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Abstract
Preventing the leakage of user information via untrusted
third-party apps is a key challenge in mobile privacy. We
propose and evaluate privacy capsules (PCs), a platform ex-
ecution model for mobile apps that prevents the flow of pri-
vate information to untrusted parties by design. With PCs,
apps execute in two sequential phases. In the unsealed phase,
the app has no access to sensitive input but full access to
untrusted network resources. In the sealed state, the un-
trusted app has access to sensitive input, but can no longer
communicate with untrusted resources. Privacy capsules are
implemented by the mobile platform, are language indepen-
dent, and require few changes to apps. Using a prototype
PC implementation in Android, we show that PCs have low
performance and energy overhead, and are suitable for a
large class of apps.

1. INTRODUCTION
Mobile apps on major platforms provide a dizzying array

of functionality, and form the basis for the success of these
platforms. Users buy relatively inexpensive, often free, apps
that cater to the necessities (schedule, online access, health
monitoring) to entertainment (games, music) and beyond.
The spectrum of functionality available on these devices also
make them a repository of sensitive personal information,
which is either explicitly added by the user (credit cards,
passwords) or inferred from sensor readings (location, activ-
ity), and is often available to downloaded apps.

Prior work has shown that many third-party apps access
information for which they do not have a legitimate need;
some forward information to providers without the user’s
knowledge or consent. Egregious examples, such as flash
light apps that access and upload user’s location, phone
number and contacts, are relatively easy to flag as mal-
ware [4] and have been the subject of popular press arti-
cles [6]. However, the problem is typically more subtle: Felt
et al. [20] found that one third of 940 apps on the Android
Market requested more permissions than needed. Enck et

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MobiSys ’16, June 25–30, 2016, Singapore.
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4269-8/16/06..

DOI: http://dx.doi.org/10.1145/2906388.2906409

al. [19] analysed 30 popular Android applications and found
that half of them send users’ location to advertising servers,
and two thirds handle private data in a suspicious manner.

Beyond malware, even benign apps that are poorly de-
signed or have bugs pose a threat to user privacy. A typical
class includes apps that use insecure network protocols for
service requests: according to one source, 92% of the top
500 Android applications available in app stores (Amazon
and Google Play) use insecure protocols and/or leak sen-
sitive information in other ways [3]. Documented bugs [7]
have leaked plain text chat logs and passwords for hundreds
of millions of users.

There are two primary techniques for restricting app be-
havior. The first, which is widely deployed, is for the app
to pre-declare the set of resources it requires. Resource ac-
cess is often coupled with user consent at the time of first
use. In practice, this form of coarse-grained access control
has proven to be ineffective. Most users are unsure whether
an app legitimatately requires a particular resource; when
faced with a choice to either approve access or forego the
use of the app, they tend to approve [21, 23]. Further, the
temporal granularity over which access is granted is coarse-
grained, e.g., once access to location is granted, an app can
query present location anytime until the access is explicitly
revoked. Finally, even if an app must access a set of re-
sources, there is no way to prevent unwanted information
flow among those resources; for instance, if an app requires
access to current location and network, platform access con-
trol cannot prevent the app from forwarding the current
location to any network peer.

The second approach, still within the research domain,
seeks to address app misbehavior using more fine-grained
access control [26], or information flow control (IFC) [9,19].
Fine-grained access control can minimize or prevent illegit-
imate resource accesses, but cannot detect or prevent ille-
gitimate flows. Solutions relying on IFC can detect and
prevent illegitimate flows, but have high performance and
energy overhead, and suffer from false positives [25].

We propose Privacy capsules (PC): a low-overhead
technique that provides containment of sensitive informa-
tion. By design, the containment properties of PCs are triv-
ially simple to prove. PCs’ run-time efficiency and contain-
ment guarantees come at a cost: PCs require applications
to be structured in a particular manner, and may preclude
certain classes of applications.

PCs are implemented as part of the mobile platform and
enforce a two-phase execution model:

• An app’s execution starts in the unsealed state, where



it can freely access untrusted resources but has no ac-
cess to private information.

• Once the app explicitly chooses to switch to the sealed
state, it can access private information but can no
longer access untrusted resources. The app cannot
return to the unsealed state, but only terminate and
restart (in the unsealed state).

A platform policy specifies what information is considered
private. By construction, the PC execution model prevents
the flow of private data to untrusted channels, i.e., it is im-
possible for the app to leak private information1.

PC apps must be written to conform to this execution
model. We believe this approach is viable because for many
classes of applications, especially those that implement a
service-query model, the required changes are minor, espe-
cially for newly developed apps. The containment guaran-
tees provided by the PC model provides adoption incentives
to both platform providers, app developers, and users. The
platform will guarantee that apps, no matter how poorly
designed or malicious, cannot leak private information; app
developers do not have to secure their back end storage or
audit their designs against attacks or misconfiguration, and
users no longer have to trust apps, or debate privacy and
access settings.

To enable rich functionality without compromising pri-
vacy, PCs provide additional mechanisms to enable legiti-
mate flows of private information: sealed repositories, sealed
channels, and selective declassification.

• Using a sealed repository (SR), an app in sealed state
can store private information persistently across ex-
ecutions. Data stored in an SR is encrypted with a
user- and app-specific key that is never revealed by
the platform, and therefore cannot be leaked by the
app. An SR can reside in untrusted storage, such as
the provider’s Cloud.

• Using a sealed channel (SC), live voice/video/chat
data can be exchanged among instances of an app in
sealed state on different users’ devices. App instances
and participating users are authenticated, and infor-
mation in the channel is encrypted with keys that are
never revealed to the app.

• Finally, apps may effect legitimate flows of private in-
formation to third parties using selective declassifica-
tion (SD). With SD, specific information can be dis-
closed to a specific third party with the user’s express
consent.

Using these mechanisms, we describe the design of three
prototype PC-compliant apps, each of which represent a
class of apps. A train scheduling and ticketing app repre-
sents apps that serve maps, event/transportation schedules,
and product catalogs, and allow users to browse/purchase
items. A wellness app represents the class of apps that mon-
itor health and fitness sensors, analyze and tabulate data,
and enable the sharing of selected data with friends, coaches,
or health care providers. Finally, we present a live chat app,

1Our prototype does not account for timing attacks, but
such attacks could be mitigated using randomization and
other well-known techniques.

which represents the class of apps focused on communication
with other users.

The rest of this paper is organized as follows. We dis-
cuss background and related work in Section 2. Section 3
presents the design of privacy capsules. Section 4 presents
guidelines for developing PC-compliant apps and sketches
our PC-compliant sample apps. An experimental evaluation
follows in Section 5, and we conclude in Section 6.

2. BACKGROUND AND RELATED WORK
Personal mobile devices can capture a continuous record of

their users’ location, activity, and audiovisual environment,
and are commonly used to store schedules, passwords, bank-
ing records, and other sensitive information. The primary
mechanism for ensuring user privacy and security is an audit
by the platform provider, which usually ensures that gross
malware is culled from the app marketplace.

Unfortunately, privacy leaks via apps are common and
come in three flavors: Incidental privacy leaks occur as a
side effect of the app’s operation. For instance, an app that
queries a database on a provider’s site for information re-
lated to the user’s current location or interests leaks infor-
mation to the provider as part of each query. Accidental
privacy leaks occur due to app bugs and vulnerabilities that
expose the user’s private information to network eavesdrop-
pers, attackers, or other apps. Finally, a malicious leak oc-
curs when an app deliberately and needlessly forwards pri-
vate information to third parties. All three types of privacy
leaks are amplified when the app requests and is granted ac-
cess to private information that is not required to implement
its documented functionality.

In this section, we survey the commonly used mechanisms,
both deployed and in research, that have been developed to
address privacy leaks.

2.1 Mobile platform permission systems
Mobile platforms including Android, iOS, and Windows

Phone control the resources each third-party app can ac-
cess. Users are asked to grant an app access to resources like
the network, camera, microphone, location provider, calen-
dar, contacts, etc., either at installation time or upon first
access. Prior work has shown that users tend to approve
most requests, presumably because they are unable to judge
whether an app has a legitimate need for a resource, and
may not be fully aware of the risks [21].

Several prior works aim to improve the permission sys-
tem found in mobile platforms. Stowaway [20] analyzes an
app statically to determine the set of resources it actually
needs from its API usage. Bartel et al. [14], Au et al. [11]
and Atzeni et al. [10] propose similar approaches. Dr. An-
droid [26] provides more fine-grained access control for An-
droid, for instance, by distinguishing read and write access
to a resource, but still relies on correct decisions taken by
lay users.

AppGuard [12], Aurasium [36], and NativeGuard [34] rely
on inlined reference monitors to enforce more fine-grained
access control policies than the platform. In these solu-
tions, accesses to resources are dynamically monitored and
the policies enforced. The user is notified whenever a cer-
tain application does not follow policy. In AppGuard, the
policies are defined by the user. Aurasium monitors the calls
between the app and the OS. It defines a fixed set of policies;
for instance, calls to functions like ioctl(), open(), fork()



and dlopen() are considered as potentially risky. Native-
Guard verifies if the native libraries follow the permission
initially defined by the developer as part of the manifest
file.

2.2 Information flow control
Information flow control (IFC) [32] has been used to en-

force data confidentiality and integrity in different environ-
ments [15, 16, 18, 37], including mobile [19, 24, 30]. Unlike
access control, IFC can track the flow of private information
through an app. For instance, IFC can prevent an app from
sending the user’s private information to the network, even
though it has access to both resources.

TaintDroid [19] uses fine-grained taint tracking to detect
private data leakage in Android apps. It is a considerable ad-
vance over Android’s permission control, but does not con-
sider implicit/indirect flows, which arise from the program’s
control flow [27]. Moreover, TaintDroid incurs considerable
performance and energy overheads. Some forms of IFC can
be enforced using static analysis( [30], [24]); while efficient,
these tools can identify a relatively small class of informa-
tion leakage, and are constrained to apps where the source
code (and all libraries) are available for analysis.

SpanDex [17] relies on runtime techniques to mitigate
leaks of specific private information like passwords through
implicits flows in mobile apps. ReCon [31] uses machine
learning to identify personally identifiable information (PII)
in network traffic, enabling users to detect and manage po-
tential privacy leaks by mobile apps. ReCon must be trained
to identify specific PII and is subject to classification ac-
curacy. The system can be deployed either as part of the
mobile platform, or as a trusted middlebox with access to
cleartext network traffic.

2.3 Sandboxing approaches
Sandboxing is a well-known technique for isolating the ex-

ecution of untrusted programs, and can be used to control
app access to sensitive information and resources. Sandbox-
ing has been proposed for social networks [33, 35] and for
mobile platforms [29].

Lee et al. [29] propose πBox, a sandbox technique for An-
droid where apps can establish connections outside the sand-
box through restricted storage and communication channels,
preventing apps from exposing data via world-readable files.
This approach does not prevent the application from access-
ing sensitive data from sensors, or from leaking it to the
application provider.

In contrast to prior work, PCs enforce a simple execution
model for untrusted apps, which rules out privacy leaks by
design. Enforcing the PC execution model does not require
expensive runtime intervention like taint tracking. Instead,
PCs intercept untrusted apps’ I/O operations and modify
them according to the rules for the app’s current sealing
state.

3. DESIGN
Privacy capsules are implemented by a trusted mobile

platform. The platform includes the OS, and a set of basic
services, such as a location provider, a Contacts application,
and a GUI, all of which are also assumed to be trusted.

Execution model: The PC execution model is depicted
in Figure 1. The execution of an app starts in the un-

sealed state, where it has access to public inputs and un-
trusted resources. Later in its execution, the app process
may switch to sealed state, where it has access to private
inputs and trusted resources, but can no longer write to un-
trusted channels. Once in sealed state, the process cannot
return to unsealed state, only terminate.

All sensor data (health/fitness, inertial, camera, micro-
phone), geolocation, GUI inputs, phone status, databases
(e.g,. contacts, calendars) are private by default. Public
files, network connections, and interprocess communication
(IPC) with untrusted processes in unsealed state are consid-
ered untrusted channels.

The main components of PCs are the following:

Key manager: The PC key manager maintains, for each
app and user, a set of cryptographic keys used to encrypt
data in sealed repositories and channels. Apps can request
keys be created and select keys for use with a specific repos-
itory or channel. Apps refer to keys using handles, but can-
not access the keys.

Sealed respositories (SR): In sealed mode, an app pro-
cess may read and write an SR, allowing the app to persis-
tently store data across executions. Data stored in an SR
is encrypted with a user-specific key maintained by the PC
key manager. SRs may reside in untrusted storage, like the
Cloud.

Sealed channels (SC): An SC allows an app process in
sealed mode to communicate with instances of the same app
executing on other users’ devices. The communicating apps
are authenticated by the PC platforms, and communication
is encrypted with a channel-specific key. Apps using a SC
retain access to GUI events, and the device’s microphone
and camera. SCs are designed to enable person-to-person
communication apps.

Selective declassification: An app process in sealed mode
can disclose a particular data item to a particular third party
with the user’s express consent. To allow the user to deter-
mine the nature of the information disclosed, PCs track the
type and provenance of all input data. When an app asks for
selective declassification, the PC platform presents the user
with the origin and type of the information to be disclosed
and asks for confirmation.

The PC execution model ensures that no private data can
flow to untrusted channels or parties, except via selective
declassification.

PC-compliant apps can be installed and executed along-
side ordinary apps on the same platform. We envision that
users may continue to use ordinary apps from their bank,
employer, or other reputable providers they trust. However,
privacy conscious users would insist on PC-compliance for
apps from less well-known providers, and for apps that re-
quire access to sensitive information (health, financial, pri-
vate communication, etc.)

3.1 Threat model
The mobile platform, including the PC implementation,

the OS, and platform apps, are trusted2. Attacks against
these components are out of scope. We believe these assump-
tions are reasonable because (i) reputable platform providers

2When sealed channels are used, the mobile platforms on all
communicating devices are trusted.



Figure 1: Privacy Capsules execution model

have an interest in protecting users’ privacy and the integrity
of their platform, and (ii) while technically sophisticated
users may compromise (“jail-break”) their platform, compro-
mising the integrity of PCs will only place their own privacy
at risk.

By design, the guarantees provided by PCs hold regardless
of app bugs, vulnerabilities, or deliberate misbehavior. For
this work, it is assumed that apps do not exploit timing
channels to leak private information. We believe that timing
channels can be thwarted by shaping app I/O operations in
the PC platform. However, a closer analysis and prevention
of timing channels in the context of PCs remains the subject
of future work.

3.2 State-dependent access restrictions
PCs prevent illicit information flows by mediating I/O

operations depending on app’s current state. Table 1 lists
relevant operations and their state-dependent restrictions.

In the unsealed state, an app process has full access to un-
trusted channels like network connections and files, and the
public location as defined by the location policy (see Sec-
tion 3.4). The process can open but not read or write sealed
repositories, sealed channels, and sources of private data,
including sensors and GUI events. The process can interact
with other processes in unsealed state only, and may receive
a limited set of system event types that are not privacy sen-
sitive. Finally, the process can instruct the PC key manager

App State
Unsealed Sealed

Platform, Sys. Events
App launch/fg/bg events allow allow
GUI events deny allow
All other sys. events deny allow

Device Sensors
Sensor deny allow
Display allow allow
Audio deny allow
Microphone deny allow
Camera deny allow
Precise location deny allow
Public location allow allow
Device/network status deny allow

System Services
Calendar read/write deny allow
Contacts read/write deny allow
Phone calls/SMS deny deny

Files/network
Open/Close streams allow deny
Read streams allow allow
Write streams allow deny

PC Key Management
Create/set keys allow deny
Cryptographic key access deny deny

PC sealed repository/channel
SC/SR creation allow deny
SR/SC read/write deny allow

Table 1: Default PC policy for apps in sealed and
unsealed states

to create keys, and to select keys for use with specific sealed
repositories and channels.

In the sealed state, the process has access to all private
inputs, system events, databases, and status information,
as well as sealed repositories/channels, but it can no longer
write to untrusted channels. The process can interact with
other processes in sealed state only. To prevent an app from
leaking private information, the process can no longer open
new files, network connections, or input devices, create nor
select keys. These events can be observed by untrusted par-
ties and could be exploited to encode private information as
part of a covert channel (see Section 3.5).

Access to APIs for cellular voice calls or simple text mes-
sages (SMS) is prohibited in sealed mode, because it is diffi-
cult to effectively prevent leakage of private information via
these technologies. However, PC-compliant apps for VoIP
or secure messaging (chat) can be implemented, as shown in
Section 4.5.

3.3 App launch
When a user or an app in unsealed state launches a PC-

compliant app, the new app process starts in unsealed state.
The new process can switch to sealed state when ready.

In Android, apps can launch other apps through events
called Intents, which may pass arguments from the launching



app to the launched app. Therefore, when an app process
in sealed state launches an app, PC needs to ensure that no
private information is leaked. In general, an app in sealed
state may launch another app only if the launched app is
a trusted platform app, the launched app is PC-compliant
and forcibly started in sealed state, or the arguments passed
in the intent are selectively declassified.

3.4 Location policy
Privacy capsules require no app-specific policies, and no

user-specific policies with one exception: A user may wish to
select a location privacy policy. The device’s current loca-
tion as defined by latitude/longitude is considered private,
like any other sensor input. However, the location policy
may define a public geofence, which is available to apps in
unsealed state. The public geofence is the current location
expressed as a geographic region at a particular political/ad-
ministrative level. The top levels are world, continent, coun-
try. For a location in the US, the lower levels are state,
county or independent city, municipality, ZIP code, street,
address. An example location policy might say that the cur-
rent location at the state level is public, and can be accessed
by apps in unsealed state.

PCs automatically maintain a public geofence according
to the location policy in effect. When the device moves out
of the region covered by the current public geofence, PCs
conservatively switch to the next higher level (e.g., from
state to country). The user is notified of the change and
has the option to adjust the public geofence manually. To
avoid leaking information about the user’s current location
(i.e., somewhere at the geofence boundary) to unsealed apps,
automatic changes to the public geofence are delayed ran-
domly.

Apps in unsealed state may invoke a trusted map appli-
cation to request the user to specify a location, e.g., a des-
tination to be used for a navigation or travel booking appli-
cation. The PC platform makes this input available to the
app after generalizing the location to the same political/ad-
ministrative level as the current public geofence.

3.5 Sealed repositories (SR)
Sealed repositories allow apps to store private information

(profiles, logs, keys, accumulated sensor information) across
launches. An SR can be stored as a local file on the device,
or on a Cloud provider via HTTPS. Data stored in an SR is
encrypted with a cryptographic key created and stored on
behalf of the app by the PC key manager. The key itself is
never revealed to the app; as a result, the app can read and
write an SR whenever it is in sealed mode, but it cannot
reveal its content to a third party.

An SR must be created and opened while the app is in
unsealed mode. Creating or opening binds the name of
a file-backed SR, and the URL and HTTPS GET/POST
arguments for a Cloud-backed SR. Requiring creation and
opening in unsealed mode ensures that no private informa-
tion can be encoded in the set of SRs, their names, URLs, or
GET/POST arguments, which can be observed by third par-
ties; however, apps may still negotiate app-specific authenti-
cation without involving the platform. Once in sealed mode,
the platform uses a well-known API (GET/POST/REST)
to communicate over the channel created by the app.

SRs must be read sequentially, in their entirety, and only
once per execution to prevent an app from encoding private

information in its pattern of access.

3.6 Sealed channels (SC)
Sealed channels enable communication among instances

of an app that execute on different users’ devices, and sup-
port typical communication apps like messaging, chat, video
calls, or multiuser games. When combined with appropriate
key management as in Persona [13], SC can even be used to
support private online social networks.

An SC must be set up in unsealed mode. When an app
requests an SC, the PC platform launches the contacts app
to have the user select participants. (Since the app is in un-
sealed state, it has no access to the contents of the contacts
database). Using the public keys in the contacts database,
the platform then authenticates the selected participants
and establishes a shared session key. When the app instances
on the participating devices switch to sealed state, they can
access the SC.

Note that sealed mode app instances can freely share in-
formation. This is necessary as the participants wish to
exchange video, audio, text typed on the keyboard, or other
GUI events. To prevent such app instances from shar-
ing other information like user’s sensor inputs, locations,
databases (e.g., calendar, contacts), or sensitive device state,
an app with an active SC is denied access to private inputs
other than GUI events, camera, and microphone.

3.7 Selective declassification
In some cases, users wish to deliberately disclose some pri-

vate information to a particular third party. For instance,
a user of a purchasing app who wishes to purchase an item
needs to disclose to the vendor their choice of item, typically
along with a name, shipping address, or payment informa-
tion. As another example, a user of a fitness/health app
wishes to disclose some of her sensor data to a coach or
health care provider.

Selective declassification allows an app in sealed mode to
declassify information with the express consent of the user.
For this purpose, the trusted platform requires the user to
confirm the declassification of a specific data item to a spe-
cific third party.

Users must be able to verify what information they are
asked to declassify. For this purpose, the PC platform signs
all private input data consumed by PC-compliant apps with
its provenance metadata. Sensor data is signed with its type,
sensor, and time of capture. GUI input is signed with the
GUI mask and time at which it was entered.

Apps are allowed to declassify only information that cor-
responds directly to a set of signed input data items. This
restriction ensures that an app cannot trick the user by en-
coding additional, private information in the data to be de-
classified, e.g., using steganography3.

Finally, when an app requests declassification, the plat-
form displays the metadata of the information to be declas-
sified, along with the specific third party to which the app
wishes to declassify. The third party may be a provider

3We considered allowing declassification of arbitrary data
by presenting the user with the union of the metadata of
all inputs consumed by the app. This approach is safe in
terms of information flow because the metadata covers all
inputs that could be reflected in the to-be-declassified data.
However, in general the union of the metadata lacks speci-
ficy, which may make it difficult for users to make informed
decisions about declassification.



Figure 2: Example disclosure dialogue

identified by an authenticated HTTPS domain (via a secure
connection), a specific person identified by a public key (via
a file encrypted with that public key), or another app (via
an intent). Only if the user confirms is the information de-
classified and encrypted for the third party.

Figure 2 shows an example declassification confirmation
dialog for information about medication that was previously
entered by the user. In the case of sensor information, the
displayed metadata identifies the sensor, the resolution, and
the period covered by the data.

Unlike existing permission systems, selective declassifica-
tion enables users to decide on a case-by-case basis whether
specific information identified by its metadata should be dis-
closed to a specific third party. The app remains untrusted,
but the user implicitly entrusts the third party with the de-
classified information.

Generalized Declassification.
Both Sealed Channels and Selective Declassification are

examples of declassification whereby users’ input is required
to explicitly allow specific information to be declassified to
a known destination. More generally, we envision a declass-
fication architecture for PCs that uses a standalone key dis-
tribution infrastructure to disseminate Attribute-based keys
corresponding to device resources (similar to the key man-
agement in [13]). Sealed channels and selective declassifica-
tion allow us to demonstrate the utility of PCs and imple-
ment useful classes of applications; generalized declassifica-
tion remains a topic of future work.

4. DEVELOPING APPS WITHIN PCS
To be able to run inside a privacy capsule and benefit

from its privacy guarantees, apps must conform to the PC
execution model. In this section, we present the PC API,
and discuss guidelines for developers who wish to write PC-
compliant apps. We also describe three PC-compliant apps

we implemented: a train timetable app, a health/fitness app,
and a simple text chat.

4.1 Privacy capsules API
The privacy capsules API is summarized in Table 2. The

API calls are grouped into three categories. The basic API
provides operations for creating and selecting keys, for cre-
ating and opening file-based SRs, and for swiching to the
sealed state. The HTTP connection API provides means
for creating and opening HTTP-based SRs, and for declas-
sification into HTTP connections. The secure channels (SC)
API provides means to establish a sealed channel (SC). With
the exeption of the SC API, which is currently available only
in Java, APIs are also available for C programs.

4.2 Guidelines for developing PC apps
Next, we give general guidelines for developing PC-

compliant apps. A key question for the developer of a PC-
compliant app is how to split the apps’s functionality be-
tween the unsealed and sealed states. At a high level, func-
tions that require communication with untrusted third par-
ties require unsealed state, while functions that depend on
private data require sealed state. Moreover, the two states
must occur sequentially and only one transition is allowed,
from unsealed to sealed state. Depending on the nature of
an app, this constraint, which ensures that no private in-
formation can flow to untrusted channels, may require some
care. Following, we discuss common patterns of app infor-
mation flow, and how to accomplish them in a PC-compliant
manner.

Maintaining private information across launches:
Many apps store private information like the user’s search
and activity history, personal profile, authentication creden-
tials, etc., persistently across app launches. In many cases,
the information is stored in the Cloud on the app provider’s
site. PC-compliant apps can store such information in a
sealed repository, accessed from sealed state.

Sensitive database queries: A large class of apps provide
maps and directions, transportation scheduling and ticket-
ing, discovery of nearby resources, shopping, and may in-
clude advertising components. Such apps typically query a
Cloud database, where the queries depend on private data
like the user’s location, destination, history, profile, and in-
terests. Privacy-preserving, PC-compliant versions of such
apps maintain a cache of the database on the local device,
and resolve queries locally from the cache. In unsealed state,
the app updates its cache from the Cloud, along with new
tips, advertisements, or promotions pushed by the Cloud
provider. Once in sealed state, the app resolves user queries
and performs ad selection from the local cache.

Purchase transactions: Apps that perform reservation or
purchase transactions must necessarily disclose some private
information, like the product ID, name, shipping address,
or payment details, to the vendor. PC-compliant apps use
selective declassification to disclose such specific information
to a particular vendor from the sealed state, with the user’s
express consent.

Health/Fitness/Nutrition advice: Apps that allow
users to seek advice from health care providers, fitness
coaches, or nutrition advisers necessarily release private
information (e.g., health and fitness sensory data, nutri-
tion/activity logs) to third parties. PC-compliant apps use



Seal/Unseal API

Function Description Java (class PrivacyCapsulesService)

Seal Seals the app boolean seal()

Get seal status Checks if app is sealed boolean isSealed()

Key creation Creates a key and returns a handle long createKey()

Set key Associates a key with the given SR file descriptor long setKey(FileDescriptor, long)

Associate handle with name Associates a handle (long) with a textual name boolean setHandlePair(long,byte[])

Retrieve handle by name Retrieves handle associated with given name long retrieveHandlePair(byte[])

HTTP Connection

Function Description Java (package java.net.*)

Open connection Opens a HTTP connection with a remote SR HttpURLConnection URL#openConnection(long)

Open connection for data dis-
closure

Opens a PC HTTP connection for selective data
disclosure

HttpURLConnection
URL#openDisclosureConnection(long)

Secure Channels

Function Description Java (class PrivacyCapsulesService)

Open SC
Shows a dialog with existing contacts; opens a SC
and returns a file descriptor associated with each
selected contact.

ParcelFileDescriptor[] createSecureChan-
nel()

Get SC input stream Returns the input stream associated with a SC
getSecureChannel[Client/Server]

Input(ParcelFileDescriptor)

Get SC output stream Returns the output stream associated with a SC
getSecureChannel[Client/Server]

Output(ParcelFileDescriptor)

Table 2: Summary of privacy capsules API

selective declassification to disclose such specific information
to a particular provider from the sealed state, with the user’s
express consent.

Live communication with other users: Communica-
tion applications like voice/video calling and chat necessar-
ily require live communication with the participants of the
call. PC-compliant apps set up a sealed channel in unsealed
mode, and use the channel from a restricted sealed state
that grants access to GUI events, camera, and microphone.

Social networking: Many apps have a social networking
component, where private information is made available se-
lectively to specific groups of other users. While we have not
yet experimented with such apps, we believe that a gener-
alized form of declassification based on attribute-based key
management can support such apps.

Sensor matching: Apps like “bump” [2, 5] require ac-
celerometer, location and clock readings to be compared be-
tween different devices. In our prototype, such apps can be
implemented by selectively declassifying the sensor inputs
to a Cloud-based matching service. In future work, we plan
to add support for privacy-preserving sensor matching using
multiparty secure computation, as in [8].

Next, we describe three PC-compliant apps we developed.
Each sample app represents a large class of similar apps.
Designing and implementing these apps did not present any
difficult challenges related to the PC execution model. With
the PC execution flow in mind, it was possible to quickly
design the apps.

4.3 DB train timetable app

We implemented a train timetable app that replicates the
functionality of a proprietary app offered by the German
railway company DB (Deutsche Bahn). Our app relies on
DB’s Cloud backend service, which offers an open Web API.

In normal operation, the DB app queries the DB backend
and returns a travel plan to the user, which reveals the user’s
point of departure (often the current location), destination
and time of travel to the DB backend service. Users also
have a ticketing option, which submits the user’s name and
payment details to the DB backend as part of a transaction,
and returns an online ticket. The DB app supports an offline
mode, where the timetable is cached on the device and the
app resolves information queries from the cache.

Our PC-compliant version of the app instead follows the
execution flow shown in Figure 3. In the unsealed state, the
app updates its local cache of the timetable and realtime
information from the DB backend, for the region indicated
by the user’s public geofence. Once in sealed state, the app
accesses an SR storing the user’s profile and payment de-
tails, and receives GUI input from the user about particular
connections. It then queries the relevant information from
the locally cached database. A similar approach is taken in
PlaceLab [28].

If the user wishes to purchase a ticket, the app requests
selective declassification of the connection details, along with
personal and payment details obtained from the SR. If the
user approves, the details are sent to the DB backend as part
of a ticketing transaction.

Without the ticketing option, which we have not yet im-
plemented, the app consists of 1417 lines of Java code. Com-
pared to a conventional implementation of the app that has
an offline mode, only a few lines of additional code are nec-



Figure 3: PC-compliant DB app

essary. This code uses the PC API to open an SR, switch
to sealed mode, and request selective declassification when
issuing a ticketing transaction.

Maintaining a local copy of the database for a region corre-
sponding to the user’s current public geofence requires some
additional bandwidth. As we will show in Section 5.4, the
required bandwidth is low in practice.

4.4 Health/Fitness app
We built a simple wellness/fitness app that monitors a

Bluetooth connected wearable fitness sensor (Polar H7 heart
rate sensor), and allows users to enter additional information
(medications, meals). Users can send some of their data to
a coach. We also built a simple app for the coach, who can
receive fitness data from users and respond with fitness and
nutrition advice. A simple, untrusted web backend service
supports a REST API to store encrypted user data and to
exchange encrypted data among users and coaches.

The fitness app, in unsealed state, opens an SR used
to store the user’s profile information and personal health
record (PHR), which consists of sensor data and data logged
by the user. Then it switches to sealed mode, where it reads
out sensors, accepts input from the user, and adds data to
the PHR. When the user wishes to send data to a coach, the
app requests selective declassification of the corresponding
data. If the user approves, the data is encrypted for the
coach and sent to the backend service.

The coach’s app, in unsealed mode, downloads encrypted
user data from the backend. Then, it switches to sealed
mode, where it can retrieve its keys from an SR containing
the coach’s profile data, and decrypts the user data. Once
the coach has entered her response, the apps asks for selec-
tive declassification of the response.

The apps consist of a library with common procedures
(5378 lines of Java code), the client’s app (3127 lines of Java
code) and the coach’s app (314 lines of Java code). There
is little code specific to the use of PCs. Usage of the se-

lective declassification API required 202 lines of Java code.
Listing 1 shows how to selectively disclose data through a
HTTP connection using the PC API.

Listing 1: Example of data declassification through
PC HTTP connections

1...
2PrivacyCapsulesService pcService =
3PrivacyCapsulesService.from(getActivityContext());
4long handle = pcService.createKey();
5URL url = new URL("http://example.com/service");
6HttpURLConnection con =
7(HttpURLConnection) url.openDisclosureConnection(handle);
8conn.setRequestMethod("POST");
9...
10

11if (pcService.seal()) {
12/* Get account from the contacts database */
13/* Get password from GUI */
14List<NameValuePair> params = new ArrayList<NameValuePair>();
15params.add(new BasicNameValuePair("account", account));
16params.add(new BasicNameValuePair("password", password));
17

18OutputStream os = conn.getOutputStream();
19BufferedWriter writer =
20new BufferedWriter(new OutputStreamWriter(os,"UTF-8"));
21writer.write(getQuery(params));
22...
23}
24...

4.5 Messaging app
We built a simple messaging app that allows the live ex-

change of text messages among users. In unsealed mode, the
app sets up a secure channel, which causes the platform to
launch the contacts app to allow the user to select the par-
ticipants. Once in sealed mode, the app has access to the
GUI and sealed channel and can exchange messages with
the participants.

The app has around 600 Java lines of code and very few
lines are specific to the use of PCs. As shown in Listing 2,
the traditional calls to establish a socket (line #3) and to
obtain the socket’s input and output streams (line #8) are
replaced by the PC secure channels API.

Listing 2: Creating a secure channel and obtaining
its input/output streams

1...
2PrivacyCapsulesService pcService =
3PrivacyCapsulesService.from(getActivityContext());
4final ParcelFileDescriptor[] contactsFd =

pcService.createSecureChannel();
5pcService.seal();
6connected = true;
7while (connected) {
8try {
9if (pcService != null) {
10if (contactsFd[0] != null) {
11OutputStream outputStream =
12new ParcelFileDescriptor.AutoCloseOutputStream(contactsFd[0]);
13BufferedWriter bWriter =
14new BufferedWriter(new OutputStreamWriter(outputStream)),true)
15PrintWriter out = new PrintWriter(bWriter);
16...
17}
18...
19}
20...



5. PERFORMANCE EVALUATION
In this section, we describe a prototype implementation

of privacy capsules in Android, and present experiments to
evaluate the performance of PCs.

5.1 Prototype
The PC prototype has components in both the Android

kernel and the Android framework. In the Android kernel,
we added a syscall to support the PC API. Moreover, we
added a kernel module (pc_module.ko), which contains 3990
lines of code and provides the core of the kernel PC imple-
mentation. It intercepts all I/O syscalls of PC-encapsulated
processes by changing the syscall table to refer to the PC
kernel module [22].

The kernel module also performs the cryptographic oper-
ations, and uses AES-128 to encrypt/decrypt the blocks of
data. The handle:file mapping is stored by the PC kernel
implementation as a system protected file and the key is re-
covered every time it is required to perform cryptographic
operations.

In the Android framework, 3846 lines of code were added
to provide a Android system service (PrivacyCapsulesSer-
vice), notification support for declassification and location
policies, permission control, system services control and a
Java API for accessing the features provided by PC.

Changes to the existing Android permission system are
another part of the prototype. Android has several differ-
ent permissions that are granted to the application, which
are specified in a manifest XML file by the developer. Per-
missions are managed at two levels: user space permissions
and kernel space permissions. For user space, every time
the application needs to access a certain resource associated
with a specific permission, Android checks if the application
has been granted the proper rights to do so. This is im-
plemented in the Android framework. For kernel space, the
system associates each permission (for example, GPS access)
to a system group. Therefore, only those applications that
belong to a particular group (for instance, the gps access
group), can access the resource. The PC implementation
makes changes to the permission system to deny apps in
unsealed state access to sensitive resources, i.e. calendar,
contacts and sensors.

5.2 Experimental platform
The evaluation was performed on a rooted Nexus 9 de-

vice (volantis), with Linux Kernel 3.10 (android-tegra-3.10-
lollipop-release) and Android 5.1 (AOSP for volantis). The
Nexus 9 is a 2.3 GHz dual-core 64-bit Denver tablet, with 2
GB LPDDR3-1600 RAM and 16 GB flash storage.

The Nexus 9 has an ARM V8 CPU with cryptography
extension, including SIMD instructions that speed up algo-
rithms such as AES and SHA. To make use of these capabil-
ities, we enabled the following kernel configuration options:
CONFIG CRYPTO HW, CONFIG ARM64 CRYPTO,
CONFIG CRYPTO AES ARM64 CE,
CONFIG CRYPTO AES ARM64 CE CCM,
CONFIG CRYPTO AES ARM64 CE BLK. For ex-
periments with the Health/Fitness app, we used a Dell
Intel R©CoreTM3.20GHz desktop with a i5-3470 CPU and
8 GB of main memory as the backend server. The mobile
devices connected to the server via our institute’s Wi-Fi
network.

5.3 Privacy capsules overheads
We begin with an evaluation of performance overheads of

the PC execution model, and the crypto overheads associ-
ated with sealed repositories.

In the first experiment, we compare the latency of read-
ing/writing data in different configurations: a plain file in
unmodified Android; a plain file with PCs in unsealed state,
and a sealed repository in sealed state. Figures 5 and 4
show the results for read and write operations, respectively,
of sizes 1, 4K and 10K bytes, with whiskers indicating stan-
dard deviation. In each case, an existing file of 1MB size
was read or overwritten.

Figure 4: Write overheads

The latency differences between the unmodified Android
system and privacy capsules in unsealed state is small,
within a standard deviation. This shows that PC’s over-
head for intercepting I/O operations directly in the kernel
is negligible, as expected.

The overheads for read/write operations to SRs are
higher, due to the required data encryption. The overhead
for write operations is very low, 2.6% for 1 byte, 4.4% for
4K byte, and 4.2% for 10Kbyte writes. Read operations are
very fast in our experiments, because they are served from
Linux’s buffer cache after the first iteration of the experi-
ment. As a result, the overheads are larger, 55% for 1 byte,
319% for 4K byte, and 286% for 10Kbyte reads.

In the second experiment, we compare the performance
of two versions of a simple demo app. The two versions
are functionally equivalent, but one is PC-compliant, while
the other executes on plain Android. The PC-compliant
version opens an existing SR and select a key for it, creates
a new SR and selects a key for it, then switches to sealed
state. In sealed state, it reads the existing SR, writes the
new SR, then terminates. The plain Android version opens
an existing file and reads it, creates a new file and writes it,
then terminates. The SRs and files are 1MB in size.

Figure 6 shows the execution time of the two versions.
The values were obtained using traceview [1]. The overhead



Figure 5: Read overheads

of the PC-compliant version is about 1%.

Figure 6: Runtime for two versions of the demo app

We also performed experiments with the sample apps de-
scribed in Section 4. Latency overheads due to the use of
PCs were small enough to remain unnoticeable to the user
in all cases.

5.4 Train app: Bandwidth and storage usage
The train timetable app is an example of a class of apps

that provide information about a particular geolocation or
trajectory from a database. Implementing such apps in a
privacy-preserving manner requires that queries about spe-
cific locations are performed on a locally cached copy of the
database. Minimally, a portion of the database must be
cached that is sufficiently large to absorb all queries within
the user’s public geofence.

The storage and bandwidth requirements for maintaining
such a local copy depend on the size and update rate of the
database, as well as the size of the user’s public geofence.

Here, we measure these requirements for the DB train app
we built.

Towards this end, we collected data from the Deutsche
Bahn (DB) online train schedule system. DB is the largest
rail transport company in Central Europe. We fetched the
timetable on Dec 5, 2014. It includes 5374 stations, is
12.2MB large, and changes every six months.

The DB systems also publishes real-time updates like plat-
form changes, delays, and cancellations. The updates con-
sist of text messages stating a delay (e.g., “+2min”, “appr.
+50min”, “Train cancelled”) and a reason (e.g., “Platform
changed”, “Technical failure”, “Delay from previous trip”,
“Person on the tracks”, “Delay of a preceding train”, “Wait-
ing for an incoming train”).

We fetched realtime data through the DB Web API for
all the stations during the period from 7pm, Mon, 8 De-
cember, 2014 to 5:51pm, Wed, 10 December 2014. Of our
144623151 queries, 365843 (or .25%) failed with an HTTP
status 404 (not found) or 408 (timeout); as a result, we may
have missed a small proportion of realtime updates. The
data collected is likely to be typical for weekdays under nor-
mal conditions. We expect that volume could be consider-
ably higher in case of a strike, accident, or extreme weather
conditions.

We checked how much of the realtime data change over
time. Therefore, we considered all changes in the field ”de-
lay“ and ”reason” as updates. Figure 8 shows cumulative
distributions of the realtime update volume over time for all
German states, and Figure 7 shows the same for the main
stations of selected German cities (population in parenthe-
ses): Saarbrücken (177,201), Frankfurt am Main (701,350),
Berlin (3,562,166) and Hamburg (1,751,775). The figures
cover the 24 period within our data collection period that
had the highest volume of realtime updates.

We observed many cases of realtime updates that report
a delay of zero minutes and a reason of “No delay” for a par-
ticular train service. These updates seems redundant, but
account for a significant proportion of the updates, ranging
from 16.4% for the state of Hamburg to 78% for the state of
Sachsen (Saxony).

Given this data, we can estimate the additional bandwidth
requirements for a privacy-preserving DB train scheduling
app that maintains a cached copy of the timetable and real-
time updates relevant to the user’s current public geofence.
Maintaining the timetable requires up to 12.2 MB twice per
year, assuming conservatively that the entire table changes.
The resulting bandwidth requirement is negligible.

If a user’s public geofence is set to“Germany”, maintaining
a local cache of realtime updates requires on average 6211
KB for a 24 hour period, which is also negligible. Reducing
the public geofence to the state level reduces the bandwidth
requirement to between 19 KB/24 hours for Bremen (state
with least volume) and 1138 KB/24 hours for North Rhine-
Westphalia (state with most volume). Reducing the public
geofences further to the city level reduces the bandwidth
requirement to between 7.92 KB/24 hours for Saarbrücken
(city with lowest volume) and 60.34 KB/24 hours for Frank-
furt am Main (city with highest volume).

We conclude that the bandwidth requirements for main-
taining a local cache of timetable and realtime updates for a
train schedule app is neglibigle, even when the user’s public
geofence is at the level of a large country in Europe. Given
these very low traffic volumes, even unusual events (strike,



Figure 7: Cumulative DB realtime data by city

Figure 8: DB realtime data over 24 hours, by state

weather) that cause the volume to increase by one or two
orders of magnitude would be of little concern. Note that
the use of a public geofence larger than country would make
no difference in this case, as the scope of the DB system and
app is limited to a country.

6. CONCLUSIONS
We presented the design of privacy capsules, an execution

platform for mobile apps that prevents privacy leaks by de-
sign. We have implemented a prototype implementation in
Android and experimented with three example applications,
representing common application classes. Runtime overhead
is very low, and the app changes required to program apps
within the privacy capsules execution model are moderate.
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