
SAAR: A Shared Control Plane for Overlay Multicast

Animesh Nandi‡� Aditya Ganjam† Peter Druschel� T. S. Eugene Ng‡

Ion Stoica§ Hui Zhang† Bobby BhattacharjeeΦ

�Max Planck Institute for Software Systems ‡Rice University
†Carnegie Mellon University §University of California, Berkeley Φ University of Maryland

Abstract
Many cooperative overlay multicast systems of diverse
designs have been implemented and deployed. In this pa-
per, we explore a new architecture for overlay multicast:
we factor out the control plane into a separate overlay
that provides a single primitive: a configurable anycast
for peer selection. This separation of control and data
overlays has several advantages. Data overlays can be
optimized for efficient content delivery, while the con-
trol overlay can be optimized for flexible and efficient
peer selection. Several data channels can share a control
plane for fast switching among content channels, which
is particularly important for IPTV. And, the control over-
lay can be reused in multicast systems with different data
plane organizations.

We designed and evaluated a decentralized control
overlay for endsystem multicast. The overlay proac-
tively aggregates system state and implements a power-
ful anycast primitive for peer selection. We demonstrate
that SAAR’s efficiency in locating peers reduces channel
switching time, improves the quality of content delivery,
and reduces overhead, even under dynamic conditions
and at scale. An experimental evaluation demonstrates
that the system can efficiently support single-tree, multi-
tree and block-based multicast systems.

1 Introduction

Cooperative endsystem multicast (CEM) has become an
important paradigm for content distribution in the Inter-
net [11, 36, 8, 2, 30, 47, 27, 7, 50]. In CEM, participating
endsystems form an overlay network and cooperatively
disseminate content. As a result, the resource cost of
disseminating content is shared among the participants.
Unlike server-based approaches, the content source need
not provide bandwidth and server resources proportional
to the number of receivers; unlike IP multicast [14], no
network layer support is required; and unlike commer-
cial content-distribution networks [1], no contract with a
provider is needed.

Numerous CEM systems are being proposed and de-
ployed by research, industry and open source communi-
ties. The systems cover a range of designs, using single
tree-, multi-tree- or mesh-based data dissemination ap-
proaches and various overlay maintenance algorithms.

Common to all CEM systems is the problem of select-
ing overlay neighbors for data dissemination. We will
show that the policies and mechanism used to make this
selection significantly affect the performance of CEM
systems. An ideal peer selection mechanism can support
sophisticated selection policies, enabling high-quality
data paths and good load balance, while accommodating
participants with heterogeneous capabilities. An efficient
peer selection mechanism can scale to large groups and
large numbers of groups. Lastly, a responsive mechanism
allows the system to more rapidly respond to failures and
node departures, and it allows nodes to quickly join and
switch content channels. Fast channel switching, in par-
ticular, is critical to emerging IPTV applications [23].

We show that peer selection for CEM systems can be
performed using an anycast primitive, which takes as ar-
guments a constraint and an objective function. Among
the participating nodes that satisfy the constraint, the
primitive selects one that maximizes the objective func-
tion. Such an anycast primitive offers a single, unified
mechanism for implementing diverse data plane policies.

Consider the following example of a simple data dis-
semination tree. Each node n needs to select a parent.
The constraint would require that a prospective parent
is not a descendant of n and has spare forwarding ca-
pacity. Among the eligible nodes, the objective function
might minimize the loss rate or the distance of the parent
from the root. Much more complex data plane structures
can be expressed in this way, e.g., multiple interior-node-
disjoint trees as in SplitStream [7].

We have designed and evaluated SAAR, a control over-
lay for CEM systems. SAAR provides a powerful any-
cast primitive for selecting peers in one or more separate
data dissemination overlays. SAAR provides several key
benefits:

• SAAR separates control and data dissemination into
different overlay networks. As such, it avoids a tradeoff
between data and control efficiency. We show that the
benefits of this separation outweigh the costs of maintain-
ing a separate control overlay. First, the SAAR control
overlay is optimized for efficient peer selection. When
compared to current CEM systems, SAAR can locate
more appropriate peers, and can do so faster. Rapid
peer selection results in faster channel join and switch-
ing times; more appropriate peer selection improves data
paths and delivery quality. Second, the data overlay is not
constrained by a control overlay structure, and can there-
fore be optimized solely for efficient data dissemination
and load balance, subject to application policy.

• SAAR can support different data plane structures (e.g.
tree, multi-tree, mesh-based). Specific structures can be
achieved by defining appropriate constraints and objec-
tive functions for anycast. Thus, SAAR separates the
common control mechanism from the specific polices for
maintaining a data overlay. As a reusable control overlay,
SAAR simplifies the design of CEM systems.

• A single SAAR overlay can be shared among many data
overlay instances. SAAR allows nodes to remain in the
control overlay independent of their data channel mem-
bership. Control overlay sharing allows nodes to quickly
join a channel and to rapidly switch between channels,
which is critical for applications like IPTV [23].

The implementation of SAAR is layered on a struc-
tured overlay network [39, 8]. For each data overlay in-
stance, a tree is embedded in this structured control over-
lay that connects the members of that data overlay. State
information for members of a data channel is aggregated
and disseminated within the corresponding tree. An any-
cast traverses the tree to locate peers for the data overlay,
subject to the constraint and objective function. The ag-
gregated state information is used to guide the search.

The rest of this paper is organized as follows. Sec-
tion 2 briefly reviews existing CEM systems and other
related work. Section 3 presents our proposed archi-
tecture and the design of SAAR. Section 4 describes
how different data plane organizations can be built using
SAAR. Section 5 presents an experimental evaluation of
our SAAR prototype. We conclude in Section 6.

2 Background and related work

In this section, we consider existing CEM systems and
other related work. The data planes of CEM systems can
be classified as either path-based (single tree and mul-
tiple tree) or block-based. Path-based systems maintain
one or more loop free paths from the content source to
each member of a group. ESM [10], Overcast [25] and
NICE [2] form a single tree, while SplitStream [7] and
Chunkyspread [44] form multiple trees. In Bullet [27],

CoolStreaming [50] and Chainsaw [31], the streaming
content is divided into fixed-size blocks and group mem-
bers form a mesh structure. Mesh neighbors exchange
block availability information and swap missing blocks.
Next, we discuss existing CEM systems from the per-
spective of the type of overlay network they utilize.

Unstructured overlay CEM systems construct an over-
lay network that is optimized primarily for data dissem-
ination. Overlay neighbors are chosen to maximize the
quality of the content delivery (i.e., minimize packet
loss, delay and jitter), to balance the forwarding load
among the overlay members, and to accommodate mem-
bers with different amounts of network resources. Typ-
ically, a separate overlay is constructed for each content
instance, consisting of the set of nodes currently inter-
ested in that content. The control plane is then imple-
mented within the resulting overlay. Although these sys-
tems enable efficient data dissemination, the overlay is
not optimized for efficient control.

Overcast [25], Host Multicast [49] and End System
Multicast (ESM) [10] form a single dissemination tree.
In the former two systems, nodes locate a good parent
by traversing the tree, starting from the root. These pro-
tocols do not scale to large groups, since each member
must independently explore the tree to discover a par-
ent, and the root is involved in all membership changes.
ESM uses a gossip protocol to distribute membership in-
formation among the group members. Each node learns a
random sample of the membership and performs further
probing to identify a good parent. The protocol is ro-
bust to node departures/failure but does not scale to large
group sizes, where the membership information available
to a given node tends to be increasingly partial and stale.

Chunkyspread [44] uses a multi-tree data plane em-
bedded in an unstructured overlay, using a randomized
protocol to select neighbors. The selection considers the
heterogeneous bandwidth resources of nodes and assigns
them an appropriate node degree in the overlay.

Bullet [27], CoolStreaming [50] and Chainsaw [31]
use block-based data dissemination in an unstructured
mesh overlay. Bullet has separate control and data
planes. The control plane is not shared among multiple
data channels and it was not designed to support different
data plane organizations.

Structured overlay CEM systems use a structured over-
lay network [39, 35, 42, 38]. The key-based routing
primitive [13] provided by these overlays enables scal-
able and efficient neighbor discovery.

In general, data is disseminated over existing overlay
links. This constraint tends to make it more difficult to
optimize data dissemination and to accommodate nodes
with different bandwidth resources [3]. Group member-
ship changes, on the other hand, are very efficient and
the systems are scalable to very large groups and large
numbers of groups in the same overlay.

Scribe [8], Subscriber/Volunteer(SV) trees [15] and
SplitStream [7] are examples of CEM systems based on
structured overlays. Scribe embeds group spanning trees
in the overlay. The trees are then used to anycast or multi-
cast within the group. Due to the overlay structure, some
nodes may be required to forward content that is not of
interest to them. SV trees are similar to Scribe, but en-
sure that only interested nodes forward content.

SplitStream uses multiple interior-node-disjoint dis-
semination trees that each carry a slice of the content.
Compared to single-tree systems, it better balances the
forwarding load among nodes and reduces the impact of
node failures. SplitStream has an anycast primitive to lo-
cate parents with spare capacity in the desired trees when
none can be found using Scribe. In SplitStream, however,
this primitive is used only as a last resort, since it may add
non-overlay edges and may sacrifice the interior-node-
disjointedness of the trees.

NICE [2] is not based on a structured overlay as we de-
fined it. Nevertheless, it shares the properties of efficient
control but constrained data dissemination paths. Nodes
dynamically organize into a hierarchy, which is then used
to distribute the data.

Other related work: Anycast was first proposed in RFC
1546 [32]. GIA [26] is an architecture for scalable,
global IP anycast. Both approaches share the drawbacks
of network-layer group communication. That is, they
require buy-in from a large fraction of Internet service
providers to be effective at global scale, and they cannot
easily consider application-specific metrics in the server
selection. Application-layer anycasting [4] defines any-
cast as an overlay service.

Anycast within a structured overlay network has been
used in several systems for decentralized server selec-
tion [9, 24, 41, 17]. Scribe [9] and DOLR [24] de-
liver anycast requests to nearby group members. Unlike
SAAR, they provide only a coarse-grained overload pro-
tection mechanism by requiring overloaded group mem-
bers to leave the group temporarily. i3 [41] provides fine-
grained load balancing of anycast requests among the
group members, but is not designed for efficient server
selection based on multiple metrics like load, location
and server state. Server selection in Oasis [17] is primar-
ily optimized for locality, but also incorporates liveness
and load. Oasis does not optimize the anycast based on
proactive aggregation of state information. Unlike these
systems, SAAR provides general and efficient anycast
for peer selection in CEM systems.

Several systems use structured overlays for efficient
request redirection [16, 46, 12]. CoDeeN [46], a coop-
erative CDN, distributes client requests to an appropriate
server based on factors like server load, network proxim-
ity and cache locality. Coral [16] is a peer-to-peer web-
content distribution network that indexes cached web

pages and redirects client requests to nearby peers that
have the desired content cached.

SDIMS [48] (influenced by Astrolabe [37]) aggregates
information in large scale networked systems and sup-
ports queries over the aggregated state of a set of nodes.
Internally, SDIMS relies on aggregation trees embedded
in a structured overlay to achieve scalability with respect
to both the number of nodes and attributes. SAAR im-
plements a subset of of SDIMS’s functionality, which is
specialized for the needs of a CEM control plane.

ChunkCast [12] provides a shared control overlay, in
which it embeds index trees for objects stored in the over-
lay. An anycast primitive discovers a nearby node that
holds a desired object. ChunkCast is intended for block
dissemination in a swarming file distribution system, and
not for streaming multicast. Its anycast primitive is spe-
cialized for this purpose, and not for peer selection in a
CEM system.

Pietzuch et al. [33] observe that structured overlays do
not produce a good candidate node set for service place-
ment in Stream-based overlay networks (SBONs). This
is closely related to our observation that structured over-
lay CEM systems have constrained and sub-optimal data
distribution paths.

Opus [5] provides a common platform for hosting
multiple overlay-based distributed applications. Its goal
is to mediate access to wide-area resources among mul-
tiple competing applications, in a manner that satisfies
each application’s performance and reliability demands.
SAAR, on the other hand, provides a control overlay and
an anycast peer selection service for a specific applica-
tion, CEM. Thus, Opus and SAAR address largely com-
plementary problems.

3 Design of SAAR

We begin with an overview of the SAAR control plane
and describe its design in detail. Figure 1 depicts the
SAAR architecture.

Our architecture for CEM systems separates the con-
trol and data planes into distinct overlay networks. There
are no constraints on the structure of the data plane: it
can be optimized for efficient data dissemination, can ac-
commodate heterogeneity and includes only nodes that
are interested in the content. The control overlay can be
shared among many data plane instances, each dissemi-
nating a different content type or channel.

SAAR uses a decentralized control plane based on a
structured overlay network. Its anycast primitive sup-
ports efficient and flexible selection of data dissemination
peers. The SAAR overlay performs efficient, proactive
state dissemination and aggregation. This aggregate state
is used to increase the efficiency of the anycast primitive.

All nodes that run a particular CEM system partici-
pate in the SAAR control overlay, regardless of which

Data overlay 1 (single tree) Data overlay 2 (mesh)

Shared control overlay (SAAR)

Data overlay 1 member

Other member

Data overlay 2 member

Rn Control root (data overlay n)

R2

R1 Control tree - data overlay 1
Control tree - data overlay 2

Figure 1: SAAR architecture: Each node is a member
of the control overlay and may be part of one or more
data overlays. The members of a given data overlay are
part of a tree embedded in the control overlay. Nodes
use the SAAR anycast primitive to locate data overlay
neighbors.

content they are currently receiving. This enables rapid
switching between content channels. Even nodes that do
not currently receive any content may choose to remain
in the control overlay. In this “standby” mode, a node
has low overhead and can join a data overlay with very
low delay. As a result, membership in the control over-
lay is expected to be more stable and longer-term than
the membership in any data overlay. Additionally, the
sharing of state information across data overlays can re-
duce overhead, e.g., when a node is in more than one data
overlay because it receives several content channels.

Group abstraction: The key abstraction provided by
SAAR is a group. A group represents a set of nodes that
are members of one data overlay. The group’s control
state is managed via a spanning tree that is embedded in
the control overlay and rooted at a random member of the
control overlay. Due to the SAAR overlay structure, the
spanning tree may contain interior nodes that are not part
of the group. The group members may choose to form
any data overlay structure for data dissemination.

A set of state variables is associated with a group.
Each group member holds an instance of each state vari-
able. Typical examples of state variables are a node’s for-
warding capacity, current load, streaming loss rate, tree-
depth in a single-tree data plane, etc.

SAAR can aggregate state variables in the spanning
tree. Each state variable g is associated with an update
propagation frequency fup, a downward propagation fre-
quency fdown and an aggregation operator A. The values

of a state variable are periodically propagated upwards
towards the root of the group spanning tree, with fre-
quency at most fup. (The propagation is suppressed if
the value of a variable has not changed). At each interior
node, the values received from each child are aggregated
using the operator A. The aggregated value at the root
of the spanning tree is propagated down the tree with fre-
quency at most fdown. State variables for which no aggre-
gation operator is defined are propagated only one level
up from the leaf nodes.

The aggregated value of g (using aggregation operator
A) at an intermediate node in the spanning tree is denoted
by gA. For example, the value of gSUM

cap at the root of the
spanning tree would denote the total forwarding capacity
of the group members.

Anycast primitive: SAAR provides an anycast opera-
tion that takes as arguments a group identifier G, a con-
straint p, an objective function m, and a traversal thresh-
old t.

The primitive “inspects” group members whose state
variables satisfy p and returns the member whose state
maximizes the objective function m among the consid-
ered members. To bound the anycast overhead, at most
t nodes are visited during the tree traversal. Note that a
search typically considers many more nodes than it vis-
its, due to the propagation of state variables in the tree.
If t = ⊥, the first considered node that satisfies the pred-
icate is selected.

The predicate p over the group’s state variables spec-
ifies a constraint on the neighbor selection. Typically,
the constraint is chosen to achieve the desired struc-
ture of the data overlay. A simple example predicate
p = (gload < gcap) would be used to locate a node with
spare forwarding capacity.

The anycast selects, among the set of nodes it inspects
and that satisfy p, a node whose state variables maximize
the objective function m. m is an expression over the
group’s state variables and evaluates to a numeric value.
For example, using the state variable gdepth to denote the
tree depth of a member in a single-tree data plane, the
objective function m = 1/gdepth would select a node with
minimum depth in the tree, among the considered nodes
that satisfy the predicate p = (gload < gcap).

The anycast primitive performs a depth-first search of
the group spanning tree, starting at the requester node.
It uses a number of optimizations. If the aggregated
state variables of a group subtree indicate that no mem-
ber exists in the subtree that is both eligible (i.e., satisfies
the constraint) and superior (i.e., achieves a better value
of the objective function than the current best member),
then the entire subtree is pruned from the search. Sim-
ilarly, if the aggregated state variables of the entire tree
(propagated downward from the root) indicate that no el-
igible and superior member exists in the tree, then the
anycast terminates immediately.

create(G, set of (gv,Av, f v
up, f v

down)). Creates a group with its group variables, their aggregation operators and propagation frequencies.
join(G) This function is called by a node that wishes to join the group G.
anycast(G, p, m, t) This function is called by a node to select a member of the group G. p is the constraint,

m is the objective function, t is the maximal number of nodes visited.
update(G, set of gv) Called by a node to update the group with the current values of its state variables.
groupAggregateRequest(G, gv) Returns the value of the aggregated state variable gv at the root of the spanning tree.
leave(G) Called by a node that wishes to leave the group G.

Table 1: SAAR API

≤2

b Node with value b

Node failing predicate

≤2 ≤1

≤3

≤3

Non-group member

2 0 1

3

12

Aggregated value x≤ x

Figure 2: Anycast traversal example: Given an anycast
request issued at the leftmost interior node in the group
spanning tree, the anycast traverses the tree in a depth-
first search. The search only visits subtrees with mem-
bers that satisfy the predicate and whose value exceeds
that of the current best known member.

Since the SAAR overlay construction is proximity-
based, the group members are inspected roughly in order
of increasing delay from the requester node n. Therefore,
the result is chosen from the nodes with least delay to n,
among the nodes that satisfy the constraint. This bias can
be removed by starting the anycast traversal instead from
a random member of the SAAR control overlay1.

There is an inherent trade-off between accuracy and
scalability in the distributed selection of overlay neigh-
bors. Accuracy is maximized when decisions are based
on complete and current information. To maximize ac-
curacy, either (1) all nodes maintain current informa-
tion about many nodes in the system, or (2) an anycast
visits many nodes in the system for each peer selec-
tion. Neither approach is scalable. SAAR mitigates this
tension by propagating aggregated state and by limiting
the scope of anycast tree traversals based on this state.
Also, in SAAR, accuracy and overhead can be controlled
by bounding the anycast overhead (threshold t), and by
changing the propagation frequencies of the state vari-
ables.

Example anycast traversal: Figure 2 shows an exam-
ple group spanning tree. A new node wants to join the
data overlay and seeks a parent that maximizes the value
of an integer state variable among the nodes that satisfy

1Here, we route the anycast message to the node responsible for a
randomly drawn key in the underlying structured overlay network.

a given constraint. There are six members that satisfy
the constraint. Given an anycast request issued at the
leftmost interior node in the spanning tree, the anycast
traverses the tree in a DFS, pruning subtrees that contain
no eligible members with a value of the variable that ex-
ceeds that of the current best known member. In the ex-
ample shown, the anycast stops after visiting five nodes,
and yields the rightmost leaf node with the value 3. Had
the anycast been invoked with a value of t < 5, then the
anycast would have stopped after visiting t nodes, and
yielded the leftmost leaf node with value 2.

SAAR API: The SAAR API contains functions to cre-
ate, join and depart groups, to locate a neighbor, retrieve
pre-computed aggregated group state, and to update the
control plane with a member’s group variables. The op-
erations are listed in Table 1.

3.1 Implementation
The implementation of SAAR uses Scribe [8, 9] to rep-
resent groups and to implement the anycast primitive.
Scribe is a group communication system built upon a
structured overlay network. Each group is represented by
a tree consisting of the overlay routes from group mem-
bers to the node responsible for the group’s identifier.

Due to proximity neighbor selection (PNS) in the un-
derlying Pastry overlay [6, 21], the spanning trees are
proximity-based, i.e., nodes within a subtree tend to be
close in the underlying Internet. An anycast primitive
walks the tree in depth-first order, starting from a node
that is close to the anycast requester until an appropriate
node is found [9].

Scribe does not have group variables and does not ag-
gregate or propagate state in a group tree. Scribe’s any-
cast primitive does not take a constraint or objective func-
tion. Our implementation adds support for these facili-
ties.

Nodes in a SAAR group tree aggregate and propa-
gate state variables up and down the tree, similar to
SDIMS [48]. To reduce message costs, update mes-
sages are propagated periodically, they are combined on
a given overlay link across state variables and across
group trees, they are piggy-backed onto other control
traffic when possible, and they are multicast down the
tree. During an anycast, a DFS traversal of the group tree
prunes entire subtrees based on the aggregated state of

the subtree. In addition, we implemented the following
optimizations:

Using network coordinates: SAAR employs virtual
network coordinates to guide the depth-first search in
the group trees. We used NPS [29] with a 5-D coordi-
nate system in our implementation. Specifically, network
coordinates are used to visit an interior node’s children
in order of increasing distance to the anycast requester.
Moreover, node coordinates can be exported as state vari-
ables; thus, they can be used to guide the selection of
nodes based on their location.

Multiple spanning trees: To increase the robustness
to churn in the control overlay, SAAR maintains mul-
tiple interior-node-disjoint spanning trees connecting the
members of each group. Thus, the failure or departure
of a node may cause a subtree disconnection and sub-
sequent repair in at most one tree. By starting multiple
traversals in different trees in parallel, anycast operations
can be served in a timely fashion even while one of the
spanning trees is being repaired. Interior-node-disjoint
trees are constructed in Scribe simply by choosing group
ids that do not share a prefix, as in SplitStream [7].

Our SAAR prototype was implemented based on the
FreePastry implementation of Scribe [18]. Implement-
ing SAAR added 4200 lines of code. Implementing a
single-tree, multi-tree, and block-based CEM based on
SAAR, as described in the following section, added an-
other 1864, 2756 and 3299 lines of code, respectively.

4 Using the SAAR Control Overlay

This section describes how the SAAR control overlay
can be used to construct CEMs with single-tree, multiple-
tree, and block-based data overlays.

4.1 Single-Tree Multicast

To implement a single-tree multicast protocol using
SAAR, each data overlay instance is associated with a
SAAR group. Data overlay neighbors are selected such
that (i) the neighbor has spare forwarding capacity and
(ii) adding the neighbor does not create a loop in the data
path. In addition, the control plane should preferentially
select neighbors that (i) experience low loss, (ii) are near
the requester and (iii) have low depth in the tree. These
requirements can be expressed via the constraint and the
objective function arguments to a SAAR anycast. As-
suming the data stream has rate BWstream and a node’s
forwarding bandwidth is BWnode, we define the forward-
ing capacity of a node as D = BWnode/BWstream.

The group associated with our single-tree data plane
uses the following state variables, constraint and objec-
tive function:

• State Variables: gcap = D is the maximum number of
children a node can support; gload is the current number
of children, gpath is a list of node identifiers on the node’s
path to the root, gdepth is the length of the node’s path to
the root, gloss is the streaming loss rate, and gpd is the path
delay from the root. No aggregation operator is defined
for gpath.

• Constraint: A requesting node r selects a prospective
parent that has free capacity, will not cause a loop and has
a loss rate less than a threshold L, using the predicate:

(gload < gcap)∧ (r /∈ gpath)∧ (gloss < L)

Alternatively, the term (gloss < rloss) can be used to
select a parent that has lower loss than the requester.

• Objective Function: The objective function is either
1/gMIN

depth or 1/gMIN
pd , which minimizes depth and path de-

lay, respectively, as motivated by the findings in [40].
The source of a multicast event creates a new group

and then joins it. An interested node calls the anycast
method to locate a parent. Once it receives data, it joins
the group, allowing the control plane to select it as a po-
tential parent. The node uses the update method to in-
form the control plane of the current values of its state
variables. To leave, a node disconnects from its parent
and leaves the group. When a node fails or leaves, its
children select a new parent using the anycast method.

Periodic data plane optimization: When a node joins
or recovers from a disconnect, it uses a traversal thresh-
old t =⊥ to find an eligible parent as quickly as possible.

The system gradually improves the tree’s quality by
periodically (e.g. every 30 seconds) anycasting with a
traversal threshold of t = 2logk N, where N is the ap-
proximate size of the group and k is the arity of the con-
trol tree. It can be shown that this anycast considers
at least n = k

−1+
√

1+8t
2 nodes. Assuming that the eligible

nodes are uniformly distributed in the control tree, the
probability is greater than (1− (f/100)n) that we find a
peer in the f th percentile of eligible nodes, sorted by de-
creasing value of the objective function. Thus, a value
of t = 2logk N ensures that a “good” node is found with
high probability. With a system size of at least 1024 and a
control tree arity of k = 16, for instance, we locate a peer
in the 90% percentile of eligible nodes with three-nines
probability.

Preemption: If a node r with a forwarding capacity
rcap > 0 is disconnected and cannot locate a new par-
ent, r uses an anycast to locate a parent that has a child
with no forwarding capacity. (Such a child must exist,
else there would be leaf nodes with spare capacity). This
is done using boolean group variable gzdc, which is true
when a node has a zero-degree child. The anycast takes
the modified predicate:

(gzdc ∨ (gload < gcap))∧ (r /∈ gpath)∧ (gloss < L)

Once such a parent is located, the node preempts the
zero-degree child, attaches to the selected parent and
adopts the preempted node as its child.

4.2 Multi-Tree Multicast
Next, we built a multi-tree CEM system similar to Split-
Stream [7] using SAAR. SplitStream was designed to
more evenly balance the forwarding load and to reduce
the impact of node and network failures, relative to a
single-tree CEM. The content is striped and disseminated
using k separate, interior-node-disjoint distribution trees,
where each stripe has 1/k-th of the stream bandwidth.
The constraint, objective function and state variables are
the same as in the single-tree CEM. However, there is
an instance of each variable per stripe. We use a single
SAAR group per multi-tree data overlay, with the fol-
lowing state variables: gcoord [i], gcap[i], gload [i], gpath[i],
gloss[i], gdepth[i], gpd [i], i ∈ [0,k−1].

A node forwards data (i.e., accepts children) only in
its primary stripe ps. This construction ensures interior-
node-disjoint stripe trees: a node is an interior node in
at most one stripe tree and a leaf in all other stripe trees.
Thus, a node with forwarding capacity D (defined in Sec-
tion 4.1) has

gcap[ps] = D∗ k and gcap[i] = 0,∀i 6= ps.

In SplitStream, the primary stripe selection is fixed by
a node’s identifier to allow the efficient construction of
interior-node-disjoint stripe trees. This can lead to a re-
source imbalance when the node forwarding capacities
are heterogeneous. In the SAAR-based implementation,
nodes can choose their primary stripe so as to balance the
available forwarding capacity in each stripe. To do this,
a joining node selects as its primary the stripe with the
least total forwarding capacity at that time2. A node uses
the aggregated value of the state variables gload and gcap
and chooses ps to be the i that minimizes

(gcap[i]SUM −gload [i]SUM).

Even with this adaptive choice of a primary stripe,
it is still possible that the departure of a node causes a
stripe to be momentarily left with no forwarding capac-
ity, until another node joins. As in SplitStream, a num-
ber of tree transformations are possible in this case [7],
which can be easily expressed in SAAR. As a last re-
sort, a child relaxes the predicate to select a parent with
forwarding capacity in a different stripe, at the expense
of interior-node-disjointedness. The system behaves like
SplitStream in this respect, except that flexible primary
stripe selection significantly reduces the likelihood of
stripe resource exhaustion.

Moreover, the SAAR-based implementation can sup-
port any number k of stripes, allowing the choice to

2Note that with a coding scheme like MDC [20], the stripes are
equivalent from the perspective of the application.

match the needs of the application coding scheme. To
achieve good load balance in SplitStream, on the other
hand, the number of stripes must correspond to the
routing base in SplitStream’s underlying Pastry overlay,
which is a power of 2. The flexible choice of k, and the
flexible primary stripe selection, are two examples where
the power of SAAR’s anycast primitive makes it possible
to relax constraints on the data plane construction in the
original SplitStream implementation.

The constraint and objective function used to locate
parents now apply on a per stripe basis. For example, to
locate a parent in stripe s, the corresponding predicate is

(gload [s] < gcap[s])∧ (r /∈ gpath[s])∧ (gloss[s] < L).

4.3 Block-Based Multicast
In block-based CEMs [50, 31], a random mesh connects
the members of the data overlay, and a swarming tech-
nique is employed to exchange blocks amongst the mesh
neighbors.

We use SAAR to select and maintain mesh neighbors,
rather than the commonly used random walk [45] or gos-
siping [19] techniques. In Section 5.4, we will briefly
describe the swarming algorithm (based on existing lit-
erature) we have implemented in our block-based proto-
type.

Mesh Neighbor Selection: A member n with forwarding
capacity D (defined in Section 4.1) maintains between M
(e.g., 4 as in Coolstreaming [50]) and M ∗D neighbors.
In steady state, a node expects to receive 1/M of the to-
tal stream bandwidth from a particular neighbor; thus the
minimum number of neighbors is M. Nodes use SAAR
anycast to maintain M neighbors of good quality and ac-
cept up to D∗M neighbors.

To ensure that the mesh construction has sufficient
path diversity, we anycast with t = ⊥ but start from a
random group member, so that the selected node is not
necessarily near the requester. In addition, each node pe-
riodically locates fresh neighbors, even if it has M neigh-
bors of good quality. We have observed that without this
periodic update, nodes that joined early tend to have their
neighbor capacity exhausted and thus they lack links to
nodes that joined much later, resulting in a low path di-
versity and high depth.

A SAAR group associated with a block-based data
plane uses the following state variables and constraint
(no objective function is used):

• State Variables: gcap is the maximum number of neigh-
bors (D ∗M), gload is the current number of neighbors,
gloss is the loss rate.

• Constraint: The predicate is
(gload < gcap)∧ (gloss < L).

Note that the loop-freedom constraint needed in tree-
based systems is not present.

Channel Join Delay The delay from the instant a node joins a multicast event until it receives 90% of the stream rate.
Tree Depth The depth of a node in the dissemination tree.
Continuity Index The fraction of the unique data packets streamed during a node’s membership that were received by the node.
Datastream Gap The time during which a node fails to receive data due to the departure of a node in the data plane.
Node Stress Total number of control messages (not data messages) sent and received per second, per node.

Table 2: Evaluation metrics.

5 Experimental Evaluation

We begin with a description of the experimental setup.
With the exception of the Planetlab [34] experiments in
Section 5.5, we use Modelnet [43] to emulate wide-area
delay and bandwidth in a cluster of PCs connected by
Gigabit Ethernet, each with a 2.6 Ghz CPU and 4 GB
of main memory. We chose Modelnet because it allows
a meaningful comparison of various systems and proto-
cols, as we can deterministically reproduce the network
conditions for each experiment.

Using up to 25 physical cluster nodes, we emulate a
network with 250 stubs. (The Modelnet core ran on a
separate cluster node.) The delays among the stubs were
randomly chosen from the King [22] data set of mea-
sured Internet delay data. Four client nodes are attached
to each stub network for a total of 1000 client nodes. The
client nodes are connected via 1 ms links to their respec-
tive stubs. Neither the access links nor the stub network
were the bottleneck in any of the experiments. Similarly,
we ensured that the CPU was not saturated during the
experiments on any of the cluster nodes.

We emulated overlays of 250–900 virtual nodes. To
emulate an overlay of size n, we randomly selected n
client nodes to participate in the overlay. The forward-
ing capacity (as defined in Section 4.1) of virtual nodes
was limited via their node degrees. The node degrees are
heterogeneous and follow the measured distribution from
the Sripanidkulchai et al. study of live streaming work-
loads [40].

However, we use a minimum node degree of one in
the experiments to ensure that some forwarding capacity
is always available during random node joins and depar-
tures. Also, we impose a maximum degree cap to achieve
a given mean Resource Index (RI), where mean RI is the
ratio of the total supply of bandwidth to the total demand
for bandwidth. Unless stated otherwise, we use degree
caps of (MIN=1,MAX=6) to achieve a mean RI=1.75.
The degree distribution after enforcing the caps is as fol-
lows: approximately 76.85% of degree 1, 9.5 % of degree
2, 0.34% each of degree 3, 4 and 5, and 12.4% of degree
6. Unless stated otherwise, the multicast source had a
degree of 5.

In the Modelnet experiments, we streamed data from
a single source node at a constant rate of 32 Kbps. We
chose this low rate to reduce the load on the Modelnet
emulation. This does not affect the results, since we are
interested in control efficiency and its impact on the qual-

ity of the data streams. Since the streaming rate is identi-
cal in all systems and we are primarily interested in con-
trol overhead, we exclude data packets when measuring
message overheads. We evaluate the performance of the
various systems using the metrics described in Table 2.

In all experiments, a single SAAR control overlay is
used that includes all participating nodes, irrespective of
their data overlay membership. We use a single span-
ning tree per SAAR group in scenarios without control
overlay churn, and two trees per group otherwise. All re-
ported results are the averages of at least 2 runs. Error
bars, where shown, indicate the minimal and maximal
measured values for each data point. In cases where no
error bars are shown in the plots, the deviation among the
runs was within 3%.

5.1 Effectiveness of SAAR Anycast
Our first set of experiments evaluate the performance
of SAAR’s anycast primitive. No data was streamed in
these experiments.

Locality-awareness: We evaluate the anycast primitive’s
ability to find peers with low delay. We run SAAR with
a traversal threshold t of ⊥ and 2, respectively. To isolate
the effects of using NPS coordinates during tree traversal,
we evaluate SAAR with and without NPS coordinates
(SAAR-NO-NPS), and compare its performance against
a centralized system where peers are chosen either ran-
domly (CENTRAL-Random) or using NPS coordinates
(CENTRAL-NPS). CENTRAL-Global reflects the opti-
mal greedy peer selection based on global knowledge.

We use a 250 node overlay and 10 groups. Peers sub-
scribe to each group with a probability of 0.1, resulting in
an expected group size of 25 peers. Figure 3 shows that
SAAR’s ability to select nearby peers comes close to that
of a centralized solution that uses NPS coordinates. Us-
ing NPS in the tree traversal significantly improves the
results, though even the result without NPS (correspond-
ing to a plain Scribe anycast) is significantly better than
random peer selection.

Load awareness: Next, we evaluate SAAR’s ability to
quickly select peers with available bandwidth under con-
ditions with a low Resource Index (RI), where there are
few nodes with spare bandwidth. Figure 4 compares
SAAR with a centralized peer selection service, while
building a single-tree data overlay of N = 350 nodes. The
centralized peer selection service was placed on a node

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200

C
um

ul
at

iv
e

Fr
ac

tio
n

Proximity of Prospective peer (ms)

CENTRAL-Global
CENTRAL-NPS

SAAR (t=2)
SAAR (t=⊥)

SAAR-NO-NPS
CENTRAL-Random

Figure 3: Locality awareness

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
um

ul
at

iv
e

Fr
ac

tio
n

Anycast Response Time (ms)

CENTRAL-NPS
SAAR RI=1.01
SAAR RI=1.23

Figure 4: Load awareness

such that the average delay to the remaining nodes in the
underlying 250-node stub network was minimized.

We experimented with RI=1.01, in which all nodes
have exactly degree 1, (except the source, which has de-
gree 5) and another setting of RI=1.23 with degree cap
(MIN=1,MAX=2). Even under the harsh RI=1.01 set-
ting, SAAR anycast can select a peer within 1 second in
90% of the cases. This is because SAAR’s anycast tree
traversal prunes subtrees with no capacity based on ag-
gregated information. When a moderate amount of spare
bandwidth is available (RI=1.23), 78% of the anycast re-
sponse times are even lower than those of the centralized
server, because SAAR’s anycast can usually find a peer
by contacting a node that is closer than that server.

During the experiment, the average/median/99th per-
centile number of tree nodes visited during an anycast
was 3.2, 3, and 4 with RI=1.01, and 2.3, 2, and 4 with
RI=1.23. The 95th percentile and the maximum of the to-
tal message overhead during the experiment was less than
4 msgs/sec and 18 msgs/sec, respectively with RI=1.01;
it was less than 3 msg/sec and 12 msgs/sec with RI=1.23.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 .. 10 .. 15 .. 19

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

Tree Depth

CENTRAL-NPS
SAAR

SAAR-NO-DepthOptimization

Figure 5: Tree depth optimization

The maxima were reached at the root node of the group
tree in each case.

Tree depth optimization: The next experiment shows
that SAAR anycast can optimize for metrics like tree
depth effectively. We compare the achieved tree depth
with that of a centralized membership server. 250 nodes
join a channel over a period of 120 seconds. We set
the maximum tree traversal threshold t = 4. During the
traversal, we use aggregated state variables to prune sub-
trees in which the depth of the minimum depth peer with
available capacity is greater than the best choice we have
so far. Figure 5 shows that the tree depths resulting from
using SAAR anycast are almost as good as those ob-
tained with the centralized server. For comparison, we
also included the result for the case when SAAR is be-
ing used without an objective function to minimize tree
depth. Moreover, the anycasts had low traversal over-
head. The 95th percentile and the maximum of the total
message overhead during this experiment was less than 3
msgs/sec and 34 msgs/sec, respectively.

In summary, the decentralized SAAR control plane
can effectively and efficiently select nearby nodes, nodes
with spare capacity, and select nodes subject to metrics
like tree depth.

Control overheads: Next, we present results of a sim-
ple analysis of SAAR’s control overhead. Assume that
we construct a SAAR overlay with N nodes using base-k
routing in the underlying Pastry network. State variables
are propagated once every second. There are G groups
in the system, and the average group size is g. Define
T = g∗G∗ logk N; T is an upper bound on the number of
edges in all the control trees in the system.

The aggregation analysis considers two cases (when
T ≤ kN and when T > kN). If T ≤ kN, then an upper
bound on the average number of control messages sent
and received per node per second due to state aggregation
S = 2∗ T

N . If T > kN, then S = 2∗ (k−1)∗ logk
T
N . Now

let, on average, there be a anycasts per second per group
in the system. The upper bound on the average number
of anycast messages per node per second is simply 2 ∗
logk N

N ∗a∗G.
Consider a large system with 106 nodes, a small num-

ber of large groups (ten groups of 105) and many small
groups (105 groups of ten) in a SAAR overlay with
k = 16. For an average node, the aggregation overhead
in this case is no more than 20 msgs/sec. Even if we as-
sume that each group turns over every 5 minutes, then the
anycast overhead is less than 1

7 msgs/sec for the average
node.

In another configuration, assume that every node is a
member of one group. Irrespective of the size distribu-
tion of the groups, g∗G = N. Here, the average aggrega-
tion overhead is no more than 10 msg/sec and the corre-
sponding anycast overhead is less than 1

15 msg/sec in this
case.

These results are consistent with our measured aver-
age node stress results. We note that the stress at nodes
near the root of a control tree are significantly higher than
average in our implementation. To some extent, this is
inherent in any tree-based control structure. The differ-
ence between maximal and average node stress could be
reduced by limiting the degree of nodes, at the expense
of somewhat deeper trees. Also, the node stress tends to
balance as the number of groups in the same SAAR over-
lay increases, because the group tree roots (and thus the
nodes near the root) are chosen randomly.

5.2 SAAR for Single-Tree Data Overlays

Next, we show the benefits of using the SAAR control
overlay in the design of a single-tree CEM. We com-
pare the performance of the native single-tree ESM sys-
tem [10] with a modified implementation of ESM using
SAAR.

350 nodes join a single-tree CEM and continue to
leave/rejoin the multicast channel with an exponentially
distributed mean session time of 2 minutes and a mini-
mum of 15 seconds. To achieve a large mean group size,
the nodes rejoin the same multicast channel after an of-
fline period of 10 sec. The experiment lasts for 1 hour.
We compare the performance of four systems below. All
systems attempt to minimize the tree depths while locat-
ing parents.

Native-ESM: We use ESM [10] as an example of a
single-tree CEM based on an unstructured overlay. A
single overlay is used for control and data. The overlay
is optimized for data dissemination; state information is
disseminated epidemically to enable peer selection.

Scribe: We use Scribe as an example of a single-tree
CEM based on a structured overlay. A single overlay is
used for control and data. Scribe’s standard pushdown

policy is used to enforce the degree bounds at the inter-
mediate nodes in the Scribe tree [8].

SAAR-ESM: A version of ESM that uses a shared
SAAR overlay for control. Nodes remain in the SAAR
control overlay with an exponentially distributed session
time with a mean of 30 minutes, for the experiment dura-
tion. As before, peers switch between data overlays with
mean session time of 2 minutes and a minimum of 15
seconds. As our results show, nodes have an incentive to
remain in the control plane longer than in any particular
data channel, because it enables them to join and switch
between channels much faster while the overhead is very
low.

SAAR-ESM-Unshared: To isolate the benefits of a
more stable control plane membership, we make nodes
join/leave the SAAR control overlay whenever they
join/leave a multicast group in this system. Otherwise,
the system is identical to SAAR-ESM.

Figure 6 shows the results of our experiments. Among
all systems, SAAR-ESM achieves easily the best re-
sults for join delay, continuity and node stress. SAAR-
ESM-Unshared appears to beat SAAR-ESM in terms of
tree depth. This comparison turns out to be mislead-
ing, however, because the average steady-state group size
achieved by SAAR-ESM-Unshared during the experi-
ment is only 55% that of SAAR-ESM’s, due to the large
difference in join delays in combination with churn. The
average group sizes in the experiment are 225 (Native-
ESM), 180 (Scribe), 290 (SAAR-ESM) and 160 (SAAR-
ESM-Unshared), respectively.

The long tail in the SAAR-ESM join delay distribution
corresponds to the initial joins when a node is not yet a
member of the control overlay. Subsequent joins exhibit
very low join delay: 99.8% of such joins had a delay of
less than 1.5 sec. Native-ESM exhibits higher join de-
lay and a lower continuity index than SAAR-ESM. Ad-
ditional results (not shown) show that this gap widens
with higher churn or larger groups. This is because in
Native-ESM, state information propagates slowly, caus-
ing increasing staleness as churn or group size increases.

The results confirm earlier observations that Scribe
exhibits deep trees and relatively high join delay under
churn or when the node capacities are heterogeneous [3].
One reason is that the overlay structure imposes con-
straints on the data plane, resulting in Scribe pushdown
being the norm rather than the exception. Another reason
is that churn disrupts the coupled control and data over-
lay in Scribe. The combined effect is higher tree repair
time, which leads to a poor continuity index.

The node stress incurred by SAAR-ESM is generally
lowest among all systems, except for a longer tail. (The
tail is a result of higher node stress near the top of the
group tree.) This result indicates that the overall reduc-
tion in control churn in the shared SAAR overlay more

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 15000 30000 45000 60000

C
um

ul
at

iv
e

Fr
ac

tio
n

SAAR-ESM 	 	 SAAR-ESM-Unshared

(a) Join Delay (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
um

ul
at

iv
e

Fr
ac

tio
n

Native-ESM Scribe

(b) Continuity Index

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
um

ul
at

iv
e

Fr
ac

tio
n

(c) Tree Depth

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
um

ul
at

iv
e

Fr
ac

tio
n

(d) Node Stress (msgs/node/sec, control only)

Figure 6: Single-tree CEM performance

than outweighs the additional overhead for maintaining a
separate control overlay.

Comparing SAAR-ESM and SAAR-ESM-unshared
confirms that a shared control overlay leads to lower
join delays, better continuity and reduced node stress.
Even SAAR-ESM-Unshared, however, yields dramati-
cally better continuity than Native-ESM and Scribe. This
speaks to the power of the SAAR anycast primitive, in-
dependent of the control plane sharing.

We believe that shielding the control plane from churn
due to channel switching, as provided by a shared SAAR
control overlay, is a critical optimization for applications
like IPTV [23]. There, join and switching delays are very
important and users switch among channels much more
frequently than they start/stop their IPTV application.

We performed additional experiments comparing the
performance of Native-ESM and SAAR-ESM with dif-
ferent levels of data and control overlay churn, and under
flash crowd conditions. We also compared SAAR-ESM

with a centralized membership service in terms of scala-
bility. For lack of space, we only summarize the results
here. More detailed results can be found in a technical
report [28].

Lower Membership Churn: We repeated the previous
experiment with a mean session time of 5 minutes. The
join delays in Native-ESM improved significantly, with
a 75th percentile of 15 sec. For SAAR-ESM, as before,
99.8% of joins where a node was already a part of the
SAAR overlay completed within 1.5 secs. The continuity
index of Native-ESM also improved significantly, with a
75th percentile of over 90. For SAAR-ESM, the 98th
percentile continuity index improved to over 98.

These results show that Native-ESM, which was not
designed for very high membership churn, performs well
under less severe membership dynamics. However, even
under these conditions, SAAR lends ESM significantly
better performance.

Control overlay churn: We also evaluated SAAR-ESM
with different levels of churn in the control overlay, and
with one or two spanning trees per SAAR group.

Even at a mean control overlay session time of only 5
minutes (exponential distribution) and an overlay size of
350 nodes, using 2 trees per group yields anycast perfor-
mance comparable to that of a single tree with no overlay
churn. An exception are join events that involve a control
overlay join: consistent with the results in Figure 6(a),
these have a noticeably higher join delay. The overhead
doubles when two trees are used, but the average over-
head is still modest at 10 messages/second/node.

Flash crowds: A group of 350 nodes join an event within
15 seconds, and remain in the group for 15 minutes. For
SAAR-ESM, the nodes are already part of the control
overlay when the experiment starts.

SAAR-ESM is able to connect nodes to the data over-
lay quickly: the 90th percentile of the join delay distri-
bution is less than 4 secs. The corresponding 90th per-
centile for Native-ESM is more than 8 secs. SAAR-ESM
is able to maintain low tree depths, with an 80th per-
centile of 7 and a maximum of 8. For comparison, in
Native-ESM, the 80th percentile and the maximum tree
depths are both 8. In SAAR-ESM, 90% of nodes have a
stress of less than 3, while Native-ESM has an average
node stress of 21.

These results show that SAAR’s anycast primitive
yields significantly lower join delay and lower overhead
than Native-ESM under flash crowd conditions, while
maintaining comparable tree depth.

Scalability: We compare SAAR-ESM with a version
that uses a centralized membership service. We use data
overlays of sizes 54, 180, 540 and 900 nodes, all at a
mean data session time of 2 minutes (exponential dis-
tribution) and a minimum of 15 secs. In SAAR-ESM,
all nodes join the control overlay before the start of the
experiment and remain in the overlay during the experi-
ment.

The centralized membership service handled 50,
177, 662, 1084 messages/second at the various overlay
sizes, showing an expected linear increase in the load.
Due to the resulting bottleneck, the 90th percentile
peer selection delays of the central membership service
increases as 750 ms, 1.1 sec, 2.4 sec, 18 sec, respectively,
for the different overlay sizes. For SAAR-ESM, the
90th percentile anycast delay increases from 600ms
at 54 nodes to only 1.2 seconds at 900 nodes. The
average continuity index achieved with the centralized
membership service and SAAR-ESM at a group size
of 900 was 80.3 and 97.6, respectively. This clearly
demonstrates the scalability of the SAAR control plane.

In summary, the results clearly show that SAAR’s effi-
cient anycast primitive yields ESM superior join delays,

better content delivery quality, increased robustness to
churn and increased scalability. Moreover, the shared
SAAR control overlay dramatically reduces join delays
and increases efficiency by reducing membership churn
in the control plane. Additionally, these benefits are re-
alized at a lower overhead than Native-ESM and Scribe.
Comparing the SAAR-ESM with the native ESM sys-
tem, we have shown that using a decoupled, shared con-
trol plane can achieve the best of both data dissemina-
tion quality and control efficiency. SAAR is effective in
constructing high quality data overlays under flash crowd
scenarios and high data overlay dynamics, while toler-
ating control plane churn. Finally, unlike a centralized
membership service, the decentralized design of SAAR
allows it to support data overlays of large size.

5.3 SAAR multi-tree CEM performance

To show the effectiveness of SAAR in supporting multi-
tree data planes, we have implemented a prototype multi-
tree CEM based on SAAR, as described in Section 4.2.
We use five data stripe trees per data overlay. 350 nodes
with heterogeneous degree distribution (mean RI=1.23
and degree caps MIN=1,MAX=2) join the control over-
lay in the first 10 minutes, and then join the data overlay
in the next 5 minutes. They remain in the data overlay for
another 10 minutes, and then continue to leave/rejoin the
data overlay with a mean session time of 2 minutes (ex-
ponential distribution) and a minimum of 15 seconds for
the remainder of the experiment. To achieve a large in-
stantaneous group size, nodes re-join the same data over-
lay 10 seconds after leaving. Nodes do not depart from
the control overlay during the experiment, which lasted
for approximately one hour. We show that SAAR can ef-
fectively balance resources among the stripe trees despite
constrained resources and heterogeneous node degrees.
We also measure the resulting join delay, continuity in-
dex and control overhead.

Figure 7(a) shows the instantaneous group size, as well
as the minimum and the maximum of the total forward-
ing resources among the stripes. The minimum resources
are always above the demand, i.e., the group size. The
fluctuations in stripe resources result from membership
churn. For instance, when a node of degree 6 leaves, the
capacity in its primary stripe drops by 6∗5 = 30 units. In
all cases, however, the imbalance is quickly rectified due
to the adaptive primary stripe selection policy for newly
joining nodes.

Figure 7(b) plots, for each data sequence number, the
minimum number of stripes that 95% of the nodes are
able to receive. Every second, the multicast source incre-
ments the sequence number. For each sequence number,
there are 5 data packets generated, one for each stripe.
Thus, a value of 4 stripes received means that 95% of the
nodes are able to receive 4 or more stripes.

 0

 100

 200

 300

 400

 500

 1000 2000 3000

Fo
rw

ar
di

ng
 R

es
ou

rc
es

Time (sec)

All nodes have joined data overlay

Nodes start leaving/rejoining

Stripe Resource Max
Stripe Resource Min

Group Size

(a) Resource Balance

 0

 1

 2

 3

 4

 5

 6

 0 1000 2000 3000

N
um

be
r o

f S
tri

pe
s

R
ec

ei
ve

d

Time (sec)

All nodes have joined data overlay

Nodes start leaving/rejoining

(b) Stripes Recieved

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000

C
um

ul
at

iv
e

Fr
ac

tio
n

1 out of 5
2 out of 5
3 out of 5
4 out of 5
5 out of 5

(c) Join Delay (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 60 70 80 90 100

C
um

ul
at

iv
e

Fr
ac

tio
n

(d) Continuity Index

Figure 7: SAAR multi-tree CEM performance

Figure 7(c) shows the CDF of the join delay of nodes,
reflecting how long it took to receive data on different
numbers of stripes. Assuming that receiving 4 out of 5
stripes is sufficient to construct the full data stream (e.g.
using redundant coding like MDC/Erasure coding), the
95th percentile join delay is 2.6 seconds.

Figure 7(d) shows the CDF of the continuity index
among the nodes, calculated with respect to the fraction
of data bytes received on all stripes. The average continu-
ity index observed was 99.1. The average node stress (not
shown) on the control plane while supporting the multi-
tree data overlay is low, with 90% of the nodes handling
less than 4 msgs/sec and a maximum node stress of 90
msgs/sec.

We also performed experiments with a higher RI=1.75
and a resulting wider range of node degrees (MIN=1,
MAX=6). The results are virtually identical, with a 95th
percentile join delay for acquiring 4 out of 5 stripes of
2.2 seconds and an average continuity index of 99.2.

We conclude that SAAR can effectively support a
multi-tree data plane design. SAAR can ensure resource
balance among the interior-node-disjoint stripe trees in
heterogeneous environments. As a result, the resulting
CEM system simultaneously realizes the benefits of per-
formance optimized data overlays and the benefits of a
multi-tree design in terms of tolerance to loss and mem-
bership churn.

5.4 SAAR for Block-based Data Overlays
We built a prototype block-based swarming CEM based
on SAAR. The mesh construction, as described in Sec-
tion 4.3, borrows from Chunkyspread [44]. The swarm-
ing block-exchange algorithm we use closely follows
Coolstreaming [50]. Briefly, we stripe content into 1
second blocks. Once every second, neighbors exchange
their block availability within a sliding window of blocks
covering 60 seconds. Missing blocks in this 60 sec buffer

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 60 70 80 90 100

C
um

ul
at

iv
e

Fr
ac

tio
n

(a) Continuity Index

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

C
um

ul
at

iv
e

Fr
ac

tio
n

(b) Block Dissemination Hops

Figure 8: SAAR block-based CEM performance

are requested randomly from the neighbors in inverse
proportion to their bandwidth utilizations. We addition-
ally implemented Request-Overriding as explained in
Chainsaw [31] to ensure that the multicast source sends
out every block at least once.

350 nodes with a heterogeneous degree distribution
(mean RI=1.23 and degree caps MIN=1,MAX=2) join
the control overlay in the first 10 minutes, and then join
the data overlay in the next 5 minutes. They remain in the
data overlay for another 10 minutes and then continue to
leave/rejoin the data overlay with a mean session time of
2 minutes (exponential distribution) for the remainder of
the experiment. We enforce a minimum session time of
60 seconds to allow them to fill their initial buffer worth
of 60 secs. To achieve a large instantaneous group size,
nodes re-join the same data overlay 10 secs after leaving.
Nodes do not depart from the control overlay during the
experiment, which ran for approximately one hour.

Figure 8 shows the CDF of the continuity index, and
the distribution of overlay hops taken per block in the
mesh. The average continuity index is 91.6. The aver-
age control node stress (not shown) is low, with 90% of
the nodes handling less than 3 msg/sec and a maximum
node stress of 80 msgs/sec. Note that the join delay in
block-based systems is dominated by the size of the slid-
ing block window, 60 secs in this case.

We also performed experiments with degree caps of
(MIN=1, MAX=6, RI=1.75). Here, the average conti-
nuity index improved to 96.8, while the distribution of
overlay hops was similar.

An additional experiment matches a configuration re-
ported in published results for Coolstreaming [50]. 150
nodes with homogeneous node degrees and RI=1.25 are
part of the SAAR control overlay and join a data chan-
nel within 1 min. At a mean data overlay session time
(exponentially distributed) of 50/100/200 sec, we mea-
sured an average continuity index of 89, 94 and 98, re-

spectively. The corresponding results reported for Cool-
streaming are 89, 91 and 94, respectively. Thus, our im-
plementation appears to perform on par with Coolstream-
ing. However, differences in the experimental conditions
(Modelnet vs. Planetlab, RI=1.25 vs. unspecified RI,
32 Kbps vs. 500 Kbps streaming rate) do not support a
stronger conclusion. In summary, our results show that
SAAR can support block-based swarming CEMs effec-
tively.

5.5 Planetlab Experiment

To demonstrate that our SAAR-ESM prototype can re-
alize its benefits when deployed in the Internet, we per-
formed an additional experiment in the Planetlab testbed.
We use a single-tree CEM with a streaming data rate of
100 Kbps. Approximately 125 nodes (chosen randomly
across all continents among nodes that had reasonable
load averages) join a channel in the first 2 minutes and
then continue to leave/rejoin the channel with a mean
session time (exponential distribution) of 2 minutes and
a minimum of 15 seconds, for an experiment duration of
15 minutes. The node-degree distribution was heteroge-
neous and used caps of (MIN=1,MAX=6), RI=1.75 In
SAAR-ESM, the nodes are part of the control overlay at
the start of the experiment, and they do not depart the
control overlay during the experiment. Two group span-
ning trees were used in SAAR to mitigate the effects of
excessive scheduling delays due to high loads on Planet-
lab machines, which can affect anycast response times.

Figure 9 compares SAAR-ESM and Native-ESM with
respect to join delay and continuity index. SAAR-ESM
has a 90th percentile join delay and tree repair time (not
shown) of 2.5 seconds, which results in good continuity
indices. Under high churn, Native-ESM is not able to
locate neighbors fast enough. Therefore, it suffers from

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 15000 30000 45000 60000

C
um

ul
at

iv
e

Fr
ac

tio
n

Native-ESM
SAAR-ESM

(a) Join delay (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
um

ul
at

iv
e

Fr
ac

tio
n

Native-ESM
SAAR-ESM

(b) Continuity Index

Figure 9: Planetlab single-tree CEM performance

higher join delay and tree repair times, which result in a
lower continuity index.

The absolute results obtained with SAAR-ESM on
Planetlab are not as good as in Modelnet, although the
same trends hold. In absolute terms, the 90th percentile
anycast response time in one group spanning tree in-
creased from 500 msec in Modelnet to 3.5 seconds on
Planetlab, although the number of anycast hops taken
was similar. The continuity indices decreased accord-
ingly. We traced the cause to excessive processing delays
on Planetlab nodes, where the 50th and 90th percentile
load averages3 were approximately 10 and 20, respec-
tively. Planetlab is a shared testbed infrastructure that
tends to be heavily oversubscribed. We believe that most
deployments in the Internet would likely encounter less
loaded nodes, and thus achieve results much closer to our
Modelnet results.

Native-ESM appears to be less sensitive to the exces-
sive scheduling delays in Planetlab than SAAR-ESM.
The likely reason is its proactive epidemic membership
protocol, which maintains a list of multiple candidate
neighbor nodes at all times. SAAR-ESM could imple-
ment an optimization that would have a similar effect:
cache the results of previous anycasts and attempt to use
nodes on this list while starting a new anycast in paral-
lel. We have not yet implemented this optimization, since
we are not convinced it is necessary in most practical de-
ployments.

6 Conclusions

We have presented SAAR, a shared control overlay for
CEM systems. SAAR separates the control mechanism
from the policy of peer selection in CEM systems. By
factoring out the control plane into a separate overlay

35 minute average as reported by ’uptime’

network, SAAR enables powerful and efficient peer se-
lection, while avoiding constraints on the structure of
the data dissemination overlay. Moreover, once decou-
pled, the control overlay can be shared among many data
overlay instances. This sharing increases efficiency and
dramatically reduces the delay for joining a channel or
switching between channels, which is critical for IPTV.

SAAR’s anycast primitive locates appropriate data
overlay neighbors based on a constraint and an objective
function. The primitive can be used to build and main-
tain a variety of data overlay organizations. We evaluate a
prototype implementation of SAAR experimentally. The
results show that SAAR can effectively support single-
tree, multi-tree and block-based data plane organizations.
Its control efficiency allows it to achieve rapid channel
join/switching and high content dissemination quality at
low overhead, even under high churn and at large scale.

7 Acknowledgments

This work was supported in part by the Max Planck
Society, by National Science Foundation grants (ANI-
0225660, CNS-0520187, CNS-0085920, CNS-0435382,
CNS-0448546, ANI-0092806) and by Bhattacharjee’s
Slown Fellowship. We would like to thank Jeff Hoye,
Andreas Haeberlen and Alan Mislove for their help and
advice. We would also like to thank the anonymous re-
viewers and our shepherd Albert Greenberg for helpful
feedback on earlier versions of the paper.

References
[1] Akamai FreeFlow. http://www.akamai.com.
[2] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable

application layer multicast. In Proc. of ACM SIGCOMM, Aug.
2002.

[3] A. Bharambe, S. Rao, V. Padmanabhan, S. Seshan, and H. Zhang.
The impact of heterogeneous bandwidth constraints on DHT-
based multicast protocols. In Proc. of IPTPS ’05, Feb. 2005.

[4] S. Bhattacharjee, M. H. Ammar, E. W. Zegura, V. Shah, and
Z. Fei. Application-layer anycasting. In Proc. of INFOCOM’97,
pages 1388–1396, 1997.

[5] R. Braynard, D. Kostic, A. Rodriguez, J. Chase, and A. Vahdat.
Opus: An overlay peer utility service. In Proc. of 5th Interna-
tional Conference on Open Architectures and Network Program-
ming(OPENARCH ’02), June 2002.

[6] M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Proximity neigh-
bor selection in tree-based structured peer-to-peer overlays. Tech-
nical Report MSR-TR-2003-52, Microsoft Research, 2003.

[7] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh. SplitStream: High-bandwidth multicast in a coop-
erative environment. In Proc. of SOSP 2003, Oct. 2003.

[8] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.
SCRIBE: A large-scale and decentralized application-level mul-
ticast infrastructure. IEEE JSAC, 20(8), Oct. 2002.

[9] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. Scal-
able application level anycast for highly dynamic groups. In Proc.
NGC’2003, Sept. 2003.

[10] Y. Chu, A. Ganjam, T. Ng, S. Rao, K. Sripanidkulchai, J. Zhan,
and H. Zhang. Early experience with an Internet broadcast system
based on overlay multicast. In Proc. of USENIX Annual Technical
Conference, 2004.

[11] Y. Chu, S. Rao, and H. Zhang. A case for end system multicast.
In ACM Sigmetrics, pages 1–12, June 2000.

[12] B. Chun, P. Wu, H. Weatherspoon, and J. Kubiatowicz.
ChunkCast: An anycast service for large content distribution. In
Proc. of IPTPS ’06, Feb. 2006.

[13] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica.
Towards a common API for structured peer-to-peer overlays. In
Proc. IPTPS ’03, Feb. 2003.

[14] S. Deering and D. Cheriton. Multicast routing in datagram inter-
networks and extended LANs. ACM Transactions on Computer
Systems, 8(2), May 1990.

[15] J. Dunagan, N. Harvey, M. Jones, M. Theimer, and A. Wol-
man. Subscriber/volunteer trees: Polite, efficient overlay mul-
ticast trees. Technical Report MSR-TR-2004-131, Microsoft Re-
search, 2004.

[16] M. Freedman, E. Freudenthal, and D. Mazieres. Democratizing
content publication with Coral. In Proc. NSDI ’04, Mar. 2004.

[17] M. Freedman, K. Lakshminarayan, and D. Mazieres. Oasis: Any-
cast for any service. In Proc. NSDI ’06, May 2006.

[18] Freepastry. http://freepastry.rice.edu/.
[19] A. Ganesh, A. Kermarrec, and L. Massoulie. Scamp: Peer-to-

peer lighweight membership service for large-scale group com-
munication. In Proc. NGC’2001, Nov. 2001.

[20] V. Goyal. Multiple description coding: Compression meets the
network. IEEE Signal Processing Magazine, 18(5):74–93, Sept.
2001.

[21] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica. The impact of DHT routing geome-
try on resilience and proximity. In Proc. ACM SIGCOMM 2003,
Aug. 2003.

[22] K. Gummadi, S.Saroiu, and S. Gribble. King: Estimating latency
between arbitrary internet end hosts. In Proc. ACM SIGCOMM
IMW, Nov. 2002.

[23] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross. Insights into
PPLive: A measurement study of a large-scale P2P IPTV sys-
tem. In Proc. of Workshop on Internet Protocol TV(IPTV) ser-
vices over World Wide Web(WWW’06), May 2006.

[24] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao. Distributed
object location in dynamic network. In Theory of Computing Sys-
tems, Springer verlag, Mar. 2004.

[25] J. Jannotti, D. Gifford, K. L. Johnson, M. F. Kaashoek, and
J. W. O. Jr. Overcast: Reliable multicasting with an overlay net-
work. In Proc. of OSDI 2000, Oct. 2000.

[26] D. Katabi and J. Wroclawski. A framework for scalable global
IP-Anycast (GIA). In Proc. ACM SIGCOMM’00, 2000.

[27] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High
bandwidth data dissemination using an overlay mesh. In Proc. of
SOSP, 2003.

[28] A. Nandi, A. Ganjam, P. Druschel, T. Ng, I. Stoica, H. Zhang,
and B. Bhattacharjee. SAAR: A shared control plane for over-
lay multicast. Technical Report Technical Report 2006-2, Max
Planck Institute for Software Systems, Oct. 2006.

[29] T. Ng and H. Zhang. A network positioning system for the inter-
net. In Proc. of USENIX Annual Technical Conference, 2004.

[30] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai. Dis-
tributing streaming media content using cooperative networking.
In Proc. of NOSSDAV, May 2002.

[31] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. Mohr.
Chainsaw: Eliminating trees from overlay multicast. In Proc. of
IPTPS 2005, Feb 2005.

[32] C. Partridge, T. Mendez, and W. Milliken. RFC 1546: Host any-
casting service, Nov. 1993.

[33] P. Pietzuch, J. Shneidman, J.Ledlie, M. Welsh, M. Seltzer, and
M. Roussopoulos. Evaluating DHT-based service placement for
stream-based overlays. In Proc. IPTPS ’05, Feb. 2005.

[34] Planetlab. http://www.planet-lab.org/.
[35] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.

A scalable content-addressable network. In Proc. ACM SIG-
COMM’01, Aug. 2001.

[36] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-
level multicast using content-addressable networks. In Proc. of
NGC, 2001.

[37] R. Renesse, K. Birman, and W.Vogels. Astrolabe: A robust and
scalable technology for distributed system monitoring, manage-
ment and data mining. ACM TOCS, 21(2):164–206, May 2003.

[38] S. Rhea, D.Geels, T. Roscoe, and J. Kubiatowicz. Handling churn
in a DHT. In Proc. of USENIX Annual Technical Conference,
2004.

[39] A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems. In
IFIP/ACM Middleware 2001, Nov. 2001.

[40] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang. The
feasibility of supporting large-scale live streaming applications
with dynamic application end-points. In Proc. of SIGCOMM
2004, 2004.

[41] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Inter-
net indirection infrastructure. In SIGCOMM’2002, Aug. 2002.

[42] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for Internet
applications. In Proc. ACM SIGCOMM’01, Aug. 2001.

[43] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic,
J. Chase, and D. Becker. Scalability and accuracy in a large-scale
network emulator. In Proc. of OSDI 2002, Dec. 2002.

[44] V. Venkataraman, P. Francis, and J. Calandrino. Chunkyspread:
Multi-tree unstructured peer-to-peer multicast. In Proc. IPTPS
’06, Feb. 2006.

[45] V. Vishnumurthy and P. Francis. On heterogeneous overlay con-
struction and random node selection in unstructured p2p net-
works. In Proc. INFOCOM 2006, April 2006.

[46] L. Wang, V. Pai, and L. Peterson. The effectiveness of request
redirection on CDN robustness. In Proc. of OSDI 2002, Dec.
2002.

[47] W. Wang, D. Helder, S. Jamin, and L. Zhang. Overlay optimiza-
tions for end-host multicast. In Proc. of 4th Intl. Workshop on
Networked Group Communication (NGC), Oct. 2002.

[48] P. Yalagandula and M. Dahlin. A scalable distributed information
management system. In Proc. ACM SIGCOMM 2004, Aug. 2004.

[49] B. Zhang, S. Jamin, and L. Zhang. Host multicast: A framework
for delivering multicast to end users. In Proc. of INFOCOM 2002,
2002.

[50] X. Zhang, J. Liu, B. Li, and T. Yum. Donet: A data-driven overlay
network for efficient live media streaming. In Proc. INFOCOM
2005, March 2005.

