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How to keep C variables in RAM in a 
secure way?
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Your intentions may be noble, but they are 
also misguided. The short answer is that 
there's really no way to do what you want on 
a general purpose system (i.e. commodity 
processors/motherboard and 
general-purpose O/S).

https://stackoverflow.com/questions/16500549/how-to-keep-c-variables-in-ram-securely



No data isolation in C
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Data isolation is needed to 
be able to reason about 

security invariants.

C semantics does not 
require any isolation 

guarantee.



Data isolation?
We mean private state.

Only specific functions should be 
given access to specific pieces of 
data.

A programmer may rely on isolation 
to reason about security while still 
using untrusted libraries.
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Example I
Private state in a C program

Safe fine-grained sharing while still 
maintaining the privacy of access to 
b:

int a;
int b;  //private variable

int f() {
context_f(&a);
...
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int secret;

// check then write secret
int check_and_write(t* f) 
{

if (check(f)) {

write(f, secret);

}

}
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Example II
Private state in a C program,

control flow violation

jmp...

(......)
load...
call... 
(......)

legal entrypoint to 
check_and_write



Approach
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1. C-like language with module isolation

2. Compile this language to a capability machine model.

3. Prove that this translation is secure (fully abstract).



A secure 
variant of C

or a restricted subset of C

Modules as units of isolation

Functions within a module can 
access its global variables.

Jumping into the middle of functions 
is prohibited by design.

A variant of Clight, with regards to 
how we represent spatial memory 
safety
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Example I 
revisited

● Compile pointers as capabilities.
● Sharing a pointer corresponds to 

sharing a restricted capability.

Safe fine-grained sharing while still 
maintaining the privacy of access to 
b:

int a;
int b;  //private variable

int f() {
context_f(&a);
...
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int secret;

// check then write secret
int check_and_write(t* f) 
{

if (check(f)) {

write(f, secret);

}

}
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Example II 
revisited

● CHERI also features code 
capabilities.

● But it offers more..

● Sealed capabilities authorize 
access to code and data only by 
means of a trusted calling 
mechanism.

● The calling mechanism manages 
a trusted call stack.



Fully-abstract 
translation
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Color code
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Source Target



Fully-abstract Translation ↓ 
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∀P1 P2

∀CS. CS[P1] ≈ CS[P2]
⟷
∀CT. CT[P1↓] ≈ CT[P2↓]

Pi: source program
Pi↓: compiled program

Two arbitrary programs are equivalent 
iff their translations are equivalent



Preservation of contextual equivalence
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∀P1 P2

∀CS. CS[P1] ≈ CS[P2]
⟶
∀CT. CT[P1↓] ≈ CT[P2↓]

Pi: source program
Pi↓: compiled program

Contextually-equivalent source 
programs remain so after translation.



Back-translation to prove preservation
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∀P1 P2

∃CT. CT[P1↓] ≉ CT[P2↓]
⟶
∃CS. CS[P1] ≉ CS[P2]

Pi: source program
Pi↓: compiled program

A distinguishing target context should 
exist only if there were a source one.
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Traces soundness, then back-translation
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∀P1 P2

∃CT. CT[P1↓] ≉ CT[P2↓]
⟶
Tr(P1↓) ≉TR Tr(P2↓)
⟶
∃CS. CS[P1] ≉ CS[P2]

Pi: source program
Pi↓: compiled program



A trace semantics captures the 
interaction of a component.

Trace actions record sandbox 
switching and the status of shared 
memory.

Two compiled programs that have 
equal sets of traces are proved to 
be contextually equivalent.

Abstracting 
target 

equivalence
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by introducing trace equivalence



Trace label example
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“call? f(5), M, alloc”

Actions are calls 
or returns.

Argument values and 
shared memory

Allocator status is 
also observable



Conclusion and Future
● Translate fully-abstractly a C-like source language to a 

target language that abstracts the capability instruction set.

●  Source-to-source transformation that automates the 
initialization of sandboxes

● Work on Compositional CompCert -- or a similar 
infrastructure for fully-abstract compilation proofs?
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Thanks!
Questions and comments
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