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Abstract

Vulnerabilities in computer systems arise in part due to programmer’s logical errors,

and in part also due to programmer’s false (i.e., over-optimistic) expectations about the

guarantees that are given by the abstractions of a programming language.

For the latter kind of vulnerabilities, architectures with hardware or instruction-

level support for protection mechanisms can be useful. One trend in computer systems

protection is hardware-supported enforcement of security guarantees/policies. Capability-

based machines are one instance of hardware-based protection mechanisms. CHERI

is a recent implementation of a 64-bit MIPS-based capability architecture with byte-

granularity memory protection.

The goal of this thesis is to provide a paper formal model of the CHERI architecture

with the aim of formal reasoning about the security guarantees that can be offered by

the features of CHERI. We first give simplified instruction operational semantics, then

we prove that capabilities are unforgeable in our model. Second, we show that existing

techniques for enforcing control-flow integrity can be adapted to the CHERI ISA. Third,

we show that one notion of memory compartmentalization can be achieved with the

help of CHERI’s memory protection. We conclude by suggesting other security building

blocks that would be helpful to reason about, and laying down a plan for potentially

using this work for building a secure compiler, i.e., a compiler that preserves security

properties.

The outlook and motivation for this work is to highlight the potential of using CHERI

as a target architecture for secure compilation.
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Chapter 1

Introduction

Vulnerabilities in computer systems arise in part due to programmer’s logical errors [1],

but in part also due to programmer’s false (i.e., over-optimistic) expectations about the

guarantees that are given by the abstractions of a programming language [2].

For the latter kind of vulnerabilities, architectures with hardware or instruction-level

support [3, 4, 5, 6, 7, 8, 9, 10] for protection mechanisms can be useful.

One trend in computer systems protection is hardware-supported enforcement of

security guarantees/policies. Capability-based machines are one instance of hardware-

based protection mechanisms. CHERI [4, 11] is a recent implementation of a 64-bit

MIPS-based capability architecture with byte-granularity memory protection.

1.1 Goals and Contribution

The goal of this thesis is to provide a formal model that makes it easy to reason on paper

about a simplified but realistic version of the CHERI architecture. We provide simplified

instruction operational semantics for the CHERI ISA [11]. We use it to show and reason

about some useful security goals achievable by the architecture. The end goal of this

pursuit is to make easy and evidence-supported the use of the CHERI architecture as

a target of secure compilation based on full abstraction [12, 13, 14, 15] in the future.

It should be made clear that our goal is distinct from the goal of verifying the actual

CHERI ISA. The REMS project [16] at Cambridge is taking on such a direction with

the help of tools like L3 [17, 18].

The thesis is organized into a Background chapter, followed by three main ones, and

a concluding chapter discussing future work.

1



2 Chapter 1 Introduction

The background chapter (Chapter 2) highlights in some detail the features of the

CHERI architecture as part of a discussion of existing literature.

Next comes the description of our formal model (Chapter 3) which provides a

rewriting of the semantics of the CHERI instructions in a formal and simplified way. We

show that capability unforgeability is preserved by arbitrary execution.

Then, in Chapter 4, we show that the policy of control-flow integrity [19, 20, 21]

can be easily adapted to the CHERI ISA by adapting the machine code instrumentation

mechanism in [19, 21] to our formal model.

Next, we introduce a basic notion of memory compartmentalization (Chapter 5) and

we show that it is enforceable by CHERI’s memory protection.

In the end (Chapter 6), we discuss potential development of this work, which –we

think– can be used as a building block for writing a fully-abstract compiler.



Chapter 2

Background

In this chapter, we present the CHERI architecture [11] as one of the most recent capability

machine models [4]. We do so in the context of discussing previous literature [22, 23, 24]

on potential design choices for capability-based machines. We also briefly discuss other

forms of hardware support like SAFE [5] that are built with the goal of achieving security

requirements on the instruction set and memory word level. Later in the chapter, we

discuss Control Flow Integrity [20] and memory compartmentalization [25, 26, 27].

2.1 Hardware Security and Capability Machines

The assumption on which the trend [3, 4, 5] of hardware-based enforcement mechanisms

for protection or security goals lies is that processing power abounds [5]. This makes it

appealing to provide hardware-based support for protection mechanisms [28, 29] aiming

at mitigating potential risks from adversarial machine code. A general motivation for

developing protection mechanisms is the attempt to achieve more fine-grained decomposi-

tion of software and of security-policies in order to realize more adherence of the various

system abstraction layers to the principle of least privilege [29]. We focus on reviewing

hardware architectures that have built-in support for capabilities [22]. But we first point

out some alternative existing research directions on hardware support for security.

Hardware Security

Various hardware support features have been suggested that provide various kinds of

support for protection mechanisms. Memory protection in the form of bounds-checking

has particularly been the focus of Intel Memory Protection Extensions (iMPX) [6] and

Hardbounds [7]. The protection techniques in both of these rely on the availability of the

3



4 Chapter 2 Background

bounds information in a table. A fat-pointer model helps the memory-access instruction

to access this table and make the necessary check [4]. In iMPX, bounds checking must

be explicitly done by means of specific instructions [4].

Another variety of protection mechanisms that is more general than bounds checking

is the idea of generalized security policy enforcement [9, 8, 10]. The PUMP machine [8]

extended the work on dynamic security policy enforcement such as [10] by describing

architectural support for general tag-based policy specification and dynamic enforcement.

According to [9]: “The PUMP architecture associates each piece of data in the system

with a metadata tag describing its provenance or purpose (e.g., this is an instruction,

this came from the network, this is secret, this is sealed with key k), propagates this

metadata as instructions are executed, and checks that policy rules are obeyed throughout

the computation.”

Various policies have been shown to be expressible in the micropolicies architecture

(that the PUMP machine supports) [9] including Control-Flow Integrity [19], Memory

Safety, Dynamic Sealing, and others.

Capability Machines

We now turn to the capability machine model that is the focus of our work. CHERI [11, 4]

is one implementation of a capability-based hardware architecture.

A capability is an unforgeable token that gives its owner permission(s) to access a

particular entity or object in a computer system [22]. Capabilities have been the basis of

operating systems protection mechanisms in various research projects like Capsicum [30],

EROS [31], and other older operating systems [32]. Here we focus on reviewing capabilities

as a hardware mechanism for protection goals [28].

Capabilities often serve two purposes; identifying an object, and allowing or denying

particular operations to be performed on it [22]. Thinking of capabilities as an addressing

mechanism has been characteristic of capability-based computer systems. Hardware

support of capability-based addressing is an idea that has been around at least since

1974 when Fabry [23] discussed potential implementation ideas and argued that such

addressing schemes could be an efficient solution to memory protection. Among the

ideas discussed in Fabry’s work [23] are ways for maintaining the integrity of capabilities,

namely, the tagged approach and the partition approach.

Carter et al. [33] from MIT used the tagged approach pointed out by Fabry in [23,

Section: Integrity of capabilities] and by Saltzer in [29, B. The Capability System] and

introduced the idea of guarded pointers which was the basis of the capability-based
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addressing employed in the experimental design of the M-Machine [24], an architecture

for a multicomputer by MIT. The general idea of a tagged approach is to have a tag

that helps distinguish whether a word is meant to represent a normal data word or a

capability. The design of the instruction set guarantees that whenever an arbitrary data

operation is performed on a word, the word gets the “data” tag instead of the “capability

tag”. Authorization using a capability which takes place upon an addressing operation

checks first that the word presented as a capability indeed carries a valid “capability”

tag, not a “data” tag.

The partition approach, on the other hand, disallows confusion about what a word

represents by segregating between data words and capabilities by means of, e.g., having

two separate register files where each is allowed to live. A certain limited set of operations

only is allowed on the capability register file. A pure extension of this approach to

memory organization is that each program gets two segments of memory, one for data

and one for capabilities. The operations that are allowed on the capability segment

of the memory are guaranteed to be only those allowed for the capability register file.

Figure 2.1 illustrates the difference between memory and register file organization by the

two approaches.

Figure 2.1: Difference between tagged and partitioned approaches for organization
of data and capabilities. In the tagged approach (left), both the memory and the
general-purpose register file are legal regions for both capabilities (orange) and data
(white) to live in. In the partitioned approach (right), memory is partitioned based on

whether the values that are allowed to exist are valid capabilities.

The CHERI architecture [11] does not follow any one of these purely. Instead, it com-

bines both the tagged memory approach with the partitioned register file approach. More

details are discussed in the context of stating Theorem 3.1 on capability unforgeability in

our simplified formal model of CHERI. Briefly, capability manipulation is guarded (i.e.,
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only a limited set of instructions are available on the capability register file) to guarantee

monotonicity and to prevent privilege escalation [11].

A feature worth noting about an instruction set that uses a capability-based ad-

dressing mechanism is that every instruction which addresses/accesses a memory word

or an input/output device must specify a capability for the object to be accessed [23].

Specifying a capability might mean naming or presenting it as an argument or specifying

it by any other implicit means (e.g., always look it up in a predefined register).

2.2 The CHERI Capability Machine

CHERI [4, 11] is a capability-based machine model that is based on the 64-bit MIPS

ISA [34]. It combines conventional memory management unit (MMU) design choices

with a capability-system model that is built on a RISC ISA [4].

Unlike conventional virtual memory, protection using capabilities is thought of as

being the responsibility of the compiler, language runtime, and operating system kernel

along with the properties of the capabilities themselves that automatically provide guar-

antees by means of bounds checking, permissions checking, and capability integrity [11].

The kinds of protection that are intended by the design of the CHERI ISA include [11]:

• spatial memory safety,

• temporal memory safety,

• software compartmentalization, and

• enforcing language-level properties by hardware assistance.

CHERI capabilities are tokens of authority that give permissions to access a specified

memory region [11, 4]. The memory region is defined by a base address and a length.

The permissions field specifies the kind of access, i.e., it specifies which operations this

capability enables its owner to perform. Possible operations are loading, storing and

executing code on a memory region. There are other operations like loading capabilities

into the capability register file (as opposed to loading arbitrary memory words) and

storing a capability register (as opposed to storing a general-purpose register). And there

are others, in addition to some unused bits that can be used and checked arbitrarily

without them having a predefined effect/authority on CHERI instructions/operations [11].

One of the other permissions that are built-in is the “non-ephemeral” permission.

In newer publications about CHERI [11], this is now called the “Global” permission.
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This is a permission that allows a capability to be stored anywhere in memory (i.e.,

globally) as opposed to only in regions that explicitly allow storing “local” capabilities.

This distinction can be used to enable revocability of a capability. Local capabilities

are revocable after they have been passed to a callee because they cannot be stored in

memory. One possible extension to this idea of having a local/global permission bit is to

have multiple security/clearance levels [35]. This possible extension is suggested in the

CHERI technical report [11] but has been proposed at least since 1975 by Saltzer and

Schroeder [29]. More discussion of the idea of an ephemeral capability can be found in

Section 3.1.

CHERI Capabilties in detail

Figure 2.2: Format of a CHERI capability

Figure 2.2 illustrates the fields of a capability in CHERI. A CHERI capability is

represented as a 256-bit value [11]. The following fields constitute a capability:

• base (64 bits) is the start address of the virtual memory region which the

capability describes.

• length (64 bits) is the length in bytes of the memory region which the capability

describes.

• offset or cursor (64 bits) is a pointer (i.e., some byte address) that is used as

part of computing the address on which a memory operation (one which uses the

capability) will be performed.
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• permissions (31 bits: perms (15 bits) + uperms (16 bits)) is the set of

hardware-defined and user-defined permissions.

• sealed bit indicates whether a capability is restricted from being used as a token

of authority for almost all operations (except for the CCall instruction). The sealed

bit is a means of having an object-capability model [36, 42] where dereferencing

is prohibited except by means of transfer of domain (i.e., execution of arbitrary

instructions from a callee domain is not possible). A full transition from the caller

to the callee is the only legal privilege offered by a sealed capability.

• object type (otype: 24 bits) holds the type of a sealed capability. “This field

allows an unforgeable link to be created between associated data and object (code)

capabilities. [11]”

• 8 remaining bits (currently unused).

Thus, a capability grants a set of permissions on a virtual memory region defined by

a base address and a length. The tag bit is an external bit that is attached to every

aligned 256-bit value in memory or in the capability register file. It indicates validity

of a capability. In other words, it indicates whether the 256 bits should be interpreted

as a capability. It should be noted that an arbitrary value which was never derived

from a capability will always (by design of the instruction set) have its tag bit cleared,

thus preventing its usage as a token of authority on any memory operation. This is a

property called capability unforgeability. In Theorem 3.1, we prove one form of capability

unforgeability about our simplified formal model of the CHERI ISA, namely that no

privilege escalation is possible.

In other words, a capability register or a 256-bit value in memory can be in one of

the following states [11]:

• The tag bit is set, indicating that the capability is valid. Additionally, the fields of

the capability are well-defined.

• The tag bit is not set, indicating that the value is not a valid capability (although

all the fields may be well-defined).

• The tag bit is set, indicating that the capability is valid. However, some values

of the capability are ill-defined (i.e., they indicate an inconsistency that will be

detected by the corresponding operation that would attempt to use it).

It is important to note that in our formal model (Chapter 3), we do not have the

notion of ill-defined values for fields in a capability. One reason is that we do not represent

the offset (cursor) field.
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It is worth noting that CHERI offers an alternative 128-bit compressed format for

storing a capability [11]. In our formal model, we ignore such representation details

(about the sizes of the fields of capabilities) because careful choices are only useful for

efficiency tradeoff reasons in the real hardware model. We may avoid making simplifying

assumptions for reasons of inefficiency, but only if some operation would be significantly or

asymptotically less efficient (in terms of time or space complexity) under the simplifying

assumption. For the case of capability sizes, we will assume that a field of a capability

is represented by a natural number. And we avoid choosing representations that, e.g.,

restrict certain bound alignments in favor of a more compact representation.

The CHERI Instruction Set

CHERI is based on the 64-bit MIPS ISA [34]. All the ordinary MIPS instructions

are available. Additionally, CHERI offers capability manipulation instructions. It also

offers various capability-protected general-purpose instructions for the ordinary memory

(load/store/etc..) operations. These make it easier to write more efficient machine code

by offering an argument to provide the name of the capability register that authorizes the

operation performed by the instruction. For backward compatibility, on the other hand,

a predefined capability register is used. Every ordinary MIPS load/store instruction is

only successfully executed if that predefined register contains the suitable capability.

An example of the general way instructions work is illustrated in Figure 2.3. There, we

show a simplified form of a load instruction (simplified, in the sense of eliminating details

about offsets and invalid representations of address values) which supports specifying

the capability that authorizes the load operation as an argument.

We point out again that there are two register files; a general-purpose register file,

and a capability register file. The load instruction would name a capability register from

the latter. The load instruction performs the following checks:

1. Check that the capability specified in the named register (register c in Figure 2.3)

is a valid capability (i.e., its tag bit is set). If not, a hardware exception is raised.

2. Check that the capability in register c is not a sealed capability. If not, a hardware

exception is raised.

3. Check that the load permission exists in the permissions field of the capability in

register c. If not, a hardware exception is raised.
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4. Check that the address specified as a source of loading a memory word into the

destination register rd indeed lies withing the bounds of the memory region that is

specified by the capability in register c. If not, a hardware exception is raised.

Since all of the checks are independent, and since all of them have to succeed for the

instruction to execute correctly, then the order of performing these checks does not really

matter if there is no interest in the type of exception that would be raised.

Figure 2.3: Load instruction checks the capability first then loads

As a basic precondition, the execution of every instruction has to be authorized by

the program counter capability (PCC). This is a special capability register that is

used for indirection of the program counter (PC), and also for authorizing the execution

of every instruction, i.e., the execute operation has to be specified in the permissions

field of this register, and the bounds specified by this register have to contain the address

that is specified by the base and cursor (offset) of PCC, and the offset (PC).

The state of the capability register file at any particular state of the machine specifies

what is called a current security domain. The current security domain can be

thought of as specified by the transitive closure of capability values that can be loaded

via capabilities that exist in the capability register file [11]. It is useful to think of

the different security domains of a CHERI machine state as representing the mutually

distrusting components of the running software. One feature that CHERI offers for

mutually distrustful components to share/delegate the right to execute APIs among

each other is the feature of sealed capabilities. Sealed capabilities can be thought

of as immutable and non-dereferenceable [11] capabilities. Sealed capabilities are thus
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the main building block for meaningful compartmentalization [25] of the memory into

mutually distrustful components.

One useful instruction that emphasizes the role of the concept of a security domain

in the CHERI protection model is the CCall instruction. This instruction is intended

to be used as a trusted transfer procedure between security domains. In more familiar

terms, an untrustworthy program can, by means of using the CCall instruction be

allowed to use a library API without posing risks of it making illegal accesses or illegal

jumps into the library code. This is achieved with the help of the feature of sealed

capabilities. The library API exposes sealed capabilities (can be thought of as an

object capability model [36]) to the users. The CCall instruction makes use of possibly a

trusted stack [11] which is part of the underlying trusted computing base (TCB) in order

to atomically manipulate the capability register file, and unseal the capabilities. This,

in effect, provides an atomic and trusted transition (call) mechanism between mutually

distrusting software components. It is important to note that since the CCall instruction

implementation may need to vary based on the operating system/kernel implementation

and also based on the assumptions about the trusted computing base, the hardware

implementation is kept minimal and additionally a software trap is triggered so that

additional functionality including handling the trusted stack is left to trusted software.

In Table 2.1, we give a list of the CHERI instructions along with a brief description

of each. The list is exactly the one provided in the technical report written by the CHERI

research team [11]. We copy it here for convenience. We point out that these are the

additional instructions that CHERI provides on top of the ordinary MIPS instruction

set. They are called the instructions of the CHERI capability coprocessor. However, the

concept of a “coprocessor” here should not be understood as a separate ALU or that an

instruction either executes on the coprocessor or the main processor. This is not true. A

capability-utilizing instruction can normally operate on both the capability register file

and the general-purpose register file at the same time.

Table 2.1: Summary of the instructions of the CHERI coprocessor

Instruction Description

CGetBase Move the base field of a capability to a general-purpose register

CGetOffset Move the offset field of a capability to a general-purpose register

CGetLen Move the length field of a capability to a general-purpose register

CGetTag Move the tag bit of a capability register file to a general-purpose register

CGetSealed Move the sealed bit of a capability to a general-purpose register

CGetPerm Move the permissions field of a capability to a general-purpose register

CGetType Move the object type field of a capability to a general-purpose register
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CToPtr Capability to pointer

CPtrCmp Compare capability pointers

CClearRegs Clear multiple registers

CIncBase Instruction removed (in favor of CSetBounds)

CIncOffset Increase offset

CSetBounds Set bounds of a capability (i.e., the base and length fields)

CSetBoundsExact Set bounds exactly. In a compressed format, if the exact bounds are not

possibly representable, an exception is thrown.

CSetLen Instruction removed (in favor of CSetBounds)

CClearTag Clear the tag bit

CAndPerm Restrict permissions

CSetOffset Set cursor to an offset from base

CGetPCC Move PCC to capability register

CGetPCCSetOffset Get PCC with new offset

CFromPtr Create capability from pointer

CSub Subtract capabilities

CSC Store capability register

CLC Load capability register

CL[BHWD][U] Load via capability register. Various load instructions are available for

loading a byte, a half-word, a word, and a double-word.

CS[BHWD] Store via capability register

CLLC Load linked capability via capability register

CLL[BHWD][U] Load linked via capability register

CSC[BHWD] Store conditional via capability register

CSCC Store conditional capability via capability

CBTU Branch if capability tag is unset

CBTS Branch if capability tag is set

CJR Jump capability register. Assign to PCC the value in the given capability

register, and jump to the address specified by its offset.

CJALR Jump and link capability register. Same as CJR. Additionally, save

current PCC in the given destination capability register.

CCheckPerm Raise exception on insufficient permission

CCheckType Raise exception if object types do not match

CSeal Seal a capability

CUnseal Unseal a sealed capability

CCall Call into another security domain

CReturn Return to the previous security domain

CGetCause Move the capability exception cause register to a general-purpose register
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CSetCause Set the capability exception cause register

2.3 Security Goals

In this section, we list briefly security goals or applications that are the focus of this

thesis.

Control Flow Integrity

The CFI [19, 20, 21] security policy enforces that the execution of software follows a

stipulated control flow graph. The control flow graph for such a policy is computed

by static analysis of the binary machine code or the source code [21]. The way CFI is

enforced in [21, 19, 20] is by means of machine code rewriting. The rewriting procedure

instruments the machine code with checks that, at run-time, ensure that the control

flow adheres to the statically generated control flow graph. If it does not, then the

instrumentation forces execution into jumping to some safe instruction which prevents

the malicious or attacked program from further execution.

In Chapter 4, we adopt the machine code instrumentation techniques presented

in [21, 20] into the MIPS instruction set, and we show that with the CHERI ISA,

Theorem 4.2 about correctness of CFI enforcement by machine code instrumentation

holds. The theorem is an imitation of [21, Theorem 1].

Memory Compartmentalization

Compartmentalization is a general term that refers to the practice of breaking down

software into mutually distrustful components [26]. One advantageous result of assuming

mutual distrust is that components get to share with each other only the necessary

resources, and nothing more – in adherence to the principle of least privilege [29].

Memory compartmentalization is a useful way of modeling desirable high-level

programming features such as encapsulation in object-oriented programming languages

at a lower level (i.e., in machine code).
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A note on encapsulation and protection Although data encapsulation is not a

real memory protection guarantee in almost all object-oriented programming languages

because of the possibility of its circumvention by means of reflection APIs (like in Java,

C#, Ruby) or by means of name mangling (like in Python), we still use the notion of

encapsulation as an analogy to protection, and we mean to realize the guarantees that

encapsulation would give if only a fragment of an object-oriented Java-like language

is considered. Only in such a fragment, where encapsulation would indeed guarantee

protection would it make sense to talk about preserving the memory protection (com-

partmentalization) that is offered by the source language. Because otherwise, as in most

real-world programming languages, encapsulation is considered as a design pattern, and

not a concrete security guarantee. Choosing to use the term “encapsulation” to refer to

memory protection spares us the effort of defining a possibly unfamiliar language with

e.g., a type system for secure information flow [37]. We find such an approach unnecessary

if the only purpose is defining compartmentalization. Credit for understanding that

encapsulation is a feature intended to achieve good programming practice rather than a

protection mechanism goes to the Wikipedia page: https://en.wikipedia.org/wiki/

Encapsulation_(computer_programming). It is worth mentioning though that it is

indeed possible for the programmer of Java, for example, to use a feature called a security

manager, by means of which they can deny permissions that allow the usage of reflection in

some ways. The Stackoverflow page: http://stackoverflow.com/questions/770635/

disable-java-reflection-for-the-current-thread and the Java documentation

page: docs.oracle.com/javase/6/docs/api/java/lang/reflect/ReflectPermission.

html both give a hint on this possibility. So, after all, to simply assume that encapsulation

guarantees protection is not a naively-optimistic or unrealistic claim to make (compared

to what at least one existing programming language can offer).

In Chapter 5, we follow the definition of compartmentalization which is presented

in the context of evaluating the expressiveness of the micropolicies framework [9] using

the PUMP machine. We use that definition as a guideline for designing a way in which

permissions can be structured in memory and in the register files in order to express the

notion of compartments, and we show that if such a structure of memory is guaranteed

at the beginning of execution of a program, then compartmentalization behavior is

guaranteed.

Secure Compilation

One notion of a secure compilation procedure is given by fully-abstract compilation [38,

26, 14, 12, 13]. A fully-abstract compiler is secure in the sense that it provides a guarantee

on the possible interactions that the produced machine code could have with any arbitrary

https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)
https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)
http://stackoverflow.com/questions/770635/disable-java-reflection-for-the-current-thread
http://stackoverflow.com/questions/770635/disable-java-reflection-for-the-current-thread
docs.oracle.com/javase/6/docs/api/java/lang/reflect/ ReflectPermission.html
docs.oracle.com/javase/6/docs/api/java/lang/reflect/ ReflectPermission.html


Chapter 2 Background 15

low-level context. The guarantee is that whatever behavior can be exhibited by the

compiled code by means of interaction with any arbitrary low-level libraries will be

producible by means of a legal interaction with some high-level context or library.

In a slightly more formal sense, a compiler is fully-abstract if it preserves and reflects

observational equivalence. Reflecting observational equivalence is usually implied by

correctness of the compiler. Preserving observational equivalence is what is referred to

as “preserving the abstractions” (i.e., the abstractions that were introduced by means of

programming in a higher-level source language).

This guarantee is useful because it means that if the programmer were able to prove

that some undesired behavior is impossible to be exhibited by the guarantees of the

semantics of the source language (regardless of which interactions take place with source

language contexts), then if the compiler is fully-abstract, the programmer is able to also

conclude that no low-level attacker will be able to trigger that undesired behavior either.

Secure compilation is the motivation for us to pursue a formal treatment of the

CHERI hardware architecture. The end goal of this pursuit is to have available means of

using the CHERI architecture in a way that guarantees preservation of source language

properties into the produced CHERI machine code. One building block towards that

goal is what is presented in Chapter 5.





Chapter 3

A Formal Model for CHERI

In this chapter, we describe a formal model for an instruction-level language that is

based on CHERI [4]. The formal model is largely based on the technical report of the

CHERI Instruction-Set Architecture [11], and was guided by some of the explanations in

Norton’s and Woodruff’s PhD theses [27, 39].

3.1 Simplifying Assumptions

We intend to describe only a subset of the CHERI instruction set, and to generalize

and/or simplify some details whenever we think they will not reduce security guarantees

or functionality. In particular, we do not include some instructions that are only intended

to achieve run-time optimizations.

Word-addressable memory One example of these ignored instructions is the case

of memory load and store. We do with only one version of load and store, and disregard

the need for code optimizations that may depend on loading a single byte, a half-word,

etc.. But one important effect of that, on a memory-protected architecture like CHERI,

is that the chosen level of granularity has to be the same (or finer) than the level of

granularity of memory protection. Otherwise, a security domain that is allowed access to

just one “thin” unit of memory might not be able to use the available instructions to

access it alone without accessing memory that is also not part of its domain.

Absolute addressing only The offset field in an instruction that accesses memory

is also neglected. The offset field can be compensated by having a sufficient size of a

register word, together with the availability of instructions that can be used to perform

17
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the same arithmetic operations that are used to compute the target address from the

offset. It is worth mentioning that the adoption of a base register and an offset field

in memory access instructions in MIPS [34] is for practical performance and compiler

optimization reasons [40].

Also, the offset field of capabilities is ignored in our formal model. We choose to not

use capabilities as a base for computing addresses. So, for example, pc, the program

counter is an absolute value and not a relative value to the base address of pcc, the

capability on the program counter. This means that capabilities fields are never used to

determine the calculation of any address in our semantics, except when a capability is

explicitly used in a ccall instruction to define the memory region that determines the

security domain transition.

Some instructions can be thought of as the responsibility of a compiler, like cjalr

(Jump and Link Capability Register), and creturn. Those we choose to drop. They allow

atomic execution of a series of loads/stores, which can be guaranteed by the compiler,

and not necessarily by the instruction set architecture.

Uni-processor We also choose to keep our instruction-level language devoid of support

for some synchronization primitives that are originally offered by the CHERI architecture,

which essentially means we model a uni-processor system.

Unbounded memory We assume unbounded memory. This allows us to drop specifi-

cations and checks related to the sizes/values of addresses and registers.

Implicit MMU The memory hierarchy, and support of virtual address space to

physical address space translation is beyond the scope of our formal model. However,

to clarify that the formal model is not over-simplifying memory operations, it is worth

mentioning that CHERI adopts a hybrid capability-system model [11, Section 2.2] where

both a virtual-memory model and the capability-based protection on top of it apply to a

memory access operation. We do not formalize the memory-management unit, but that

does not mean that our formal model assumes a single global address space. Rather,

since CHERI’s memory operations are directed first to the capability co-processor, and

then to the memory management unit (MMU) for translation, all we are assuming is an

implicitly correct MMU.

Arbitrary binary operations In order to avoid the redundancy that is otherwise

inevitable when describing detailed operations of an instruction set, we refer to any
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binary operations on registers with the arbitrary instruction BinOp in order to skip the

details of which particular operations to support. As a result of that, we abandon the

usage of flags that might be used in a MIPS processor to signal some side effect of a

binary operation.

Memory allocation service In order to be able to reason about our formal model as

a model for program execution without having to state much detail about the underlying

trusted software layers, we incorporate in our semantics support for a memory allocation

instruction allocate. This instruction does not strengthen our formal model compared to

CHERI. All it does is, it provides a compact way of representing the implicit assumption

about the existence of a trusted service of the operating system kernel that securely

gives to an arbitrary caller control over part of the “free” memory that only it (the

kernel) used to hold before calling the service. We again point out that an alternative

representation of this trusted service would be to make use of a normal ccall operation

that gives control to a trusted domain of the underlying software (the operating system

kernel) in order that this domain gets access to some predefined and reserved registers

and memory regions, and to perform the delegation of capabilities to the caller fulfilling

the memory allocation request.

Support for “ephemeral” capabilities is available in our formal model semantics.

This feature was intended to support the brief delegation of arguments from callers to

callees across object-capability invocation [11]. We point out that the usage of the term

“ephemeral” has been discontinued by the authors of the technical report on the CHERI

instruction set [11]. The term “local” capability is now being used instead of “ephemeral”

and the term “global” for “non-ephemeral”.

We also point out the similarity between the concept of ephemeral capabilities and

the concept of “linear types” or “linear logic” [41], and we point out that the idea of

limiting copying of capabilities is at least as old as Saltzer [29, Revocation and Control

of Propagation] where a “copy” bit is mentioned as a conventional solution to prevent a

capability from getting stored in a memory segment.

An ephemeral capability can be seen as a revocable capability. Being ephemeral

disallows storing of the capability in memory, which means that such capability can

only exist in the capability register file. This allows for the possibility of overwriting

(deleting) it by the caller once the call returns. If such a possibility is not available,

then arbitrary reuse of a capability on some memory region seems unpreventable. So, to

support temporal memory safety, one can make use of ephemeral capabilities.
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An extension to this model of linearity/revocability of capabilities was pointed out

by Saltzer in 1975 [29] where a depth counter is suggested to keep track of the number

of successive copy operations that have been performed on a capability. The counter

starts with, say, one. And the capability would then have a custom permission set that

prohibits this counter to be copied, say, more than three times. And the instruction set

design would guarantee then that every valid load of a capability increments the depth

counter associated with the capability, and guarantees that a valid permission exists that

allows each increment of the counter up to a limit indicated by the permission.

One other possible extension is to assign a security level (possible encoded as a

custom permission of the store capability) on each memory region. And to allow copying

a certain capability to regions on which a store capability exists that have a security level

equal to or higher than the level that would be indicated by a “lowest-security” field that

the capability would specify instead of just the ephemeral bit field.

3.2 Operational Semantics for reduced CHERI

We first describe the syntactic categories used in our model.

• Word = Tag × Content

This describes a memory word, which is a tag and some content.

• Tag ::= is cap | is data

The tag describes whether the content is a capability or is data. We choose to use

the representation 1 for is cap and 0 for is data.

• Content = N
The content can be interpreted as a capability or as data. In particular, we use

natural numbers, and use an encoding of a capability into natural numbers. It is

important to note that this allows any value of Content to be freely interpreted as

data.

• A capability:

Cap = {n encode(s, bin(perms), addr , len, otype) |

s ∈ Sealed , perms ∈ 2Perm , addr ∈ Addr , len ∈ Length, otype ∈ Otype}

where Sealed = {1 , 0} interpreted as {true, false},Addr = Length = Otype = N,

and n encode : Nn → N is defined as n encode(a1, a2, . . . , an)
def
= pa11 × p

a2
2 × · · · ×

pann × p
(n+1)
n+1 where pi is the ith prime number.
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The capability is a special kind of content, but it is not a distinct syntactic category

from Content . They are only made distinct (as an interpretation) by the value of

the tag. As a shorter form of writing n encode, we simply use parentheses “(”, “)”

to denote the encoding of fields of a capability.

The capability is interpreted as a collection of fields; a bit indicating whether it is

sealed, a set of permissions, a base address, a length (a number of words), and a

type field.

• RegFile = RegName →Word

The register file is a mapping from register names to memory words. And

RegName = {r0, r1, . . .}.

• CapRegFile = CapRegName →Word

.. and the same for the capability register file, but the distinction between the two

register files is crucial. And CapRegName = {c0, c1, . . .}. We assume the register

files are of unbounded size.

• Addr = N
Memory addresses are natural numbers.

• Mem = Addr →Word

The memory is a mapping from addresses to words.

• Perm ::= permit load | permit store | permit execute | permit seal

| permit load capability | permit store capability | non ephemeral

| permit store ephemeral capability | permit extra 1 | . . . | permit extra n

We leave the number n of extra permissions available to be defined if necessary.

We use bin(perms) to refer to the binary encoding of a boolean assignment that

assigns true to permissions available in a set perms, and false to each of the possible

permissions that are not included in perms.

We note the conventional correspondence between set operations on perms and bit

operations on bin(perms) (e.g., bin(perms1 ∩ perms2 ) ≡ bin(perms1 )&bin(perms2 ),

and p ∈ perms1 ≡ “bit ip is set in bin(perms)”, where ip is the bit at some fixed

index for permission p, and the “&” symbol denotes bitwise-and).

• MachineState = Mem × RegFile × CapRegFile × {pc} × {pcc} × {next free}

with pc ∈ Addr , pcc ∈Word , next free ∈ Addr .

It is worth noting that pc, pcc are kept separate from the domains of RegFile,CapRegFile

respectively.

One scenario that is prohibited by this separation is a sequential block of code

potentially causing the program to get stuck.
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If pcc were part of the register file, then using a normal load instruction with a

malicious value for the argument, pcc can be made to contain an invalid capability,

for example, which causes an exception on the next instruction.

So this separation gives the possibility for programs to manipulate capability

registers without posing the risk that execution gets stuck because of accidentally

writing pcc.

We denote the capability register names CapRegName with literal names starting

with the letter c, e.g., cb, cd, ct, . . ., and general-purpose register names RegName with

literal names starting with the letter r, e.g., rb, rd, rt, . . .. Other literal names in the

context of interpreting a memory word (which is not an instruction) should be understood

as denoting the binary encoding of a natural number unless otherwise stated.

We define the following functions that are used in the rules below:

• content(〈t, c〉) def
= c

• compute call address((s c, bin(perms c), addr c, len c, otype c))
def
= addr c

• sealed((s, bin(perms), addr, len, otype))
def
= (true, bin(perms), addr, len, otype)

• unsealed((s, bin(perms), addr, len, otype))
def
=

(false, bin(perms), addr, len, otype)

• clear otype((s, bin(perms), addr, len, otype))
def
=

(s, bin(perms), addr, len, 0)

• remove non ephemeral((s, bin(perms), addr, len, otype),

(s t, bin(perms t), addr t, len t, otype t))
def
=

(s, bin(perms), addr, len, otype)

if non ephemeral ∈ perms t

(s, bin(perms \ {non ephemeral}), addr, len, otype)

otherwise

3.2.1 Helping Rules

Here we describe the rules used in the preconditions of the instructions’ operational

semantics.
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The rule callable states preconditions on the instruction ccall. It defines when two

capability registers cc and cd are valid arguments of the ccall instruction. Register cc in

the register file cr should contain a valid and sealed “code capability”. Register cd should

also contain a valid and sealed non-code capability; it is called the “data capability”.

The “object type” field of both capabilities should match. This latter check allows the

possibility (with a clever compiler) to ensure that both code and data capabilities were

sealed by a single security domain before a call is allowed to execute.

cr(cc) = 〈1, (s c, bin(perms c), addr c, len c, otype c)〉
cr(cd) = 〈1, (s d, bin(perms d), addr d, len d, otype d)〉

otype c = otype d s c = true s d = true

{permit execute} ⊆ perms c {permit execute} * perms d

cr ` callable(cc, cd)
(callable)

The rule permits load checks that capability ci allows a load from address a.

cr(ci) = 〈1, (s, bin(perms), addr, len, otype)〉
permit load ∈ perms s = false addr ≤ a < addr + len

cr ` permits load(ci , a)
(permits load)

The rule permits loadcap checks that capability ci allows loading a capability from

address a.

cr(ci) = 〈1, (s, bin(perms), addr, len, otype)〉
permit load capability ∈ perms

s = false addr ≤ a < addr + len

cr ` permits loadcap(ci , a)
(permits loadcap)

The rule permits store checks that capability ci allows storing in address a.

cr(ci) = 〈1, (s, bin(perms), addr, len, otype)〉
permit store ∈ perms s = false addr ≤ a < addr + len

cr ` permits store(ci , a)
(permits store)

The rule permits storecap checks that capability ci allows storing the capability cs

in address a. Ephemeral capabilities are prevented from being stored except in regions
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where an extra permission (namely, permit store ephemeral capability) is granted.

cr(cb) = 〈1, (s b, bin(perms b), addr b, len b, otype b)〉
cr(cs) = 〈tag, (s s, bin(perms s), addr s, len s, otype s)〉

permit store capability ∈ perms b

(non ephemeral ∈ perms s ∨ tag = 0

∨permit store ephemeral capability ∈ perms b)

s b = false addr b ≤ a < addr b + len b

cr ` permits storecap(cb, cs, a)
(permits storecap)

The rule permits execute checks that capability ci will be a valid program counter

capability (pcc) if address a becomes the value of the program counter (pc).

cr(ci) = 〈1, (s, bin(perms), addr, len, otype)〉
{permit execute, non ephemeral} ⊆ perms

s = false addr ≤ a < addr + len

cr ` permits execute(ci, a)
(permits execute)

The rule executable specifies the conditions that suffice for a program counter

capability to indicate that a certain program counter value is executable.

pcc = 〈1, (s, bin(perms), addr, len, otype)〉
permit execute ∈ perms s = false addr ≤ pc < addr + len

pcc ` executable(pc)
(executable)

The rule permits unseal checks that capability register ct can authorize the unsealing

operation on capability register cs in capability register file cr. cs must contain a valid

sealed capability whose type field corresponds to the base address of the authorizing

capability ct. The authorizing capability ct must grant the permit seal permission which

is required for both sealing and unsealing.

cr(cs) = 〈1, (s s, bin(perms s), addr s, len s, otype s)〉
cr(ct) = 〈1, (s t, bin(perms t), addr t, len t, otype t)〉

permit seal ∈ perms t

s s = true s t = false otype s = base t

cr ` permits unseal(cs, ct)
(permits unseal)

The rule permits seal checks that capability register ct can authorize the sealing

operation on capability register cs in capability register file cr. cs must contain a valid
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unsealed capability.

cr(cs) = 〈1, (s s, bin(perms s), addr s, len s, otype s)〉
cr(ct) = 〈1, (s t, bin(perms t), addr t, len t, otype t)〉

permit seal ∈ perms t s s = false s t = false

cr ` permits seal(cs, ct)
(permits seal)

3.2.2 Instructions Semantics

We describe one rule for the transition relation on CHERI states that factors out the

necessary check on pcc from the operational semantics of instructions. We denote a

state transition by →⊆ MachineState ×MachineState. The rule below specifies that for

any instruction to execute correctly, the program counter capability has to be a valid

capability on a memory region in which this instruction lives, and the capability has to

give the execute permission on this memory region.

〈m, r, cr, pc, pcc, next free〉 i→ 〈m′, r′, cr′, pc′, pcc′, next free′〉
pcc′ ` executable(pc′)

〈m, r, cr, pc, pcc, next free〉 → 〈m′, r′, cr′, pc′, pcc′, next free′〉
(legal-transition)

Next we give the format, a text description, and the operational semantics of all the

instructions we include in our model of the CHERI machine.

The semantics are specified by means of rule(s) for each instruction that define the

machine transition relation
i→⊆ MachineState ×MachineState.

binop rd rs1 rs2: An arbitrary binary operation. Source operands are in registers

rs1 and rs2. The result is stored in destination register rd.

m(pc) = 〈0, binop rd rs1 rs2〉
r′ = r[rd 7→ r(rs1) [BinOp] r(rs2)] pc′ = pc + 1

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r′, cr, pc′, pcc, next free〉
(BinOp)

cload rd rt cb: Load the value at the memory location given in rt into register rd if

the capability in capability register cb gives the load permission on this location. Indirect

non-relative addressing is used. (“Indirect” means the address is given in a register,

not as an immediate value. “Non-relative” means that the value in the register is the
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effective address, not an offset.)

m(pc) = 〈0, cload rd rt cb〉
cr(cb) = 〈1, (s b, bin(perms b), addr b, len b, otype b)〉

cr ` permits load(cb, content(r(rt)))

r ′ = r [rd 7→ m(content(r(rt)))] pc′ = pc + 1

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r′, cr, pc′, pcc, next free〉
(cload)

cstore rs rt cb: Store the value in register rs into the memory location given in

register rt if the capability in capability register cb gives the store permission on this

location. Indirect non-relative addressing is used.

m(pc) = 〈0, cstore rs rt cb〉
cr(cb) = 〈1, (s b, bin(perms b), addr b, len b, otype b)〉

cr ` permits store(cb, content(r(rt))) r(rs) = 〈tag s, content s〉
m ′ = m[content(r(rt)) 7→ 〈0, content s〉] pc′ = pc + 1

〈m, r, cr, pc, pcc, next free〉 i→ 〈m′, r, cr, pc′, pcc, next free〉
(cstore)

cloadcap cd rt cb: Load the capability value at the memory location given in rt into

capability register cd if the capability in capability register cb gives the load capability

permission on this location. Indirect non-relative addressing is used.

m(pc) = 〈0, cloadcap cd rt cb〉
cr(cb) = 〈1, (s b, bin(perms b), addr b, len b, otype b)〉

cr ` permits loadcap(cb, content(r(rt)))

cr ′ = cr [cd 7→ m(content(r(rt)))] pc′ = pc + 1

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r, cr′, pc′, pcc, next free〉
(cloadcap)

cstorecap cs rt cb: Store the capability value in register cs at the memory location

given in register rt if the capability in capability register cb grants the store capability

permission. And if the capability to be stored is valid and ephemeral, then cb has to

grant the store-ephemeral-capability permission.

m(pc) = 〈0, cstorecap cs rt cb〉
cr(cb) = 〈1, (s b, bin(perms b), addr b, len b, otype b)〉

cr ` permits storecap(cb, cs, content(r(rt)))

m ′ = m[content(r(rt)) 7→ cr(cs)] pc′ = pc + 1

〈m, r, cr, pc, pcc, next free〉 i→ 〈m′, r, cr, pc′, pcc, next free〉
(cstorecap)
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cjr rt cb: Jump to the address specified in register rt if the capability in register cb

is a valid capability that allows execution of the jump destination. Indirect non-relative

addressing is used.

m(pc) = 〈0, cjr rt cb〉 cr ` permits execute(cb, content(r(rt)))

pc′ = content(r(rt)) pcc′ = cr(cb)

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r, cr, pc′, pcc′, next free〉
(cjr)

cjrzero cb rz OFFS: Jump if and only if register rz contains the value 0 and the

capability in register cb is a valid execute capability on the jump destination. Direct

(immediate) relative addressing is used.

m(pc) = 〈0, cjrzero cb rz OFFS〉
content(r(rz)) = 0 cr ` permits execute(cb, pc + OFFS + 1)

pc′ = pc + OFFS + 1 pcc′ = cr(cb)

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r, cr, pc′, pcc′, next free〉
(cjrcond-true)

m(pc) = 〈0, cjrzero cb rz OFFS〉 content(r(rz)) 6= 0 pc′ = pc + 1

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r, cr, pc′, pcc, next free〉
(cjrcond-false)

cbts cb OFFS: Jump to the address pc + OFFS + 1 if and only if the tag of the word

in register cb is set (i.e., if it is a valid capability).

m(pc) = 〈0, cbts cb OFFS〉
cr(cb) = 〈1, content〉 pc′ = pc + OFFS + 1

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r, cr, pc′, pcc, next free〉
(cbts-true)

m(pc) = 〈0, cbts cb OFFS〉 cr(cb) = 〈0, content〉 pc′ = pc + 1

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r, cr, pc′, pcc, next free〉
(cbts-false)

ccall cc cd cdd: Takes a sealed code capability cc, and a sealed data capability cd

that should have the same otype, and unseals both of them. Then the code capability

is moved into pcc, and the data capability is moved into cdd. ccall is used to secure

transition between security domains. Control is transferred to the base address of the
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code capability.

m(pc) = 〈0, ccall cc cd cdd〉
cr ` callable(cc, cd) cc′ = unsealed(cr(cc)) cd′ = unsealed(cr(cd))

pcc′ = cc′ cr′ = cr[cdd 7→ cd′] pc′ = compute call address(cc′)

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r, cr′, pc′, pcc′, next free〉
(ccall)

allocate rs cd: Allocate a new memory region of the size indicated by the value in

the register rs, and stores a capability with full permissions on the newly allocated region

in the capability register cd.

m(pc) = 〈0, allocate rs cd〉
perms new = {p | p ∈ Perm} s new = false

addr new = next free len new = r(rs) otype new = 0

newcap = 〈1, (s new, bin(perms new), addr new, len new, otype new)〉
cr′ = cr[cd 7→ newcap]

pc′ = pc + 1 next free′ = next free + len new

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r, cr′, pc′, pcc, next free′〉
(allocate)

cseal cd cs ct: Store in capability register cd a sealed copy of the capability in cs

where the sealing type is given by the address of the capability in ct. The capability in

ct has to grant the sealing permission.

m(pc) = 〈0, cseal cd cs ct〉
cr(cs) = 〈1, (s s, bin(perms s), addr s, len s, otype s)〉
cr(ct) = 〈1, (s t, bin(perms t), addr t, len t, otype t)〉

otype d = addr t

cr ′ = cr [cd 7→〈1, (true, bin(perms s), addr s, len s, otype d)〉]
cr ` permits seal(cs, ct) pc′ = pc + 1

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r, cr′, pc′, pcc, next free〉
(cseal)

cunseal cd cs ct: Store in capability register cd an unsealed copy of the capability in

cs where the sealing type has to match the address of the capability in ct. The capability

in ct has to grant the unsealing permission (which is the permission permit seal).

m(pc) = 〈0, cunseal cd cs ct〉 cr ` permits unseal(cs, ct)

cr ′ = cr [cd 7→ clear otype(remove non ephemeral(unsealed(cr(cs)), cr(ct)))]

pc′ = pc + 1

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r, cr′, pc′, pcc, next free〉
(cunseal)
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cmove cd cb: Move the capability in register cb into capability register cd.

m(pc) = 〈0, cmove cd cb〉 cr ′ = cr [cd 7→ cr(cb)] pc′ = pc + 1

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r, cr′, pc′, pcc, next free〉
(cmove)

movei rd imm: Move an immediate value imm into register rd.

m(pc) = 〈0,movei rd imm〉 r ′ = r [rd 7→ imm] pc′ = pc + 1

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r′, cr, pc′, pcc, next free〉
(movei)

movepc rd: Move the value in pc into the register rd.

m(pc) = 〈0,movepc rd〉 r ′ = r [rd 7→ pc] pc′ = pc + 1

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r′, cr, pc′, pcc, next free〉
(movepc)

cincbase cd cb rt: Create in cd a capability on a reduced memory region compared

to the capability in cb by increasing the base address of the capability in register cb by

an increment of the value in register rt.

m(pc) = 〈0, cincbase cd cb rt〉
cr(cb) = 〈1, (s b, bin(perms b), addr b, len b, otype b)〉
s b = false r(rt) ≤ len b cr ′ = cr [cd 7→

〈1, (s b, bin(perms b), addr b + r(rt), len b− r(rt), otype b)〉]
pc′ = pc + 1

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r, cr′, pc′, pcc, next free〉
(cincbase)

csetlen cd cb rt: Create in cd a capability on a reduced memory region compared

to the capability in cb by setting the length field to a value smaller than the length field

of the capability in register cb.

m(pc) = 〈0, csetlen cd cb rt〉
cr(cb) = 〈1, (s b, bin(perms b), addr b, len b, otype b)〉

s b = false r(rt) ≤ len b

cr ′ = cr [cd 7→ 〈1, (s b, bin(perms b), addr b, r(rt), otype b)〉]
pc′ = pc + 1

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r, cr′, pc′, pcc, next free〉
(csetlen)
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ccleartag cd cb: Create an invalid copy of the capability in register cb by having the

tag unset, and place it in register cd.

m(pc) = 〈0, ccleartag cd cb〉 cr(cb) = 〈tag b, content b〉
cr ′ = cr [cd 7→ 〈0, content b〉] pc′ = pc + 1

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r, cr′, pc′, pcc, next free〉
(ccleartag)

candperm cd cb rt: Create in cd a capability with reduced permissions compared

to the capability in cs by intersecting the permissions in cs with the set of permissions

represented by the value in the register rt.

m(pc) = 〈0, candperm cd cb rt〉
cr(cb) = 〈1, (s b, bin(perms b), addr b, len b, otype b)〉

s b = false cr ′ = cr [cd 7→
〈1, (s b, bin(perms b) ∩ r(rt), addr b, len b, otype b)〉] pc′ = pc + 1

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r, cr′, pc′, pcc, next free〉
(candperm)

ccheckperm cs rt: Check that the permissions represented by the value in rt exist

in the capability in register cs. If not, then block execution.

m(pc) = 〈0, ccheckperm cs rt〉
cr(cs) = 〈1, (s s, bin(perms s), addr s, len s, otype s)〉

perms s ⊆ content(r(rt)) pc′ = pc + 1

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r, cr, pc′, pcc, next free〉
(ccheckperm)

cchecktype cs cb: Compare the types in the two capabilities in registers cs and cb.

If they are not equal, then block execution.

m(pc) = 〈0, cchecktype cs cb〉
cr(cs) = 〈1, (s s, bin(perms s), addr s, len s, otype s)〉
cr(cb) = 〈1, (s b, bin(perms b), addr b, len b, otype b)〉

s s = s b = false otype s = otype b pc′ = pc + 1

〈m, r, cr, pc, pcc, next free〉 i→ 〈m, r, cr, pc′, pcc, next free〉
(cchecktype)

3.2.3 Useful Properties of the Formal Model

A main useful feature of the operational semantics of CHERI is that valid capabilities

that exist in the capability register file and in the memory cannot have their set of
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Figure 3.1: CHERI ISA is meant to guarantee unforgeability of capabilities

permissions increased or their address ranges enlarged. If a modification with such an

effect (increasing of permissions, or enlarging the address range) happens, then it has

to happen in the general-purpose register file, and then whenever the result of such

an operation gets stored in memory, the tag bit is cleared so that the memory word

is not a valid capability. This is illustrated in Figure 3.1 which describes the different

operations that control the flow of data among the capability register file, memory, and

the general-purpose register file.

Capability unforgeability states that if execution starts in a CHERI machine state

in which a particular permission p is not granted on a particular allocated memory

address a (characterized by the absence of a valid capability on a that simultaneously

grants p), then in no reachable CHERI machine state can the permission p exist on the

address a. In other words, Theorem 3.1 states that the set of permissions (granted by the

union of valid capabilities in a CHERI machine state) on an already allocated address is

monotonically decreasing over the allowed execution steps.

By this notion of unforgeability, we capture a notion that can be seen as similar to

the concepts of “only connectivity begets connectivity” and “no authority amplification”

which are pointed out by Maffeis et al. [42]. In fact, the guarantees provided by

compartmentalization (Definition 5.4 and Theorem 5.5 in Chapter 5) lay out a framework

for organizing code into sections in a way that makes interaction between such code

sections roughly follow constraints similar to those implied by the two concepts mentioned.

We now state the following theorem about capability unforgeability:

Theorem 3.1. (Capability Unforgeability - No Privilege Escalation)
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If

1. 〈m, r, cr, pc, pcc, next free〉 →∗ 〈m′, r′, cr′, pc’, pcc’, next free’〉,

2. a ∈ Addr, p ∈ Perm,

3. a < next free,

4. ∀a′ ∈ Addr .m(a′) = 〈1, ( , bin(perms), st, len, )〉 ⇒
(p /∈ perms ∨ a /∈ [st, st + len)),

5. ∀c ∈ CapRegName. cr(c) = 〈1, ( , bin(perms), st, len, )〉 ⇒
(p /∈ perms ∨ a /∈ [st, st + len)),

6. pcc = 〈1, ( , bin(perms), st, len, )〉 ⇒
(p /∈ perms ∨ a /∈ [st, st + len)),

then

(a) ∀a′ ∈ Addr .m′(a′) = 〈1, ( , bin(perms), st, len, )〉 ⇒
(p /∈ perms ∨ a /∈ [st, st + len)),

and

(b) ∀c ∈ CapRegName. cr′(c) = 〈1, ( , bin(perms), st, len, )〉 ⇒
(p /∈ perms ∨ a /∈ [st, st + len)),

and

(c) pcc′ = 〈1, ( , bin(perms), st, len, )〉 ⇒
(p /∈ perms ∨ a /∈ [st, st + len)),

Proof. We prove it by induction on the number n of transition steps →. The base case

n = 0 is trivial; it follows directly from the assumptions.

For the inductive case, we have a state 〈m′′, r′′, cr′′, pc”, pcc”, next free”〉 satisfying

the induction hypothesis (conditions 2, 3, 4, 5, 6).

And we need to show that if 〈m′′, r′′, cr′′, pc”, pcc”, next free”〉 →
〈m′, r′, cr′, pc’, pcc’, next free’〉 then propositions a, b, and c hold.

We do it by case distinction on the rules for instruction execution
i→:

• Case cchecktype, ccheckperm, movepc, movei, cbts-true, cbts-false, cjrcond-

false, cload, BinOp:
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We observe that in all of these rules, m′ = m′′, cr′ = cr′′, pcc′ = pcc′′.

So we have that propositions a, b, and c follow directly from induction hypotheses

4, 5, and 6 respectively.

Case proved.

• Case cmove

– We observe that m′ = m′′, pcc′ = pcc′′.

So we have that propositions a and c follow directly from induction hypotheses

4 and 6.

– To show proposition b, we obtain the necessary precondition cr′ = cr′′[cd 7→
cr′′(cb)] of the rule cmove.

– By case distinction on the condition c = cd, we conclude that proposition b

follows immediately from induction hypothesis 5 on cr′′ with the instantiation

c = cb in case c = cd holds of the goal, and that proposition b follows

immediately from induction hypothesis 5 in case c 6= cd.

Case proved.

• Case cstore:

– We observe that cr′ = cr′′, pcc′ = pcc′′.

So we have that propositions b and c follow directly from induction hypotheses

5 and 6 respectively.

– To show that a holds, we proceed by case distinction on the tag bit of memory

words in the range of m′ for an arbitrary a′ ∈ Addr :

∗ Case m′(a′) = 〈0, 〉:
Then we have that proposition a holds vacuously.

∗ Case m′(a′) = 〈1, 〉:
Then we know from the rule cstore that necessarily m′(a′) = m′′(a′) (in-

ferred from the necessary precondition that defines m′:

m ′ = m ′′[content(r ′′(rt)) 7→ 〈0, content s〉]), and so for that case, propo-

sition a follows from induction hypothesis 4.

Case proved.

• Case cloadcap

– We observe that m′ = m′′ and pcc′ = pcc′′.

Then we have that propositions a and c follow directly from induction hy-

potheses 4 and 6 respectively.
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– To show proposition b, we proceed by case distinction on the register name c.

∗ Case c 6= cd

Here, proposition b follows directly from induction hypothesis 5.

∗ Case c = cd

We obtain the necessary precondition cr ′ = cr ′′[cd 7→ m ′′(content(r ′′(rt)))],

and we use induction hypothesis 4 on m′′ with the instantiation a′ =

content(r′′(rt)) to conclude that proposition b follows immediately for

this case.

Case proved.

• Case cstorecap

– We observe that cr′ = cr′′ and pcc′ = pcc′′.

Then we have that propositions b and c follow directly from induction hy-

potheses 5 and 6 respectively.

– To show proposition a, we obtain the necessary precondition m′ = m′′[content(

r′′(rt)) 7→ cr′′(cs)] of the rule cstorecap, and we proceed by case distinction

on the memory address a′ in statement a.

∗ Case a′ 6= content(r′′(rt))

Then, proposition a follows directly from induction hypothesis 4 about

m′′.

∗ Case a′ = content(r′′(rt))

Then, proposition a follows directly from induction hypothesis 5 about

cr′′ with the instantiation c = cs.

Case proved.

• Case ccleartag

– We observe that m′ = m′′, pcc′ = pcc′′.

So we have that propositions a and c follow directly from induction hypotheses

4 and 6 respectively.

– To show that b holds, we obtain the necessary preconditions

cr ′′(cb) = 〈tag b, content b〉 and cr ′ = cr ′′[cd 7→ 〈0, content b〉] of the rule

ccleartag. We then proceed by case distinction over the register name c that

is mentioned in proposition b:

∗ Case c 6= cd

Then proposition b follows directly from induction hypothesis 5 about

cr′′.
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∗ Case c = cd

Then statement b becomes vacuously true (because the tag bit is 0).

Case proved.

• Case candperm:

We observe that m′ = m′′, pcc′ = pcc′′.

So we have that propositions a and c follow directly from induction hypotheses 4

and 6 respectively.

To show that b holds, we distinguish between the register name cd mentioned in

the preconditions of the rule candperm and the other registers.

– Case c 6= cd:

We observe that cr′|CapRegName\{cd} = cr′′|CapRegName\{cd}, and hence propo-

sition b follows immediately from induction hypothesis 5.

– Case c = cd:

Let cr′′(cb) = 〈1, (s b, bin(perms b), addr b, len b, )〉 and observe from

the precondition:

cr ′ = cr ′′[cd 7→〈1, (s b, bin(perms b) ∩ r ′′(rt), addr b, len b, otype b)〉]

of the rule candperm that:

cr′(cd) = 〈1, (s b, bin(perms d), addr b, len b, )〉 with the condition that

p ∈ perms d⇒ p ∈ perms b.

So we have:

∗ Either p /∈ perms d; in which case the consequent of statement b holds.

∗ Or p ∈ perms d; in which case we know that p ∈ perms b.

But this means that (since we know that induction hypothesis 5 must

hold for c = cb) a /∈ [addr b, addr b + len b).

Hence, proposition b holds on cr′ with the instantiation c = cd because

cr′(cd) consists of the same values addr b and len b for the correspond-

ing fields. So the proposition a /∈ [addr b, addr b + len b) follows from

the induction hypothesis making the consequent of statement b also true.

Case proved.

• Case cincbase

This case is analogous to Case candperm.

The same arguments hold for propositions a and c. For proposition b, we have the

same case distinction. Case c 6= cd is the same.



36 Chapter 3 A Formal Model for CHERI

We show Case c = cd:

This case is dual to the corresponding case of candperm.

Let cr′′(cb) = 〈1, (s b, bin(perms b), addr b, len b, )〉 and observe from the

preconditions:

(i) cr ′ = cr ′′[cd 7→
〈1, (s b, bin(perms b), addr b + r ′′(rt), len b− r ′′(rt), otype b)〉], and

(ii) r ′′(rt) ≤ len b

of the rule cincbase and from the fact that:

(iii) r ′′(rt) is non-negative which follows from the type information Content = N

that addr b ≤ addr d ≤ addr d + len d ≤ addr b + len b

where

cr′(cd) = 〈1, (s b, bin(perms b), addr d, len d, )〉.

Hence we conclude that a ∈ [addr d, addr d + len d)⇒ a ∈ [addr b, addr b + len b).

So we have:

– Either a /∈ [addr d, addr d + len d); in which case the consequent of state-

ment b holds.

– Or a ∈ [addr d, addr d + len d); in which case we know that

a ∈ [addr b, addr b + len b) holds (by the implication concluded above).

But this means that p /∈ perms b (by disjunctive syllogism since we know

that induction hypothesis 5 must hold with the instantiation c = cb).

Hence, proposition b holds on cr′ with the instantiation c = cd because

cr′(cd) consists of the same value perms b for the permissions field. So the

proposition p /∈ perms b follows from the induction hypothesis making the

consequent of statement b also true.

Case proved.

• Case csetlen:

This case is similar to Case cincbase. The main observation is that we can conclude

the same proposition addr b ≤ addr d ≤ addr d + len d ≤ addr b + len b

from the preconditions:

(i) cr ′ = cr ′′[cd 7→ 〈1, (s b, bin(perms b), addr b, r ′′(rt), otype b)〉], and

(ii) r ′′(rt) ≤ len b

of the rule csetlen and from the fact that:
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(iii) r ′′(rt) is non-negative which follows from the type information Content = N.

Case can hence be proved with the rest of the argument being identical to cincbase.

We avoid repetition.

• Case cseal:

– We observe that m′ = m′′, pcc′ = pcc′′.

So we have that propositions a and c follow directly from induction hypotheses

4 and 6 respectively.

– Similarly to all cases where cr′ 6= cr′′, we distinguish between the cases c 6= cd

and c = cd. For the former case, proposition b follows directly from induction

hypothesis 5.

For case c = cd, we obtain the necessary precondition cr ′ = cr ′′[cd 7→
〈1, (true, bin(perms s), addr s, len s, otype d)〉] of the rule cseal and no-

tice that the fields perms s, addr s, len s are the same from cr′′(cs), and

hence we satisfy proposition b for c = cd directly based on induction hypothesis

5 applied with the instantiation c = cs.

Case proved.

• Case cunseal:

– We observe that m′ = m′′, pcc′ = pcc′′.

So we have that propositions a and c follow directly from induction hypotheses

4 and 6 respectively.

– Similarly to all cases where cr′ 6= cr′′, we distinguish between the cases c 6= cd

and c = cd. For the former case, proposition b follows directly from induction

hypothesis 5.

For case c = cd, we obtain the necessary precondition

cr ′ = cr ′′[cd 7→ clear otype(remove non ephemeral(unsealed(cr ′′(cs)), cr ′′(ct)))]

of the rule cunseal and notice from the definition of remove non ephemeral

that we can distinguish two cases:

∗ Case non ephemeral ∈ perms t: In this case, looking at the definition of

unsealed and noticing that it does not change the permissions field of the

base and length fields, we deduce that proposition b follows directly from

induction hypothesis 5 about cr′′ instantiated with c = cs.

∗ Case non ephemeral /∈ perms t: In this case, either p = non ephemeral,

in which case proposition b holds because the disjunct p /∈ perms will

hold for the instantiation c = cd; or p 6= non ephemeral, in which case
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again proposition b follows directly from induction hypothesis 5 about

cr′′ instantiated with c = cs.

• Case cjrcond-true, cjr:

– We observe that m′ = m′′, cr′ = cr′′.

So we have that propositions a and b follow directly from induction hypotheses

4 and 5 respectively.

– To show that proposition c holds, we obtain the necessary precondition

pcc′ = cr′′(cb) of both rules cjrcond-true and cjr. We then note that proposition

c follows directly from the validity of induction hypothesis 5 on cr′′ with the

instantiation c = cb.

Case proved.

• Case ccall:

– We observe that m′ = m′′.

So we have that proposition a follows directly from induction hypothesis 4.

– To show that proposition b holds:

Similarly to all cases where cr′ 6= cr′′, we distinguish between the cases c 6= cdd

and c = cdd. For the former case, proposition b follows directly from induction

hypothesis 5. For the latter, we obtain the necessary preconditions:

(i) cd′ = unsealed(cr′′(cd)), and

(ii) cr′ = cr′′[cdd 7→ cd′]

of the rule ccall.

We then notice from the definition of unsealed that the permissions, base, and

length fields all do not change.

So we conclude that proposition b follows directly from induction hypothesis

5 on cr′′ with the instantiation c = cd.

– To show that proposition c holds, we obtain the necessary preconditions:

(i) cc′ = unsealed(cr′′(cc)), and

(ii) pcc′ = cc′

of the rule ccall.

Using the same observation mentioned above about the definition of unsealed,

we conclude that proposition c follows directly from induction hypothesis 5

on cr′′ with the instantiation c = cc.

• Case allocate
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– We observe that m′ = m′′, pcc′ = pcc′′.

So we have that propositions a and c follow directly from induction hypotheses

4 and 6.

– To show that proposition b holds, similarly to all cases where cr′ 6= cr′′,

we distinguish between the cases c 6= cd and c = cd. For the former case,

proposition b follows directly from induction hypothesis 5.

For the latter case (c = cd), we obtain the necessary preconditions:

(i) addr new = next free,

(ii) newcap =

〈1, (s new, bin(perms new), addr new, len new, otype new)〉, and

(iii) cr′ = cr′′[cd 7→ newcap]

of the rule allocate,

and we also use induction hypothesis 3 which states that a < next free

to conclude that a /∈ [addr new, addr new + len new) and hence that the

consequent of statement b holds.

Case proved.

All cases covered.

The theorem below states that the memory address that points to the next free

memory location in a CHERI machine state can only increase or remain constant upon

execution of CHERI machine instructions. This can be shown by observing that the only

instruction that changes the value of this address is the allocate instruction, and that

it always increments it. All other instructions do not change the value of next free.

An obvious extension of such a model of the instruction set is to have a more

realistic data structure for memory management with operations/instructions that allow

deallocating memory.

Theorem 3.2. (next free is non-decreasing)

〈m, r, cr, pc, pcc, next free〉 →∗ 〈m′, r′, cr′, pc′, pcc′, next free′〉 ⇒

next free′ ≥ next free

Proof. We prove it by induction on execution steps. Base case (n = 0) is trivial (by

reflexivity of ≤). For the inductive case, we proceed by case distinction on the instruction

step
i→.
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• Case allocate:

We notice from the type information Content = N and from the obtained precondi-

tions len new = r(rs) and next free′ = next free + len new of the rule allocate

that next free′ ≥ next free follows immediately.

• All other cases follow trivially from the observation that next free = next free′.



Chapter 4

Control Flow Integrity based on

CHERI MIPS

Some attacks arise in the form of exploiting vulnerabilities in a computer program that

enable attackers to subvert the expected flow of the program intended by the programmer.

So constraining the possible behaviors or flows of a program is a known goal for mitigation

techniques.

The set of possible legal behaviors of a program can be approximated by means of

static analysis of binary or source code (like in CFI [19, 20, 21] or in [43] where a program

is forced to execute only system calls that are accepted by some computed automaton) or

by other techniques that are intended for mitigating known vulnerabilities (like mitigating

buffer-overflows in C [44]) that arise due to compiler implementations together with

programmer errors. One other way of achieving the goal of constraining flow of a program

is to preserve the behavior of a program upon the compilation (translation) to machine

code. Typed Assembly Language [45] is one example of this direction.

Control Flow Integrity (CFI) [19, 20, 21] aims at restricting the flow transfers of a

machine-code program. The restriction is that flow transfers (jumps) should be taking

place only to target addresses that are valid destinations with respect to a predetermined

control flow graph. Enforcement of such a policy is implemented by inline instrumentation

of the machine code. Statically, the control flow graph is computed by analysis of the

binary code. Dynamically, the instrumentation guarantees that every indirect jump takes

place to one of a set of expected target destinations before it (the instrumentation) allows

the jump to take place. Direct jumps or instructions that target a constant destination

can be inspected statically, so there is no need to enforce any policy on their execution.

41
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The instrumentation modifies each source and destination of an indirect jump. So,

based on a Control Flow Graph (CFG), an indirect jump instruction is allowed to take

place only if the destination of the jump complies with an existing edge in the graph.

The graph is constructed in such a way that for some source instruction, all possible

destinations are represented as one node. Also, as an over-approximation that helps for

efficiency concerns, two destinations are considered equivalent (i.e., represented using

one node) if they share a common source.

Control Flow Integrity (CFI) is a safety property whose enforcement provides

protection even against adversaries that are able to control the data memory of the

executing program [19]. It rests on three main assumptions:

• unique IDs for “different” code destinations (UNQ),

• non-writable code (NWC), and

• non-executable data (NXD).

In this chapter we illustrate briefly that all of these assumptions are achievable by a

compilation procedure that uses CHERI as a target architecture. We show a simple way

by which one can achieve CFI enforcement by means of simple machine code rewriting.

In this we follow the footsteps of the formal model given by the authors of Control Flow

Integrity in [20], which itself is based on the language given in [46]. We point out that

there are other techniques [47] for CFI enforcement, and that we choose the machine

code instrumentation technique for simplicity of replicating the work done [20] for the

x86 architecture on MIPS [34] and because no architectural support would be required

more than what is available by MIPS. Nevertheless, it is important to make sure that

the additional CHERI instructions still leave it possible to enforce CFI by machine code

instrumentation. In Section 4.4, we prove Theorem 4.2 about our simplified formal model

which is almost identical to the theorem in [20].

NXD and NWC are straightforward to achieve by any CHERI-based operating

system or compiler. The permissions field already offers the separation between the load,

store, and execute privileges [11]. One can potentially make use of the other unused bits

(or in our formal model, simply the permissions set) in order to assign unique IDs to the

different code destinations (UNQ). Or we can alternatively make use of the otype field of

the capability. Both of these are candidate choices because they have a corresponding

check instruction, namely ccheckperm and cchecktype respectively.

However, more obviously, CFI enforcement by machine code rewriting does not

use any specific features of the x86 architecture (the architecture of choice in [19]), so



Chapter 4 Control Flow Integrity based on CHERI MIPS 43

having a look at [20, Section 4.1], we realize that the only steps necessary to show CFI

enforcement on CHERI, is to do the machine code rewriting without the help of any

specific CHERI instructions and to only use ordinary MIPS [34] instructions, which are

already anyway the general-purpose computing basis of the CHERI architecture [11].

In particular, even though a label instruction (which serves as a colored checkpoint by

the enforcement mechanism) is not part of a MIPS ISA [34], one can imagine a code

rewriting mechanism which uses an immediate movei or addi instruction, and just makes

sure that the destination register is never used by the called code sequence.

We adapt the conditions mentioned in Section 4.1 in [20] that are enforced on the

“code memory” by the formal model of CFI to our model of CHERI, and we adapt

Theorem 1 in Section 4.2 in [20] to the new conditions.

Informally, the theorem should then guarantee that, given an initial state that

satisfies the new conditions on a CFG on the code memory, any change of the state is

either a malicious modification of data memory, accompanied with no change in pc, or

that the next pc value is a valid successor corresponding to the code memory, the CFG,

and the pc value. This would mean, in particular, that despite attacks on data memory,

the program flow respects the computed CFG [20].

4.1 NXD and NWC using CHERI

Work has been done to achieve application compartmentalization [25] supported by

CHERI in the form of compiler-directed memory protection. See section 5.2 for an

illustrative example of how memory organization using capabilities can be thought of in

terms of compartments, and how this guarantees NXD and NWC.

4.2 Constructing the Control Flow Graph by static analy-

sis

Following the convention in [20], we denote the control flow graph by the function succ.

In our treatment, we can let the function succ map a memory address to a set of

memory addresses, which are all valid jump destinations.

As in [20, Section 3], all destinations that are potentially valid for a particular source

address are treated as equivalent. In particular, a static analysis constructing a control

flow graph needs to guarantee that succ(w0) ∩ succ(w1) = ∅ or succ(w0) = succ(w1) for

arbitrary instruction memory locations w0, w1.
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The requirement above which actually describes an approximation that reduces the

precision of the analysis is crucial for feasibility of an enforcement mechanism that uses

colors.

A more precise Control Flow Graph

It is worth noting that for an enforcement mechanism that uses colors (See 4.3), having

a “color” represent a set of destinations (in particular, a color per jump destination

representing the subset of code memory which is a possible successor of that destination),

yields an exponential decrease in the number of possible destinations in a code sequence

that can possibly be protected by an n-bit color. An n-bit color in that case would be

able to protect a code base with just n destinations, instead of 2n destinations when the

approximation mentioned in [20, Section 3] is employed. So, raising the precision of CFI

enforcement may require other less obvious mechanisms if large code bases are to be

protected with a feasible overhead (If the code base is on the order of a few hundreds

(let alone a few thousands) of potential jump destinations, then an overhead of a few

hundred bits protecting each jump destination is not practical on any existing ISA. A

different technique from the one in [20, Section 4] would have to be used).

So, we require that the succ function on memory addresses have the following

properties:

For a particular CHERI machine state 〈m, r, cr, pc, pcc, next free〉,

• {pc + 1, pc + OFFS + 1} = succ(pc) if m(pc) = 〈0, cbts cb OFFS〉.

• {pc + 1, pc + OFFS + 1} = succ(pc) if m(pc) = 〈0, cjrzero cb rz OFFS〉.

• {pc + 1, pc + OFFS + 1} = succ(pc) if m(pc) = 〈0, cjrnotzero cb rz OFFS〉.

• succ(pc) 6= ∅ if m(pc) = 〈0, cjr rt cb〉.

This is to ensure non-triviality of the static analysis. A trivially sound analysis

can disallow any indirect jump address by simply including only edges between

consecutive instructions.

• succ(pc) 6= ∅ if m(pc) = 〈0, ccall cc cd cdd〉.

This is to ensure non-triviality.

• succ(pc) = {pc + 1} if m(pc) is any other valid instruction encoding than the ones

above.
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• succ(pc) = ∅ if m(pc) is not a valid instruction encoding.

This is not necessary for correctness of the static analysis, since the protection it

provides is automatically guaranteed by CHERI’s checks on pcc. We include it just

to make sure the static analysis does not add useless information to the graph.

Note that the condition that we require on the indirect jump instruction cjr is just a

sanity requirement. This instruction is the very instruction that CFI seeks to protect.

Like in [21, Section 6.3], dst(pc) or dst(m,G, pc) are used to denote an ID of the

equivalence class of succ(pc).

Note that the function succ is defined for a particular machine state. Another way to

refer to this parametrization of succ on the machine state is to instead write succ(pc,m)

because the only interesting component of the machine state that should affect the

definition of succ is the memory. In particular for a fixed non-writable code memory (i.e.,

memory on which whenever there exists an execute permission, it does not also lie under

a write permission), succ function can have a fixed definition for all the CHERI machine

states that follow from a state with such code memory.

4.3 Enforcing CFI by machine code rewriting

We assume we have a valid CFG, and show the properties required of a transformed

(re-written) sequence of CHERI machine code so that a safety theorem holds.

We follow the treatment in [20, Section 4.1].

The verification criteria of a code rewriting procedure that enforces CFI are:

1. Every memory location that is computed by the static analysis to be a potential

destination of a cjr instruction should be a location that contains the special

instruction movei with its argument rreserved. In other words, for a fixed and

chosen rreserved (a register which is not used elsewhere in the program code1), all

jump destinations should be of the form:

m(jump destination) = 〈0,movei rreserved ID〉

for some value ID which is unique for the equivalence class of this jump destination.

1Note that one can ensure that a certain register is reserved by the binary code instrumentation
procedure itself.
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2. Every cjr instruction should be preceded by the following instructions of this form:

movei rc IMM

cload ri rt cc

sub rz ri rc

cjrnotzero cc′ cz HALT

cjr rt cc

The immediate value IMM in register rc should equal the value of the instruction at

the jump destination (i.e., the legal entry point). This instrumentation checks this

fact by loading in register ri the actual instruction at the jump destination (i.e.,

the memory word at the memory address specified by rt), and checking that both

values in rc and ri are equal. If not, it forces a jump to the offset HALT which

would be the address of a safe instruction.

That instruction at the jump destination can be a dummy instruction, but it should

be one that is unique to the equivalence class of destinations defined by the CFG.

Since there is no dedicated label instruction in the standard MIPS instruction set,

movei can be used, with the destination register being a fixed register that is not

used elsewhere in the code, and the “color” denoting the equivalence class can be

described by the immediate value of movei.

In particular, by condition 1, we require that all and only the memory words at

any valid jump destination address pcjump destination have the form:

m(pcjump destination) = 〈0,movei rreserved IMM〉

where rreserved is a register name that is not used anywhere else in the executing

program, and IMM = dst(m,G, pc) for all and only pc values in the same equivalence

class succ(pc).

Note that as far as the formal semantics are concerned, it suffices to compare

the value IMM to the full memory word at the jump destination because both are

unbounded natural numbers. However, practically, only part of the memory word

should be compared against IMM.

The immediate value HALT should equal the address of a safe instruction that will

handle the violation of the control flow graph that is detected, and cc’ should be

a capability register that contains a valid capability which allows execution of this

safe instruction at HALT.
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sub is one instance of a binop instruction.

cjrnotzero is dual to cjrzero. We use it here for convenience, and to avoid more

checks.

Note that the cload instruction uses the same capability register cc that is used

for the jump (cjr) instruction. This is not necessary. Another correct rewriting

of the machine code could also use separate capability registers, and additionally

check that they both have the same base value (if not, jump to HALT). This latter

way would be beneficial when the code at the jump destination is intended to be

executable but not readable. A capability for reading only the first (artificially

added) instruction will then be all that is needed for cload.

3. Every cjrzero or cjrnotzero instruction should have its destination address not

holding a cjr instruction or any of the occurrences of the instructions:

cload ri rt cc

sub rz ri rc

cjrnotzero cc′ cz HALT

that precede a cjr instruction according to condition 2. Note that the destination

address of both of these instructions is statically computable because its is an

immediate value representing an offset to the current pc value.

Note: Following the treatment in [21, 20], we write I(m) or I(m,G) to denote that

a certain memory (in particular, code memory) m satisfies the instrumentation conditions

mentioned above for an expected control-flow graph G.

4.4 CFI Theorem

We follow the treatment in [20, Section 4.2] and state the following theorem about control

flow integrity.

Separate syntactic representation of code memory

For convenience, we stick to the syntactic representation of a separate code memory Mc,

where for a given CHERI machine state 〈m, r, cr, pc, pcc, next free〉, we assume that for

any memory address a < next free,
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• Either all the capabilities cap that are available in the capability register file cr,

or anywhere in the memory m over this address (i.e., cap with cap.addr ≤ a ≤
cap.addr+cap.len) are subject to the constraint that permit execute ∈ cap.perms
and permit store 6∈ cap.perms

• Or that all of them are subject to the constraint that permit store ∈ cap.perms
and permit execute 6∈ cap.perms.

And hence, we define code memory to be the executable (and, hence, non-writable) part

of memory

Mc := m|exec a

where

exec a := {a | ∃ cap. cap.addr ≤ a ≤ cap.addr + cap.len ∧ permit execute ∈ cap.perms}

where the existential quantifier is over the contents of memory words in the range of the

capability register file and the range of allocated memory until next free.

We stress that the syntactic representation of a separate code memory is a matter

of convenience for the purposes of stating and proving the theorem, and that it is not

necessary for ensuring NWC. And we may still use m in the context of a related Control

Flow Graph instead of using the above definition of Mc.

Similar to [21], we use the notation →n to denote normal execution steps. As

in [21], we deliberately choose to model the normal execution step as an incomplete

relation between machine states. In particular, we model it as execution within just one

program. And we assume that whenever the instruction ccall is executed, then arbitrary

manipulation of the data memory and the register files is possible, except for the reserved

registers. In CHERI, one realistic way of assuming a register is reserved is to use what

are called system registers [11]. We, hence, define this normal execution step as any

instruction except the ccall instruction. This matches the expectation of the definition of

this relation that is given in [21]. So the rules for →n are the same as the rules for the

CHERI instruction transition relation
i→ with the exclusion of the rule (ccall).

Also similar to [21], we also use the notation →a to denote a memory attacker step.

This is defined as an arbitrary transition where data memory can be changed arbitrarily.

Protection against such an attack is perfectly possible in CHERI, but we still assume

that such an attack is a threat because we need to model the same protection mechanism

of CFI [19, 21] under the same attacker model. One subtle simplification that we also

make similar to [21] is that we assume that attacker steps do not change the pc value. If

we think of the CHERI machine state as a model of the program state, which we indeed
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realize by defining only the “normal” program execution steps→n which exclude the ccall

instruction (which is used to switch context), then modeling an attacker step that does

not change the value of pc corresponds to thinking of the program code as a coherent

flow of code (eliminating the ccall instructions). This is a simplifying assumption that

we make in order to be able to adapt/model the possibility of the subtle memory attack

that is assumed as a potential threat against enforcement of the policy of CFI [19, 21].

Hence, we define an attack step →a⊆ MachineState ×MachineState as

→a
def
= {(S, S′) | S.pc = S′.pc ∧ S.Mc = S′.Mc ∧ S.r(rreserved) = S′.r′(rreserved)}.

Following the treatment in [21, Appendix A.1], we start by stating a proposition

about the sequence of instrumentation instructions that precede a cjr instruction.

Proposition 4.1. [21, Proposition 3] (Jump destination is valid if checking instructions

pass) Let S0, S1, S2, S3, S4 be CHERI machine states with memory m, where NWC is

assumed about the program executing. (See Section 4.1 for illustration that this assumption

is reasonable to make about a CHERI machine state and a program without the need

for syntactic separation between the code memory and data memory constructs as in the

formal model of [21].)

And let:

m(S0.pc) = 〈0, movei rc IMM〉

m(S1.pc) = 〈0, cload ri rt cc〉

m(S2.pc) = 〈0, sub rz ri rc〉

m(S3.pc) = 〈0, cjrnotzero cc′ cz HALT〉

m(S4.pc) = 〈0, cjr rt cc〉

and

S0 →n→∗a S1 →n→∗a S2 →n→∗a S3 →n→∗a S4

where →∗a is the reflexive transitive closure of →a.

Assume that S4.r(rt) is a valid jump destination with respect to the capability

S4.cr(cc), i.e., assume that S4.cr ` permits execute(cc), and let w = S4.r(rt). Then we

have that m(w) = IMM, and if I(m,G), then m(w) = 〈0,movei rreserved dst(m, G, S4.pc)〉.

This proposition states what it means for the mentioned sequence of instructions to

execute sequentially. It infers that such execution, when guarded by the assumption that

I(m,G) must mean that the jump destination is as expected by the control flow graph.

Theorem 4.2. [21, Theorem 1] (Every execution step is either a memory attack or a

transition to an expected successor instruction)



50 Chapter 4 Control Flow Integrity based on CHERI MIPS

Let S0 be a state 〈m, r, cr, pc, pcc, next free〉 such that pc = 0 and G is a CFG of

m, and both m and G satisfy the requirements listed in Sections 4.2 and 4.3 (on CFG

construction and machine code rewriting); we denote such state of satisfaction by the

predicate I(Mc, G), and let S1, ..., Sn be CHERI machine states such that S0 → S1 →
...→ Sn. Then, for all i ∈ 0...(n− 1), either Si →a Si+1 (the step is a memory attack)

and Si+1.pc = Si.pc, or Si+1.pc ∈ succ(Si.pc) for succ defined according to G and Mc.

The proof is by induction on executions. But we state the following lemma, and

then Theorem 4.2 is a straightforward corollary.

Using proposition 4.1, the following lemma can be proved:

Lemma 4.3. [21, Lemma 4] Let S0 be a state 〈m, r, cr, pc, pcc, next free〉 such that

I(m,G) where G is a control-flow graph of m, and let S1, ..., Sn be states such that

S0 → S1 → ...→ Sn, with n ≥ 0. Then:

1. Sn.Mc = S0.Mc;

2. Sn.pc ∈ dom(S0.Mc);

and if n > 0,

3. either Sn−1 →a Sn and Sn.pc = Sn−1.pc, or Sn.pc ∈ succ(S0.m,G, Sn−1.pc);

4. if there exists k ∈ {0..3} such that m(Sn.pc + k) holds a cjr instruction, then

Sn−1.pc = Sn.pc or Sn−1.pc + 1 = Sn.pc.

This lemma focuses on the execution step Sn−1 → Sn rather than on an arbitrary

execution step Si → Si+1.

Conjunct 1 means that code memory does not change in the course of execution,

which immediately implies that I(Sn.Mc, G).

Conjunct 2 means that execution does not leave code memory.

Conjunct 4 forbids jumps past or into the middle of the checking sequences of

instructions that precede cjr and cjrcond instructions.

Similar to what is claimed in [21], conjuncts 1 and 2 always follow immediately from

the definition of the operational semantics, and from the assumption that we start with

compartmentalized memory.

So we write Mc instead of Si.Mc for i ∈ {0..n}, and use that I(Mc, G) and that

Sn.pc ∈ dom(Mc).
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Theorem 4.2 is a corollary of Lemma 4.3 because the hypotheses of the lemma

are those of the theorem, and so is conjunct 3 of the conclusion of the lemma except

that the lemma focuses on the last step of execution Sn−1 → Sn for any n states. But

this obviously is generalizable to an arbitrary execution step Si → Si+1 by applying the

lemma to all prefixes of a given sequence of states.

So now we just show the proof of Lemma 4.3.

Proof. Following the proof in [21, Appendix A], we establish conjuncts 3 and 4 by strong

induction2 on n. For n = 0, all conjuncts are either trivially or vacuously true. For

n > 0, we consider the two cases of an attack step or a normal step. For the case of

an attack step, we know that code memory and program counter are not changed by

definition, so conjuncts 3 and 4 trivially follow. For the case of a normal step, we argue

by cases on the instruction Sn−1.pc.

• For cjzero, cjnotzero, cbts instructions, we have that Sn.pc ∈ {Sn−1.pc+1, Sn−1.pc+

OFFS + 1} (by the operational semantics), and Sn.pc ∈ dom(Mc), and therefore

Sn.pc ∈ succ(Mc, G, Sn−1.pc) (by the requirements on the CFGs), so conjunct 3

holds.

If Sn.pc = Sn−1.pc + 1, then conjunct 4 holds immediately. On the other hand, for

the case when Sn.pc = Sn−1.pc+OFFS+ 1, we have that m(Sn−1.pc+OFFS+k+ 1)

cannot be a cjr instruction for k ∈ {0..3}, by the definition of the predicate I in

the assumption of the lemma, so conjunct 4 holds vacuously.

• For cjr rt cc, we observe that it must be preceded by the sequence of instructions

movei rc IMM

cload ri rt cc

sub rz ri rc

cjrnotzero cc′ cz HALT

according to the definition of the predicate I. With the exception of movei rc IMM,

none of these instructions could be at memory address 0 (i.e., none could be the

starting point of the execution). Similarly the cjr instruction in question cannot be

the starting point for the execution either.

2Proof of the equivalence of strong and regular induction can be found here: http://www.

oxfordmathcenter.com/drupal7/node/485

http://www.oxfordmathcenter.com/drupal7/node/485
http://www.oxfordmathcenter.com/drupal7/node/485
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Moreover by the induction hypothesis (conjunct 4), the execution could not have

jumped past or into the middle of these instructions (here we make use of strong

induction because the induction hypothesis on n− 1 only would not suffice).

From the operational semantics and conjuncts 1 and 2, we have that Sn.pc ∈
dom(Mc) and I(Mc, G). Therefore Proposition 4.1 applies, and yieldsm(Sn−1.r(rt)) =

〈0,movei rreserved dst(m, G, Sn−1.pc)〉. From the operational semantics we also have

that Sn.pc = Sn−1.r(rt), so m(Sn.pc) = 〈0,movei rreserved dst(m, G, Sn−1.pc)〉,
which implies that Sn.pc is a destination and that dst(m, G, Sn−1.pc) is its ID.

Since the instruction at Sn−1.pc is a cjr instruction, dst(m, G, Sn−1.pc) is the ID

of the elements of succ(Mc, G, Sn−1.pc) (by I(Mc, G)). Hence, we conclude that

Sn.pc ∈ succ(Mc, G, Sn−1.pc), and so conjunct 3 holds.

But since Sn.pc contains a movei rreserved instruction with rreserved not used

anywhere else in the code, so in particular this destination cannot be one of

the checking instructions that are prohibited by conjunct 4, so conjunct 4 holds

vacuously.

• For all the other cases binop, movei, cincbase, cload, cstorecap, etc.., we have

that Sn.pc = Sn−1.pc + 1 by the operational semantics, so conjunct 4 holds. As

Sn.pc ∈ dom(Mc), we have that succ(Sn−1.pc) = Sn.pc (by the requirements on

the CFGs), so conjunct 3 holds as well.
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Security Goals using CHERI

Example Micro-policies applications shown on CHERI

In [39, Chapter 6], three general uses of the CHERI capability mechanism are demon-

strated to argue for the utility of the CHERI architecture. In this section, we illustrate

more applications, and we elicit some relevant security examples from ones that were

shown to be expressible using micropolicies [9]. In particular, we focus on formally

showing that a basic notion of memory compartmentalization [25, 26, 27, 9] is achievable

using CHERI.

Micropolicies [9] provide a generic framework for verifying arbitrary policies enforce-

able by the PUMP architecture.

In this section, we show how various security goals that are enforceable using

micropolicies can also be simulated on the CHERI architecture.

• Control Flow Integrity [9, Section 6] is one of the micropolicies that are enforceable

by even more primitive mechanisms on general architectures (See section 4.3).

• Dynamic Sealing [9, Section 4] is another example of a security primitive that can

be easily simulated on CHERI. According to the requirements stated in [48], the

semantics of the ccall instruction together with csealcode and csealdata constitute

a dynamic sealing mechanism. Capabilities constitute an additional layer of

indirection to the memory object that is being sealed.

• Compartmentalization [9, Section 5] is based on software fault isolation (SFI) [49].

A compartment can be seen as analogous to the “security domain” defined by

the transitive closure of legal memory accesses allowed by the current state of

53
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the capability register file (where a legal memory access is one that is allowed by

the ownership of a valid, unsealed capability). (In [9, Section 5], a compartment

is defined as an address space, legal Jump addresses outside the address space,

and legal load/store targets outside the address space. And the guarantee is that

no memory access should disrespect the address space ∪ the load/store targets,

and analogously for jumps.) See section 5.2 for an illustrative example of how

compartments can be modeled using capabilities.

• Temporal memory safety [9, Section 7] can be supported by capabilities, if we treat

capabilities as pointers. Support for ephemeral capabilities may be helpful for

ensuring a limited temporal scope on the validity of a capability [25]. We present

only an informal and unproved claim of how ephemeral capabilities can support

temporal memory safety in Section 6.1.

5.1 Dynamic Sealing using CHERI

Dynamic sealing is readily implemented by the CHERI ISA, with the restriction that

only valid capabilities can be sealed.

This can be seen as a general sealing mechanism of any memory location if only

ephemeral capabilities are used. In other words, if a memory location is accessible using

only an ephemeral capability, then sealing this capability is effectively a sealing of the

memory location (with the capability being an extra level of indirection).

But regardless of the desired domain of the sealing function, correctness of a sealing

mechanism is defined by two requirements:

1. Sealed values are not usable by any operation except by the operation that unseals

them.

2. The unseal operation correctly retrieves all and only values that were sealed using

correct usage of the seal operation.

Note that the cseal instruction for sealing capabilities, and the cunseal/ccall instruc-

tions for unsealing capabilities constitute a correct sealing mechanism.

Non-usability by every instruction except cunseal/ccall/move can be shown easily by

case distinction over all instructions and showing that no machine state can evaluate

if any of the operands of the current instruction is a register or memory location that

contains a sealed capability.
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Correctness of cunseal and ccall then follows directly from non-usability of sealed

capabilities.

5.2 Compartmentalization using CHERI

A basic assumption to start with is that there is a secure call/return mechanism. In

particular, there is a way that the operating system or the kernel can save registers in

memory and return them back as part of a non-interruptible routine. And we assume

that such a routine is trusted. The details of such a call routine are provided partly by

the semantics of the ccall instruction. But saving the registers on a trusted stack is not

part of the described semantics in our formal model. Such details are available in [11], as

well as the details of the return routine.

The notion of compartments can be thought of as a more abstract analogue of the

notion of classes in an object-oriented programming language.

Formally, a compartment can be defined as [9, Section 5]:

• an instruction memory, and data memory regions that are mutually exclusive of

one another (and hence, NXD and NWC [4.1] follow) and that are not accessible

by any other compartment,

• a set of legal jump addresses, which are legal entry points [50] into other compart-

ments’ instruction memories,

• and a set of valid load/store addresses, which are additional legal data memory

regions (possibly part of other compartments’ data memories)

Consider the following Java-like code snippet:

1 class A {
2 private fieldA1, ..., fieldAn;
3

4 public methodA1(B obj) { foo(obj.fieldB1); }
5 private methodA2() { bar(); }
6 }
7

8 class B {
9 public fieldB1;

10 private fieldB2, ..., fieldBm;
11

12 public methodB1() {
13 a_in_B1 = new A();
14 a_in_B1.methodA1(this);
15 }
16 private methodB2() { baz(); }
17 }
18 ...
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19 class Main {
20 main () {
21 bMain = new B();
22 bMain.methodB1();
23 }
24 }

Encapsulation in the object-oriented programming sense is a realization of the

compartmentalization principles (requirements) described above (Please see the note in

Section 2.3 for a discussion of the usage of the term “encapsulation”.).

A compartment can be seen as a class definition together with data memory containing

all of the instances of this class.

The legal jump addresses outside a compartment consist in the public methods

available from other compartments, and the store addresses that are available to a

compartment consist in the public fields of objects that are instantiated within the scope

of the compartment in question.

So, for the code snippet shown above, we can show at least three compartments:

• Compartment 〈 Main 〉 consists of:

– Instruction memory: Capability(main(), EXECUTE)

– Data memory: empty

– External Data memory: Capability(bMain.fieldB1, READ/WRITE)

– External Instruction memory: Capability(methodB1(), etc.., EXECUTE)

• Compartment 〈 A 〉 consists of:

– Instruction memory: Capability(methodA1(), methodA2(), EXECUTE)

– Data memory: Capability(a in B1.fieldA1, ..., a in B1.fieldAn, READ/WRITE)

– External Data memory: Capability(bMain.fieldB1, READ/WRITE)

– External Instruction memory: Capability(methodB1(), foo(), bar(), EXECUTE)

• Compartment 〈 B 〉 consists of:

– Instruction memory: Capability(methodB1(), etc.., EXECUTE)

– Data memory: Capability(bMain.fieldB1, ..., bMain.fieldBn, READ/WRITE)

– External Data memory: empty

– External Instruction memory: Capability(methodA1(), baz(), EXECUTE)
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Assuming that we have a correct and trusted call/return mechanism, we describe the

CHERI “security domain” that corresponds to the call sequence (ignoring constructor

calls) starting with the “main()” method shown in the code snippet above, thus illus-

trating informally how CHERI capabilities can be used by a compilation procedure to

implement compartmentalization (we indicate the new compartments entered at each

method call):

1. main(): Compartment 〈 Main 〉

(a) B(): Compartment 〈 B 〉

(b) methodB1(): Compartment 〈 B 〉

i. A(): Compartment 〈 A 〉

ii. methodA1(): Compartment 〈 A 〉

A. foo(): Compartment 〈 compartment containing foo 〉

The compiler is responsible for correctly using the call/return mechanism in order

to switch between compartments, i.e., to make sure that the security domain at each

call consists of all and only the capabilities available for the corresponding compartment

indicated, and to return to exactly the parent compartment on each method return. So,

the correct sequence of compartment switches should look like: Main, B, Main*, B,

A, B*, A, foo, A*, B*, Main*, where the (*) denotes a compartment switch due to

return.

Compartmentalized behavior of CHERI execution

We choose to reason about a definition of compartmentalization that is different from

the one in [9, Section 5] in three ways:

1. We have separate load and store targets.

2. Dynamically adding a new jump target or a new load or store target is disallowed.

3. Creating subcompartments dynamically is disallowed.

The last two points can be described as having the compartments fixed statically

(except that if there is no trusted stack for compartments switching, a compartment

may still choose to reduce its own address space, either by design or accidentally).
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Organizing memory into compartments

When reasoning about compartments of a program, there are at least three different

assumptions/decisions that could have been made:

1. Either assume that compartments are fixed at the beginning of a program. (i.e., a

trusted procedure assigns the compartments just once with fixed address spaces,

then we consider an initial CHERI state from which subsequent execution will be

evaluated against that predetermined compartments set),

2. Or assume that compartments exist from the beginning but are possibly not fixed.

They can be expanded (e.g., the target jump addresses J or store addresses S) by

passing of capabilities between each other. However jumps to outside the address

space should lead to the switching of the current compartment. So the only way

code capabilities (i.e., execute capabilities) should be passed is that they are sealed

capabilities, so that they are only usable by the ccall instruction

3. Or maybe also have a form (though restricted) of creating new subcompartments

by enabling a compartment to give away part of its own address space.

We choose to go with the first assumption. And will then need to reason

about transitions that do not use the allocate instruction.

ccall can be defined in such a way to be responsible for register saving. It can do the

register saving on the data memory of the current active compartment. This procedure

for register saving is necessary for preventing leakage of capabilities upon switching from

a compartment to another (or in more general CHERI terminology, from security domain

to another). However, for the purposes of achieving compartmentalization as described

here, it is not necessary that ccall perform this procedure. A trusted stack is also not

necessary for compartmentalization. It is interesting for other stronger guarantees though.

It would be easiest to define a semantics for ccall that deletes all permissions

from all the capability register file except that it uses cc and cd as follows:

m(pc) = 〈0, ccall cc cd cdd〉
cr ` callable(cc, cd) cc′ = unsealed(cr(cc))

cd′ = unsealed(cr(cd)) pcc′ = cc′ cr′ = {cdd 7→ cd′}
pc′ = compute call address(cc′) pcc ` executable(pc)

〈m, r, cr, pc, pcc, next free〉 → 〈m, r, cr′, pc′, pcc′, next free〉
(ccall)
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It is obvious that a simple technique for achieving the precondition cr′ = {cdd 7→ cd′},

which basically requires deleting all the capability registers in the cr′ map, is to have a

constant predefined value (say 0) with the tag bit of each register (except cdd) cleared

so that the register is not usable as a valid capability. We use the notation of clearing

the map for brevity.

This way, we defer the responsibility of preserving ownership of capabilities during the

operation of compartment switching to each compartment’s implementation (realistically

to the compiler). So, in effect a compartment can choose to reduce its own address space

by giving up capabilities by not properly saving them on data memory.

It is worth noting that the restriction on having just two registers (the sealed code

and the sealed data capability registers) does not deny us expressivity in terms of how a

callee can specify to each of its callers ownership of multiple specific data capabilities

in its own address space. As an example, assume there is some API service s which

has clients c1, ..., cn. Assume that for s to correctly operate (when called), it would

need to get access to a shared data segment of its address space, say the region ms.

But also, in order that it really offers meaningful service to any client ci, it would need

access to the respective regions mi. Assume that no client ci is supposed to trick the

service s by claiming that during the call to s initiated by ci, s has access to mj for

i 6= j. Then the obvious solution of s giving each client a sealed data capability on s’s

whole address space will not serve the purpose. Also, each client can only be given just

one sealed data capability, because of the restricted form of the ccall semantics. So, a

solution to this is 1 for s to have its memory organized into ms,m1, ...,mn,mindex where

mindex will be a region of memory dedicated to holding capabilities. In this region, s can

group together – in successive chunks – each client’s data capabilities. Then s would

give each client ci a sealed data capability cdi on its respective chunk. cdi will have the

permit load capability permission set. Figure 5.1 illustrates how the index region of

a callee compartment can achieve the described organization of memory among three

possible API callers A, B and C.

However, a compartment will not be allowed to give away capabilities to other

compartments, or to create a subcompartment. That latter restriction (guarantee) will

not follow from the ccall semantics alone. More restrictions have to be enforced on what

capabilities a compartment can own. Namely, if sharing capabilities is to be prohibited,

then a compartment should not own any capability that gives the permission of loading

capabilities from other compartments.

1applying what is humorously called the “Fundamental Theorem of Software Engineering”, which
states that any problem is solvable by introducing an extra level of indirection (except for the problem of
too many levels of indirection)
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Figure 5.1: On the right, the address space of a service (i.e., a callee compartment) is
shown. The index region of the memory is highlighted. On the left, each of compartments
A, B and C gets a sealed permission to load capabilities from the corresponding segment
of the index region of the service. Upon using the ccall instruction to invoke the service,
this sealed capability on the segment of the index should be presented as the data

capability.

Now, we use some definitions that will help towards stating a theorem about memory

compartmentalization.

Definition 5.1. (Compartment)

A 5-tuple of sets of addresses, c = (Code,Data, J, L, S) ∈ 2Addr × 2Addr × 2Addr ×
2Addr × 2Addr is called a compartment iff (c.J ∪ c.Code) ∩ (c.S ∪ c.Data) = ∅. We refer

to c.Code ∪ c.Data as the address space of c. We refer to c.J as the set of legal jump

targets with c.J ∩ c.Code = ∅, and c.L/c.S as the set of legal load/store targets.

Definition 5.2. (Disjoint compartments)

Two compartments ci, cj are said to be disjoint, written ci ∩ cj = ∅ iff (ci.Code ∪
ci.Data) ∩ (cj .Code ∪ cj .Data) = ∅.

Definition 5.3. (A valid set of compartments)

A set C ⊂ 2Addr × 2Addr × 2Addr × 2Addr × 2Addr is a valid set of compartments

(denoted valid(C)) iff every c ∈ C is a compartment and (
⋃

ci∈C
ci.J ∪ ci.Code)∩ (

⋃
ci∈C

ci.S ∪

ci.Data) = ∅ and ∀ci, cj ∈ C. i 6= j ⇒ ci ∩ cj = ∅ and
⋃
c∈C

(c.L ∪ c.S) ⊆
⋃
c∈C

c.Data and⋃
c∈C

c.J ⊆
⋃
c∈C

c.Code.
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Note that we choose to enforce Non-Executable-Data (NXD) and Non-Writable-

Code (NWC) on the memory regions that constitute compartments, e.g., by the condition

(
⋃

ci∈C
ci.J ∪ ci.Code) ∩ (

⋃
ci∈C

ci.S ∪ ci.Data) = ∅ on a compartment set, and that we allow

code of one compartment to be loadable by other compartments by not requiring any

mutual exclusion between the code section of an address space of a compartment and

the load destinations of other compartments.

Definition 5.4. (Capability register file and memory more restrictive than a compart-

ment, and a valid compartment set)

A tuple of pcc, capability register file, and memory 〈pcc, cr,m〉 is said to be more

restrictive than a compartment c∗ (called the active compartment) and a valid compart-

ment set C (where valid(C) holds), written 〈pcc, cr,m〉 � 〈c∗, C〉 iff :

1. (Every valid, unsealed, execute capability is a capability on addresses that all

belong to the code region of just one compartment)

∀a ∈ Addr . m(a) = 〈1, (false, bin(perms), st, len, o)〉

∧ permit execute ∈ perms

⇒ ∃!c ∈ C. (a ∈ c.Data ∧ ∀a′ ∈ [st, st + len). a′ ∈ c.Code)

and

2. (Every valid, sealed, execute capability is a capability on addresses that are all

external legal jump destinations of or are in the code region of just one compart-

ment.)

∀a ∈ Addr . m(a) = 〈1, (true, bin(perms), st, len, o)〉

∧ permit execute ∈ perms

⇒ ∃!c ∈ C. (a ∈ c.Data ∧

( (∀a′ ∈ [st, st + len). a′ ∈ c.Code ∧ o ∈ c.Code ∪ c.Data)

∨ ∃cj ∈ C.∀a′ ∈ [st, st + len). a′ ∈ c.J ∧ a′ ∈ cj .Code ∧ o ∈ cj .Code ∪ cj .Data))

and

3. (If a compartment owns a sealing key, then it is their own key. In other words,

every valid sealing capability in memory has the property that its base address
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belongs to the compartment in which it lives.)

∀a ∈ Addr . m(a) = 〈1, ( , bin(perms), st, len, o)〉

∧ permit seal ∈ perms

⇒ ∃!c ∈ C. (a ∈ c.Data ∧ st ∈ c.Data ∪ c.Code)

and

4. (If a sealed capability exists in memory, then it is a capability on a region of the

address space of the sealer compartment.)

∀a ∈ Addr . m(a) = 〈1, (true, bin(perms), st, len, o)〉

∧ {permit execute, permit load, permit store,

permit load capability, permit store capability, permit seal} ∩ perms 6= ∅

⇒ ∃!c ∈ C. ([st, st + len) ⊆ c.Code ∪ c.Data ∧ o ∈ c.Code ∪ c.Data)

and

5. (Every valid, store capability is a capability on addresses that all belong to the data

region of just one compartment or to legal store addresses of the same compartment)

∀a ∈ Addr . m(a) = 〈1, (s, bin(perms), st, len, o)〉

∧ permit store ∈ perms

⇒ ∃!c ∈ C. (a ∈ c.Data∧∀a′ ∈ [st, st + len). a′ ∈ c.Data ∨ (a′ ∈ c.S ∧ s = true))

and

6. (Every valid, load capability is a capability on addresses that all belong to the

address space (code or data) of just one compartment or to legal load addresses of

the same compartment)

∀a ∈ Addr . m(a) = 〈1, (s, bin(perms), st, len, o)〉

∧ permit load ∈ perms

⇒ ∃!c ∈ C. (a ∈ c.Data ∧ ∀a′ ∈ [st, st + len). a′ ∈ c.Data ∨

(a′ ∈ c.L ∧ s = true) ∨ a′ ∈ c.Code)

and
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7. (Every valid capability that permits storing capabilities is a capability on addresses

that all belong to the data region of just one compartment. Note that this restriction

is necessary together with restricting imports, because if we don’t talk about the

permission to store capabilities at all, it means that a compartment is allowed

to leak its capability to arbitrary regions of other compartments, which could be

regions that the other compartment is allowed to load capabilities from.

This requirement can be seen as an integrity guarantee for the other compartments

rather than a confidentiality guarantee that prevents leakage of capabilities. It

disallows a malicious compartment from being able to overwrite other compartments’

memory.)

∀a ∈ Addr . m(a) = 〈1, ( , bin(perms), st, len, o)〉

∧ permit store capability ∈ perms

⇒ ∃!c ∈ C. (a ∈ c.Data ∧ ∀a′ ∈ [st, st + len). a′ ∈ c.Data)

and

8. (Importing capabilities is restricted. In other words, loading capabilities is allowed

from only a locally-restricted part of the address space. Note that this requirement is

sufficient to prohibit a leakage resulting from successive copies that potentially start

with an importing store operation because no memory-to-memory copy instruction

is available.)

∀a ∈ Addr . m(a) = 〈1, ( , bin(perms, st, len, o)〉

∧ permit load capability ∈ perms

⇒ ∃!c ∈ C. (a ∈ c.Data ∧ ∀a′ ∈ [st, st + len). a′ ∈ c.Data)

and

9. (The capability register file and pcc should contain capabilities to allow execute on

at most the active compartment (i.e., and on no other compartment).)

∀cap ∈ {pcc} ∪ Range(cr). cap = 〈1, (false, bin(perms), st, len, o)〉

∧ permit execute ∈ perms

⇒ ∀a′ ∈ [st, st + len). a′ ∈ c∗.Code
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and

10. (Every valid, sealed, execute capability in the capability register file is a capability

on addresses that are all external legal jump destinations of or are in the code

region of the active compartment.)

∀cap ∈ Range(cr). cap = 〈1, (true, bin(perms), st, len, o)〉

∧ permit execute ∈ perms

⇒ (∀a′ ∈ [st, st + len). a′ ∈ c∗.Code ∧ o ∈ c∗.Code ∪ c∗.Data

∨ ∃c ∈ C.∀a′ ∈ [st, st + len). a′ ∈ c∗.J ∧ a′ ∈ c.Code ∧ o ∈ c.Code ∪ c.Data)

and

11. (Every compartment owns only keys on its own address space, i.e., every valid

sealing capability in the capability register file has their base address belonging to

the address space of the active compartment.)

∀cap ∈ Range(cr). cap = 〈1, ( , bin(perms), st, len, o)〉

∧ permit seal ∈ perms

⇒ st ∈ c∗.Data ∪ c∗.Code

and

12. (If a sealed capability exists in the capability register file, then it is a capability on

a region of the address space of the sealer compartment.)

∀cap ∈ Range(cr). cap = 〈1, (true, bin(perms), st, len, o)〉

∧ {permit execute, permit load, permit store,

permit load capability, permit store capability, permit seal} ∩ perms 6= ∅

⇒ ∃!c ∈ C. ([st, st + len) ⊆ c.Code ∪ c.Data ∧ o ∈ c.Code ∪ c.Data)

and

13. (The capability register file should contain capabilities to allow the legal stores of

at most the active compartment (i.e., to its data address space or to its legal store
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addresses and to no other compartment).)

∀cap ∈ Range(cr). cap = 〈1, (s, bin(perms), st, len, o)〉

∧ permit store ∈ perms

⇒ ∀a′ ∈ [st, st + len). a′ ∈ c∗.Data ∨ (a′ ∈ c∗.S ∧ s = true)

and

14. (The capability register file should contain capabilities to allow the legal loads of

at most the active compartment (i.e., loads from its address space or from its legal

load addresses but from no other illegal region of another compartment).)

∀cap ∈ Range(cr). cap = 〈1, (s, bin(perms), st, len, o)〉

∧ permit load ∈ perms

⇒ ∀a′ ∈ [st, st + len). a′ ∈ c∗.Data ∨ (a′ ∈ c∗.L ∧ s = true) ∨ a′ ∈ c∗.Code

and

15. (See the notes at conjunct 7)

∀cap ∈ Range(cr). cap = 〈1, ( , bin(perms), st, len, o)〉

∧ permit store capability ∈ perms

⇒ ∀a′ ∈ [st, st + len). a′ ∈ c∗.Data

and

16. (Importing capabilities is restricted.)

∀cap ∈ Range(cr). cap = 〈1, ( , bin(perms), st, len, o)〉

∧ permit load capability ∈ perms

⇒ ∀a′ ∈ [st, st + len). a′ ∈ c∗.Data

Note that in definition 5.4, we ignore the necessity of the existence of permissions

to load the capabilities that give a compartment access over its own address space. Thus,

a memory organized into a strictly more restrictive set of compartments (e.g., a set of

compartments where only a subset of an address space of some or every compartment is
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accessible to its respectively owning compartment) will indeed still satisfy the relation

defined in 5.4.

Also note that another possible way to define a state that complies with a com-

partments set is to require that all the machine states reachable are legal with respect to

the given compartments set, i.e., to require that the fixed point of the legal execution

relation applied to the given state consists of only states that all satisfy the conditions

(conjuncts) stated above. We instead show a similar notion by a theorem that states that

legal execution preserves the � relation.

Theorem 5.5. (A state that respects a compartments set steps into only states that

respect the same compartment set)

If C is a valid set of compartments (valid(C)), c∗ ∈ C,

〈pcc, cr,m〉 � 〈c∗, C〉,

pc ∈ c∗.Code,

〈m, r, cr, pc, pcc, next free〉 →∗ 〈m′, r′, cr′, pc′, pcc′, next free〉,

then

∃c ∈ C. 〈pcc′, cr′,m′〉 � 〈c, C〉 ∧ pc′ ∈ c.Code.

Proof. We prove the theorem by induction on the execution steps
i→. (Every legal

transition → is a result of some instruction execution
i→).

Base case follows directly from the assumptions. Namely, we are looking for a c ∈ C
with 〈pcc, cr,m〉 � 〈c, C〉 ∧ pc ∈ c.Code. So c∗ satisfies such c we are looking for.

We then consider the inductive case where we have a CHERI machine state

〈m′′, r′′, cr′′, pc′′, pcc′′, next free′′〉 where ∃c′′ ∈ C. 〈pcc′′, cr′′,m′′〉 � 〈c′′, C〉 ∧ pc” ∈
c′′.Code, and we need to show that if

〈m′′, r′′, cr′′, pc′′, pcc′′, next free′′〉 → 〈m′, r′, cr′, pc′, pcc′, next free′〉 then ∃c ∈ C.
〈pcc′, cr′,m′〉 � 〈c, C〉 ∧ pc′ ∈ c.Code.

We consider distinction between the transition on a ccall instruction and other

transitions. We show that for only the former transition, c 6= c′′ may hold. In the latter,

c = c′′ necessarily holds.

We consider all the possible rules for
i→ through which 〈m′′, r′′, cr′′, pc”, pcc”, next free”〉

steps.
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• Case BinOp, cload, ccheckperm, cchecktype, movepc, movei, cbts-true, cbts-

false, cjrcond-false

– From each of these operational semantics rules, we can deduce that no change

happens to the program counter capability, the capability register file or

memory.

– Namely, pcc′ = pcc′′, cr′ = cr′′ and m′ = m′′,

– and so we can choose c = c′′ and have that 〈pcc′, cr′,m′〉 � 〈c, C〉 holds directly

from the induction hypothesis which states that 〈pcc′′, cr′′,m′′〉 � 〈c′′, C〉.

– Next, we need to show that pc′ ∈ c.Code.

– From the operational semantics, we see that pcc′ ` executable(pc′) must hold.

– So using the definition of rule executable in Section 3.2.1, we see that pc′ ∈
[st, st + len) must hold with pcc′ = 〈1, (false, bin(perms), st, len, o)〉 and

permit execute ∈ perms.

– But we just argued that 〈pcc′, cr′,m′〉 � 〈c, C〉 which gives us by definition 5.4

of the � relation that:

∀cap ∈ {pcc′} ∪ Range(cr′). cap = 〈1, (false, bin(perms), st, len, o)〉 ∧

permit execute ∈ perms

⇒ ∀a′ ∈ [st, st + len). a′ ∈ c.Code

– So, in particular we can instantiate a′ to pc′, then we obtain pc′ ∈ c.Code.

Case proved.

• Case cstore

The informal observation for this case is that the tag bit of a stored memory word

gets cleared; so any change in memory does not introduce a new valid capability.

– We observe that pcc′ = pcc′′ and cr′ = cr′′.

– So if we choose c = c′′, then we have that conjuncts 9, 10, 11, 13, 14, 15,

and 16 hold immediately from the induction hypothesis which states that

〈pcc′′, cr′′,m′′〉 � 〈c′′, C〉.

– We next obtain the necessary precondition

m ′ = m ′′[content(r ′′(rt)) 7→ 〈0, content s〉] of the cstore rule, and we make

case distinction on the possible instantiations of the memory address a which

is universally quantified for conjuncts 1, 2, 5, 6, 7, and 8 as follows:
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∗ Case a = content(r′′(rt)) In this case conjuncts 1, 2, 3, 5, 6, 7, and 8 hold

vacuously because of the mentioned precondition of the cstore rule which

requires that m′(a) = 〈0, 〉.

∗ Case a 6= content(r′′(rt)) In this case, we observe that conjuncts 1, 2, 3,

5, 6, 7, and 8 follow immediately from the induction hypothesis because

m′(a) = m′′(a).

– So we have shown all the conjuncts of 〈pcc′, cr′,m′〉 � 〈c′′, C〉 to be true.

– We next show that pc′ ∈ c′′.Code. This holds for exactly the same reasons

argued in the previous case. We avoid repetition.

Case proved.

• Case cmove

– We observe that m′ = m′′, from which it follows that conjuncts 1, 2, 3, 4, 5,

6, 7, and 8 follow immediately from the induction hypothesis.

– We also observe that pcc′ = pcc′′.

– We then obtain the necessary precondition cr′ = cr′′[cd 7→ cr′′(cb)] of the rule

cmove.

– By case distinction on the name of the register in the domain of cr′ (let’s

denote it crname; i.e., let crname range over the domain of cr′ or cr′′ depending

on the context), we get the following two cases:

∗ Case crname = cd

Then conjuncts 9, 10, 11, 12 13, 14, 15, and 16 hold by instantiating the

induction hypothesis about cr′′ and pcc′′ with crname = cb.

∗ Case crname 6= cd

Then conjuncts 9, 10, 11, 12 13, 14, 15, and 16 about pcc′ and cr′ follow

immediately from the induction hypothesis about pcc′′ and cr′′.

– So we have shown all the conjuncts of 〈pcc′, cr′,m′〉 � 〈c′′, C〉 to be true.

– We next show that pc′ ∈ c′′.Code. This holds for exactly the same reasons

argued in the previous case. We avoid repetition.

Case proved.

• Case cloadcap

– We observe that m′ = m′′, from which it follows that conjuncts 1, 2, 3, 4, 5,

6, 7, and 8 follow immediately from the induction hypothesis.

– We also observe that pcc′ = pcc′′.
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– We then obtain the necessary precondition cr ′ = cr ′′[cd 7→ m ′′(content(r ′′(rt)))]

of the rule cloadcap.

– By case distinction on the name of the register in the domain of cr′ (let’s

denote it crname; i.e., let crname range over the domain of cr′ or cr′′ depending

on the context), we get the following two cases:

∗ Case crname = cd

Then conjuncts 9, 10, 11, 12 13, 14, 15, and 16 hold by instantiating the

induction hypothesis about m′′ with a′ = content(r′′(rt)).

∗ Case crname 6= cd

Then conjuncts 9, 10, 11, 12 13, 14, 15, and 16 about pcc′ and cr′ follow

immediately from the induction hypothesis about pcc′′ and cr′′.

– So we have shown all the conjuncts of 〈pcc′, cr′,m′〉 � 〈c′′, C〉 to be true.

– We next show that pc′ ∈ c′′.Code. This holds for exactly the same reasons

argued in the previous case. We avoid repetition.

Case proved.

• Case cstorecap

– We observe that pcc′ = pcc′′ and cr′ = cr′′.

– So if we choose c = c′′, then we have that conjuncts 9, 10, 11, 12 13, 14, 15,

and 16 hold immediately from the induction hypothesis which states that

〈pcc′′, cr′′,m′′〉 � 〈c′′, C〉.

– We next obtain the necessary precondition

m ′ = m ′′[content(r ′′(rt)) 7→ cr ′′(cs)] of the cstorecap rule, and we make case

distinction on the possible instantiations of the memory address a which is

universally quantified for conjuncts 1, 2, 3, 5, 6, 7, and 8 as follows:

∗ Case a = content(r′′(rt)) In this case conjuncts 1, 2, 3, 4, 5, 6, 7, and

8 follow from conjuncts 9, 10, 11, 12 13, 14, 15, and 16 respectively of

the induction hypothesis about cr′′ when instantiated with the value

cap = cr′′(cs).

∗ Case a 6= content(r′′(rt)) In this case, we observe that conjuncts 1, 2, 3,

5, 6, 7, and 8 follow immediately from the induction hypothesis because

m′(a) = m′′(a).

– So we have shown all the conjuncts of 〈pcc′, cr′,m′〉 � 〈c′′, C〉 to be true.

– We next show that pc′ ∈ c′′.Code. This holds for exactly the same reasons

argued in the previous case. We avoid repetition.
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Case proved.

• Case ccleartag

– We observe that m′ = m′′, from which it follows that conjuncts 1, 2, 3, 4, 5,

6, 7, and 8 follow immediately from the induction hypothesis.

– We also observe that pcc′ = pcc′′.

– We then obtain the necessary preconditions cr ′′(cb) = 〈tag b, content b〉
and cr ′ = cr ′′[cd 7→ 〈0, content b〉] of the rule ccleartag.

– By case distinction on the name of the register in the domain of cr′ (let’s

denote it crname; i.e., let crname range over the domain of cr′ or cr′′ depending

on the context), we get the following two cases:

∗ Case crname = cd

Then conjuncts 9, 10, 11, 12 13, 14, 15, and 16 hold vacuously because

the tag bit is 0.

∗ Case crname 6= cd

Then conjuncts 9, 10, 11, 12 13, 14, 15, and 16 about pcc′ and cr′ follow

immediately from the induction hypothesis about pcc′′ and cr′′.

– So we have shown all the conjuncts of 〈pcc′, cr′,m′〉 � 〈c′′, C〉 to be true.

– We next show that pc′ ∈ c′′.Code. This holds for exactly the same reasons

argued in the previous case. We avoid repetition.

Case proved.

• Case candperm

– We observe that m′ = m′′, from which it follows that conjuncts 1, 2, 3, 4, 5,

6, 7, and 8 follow immediately from the induction hypothesis.

– We also observe that pcc′ = pcc′′.

– We then obtain the necessary preconditions

cr ′′(cb) = 〈1, (s b, bin(perms b), addr b, len b, otype b)〉 and

cr ′ = cr ′′[cd 7→〈1, (s b, bin(perms b) ∩ r ′′(rt), addr b, len b, otype b)〉] of

the rule candperm.

– By case distinction on the name of the register in the domain of cr′ (let’s

denote it crname; i.e., let crname range over the domain of cr′ or cr′′ depending

on the context), we get the following two cases:

∗ Case crname = cd

Let the expression bin(perms b) ∩ r ′′(rt) be called bin(perms d). We

observe that p ∈ perms d⇒ p ∈ perms b.
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Then, we observe that whenever the antecedent of any of the statements 9,

10, 11, 12 13, 14, 15, and 16 holds for crname = cd, then it must also hold

about cr′′ when instantiated with crname = cb. So, from the induction

hypothesis, we know that the consequents hold, and that conjuncts 9, 10,

11, 12 13, 14, 15, and 16 thus hold for this case. Some of the conjuncts

even hold vacuously because of the precondition of the rule candperm on

the sealed bit having to be false.

∗ Case crname 6= cd

Then conjuncts 9, 10, 11, 12 13, 14, 15, and 16 about pcc′ and cr′ follow

immediately from the induction hypothesis about pcc′′ and cr′′.

– So we have shown all the conjuncts of 〈pcc′, cr′,m′〉 � 〈c′′, C〉 to be true.

– We next show that pc′ ∈ c′′.Code. This holds for exactly the same reasons

argued in the previous case. We avoid repetition.

Case proved.

• Case cincbase

– We observe that m′ = m′′, from which it follows that conjuncts 1, 2, 3, 4, 5,

6, 7, and 8 follow immediately from the induction hypothesis.

– We also observe that pcc′ = pcc′′.

– We then obtain the necessary preconditions cr ′ = cr ′′[cd 7→
〈1, (s b, bin(perms b), addr b + r ′′(rt), len b− r ′′(rt), otype b)〉], and

r ′′(rt) ≤ len b of the rule cincbase.

From these, together with the fact that r ′′(rt) is non-negative which follows

from the type information Content = N, we conclude that

addr b ≤ addr d ≤ addr d + len d ≤ addr b + len b where

cr′(cd) = 〈1, (s b, bin(perms b), addr d, len d, )〉.

– By case distinction on the name of the register in the domain of cr′ (let’s

denote it crname; i.e., let crname range over the domain of cr′ or cr′′ depending

on the context), we get the following two cases:

∗ Case crname = cd

Then conjuncts 9, 10, 11, 12 13, 14, 15, and 16 hold by instantiating

the induction hypothesis about cr′′ and pcc′′ with crname = cb, and by

noticing that a′ ∈ [addr d, addr d + len d)

⇒ a′ ∈ [addr b, addr b + len b) which follows from the inequality

concluded above. Some of the conjuncts even hold vacuously because of

the precondition of the rule cincbase on the sealed bit having to be false
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∗ Case crname 6= cd

Then conjuncts 9, 10, 11, 12 13, 14, 15, and 16 about pcc′ and cr′ follow

immediately from the induction hypothesis about pcc′′ and cr′′.

– So we have shown all the conjuncts of 〈pcc′, cr′,m′〉 � 〈c′′, C〉 to be true.

– We next show that pc′ ∈ c′′.Code. This holds for exactly the same reasons

argued in the previous case. We avoid repetition.

Case proved.

• Case csetlen

– We observe that m′ = m′′, from which it follows that conjuncts 1, 2, 3, 4, 5,

6, 7, and 8 follow immediately from the induction hypothesis.

– We also observe that pcc′ = pcc′′.

– This case is similar to Case cincbase. The main observation is that we can

conclude the same proposition addr b ≤ addr d ≤ addr d + len d ≤
addr b + len b from the preconditions:

(i) cr ′ = cr ′′[cd 7→ 〈1, (s b, bin(perms b), addr b, r ′′(rt), otype b)〉], and

(ii) r ′′(rt) ≤ len b

of the rule csetlen and from the fact that:

(iii) r ′′(rt) is non-negative which follows from the type information Content =

N.

Case can hence be proved with the rest of the argument being identical to

cincbase. We avoid repetition.

• Case cseal

The intuition is that this case should hold because whatever an unsealed capability

is allowed to do is a subset of what the same sealed capability is allowed to do.

– We observe that m′ = m′′, from which it follows that conjuncts 1, 2, 3, 4, 5,

6, 7, and 8 follow immediately from the induction hypothesis.

– We also observe that pcc′ = pcc′′.

– We then obtain the necessary preconditions

(i) cr′′(ct) = 〈1, (s t, bin(perms t), addr t, len t, otype t)〉,

(ii) cr′′(cs) = 〈1, (s s, bin(perms s), addr s, len s, otype s)〉,

(iii) otype d = addr t

(iv) cr ′ = cr ′′[cd 7→
〈1, (true, bin(perms s), addr s, len s, otype d)〉], and
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(v) cr′′ ` permits seal(cs, ct)

of the rule cseal.

– By case distinction on the name of the register in the domain of cr′ (let’s

denote it crname; i.e., let crname range over the domain of cr′ or cr′′ depending

on the context), we get the following two cases:

∗ Case crname = cd

We first show that conjunct 12 holds.

If the conjunct holds vacuously of cr′′ on register cs, then it will continue

to hold vacuously in cr′ of register cd.

Else, we do case distinction on the permission that is included in perms s.

The cases are not necessarily mutually exclusive, but they are exhaustive.

Case permit execute ∈ perms s

Then we know that since sealing succeeded, namely, s s = false, then

conjunct 12 follows from conjunct 9 of the induction hypothesis.

Case permit store ∈ perms s

Then we know that since sealing succeeded, namely, s s = false, then

conjunct 12 follows from the truth of disjunct a′ ∈ c∗.Data of the conse-

quent of conjunct 13 of the induction hypothesis.

Case permit load ∈ perms s

Then we know that since sealing succeeded, namely, s s = false, then

conjunct 12 follows from the truth of disjuncts a′ ∈ c∗.Data∨a′ ∈ c∗.Code

of the consequent of conjunct 14 of the induction hypothesis.

Case permit store capability ∈ perms s

Follows from conjunct 15.

Case permit load capability ∈ perms s

Follows from conjunct 16.

These cases are exhaustive for the case when conjunct 12 holds non-

vacuously, so conjunct 12 holds.

We have that conjunct 10 now follows from conjunct 9 of the induction

hypothesis (i.e., by obtaining the consequent a′ ∈ c′′.Code of 9 as the

fulfilling disjunct of the consequent of 10).

We have that conjuncts 9, 11, 13, 14, 15, and 16 follow directly from the

corresponding conjuncts of the induction hypothesis about cr′′ on register

cs because the induction hypothesis holds for both values of the “sealed”

bit.

So all of conjuncts 9, 10, 11, 12, 13, 14, 15, and 16 hold.

∗ Case crname 6= cd
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Then conjuncts 9, 10, 11, 12, 13, 14, 15, and 16 about pcc′ and cr′ follow

immediately from the induction hypothesis about pcc′′ and cr′′.

– So we have shown all the conjuncts of 〈pcc′, cr′,m′〉 � 〈c′′, C〉 to be true.

– We next show that pc′ ∈ c′′.Code. This holds for exactly the same reasons

argued in the previous case. We avoid repetition.

Case proved.

• Case cunseal

– We observe that m′ = m′′, from which it follows that conjuncts 1, 2, 3, 4, 5,

6, 7, and 8 follow immediately from the induction hypothesis.

– We also observe that pcc′ = pcc′′.

– We then obtain the necessary preconditions

(i) cr′′ ` permits unseal(cs, ct)

(ii) cr ′ = cr ′′[cd 7→ clear otype(remove non ephemeral(unsealed(cr ′′(cs)), cr ′′(ct)))]

of the rule cunseal.

– By case distinction on the name of the register in the domain of cr′ (let’s

denote it crname; i.e., let crname range over the domain of cr′ or cr′′ depending

on the context), we get the following two cases:

∗ Case crname = cd

We have that conjuncts 10, 12 now hold vacuously.

We have that conjuncts 11, 13, 14, 15, and 16 follow directly from the

corresponding conjuncts of the induction hypothesis about cr′′ on register

cs because the induction hypothesis holds for both values of the “sealed”

bit.

We now show that conjunct 9 holds.

We conclude from precondition (i) that we obtained above that permit seal ∈
perms t and, hence, from conjunct 11 of the induction hypothesis about

cr′′ for register ct that addr t ∈ c′′.Data ∪ c′′.Code and also from

precondition (i) that otype s = addr t (where we denote cr′′(cs) by

(s s, bin(perms s), addr s, len s, otype s)).

We need to show that conjunct 9 holds. In the case when it does not hold

vacuously, then we use the notation

cr′(cd) = 〈1, (false, bin(perms), st, len, o)〉 and we distinguish two cases

from conjunct 10 of the induction hypothesis about cr′′(cs).

Either the disjunct about a′ ∈ c′′.Code holds or the disjunct:

∃c ∈ C.∀a′ ∈ [st, st + len).

a′ ∈ c′′.J ∧ a′ ∈ c.Code ∧ o ∈ c.Code ∪ c.Data holds.
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We claim that the latter case is impossible to hold because then the unseal-

ing would not have succeeded. (The proof: We have o ∈ c′′.Data ∪ c′′.Code

which is required for the unsealing, but the disjunct implies that o ∈
c.Data ∪ c.Code. But we know that c 6= c′′ from the constraint that c′′.J

are external jump addresses and we know that c ∩ c′′ = ∅ from valid(C).

So o ∈ c.Data ∪ c.Code cannot hold and the disjunct must be false.)

In particular, we conclude that in conjunct 10 of the induction hypothesis

about cr′′(cs), a′ ∈ c′′.Code must hold, which suffices to conclude that

conjunct 9 holds for cr′(cd).

∗ Case crname 6= cd

Then conjuncts 9, 10, 11, 12, 13, 14, 15, and 16 about pcc′ and cr′ follow

immediately from the induction hypothesis about pcc′′ and cr′′.

– So we have shown all the conjuncts of 〈pcc′, cr′,m′〉 � 〈c′′, C〉 to be true.

– We next show that pc′ ∈ c′′.Code. This holds for exactly the same reasons

argued in the previous case. We avoid repetition.

Case proved.

• Case cjr, cjrcond-true

– We observe that m′ = m′′, from which it follows that conjuncts 1, 2, 3, 4, 5,

6, 7, and 8 follow immediately from the induction hypothesis.

– We also observe that cr′ = cr′′, from which it follows that conjuncts 10, 11, 12,

13, 14, 15, and 16 about cr′ follow immediately from the induction hypothesis

about cr′′.

– We now show that conjunct 9 holds.

We observe that since cr′ = cr′′, then the conjunct holds for cap ∈ Range(cr′)

as an immediate result of the induction hypothesis that it holds for cap ∈
Range(cr′′).

So it remains to show that if pcc′ = 〈1, (false, bin(perms), st, len, o)〉 and

permit execute ∈ perms, then ∀a′ ∈ [st, st + len). a′ ∈ c′′.Code.

To show that, we obtain the necessary precondition cr′′ ` permits execute(cb)

of the rules cjr and cjrcond-true, from which (by looking at the preconditions

of the rule permits execute) we obtain the antecedent of conjunct 9 of the

induction hypothesis on cr′′ for register cb. So, we get the consequent ∀a′ ∈
[st, st + len). a′ ∈ c′′.Code for cr′′(cb) = 〈1, (false, bin(perms), st, len, o)〉.

Now from the precondition pcc′ = cr(cb) of the rules cjr and cjrcond-true, we

can hence use the consequent ∀a′ ∈ [st, st + len). a′ ∈ c′′.Code to show

that conjunct 9 holds about pcc′.
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– We now need to show that pc′ ∈ c′.Code for some c′ such that 〈pcc′, cr′,m′〉 �
〈c′, C〉. Above we have already shown that 〈pcc′, cr′,m′〉 � 〈c′′, C〉, so c′ = c′′.

So we need to show that pc′ ∈ c′′.Code.

This again holds for the same reason as in all the previous cases, which is

explained in the very first case of this proof.

Case proved.

• Case ccall

– Here we use the claim: if two valid sealed capabilities have the same

otype, then their bounds lie in the same compartment. The claim

can be proved by conjuncts 4 and 12 of the induction hypothesis, and from

validity of the compartments set –valid(C)– which implies pairwise disjointness

of the compartments. Thus, we know that any one otype value makes all the

capabilities that share this value have bounds that lie in the address space of

exactly one compartment.

– We observe that m′ = m′′, from which it follows that conjuncts 1, 2, 3, 4, 5,

6, 7, and 8 follow immediately from the induction hypothesis.

– We then obtain the necessary precondition cr′′ ` callable(cc, cd) of the rule

ccall. From the definition of the rule callable, we obtain the necessary

preconditions cr′′(cc) = 〈1, (s c, bin(perms c), addr c, len c, otype c)〉,
s c = true and {permit execute} ⊆ perms c, from the three of which we

immediately know that conjunct 10 of the induction hypothesis about cr′′

must hold non-vacuously of register cc.

– Then, we distinguish two possible cases. (Informally, they are cases that

witness when the active compartment changes or when it does not.) We

claim that the two cases are mutually exclusive. (The proof simply follows

from the definition of a valid compartment set which requires disjointness of

compartments c∗ and c, so o cannot be an address belonging to the address

spaces of both compartments at the same time. And we know they are different

compartments in the first place because of the restriction on c∗.J being only

external jump targets.)

We note that we are considering case distinction over the consequent of

conjunct 10 of the induction hypothesis about cr′′ on register cc:

∗ Case disjunct ∀a′ ∈ [addr c, addr c + len c).

a′ ∈ c′′.Code ∧ o ∈ c′′.Code ∪ c′′.Data holds

Then we choose c′ = c′′, and we show that 〈pcc′, cr′,m′〉 � 〈c′′, C〉
We have already shown that the conjuncts about m′ hold.
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We obtain the necessary preconditions cd′ = unsealed(cr′′(cd)) and cr′ =

{cdd 7→ cd′} of the rule ccall.

We now see that conjuncts 11, 13, 14, 15, and 16 follow immediately from

the induction hypothesis, conjuncts 10, and 12 hold vacuously, conjunct 9

follows immediately from both conjunct 10 of the induction hypothesis

and the necessary precondition pcc′ = cc′ of the rule ccall.

Case proved.

∗ Case disjunct ∃c ∈ C.∀a′ ∈ [st, st + len).

a′ ∈ c′′.J ∧ a′ ∈ c.Code ∧ o ∈ c.Code ∪ c.Data holds

Then we obtain such c, and we choose c′ = c then show that 〈pcc′, cr′,m′〉 �
〈c′, C〉.
Again, we obtain the necessary preconditions cd′ = unsealed(cr′′(cd)) and

cr′ = {cdd 7→ cd′} of the rule ccall.

Here we see, by the necessary disjointness of c′ and c′′ and the necessary

precondition by conjunct 12 of the induction hypothesis which must have

held non-vacuously of cr′′ on register cd that conjuncts 15, 16 and 11 must

have held vacuously in the induction hypothesis, and so they continue to

hold vacuously for cr′ about the sole value cd′.

We also observe that conjuncts 10, and 12 hold vacuously as above.

We now use the claim of equality of otype for both cc and cd and conclude

that conjunct 9 holds of cr′ for the value cd′ based on conjunct 10 of the

induction hypothesis, and it holds for pcc′ for the same reasons as in the

previous case together with 10 of the induction hypothesis and observing

the true disjunct that we are currently considering.

We then see that conjuncts 13 and 14 about the load and store follow for

cr′ on value cd′ by the necessity of the truth of the disjuncts about external

store addresses and load addresses, respectively. This necessity follows

again from disjointness of compartments which makes the complementary

disjuncts impossible. Now conjuncts 13 and 14 about loads and stores

are guaranteed to hold (in particular, the bounds are guaranteed to be in

c.Data) because by the definition of a valid compartments set, we have

for c′′, (c′′.L ∪ c′′.S) ⊆
⋃

ci∈C
ci.Data.

All conjuncts are proved. Case is proved.

• Case allocate This case is vacuous because the theorem considers only transitions

for which next free remains fixed.

All cases covered.
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Theorem 5.6. (Execution that preserves � respects external jumps)

If C is a valid set of compartments (valid(C)), c1 ∈ C, c2 ∈ C, c1 6= c2

〈pcc, cr,m〉 � 〈c1, C〉,

pc ∈ c1.Code,

〈m, r, cr, pc, pcc, next free〉 → 〈m′, r′, cr′, pc′, pcc′, next free〉,

〈pcc′, cr′,m′〉 � 〈c2, C〉,

then

pc′ ∈ c1.J .

Proof. The theorem holds vacuously for every case except ccall where we observe that,

as mentioned in the proof of this case in the previous theorem that the disjunct ∃c ∈
C.∀a′ ∈ [st, st + len).

a′ ∈ c′′.J ∧ a′ ∈ c.Code ∧ o ∈ c.Code ∪ c.Data holds. Then the conclusion

follows immediately by observing the rule executable in the precondition of the rule

legal-transition and obtaining the precondition pcc′ = cc′ of the rule ccall.
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Future Work

In this chapter, we lay out a plan for possible future directions towards building a secure

compiler and for formalizing more security goals achievable by the CHERI formal model.

6.1 Memory Safety using CHERI

Memory safety is defined in [9, Section 7] as both spatial and temporal safety.

Spatial memory safety is definable according to the given source programming

language. If we consider unsafe languages like C which can witness buffer overflow

vulnerabilities, then, if we think of capabilities as pointers [11], then it is easy to see

that the design of capabilities in such a way that they can provide byte-level granularity

of protection allows the compiler to provide guarantees for mitigation of serious risks

potentially caused by these vulnerabilities.

Temporal memory safety is the guarantee that memory access and deallocation

operations take place on only currently allocated memory. This means that vulnerabilities

like Use-After-Free [51] or Double-Free are violations to temporal memory safety.

We illustrate (informally) how temporal safety can be easily achieved using capabili-

ties, especially with two main techniques: one is to think of pointers as capabilities, and

the second is to make use of ephemeral (local) capabilities.

The operation of freeing a pointer can be implemented by deleting all permissions of

the corresponding capability.

Let us consider the “Use-After-Free” flaw. The goal is to have defined behavior (in

our formal model, namely going stuck, or aborting the program) instead of undefined

behavior when use-after-free occurs.

79
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There are two cases:

1. The illegitimate use and the free are in the same function, e.g.:

1 char∗ ptr = (char∗)malloc (SIZE);
2 if (err) {
3 abrt = 1;
4 free(ptr);
5 }
6 ...
7 if (abrt) {
8 logError("operation aborted before commit", ptr);
9 }

[51]

Here the “free” operation will already revoke the capability, so the attempt to

“logError” in the freed “ptr” will always lead to the defined behavior of getting

stuck (or in a more practically-suited formal model, to a known exception).

2. The illegitimate use and the free are in different functions.

1 void A() {
2 ptr = allocate(SIZE);
3 B(ptr);
4 free(ptr);
5 }
6

7 void B(p) {
8 if (good_times()) {
9 mem[idx] = p;

10 }
11

12 if (evil_times()) {
13 old_ptr = mem[idx];
14 use_irresponsibly(old_ptr);
15 }
16 }

In this case, assuming that storing the pointer in memory copies the value of the

pointer (i.e., copies (aliases) the underlying capability), so we end up with a copy

of the capability lying in memory, which is not “freed” (i.e., still has its permissions

set).

So, a potentially undesired scenario is that A calls B; in good_times(), B stores

the pointer and returns. Then A in turn frees the pointer. Next, some function E

calls B; in evil_times(), B loads the pointer that A had passed to it earlier, and

B now has access to potentially freed memory.

Now, if A has a way to annotate ptr as “__ephemeral__ ptr = allocate(SIZE);”,

then B cannot store it (i.e., “mem[idx] = p;” will raise an exception, or get stuck).

Spatial safety (e.g., preventing out-of-bounds access) is less complicated, except

that providing an example of support for memory-safe operations in a C-like semantics
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possibly requires some extra assumptions and changes to the C abstract machine as

proposed in [52], which is beyond the scope of this section, as we intend to provide just a

proof of concept. But it is worth noting that the notion of having capabilities on memory

regions with granularity of one memory word suffices (if the high-level abstract semantics

enforces the declaration of bounds) to guarantee spatial safety.

Abstract machine for temporal memory safety

We suggest an abstract representation of memory allocation and deallocation operations

that is similar to the ideas presented in MemSafe [53]. An abstract machine for temporal

memory safety models a set of addresses A in which each address is tagged with a

timestamp. The machine state also keeps track of a possibly unbounded set of free

memory addresses, F . Arbitrary silent transitions that are not memory access operations

do not alter the machine state and are allowed. A transition that takes one of the free

memory addresses f ∈ F , associates it with a fresh timestamp τfresh, and adds it to the

set A, (i.e., F ′ := F−{f}, and A′ := A∪(f, τfresh) as effects), is the only allowed memory

allocation transition. Any other memory access operation (read/write/execute) should use

addresses exclusively from A. The argument to the access operation is a pair of address

a and timestamp τ . In order for the operation to proceed, the pair has to exist in A. A

free operation should also use timestamped-addresses exclusively from A, and it returns

them back to the set F (i.e., freeing (a, τ) has the effect A′ = A−{(a, τ)}, F ′ = F ∪{a}).

One way, then, to reason about memory safety is to ensure that compilation produces

machine code whose legal transitions can satisfy a simulation relation with the legal

transitions of the abstract machine described above.

6.2 Caller-Callee Authentication

In architectures like “Protected Software Module Architectures” [54], the need often

arises for having a trusted way provided by the hardware of identifying the module that

uses a specific function or API. In other words, an authenticated mechanism for function

calls is required. This can be useful on some embedded architectures where arbitrary

untrusted modules can run on the same embedded device leading to the need for some

authentication of which module uses some API, so that accountability and integrity

goals can be achieved on part of the outputs of the whole device which are potentially

triggered by the mentioned use of APIs by arbitrarily different and potentially untrusted

modules [55].
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In this section we illustrate informally a simple way by means of which a CHERI-based

machine can achieve such an authentication mechanism.

We assume that a machine that will make use of such authentication mechanism

will have some trusted procedure that allocates memory and capabilities to the different

modules or compartments. And it is a rather reasonable assumption to think of these

modules or compartments to be known to each other if they are to interact with each

other correctly. We assume that a static memory map is known to the programmers of

each module. This is a reasonable assumption to make about the software development

of some embedded devices. Note that what we mean by the notion of being known

is not the cryptographic sense of having a key-exchange phase, but rather it is just a

phase of the software development process through which it suffices that programmers

of each “callee/API” adapt their code to the number of legitimate callers that it (the

callee/API) expects. Note that an initialization phase of the callee program is thought of

as responsible for distributing all and only the relevant capabilities to the corresponding

modules of each expected caller. It does that according to the agreed upon memory

map, and is enabled to do that by means of having been given the necessary capabilities

during the initialization phase of the whole operating system or startup procedure.

Caller Authentication by Unforgeability of Capabilities and Compartmental-

ization

If we assume that compartmentalization is implemented correctly, and if we assume that

compartments are not allowed to share capabilities with each other except through the

trusted initialization phase that creates the memory compartments based on a statically

known memory map, then, callers of an API can be authenticated by means of giving

each caller a capability on a distinguished address. This address will be available for

execution for only this caller. (It is guaranteed that no other caller gets a capability

on this memory address.) Figure 6.1 illustrates the idea of having an added layer of

indirection to which a call is sent by two distinguished callers of the same API to two

different addresses, from which authentication information is collected and then the call

is redirected to the API common entry point.

6.3 Secure Compilation

As mentioned in the introduction of this thesis, some vulnerabilities in computer sys-

tems arise because of programmers’ false (i.e., over-optimistic) expectations about the

guarantees that are given by the abstractions of a programming language [2].
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Figure 6.1: On the left, caller 1 is given a sealed execute capability on address a1,
and caller 2 is given a sealed execute capability on address a2. Compartmentalization
guarantees that they cannot share capabilities with each other. Capability unforgeability
guarantees that whenever address ai is executed, then caller i was the origin of the
call. This authentication information can, thus, be passed to the intended callee and

execution can proceed with the intended API entry point.

Thus, the notion of designing a compiler to be secure has been captured by the

notion of full abstraction. A fully-abstract translation from a source language to a

target language preserves and reflects contextual observational equivalence of source

programs [14, 2].

One challenge to achieving full abstraction is the inherent increased expressiveness

of target programs and contexts compared to source programs and contexts. This loss of

abstraction (or increase in expressiveness) can be exploited by target-level attackers.

Thus, hardware protection mechanisms like the ones offered by CHERI and formalized

in this thesis can be helpful for preserving programming language abstractions. The

philosophy of designing CHERI in the first place put into consideration lack of trust

in compiler correctness of code that is outside the trusted code base (TCB) [11]. So,

the security guarantees that CHERI intends to offer are indeed guarantees against

machine-code-level attackers that could execute arbitrary instructions.

Previous work [56, 13, 57, 12] on fully-abstract compilation made use of hardware

support features like Protected Module Architectures [58], and Micropolicies [9] to achieve

security guarantees that are necessary for fully-abstract compilation.
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We expect that a formal model of CHERI like the one we reasoned about in this

thesis will have the potential to make it easy to exploit the security guarantees offered

by the CHERI architecture for building a compiler that satisfies a notion of memory

compartmentalization that is more suited for an object-oriented Java-like programming

language. Proving, then, that such a compiler is secure in the sense of being fully abstract

could potentially utilize the formalization that we established in this thesis.

One potential starting point towards defining a compiler and proving its security

is to start with a simple Java-like language like the one in [13]. This has the benefit of

avoiding all the dispute [52] over what standard a compiler should follow if a language

like C is to be considered as a source language. After all, the whole idea of guaranteeing

full abstraction as an approach to secure compilation is to preserve the guarantees that

are given to the programmer by the source language. So, a choice of a source language

with strong guarantees is a good match for such a kind of work. What full abstraction

would additionally achieve, then, with the help of an architecture like CHERI is the

preservation of such guarantees even in a stronger attack model than the ones assumed

by current compilers.
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