
Compiling a secure variant of C to
capabilities

Akram El-Korashy*, Stelios Tsampas^, Marco Patrignani~, Dominique
Devriese^, Deepak Garg*, Frank Piessens^

*MPI-SWS, ^KU-Leuven, ~CISPA

Dagstuhl Seminar on Secure Compilation

How to keep C variables in RAM in a
secure way?

2

Your intentions may be noble, but they are
also misguided. The short answer is that
there's really no way to do what you want on
a general purpose system (i.e. commodity
processors/motherboard and
general-purpose O/S).

https://stackoverflow.com/questions/16500549/how-to-keep-c-variables-in-ram-securely

No data isolation in C

3

Data isolation is needed to
be able to reason about

security invariants.

C semantics does not
require any isolation

guarantee.

Data isolation?
We mean private state.

Only specific functions should be
given access to specific pieces of
data.

A programmer may rely on isolation
to reason about security while still
using untrusted libraries.

4

Example I
Private state in a C program

Safe fine-grained sharing while still
maintaining the privacy of access to
b:

int a;
int b; //private variable

int f() {
context_f(&a);
...

5

int secret;

// check then write secret
int check_and_write(t* f)
{

if (check(f)) {

write(f, secret);

}

}

6

Example II
Private state in a C program,

control flow violation

jmp...

(......)
load...
call...
(......)

legal entrypoint to
check_and_write

Approach

7

1. C-like language with module isolation

2. Compile this language to a capability machine model.

3. Prove that this translation is secure (fully abstract).

A secure
variant of C

or a restricted subset of C

Modules as units of isolation

Functions within a module can
access its global variables.

Jumping into the middle of functions
is prohibited by design.

A variant of Clight, with regards to
how we represent spatial memory
safety

8

Example I
revisited

● Compile pointers as capabilities.
● Sharing a pointer corresponds to

sharing a restricted capability.

Safe fine-grained sharing while still
maintaining the privacy of access to
b:

int a;
int b; //private variable

int f() {
context_f(&a);
...

9

a

b&a

int secret;

// check then write secret
int check_and_write(t* f)
{

if (check(f)) {

write(f, secret);

}

}

10

Example II
revisited

● CHERI also features code
capabilities.

● But it offers more..

● Sealed capabilities authorize
access to code and data only by
means of a trusted calling
mechanism.

● The calling mechanism manages
a trusted call stack.

Fully-abstract
translation

11

Color code

12

Source Target

Fully-abstract Translation ↓

13

∀P1 P2

∀CS. CS[P1] ≈ CS[P2]
⟷
∀CT. CT[P1↓] ≈ CT[P2↓]

Pi: source program
Pi↓: compiled program

Two arbitrary programs are equivalent
iff their translations are equivalent

Preservation of contextual equivalence

14

∀P1 P2

∀CS. CS[P1] ≈ CS[P2]
⟶
∀CT. CT[P1↓] ≈ CT[P2↓]

Pi: source program
Pi↓: compiled program

Contextually-equivalent source
programs remain so after translation.

Back-translation to prove preservation

15

∀P1 P2

∃CT. CT[P1↓] ≉ CT[P2↓]
⟶
∃CS. CS[P1] ≉ CS[P2]

Pi: source program
Pi↓: compiled program

A distinguishing target context should
exist only if there were a source one.

16

Traces soundness, then back-translation

17

∀P1 P2

∃CT. CT[P1↓] ≉ CT[P2↓]
⟶
Tr(P1↓) ≉TR Tr(P2↓)
⟶
∃CS. CS[P1] ≉ CS[P2]

Pi: source program
Pi↓: compiled program

A trace semantics captures the
interaction of a component.

Trace actions record sandbox
switching and the status of shared
memory.

Two compiled programs that have
equal sets of traces are proved to
be contextually equivalent.

Abstracting
target

equivalence

18

by introducing trace equivalence

Trace label example

19

“call? f(5), M, alloc”

Actions are calls
or returns.

Argument values and
shared memory

Allocator status is
also observable

Conclusion and Future
● Translate fully-abstractly a C-like source language to a

target language that abstracts the capability instruction set.

● Source-to-source transformation that automates the
initialization of sandboxes

● Work on Compositional CompCert -- or a similar
infrastructure for fully-abstract compilation proofs?

20

Thanks!
Questions and comments

21

References
1. https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/20140114-ctsrd-pimeeting.pdf
2. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-907.pdf
3. Blazy, Sandrine, and Xavier Leroy. "Mechanized semantics for the Clight subset of the C

language." Journal of Automated Reasoning 43.3 (2009): 263-288.
4. Watson, Robert NM, et al. "Cheri: A hybrid capability-system architecture for scalable

software compartmentalization." Security and Privacy (SP), 2015 IEEE Symposium on.
IEEE, 2015.

5. Abadi, Martín. "Protection in programming-language translations." Secure Internet
programming. Springer, Berlin, Heidelberg, 1999. 19-34.

6. Abadi, Martın, Cédric Fournet, and Georges Gonthier. "Secure implementation of channel
abstractions." Information and Computation 174.1 (2002): 37-83.

22

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/20140114-ctsrd-pimeeting.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-907.pdf

