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Abstract

Data retrieval systems process data from many sources,

each subject to its own data use policy. Ensuring compli-

ance with these policies despite bugs, misconfiguration,

or operator error in a large, complex, and fast evolving

system is a major challenge. Thoth provides an effi-

cient, kernel-level compliance layer for data use policies.

Declarative policies are attached to the systems’ input

and output files, key-value tuples, and network connec-

tions, and specify the data’s integrity and confidential-

ity requirements. Thoth tracks the flow of data through

the system, and enforces policy regardless of bugs, mis-

configurations, compromises in application code, or ac-

tions by unprivileged operators. Thoth requires minimal

changes to an existing system and has modest overhead,

as we show using a prototype Thoth-enabled data re-

trieval system based on the popular Apache Lucene.

1 Introduction

Online data retrieval systems typically serve a search-

able corpus of documents, web pages, blogs, personal

emails, online social network (OSN) profiles and posts,

along with real-time microblogs, stock and news tickers.

Examples include large providers like Amazon, Face-

book, eBay, Google, and Microsoft, and also numerous

smaller, domain-specific sharing, trading and networking

sites run by organizations, enterprises, and governments.

Each data item served or used by a retrieval system

may have its own usage policy. For instance, email

is private to its sender/receiver(s), OSN data and blogs

limited to friends, and corporate documents limited to

employees. External data stream providers may re-

strict the use of (meta)data, and require expiration. The

provider’s privacy policy may require that a user’s query

and click stream be used only for personalization. Lastly,

providers must comply with local laws, which may re-

quire them, for instance, to filter certain data items within

a given jurisdiction.
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Ensuring compliance with applicable policies is labor-

intensive and error-prone [36]. The policy actually in ef-

fect for a data item may depend on checks and settings in

many components and several layers of a system, making

it difficult to audit and reason about. Moreover, any bug,

misconfiguration, or compromise in a large and evolving

application codebase could violate a policy. The problem

affects both large providers with complex, fast evolving

systems and smaller providers with limited IT budgets.

Indeed, reports of data losses abound [14, 1, 44, 11, 13].

The stakes are high: providers stand to lose customer

confidence, business and reputation, and may face fines.

Hence, developing technical mechanisms to enforce poli-

cies in data retrieval systems is important. In fact, the

Grok system combines lightweight static analysis with

heuristics to annotate source code to check for policy vi-

olations in Bing’s back-end [36].

Existing policy compliance systems for data retrieval,

including Grok, usually target column-specific policies—

policies that apply uniformly to all data of a specific type,

e.g., the policy “no IP address can be used for advertiz-

ing.” However, no existing work covers the equally im-

portant individual policies that are specific to individual

data items or to a given client’s data items. For exam-

ple, Alice’s blog posts, but not Bob’s, may be subject to

the policy “visible only to Alice’s friends”. Similarly,

the expiration time of every item in a news ticker may

be different. In fact, all policies mentioned a couple of

paragraphs ago are individual policies. It is this (signif-

icant and important) missing part of policy enforcement

that we wish to address in this paper. Specifically, we

present Thoth, a policy compliance layer integrated into

the Linux kernel to enforce both individual and column-

specific policies efficiently.

We briefly describe the key insights in Thoth’s de-

sign. First, by design, Thoth separates policies from ap-

plication code. A policy specifying confidentiality and

integrity requirements may be associated with any data

conduit, i.e, a file, key-value tuple, named pipe or net-

work connection, and is enforced on all application code

that accesses the conduit’s data or data derived from that

data. Thoth provides a declarative language for specify-



ing policies. The language itself is novel; in addition to

standard access (read/write) policies, it also allows spec-

ifying data declassification policies by stipulating how

access policies may change along a data flow.

Second, unlike column-specific policies, individual

policies may not be very amenable to static analysis be-

cause a given program variable may contain data with

very different individual policies over time at the same

program point and, hence, the abstraction of static anal-

ysis may lose precision quickly. So, Thoth uses dynamic

analysis. It intercepts I/O in the kernel, tracks the flow of

data at the granularity of conduits and processes (similar

to Flume [28]), and enforces policies at process bound-

aries. This incurs a runtime overhead but we show that

the overhead is not too high. With an optimized proto-

type implementation, we measure an overhead of 0.7%

on indexing and 3.6% on query throughput in the widely

used search engine Apache Lucene. While this overhead

may be too high for large-scale data retrieval systems,

we believe that it can be optimized further and that it is

already suitable for domain-specific, medium-scale data

retrieval systems run by organizations, enterprises and

governments. Moreover, application code requires very

few changes to run with Thoth (50 lines in a codebase of

300,000 LoC in our experiments).

Third, the complexity of a data retrieval system often

necessitates some declassification to maintain function-

ality. For instance, a search process that consults an in-

dex computed over a corpus containing the private data

of more than one individual cannot produce any read-

able results without declassification. To handle this and

similar situations, we introduce a new form of declassifi-

cation called typed declassification, which allows the de-

classification of data in specific forms (types). To accom-

modate the aforementioned search process, all source

data policies allow declassification into a list of search

results (document names). Hence, the search process

can function as usual. At the same time, the possibil-

ity of data leaks is limited to a very narrow channel: To

leak information from a private file, the search process’

code must maliciously encode the information in a list

of valid document names. Given that the provider has a

genuine interest in preventing data breaches and that the

search process is an internal component that is unlikely

to be compromised in a casual external attack, the chance

of having such malicious code in the search process is

low. Thus, typed declassification is a pragmatic design

point in the security-functionality trade-off for our threat

model. Note that typed declassification needs content-

dependent policies, which our policy language supports.

To summarize, the contributions of this work are:

(1) A policy language that can express individual ac-

cess and declassification policies declaratively (Sec-

tion 2); (2) the design of a kernel-level monitor to

enforce policies by I/O interception and lightweight

taint propagation (Section 3); (3) application of the de-

sign to medium-scale data retrieval systems, specifically

Apache’s Lucene (Sections 2; 5); and (4) an optimized

prototype implementation and experimental evaluation

to measure overheads (Sections 4, 6).

2 Thoth policies

Thoth is a kernel-level policy compliance layer that helps

data retrieval system providers enforce confidentiality

and integrity policies on the data they collect and serve.

In Thoth, the provider attaches policies to data sources

(documents and live streams, posts and profiles, user

click history, etc.) based on the privacy preferences of

clients, external (e.g., legal) and internal usage require-

ments. Thoth tracks data flows by intercepting all IPC

and I/O in the kernel, and it propagates source policies

along these flows. It enforces policy conditions when

data leaves the system, or when a declassification hap-

pens. The policy attached to a data source is a complete,

one point description of all privacy and integrity rules in

effect for that source.

Thoth policies are specified in a new, expressive

declarative language, separate from application code. In

this section, we describe this policy language briefly, dis-

cuss example policies that clients, data sources, and the

provider might wish to enforce in a data retrieval sys-

tem, and give a glimpse of how to express these policies

in Thoth’s policy language. More policy examples are

included in Appendix A. Section 3 explains how Thoth

enforces these policies. We note that our policy language

and enforcement are general and apply beyond data re-

trieval systems.

Policy language overview A Thoth policy can be at-

tached to any conduit—a file, key-value tuple, named

pipe or network socket that stores data or carries data in

transit. The policy on a conduit protects the confidential-

ity and integrity of the data in the conduit and is specified

in two layers. The first layer, an access control policy,

specifies which principals may read and update the con-

duit and under what conditions (e.g., only before or only

after a certain date). A second layer protects data derived

from the conduit by restricting the policies of conduits

downstream in the data pipeline. This layer can declas-

sify data by allowing the access policies downstream to

be relaxed progressively, as more and more declassifica-

tion conditions are met. The second layer that specifies

declassification by controlling downstream policies is the

language’s key novelty.1 Another noteworthy feature is

that we allow policy evaluation to depend on a conduit’s

state—both its data and its metadata. This allows ex-

1Our full language also supports provenance policies in the second

layer by allowing control over upstream policies. Due to lack of space,

we omit provenance policies here.



Arithmetic/string Conduit Content

add(x,y,z) x=y+z cNameIs(x) x is the conduit pathname (c,off) says x1, . . . ,xn is the tuple found in

sub(x,y,z) x=y-z cIdIs(x) x is the conduit id (x1, . . . ,xn) conduit c at off

mul(x,y,z) x=y*z cIdExists(x) x is a valid conduit id (c,off) willsay ditto for the update of c in the

div(x,y,z) x=y/z cCurrLenIs(x) x is the conduit length (x1, . . . ,xn) current transaction

rem(x,y,z) x=y%z cNewLenIs(x) x is the new conduit length each in (c,off) says for each tuple in c at off, assign

concat(x,y) x || y hasPol(c, p) p is conduit c’s policy (x1, ..,xn) {condition} to x1,..,xn and evaluate condition

vType(x,y) is x of cIsIntrinsic does this conduit connect each in (c,off) willsay ditto for the update of c in the

type y? two confined processes? (x1, ..,xn) {condition} current transaction

Relational Session Declassification rules

eq(x,y) x=y sKeyIs(x) x is the session’s c1 until c2 condition c1 must hold on the

neq(x,y) x!=y authentication key downstream flow until c2 holds

lt(x,y) x<y sIpIs(x) x is the session’s source IP isAsRestrictive(p1,p2) the permission p1 is at least as

gt(x,y) x>y address restrictive as p2

le(x,y) x<=y IpPrefix(x,y) x is IP prefix of y

ge(x,y) x>=y timeIs(t) t is the current time

Table 1: Thoth policy language predicates and connectives

pressing content-dependent policies and, in particular, a

kind of declassification that we call typed declassifica-

tion.

Layer 1: Access policies The first layer of a conduit’s

policy contains two rules that specify who can read and

update the conduit’s state under what conditions. We

write both rules in the syntax of Datalog, which has been

used widely in the past for the declarative specification of

access policies [18, 20, 30]. Briefly, the read rule has the

form (read :- cond) and means that the conduit can be

read if the condition “cond” is satisfied. The condition

“cond” consists of predicates connected with conjunc-

tion (“and”, written ∧) and disjunction (“or”, written ∨).

All supported predicates are listed in Table 1. Similarly,

the update rule has the form (update :- cond).

Example (Client policies) Consider a search engine

that indexes clients’ private data. A relevant security

goal might be that a client Alice’s private emails and pro-

file should be visible only to Alice, and only she should

be able to modify this data. This private data policy

can be expressed by attaching to each conduit holding

Alice’s private items read and update rules that allow

these operations only in the context of a session authen-

ticated with Alice’s key. The latter condition can be ex-

pressed using a single predicate sKeyIs(kAlice), which

means that the active session is authenticated with Al-

ice’s public key, denoted kAlice. Hence, the read rule

would be read :- sKeyIs(kAlice). The update rule would

be update :- sKeyIs(kAlice). (Clients, or processes run-

ning on behalf of clients, authenticate directly to Thoth,

so Thoth does not rely on untrusted applications for ses-

sion authentication information.)

Alice’s friends only blog and OSN profile should be

readable by her friends as well, which can be expressed

with an additional disjunctive clause in the read rule:

read :- sKeyIs(kAlice) ∨
(sKeyIs(K) ∧ (“Alice.acl”, Offset) says isFriend(K))

The part after the ∨ is read as “the key K that authenti-

cated the current session exists in Alice.acl at some off-

set Offset.” Here, Alice.acl is a trusted key-value tuple

that contains Alice’s friend list.

Following standard Datalog convention, terms like K

and Offset that start with uppercase letters are exis-

tentially quantified variables. The predicate sKeyIs(K)
binds K to the key that authenticates the session. Dur-

ing each policy evaluation, application code is expected

to provide a binding for the variable Offset that refers

to a location in the tuple’s value saying that K belongs

to a friend of Alice. Note that policy compliance does

not depend on application correctness: if the application

does not provide a correct offset, access will be denied.

Extending further, visibility to Alice’s friends of

friends can be allowed by modifying the read rule to

check that Alice and the owner of the current session’s

key have a common friend. Then, the application code

would be expected to provide an offset in Alice’s acl

where the common friend exists and an offset in the com-

mon friend’s acl where the current session’s key exists.

Layer 2: Declassification policies The second layer

of a conduit’s policy contains a single rule that controls

the policies of downstream conduits. This rule is written

(declassify :- cond), where “cond” is a condition or pred-

icate on all downstream sequences of conduits. For in-

stance, “cond” may say that in any downstream sequence

of conduits, the access policies must allow read access

only to Alice, until the calendar year is at least 2017, af-

ter which the policies may allow read access to anyone.

This represents the declassification policy “private to Al-

ice until the end of 2016”.



We represent such declassification policies using the

notation of linear temporal logic (LTL), a well-known

syntax to represent predicates that change over time [32].

We allow one new connective in “cond” in the declassify

rule: c1 until c2, which means that condition c1 must

hold of all downstream conduits until condition c2 holds.

Also, we allow a new predicate isAsRestrictive(p1, p2),

which checks that policy p1 is at least as restrictive as

p2. The two together can represent expressive declassifi-

cation policies, as we illustrate next.

Example (Index policy) In the last example, we dis-

cussed confidentiality policies that reflect data owners’

privacy choices. For the retrieval system to do its job,

however, the input data policies must allow some de-

classification. Without it, the search engine, which con-

sults an index computed over the entire corpus, including

the private data of several individuals, would not be al-

lowed to produce any readable output. We rely on the

policy language’s novel ability to refer to a conduit’s

(meta-)data to allow the selective, typed declassification

of search results. The policy can be implemented by

adding the following declassify rule to all searchable in-

put data:

declassify :- isAsRestrictive(read,this.read) until
ONLY_CND_IDS

This policy stipulates that data derived from Alice’s data

can be written into conduits whose read rule is at least

as restrictive as Alice’s (which is bound to this.read),

until it is written into a conduit which satisfies the condi-

tion ONLY_CND_IDS. This macro stipulates that only

a list of valid conduit ids has been written. The macro

expands to

cCurrLenIs(CurrLen) ∧ cNewLenIs(NewLen) ∧
each in(this,CurrLen,NewLen) says(CndId)
{cIdExists(CndId)}

and permits the declassification of a list of proper conduit

ids. A conduit id is a unique identifier for a conduit (con-

duit ids are defined in Section 3). The predicate “each

in () says () {}” iterates over the sequence of tuples in

the newly written data and checks that each is a valid

conduit id. By including this declassification rule in her

data item’s policy, Alice allows the search engine to in-

dex her item and include it in search results. To view

the contents, of course, a querier still has to satisfy each

conduit’s confidentiality policy.2

2Our declassification policies can be intuitively viewed as state ma-

chines whose states are access policies and whose transitions are events

in the data flow. For instance, the declassification policy just described

is a two state machine, whose initial state has a read policy as restrictive

as Alice’s, and whose second state allows read access to everyone. The

transition from the first to the second state is allowed when data passes

So far, we have assumed that the conduit ids (i.e., the

names of indexed files) are not themselves confidential.

If the conduit ids are themselves confidential, then the

above declassify rule is insufficient since it stipulates

no restriction on policies after ONLY_CND_IDS holds.

Thus, a more restrictive declassify rule is needed. Ide-

ally, we want that the read and declassify rules of the

conduit that contains the list of conduit ids be at least as

restrictive as the read and declassify rules of all conduits

in the list. This can be accomplished by the following

replacement for ONLY_CND_IDS.

cCurrLenIs(CurrLen) ∧ cNewLenIs(NewLen) ∧
each in(this,CurrLen,NewLen) willsay(CndId)
{cIdExists(CndId) ∧ hasPol(CndId ,P) ∧
isAsRestrictive(read,P.read) ∧
isAsRestrictive(declassify,P.declassify)}

The predicate hasPol(CndId,P) binds P to

the policy of the conduit CndId, and the

predicates isAsRestrictive(read,P.read) and

isAsRestrictive(declassify,P.declassify) enforce that

the read and declassify rules of the search results are

at least as restrictive as those of CndId. We call this

modified macro ONLY_CND_IDS+.

Other data retrieval policies

We briefly describe several other policies relevant to data

retrieval systems that we have represented in our policy

language and implemented in our prototype. For the for-

mal encodings of these policies, see Appendix A.

Data analytics Many retrieval systems transform logs

of user activity into a user preferences vector, which is

used for targeting ads, computing user profiles, and pro-

viding recommendations. Raw logs of user clicks and

queries are typically private, so a profile vector derived

from them cannot be used for any of these purposes with-

out a declassification. A policy that allows typed declas-

sification into a vector of a fixed size can be attached to

raw user logs to ensure that the raw logs cannot be leaked

from the system, but that the profile vector can be used

for the above-mentioned purposes.

Provider policies The provider may need to censor

certain documents when a query arrives from a partic-

ular country. For this purpose, the system uses a map of

IP address prefixes to countries. Separately, the provider

maintains a per-country blacklist, containing a list of

censored conduit ids. The censorship policy takes the

form of a common declassification rule on source files.

The rule requires that, at a conduit connecting to a client,

the client’s IP prefix is looked up in the prefix map, and

through a conduit that satisfies ONLY_CND_IDS. This state-machine

view of our policies is universal because it is well known that all LTL

formulas can be represented as Büchi automata.



!

!

"#!$%&'%(!

)*+,*!-#.!/+01(%!

2! )*+,*!.%,303,3!

3'0!-+4!

)*+,*!5(+63(!!!

7+(89:!#,+&%!

)3;$!

<!

)*+,*!=%>%&%'9%!

.+'8,+&!

)3;$!

'!
)&1;,%0!

?',&1;,%0!

Figure 1: Thoth architecture

the corresponding blacklist is checked to see if any of

the search results are censored. Both the prefix map and

the blacklist are maintained in sorted order for efficient

lookup. The sort order is enforced by an integrity policy

on the conduits.

A second common provider policy allows employees

to access client’s private data for troubleshooting pur-

poses, as long as such accesses are logged for auditing. A

mandatory access logging (MAL) policy can be added for

this purpose. The policy allows accesses by authorized

employees, if and only if an entry exists in a separate log

file, which states a signature by the employee, the con-

duit being accessed, and a timestamp. The log file itself

has an integrity policy that allows appends only, thus en-

suring that an entry cannot be removed or overwritten.

Finally, data sources must consent to provider access by

allowing declassification into a conduit readable by au-

thorized employees subject to MAL.

3 Thoth architecture and design

3.1 Overview

Figure 1 depicts the Thoth architecture. At each par-

ticipating node, Thoth comprises a kernel module that

intercepts I/O, a trusted reference monitor process that

maintains per-task taint sets3 and evaluates policies, a

persistent store for metadata and transaction log, and a

persistent policy store. Each node tracks taint and en-

forces policies independently of other nodes. The policy

store is accessible exclusively by the reference monitors

and provides a consistent view of all policies. This can

be attained by using either central storage for policies or

a consensus protocol like Paxos [29].

Figure 2 shows the data flow model of a Thoth-

protected system. An application consists of a set of

tasks (i.e., processes) that execute on one or more nodes.

Data flows among the tasks via conduits. A file, named

pipe or a tuple in a key-value store is a conduit. A net-

work connection or a named pipe is a pair of conduits,

one for each direction of data traffic. Thoth identifies

each conduit with a unique numeric identifier, called the

conduit id. The conduit id is the hash of the path name in

case of a file or named pipe, the hash of the 5-tuple 〈srcIP,

srcPort, protocol, destIP, destPort〉 in case of a network

3A task’s taint set is the set of policies of conduits it has read.

connection, or the key in case of a key-value tuple. Any

conduit may have an associated policy.4

The core of the application system is a set of CONFINED

tasks within Thoth’s confinement boundary. The sys-

tem interacts with the outside world via conduits (typ-

ically network connections) to external, UNCONFINED

tasks. UNCONFINED tasks represent external users or com-

ponents. Neither type of task is trusted by Thoth, al-

though an UNCONFINED task may represent a user and may

possess the user’s authentication credentials.

Policies on inbound and outbound conduits that cross

the confinement boundary represent the ingress and

egress policies, respectively. The read and declassifica-

tion rules of an ingress policy control how data can be

used and disseminated by the system whereas the update

rule of an ingress policy determines who may feed data

into the system. The read rule of an egress policy defines

who outside the system may read the output data.

3.2 Threat model

The Thoth kernel module and reference monitor, as well

as the Linux system and policy store they depend on, are

trusted. Active attacks on these components are out of

scope. We assume that correct policies are installed on

ingress and egress conduits. In our current prototype,

storage systems that hold application data are assumed to

be trusted. This assumption can be relaxed by encrypting

and checksumming application data in the Thoth kernel

module.

Thoth makes no assumptions about the nature of bugs

and misconfigurations in application components, the

type of errors committed by unprivileged operators, or

errors in policies on internal conduits. Subject to this

threat model, Thoth provably enforces all ingress poli-

cies. In information flow control terms, Thoth can con-

trol both explicit and implicit flows, but leaks due to

covert and side-channels are out of scope.

Justification Trusting the Thoth kernel module, ref-

erence monitor, and the Linux system they depend on

is reasonable in practice because (i) reputable providers

will install security patches on the OS and Thoth compo-

nents, and correct policies; (ii) OS and Thoth are main-

tained by a small team of experts and are more stable than

applications; thus, an attacker will likely find it more dif-

ficult to find a vulnerability in the OS or Thoth than in a

rapidly evolving application with a large attack surface.

Typed declassification policies admit limited informa-

tion flows, which can be exploited by malicious appli-

cations covertly. For instance, malware injected into a

search engine can encode private information in the set

of conduit ids it produces, if the conduits in the set them-

4If a file has multiple hard links, each of its path names can be

associated with a different policy. When a path name is used to access

the file, that path name’s policies are checked.



Figure 2: Thoth data flow

selves are public. This channel is out of scope. In prac-

tice, such attacks require significant sophistication. A

successful attack must inject code strategically into the

data flow before a declassification point and encode pri-

vate data on a policy-compliant flow.

On the other hand, Thoth prevents the large class of

practical attacks that involve direct flows to unauthorized

parties, and accidental policy violations due to applica-

tion bugs, misconfigurations, and errors by unprivileged

operators. We demonstrate this in Section 6.3 where a

Thoth compliant search engine is able to enforce data

policies, preventing (real and synthetic) bugs and mis-

configurations from leaking information.

3.3 Data flow tracking and enforcement

Tracking data flow Thoth tracks data flows coarsely

at the task-level. CONFINED and UNCONFINED tasks are

subject to different policy checks. A CONFINED task may

read any conduit, irrespective of the conduit’s read rule,

but Thoth enforces each such conduit’s declassify rule

when the task writes to other conduits. To do this, Thoth

maintains the declassify rules of conduits read by each

CONFINED task in the task’s metadata (these rules consti-

tute the taint set of the task).

UNCONFINED tasks form the ingress and egress points

for Thoth’s flow tracking; they are subject to access con-

trol checks, not tainting. An UNCONFINED task may read

from (write to) a conduit only if the conduit’s read (up-

date) rule is satisfied. For example, to read Alice’s pri-

vate data, an UNCONFINED task must authenticate with Al-

ice’s credentials. Conduits without policies can be read

and written by all tasks freely.

In summary, Thoth tracks data flows across CONFINED

tasks coarsely, and enforces declassification policies on

these flows. At the ingress and egress tasks (UNCONFINED

tasks), Thoth imposes access control through the read

and update rules. Every new task starts UNCONFINED.

The task may transition to the CONFINED state through

a designated Thoth API call. The reverse transition is

disallowed to prevent a task from reading private data

in the CONFINED state and leaking the data to a conduit

without any policy protection after transitioning to the

UNCONFINED state.

Question: Should a conduit read or write be allowed?

Inputs: t, the task reading or writing the conduit

f, the conduit being read or written

op, the operation being performed (read or write)

Output: Allow or deny the access

Side-effects: May update the taint set of t

1 if t is UNCONFINED:

2 if op is read:

3 Check f’s read rule.

4 if op is write:

5 Check f’s update rule.

6 if t is CONFINED:

7 if op is read:

8 Add f’s policy to t’s taint set.

9 if op is write:

10 // Enforce declassification policies of t’s taint set

11 for each declassification rule (c until c’) in t’s taint set:

12 Check that EITHER c’ holds OR (c holds AND

f’s declassification policy implies (c until c’)).

Figure 3: Thoth policy enforcement algorithm

Conduit interceptors The Thoth kernel component

includes a conduit interceptor (CI) for each type of con-

duit. A CI for a given conduit type intercepts system

calls that access or manipulate conduits of that type, and

associates a conduit with its policy. Thoth has built-in

CIs for kernel-defined conduit types, namely files, named

pipes, and network connections. CIs for additional con-

duit types can be plugged in. For instance, our prototype

uses a CI for the memcached key-value store (KV).

The CIs for files and named pipes associate a policy

with the unique pathname of a file or pipe. The socket CI

associates a policy with the network connection’s 5-tuple

〈srcIP, srcPort, protocol, destIP, destPort〉. The 5-tuple

may be underspecified. For instance, the policy associ-

ated with 〈?, ?, ?, destIP, destPort〉 applies to any network

connection with the specified destination IP address and

port. Both ends of a network connection have the same

policy. The KV CI associates a policy with a tuple’s key.

The KV CI can automatically derive policies from pol-

icy templates that cover a subspace of keys (e.g., all keys

with prefix #user_pro f ile). It can also replace template

variables with metadata, e.g., the time at which the key

was created.

Policy enforcement algorithm Figure 3 summarizes

the abstract checks that Thoth makes when it intercepts

a conduit access. If the calling task is UNCONFINED, then

Thoth evaluates the read or update policy of the conduit

(lines 1–5). If the calling task is CONFINED and the oper-

ation is a read, then Thoth adds the policy of the conduit

being read to the taint set of the calling task. No policy

check is performed in this case (lines 6–8). To reduce



the size of a CONFINED task’s taint set, our prototype per-

forms taint compression when possible: A policy is not

added if the taint set already includes an equally or more

restrictive policy.

When a CONFINED task t writes a conduit f, there is a

potential data flow from every conduit that t has read in

the past to f. Hence, all declassification rules in t’s taint

set are enforced (lines 11–12). Suppose (c until c’) is a

declassification rule in t’s taint set. Since this rule means

that condition c must continue to hold downstream un-

til the declassification condition c’ holds, this rule can

be satisfied in one of two ways: Either the declassifica-

tion condition c’ holds now, or c holds now and the next

downstream conduit (f here) continues to enforce (c until

c’). Line 12 makes exactly this check.

End-to-end correctness of policy enforcement

Within Thoth’s threat model, the checks described

above enforce all policies on conduits and, specifically,

all ingress policies. Incorrect policy configuration on

internal conduits cannot cause violation of ingress

policies but may cause compliant data flows to be denied

by the Thoth reference monitor. Informally, this holds

because our checks ensure that the conditions in every

declassification policy are propagated downstream until

they are satisfied. 5

Policy comparison Thoth compares policies for re-

strictiveness in three cases: for taint compression, when

evaluating the predicate isAsRestrictive(), and in line

12 of the enforcement algorithm (Figure 3). The gen-

eral comparison problem is undecidable for first-order

logic, so Thoth uses the following heuristics: 1) Equal-

ity: Compare the hashes of the two policies. 2) Inclu-

sion: Check that all predicates in the less restrictive pol-

icy also appear in the more restrictive one, taking into

account variable renaming and conjunctions and disjunc-

tions between the predicates. Inclusion has exponential

time complexity in the worst case, but is fast in practice.

3) Partial evaluation: Evaluate and delete an application-

specified subpart of each policy, then try equality and

inclusion. These heuristics suffice in all cases we have

encountered.

Note that a policy comparison failure can never affect

Thoth’s safety. However, a failure can (a) defeat taint

compression and therefore increase taint size and policy

evaluation overhead; or (b) cause a compliant data flow

to be denied. In the latter case, a policy designer may

re-state a policy so that the policy comparison succeeds.

3.4 Thoth API

Table 2 lists Thoth API functions provided to user-level

tasks by means of a new system call. To check structural

5A formal proof of this fact is the subject of a forthcoming paper.

Our formal model and implementation support nested uses of the until

operator, which we omitted here.

properties of written data (e.g., that the data is a list of

conduit ids), it is often necessary to evaluate the update

rule atomically on a batch of writes. Hence, Thoth sup-

ports write transactions on conduits. By default, a trans-

action starts with a POSIX open() call and ends with the

close() call on a conduit. This behavior can be overridden

by passing additional flags to open() and close(). Trans-

actions can also be explicitly started and ended using the

Thoth API calls open_tx and close_tx.

During a transaction, Thoth buffers writes in a per-

sistent re-do log. When the transaction is closed by the

application, Thoth makes the policy checks described in

Figure 3. If the policy checks succeed, then the writes

are sent to the conduit, else the writes are discarded. The

re-do log allows recovery from crashes and avoids ex-

pensive filesystem syncs when a transaction commits.

Summary Thoth enforces ingress and egress policies

despite application-level bugs, misconfigurations, and

compromises, or actions by unprivileged operators. A

data source’s policy specifies both access and declassi-

fication conditions and describes the source’s allowed

uses completely. Thoth uses policies as taint, which dif-

fers significantly from the standard information flow con-

trol practice of using abstract labels as taint. That prac-

tice requires trusted application processes to declassify

data and to control access at system edges. In contrast,

Thoth relies entirely on its reference monitor for all ac-

cess and declassification checks, and no application pro-

cesses have to be trusted.

4 Thoth prototype

Our prototype consists of a Linux kernel module that

plugs into the Linux Security Module (LSM) interface,

and a reference monitor. We also changed a few (22)

lines of the kernel proper to provide additional system

call interception hooks not included in the LSM inter-

face, and a new system call that allows applications to

interact with Thoth. A small application library consist-

ing of 840 LoC exports the API calls shown in Table 2

based on this system call.

LSM module The Thoth LSM module comprises ap-

proximately 3500 LoC and intercepts I/O related system

calls including open, close, read, write, socket, mknod,

mmap, etc. Intercepted system calls are redirected to the

reference monitor for taint tracking and validation. The

module includes conduit interceptors for files, named

pipes and sockets, as well as interceptors for client con-

nections to a memcached key-value store [12].

Thoth reference monitor Thoth’s reference monitor

is implemented as a trusted, privileged userspace pro-

cess. It implements the policy enforcement logic and

maintains the process taint, session state and transac-

tion state in DRAM. The monitor accesses the persistent



Function Description

confine () Transition calling process from UNCONFINED to CONFINED state.

authenticate (key) Authenticate process with the private key key to satisfy identity-based policies.

add_policy (p) Store a policy p in Thoth metadata and return an id p_id for it.

set_tx_flags (c_id, flags) Set flags flags (type and partial evaluation hints) for a transaction on conduit c_id.

open_tx (c_id) Open a transaction on conduit c_id and return a file handle.

close_tx (fd) Close a transaction fd. Return 0 if successful, or error code of a policy check fails.

set_policy (fd, p_id) Attach policy id p_id to the conduit running transaction fd. Passing (-1) for p_id sets the null policy.

The new policy is applied only after fd is successfully closed. The declassification condition of the

conduit’s existing policy determines whether the policy change or removal is allowed.

get_policy (c_id, buf) Retrieve the policy attached to conduit c_id into buffer buf.

cache (fd, off, len) Cache content (for policy evaluation) from file handle fd from offset off with length len.

Table 2: Thoth API calls

Thoth metadata store, which includes per-conduit meta-

data (conduit pathname, conduit id, a pointer to the pol-

icy in effect in the policy store, and for each persistent

file conduit, its current size), the transaction log, and the

global policy store. The metadata and transaction log are

stored in NVRAM. A write-through DRAM cache holds

recently accessed metadata and policies.

The monitor is multi-threaded so it can exploit multi-

core parallelism. Each worker thread invokes the Thoth

system call and normally blocks in the LSM module

waiting for work. When an application issues a system

call that requires an action by the reference monitor, a

worker thread is unblocked and returns to the reference

monitor with appropriate parameters; when the work is

done, the thread invokes the system call again with the

appropriate results causing the original application call

to either be resumed or terminated. As an optimization,

the LSM seeks to amortize the cost of IPC by buffer-

ing and dispatching multiple asynchronous requests to a

worker thread whenever possible. The reference monitor

was implemented in 19,000 LoC of C, not counting the

OpenSSL library used for secure sessions and crypto.

Limitations Memory-mapped files are currently sup-

ported read-only. Interception is not yet implemented for

all I/O-related system calls. None of these missing fea-

tures are used by our prototype data retrieval system.

5 Policy-compliant data retrieval

We use Thoth for policy compliance in a data retrieval

system built around a distributed Apache Lucene search

engine. While Apache Lucene’s architecture is not ap-

propriate for large, public search engines like Google or

Bing, it is frequently used in smaller, domain-specific

data retrieval systems.

5.1 Baseline configuration

Lucene Apache Lucene is an open-source search en-

gine written in Java [2]. It consists of an indexer and

a search component. The sequential indexer is a single

process that scans a corpus of documents and produces

a set of index files. The search component consists of

a multi-threaded process that executes search queries in

parallel and produces a set of corpus file names relevant

to a given search query. The size of the Apache Lucene

codebase is about 300,000 LoC.

Lucene can be configured with replicated search pro-

cesses to scale its throughput. Here, multiple nodes run

a copy of the search component, each with the full in-

dex. A search query can be processed by any machine.

Lucene can also be sharded to scale with respect to the

corpus size. In this case, the corpus is partitioned, each

partition is indexed individually, and multiple nodes run

a copy of the search component, each with one partition

index. A search query is sent to all search components,

and the results combined. Replication and sharding can

be combined in the obvious way.

Front-end processes A simple front-end process ac-

cepts user requests from a remote client and forwards

search queries to one or more search process(es) via a

pipe. The search process(es) may forward the query to

other search processes with disjoint shards. When the

front-end receives the search results (a list of document

file names), it produces a HTML page with a URL and

a content snippet from each of the result documents, and

returns the page to the Web client. When the client clicks

on one of the URLs, the front-end serves the content.

A second, simple account manager front-end process

accepts connections from clients for the purpose of cre-

ating accounts, managing personal profiles and policies.

Clients choose from a set of policy templates for docu-

ments they have contributed to the corpus, and for their

personal profile information and activity history.

Search personalization and advertising To include

typical features of a data retrieval system, we added per-

sonalized search and targeted advertising components. A

memcached daemon runs on each search node to provide

a distributed key-value store for per-user information, in-

cluding a suffix of the search and click histories, profile



information, and the public key. The front-end process

appends a user’s search queries and clicks to the his-

tories. It uses the profile information to rewrite search

queries, re-order search results, and select ads for inclu-

sion in the results page.

An aggregator process periodically analyses a user’s

search and click history, and updates the personal pro-

file information accordingly. We are not concerned with

the details of user profiling, personalized search, or ad

targeting. It suffices for our purposes to capture the ap-

propriate data flows.

5.2 Controlling data flow with Thoth

With Thoth, the front-end, search, indexing, and aggre-

gation tasks execute as CONFINED processes, and the ac-

count manager executes as an UNCONFINED process. Rel-

ative to the baseline system, we made minimal modifica-

tions, mostly to set an appropriate policy on output con-

duits. The modifications to Apache Lucene amounted to

less than 20 lines of Java code and 30 lines of C code

in a JNI library. These modifications set policies on

internal conduits and, like the rest of Lucene, are not

trusted. Finding the appropriate points to modify was

relatively easy because Lucene’s codebase has separate

functions through which all I/O is channelled. For ap-

plications without this modularity, a dynamically-linked

library can be used that overrides libc’s I/O functions and

adds appropriate policies.

Unlike in the baseline, the front-end process must be

restarted after each user session, to drop its taint. We

implement this by exec-ing the process when a new user

session starts.

Ingress/egress policies Recall that the ingress and

egress policies determine which data flows are allowed

and reflect the policies of users, data sources, and

provider. In our system, the network connection between

the client and the front-end is both an ingress and an

egress conduit. The document files in the corpus and the

key-value tuples that contain a user’s personal informa-

tion are ingress conduits. Policies are associated with all

ingress and egress conduits as described below. The pri-

mary difficulty here is to determine appropriate policies,

a task that is required in any compliant system. Specify-

ing the policies in Thoth’s policy language is straightfor-

ward.

Account manager flow When Alice creates an ac-

count, credentials are exchanged for subsequent mutual

authentication, and stored in the key-value store, along

with any personal profile information Alice provides.

Alice can choose policies for her profile and history

information, as well as any contributed content, typically

from a set of policy templates written by the provider’s

compliance team. The declassification rule of each pol-

icy implicitly controls who can subsequently change the

policy; normally, Alice would choose a policy that allows

only her to make such a change. Alice may also edit her

friend lists or other access control lists stored in the key-

value store, which may be referenced by her policies.

Next, we explain the main data flows through the sys-

tem. For lack of space, we cannot detail all policies on

internal conduits, but we highlight the key steps.

Indexing flow Periodically, the indexer is invoked

to regenerate the index partitions. A correct indexer

only processes documents with the ONLY_CND_IDS

(or ONLY_CND_IDS+) declassification clause, which

is transferred to the index files. Note that the index

may contain arbitrary data and can be read by any

CONFINED process; however, an eventual declassification

to an UNCONFINED process is only possible for a list of

conduit ids.

Profile aggregation flow A profile aggregation task

periodically executes in the background, to scan the suf-

fix of a user’s query and click history and update the

user’s profile vector. A correct aggregator only ana-

lyzes user history data that has the ONLY_CND_IDS

(or ONLY_CND_IDS+) declassification clause, which is

transferred to the profile vectors.

Search flow Finally, we describe the sequence of steps

when Alice performs a search query. The search front-

end authenticates itself to Alice using the credentials

stored in the key-value store. A successful authentica-

tion assures Alice that (i) she is talking to the front-end,

and (ii) the front-end process is tainted with the policy of

Alice’s credentials (only Alice can read, else declassify

into a list of conduit ids) before Alice sends her search

query. Next, Alice authenticates herself to the Thoth ref-

erence monitor via the search front-end, which proves to

Thoth that the front-end process speaks for Alice.

The front-end now sends Alice’s query to one or more

search process(es) and adds it to her search history. The

search results are declassified as a list of conduit ids, and

therefore do not add new taint to the front-end. While

producing the HTML results page, the front-end reads

a snippet from each result document using Alice’s cre-

dentials. Each document has a censorship policy, which

checks that the document’s conduit ID is not blacklisted

in the client’s region. These policies differ in the conduit

IDs and so, in principle, the taint set on the front-end

could become very large. To prevent this, we use par-

tial evaluation (Section 3): Before a document’s policy

is added to the front-end’s taint, we check that the doc-

ument is not blacklisted. This way, the front-end’s taint

increases by a single predicate (which verifies Alice’s IP

address) when it reads the first document and does not

increase when it reads subsequent documents.

Finally, the front-end sends the results page to the

client. For this, it must satisfy the egress conduit policy,



which verifies Alice’s identity and her IP address.

Result caching High-performance retrieval systems

cache search results and content snippets for reuse in

similar queries. Although we have not implemented such

caching, it can be supported by Thoth. Intermediate re-

sults can be cached at various points in the data flow, usu-

ally before their policies have been specialized (through

partial evaluation) for a particular client or jurisdiction.

Summary Assuming that the account manager cor-

rectly installs ingress and egress policies, Thoth ensures

that Alice’s documents, history and profile are used ac-

cording to her wishes and that the provider’s censorship

and MAL policies are enforced, despite any bugs in the

indexer, the front-end or the profile aggregator. Thoth’s

use in a data retrieval system highlights two different

ways of preventing process overtainting. The front-end

process is user-specific—it acts on behalf of one client.

Consequently, the front-end must be re-execed at the end

of a user session session to discard its taint. In con-

trast, the indexer is an aggregator process that is de-

signed to combine documents with conflicting policies

into a single index. To make its output (the index) usable

downstream, the provider installs a typed declassification

clause (ONLY_CND_IDS or ONLY_CND_IDS+) on all

documents. Due to the declassification clause, there is

no need to re-exec the search process.

6 Evaluation

In this section, we present results of an experimental

evaluation of our Thoth prototype.

All experiments were performed on Dell R410 servers,

each with 2x Intel Xeon X5650 2.66 GHz 6 hyper-

threaded core CPUs, 48GB main memory, running

OpenSuse Linux 12.1 (kernel version 3.13.1, x86-64).

The servers are connected to Cisco Nexus 7018 switches

with 1Gbit Ethernet links. Each server has a 1TB Sea-

gate ST31000424SS disk formatted under ext4, which

contains the OS installation and a 258GB static snapshot

of English language Wikipedia articles from 2008 [43].

We allocate a 2GB memory segment on /dev/shm to

simulate NVRAM used by Thoth to store its metadata

and transaction log. NVRAM is readily available and

commonly used to store frequently updated, fixed-sized

persistent data structures like transaction logs.

In the following experiments, we compare a system

where each OS kernel is configured with the Thoth LSM

kernel module and reference monitor against an other-

wise identical baseline system with unmodified Linux

3.13.1 kernels.

6.1 Thoth-based data retrieval system

We study the total Thoth overheads in the prototype re-

trieval system described in Section 4.

Indexing First, we measure the overhead of the search

engine’s index computation. We run the Lucene in-

dexer over a) the entire 258GB snapshot of the English

Wikipedia, and b) a 5GB part of the snapshot. The sizes

of the resulting indices are 54GB and 959MB, respec-

tively. Table 3 shows the average indexing time and stan-

dard deviation across 3 runs. In both cases, Thoth’s run-

time overhead is below 1%.

Dataset 258GB Dataset 5GB

Avg. (mins) σ Avg. (mins) σ

Linux 1956.1 30 27.8 0.06

Thoth 1968.6 24 28.0 0.11

Overhead 0.65% 0.7%

Table 3: Indexing runtime overhead

Even in a sharded configuration, Lucene relies on a se-

quential indexer, which can become a bottleneck when a

corpus is large and dynamic. Larger search engines may

rely on parallel map/reduce jobs to produce their index.

As a proof of concept, we built a Hadoop-based indexer

using Thoth, although we don’t use it in the following

evaluation because it does not support all the features

of the Lucene indexer. All mappers and reducers run as

confined tasks, and receive the same taint as the original,

sequential indexer.

Search throughput Next, we measure the overhead of

Thoth on the query latency and throughput. To ensure

load balance, we partitioned the index into two shards

of 22GB and 33GB, chosen to achieve approximately

equal query throughput. We use two configurations:

2SERVERS: 2 server machines execute a Lucene in-

stance with different index shards. 4SERVERS: Here,

we use two replicated Lucene instances in each shard to

scale the throughput. The front-end forwards each search

request to one of the two Lucene instances in each shard

and merges the results.

We drive the experiment with the following work-

load. We simulate a population of 40,000 users, where

each user is assigned a friend list consisting of 12 ran-

domly chosen other users, subject to the constraint that

the friendship relationship is symmetric. Each item in

the corpus is assigned either a private, public, or friends-

only policy in the proportion 30/50/20%, respectively. A

total of 1.0% of the dataset is censored in some region.

All simulated clients are in a region that blacklists 2250

random items.

We use query strings based on the popularity of

Wikipedia page accesses during one hour on April 1,

2012 [42]. Specifically, we search for the titles of the

top 20K visited articles and assign each of the queries

randomly to one of the users. 24 simulated active users

connect to each server machine, maintain their sessions
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Figure 4: Search throughput

throughout the experiment, and issue 48 (2SERVERS)

and 96 (4SERVERS) queries concurrently to saturate

the system. In addition, a simulated “employee” spo-

radically issues a read access to protected user files for a

total of 200 MAL accesses.

During each query, the front-end looks up the user

profile and updates the user’s search history in the key-

value store. To maximize the performance of the baseline

and fully expose Thoth’s overheads, the index shard and

parts of the corpus relevant to our query stream are pre-

loaded into the servers’ main memory caches, resulting

in a CPU-bound workload.

Figure 4 (a) shows the average throughput over 10 runs

of 20K queries each, for the baseline (Linux) and Thoth

under 2SERVERS and 4SERVERS. The error bars in-

dicate the standard deviation over the 10 runs. We used

two Thoth configurations, Thothpublic and Thothratio.

In Thothpublic, the policies permit all accesses. This

configuration helps to isolate the overhead of Thoth’s

I/O interposition and reference monitor invocation. In

Thothratio, input files are private to a user, public, or ac-

cessible to friends-only in the ratio 30:50:20. All files al-

low employee access under MAL, enforce region-based

censorship, and have the declassification condition with

ONLY_CONDUIT_IDS+.

The query throughput scales approximately linearly

from 2SERVERS (320 Q/s) to 4SERVERS (644 Q/s), as

expected. Thoth with all policies enforced (Thothratio)

has an overhead of 3.63% (308 Q/s) in 2SERVERS

and 3.55% in 4SERVERS (621 Q/s). We note that

the throughput achieved with Thothpublic (310 Q/s

and 627 Q/s, respectively) is only slightly higher than

Thothratio’s. This suggests that Thoth’s overhead is

dominated by costs like I/O interception, Thoth API

calls, and metadata operations, which are unrelated to

policy complexity.

To test whether overheads can be reduced further, we

also implemented a rudimentary reference monitor in the

kernel, which does not support session management and

policy interpretation (which require libraries that are un-

available in the Linux kernel). This reduced in-kernel

monitor suffices to execute Thothpublic. Moving the ref-

erence monitor to the kernel reduced the overhead of

Thothpublic from 3% to under 1%, which suggests that

overheads can be further reduced my moving the refer-

ence monitor to the kernel and, hence, eliminating the

cost of IPC between the LSM and the reference monitor.

With Thoth, the front-end is re-exec’ed at the end of

every user session to shed the front-end’s taint. The rel-

ative overhead of doing so reduces with session length.

Figure 4 (b) shows the average throughput normalized

to the Linux baseline for session lengths of 1, 2, 5 and

20 queries in 2SERVERS. Due to the per-session front-

end exec, Thoth’s overhead is higher for small sessions

(15.8% for a single query); however, the overhead di-

minishes quickly to 8.6% for 2 queries per session, and

the throughput is within a standard deviation of the max-

imum for 5 or more queries per session in all configura-

tions, including 4SERVERS.

Search latency Next, we measure the overhead on

query latency. Table 4 shows the average query latency

across 5 runs of 10K queries in 2SERVERS. The results

in 4SERVERS are similar. In all cases, Thoth adds less

than 6.7ms to the baseline latency.

Avg. (ms) σ Overhead

Linux 47.09 0.43

Thothpublic 51.60 0.29 9.6%

Thothratio 53.78 0.20 14.2%

Table 4: Query search latency (ms)

6.2 Microbenchmarks

Next, we perform a set of microbenchmarks to isolate

Thoth’s overheads on different policies. We measure

the latency of opening, reading sequentially, and closing

10K files in the baseline and with Thoth under different

policies associated with the files. The files were previ-

ously written to disk sequentially to ensure fast sequen-

tial read performance for the baseline and therefore fully

expose the overheads.

In the Thoth experiments, accesses are performed by

an UNCONFINED task to force an immediate policy eval-

uation. The following policies are used. Thothpublic:

files can be read by anyone. Thothprivate: access is re-

stricted to a specific user. ThothACL: access to friends

only (all users have the same friend list). ThothACL+:

access to friends only (each user has a different friend

list). ThothFoF: access to friends of friends (each user

has a different friend list). All friend lists used in the

microbenchmark have 100 entries. ThothMAL: each file

has a MAL policy, where each read requires an entry in

a log with an append-only integrity policy.

Figure 5 shows the average time for reading a file of

sizes 4K and 512K, normalized to the baseline Linux

latency (0.145ms and 3.6ms, respectively); the error
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Figure 5: Read latency, normalized to Linux’s

bars indicate the standard deviation among the 10K file

reads. We see that Thoth’s overheads increase with

the complexity of the policy, in the order listed above.

For the 4KB files, the overheads range from 10.6% for

Thothpublic and Thothprivate to 152.7% for ThothMAL.

The same trend holds for larger files, but the over-

head range diminishes to 0.6%–23% for 96KB files (not

shown in the figure) and 0.34%–3.3% for 512KB files.

We also experimented with friend list sizes of 12 and

50 entries for ThothACL, ThothACL+ and ThothFoF; the

resulting latency was within 2.4% of the corresponding

100-entry friend list latency. This is consistent with the

known complexity of the friend lookup, which is loga-

rithmic in the list size.

We also looked at the breakdown of Thoth latency

overheads. With ThothACL and 4KB files, Thoth’s over-

head for file read is on average 28µs, which are spent

intercepting the system call and maintaining the session

state. Interpreting the policy and checking the friend lists

takes 6µs, but this time is completely overlapped with the

disk read.

Write transaction latency We performed similar mi-

crobenchmarks for write transactions. In general,

Thoth’s write transactions have low overhead since its

transaction log is stored in (simulated) NVRAM. As in

the case of read latency, the overhead depends on the

granularity of writes and the complexity of the policy

being enforced. Under the index policy, the overhead

ranges from 0.25% for creating large files to 2.53x in the

case of small files. The baseline Linux is very fast at cre-

ating small files that are written to disk asynchronously,

while Thoth has to synchronously update its policy store

when a new file is created. The overhead is 5.8x and

8.6x in the case of a write of 10 conduit ids to a file un-

der the ONLY_CND_IDS and ONLY_CND_IDS+ poli-

cies, respectively. This high overhead is due to check-

ing that each conduit id being written exists (and is

written into a file with a stricter policy in the case of

ONLY_CND_IDS+). However, this overhead amounts

to only a small percentage of the overall search query

processing, as is evident from Table 4.

6.3 Fault-injection tests

To double-check Thoth’s ability to stop unwanted data

leaks, we injected several types of faults in different

stages of the search pipeline.

Faulty Lucene indexer We reproduced a known

Lucene bug [5] that associates documents with wrong

attributes during index creation. This bug is security-

relevant because, in the absence of another mechanism,

attributes can be used for labeling data with their owners.

In our experiment Thoth successfully stopped the flow

in all cases where the search results contained a conduit

whose policy disallowed access to the client.

We also intentionally misconfigured the indexer to in-

dex the users’ query and click histories, which should

not show up in search results. Thoth prevented the in-

dexer from writing the index after it had read either the

query or the click history.

Faulty Lucene search We reproduced a number of

known Lucene bugs that produce incorrect search results.

Such bugs may produce Alice’s private documents in

Bob’s search. The bugs include incorrect parsing of spe-

cial characters [7], incorrect tokenization [9], confusing

uppercase and lowercase letters [10], using an incorrect

logic for query expansion [4, 3], applying incorrect key-

word filters [8], and premature search termination [6].

We confirmed that all policy violations resulting from

these bugs faults were blocked by Thoth.

To check the declassification condition

ONLY_CND_IDS+, we modified the search pro-

cess to (incorrectly) output text from the index in place

of conduit ids. Thoth prevented the search process from

producing such output.

Faulty front-end We issued accesses to a private file

protected by the MAL policy without adding appropri-

ate log entries. Thoth prevented the front-end process

from extricating data to the caller. We performed similar

tests for the region-based censorship policy with similar

results.

7 Related work

Search engine policy compliance Grok [36] is a pri-

vacy compliance tool for the Bing search engine. Grok

and Thoth differ in techniques, expressiveness and tar-

get policies. Grok uses heuristics and selective manual

verification by developers to assign attributes — abstract

labels that represent intended confidentiality — to pro-

cesses and data stores. Grok policies, written in a lan-

guage called Legalese, specify allowed data flows on at-

tributes. Attributes and policies apply at the granular-

ity of fields (types), not individual users or data items,

so Legalese cannot express the private, friends only and

friends of friends policies from Section 2. (This restric-

tion applies broadly to most static analysis-based policy



enforcement techniques.) Legalese also does not sup-

port content-dependent policies and cannot express the

mandatory access logging, censorship and typed declas-

sification policies from Section 2. Grok enforces poli-

cies with a fast static analysis on computations written

in languages like Hive, Dremel, and Scope. Grok im-

poses no runtime overhead. Thoth uses kernel-level in-

terception and is language-independent, but has a small

runtime overhead. Grok-assigned attributes may be in-

correct, so Grok may have false negatives. In contrast,

Thoth enforces all conduit policies without false nega-

tives.

Cloud policy compliance Maniatis et al. [31] outline

a vision, architecture and challenges for data protection

in the Cloud using secure data capsules. Thoth can be

viewed as a realization of that vision in the context of a

data retrieval system, and contributes the design of a pol-

icy language, enforcement mechanism, and experimen-

tal evaluation. Secure Data Preservers (SDaPs) [27] are

software components that mediate access to data accord-

ing to a user-provided policy. Unlike Thoth, SDaPs are

suitable only for web services that interact with user data

through simple, narrow interfaces, and do not require di-

rect access to users’ raw data. LoNet [26] enforces data-

use policies at the VM-level. Unlike Thoth, declassifica-

tion requires trusted application code and interception is

limited to file I/O using FUSE, which results in very high

overhead.

Information flow control (IFC) Numerous systems

restrict a program’s data flow to enforce security poli-

cies, either in the programming language (Jif [34]), in

the language runtime (Resin [46], Nemesis [19]), in lan-

guage libraries (Hails [25]), using software fault isola-

tion (duPro [35]), in the OS kernel (e.g., Asbestos [22],

HiStar [47], Flume [28], Silverline [33]), or in a hyper-

visor (Neon [48]). Thoth differs from these systems in

a number of ways. Unlike language-based IFC, Thoth

applications can be written in any language.

Architecturally, Thoth is close to Flume. Both iso-

late processes using a Linux security extension and a

user-space reference monitor, both enforce policies on

conduits and both distinguish between CONFINED and

UNCONFINED processes in similar ways. However, like

all other kernel-level solutions for IFC (Asbestos, HiS-

tar, Silverline), Flume uses abstract labels as taints. In

contrast, Thoth uses declarative policies as taints. This

results in two fundamental differences. First, Flume re-

lies on trusted application components to map system

access policies to abstract labels and for all declassifi-

cation. In contrast, in Thoth, the reference monitor en-

forces all access conditions (specified in the read and

update rules) and all declassification conditions (speci-

fied in the declassify clauses). Application components

are trusted only to install correct policies on ingress and

egress nodes. Second, Thoth policies describe the policy

configuration completely. In Flume, the policy configu-

ration is implicit in the code of the trusted components

that declassify and endorse data, and map access policies

to labels (although mapping can be automated to some

extent [21]).

Resin [46] enforces programmer-provided policies on

PHP and Python web applications. Unlike Thoth’s

declarative policies, Resin’s policies are specified as

PHP/Python functions. Resin tracks flows at object

granularity. Thoth tracks flows at process granularity,

which matches the pipelined structure of data retrieval

systems and reduces overhead significantly. Hails [25]

is a Haskell-based web development framework with

statically-enforced IFC. Thoth offers IFC in the kernel,

and is independent of any language, runtime, or frame-

work used for developing applications. COWL [39] con-

fines JavaScript browser contexts using labels and IFC.

Thoth addresses the complementary problem of control-

ling data flows on the server side. Both Hails and COWL

use DC-labels [38] as policies. DC-labels cannot express

content-dependent policies like our censorship, manda-

tory access logging and ONLY_CND_IDS policies.

Declarative policies Thoth’s policy language is based

on Datalog and linear temporal logic (LTL). Datalog and

LTL are well-studied foundations for policy languages

(see [30, 18, 20] and [15, 16, 23], respectively), known

for their clarity, conciseness, and high-level of abstrac-

tion. The primary innovation in Thoth’s policy language

is its two-layered structure, where the first layer specifies

access policies and the second layer specifies declassi-

fication policies. Some operating systems (Nexus and

Taos [37, 45]), file systems (PFS and PCFS [41, 24]),

and at least one cyber-physical system (Grey [17]) and

one storage system (Guardat [40]) enforce access poli-

cies expressed in Datalog-like languages. Thoth can

enforce similar policies but, additionally, Thoth tracks

flows and can enforce declassification policies that these

systems cannot enforce. Like Guardat, but unlike the

other systems listed above, Thoth’s policy language sup-

ports data-dependent policies. The design of Thoth’s ref-

erence monitor is inspired by Guardat’s monitor. How-

ever, Thoth’s monitor tracks data flows, supports declas-

sification policies, and intercepts memcached I/O and

network communication, all of which Guardat’s monitor

does not do.

8 Ongoing work

In this section, we briefly describe ongoing work related

to Thoth.

Lightweight isolation Information flow control re-

quires the isolation of computations that handle differ-

ent users’ private data. In general-purpose operating sys-



tems, this means that separate processes must be used to

handle user sessions. Thoth, for instance, requires that

front-end processes be exec’ed for each new session. We

are working on an operating system primitive that pro-

vides isolation among different user sessions within the

same process with low cost.

Database-backed retrieval systems Thoth includes

conduit interceptors for files, named pipes, network con-

nections and a key-value store (memcached). In current

work, we are building a system to ensure compliance of

SQL database queries with declarative policies associ-

ated with the database schema. The system can be used

as a conduit interceptor, thus extending Thoth’s protec-

tion to database-backed data retrieval systems.

Policy testing Assigning policies to internal conduits

in Thoth, and making sure that they permit all data flows

compliant with the ingress and egress policies, can be

a tedious task in a large system. In current work, we

are developing a tool that generates internal conduit poli-

cies semi-automatically using a system’s dataflow graph

and the ingress/egress policies as inputs. Moreover, the

tool performs systematic testing to ensure all compliant

dataflows are allowed, and helps the policy developer

generate appropriate declassification policies as needed.

9 Conclusion

Efficient policy compliance in data retrieval systems is a

challenging problem. Thoth is a kernel-level policy com-

pliance layer to address this problem. The provider has

the option to associate a declarative policy with each data

source and sink. The policy specifies confidentiality and

integrity requirements and may reflect the data owner’s

privacy preferences, the provider’s own data-use policy,

and legal requirements. Thoth enforces these policies by

tracking and controlling data flows across tasks through

kernel I/O interception. It prevents data leaks and cor-

ruption due to bugs and misconfigurations in application

components (including misconfigurations in policies on

internal conduits), as well as actions by unprivileged op-

erators.

Our technical contributions include a declarative pol-

icy language that specifies both access (read/write) poli-

cies and how those access policies may change. The lat-

ter can be used to represent declassification policies. Ad-

ditionally, the language supports content-dependent poli-

cies. Thoth uses policy sets as taint, which eliminates the

need to trust application processes with access checks

at the system boundary and with declassification. Our

Linux-based prototype shows that Thoth can be deployed

with low overhead in data retrieval systems. Among

other things, this demonstrates the usefulness and viabil-

ity of coarse-grained taint tracking as a basis for policy

enforcement.
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A Thoth policies for data flows in a search

engine

In this Appendix we provide details of the policies used

in our Thoth-compliant search engine. All policies are

represented in the read, update and declassify rules on

source conduits (documents that the search engine in-

dexes, the user profile, etc.). We describe these rules in-

crementally: We start from a set of base rules, which we

refine to include more policies.

Base rules Our base rules allow anyone to read, update

or destroy the source conduit they are attached to.

read :- T RUE

update :- T RUE

destroy :- T RUE

declassify :- isAsRestrictive(read,this.read)
until FALSE

The read, update and destroy rules have condition

T RUE , which always holds, so these rules do not re-

strict access at all. The declassify rule insists that the

read rule on any conduit containing data derived from

the source conduit be at least as restrictive as the read

rule above, which will always be the case (because the

read rule above is the most permissive read rule possi-

ble). This base policy is pointless in itself, but it serves

as the starting point for the remaining policies.

A.1 Client policies

First, we describe policies to represent client privacy

preferences.

Private data policy A user Alice may wish that her

private files (e.g., her e-mails) be accessible only to her.

This can be enforced by requiring that accesses to Alice’s

private files happen in the context of a session authenti-

cated with Alice’s key. Technically, this is accomplished

by replacing the conditions in the base read, update and

destroy rules as shown below and attaching the result-

ing rules to Alice’s private files. The predicate sKeyIs(k)
means that the current session is authenticated using the

public key k.
read :- sKeyIs(kAlice)
update :- sKeyIs(kAlice)
destroy :- sKeyIs(kAlice)

The declassify rule remains unchanged. It ensures that

any conduit containing data derived from Alice’s private

files is subject to a read rule that is at least as restrictive

as the revised read rule above. Hence, no such conduit

can be read by anyone other than Alice.

Friends only policy Alice might want that her blog

and online social network profile be readable by her

friends. To do this, she could add a disjunctive (“or”-

separated) clause in the read rule requiring that read ac-

cesses happen in the context of a session authenticated

with a key kX of one of Alice’s friends. Alice’s friends

are assumed to be listed in the file Alice.acl, which con-

tains an entry of the form isFriend(kX ,XACL) for each

public key kX that belongs to a friend of Alice. The

isFriend entry also states the file XACL which lists the

friends of the key kX ’s owner. Note that the isFriend en-

try format presented in the paper was slightly simplified

for readability.

read :- sKeyIs(kAlice) ∨
[sKeyIs(kX) ∧ (“Alice.acl”, off ) says isFriend(kX ,XACL)]

http://archive.org/details/wikimedia-image-dump-2005-11
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The predicate ((‘Alice.acl”,off) says

isFriend(kX ,XACL)) checks that kX exists in the list

of Alice’s friends (file “Alice.acl”) at some offset off.

Friends of friends policy To additionally allow read

access to friends of friends, the policy would require read

accesses to happen in the context of an authenticated ses-

sion whose key is present in the friend list of any of Al-

ice’s friends.

read :- sKeyIs(kAlice) ∨
[sKeyIs(kX) ∧ (“Alice.acl”, off ) says isFriend(kX ,XACL)]
∨

[sKeyIs(kY ) ∧ (“Alice.acl”, off1) says isFriend(kX ,XACL)
∧ (XACL, off2) says isFriend(kY ,YACL)]

The predicate ((‘Alice.acl”,off1) says

isFriend(kX ,XACL)) checks that kX exists in the list

of Alice’s friends (file “Alice.acl”) at some offset

off1. It also binds the variable XACL to the friend

list of the key kX ’s owner. Next, the predicate

((XACL,off2) says isFriend(kY ,YACL)) checks that the

public key that authenticated the session kY exists in the

list of friends for the kX ’s owner at some offset off2.

A.2 Provider policies

Next, we describe two policies that a provider may wish

to impose, possibly to comply with legal requirements.

Mandatory Access Logging (MAL) The MAL policy

allows an authorized employee of the provider read ac-

cess to a source conduit F if the access is logged. The

log entry must have been previously written to the file

k.log, where k is the public key of the employee. The

log entry must mention the employee’s key, the ID of the

accessed conduit and the time at which the conduit is ac-

cessed with a tolerance of 60 seconds. To enforce these

requirements, a new disjunctive condition is added to the

last read rule above. The . . . in the rule below abbreviate

the conditions of the last read rule above.

read :- . . . ∨
sKeyIs(k) ∧ cIdIs(F) ∧
(“auth_employees”,off) says isEmployee(k) ∧
(LOGk = concat(k,“.log”)) ∧
(LOGk,off1) says readLog(k,F,T ) ∧ timeIs(curT ) ∧
gt(curT,T ) ∧ sub(di f f ,curT,T ) ∧ lt(di f f ,60)

The predicate sKeyIs(k) binds the public key that

authenticated the session (i.e., the public key of

the employee) to the variable k, and cIdIs(F) binds

the name of source conduit to F . Next, the

predicate ((“auth_employees”,off) says isEmployee(k))
checks that k exists in the list of authorized employ-

ees (file “auth_employees”) at some offset off, to ver-

ify that the source conduit’s reader is really an em-

ployee. Next, LOGk is bound to the name of the em-

ployee’s log file, k.log. The predicate ((LOGk,off1) says

readLog(k,F,T )) checks that the log file contains an ap-

propriate entry with some time stamp T and the remain-

ing predicates check that the current time, curT , satisfies

T ≤ curT ≤ T + 60s.

Every log file has a read rule that allows only autho-

rized auditors to read the file (the public keys of all au-

thorized auditors are assumed to be listed in the file “au-

ditors”). It also has an update rule that allows appends

only, thus ensuring that a log entry cannot be removed or

overwritten.

read :- sKeyIs(k) ∧ (“auditors”, off ) says isAuditor(k)
update :- sKeyIs(k) ∧

(“auth_employees”, off ) says isEmployee(k) ∧
cCurrLenIs(cLen) ∧ cNewLenIs(nLen) ∧
gt(nLen,cLen) ∧ (this,0,cLen) hasHash (h) ∧
(this,0,cLen) willHaveHash (h)

In the append-only policy (rule update above), the

predicate cCurrLenIs(cLen) binds the current length of

the log file to cLen and the predicate cNewLenIs(nLen)
binds the new length of the log file to nLen. Next, the

predicate gt(nLen,cLen) ensures that the update only

increases the log file’s length. (c, off, len) hasHash

(or willHaveHash) is a special mode of using says (or

willsay) which allows the policy interpreter to refer to the

hash of the conduit c’s content (or updated content in a

write transaction) from offset off with length len. In the

update rule, hasHash and willHaveHash are used to ver-

ify that the existing file content is not modified during an

update by checking that the hashes of the file from offset

0 to cLen, originally and after the prospective update, are

equal.

A more efficient implementation of the append-

only policy could rely on a specialized predicate

unmodified(off, len), which checks that the conduit con-

tents from offset off with length len were not modified.

The update rule could then be simplified to:

update :- sKeyIs(k) ∧
(“auth_employees”, off ) says isEmployee(k) ∧
cCurrLenIs(cLen) ∧ cNewLenIs(nLen) ∧
gt(nLen,cLen) ∧ unmodified(0,cLen)

Region-based censorship Legal requirements may

force the provider to blacklist certain source files in cer-

tain regions. Accordingly, the goal of the censorship pol-

icy is to ensure that content from a document F can only

reach users in regions whose blacklists do not contain F .

The policy relies on a mapping from IP addresses to re-

gions and a per-region blacklist file. The blacklist file is

maintained in a sorted order to efficiently lookup whether

it contains a given document or not.

The censorship policy is expressed by modifying the

declassify rule of every source conduit cndID as follows:



declassify :- isAsRestrictive(read,this.read) until
(CENSOR(cndID) ∧ isAsRestrictive(read,this.read))

The rule says that the read rule on any con-

duit to which cndID flows must be as restrictive as

cndID’s read rule until a conduit at which the condition

CENSOR(cndID) holds is reached. CENSOR(cndID) is

a macro defined below. The predicate sIpIs(IP) checks

that the IP address of the connecting (remote) party is

IP and the predicate IpPrefix(IP,R) means that IP be-

longs to region R. The blacklist file for region R is

R.BlackList. In words, CENSOR(cndID) means that the

remote party’s IP belongs to a region R and cndID lies

strictly between two two consecutive entries in R’s black-

list file (and, hence, cndID does not exist in R’s blacklist

file).

sIpIs(IP) ∧ IpPrefix(IP,R) ∧
(FBL = concat(R,“.BlackList”)) ∧
(FBL,off1) says isCensored(cnd1) ∧
add(off2,off1,CENSOR_ENTRY_LEN) ∧
(FBL,off2) says isCensored(cnd2) ∧
lt(cnd1,cndID) ∧ lt(cndID,cnd2)

A.3 Search engine flows

Indexing flow The indexer reads documents with pos-

sibly contradictory policies and, in the absence of a

dedicated provision for declassification, the index (and

any documents derived from it) cannot be served to any

client. To prevent this problem, searchable documents al-

low typed declassification. The declassify rule for each

searchable document is modified with a new clause that

allows complete declassification into an (internal) con-

duit whose update rule allows the conduit to contain

only a list of object ids. The modified declassify rule

of each source document has the form:

declassify :- . . . until (. . . ∨ (cIsIntrinsic ∧
isAsRestrictive(update,ONLY_CND_IDS)))

The macro ONLY_CND_IDS stipulates that only a list

of valid conduit ids can be written and it expands to:

cCurrLenIs(cLen) ∧ cNewLenIs(nLen) ∧
each in(this,cLen,nLen) says(cndId)
{cIdExists(cndId)}

In the macro above, the predicate cNewLenIs(nLen)
binds the new length of the output file to nLen. The pred-

icate willsay checks that the content update from offset 0

and length nLen is a list of conduit IDs, and the predi-

cate cIdExists(cndId) checks that cndId corresponds to

an existing conduit.

So far we have assumed that the conduit ids are not

themselves confidential. If the presence or absence of a

particular conduit id in the search results may leak sensi-

tive information, then the source declassification policy

can be augmented to require that the list of conduit ids

is accessible only to a principal who satisfies the confi-

dentiality policies of all listed conduits. Then, the macro

ONLY_CND_IDS can be re-written to:

cCurrLenIs(cLen) ∧ cNewLenIs(nLen) ∧
each in(this,cLen,nLen) willsay(cndId)
{cIdExists(cndId) ∧ hasPol(cndId,P) ∧
isAsRestrictive(read,P.read) ∧
isAsRestrictive(declassify,P.declassify)}

Additionally in the macro above, the predicate

hasPol(cndId,P) binds P to the policy of the conduit

cndId, and the predicate isAsRestrictive(read,P.read)
requires that the confidentiality of the list of conduit ids

is as restrictive as the confidentiality requirements of the

source conduit ids themselves.

Profile aggregation flow Since raw user activity logs

are typically private, a declassification is required that

enables a profile generator to produce a user preferences

vector (a vector of fixed length) from the activity logs.

However, this preferences vector must further be re-

stricted so that it can be used to produce only a list of

conduit ids (the search results). Further, the user might

also want to ensure that only activity logs generated in

the past 48 hours be used for personalization. This can be

achieved by allowing the declassification into the fixed-

size vector to happen only within 172800 seconds of the

log’s creation. Suppose an activity log is created at time

t and that the preferences vector has length n. Then, the

relevant policy rules on the activity log are the following

(note that t and n are constants, not variables).

read :- sKeyIs(kAlice)
declassify :- [isAsRestrictive(read,this.read) until
isAsRestrictive(update,ONLY_FLOATS(n)) ∧
cIsIntrinsic ∧ timeIs(curT ) ∧ gt(curT, t) ∧
sub(di f f ,curT, t) ∧ lt(di f f ,172800)] ∧
[isAsRestrictive(read,this.read) until cIsIntrinsic ∧
isAsRestrictive(update,ONLY_CND_IDS)]
This policy ensures that the raw user logs can only be

transformed into the user preferences vector, which in

turn can only be declassified into the search results of the

search engine.

The macro ONLY_FLOATS(n) stipulates that only a

vector of n floats can be written. It expands to:
cNewLenIs(nLen) ∧
each in(this,0,nLen) willsay(value)
{vType(value,FLOAT) ∧ (Cnt++)} ∧
eq(Cnt,n)

In the macro above, the predicate cNewLenIs(nLen)
binds the new length of the output file to nLen. The pred-

icate willsay checks that the content update from offset

0 and length nLen is a list of values, and the predicate

vType(value, FLOAT) checks that each value in the list

is of type FLOAT. The predicate eq(cnt,n) checks that

the update contains n floats.
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