
Design and Scalability of NLS, a Scalable Naming and Location Service

Y. Charlie Hu, Daniel A. Rodney and Peter Druschel
Computer Science Department

Rice University
Houston, TX 77005�

ychu@cs.rice.edu, drodney@rice.edu, druschel@cs.rice.edu �
PRELIMINARY DRAFT

Abstract

This paper sketches the design, and presents a scalability analysis and evaluation of NLS, a scalable naming and location
service. NLS resolves textual names to the nearest of a set of replicated objects associated with that name, and is designed to
scale to the dimensions of a world-wide service. Applications include resolving Web URIs to the nearest cached or replicated
object that provides the associated content. The key design goals of NLS are scalability, performance, availability and ease of
administration. NLS is based on a dynamically configured, distributed search tree, with a fat-tree based topology at the global
level and spanning trees at the local level. Analysis and preliminary empirical results obtained with a prototype implementation
indicate that the system scales as expected.

1 Introduction
In order to improve the scalability, performance, and availability of the World Wide Web, the strict client-server model of the
first generation Web is gradually being abandoned in favor of a model where Web content and services are replicated in different
geographic locations throughout the Internet. This trend can be seen in the proliferation of caching proxies [7, 24, 16], content
delivery services like Akamai and Digital Island [2, 9], and the recent interest in active proxy technology [6, 10].

An increasingly important problem in this context is the ability to locate the “nearest” replica of a Web resource in response
to a client request for that resource. We have designed and implemented a distributed naming and location service (NLS) that
is able to resolve an object name (for instance, a URI) to the address of the nearest object that provides the associated resource,
while scaling to the dimensions of the entire WWW. The focus of this paper is on the analytical and experimental evaluation of
NLS’s scalability.

Our service can be used by a caching proxy to locate the nearest replica of a resource (stored at another proxy or server) that
was requested by a client but not found in the cache of the client’s local proxy. Alternatively, the service could be used directly
by Web browsers to locate the nearest replica of a resource requested by the user.

NLS is based on distributed search in a tree of hierarchical domains, as originally proposed in the GLOBE location ser-
vice [22]. NLS extends this prior work in several directions, improving the scalability, flexibility, and administrative ease of the
previously proposed system. Moreover, this paper presents the first analytical and experimental evaluation of the scalability of
this approach.

NLS differs from the GLOBE location service in several ways:
� NLS integrates the naming and location functions, which enables the aggregation of location information in the search

tree for co-located objects whose names have a common prefix, thus increasing the scalability.
� NLS uses hashcodes to store names of bound objects in the interior nodes of the search tree, thereby reducing the storage

requirements per object and thus further improving scalability.
� The NLS search tree dynamically configures itself to reflect the measured proximity of the NLS nodes in the network,

based on a given proximity metric (e.g., latency, bandwidth, hop count or a combination thereof). This property allows
NLS to track topology changes in the network and thus greatly eases administration.

� NLS uses a two-level tree-based naming architecture with a fat tree [15] topology at the global level, and a forest of
spanning trees at the local level. The fat-tree topology allows the systematic use of replication (for availability) and
partitioning (for scalability) in the upper portions of the search tree. The self-configuring spanning tree topology at the
local level is able to track frequent changes in network topology, node availability and configuration at the fringes of the
network.
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This paper sketches the design, presents a scalability analysis, and presents preliminary empirical results with a prototype
implementation of NLS. Based on small to medium scale experiments, we conclude that NLS should scale to a world-wide
service able to maintain in excess of 1 Billion bindings. However, larger scale simulations will be necessary to confirm this
conjecture.

The rest of this paper is organized as follows. Section 2 presents some background on naming and caching in the Web,
and on DNS. The design of NLS is presented in Section 3. A scalability analysis is presented in Section 4. Section 5 presents
preliminary experimental results obtained with a prototype implementation of NLS. Related work is covered in Section 6 and
Section 7 offers some conclusions.

2 Background
In this section, we cover some technical background on naming and caching in the Web, and on DNS.

The domain name system (DNS) [17] is used in the Internet to map domain names to IP addresses. The service is imple-
mented by a hierarchy of name servers that reflects the structure of the DNS name space. The name space is partitioned into
different administrative zones representing all names with a given suffix, and an organization in charge of a zone provides one
or more DNS servers, which perform name translation for all names with the corresponding suffix.

For instance, Anon University operates a set of DNS servers that are in charge of mapping all domain names that end in
anon.edu to the associated IP address. These servers are the children of a DNS node in charge of all names with suffix .edu.
The servers internally rely on child DNS servers in charge of names ending in cs.anon.edu, ece.anon.edu, etc. For
high availability, DNS servers are replicated. To reduce query load, DNS leaf servers cache previously resolved bindings.
The binding are timed out to prevent persistent stale mappings. Since DNS mapping are not assumed to change frequently, a
typically timeout period is 15 minutes.

A domain name can be mapped to multiple IP addresses, and DNS will resolve queries for the associated domain to one
of the IP addresses in a round-robin fashion. This affords a primitive form of load balancing among multiple machines that
implement a given server.

Although not standard behavior, a DNS server implementation is able to take into account the network location from which
a query originates in choosing an IP address used in answering the query. Using this trick, DNS can be used to map a domain
name to the IP address of a “nearby” (i.e., close to the client) server or proxy. While technical details are undisclosed, it is
believed that networked proxy operators like Akamai [2] and Digital Island [9] use this approach.

Once a client request arrives at a proxy, and that proxy does not hold the requested resource, the proxy needs to locate the
closest proxy or server that does have the requested resource. In a large-scale system, this requires a distributed location service
like NLS.

Currently, naming and location in the WWW is based on uniform resource locators (URLs) [4]. A URL contains the DNS
domain name of the server that hosts the associated resource. During a lookup, the Web browser extracts the domain component
from the URL, obtains the server’s IP address using DNS, contacts the Web server application using the IP address and a well-
known or specified (in the URL) port number, and request the document identified by the remainder of the URL relative to the
Web server’s local document root.

Caching proxies attempt to improve response times, reduce server load and network traffic by keeping copies of Web content
close to a client community. Client requests can be intercepted by proxies in one of three ways:

Conventional proxies require that each user’s browser be configured to send all client requests to a given proxy. The proxy
either responds to the request using a cached copy of the requested document, or else forwards the request to the server.

Transparent proxies transparently intercept outgoing request packets from client browsers in a given subnet. Like conven-
tional proxies, they either respond with a cached copy or forward the request to the server.

Networked proxies cache content, streaming media and, in the future, dynamic Web applications from content providers that
contract with the proxy network operator (e.g., Akamai or Digital Island). The content providers specify URLs that
contain the proxy network operator’s domain name for all content that they wish to be served from the proxy network.
Name translation proceeds as follows. The DNS server for the proxy network operator’s domain returns an IP address
that depends on the subnet address from which the DNS query originates (i.e., the client’s location in the network). It
does so by looking up the IP address of the proxy closest to the client’s location. As a result, the client’s HTTP request is
directed to a “nearby” proxy. If that proxy caches the requested content, the latter is returned to the client. Else, the proxy
attempts to locate the “closest” copy of the requested resource at another proxy in the network, fetches that content, and
returns it to the client. This requires a location service.

Among the three types of proxies, the third is most powerful, as it automatically locates a copy of the requested resource
closest to the client. Furthermore, networked proxies are in principle able to serve not only static Web content and streaming
media, but also Web applications that can supply dynamically generated content.

Networked proxies require a location service that allows them to locate the closest copy of a requested resource within the
proxy network. Today, commercial operators use proprietary location services for this purpose, with a scope that is limited to
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just that operator’s proxies. The NLS service is intended as a general solution to the location problem, and is designed to scale
to the total number of objects in today’s Web and beyond (

�������
objects).

3 Design
In this section, we sketch the design of NLS, our scalable naming and location service. Due to space constraints, we focus on
those aspects of the design relevant to scalability.

NLS maps hierarchical, textual names to a set of object addresses that provide the associated resource. Names in our service
consist of a variable number of textual name components, separated by the slash “/” character. As a result, URLs are legal names
in NLS, which is convenient for backward compatibility. However, the service makes no assumptions about the meaning of
pathname components; in particular, no part of a name is assumed to imply the location of the associated resource. The object
addresses are opaque to NLS; in practice, they could represent �	��
���������������������������������! "��#$� �

triples, CORBA/IIOP
handles, or any other form of object address.

There are several key requirements that together differentiate our naming and location service from a pure naming service
such as DNS:

Replication and migration of objects Our naming and location service is designed for environments where Web resources
(content and services) can migrate between nodes (e.g., servers and proxies) in the Internet. Consequently, a key require-
ment for the naming and location service is support for multiple bindings of a name to objects at different locations in the
Internet. This implies that the location service must not rely on object names to contain location information.

Locating the nearest replica A fundamental requirement in the design of NLS is the ability to resolve a name (e.g., a URL)
to the “nearest” of a set of replicated objects that can provide the requested content or service associated with the name.
Proximity is defined here in terms of the characteristics (e.g., latency, bandwidth, hop count, loss rate, cost, security) of
the network connection between the parties.

Scalability NLS should be able to support a very large number of names (more than one billion), with associated objects that
can potentially be located anywhere in the world.

Availability The NLS service needs to remain available in the event of NLS server crashes, and minimize the number of clients
for which the service is disrupted. In addition, after recovery, the crashed name server needs to be able to restore the lost
location information to be consistent with the other servers.

Ease of administration Lastly, the NLS service needs to be easy to manage, especially when the network topology changes,
when adding/removing name resolvers, and during failure and recovery of name resolvers.

The existing Internet DNS service does not meet the first requirement, for several reasons. First, in typical use, it maps
domain names to IP address(es), as opposed to full object names to the nearest object address. Second, even though DNS can
be manipulated into mapping a domain name to the address of a “nearby” server, this does not solve the problem of locating the
closest server that provides the requested resource. In other word, the DNS server that needs to resolve a domain name query
to a nearby server address needs to rely on a secondary location service for this purpose.

In the following, we describe the design of NLS, a service that satisfies all the requirements. NLS is based on a distributed
search tree structure of name resolvers [21], which allows multiple bindings and migration of objects and locates the nearest
replica. The scalability of the simple search tree is then significantly enhanced with the following techniques: (1) NLS uses
a fat-tree based organization of resolvers in the upper level of the search tree to enable systematic replication (for availability)
and partitioning (for scalability) of location information among multiple resolvers; (2) NLS uses prefixes of object names
to aggregate location information, thus reducing the amount of data stored and consequently improving the scalability and
performance at upper levels of the search tree; (3) NLS stores object names in the interior nodes of the search tree in the form
of 64-bit hashcodes. (4) NLS caches name bindings at leaf resolvers to reduce query load on interior resolvers.

High availability is achieved by systematically replicating location information among fat-tree nodes at the upper level of
the search tree, and by using automatically (re-)configuring spanning trees of resolvers at the lower level. Ease of administration
and dynamic adaptation to a changing network topology is achieved via the ability to dynamically reconfigure the fat-tree at
upper levels and via the use of the automatically (re-)configuring spanning tree of resolvers at lower levels.

3.1 A Distributed Search Tree Based Approach
The NLS name resolvers form a distributed tree, with the property that leaf resolvers attached to the same subtree are “closer”
to each other (according to the proximity metric) than leaf resolvers that are attached to different subtrees of the same height.
Objects bind themselves to a name at the NLS leaf node closest to the object’s location.

The name-to-address binding of an object is stored only at the leaf resolver that represents the region in which the object’s
repository resides. For each new binding, it constructs a path of forwarding pointers from the root to the leaf resolver closest
to the object’s repository (that is, the leaf resolver where the object was bound), shown in Figure 1. A forwarding pointer in
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Figure 1: Inserting a new object in a distributed search tree.

a resolver maps an object name to a (set of) child resolvers that is (are) one hop closer to the leaf resolver(s) that has (have)
bindings for the associated object(s).

This design ensures that in the worse case, the address of an object can always be found by following a chain from the root
resolver. In general, the locality inherent in the search tree structure implies that looking up a name that has a nearby replica of
the associated object never has to go up beyond the lowest common ancestor in the tree. The basic operations provided by NLS
are implemented as follows:

Insertion An insertion of an object binding at a leaf resolver results in the storage of the name-to-address binding in the leaf
resolver, followed by an upward traversal from that leaf resolver toward the root, inserting forwarding pointers along the
way. If at some resolver A along the path, its parent resolver B already contains a forwarding pointer to a different child
C, a new forwarding pointer is inserted at the parent resolver to point to A, and the upward propagation is stopped since
all the resolvers along the path between the parent resolver and the root already have forwarding pointers.

Deletion A deletion of an object from a leaf resolver where it was previously bound causes an upward traversal towards the
root. It removes forwarding pointers along the way, and stops at the first internal resolver that has at least one other
forwarding pointer for the same object.

Lookup A lookup of an object at a leaf resolver causes an upward traversal, but stops at the first node that contains a forwarding
pointer for the object. It then follows the forwarding pointers until it reaches the leaf node containing the location
information of the object being looked up. A look-up operation is guaranteed to find the first forwarding pointer in the
lowest common ancestor of the resolver from which the look-up originates and the nearest leaf resolver that contains a
binding of the object being looked up. In other words, the look-up operation is guaranteed to return the nearest replica of
the object.

NLS decentralizes the task of resolving names and locations among a group of hierarchically organized resolvers corre-
sponding to the topological, hierarchical decomposition of the physical domain of objects. Thus it has the potential to scale
well to wide-area networks by taking advantage of the inherent locality in the hierarchical organization of location information.
The use of forwarding pointers is what enables an object to have multiple bindings at different leaf resolvers, and the inherent
locality in the tree structure allows locating the nearest replica.

The simple search tree structure described so far, however, can suffer from both poor scalability and poor availability. First,
the single root of the search tree needs to know about every object in the universe, which severely limits its scalability, both in
terms of storage and query load. Second, the single parent of each node in the search tree is vulnerable to single-point failure,
which results in disconnection of its entire subtree. The design of NLS significantly enhances the scalability and availability of
the simple search tree, as described in the following sections.

3.2 Improving Scalability
We begin by describing several techniques used in NLS to improve the scalability of the basic distributed search tree based
approach.

Using Prefixes to Aggregate Location Information NLS provides name transparency, that is, NLS makes no assump-
tions about the meaning of any component of a name. However, even when using names that do not reflect the location of an
object, convention often dictates that names contain the name of the organization that created the associated object. This is to
ensure unique name assignment without requiring centralized control of the name space.
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NLS is able to take advantage of this convention as follows. When names contain the name of the organization that
creates the associated object, the result is a form of locality in the name space. For instance, all URLs with the domain name
www.anon.edu are likely to be bound at the name resolver on the Anon University campus. In this case, the Anon leaf
resolver is able to create a path of forwarding pointers for all objects with the prefix www.anon.edu by inserting only this
prefix. To deal with prefixes, the lookup procedure follows the forwarding pointers associated with the longest prefix match.

Note that when objects are replicated at locations other than their primary (home) location, individual name bindings for
these replicated objects must be propagated up the tree. However, prefixes can still dramatically reduce the number of bindings
maintained in the upper portions of the search tree by allowing all the primary (i.e., home) bindings of a name to be represented
jointly with a single prefix.

Using Hashcodes to Compress Name Information Instead of storing full names associated with the forwarding point-
ers in the interior nodes of the search tree, NLS stores only a 64-bit hashcode for each name, thus substantially reducing the
storage costs in the interior nodes. However, storing hashcodes instead of full names affects the lookup and bind procedure,
due to the possibility of hash collisions. During the lookup of a name, it is possible that a chain of forwarding pointers leads
to a leaf node that does not actually have a binding for the desired name, but instead has a binding for a name with the same
hashcode.

To handle this case, the lookup procedure is augmented as follows. In the event of a failure to locate the desired name at a
leaf node, the search backtracks to the lowest interior node that has another, not yet explored, forwarding pointer, and it follows
that pointer. It is easy to see that such a node must exist if a binding for the given name exists. With a 64-bit hashcode and a
suitable hash function, the expected number of collisions is low, even when the number of bound names goes into the billions.
Therefore, the impact of backtracking on the average lookup performance is expected to be marginal.

Caching Name Bindings in the Leaf Resolvers After a leaf resolver has obtained a binding for a name in response to
a client query, it inserts the binding into a cache. Subsequent client queries for the same name are then resolved from the cache,
thus reducing query load on the interior nodes.

To control stale bindings in the cache, two measures are taken. First, cached binding are evicted after a specified timeout.
This is to ensure that a leaf resolver does not continue to return bindings for a far away object, even though a nearby copy of
the object has become available. Second, a client that finds that it cannot contact an object at the address provided by NLS may
re-issue the lookup with a special flag that causes NLS to invalidate any cached bindings for the name.

3.3 A Two-Level Tree-Based Naming Architecture for Scalability and Availability
The distributed search tree structure of name resolvers can be logically divided into the global level, consisting of upper levels
of the tree, and the local level, consisting of lower levels of the tree. The two levels have different performance and configu-
ration requirements. At the global level, the scalability and availability are the main concerns since there are fewer and fewer
resolvers compared to the local level. At the local level, the scalability is less of a concern. However, topology changes and
reconfigurations are much more frequent at this level.

Fat-tree for the Global Level The pressure on scalability at the global level of the naming and location service necessitates
the partitioning of location information among multiple resolvers at each level. At the same time, it is desirable to maintain the
overall hierarchical organization of resolvers because of its inherent locality property. Therefore, we employ a fat-tree [15] to
organize the resolvers at the global level of NLS. Figure 2 shows one example of a fan-in-3/fan-out-2 depth-two fat-tree, where
every non-root node has two parents and every non-leaf node has three children.

In the context of NLS, the multiple ancestors in the fat-tree can be used for scalability or availability. First, the set of name
bindings that need to be maintained in each logical node can be partitioned among several physical nodes, reducing the storage
requirements and query processing load on the physical nodes, thus improving scalability. Figure 3 shows an example where
the location information at a leaf node is recursively partitioned amongst its ancestor nodes.

In addition, each partition of the set of name bindings in a logical node can be replicated in multiple physical nodes to
improve availability. Availability is improved because, upon a node failure, a replicated node in the same partition as the
failed node can be contacted. Figure 4 shows an example where the location information at a leaf node is replicated among its
parent nodes at level 1, which in turn partition the information among their parent nodes at level 2. Of course, partitioning and
replication can be applied to every logical node in the fat-tree.

Routing in the fat-tree We next sketch a routing algorithm for lookup and bind requests in a fat-tree that uses both
partitioning and replication at each logical node. The algorithm guarantees that query traversals are routed upward in the tree in
such a way that a matching name is found at the lowest common ancestor of the leaf resolver from which the query originates
and the leaf resolver where the closest object associated with the name is bound, regardless of the leaf node from which the
query originates.
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Figure 2: A depth-2 fan-in-3/fan-out-2 fat-tree. Dashed
boxes denote logical nodes in the original simple search tree
and solid boxes within each dashed boxes denote physical
nodes that represent the logical node.
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Figure 3: Partitioning location information among multiple
ancestors in a fat-tree for scalability. The location informa-
tion at a leaf node is partitioned evenly among its two parent
nodes at level 1 and four grandparent nodes at level 2.

The routing during upward traversals in the fat-tree is performed based on the hashcode of the object’s name, divided into
� segments, where � is the depth of the fat-tree. For simplicity, let us assume a fat-tree with full partitioning, where each object
is stored in exactly one resolver of a logical node. Here, the

�
th segment is used to uniquely determine which parent node at

level � ��� ���
to route the operation to, in moving up from a node at level

�
. It can be proved that such a hashing-based scheme

always finds the nearest replica for a lookup operation, just as in the original simple search tree.
When replication is used in addition to partitioning, the

�
th segment is used to select the partition at level � ��� ���

, and then
one of the replicated resolvers in that partition is selected to send the query to. The replicated resolvers in each parent partition
are maintained in the order of their topological proximity to the child node. Normally, queries are directed to the closest node,
unless that node failed or is overloaded, in which case the query is forwarded to the next closest replicated resolver.

Dynamic Spanning Trees for the Local Level At the local level, scalability is less of a concern, but the ability to
automatically reconfigure and maintain the tree structure is more important since the resolvers are much more likely to be added
or deleted dynamically. In addition, high availability of NLS remains a necessity. Our approach to address both requirements
is to automatically and dynamically maintain a spanning tree of location resolvers. Due to space considerations, we omit the
details.

3.4 Configuration and Adaptation
As mentioned above, the spanning tree of resolvers at the lower level of NLS is fully self-configuring.

The initial configuration of the fat-tree in the upper level of NLS is computed based on the measured or estimated density
and distribution of objects and names throughout the network. The configuration should balance lookup and storage loads and
can be generated in two steps. First, we form a graph with all the spanning tree roots as the graph nodes, and with measured
proximity as the weighted edges between the nodes. We can then recursively partition such a weighted-edge graph using well-
known heuristics such as the Kernighan-Lin algorithm [13]. Such a recursively partitioning of the graph effectively gives a
simple tree of recursively decomposed subdomains of spanning tree roots. In the second step, we simply choose a fan-out, and
construct a fat tree out of the simple tree.

In a dynamic network environment, the proximity measures between different subdomains represented by the fat-tree nodes
can change over time, although the rate of change can be expected to be lower than at the fringes of the network. Thus, the
fat-tree configuration must be able to adapt to the changing network topology and workloads. One key observation about the
fat-tree is that even though there are rich connections among its nodes, there exists a local structure between two adjacent levels
that can be expanded without affecting the rest of the fat-tree structure. Specifically, in a fan-in- # /fan-out-  fat-tree, every  
consecutive nodes at a non-leaf level form a parent group – they connect to the same # child nodes at the level below (see
Figure 2 for an example.) We can exploit this, for instance, if a node in a parent group is becoming overloaded. A new node
can be added to the parent group in four steps, as shown in Figure 5. Space limitations prevent us from a complete discussion
of the ways in which the fat-tree can be dynamically reconfigured and adapted.
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Figure 4: Partitioning and replicating location information
among multiple ancestors in a fat-tree for scalability and
availability. The location information at a leaf node is repli-
cated among its three parent nodes at level 1, each of which
then partitions the location information among its own three
parent nodes at level 2.

Level 2

A B C

parent
group

Level 1

Level 0

Add a fat-tree node C:

    them of the new parent

1. A/B replicate some location info to C

4. A/B unbinds upward replicated

them locally
    location info and remove

3. C adds links to children, and notifies

2. C adds links to A/B’s parents, and 
    binds upward replicated location info 

Figure 5: Adding a fat-tree node C to offload node B. The
addition effectively offloads all the nodes in the same parent
group since the hashing-based routing scheme balances the
load amongst the nodes in a parent group.

3.5 Discussion
We next turn to a qualitative discussion of the design of NLS with regard to scalability, performance and availability. An
analytical study of the scalability of NLS and a preliminary quantitative evaluation of a prototype implementation of NLS will
be presented in the following sections.

We begin with a discussion of NLS’s scalability. Our goal is for NLS to scale to a world-wide system that can map on
the order of 1 Billion names. Let us first consider the scalability of the root with respect to storage requirements. In the worst
case, every name bound in NLS requires a mapping in the logical root of the search tree. Every name binding is represented
as a 64-bit hashcode, a bitmap reflecting the forwarding pointers plus some data structure overhead, for a total of no more
than 16 bytes. This implies a total storage requirement of 16 GBytes for the logical root, which can be implemented by 16
partitioned resolvers with 1+ GBytes of main memory each. This figure must be multiplied by the replication factor needed for
high availability and load distribution. Assuming a minimal replication of four, a minimum of 64 resolvers are needed for the
root, which is entirely feasible.

Also, due to NLS’s use of prefixes, this figure is likely to be a loose upper bound on the actual storage requirements. Let us
assume that each object has a home location (e.g. the primary server of a Web resource) and that the names of all such objects
at a given home location have a common prefix, due to naming conventions. Under this assumption, for an individual name to
propagate to the logical root requires that the name have associated objects bound in at least two of the subtrees of the logical
root. These subtrees represent large areas like large countries or subcontinents. Since a large fraction of Web content is of only
local interest, such wide distribution is unlikely.

A second consideration is the scalability of NLS with respect to query load. There are three aspects to query load: the
number of resolvers involved in a query, the resulting query processing load on any given node, and the message load on the
network. In general, the number of levels that a query ascends upward in the search tree is related to the distance between the
originator of the query and the closest replica of the object associated with the name. As a special case, object queries that do
not result in a match within the subtree of the root from which the query originated (including queries for non-existent objects)
must reach a resolver in the logical root. Due to spatial locality of Web objects and interested clients, many queries can be
expected to terminate at low levels of the tree. Moreover, the use of binding caching in the NLS resolvers can be expected
to reduce the load on interior nodes of the search tree considerably, since name lookups tend to exhibit spatial and temporal
locality.

Finally, we consider availability in the NLS system. Nodes in the fat tree at the global level are normally replicated. When
a node fails, the peer resolver automatically contacts one of the replicated resolvers in the same partition. This process is
completely transparent to users. Once the failed resolver comes back on-line, it recovers its state from another resolver in the
same partition. When a resolver in a spanning tree at the local level fails, its subtree becomes temporarily disconnected. The
children of the failed node enter a configuration phase during which they re-attach to the spanning tree. Service for clients and
objects in the disconnected subtree is typically disrupted for up to a small number of seconds during this process.
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4 Scalability Analysis of Fat-Tree-Based NLS
In this section, we analyze the scalability of the fat-tree-based NLS in terms of storage requirements when objects are replicated.
The analysis will then be used to guide the scalability experiments in the next section.

4.1 Scenario
Throughout this analysis, we consider the following scenario. We assume that each leaf resolver of a fat-tree-based NLS has a
fixed set of objects permanently bound locally; thus, initially only one prefix per leaf node needs to be bound in the fat-tree. An
(initially empty) object cache is co-located with each leaf node, which holds replicated objects. Since the storage requirement
for the prefixes is insignificant, the analysis is only concerned with the bindings of objects that are cached away from their home
locations.

When the NLS is in operation, there will be a continuous sequence of names is being looked up at each leaf resolver. For
each name, if the object found by NLS is neither a local object, nor an object cached in the local object cache, then the object is
fetched from its nearest replica and added to the local object cache, and its name bound at the local leaf node and up the fat-tree.
The local object caches implement the LRU replacement policy. If an object is replaced, its binding is unbound from the leaf
node and up the fat-tree. Therefore, the total number of names bound up from each leaf resolver is bound by the local object
cache size. In addition, the upward insertion of a new binding will stop at an internal resolver which already has an forwarding
pointer for the same name, as described in Section 3.1.

We assume all resolvers have the same amount of memory. Therefore, if the number of bindings per resolver during the
operation of NLS remain the same for all resolvers at all levels of the fat-tree, we say the NLS is scalable in terms of storage
requirement.

Intuitively, if there is no overlap among the names of replicated objects bound at different leaf resolvers, then the scalability
of a fat-tree based NLS is trivially achieved if the fan-in/fan-out ratio at each node matches the bindup ratio, defined as the
total number of bindings reaching a node, divided by the number of bindings that need to be propagated further up the tree.
Under these conditions, the total number of bindings reaching the next level will diminish by the same factor as the number of
resolvers, and thus the number of binds at each resolver remains constant.

In practice, the names of remote objects replicated at different leaf resolvers can overlap, and the number of unique names
bound at a certain level of the fat-tree can be smaller than the sum of the bindings bound up from all the sub-fat-trees below that
level. The interesting question is then whether there exists a fat-tree with a fan-in/fan-out ratio smaller than the bindup ratio
that would still be scalable.

The analysis in this section shows that such a fat-tree does not exist, and that the matching between the bindup ratio and the
fan-in/fan-out ratio is required for the fat-tree to be scalable. In addition, we give a simple extension to the binding operation
that would guarantee the scalability of the fat-tree when the bindup ratio is higher than the fan-in/fan-out ratio, i.e., when there
is not enough spatial locality in the names of replicated objects.

The analysis below assumes a balanced fat-tree topology, as this greatly simplifies the analysis. Due to page limitation, the
proofs of the analytical results were omitted.

4.2 Terminologies
We first introduce some useful terminologies about fat-trees. The shape of a fat-tree is uniquely determined by the fan-in and
fan-out at each node. Figure 6 shows one step of the recursive construction of a fat-tree. Assume we have

�
depth- � fat-trees,

each with
���

leaves and � � roots. To construct a depth-( � � �
) fat-tree, we add ����� ��� � �
	�� new roots, grouped into

� � groups of � roots each. Next, we connect the
�
th root of each of the

�
depth- � fat-tree to all � roots in the

�
th group of

the new roots. The resulting tree structure is a depth-( � � �
) fan-in-

�
/fan-out- � fat-tree, with

� �	��
leaves and � �
	�� roots.

Lemma 1 A fan-in-M/fan-out-N Fat-tree with
���

leaf nodes has a depth of � , with � � root nodes. Thus the ratio of the
number of roots over the number of leaves is � �� � �

.

Next, we define the following notations in the operaton of a fat-tree-based NLS. ��� ������� denotes the number of objects
permanently bound at each leaf node. The leaf node where an object is permanently bound is called its home leaf node. ������� ���
denotes the size of the object caches attached to each leaf node. ��� ���! #"�$ denotes the number of names looked up at each leaf
node.

The scalability of the fat-tree-based NLS clearly depends on the spatial locality of the objects being replicated. Here the
spatial locality of an object is defined in terms of the distance to its home leaf node in the fat-tree topology, e.g. how many hops
away, or the size of the smallest sub-fat-tree that covers the home leaf node and the node where it is replicated. We consider
two criteria for the scalability of a fat-tree-based NLS:

Criterion 1 When scaling up the size of a balanced fat-tree with the total number of names in the name space, i.e. keeping
� � ������� and � ����� ��� constant, does there exist a fat-tree with given fan-in and fan-out that can maintain the same number
of bindings per node at the root level?
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Criterion 2 Given a fixed number of names ��� ��������� � �
in the name space, and a fixed total object cache size � ����� ��� � � �

,
does there exist a fat-tree such that the numbers of bindings per node across all levels are roughly balanced?

Last, we describe two Lemmas that will serve as the basis of our analysis.

Lemma 2 If we uniformly sample � objects out of a pool of � distinct objects with replacement, meaning that the pool of
source objects stay the same after each sampling, the expected number and the corresponding percentage of distinct objects
within the � sampled objects are

 "!$#&%
'(#&) � ' ) "+*-, ��. � �$�
� � � �0/1� � � / �

� ��2 �  "!�#3%�'(#3) � ' . � '(# � � �$�4� � � �5�6/7� � � / �

� ��2 �48 �
Figure 7 plots the

 "!$#&%
'(#&) � ' . � ' � � �$�4� � function for 3 different values of � , 80K, 320K, and 1310K, as a function of the
ratio 2 9 . The figure shows that the function is only a function of 2 9 , invariant of the absolute values of � and � . Furthermore,
as 2 9 approaches 0, the function value approaches 1, suggesting that there are very few overlapped objects.

The following Lemma simplifies the scalability analysis by removing the complexities involved with cache replacement.

Lemma 3 If each leaf node in the fat-tree-based NLS looks up ��� ���! #"�$ objects with replication, and there are more distinct
objects than the object cache size � ����� �
� , then the state of the NLS at the end of all lookups will be the same as if each leaf node
has only looked up the last �;:� ���! #"�$ objects in its original lookup sequence, where there are � ����� �
� distinct remote objects in
these last � :� ���! #"�$ objects.

Based on the above Lemma, the scalability analysis can be described in terms of � :� ������� , which is a function solely of
� ����� ��� and the locality in the replicated objects.

4.3 Exponential-Decay Locality
As we increase the depth of the fat-tree, the ratio of the number of roots over the number of leaves decreases exponentially.
We next identify conditions for the spatial locality in the set of remote objects bound at the leaf nodes, such that the resulting
number of bindings per node at each level of the tree is constant.

Definition 1 Exponential-Decay Remote Factor <>= : we recursively define the remote factor <>= to be the percentage of objects
being bound at the roots of a depth- ? sub-fat-tree, before filtering out repeated ones, that are from the rest of the depth- ?
sub-fat-trees.

Remote factor <>= is thus recursively defined. In a depth- � fat-tree, i.e. with
� �

leaf nodes, out of the � :� ������� objects looked
up at each leaf node, <>=�� ��:� ������� will be from the rest � � � / � �

leaf nodes (depth-0 subtrees), and will reach level 1 nodes.
Among these <>=@�!� :� ������� objects, <BA= �!� :� ������� will be from the other � � �DC � / � �

depth-1 subtrees, and will reach level 2, and
so on. At the level � �E/ ���

, < �= ���;:� ������� out of the original �;:� ������� objects will be from the rest
� / �

depth- � �F/ ���
subtrees

and will reach the root level.

Theorem 1 In the replication scenario, if the set of objects being replicated at each leaf resolver observes exponential-decay
locality with remote factor <>= , the average expected number of distinct objects bound at each root of the depth- � fat-tree is� �  "!�#3%
'�#3) � ' ) "+*-, �
. � �;:� ������� ��< �= � ���DC � ��� � �������G� ���DC � �48 � � .
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Theorem 2 In the replication experiment, if the objects being replicated at each leaf resolver contains exponential-decay
locality with remote factor <>= , the expected number of distinct objects bound at each node at nonroot level ? of a depth- �
fat-tree is

� �  "!�#3%
'�#3) � ' ) "+*-, �
. � � :� ������� �D<  = � � � / <@= � � �  C � � � � ������� � �  C � �48 �  �  "!$#&%
'(#&) � ' ) "+*-, ��. � � :� ������� �D<  	��= ��  � � � ������� � �  � � ���DC  / ��� �48 �  .

For NLS to be scalable under Criterion 1, the expected number of bindings per root
� �  !$#&%
'(#&) � ' ) " *", �
. � � :� ������� �D< �= ����DC � � � � ������� � ��� C � �48 � � � � � � � � �  !�#&%
'(#&) � ' . � '(# � � ��:� ������� � < �= � � � ������� � should not increase with the depth � . Since as �

increases,
 "!$#&%
'(#&) � ' . � '�# � � � :� ������� � < �= � � � ������� � increases, the only value of <>= that satisfies the above condition is <>= � �� .

In fact, assigning <>= � �� gives a simple bound of �;:� ������� to the average load per root:

� �  !�#&%
'(#&) � ' ) " *", �
. � � :� ������� � < �= � � �DC �
� � � ������� � � �DC � �48 � � � � ��� :� ������� � < �= � � �DC � 8 � � � � :� ������� (1)

Similarly, the upper bound on < = that would make NLS scalable under Criteria 2 is also
�� , using which, the expected

number of bindings per node at any level of the fat-tree is also bound by � :� ������� .
The relationship between � ����� �
� and �;:� ������� is as follows:

� ���#� ��� �  "!$#&%
'(#&) � ' ) " *", �
. � � :� ������� � <@= � � � ������� � � � � / ��� � � � :� ������� ��<>=
The approximation comes from the fact that the ratio of the first parameter to the second parameter of

 !$#&%
'(#&) � ' ) "+*-, ��. function
is very close to zero in practice, in which case the

 !�#&%
'(#&) � ' ) " *-, �
. function evaluates to a value very close to its first parameter.

4.4 Controlled Upward Bindings
In practice, we cannot guarantee that there is exponential-decay locality with remote factor bounded by

�� in the set of replicated
objects, and thus the above scalability result may not hold. To maintain the scalability of NLS under such conditions, we can
simply impose an upper limit on the number of bindings that are allowed to bind upward from each resolver in the NLS. We
denote this upper limit as the bindup threshold. When the number of bindings bound upward from a given resolver reaches the
bindup threshold, new bindings inserted at that resolver (from its child nodes) that would have been bound up further under
normal conditions are not bound upward. With this simple mechanism, there is a trivial upper bound on the storage requirement
per node.

Lemma 4 In the replication experiment, if we set the the bindup threshold to be
� , #3)+! "�$ , then the average expected number of

distinct bindings bound at any interior node or any root of a depth- � fat-tree is bound by
� � � � , #3)+! "�$ .

Clearly, when the NLS is operated with controlled upward bindings and with insufficient spatial locality in the bound
objects, the objects that were not bound all the way up are only visible in a limited topological scope. As a consequence, some
lookups from nearby regions that otherwise would have been serviced by these “nearby” bindings may now have to travel into
higher levels of the fat-tree to find a match of a forwarding pointer. Thus, these lookups are paying a higher lookup cost and
may produce a reference to an object that is not strictly the closest to the client. In essence, controlled upward binding allows
NLS to gracefully degrade in the event of insufficient spatial locality in the set of bound objects; insufficient locality merely
causes a slight increase in lookup costs and a decline on the location precision, but does not affect NLS’s scalability. We will
quantify this effect experimentally in Section 5.

5 Experimental Results
We have implemented a prototype of NLS in Java. In this section, we experimentally evaluate the scalability of NLS by
measuring its performance for binding, lookup, and migration/replication operations over a name space consisting of up to 1.3
million of URLs collected from 453 organizations in eight universities in the U.S.

5.1 Methodology
We evaluate the scalability of our NLS in terms of storage requirement and lookup cost. To measure the scalability, we run NLS
in three configurations, a depth-1 fat-tree with four leaf nodes, a depth-2 fat-tree with 16 leaf nodes, and a depth-3 fat-tree with
64 leaf nodes, respectively, all with fan-in-4 and fan-out-3. For each configuration, there are about 20,000 URLs permanently
bound at each leaf node, with the largest configuration consisting of about 1.3 million URLs total.

We then measure the performance of NLS in the following three scenarios:

Bindings only Each leaf resolver binds up the prefixes of local URLs. We measure the storage requirement of NLS when using
prefixes.

Lookups After initial bindings of prefixes above, each leaf resolver performs lookups of a pool of URLs. By comparing the
lookup costs in the three configurations, we evaluate the scalability of the NLS in terms of lookup costs.
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University # of Org. Total URLs
MIT 63 163,276
Berkeley 90 165,257
Rice 35 163,498
U. Washington 35 165,770
Harvard 96 162,344
Stanford 83 162,512
U. Texas 24 165,750
UCSD 27 162,509

Table 1: The number of URLs collected and
the number of organizations from each of the
eight universities.

NLS Fat-Tree URL
Config. # of Leafs Depth Source Universities Total URLs
Fat-4 4 1 half of MIT 83,627
Fat-16 16 2 MIT and Berkeley 328,533
Fat-64 64 3 All of 8 1310,916

Table 2: Statistics of NLS configurations used in the experiments.

Replication After initial bindinds of prefixes, each leaf resolver performs lookups of a pool of URLs with its object cache
turned on. The caches implement the LRU replacement policy. We evaluate the storage requirement and lookups in the
presence of caching of replicated objects at each leaf resolver. A lookup of a remote URL at a leaf node, if not found in
the cache, results in the fetching and local binding of the associated object. In addition, any object that is evicted from
the cache is unbound up the tree.

We perform the above lookup and replication experiments using two sets of URLs with different locality:

Exponential-decay locality The pool of URLs being looked up/replicated have the exponential-decay locality, as define in
Section 4.3. NLS is running with no limit on the number of URLs bound up at any node.

Flat locality The pool of URLs being looked up/replicated have the flat locality, i.e. each pool of URLs are sampled from the
URLs with their home binding at all the leaf resolvers. The NLS is running with controlled number of URLs bound up at
each node.

In summary, with the above measurements, we show that on one hand, if the URLs being looked up/replicated at each leaf
node have sufficient spatial locality, i.e., the ratio of the number of URLs bound at each resolver and the number of the URLs
that need to be bound up further is about

� � , then the NLS scales automatically without having to explicitly control the number
of URLs bound up at any node. On the other hand, if there is poor locality, with the flat locality being the worst case, we show
that the NLS still scales in terms of storage requirement if it limits the number of URLs being bound upward at each resolver.
The tradeoff here is the reduced visibility of the replicated URLs. The visibility is measured as the average number of remote
lookups per replicated URL when looked up at every other leaf node in the fat-tree.

All the measurements reported below assume there is no caching of name-to-location bindings in the leaf resolvers. This
assumption makes some of the measurements such as the average number of remote queries per lookup the worst case. We will
present evaluation results with such a caching mechanism in the final version of the paper.

5.2 URL Traces
To drive our experiments, we use names collected by crawling the Web sites of eight US universities and collecting the URLs
published by these organizations. Table 1 shows some statistics on the URLs we collected. The column labeled “Number of
Organizations” corresponds to the server domain names that appear in associated URLs from each university. These domain
names correspond to the prefixes used when binding the URLs in NLS. Table 2 shows the fat-tree configurations of the NLS
name resolvers and the set of names used for each configuration.

5.3 Experimental Setup
Our experimental platform consists of a dual-processor Compaq AlphaServer ES40 (500MHz 21264 Alpha CPUs) with 1 GByte
of main memory, running True64 UNIX, version 4.0F. Our prototype NLS resolver was implemented in Java, using Compaq’s
port of the SUN Java 2 SDK, version 1.2.1.

The NLS name resolver instances use Java remote object invocation (RMI) to communicate with each other. However,
to allow experimentation with significantly large NLS configurations (up to 175 resolvers), unless otherwise stated, all NLS
resolvers were configured to run in a single Java VM. This is largely transparent to the NLS resolver implementation — the
Java runtime system automatically reduces communication among the NLS resolvers to local object invocations.

5.4 Performance Results for the Exponential-Decay Locality Case
In this section, we report performance results for the lookup and replication experiments using a pool of URLs with the
exponential-decay locality. For each leaf resolver, we generate a pool of 10k URLs with spatial locality that matches the
fan-in/fan-out ratio of the fat-tree. Specifically, since the fan-in/fan-out ratio of fat-tree nodes in all three configurations is

�

� ,
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Configuration Home Cache entries Avg. number of entries per internal node
Fat-Tree Cache size ( � � � ) bindings per leaf node Level 1 Level 2 Level 3

Fat-4 bind 19906 0 18/0 n/a n/a
1K (1333) 19906 1000 18/1312 n/a n/a
2K (2667) 19906 2000 18/2580 n/a n/a
4K (5333) 19906 4000 18/4970 n/a n/a

8K (10667) 19906 7049 18/8324 n/a n/a
Fat-16 bind 20521 0 39/0 153/0 n/a

1K (1333) 20521 1000 39/1320 153/1314 n/a
2K (2667) 20521 2000 39/2629 153/2575 n/a
4K (5333) 20521 4000 39/5209 153/4989 n/a

8K (10667) 20521 7402 39/9497 153/8624 n/a
Fat-64 bind 20473 0 29/0 113/0 453/0

1K (1333) 20473 1000 29/1279 113/1327 453/1360
2K (2667) 20473 2000 29/2554 113/2633 453/2633
4K (5333) 20473 4000 29/5094 113/5239 453/5157

8K (10667) 20473 7446 29/9418 113/9491 453/9026

Table 3: Number of bindings in the resolvers at various levels of the fat-trees with fan-in-4 and fan-out-3, exponential-decay
locality, unlimited bind-up. “ � ���

” denotes there are � prefixes and
�

URLs. 10K URLs are looked up or replicated.

Configuration Avg. remote lookups per node Avg. remote lookups
Fat-Tree Cache size Level 0 Level 1 Level 2 Level 3 per URL

Fat-4 lookup 7500 10000 n/a n/a 1.50
1K 7378 9840 n/a n/a 1.48
2K 7279 9711 n/a n/a 1.46
4K 7132 9515 n/a n/a 1.43
8K 7049 9404 n/a n/a 1.41

Fat-16 lookup 7494 17994 10250 n/a 2.68
1K 7471 17862 10126 n/a 2.66
2K 7450 17745 10020 n/a 2.64
4K 7421 17582 9869 n/a 2.62
8K 7402 17477 9772 n/a 2.60

Fa-64 lookup 7488 21437 19043 10000 3.57
1K 7478 21300 18906 9913 3.53
2K 7469 21192 18802 9841 3.46
4K 7456 21018 18639 9733 3.44
8K 7446 20906 18530 9661 3.43

Table 4: The average number of resolver queries per object being looked-up at a leaf node with fan-in-4 and fan-out-3,
exponential-decay locality, unlimited bind-up. 10K URLs are looked up or replicated at each leaf resolver.

we sample the URLs from all URLs in the universe by first selecting
� 8��

from the local resolver (these URLs are not bound
up by the leaf resolver). Among the remaining � 8�� URLs to be sampled, we sample

� 8��
from the other 3 leaf resolvers that

are in the same depth-
�

sub-fat-tree. These URLs are only bound up to the roots of the level-1 sub-fat-tree. This recursive
sampling process continues until reaching the root level, when �	� 8�� � � percentage of URLs will be uniformly sampled from
the leaf resolvers of the other 3 depth- � � / � �

sub-fat-trees. The NLS is operated without limiting the number of URLs bound
upward at any resolver.

Binding Performance Our first set of experiments explores the scalability of NLS, in terms of storage requirement and
lookup cost, in a simple scenario where names are only bound once, namely at their home site, and then looked up from various
locales. That is, NLS is used in this scenario like a conventional naming system (e.g., DNS).

The first row (labeled “bind”) under each fat-tree configuration in Table 3 shows the number of bindings in each resolver at
various levels of that fat-tree configuration and the associated numbers of names. The measurements reflect the state of the NLS
search tree after all names are bound. The numbers show that the total number of binding in levels 1 and above are dramatically
lower that those at the leaf level. This is a result of the use of prefixes – because objects are only bound at the home leaf resolver
in this experiment, only prefix bindings exist at the interior nodes of the search tree.

Lookup Performance The first row (labeled “lookup”) under each fat-tree configuration in Table 4 shows the average
number of resolver queries per node at each level during the lookup experiment.

The numbers show that the average number of resolver lookups grows sublinearly with the depth of the fat-tree. In fact, the
expected average number of remote lookups per URL looked up at each leaf node is 
 �DC �#�� � � C �� � � �� � # �� ��� � �� � � ���� . In
practice, this is an upper bound since there are repetitions of some URLs from the sampling. With fan-in 4 and fan-out 3, the
above formula gives an upper bound of 1.5, 2.63, and 3.47 for a depth-1, a depth-2, and a depth-3 fat-trees, respectively. The
average numbers of remote lookups shown in Table 4 conform with these bounds.

12



Configuration Home Cache entries Avg. number of entries per internal node
Fat-Tree Cache size ( � � � ) bindings per leaf node Level 1 Level 2 Level 3

Fat-4 bind 19906 0 18/0 n/a n/a
1K (1333) 19906 1000 18/1309 n/a n/a
2K (2667) 19906 2000 18/2578 n/a n/a
4K (5333) 19906 4000 18/4984 n/a n/a

8K (10667) 19906 7040 18/8320 n/a n/a
Fat-16 bind 20521 0 39/0 153/0 n/a

1K (1333) 20521 1000 39/1318 153/1303 n/a
2K (2667) 20521 2000 39/2627 153/2575 n/a
4K (5333) 20521 4000 39/5213 153/5047 n/a

8K (10667) 20521 8000 39/10235 153/9589 n/a
Fat-64 bind 20473 0 29/0 113/0 453/0

1K (1333) 20473 1000 29/1316 113/1318 453/1304
2K (2667) 20473 2000 29/2628 113/2648 453/2615
4K (5333) 20473 4000 29/5246 113/5226 453/5074

8K (10667) 20473 8000 29/10444 113/10317 453/9810

Table 5: Number of bindings in the resolvers at various levels of the fat-trees with fan-in-4 and fan-out-3, flat locality, limiting
bind-up. “ � ���

” denotes there are � prefixes and
�

URLs. 10K URLs are looked up or replicated.

Replication Performance The replication experiment is performed to measure the scalability and performance of NLS
when objects are replicated. For each fat-tree configuration, we vary the object cache size per leaf resolver between 1K, 2K,
4K, and 8K. As described in Section 4.1, for each cache size, the number of bindings in the internal resolvers of the NLS is the
same as if only the URLs that are left in the caches were ever bound upward.

Table 3 shows the performance results of the replication experiment using the set of URLs with exponential-decay locality.
For each fat-tree configuration, each row that is labeled “10K-X” where X ranges from 1K to 8K shows the average number
of prefix and URL bindings in the nodes at each level with the leaf resolver cache size set to X. The results show that for each
cache size, as we scale up the size of the fat-trees along with the number of URLs in the universe, the number of entries bound at
each resolver is bound by � ����� ��� � � � , as predicted by Equation 1. We conclude that if the locality in the URLs being replicated
coincides with the shape of the fat-tree, then the NLS is scalable in terms of storage without having to explicitly control the
number of URLs bound upward from any resolver.

The corresponding number of lookup operations for the above replication experiment are shown in Table 4. For each fat-tree
configuration, each row that is labeled “10K-X” where X ranges from 1K to 8K shows the average number of remote lookups
at the nodes at each level, with the leaf resolver cache size set to X. The table shows that compared to the number of lookups
in the pure lookup experiment, there is a gradual decrease in the number of remote lookups as we increase the cache size. This
is because there is some repetition of URLs in the pool of sampled URLs being looked up at each leaf resolver, as predicted
by the Sampling Lemma in Section 4.1. A repeated URL is satisfied out of the cache if it has not been evicted from the object
cache.

5.5 Performance Results for the Flat Locality Case
To demonstrate the scalability of our NLS when there is insufficient locality in the URLs being looked up/replicated at each leaf
resolver, we repeat the above bind/lookup/replication experiments on a set of URLs with flat locality at each leaf resolver. This
test case models the worst case scenario in terms of locality in the URLs. Obviously, if we do not control the number of URLs
bound upward from each resolver, the storage requirement at each root resolver will increase by a factor of

� 8 � each time the
depth of the fat-tree is increased by one. This is because the number of leaf nodes and thus URLs that need to be bound at the
roots will increase by a factor of

�
, while the number of roots only goes up by a factor of � . Thus the NLS is operated with a

controlled number of URLs bound upward at each resolver.

Binding Performance The binding results shown in Table 5 are identical to the results when using the test set with
exponential-decay locality, since the URLs bound at each leaf resolver are the same.

Lookup Performance The first row (labeled “lookup”) under each fat-tree configuration in Table 6 shows the average
number of resolver queries per node at each level performed during the lookup experiment. The numbers show that the average
number of resolvers grows superlinearly with the depth of the fat-tree. In fact, since the URLs looked up at each leaf resolver
is uniformly sampled from the URLs from all leaf resolvers in the fat-tree, the expected average number of remote lookups per
URL looked up at each leaf node is � � � / ��� � 
 �#�� � �

# C � �  � �48 ���
. For fan-in 4 and fan-out 3, the above formula gives

expected numbers to be 1.5, 3.38, and 5.34 for a depth-1, a depth-2, and a depth-3 fat-trees, respectively. The average numbers
of remote lookups shown in Table 6 conform with these bounds. These results show that if the URLs being looked up have flat
locality, the average lookup cost will increase when scaling up the fat-tree and the URL space.
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Configuration Avg. remote lookups per node Avg. remote lookups
Fat-Tree Cache size Level 0 Level 1 Level 2 Level 3 per URL

Fat-4 lookup 7485 9981 n/a n/a 1.50
1K 7371 9828 n/a n/a 1.47
2K 7272 9696 n/a n/a 1.45
4K 7129 9505 n/a n/a 1.43
8K 7040 9386 n/a n/a 1.41

Fat-16 lookup 9374 23128 13642 n/a 3.44
1K 9346 22954 13471 n/a 3.41
2K 9321 22796 13320 n/a 3.39
4K 9281 22546 13076 n/a 3.35
8K 9236 22286 12824 n/a 3.32

Fat-64 lookup 9841 31388 32589 17796 5.42
1K 9833 31164 32317 17615 5.38
2K 9826 30988 32090 17451 5.25
4K 9816 30688 31704 17177 5.23
8K 9804 30326 31236 16837 5.22

Table 6: The average number of resolver queries per object being looked-up at a leaf node with fan-in-4 and fan-out-3, flat
locality, limiting bind-up. 10K URLs are looked up or replicated.

Replication Performance We repeat the replication experiment in using the sets of URLs with flat locality. The perfor-
mance results are shown in Table 5. For each fat-tree configuration, each row that is labeled “10K-X” where X ranges from
1K to 8K shows the average number of prefix and URL bindings in the nodes at each level with the leaf resolver cache size set
to X. The results show that for each cache size, as we scale up the size of the fat-trees along with the number of URLs in the
universe, the number of entries bound at each resolver is bound by ������� ��� � � � , which is the same as in the experiments using
URLs with exponential-decay locality and operating NLS without controlling the number of upward bindings. We conclude
that even if there is poor locality in the URLs being replicated, the NLS can be made scalable in terms of storage by controlling
the number of URLs bound upward from any resolver.

The corresponding numbers of lookup operations for the above replication experiments are shown in Table 6. The numbers
are similar to the numbers in the pure lookup experiment. Again, the gradual decrease when increasing the cache size is due to
some degree of repetition of URLs in the sampled pool of URLs, as predicted by the Sampling Lemma in Section 4.1.

Reduced Visibility with Controlled-Bindup To measure the reduced visibility due to controlled upward binding, we
repeat the replication experiment using 2K URLs with flat locality, varying the number of URLs allowed to bind up at each
internal resolver. To measure the visibility of replicated URLs, we perform a lookup of the URLs replicated on Node 0 at leaf
nodes of increasing distance in the fat-tree, i.e. leaf Nodes 1-3 of distance 1 which are in the same depth-1 sub-Fat-tree, leaf
Nodes 4-15 of distance 2, and leaf Nodes 16-63 of distance 3. We then measure the average number of remote lookups per such
URL lookup. Note, however, that for the leaf nodes 16-63, the number of remote lookups of the URLs replicated at Node 0 are
not affected by the replication: if an URL has its home binding in any of the 48 nodes, that home binding will be no further
than the new binding at Node 0. This is because if an URL has its home binding in any of Nodes 0-15, the lookup from any of
Nodes 16-63 has to pass a root node anyway.

Table 7 shows the number of entries bound per node at each level, varying the bindup limits. It shows that as we increase the
number of bindups allowed, more URLs are propagated up and higher, until the bindup limit reaches 2.667k. This is because
with the limit being 2.667k, all the replicated bindings can reach level 2. Thus the number of bindings at levels 2 and below will
not increase when increasing the bindup limit further. The reason the number of bindings at the root level also stops increasing
is as follows. The number of URL bindings per node at level 2 is  ?E� �

� � �

� . Among these, only those with home bindings in
the rest depth-( �B/ �

) sub-Fat-trees need to bind up to the root level. With flat locality, that ratio is exactly
� C �� � �

� . Thus the
number of bindings that need to go up at a level 2 node is  ? � �

�
�  � ����� ? .

Table 8 shows the visibility of the URLs replicated at Node 0. It shows the average number of remote lookups for these
URLs averaged over all leaf resolvers decreases as we increase the bindup limit, until reaching 2.667k.

6 Related work
The GLOBE project [21] proposed a location service based on a distributed search tree. Our NLS was inspired by, and its
distributed search tree is based on the GLOBE location service. As previously explained, NLS differs from the GLOBE
location service in several ways. Moreover, this paper presents a scalability analysis and an experimental evaluation of a
prototype implementation of our enhanced design of such a location service.

Several prior works consider issues in replicating Web content in the Internet, and selecting the nearest replica relative to a
client HTTP query [3, 11, 12]. NLS offers a general and highly scalable solution to the problem of locating the nearest copy of
an object bound to a name.
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Bindups Avg. num. of entries per internal node
allowed Level 1 Level 2 Level 3

1.6K 29/2586 113/2122 453/2100
1.8K 29/2586 113/2384 453/2358

2K 29/2586 113/2648 453/2616
2.2K 29/2586 113/2910 453/2873
2.4K 29/2586 113/3159 453/3129

2.667K 29/2586 113/3250 453/3422
3K 29/2586 113/3250 453/3436

Table 7: Number of bindings in the resolvers at var-
ious levels of the fat-tree with fan-in-4 and fan-out-3,
flat locality, controlled bind-up. Only 2K URLs are
being replicated and then looked up. The number of
home bindings is 20473 and the number of caches
entries per leaf node is 1967.

Bindups Avg. num. of remote lookups per URL
allowed Nodes 1-4 Nodes 5-16 Nodes 17-64 Overall

1.6K 1.47 4.53 5.63 5.16
1.8K 1.47 4.37 5.60 5.11
2.0K 1.47 4.20 5.57 5.05
2.2K 1.47 4.06 5.54 5.01
2.4K 1.47 3.90 5.51 4.96

2.667K 1.47 3.83 5.48 4.92
3K 1.47 3.83 5.48 4.92

Table 8: The average number of resolver queries per object being
looked-up at a leaf node with fan-in-4 and fan-out-3, flat locality,
controlled bind-up.

As discussed earlier, the Internet Domain Name System is a scalable naming system that was not designed as a location
service. Although it can be used to allow the resolution of a domain name to the “nearest” host address, this places the burden
of locating the host address closest to the client from where the DNS lookup originated on the DNS resolver for the associated
domain.

Lampson’s Global Naming System (GNS) [14] is another example of a scalable naming system that relies on a hierarchy of
name servers that directly corresponds to the structure of the name space. Like DNS, it is a pure naming system and was not
designed as a location service.

Cheriton and Mann [8] describe another scalable naming service. Like NLS, their service is based on multiple levels (three
in their case), distinguished by different requirements with respect to scalability, reliability and administration. Like DNS and
GNS, their service is a pure naming service and relies on a hierarchy of name resolvers that reflects the structure of the name
space.

Attribute based and intentional naming systems [5, 1], as well as directory services [18, 19] resolve a set of attributes that
describe the properties of an object to the address of an object instance that satisfies the given properties. Thus, these systems
support far more powerful queries than NLS. However, this power comes at the expense of scalability and performance. NLS
supports only simple name queries and resolves to the nearest replica of the associated object, but it is designed to scale to a
worldwide service with billions of objects and a corresponding query load similar to that experienced by DNS.

LDAP [23] is an standardized access protocol for naming and directory services, but does not specify the service itself. It
is therefore largely orthogonal to NLS. Active Names [20] are client and/or server provided mobile programs responsible for
locating and retrieving named resources on behalf of a client. The location functionality of NLS could be achieved with active
names, but NLS’s focus on a single purpose affords it greater efficiency and scalability.

7 Conclusion
This paper sketches the design of NLS, a scalable naming and location service, it presents an analysis of NLS’s scalability, and
it presents results of a performance evaluation based on a prototype implementation in Java. NLS resolves textual names to
the nearest of a set of replicated objects associated with that name, and is designed to scale to a world-wide service capable of
maintaining in excess of 1 Billion names and objects.

Applications include resolving Web URIs to the nearest cached or replicated object that provides the associated content.
The key design goals of NLS are scalability, performance, availability and ease of administration. NLS is based on a distributed
search tree, with a fat-tree based topology at the global level and self-configuring spanning trees at the local level. Location
information is aggregated for names with a common prefix, and hash codes of names are stored in the interior nodes of the
search tree to improve scalability.

The scalability analysis yields bounds on the spatial locality required in the set of name binding for NLS to scale. Analysis
also shows that alternatively, NLS can be made to scale independently of the locality in the name binding, at the expense of
reduced visibility of bound objects when locality is insufficient. Results of experiments with the prototype implementation
confirm the scalability analysis.
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