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Abstract
People use an increasing number of personal elec-

tronic devices like notebook computers, MP3 players and
smart phones in their daily lives. Making sure that data
on these devices is available where needed and backed up
regularly is a time-consuming and error-prone burden on
users. In this paper, we describe and evaluate PodBase, a
system that automates storage management on personal
devices. The system takes advantage of unused storage
and incidental connectivity to propagate the system state
and replicate files. PodBase ensures the durability of data
despite device loss or failure; at the same time, it aims to
make data available on devices where it is useful.

PodBase seeks to exploit available storage and pair-
wise device connections with little or no user attention.
Towards this goal, it relies on a declarative specification
of its replication goals and uses linear optimization to
compute a replication plan that considers the current dis-
tribution of files, availability of storage, and history of
device connections. Results from a user study in ten real
households show that, under a wide range of conditions,
PodBase transparently manages the durability and avail-
ability of data on personal devices.

1 Introduction

Modern households have multiple personal electronic
devices, such as digital cameras, MP3 players, gaming
devices and smart phones, in addition to desktop and
notebook computers. As users increasingly depend on
such devices, it is important to ensure thedurability of
data in the event of loss or failure of a device, and the
availability of the latest data on all appropriate devices.

Ensuring that data is durable is an onerous task even
for a single home computer, and the situation is getting
worse as the number and diversity of devices increase.
Users must keep track of all devices that need to be
backed up and perform the appropriate actions on a reg-
ular basis. Anecdotal evidence suggests that many users

fail to ensure the durability of their data [14, 17]. Thus,
users face the risk of data loss, just as they are becoming
increasingly dependent on digital information.

Making sure that a given data object is available on all
the devices that need it is equally burdensome. A user
must regularly connect and synchronize devices to en-
sure, for instance, that changes to her address book are
propagated to all communication devices, and that addi-
tions to her music library are present on all devices capa-
ble of playing music.

In this paper we presentPodBase, a system that man-
ages data on personal devices in an autonomous, decen-
tralized, device- and operating system-independent man-
ner. The system is transparent to the user, takes advan-
tage of unused storage space and exploits incidental pair-
wise connectivity that naturally occurs among the de-
vices, (e.g., via Wi-fi, Bluetooth or USB).

With PodBase, each device stores metadata that de-
scribes a household’s devices and data. During pair-
wise connections, devices reconcile their metadata and
exchange data. Over time, metadata and data propagate
among a household’s devices. PodBase progresses to-
ward a state where, subject to available storage and in
order of decreasing priority, (i) the contents of any failed
device are restored to a replacement device, (ii) each ob-
ject has a certain minimal number of replicas, and (iii)
each object is available on devices that can potentially
use it.

Results from our user study show that many house-
holds have sufficient storage and connectivity to permit
full replication. However, there is typically not one hub
device with plenty of storage to which all other devices
are regularly connected with sufficient bandwidth. To en-
sure full and timely replication, PodBase must therefore
be able to use free space on all devices, replicate data be-
tween any pair of devices, and possibly even move data
via sequential pairwise connections.

Given the vast space of possible configurations, de-
vice connection sequences and replication plans, design-
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ing an appropriate replication algorithm for PodBase is
not straightforward. Simple, greedy algorithms are stable
and robust but tend to get stuck in local minima. PodBase
instead uses linear optimization to compute an adaptive
replication plan from a declarative specification of the
goal state, and a local view of the current replication,
available storage and history of device connections. As
a result, PodBase is highly adaptive and provably stable.
Moreover, it finds sophisticated solutions in unexpected
scenarios. For instance, without being programmed for
this case, the system takes advantage of “sneakernets”,
i.e. mobile devices, to transport data between home and
office, thus avoiding slow broadband connections.

The rest of this paper is structured as follows. Sec-
tion 2 states the requirements. We discuss related work
in Section 3. Section 4 presents the design of PodBase
and Section 5 describes its replication algorithm. Sec-
tion 6 presents our evaluation and Section 7 concludes.

2 Requirements

PodBase is intended for a household with one or more
users and a set of shared personal devices. Based on the
results of a feasibility study [20], we can characterize this
environment as follows:

• Devices are periodically connected, such that any
pair of devices can eventually communicate via a
series of sequential pairwise connections.

• A device may fail or be lost at any time. However,
the failure or loss of many devices during a short
period of time is unlikely.

• Devices may be turned off when not in use; it cannot
be assumed that any one device is always online.

• The system must be able to handle a wide range
of usage patterns and device configurations, with-
out attention from an expert system administrator.

An important aspect of the target environment is that
most users don’t have the expertise, interest or time to
manage data and storage on their devices. They expect
the system to do something reasonable automatically.
Unlike a system designed for expert users (like the au-
thors and readers of this paper), PodBase must be able to
achieve its goals with little user expertise and attention.

2.1 Desired system behavior

In this section, we describe the desired system behavior
intuitively and by example. A more detailed description
of PodBase’s properties, design and implementation fol-
lows in subsequent sections.

PodBase aims to relieve users from having to worry
about thedurability andavailability of their data. Dura-
bility requires that the failure or loss of a device not result
in the loss of user data. Availability requires that each
device store the latest collection of datarelevantto that
device. For example, each communication device should
store the latest version of the address book and, subject to
available storage space, a shared music collection should
be available on all devices capable of playing music.

As an example, Alice and Bob share a household. Al-
ice has a notebook, an MP3 player and an external USB
hard drive. Bob has a notebook and a desktop computer
at his office. Their home has a wireless network con-
nected to the Internet via a broadband connection. On
workdays Alice and Bob bring their notebooks to their
offices and perform their daily work, such as writing doc-
uments and using email.

At night both return home with their notebooks and
use them to surf the web, play games, or listen to mu-
sic. Although they have important data stored on their
notebooks, they rarely back up their data.

PodBase should automatically perform the following
tasks without any explicit action by Alice or Bob:

• Every night, new or modified files are replicated, in
cryptographically sealed form, between Alice and
Bob’s notebooks via the wireless network. (This
works even when they are on vacation, e.g., when
the pictures Alice uploads from her camera are
replicated on Bob’s notebook.)

• When Bob purchases a new CD and rips it to his
hard drive, a replica of the mp3 file is later moved
to Alice’s notebook. When Alice connects her MP3
player to charge, it also receives the new music.

• Whenever Alice or Bob edit their personal address
books, the changes are automatically propagated to
their other communication devices.

• Whenever Alice’s USB hard drive is connected to
her laptop, additional replicas of the files and repli-
cas on her laptop are made.

• Bob’s office desktop is connected to his home via
a broadband connection. Rather than transfer data
using the slow connection, the system uses Bob’s
notebook disk to rapidly replicate data between
home and work.

• When Bob’s notebook is running low on disk space
(after removing any replicas), the system asks Bob
if it should move not recently accessed movie files
to Alice’s USB drive, which has plenty of space.
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PodBase can recover from otherwise costly incidents.
For example, imagine Alice’s laptop is stolen. With Pod-
Base, she is able to restore the data on the lost device’s
hard drive to her replacement notebook. When she con-
nects over the wireless network to Bob’s notebook, some
files from her stolen notebook are restored on the new
device. When she later connects her new notebook to
the USB drive, the remaining files are restored. Thanks
to the replication between home and Bob’s office, they
could recover all data even after a total loss of the home
or office devices.

An important goal we set ourselves for PodBase is
transparency: the system’s background activity should
not affect users’ experience during normal operation. By
default, the system does not remove user files, automati-
cally propagate changes to user files or attempt to recon-
cile conflicting versions of concurrently modified files.
Instead, PodBase maintains all versions of a file along
with their modification history. Optional plug-ins can
define file type-, device-, or application-specific consis-
tency semantics.

PodBase’s transparency is consistent with the princi-
ple of least surprise: by default, the installation of the
system should not change a device’s user-visible behav-
ior during normal operation. Advanced behavior (e.g.,
automatic propagation of changes to the address book)
can be enabled explicitly by enabling appropriate plug-
ins.

3 Related work

PodBase is in the spirit of Weiser’s Ubiquitous Comput-
ing vision [39], as it transparently manages storage on
personal devices. To the best of our knowledge, no prior
system provides automatic durability and availability of
data on personal devices, without relying on central stor-
age, a fast Internet connection or explicit user attention.

With Personal Server [37], users carry a personal stor-
age device and use input/output devices found in the en-
vironment. In Omnistore [10], data is maintained on a
central store, while other devices interact to cache data or
relay data to the store. The Roma system [32] provides
a shared, centralized metadata service that can be used
to build higher-level services for synchronization, con-
sistency and availability. Apple TimeMachine [34] and
Windows Home Server [40] provide automatic backup
to a dedicated storage node. Unlike PodBase, the above
systems rely on a dedicated storage device, are vulnera-
ble to the failure or loss of that device, and cannot exploit
unused storage on other devices.

Availability of data on a set of devices can be provided
by a distributed file system that supports disconnected
operation, like Bayou [33], Ficus [19], and Coda [12].
Some systems additionally support partial replication to

meet the needs of mobile devices, e.g. PRACTI [1],
WinFS [42], Roam [24], Ensemblue [18], the Few File
system [22] and Segank [29]. Oasis [25] is an SQL-
based data management system for pervasive computing
applications. PodBase differs from these systems in that
it replicates data for availabilityand durability, is fully
automatic, takes advantage of pairwise connections and
unused storage efficiently, requires no centralized server,
and is device, vendor and OS-independent.

Cimbiosys [23] is a platform for content-based par-
tial replication. Like PodBase, Cimbiosys carefully man-
ages the amount of information that has to be exchanged
during pair-wise connections. The goal of Cimbiosys is
to facilitate replication by propagating updates between
peer devices. Applications or users are expected to spec-
ify filters for what each device should store. Unlike Pod-
Base, Cimbiosys does not specify a replication policy for
either availability or durability, and instead provides a
replication platform for higher level applications. For
replication to eventually reach the desired state, Cim-
biosys assumes that all devices that replicate a given col-
lection of objects form a tree, such that a parent stores
a superset of the objects stored by its children and chil-
dren regularly connect to their ancestors. PodBase, on
the other hand, achieves eventual consistency as long as
any two devices are repeatedly connected via a sequence
of pairwise connections.

Like PodBase, Perspective [27] supports automatic
partial replication among mobile devices, without rely-
ing on a centralized server. However, Perspective as-
sumes that a view is defined for each device, which spec-
ifies the set of files that should be present on the device.
Files are then replicated along sequences of pairwise
connections, where a file must be contained in the view
of each device that appears on the path. PodBase, on
the other hand, uses multi-step replication plans, where
files can be placed on intermediate devices solely for the
purpose of transporting them to another device. Pod-
Base computes a replication plan automatically and dy-
namically to maximize durability and availability given
the available free space on devices, without requiring the
specification of per-device views.

One could try to simulate the effect of PodBase’s repli-
cation policy in Perspective by specifying that each de-
vice’s view include all files. Perspective would then
replicate all files greedily as device connections occur,
until each device either replicates all files or its space
is exhausted. Unless most devices have enough space
to store most files, however, this would likely lead to
uneven replication levels and poor availability. Finally,
PodBase was evaluated using an actual user deployment.

Device Transparency [30] is a storage model for mo-
bile devices, where each device maintains global meta-
data. PodBase uses a similar capability as a building
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block to support transparent data replication for avail-
ability and durability. Moreover, PodBase can also sup-
port devices too small to store metadata for all objects in
the system.

Synchronization tools like Unison [36] synchronize
data among devices, and attempt to reconcile replicas
that have diverged due to concurrent edits. Windows
Live Sync [41] and Live Mesh [13] allow users to sync
folders on their machines. File synchronization tools like
these can be used as a plug-in for PodBase. Groove [9]
provides a collaborative workspace that propagates file
edits automatically among a group of users. PodBase is
also concerned with durability and focuses on intermit-
tently connected devices in the home.

Pastiche [4] and FriendStore [35] implement cooper-
ative backup on users’ machines in a peer-to-peer net-
work. PodBase replicates data for availability and dura-
bility, within a household, on intermittently connected
devices, and without relying on third-party storage.

Cloud storage services (e.g. [5,15,28,31]) provide au-
tomatic backup or synchronization for mobile devices at
a charge. PodBase is free, can replicate much faster be-
cause it is not limited by the upstream bandwidth of a
broadband connection, exploits unused storage on exist-
ing devices, replicates among devices that are away from
home (e.g. on vacation), and avoids the dependence on
a single provider for data protection. Nevertheless, Pod-
Base can take advantage of a Cloud storage service to
maintain additional off-site replicas for added safelty.

Keeton et al. [11] advocate the use of operations re-
search techniques in the design and implementation of
systems. PodBase is an example of a system that uses
linear optimization to adapt to its environment. Other
examples include Rhizoma [43] and Sophia [38], which
use logic programming to optimize cloud computing and
network testbed environments, respectively. Pandora [2]
uses linear optimization to optimize bulk data transfers
for cost and timeliness, using a combination of Internet
data transfers and the shipping of storage devices.

Since PodBase shares data among a set of intermit-
tently connected devices, it implements a form of delay
tolerant network (DTN) [6]. PodBase can be viewed as
a data management application on top of a specialized
DTN. The Unmanaged Internet Architecture [8] (UIA)
provides zero-configuration naming and routing for per-
sonal devices. PodBase addresses the complementary
problem of data management for personal devices.

A prior workshop paper [20] sketches a preliminary
design of PodBase and presents results from a trace-
based feasibility study. This paper contributes a revised
design, a full implementation, a new replication algo-
rithm, support for space-constrained devices, a plug-in
architecture to add file type and device specific behavior,
an extensive evaluation and a user study.

4 PodBase design

We start with an overview of PodBase, its user interface,
operation, plug-in architecture and security aspects.

4.1 Overview

PodBase is implemented as a user level program. It keeps
track of user data at the granularity of files. PodBase is
oblivious to file and device types. However, PodBase
supports a plug-in architecture, by which file type and
device specific data management policies can be added.

PodBase distinguishes betweenactive devicesand
storage devices. Storage devices include hard drives, me-
dia players and simple mobile phones. Active devices
run the PodBase software and provide a user interface.
An active device contains at least one storage device; ad-
ditional storage devices can be connected internally or
via Bluetooth or USB. The set of devices in a household
form a PodBasepool. In each pool, there must be at least
one active device, which runs the PodBase software.

Active devices communicate via the network and han-
dle the exchange of data. Whenever two active devices
communicate, a storage device is attached to an active
device, or two storage devices are attached to the same
active device, we say that these devices are connected.
Data propagates during these pair-wise connections.

There are three different types of data on each storage
device: (1) regularuser data, (2) PodBasefile replicas,
and (3) PodBasemetadata. Although logically separate,
all of these data are stored in the device’s existing file
system. The PodBase replicas and metadata are crypto-
graphically sealed and stored under a single directory.

Metadata describes a device’s most recent view of the
pool’s state. Included in the metadata is the set of known
devices and their capacities, a logical clock for each stor-
age device and a list of all user files that PodBase man-
ages, along with their replication state. Capacity con-
strained devices may store only a subset of the system’s
metadata, as described in Section 4.3.2.

Some of the space on a device not occupied by user
data or metadata is used to replicate files for durabil-
ity and availability. User data has priority over replicas.
PodBase continuously monitors its storage use and seeks
to keep a proportionfmin of the device’s capacity free at
all times.

When a file is modified by an application or the user,
PodBase creates a new version of the file and replicates
both the old and new version independently. Plug-ins
(see Section 4.4) can be used to automatically apply
consistent file updates, reconcile conflicting versions or
purge obsolete versions in a file type-specific manner.
Users can manually retrieve copies of old versions or
even deleted files.
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4.2 User interaction

Next, we describe how users typically interact with Pod-
Base. Though PodBase is designed to minimize user in-
volvement, some interaction is required. Moreover, in-
terested, tech-savvy users have the option to change its
policies.

Device Registration. When a new device is connected
for the first time, PodBase asks the user if the device
should be added to the storage pool.

Device Deregistration. A storage device may perma-
nently disappear due to loss, permanent failure or re-
placement. If a device has not been connected for an
extended period (e.g., a month), PodBase prompts the
user to connect the device or else deregister it.

Data Recovery. When a storage device fails, PodBase
can recover the files it stored. The user informs PodBase
that she wishes to recover the data from a particular lost
device onto a replacement device or onto an existing de-
vice. The PodBase software on the recovery device then
obtains copies of the appropriate files during each con-
nection.

Externalization. By default, users and applications can-
not directly access replicas stored on a device. How-
ever, users with the appropriate credentials canexternal-
ize replicas, that is decrypt and move the cleartext of a
replica into the user file portion of the device. Alterna-
tively, externalization can be automated using a plug-in.

Warnings. PodBase warns the user when it is unable to
replicate files because there is insufficient storage space
or connectivity, with specific instructions to buy an addi-
tional disk or connect certain devices.

4.3 Device interaction

When two devices are connected, they reconcile their
view of the system and exchange data. First, the devices
reconcile their metadata. Then, PodBase determines if
any of the replicas on either device should be moved,
copied or deleted. Next, we detail these steps.

4.3.1 Metadata contents

The metadata consists of the following items (their pur-
pose will become clear in the subsequent discussion):

1. Vector Clock: A vector clock, consisting of the most
recent known logical clock values for each device in the
pool. A device’s logical clock is incremented upon each
metadata change. When a device is removed from the
system, its logical clock is set to a special tombstone
value. Also, the metadata includes the most recently ob-
served vector clock of each device in the storage pool.

2. Connection History: A list of the past 100 connec-
tions that have been observed between each pair of de-
vices, their time, duration, their average and maximum
throughput, as well as the network addresses used by the
devices.

3. Policies: The current policy settings. Policies can be
modified by sophisticated users. Installed plug-ins (Sec-
tion 4.4) can also modify the policies.

Items 1–3 are included in the metadata of all devices.

4. Set of user files:Keeps track of the user files stored on
each device in the pool. The content hash value, size and
last modification time are recorded for each unique file.
In addition, the content hashes of the lastv (v = 10 by
default) versions of each file are included (modification
history).

5. Set of replicas:Keeps track of the replicas stored on
each device in the pool. For each replica, its size, content
hash value, and replica id are recorded.

6. Reverse map of unique files in the pool:Maps a con-
tent hash value to the set of files whose content matches
the value. This mapping is used to determine the current
replication level for each unique data file, considering
that different files may have identical content. (PodBase
de-duplicates files prior to replication.)

Each record in items 4–6 contains a version number,
which corresponds to the device’s logical clock at the
time when the record was last modified. A small device
may include only a subset of the records in items 4–6.

4.3.2 Metadata reconciliation

Metadata reconciliation is straightforward in the com-
mon case when two devices that carry the full metadata
are connected. They compare their vector clocks to de-
termine which has the more recent metadata for each de-
vice in the pool. For each such device, the more recent
metadata is then merged into the reconciled metadata.

PodBase also supports devices too small to hold the
full metadata. (In practice, devices smaller than about
100 MB are excluded. This is a mild limitation, since
smaller storage devices are already rare at the time of
this writing.) Such devices hold the full metadata for the
files and replicas they store, plus some amount of partial
metadata about other devices.

PodBase ensures progress and eventual consistency of
metadata, even if some devices are only ever sequentially
connected via small devices. To this end, PodBase seeks
to place on small devices metadata that are needed to up-
date other devices. For this purpose, it checks the last
known vector clocks of all devices. PodBase selects par-
tial metadata subject to the available space on the small

A second preimage resistant hash function is used
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device, while ensuring that (i) metadata needed by more
devices are more likely to be chosen, and (ii) a roughly
equal number of metadata items are included for each
device that the small device may encounter. This policy
seeks to maximize the spread of useful information and
ensure convergence of device metadata even in extreme
situations where different sets of devices are connected
only via a small device.

When reconciling any deviceL with a small device
S, PodBase checks if the metadata onS can be used to
updateL. For a given deviced whose partial metadata
appears in a small device, all metadata are included that
have changed within some range of versionsi < j of d’s
metadata. This metadata can be used to updateL if L’s
current metadata version ford is at leasti and less thanj.
If so, PodBase merges the metadata aboutd from S into
L’s metadata.

4.3.3 Replication

Once the metadata is reconciled, PodBase determines the
actions, if any, that should be performed on the data.
PodBase maycopya replica of a file, in which case the
file is stored on the target device with a new random
replica id (used to distinguish between replicas), while
the original replica remains on the source device. A de-
vice may alsomovea replica, in which case the replica is
stored on the target device with the same replica id and
then deleted from the source device. Finally, a device
may deletea replica, to make room for another replica
that it believes is more important. During replication,
data is transmitted in a cryptographically sealed form,
and a hash of each replica’s content is attached to ensure
data integrity. How PodBase determines the actions that
should be performed is described in Section 5.

4.3.4 Data recovery

After a device loss or failure, data can be recovered onto
a replacement device at users’ request. During each con-
nection to another device, the replacement device re-
stores as many files as possible, guided by the recon-
ciled metadata. The most recent available version of each
file is restored. Users can speed up the recovery pro-
cess by connecting appropriate devices under the guid-
ance of PodBase. The restoration is complete when the
replacement device has received, directly or indirectly,
from each device in the pool a metadata update no older
than the time at which the lost device went out of service,
and the reconciled metadata indicates that all files were
restored.

4.3.5 Replica deletion

PodBase removes replicas when the free space on a de-
vice falls below fmin, the minimal proportion of a de-
vice’s storage that PodBase keeps available at all times
(by default, fmin = .15). When PodBase frees space, it
considers the most replicated files first. Among files with
the same replication level, PodBase first deletes repli-
cas that have the lowest (randomly assigned) replica id
among the replicas of a file, then the second lowest id,
and so on. This policy ensures that different devices
delete replicas of the same file only when a shortage
of space dictates it, but never as a result of inconsistent
metadata in partioned sets of devices. (PodBase never
deletes the original or any externalized replica.)

4.4 Plug-ins

Plug-ins can be used to implement policies and mecha-
nisms that are specific to particular file types, collections
of files, device types or specific devices. Following are
some example plug-ins.

Consistency: PodBase replicates each version of a file
independently. A plug-in can be used to automatically
propagate changes or reconcile concurrent modifications
under a given consistency policy. There is a large body
of work on consistency, and powerful tools exist for rec-
onciling specific file types, e.g. [7,16,26]. Such tools can
be integrated as plug-ins in PodBase.

Unified Namespace:By default, PodBase does not au-
tomatically externalize replicas. A plug-in could export
files as part of a global uniform namespace on all de-
vices. This would allow users to browse the contents of
all devices, and access files available locally (subject to
user access control restrictions). In combination with a
plug-in that provides consistency, this would provide a
simple distributed file system.

Digital Rights Management (DRM): Media files stored
on a user’s devices may be protected by copyright.
Usually, copyright regulations allows users to maintain
copies on several of their personal devices. However,
if restrictions apply, then the policies appropriate for a
given media type can be implemented as a plug-in.

Archiving: A plug-in can automatically watch for large,
rarely accessed user files (e.g. movies). If such files oc-
cupy space on a device that is nearing capacity, the plug-
in suggests moving the collection to a different device
with sufficient space. If the user approves, PodBase au-
tomatically moves the files.

Content-specific policy:A content-specific plug-in can,
for example, replicate and automatically externalize mp3
files on devices capable of playing music. Moreover, the
plug-in can select a subset of the music collection for
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placement on small devices. For instance, when replicat-
ing music on a device with limited space, a plug-in may
select the most recently added music, the most frequently
played music, and a random sample of other music.

As a proof of concept, we developed a plug-in that au-
tomatically externalizes replicas of mp3 files and imports
them into iTunes. The plugin required around 100 lines
of Java code, and two simple OS specific AppleScript
scripts to interact with iTunes.

4.5 Security

PodBase uses authenticated and secure channels for all
communication among devices within a pool. When a
device is introduced to a PodBase pool, it receives ap-
propriate key material to enable it to participate. Users
have to present a password when they wish to interact
with PodBase. Metadata and replicas are stored in cryp-
tographically sealed form when stored on devices, in or-
der to minimize the risk of exposing confidential data
when a device is stolen. PodBase respects the file ac-
cess permissions of user files – encrypted replicas can be
externalized only by a user with the appropriate permis-
sions on the file. By default, PodBase manages all of a
device’s contents; it can be configured to manage only
specific subtrees in the namespace of a device.

The strength of PodBase’s access control within a
household is designed to be at least as strong as the ac-
cess control between different users on the same com-
puter. If stronger security isolation is required between
devices or users, then they should not join the same pool.
For instance, if a user’s office computer contains confi-
dential material that must not leave company premises,
then it must not join the user’s home PodBase pool.

5 Replication

We considered a number of replication algorithms.
Greedy algorithms place under-replicated files on the
first connected device that has space. These algorithms
are simple, stable, and replicate files at the first opportu-
nity, which is good. Unfortunately, the initial placement
of a file is often sub-optimal and cannot be changed. (By
definition, greedy algorithms never reconsider an earlier
choice and cannot move replicas if a better placement
turns out to be possible in the future.) A more sophis-
ticated class of algorithm seeks to equalize the storage
utilization of connected devices, thereby moving repli-
cas toward devices that have space. Unfortunately, these
algorithms cannot take advantage of a “shuttle device”
to transport data between clusters of devices, e.g., home
and office.

Extending the algorithms to cover these and other im-
portant cases while avoiding degenerate performance in

unexpected cases seemed daunting. Instead, we decided
to pose optimal replication declaratively as a linear opti-
mization problem. This approach minimizes design time
assumptions about system configurations and usage pat-
terns, computes optimal solutions to unexpected cases at
runtime, and has provable stability properties.

Whenever two devices connect, PodBase uses an LP
solver to compute a multi-step replication plan that
moves the system toward the goal state. The plan consid-
ers the current system state and likely future device con-
nections, and specifies which replicas should be deleted,
copied or moved during each connection accordingly.

In general, only the first step of the replication plan is
relevant, as it concerns the currently connected devices.
The subsequent steps are speculative, since they depend
on which future device connections actually occur. If
the actual device connected next differs from the current
plan, a new plan is computed. The following subsec-
tions describe the approach in more detail. Additional
detail about the LP problem formulation can be found in
a technical report [21].

5.1 Replication objective

First, we wish to guarantee that files are evenly repli-
cated on as many devices as the available space allows.
As a secondary goal, we want to maximize availability
by placing copies of each file on devices where it is po-
tentially useful. In the rest of this section we define these
two properties more formally.

Let D be the set of participating devices and letF
be the set of files that are managed by the system. For
each deviced∈ D, let spaced denote its capacity, i.e., the
amount of space available atd for storage of both user
and replica files. For a set of filesS⊆ F , size(S) denotes
the amount of storage required to keep a copy ofS. For
each deviced, the set ofuser filesstored in that device is
denoted byuser-files(d). In particular, for each deviced,
size(user-files(d)) ≤ spaced.

The goal of a storage management system is to deter-
mine and maintain, for each deviced, a suitable selection
of files, store-files(d) ⊆ F, to be stored on it. Files are
replicated when they are selected for storage at several
different devices. Moreover, at any time, such a selec-
tion must satisfy

• user-files(d) ⊆ store-files(d), user files are never
moved or deleted from devices;

• size(store-files(d)) ≤ spaced, the files stored on a
device may not exceed its capacity.

Given a particularstore-files selection, we say that its
replication factoris the number of copiesk of the least
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replicated file in the system. More formally,

k = min
f∈F

|{d ∈ D : f ∈ store-files(d)}| .

Moreover, we say that the replication factor isoptimal if
there is no other file selectionstore-files

′ with a higher
replication factor.

In order to model availability, plug-ins have the op-
tion to provide anavailability selectionthat assigns to
each deviced ∈ D a set of fileslike-files(d) that it should
preferablystore. Theavailability score, or av-score, of
a file selectionstore-files is then defined as the num-
ber of file copies that match the preference expressed by
like-files, i.e.,

av-score= ∑
d∈D

|like-files(d)∩ store-files(d)| .

In a desiredgoal state, PodBase places at each device
d ∈ D, a setstore-files(d) of replicas such that the fol-
lowing properties are satisfied:

Durability. The replication factor is optimal, i.e., files
are maximally replicated on the existing devices.

Availability. Among the file selections with optimal
replication factor,store-files has a maximalav-score; i.e.,
files are replicated in devices where they are useful.

5.2 Problem formulation

The system state, the effects of the actions, as well as
the objectives are modeled as a set of linear arithmetic
constraints. Care must be taken to ensure the problem
formulation scales. To make the optimization problem
tractable, we group files into equivalence classes called
categories. All files that are stored on the same set of
devices are in the same category. The system state is
then encoded by specifying, for each category, the total
amount of space occupied by all files in that category.
This significantly reduces the number of variables in the
problem formulation, which no longer depends on the
number of files but on the number of devices in a pool,
without any loss of accuracy.

To model the connectivity among devices, a graph is
constructed with a link between each pair of devices that
can potentially be connected. The link weight specifies
the estimatedcost of data transfer among the devices.
This cost is calculated based on the maximum connec-
tion speed and the probability that the devices will be
connected on a given day, based on the history of past
connections. In this calculation, more recent connections
are weighted more heavily; individual measurements are
filtered appropriately to reduce noise [21].

Finally, we model the actions (copy, move, delete)
PodBase can perform, and their effects on the system

state. In general, a sequence of connections may be re-
quired in order to affect a certain state change (e.g., copy
some files from A to B, and then from B to C). The for-
mulation then encodes how the possible sequences of ac-
tions modify the number of bytes in each category.

Encoding the problem this way enables us to symbol-
ically describe all the possible plans that PodBase could
execute in order to manipulate the distribution of files.
Given this formalization, the goal is to find a plan that
optimizes the desired goals.

The optimization involves multiple stages, narrowing
the set of candidate replication plans in each. First,
the maximal replication factork is computed based on
the available space in the system. Then, we optimize
for durability by computing replication plans that can
achieve ak-replication for all files. Next, we optimize for
cost by narrowing the set of plans to those that minimize
the sum of the link weights. In the next stage, we select
among the remaining plans those that maximize avail-
ability. In the final stage, we select a plan that minimizes
the number of necessary replication steps. PodBase then
executes the first step of the resulting replication plan,
by copying, moving or deleting replicas on the currently
connected devices. For efficiency, we do not consider
plans with more than three replication steps. (Few inter-
esting plans with more steps occur in practice.)

The optimization favors cost over availability, because
high cost plans are highly undesirable: they may rely on
links with low bandwidth or rare connectivity. Notably,
this choice still permits good availability, because the
cost optimization generally leaves many candidate plans
from which the availability optimization can select. The
reason is that all plans involving the same set of connec-
tions have the same cost, and there is a combinatorially
large number of such plans, corresponding to the differ-
ent placements of replicas that can occur as a result of
these connections.

The cost optimization does, however, eliminate plans
that create more thank replicas, even if availability calls
for more. To enable additional replication for availabil-
ity, PodBase changes the order of optimizations once the
durability goal has been achieved. In this case, availabil-
ity is optimized before cost.

In a final step, the categories are mapped back onto in-
dividual files. In cases where the solution would require
a file to be split by an action, file integrity can be fed back
into the optimizer as an additional constraint. The repli-
cation process is guaranteed to converge in a bounded
number of steps after the set of primary data files stabi-
lizes.

Additional parameters could be added to the optimiza-
tion by the system designer. For example, if device reli-
ability data is available, this information can be consid-
ered by modeling a replica stored on a less reliable device
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as contributing less to the durability of the associated file
than a replica stored on a more reliable device. In gen-
eral, such extensions are straightforward to implement.
However, they do require some expertise with linear opti-
mization to make sure the additional inputs or constraints
do not cause an blow-up in the complexity and runtime
of the optimization.

6 Experimental evaluation

Next, we present experimental results obtained with a
prototype implementation of PodBase. We sketch the
implementation, report on its overheads and verify that
the system behaves as expected. Then we present mea-
sured results from a user study. Additional results, in-
cluding a comparison with a simple greedy replication
algorithm, are presented in the technical report [21].

6.1 Implementation

PodBase is implemented as a user-level program writ-
ten in Java. Most of the code (48,512 lines) is platform-
independent, with the exception of a small amount (about
1000 lines) of custom code for each supported platform
(Windows 2000 and higher, Mac OS X). The platform-
specific code deals with mounting disks and naming files.
The implementation currently requires that storage de-
vices export a file system interface, and that active de-
vices are able to run Java 1.5 bytecode.

Running PodBase on platforms like cell phones or
game consoles is feasible, but requires additional en-
gineering effort. We feel that our prototype strikes a
reasonable trade-off between engineering effort and re-
search goals, because it can use the majority of devices
in our study.

In our deployment, active devices contact a server
(2.6Ghz AMD Opteron) running CPLEX 11.2.1 (a com-
mercial LP solver) to compute replication plans. Using
the server simplifies the installation of PodBase and is
not fundamental to the system. With an additional in-
stallation step, PodBase can be configured with a local
solver, like the free LP solver package clp [3].

PodBase rate-limits network and disk I/O, marks I/O
as non-cacheable and runs single-threaded to avoid com-
peting with other applications for resources. To the ex-
tent possible, we tried to ensure that users did not notice
that PodBase was running in the background.

6.2 Computation and storage overhead

PodBase periodically crawls file systems to monitor the
state of files. Each time a new file is discovered or an
existing file is modified, the file is hashed and added to
the pool’s metadata. We measured the amount of time

the first crawl took when a new drive was added to the
system. The measurements were taken on a 2.4 GHz
Apple MacBook Pro, running OS X, one author’s pri-
mary computing device. The internal notebook disk con-
tained 165,105 files with a total size of 87.4GB. The ini-
tial crawl took approximately 5 hours to complete. Sub-
sequent crawls, which only re-compute hashes for new
or modified files, took on the order of 10 minutes. (Both
OS X and Windows support APIs that notify applications
of any folder or file modifications. Using these APIs can
dramatically reduce the need for crawling, but our imple-
mentation did not use them.)

The size of the system’s metadata grows proportion-
ally with the number of files and replicas managed by a
PodBase pool. In our user study, the uncompressed meta-
data size ranged from 270MB to 2.5GB. This amounts to
only a small fraction of the capacity of most modern stor-
age devices. For the devices in our user study, storing the
full metadata was possible in all cases. However, smaller
storage devices (e.g. older USB sticks or cameras) are
supported via the partial metadata mechanism.

Using the LP solver to compute a replication plan
takes between one and thirty seconds for most house-
holds, and 180 seconds for the largest household in the
user study. When two devices connect, replication starts
immediately on a speculative basis, while the optimiza-
tion runs in the background. For instance, PodBase starts
to replicate greedily those files that appear the most un-
derreplicated or that should reside on one of the devices
for availability, according to the reconciled metadata.
This replication can later be (partly) undone, in the case
that some of it is inconsistent with the computed plan.

6.3 Data restoration

Next, we test PodBase’s ability to successfully restore
the contents of a lost device. We simulated the loss of
a notebook after the replication phase was completed.
PodBase successfully restored to a USB hard drive all
211206 files (75GB) that were present at the time of the
last crawl of the “lost” notebook. The restoration took 5
hours 27 minutes to complete, which includes decrypting
the replicas.

6.4 Partial metadata reconciliation

Next, we experiment with small devices that carry partial
metadata. In our example, there are three devices: two
full metadata devices, which never directly connect to
each other; and a small device, which is connected to
each of the other devices once per day. The small device
is able to carry 100MB of metadata about other devices,
and unable to carry actual data. The total metadata size
is 2GB.
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Initially, the large devices were completely unaware
of each other. No new data was added after the experi-
ment began. It took ten days or 21 connections for the
metadata on the two large devices to converge, which is
expected based on the relative size of the metadata and
the small device. This example shows that metadata con-
verges even in extremely constrained cases. In our expe-
rience, most devices are larger and connectivity tends to
be much richer in practice, leading to much faster con-
vergence.

6.5 User study

To study how PodBase performs in a real deployment,
we asked ten members of our institute to deploy the sys-
tem in their households and collected trace data over a
period of approximately one month. We asked the users
to, as much as possible, ignore the presence of PodBase
and use their devices the way they would normally use
them. Three users were given an external one terabyte
USB disk, because they had insufficient free space to al-
low their files to be replicated.

For practical reasons, the number of households and
users in our study is limited and covers a relatively short
period of time. Moreover, at least one member of each
household was a computer science researcher. Therefore,
there is a likely bias towards users who have an interest
in technology. As a result, our results may not be repre-
sentative of a larger and more diverse user community, or
a long-term deployment. Nevertheless, we feel that the
study was tremendously valuable in identifying the diffi-
cult issues, in building our confidence that the system is
feasible and addresses a real need, and in understanding
the system’s performance in practice.

The system was deployed and actively used over the
course of two years. The data collected for the re-
sults presented in this paper were collected between
July and September 2009. During this period, we col-
lected anonymized data about file creation, modification
and deletion on each device, when and where replicas
were created, and which devices were connected at what
times. We use these logs to generate the graphs used in
the rest of this section.

First, we provide a brief overview of the households
used in our deployment and the characteristics of the de-
vices used in each.

Figure 1 shows the number of storage and active de-
vices in each household. The number of active devices
ranged from one to seven. Some households had no ad-
ditional storage devices, while others had up to three.
Households 1, 4 and 5 received an additional one ter-
abyte USB disk, which is reflected in the data. House-
hold 4 has a virtual device that is backed by 10GB .Mac
cloud storage. PodBase uses this device like any other,
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Figure 1: Number and type of devices, by household.
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Figure 2: Storage capacity and free space on devices be-
fore PodBase begins replication. Additional space corre-
sponds to the USB disks given to households 1, 4, 5.

considering its capacity and connection bandwidth.
Figure 2 depicts, for each household, the total size of

the household’s storage pool, divided into used storage
and available storage at the beginning of the deployment
and before PodBase was activated. The additional stor-
age given to households 1, 4 and 5 is shown as “addi-
tional space”. After this addition, seven of the house-
holds had at least half of their total storage capacity avail-
able. This does not imply that the remaining three house-
holds cannot replicate their data; whether they can de-
pends on how much duplication there is among their ex-
isting user files.

6.5.1 Replication results

In this section, we evaluate the performance of PodBase
by looking at the replication state at the beginning and
the end of the (one month long) trace collection.

Let us look at the replication state of the system before
the households ran PodBase. As shown in Figure 3 (left
bars), many households had files that existed on only one
device, leaving these files vulnerable to data loss if the
device were to fail. Also, many households had a signif-
icant number of files already replicated, either as copies
of the same file or different files with identical content.

The right bar in Figure 3 shows the replication state
at the end of the trace collection. Five households (1–

The result for household 7 was obtained by re-playing the trace,
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Figure 3: The initial (left bar) and final (right bar) replication status of each household.

3, 8–9) had most (more than 97%) of their files repli-
cated. With the exception of household 9, which had not
quite finished replicating its original files, the remaining
households’ unreplicated files were recently created or
modified and had not yet been replicated at the end of the
trace. Households 4, 5, and 7 were not able to replicate as
much, as these households had only intermittent connec-
tivity between a pair of their devices. These households
each had two well-connected devices and one device that
was either mostly offline or connected via a slow DSL
connection. In these cases, all of the data was replicated
between the well connected devices, but the data on the
poorly connected device was not replicated fully.

Households 6 and 10 did not have enough space to
replicate the remaining 19% and 10% of their files, re-
spectively. In order to improve upon these results, the
users would have had to purchase inexpensive additional
storage. As a sanity check we had users from households
4 and 10 bring in their notebooks in order to confirm the
diagnosis described above. Simply having household 4
bring its notebook into the office, where there was good
connectivity between devices, allowed its data to be fully
replicated. For household 10, we attached a one terabyte
external drive to an active device that had data to be repli-
cated. After doing this, less than 0.5% percent of files
remained to be replicated.

Several households (1–5, 7 and 9) were able to achieve
a replication factor greater than two for some of their
files, enabling these files to survive multiple device fail-
ures. In Household 2, 80% of the user files were repli-
cated 4 times or more.

6.5.2 Availability results

A secondary goal of PodBase is to place replicas on de-
vices where they are likely to be useful. Specifically, our
mp3 plug-in causes music files to be preferentially placed
on devices that are capable of playing music.

In analyzing the trace, we found that one household
had no mp3s and three households had already replicated

because a bug was discovered during the user study that had influenced
the final state of this household

all of their music files on the relevant devices. Thus, Pod-
Base did not have an opportunity to improve availability.
However, it did provide a significant gain in availabil-
ity for several other households. Household 3 had its
entire music library of 415 music files made available
on all three of its devices. Households 7 and 8 had 851
and 1318 music files made available by PodBase, respec-
tively. Household 9 had 1500 music files from a music
library, which was otherwise loosely synchronized be-
tween its devices, made available on two additional de-
vices. An additional two households originally had a sig-
nificant number of mp3 files on their laptops but not on
their desktops. PodBase replicated these files onto the
desktops, and the mp3 plug-in described in section 4.4
had externalized the music files. This happened during
an earlier run of PodBase, therefore it did not show up in
our trace. The users gained access to 426 songs and 2611
songs, respectively, on their desktop computers. (The
songs were previously stored only on their notebooks.)

As described in Section 5.2, the replication first op-
timizes for durability, then cost (time to complete), and
finally availability. A concern might be that this choice
limits the availability the system can provide. We looked
at the impact of this optimization process on household
9, for which the final replication plan had not achieved
full replication for availability. In this household the fi-
nal replication plan yields 95% of the optimal availabil-
ity. The remaining 5% were not achieved because the
replication had not yet finished at the end of the trace,
and not because of a limitation in the algorithm.
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6.5.3 Replication latency and throughput

We next look at the maximal replication throughput in
each of the households. Since all households had many
files to replicate at the beginning of the trace collection,
the rate at which data was replicated early in the trace
is a lower bound for the total replication throughput of
a pool. This value in turn provides a lower bound for
the rate of new or modified data that a household could
generate, such that PodBase would still be able to keep
up with replicating.

Figure 4 shows that the peak throughput ranges from
1.4 to 110 GB per day. This result shows that PodBase
can keep up with a high to very high rate of data genera-
tion, using only existing pair-wise connectivity.

We now examine the replication latency, i.e., the
elapsed time until a new or modified file becomes repli-
cated. If a file is not yet replicated at the end of the trace,
we include it in the CDF as having an infinite latency.
We first examine those households with relatively short
latencies. Figure 5(a) shows a CDF of how long it took
to replicate a file. For households 2 and 4, over 50%
of files were replicated within approximately one day.
Households 1 and 7 took longer because there were ex-
tended periods with no connectivity. Household 9 repli-
cated gradually over the course of the trace, as connectiv-
ity allowed. Second, we show the latency of the house-
holds that took significantly longer to replicate their files
in Figure 5(b). In these households, device connectivity
is the dominant factor in the replication latency. When
there is connectivity, there are sharps jumps as files get
replicated, followed by periods of disconnection, where
no replication happens.

We note that our measured replication latencies are
conservative, because in most households, PodBase was
busy replicating the user files found initially on the de-
vices during a large part of the trace collection. In steady
state, PodBase would have to replicate only newly cre-
ated or modified files, reducing the latencies consider-
ably. Nevertheless, PodBase was able to replicate data in
a timely fashion, subject to available storage and device
connectivity.

6.5.4 Rate of new or modified data

Next, we look at the rate of new or modified data that is
being generated. Each of the households in the user study
had on average 528,187 files taking up 332GB. After the
initial crawl, an average of 21GB per day was generated
by the addition of new and modifications of existing files.
These numbers are skewed by a household that stored the
disk image of an active virtual machine in the file system;
without this household, the value was 381MB per day.
(Of course, PodBase could be optimized to handle this
case more efficiently.)

Our normal households generate new or modified data
at a minimal/average/maximal rate of 4.5/36.1/316 Kb/s,
while the “heavy” household generates 2.3 Mb/s. Let
us consider how well a backup system based on cloud
storage alone would perform in our households. At an
assumed broadband upload bandwidth of 1 Mb/s, trans-
ferring the initial data to the cloud while keeping up with
updates would require between 3.7 and 121.6 (median
31.82) days for the normal households. For the heavy
household, cloud storage would be infeasible, because
the rate of new data exceeds the network bandwidth.

These results show that for timely replication of data,
PodBase’s use of peer connections and local storage de-
vices is important. For the normal households, a broad-
band connection would suffice to replicate new data, but
the heavy household would require a faster Internet con-
nection. Even for the normal households, relying solely
on a broadband connection to the cloud would require
a long period of full network utilization to replicate the
initial data, and increase the replication latency in steady
state (and therefore the window of vulnerability for new
and modified files that have not yet been replicated).

6.6 Discussion

PodBase has been developed by the first author over a
period of two years, with three user deployments at dif-
ferent stages. Significant engineering effort was required
to make sure our users (most of whom where not affili-
ated with the project) and their families felt comfortable
running it on their personal devices. Users demanded
not to have to notice the presence of the system in their
daily activity or be surprised by it actions, yet expected
the system to do “the right thing” without requiring their
attention. Moreover, different households used their de-
vices in very different ways, some of which we could not
have imagined (see the discussion of results for different
households in Section 6.5). This forced us to emphasize
non-intrusiveness (not interfering with user’s activities),
autonomy (making reasonable choices without user’s in-
put) and adaptivity to unexpected scenarios far more than
efficiency. Apart from the quantitative results reported in
this section, the most important indicator of the project’s
success may be the fact that ten households (which in-
cluded members who had little interest and patience for
our project) agreed to use the system for the duration of
the study and beyond.

7 Conclusion

PodBase transparently manages the data stored on per-
sonal devices for durability and availability. The system
takes advantage of existing free storage space and inci-
dental connectivity among devices. Thus, it reduces the
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Figure 5: Replication latency for all households

need for dedicated backup storage or an external storage
provider and avoids the bottleneck of a home broadband
uplink. PodBase relies on optimization techniques to
achieve highly adaptive replication. The system is fully
decentralized and does not depend on the health of any
one device. Experimental results from a user deployment
in ten real households indicate that the system is effec-
tive in replicating data without any user attention, and in
many cases without requiring additional storage.
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