possible execution trace prefixes is
defined as:

α ∈ TRω,∇(c) ⇐⇒ ∃C, t′ : TargetSetup, s′ : TargetState, ς ′ : 2Z.

Cn c = bt′c ∧

initial_state(t′ + ω,main_module(t′)), ∅⇀α−⇀[c],∇ s
′, ς ′

where ⇀−⇀[c],∇⊆ (TargetState × 2Z)× Λ× (TargetState × 2Z) is as defined in Definition 71.

Definition 73 (Trace equivalence).

c1
T
=ω,∇ c2

def
= TRω,∇(c1) = TRω,∇(c2)

Claim 11 (Termination markers appear only at the end of an execution trace).

∀c. α ∈ TR(c) =⇒ α ∈ (Λ \ {X})∗ ∨ α ∈ (Λ \ {X})∗X

Claim 12 (Prefix-closure of trace set membership).

∀c, α. α ∈ TR(c) =⇒ (∀α′. α = α′α′′ =⇒ α′ ∈ TR(c))

Proof.
Follows from Claim 9. Instantiate “ =⇒ ” direction of Definition 72 using the assumption, and apply
its “ ⇐= ” direction to the goal.

Claim 13 (A state that is reachable by → reduction or by �≈ is also reachable by ⇀).

∀c, t, s, s′, ς,∇.
(s→∇ s′ ∨ s �≈ s′)
=⇒

∃λ, ς ′. s, ς λ−⇀[c],∇ s
′, ς ′

Claim 14 (A non-⊥ state that is reachable by ⇀ is also reachable by → reduction).

∀t, c, s, s′, ς, ς ′.
s′.Mc(s

′.pcc) 6= ⊥ ∧

s, ς
λ−⇀[c],∇ s

′, ς ′

=⇒
s→∇ s′

Claim 15 (Silent trace steps correspond to → steps).

∀c, s, s′, ς, ς ′,∇.

s, ς
τ∗−⇀
∗

[c],∇ s
′, ς ′

=⇒
s→∗∇ s′

Claim 16 (Non-stuck trace steps correspond to → execution steps).

∀c, s, s′, s′′, ς, ς ′, ς ′′,∇.

s, ς
α−⇀
∗
[c],∇ s

′, ς ′ ∧

s′, ς ′
λ−⇀[c],∇ s

′′, ς ′′

=⇒
s→∗∇ s′

154

Claim 17 (The set of shared addresses ς does not change by silent trace steps).

∀s, s′, ς, ς ′,∇.

s, ς
τ∗−⇀
∗

[c],∇ s
′, ς ′

=⇒
ς = ς ′

Corollary 5 (Reachability by →∗ implies reachability by −⇀∗).

∀t1, t2, ω,∇, s.
initial_state(t1 n t2 + ω,main_module(t1 n t2))→∗∇ s
=⇒

∃ς, α. initial_state(t1 n t2 + ω,main_module(t1 n t2)), ∅ α−⇀
∗
[t2],∇ s, ς

Corollary 6 (Reachability by −⇀∗ implies reachability by →∗ when the state is non-⊥).

∀t1, t2, ω,∇, s, ς, α.

initial_state(t1 n t2 + ω,main_module(t1 n t2)), ∅ α−⇀
∗
[t2],∇ s, ς ∧

s.Mc(s.pcc) 6= ⊥
=⇒

initial_state(t1 n t2 + ω,main_module(t1 n t2))→∗∇ s

Lemma 108 (Non-communication actions do not change context/compiled component’s ownership
of pcc).

∀c, t : TargetSetup, s, s′.

tn c `exec s ∧

s
τ−⇀[c] s

′

=⇒
(s.pcc ⊆ dom(c.Mc) ⇐⇒ s′.pcc ⊆ dom(c.Mc))

Proof. Fix arbitrary, c, t, s, and s′, and assume the antecedents.

• Subgoal s.pcc ⊆ dom(c.Mc) =⇒ s′.pcc ⊆ dom(c.Mc):

Assume s.pcc ⊆ dom(c.Mc)

Our goal is:
s′.pcc ⊆ dom(c.Mc)

Distinguish the following cases for assumption s τ−⇀[c] s
′.

– Case assign-silent:
Here, by inversion of the preconditions using rule assign, obtain:
s.pcc

.
= s′.pcc

Thus, our goal follows by substitution using assumption s.pcc ⊆ dom(c.Mc).

– Case alloc-silent:
Here, by inversion of the preconditions using rule allocate, obtain:
s.pcc

.
= s′.pcc

Thus, our goal follows by substitution using assumption s.pcc ⊆ dom(c.Mc).

155

– Case jump-silent:
Here, distinguish two cases for inversion of s→ s′:

∗ Case jump0:
Here, obtain s′.pcc = inc(s.pcc,_).
Thus, have:
s.pcc

.
= s′.pcc

Thus, our goal follows by substitution using assumption s.pcc ⊆ dom(c.Mc).
∗ Case jump1:

Here, obtain s′.pcc = inc(s.pcc, 1).
Thus, have:
s.pcc

.
= s′.pcc

Thus, our goal follows by substitution using assumption s.pcc ⊆ dom(c.Mc).

– Case cinvoke-silent-compiled:
Here, obtain:
s.Mc(s.pcc) = Cinvoke mid fid e,
mid ∈ dom(c.imp), and
s→ s′

Thus, by inversion using cinvoke then cinvoke-aux, have (*):
s′.pcc

.
= s.imp(mid).pcc

By inversion of lemma antecedents using valid-linking and valid-program, we know:
mid ∈ dom(c.imp) =⇒ s.imp(mid).pcc ⊆ dom(c.Mc) (applied Lemma 2)
Instantiating the latter using our assumptions, and substituting using (*), we have our
goal.

– Case cinvoke-silent-context:
Precondition s.pcc * dom(c.Mc) contradicts our assumption. So, any goal is provable.

– Case creturn-silent-compiled:
Goal is immediate by the precondition of rule creturn-silent-compiled.

– Case creturn-silent-context:
Precondition s.pcc * dom(c.Mc) of rule creturn-silent-context contradicts our assump-
tion. So, any goal is provable.

• Subgoal s.pcc ⊆ dom(c.Mc) ⇐= s′.pcc ⊆ dom(c.Mc):

Assume s′.pcc ⊆ dom(c.Mc)

Our goal is:
s.pcc ⊆ dom(c.Mc)

Distinguish the following cases for assumption s τ−⇀[c] s
′.

– Case assign-silent,

– Case alloc-silent, and

– Case jump-silent:
Similar to the corresponding cases of the previous subgoal: Goal follows by substitution
using the assumption after obtaining s.pcc

.
= s′.pcc.

– Case cinvoke-silent-compiled:
Goal is immediate by preconditions of cinvoke-silent-compiled.

– Case cinvoke-silent-context:
Obtain a contradiction to assumption
s′.pcc ⊆ dom(c.Mc)

156

by proving:
s′.pcc * dom(c.Mc)

First, obtain:
s.Mc(s.pcc) = Cinvoke mid fid e,
mid /∈ dom(c.imp), and
s→ s′

Thus, by inversion using cinvoke then cinvoke-aux, have (*):
s′.pcc

.
= s.imp(mid).pcc

By inversion of lemma antecedents using valid-linking and valid-program, we know:
mid /∈ dom(c.imp) =⇒ s.imp(mid).pcc * dom(c.Mc) (applied Lemma 2)
Instantiating the latter using our assumptions, and substituting using (*), we have our
goal.

– Case creturn-silent-compiled:
Goal is immediate by the preconditions of creturn-silent-compiled.

– Case creturn-silent-context:
Precondition s′.pcc * dom(c.Mc), so any goal is provable.

This concludes the proof of Lemma 108.

Corollary 7 (Non-communication actions do not change ownership of pcc (star-closure)).

∀c, t : TargetSetup, s, s′.

tn c `exec s ∧

s, ς
τ−⇀
∗
[c] s

′, ς

=⇒
(s.pcc ⊆ dom(c.Mc) ⇐⇒ s′.pcc ⊆ dom(c.Mc))

Proof. Follows by Lemma 108, Claim 15 and corollary 2.

Then, Lemma 109 states a restriction on the form of traces with respect to input actions
•
? and

output actions
•
!.

Lemma 109 (Traces consist of alternating input/output actions).

∀c, α. α ∈ TR(c) =⇒ α ∈ AltX∗

Proof.

• Fix arbitrary c and α, and assume the antecedents.

• By unfolding the assumptions using Definition 72, we obtain (*):

∃C, t′, t : TargetSetup, s, s′ : TargetState, ς ′ : 2Z.
Cn c = bt′c ∧
t = (t′.Mc, t

′.Md + ω, t′.imp, t′.mstc, t′.φ) ∧
t `i s ∧
s, ∅⇀α−⇀[c],∇ s

′, ς ′

• Our goal is:
α ∈ AltX∗

• By inversion of the last conjunct of (*), we distinguish the following cases:

157

– Case trace-steps-lambda:
Here, we know λ 6= τ .
And our goal becomes:
λ ∈ AltX∗

This follows by regular language identities after unfolding Definition 69.

– Case trace-steps-alternating:
Here, we know (**):

s, ς ⇀
α′−⇀[c],∇ s

′′′, ς ′′′,

s′′′, ς ′′′
τ∗−⇀
∗

[c],∇ s
′′, ς ′′,

s′′, ς ′′
λ−⇀[c],∇ s

′, ς ′, and
λ 6= τ

And by the induction hypothesis, we know (IH):
α′ ∈ AltX∗

By instantiating Claim 6 using (**), we obtain (LAST-ACTION-OF-ALPHA’):
α′ = α′′λ′.
We prove our goal (α′′λ′λ ∈ AltX∗) by distinguishing the following cases for λ:

∗ Case λ = τ :
By contradiction with (**), any goal is provable.

∗ Case λ = X:
Here, our goal is immediate by regular language identities.

∗ Case λ ∈
•
?:

By regular language identities applied to our goal, it suffices to prove:
α′′λ′λ ∈ Alt

By applying Claim 5, we obtain the following subgoals:
· α′′λ′ ∈ Alt

Immediate by (IH) after substitution using (LAST-ACTION-OF-ALPHA’).

· λ′ ∈
•
!

Unfolding the case condition (α ∈
•
?), distinguish the following cases:

1. Case λ = call(_,_)_?_,_:
Here, by inversion of (**) using cinvoke-context-to-compiled, we know:
s′′.pcc * dom(c.Mc)
By instantiating Corollary 7 using (**) and the statement above, we know
(S” ’-PCC-OWNERSHIP):
s′′′.pcc * dom(c.Mc)
And by instantiating Claim 8 using (**), after substitution using (LAST-
ACTION-OF-ALPHA’), we obtain:

, λ′−⇀[c],∇ s
′′′, ς ′′′

By inversion of the latter statement, we get the following cases:
(a) Case λ′ = τ : (short for the cases that produce τ)

By instantiation of Claim 7 using (**), we know: λ′ 6= τ
This contradicts the assumption λ′ = τ . So, our goal is provable.

(b) Case terminate-checkmark:
Here, we know λ′ = X.
Thus, after instantiating Claim 11 using α, we conclude using regular lan-
guage identities that λ = X.

This contradicts our case assumption λ ∈
•
?. So, any goal is provable.

158

(c) Case cinvoke-compiled-to-context, and
(d) Case creturn-to-context:

Here, our goal (λ′ ∈
•
!) is immediate by the obtained preconditions.

(e) Case cinvoke-context-to-compiled:
Here, we know:
mid ∈ dom(c.imp),
and by inversion of the preconditions using cinvoke-aux, we know:
s′′′.pcc = inc(s′′′.imp(mid).pcc,_)
Thus, by inversion of (*) using valid-linking and valid-program, we know:
s′′′.pcc ⊆ dom(c.Mc)
This contradicts (S” ’-PCC-OWNERSHIP). So, any goal is provable.

(f) Case creturn-to-compiled:
Here, we have:
s′′′.pcc ⊆ dom(c.Mc)
This contradicts (S” ’-PCC-OWNERSHIP). So, any goal is provable.

2. Case λ = ret?_,_:
Here, by inversion of (**) using creturn-to-compiled, we know:
s′′.pcc * dom(c.Mc)
The proof proceeds as in the previous case. We omit it for brevity.

∗ Case λ ∈
•
!:

This is dual to case λ ∈
•
?. We omit the proof for brevity.

• This concludes the proof of Lemma 109.

4.1 Soundness
To prove the soundness of trace equivalence, we define a ternary simulation relation on trace states.
The simulation relation is called an Alternating Strong-Weak Similarity (ASWS). ASWS is defined
in terms of the strong and weak similarity relations that are given in Definition 86. The purpose of
using ASWS is to show a determinacy result about the trace semantics. Determinacy is stated as a
lemma about three executions, hence the ternary simulation relation.

Definition 74 (Alternating Strong-Weak Similarity (ASWS)).

ASWS (s12, ς12, s11, ς11, s22, ς22)C1,t2,α,i
def
=

(α(i) ∈
•
? ∨ s12.pcc ⊆ dom(C1.Mc)) =⇒ s12, ς12 ≈[C1] s11, ς11 ∧ s12, ς12 ∼[t2],α,i s22, ς22

∧

(α(i) ∈
•
! ∨ s12.pcc * dom(C1.Mc)) =⇒ s12, ς12 ∼[C1],α,i s11, ς11 ∧ s12, ς12 ≈[t2] s22, ς22

where

s1, ς1 ∼[t],α,i s2, ς2
def
= s1, ς1 ∼[t],ρ[t](s1,ς1) s2, ς2

159

Lemma 110 (Initial states are ASWS-related).

α ∈ Tr(C1[t1]) ∧
α ∈ Tr(C2[t2]) ∧
s11 = initial_state(C1[t1],main_module(C1[t1])) ∧
s22 = initial_state(C2[t2],main_module(C2[t2])) ∧
s12 = initial_state(C1[t2],main_module(C1[t2]))

=⇒
ASWS (s12, ∅, s11, ∅, s22, ∅)C1,t2,α,0

Proof. (Sketch)
Follows from Lemma 135 and Lemma 136 (similar to the proof of Lemma 171).

Lemma 111 (Two peripheral terminal states are ASWS-related to only a mixed state that is also
terminal).

ASWS (s12, ς12, s11, ς11, s22, ς22)_,_,_,_ ∧
`t s11 ∧
`t s22

=⇒
`t s12

Proof.
Unfold Definition 74 then distinguish two cases:

• Case s12.pcc ⊆ dom(C1.Mc):

Here, instantiate Lemma 137 using assumption `t s11 to obtain the goal.

• Case s12.pcc * dom(C1.Mc):

Here, instantiate Lemma 137 using assumption `t s22 to obtain the goal.

Definition 75 (View change of a trace step).

view_change(a ? b)
def
= a ! b

view_change(a ! b)
def
= a ? b

Fact 1 (View change is an involution).

λ ∈ Alt =⇒ view_change(view_change(λ)) = λ

Claim 18 (Existence of a view change of a trace step).

Cn t `border α[: i], s, ς ∧

s, ς ⇀
α(i)−−⇀[t] s

′, ς ′

=⇒

s, ς ⇀
view_change(α(i))
−−−−−−−−−−−⇀[C] s

′, ς ′

Proof.
Follows from the bi-partition on the code memory of the linked program.

160

Lemma 112 (ASWS satisfies the alternating simulation condition).

α ∈ Alt ∧
ASWS (s12, ς12, s11, ς11, s22, ς22)C1,t2,α,i ∧
C1 n t1 `border α[: i], s11, ς11 ∧
C2 n t2 `border α[: i], s22, ς22 ∧
C1 n t2 `border α[: i], s12, ς12 ∧

s11, ς11 ⇀
α(i)−−⇀[t1] s

′
11, ς

′
11 ∧

s22, ς22 ⇀
α(i)−−⇀[t2] s

′
22, ς

′
22

=⇒
∃s′12, ς

′
12.

s12, ς12 ⇀
α(i)−−⇀[t2] s

′
12, ς

′
12 ∧

ASWS (s′12, ς
′
12, s

′
11, ς

′
11, s

′
22, ς

′
22)C1,t2,α,i+1

Proof.
By α ∈ Alt (unfolding Definition 69),
it suffices to distinguish the following two cases:

• Case α(i) ∈
•
!:

Using the case condition together with the assumptions
(s11, ς11 ⇀

α(i)−−⇀[t1] s′11, ς
′
11) and (C1 n t1 `border α[: i], s11, ς11), we instantiate Claim 18 to

obtain:

(s11-?-step): s11, ς11 ⇀
view_change(α(i))
−−−−−−−−−−−⇀[C1] s′11, ς

′
11

By unfolding the assumption using Definition 74, we have:

(STRONG-SIM-t2): s12, ς12 ≈[t2] s22, ς22

(WEAK-SIM-C1): s12, ς12 ∼[C1],α,i s11, ς11

Here, we can instantiate Lemma 149 (Weakening of strong similarity) using (STRONG-SIM-t2)

and the given step (s22, ς22 ⇀
α(i)−−⇀[t2] s′22, ς

′
22) to obtain:

(G1): ∃s′12. s12, ς12 ⇀
α(i)−−⇀[t2] s

′
12, ς

′
22

and
(G2): s′12, ς

′
22 ∼[t2],α,i+1 s

′
22, ς

′
22

By instantiating Claim 18 using (G1) and the border-state invariant (C1 n t2 `border α[:
i], s12, ς12) from the assumptions, we obtain:

(G1-?-step): s12, ς12 ⇀
view_change(α(i))
−−−−−−−−−−−⇀[C1] s′12, ς

′
22

Thus, using (G1-?-step) together with (WEAK-SIM-C1) and (s11-?-step), we instantiate the
strengthening lemma (Lemma 153) to obtain:

(G3): s′11, ς
′
11 ≈[C1] s

′
12, ς

′
22

After (G1), (G2) and (G3), no subgoals remain. So this concludes this case.

161

• Case α(i) ∈
•
?:

By unfolding the assumption using Definition 74, we have:

(STRONG-SIM-C1): s12, ς12 ≈[C1] s11, ς11

(WEAK-SIM-t2): s12, ς12 ∼[t2],α,i s22, ς22

Using the case condition together with the assumptions
(s11, ς11 ⇀

α(i)−−⇀[t1] s′11, ς
′
11) and (C1 n t1 `border α[: i], s11, ς11), we instantiate Claim 18 to

obtain:

(s11-!-step): s11, ς11 ⇀
view_change(α(i))
−−−−−−−−−−−⇀[C1] s′11, ς

′
11

Now we can instantiate Lemma 149 (Weakening of strong similarity) using (STRONG-SIM-C1)
and (s11-!-step) to obtain:

(G1): ∃s′12. s12, ς12 ⇀
view_change(α(i))
−−−−−−−−−−−⇀[C1] s

′
12, ς

′
11

and
(G2): s′12, ς

′
11 ∼[C1],α,i+1 s

′
11, ς

′
11

Now after obtaining s′12 from (G1) and using the assumption (C1 n t2 `border α[: i], s12, ς12),
we instantiate Claim 18 to obtain:

(s12-?-step): s12, ς12 ⇀
view_change(view_change(α(i)))
−−−−−−−−−−−−−−−−−−−−⇀[t2] s

′
12, ς

′
11, which by rewriting using Fact 1

becomes:

(s12-?-step): s12, ς12 ⇀
α(i)−−⇀[t2] s

′
12, ς

′
11

Now we use (s12-?-step) together with (WEAK-SIM-t2) and the given step (s22, ς22 ⇀
α(i)−−⇀[t2] s

′
22, ς

′
22)

to instantiate the strengthening lemma (Lemma 153) and obtain:

(G3): s′12, ς
′
11 ≈[t2] s

′
22, ς

′
22

After (G1), (G2) and (G3), no subgoals remain. So this concludes this case.

This concludes the proof of Lemma 112.

Lemma 113 (ASWS satisfies the alternating simulation condition – whole trace).

α ∈ Alt ∧
ASWS (s12, ς12, s11, ς11, s22, ς22)C1,t2,α,0 ∧
C1 n t1 `border α, s11, ς11 ∧
C2 n t2 `border α, s22, ς22 ∧
C1 n t2 `border α, s12, ς12 ∧

s11, ς11 ⇀
α−⇀[t1] s

′
11, ς

′
11 ∧

s22, ς22 ⇀
α−⇀[t2] s

′
22, ς

′
22

=⇒
∃s′12, ς

′
12.

s12, ς12 ⇀
α−⇀[t2] s

′
12, ς

′
12 ∧

ASWS (s′12, ς
′
12, s

′
11, ς

′
11, s

′
22, ς

′
22)C1,t2,α,|α|

162

Proof. (Sketch)
Follows by induction on the index of the ASWS relation from Lemma 112.

Lemma 114 (Soundness of trace equivalence with respect to contextual equivalence).

t1
T
=ω,∇ t2 =⇒ t1 'ω,∇ t2

Proof.
Equivalently, we prove the contra-positive, i.e., assuming (*):

t1 6'ω,∇ t2

Our goal is now:

t1
T

6=ω,∇ t2

Using (*) and by unfolding it using Definition 18, we know (without loss of generality) that:

∃C. ω,∇ ` C[t1] ⇓ ∧ ω,∇ 0 C[t2] ⇓

By further unfolding using Definition 17, we know (**):

∃C, t′1. Cn t1 = bt′1c ∧
∃st. initial_state(t′1 + ω,main_module(t′1))→∗∇ st ∧ `t st
∧
∀t′2, s. Cn t2 = bt′2c =⇒
initial_state(t′2 + ω,main_module(t′2))→∗∇ s =⇒ 0t s)

By unfolding our goal using Definition 73, our goal becomes:

TRω,∇(t1) 6= TRω,∇(t2)

For this, it suffices to prove (without loss of generality) that:

∃α. α ∈ TRω,∇(t1) ∧ α /∈ TRω,∇(t2)

By unfolding using Definition 72, our goal becomes:

∃α,C1, t
′
1, s
′
1, ς
′
1.

C1 n t1 = bt′1c ∧

initial_state(t′1 + ω,main_module(t′1)), ∅⇀α−⇀[t1],∇ s
′
1, ς
′
1 ∧

∀C2, t
′
2. C2 n t2 = bt′2c =⇒

@s′2, ς ′2. initial_state(t′2 + ω,main_module(t′2)), ∅⇀α−⇀[t2],∇ s
′
2, ς
′
2

From (**), we obtain C, t′1, and st. And by instantiating the =⇒ direction of Corollary 5, we know
(#1):

∃ς, α. initial_state(t′1 + ω,main_module(t′1)), ∅ α−⇀
∗
[t1],∇ st, ς

163

By obtaining ς from (#1), and by using conjunct `t st of (**) to instantiate rule terminate-
checkmark, we know (#2):

st, ς
X−⇀[t1],∇ st, ς

Using (#1) and (#2), we instantiate rule trace-closure-trans to obtain (t1X):

initial_state(t′1 + ω,main_module(t′1)), ∅ αX−−⇀
∗
[t1],∇ st, ς

To prove our existential goal, we pick αX|6τ for α. We have to prove each of the following subgoals
(conjuncts):

• Subgoal ∃s′1, ς ′1. Cn t1 = bt′1c ∧ initial_state(t′1 + ω,main_module(t′1)), ∅⇀αX|6τ−−−⇀[t1],∇ s
′
1, ς
′
1:

Here, we apply Claim 6 obtaining the following subgoals:

– | αX| 6τ | ≥ 1:
Immediate because X 6= τ .

– initial_state(t′1 + ω,main_module(t′1)), ∅ αX−−⇀
∗
[t1],∇ st, ς

Immediate by (t1X).

• Subgoal ∀C2, t
′
2. C2 n t2 = bt′2c =⇒

@s′2, ς ′2. initial_state(t′2 + ω,main_module(t′2)), ∅⇀αX|6τ−−−⇀[t2],∇ s
′
2, ς
′
2:

Pick arbitrary C2, t
′
2 with C2 n t2 = bt′2c.

Our goal is to show:

@s′2, ς ′2. initial_state(t′2 + ω,main_module(t′2)), ∅⇀αX|6τ−−−⇀[t2],∇ s
′
2, ς
′
2

For the sake of contradiction, assume the contrary, i.e.:

– Assume ∃s′2, ς ′2. initial_state(t′2 + ω,main_module(t′2)), ∅⇀αX|6τ−−−⇀[t2],∇ s
′
2, ς
′
2

– By simplification of the restriction operator, we know:

∃s′2, ς ′2. initial_state(t′2 + ω,main_module(t′2)), ∅⇀α|6τX−−−⇀[t2],∇ s
′
2, ς
′
2

– Thus, by instantiating Claim 8, we know (TRACE-UNTIL-s2”):
∃s′2, ς ′2, s′′2 , ς ′′2 .
s′′2 , ς

′′
2

X−⇀[t2],∇ s
′
2, ς
′
2 ∧

initial_state(t′2 + ω,main_module(t′2)), ∅ α|6τ−−⇀
∗

[t2],∇ s
′′
2 , ς
′′
2

– By inversion of the first conjunct of (TRACE-UNTIL-s2”) using terminate-checkmark, we
know (TERMINAL-s2”):
`t s′′2 .

– Similarly, we obtain from the previous (parallel) subgoal the state s′′1 , ς ′′1 where (TRACE-
UNTIL-s1”):
s′′1 , ς

′′
1

X−⇀[t1],∇ s
′
1, ς
′
1 ∧

initial_state(t′1 + ω,main_module(t′1)), ∅ α|6τ−−⇀
∗

[t1],∇ s
′′
1 , ς
′′
1

and thus, we know (TERMINAL-s1”):
`t s′′1

164

– Now, we instantiate Lemma 110 (Initial states are ASWS-related) to obtain (INIT-
ASWS):

ASWS (initial_state(Cn t2 + ω,main_module(Cn t2)), ∅,
initial_state(t′1 + ω,main_module(t′1)), ∅,
initial_state(t′2 + ω,main_module(t′2)), ∅)C,t2,α,0

Now instantiate Lemma 113 (ASWS satisfies the alternating simulation condition – whole
trace) using (TRACE-UNTIL-s2”) and (TRACE-UNTIL-s1”) to obtain s′′12, ς

′′
12 satisfying:

(TRACE-UNTIL-s12”):

initial_state(Cn t2 + ω,main_module(Cn t2)), ∅ ⇀α−⇀[t2] s
′′
12, ς

′′
12

∧ ASWS (s′′12, ς
′′
12, s

′′
1 , ς
′′
1 , s
′′
2 , ς
′′
2)C,t2,α,|α|

Now instantiate Lemma 111 using (TERMINAL-s2”) and (TERMINAL-s1”) to obtain:
(TERMINAL-s12”): `t s′′12

– Now instantiate Corollary 6 using (TRACE-UNTIL-s12”) to obtain:
(C-t2-STAR-STEPS-TO-s12”): initial_state(Cn t2 + ω,main_module(Cn t2))→∗∇ s′′12

– Now use (C-t2-STAR-STEPS-TO-s12”) to instantiate the second conjunct of (**) and to
immediately obtain a contradiction to (TERMINAL-s12”).

This concludes the proof of the second subgoal.

This concludes the proof of Lemma 114.

165

5 A complete trace semantics for ImpMod
We give a sound and complete trace semantics for ImpMod. In this section, we prove completeness
only (Lemma 117). Soundness, on the other hand, follows as an immediate corollary (Corollary 13)
from results about the compiler of Section 3.

The syntax of the traces is exactly the same as in Section 4.
Figure 10 describes the trace semantics of ImpMod.

Definition 76 (Reflexive transitive closure of trace actions).
We write s α−⇀

∗
[p],∇ s

′ where −⇀∗[p],∇⊆ (SourceState × 2Z)× Λ× (SourceState × 2Z) to denote the re-
flexive transitive closure of the trace actions reduction relation
−⇀[p],∇⊆ (SourceState × 2Z)× Λ× (SourceState × 2Z) where α collects the individual trace actions
in succession.

(trace-closure-refl-src)

s, ς
ε−⇀
∗
[p],∇ s, ς

(trace-closure-trans-src)

s, ς
α−⇀
∗
[p],∇ s

′′, ς ′′ s′′, ς ′′
λ−⇀[p],∇ s

′, ς ′

s, ς
αλ−−⇀
∗
[p],∇ s

′, ς ′

where ⇀[p],∇⊆ (SourceState × 2Z)× Λ× (SourceState × 2Z) is as defined in Figure 10.

Definition 77 (Non-silent trace steps).
We write s ⇀α−⇀[p],∇ s

′ where⇀−⇀[p],∇⊆ (SourceState × 2Z)× Λ× (SourceState × 2Z) to denote that ex-
ecution on state s generates a sequence α of non-silent trace actions (i.e., excluding τ actions) and
reaches state s′. We sometimes drop the parameter ∇ (which is the upper limit on memory alloca-
tion) for convenience.

(trace-steps-lambda-src)

s, ς
τ∗−⇀
∗

[p],∇ s
′′, ς ′′ s′′, ς ′′

λ−⇀[p],∇ s
′, ς ′ λ 6= τ

s, ς ⇀
λ−⇀[p],∇ s

′, ς ′

(trace-steps-alternating-src)

s, ς ⇀
α−⇀[p],∇ s

′′′, ς ′′′ s′′′, ς ′′′
τ∗−⇀
∗

[p],∇ s
′′, ς ′′ s′′, ς ′′

λ−⇀[p],∇ s
′, ς ′ λ 6= τ

s, ς ⇀
αλ−−⇀[p],∇ s

′, ς ′

Claim 19 (A non-silent trace is not the empty string).

∀p, α, s, ς, s′, ς ′,∇.

s, ς ⇀
α−⇀[p],∇ s

′, ς ′

=⇒
|α| > 1

Claim 20 (⇀−⇀ eliminates τ actions).

∀p, α, s, ς, s′, ς ′,∇.

s, ς ⇀
αλ−−⇀[p],∇ s

′, ς ′

=⇒
λ 6= τ

166

Figure 10: Trace semantics for ImpMod for an arbitrary program p

(assign-silent-src)

commands(Fd(pc.fid))(pc.n) = Assign el er Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 →∇s′

Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉, ς τ−⇀[p],∇ s′, ς

(alloc-silent-src)

commands(Fd(pc.fid))(pc.n) = Alloc el esize Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 →∇s′

Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉, ς τ−⇀[p],∇ s′, ς

(jump-silent-src)

commands(Fd(pc.fid))(pc.n) = JumpIfZero ec eoff Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 →∇s′

Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉, ς τ−⇀[p],∇ s′, ς

(cinvoke-silent-program-src)

commands(Fd(pc.fid))(pc.n) = Call fidcall e Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 →∇s′
moduleID(Fd(pc.fid)) ∈ moduleIDs(p) moduleID(Fd(fidcall)) ∈ moduleIDs(p)

Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉, ς τ−⇀[p],∇ s′, ς

(cinvoke-silent-context-src)

commands(Fd(pc.fid))(pc.n) = Call fidcall e Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 →∇s′
moduleID(Fd(pc.fid)) /∈ moduleIDs(p) moduleID(Fd(fidcall)) /∈ moduleIDs(p)

Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉, ς τ−⇀[p],∇ s′, ς

(cinvoke-context-to-program-src)

s = 〈Mem, stk , pc,Φ,nalloc〉
s′ = 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 Σ; ∆;β; MVar ; Fd ` s �≈ s′

s⊥ = 〈Mem ′, stk ′,⊥,Φ′,nalloc′〉
Σ; ∆;β; MVar ; Fd ` s 6→∇ s′ =⇒ s′′ = s⊥ Σ; ∆;β; MVar ; Fd ` s→∇ s′ =⇒ s′′ = s′

commands(Fd(pc.fid))(pc.n) = Call fidcall e v = [i 7→ vi | i ∈ [0, |e|) ∧ e(i),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ vi]
r = reachable_addresses({v(i) | i ∈ [0, |e|) ∧ v(i) = (δ,_,_,_)},Mem ′)

ς ′ = reachable_addresses_closure(ς ∪ r,Mem ′)
moduleID(Fd(pc.fid)) /∈ moduleIDs(p) moduleID(Fd(fidcall)) ∈ moduleIDs(p)

Σ; ∆;β; MVar ; Fd ` s, ς
call(moduleID(Fd(fidcall)),fidcall)v?Mem′|ς′ ,nalloc′

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀[p],∇ s′′, ς ′

(cinvoke-program-to-context-src)

s = 〈Mem, stk , pc,Φ,nalloc〉
s′ = 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 Σ; ∆;β; MVar ; Fd ` s �≈ s′

s⊥ = 〈Mem ′, stk ′,⊥,Φ′,nalloc′〉
Σ; ∆;β; MVar ; Fd ` s 6→∇ s′ =⇒ s′′ = s⊥ Σ; ∆;β; MVar ; Fd ` s→∇ s′ =⇒ s′′ = s′

commands(Fd(pc.fid))(pc.n) = Call fidcall e v = [i 7→ vi | i ∈ [0, |e|) ∧ e(i),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ vi]
r = reachable_addresses({v(i) | i ∈ [0, |e|) ∧ v(i) = (δ,_,_,_)},Mem ′)

ς ′ = reachable_addresses_closure(ς ∪ r,Mem ′)
moduleID(Fd(pc.fid)) ∈ moduleIDs(p) moduleID(Fd(fidcall)) /∈ moduleIDs(p)

Σ; ∆;β; MVar ; Fd ` s, ς
call(moduleID(Fd(fidcall)),fidcall)v?Mem′|ς′ ,nalloc′

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀[p],∇ s′′, ς ′

(creturn-silent-program-src)

commands(Fd(pc.fid))(pc.n) = Return s = 〈Mem, stk , pc,Φ,nalloc〉
s′ = 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉

Σ; ∆;β; MVar ; Fd ` s→∇ s′ moduleID(Fd(pc.fid)) ∈ moduleIDs(p)
moduleID(Fd(pc′.fid)) ∈ moduleIDs(p)

Σ; ∆;β; MVar ; Fd ` s, ς τ−⇀[p],∇ s′, ς

167

Figure 10 (Cont.): Trace semantics for ImpMod for an arbitrary program p

(creturn-silent-context-src)

commands(Fd(pc.fid))(pc.n) = Return s = 〈Mem, stk , pc,Φ,nalloc〉
s′ = 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉

Σ; ∆;β; MVar ; Fd ` s→∇ s′ moduleID(Fd(pc.fid)) /∈ moduleIDs(p)
moduleID(Fd(pc′.fid)) /∈ moduleIDs(p)

Σ; ∆;β; MVar ; Fd ` s, ς τ−⇀[p],∇ s′, ς

(creturn-to-program-src)

commands(Fd(pc.fid))(pc.n) = Return s = 〈Mem, stk , pc,Φ,nalloc〉
s′ = 〈Mem ′, stk ′, pc′,Φ′,nalloc〉

Σ; ∆;β; MVar ; Fd ` s→∇ s′ moduleID(Fd(pc.fid)) /∈ moduleIDs(p)
moduleID(Fd(pc′.fid)) ∈ moduleIDs(p) ς ′ = reachable_addresses_closure(ς,Mem ′)

Σ; ∆;β; MVar ; Fd ` s, ς
ret?Mem′|ς′ ,nalloc
−−−−−−−−−−−−⇀[p],∇ s′, ς ′

(creturn-to-context-src)

commands(Fd(pc.fid))(pc.n) = Return s = 〈Mem, stk , pc,Φ,nalloc〉
s′ = 〈Mem ′, stk ′, pc′,Φ′,nalloc〉

Σ; ∆;β; MVar ; Fd ` s→∇ s′ moduleID(Fd(pc.fid)) ∈ moduleIDs(p)
moduleID(Fd(pc′.fid)) /∈ moduleIDs(p) ς ′ = reachable_addresses_closure(ς,Mem ′)

Σ; ∆;β; MVar ; Fd ` s, ς
ret?Mem′|ς′ ,nalloc
−−−−−−−−−−−−⇀[p],∇ s′, ς ′

(terminate-checkmark-src)

_ `t s

Σ; ∆;β; MVar ; Fd ` s, ς X−⇀[p],∇ s, ς

Claim 21 (⇀−⇀ is supported by −⇀).

∀p, α, λ, s, ς, s′, ς ′,∇.

s, ς ⇀
αλ−−⇀[p],∇ s

′, ς ′

=⇒
∃s′′, ς ′′.

s′′, ς ′′
λ−⇀[p],∇ s

′, ς ′ ∧

s, ς
α−⇀
∗
[p],∇ s

′′, ς ′′

Claim 22 (⇀−⇀ decomposes).

∀p, α1, α2, s, ς, s
′, ς ′,∇.

s, ς ⇀
α1α2−−−⇀[p],∇ s

′, ς ′

=⇒
∃s1, ς1.

s, ς ⇀
α1−⇀[p],∇ s1, ς1 ∧

s1, ς1 ⇀
α2−⇀[p],∇ s

′, ς ′ ∧

168

Claim 23 (Non-silent part of −⇀∗ is supported by ⇀−⇀).

∀p, α, s, ς, s′, ς ′,∇.
| α|6τ | ≥ 1 ∧

s, ς
α−⇀
∗
[p],∇ s

′, ς ′

=⇒

∃s′′, ς ′′. s, ς ⇀α|6τ−−⇀[p],∇ s
′′, ς ′′

For a program p, we define the set TR(p) ⊆ Λ+ of finite non-empty prefixes of p’s possible exe-
cution traces as follows:

Definition 78 (A prefix of an execution trace is possible for a component).
A finite prefix α belonging to a component p’s set TR∇,∆,Σ,β(p) of possible execution trace prefixes
is defined as:

α ∈ TRω,∇,∆,Σ,β(p)

⇐⇒
∃C,m, s′, ς ′,∆C,ΣC, βC.

∆′ = ∆]∆C ∧ Σ′ = Σ] ΣC ∧ β′ = β ∪ βC ∧
C[p]∆′,Σ′ = m ∧

Σ′; ∆′ + ω;β′; mvar(m); fd_map(m) ` initial_state(m,∆′ + ω,Σ′,main_module(m)), ∅⇀α−⇀[p],∇ s
′, ς ′

where ⇀−⇀[p],∇⊆ (SourceState × 2Z)× Λ× (SourceState × 2Z) is as defined in Definition 77.

Definition 79 (Trace equivalence).

β1, p1
T
=ω,∇,∆,Σ β2, p2

def
= TRω,∇,∆,Σ,β1(p1) = TRω,∇,∆,Σ,β2(p2)

Claim 24 (Termination markers appear only at the end of an execution trace).

∀p. α ∈ TR(p) =⇒ α ∈ (Λ \ {X})∗ ∨ α ∈ (Λ \ {X})∗X

Claim 25 (Prefix-closure of trace set membership).

∀p, α. α ∈ TR(c) =⇒ (∀α′. α = α′α′′ =⇒ α′ ∈ TR(p))

Proof.
Follows from Claim 22. Instantiate “ =⇒ ” direction of Definition 78 using the assumption, and
apply its “ ⇐= ” direction to the goal.

Claim 26 (A state that is reachable by → reduction or by �≈ is also reachable by ⇀).

∀p, s, s′, ς,∇.
(s→∇ s′ ∨ s �≈ s′)
=⇒

∃λ, ς ′. s, ς λ−⇀[p],∇ s
′, ς ′

169

Claim 27 (A non-⊥ state that is reachable by ⇀ is also reachable by → reduction).

∀t, p, s, s′, ς, ς ′.
s′.pc 6= ⊥ ∧

s, ς
λ−⇀[p],∇ s

′, ς ′

=⇒
s→∇ s′

Claim 28 (Silent trace steps correspond to → steps).

∀p, s, s′, ς, ς ′,∇.

s, ς
τ∗−⇀
∗

[p],∇ s
′, ς ′

=⇒
s→∗∇ s′

Claim 29 (Non-stuck trace steps correspond to → execution steps).

∀p, s, s′, s′′, ς, ς ′, ς ′′,∇.

s, ς
α−⇀
∗
[p],∇ s

′, ς ′ ∧

s′, ς ′
λ−⇀[p],∇ s

′′, ς ′′

=⇒
s→∗∇ s′

Claim 30 (The set of shared addresses ς does not change by silent trace steps).

∀s, s′, ς, ς ′,∇.

s, ς
τ∗−⇀
∗

[p],∇ s
′, ς ′

=⇒
ς = ς ′

Corollary 8 (Reachability by →∗ implies reachability by −⇀∗).

initial_state(C] p,∆,Σ,main_module(C] p))→∗∇ s
=⇒

∃ς, α. initial_state(C] p,∆,Σ,main_module(C] p)), ∅ α−⇀
∗
[p],∇ s, ς

Corollary 9 (Reachability by −⇀∗ implies reachability by →∗ when the state is non-⊥).

initial_state(C] p,∆,Σ,main_module(C] p)), ∅ α−⇀
∗
[p],∇ s, ς ∧

s.pc 6= ⊥
=⇒

initial_state(C] p,∆,Σ,main_module(C] p))→∗∇ s

Lemma 115 (Non-communication actions do not change context/compiled component’s ownership
of pc).

Kmod ;Kfun ;C] p; Σ; ∆;β; MVar ; Fd `exec s ∧

s
τ−⇀[p] s

′

=⇒
(moduleID(Fd(s.pc.fid)) ∈ moduleIDs(p) ⇐⇒ moduleID(Fd(s ′.pc.fid)) ∈ moduleIDs(p))

170

Proof. Similar to the proof of Lemma 108.

Corollary 10 (Non-communication actions do not change ownership of pc (star-closure)).

Kmod ;Kfun ;C] p; Σ; ∆;β; MVar ; Fd `exec s ∧

s, ς
τ−⇀
∗
[p] s

′, ς

=⇒
(moduleID(Fd(s.pc.fid)) ∈ moduleIDs(p) ⇐⇒ moduleID(Fd(s ′.pc.fid)) ∈ moduleIDs(p))

Proof. Follows by Lemma 115, Claim 28 and corollary 4.

Then, Lemma 116 states a restriction on the form of traces with respect to input actions
•
? and

output actions
•
!.

Lemma 116 (Traces consist of alternating input/output actions).

∀p, α. α ∈ TR(p) =⇒ α ∈ AltX∗

Proof.
Similar to the proof of Lemma 109.

5.1 Completeness using back-translation
Lemma 117 (Completeness of trace equivalence with respect to contextual equivalence).

∀m1,m2, ∆̃, β1, β2, Σ̃,∇.
dom(Σ̃) = {moduleID(m) | m ∈ m1} = {moduleID(m) | m ∈ m2} ∧
dom(∆̃) = {moduleID(m) | m ∈ m1} = {moduleID(m) | m ∈ m2} ∧
∆̃, β1,m1 'Σ̃,ω,∇ ∆̃, β2,m2

=⇒

∃∆,Σ. β1,m1
T
=ω,∇,∆,Σ β2,m2

(Proof Sketch):
The proof of this lemma is similar to the correctness of the back-translation given by Lemma 168,
and additionally relies on Lemma 119.

We omit the details to avoid repetition. The crucial difference is that back-translation is defined
for the common prefix of two traces as follows: Back-translation is a function (denoted by 〈〈·, ·〉〉)
that takes as input two traces α1, α2 of respectively two programs, c1 and c2, and produces a source
(partial) program c which is a distinguishing context. A distinguishing context satisfies either:

• when c is linked with c1, it constitutes a converging program, and when it is linked with c2, it
constitutes a diverging program, or

• when c is linked with c1, it constitutes a diverging program, and when it is linked with c2, it
constitutes a converging program.

171

Definition 80 (Distinguishing snippet for equi-flow trace actions).

distinguishArgs : E → V → V → Cmd

distinguishArgs(e, v1, v2)
def
=

capType(v1) 6= capType(v2) =⇒ ifnotzero-then-else(e− capType(v1), converge, diverge)

capType(v1) = capType(v2) = INTEGER =⇒ ifnotzero-then-else(e− v1, converge, diverge)

capStart(v1) 6= capStart(v2) =⇒ ifnotzero-then-else(start(e)− capStart(v1), converge, diverge)

capEnd(v1) 6= capEnd(v2) =⇒ ifnotzero-then-else(end(e)− capEnd(v1), converge, diverge)

capOff(v1) 6= capOff(v2) =⇒ ifnotzero-then-else(off(e)− capOff(v1), converge, diverge)

Lemma 118 (Value cross-relatedness on integers is compatible with ImpMod subtraction).

∀vt, vs, v1, v2, s.

v1
∼= vt ∧ v2

∼= vt ∧ v1 − v2,_,_,_,_,_,_,_,_ ⇓ vs =⇒ vs = 0

Proof. Follows from Definition 60 and rule Evaluate-expr-binop.

Lemma 119 (If two target values are unequal, then distinguishArgs produces code that terminates
on exactly one of them).

∀Σ; ∆;β; MVar ; Fd , s, e, v1, v2.

upcoming_commands(s, distinguishArgs(e, v1, v2)) ∧
v1 6= v2 ∧
∃v. e,Σ; ∆;β; MVar ; Fd , s.Mem, s.Φ, s.pc ⇓ v
=⇒

(v ∼= v2 =⇒ ∃st. Σ; ∆;β; MVar ; Fd ` s→∗ st ∧ `t st) ∧
(v ∼= v1 =⇒ @st. Σ; ∆;β; MVar ; Fd ` s→∗ st ∧ `t st)

Proof. Follows by easy case distinction after unfolding Definition 80 from Lemmas 118, 159, 161
and 162.

172

6 Security guarantee about the compiler: full abstraction
To be convinced about the security of the compiler, we need:

1. a property for a compiler that captures security (for that, we use Definition 81 of full abstraction
of a compiler),

2. and a proof that our compiler satisfies this property (Theorem 2).

To express compiler security, one de-facto standard exists: compiler full abstraction [5]. In-
formally, a compiler is fully abstract if the compilation from source programs to target programs
preserves and reflects contextual/behavioral equivalence. In other words, a compiler is fully-abstract
if for any two source programs m1 and m2 and in any possible execution environment, we have that
they are behaviorally equivalent (m1'm2) if and only if their compiled counterparts are behav-
iorally equivalent (Jm1K' Jm2K). The notion of behavioral equivalence used here is the canonical
notion of contextual equivalence: two terms are equivalent if they behave the same when plugged
into any valid context.

Source and target contextual equivalence can be stated as in Definitions 18 and 45.
This definition is standard and used by most papers in the literature on secure compilation [6–14].
We say a compiler J·K is fully abstract if in all execution environments, it preserves and reflects

contextual equivalence. An execution environment determines (1) the stack region Σ̃(moduleID(m))
that is allocated for a module m of the compiled program together with (2) the start address ω of
the data segment of the compiled program, and (3) the limit ∇ on dynamic memory allocation. So,
effectively, full abstraction requires that for any fixed: (1) the stack size allocated to any of the
program’s modules (i.e., whether sufficient or not), (2) the offset in memory in which a program’s
data segment lives, and (3) the heap space available for dynamic allocation (i.e., whether sufficient
or not), the compiler should preserve and reflect the contextual equivalence of the source language
programs. Thus, full abstraction of a compiler J·K denoted FA(J·K) is defined as follows.

Definition 81 (Compiler full abstraction).

FA(J·K) def
= ∀m1,m2, ∆̃, β1, β2,Kmod1 ,Kfun1 ,Kmod2 ,Kfun2 , Σ̃,∇ < −1, t1, t2.

dom(Σ̃) = {moduleID(m) | m ∈ m1} = {moduleID(m) | m ∈ m2} ∧
dom(∆̃) = {moduleID(m) | m ∈ m1} = {moduleID(m) | m ∈ m2} ∧
m2 _m2 ∧
Jm1K∆̃,Σ̃,β1,Kmod1 ,Kfun1

= t1 ∧

Jm2K∆̃,Σ̃,β2,Kmod2 ,Kfun2
= t2

=⇒
∆̃, β1,m1 'Σ̃,ω,∇ ∆̃, β2,m2 ⇐⇒ t1'ω,∇ t2

Compiler full abstraction can be stated as follows:

Theorem 2 (J·K is fully abstract). J·K ∈ FA where J·K is our compiler that is defined in rule Module-
list-translation.

Proof.
Immediate by Lemmas 120 and 121.

Referring to Definition 81 of a translation being fully abstract, we call the =⇒ direction of the
logical equivalence “preservation of contextual equivalence” (Lemma 121), and the other direction
⇐= “reflection of contextual equivalence” (Lemma 120).

The proof of Lemma 120 is easy given the correctness and compositionality results we proved in
Section 3.

173

Lemma 120 (J·K reflects contextual equivalence).

∀m1,m2, ∆̃, β1, β2,Kmod1 ,Kfun1 ,Kmod2 ,Kfun2 , Σ̃, ω,∇.
dom(Σ̃) = {moduleID(m) | m ∈ m1} = {moduleID(m) | m ∈ m2} ∧
dom(∆̃) = {moduleID(m) | m ∈ m1} = {moduleID(m) | m ∈ m2} ∧
∃t1. Jm1K∆̃,Σ̃,β1,Kmod1 ,Kfun1

= t1 ∧

∃t2. Jm2K∆̃,Σ̃,β2,Kmod2 ,Kfun2
= t2

=⇒
(∆̃, β1,m1 'Σ̃,ω,∇ ∆̃, β2,m2 ⇐= t1'ω,∇ t2)

Proof.
We fix the universally-quantified variables, and assume the antecedents.

Then, in order to prove the implication:

∆̃, β1,m1 'Σ̃,ω,∇ ∆̃, β2,m2 ⇐= t1'ω,∇ t2
we instead prove its contra-positive. Thus, we assume:

∆̃, β1,m1 6'Σ̃,ω,∇ ∆̃, β2,m2 (6)

And our goal becomes:

t1 6'ω,∇ t2
From Proposition (6), and by unfolding Definition 45, we get (w.l.o.g.):

∃∆, β,Σ,Kmod ,Kfun ,C.
wfp(C) ∧
Kmod]Kmod1 ,Kfun]Kfun1 ,Σ] Σ̃, (∆] ∆̃) + ω, β] β1,∇ ` C[m1] ⇓ ∧
Kmod]Kmod2 ,Kfun]Kfun2 ,Σ] Σ̃, (∆] ∆̃) + ω, β] β2,∇ 0 C[m2] ⇓

(7)

and our goal (by unfolding Definition 18) is to show that:

∃C. ω,∇ ` C[t1] ⇓ ∧ ω,∇ 0 C[t2] ⇓

In order to show this goal, we pick:

C = JCK∆,Σ,β,Kmod ,Kfun
(8)

which we know from rule Module-list-translation that it exists because of conjunct wfp(C) of
Proposition (7). By substitution from the assumptions and from Proposition (8), our goal is thus
to show that:

ω,∇ ` JCK∆,Σ,β,Kmod ,Kfun
[Jm1K∆̃,Σ̃,β1,Kmod1 ,Kfun1

]⇓ ∧ ω,∇ 0 JCK∆,Σ,β,Kmod ,Kfun
[Jm2K∆̃,Σ̃,β2,Kmod2 ,Kfun2

]⇓

By applying Lemma 106, it suffices to instead prove:

ω,∇ ` JC[m1]∆]∆̃,Σ]Σ̃K
∆∪∆̃,Σ∪Σ̃,β∪β1,Kmod∪Kmod1 ,Kfun∪Kfun1

⇓ ∧

ω,∇ 0 JC[m2]∆]∆̃,Σ]Σ̃K
∆∪∆̃,Σ∪Σ̃,β∪β2,Kmod∪Kmod2 ,Kfun∪Kfun2

⇓

By Lemma 105, we immediately have the two conjuncts of our goal following from respectively
the two conjuncts of Proposition (7). This concludes the proof of Lemma 120.

174

Now, we turn to Lemma 121, which states that the compilers preserves contextual equivalence of
ImpMod programs.

To prove this lemma, we rely on trace equivalence of CHERIExp (Definition 73), and trace
equivalence of ImpMod as a go-between. Thus, preservation of contextual equivalence follows
immediately by the following three lemmas:

• Soundness of target trace equivalence (Lemma 114)

• Compilation preserves trace equivalence (Lemma 122)

• Completeness of source trace equivalence (Lemma 117)

Lemma 121 (J·K preserves contextual equivalence).

∀m1,m2, ∆̃, β1, β2,Kmod1 ,Kfun1 ,Kmod2 ,Kfun2 , Σ̃, ω ∈ N,∇ ∈ Z−.

dom(Σ̃) = {moduleID(m) | m ∈ m1} = {moduleID(m) | m ∈ m2} ∧
dom(∆̃) = {moduleID(m) | m ∈ m1} = {moduleID(m) | m ∈ m2} ∧
∃t1. Jm1K∆̃,Σ̃,β1,Kmod1 ,Kfun1

= t1 ∧

∃t2. Jm2K∆̃,Σ̃,β2,Kmod2 ,Kfun2
= t2

=⇒
(∆̃, β1,m1 'Σ̃,ω,∇ ∆̃, β2,m2 =⇒ t1'ω,∇ t2)

Proof.
Immediate by Lemmas 114, 117 and 122.

Lemma 122 (Compilation preserves trace equivalence).

β1, p1
T
=ω,∇,∆,Σ β2, p2 =⇒ Jp1K∆,Σ,β1,Kmod1 ,Kfun1

T
=ω,∇ Jp2K∆,Σ,β2,Kmod2 ,Kfun2

Proof.
Unfolding using Definitions 73 and 79, we need to prove:

Trω,∇,∆,Σ,β1(p1) = Trω,∇,∆,Σ,β2(p2) =⇒ Trω,∇(Jp1K∆,Σ,β1,Kmod1 ,Kfun1
) = Trω,∇(Jp2K∆,Σ,β2,Kmod2 ,Kfun2

)

This is immediate by Lemmas 131 and 173.

Lemma 131 follows by lifting compiler forward simulation to the trace semantics.

175

6.1 Lifting compiler forward and backward simulation to trace semantics
Lemma 123 (Forward simulation of call attempt).

∀Kmod ,Kfun ,Σ; ∆;β; MVar ; Fd , 〈Mem, stk , pc,Φ,nalloc〉,mods1,m, λ, ς, ς
′

t, 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉.
Jmods1 K∆,Σ,β,Kmod ,Kfun

= t ∧

Kmod ;Kfun ; mods1 ; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 ∧
t `exec 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
modIDs = {modID | (modID ,_,_) ∈ mods1} ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 �≈ 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉

=⇒
〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 �≈ 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉 ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉

Proof.
Similar to case Call of Lemma 97.

Lemma 124 (Forward simulation of call attempt).

∀Kmod ,Kfun ,Σ; ∆;β; MVar ; Fd , 〈Mem, stk , pc,Φ,nalloc〉,mods1,m, λ, ς, ς
′

t, 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉.
Jmods1 K∆,Σ,β,Kmod ,Kfun

= t ∧

Kmod ;Kfun ; mods1 ; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 ∧
t `exec 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
modIDs = {modID | (modID ,_,_) ∈ mods1} ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 �≈ 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉

=⇒
Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉 �≈ 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉

Proof.
Similar to case cinvoke of Lemma 98.

176

Lemma 125 (Compiler forward simulation lifted to a trace step).

∀Kmod ,Kfun ,Σ; ∆;β; MVar ; Fd , 〈Mem, stk , pc,Φ,nalloc〉,mods1,m, λ, ς, ς
′

t, 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉.
m ⊆ mods1 ∧
Jmods1 K∆,Σ,β,Kmod ,Kfun

= t ∧

Kmod ;Kfun ; mods1 ; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 ∧
t `exec 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
modIDs = {modID | (modID ,_,_) ∈ mods1} ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧

Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉, ς λ−⇀[m] 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉, ς ′

=⇒

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉, ς λ−⇀[JmK∆,Σ,β,Kmod ,Kfun
] 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉, ς ′ ∧

Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉

Proof.
We distinguish two cases for λ:

• Case λ = τ :

Here, after instantiating Claim 28 using the given trace step
Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉, ς λ−⇀[m] 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉, ς ′,
we obtain our goal immediately by applying Lemma 97.

• Case λ 6= τ :

Here, distinguish two cases:

– Case s′.pc = ⊥:
Here, the goal is immediate by applying Lemma 123.

– Case s′.pc 6= ⊥:
Here, after instantiating Claim 27,
we obtain our goal immediately again by applying Lemma 97.

This concludes the proof of Lemma 125.

177

Lemma 126 (Compiler backward simulation lifted to a trace step).

∀Kmod ,Kfun ,Σ; ∆;β; MVar ; Fd , 〈Mem, stk , pc,Φ,nalloc〉,mods1,m, λ, ς, ς
′

t, 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉.
m ⊆ mods1 ∧
Jmods1 K∆,Σ,β,Kmod ,Kfun

= t ∧

Kmod ;Kfun ; mods1 ; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 ∧
t `exec 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
modIDs = {modID | (modID ,_,_) ∈ mods1} ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉, ς λ−⇀[JmK∆,Σ,β,Kmod ,Kfun
] 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉, ς ′

=⇒

Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉, ς λ−⇀[m] 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉, ς ′ ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉

Proof.
We distinguish two cases for λ:

• Case λ = τ :

Here, after instantiating Claim 15 using the given trace step
〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉, ς λ−⇀[JmK∆,Σ,β,Kmod ,Kfun

] 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉, ς ′,

we obtain our goal immediately by applying Lemma 98.

• Case λ 6= τ :

Here, distinguish two cases:

– Case s′.Mc(s
′.pcc) = ⊥:

Here, the goal is immediate by applying Lemma 124.

– Case s′.Mc(s
′.pcc) 6= ⊥:

Here, after instantiating Claim 14,
we obtain our goal immediately again by applying Lemma 98.

This concludes the proof of Lemma 126.

178

Lemma 127 (Compiler forward simulation lifted to many trace steps).

∀Kmod ,Kfun ,Σ; ∆;β; MVar ; Fd , 〈Mem, stk , pc,Φ,nalloc〉,mods1,m, α, ς, ς
′

t, 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉.
m ⊆ mods1 ∧
Jmods1 K∆,Σ,β,Kmod ,Kfun

= t ∧

Kmod ;Kfun ; mods1 ; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 ∧
t `exec 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
modIDs = {modID | (modID ,_,_) ∈ mods1} ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧

Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉, ς α−⇀
∗
[m] 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉, ς ′

=⇒

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉, ς α−⇀
∗
[JmK∆,Σ,β,Kmod ,Kfun

] 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉, ς ′ ∧

Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉

Proof.
Follows from Lemma 125:
In the inductive step (case trace-closure-trans),
the necessary assumptions about the source, and target execution invariants `exec and `exec follow
from Corollary 4 and Corollary 2 respectively,
after instantiating Claim 16, and Claim 29.

Lemma 128 (Compiler backward simulation lifted to many trace steps).

∀Kmod ,Kfun ,Σ; ∆;β; MVar ; Fd , 〈Mem, stk , pc,Φ,nalloc〉,mods1,m, α, ς, ς
′

t, 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉.
m ⊆ mods1 ∧
Jmods1 K∆,Σ,β,Kmod ,Kfun

= t ∧

Kmod ;Kfun ; mods1 ; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 ∧
t `exec 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
modIDs = {modID | (modID ,_,_) ∈ mods1} ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉, ς α−⇀
∗
[JmK∆,Σ,β,Kmod ,Kfun

] 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉, ς ′

=⇒

Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉, ς α−⇀
∗
[m] 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉, ς ′ ∧

Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉

Proof.
Follows from Lemma 126:
In the inductive step (case trace-closure-trans-src),
the necessary assumptions about the source, and target execution invariants `exec and `exec follow
from Corollary 4 and Corollary 2 respectively,
after instantiating Claim 16, and Claim 29.

179

Lemma 129 (Compiler forward simulation lifted to compressed trace steps).

∀Kmod ,Kfun ,Σ; ∆;β; MVar ; Fd , 〈Mem, stk , pc,Φ,nalloc〉,mods1,m, α, ς, ς
′

t, 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉.
m ⊆ mods1 ∧
Jmods1 K∆,Σ,β,Kmod ,Kfun

= t ∧

Kmod ;Kfun ; mods1 ; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 ∧
t `exec 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
modIDs = {modID | (modID ,_,_) ∈ mods1} ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧

Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉, ς ⇀α−⇀[m] 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉, ς ′

=⇒

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉, ς ⇀α−⇀[JmK∆,Σ,β,Kmod ,Kfun
] 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉, ς ′ ∧

Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉

Proof.
Follows from Lemmas 125 and 127.

Lemma 130 (Compiler backward simulation lifted to compressed trace steps).

∀Kmod ,Kfun ,Σ; ∆;β; MVar ; Fd , 〈Mem, stk , pc,Φ,nalloc〉,mods1,m, α, ς, ς
′

t, 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉.
m ⊆ mods1 ∧
Jmods1 K∆,Σ,β,Kmod ,Kfun

= t ∧

Kmod ;Kfun ; mods1 ; Σ; ∆;β; MVar ; Fd `exec 〈Mem, stk , pc,Φ,nalloc〉 ∧
t `exec 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧
modIDs = {modID | (modID ,_,_) ∈ mods1} ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem, stk , pc,Φ,nalloc〉 ∼=modIDs 〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉 ∧

〈Mc,Md, stk , imp, φ, ddc, stc, pcc,mstc, nalloc〉, ς ⇀α−⇀[JmK∆,Σ,β,Kmod ,Kfun
] 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉, ς ′

=⇒

Σ; ∆;β; MVar ; Fd ` 〈Mem, stk , pc,Φ,nalloc〉, ς ⇀α−⇀[m] 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉, ς ′ ∧
Kmod ;Kfun ; Σ; ∆;β; MVar ; Fd ; 〈Mem ′, stk ′, pc′,Φ′,nalloc′〉 ∼=modIDs 〈Mc,M′d, stk ′, imp, φ, ddc′, stc′, pcc′, nalloc′〉

Follows from Lemmas 126 and 128.

Lemma 131 (No trace is removed by compilation).

α ∈ Trω,∇,∆,Σ,β(p) =⇒ α ∈ Trω,∇(JpK∆,Σ,β,Kmod ,Kfun
)

Proof.
Immediate by Lemma 129 after unfolding Definitions 72 and 78.

6.2 Strong and weak similarity
Definition 82 (Component-controlled memory region).
In a given trace-execution state s, ς of a program tn c (i.e., tn c `exec s), we define the function

180

ρ[c] : (TargetState × 2Z)→ 2Z which computes the set of memory addresses on which the similarity
relation applies. For strong similarity, this set is all the memory that is reachable by c. For weak
similarity, this set is only the set of addresses that are private to c.

ρ[c](s, ς)
def
= if s.pcc ⊆ dom(c.Mc)

then
⋃

mid∈dom(c.imp)

reachable_addresses({s.mstc(mid), c.imp(mid).ddc}, s.Md)

else (
⋃

mid∈dom(c.imp)

reachable_addresses({s.mstc(mid), c.imp(mid).ddc}, s.Md)) \ ς

Claim 31 (Controlled-region equality implies reachability equality).

∀c, s1, s2, ς1, ς2.

dom(s1.Md) = dom(s2.Md) ∧
ς1 = ς2 ∧
s1.pcc = s2.pcc ∧
ρ[c](s1, ς1) = ρ[c](s2, ς2)

=⇒
reachable_addresses({s1.stc, s1.ddc}, s1.Md) =

reachable_addresses({s2.stc, s2.ddc}, s2.Md)

Definition 83 (Similarity of stack capabilities). Two stack capability maps mstc1 and mstc2 are
similar up to/with respect to a component c iff all the c modules have the same stack capability value
given by mstc1 as that given by mstc2. Formally:
mstc1 ≈[c] mstc2

def
= ∀mid . mid ∈ dom(c.imp) =⇒ mstc1(mid) = mstc2(mid)

Claim 32 (Similarity of mstc is an equivalence relation).

Proof. Immediate by Definition 83.

6.3 Stack similarity (successor-preserving isomorphism)
Two stacks stk1 and stk2 (of two executions of a program c) are related whenever the number of
alternations of program frames and context frames is the same in stk1 as in stk2, and each two
corresponding program stack frames (i.e., a program stack-frame from stk1 that corresponds to
one from stk2) are equal. The correspondence and the guarantee on the number of alternations are
given by a function f between indexes of stk1 and indexes stk2. The function f satisfies the following
conditions:

1. Domain of f is exhaustive of c call sites in stk1, and contains top and bottom sentinel values.

2. Range of f is exhaustive of c call sites in stk2 and contains top and bottom sentinel values.

3. f is sentinel-value preserving.

4. f is strictly monotone.

5. f is compatible with stack-frame equality (i.e., corresponding frames are equal).

6. f is a successor-preserving homomorphism.

A more formal definition is given by Definitions 84 and 85 which differ only in the condition on
sentinel values. Weak stack-similarity (Definition 85) drops the top-sentinel-value requirement.

Conditions for strengthening and weakening are given next.

181

Definition 84 (Strong stack-similarity).

stk1 ≈[c] stk2

def
=

∃f : Z⇀ Z.
dom(f) = {i ∈ dom(stk1) | stk1(i).pcc ⊆ dom(c.Mc)}] {−1, length(stk1)} ∧
range(f) = {i ∈ dom(stk2) | stk2(i).pcc ⊆ dom(c.Mc)}] {−1, length(stk2)} ∧
f(−1) = −1 ∧
f(length(stk1)) = length(stk2) ∧
∀i, j. i > j =⇒ f(i) > f(j) ∧
∀i ∈ dom(f) \ {−1, length(stk1)}. f(i) = j =⇒ stk1(i) = stk2(j) ∧
∀i, j ∈ dom(f). j = i+ 1 ⇐⇒ f(j) = f(i) + 1

Definition 85 (Weak stack-similarity).

stk1 ∼[c] stk2

def
=

∃f : Z⇀ Z.
dom(f) = {i ∈ dom(stk1) | stk1(i).pcc ⊆ dom(c.Mc)}] {−1} ∧
range(f) = {i ∈ dom(stk2) | stk2(i).pcc ⊆ dom(c.Mc)}] {−1} ∧
f(−1) = −1 ∧
∀i, j. i > j =⇒ f(i) > f(j) ∧
∀i ∈ dom(f) \ {−1, length(stk1)}. f(i) = j =⇒ stk1(i) = stk2(j) ∧
∀i, j ∈ dom(f). j = i+ 1 ⇐⇒ f(j) = f(i) + 1

Notice that the functions f used in Definitions 84 and 85 are injective because they are strictly
monotone.

Lemma 132 (A strictly-monotone function is injective).

∀f.
(∀i, j. i > j =⇒ f(i) > f(j))

=⇒
(∀i, j. i 6= j =⇒ f(i) 6= f(j))

Proof. Immediate by the anti-reflexivity and asymmetry of the < relation.

Definition 86 (Trace-state similarity).
Given two trace states s1, ς1 and s2, ς2, we define between them two similarity relations: strong
similarity s1, ς1 ≈[c] s2, ς2, and weak similarity s1, ς1 ∼[c] s2, ς2 where both relations are parametrized
with a component c for which the trace is collected. The intuition is that strong similarity holds as
long as c is executing, and weak similarity holds as long as the context is executing. Strong similarity
satisfies lock-step simulation, and weak similarity satisfies option simulation.

182

Formally:

s1, ς1 ≈[c] s2, ς2
def
=

ρ[c](s1, ς1) = ρ[c](s2, ς2) = r ∧
s1.stk ≈[c] s2.stk ∧
s1.mstc ≈[c] s2.mstc ∧
ς1 = ς2 ∧
s1.Md|r = s2.Md|r ∧
s1.ddc = s2.ddc ∧
s1.stc = s2.stc ∧
s1.pcc = s2.pcc ∧
s1.nalloc = s2.nalloc

and

s1, ς1 ∼[c],priv s2, ς2
def
=

(s1.pcc ∩ dom(c.Mc) = ∅
⇐⇒
s2.pcc ∩ dom(c.Mc) = ∅) ∧
s1.stk ∼[c] s2.stk ∧
s1.mstc ≈[c] s2.mstc ∧
ς1 = ς2 ∧
s1.Md|priv = s2.Md|priv

Lemma 133 (Strong stack-similarity is an equivalence relation).

• Reflexivity: ∀stk , c. stk ≈[c] stk

• Symmetry: ∀stk1, stk2, c. stk1 ≈[c] stk2 =⇒ stk2 ≈[c] stk1

• Transitivity: ∀stk1, stk2, stk3, c. stk1 ≈[c] stk2 ∧ stk2 ≈[c] stk3 =⇒ stk1 ≈[c] stk3

Proof.

• For reflexivity, pick the identity function f(x) = x.

• For symmetry, obtain f by unfolding the assumption using Definition 84.
Then, pick f−1 such that dom(f−1) := range(f) and f−1(f(x)) := x.
By injectivity of f (Lemma 132), notice that f−1(f(x)) is well defined, and that range(f−1) = dom(f).
The “frame-relatedness” condition for f−1 follows by symmetry of the frame relation from the
frame-relatedness condition on f .
The remaining conditions are easy.

• For transitivity, obtain f1 and f2 by unfolding the assumption using Definition 84.
Then, pick f1,3 := f2 ◦ f1. Notice that f1,3 has the desired domain and range.
The “frame-relatedness” condition for f1,3 follows by transitivity of the frame relation from the
frame-relatedness conditions on f1 and f2.
The remaining conditions are easy.

183

Claim 33 (Weak stack-similarity is an equivalence relation).

• Reflexivity: ∀stk , c. stk ∼[c] stk

• Symmetry: ∀stk1, stk2, c. stk1 ∼[c] stk2 =⇒ stk2 ∼[c] stk1

• Transitivity: ∀stk1, stk2, stk3, c. stk1 ∼[c] stk2 ∧ stk2 ∼[c] stk3 =⇒ stk1 ∼[c] stk3

Proof. Similar to the proof of Lemma 133.

Claim 34 (State similarity is an equivalence relation).
The relation ≈[c] is reflexive, symmetric, and transitive.

• ∀s, ς, c. s, ς ≈[c] s, ς

• ∀s1, ς1, s2, ς2, c. s1, ς1 ≈[c] s2, ς2 =⇒ s2, ς2 ≈[c] s1, ς1

• ∀s1, ς1, s2, ς2, s3, ς3, c. s1, ς1 ≈[c] s2, ς2 ∧ s2, ς2 ≈[c] s3, ς3 =⇒ s1, ς1 ≈[c] s3, ς3

Proof. Follows from Claim 32 and Lemma 133.

Lemma 134 (Similarity of stack capabilities compatible with uniform substitution).

∀mstc1,mstc2,mid , stc. mstc1 ≈[c] mstc2 =⇒ mstc1[mid 7→ stc] ≈[c] mstc2[mid 7→ stc]

Proof. Immediate by unfolding Definition 83, and a case distinction on the map’s key entry.

Lemma 135 (Initial states of the program of interest are strongly related).

s1 = initial_state(C1 n p,main_module(C1 n p)) ∧
s2 = initial_state(C2 n p,main_module(C2 n p)) ∧
s1.pcc ⊆ dom(p.Mc) ∧
s1.pcc ⊆ dom(p.Mc)

=⇒
s1, ∅ ≈[p] s2, ∅

Proof.
Follows by Definition 86.

Lemma 136 (Initial states of the context are weakly related).

s1 = initial_state(C1 n p,main_module(C1 n p)) ∧
s2 = initial_state(C2 n p,main_module(C2 n p)) ∧
s1.pcc * dom(p.Mc) ∧
s1.pcc * dom(p.Mc)

=⇒
s1, ∅ ∼[p],ρ[p](s1,∅) s2, ∅

Proof.
Follows by Definition 86.

184

Lemma 137 (Terminal states are strongly-related to only terminal states).

s1, ς1 ≈[p] s2, ς2 ∧
`t s1

=⇒
`t s2

Proof.
Follows by unfolding Definition 86 and Definition 13 then rewriting using s1.pcc = s2.pcc.

Lemma 138 (Equality of expression evaluation between strongly-similar states).

∀t1, t2, s1, s2, ς1, ς2, E , r.
t1 `exec s1 ∧
t2 `exec s2 ∧
r = reachable_addresses({s1.stc, s1.ddc}, s1.Md) ∧
s1.stc = s2.stc∧
s1.ddc = s2.ddc∧
s1.Md|r = s2.Md|r
E , s1.Md, s1.ddc, s1.stc, s1.pcc ⇓ v
=⇒
E , s2.Md, s2.ddc, s2.stc, s2.pcc ⇓ v

Proof.
We assume the antecedents, and prove our goal by induction on the evaluation E , s1.Md, s1.ddc, s1.stc, s1.pcc ⇓ v:

1. Case evalconst:

Here, observe that n,_,_,_,_ ⇓ n, so our goal follows.

2. Case evalddc:

3. Case evalstc:

Here, we obtain our goals by conjuncts s1.ddc = s2.ddc, and s1.stc = s2.stc of the antecedent
respectively.

4. Case evalCapType:

5. Case evalCapStart:

6. Case evalCapEnd:

7. Case evalCapOff:

8. Case evalBinOp:

9. Case evalIncCap:

10. Case evalLim:

Here, our goals follow by inverting the corresponding rule, applying the induction hypothesis,
and re-applying the rule for the s2 components.

11. Case evalDeref:

• Here, we have E = deref(E ′), and we obtain the preconditions E ′, s1.Md, s1.ddc, s1.stc, s1.ddc ⇓ v,
`δ v, and v′ = s1.Md(v.s+ v.off).

185

• The induction hypothesis gives us that E ′, s2.Md, s2.ddc, s2.stc, s2.ddc ⇓ v.
• So, we need to show that s2.Md(v.s+ v.off) = v′ = s1.Md(v.s+ v.off).

• But we have by assumption that s2.Md|r = s1.Md|r.
So it suffices to show that v.s+ v.off ∈ r.
• But by Lemma 25 about completeness of reachable_addresses, and the definition of r from

the assumption we have that [v.s, v.e) ⊆ r.
• So our sufficient goal “v.s+ v.off ∈ r” follows by the definition of ⊆ because from the

above-obtained precondition `δ v, and by Definition 2, we know that v.s+ v.off ∈ [v.s, v.e).
(Notice that Lemma 25 is applicable by the preconditions of rule exec-state of conjunct
t1 n c `exec s1 of the assumption, and the preconditions E ′, s1.Md, s1.ddc, s1.stc, s1.ddc ⇓ v
and `δ v.)

Lemma 139 (The empty stack is in a singleton equivalence class of strong stack-similarity).

∀stk , c.

nil ≈[c] stk

=⇒
stk = nil

Proof.
By unfolding the assumption using Definition 84, obtain f where the following hold:
f(−1) = −1, and f(0) = length(stk).

But by instantiating the successor-preservation assumption, know that f(0) = 0,
hence length(stk) = 0, thus it must be that stk = nil.

Lemma 140 (Adequacy of strong stack-similarity (syncing border-crossing return to non-c cal-
l-site)).

∀stk1, stk2, c, pcc1, pcc2.

pcc1 * dom(c.Mc) ∧
stk1++[pcc1] ≈[c] stk2++[pcc2]

=⇒
pcc2 * dom(c.Mc)

Proof.

• Suppose the negation were true: pcc2 ⊆ dom(c.Mc).

• Then, by assumption (unfolding Definition 84), we obtain (*):
f where length(stk2) ∈ range(f).

• But we also know by the sentinel-preservation assumption that (**):
f(length(stk1) + 1) = length(stk2) + 1.

• But then using (*) and (**) to instantiate the “ ⇐= ” direction of the successor-preservation
assumption, we know that
f(length(stk1)) = length(stk2).

186

• This last assertion together with the assumption that defines dom(f) gives us pcc1 ⊆ dom(c.Mc).

• This last assertion in turn immediately contradicts our assumption.

Lemma 141 (Weak stack-similarity is preserved by a unilateral silent return).

∀stk1, stk2, c.

stk1 ∼[c] stk2 ∧
top(stk1).pcc * dom(c.Mc)

=⇒
pop(stk1).stk ∼[c] stk2

Proof.
By unfolding Definition 85, we obtain f satisfying:
dom(f) = {i ∈ dom(stk1) | stk1(i).pcc ⊆ dom(c.Mc)}] {−1}

Moreover, we infer from our assumption about top(stk1) that (*):
length(stk1)− 1 /∈ dom(f).

We also know by the spec. of pop that (**):
dom(pop(stk1).stk) = dom(stk1)] {length(stk1)− 1}

By unfolding our goal using Definition 85, it suffices to pick the same f obtained above, if we
prove all the following:

1. Domain of f is exhaustive of c call sites in pop(stk1).stk .

Immediate by assumption after noticing by (**) and (*) that dom(stk1) = dom(pop(stk1).stk).

2. Range of f is exhaustive of c call sites in stk2

Immediate by assumption.

3. f is sentinel-value preserving.

Immediate by assumption.

4. f is strictly monotone.

Immediate by assumption.

5. f is compatible with stack-frame equality.

Immediate by assumption.

6. f is successor-preserving.

Immediate by assumption.

This concludes our proof of Lemma 141.

Lemma 142 (Weak stack-similarity is preserved by a unilateral silent call).

∀stk1, stk2, c, pcc.

stk1 ∼[c] stk2 ∧
pcc * dom(c.Mc)

=⇒
push(stk1, (_, pcc,_,_)) ∼[c] stk2

Proof. Similar to the proof of Lemma 141. We avoid repetition.

187

Lemma 143 (Weakening of strong stack-similarity).

∀stk1, stk2, c.

stk1 ≈[c] stk2

=⇒
stk1 ∼[c] stk2

Proof.
By unfolding the assumption using Definition 84, we obtain f .
Then, by unfolding the goal using Definition 85, we pick:
f ′ := f \ {length(stk1) 7→ length(stk2)}
Thus, it remains to prove all of the following:

1. Domain of f ′ is exhaustive of c call sites in stk1

(dom(f ′) = {i ∈ dom(stk1) | stk1(i).pcc ⊆ dom(c.Mc)}] {−1}).
Immediate by the corresponding assumption about f , and the choice of f ′.

2. Range of f ′ is exhaustive of c call sites in stk2

(range(f ′) = {i ∈ dom(stk2) | stk2(i).pcc ⊆ dom(c.Mc)}] {−1})
Immediate by the corresponding assumption about f , and the choice of f ′.

3. f ′ is sentinel-value preserving
(f ′(−1) = −1).
Immediate by the corresponding assumption about f and the choice of f ′.

4. f ′ is strictly monotone
(∀i, j. i > j =⇒ f ′(i) > f ′(j)).
Pick arbitrary i, j ∈ dom(f ′).
Notice that i, j ∈ dom(f).
Thus, our goal is immediate by the corresponding assumption about f .

5. f ′ is compatible with stack-frame equality
(∀i ∈ dom(f ′) \ {−1, length(stk1)}. f ′(i) = j =⇒ stk1(i) = stk2(j)).
Proof is the same as the previous subgoal.

6. f ′ is successor-preserving
(∀i, j ∈ dom(f ′). j = i+ 1 ⇐⇒ f ′(j) = f ′(i) + 1).
Proof is the same as the previous subgoal.

This concludes the proof of Lemma 143.

Lemma 144 (Strong stack-similarity is preserved by a bilateral call (from same c-call-site)).

∀stk1, stk2, c, pcc.

stk1 ≈[c] stk2 ∧
pcc ⊆ dom(c.Mc)

=⇒
push(stk1, (_, pcc,_,_)) ≈[c] push(stk2, (_, pcc,_,_))

Proof.
By unfolding the assumption using Definition 84, we obtain f .

Then, by unfolding the goal using Definition 84, we pick:
f ′ := f] {length(stk1) + 1 7→ length(stk2) + 1}.

It thus remains to prove all of the following:

188

1. Domain of f ′ is exhaustive of c call sites in push(stk1, (_, pcc,_,_)), and

2. Range of f ′ is exhaustive of c call sites in stk2

Immediate by the corresponding assumptions and by the choice of f ′.

3. f is sentinel-value preserving.

The bottom sentinel value is preserved: f ′(−1) = −1 follows from f(−1) = −1.

The top sentinel value is preserved by choice of f ′.

4. f is strictly monotone.

Pick arbitrary i, j ∈ dom(f ′) where i < j.

Show f ′(i) < f ′(j).

Distinguish three cases:

• Case i, j ∈ dom(f)

Immediate by strict monotonicity of f .

• Case i /∈ dom(f):
Know i = length(stk1) + 1.
Thus, j > length(stk1) + 1.
Thus, this case is impossible by the definition of dom(f ′).

• Case j /∈ dom(f):
Know j = length(stk1) + 1, and
know i ∈ dom(f) (by choice of f ′).
Thus, the goal becomes
f(i) < f ′(length(stk1)) + 1

By choice of f ′, the goal becomes f(i) < length(stk2) + 1

This is immediate by the definition of range(f).

5. f is compatible with stack-frame equality.

Immediate by the choice of f ′, and the corresponding assumption about f .

6. f is successor-preserving.

Pick arbitrary i, j ∈ dom(f) with i = j + 1.

Show f ′(i) = f ′(j) + 1.

Distinguish the following cases:

• Case i, j ∈ dom(f):
Immediate by the corresponding assumption about f .

• Case i /∈ dom(f):
Know i = length(stk1) + 1

Goal becomes length(stk2) = f ′(length(stk1)).
Immediate by the choice of f ′.

• Case j /∈ dom(f):
Know j = length(stk1) + 1.
Thus, i = length(stk1) + 2 which is impossible by the definition of dom(f ′).

This concludes the proof of Lemma 144.

189

Lemma 145 (Strong stack-similarity is weakened by a bilateral return to a non-c-call-site).

∀stk1, stk2, c, pcc1, pcc2.

stk1++[pcc1] ≈[c] stk2++[pcc2] ∧
pcc1 * dom(c.Mc)

=⇒
stk1 ∼[c] stk2

Proof.
Assume the antecedents.
By instantiating Lemma 140 using the assumptions, we know that
pcc2 * dom(c.Mc) (*).
Also, by instantiating Lemma 143 using the assumptions, we know
stk1++[pcc1] ∼[c] stk2++[pcc2] (**).
Thus, by instantiating Lemma 141 using (*) and (**), we know
stk1 ∼[c] stk2++[pcc2] (POPPED-LEFT).
By instantiating symmetry (Claim 33) with (POPPED-LEFT), we thus know
stk2++[pcc2] ∼[c] stk1.
Now again by instantiating Lemma 141, we know
stk2 ∼[c] stk1.
Finally, by instantiating symmetry (Claim 33), we know
stk1 ∼[c] stk2, which is our goal.

Lemma 146 (Strong stack-similarity is preserved by a bilateral return to a c-call-site).

∀stk1, stk2, c, pcc1, pcc2.

stk1++[pcc1] ≈[c] stk2++[pcc2] ∧
pcc1 ⊆ dom(c.Mc)

=⇒
stk1 ≈[c] stk2

Proof.
Assume the antecedents (unfold by Definition 84 to obtain f).
By the assumptions, know that pcc2 ⊆ dom(c.Mc):

• Suppose the negation were true: pcc2 * dom(c.Mc).

• By instantiating symmetry (Lemma 133) using our assumption, then instantiating Lemma 140,
we know pcc1 * dom(c.Mc) which contradicts the case condition.

In particular, by instantiating the definition of dom(f) using the assumption, we know that
f(length(stk1)) = length(stk2) (*)
by instantiating the “ =⇒ ” direction of the successor-preservation assumption (about f) using the
sentinel-value preservation assumption (about f).

For our goal (unfolding Definition 84), we pick
f ′ := f \ {length(stk1) + 1 7→ length(stk2) + 1}.

1. Domain of f ′ is exhaustive of c call sites in stk1.

Follows from the corresponding assumption about f and from the choice of f ′.

The sentinel value follows from pcc1 ⊆ dom(c.Mc).

190

2. Range of f ′ is exhaustive of c call sites in stk2.

Follows from the corresponding assumption about f and from the choice of f ′.

The sentinel value follows from pcc2 ⊆ dom(c.Mc).

3. f ′ is sentinel-value preserving.

Follows from the corresponding assumption about f and from the choice of f ′, .

4. f ′ is strictly monotone:
(∀i, j. i > j =⇒ f ′(i) > f ′(j)).

Notice that f ′ ⊆ f , so for arbitrary i, j ∈ dom(f ′), the consequent holds by instantiating the
strict-monotonicity assumption about f .

5. f ′ is compatible with stack-frame equality.

Pick an arbitrary i where i ∈ dom(f ′) \ {−1, length(stk1)}.
Show that stk1(i) = stk2 (f ′(i)).

This is immediate by instantiating the corresponding assumption (compatibility with stack-
frame equality) for f .

6. f ′ is successor-preserving.

Pick arbitrary i, j ∈ dom(f ′).

Show that j = i+ 1 ⇐⇒ f ′(j) = f ′(i) + 1.

Observe that dom(f ′) ⊆ dom(f).

Thus, the goal is immediate successor preservation about f .

This concludes the proof of Lemma 146.

Lemma 147 (Strengthening of weak stack-similarity by a bilateral call from non-c call-sites).

∀stk1, stk2, c, pcc1, pcc2.

stk1 ∼[c] stk2 ∧
pcc1 * dom(c.Mc) ∧
pcc2 * dom(c.Mc)

=⇒
push(stk1, (_, pcc1,_,_)) ≈[c] push(stk2, (_, pcc2,_,_))

Proof.
By unfolding the assumption using Definition 85, we obtain f .

Then, by unfolding the goal using Definition 84, we pick:
f ′ := f] {length(stk1) + 1 7→ length(stk2) + 1}.

It thus remains to prove all of the following:

1. Domain of f ′ is exhaustive of c call sites in push(stk1, (_, pcc1,_,_)):
(dom(f ′) = {i ∈ dom(push(stk1, (_, pcc1,_,_))) | push(stk1, (_, pcc1,_,_))(i).pcc ⊆ dom(c.Mc)}]
{−1, length(push(stk1, (_, pcc1,_,_)))}).
Immediate by choice of f ′ after noticing the corresponding assumption about f , the assumption
about pcc1, and that length(push(stk1, (_, pcc1,_,_))) = length(stk1) + 1.

191

2. Range of f ′ is exhaustive of c call sites in push(stk2, (_, pcc2,_,_)):
(range(f ′) = {i ∈ dom(push(stk2, (_, pcc2,_,_))) | push(stk2, (_, pcc2,_,_))(i).pcc ⊆ dom(c.Mc)}]
{−1, length(push(stk2, (_, pcc2,_,_)))})
Proof is similar to the previous subgoal.

3. f ′ is sentinel-value preserving:
(f ′(−1) = −1 ∧ f ′(length(stk1) + 1) = length(stk2 + 1)).

Immediate by the choice of f ′ and by the corresponding assumption about f .

4. f ′ is strictly monotone: (∀i, j. i > j =⇒ f ′(i) > f ′(j)).

Pick arbitrary i, j ∈ dom(f ′), and distinguish these cases:

• Case i, j ∈ dom(f):
Here, our goal is immediate by the corresponding assumption about f .

• Case i /∈ dom(f):
Infer i = length(stk1) + 1.
Thus, infer f ′(i) = length(stk2) + 1.
Thus, the goal becomes:
∀j. j < length(stk1) + 1 =⇒ length(stk2) + 1 > f ′(j)

But assuming j < length(stk1) + 1 gives us j ∈ dom(f).
Thus, f ′(j) = f(j).
But then by the assumption about the range of f , we have our goal.

• Case j /∈ dom(f):
Infer j = length(stk1) + 1.
Thus, goal follows vacuously because no index i ∈ dom(push(stk1,_)) satisfies i > length(stk1) + 1.

5. f ′ is compatible with stack-frame equality:
(∀i ∈ dom(f ′) \ {−1, length(stk1) + 1}. f ′(i) = j =⇒
push(stk1, (_, pcc1,_,_))(i) = push(stk2, (_, pcc2,_,_))(j))

Fix i ∈ dom(f ′) \ {−1, length(stk1) + 1}, and distinguish two cases:

• Case i ∈ dom(f):
Know by the assumption about dom(f) from unfolding Definition 85 that i ∈ dom(stk1).
Thus, our goal follows after instantiating the corresponding assumption about f (i.e.,
compatibility of f with stack-frame equality), and substitution using simple facts about
push.

• Case i /∈ dom(f):
By choice of f ′, and the condition on the fixed i, this case is impossible.

6. f ′ is successor-preserving:
(∀i, j ∈ dom(f ′). j = i+ 1 ⇐⇒ f ′(j) = f ′(i) + 1).

Fix arbitrary i, j ∈ dom(f ′), and distinguish the following cases:

• Case i, j ∈ dom(f):
Here, the goal is immediate by the corresponding assumption about f (after noticing the
choice of f ′).

• Case i /∈ dom(f):
Know by the choice of f ′ that i = length(stk1) + 1.

192

– =⇒ :
Here, know j = length(stk1) + 2.
Thus, our goal is immediate by deriving a contradiction to j ∈ dom(f ′).

– ⇐= :
Here, know f ′(j) = f ′(length(stk1) + 1) + 1.
Thus, know f ′(j) = length(stk2) + 2.
This contradicts the subgoal proved earlier about range(f ′).

• Case j /∈ dom(f):
Know by the choice of f ′ that j = length(stk1) + 1.

– =⇒ :
Here, know i = length(stk1).
By the specification of push together with the subgoal proved above about dom(f ′),
derive a contradiction to i ∈ dom(f ′).
Thus, our goal is immediate.

– ⇐= :
Here, know f ′(i) = length(stk2).
By the specification of push together with the subgoal proved above about range(f ′),
derive a contradiction to i ∈ dom(f ′).

This concludes the proof of f ′ being successor-preserving.

This concludes the proof of Lemma 147.

Lemma 148 (A silent action on strongly-similar states satisfies lock-step simulation).

∀c, t1, s1, ς1, t2, s2, ς2, s
′
1, ς
′
1.

c ∈ range(J·K) ∧
t1 n c `exec s1 ∧
t2 n c `exec s2 ∧
s1.pcc ⊆ dom(c.Mc) ∧
s1, ς1 ≈[c] s2, ς2 ∧

s1, ς1
τ−⇀[c] s

′
1, ς
′
1

=⇒
∃s′2, ς ′2.

s2, ς2
τ−⇀[c] s

′
2, ς
′
2 ∧

s′1, ς
′
1 ≈[c] s

′
2, ς
′
2

Proof. We fix arbitrary c, t1, s1, ς1, t2, s2, ς2, s
′
1, ς
′
1, and assume the antecedent:

c ∈ range(J·K) ∧
t1 n c `exec s1 ∧
t2 n c `exec s2 ∧
s1, ς1 ≈[c] s2, ς2 ∧

s1, ς1
τ−⇀[c] s

′
1, ς
′
1

(9)

From conjunct s1, ς1 ≈[c] s2, ς2 of Proposition (9) and by Definition 86, we have (after substituting

193

s1.pcc ⊆ dom(c.Mc) in Definition 82) the following assumptions:

s1.pcc ⊆ dom(c.Mc) ∧
s2.pcc ⊆ dom(c.Mc) ∧⋃
mid∈dom(c.imp)

reachable_addresses({s1.mstc(mid), c.imp(mid).ddc}, s1.Md) = r ∧

⋃
mid∈dom(c.imp)

reachable_addresses({s2.mstc(mid), c.imp(mid).ddc}, s2.Md) = r ∧

s1.ddc = s2.ddc ∧
s1.stc = s2.stc ∧
s1.pcc = s2.pcc ∧
s1.nalloc = s2.nalloc ∧
s1.stk ≈[c] s2.stk ∧
s1.mstc ≈[c] s2.mstc ∧
ς1 = ς2 ∧
s1.Md|r = s2.Md|r

(10)

From s1.pcc ⊆ dom(c.Mc) and s2.pcc ⊆ dom(c.Mc) of Proposition (10), and by substitution in
Proposition (9) after inversion using exec-state and valid-linking, we know:

s1.Mc(s1.pcc) = s2.Mc(s2.pcc) (11)

Our goal ∃s′2, ς ′2. s2, ς2
τ−⇀[c] s

′
2, ς
′
2 ∧ s′1, ς

′
1 ≈[c] s

′
2, ς
′
2 consists by unfolding it using Definition 86 then

Definition 82 of the following subgoals:

∃s′2, ς ′2. s2, ς2
τ−⇀[c] s

′
2, ς
′
2 ∧

s′1.pcc ⊆ dom(c.Mc) ∧
s′2.pcc ⊆ dom(c.Mc) ∧⋃
mid∈dom(c.imp)

reachable_addresses({s′1.mstc(mid), c.imp(mid).ddc}, s′1.Md) = r ∧

⋃
mid∈dom(c.imp)

reachable_addresses({s′2.mstc(mid), c.imp(mid).ddc}, s′2.Md) = r ∧

s′1.ddc = s′2.ddc ∧
s′1.stc = s′2.stc ∧
s′1.pcc = s′2.pcc ∧
s′1.nalloc = s′2.nalloc ∧
s′1.stk ≈[c] s

′
2.stk ∧

s′1.mstc ≈[c] s
′
2.mstc ∧

ς ′1 = ς ′2 ∧
s′1.Md|r = s′2.Md|r

Notice that subgoals
s′1.pcc ⊆ dom(c.Mc) and s′2.pcc ⊆ dom(c.Mc)
follow by Lemma 108 from respectively
the assumption s1, ς1

τ−⇀[c] s
′
1, ς
′
1

194

and the subgoal s2, ς2
τ−⇀[c] s

′
2, ς
′
2.

We prove the remaining subgoals by considering all the possible cases of the rule s1, ς1
τ−⇀[c] s

′
1, ς
′
1 of

Proposition (9):

1. Case assign-silent:

• We obtain the precondition s1.Mc(s1.pcc) = Assign El Er, so by Proposition (11), we have

s2.Mc(s2.pcc) = Assign El Er. So, the only rule possibly-applicable to s2, ς2
λ′−⇀[c] s

′
2, ς
′
2 is

assign-silent. So, if λ′ exists, then λ′ = τ .
• Now, we show that indeed s′2, ς ′2 exist by showing that s2 → s′2 using rule assign.

– By Lemma 138, and given El, s1.Md, s1.ddc, s1.stc, s1.pcc ⇓ c1 (which we do have by
inversion), we have that El, s2.Md, s2.ddc, s2.stc, s2.pcc ⇓ c1. Also by Lemma 138,
and given Er, s1.Md, s1.ddc, s1.stc, s1.pcc ⇓ v1 (which we do have by inversion), we
have that Er, s2.Md, s2.ddc, s2.stc, s2.pcc ⇓ v1.

– The preconditions on s2.pcc and on s2.stc then follow by substitution using respec-
tively conjuncts s1.pcc = s2.pcc and s1.stc = s2.stc of Proposition (10).

– Thus, we can now conclude that s2 → s′2 since all the preconditions of rule assign
hold.

– Thus, by rule assign-silent, we have the first conjunct of our goal: ∃s′2, ς ′2. s2, ς2
τ−⇀[c] s

′
2, ς
′
2.

• We show the remaining subgoals:
– We observe from rule assign that s′2.ddc = s2.ddc, which by Proposition (10) gives
s′2.ddc = s1.ddc, which by rule assign gives us s′2.ddc = s′1.ddc

– A similar argument shows that s′2.stk = s′1.stk , s′2.mstc = s′1.mstc, s′2.stc = s′1.stc, and
s′2.nalloc = s′1.nalloc.

– Using the necessary preconditions s′1.pcc = inc(s1.pcc, 1) and s′2.pcc = inc(s2.pcc, 1)
of rule assign, and by substitution using s1.pcc = s2.pcc of Proposition (10), we get
s′2.pcc = s′1.pcc.

– Moreover, we have by rule assign-silent, that ς ′2 = ς2, which by Proposition (10) gives
us that ς ′2 = ς1, which by rule assign-silent gives us ς ′2 = ς ′1.

– From the above, we have obtained the following conjuncts:
∗ s′1.stk ≈[c] s

′
2.stk ∧ s′1.mstc ≈[c] s

′
2.mstc by reflexivity of both the ≈[c] overloaded

relations after substituting from s′1.stk = s′2.stk , and s′1.mstc = s′2.mstc respec-
tively.

∗ s′1.ddc = s′2.ddc ∧ s′1.stc = s′2.stc ∧ s′1.pcc = s′2.pcc ∧ s′1.nalloc = s′2.nalloc ∧ ς ′1 = ς ′2
which we obtained successively by the arguments detailed above.

– Thus, it remains to show that r′ = ρ[c](s
′
1, ς
′
1) = ρ[c](s

′
2, ς
′
2) and s′1.Md|r′ = s′2.Md|r′ .

– We show that (S1’-PCC-SUBSET-C):
s′1.pcc ⊆ dom(c.Mc)
To prove this, we apply Lemma 108 obtaining subgoals that are provable by the
assumptions.
From (S1’-PCC-SUBSET-C), we obtain by substitution using the previously proven
subgoals:
(S2’-PCC-SUBSET-C):
s′2.pcc ⊆ dom(c.Mc)
Now, by substituting (S1’-PCC-SUBSET-C), and (S2’-PCC-SUBSET-C) in our goal
after unfolding it using Definition 82, our goal becomes:⋃
mid∈dom(c.imp)

reachable_addresses({s′1.mstc(mid), c.imp(mid).ddc}, s′1.Md) =⋃
mid∈dom(c.imp)

reachable_addresses({s′2.mstc(mid), c.imp(mid).ddc}, s′2.Md)

195

By additivity of reachable_addresses (Lemma 18), it suffices to show that:
reachable_addresses(

⋃
mid∈dom(c.imp)

{s′1.mstc(mid), c.imp(mid).ddc}, s′1.Md) =

reachable_addresses(
⋃

mid∈dom(c.imp)

{s′2.mstc(mid), c.imp(mid).ddc}, s′2.Md)

By conjunct s′1.mstc ≈[c] s
′
2.mstc that we already proved above, it suffices to show

that:
reachable_addresses(

⋃
mid∈dom(c.imp)

{s′1.mstc(mid), c.imp(mid).ddc}, s′1.Md) =

reachable_addresses(
⋃

mid∈dom(c.imp)

{s′1.mstc(mid), c.imp(mid).ddc}, s′2.Md).

– So, we would like to use Lemma 29 about preservation of reachability equivalence with
the instantiation C :=

⋃
mid∈dom(c.imp)

{s′1.mstc(mid), c.imp(mid).ddc}, but we have first

to satisfy the premise: C, s1.Md � v ∨ v /∈ {δ} × Z× Z× Z.
We know {s′1.stc, s′1.ddc}, s1.Md � v ∨ v /∈ {δ} × Z× Z× Z.
The latter follows immediately by Lemma 25 about completeness of reachable_addresses,
and by simplifying Definition 23 of {s′1.stc, s′1.ddc}, s1.Md � v.
(Note that the premises of Lemma 25 are satisfied by conjunct t1 n c `exec s1 of
Proposition (9).)
By Lemma 27,
we thus have the premise C, s1.Md � v ∨ v /∈ {δ} × Z× Z× Z for Lemma 29.

– So, now we can use Lemma 29 which gives us (**):
reachable_addresses(

⋃
mid∈dom(c.imp)

{s′1.mstc(mid), c.imp(mid).ddc}, s′1.Md) =

reachable_addresses(
⋃

mid∈dom(c.imp)

{s′1.mstc(mid), c.imp(mid).ddc}, s′2.Md).

This was sufficient for proving the subgoal r′ = ρ[c](s
′
1, ς
′
1) = ρ[c](s

′
2, ς
′
2).

– Now, it remains to show the subgoal s′1.Md|r′ = s′2.Md|r′ .
– By the precondition `δ c1, we can apply Lemma 25 to conclude that c1.s+ c1.off ∈ r.

Thus, by Definition 23, we have the premises for Lemma 38.
By Lemma 38, in order to show that s′1.Md|r′ = s′2.Md|r′ , it suffices to show that
s′1.Md|r = s′2.Md|r.
We show that ∀a ∈ r s′1.Md(a) = s′2.Md(a) by distinguishing two cases:
∗ Case a = c1.s+ c1.off :

Here, address a is the one assigned in both reduction rules (s1 → s′1 and s2 → s′2).
So, the preconditions s′1.Md = s1.Md[c1 7→ v1] and s′2.Md = s2.Md[c1 7→ v1] clearly
show our goal in this case because they update this address with the same value
v1.
∗ Case a 6= c1.s+ c1.off :

In this case, similarly to above, we obtain the preconditions s′1.Md = s1.Md[c1 7→ v1]
and s′2.Md = s2.Md[c1 7→ v1] which show that in this case, the memories s′1.Md

and s′2.Md at address a are not updated.
So, our goal follows from the assumption s1.Md|r = s2.Md|r of Proposition (10).

This concludes case assign-silent. Cases alloc-silent and jump-silent are not surprisingly dif-
ferent; a so-far-convinced reader may well skip them.

2. Case alloc-silent:

• We obtain the precondition s1.Mc(s1.pcc) = Alloc El Esize , so by Proposition (11), we

have s2.Mc(s2.pcc) = Alloc El Esize . So, the only rule possibly-applicable to s2, ς2
λ′−⇀[c] s

′
2, ς
′
2

is alloc-silent. So, if λ′ exists, then λ′ = τ .

196

• Now, it remains to show that it is indeed applicable (i.e., ∃s′2, ς ′2. s2, ς2
λ−⇀[c] s

′
2, ς
′
2)

and that s′1, ς ′1 ≈[c] s
′
2, ς
′
2.

• We show that s2 → s′2 for some s′2, and in particular that rule allocate is applicable.
• By Lemma 138, and given El, s1.Md, s1.ddc, s1.stc, s1.pcc ⇓ c1 (which we do have by in-

version), we have that El, s2.Md, s2.ddc, s2.stc, s2.pcc ⇓ c1. Also by Lemma 138, and
given Esize , s1.Md, s1.ddc, s1.stc, s1.pcc ⇓ v1 (which we do have by inversion), we have
that Esize , s2.Md, s2.ddc, s2.stc, s2.pcc ⇓ v1.

• The preconditions on s2.pcc and on s2.nalloc then follow by substitution using respectively
conjuncts s1.pcc = s2.pcc and s1.nalloc = s2.nalloc of Proposition (10).

• Thus, we can now conclude that s2 → s′2 since all the preconditions of rule allocate hold.
• Moreover, by the precondition `δ c1, we can apply Lemma 25 to conclude that c1.s+ c1.off ∈ r.
• We observe from rule allocate that s′2.ddc = s2.ddc, which by Proposition (10) gives
s′2.ddc = s1.ddc, which by rule allocate gives us s′2.ddc = s′1.ddc

• A similar argument shows that s′2.stk = s′1.stk , s′2.mstc = s′1.mstc (thus, implying the
desired stack and stack-capability-map similarities (definitions 83 and 84) respectively),
and s′2.stc = s′1.stc.

• Using the necessary preconditions s′1.pcc = inc(s1.pcc, 1) and s′2.pcc = inc(s2.pcc, 1) of
rule allocate, and by substitution using s1.pcc = s2.pcc of Proposition (10), we get s′2.pcc = s′1.pcc.

• Also, we have that s′2.nalloc = s′1.nalloc by substituting conjunct s1.nalloc = s2.nalloc of
Proposition (10) in the preconditions s′2.nalloc = s2.nalloc− v1 and s′1.nalloc = s1.nalloc− v1,
where the same v1 appears in both expressions due to the equal-evaluation that is shown
above of the expression Esize .

• Moreover, we have by rule alloc-silent, that ς ′2 = ς2, which by Proposition (10) gives us
that ς ′2 = ς1, which by rule alloc-silent gives us ς ′2 = ς ′1.

• Next, we show that r′ = ρ[c](s
′
1, ς
′
1) = ρ[c](s

′
2, ς
′
2) by the same argument as in case assign.

We avoid repetition.
• Now, it remains to show that s′1.Md|r′ = s′2.Md|r′ .
• By Lemma 40, it suffices to show that s′1.Md|r = s′2.Md|r.

We show that ∀a ∈ r s′1.Md(a) = s′2.Md(a) by distinguishing three cases that are ex-
haustive (we do not prove that they are mutually exclusive because that is not needed,
although we believe them to be mutually exclusive):

– Case a = c1.s+ c1.off :
Here, address a is updated in both reduction rules (s1 → s′1 and s2 → s′2). So, the
preconditions s′1.Md(c1) = (δ, s1.nalloc− v1, s1.nalloc, 0) and
s′2.Md(c1) = (δ, s2.nalloc− v1, s2.nalloc, 0) show our goal in this case because by sub-
stitution using conjunct s1.nalloc = s2.nalloc of Proposition (10), they update address
a with the same value.

– Case a ∈ [s2.nalloc− v1, s2.nalloc):
Here, similarly to the previous case, address a is one that is assigned in both reduction
rules (s1 → s′1 and s2 → s′2 because s2.nalloc = s1.nalloc by Proposition (10)). So, the
updated value 0 of both s′1.Md(a) and s′2.Md(a) is the same, so we have our goal.

– Case a 6= c1.s+ c1.off ∧ a /∈ [s2.nalloc− v1, s2.nalloc):
In this case, similarly to above, we obtain the preconditions s′1.Md = s1.Md[c1 7→ v1]
and s′2.Md = s2.Md[c1 7→ v1] which show that in this case, the memories s′1.Md and
s′2.Md at address a are not updated.
So, our goal follows from the assumption s1.Md|r = s2.Md|r of Proposition (10).

This concludes case alloc-silent.

197

3. Case jump-silent:

• We obtain the precondition s1.Mc(s1.pcc) = JumpIfZero Econd Ecap , so by Proposition (11),
we have s2.Mc(s2.pcc) = JumpIfZero Econd Ecap . So, the only rule possibly-applicable to

s2, ς2
λ′−⇀[c] s

′
2, ς
′
2 is jump-silent. So, if λ′ exists, then λ′ = λ = τ .

• Now, it remains to show that it is indeed applicable (i.e., ∃s′2, ς ′2. s2, ς2
λ−⇀[c] s

′
2, ς
′
2)

and that s′1, ς ′1 ≈[c] s
′
2, ς
′
2.

• We show that s2 → s′2 for some s′2, and in particular that either rule jump1 or jump0 is
applicable.

• For that, we distinguish the two possible cases for s1 → s′1:

– Case jump1:
∗ By Lemma 138, and given Econd , s1.Md, s1.ddc, s1.stc, s1.pcc ⇓ v1 (which we do

have by inversion), we have that Econd , s2.Md, s2.ddc, s2.stc, s2.pcc ⇓ v1.
∗ The precondition on s2.pcc then follows by substitution using conjunct s1.pcc = s2.pcc

of Proposition (10) and the precondition on v1 still holds as well because Econd

evaluates to the same v1 as in rule s1 → s′1 as shown above.
∗ Thus, we can now conclude that s2 → s′2 since all the preconditions of rule jump1

hold.
∗ The similarities s′1.stk ≈[c] s

′
2.stk ∧ s′1.mstc ≈[c] s

′
2.mstc hold by substitution us-

ing the corresponding equalities in Proposition (10).
∗ Also, we have that all the required equalities (namely, ς ′1 = ς ′2, s′1.Md|r′ = s′2.Md|r′ ,

and s′1.ddc = s′2.ddc) follow from the corresponding ones in Proposition (10) by
noticing that s′2.Md = s2.Md and s1.Md = s′1.Md and similarly for ς ′2, s′2.ddc,
s′2.stc, and s′2.nalloc.

∗ So all conjuncts of our goal are proved.
– Case jump0:

This case is exactly the same as jump1, except that s2 → s′2 holds by rule jump0.

This concludes case jump-silent.

4. Case cinvoke-silent-compiled:

• We obtain the precondition s1.Mc(s1.pcc) = Cinvoke mid fid e, so by Proposition (11),
we have s2.Mc(s2.pcc) = Cinvoke mid fid e.
Also, by s1.pcc = s2.pcc of Proposition (10), we know that the precondition s2.pcc ∈ dom(c.Mc)
holds.
Thus, this, together with the precondition mid ∈ dom(c.imp) give us that the only rule

possibly-applicable to s2, ς2
λ′−⇀[c] s

′
2, ς
′
2 is cinvoke-silent-compiled. So, if λ′ exists, then

λ′ = λ = τ .

• Now, it remains to show that it is indeed applicable (i.e., ∃s′2, ς ′2. s2, ς2
λ−⇀[c] s

′
2, ς
′
2)

and that s′1, ς ′1 ≈[c] s
′
2, ς
′
2.

• We show that s2 → s′2 for some s′2, and in particular that rule cinvoke is applicable.

• We obtain the preconditions s1.φ(mid ,fid) = (nArgs,nLocal), and (c, d, offs) = s1.imp(mid).
So, by Lemma 2, and by our earlier statement s2.Mc(s2.pcc) = Cinvoke mid fid e, we
notice that we have s2.φ(mid ,fid) = (nArgs,nLocal), and (c, d, offs) = s2.imp(mid).
This gives us the equalities s′1.ddc = s′2.ddc and s′1.stc = s′2.stc, and s′1.pcc = s′2.pcc of our
goal.

198

• We also conclude that expression evaluation of the arguments in state s2 gives the same
values as evaluation in state s1.
I.e., given e(i), s1.Md, s1.ddc, s1.stc, s1.pcc ⇓ v(i)∀i ∈ [0,nArgs) (which we get by invert-
ing s1 �≈ s′1 using cinvoke-aux), we have by Lemma 138 that
e(i), s2.Md, s2.ddc, s2.stc, s2.pcc ⇓ v(i)∀i ∈ [0,nArgs).
This, consequently, gives us that s′2.Md|r = s′1.Md|r by case distinction on the updated
vs. non-updated locations and substitution in both cases.
Similarly to case assign-silent, this suffices to prove subgoal s′2.Md|r′ = s′1.Md|r′ .

• We obtain subgoal s′1.mstc ≈[c] s
′
2.mstc by Lemma 134.

• We would like to prove s′1.stk ≈[c] s
′
2.stk .

This is immediate by Lemma 144

• The equalities s′1.nalloc = s′2.nalloc and ς ′1 = ς ′2 follow immediately by substitution and
the equalities of Proposition (10).

• All subgoals are proved.

5. Case cinvoke-silent-context:

We obtain the precondition s1.pcc * dom(c.Mc), which immediately contradicts conjunct
s1.pcc ⊆ dom(c.Mc) of Proposition (9).

So, any goal is provable.

6. Case creturn-silent-compiled:

• We obtain the precondition s1.Mc(s1.pcc) = Creturn, so by Proposition (11), we have
s2.Mc(s2.pcc) = Creturn.
Also, by s1.pcc = s2.pcc of Proposition (10), we know that the precondition s2.pcc ∈ dom(c.Mc)
holds.
Now, we have the precondition s′1.pcc ∈ dom(c.Mc), and we argue that s′2.pcc ∈ dom(c.Mc)
holds. But first, we show s′2 exists.
In particular, we argue that s2 → s′2 using rule creturn.

• For that, we need to ensure that the precondition
s′2.stk , (s′2.ddc, s′2.pcc,_,_) = pop(s2.stk) holds, i.e., we need to show that the computa-
tion pop(s2.stk) is not stuck.

• We know by s1 → s′1 that s1.stk 6= nil.

• For showing non-stuckness of pop(s2.stk), we use conjunct s1.stk ≈[c] s2.stk of Proposi-
tion (10), where by unfolding Definition 84, we have by s′1.pcc ∈ dom(c.Mc) that
top(s1.stk) = top(s2.stk) = (s′1.ddc, s′1.pcc,_,_).

• The above suffices to prove that s2 → s′2 using rule creturn, and that s′2.ddc = s′1.ddc,
s′2.stc = s′1.stc, and s′2.pcc = s′1.pcc.

• It is also immediate by substitution and transitivity of equality that s′2.nalloc = s′1.nalloc

• Thus, this, together with the precondition s′1.pcc ∈ dom(c.Mc) give us that s′2.pcc ∈ dom(c.Mc).

• So, the only rule possibly-applicable to s2, ς2
λ′−⇀[c] s

′
2, ς
′
2 is creturn-silent-compiled. So

λ′ = λ = τ .

• And thus, we have ς ′2 = ς ′1.

• Thus, it remains to show that s′1.stk ≈[c] s
′
2.stk , s′1.mstc ≈[c] s

′
2.mstc, and s′1.Md|r′ = s′2.Md|r′ .

• The former follows by obtaining from s1.stk ≈[c] s2.stk the isomorphism f by unfolding
Definition 84.
This is immediate by instantiating Lemma 146.

199

• For s′1.mstc ≈[c] s
′
2.mstc we notice that the definition of off ′ = off − nArgs − nLocal is

the same in both s1 → s′1 and s2 → s′2 (by in-turn the similarity of the definitions of off ,
nArgs and nLocal).
And thus, by Lemma 134, we have that s′1.mstc ≈[c] s

′
2.mstc.

• Conjunct s′1.Md|r = s′2.Md|r follows immediately by s1.Md|r = s2.Md|r of Proposition (10)
and substitution.
Also, notice that r = r′. Thus, subgoal s′2.Md|r′ = s′1.Md|r′ follows by substitution.

• This concludes our case.

7. Case creturn-silent-context:

We obtain the precondition s1.pcc * dom(c.Mc), which immediately contradicts conjunct
s1.pcc ⊆ dom(c.Mc) of Proposition (9).

So, any goal is provable.

This concludes all cases for s1, ς1
τ−⇀[c] s

′
1, ς
′
1, which concludes the proof of Lemma 148.

Corollary 11 (Star silent actions on strongly-similar states satisfy simulation).

∀c, t1, s1, ς1, t2, s2, ς2, s
′
1, ς
′
1.

c ∈ range(J·K) ∧
t1 n c `exec s1 ∧
t2 n c `exec s2 ∧
s1, ς1 ≈[c] s2, ς2 ∧

s1, ς1
τ∗−⇀
∗

[c] s
′
1, ς
′
1

=⇒
∃s′2, ς ′2.

s2, ς2
τ∗−⇀
∗

[c] s
′
2, ς
′
2 ∧

s′1, ς
′
1 ≈[c] s

′
2, ς
′
2

Proof. Follows from Lemma 148 and claim 14 and Corollary 2.

Lemma 149 (Strong state-similarity determines non-silent output actions and is weakened by
them).

∀c, t1, s1, ς, t2, s2, ς, s
′
1, ς
′.

t1 n c `silent s1, ς, c, r1,na,Md ∧
t2 n c `silent s2, ς, c, r2,na,Md ∧
s1, ς ≈[c] s2, ς ∧

s1, ς
λ−⇀[c] s

′
1, ς
′ ∧

λ ∈
•
!

=⇒
∃s′2.

s2, ς
λ−⇀[c] s

′
2, ς
′ ∧

s′1, ς
′ ∼[c] s

′
2, ς
′

200

Proof. We fix arbitrary c, t1, s1, ς, t2, s2, s
′
1, ς
′, and assume the antecedent:

t1 n c `exec s1 ∧ t2 n c `exec s2

∧ s1.pcc ∈ dom(c.Mc)

∧ s1, ς ≈[c] s2, ς ∧ s1, ς
λ−⇀[c] s

′
1, ς
′ ∧ λ ∈

•
!

(12)

From conjunct s1, ς ≈[c] s2, ς of Proposition (12) and by Definition 86, we have (after substituting
s1.pcc ∈ dom(c.Mc) of Proposition (12) in Definition 82):

r =
⋃

mid∈dom(c.imp)

reachable_addresses({s1.mstc(mid), c.imp(mid).ddc}, s1.Md)

∧ s1.stk ≈[c] s2.stk ∧ s1.mstc ≈[c] s2.mstc

∧ s1.stc = s2.stc ∧ s1.pcc = s2.pcc ∧ s1.nalloc = s2.nalloc

∧ s1.imp = s2.imp ∧ s1.φ = s2.φ

∧ s1.ddc = s2.ddc ∧ s1.Md|r = s2.Md|r
∧ dom(s1.Md) = dom(s2.Md)

(13)

By substituting s1.pcc = s2.pcc of Proposition (13) in conjunct s1.pcc ∈ dom(c.Mc) of Proposi-
tion (12), we get:

s2.pcc ∈ dom(c.Mc) (14)

But from conjuncts t1 n c `exec s1 ∧ t2 n c `exec s2 of Proposition (12), we know by rules valid-
linking and exec-state (after inversion using Silent-state invariant) that:

s1.Mc = t1.Mc] c.Mc (15)

and

s2.Mc = t2.Mc] c.Mc (16)

respectively.
So, we obtain that s1.Mc(s1.pcc) = c.Mc(s1.pcc) by Propositions (12) and (15);
thus c.Mc(s1.pcc) = c.Mc(s2.pcc) by s1.pcc = s2.pcc of Proposition (13);
thus c.Mc(s2.pcc) = s2.Mc(s2.pcc) by Propositions (14) and (16);
thus by transitivity, we obtain:

s1.Mc(s1.pcc) = s2.Mc(s2.pcc) (17)

We then show our goal ∃s′2. s2, ς
λ−⇀[c] s

′
2, ς
′ ∧ s′1, ς

′ ∼[c] s
′
2, ς
′. The second conjunct unfolds by

Definition 86 into:

r′ = ρ[c](s
′
1, ς
′) = ρ[c](s

′
2, ς
′) ∧ s′1.stk ≈[c] s

′
2.stk ∧ s′1.mstc ≈[c] s

′
2.mstc

∧ s′1.imp = s′2.imp ∧ s′1.φ = s′2.φ ∧ s′1.Md|r′ = s′2.Md|r′

The proof is by considering all the possible cases of the rule s1, ς1
λ−⇀[c] s

′
1, ς
′
1 subject to λ ∈

•
!:

1. Case cinvoke-compiled-to-context:

• In this case, we obtain the precondition s1.Mc(s1.pcc) = Cinvoke mid fid e from which
by Proposition (17), we know s2.Mc(s2.pcc) = Cinvoke mid fid e.
• We also obtain the precondition s1 �≈ s′1, and we would like to conclude s2 �≈ s′2. So

by rule cinvoke-aux, we want to show that all the preconditions on s2 that are necessary
for s2 �≈ s′2 are satisfied.

201

• In particular, we have to verify that (mid ,fid) ∈ dom(s2.φ), but this follows immediately
from (mid ,fid) ∈ dom(s1.φ) by conjunct s1.φ = s2.φ of Proposition (13).

• We also have to verify that mid ∈ dom(s2.imp), but this follows immediately from
mid ∈ dom(s1.imp) by conjunct s1.imp = s2.imp of Proposition (13).

• We also have to verify that mid ∈ dom(s2.mstc), but this follows immediately by in-
verting conjunct _ `exec s2 of Proposition (12) using rule exec-state and by knowing
mid ∈ dom(s2.imp) (the latter we just obtained).

• Finally, in order to show s2 �≈ s′2, we need to verify that
∀i ∈ [0,nArgs). e(i), s2.Md, s2.ddc, s2.stc, s2.pcc ⇓ vi. This follows by Lemma 138, since
we already know that:
∀i ∈ [0,nArgs). e(i), s1.Md, s1.ddc, s1.stc, s1.pcc ⇓ vi.
• Having satisfied all the possibly-unsatisfiable preconditions of cinvoke-aux, we know
∃s′2. s2 �≈ s′2.
• Conjuncts s′1.imp = s′2.imp and s′1.φ = s′2.φ of our goal follow by Lemma 2 and by sub-

stitution using the corresponding conjuncts of Proposition (13).

• Conjunct s′1.mstc ≈[c] s
′
2.mstc follows immediately from s1.mstc ≈[c] s2.mstc by the pre-

condition mid /∈ dom(c.imp).

• Conjunct s′1.stk ≈[c] s
′
2.stk follows by instantiating Lemma 144 then Lemma 143.

• For proving conjunct ς ′1 = ς ′2 of our goal, we have the following obligation:
reachable_addresses_closure(ς1 ∪ r1, s

′
1.Md) =

reachable_addresses_closure(ς2 ∪ r2, s
′
2.Md)

where:
r1 = reachable_addresses({v(i) | i ∈ [0,nArgs) ∧ v(i) = (δ,_,_,_)}, s′1.Md), and
r2 = reachable_addresses({v(i) | i ∈ [0,nArgs) ∧ v(i) = (δ,_,_,_)}, s′2.Md).
(By Lemma 138, we were able to use the same values v for both s1 → s′1 and s2 → s′2.)

– By conjunct ς1 = ς2 of Proposition (13), our subgoal becomes:
reachable_addresses_closure(ς1 ∪ r1, s

′
1.Md) =

reachable_addresses_closure(ς1 ∪ r2, s
′
2.Md)

– Now, we argue that r1 = r2.
We first notice that by Lemma 25, we have that:
∀i ∈ [0,nArgs). v(i) = (δ, σ, e,_) =⇒ [σ, e) ⊆ reachable_addresses({s1.stc, s1.ddc}, s1.Md).
By rule cinvoke-aux, we would like to show that
reachable_addresses({v(i) | i ∈ [0,nArgs) ∧ v(i) = (δ,_,_,_)},
s1.Md[off 1 + i 7→ vi ∀i ∈ [0,nArgs)][off 1 + nArgs + i 7→ 0 ∀i ∈ [0,nLocal)]) =
reachable_addresses({v(i) | i ∈ [0,nArgs) ∧ v(i) = (δ,_,_,_)},
s2.Md[off 2 + i 7→ vi ∀i ∈ [0,nArgs)][off 2 + nArgs + i 7→ 0 ∀i ∈ [0,nLocal)]).
(Sketch) By relying on inverting our assumptions (twice) using rule Silent-state invari-
ant, we should obtain facts that enable us to simply apply Lemma 21 nArgs + nLocal -
many times to each side of the goal, then we obtain the equivalent goal:
reachable_addresses({v(i) | i ∈ [0,nArgs) ∧ v(i) = (δ,_,_,_)}, s1.Md) =
reachable_addresses({v(i) | i ∈ [0,nArgs) ∧ v(i) = (δ,_,_,_)}, s2.Md).
(Sketch) By completeness of reachable addresses (Lemma 25), and again by invariance
to unreachable memory (Lemma 21), we can satisfy this goal from s1.Md|r = s2.Md|r
of Proposition (13).

– Moreover, observe that ς ∪ r1 ⊆ r, and hence the same for ς ∪ r2.
Thus, our subgoal above follows by instantiating Lemma 29 using Proposition (13).

• For proving conjunct ρ[c](s
′
1, ς
′) = ρ[c](s

′
2, ς
′) of our goal, we conclude from rule valid-

linking that s′1.pcc /∈ dom(c.Mc) and s′2.pcc /∈ dom(c.Mc).

202

• This gives us by Definition 82 the following obligation:
(

⋃
mid∈dom(c.imp)

reachable_addresses({s′1.mstc(mid), c.imp(mid).ddc}, s′1.Md)) \ ς ′ =

(
⋃

mid∈dom(c.imp)

reachable_addresses({s′2.mstc(mid), c.imp(mid).ddc}, s′2.Md)) \ ς ′.

– By conjunct s′1.mstc ≈[c] s
′
2.mstc of our goal that we already obtained above, and

by noticing the condition mid ∈ dom(c.imp) on the expressions s′1.mstc(mid) and
s′2.mstc(mid), our subgoal is equivalent to:
(

⋃
mid∈dom(c.imp)

reachable_addresses({s′1.mstc(mid), c.imp(mid).ddc}, s′1.Md)) \ ς ′ =

(
⋃

mid∈dom(c.imp)

reachable_addresses({s′1.mstc(mid), c.imp(mid).ddc}, s′2.Md)) \ ς ′.

(Sketch) This should follow by easy substitutions after relying on the assumptions
we get by inverting (twice) the antecedents using rule Silent-state invariant.

2. Case creturn-to-context: (Sketch) Similar to the previous case; except the subgoal about
stack similarity relies on instantiating Lemma 145.

Lemma 150 (Option simulation: preservation of stack similarity by a silent action).

∀c, t1, s1, ς1, t2, s2, ς2, s
′
1, ς
′
1.

t1 n c `exec s1 ∧
t2 n c `exec s2 ∧
s1.pcc ∩ dom(c.Mc) = ∅ ∧
s1.stk ∼[c] s2.stk ∧

s1, ς1
τ−⇀
∗
[c] s

′
1, ς
′
1

=⇒
s′1.stk ∼[c] s2.stk

Proof.
We assume the antecedents.

By unfolding the assumptions using Definition 85, we obtain f with:

We prove our goal by induction:

• Case trace-closure-refl:

Here, the goal is immediate by assumption.

• Case trace-closure-trans:

Here, we know:

(S1-STAR-STEPS-S1”):
s1, ς1

τ−⇀
∗
[c] s

′′
1 , ς
′′
1

(S1”-STEPS-S1’):
s′′1 , ς

′′
1

τ−⇀[c] s
′
1, ς
′
1

And by the induction hypothesis, we know:

(S1”-STK-SIM-S2-STK):
s′′1 .stk ≈[c] s2.stk ,

203

By instantiation of Corollary 7 (twice), we know:
s′′1 .pcc ∩ dom(c.Mc) = ∅
and

s′1.pcc ∩ dom(c.Mc) = ∅
To prove our goal, we distinguish the following cases of (S1”-STEPS-S1’):

– Case assign-silent,
– Case alloc-silent, and
– Case jump-silent:

In these cases, picking the obtained f suffices to prove our goal, and the frame relatedness
condition holds by assumption after substitution using s′1.stk = s′′1 .stk .

– Case cinvoke-silent-context:
Here, again we pick f ′ := f .
We have s′1.stk = s′′1 .stk++[frame] where frame.pcc * dom(c.Mc).
Thus, we obtain by the required condition on dom(f ′) from Definition 85 the subgoal:
length(s′1.stk)− 1 /∈ dom(f ′)

That is immediate by the choice that f ′ = f (unfolding Definition 85).
The remaining conditions about f ′ from Definition 85 are also immediate by the choice
that f ′ = f .

– Case creturn-silent-context:
Here, again we pick f ′ := f .
The subgoals from Definition 85 about dom(f ′) and range(f ′) are immediate by noticing
that:
s′′1 .stk = s′1.stk++[frame] where frame.pcc * dom(c.Mc).
The remaining conditions about f ′ from Definition 85 are immediate by the choice that
f ′ = f .

The remaining cases are impossible.

This concludes the proof of Lemma 150.

Lemma 151 (Option simulation: preservation of mstc similarity by a silent action).

∀c, t1, s1, ς1, t2, s2, ς2, s
′
1, ς
′
1.

t1 n c `exec s1 ∧
t2 n c `exec s2 ∧
s1.pcc ∩ dom(c.Mc) = ∅ ∧
s1.mstc ≈[c] s2.mstc ∧

s1, ς1
τ−⇀
∗
[c] s

′
1, ς
′
1

=⇒
s′1.mstc ≈[c] s2.mstc

Proof.
We assume the antecedents.

By unfolding the assumptions using Definition 83, we obtain:
∀mid . mid ∈ dom(c.imp) =⇒ s1.mstc(mid) = s2.mstc(mid)

We prove our goal by induction:

204

• Case trace-closure-refl:

Here, the goal is immediate by assumption.

• Case trace-closure-trans:

Here, we know:

(S1-STAR-STEPS-S1”):
s1, ς1

τ−⇀
∗
[c] s

′′
1 , ς
′′
1

(S1”-STEPS-S1’):
s′′1 , ς

′′
1

τ−⇀[c] s
′
1, ς
′
1

And by the induction hypothesis, we know:

(S1”-MSTC-SIM-S2-STK):
s′′1 .mstc ≈[c] s2.mstc,

By instantiation of Corollary 7 (twice), we know:
s′′1 .pcc ∩ dom(c.Mc) = ∅
and

s′1.pcc ∩ dom(c.Mc) = ∅
To prove our goal (∀mid . mid ∈ dom(c.imp) =⇒ s′1.mstc(mid) = s2.mstc(mid)), we distin-
guish the following cases of (S1”-STEPS-S1’):

– Case assign-silent,

– Case alloc-silent, and

– Case jump-silent:
Here, our goal is immediate from the assumption after substitution using s′1.mstc = s′′1 .mstc.

– Case cinvoke-silent-context:
Here, by the preconditions and by inversion using cinvoke and cinvoke-aux we have:
s′1.mstc = s′′1 .mstc[mid 7→ _]

where
mid /∈ dom(c.imp)

Thus, our goal follows from (S1”-MSTC-SIM-S2-STK).

– Case creturn-silent-context:
Here, by the preconditions and by inversion using creturn, we have:
s′1.mstc = s′′1 .mstc[modID 7→ _]

where
modID = top(s′′1 .stk).mid

It suffices for our goal to show:
modID /∈ dom(c.imp)

By rule exec-state, it suffices to show the following two subgoals:

∗ t1 n c `exec s
′′
1

Here, apply Corollary 2 obtaining the following subgoals:
· t1 n c `exec s1

Immediate by assumption.
· s1 →∗ s′′1
Here, apply Claim 15 obtaining a subgoal that is immediate by (S1-STAR-
STEPS-S1”).

205

∗ s′′1 .pcc ∩ dom(c.Mc) = ∅
This follows from the obtained preconditions of rule creturn-silent-context and by
inversion of the previous subgoal using exec-state.

The remaining cases are impossible.

This concludes the proof of Lemma 151.

Lemma 152 (Option simulation: preservation of weak similarity by a silent action).

∀c, t1, s1, ς1, t2, s2, ς2, s
′
1, ς
′
1,Mborder , naborder , rt1 , rt2 .

s1.pcc ∩ dom(c.Mc) = ∅ ∧
t1 n c `silent s1, ς1,_, rt1 , naborder ,Mborder ∧
t2 n c `silent s2, ς2,_, rt2 , naborder ,Mborder ∧
s1, ς1 ∼[c],dom(Mborder) s2, ς2 ∧

s1, ς1
τ−⇀
∗
[c] s

′
1, ς
′
1

=⇒
s′1, ς

′
1 ∼[c],dom(Mborder) s2, ς2

Proof.
We assume the antecedents.

By instantiating Lemma 157, we additionally obtain:
t1 n c `silent s

′
1, ς
′
1,_, rt1 , naborder ,Mborder

By unfolding the assumptions using Definition 86, and by inversion using rule Silent-state invariant,
we obtain:

EXEC-1
t1 n c `exec s1

EXEC-2
t2 n c `exec s2

TAU-STEPS-1
s1, ς1

τ−⇀
∗
[c] s

′
1, ς
′
1

PCC-1-NOT-C
s1.pcc ∩ dom(c.Mc) = ∅

PCC-2-NOT-C
s2.pcc ∩ dom(c.Mc) = ∅

STK-SIM
s1.stk ∼[c] s2.stk

MSTC-SIM
s1.mstc ≈[c] s2.mstc

VARSIGMA-EQ
ς1 = ς2

PRIVATE-MEM-EQ
s1.Md|dom(Mborder) = s2.Md|dom(Mborder)

206

PRIVATE-MEM-S1-IS-MBORDER
s1.Md|dom(Mborder) =Mborder

PRIVATE-MEM-S1’-IS-MBORDER
s′1.Md|dom(Mborder) =Mborder

Our goal is s′1, ς ′1 ∼[c],dom(Mborder) s2, ς2.
By unfolding it using Definition 86, we obtain the following subgoals:

• s′1.pcc ∩ dom(c.Mc) = ∅
Follows by instantiating Corollary 7 using assumptions (EXEC-1) and (TAU-STEPS-1)
then substitution using assumption (PCC-1-NOT-C).

• s′1.stk ∼[c] s2.stk

Follows by applying Lemma 150 obtaining subgoals that are immediate by assumptions (EXEC-
1), (EXEC-2), (EXEC-2), (STK-SIM), and (PCC-1-NOT-C).

• s′1.mstc ≈[c] s2.mstc

Follows by applying Lemma 151 obtaining subgoals that are immediate by assumptions (EXEC-
1), (EXEC-2), (EXEC-2), (STK-SIM), and (PCC-1-NOT-C).

• ς ′1 = ς2

Follows by instantiating Claim 17 using assumption (TAU-STEPS-1) then substitution using
assumption (VARSIGMA-EQ).

• s′1.Md|dom(Mborder) = s2.Md|dom(Mborder)

Immediate by substitution using assumptions (PRIVATE-MEM-S1-IS-MBORDER) then
(PRIVATE-MEM-S1’-IS-MBORDER) in assumption (PRIVATE-MEM-EQ).

This concludes the proof of Lemma 152.

Lemma 153 (Matching input actions retrieve back strong state-similarity).

∀c, t1, s1, ς, t2, s2, s
′
1, ς
′, s′2,Mborder , naborder , rt1 , rt2 .

s1.pcc ∩ dom(c.Mc) = ∅ ∧
t1 n c `silent s1, ς,_, rt1 , naborder ,Mborder ∧
t2 n c `silent s2, ς,_, rt2 , naborder ,Mborder ∧
s1, ς ∼[c],dom(Mborder) s2, ς ∧

s1, ς
λ−⇀[c] s

′
1, ς
′ ∧

s2, ς
λ−⇀[c] s

′
2, ς
′ ∧

λ ∈
•
?

=⇒
s′1, ς

′ ≈[c] s
′
2, ς
′

Proof.
(Sketch)
After unfolding using Definition 86 and inversion using rule Silent-state invariant,
we proceed by case distinction on the step s1, ς1

λ−⇀[c] s
′
1, ς
′
1.

207

Figure 11: Border-state invariant for compiled programs

(Border-state invariant)

tctx n c = btc c ∈ range(J·K) t `exec s

Rctx =
⋃

mid∈dom(tctx .imp)

reachable_addresses({s.mstc(mid), tctx .imp(mid).ddc}, s.Md)

Rc =
⋃

mid∈dom(c.imp)

reachable_addresses({s.mstc(mid), c.imp(mid).ddc}, s.Md)

mem(α(|α| − 1)) = s.Md|ς Rctx ∩Rc ⊆ ς Ictx = allocation_intervals(?, α)
Ic = allocation_intervals(!, α) ∀a ∈ Rctx \ ς. s.Md(a) = (δ, σ, e,_) =⇒

(∃i ∈ Ictx . [σ, e) ⊆ i ∨ ∃a′ ∈ ς, idx ∈ [0, |α|). [σ, e) ⊆ mem(α(idx))(a′) ∨
∃mid ∈ dom(tctx .imp). [σ, e) ⊆ tctx .imp(mid).ddc ∨
∃mid ∈ dom(tctx .imp). [σ, e) ⊆ tctx .mstc(mid))

∀a ∈ Rc \ ς. s.Md(a) = (δ, σ, e,_) =⇒
(∃i ∈ Ic. [σ, e) ⊆ i ∨ ∃a′ ∈ ς, idx ∈ [0, |α|). [σ, e) ⊆ mem(α(idx))(a′) ∨

∃mid ∈ dom(c.imp). [σ, e) ⊆ c.imp(mid).ddc ∨
∃mid ∈ dom(c.imp). [σ, e) ⊆ c.mstc(mid))

tctx n c `border α, s, ς

Figure 12: Silent-state invariant for compiled programs

(Silent-state invariant)

tctx n c = bt0c
c ∈ range(J·K) t0 `exec s t ∈ {tctx , c} t ∈ {tctx , c} \ {t}
s.pcc ⊆ dom(t.Mc) ∀a ∈ dom(Mt,border).Mt,border (a) = s.Md(a)
((−∞, naborder) ∪ rt) ∩ dom(Mt,border) = ∅ ς ∩ dom(Mt,border) = ∅
Rt =

⋃
mid∈dom(t.imp)

reachable_addresses({s.mstc(mid), t.imp(mid).ddc}, s.Md)

s.nalloc ≤ naborder Rt ⊆ (rt ∪ [s.nalloc, naborder))⋃
mid∈dom(t.imp)

{t.mstc(mid), t.imp(mid).ddc} ⊆ caps4origin,border

∀a ∈ Rt . s.Md(a) = (δ, σ, e,_) =⇒
∃cap ∈ caps4origin,border . [σ, e) ⊆ cap ∨ [σ, e) ⊆ [s.nalloc, naborder)

tctx n c `silent s, ς, caps4origin,border , rt, naborder ,Mt,border

In both cases that arise, we strengthen the memory equality conjunct by observing that the same
memory appears also on the matching step (s2, ς2

λ−⇀[c] s
′
2, ς
′
2).

Also, in both cases, we strengthen the stack similarity by instantiating Lemma 147.
The other subgoals of strong similarity (from Definition 86) are straightforward.

Definition 87 (Per-subject state-universal predicate). A predicate P : V → B holds universally for

208

all values of a program state s where t is the subject of s when:

per_subject_state_universal(P, s, t)
def
=

s.pcc ⊆ dom(t.Mc) ∧

∀a. a ∈
⋃

mid∈dom(t.imp)

reachable_addresses({s.mstc(mid), t.imp(mid).ddc}, s.Md) =⇒ P (s.Md(a))

∧
P (s.ddc) ∧ P (s.stc) ∧ P (s.pcc) ∧
∀mid ∈ dom(t.imp). P (s.imp(mid).pcc) ∧ P (s.imp(mid).ddc) ∧ P (s.mstc(mid)) ∧
∀(cc, dc,_,_) ∈ s.stk . cc ⊆ dom(t.Mc) =⇒ P (cc) ∧ P (dc)

Lemma 154 (Predicates that are guaranteed to hold on the result of expression evaluation under
the execution of a specific subject).

∀t, t1, t2, E , s, v.
E , s.Md, s.ddc, s.stc, s.pcc ⇓ v ∧
t ∈ {t1, t2} ∧
t1 n t2 `exec s ∧
per_subject_state_universal(P, s, t) ∧
offset_oblivious(P) ∧
z_trivial(P) ∧
subcap_closed(P)

=⇒
P (v)

Proof. Similar to Lemma 44.

Lemma 155 (Preservation of per-subject state universality of predicates).

∀P, t, tctx , c, s, s
′,∇.

s.nalloc < 0 ∧
t ∈ {tctx , c} ∧
tctx n c `exec s ∧
per_subject_state_universal(P, s, t) ∧
allocation_compatible(P, s′.nalloc− 1) ∧
offset_oblivious(P) ∧
z_trivial(P) ∧
subcap_closed(P) ∧

s, ς
τ∗−⇀
∗

[c],∇ s
′, ς

=⇒
per_subject_state_universal(P, s′, t) ∧ s′.nalloc < 0

Proof. Similar to Lemma 45.

209

Definition 88 (Four-origin policy).

four_origin_policyt,s,ς,α(v)
def
=

v = (δ, σ, e,_) =⇒
∃mid ∈ dom(t.imp). [σ, e) ⊆ t.imp(mid).ddc ∨
∃mid ∈ dom(t.imp). [σ, e) ⊆ s.mstc(mid) ∨
∃a′ ∈ ς, idx ∈ [0, |α|). [σ, e) ⊆ mem(α(idx))(a′) ∨
∃i ∈ allocation_intervals(?, α). [σ, e) ⊆ i

Claim 35 (Border state invariant to silent state invariant - c executing).

tctx n c `border α, s, ς ∧
caps = {v | four_origin_policytctx n c,s,ς,α(v)} ∧

rt =
⋃

mid∈dom(tctx .imp)

reachable_addresses({s.mstc(mid), tctx .imp(mid).ddc}, s.Md)

=⇒
∃Md.

tctx n c `silent s, ς, caps, rt, s.nalloc,Md

(Proof Sketch): Follows from Definition 88 after inversion of rule Border-state invariant.

Claim 36 (Border state invariant to silent state invariant - tctx executing).

tctx n c `border α, s, ς ∧
caps = {v | four_origin_policytctx n c,s,ς,α(v)} ∧

rt =
⋃

mid∈dom(c.imp)

reachable_addresses({s.mstc(mid), c.imp(mid).ddc}, s.Md)

=⇒
∃Md.

tctx n c `silent s, ς, caps, rt, s.nalloc,Md

Similar to Claim 35.

210

Lemma 156 (Possible origins of capability values at border states).

∀tctx , c, α, s, ς, E , σ, e.
tctx n c `border α, s, ς ∧
E , s.Md, s.ddc, s.stc, s.pcc ⇓ (δ, σ, e,_) ∧
Ictx = allocation_intervals(?, α) ∧
Ic = allocation_intervals(!, α)

=⇒
s.pcc ⊆ dom(c.Mc) ∧
(∃i ∈ Ic. [σ, e) ⊆ i ∨
∃a′ ∈ ς, idx ∈ [0, |α|). [σ, e) ⊆ mem(α(idx))(a′) ∨
∃mid ∈ dom(c.imp). [σ, e) ⊆ c.imp(mid).ddc ∨
∃mid ∈ dom(c.imp). [σ, e) ⊆ c.mstc(mid))

∨
s.pcc ⊆ dom(tctx .Mc) ∧
(∃i ∈ Ictx . [σ, e) ⊆ i ∨
∃a′ ∈ ς, idx ∈ [0, |α|). [σ, e) ⊆ mem(α(idx))(a′) ∨
∃mid ∈ dom(tctx .imp). [σ, e) ⊆ tctx .imp(mid).ddc ∨
∃mid ∈ dom(tctx .imp). [σ, e) ⊆ tctx .mstc(mid))

Proof.

• We assume the antecedents, and prove our lemma by induction on the evaluation of E .

– Case evalconst,
– Case evalCapType,
– Case evalCapStart,
– Case evalCapEnd,
– Case evalCapOff, and
– Case evalBinOp:

These cases are vacuous.
– Case evalddc:

Here, we distinguish the following two cases:

∗ Case s.pcc ⊆ dom(c.Mc):
In this case, we choose to prove the left disjunct of our goal.
Further, we choose to prove the following disjunct:
∃mid ∈ dom(c.imp). [s.ddc.σ, s.ddc.e) ⊆ c.imp(mid).ddc
Now this latter goal follows by inverting assumption tctx n c `border α, s, ς using rule
Border-state invariant, and then inverting its preconditions using rule exec-state.

∗ Case s.pcc ⊆ dom(tctx .Mc):
In this case, we choose to prove the right disjunct of our goal.
Further, we choose to prove the following disjunct:
∃mid ∈ dom(tctx .imp). [s.ddc.σ, s.ddc.e) ⊆ tctx .imp(mid).ddc
Now this latter goal follows by inverting assumption tctx n c `border α, s, ς using rule
Border-state invariant, and then inverting its preconditions using rule exec-state.

211

– Case evalstc:
Here, we distinguish the following two cases:
∗ Case s.pcc ⊆ dom(c.Mc):

In this case, we choose to prove the left disjunct of our goal.
Further, we choose to prove the following disjunct:
∃mid ∈ dom(c.imp). [s.ddc.σ, s.ddc.e) ⊆ c.mstc(mid)
Now this latter goal follows by inverting assumption tctx n c `border α, s, ς using rule
Border-state invariant, and then inverting its preconditions using rule exec-state.

∗ Case s.pcc ⊆ dom(tctx .Mc):
In this case, we choose to prove the right disjunct of our goal.
Further, we choose to prove the following disjunct:
∃mid ∈ dom(tctx .imp). [s.ddc.σ, s.ddc.e) ⊆ tctx .mstc(mid)
Now this latter goal follows by inverting assumption tctx n c `border α, s, ς using rule
Border-state invariant, and then inverting its preconditions using rule exec-state.

– Case evalIncCap:
Here, E = inc(Ec, Ez), and we have the preconditions:
(Ec-eval):
Ec, s.Md, s.ddc, s.stc, s.pcc ⇓ (x, σ, e, off), and
(Ez-eval):
Ez, s.Md, s.ddc, s.stc, s.pcc ⇓ z
We distinguish two cases:
∗ Case x = δ:

Here, our goal follows immediately from the induction hypothesis on (Ec-eval) after
substitution.
∗ Case x 6= δ:

Here, our goal is vacuously true.
– Case evalLim:

Here, E = inc(Ec, Ez), and we have the preconditions:
(Ec-eval):
Ec, s.Md, s.ddc, s.stc, s.pcc ⇓ (x, σ, e,_), and
(CAP-BOUNDS-SUB):
[σ′, e′) ⊆ [σ, e)

We distinguish two cases:
∗ Case x = δ:

Here, our goal follows immediately from the induction hypothesis on (Ec-eval) after
applying transitivity of ⊆ using (CAP-BOUNDS-SUB).
∗ Case x 6= δ:

Here, our goal is vacuously true.
– Case evalDeref:

Here, E = deref(Ec).
We have the following preconditions:
(Ec-eval):
Ec, s.Md, s.ddc, s.stc, s.pcc ⇓ (x, σ′, e′, off),
(Ec-delta):
`δ (x, σ′, e′, off), and
(Mem-deref):
s.Md(σ

′ + off) = (δ, σ, e,_)

We claim (Bounds-reachable):
[σ′, e′) ⊆ reachable_addresses({s.stc, s.ddc}, s.Md)

We apply Lemma 25 to this claim to obtain the following subgoals:

212

∗ s.pcc = (κ,_,_,_),
∗ s.ddc = (δ,_,_,_), and
∗ s.stc = (δ,_,_,_)

All of these follow by inverting assumption tctx n c `border α, s, ς using rule Border-
state invariant, and then inverting its preconditions using rule exec-state.

∗ Ec, s.Md, s.ddc, s.stc, s.pcc ⇓ (δ, σ′, e′, off)
Immediate by (Ec-eval) and (Ec-delta).

Using (Bounds-reachable) and (Ec-delta)–unfolding Definition 2, we know (Addr-reachable):
σ′ + off ∈ reachable_addresses({s.stc, s.ddc}, s.Md)

Now, we distinguish the following two cases:

∗ Case s.pcc ⊆ dom(c.Mc):
We choose to prove the left disjunct of our goal.
Here, we claim (Addr-reachable-all):
σ′ + off ∈

⋃
mid∈dom(c.imp)

reachable_addresses({s.mstc(mid), c.imp(mid).ddc}, s.Md)

We apply Lemma 18 to this claim obtaining the following subgoals:
· {s.stc, s.ddc} ⊆

⋃
mid∈dom(c.imp)

{s.mstc(mid), c.imp(mid).ddc}

This follows by substituting the case condition in the preconditions obtained by
inverting assumption tctx n c `border α, s, ς using rule Border-state invariant, and
then inverting its preconditions using rule exec-state.
· σ′ + off ∈ reachable_addresses({s.stc, s.ddc}, s.Md)
This is immediate by (Addr-reachable).

We now distinguish two cases:
· Case σ′ + off ∈ ς:
Here, we choose to prove the following disjunct of (the necessary top-level left
disjunct of) our goal:
∃a′ ∈ ς, idx ∈ [0, |α|). [σ, e) ⊆ mem(α(idx))(a′)
We pick:
a′ := σ′ + off , and
idx := |α| − 1
Thus, it remains to show that:
[σ, e) ⊆ mem(α(|α| − 1))(σ′ + off)
We apply the substitution:
mem(α(|α| − 1)) = s.Md

obtaining the following two subgoals:
1. mem(α(|α| − 1)) = s.Md

This is immediate by inverting assumption tctx n c `border α, s, ς using rule
Border-state invariant.

2. [σ, e) ⊆ s.Md(σ
′ + off)

Here, we apply reflexivity of ⊆, so our goal is immediate by (Mem-deref).
· Case σ′ + off /∈ ς:
Here, by inverting assumption tctx n c `border α, s, ς using rule Border-state in-
variant, we obtain the following preconditions:
(Rc-def):
Rc =

⋃
mid∈dom(c.imp)

reachable_addresses({s.mstc(mid), c.imp(mid).ddc}, s.Md),

and
(All-privately-held-caps):
∀a ∈ Rc \ ς. s.Md(a) = (δ, σ, e,_) =⇒
(∃i ∈ Ic. [σ, e) ⊆ i ∨

213

∃a′ ∈ ς, idx ∈ [0, |α|). [σ, e) ⊆ mem(α(idx))(a′) ∨
∃mid ∈ dom(c.imp). [σ, e) ⊆ c.imp(mid).ddc ∨
∃mid ∈ dom(c.imp). [σ, e) ⊆ c.mstc(mid))
We instantiate the latter (All-privately-held-caps) with a := σ′ + off obtaining
the following two subgoals:
1. σ′ + off ∈ Rc

By unfolding Rc using (Rc-def), this goal is immediate by (Addr-reachable-all).
2. σ′ + off /∈ ς

This is immediate by the case condition.
The instantiation immediately gives us our goal.

∗ Case s.pcc ⊆ dom(tctx .Mc):
We choose to prove the right disjunct of our goal. The proof is analogous to the
previous case. We omit it for brevity.

This concludes the proof of case evalDeref.

This concludes the proof of Lemma 156.

Silent-state invariant

Lemma 157 (Preservation of the silent-state invariant).

∀tctx , c, s, ς, caps4origin,border , rt,border , naborder ,Mt,border , s
′,∇.

tctx n c `silent s, ς, caps4origin,border , rt,border , naborder ,Mt,border ∧

s, ς
τ∗−⇀
∗

[c],∇ s
′, ς

=⇒
tctx n c `silent s

′, ς, caps4origin,border , rt,border , naborder ,Mt,border

Proof.

• We assume the antecedents, and prove our goal by induction on the relation s, ς τ∗−⇀
∗

[c],∇ s
′, ς

• Case trace-closure-refl:
Here, the goal is immediate by assumption.

• Case trace-closure-trans:
Here, by assumption, we have s′′ with:

s, ς
τ∗−⇀
∗

[c],∇ s
′′, ς, and

s′′, ς
τ−⇀[c],∇ s

′, ς,
and the induction hypothesis
tctx n c `silent s

′′, ς, caps4origin,border , rt,border , naborder ,Mt,border .
By inversion of the induction hypothesis using rule Silent-state invariant, we obtain the fol-
lowing assumptions:
Valid linking:
tctx n c = bt0c

Compiled component:
c ∈ range(J·K)

214

Exec state:
t0 `exec s

′′

Arbitrary t:
t ∈ {tctx , c}

Arbitrary t:
t ∈ {tctx , c} \ {t}

t is executing:
s′′.pcc ⊆ dom(t.Mc)

Private memory of t is untouched:
∀a ∈ dom(Mt,border).Mt,border (a) = s′′.Md(a)

Private memory was indeed private:
((−∞, naborder) ∪ rt) ∩ dom(Mt,border) = ∅

Private memory is compatible with the history of sharing:
ς ∩ dom(Mt,border) = ∅

Reachable addresses of t:
R′′t =

⋃
mid∈dom(t.imp)

reachable_addresses({s′′.mstc(mid), t.imp(mid).ddc}, s′′.Md)

New allocation is bounded by naborder :
s′′.nalloc ≤ naborder

Reachable addresses of t can grow only by allocation:
R′′t ⊆ (rt ∪ [s′′.nalloc, naborder))

The border capabilities contain capabilities on t’s static memory:⋃
mid∈dom(t.imp)

{t.mstc(mid), t.imp(mid).ddc} ⊆ caps4origin,border

Five-origin policy:
∀a ∈ R′′t . s′′.Md(a) = (δ, σ, e,_) =⇒
∃cap ∈ caps4origin,border . [σ, e) ⊆ cap ∨ [σ, e) ⊆ [s′′.nalloc, naborder)

By applying rule Silent-state invariant to our goal, we obtain subgoals about s′ that we refer
to using the names given above to the corresponding assumptions:

– Subgoals “Valid linking”, “Compiled component”, “Arbitrary t”, “Arbitrary t”,
“Private memory was indeed private”, “Private memory is compatible with
the history of sharing”, and “The border capabilities contain capabilities on t’s
static memory” are immediate.

– There is nothing to prove about the definition Reachable addresses of t.

– To prove subgoal Exec state, we apply Corollary 2 obtaining the following subgoals:

∗ t `exec s
′′

This is immediate by assumption Exec state.

215

∗ s′′ →∗ s′

To prove this, we apply Claim 15 obtaining the following subgoal: s′′, ς τ∗−⇀
∗

[c],∇ s
′, ς ′

This is immediate by assumptions after applying rule trace-closure-refl.

– To prove the remaining subgoals, we distinguish the possible cases of assumption s′′, ς τ−⇀[c],∇ s
′, ς:

∗ Case assign-silent:
By inversion of the assumptions of assign-silent using rule assign, we obtain
(S’-MEM):
s′.Md = s′′.Md[c 7→ v],
(v-EVAL’d-IN-t):
ER, s′′.Md, s

′′.ddc, s′′.stc, s′′.pcc ⇓ v,
(c-EVAL’d-IN-t):
EL, s′′.Md, s

′′.ddc, s′′.stc, s′′.pcc ⇓ c,
(c-IN-BOUNDS):
`δ c,
(EQUAL-MSTC):
s′′.mstc = s′.mstc, and
(EQUAL-NALLOC):
s′′.nalloc = s′.nalloc
We first prove the goal Reachable addresses of t can grow only by allocation.
AssumingR′t =

⋃
mid∈dom(t.imp)

reachable_addresses({s′.mstc(mid), t.imp(mid).ddc}, s′.Md),

our goal is R′t ⊆ (rt ∪ (s′.nalloc, naborder]).
By the transitivity of ⊆, it suffices to show that:
R′t ⊆ rt.
We prove our goal by applying transitivity of ⊆ obtaining the following two subgoals:
1. R′′t ⊆ rt

Immediate by assumption Reachable addresses of t can grow only by allo-
cation.

2. R′t ⊆ R′′t
Here, we apply Lemma 38 obtaining the following subgoals:

(a) c.σ + c.off ∈ R′′t
Here, we apply Lemma 25 obtaining subgoals that are immediate by (c-EVAL’d-
IN-t), (c-IN-BOUNDS), and by inversion of assumption Exec state using rule
exec-state.

(b) v = (δ, σ, e,_) =⇒
⋃

mid∈dom(t.imp)

{s′′.mstc(mid), t.imp(mid).ddc}, s′′.Md � v

Assuming v = (δ, σ, e,_) and by unfolding Definition 23, this goal becomes:
[σ, e) ⊆ reachable_addresses(

⋃
mid∈dom(t.imp)

{s′′.mstc(mid), t.imp(mid).ddc}, s′′.Md)

By applying Lemmas 6 and 18, we obtain the following two subgoals:
i. [σ, e) ⊆ reachable_addresses({s′′.stc, s′′.ddc}, s′′.Md)

Here, we apply Lemma 25 obtaining subgoals that are immediate by (v-
EVAL’d-IN-t), and by inversion of assumption Exec state using rule exec-
state.

ii. ∃mid ∈ dom(t.imp). s′′.mstc(mid)
.
= s′′.stc

iii. ∃mid ∈ dom(t.imp). s′′.imp(mid).ddc
.
= s′′.ddc

These two subgoals are immediate by inverting assumption Exec state using
rule exec-state and substituting in the preconditions using assumption t is
executing.

(c) (applying Lemma 6) s′′.mstc
.
= s′.mstc

Immediate by (EQUAL-MSTC).

216

Next, we prove the goal Five-origin policy.
We fix an arbitrary a ∈ R′t, and assume s′.Md(a) = (δ, σ, e,_).
Out goal is (after substitution using (EQUAL-NALLOC)):
∃cap ∈ caps4origin,border . [σ, e) ⊆ cap ∨ [σ, e) ⊆ [s′′.nalloc, naborder)
We distinguish the following two cases:
1. Case a = c.σ + c.off :

We instantiate Lemma 26 using (v-EVAL’d-IN-t) and using subgoal Exec state
inverted by rule exec-state to obtain
(3-ORIGINS):
[σ, e) ⊆ s′′.ddc ∨
[σ, e) ⊆ s′′.stc ∨
∃ao. [σ, e) ⊆ s′′.Md(ao) ∧ ao ∈ reachable_addresses({s′′.ddc, s′′.stc}, s′′.Md)
We distinguish the following three cases of (3-ORIGINS):

(a) Case [σ, e) ⊆ s′′.ddc, and
(b) Case [σ, e) ⊆ s′′.stc

In these two cases, we apply the transitivity of ⊆ obtaining the subgoals
[σ, e) ⊆ s′′.ddc and [σ, e) ⊆ s′′.stc respectively.
Both of these subgoals are immediate by the assumption “t is executing” to-
gether with the assumption “The border capabilities contain capabilities
on t’s static memory”.

(c) Case ∃ao. [σ, e) ⊆ s′′.Md(ao) ∧ ao ∈ reachable_addresses({s′′.ddc, s′′.stc}, s′′.Md):
Here, we obtain ao, and use it to instantiate assumption Five origin policy
thus immediately proving our goal.
(The instantiation is possible by Lemma 18.)

2. Case a 6= c.σ + c.off :
Here, we apply assumption Five-origin policy obtaining the following subgoals:

(a) s′′.Md(a) = (δ, σ, e,_)
Immediate by (S’-MEM).

(b) a ∈ R′′t
Follows from assumption a ∈ R′t and R′t ⊆ R′′t . The latter was proved in the
previous goal.

Next, we prove the goal t is executing.
Immediate from the corresponding assumption by noticing that s′′.pcc

.
= s′.pcc.

Next, we prove the goal New allocation is bounded by naborder .
This is immediate from the corresponding assumption after substitution using (EQUAL-
NALLOC).

Next, we prove the goal Private memory of t is untouched.
We pick an arbitrary a ∈ dom(Mt,border),
and our goal is to show that s′.Md(a) =Mt,border (a).
By the corresponding assumption (i.e., assumption Private memory of t is un-
touched) about s′′, it suffices by the transitivity of equality to show that:
s′.Md(a) = s′′.Md(a)
By (S’-MEM), it thus suffices to show that:
a 6= c.σ + c.off
For this, it suffices to show that dom(Mt,border) ∩R′t = ∅
But since by the previously proven subgoal Reachable addresses of t can grow
only by allocation, we know R′t ⊆ (rt ∪ [s′.nalloc, naborder)), then it suffices to show
that

217

dom(Mt,border) ∩ (rt ∪ [s′.nalloc, naborder)) = ∅
The latter is immediate by subgoal Private memory was indeed private using
simple arithmetic and interval arithmetic identities.
This concludes the proof of case assign-silent.

∗ Case alloc-silent:
By inversion of the assumptions of alloc-silent using rule allocate, we obtain
(c-EVAL’s-IN-t):
EL, s′′.Md, s

′′.ddc, s′′.stc, s′′.pcc ⇓ c,
(v-POSITIVE):
v ∈ Z+,
(c-IN-BOUNDS):
`δ c,
(S’-MEM):
s′.Md = s′′.Md[c 7→ (δ, s′′.nalloc− v, s′′.nalloc, 0), i 7→ 0 ∀i ∈ [s′′.nalloc− v, s′′.nalloc)],
(S’-NALLOC):
s′.nalloc = s′′.nalloc− v, and
(EQUAL-MSTC):
s′′.mstc = s′.mstc

We first prove the goal Reachable addresses of t can grow only by allocation.
AssumingR′t =

⋃
mid∈dom(t.imp)

reachable_addresses({s′.mstc(mid), t.imp(mid).ddc}, s′.Md),

our goal is R′t ⊆ (rt ∪ (s′.nalloc, naborder]).
By inversion of assumption Exec state using rule exec-state, and by rewriting using
Lemma 18,
we know that (*):
∀a. a ∈ R′′t =⇒ a ≥ s′′.nalloc

LetMenlarged = s′′.Md[i 7→ 0 | i ∈ [s′′.nalloc− v, s′′.nalloc)]
And letRt,enlarged =

⋃
mid∈dom(t.imp)

reachable_addresses({s′.mstc(mid), t.imp(mid).ddc},Menlarged)

We claim (DECOMPOSED-REACHABILITY):
Rt,enlarged = R′′t

We prove this claim by induction on k ∈ [s′′.nalloc− v, s′′.nalloc)
whereMk = s′′.Md[i 7→ 0 | i ∈ [s′′.nalloc− v, k)], and
Rt,k =

⋃
mid∈dom(t.imp)

reachable_addresses({s′.mstc(mid), t.imp(mid).ddc},Mk).

The base case is immediate by reflexivity after substitution using (EQUAL-MSTC).

In the inductive step, our goal is Rt,k = R′′t .
We apply Lemma 21 (after substitution using (EQUAL-MSTC)) obtaining the sub-
goal:
k − 1 /∈ Rt,k−1

Using the induction hypothesis, we can instead prove:
k − 1 /∈ R′′t
Because k < s′′.nalloc by choice, then we know k − 1 < s′′.nalloc.
But then by instantiating the contrapositive of (*) using k − 1, we immediately obtain
our subgoal.

218

Now notice from (S’-MEM) and by the definition of partial maps that
(S’-MEM-DECOMPOSED):
s′.Md =Menlarged [c 7→ (δ, s′′.nalloc− v, s′′.nalloc, 0)]

We pick an arbitrary a ∈ R′t, and our goal is to show that a ∈ rt ∪ [s′.nalloc, naborder).

By instantiating Lemma 40 using the rewriting (S’-MEM-DECOMPOSED), and us-
ing:
Md =Menlarged , aa = a, â = c.σ + c.off , σ = s′′.nalloc− v, e = s′′.nalloc,
we know:
a ∈ Rt,enlarged ∨ a ∈ [s′′.nalloc− v, s′′.nalloc)
Thus, by rewriting using (DECOMPOSED-REACHABILITY) and using (S’-NALLOC),
we know:
a ∈ R′′t ∨ a ∈ [s′.nalloc, s′′.nalloc)
We now distinguish these two cases:
1. a ∈ R′′t

Here, by the induction hypothesis, we know a ∈ rt ∪ [s′′.nalloc, naborder).
But by (S’-NALLOC), we know [s′′.nalloc, naborder) ⊆ [s′.nalloc, naborder)
Thus, using both and by the definition of ⊆, our goal is immediate.

2. a ∈ [s′.nalloc, s′′.nalloc)
Again, here by (S’-NALLOC), and the assumptionNew allocation is bounded
by naborder , we know
[s′.nalloc, s′′.nalloc) ⊆ [s′.nalloc, naborder), which by the definition of ⊆ gives us
our goal.

This concludes the proof of the goal Reachable addresses of t can grow only by
allocation.

Next, we prove the goal Five-origin policy.
We fix an arbitrary a ∈ R′t, and assume s′.Md(a) = (δ, σ, e,_).
Out goal is:
∃cap ∈ caps4origin,border . [σ, e) ⊆ cap ∨ [σ, e) ⊆ [s′.nalloc, naborder)
We distinguish the following three cases:
1. Case a = c.σ + c.off :

Here, we know σ = s′.nalloc, e = s′′.nalloc.
We prove the right disjunct of our goal.
So it suffices to prove that
[s′.nalloc, s′′.nalloc) ⊆ [s′.nalloc, naborder)
Thus, it suffices to prove that
s′′.nalloc ≤ naborder

This is immediate by assumption New allocation is bounded by naborder .
2. Case a ∈ [s′.nalloc, s′′.nalloc):

Here, the assumption s′.Md(a) = (δ, σ, e,_) is false. So our goal holds vacuously.
3. Case a /∈ {c.σ + c.off } ∪ [s′.nalloc, s′′.nalloc):

Here, we know by (S’-MEM) that s′′.Md(a) = s′.Md(a)
Thus, we know (*):
s′′.Md(a) = (δ, σ, e,_)
We instantiate Lemma 40 using C =

⋃
mid∈dom(t.imp)

{s′.mstc(mid), t.imp.ddc},

Md =Menlarged , aa = a, â = c.σ + c.off , σ = s′′.nalloc− v, e = s′′.nalloc
to obtain:
a ∈ R′t =⇒ a ∈ reachable_addresses(C,Menlarged) ∨ a ∈ [s′.nalloc, s′′.nalloc)
Thus, by instantiation using our assumption about a, then by elimination using

219

our case condition, we conclude:
a ∈ reachable_addresses(C,Menlarged)
By substitution using (DECOMPOSED-REACHABILITY), we obtain (**):
a ∈ R′′t
(Notice that we reuse the claim (DECOMPOSED-REACHABILITY) that was
defined in the proof of a previous subgoal. The same goes for the definition of
Menlarged , etc..)
Using (*) and (**), we instantiate assumption Five-origin policy obtaining:
∃cap ∈ caps4origin,border . [σ, e) ⊆ cap ∨ [σ, e) ⊆ [s′′.nalloc, naborder)
We distinguish the following two cases:

(a) Case ∃cap ∈ caps4origin,border . [σ, e) ⊆ cap:
Here, the left disjunct of our goal is immediate.

(b) Case [σ, e) ⊆ [s′′.nalloc, naborder]:
Here, we prove the right disjunct of our goal by applying the transitivity of ⊆
obtaining the subgoal s′.nalloc ≤ s′′.nalloc which is immediate by (S’-NALLOC)
and the condition on v being positive.

This concludes the proof of subgoal Five-origin policy.

Next, we prove the goal t is executing.
Immediate from the corresponding assumption by noticing that s′′.pcc

.
= s′.pcc.

Next, we prove the goal New allocation is bounded by naborder .
This is immediate from the corresponding assumption and (S’-NALLOC).

Next, we prove the goal Private memory of t is untouched.
We pick an arbitrary a ∈ dom(Mt,border),
and our goal is to show that s′.Md(a) =Mt,border (a).
By the corresponding assumption (i.e., assumption Private memory of t is un-
touched) about s′′, it suffices by the transitivity of equality to show that:
s′.Md(a) = s′′.Md(a)
By (S’-MEM), it thus suffices to show that:
a /∈ {c.σ + c.off } ∪ [s′.nalloc, s′′.nalloc)
Showing that a /∈ {c.σ + c.off } is the same proof as in case assign-silent.
We show that a /∈ [s′.nalloc, s′′.nalloc).
For this, it suffices to show that:
dom(Mt,border) ∩ [s′.nalloc, s′′.nalloc) = ∅
By assumption New allocation is bounded by naborder about s′′.nalloc, it suffices
to show that:
dom(Mt,border) ∩ [s′.nalloc, naborder) = ∅
By interval identities, it suffices to show that:
dom(Mt,border) ∩ (−∞, naborder) = ∅
By set identities, this follows from assumption Private memory was indeed pri-
vate.
This concludes the proof of subgoal Private memory of t is untouched.

∗ Case jump-silent:
From the assumptions of jump-silent, we distinguish the following two cases.
· Case jump0:
Here, we have the following assumptions:
(JUMP-INSTR):
s′′.Mc(s

′′.pcc) = JumpIfZero Econd Esize

(size-EVAL):
Esize , s

′′.Md, s
′′.ddc, s′′.stc, s′′.pcc ⇓ v

220

(S’-PCC):
s′.pcc = inc(s′′.pcc, v)
(S’-MEM):
s′.Md = s′′.Md

(S’-NALLOC):
s′.nalloc = s′′.nalloc
(S’-MSTC):
s′.mstc = s′′.mstc

We first prove the goal Reachable addresses of t can grow only by alloca-
tion.
AssumingR′t =

⋃
mid∈dom(t.imp)

reachable_addresses({s′.mstc(mid), t.imp(mid).ddc}, s′.Md),

our goal is R′t ⊆ (rt ∪ (s′.nalloc, naborder]).
After substitution using (S’-MEM), (S’-MSTC), and (S’-NALLOC), this goal is
immediate by assumptions Reachable addresses of t and Reachable ad-
dresses of t can grow only by allocation.

Next, we prove the goal Five-origin policy.
We fix an arbitrary a ∈ R′t, and assume s′.Md(a) = (δ, σ, e,_).
Out goal is:
∃cap ∈ caps4origin,border . [σ, e) ⊆ cap ∨ [σ, e) ⊆ [s′.nalloc, naborder)
After substitution using (S’-MEM), (S’-MSTC), and (S’-NALLOC), this goal is
immediate by assumptions Reachable addresses of t and Five-origin policy.

Next, we prove the goal t is executing.
This is immediate by the corresponding assumption after noticing from (S’-PCC)
that s′.pcc

.
= s′′.pcc.

Next, we prove the goal New allocation is bounded by naborder .
This is immediate from the corresponding assumption after substitution using
(S’-NALLOC).

Next, we prove the goal Private memory of t is untouched.
We pick an arbitrary a ∈ dom(Mt,border),
and our goal is to show that s′.Md(a) =Mt,border (a).
This is immediate from the corresponding assumption after substitution using
(S’-MEM).
· Case jump1:
Here, we have the following assumptions:
(S’-PCC):
s′.pcc = inc(s′′.pcc)
(S’-MEM):
s′.Md = s′′.Md

(S’-NALLOC):
s′.nalloc = s′′.nalloc
(S’-MSTC):
s′.mstc = s′′.mstc
We prove the goal t is executing.
From (S’-PCC) and by unfolding the definition of inc, we immediately have that
s′.pcc

.
= s′′.pcc. So, our goal is immediate from the assumption t is executing

about s′′.pcc.
All other goals are identical to the corresponding goals of case jump0 above.

221

∗ Case cinvoke-silent-compiled:
By the assumptions of cinvoke-silent-compiled and by their inversion using rule cin-
voke and then cinvoke-aux, we obtain:
(IN-BOUNDS-S”-PCC):
`κ s′′.pcc
(S”-PCC):
s′′.pcc ∈ dom(c.Mc)
(S’-IMP-MID):
mid ∈ dom(c.imp)
(S’-PCC):
s′.pcc = inc(s′′.imp(mid).pcc, s′′.imp(mid).offs(fid))
(S’-DDC):
s′.ddc = s′′.imp(mid).ddc
(S’-STC):
s′.stc = inc(s′′.mstc(mid),nArgs + nLocal)
(IN-BOUNDS-S’-STC):
`δ s′.stc
(STC-POINTER):
s′′.mstc(mid) = (δ, σ, e, off)
(S’-MEM):
s′.Md = s′′.Md[σ + off + i 7→ vi ∀i ∈ [0,nArgs)][σ + off + nArgs + i 7→ 0 ∀i ∈ [0,nLocal)]
(S’-NALLOC):
s′.nalloc = s′′.nalloc
(S’-MSTC):
s′.mstc = s′′.mstc[mid 7→ (δ, s′′.mstc(mid).σ, s′′.mstc(mid).e,_)]

We first prove the goal Reachable addresses of t can grow only by allocation.
AssumingR′t =

⋃
mid∈dom(t.imp)

reachable_addresses({s′.mstc(mid), t.imp(mid).ddc}, s′.Md),

our goal is R′t ⊆ (rt ∪ (s′.nalloc, naborder]).
By substitution using (S’-NALLOC), our goal becomes:
R′t ⊆ (rt ∪ (s′′.nalloc, naborder]).
Thus, using assumption Reachable addresses of t can grow only by allocation,
and by the transitivity of ⊆, it suffices to prove:
R′t ⊆ R′′t
Similarly to the proof of the corresponding goal in case alloc-silent, the proof pro-
ceeds by induction on the number of memory updates defining intermediate memories
indexed by the updated address.

For updates at addresses in [σ + off + nArgs, σ + off + nArgs + nLocal), we apply
Lemma 37 that immediately solves our goal.

For updates at addresses in [σ + off , σ + off + nArgs), we apply Lemma 38 that
immediately solves our goal.

We omit the details because they are very similar to the proof of the same goal in
case alloc-silent.

Next, we prove the goal Five-origin policy.
We fix an arbitrary a ∈ R′t, and assume s′.Md(a) = (δ, σ, e,_).
Our goal is:
∃cap ∈ caps4origin,border . [σ, e) ⊆ cap ∨ [σ, e) ⊆ [s′.nalloc, naborder)
By substitution using (S’-NALLOC), our goal becomes:

222

∃cap ∈ caps4origin,border . [σ, e) ⊆ cap ∨ [σ, e) ⊆ [s′′.nalloc, naborder)
By using the proposition R′t ⊆ R′′t proved above, we know a ∈ R′′t .
We then distinguish three cases:
1. Case a ∈ [σ + off + nArgs, σ + off + nArgs + nLocal):

Here, from the contradiction to the assumption s′.Md(a) = (δ, σ, e,_) obtained
by instantiating (S’-MEM), we have our goal.

2. Case a ∈ [σ + off , σ + off + nArgs):
This case is similar to the proof of the corresponding goal (Five-origin policy)
of case assign-silent. We omit it for brevity.

3. Case a /∈ [σ + off , σ + off + nArgs + nLocal):
Here, we know by instantiating (S’-MEM) that
s′′.Md(a) = s′.Md(a).
Thus, our goal is immediate by instantiating assumption Five-origin policy.

Next, we prove the goal t is executing.
From (S”-PCC), (IN-BOUNDS-S”-PCC), and the assumption (t is executing),
we know t = c,
which we substitute in our goal obtaining instead the subgoal:
s′.pcc ⊆ dom(c.Mc).
Using (S’-PCC) and (S’-IMP-MID), we instantiate the preconditions obtained by
inverting Exec state using rule exec-state. The instantiation immediately solves our
goal.

Next, we prove the goal New allocation is bounded by naborder .
This is immediate from the corresponding assumption after substitution using (S’-
NALLOC).

Next, we prove the goal Private memory of t is untouched.
We pick an arbitrary a ∈ dom(Mt,border),
and our goal is to show that s′.Md(a) =Mt,border (a).
By the corresponding assumption (i.e., assumption Private memory of t is un-
touched) about s′′, it suffices by the transitivity of equality to show that:
s′.Md(a) = s′′.Md(a)
By (S’-MEM), it thus suffices to show that:
a /∈ [σ + off , σ + off + nArgs + nLocal)
For this, it suffices by set identities to show both that:
[σ + off , σ + off + nArgs + nLocal) ⊆ R′t
and that:
dom(Mt,border) ∩R′t = ∅
1. Subgoal [σ + off , σ + off + nArgs + nLocal) ⊆ R′t:

Using the proposition R′t ⊆ R′′t proved in a previous goal and by the transitivity
of ⊆, it suffices to show that:
[σ + off , σ + off + nArgs + nLocal) ⊆ R′′t

Using (IN-BOUNDS-S’-STC), (S’-STC), and (STC-POINTER), and by unfolding
Definition 2, we conclude:
[σ + off , σ + off + nArgs + nLocal) ⊆ s′′.mstc(mid)
Thus, it suffices for our goal by the transitivity of ⊆ to show that:
[s′′.mstc(mid).σ, s′′.mstc(mid).e) ⊆ R′′t

By unfolding R′′t using assumptionReachable addresses of t (after substitution
using t = c that we proved in an earlier subgoal and instantiation using (S’-

223

IMP-MID)) then unfolding Definition 22, it suffices by easy set identities and by
additivity (Lemma 17) to show that:
[s′′.mstc(mid).σ, s′′.mstc(mid).e) ⊆ access_,s′′.Md

[s′′.mstc(mid).σ, s′′.mstc(mid).e)
The latter is immediate by expansiveness (Lemma 8).

2. Subgoal dom(Mt,border) ∩R′t = ∅:
Since by the previously proven subgoal Reachable addresses of t can grow
only by allocation, we know R′t ⊆ (rt ∪ [s′.nalloc, naborder)), then it suffices to
show that
dom(Mt,border) ∩ (rt ∪ [s′.nalloc, naborder)) = ∅
The latter is immediate by subgoal Private memory was indeed private using
simple arithmetic and interval arithmetic identities.

∗ Case cinvoke-silent-context:
This is very similar to the previous case. We omit the proof for brevity.

∗ Case creturn-silent-compiled:
By the assumptions of creturn-silent-compiled and by their inversion using rule cre-
turn, we obtain:
(IN-BOUNDS-S”-PCC):
`κ s′′.pcc
(S”-PCC):
s′′.pcc ⊆ dom(c.Mc)
(S’-PCC):
s′.pcc ⊆ dom(c.Mc)
(S’-MEM):
s′.Md = s′′.Md

(S’-NALLOC):
s′.nalloc = s′′.nalloc
(S’-PCC-SAME-MID-STC):
∃mid ′. s′.pcc ⊆ s′′.imp(mid ′).pcc ∧ s′.stc = mstc(mid ′)
(S’-MSTC):
s′.mstc = s′′.mstc[mid 7→ inc(s′′.mstc(mid),_)]
(S’-DDC):
s′.stk , (s′.ddc, s′.pcc,_,_) = pop(s′′.stk)

We first prove the goal Reachable addresses of t can grow only by allocation.
AssumingR′t =

⋃
mid∈dom(t.imp)

reachable_addresses({s′.mstc(mid), t.imp(mid).ddc}, s′.Md),

our goal is R′t ⊆ (rt ∪ (s′.nalloc, naborder]).
By substitution using (S’-NALLOC), our goal becomes:
R′t ⊆ (rt ∪ (s′′.nalloc, naborder]).
But by substitution using (S’-MEM) in the definition of R′t, we have:
R′t =

⋃
mid∈dom(t.imp)

reachable_addresses({s′.mstc(mid), t.imp(mid).ddc}, s′′.Md)

By applying Lemma 18, and then using induction on the size of {mid | mid ∈ dom(t.imp)},
we can show that R′t = R′′t .
(The proof instantiates Lemma 6 using (S’-MSTC).)

Thus, by substitution using R′t = R′′t in our goal, it becomes immediate by the as-
sumption Reachable addresses of t can grow only by allocation.

Next, we prove the goal Five-origin policy.
We fix an arbitrary a ∈ R′t, and assume s′.Md(a) = (δ, σ, e,_).
Our goal is:
∃cap ∈ caps4origin,border . [σ, e) ⊆ cap ∨ [σ, e) ⊆ [s′.nalloc, naborder)

224

By substitution using (S’-NALLOC), our goal becomes:
∃cap ∈ caps4origin,border . [σ, e) ⊆ cap ∨ [σ, e) ⊆ [s′′.nalloc, naborder)
By using the proposition R′t = R′′t proved above, we know a ∈ R′′t .
But also using the (S’-MEM), we know s′′.Md(a) = (δ, σ, e,_)
Now our goal is immediate by instantiating assumption Five-origin policy using a.

Next, we prove the goal t is executing.
By substitution in assumption t is executing using (S”-PCC) and (IN-BOUNDS-
S”-PCC), our goal becomes:
s′.pcc ⊆ dom(c.Mc)
Immediate by (S’-PCC).

Next, we prove the goal New allocation is bounded by naborder .
This is immediate from the corresponding assumption after substitution using (S’-
NALLOC).

Next, we prove the goal Private memory of t is untouched.
We pick an arbitrary a ∈ dom(Mt,border),
and our goal is to show that s′.Md(a) =Mt,border (a).
This is immediate from the corresponding assumption after substitution using (S’-
MEM).

∗ Case creturn-silent-context:
This case is similar to the previous case. We omit the proof for brevity.

Lemma 158 (Preservation of the border-state invariant `border).

∀tctx , c, α, s, ς, λ, s
′, ς ′.

tctx n c `border α, s, ς ∧

s, ς ⇀
λ−⇀[c],∇ s

′, ς ′ ∧
λ 6= X
=⇒
tctx n c `border αλ, s

′, ς ′

Proof.

• We fix arbitrary tctx , c, α, s, ς, λ, s
′, ς ′, and assume the antecedents.

• By inversion of our assumptions using rule trace-steps-lambda, we obtain the following pre-
conditions:

(STAR-TAU-STEPS):

s, ς
τ∗−⇀
∗

[c],∇ s
′′, ς ′′,

(NON-SILENT-STEP):
s′′, ς ′′

λ−⇀[c],∇ s
′, ς ′ ∧ λ 6= τ

• By inversion of the assumptions using rule Border-state invariant, we obtain the following
preconditions:

225

Valid linking
tctx n c = btc

Compiled program
c ∈ range(J·K)

Exec invariant
t `exec s

Reachable addresses of the context
Rctx =

⋃
mid∈dom(tctx .imp)

reachable_addresses({s.mstc(mid), tctx .imp(mid).ddc}, s.Md)

Reachable addresses of the compiled program
Rc =

⋃
mid∈dom(c.imp)

reachable_addresses({s.mstc(mid), c.imp(mid).ddc}, s.Md)

Memory at the border is described by the trace label
mem(α(|α| − 1)) = s.Md|ς

All mutually reachable addresses were recorded as shared
Rctx ∩Rc ⊆ ς

Allocation intervals of the context
Ictx = allocation_intervals(?, α)

Allocation intervals of the compiled program
Ic = allocation_intervals(!, α)

Four-origin policy for privately-held capabilities of the context
∀a ∈ Rctx \ ς. s.Md(a) = (δ, σ, e,_) =⇒
(∃i ∈ Ictx . [σ, e) ⊆ i ∨
∃a′ ∈ ς, idx ∈ [0, |α|). [σ, e) ⊆ mem(α(idx))(a′) ∨
∃mid ∈ dom(tctx .imp). [σ, e) ⊆ tctx .imp(mid).ddc ∨
∃mid ∈ dom(tctx .imp). [σ, e) ⊆ tctx .mstc(mid))

Four-origin policy for privately-held capabilities of the compiled program
∀a ∈ Rc \ ς. s.Md(a) = (δ, σ, e,_) =⇒
(∃i ∈ Ic. [σ, e) ⊆ i ∨
∃a′ ∈ ς, idx ∈ [0, |α|). [σ, e) ⊆ mem(α(idx))(a′) ∨
∃mid ∈ dom(c.imp). [σ, e) ⊆ c.imp(mid).ddc ∨
∃mid ∈ dom(c.imp). [σ, e) ⊆ c.mstc(mid))

• We apply rule Border-state invariant to our goal obtaining subgoals (about αλ, s′, and ς ′)
that are analogous to the preconditions above (about α, s, and ς). We skip the explicit stating
of the subgoals for the sake of brevity, and re-use the names for the preconditions that are
introduced above.
We let:
R′ctx =

⋃
mid∈dom(tctx .imp)

reachable_addresses({s′.mstc(mid), tctx .imp(mid).ddc}, s′.Md),

R′c =
⋃

mid∈dom(c.imp)

reachable_addresses({s′.mstc(mid), c.imp(mid).ddc}, s′.Md),

I ′ctx = allocation_intervals(?, αλ), and
I ′c = allocation_intervals(!, αλ)

• We claim (EXEC-S”):
t `exec s

′′

To prove it, we apply Corollary 2 obtaining the following subgoals:

– t `exec s

This is immediate by assumption Exec invariant.

226

– s→∗ s′′

To prove this, we apply Claim 15 obtaining the following subgoal:

s, ς
τ∗−⇀
∗

[c],∇ s
′′, ς ′′

This is immediate by (STAR-TAU-STEPS).

• From our lemma assumption, we know by instantiating (conditionally on s.pcc ⊆ dom(tctx .Mc))
either Claim 35 or Claim 36, that:
∃caps, rt,Md. tctx n c `silent s, ς, caps, rt, s.nalloc,Md

• Thus, by instantiating Lemma 157 using (STAR-TAU-STEPS), we know that:

(SILENT-S”): ∃caps, rt,Md. tctx n c `silent s
′′, ς, caps, rt, s.nalloc,Md

• Goals Valid linking and Compiled program are immediate.

• The remaining goals are proved by distinguishing the following cases for (NON-SILENT-
STEP):

– Case cinvoke-context-to-compiled:
To prove the goal Exec invariant, we apply Lemma 53 obtaining the following subgoals:

∗ s′′ �≈ s′
This is immediate by inversion of rule cinvoke-context-to-compiled.

∗ t `exec s
′′

This is immediate by (EXEC-S”).

The goalMemory at the border is described by the trace label, i.e., mem(αλ(|αλ| − 1)) = s′.Md|ς′
is immediate by definition of λ that we get by inversion of rule cinvoke-context-to-
compiled.
To prove the goal Four-origin policy for privately-held capabilities of the context,
we pick an arbitrary a ∈ R′ctx \ ς ′, and assume s′.Md(a) = (δ, σ, e,_)

Our goal is:
∃i ∈ I ′ctx . [σ, e) ⊆ i ∨
∃a′ ∈ ς ′, idx ∈ [0, |αλ|). [σ, e) ⊆ mem(αλ(idx))(a′) ∨
∃mid ∈ dom(tctx .imp). [σ, e) ⊆ tctx .imp(mid).ddc ∨
∃mid ∈ dom(tctx .imp). [σ, e) ⊆ tctx .mstc′(mid)

We distinguish the following cases:

∗ Case [σ, e) ⊆ (s′.nalloc,−1]:
∗ Case [σ, e) * (s′.nalloc,−1]:

Here, we claim
(NO-MIXED-STATIC-DYNAMIC-CAPABILITY):
[σ, e) ∩ (s′.nalloc,−1] = ∅
(Sketch) Then the proof follows in both cases from (SILENT-S”) by inversion of rule
Silent-state invariant.

To prove the goal All mutually-reachable addresses were recorded as shared, we
pick an arbitrary a ∈ R′ctx ∩R′c. The goal is to show that:
a ∈ ς ′

By substitution from the preconditions of rule cinvoke-context-to-compiled, the goal be-
comes:
a ∈ reachable_addreses_closure(ς ′′ ∪ r, s′.Md)

(where r = reachable_addresses({v(i) | i ∈ [0,nArgs) ∧ v(i) = (δ,_,_,_)}, s′.Md), and
v = [i 7→ vi | ∀i ∈ [0,nArgs) e(i), s′′.Md, s

′′.ddc, s′′.stc, s′′.pcc ⇓ vi])

227

By unfolding our goal using Definition 22, our goal becomes:
a ∈

⋃
k∈[0,|s′.Md|]

accessk,s′.Md
(ς ′′ ∪ r)

After instantiating Claim 17 using (STAR-TAU-STEPS), our goal by substitution be-
comes:
a ∈

⋃
k∈[0,|s′.Md|]

accessk,s′.Md
(ς ∪ r)

(Sketch) The proof of this is tedious, but should follow from the conditions on s′′.Md

that we obtain by inversion of (SILENT-S”) using rule Silent-state invariant.

The goal Four-origin policy for privately-held capabilities of the program is
similar to the previous one.

– Case cinvoke-compiled-to-context:
– Case creturn-to-compiled:
– Case creturn-to-context:

(Sketch): These cases are similar to the representative one above.

Back-Translation
Structure of the emulating context

Definition 89 (Main module of the emulating context).

mainModule(α)
def
= (“mainModule”, mainGlobalVars(α), mainModuleFuncs)

where mainGlobalVars and mainModuleFuncs are as defined below (Definitions 102 and 105).
We first give some auxiliary definitions.

Definition 90 (Context module IDs of a trace).

contextModIDs(α)
def
=

{mid | call(mid ,fid)_!_,_ ∈ α}

Definition 91 (Context function IDs of a trace).

contextFunIDs(α)
def
=

{“mid_fid” | call(mid ,fid)_!_,_ ∈ α}

Definition 92 (Number of arguments of a function inferred from either the trace α1 or the trace
α2).

∀v. call(mid ,fid)v!_,_ ∈ α1 ∨ call(mid ,fid)v!_,_ ∈ α2

=⇒
nArgs(“mid_fid”, α1, α2) = |v|

Definition 93 (Memory of a trace label).

mem(τ)
def
= ⊥

mem(X)
def
= ⊥

mem(ret _Md,_)
def
= Md

mem(call(_,_) _ _Md,_)
def
= Md

228

Definition 94 (Allocation status of a trace label).

nalloc(τ)
def
= ⊥

nalloc(X)
def
= ⊥

nalloc(ret _Md, n)
def
= n

nalloc(call(_,_) _ _Md, n)
def
= n

Definition 95 (Shared addresses throughout a trace prefix α).

sharedAddresses(α)
def
=
⋃
i

dom(mem(α(i)))

Definition 96 (Context addresses collected from a trace).

ctx_addresses(α)
def
=

⋃
{i | α(i)∈

•
?}

dom(mem(α(i))) \ dom(mem(α(i− 1)))

Definition 97 (Data segment that the context shares (collected from a trace)).

shareable_data_segment_ctx(α)
def
=

[min(ctx_addresses(α) ∩ [0,∞)),max(ctx_addresses(α) ∩ [0,∞)) + 1]

Definition 98 (A trace compatible with a program’s data segment).

data_segment_compatible_trace(α,Σ,∆,modIDs)
def
=

min(shareable_data_segment_ctx(α)) > max(static_addresses(Σ,∆,modIDs))

Definition 99 (A trace satisfies monotonic sharing).

monotonic_sharing(α)
def
=

∀i. mem(α(i+ 1)) ⊇ mem(α(i))

Definition 100 (A trace satisfies no-deallocation).

no_dealloc(α)
def
=

∀i. nalloc(α(i+ 1)) ≤ nalloc(α(i))

Definition 101 (Syntactically-sane trace).

syntactically_sane(α,Σ,∆,modIDs)
def
=

α ∈ AltX∗ ∧
no_dealloc(α) ∧
monotonic_sharing(α) ∧
data_segment_compatible_trace(α,Σ,∆,modIDs)

229

Definition 102 (Global variables of the module mainModule).

mainGlobalVars(α)
def
=

{“static_universal_array”, “current_trace_index”}
] {“arg_store_tIdx_fid_arg” | tIdx ∈ [0, |α|) ∧

fid ∈ contextFunIDs(α) ∧
arg ∈ [0, nArgs(fid, α)) }

] {“snapshot_tIdx_addr” | tIdx ∈ [0, |α|) ∧
addr ∈ sharedAddresses(α)

] {“own_allocation_ptr_tIdx” | tIdx ∈ [0, |α|)}

Before we give Definition 105 of the functions defined by the mainModule, we explain intuitively
what these functions are for. The purpose of the mainModule is to perform various bookkeeping
tasks. All the bookkeeping data is stored in the global variables mainGlobalVars which are statically
allocated (because we know upfront as a function of the trace α what variables we need). Thus,
for the bookkeeping, no extra memory allocation is performed. This is important because memory
allocation is an observable event. And, we do not want the bookkeeping that our source context will
perform to interfere with the events observable by the source program. Remember that intuitively
our goal is that observable source-level events mimic the target-level observable events precisely.

The bookkeeping tasks are initiated whenever the mainModule is informed that a call/return to
any of the context’s modules took place.

Definition 103 (The function readAndIncrementTraceIdx).

readAndIncrementTraceIdx
def
=

(mainModule,
readAndIncerementTraceIdx,
[ptrRetVal],

[],

[

Assign ptrRetVal current_trace_index ,

Assign addr(current_trace_index) current_trace_index + 1,

Return

])

Definition 104 (The functions saveArgs).

saveArgs(fid, tIdx, α)
def
=

(mainModule,

saveArgs_fid_tIdx,
[argVal_i | i ∈ [0, nArgs(fid, α)]],

[],

[Assign addr(arg_store_tIdx_fid_i) argVal_i | i ∈ [0, nArgs(fid, α))]

++

[Return])

230

Definition 105 (Functions of the module mainModule).

mainModuleFuncs(α)
def
=

{readAndIncrementTraceIdx} ∪
{saveArgs(fid, α) | fid ∈ contextFunIDs(α)}

Definition 106 (Constructing dereferences from path).

construct_derefs : Z→ E → E

construct_derefs([], expr)
def
= expr

construct_derefs(off :: p, expr)
def
= construct_derefs(p, deref(expr [off]))

Definition 107 (Constructing path to target address).

path : ({δ} × Z× Z× Z)→ Z→ DataMemory → Z
path_depthlimited : ({δ} × Z× Z× Z)→ Z→ DataMemory → N→ Z
find : ∀α, β. α→ (α→ Option β)→ Option (α× β)

find [] _ def
= None

find (x :: xs) f
def
= case f(x) of

| Some y → Some (x, y)

| None → find xs f

path_depthlimited((δ, σ, e,_), a,Md,−1)
def
= []

path_depthlimited((δ, σ, e,_), a,Md, k + 1)
def
=

if a ∈ [σ, e) then [a− σ]

else let f = λx. case Md(x) of

| (δ, σ′, e′,_) → let p = path_depthlimited((δ, σ′, e′,_), a,Md, k) in

case p of | [] → None | _ → Some p

| _ → None

in case find [σ, e) f of

| None → []

| Some (a′, p) → [a′ − σ] ++ p

path((δ, σ, e,_), a,Md)
def
= path_depthlimited((δ, σ, e,_), a,Md, |Md|)

Definition 108 (Construct address back-translation for addresses reachable from a capability ar-
gument).

cap_arg_reachable_map : ({δ} × Z× Z× Z)→ DataMemory → VarID → (Z→ E)

cap_arg_reachable_map(dc,Md, vid)
def
=⋃

a ∈ reachable_addresses({dc},Md)

a 7→ construct_derefs(path(dc, a,Md), vid)

231

Definition 109 (Construct address back-translation map from a call-/return to- context label).

n
∪ : ∀α, β. (α→ β)→ (α→ β)→ (α→ β)

m1

n
∪m2

def
= m1[a 7→ m2(a) | a ∈ dom(m2)]

args_back_translate : λ→ N→ (Z→ E)

args_back_translate(call(mid ,fid)v!Md, n, cur_idx)
def
=

n⋃
{cap_arg_reachable_map(v,Md, arg_mid_fid_i_cur_idx) | i ∈ [1, len(v)] ∧ v = v(i)}

Notice that Definition 109 provides a way for finding a valid capability for any reachable address (i.e.,
including also for every shared address). We assume that relying on this definition, we can define
functions that using these capabilities read the shared locations and stores them in mainModule’s
book-keeping variables.

Definition 110 (Diverging block of code).

diverge
def
= [JumpIfZero 0 0]

Definition 111 (Converging block of code).

converge
def
= [Exit]

Definition 112 (If-then-else in ImpMod).

ifnotzero-then-else : E → Cmd → Cmd → Cmd

ifnotzero-then-else(econd , cmdsthen , cmdselse)
def
=

[JumpIfZero econd |cmdsthen |+ 2]

++ cmdsthen

++ [JumpIfZero 0 |cmdselse |+ 1]

++ cmdselse

Definition 113 (Switch-block for integers in ImpMod).

switch : E → Z→ Cmd → Cmd

switch(_, [], [])
def
= []

switch(econd , z :: zl , cmdsl :: cmdsl_per_val)
def
=

ifnotzero-then-else(econd − z, switch(econd , zl , cmdsl_per_val), cmdsl)

Definition 114 (Upcoming commands at an execution state).

upcoming_commands ⊆ ProgState × Cmd

upcoming_commands(s, cmds) ⇐⇒
s.pc = (fid ,n,_) ∧ ∀i ∈ [0, |cmds|). commands(s.Fd(fid))(n + i) = cmds(i)

232

Lemma 159 (If-then-else construction is correct).

∀s,Σ,∆, β,MVar ,Fdecond , cmdsthen , cmdselse , cmds.

upcoming_commands(s, ifnotzero-then-else(econd , cmdsthen , cmdselse) ++ cmds)

=⇒
(econd ,Σ,∆, β,MVar ,Fd , s.Mem, s.Φ, s.pc ⇓ 0 =⇒
Σ; ∆;β; MVar ; Fd ` s→ s′ ∧ upcoming_commands(s′, cmdselse++cmds)) ∧
(econd ,Σ,∆, β,MVar ,Fd , s.Mem, s.Φ, s.pc ⇓ v ∧ v 6= 0 =⇒
Σ; ∆;β; MVar ; Fd ` s→ s′ ∧ upcoming_commands(s′, cmdsthen))

Proof. Follows from Definitions 112 and 114 and rules Jump-zero and Jump-non-zero.

Lemma 160 (Switch construction is correct).

∀i, s,Σ; ∆;β; MVar ; Fd , econd , zlist , cmdslist .

|zlist | = |cmdslist | ∧
upcoming_commands(s, switch(econd , zlist , cmdslist)) ∧
econd ,Σ,∆, β,MVar ,Fd , s.Mem, s.Φ, s.pc ⇓ zlist(i)

=⇒
∃s′. Σ; ∆;β; MVar ; Fd ` s→i+1 s′ ∧
upcoming_commands(s′, cmdslist(i))

Proof. Prove it by nested induction on zlist and on i after unfolding Definition 113 and then inversion
using rule Evaluate-expr-binop. Follows from Lemma 159.

Lemma 161 (A converge block leads to a terminal state).

∀s. upcoming_commands(s, converge) =⇒ ∃st. s→∗ st ∧ `t st

Proof. Follows by Definition 40 of a terminal state “`t”, after unfolding Definitions 110 and 114, and
taking st to be s.

Lemma 162 (A diverge block does not lead to a terminal state).

∀s. upcoming_commands(s, diverge) =⇒ @st. s→∗ st ∧ `t st

Proof. Follows by unfolding Definitions 110 and 114, then simulating execution and noticing from
case Jump-zero that the following holds by induction on s→∗ s′:

∀s′. s→∗ s′ =⇒ upcoming_commands(s′, [JumpIfZero 0 0])

Thus, by Definition 40, we get our thesis.

233

Lemma 163 (Effect of calling readAndIncrementTraceIdx).

∀Kmod ,Kfun ,mods,Σ; ∆;β; MVar ; Fd , s, α, v, vid .

emulating_modules(α) = mods ∧
Kmod ;Kfun ; mods n_; Σ; ∆;β; MVar ; Fd `exec s ∧
s.Mem(∆(mainModule).1 + β(current_trace_index ,⊥,mainModule).1) = v ∧ v ∈ Z ∧
upcoming_commands(s, [Call readAndIncrementTraceIdx addr(vid)] ++ cmds) ∧
vid /∈ localIDs(Fd(pc.fid)) ∪ args(Fd(pc.fid)) ∧
Σ(mainModule).1 + s.Φ(mainModule) + 1 < Σ(mainModule).2 ∧
addr(vid),Σ; ∆;β; MVar ; Fd ⇓ (δ, σ, e, off) ∧
[σ, e) ∩ Σ(moduleID(Fd(pc.fid))) = ∅ ∧ σ ≤ σ + off < e ∧
moduleID(Fd(pc.fid)) 6= mainModule

=⇒
∃s′. Σ; ∆;β; MVar ; Fd ` s→4 s′ ∧
s′.Mem = s.Mem

[Σ(mainModule).1 + s.Φ(mainModule) + 1

+β(ptrRetVal , readAndIncrementTraceIdx ,mainModule) 7→ _]

[∆(mainModule).1 + β(current_trace_index ,⊥,mainModule).1] 7→ v + 1]

[∆(moduleID(Fd(pc.fid))).1 + β(vid ,⊥, moduleID(Fd(pc.fid))).1 7→ v] ∧
s′.Φ = s.Φ ∧
upcoming_commands(s′, cmds)

Proof.

• We first show ∃s1. s→ s1.

– We apply rule Call obtaining the following subgoals:
∗ commands(Fd(pc.fid))(pc.n) = Call fidcall e

Immediate by unfolding Definition 114 instantiating fidcall = readAndIncrementTraceIdx .
∗ Assuming modID = moduleID(Fd(fidcall)), and frameSize = frameSize(Fd(fidcall)),

we prove:
Σ(modID).1 + Φ(modID) + frameSize < Σ(modID).2
By Definition 103, we know frameSize(Fd(readAndIncrementTraceIdx)) = 1.
Thus, after substitution in the goal, it becomes immediate by assumptions.

∗ addr(vid),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, σ, e, off)

∗ [σ, e) ∩ Σ(curModID) = ∅
These two goals are immediate by assumption.

– And we know by unfolding the assumptions using Definition 124 then Definitions 89, 103
and 105 that we obtain s1 with
(S1-UPCOMING-CMDS):
upcoming_commands(s1, [
Assign ptrRetVal current_trace_index ,
Assign addr(current_trace_index) current_trace_index + 1,
Return
])

(S1-PC):
s1.pc = (readAndIncrementTraceIdx , 0)

234

(S1-STK):
s1.stk = [s.pc] ++ s.stk

(S1-PHI):
s1.Φ = s.Φ[mainModule 7→ s.Φ(mainModule) + 1]

(S1-MEM):
s1.Mem = s.Mem[Σ(mainModule).1 + s1.Φ(mainModule)+
β(ptrRetVal , readAndIncrementTraceIdx ,mainModule).1 7→ (δ, σ, e, off)]

• So, now we show ∃s2. s1 → s2

– We apply rule Assign-to-var-or-arr to obtain the following subgoals:

∗ commands(Fd(s1 .pc.fid))(s1.pc.n) = Assign el er
Immediate by (S1-PC) and (S1-UPCOMING-CMDS) after unfolding using Defini-
tion 114.

∗ ptrRetVal ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, σ, e, off)
We apply rule Evaluate-expr-var then Evaluate-expr-addr-local obtaining the follow-
ing subgoals:
· ptrRetval ∈ localIDs(Fd(readAndIncrementTraceIdx)) ∪
args(Fd(readAndIncrementTraceIdx))
Immediate by Definition 103.
· β(ptrRetVal , readAndIncrementTraceIdx ,mainModule) = [σp, ep)

· Σ(mainModule).1 + Φ(mainModule) + σp < Σ(mainModule).1 + Φ(mainModule) + ep
These are immediate by inversion of the assumptions using rules Exec-state-src,
and Well-formed program and parameters.
· s1.Mem(Σ(mainModule).1 + s1.Φ(mainModule) + σp) = (δ, σ, e, off)
Immediate by (S1-MEM).

∗ current_trace_index ,Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ v
We apply rule Evaluate-expr-var, and the generated subgoals are immediate by as-
sumptions.

∗ ∀s′, e′. v = (δ, s′, e′,_) =⇒ _
Vacuously true by assumptions.

∗ σ ≤ σ + off < e
Immediate by assumptions.

– And we know that s2 satisfies
(S2-MEM):
s2.Mem = s1.Mem[σ + off 7→ v], and
(S2-PC):
s2.pc = (readAndIncrementTraceIdx , 1)

• Next, we show ∃s3. s2 → s3

– We apply rule Assign-to-var-or-arr to obtain the following subgoals:

∗ commands(Fd(s2 .pc.fid))(s2.pc.n) = Assign el er
Immediate by (S2-PC), (S1-PC) and (S1-UPCOMING-CMDS) after unfolding using
Definition 114.

∗ addr(current_trace_index),Σ,∆, β,MVar ,Fd ,Mem,Φ, pc ⇓ (δ, σc, ec, off c)
We apply rule Evaluate-expr-addr-module and obtain the following subgoals:
· current_trace_index /∈ localIDs(Fd(readAndIncrementTraceIdx)) ∪
args(Fd(readAndIncrementTraceIdx))
Immediate by Definition 103.

235

· current_trace_index ∈ MVar(mainModule)
Immediate by Definitions 89 and 102.
· β(current_trace_index ,⊥,mainModule) = [σ′c, e

′
c)

Immediate by inversion of the assumptions using rules Exec-state-src, and Well-
formed program and parameters.

We obtain the following substitutions:
σc = ∆(mainModule).1 + σ′c, ec = ∆(mainModule).1 + e′c, off c = 0

∗ current_trace_index + 1,Σ; ∆;β; MVar ; Fd ⇓ v + 1
We apply rule Evaluate-expr-binop then rules Evaluate-expr-const in parallel with
(rule Evaluate-expr-var then Evaluate-expr-addr-module).
All subgoals are immediate by assumptions and Definitions 89 and 102.
∗ ∀s′, e′. v + 1 = (δ, s′, e′,_) =⇒ _

Vacuously true by disjointness of Z and data capabilities.
∗ σc < ec

Immediate by inversion of the assumptions using rules Exec-state-src, and Well-
formed program and parameters.

– And we know that s3 satisfies
(S3-MEM):
s3.Mem = s2.Mem[σc + off c 7→ v + 1], and
(S3-PC):
s3.pc = (readAndIncrementTraceIdx , 2)

• And finally, we show ∃s4. s3 → s4

– We apply rule Return to obtain the following subgoals:

∗ s3.stk 6= nil

This is immediate by (S1-STK), and observing that s3.stk = s2.stk = s1.stk .

– By (S3-PC), Definition 103, and rule Return, we know
(S4-PHI):
s4.Φ = s3.Φ[mainModule 7→ s3.Φ(mainModule)− 1], and
(S4-PC):
s4.pc = inc(top(s3.stk))

• Thus, we know s→4 s4.

• We now show:
s4.Mem =
s.Mem[Σ(mainModule).1 + s.Φ(mainModule) + 1 7→ _]

[∆(mainModule).1 + β(current_trace_index ,⊥,mainModule).1] 7→ v + 1]
[∆(moduleID(Fd(pc.fid))).1 + β(vid ,⊥, moduleID(Fd(pc.fid))).1 7→ v]

This follows by (S1-MEM), (S2-MEM), (S3-MEM) and by noticing that s4.Mem = s3.Mem
by rule Return.

But, it remains to show that the update locations are distinct:
∆(moduleID(Fd(pc.fid))).1 + β(vid ,⊥, moduleID(Fd(pc.fid))).1 6=
∆(mainModule).1 + β(current_trace_index ,⊥,mainModule).1 6=
Σ(mainModule).1 + s.Φ(mainModule) + 1

This follows from assumption moduleID(Fd(pc.fid)) 6= mainModule and by the disjointness
preconditions given by inversion of the assumptions using Exec-state-src and Well-formed
program and parameters.

236

• Then, we show:
s4.Φ = s.Φ

This follows from (S1-PHI) and (S4-PHI) together with observing that s3.Φ = s2.Φ = s1.Φ.

• Finally, we show upcoming_commands(s4, cmds)

Immediate by substitution from (S4-PC), (S1-STK), s3.stk = s2.stk = s1.stk , and assumption
upcoming_commands(s, [Call readAndIncrementTraceIdx addr(vid)] ++ cmds) after unfolding
it using Definition 114.

This concludes the proof of Lemma 163.

Definition 115 (Independent set of assignments). A set of assignment commands is independent
if all assigned addresses are distinct.

Lemma 164 (Effect of calling saveArgs).

∀Kmod ,Kfun ,mods,Σ; ∆;β; MVar ; Fd , s, α, fid, tIdx, n, argNames, argVals

emulating_modules(α) = mods ∧
Kmod ;Kfun ; mods n_; Σ; ∆;β; MVar ; Fd `exec s ∧
n = nArgs(fid, α) = |argNames| = |argVals| ∧
s.pc.fid = fid ∧
∀i ∈ [0, n).

argNames(i) ∈ args(Fd(s.pc.fid)) ∧
s.Mem(Σ(moduleID(Fd(s.pc.fid))).1 + s.Φ(moduleID(Fd(s.pc.fid)))

+ β(argNames(i), s.pc.fid , moduleID(Fd(s.pc.fid))).1) = argVals(i) ∧
argVals(i) = (δ,_,_,_) =⇒ [argVals(i).σ, argVals(i).e) ∩ Σ(moduleID(Fd(s.pc.fid))) = ∅

upcoming_commands(s, [Call saveArgs_fid_tIdx argNames] ++ cmds) ∧
Σ(mainModule).1 + s.Φ(mainModule) + n < Σ(mainModule).2 ∧
moduleID(Fd(s.pc.fid)) 6= mainModule

=⇒
∃s′. Σ; ∆;β; MVar ; Fd ` s→n+2 s′ ∧
s′.Mem = s.Mem

[∆(mainModule).1 + β(arg_store_tIdx_fid_i,⊥,mainModule).1 7→ argVals(i) | i ∈ [0, n)]

[Σ(mainModule).1 + s.Φ(mainModule) + β(argNames(i), saveArgs_fid_tIdx,mainModule)

7→ argVals(i) | i ∈ [0, n)] ∧
s′.Φ = s.Φ ∧
upcoming_commands(s′, cmds)

Proof.

• We prove ∃s−1. s→ s−1.

– We choose s−1 such that:
(S-MINUS-1-PC):
s−1.pc = (saveArgs_fid_tIdx, 0)
(S-MINUS-1-STK):
s−1.stk = s.stk ++ [s.pc],

237

(S-MINUS-1-MEM):
s−1.Mem = s.Mem
[Σ(mainModule).1 + s.Φ(mainModule) + β(argVal_i, saveArgs_fid_tIdx,mainModule).1
7→ argVals(i) | i ∈ [0, n)],
(S-MINUS-1-PHI):
s−1.Φ = s.Φ[mainModule 7→ s.Φ(mainModule) + n], and
(S-MINUS-1-UPCOMING-CMDS):
upcoming_commands(s−1,
[Assign addr(arg_store_tIdx_fid_i) argVal_i | i ∈ [0, n)]
++
[Return])

– We apply rule Call to obtain the following subgoals:

∗ commands(Fd(pc.fid))(pc.n) = Call fidcall e
Immediate by unfolding Definition 114 instantiating fidcall = saveArgs_fid_tIdx.

∗ Assuming modID = moduleID(Fd(fidcall)), and frameSize = frameSize(Fd(fidcall)),
we prove:
Σ(modID).1 + Φ(modID) + frameSize < Σ(modID).2
By Definition 104, we know frameSize(Fd(saveArgs_fid_tIdx)) = n.
Thus, after substitution in the goal, it becomes immediate by assumptions.

∗ ∀i ∈ [0, n). argNames(i),Σ,∆, β,MVar ,Fd , s.Mem, s.Φ, s.pc ⇓ argVals(i)
Here, we fix an arbitrary i, and we apply rule Evaluate-expr-var then Evaluate-expr-
addr-local obtaining the following subgoals:
· argNames(i) ∈ args(Fd(s.pc.fid))
Immediate by assumptions.
· β(argNames(i), s.pc.fid , moduleID(Fd(s.pc.fid))) = [σ, e)
Immediate by assumptions.
· φ = Σ(moduleID(Fd(s.pc.fid))).1 + Φ(moduleID(Fd(s.pc.fid)))
This subgoal is immediate by the fact that the given keys exist in the maps Σ,Φ,
and β which is immediate by inverting the assumptions using Exec-state-src then
Well-formed program and parameters.
· σ < e
Follows by inversion of the assumptions using Well-formed program and param-
eters.
· s.Mem(σ + φ) = argVals(i)
Follows by assumptions.

∗ ∀i ∈ [0, n). argVals(i) = (δ,_,_,_) =⇒ [argVals(i).σ, argVals(i).e) ∩ Σ(curModID) = ∅
Immediate by assumptions.

∗ The remaining subgoals are immediate by (S-MINUS-1-STK), (S-MINUS-1-MEM),
and (S-MINUS-1-PHI). Also, (S-MINUS-1-UPCOMING-CMDS) becomes a proof
obligation after substitution, and it follows immediately by Definition 104.

• Next, our goal is:
∃sn−1. s−1 →n sn−1 ∧
sn−1.Φ = s−1.Φ ∧
sn−1.Mem = s−1.Mem
[∆(mainModule).1 + β(arg_store_tIdx_fid_i,⊥,mainModule).1 7→ argVals(i) | i ∈ [0, n)] ∧
sn−1.stk = s−1.stk ∧
upcoming_commands(sn−1, [Return])

We distinguish the following two cases for n:

238

– Case n = 0:
Here, our goal is immediate by choosing s−1, and by the reflexivity of →0.

– Case n > 0:
∗ First, we prove the following by induction on k:

k ∈ [0, n) =⇒
∃sk, sk−1.

sk−1 → sk ∧
sk.Mem = sk−1.Mem

[∆(mainModule).1 + β(arg_store_tIdx_fid_k,⊥,mainModule).1 7→ argVals(k)] ∧
sk.Φ = s−1.Φ ∧
sk.stk = s−1.stk ∧
upcoming_commands(sk,

[Assign addr(arg_store_tIdx_fid_i) argVal_i | i ∈ [k + 1, n)]

++

[Return])

· Base case (k = 0):
We choose the state s−1 that is given above in the proof of s→ s−1.

We choose s0 such that:
(S0-STK):
s0.stk = s−1.stk ,
(S0-MEM):
s0.Mem = s−1.Mem
[∆(mainModule).1 + β(arg_store_tIdx_fid_0,⊥,mainModule).1 7→ argVals(0)],
(S0-PHI):
s0.Φ = s−1.Φ
Now we prove that s−1 → s0 and
upcoming_commands(s0,
[Assign addr(arg_store_tIdx_fid_i) argVal_i | i ∈ [1, n)]
++
[Return])
Using (S-MINUS-1-UPCOMING-CMDS), and Definition 114 we know:
upcoming_commands(s−1, [Assign addr(arg_store_tIdx_fid_0) argVal_0])
Thus, we apply rule Assign-to-var-or-arr to our goal obtaining the following sub-
goals:
1. addr(arg_store_tIdx_fid_0),Σ,∆, β,MVar ,Fd , s−1.Mem, s−1.Φ, s−1.pc ⇓ (δ, σ0, e0, off 0)

Here, we apply rule Evaluate-expr-addr-module all of whose subgoals follow
by simplification after unfolding the lemma assumptions using Definitions 89,
102, 104, 105 and 124, inversion of the lemma assumptions using Well-formed
program and parameters, and substitution using (S-MINUS-1-PC).

2. argVal_0,Σ,∆, β,MVar ,Fd , s−1.Mem, s−1.Φ, s−1.pc ⇓ argVals(0)
Here, we apply rules Evaluate-expr-var then Evaluate-expr-addr-local obtaining
the following subgoals:

(a) argVal_0 ∈ args(saveArgs_fid_tIdx)
Immediate by Definition 104 and the assumptions about n after unfolding
the assumptions using Definitions 89 and 124.

(b) s−1.Mem(Σ(mainModule).1 + s−1.Φ(mainModule)
+ β(argVal_0, saveArgs_fid_tIdx,mainModule).1) = argVals(0)

239

Immediate by (S-MINUS-1-MEM).
(c) The remaining subgoals follow from Well-formed program and parameters

by unfolding the assumptions using first Exec-state-src.
3. σ0 < e0

Follows from unfolding the assumptions using Exec-state-src then Well-formed
program and parameters.

4. argVals(0) = (δ,_,_,_) =⇒ [argVals(0).σ, argVals(0).e) ∩ Σ(mainModule) = ∅
Assume the contrary (for contradiction)
(ARGVAL0-IS-STACK-CAPABILITY):
argVals(0) = (δ,_,_,_) ∧ [argVals(0).σ, argVals(0).e) ∩ Σ(mainModule) 6= ∅
Now, by inversion of the assumptions using Exec-state-src,
we know by instantiating the precondition “Stack addresses only live on
the stack”
using (ARGVAL0-IS-STACK-CAPABILITY) that
(CONTRADICTORY-LOCATION-FOR-ARGVAL0):
∀a s.Mem(a) = argVals(0) =⇒ a ∈ Σ(mainModule)
Now, we instantiate (CONTRADICTORY-LOCATION-FOR-ARGVAL0) us-
ing the assumption
s.Mem(Σ(moduleID(Fd(s.pc.fid))).1 + s.Φ(moduleID(Fd(s.pc.fid)))
+ β(argNames(0), s.pc.fid , moduleID(Fd(s.pc.fid))).1) = argVals(0))
to conclude that:
Σ(moduleID(Fd(s.pc.fid))).1 + s.Φ(moduleID(Fd(s.pc.fid)))
+ β(argNames(0), s.pc.fid , moduleID(Fd(s.pc.fid))).1 ∈ Σ(mainModule)
We can derive a contradiction from this last statement using the preconditions
of Well-formed program and parameters together with the lemma assumption
moduleID(Fd(s.pc.fid)) 6= mainModule.

5. The remaining subgoals that justify the choice of (S0-MEM), (S0-STK), and
(S0-PHI) are immediate.

· Inductive case (0 < k < n):
The induction step is very similar to the base case. We avoid repetition.

This concludes the inductive proof.
∗ We instantiate the inductive statement obtained above with k = n− 1 obtaining our

goal.

This concludes the proof for case n > 0.

• Now, it remains to show that:
∃s′. sn−1 → s′ ∧
s′.Mem = sn−1.Mem ∧
s′.Φ = sn−1.Φ[mainModule 7→ sn−1.Φ(mainModule)− n]

Here, we apply rule Return obtaining the following subgoals:

– sn−1.stk 6= nil, and

– upcoming_commands(s′, cmds)

These follow from (S-MINUS-1-STK), and (S-N-1-STK) together with our lemma as-
sumption about the upcoming commands of s after unfolding Definition 114.

This concludes the proof of Lemma 164.

240

Definition 116 (Logged memory correct).

logged_mem_correct(s)α,i,∆,β
def
=

∀j, a.
j < i ∧
a ∈ dom(mem(α(j)))

=⇒
s.Mem(∆(mainModule).1 + β(snapshot_j_a,⊥,mainModule)) = mem(α(j))(a)

Definition 117 (Arguments saved correctly).

arguments_saved_correctly(s)α,i,∆,β
def
=

∀j, argIdx ,fid .

j < i ∧
α(j) = call(_,fid)v!_ ∧
argIdx ∈ [0, len(v))

=⇒
s.Mem(∆(mainModule).1 + β(arg_store_j_fid_argIdx ,⊥,mainModule)) = v(argIdx)

Definition 118 (Allocation pointers saved).

allocation_pointers_saved(s)α,i,∆,β
def
=

∀j.
j < i ∧

α(j) ∈
•
?

=⇒
s.Mem(∆(mainModule).1 + β(own_allocation_ptr_j,⊥,mainModule)) = (δ, nalloc(α(j)) + 1, nalloc(α(j − 1)), 0)

Claim 37 (There is a source function that does allocations according to allocation_pointers_saved).

∃cmd .

upcoming_commands(s, [cmd]) ∧
allocation_pointers_saved(s)α,i,∆,β ∧
s→ s′

=⇒
allocation_pointers_saved(s′)α,i+1,∆,β

Definition 119 (Emulate call or return or exit command of i-th output action).

emulate_ith_action_last_cmd(α, i)
def
=

[Call fid [emulate_value(v(i), α(: i)) | i ∈ [0, len(v))]] where α(i) = call(_,fid)?v_
[Return] where α(i) = ret_
[Exit] where α(i) = X

(Notice that the existence of a function emulate_value(v(i), α(: i)) relies on Definition 108.)

241

Definition 120 (Emulate i-th output action).

emulate_ith_action(α, i, mid, fid)
def
=

[Call readAndIncrementTraceIdx addr(current_trace_index_mid),

Call saveArgs_fid_i argNamesList(α, i, fid),

Call saveSnapshot_i − 1 ,

Call doAllocations_i ,

Call mimicMemory_i

]

++

emulate_ith_action_last_cmd(α, i)

Definition 121 (Responses for suffix).

emulate_responses_for_suffix(α, i, mid, fid)
def
=

switch(

current_trace_index_mid,
[i, i+ 2, i+ 4, · · · , |α|),
[emulate_ith_action(α, j, mid, fid) ++ emulate_responses_for_suffix(α, j + 2, mid, fid) | j ∈ [i, i+ 2, i+ 4, · · · , |α|)]
)

Lemma 165 (Adequacy of emulate_responses_for_suffix).

(Cemul ,∆emul ,Σemul , βemul ,Kmodemul ,Kfunemul) = emulate(α, p,∆,Σ, β) ∧
p′ = Cemul n p ∧
(∆′,Σ′, β′,K ′mod ,K

′
fun) =

(∆]∆emul ,Σ] Σemul , β ∪ βemul ,Kmod]Kmodemul ,Kfun]Kfunemul) ∧
p′ `exec s ∧
upcoming_commands(s, emulate_responses_for_suffix(α, i, moduleID(fd_map(p)(s.pc.fid)), s.pc.fid)) ∧
=⇒

∃s′. s,_⇀
α(i)−−⇀[p] s

′,_

Proof.
After unfolding Definition 121 and Definition 120, the goal follows by successively instantiating
Lemma 163 then Lemma 164, and Claim 37, together with unproved assumptions about the existence
of functions saveSnapshot , and mimicMemory which rely on Definition 108.

Definition 122 (Emulating function).

emulating_function(α, mid, fid)
def
=

(

mid,

fid,

[argVal_i | i ∈ [0, nArgs(fid, α))],

[],

emulate_responses_for_suffix(α, 0, mid, fid)

)

242

Definition 123 (Emulating module).

emulating_module(α, mid)
def
=

(

mid,

[current_trace_index_mid],

{emulating_function(α, mid, fid) | α(i) = call(mid, fid)_!_}
)

Definition 124 (Emulating modules).

emulating_modules(α)
def
= [mainModule(α)]++[emulating_module(α, mid) | mid ∈ contextModIDs(α)]

Definition 125 (The emulating context).

emulate(α, p,∆,Σ, β,Kmod ,Kfun)
def
=

(emulating_modules(α),

data_segment_map_extension(p, emulating_modules(α),∆),

stack_map_extension(p, emulating_modules(α),Σ),

variable_bounds_extension(p, emulating_modules(α), β),

Kmod_extension(p, emulating_modules(α),Kmod),

Kfun_extension(p, emulating_modules(α),Kfun))

Lemma 166 (The emulating context is linkable and loadable).

(Cemul ,∆emul ,Σemul , βemul ,Kmodemul ,Kfunemul) = emulate(α, p,∆,Σ, β,Kmod ,Kfun) ∧
Cn JpK∆,Σ,β,Kmod ,Kfun

= bt′c ∧

initial_state(t′ + ω,main_module(t′)), ∅⇀α−⇀[JpK∆,Σ,β,Kmod ,Kfun
],∇ s

′
t, ς
′

=⇒
∃m.
Cemul [p]∆,Σ = m ∧
wfp_params(m,

∆]∆emul ,Σ] Σemul , β ∪ βemul ,Kmod]Kmodemul ,Kfun]Kfunemul) ∧
main_module(m) 6= None

Proof.
(Sketch) By inverting the assumption using rule valid-linking, and unfolding it using Definition 125
then Definitions 90 and 91,
we are able to instantiate rule Valid-linking-src satisfying our goal after instantiating Lemma 92
using our assumption.

Then, subgoal wfp_params follows by applying rule Well-formed program and parameters where
all the generated subgoals follow by unfolding Definition 125 recursively (assuming there are suit-
able definitions for extending the linking and loading information, i.e., suitable definitions for
data_segment_map_extension, stack_map_extension, variable_bounds_extension, Kmod_extension,
and Kfun_extension).

243

Definition 126 (Emulate invariants).

emulate_invariants(s)α,i,p,∆,Σ,β
def
=

(∀pc ∈ s.stk , s′. s′.pc = pc =⇒
∃j. j ≤ i ∧ upcoming_commands(s′, emulate_responses_for_suffix(α, j, moduleID(fd_map(p)(pc.fid)), pc.fid))) ∧

(α(i) ∈
•
? =⇒

∃j. j ≤ i ∧ upcoming_commands(s, emulate_responses_for_suffix(α, j, moduleID(fd_map(p)(s.pc.fid)), s.pc.fid))) ∧
logged_mem_correct(s)α,i,∆,β ∧
arguments_saved_correctly(s)α,i,∆,β ∧
allocation_pointers_saved(s)α,i,∆,β

Lemma 167 (Initial state of emulate satisfies emulate_invariants).

(Cemul ,∆emul ,Σemul , βemul ,Kmodemul ,Kfunemul) = emulate(α, p,∆,Σ, β) ∧
p′ = Cemul n p ∧
(∆′,Σ′, β′,K ′mod ,K

′
fun) =

(∆]∆emul ,Σ] Σemul , β ∪ βemul ,Kmod]Kmodemul ,Kfun]Kfunemul) ∧
semul = initial_state(p′,∆′,Σ′,main_module(p′))

=⇒
emulate_invariants(semul)α,0,p,∆′,Σ′,β′

Proof.
By unfolding Definition 126, we have the following subgoals:

• Vacuous subgoal because s.stk = nil

• Assuming α(i) ∈
•
?, show:

upcoming_commands(semul , emulate_responses_for_suffix(α, i, moduleID(fd_map(p)(semul .pc.fid)), semul .pc.fid))

Follows from unfolding Definition 125 then Definition 124 then Definition 123.

• logged_mem_correct(semul)_,0,_

Immediate after unfolding Definition 116 by noticing that α(−1) = ⊥.

• arguments_saved_correctly(semul)_,0,_

Immediate after unfolding Definition 117 by noticing that α(−1) = ⊥.

• allocation_pointers_saved(semul)_,0,_

Immediate after unfolding Definition 118 by noticing that α(−1) = ⊥.

Lemma 168 (Adequacy of emulate_invariants).

Cemul n p `exec semul ∧

α(i) ∈
•
? ∧

emulate_invariants(semul)α,i,p,∆,Σ,β

=⇒

∃s′emul . semul ,_⇀
α(i)−−⇀[p] s

′
emul ,_

244

Proof.
After unfolding the assumption using Definition 126, the goal follows from Lemma 165.

Lemma 169 (Preservation of emulate_invariants).

Cemul n p `exec semul ∧
emulate_invariants(semul)α,i,p,∆,Σ,β

semul ,_⇀
α(i)−−⇀[p] s

′
emul ,_

=⇒
emulate_invariants(semul)α,i+1,p,∆,Σ,β

Proof.
(Sketch) After unfolding Definition 121 then instantiating Lemma 160, this should follow from
Lemma 163 then Lemma 164, and Claim 37, together with unproved assumptions about the existence
of functions saveSnapshot , and mimicMemory which rely on Definition 108.

6.4 Trace-Indexed Cross-Language (TrICL) simulation relation
Definition 127 (Trace-Indexed Cross-Language (TrICL) simulation relation).

TrICL(semul , scompiled , sgiven , ς)α,i,p,Cemul ,∆,Σ,β
def
=

emulate_invariants(semul)α,i,p,∆,Σ,β ∧
semul

∼=Cemul n p scompiled ∧

(α(i) ∈
•
! =⇒ scompiled , ς ≈[JpK] sgiven , ς) ∧

(α(i) ∈
•
? =⇒ scompiled , ς ∼[JpK],α,i sgiven , ς)

where

s1, ς1 ∼[p],α,i s2, ς2
def
= s1, ς1 ∼[p],ρ[p](s1,ς1) s2, ς2

(Notice that at border states (s, ς) where program part p is not executing, the expression ρ[p](s, ς)
gives the domain of the private memory of p at the border.)

Lemma 170 (TrICL satisfies the alternating simulation condition).

α ∈ Alt ∧
TrICL(semul , scompiled , sgiven , ς)α,i,p,Cemul ,∆,Σ,β ∧
_n semul `exec semul ∧
Cgiven n JpK `border α[: i], sgiven , ς ∧

sgiven ,ς ⇀
α(i)−−⇀[JpK] s

′
given ,ς

′

=⇒
∃s′compiled , s

′
emul .

scompiled ,ς ⇀
α(i)−−⇀[JpK] s

′
compiled ,ς

′ ∧

semul ,ς ⇀
α(i)−−⇀[p] s

′
emul ,ς

′ ∧
TrICL(s′emul , s

′
compiled , s

′
given , ς

′)α,i+1,p,Cemul ,∆,Σ,β

245

Proof.
By α ∈ Alt (unfolding Definition 69),
it suffices to distinguish the following two cases:

• Case α(i) ∈
•
!:

By unfolding the assumption using Definition 127, we have:
(EMUL-INVAR): emulate_invariants(semul)α,i,p,∆,Σ,β

(COMPILER-REL): semul
∼=Cemul n p scompiled

(STRONG-SIM): scompiled , ς ≈[JpK] sgiven , ς

Here, we can instantiate Lemma 149 (Weakening of strong similarity) using (STRONG-SIM)
and the given step to obtain:

(G1): scompiled ,ς ⇀
α(i)−−⇀[JpK] s

′
compiled ,ς

′

and
(G2): s′compiled , ς

′ ∼JpK,α,i+1 s
′
given , ς

′

But then using (G1), and (COMPILER-REL), we can instantiate Lemma 130 (lifted compiler
backward-simulation) to obtain:

(G3): semul ,ς ⇀
α(i)−−⇀[p] s

′
emul ,ς

′

and
(G4): s′emul

∼=Cemul n p s
′
compiled

But then using (G3) and (EMUL-INVAR), we can instantiate Lemma 169 (preservation of the
emulate invariants) to obtain:

(G5): emulate_invariants(semul)α,i+1,p,∆,Σ,β

After (G1), (G2), (G3), (G4), and (G5), no subgoals remain, so this concludes this case.

• Case α(i) ∈
•
?:

By unfolding the assumption using Definition 127, we have:
(EMUL-INVAR): emulate_invariants(semul)α,i,p,∆,Σ,β

(COMPILER-REL): semul
∼=Cemul n p scompiled

(WEAK-SIM): scompiled , ς ∼JpK,α,i sgiven , ς

Here, we can instantiate Lemma 168 (adequacy of the emulate invariants) using (EMUL-
INVAR) to obtain:

(G1): semul ,ς ⇀
α(i)−−⇀[p] s

′
emul ,ς

′

(Notice that α(i) determines ς ′)

Then, we can instantiate Lemma 169 (preservation of the emulate invariants) using (G1) above
to obtain:
(G2): emulate_invariants(semul)α,i+1,p,∆,Σ,β

Also, using the same emulating step (G1), together with (COMPILER-REL), we can instan-
tiate Lemma 129 (lifted compiler forward-simulation) to obtain:

246

(G3): scompiled ,ς ⇀
α(i)−−⇀[JpK] s

′
compiled ,ς

′

and
(G4): s′emul

∼=Cemul n p s
′
compiled

But then using the last step (G3), the given step (from the assumption), and (WEAK-SIM)
we can instantiate the strengthening lemma (Lemma 153) to obtain:
(G5): s′compiled , ς

′ ≈[JpK] s
′
given , ς

′

After (G1), (G2), (G3), (G4), and (G5), no subgoals remain, so this concludes this case.

This concludes the proof of Lemma 170.

Lemma 171 (Initial states are TrICL-related).

α ∈ Trω,∇(JpK∆,Σ,β,Kmod ,Kfun
) ∧

(Cemul ,∆emul ,Σemul , βemul ,Kmodemul ,Kfunemul) = emulate(α, p,∆,Σ, β) ∧
p′ = Cemul n p ∧
(∆′,Σ′, β′,K ′mod ,K

′
fun) =

(∆]∆emul ,Σ] Σemul , β ∪ βemul ,Kmod]Kmodemul ,Kfun]Kfunemul) ∧
semul = initial_state(p′,∆′,Σ′,main_module(p′)) ∧
scompiled = initial_state(Jp′K∆′,Σ′,β′,K′mod ,K

′
fun
,main_module(p′)) ∧

sgiven = initial_state(Cgiven n JpK∆,Σ,β,Kmod ,Kfun
,main_module(p′))

=⇒
TrICL(semul , scompiled , sgiven , ∅)α,0,p,Cemul ,∆′,Σ′,β′

Proof.
By unfolding Definition 127, we have the following subgoals:

• emulate invariants:
Follows by instantiating Lemma 167.

• semul
∼=Cemul n p scompiled :

Follows by instantiating Lemma 100.

• Assuming α(0) ∈
•
!, show scompiled , ς ≈[JpK] sgiven , ς:

Here, know by relying on Lemma 166, and by distinguishing the cases for α(i) that:
sgiven .pcc * dom(Cgiven .Mc).
Thus, our goal follows by Lemma 135.

• Assuming α(0) ∈
•
?, show scompiled , ς ∼JpK,α,i sgiven , ς:

Here, know by relying on Lemma 166 and by distinguishing the cases for α(i) that:
sgiven .pcc ⊆ dom(Cgiven .Mc)

Thus, our goal follows by Lemma 136.

Lemma 172 (TrICL-related states are co-terminal).

TrICL(semul , scompiled , sgiven ,_)_

=⇒
(`t semul ⇐⇒ `t scompiled ⇐⇒ `t sgiven)

247

Proof.
Follows from Lemma 103, and by unfolding Definition 127 then Definition 119.

Lemma 173 (No trace is added by compilation).

α ∈ Trω,∇,∆,Σ,β(p) ⇐= α ∈ Trω,∇(JpK∆,Σ,β,Kmod ,Kfun
)

Proof.
By assumption (unfolding Definition 72), we have (*):

∃Cgiven , t
′ : TargetSetup, s′t : TargetState, ς ′ : 2Z.

Cgiven n JpK∆,Σ,β,Kmod ,Kfun
= bt′c ∧

initial_state(t′ + ω,main_module(t′)), ∅⇀α−⇀[JpK∆,Σ,β,Kmod ,Kfun
],∇ s

′
t, ς
′

And our goal (unfolding Definition 78) is:

∃C,m, s′, ς ′,∆C,ΣC, βC.

∆′ = ∆]∆C ∧ Σ′ = Σ] ΣC ∧ β′ = β ∪ βC ∧
C[p]∆′,Σ′ = m ∧

Σ′; ∆′ + ω;β′; mvar(m); fd_map(m) ` initial_state(m,∆′ + ω,Σ′,main_module(m)), ∅⇀α−⇀[p],∇ s
′, ς ′

We pick for our goal the following instantiation:
C := Cemul ,∆C := ∆emul ,ΣC := Σemul , βC := βemul

where (**):
(Cemul ,∆emul ,Σemul , βemul ,Kmodemul ,Kfunemul) = emulate(α, p,∆,Σ, β)

By instantiating Lemma 166 using (*) and (**), we know m exists, and that (WF-PARAMS):

Cemul [p]∆,Σ = m ∧
wfp_params(m,∆]∆emul ,Σ] Σemul , β ∪ βemul ,Kmod]Kmodemul ,Kfun]Kfunemul)

Using (WF-PARAMS), we obtain by instantiating rule Module-list-translation a compiled program:

p′compiled = Jp′K∆]∆emul ,Σ]Σemul ,β∪βemul ,Kmod]Kmodemul ,Kfun]Kfunemul

Now, by instantiating Lemma 171 using our assumption and (WF-PARAMS) and (**), we have
(INIT-TrICL):

TrICL(initial_state(p′,∆′,Σ′,main_module(p′)),

initial_state(p′compiled ,main_module(p′)),

initial_state(Cgiven n JpK∆,Σ,β,Kmod ,Kfun
,main_module(p′)), ∅)α,0,p,Cemul

By Lemma 109, and Lemma 172, it suffices to show the following for the alternating prefix α|6X:

∀i ∈ [0, |α| 6X|] ∃s′emul , s
′
compiled , s

′
given , ςi.

Σ′; ∆′;β′; mvar(p′); fd_map(p′) ` initial_state(p′,∆′,Σ′,main_module(p′)), ∅⇀α(0)...α(i)−−−−−−⇀[p],∇ s
′
emul , ςi ∧

initial_state(p′compiled ,main_module(p′)), ∅⇀α(0)...α(i)−−−−−−⇀[JpK∆,Σ,β,Kmod ,Kfun
],∇ s

′
compiled , ςi ∧

TrICL(s′emul , s
′
compiled , s

′
given , ςi)α,i,p,Cemul

248

We are able to show the above sufficient subgoal by proving an inductive version of Lemma 170
(relying on Lemma 158):

• The base case follows from (INIT-TrICL) and instantiation of Lemma 170.

• The inductive case follows by instantiation of Claim 9 using (*) then Lemma 170, followed by
instantiation of the following:
Claim 21 and rule trace-steps-alternating-src for the source trace, and
Claim 8 and rule trace-steps-alternating for the compiled trace.

This concludes the proof of Lemma 173.

249

Jps1K 6' Jps2K

Jps1K
T

6= Jps2K

ps1 6' ps2

ps1
T

6= ps2

Lemma 114
Corollary 12
by the
cycle

Lemma 122

Lemma 117
Corollary 13
by the
cycle

Contrapositive of Lemma 121 by Lemmas 114, 117 and 122

Contrapositive of Lemma 120

Figure 13: The contrapositive of Lemma 121 (J·K preserves contextual equivalence) follows from
Lemma 114 (soundness of target trace equivalence), Lemma 122 (compilation preserves trace equiv-
alence), and Lemma 117 (completeness of source trace equivalence). Also, the bent arrow (the
contrapositive of Lemma 120 (J·K reflects contextual equivalence)) closes the cycle. Thus, from the
cycle, the two vertical dashed arrows follow. The left one (Corollary 12), together with Lemma 114,
gives that the target traces are fully abstract. Similarly, the source ones are fully abstract by the
right one Corollary 13 , together with Lemma 117.

7 Corollaries for free

7.1 Completeness of the trace semantics of CHERIExp
Corollary 12 (Completeness of target trace equivalence for contextual equivalence of compiled
components).

Jp1K∆,Σ,β,Kmod ,Kfun

T
=ω,∇ Jp2K∆,Σ,β,Kmod ,Kfun

⇐= Jp1K∆,Σ,β,Kmod ,Kfun
'ω,∇ Jp2K∆,Σ,β,Kmod ,Kfun

Proof. Follows from the cycle in Figure 13 (i.e., the contrapositive of our goal is immediate by
instantiating Lemma 122 then Lemma 117 then Lemma 120).

7.2 Soundness of the trace semantics of ImpMod
Corollary 13 (Soundness of source traces).

∀m1,m2, ∆̃, β1, β2, Σ̃,∇,∆,Σ.
dom(Σ̃) = {moduleID(m) | m ∈ m1} = {moduleID(m) | m ∈ m2} ∧
dom(∆̃) = {moduleID(m) | m ∈ m1} = {moduleID(m) | m ∈ m2} ∧

β1,m1
T
=∇,∆,Σ β2,m2

=⇒
∆̃, β1,m1 'Σ̃,∇ ∆̃, β2,m2

Proof. Follows from the cycle in Figure 13 (i.e., the contrapositive of our goal is immediate by
instantiating Lemma 120—after compiling both programs, then Lemma 114, then Lemma 122).

8 Note on non-commutative linking
The fact that we chose to define linking as non-commutative is just a side effect of trying to avoid
some tedious proof [15], but linking being non-commutative is not really essential for security.

We use non-commutativity to require that the program parts are first all linked together and
used as the right operand of the linking operator. The left operand then represents the context

250

in which this program runs. Having distinguished the program of interest from its context, we
then define linking in such a way that the context’s data segment is placed in memory after the
program’s data segment. There is no security motivation for this enforced order; it just makes the
proof easier: the construction of the emulating context will occupy a data segment whose size is in
principle larger (due to meta-data) than the size of the data segment of the target context that we
are emulating. This order of placing the data segments in memory ensures that this increase in size
(due to metadata) does not impact the position of the program of interest’s variables in memory (in
a simulating run compared to a given run).

However, lots of the metadata we store is redundant—we store this redundant data to make our
life simpler. But in principle, we do believe one should be able to prove that the non-redundant
metadata will at every execution state always fit within a data segment of the original size (i.e.,
the size from the given run). By proving this, there will be no need to define linking to be non-
commutative.

9 Example output of the source-to-source transformation

1 struct cheri_object main_obj;
2 static struct sandbox_object ∗main_objectp;
3

4

5 __attribute__((cheri_ccall))
6 __attribute__((cheri_method_suffix("_cap")))
7 __attribute__((cheri_method_class(main_obj)))
8 extern int main(int argc, char ∗argv[]);
9

10 int init(int argc, char ∗argv[])
11 {
12 sandbox_chain_load("main", &main_objectp);
13 main_obj = sandbox_object_getobject(main_objectp);
14

15 main(argc, argv);
16 }

Listing 1: Source-to-source compilation output. Initialization module init.c

1 struct cheri_object lib1;
2 struct cheri_object lib2;
3

4 __attribute__((cheri_ccall))
5 __attribute__((cheri_method_class(lib1)))
6 int f1(void);
7

8 __attribute__((cheri_ccall))
9 __attribute__((cheri_method_class(lib2)))

10 int f2(void);
11

12 __attribute__((cheri_ccallee))
13 __attribute__((cheri_method_class(main_obj)))
14 int main(void);
15

16 __attribute__ ((constructor)) static void
17 sandboxes_init(void)
18 {
19 lib2 = fetch_object("lib2");
20 lib1 = fetch_object("lib1");
21 }
22

23 int main(void)
24 {
25 f1();
26 f2();
27

28 return 0;

251

29 }

Listing 2: Source-to-source compilation output. Transformed main.c

1 extern struct cheri_object lib1;
2 struct cheri_object lib2;
3

4 __attribute__((cheri_ccallee))
5 __attribute__((cheri_method_class(lib1)))
6 int f1(void);
7

8 __attribute__((cheri_ccall))
9 __attribute__((cheri_method_class(lib2)))

10 int f2(void);
11

12 __attribute__ ((constructor)) static void
13 sandboxes_init(void)
14 {
15 lib2 = fetch_object("lib2");
16 }
17

18 int f1(void)
19 {
20 f2();
21 }

Listing 3: Source-to-source compilation output. Transformed lib1.c

1 extern struct cheri_object lib2;
2

3 __attribute__((cheri_ccallee))
4 __attribute__((cheri_method_class(lib2)))
5 int f2(void);
6

7 int f2(void)
8 {
9 [..]

10 }

Listing 4: Source-to-source compilation output. Transformed lib2.c

References
[1] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson, B. Davis, B. Laurie, P. G.

Neumann, R. Norton, and M. Roe, “The cheri capability model: Revisiting risc in an age
of risk,” SIGARCH Comput. Archit. News, vol. 42, no. 3, pp. 457–468, Jun. 2014. [Online].
Available: http://doi.acm.org/10.1145/2678373.2665740

[2] R. N. M. Watson, P. G. Neumann, J. Woodruff, M. Roe, J. Anderson, D. Chisnall, B. Davis,
A. Joannou, B. Laurie, S. W. Moore, S. J. Murdoch, R. Norton, S. Son, and H. Xia,
“Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture
(Version 6),” University of Cambridge, Computer Laboratory, Tech. Rep. UCAM-CL-TR-907,
Apr. 2017. [Online]. Available: http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-907.pdf

[3] A. El-Korashy, “A Formal Model for Capability Machines: An Illustrative Case Study towards
Secure Compilation to CHERI,” Max-Planck Institute for Software Systems, Saarbrücken,
Tech. Rep., Sep. 2016. [Online]. Available: https://people.mpi-sws.org/~elkorashy/

[4] “Rigorous Engineering of Mainstream Systems,” 2016, [Online; accessed 06-September-2016].
[Online]. Available: https://www.cl.cam.ac.uk/~pes20/rems/

252

http://doi.acm.org/10.1145/2678373.2665740
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-907.pdf
https://people.mpi-sws.org/~elkorashy/
https://www.cl.cam.ac.uk/~pes20/rems/

[5] M. Abadi, “Protection in programming-language translations,” in International Colloquium on
Automata, Languages, and Programming. Springer, 1998, pp. 868–883.

[6] P. Agten, R. Strackx, B. Jacobs, and F. Piessens, “Secure compilation to modern
processors,” in CSF ’12. IEEE, 2012, pp. 171 – 185. [Online]. Available: http:
//dx.doi.org/10.1109/CSF.2012.12

[7] M. Patrignani, D. Devriese, and F. Piessens, “On Modular and Fully-Abstract Compilation,” in
Proceedings of the 29th IEEE Computer Security Foundations Symposium CSF 2016, Lisbon,
Portugal, ser. CSF 2016, 2016.

[8] M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, and F. Piessens, “Secure compilation
to protected module architectures,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 37, no. 2, p. 6, 2015.

[9] C. Fournet, N. Swamy, J. Chen, P.-E. Dagand, P.-Y. Strub, and B. Livshits, “Fully abstract
compilation to javascript,” SIGPLAN Not., vol. 48, no. 1, pp. 371–384, Jan. 2013. [Online].
Available: http://doi.acm.org/10.1145/2480359.2429114

[10] A. Ahmed and M. Blume, “Typed closure conversion preserves observational equivalence,”
SIGPLAN Not., vol. 43, no. 9, pp. 157–168, Sep. 2008. [Online]. Available: http:
//doi.acm.org/10.1145/1411203.1411227

[11] R. Jagadeesan, C. Pitcher, J. Rathke, and J. Riely, “Local memory via layout randomization,”
in Proceedings of the 2011 IEEE 24th Computer Security Foundations Symposium, ser. CSF
’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 161–174. [Online]. Available:
http://dx.doi.org/10.1109/CSF.2011.18

[12] M. Abadi and G. Plotkin, “On protection by layout randomization,” in CSF ’10. IEEE, 2010,
pp. 337–351. [Online]. Available: http://dx.doi.org/10.1109/CSF.2010.30

[13] Y. Juglaret, C. Hriţcu, A. Azevedo de Amorim, and B. C. Pierce, “Beyond good and
evil: Formalizing the security guarantees of compartmentalizing compilation,” in 29th IEEE
Symposium on Computer Security Foundations (CSF). IEEE Computer Society Press, Jul.
2016. [Online]. Available: http://arxiv.org/abs/1602.04503

[14] D. Devriese, M. Patrignani, and F. Piessens, “Fully-abstract compilation by approximate
back-translation,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22,
2016, 2016, pp. 164–177. [Online]. Available: http://doi.acm.org/10.1145/2837614.2837618

[15] T. C. Murray and P. C. van Oorschot, “BP: formal proofs, the fine print and side effects,” in 2018
IEEE Cybersecurity Development, SecDev 2018, Cambridge, MA, USA, September 30 - October
2, 2018, 2018, pp. 1–10. [Online]. Available: https://doi.org/10.1109/SecDev.2018.00009

253

http://dx.doi.org/10.1109/CSF.2012.12
http://dx.doi.org/10.1109/CSF.2012.12
http://doi.acm.org/10.1145/2480359.2429114
http://doi.acm.org/10.1145/1411203.1411227
http://doi.acm.org/10.1145/1411203.1411227
http://dx.doi.org/10.1109/CSF.2011.18
http://dx.doi.org/10.1109/CSF.2010.30
http://arxiv.org/abs/1602.04503
http://doi.acm.org/10.1145/2837614.2837618
https://doi.org/10.1109/SecDev.2018.00009

	The target language (BittersweetCHERIExp)
	Values, expressions, and commands
	Target setup, and initial and terminal states
	Memory Reachability
	Summary of target language features

	A source language (MidnightBlueImpMod) with pointers and modules
	Program and module representation, and well-formedness
	Values, expressions, and commands
	Program state
	Initial, terminal and execution states
	Memory Reachability

	Compiling pointers as capabilities (MidnightBlueImpMod to BittersweetCHERIExp)
	Whole-program compiler correctness
	Compositionality: linking-and-convergence-preserving homomorphism

	A sound trace semantics for BittersweetCHERIExp
	Soundness

	A complete trace semantics for MidnightBlueImpMod
	Completeness using back-translation

	Security guarantee about the compiler: full abstraction
	Lifting compiler forward and backward simulation to trace semantics
	Strong and weak similarity
	Stack similarity (successor-preserving isomorphism)
	Trace-Indexed Cross-Language (TrICL) simulation relation

	Corollaries for free
	Completeness of the trace semantics of BittersweetCHERIExp
	Soundness of the trace semantics of MidnightBlueImpMod

	Note on non-commutative linking
	Example output of the source-to-source transformation

