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This paper proposes and evaluates soft timers, a new operating system facility that allows the
efficient scheduling of software events at a granularity down to tens of microseconds. Soft
timers can be used to avoid interrupts and reduce context switches associated with network
processing, without sacrificing low communication delays. More specifically, soft timers enable
transport protocols like TCP to efficiently perform rate-based clocking of packet transmis-
sions. Experiments indicate that soft timers allow a server to employ rate-based clocking with
little CPU overhead (2–6%) at high aggregate bandwidths. Soft timers can also be used to
perform network polling, which eliminates network interrupts and increases the memory
access locality of the network subsystem without sacrificing delay. Experiments show that this
technique can improve the throughput of a Web server by up to 25%.
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1. INTRODUCTION

We propose and evaluate soft timers, an operating system facility that
allows efficient scheduling of software events at microsecond (msec) granu-
larity.

The key idea behind soft timers is to take advantage of certain states in
the execution of a system where an event handler can be invoked at low
cost. Such states include the entry points of the various OS kernel han-
dlers, which are executed in response to system calls, exceptions (TLB
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miss, page fault, arithmetic), and hardware interrupts. In these “trigger
states,” the cost of saving and restoring of CPU state and the shift in
memory access locality associated with the switch to kernel mode have
already been incurred; invoking an additional event handler from the
trigger state amortizes this overhead over a larger amount of useful
computation.

Of course, the times at which a system enters a trigger state are
unpredictable and depend on the workload. Therefore, soft timers can
schedule events only probabilistically: a soft timer event may be delayed
past its scheduled time by a random but bounded amount of time. Under
most practical workloads, trigger states are reached often enough to allow
the scheduling of events at intervals down to a few tens of msecs, with rare
delays up to a few hundred msecs. As we will show, soft timers allow the
scheduling of events at these intervals with very low overhead, while the
use of a conventional hardware interrupt timer at the same rate would
result in unacceptable overhead on the system.

We explore the use of a soft-timers facility to perform two optimizations
in the network subsystem. Soft timers enable a transport protocol like TCP
to efficiently perform rate-based clocking, i.e., to transmit packets at a
given rate, independent of the arrival of acknowledgment (ACK) packets.
Rate-based clocking has been proposed as a technique that improves the
utilization of networks with high bandwidth-delay products [Allman et al.
1997; Balakrishnan et al. 1997; Feng et al. 1999; Padmanabhan and Katz
1998; Visweswaraiah and Heidemann 1997]. Our experiments indicate that
soft timers enable a Web server to employ rate-based clocking with low
CPU overhead (2–6%) at aggregate bandwidths approaching 1Gbps.

A second optimization is soft-timer-based network polling. Here, soft-
timer events are used to poll the network interface, thus avoiding inter-
rupts. Experiments show that the performance of a Web server using this
optimization can increase by up to 25% over a conventional interrupt-based
implementation.

The rest of this paper is organized as follows. In Section 2, we provide
background and motivation for this work. The soft-timers facility is pre-
sented in Section 3. Applications of soft timers are discussed in Section 4.
We present empirical results obtained with a prototype implementation of
soft timers in Section 5, discuss related work in Section 6, and conclude in
Section 7. Background information on the motivation for rate-based clock-
ing can be found in the Appendix.

2. BACKGROUND AND MOTIVATION

Modern CPUs increasingly rely on pipelining and caching to achieve high
performance. As a result, the speed of program execution is increasingly
sensitive to unpredictable control transfer operations. Interrupts and con-
text switches are particularly expensive, as they require the saving and
restoring of the CPU state and entail a shift in memory access locality. This
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shift typically causes cache and TLB misses in the wake of the entry and
the exit from the interrupt handler, or the context switch, respectively.

The cost of interrupts and context switches is generally not a concern as
long as they occur on a millisecond (msec) timescale. For instance, disk
interrupts, conventional timer interrupts used for time-slicing, and the
associated context switches typically occur at intervals on the order of tens
of msecs.

However, high-speed network interfaces can generate interrupts and
associated context switches at intervals on the order of tens of msecs. A
network receive interrupt typically entails a context switch to a kernel
thread that processes the incoming packet and possibly transmits a new
packet. Only after this thread finishes is the activity that was originally
interrupted resumed.

As we will show, these interrupts and context switches can have a
significant impact on the performance of server systems performing large
amounts of network I/O. Even a single Fast Ethernet interface can deliver
a full-sized packet every 120 msecs, and Gigabit Ethernet is already on the
market. Moreover, many high-end Web servers already have backbone
connections to the Internet at Gigabit speed.

2.1 Rate-Based Clocking

Achieving high network utilization on networks with increasingly high
bandwidth-delay products may require transport protocols like TCP to
perform rate-based clocking, that is, to transmit packets at scheduled
intervals, rather than only in response to the arrival of acknowledgment
(ACK) packets.

Current TCP implementations are strictly self-clocking, i.e., packet
transmissions are paced by the reception of ACK packets from the receiver.
Adding the ability to transmit packets at a given rate, independent of the
reception of ACK packets (rate-based clocking), has been proposed to
overcome several known shortcomings of current TCP implementations:

—Rate-based clocking can potentially allow a sender to skip the slow-start
phase in situations where the available network capacity is known or can
be estimated. This can lead to significant increases in network utilization
and achieved throughput, particularly when traffic is bursty and the
network’s bandwidth-delay product is high. Such conditions arise, for
instance, with Web (HTTP) traffic in today’s Internet [Padmanabhan and
Katz 1998; Visweswaraiah and Heidemann 1997].

—Rate-based clocking can overcome the effects of ACK compression [Zhang
et al. 1991] and big ACKs. Either phenomenon may cause a self-clocked
sender to transmit a burst of packets in close succession, which can
adversely affect network congestion.

—Rate-based clocking allows a TCP sender to shape its traffic in integrated
services networks [Feng et al. 1999].

Rate-based clocking requires a protocol implementation to transmit pack-
ets at regular intervals. On high-bandwidth networks, the required inter-
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vals are in the range of tens to hundreds of msecs. For instance, transmit-
ting 1500-byte packets at 100Mbps and 1Gbps requires a packet
transmission every 120 msecs and 12 msecs, respectively. Server systems
with high-speed network connections transmit data at these rates even in
today’s Internet. As we will show in Section 3, conventional facilities for
event scheduling available in general-purpose operating systems today
cannot efficiently support events at this granularity. A more detailed
discussion of the motivation for rate-based clocking can be found in
Appendix A.

To summarize this section, interrupts and context switches are increas-
ingly costly on modern computer systems. At the same time, high-speed
network interfaces already generate interrupts and associated context
switches at a rate that places a significant burden on server systems.
Rate-based clocking in transport protocols, which has been proposed as a
technique to increase network utilization and performance on high-speed
WANs, necessitates even more interrupts when implemented using conven-
tional timers.

In the following section, we present the design of the soft-timers facility,
which enables efficient rate-based clocking and can be used to avoid
network interrupts.

3. DESIGN OF THE SOFT-TIMERS FACILITY

In this section, we present the design of soft timers, a mechanism for
scheduling fine-grained events in an operating system with low overhead.

Conventional timer facilities schedule events by invoking a designated
handler periodically in the context of a hardware interrupt. For example,
an Intel 8253 programmable interrupt timer chip is usually supplied with a
Pentium-based CPU. The former can be programmed to interrupt the
processor at a given frequency.

Unfortunately, using hardware interrupts for fine-grained event schedul-
ing causes high CPU overhead for the following reasons:

—Upon a hardware interrupt, the system has to save the context of the
currently executing program and, after executing the interrupt handler,
restore the interrupted program’s state.

—Hardware interrupts are usually assigned the highest priority in the
operating system. Thus, irrespective of the process currently running on
the CPU, the interrupt handler is allowed to interrupt the execution of
the former. In general, the data and instructions touched by the inter-
rupt handler are unrelated to the interrupted computation, which can
adversely affect cache and TLB locality.

In summary, the overhead of saving state, restoring state, and the
cache/TLB pollution associated with interrupts limits the granularity at
which a conventional facility can schedule events. For instance, in Section 5
we show that the total cost of a timer interrupt in a busy Web server
amounts to on average 4.45 msecs on a 300MHz Pentium-II machine
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running FreeBSD-2.2.6. This cost is insignificant when interrupts are being
generated every msec but it is unacceptable when interrupts need to be
generated (say) every 20 msecs.

The key idea behind soft timers is as follows. During normal operation, a
system frequently reaches states in its execution where an event handler
could be invoked with minimal overhead. Examples of such opportune
trigger states are

—at the end of executing a system call, just before returning to the user
program,

—at the end of executing an exception handler, such as the ones triggered
by a memory exception (e.g., TLB1 or page fault) or an arithmetic
exception,

—at the end of executing an interrupt handler associated with a hardware
device interrupt, just before returning from the interrupt,

—whenever a CPU is executing the idle loop.

In these trigger states, invoking an event handler costs no more than a
function call, and no saving/restoring of CPU state is necessary. Further-
more, the cache and TLB contents in these trigger states have already been
disturbed due to the preceding activity, potentially reducing the impact of
further cache pollution by the event handler. Performance results pre-
sented in Section 5 confirm this reasoning.

Whenever the system reaches one of the trigger states, the soft-timer
facility checks for any pending soft-timer events and invokes the associated
handlers when appropriate. As such, the facility can execute pending
events without incurring the cost of a hardware timer interrupt. Checking
for pending soft-timer events in a trigger state is very efficient: it involves
reading the clock (usually a CPU register) and a comparison with the
scheduled time of the earliest soft timer event.2 As we will show, perform-
ing this check whenever the system reaches a trigger state has no notice-
able impact on system performance.

A disadvantage of the soft-timer facility is that the time at which an
event handler is invoked may be delayed past its scheduled time, depend-
ing on how much time passes between the instant when a soft-timer event
becomes due and the instant when the system reaches a trigger state.

The maximal delay experienced by a soft-timer event is bounded, because
the soft-timer facility still schedules a periodic hardware interrupt that is
used to schedule any overdue events. The key point to notice is that as long
as a system reaches trigger states with sufficient frequency, the soft-timer
facility can schedule events at much finer granularity than would be
feasible using a periodic hardware interrupt.

1In some architectures (e.g., Pentium), TLB misses are handled in hardware; in these
machines, TLB faults cannot be used as trigger states.
2A modified form of timing wheels [Varghese and Lauck 1987] is used to maintain scheduled
soft-timer events.
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Results presented in Section 5 show that a 300MHz Pentium II system
running a variety of workloads reaches trigger states frequently enough to
allow the scheduling of soft-timer events at a granularity of tens of msecs.

The soft-timer facility provides the following operations.

—measure_resolution¼. Returns a 64-bit value that represents the resolu-
tion of the clock (in Hz).

—measure_time¼ returns a 64-bit value representing the current real time
in ticks of a clock whose resolution is given by measure_resolution¼.
Since this operation is intended to measure time intervals, the time need
not be synchronized with any standard time base.

—schedule_soft_event(T, handler): schedules the function handler to be
called at least T ticks in the future (the resolution of T is specified by
measure_resolution¼).

—interrupt_clock_resolution¼: gives the expected minimal resolution (in
Hz) at which the facility can schedule events and equals the frequency of
the system’s periodic timer interrupt, which is used to “back up” soft
timers.

The soft-timer facility fires an event (by calling the corresponding han-
dler) when the value returned by measure_time¼ exceeds the value stored
at the time the event was scheduled by at least T 1 1 (the increment by
one accounts for the fact that the time at which the event was scheduled
may not coincide with a clock tick). If X is the resolution of the interrupt
clock relative to the measurement clock (i.e., X [ measure_resolution¼/
interrupt_clock_resolution¼), then the soft-timer facility puts the following
bounds on the actual time (in ticks of the measurement clock) when the
event fires:

T , Actual Event Time , T 1 X 1 1

Figure 1 gives examples of the above bounds when T 5 1 and X 5 2. It
is to be noted that the increment by one is negligible if the measurement
clock is significantly finer than the interrupt clock (as is the case in most
modern systems).

The reason for the upper bound is that the soft-timer facility uses a
periodic timer interrupt to check for overdue soft-timer events. However,
the actual time at which the handler is invoked is likely to be much closer
to T. Expressed differently, if we assume that

Actual Event Time 5 T 1 d

where d is a random variable in the range [0PX 1 1], then the probability
distribution of d would be uniform if a conventional timer interrupt-based
facility was used.3 With typical values for the measurement resolution and

3It is assumed here that the event was scheduled at a random time not synchronized with the
scheduling clock.
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interrupt clock resolution of 1MHz (1 msecs) and 1KHz (1 msec), respec-
tively, X is 1000, and the maximal delay is 1001 msecs.

With soft timers, the probability distribution of d is dependent on the
system’s workload, which influences how often trigger states are reached.
Results shown in Section 5 show that among a variety of workloads, the
worst-case distribution of d results in a mean delay of 31.6 msecs and is
heavily skewed toward low values (median is 18 msecs). Therefore, applica-
tions that can benefit from fine-grained events on the order of tens of msecs
in the common case, but can tolerate rare delays up to the resolution of the
system’s interrupt clock (typically 1 msec), are well served by soft timers.

4. APPLICATIONS OF SOFT TIMERS

In this section, we describe two applications of soft timers: rate-based
clocking and network polling. In Section 5, we will present empirical
results to evaluate the use of soft timers in these applications.

4.1 Rate-Based Clocking

As discussed in Section 2.1, achieving high utilization in networks with
large bandwidth-delay products may require transport protocols like TCP
to perform rate-based clocking. In a conventional implementation of rate-
based clocking, a periodic hardware timer event must be scheduled at the
intended rate of packet transmissions. At network speeds of several hun-
dred Mbps and a packet size of 1500 bytes (Ethernet), this would require
timer interrupt rates of one every few tens of msecs. Given the overhead of
hardware timer interrupts (e.g., 4.45 msecs), this would lead to unaccept-
able overhead.

We observe that transmitting multiple packets per timer event would
lead to bursty packet transmissions and defeat the purpose of rate-based
clocking, which is to transmit data at a relatively constant rate. However,

Fig. 1. Lower and upper bounds for event scheduling.
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packet transmissions on different network connections that have separate
bottleneck links could be performed in a single timer event.

Soft timers allow the clocked transmission of network packets at average
intervals of tens of msecs with low overhead. Due to the probabilistic nature
of soft-timer event scheduling, the resulting transmission rate is variable.
In Section 5, we will empirically show the statistics of the resulting
transmission process.

An interesting question is how a protocol implementation should sched-
ule soft-timer transmission events to achieve a given target transmission
rate. Scheduling a series of transmission events at fixed intervals results in
the correct average transmission rate. However, this approach can lead to
occasional bursty transmissions when several transmission events are all
due at the end of a long interval during which the system did not enter a
trigger state. A better approach is to schedule only one transmission event
at a time and let the protocol maintain a running average of the actual
transmission rate. The next transmission event is then adaptively sched-
uled in the context of the previous event handler to smooth the rate
fluctuations.

Our prototype implementation employs a simple algorithm for scheduling
the next transmission. The algorithm uses two parameters, the target
transmission rate and the maximal allowable burst transmission rate. The
algorithm keeps track of the average transmission rate since the beginning
of the current train of transmitted packets. Normally, the next transmis-
sion event is scheduled at an interval appropriate for achieving the target
transmission rate. However, when the actual transmission rate falls behind
the target transmission rate due to soft-timer delays, then the next
transmission is scheduled at an interval corresponding to the maximal
allowable burst transmission rate.

We will experimentally evaluate the use of soft timers for rate-based
clocking in Section 5.

4.2 Network Polling

In conventional network subsystem implementations, the network inter-
faces generate a hardware interrupt to signal the completion of a packet
reception or transmission.4 Upon a receiver interrupt, the system accepts
the packet, performs protocol processing, and signals any blocked process
that has been waiting to receive data. Upon a transmit interrupt, the
system decreases the reference count on the transmitted packets’ buffers,
possibly deallocating them. In busy systems with high-speed network
interfaces (e.g., server systems), network interrupts can occur at a rate of
one every few tens of msecs.

Another approach to scheduling network processing is polling, where the
system periodically reads the network interfaces’ status registers to test for
completed packet receptions or transmissions. In a pure polling system, the

4Some interfaces can be programmed to signal the completion of a burst of packet transmis-
sions or receptions.
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scheduler periodically calls upon the network driver to poll the network
interfaces.

Pure polling avoids the overhead of interrupts and can reduce the impact
of memory access locality shifts by (1) testing for network events at
“convenient” points in the execution of the system and by (2) aggregating
packet processing. By performing polling when the scheduler is active,
packet processing is performed at a time when the system already suffers a
locality shift. By polling at an appropriate average rate, multiple packets
may have completed since the last poll, thus allowing the aggregation of
packet processing, increasing memory access locality.

However, the disadvantage of pure polling is that it may substantially
increase communication latency by delaying packet processing. As a result,
hybrid schemes have been proposed. Smith and Traw [1993] use periodic
hardware timer interrupts to initiate polling for packet completions when
using a gigabit network interface. This approach involves a trade-off
between interrupt overhead and communication delay. Mogul and Ra-
makrishan [1997] propose a system that uses interrupts under normal
network load and polling under overload, in order to avoid receiver livelock.
When processing of a packet completes, the system polls the network
interface for more outstanding packets; only when no further packets are
found are network interrupts reenabled.

Soft timers offer a third design choice. With soft-timer-based network
polling, a soft-timer event is used to poll the network interfaces. As in pure
polling, network interrupts are avoided and memory access locality is
improved because network polling and processing is performed only when
the associated soft-timer event expires and the system reaches a trigger
state. However, since soft-timer events can be efficiently scheduled at msec
granularity, communications latency can be close to that achieved with
interrupt-driven network processing in the common case.

In general, the soft-timer poll interval can be dynamically chosen so as to
attempt to find a certain number of packets per poll, on average. We call
this number the aggregation quota. An aggregation quota of one implies
that one packet is found, on average, per poll.

We will experimentally evaluate the use of soft timers for network polling
in Section 5.

5. EXPERIMENTAL RESULTS

In this section, we present experimental results to evaluate the proposed
soft-timer facility. We quantify the overhead of a soft-timer facility and
compare it to the alternative approach of scheduling events using hardware
timer interrupts, using either on-chip or off-chip timer facilities. We also
present measurements that show the distribution of delays in soft-timer
event handling, given a variety of system workloads.

Next, we evaluate the performance of soft timers when used to perform
rate-based clocking and network polling. Finally, we show how modern
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on-chip timer facilities can be combined with soft timers to achieve high
timer granularity with tight delays at low cost.

5.1 Base Overhead of Hardware Timers and Soft Timers

Our first set of experiments is designed to determine the base overheads of
hardware interrupt timers and soft timers. Hardware timer interrupts are
generated using two types of timer devices. The first are off-chip timers,
such as the 8253 timer chip used in Intel-based personal computers. The
second is an on-chip timer device, namely the APIC device found in
Pentium III CPUs [Intel 2000]. The FreeBSD kernel, like most current
OSes, uses the 8253 timer chip to drive its timing facilities. To be able to
also measure APIC-based timers, the appropriate device support was added
to the FreeBSD kernel.

We also implemented soft timers in the FreeBSD kernel. Trigger states
were added in the obvious places described in Section 3. In practice, we
found that the trigger interval distribution could be improved by adding a
few additional trigger states to ensure that certain kernel loops contain a
trigger state. Examples of such loops are the TCP/IP output loop and the
TCP timer processing loop. Since Intel x86 CPUs handle TLB misses in
hardware, TLB miss events cannot be used as trigger states on Intel-based
PCs.

The idle loop checks for pending soft-timer events. However, to minimize
power consumption, an idle CPU halts when either (a) there are no
soft-timer events scheduled at times prior to the next hardware timer
interrupt, or (b) another idle CPU is already checking for soft-timer events.

The experimental setup consists of a number of Compaq AlphaStation
500au (500MHz 21164 CPU), 500MHz Pentium-III (PIII), and 300MHz
Pentium-II (PII) machines, connected through a switched 100Mbps Ether-
net. We ran either the Apache-1.3.3 (http://www.apache.org) or the Flash
[Pai et al. 1999] Web server on one of the machines while four PII machines
ran a client program that repeatedly requested a 6KB file from the Web
server. The number of simultaneous requests to the Web server were set
such that the server machine was saturated.

The FreeBSD OS runs on the server machine (versions 2.2.6 and 4.0-beta
runs on the Pentium and Alpha machines, respectively). The kernel uses its
standard timer facilities to schedule all events in the system. To measure
hardware timer overheads, an additional hardware timer interrupt was
scheduled with varying frequency. To measure soft-timer overheads, we
scheduled a periodic soft timer event such that a handler was invoked
whenever the system reaches a trigger state. That is, we programmed the
soft-timer facility to invoke a soft-timer event handler at the maximal
frequency possible, given the Web server workload.

In the first experiment, a “null handler” (i.e., a handler function that
immediately returns upon invocation) was invoked whenever a timer fires,
to isolate the overhead of the various timer facilities alone. We measured
the throughput of the Flash server in the presence of the additional timer
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events. By measuring the impact of timer events on the performance of a
realistic workload, we are able to capture the full overhead of timers
events, including secondary effect like cache and TLB pollution that result
from taking an interrupt (in the case of hardware timers), executing the
timer facility, and executing the (null) event handler.

The measured total overhead per event (as calculated from the slowdown
of the Web server in the presence of the additional events) was found to be
independent of the event frequency in this experiment.5 Table I shows the
total overhead per (null) event handler invocation, for the various machines
and timers.

The results show that the overhead per event handler invocation with the
off-chip hardware timers is substantial, and ranges from 8.64 msecs on the
Alpha machine to 4.36 msecs on the 500MHz PIII machine. Moreover, the
results indicate that hardware timer overhead does not scale with CPU
speed and suggests that the relative cost of timer interrupts increases as
CPUs get faster. Finally, the result obtained with the Alpha machine
indicates that the high overhead associated with off-chip timer interrupt
handling is not unique to Intel PCs. The overhead of hardware timers
based on the on-chip APIC device found on PIII CPUs is significantly lower
than that of off-chip timers, but still substantial (0.8 msecs).

The soft-timer handler invocations, on the other hand, caused no observ-
able difference in the Web server’s throughput. This indicates that the base
overhead imposed by our soft-timer approach is negligible. This is intuitive
because the calls to the handler execute with the overhead of a procedure
call, whereas a hardware interrupt involves saving and restoring the CPU
state. With soft timers, the event handler was called on average every
22.53 msecs on the 300MHz PII machine and every 12.45 msecs on the
500MHz PIII machine.

Note that the measured overhead of a timer interrupt can be lower on all
platforms when the machine is idle, since the code, data, and TLB entries
used during timer event handling may remain fully cached in this case.
Our experiment tries to obtain a more meaningful measure of the overhead
by evaluating the total impact of timer events on the performance of a real
workload that stresses the memory system. The results show that hard-
ware timers have a significant base overhead.

The above experiment still does not fully expose the cost of timer events
in a real application, because the null event handler makes no memory
references. That is, the overhead results are pessimal with regard to the
cache and TLB pollution caused by a real event handler. To quantify the

5Measurements using performance counters to measure the average elapsed time spent in the
interrupt handler confirm this result.

Table I. Per-Event Timer Costs with Null Event Handler
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impact of this pollution, we performed an additional experiment, this time
with a synthetic event handler that touches 50 data cache lines and 2
instruction cache lines on 2 separate pages. (A different set of 50 data cache
lines is touched during each invocation of the handler, sequentially cycling
through a total of 4 data pages). Events were scheduled 10 msecs and 20
msecs, respectively, after the previous invocation of the handler. The
results of this measurement are shown in Tables II (for events scheduled
every 10 msecs) and III (for events scheduled every 20 msecs).

Each table shows the overhead per event (calculated from the slow-down
of the Web server application), and the total number of data cache,
instruction cache, and instruction TLB misses6 during the runtime of the
experiment for each timer facility. Results for events scheduled every 10
msecs could not be obtained for 8253-based timers due to the high overhead
of that facility.

The results show that the memory accesses in the event handler cause
substantial additional overheads, which dominate the base overhead mea-
sured in the previous experiment. The overheads are more pronounced at
the lower event rate; this is intuitive, since a longer interval between
successive handler invocations decreases the chance that data, instruc-
tions, and TLB entries used by the handler remain cached.

Soft timers are less affected by the cache/TLB pollution caused by the
event handler than the hardware timers, resulting in less overhead. This
confirms our reasoning that soft timers reduce cache pollution by invoking
event handlers from trigger states in which the system already undergoes a
shift in locality. The results show that the system suffers substantially less
data cache misses (20–31%) and noticeably less instruction TLB misses
(7–13%) when soft timers are used. The reduction in instruction cache
misses is only slight—the likely reason is that our synthetic event handler
only fetches two i-cache lines.

In summary, soft timers suffer from significantly less cache and TLB
pollution than hardware-interrupt-based timers. The costs associated with
cache and TLB pollution caused by the event handler can dominate the
base overheads of all timer facilities. As a result, soft timers offer clear
performance advantages, even when compared to the relatively efficient
on-chip APIC timers.

6The PIII performance counters do not support the measurement of data TLB misses.

Table II. Timer Costs with Synthetic Event Handler, Scheduled Every 10 msecs
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5.2 Soft-Timer Event Granularity Under Different Workloads

Recall that once a soft-timer event is due, the associated handler is
executed at the earliest time when the system reaches a trigger state. The
performance of a soft-timer facility, i.e., the granularity and precision with
which it can schedule events, therefore depends on the frequency at which
the system reaches trigger states.

We measured the distribution of times between successive trigger states
for a variety of workloads. Figure 2 shows the cumulative distribution
function of time between successive trigger states, for various workloads
executing on a 300MHz PII machine.

The workloads are as follows. “ST-Apache” corresponds to the Apache
Web server workload from the previous experiment. In “ST-Apache-com-
pute,” an additional compute-bound background process is running concur-
rently with the Web server. “ST-Flash” is a Web server workload using a
fast event-driven Web server called Flash [Pai et al. 1999]. “ST-real-audio”
was measured with a copy of the RealPlayer (http://www.realplayer.com)
running on the machine, playing back a live audio source from the Internet.
“ST-nfs” reflects the trigger state interarrival times when the workload is a
NFS fileserver. Finally, “ST-kernel-build” was measured while a copy of the
FreeBSD-2.2.6 kernel was built on the machine from the sources.

Additional information about the distribution with each workload is
given in Table IV. Two million samples were taken in each workload to
measure the distributions.

The results show that under a workload typical of a busy Web server
executing on a 300MHz PII machine, the soft-timer facility can schedule
events at a mean granularity of tens of msecs with negligible overhead and
with delays over 100 msecs in less than 6% of the samples. As shown below,
this performance is sufficient to perform rate-based clocking of 1500-byte
packets at several hundreds of Mbits/sec. and allows effective polling of
network interface events at the same rate.

In a busy Web server, it is intuitive that the many network packet
arrivals, disk device interrupts, and system calls provide frequent trigger
states. One concern is that the presence of compute-bound background
computations may cause long periods where the system does not encounter
a trigger state, thus degrading the performance of the soft-timer facility.

To measure this effect, we added a compute-bound background process to
the Web server, which executes in a tight loop without performing system
calls (“ST-Apache-compute”). The results show that the presence of back-
ground processes has no tangible impact on the performance of the soft-
timer facility. The reason is that a busy Web server experiences frequent

Table III. Timer Costs with Synthetic Event Handler, Scheduled Every 20 msecs
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network interrupts that have higher priority than application processing
and yield frequent trigger states even during periods where the background
process is executing.

“ST-nfs” is another example of a server workload. The NFS server is
saturated but disk-bound, leaving the CPU idle approximately 90% of the
time. The vast majority of samples indicate a trigger state interval around
2 msecs on this workload.

The RealPlayer (“ST-real-audio”) was included because it is an example
of an application that saturates the CPU. Despite the fact that this
workload performs mostly user-mode processing and generates a relatively
low rate of interrupts, it yields a distribution of trigger state intervals with
very low mean, due to the many systems calls that RealPlayer performs.

Finally, we measure a workload where the FreeBSD OS kernel is built
from the source code. This workload involves extensive computation (com-
pilation, etc.) as well as disk I/O.

To determine the impact of CPU speed on the trigger interval distribu-
tion, we repeated the experiment with the “ST-Apache” and “ST-Flash”
workloads on a machine with a 500MHz Pentium III CPU. The summary
information about the resulting distribution is included in Table IV. The
results show that the shape of the distribution is similar to that obtained
with the slower CPU; however, the mean is reduced by a factor that
roughly reflects the CPU clock speed ratio of the CPUs. This indicates that
the granularity of soft-timer events increases approximately linearly with
CPU speed.

While our selection of measured workloads is necessarily limited, we
believe that the soft-timer facility can provide fine-grained event support
across a wide range of practical workloads. The reason is that (1) most
practical programs frequently make system calls, suffer page faults, TLB
faults, or generate other exceptions that cause the system to reach a trigger

Fig. 2. Trigger state interval (CDF), 300MHz PII.
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state and (2) the soft-timer facility can schedule events at very fine grain
whenever a CPU is idle.

In the most pessimistic scenario, all CPUs are busy, the executing
programs make infrequent system calls, cause few page faults or other
exceptions, and there are few device I/O interrupts. These conditions mark
the absence of significant I/O or communication activity in the workload,
and can arise, for instance, in scientific applications. However, observe that
msec timers are used primarily in networking, and it is thus unlikely that
any soft-timer events are scheduled under such conditions.

5.3 Changes in Trigger Interval Distribution Over Time

The trigger interval distributions shown in the previous section are aggre-
gated over 2 million samples, corresponding to 4–64 secs. of execution time
for the various workloads. A related question is how the trigger interval
distribution changes during the runtime of a workload. For instance, it is
conceivable that context switching between different processes could cause
significant changes in the trigger interval distribution. To investigate this
question, we computed the medians of the trigger interval distributions
during intervals of 1 ms and 10 ms. Results are plotted in Figure 3 for a
period of 10 secs. of the runtime of the “ST-Apache-compute” workload. The

Fig. 3. Trigger interval medians during 1 ms and 10 ms intervals, ST-Apache-compute
workload.

Table IV. Trigger State Interval Distribution
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x-axis represents the runtime of the workload, the y-axis the median of the
trigger interval distribution during a given interval (1 ms and 10 ms).

With 1 ms intervals, the bulk of the trigger interval medians are in the
range from 14 to 26 msecs. A few intervals (less than 1.13%) have medians
above 40 msecs. The medians for the 10 ms intervals (which corresponds to
a timeslice in the FreeBSD system), on the other hand, almost all fall into a
narrow band between 17 and 19 msecs.

These results indicate that the dynamic behavior of the workload appears
to cause noticeable variability in the trigger interval distribution over 1 ms
intervals. However, there is little variability in the trigger interval distri-
butions over 10 ms intervals.

5.4 Trigger Interval Distribution by Event Source

A related question is what fraction of trigger states is contributed by each
event source and how that contribution affects the resulting trigger state
interval distribution. To answer this questions, we separately accounted for
trigger states by event source for the “ST-Apache” workload. Table V shows
the fraction of trigger state samples contributed by each event source.

The sources “syscalls” and “traps” are self-explanatory. The source “ip-
output” generates a trigger event every time an IP packet (e.g., TCP
segment) is transmitted. The source “tcpip-others” represents a number of
other trigger states in the network subsystem, such as the processing loop
for TCP timers. Network interface interrupts are reflected in the “ip-intr”
source.

Figure 4 shows the impact that each trigger source has on the trigger
interval distribution. The graphs show the CDFs of the resulting trigger
interval distributions when one of the trigger sources is removed. For
instance, “no ipintr” shows the CDF of the resulting trigger interval
distribution when there is no trigger state associated with network inter-
rupts. “All” represents the original distribution for the “ST-Apache” work-
load from Figure 2. It is evident from the results that system calls and IP
packet transmissions are the most important sources of trigger events in
this workload.

5.5 Rate-Based Clocking: Timer Overhead

In this section, we evaluate the use of soft timers to perform rate-based
clocking in TCP. We show results that compare the overhead of performing
rate-based clocking with soft timers versus hardware timers, we evaluate

Table V. Trigger State Sources
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the statistics of the packet transmission process and explore the potential
for network performance improvements due to rate-based clocking.

Our first experiment is designed to explore the overhead of rate-based
clocking in TCP using soft timers versus hardware timers. The experimen-
tal setup is the same as in the previous experiment except that the Web
server’s TCP implementation uses rate-based clocking using either soft
timers or a conventional interrupt timer to transmit packets.

The soft timer was programmed to generate an event every time the
system reaches a trigger state. One packet is transmitted whenever the
handler is invoked and a packet is pending transmission. On a LAN, such
as the one used in our testbed, FreeBSD’s TCP implementation does not
use slow-start. Thus, all packets are normally sent in a burst, as fast as the
outgoing network link can transmit them. Since the transmission of a
1500-byte packet takes 120 msecs on our 100Mbps network, the use of
rate-based clocking has no observable impact on the network. Therefore,
the experiment isolates the overhead of using soft timers versus hardware
timers for rate-based clocking in TCP, but does not expose possible benefits
of rate-based clocking.

Table VI shows the performance results obtained on the 300MHz Pen-
tium II machine. We present results for both the Apache-1.3.3 Web server
as well as the Flash server. For the results with hardware timers, the 8253
was programmed to interrupt once every 20 msecs (50KHz frequency),
causing the dispatch of a thread (BSD software interrupt) that transmits a
packet. From the previous experiments, we know the base overhead for
event dispatch at this rate is about 22%. The extra overhead indicated by
the results is due to cache/TLB pollution caused by the event handler
execution, since the computation performed by the handler is exactly the
same as that performed during transmission of a packet in the original
TCP implementation.

Fig. 4. Impact of event sources on trigger interval, CDF (ST-Apache workload).
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The results indicate that the effect of cache/TLB pollution with hardware
timers is at least 4% (28 2 22 2 2) and 8% (36 2 22 2 6) worse than with
soft timers for the Apache and the Flash server, respectively. The fact that
Flash is more affected by the cache/TLB pollution can be explained as
follows. First, the greater speed of Flash amplifies the relative impact of
the fixed overhead associated with cache/TLB pollution on throughput.
Second, Apache is a multiprocess server whose frequent context switching
leads to relatively poor memory access locality, as indicated by the high
number of cache and TLB faults. Flash, on the other hand, is a small,
single-process, event-driven server with relatively good cache locality. It is
intuitive, therefore, that the Flash server’s performance is more signifi-
cantly affected by the cache/TLB pollution resulting from the timer inter-
rupts.

The results also show that the average time between transmissions with
soft timers is only slightly higher than with the hardware timer when using
the Apache server, and it is lower when using the Flash server. This result
can be explained as follows. With hardware timers, the transmission rate is
lower than the rate at which the 8253 chip was programmed because the
transmission event handler may in general be delayed due to disabled
interrupts. On the other hand, soft timers perform substantially better
when the Flash server is used because that server is much faster than
Apache and therefore generates trigger states at a higher rate. The
combined effect is that soft timers with Flash result in a lower time
between transmissions than the hardware timer.

Table VII shows the results of the same experiment obtained on the
500MHz Pentium III machine. The APIC on-chip timer facility available on

Table VI. Overhead of Rate-Based Clocking, 300MHz PII
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this CPU was used, and measurements were made with the APIC timer
programmed to interrupt every 10 msecs and 20 msecs, respectively. Quali-
tatively, the results are very similar to the ones obtained with the slower
PII CPUs. Despite the much faster on-chip APIC timer facility available on
the PIII, the overhead of hardware timer events is still substantially larger
than that of soft-timer events (22% versus 6% and 13% versus 2% for
comparable average xmit intervals with Flash and Apache, respectively).

In summary, the results of this experiment show that soft timers can be
used to do rate-based clocking in TCP at rates that approach gigabit speed
with very low overhead (2–6% in our experiment). Using a conventional
off-chip interrupt timer at this rate has an overhead of 28–36% in our
experiment and using the on-chip APIC on the Pentium III CPU still
results in an overhead of 13–22%.

5.6 Rate-Based Clocking: Transmission Process Statistics

As discussed in Section 4, our implementation of rate-based clocking based
on soft timers uses an adaptive algorithm for scheduling transmissions, in
order to smooth variations in the transmission rate caused by the probabi-

Table VII. Overhead of Rate-Based Clocking, 500MHz PIII
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listic nature of soft timers. The algorithm keeps track of the actual sending
rate, and whenever this rate falls behind the target sending rate, the next
transmission event is scheduled so as to achieve the maximal allowable
burst sending rate, until the actual sending rate once again catches up with
the target sending rate.

We performed an experiment to determine the actual achievable trans-
mission rate and the resulting statistics of the transmission process, as a
function of the maximal allowable burst transmission rate, assuming a
target transmission rate of one packet every 40 msecs and 60 msecs,
respectively. The workload in this experiment was that of the busy Apache
Web server running on the 300MHz Pentium II machine (“ST-Apache” in
Figure 2), which is among the two workloads with the largest mean trigger
state interval (i.e., worst case).

We assume in this experiment that the bandwidth of the network link
attached to the sender is 1Gbps, and the packet size is 1500 bytes.
Therefore, the minimal interval setting of 12 msecs reflects the maximal
transmission rate of the network link. At this minimal interval setting,
rate-based clocking is allowed to send packets at the link bandwidth
whenever the actual rate is below the target transmission rate.

The results are shown in Tables VIII and IX for target transmission
intervals of 40 msecs and 60 msecs, respectively. For comparison, results for
hardware-timer-based rate-based clocking were also included. The hard-
ware timer was programmed to fire regularly at the target transmission
interval.

The results show that on the 300MHz PII machine running the “ST-
Apache” workload, soft timers can support rate-based clocking up to rates
of one packet transmission every 40 msecs, if it is allowed to send bursts at
the link speed of one packet every 12 msecs. As the minimal allowable burst
interval is increased, the soft timers can no longer maintain an average
transmission interval of 40 msecs, and drops to 65.9 msecs at a minimal
allowable interval of 35 msecs.

At a target interval of 60 msecs, soft timers can maintain the average
interval up to a minimal allowable burst interval of 30 msecs. The standard
deviation is in all cases in the 30–35 msecs range and improves as the
minimal burst interval increases, as expected.

We note that these measurements apply to rate-based clocking on a
single connection. Soft timers can be used to clock transmission on different

Table VIII. Rate-Based Clocking (Target xmit Interval 5 40 msecs), 300MHz PII
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connections simultaneously, even at different rates. (A server may perform
many transmission simultaneously, resulting in large aggregate band-
widths.) In this case, multiple packets may be transmitted on different
connections in a single soft-timer event (i.e., in the context of one trigger
state).

With hardware timers, rate-based clocking falls short of the target
transmission rate by 3 msecs and 3.6 msecs, respectively. The reason is that
some timer interrupts are lost during periods when interrupts are disabled
in FreeBSD. The hardware timers achieve a somewhat better standard
deviation than soft timers, which is to be expected given the probabilistic
nature of the latter.

5.7 Rate-Based Clocking: Network Performance

Our next experiment attempts to quantify the potential impact of rate-
based clocking on the achieved performance of a Web server over network
connections with high bandwidth-delay products. We emphasize that the
presented results only give an envelope for the actual achievable perfor-
mance with rate-based clocking. More research is needed to determine how
rate-based clocking can be integrated into TCP; actual performance im-
provements attainable with a practical implementation are likely to be
lower than indicated by our results.

In particular, our prototype implementation of rate-based clocking in
TCP assumes that the available capacity in the network is known. Estimat-
ing the available capacity is not a trivial problem and is still the subject of
on-going research. Furthermore, in order to protect network stability,
practical implementations of rate-based clocking will likely have to be
conservative, e.g., by starting with an initial sending rate that is only a
fraction of the estimated capacity. Related work in this area is discussed in
Section 6.

To show the potential effect of rate-based clocking on TCP throughput,
we performed an experiment where a variable amount of data is transmit-
ted over a network connection with high bandwidth-delay product. We
model this connection in a lab environment by transmitting the data on a
100Mbps Ethernet via an intermediate Pentium II machine that acts as a
“WAN emulator.” This machine runs a modified FreeBSD kernel configured
as an IP router, except that it delays each forwarded packet so as to
emulate a WAN with a given delay and bottleneck bandwidth. In our

Table IX. Rate-Based Clocking (Target xmit Interval 5 60 msecs), 300MHz PII
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experiment, we choose the WAN delay as 50 ms and the bottleneck
bandwidth to be either 50Mbps or 100Mbps. As a result, the TCP connec-
tion between client and server machine has a bandwidth-delay product of
either 5 or 10Mbits. Network connections with these characteristics are
already available in vBNS (Very high performance backbone network
service—http://www.vbns.net/) and will soon be available in the general
Internet.

We performed HTTP requests across the “WAN” connection to an other-
wise unloaded server. Either the standard FreeBSD TCP implementation
was used, or alternatively our modified implementation, which avoids
slow-start and instead uses soft-timer-based rate-based clocking at a rate
corresponding to the bottleneck bandwidth, i.e., one packet every 120 msecs
(100Mbps) or 60 msecs (50Mbps), respectively. Since a persistent connection
is assumed to be already established prior to starting the experiment, there
is no delay due to connection establishment. (In practice, HTTP requests to
a server that has not recently been contacted by the browser require a TCP
connection establishment, which increases the delay by one RTT). The
results are shown in Tables X and XI.

We see that rate-based clocking can potentially lead to substantial
improvements in throughput, response time, and network utilization on
networks with high bandwidth-delay products. Maximal response time
reductions due to rate-based clocking can range from 2% for large transfers
to 89% for medium-sized transfers (100 packets or 141KBs) in our experi-
ment. These improvements are the result of rate-based clocking’s ability to
replace TCP slow-start, which tends to underutilize networks with large
bandwidth-delay products on all but very large transfers.

Since the average HTTP transfer size is reported to be in the 5–13KB
range [Arlitt and Williamson 1996; Mogul 1995], rate-based clocking can
have a significant impact on the Web. We emphasize again, however, that
performance improvements attainable by a practical implementation of
rate-based clocking are likely to be more modest than those indicated by
the results of our experiment.

5.8 Network Polling

Our final experiment evaluates the use of soft timers for network polling.
We implemented network polling in the FreeBSD-2.2.6 kernel, using soft

Table X. Rate-Based Clocking Network Performance (Bandwidth 5 50Mbps, RTT 5 100
msecs)
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timers to initiate the polling. The polling interval is adaptively set to
attempt to find a given number of received packet per poll interval, on
average (aggregation quota).

In this experiment, a 333MHz Pentium II machine with 4 Fast Ethernet
interfaces was used as the server. Four 300MHz PII machines were used as
the client machines, each connected to a different interface on the server.

We measured the throughput of two different Web servers (Apache and
Flash), given a synthetic workload, where clients repeatedly request the
same 6KB file. The throughput was measured on an unmodified FreeBSD
kernel (conventional interrupt-based network processing) and with soft-
timer-based network polling. Table XII shows the results for the two
different servers, for aggregation quotas ranging from 1 to 15, and for
conventional (HTTP) and persistent connection HTTP (P-HTTP).

The throughput improvements with soft-timer-based polling range from
3% to 25%. The benefits of polling are more pronounced with the faster
Flash server, as it stresses the network subsystem significantly more than
the Apache server and, owing to its better locality, is more sensitive to
cache pollution from interrupts. With P-HTTP, amortizing the cost of
establishing a TCP connection over multiple requests allows much higher
throughput with both servers, independent of polling.

The difference between the results for the conventional interrupt-based
system and network polling with an aggregation quota of 1 (i.e., one packet
per poll on average) reflects the benefit of avoiding interrupts and the
associated improvement in locality. The network polling results with aggre-
gation quotas greater than one reflect the additional benefits of aggregat-
ing packet processing.

In general, aggregation of packet processing raises concerns about in-
creased packet delay and ACK compression. However, we believe that
aggregation is practical with soft-timer-based network polling, for two
reasons. Firstly, soft-timer-based network polling is turned off (and inter-
rupts are enabled instead) whenever a CPU enters the idle loop. This
ensures that packet processing is never delayed unnecessarily. Secondly,
when rate-based clocking is used, packet transmissions are not paced by
incoming ACKs. With rate-base clocking, it is therefore no longer necessary
to preserve the exact timing of incoming ACKs, i.e., ACK compression is of
lesser concern.

Table XI. Rate-Based Clocking Network Performance (Bandwidth 5 100Mbps, RTT 5 100
msecs)
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Finally, we observe that future improvements in CPU and network
speeds will continue to increase the rate of network interrupts in conven-
tional network subsystem implementations. Since the relative cost of
interrupt handling is likely to increase as CPUs get faster (see Section 5.1),
avoiding interrupts becomes increasingly important.

5.9 Using On-Chip Timers to Achieve Tighter Delay Bounds on Soft-Timer
Events

Recall that the probabilistic delays experienced by soft-timer events are
bounded by a periodic hardware timer interrupt. However, since the rate of
the hardware timer interrupt is much lower than the typical soft-timer
event granularity (e.g., 1 ms versus tens of msecs), the resulting distribu-
tion of soft-timer delays can have a long tail, as shown in Figure 2. Here,
we show how an on-chip timer facility, such as the APIC found on Pentium
III CPUs, can be used to obtain much tighter delay bounds for soft-timer
events at low cost.

Measurements presented in Section 5.1 show that on-chip timer facilities
like the PIII APIC, when compared to conventional off-chip timers, have a
much reduced but still substantial per-event cost. Another advantage of the
APIC facility is that timer events can be scheduled and canceled at very
low cost (i.e., cost of a register access), and substantial overhead is only
incurred when a timer interrupt expires. This performance aspect of
on-chip timers lends itself to an integration with soft timers, yielding much
tighter worst-case delays for soft-timer events at a low marginal cost.

When a soft-timer event is scheduled, in addition to specifying a sched-
uled time, a deadline is specified for the event, corresponding to the latest
time when the associated event handler must be invoked. The soft-timer
facility schedules an APIC event at the earliest deadline of all scheduled
soft-timer events. The associated APIC event handler invokes the handlers
of all soft-timer events whose deadlines have expired. If a trigger point is
reached at or after the scheduled time but before the deadline of the
earliest soft-timer event, then the associated handler is invoked, and the
APIC timer is canceled. It is important to note that as long as deadlines are
not too tight relative to the average trigger state intervals, the APIC timer
rarely fires and the associated overheads remain low.

Table XIII shows the results of an experiment that quantifies the
effectiveness of using APIC timer events to back up soft timers. The

Table XII. Network Polling: Throughput on 6KB HTTP Requests
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experiment is identical to that reported in Table VII for soft timers with
Flash, except that an APIC timer was scheduled to enforce a deadline of
between 10 and 1000 msecs past the scheduled event times. The results
show that there is a 1% base overhead for scheduling APIC events to
ensure deadlines; this overhead is due to the necessary scheduling and
canceling of APIC timer events. Enforcing deadlines of 10 msecs past the
scheduled event times results in an additional overhead of 4.6% over pure
soft timers without APIC deadlines; in this case, 26.3% of all soft-timer
events cause the APIC timer to expire.

In summary, using APIC timers to back up soft timers allows very tight
upper bounds on soft-timer delays at low cost. Enforcing deadlines of 50
and 20 msecs past the scheduled events times, for instance, incurs an
additional overhead over plain soft timers of only 1.3 and 2.1%, respec-
tively.

5.10 Discussion

Soft timers allow the efficient scheduling of events at a granularity below
that which can be provided by a conventional interval timer with accept-
able overhead. The “useful range” of soft-timer event granularities is
bounded on one end by the highest granularity that can be provided by a
hardware interrupt timer with acceptable overhead, and on the other end
by the soft-timer trigger interval. On our measured workloads on a 300
MHz PII CPU, this useful range is from a few tens of msecs to a few
hundreds of msecs. Moreover, the useful range of soft-timer event granu-
larities appears to widen as CPUs get faster. Our measurements on two
generations of Pentium CPUs (300MHz PII and 500MHz PIII) indicate that
the soft-timer event granularity increases approximately linearly with CPU
speed, but that the external hardware timer overhead is almost constant.

Soft timers can be easily integrated with an existing, conventional
interval timer facility. The interval timer facility provides conventional
timer event services, and its periodic interrupt is also used to schedule
overdue soft-timer events. Conventional timers should be used for events
that need to be scheduled at or below the granularity of the interval timer’s
periodic interrupt. Soft timers should be used for events that require a
granularity up to the trigger state interval, provided these events can
tolerate probabilistic delays up to the granularity of the conventional
interval timer.

Table XIII. Overhead of APIC-Based Deadlines, 500MHz PIII, Flash
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Finally, soft timers can be integrated with on-chip hardware timer
facilities like the one found in the Pentium III APIC to provide fine-grained
events with tight deadlines at very low overhead.

6. RELATED WORK

The implementation of soft timers is based on the idea of polling, which
goes back to the earliest days of computing. In polling, a main-line program
periodically checks for asynchronous events, and invokes handler code for
the event if needed.

The novel idea in soft timers is to implement an efficient timer facility by
making the operating system “poll” for pending soft-timer events in certain
strategic states. These “trigger states” are known to be reached very
frequently during execution. Furthermore, these states are associated with
a shift in memory access locality, thus allowing the interposition of handler
code with little impact on system performance. The resulting facility can
then be used to schedule events at a granularity that could not be
efficiently achieved with a conventional hardware timer facility.

Smith and Traw [1993] use periodic hardware timer interrupts to initiate
polling for packets completions when using a gigabit network interface.
This approach involves a trade-off between interrupt overhead and commu-
nication delay. With soft-timer-based network polling, on the other hand,
one can obtain both low delay and low overhead.

Mogul and Ramakrishan [1997] describe a system that uses interrupts
under normal network load and polling under overload, in order to avoid
receiver livelock. Their scheme disables interrupts during the network
packet processing and polls for additional packets whenever the processing
of a packet completes; when no further packets are found, interrupts are
reenabled.

In comparison, soft-timer-based network polling disables interrupts and
uses polling whenever the system is saturated (i.e., no CPU is idle). That is,
polling is used even when the packet interarrival time is still larger than
the time it takes to process packets. Moreover, soft timers allow the
dynamic adjustment of the poll interval to achieve a predetermined packet
aggregation quota.

A number of researchers have pointed out the benefits of rate-based
clocking of TCP transmissions [Allman et al. 1997; Balakrishnan et al.
1997; Feng et al. 1999; Padmanabhan and Katz 1998; Visweswaraiah and
Heidemann 1997]. Our work shows that using conventional hardware
timers to support rate-based clocking at high bandwidth is too costly, and
we propose soft timers as an efficient alternative.

The use of rate-based clocking has been proposed in the context of TCP
slow-start, when an idle persistent HTTP (P-HTTP) connection becomes
active [Fielding et al. 1997; Mogul 1995; Padmanabhan and Mogul 1994].
Visweswaraiah et al. [1997] observe that an idle P-HTTP connection causes
TCP to close its congestion window, and the ensuing slow-start phase tends
to defeat P-HTTP’s attempt to utilize the network more effectively than
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HTTP/1.0 [Berners-Lee et al. 1996] connections. A similar observation was
made by Padmanabhan et al. [1998]. Soft timers can be used to efficiently
clock the transmission of packets upon restart of an idle P-HTTP connec-
tion.

Allman et al. [1997] show the limiting effect of slow-start and congestion
avoidance schemes in TCP in utilizing the bandwidth over satellite net-
works. Using rate-based clocking instead of slow-start addresses the former
concern. Feng et al. [1999] propose the use of rate-based clocking in TCP to
support the controlled-load network service [Wroclawski 1997], which
guarantees a minimal level of throughput to a given connection.

Balakrishnan et al. [1997] have proposed ACK filtering, a mechanism
that attempts to improve TCP performance on asymmetric network paths
by discarding redundant ACKs at gateways. They observe that this method
can lead to burstiness due to the big ACKs seen by the sender and suggest
pacing packet transmissions so as to match the connection’s sending rate.

Besides an efficient timer mechanism, rate-based clocking also depends
on mechanisms that allow the measurement or estimation of the available
network capacity. A number of techniques have been proposed in the
literature. The basic packet-pair technique was proposed by Keshav [1991].
Hoe [1996] proposes methods to improve TCP’s congestion control algo-
rithms. She sets the slow-start threshold (ssthresh) to an appropriate value
by measuring the bandwidth-delay product using a variant of the packet-
pair technique. Paxson [1997] suggests a more robust capacity estimation
technique called PBM that forms estimates using a range of packet bunch
sizes. A technique of this type could be used to support rate-based clocking.
Allman and Paxson [1999] compare several estimators and find that
sender-side estimation of bandwidth can often give inaccurate results due
to the failure of the ACK stream to preserve the spacing imposed on data
segments by the network path. They propose a receiver-side method for
estimating bandwidth that works considerably better.

7. CONCLUSIONS

This paper proposes a novel operating system timer facility that allows the
system to efficiently schedule events at a granularity down to tens of
microseconds. Such fine-grained events are necessary to support rate-based
clocking of transmitted packets on high-speed networks and can be used to
support efficient network polling.

Unlike conventional timer facilities, soft timers take advantage of certain
states in the execution of a system where an event handler can be invoked
at low cost. In these states, the saving and restoring of CPU state normally
required upon a hardware timer interrupt is not necessary, and the
cache/TLB pollution caused by the event handler is likely to have low
impact on the system performance.

Experiments with a prototype implementation show that soft timers can
be used to perform rate-based clocking in TCP at granularities down to a
few tens of microseconds. At these rates, soft timers impose an overhead of
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only 2–6% while a conventional timer facility would have an overhead of
13–36%.

Soft timers can also be used to perform network polling, thus avoiding
network interrupts while preserving low communications delays. Experi-
ments show that the performance of a Web server using this optimization
can increase by up to 25% over a conventional interrupt-based implemen-
tation.

Furthermore, the performance improvements obtained with soft timers
can be expected to increase with network and CPU speeds. As networks
and CPUs get faster, so does the rate of network interrupts. However, the
speed of interrupt handling does not increase as fast as CPU speed, due to
its poor memory access locality. The relative cost of interrupt handling
therefore increases, underscoring the need for techniques that avoid inter-
rupts.

Soft-timer performance, on the other hand, appears to scale with CPU
speed. Soft timers are cache friendly, and faster CPU speeds imply that
trigger states are reached more frequently, thus improving the granularity
at which soft timers can schedule events. Finally, soft timers can be
integrated with the on-chip timer facilities found on modern CPUs to
provide fine-grained events with very tight delay bounds at low overhead.

APPENDIX

A. RATE-BASED CLOCKING

In this appendix, we provide further motivation for rate-based clocking. We
restrict ourselves here to a general discussion of how an appropriate timer
facility can be used for rate-based clocking of transmissions. The details of
how a specific protocols like TCP should be extended to add rate-based
clocking requires further research and are beyond the scope of this paper.

A.1 ACK Compression and Big ACKs

Previous work has demonstrated the phenomenon of ACK compression,
where ACK packets from the receiver lose their temporal spacing due to
queuing on the reverse path from receiver to sender [Mogul 1993; Zhang et
al. 1991]. ACK compression can cause bursty packet transmissions by the
TCP sender, which contributes to network congestion. Balakrishnan et al.
[1998] have observed the presence of ACK compression in a busy Web
server.

With rate-based clocking, a TCP sender can keep track of the average
arrival rate of ACKs. When a burst of ACKs arrives at a rate that
significantly exceeds the average rate, the sender may choose to pace the
transmission of the corresponding new data packets at the measured
average ACK arrival rate, instead of the burst’s instantaneous rate as
would be dictated by self-clocking.

A related phenomenon is that of big ACKs, i.e., ACK packets that
acknowledge a large number of packets or update the flow-control window
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by a large number of packets. Upon receiving a big ACK, self-clocked
senders may send a burst of packets at the bandwidth of the network link
adjacent to the sender host. Transmitting such bursts can adversely affect
congestion in the network. A detailed discussion of phenomena that can
lead to big ACKs (i.e., ACKs that can lead to the transmission of more than
3 packets) in TCP is given in Section A.3.

Using rate-based clocking, it is possible to avoid sending packet bursts in
the same way as was described above in connection with ACK compression.

A.2 Slow-Start

Self-clocked protocols like TCP use a slow-start phase to start transmitting
data at the beginning of a connection or after an idle period. During
slow-start, the sender transmits a small number of packets (typically two),
and then transmits two more packets for every acknowledged packet, until
either packet losses occur or the estimated network capacity is reached. In
this way, the sender increases the amount of data transmitted per RTT
exponentially until the network capacity is reached.

The disadvantage of slow-start is that despite the exponential growth of
the transmit window, it can take many RTTs before the sender is able to
fully utilize the network. The larger the bandwidth-delay product of the
network, the more time and transmitted data it takes to reach the point of
network saturation. In particular, transmissions of relatively small data
objects may not allow the sender to reach the point of network saturation at
all, leading to poor network utilization and low effective throughput.

The bulk of traffic in the Internet today consists of HTTP transfers that
are typically short (between 5KB and 13KB) [Arlitt and Williamson 1996;
Mogul 1995]. A typical HTTP transfer finishes well before TCP finishes its
slow-start phase, causing low utilization of available network bandwidth
and long user-perceived response times [Mogul 1995]. The magnitude of
this problem is expected to increase as higher network bandwidth becomes
available.

Slow-start serves a dual purpose. It starts a transmission pipeline that
allows the sender to self-clock its transmission without sending large
bursts of packets. At the same time, it probes the available network
capacity without overwhelming the network. The key idea to avoid slow-
start is the following. If the available network capacity is known or can be
measured/estimated, then a TCP sender can immediately use rate-based
clocking to transmit packets at the network capacity without going through
slow-start [Padmanabhan and Katz 1998].

The problem of measuring available network capacity has been addressed
by several prior research efforts, for instance packet pair algorithms
[Brakmo and Peterson 1995b; Hoe 1996; Keshav 1991] and PBM [Paxson
1997]. Moreover, when starting transmission after an idle period, the
network capacity during the last busy period can be used as an estimate for
the current capacity [Fielding et al. 1997; Mogul 1995; Padmanabhan and
Mogul 1994]. Finally, in future network with QoS support, the available
network capacity may be known a priori.
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A.3 Causes of Big ACKs

In the previous subsection, we discussed the effects of big ACKs on TCP
connections. Here, we describe several phenomena that can cause big
ACKs.

Figure 5 shows the processing of a packet, starting from its reception by
the network adaptor to its delivery to the application. (1) A high-priority
device interrupt places the packet into the input queues of the IP protocol,
(2) TCP/IP processing is done in the context of a software interrupt, and the
packet is placed in the application’s socket buffer, (3) The application reads
the data from its socket; in the context of this read, an ACK is sent back to
the TCP sender if needed.

Upon reception of a packet acknowledging x packets, a TCP sender
normally injects x new closely spaced packets into the network. In normal
operation, x is 2 because TCP receivers usually delay every other ACK7 to
take advantage of piggybacking opportunities. We now present some sce-
narios that cause a TCP receiver to send big ACKs (ACKs that acknowledge
more than 3 packets), causing the sender to inject a burst of packets that
can adversely affect congestion in the network.

Figure 5 indicates that an ACK is sent by the receiver when the
application reads the data from the socket buffer (or when the delayed ACK
timer fires). If the interarrival time of packets is smaller than the packet-
processing time, then owing to the higher priorities of the interrupts as
compared to application processing, all closely spaced packets sent by the
TCP sender will be received before any ACK is sent. When the incoming
packet train stops (due to flow control), the receiver will send a big ACK to
the sender acknowledging all packets sent. The same happens if the

7The presence of TCP options causes TCP receivers to send an ACK for every 3 packets
[Brakmo and Peterson 1995a].

Fig. 5. Packet-processing path in OS.
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delayed ACK timer fires first. The problem is self-sustaining because the
TCP sender responds to the big ACK by sending a burst of closely spaced
packets.

On a 300MHz Pentium II machine, the packet processing time can take
more than 100 msecs while the minimum interarrival time of 1500-byte
packets on 100Mbps and 1Gbps Ethernet is 120 msecs and 12 msecs,
respectively. This suggests that big ACKs can be prevalent in high-
bandwidth networks.

The situation described above is not necessarily restricted to high-
bandwidth networks. It can also happen when the receiver application is
slow in reading newly arrived data from the socket buffers. This can
happen, for example, when a Web browser (TCP receiver) is rendering
previously read graphics data on the screen. During this time, ACKs for all
packets from the Web server (TCP sender) shall be delayed until either the
delayed ACK timer fires (once every 200 ms) or the browser reads more
data from the socket buffer. The ACK packet when sent would acknowledge
a large number of packets.

While high bandwidth is not yet widely available in WANs, we have
analyzed TCP packet traces on a 100Mbps LAN and have observed big
ACKs on almost every sufficiently long transfer. We have also analyzed
packet traces from the Rice CS departmental Web server. Our results show
that 40% of all transfers that were greater than 20KB showed the presence
of big ACKs, thus confirming our hypothesis that big ACKs also occur on
transfers over current low-bandwidth WAN links.

Brakmo and Peterson [1995a] have also observed these big ACKs in the
context of recovery from large number of packet losses and reordering of
packets. They propose to reduce TCP congestion window upon receiving a
big ACK so that slow-start is used instead of sending packet bursts. Fall
and Floyd [1996] propose to use a maxburst parameter to limit the
potential burstiness of the sender for packets sent after a loss recovery
phase (fast recovery). While these techniques can limit the burstiness, they
adversely affect bandwidth utilization as the network pipeline is drained of
packets.
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