
EnCore: Private, Context-based Communication
for Mobile Social Apps

Paarijaat Aditya† Viktor Erdélyi† Matthew Lentz‡

Elaine Shi‡ Bobby Bhattacharjee‡ Peter Druschel†
†Max Planck Institute for Software Systems ‡University of Maryland

ABSTRACT
Mobile social apps provide sharing and networking
opportunities based on a user’s location, activity, and set
of nearby users. A platform for these apps must meet a
wide range of communication needs while ensuring users’
control over their privacy. In this paper, we introduce
EnCore, a mobile platform that builds on secure encounters
between pairs of devices as a foundation for privacy-
preserving communication. An encounter occurs whenever
two devices are within Bluetooth radio range of each other,
and generates a unique encounter ID and associated shared
key. EnCore detects nearby users and resources, bootstraps
named communication abstractions called events for groups
of proximal users, and enables communication and sharing
among event participants, while relying on existing network,
storage and online social network services. At the same
time, EnCore puts users in control of their privacy and
the confidentiality of the information they share. Using an
Android implementation of EnCore and an app for event-
based communication and sharing, we evaluate EnCore’s
utility using a live testbed deployment with 35 users.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]:
Security and protection; D.4.4 [Operating Systems]:
Communications Management—Network communication;
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

Keywords
Location-based services, Privacy, Mobile computing,
Pervasive computing, Social networking, Proximity-based
services

1. INTRODUCTION
Mobile social apps consider users’ location, activity, and

nearby devices to provide context-aware services; e.g.,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
MobiSys’14, June 16–19, 2014, Bretton Woods, New Hampshire, USA.
ACM 978-1-4503-2793-0/14/06.
http://dx.doi.org/10.1145/2594368.2594374.

detecting the presence of friends (Highlight, Foursquare [5,
9]), sharing recommendations about sights, goods and
services (Foursquare), sharing content or gossip (FireChat,
Whisper, Secret [4, 16, 19]), gaming (Nintendo 3DS, Sony
PlayStation Vita [15, 17]), and connecting strangers who
met but failed to exchange contact details (SMILE,
Smokescreen [29, 49]). Users of these increasingly popular
apps are exposed to various privacy risks. Most currently
deployed mobile social apps rely on a trusted cloud service [5,
9] to match and relay information, requiring users to reveal
their whereabouts, the perils of which have been extensively
noted [7, 24,27,52,59].

Some recent apps [1, 4] additionally use device-to-
device (D2D) communication via short-range radio (e.g.,
Bluetooth, Wi-Fi Direct). D2D communication permits
new capabilities: first, devices can precisely identify nearby
devices, enabling powerful ad hoc communication and
sharing. Second, D2D enables devices to create pairwise
shared keys, which can be used to bootstrap secure and
private communication without a trusted broker.

Recognizing this opportunity, new secure D2D handshake
protocols, such as SMILE [49], SmokeScreen [29] and
SDDR [47] have been developed. Our own prior work,
SDDR, provides a secure encounter abstraction: pairs
of co-located devices establish a unique encounter ID
and associated shared key using D2D communication,
which encounter peers can subsequently use for secure
communication. While specific apps have been built
using encounters [29, 49], no platform exists that relies on
encounters to enable a wide range of privacy-preserving
mobile social communication and sharing.

In this paper, we leverage the notion of addressable
secure encounters introduced in SDDR to build EnCore,
a communication platform that provides powerful new
capabilities to mobile social apps. Using EnCore, apps can:

• Rely on encounters to conveniently and securely
bootstrap events, which represent socially meaningful
groups of proximal users and are associated with
inferred context and user annotations.

• Send, receive, share, organize and search information
and contacts by referring to events by their name, time
or location, while maintaining confidentiality and full
control over participants’ anonymity and linkability.

• Use conduits to distribute and store information within
events, before, during and after the actual social
event. Current conduits rely on e-mail, Dropbox and
Facebook.

To illustrate the space of apps supported by EnCore,
consider a scenario of tourists visiting a site. While there,
visitors wish to share live recommendations on nearby sights,
shows to attend and eateries to try, but do not wish to reveal
any (long-term) linkable information about themselves. If,
unbeknownst to them, a friend or person with a shared
interest is in the area, they would like to be notified, yet
they wish to remain anonymous to all others. At a later
time, attendees may like to share content (e.g., photos) and
commentary related to the visit, but only with those who
were there. Lastly, some might wish to follow up with
a special person they met but failed to exchange contact
information with. EnCore supports all these capabilities
and more.

The primary contributions of this paper are as follows:

• We present the design of EnCore and its
implementation on Android devices.

• We demonstrate EnCore’s capabilities through
Context, an Android application that provides
communication, sharing, collaboration and
organization based on events. The application
was shaped by user feedback from a series of testbed
deployments.

• We implement a variant of the SDDR protocol over
Bluetooth 4.0. SDDR-4 takes full advantage of the
new broadcast and low-energy features of Bluetooth
4.0, and is compatible with existing Bluetooth 2.1
accessories without compromising privacy.

• We report on a series of live deployments of Context
and EnCore, with 35 users at MPI-SWS.

The live deployments described in this paper cover only
a subset of the scenarios supported by EnCore, namely
those involving colleagues within an organization. Events
involving complete strangers, on the other hand, would
require physical gatherings of people who do not know
each other and who run an app based on EnCore. This
requires wide adoption within a local community of sufficient
size, or minimally a large event in which participants are
incentiviced to run the app. We hope to be able to arrange
such deployments as part of future work.

Roadmap.
The rest of this paper is organized as follows: We sketch

related work in Section 2, discuss EnCore’s capabilities and
requirements in Section 3, and present the design of EnCore
in Section 4. The Context app, which makes the capabilities
of EnCore available to mobile users, is described in Section 5.
The Android implementation of our prototype is sketched
in Section 6. We present the results of our experiments and
testbed deployment in Section 7, discuss risks and challenges
in Section 8 and conclude in Section 9.

2. RELATED WORK
Mobile social apps Most currently deployed mobile social
apps like Foursquare [5], Whisper [19] and Highlight [9] rely
on a cloud service to match co-located devices and relay
data among them. Users must trust the provider with their
whereabouts, activities and social encounters.

More recent systems like LoKast [11], AllJoyn [1],
Haggle [8, 57] and Musubi [32], as well as lost-and-found
apps like Tile [18], use D2D radio communication, which
enables infrastructure-independent and accurate detection
of nearby devices (e.g., those within Bluetooth range). In
principle, these systems could be designed so that users do
not have to trust the cloud provider with their sensitive data.
Unfortunately, once Bluetooth discoverability is enabled,
devices can be tracked even when they are not actively
communicating, introducing a new threat to privacy. Unlike
the tracking of cellular phones by mobile operators, such
“Bluetooth surveillance” by stores and businesses is not
regulated [42].

EnCore relies on D2D radio communication, but
incorporates an efficient periodic MAC-address change
protocol that ensures users cannot be tracked using their
MAC address. The EnCore handshake protocol is provably
secure and does not leak users’ identity or profile information
except to selected users.

The AirDrop [10] service in Apple’s iOS 7 enables iPhone
users to share content with nearby devices. AirDrop uses
Bluetooth for device discovery and token setup, and an ad
hoc Wi-Fi network to transfer data. AirDrop is designed
for synchronous pairwise sharing among co-located users.
Android Beam [2] is similar to AirDrop but relies on
NFC [14] to initiate communication by physically placing
devices back to back, and uses Bluetooth or Wi-Fi Direct [20]
to transfer content. EnCore instead enables communication
with all encountered EnCore devices, both during and
after co-location. Moreover, EnCore prevents tracking, and
supports anonymous and group communication.

Life-logging apps Friday [6] keeps an automated journal
of user activities such as calls, SMSes, location history,
photos taken and music history for browsing and sharing
purposes. Memoto [13] is a life-logging camera that takes
a picture every 30 seconds. The Funf framework used in
the Social fMRI project [21] is a platform for social and
behavioral sensing apps. Since all these services upload the
collected data to the cloud, users have to trust the cloud
provider with their private information.

Private mobile social communication systems
SMILE [49] is a mobile “missed connections” application,
which enables users to contact people they previously met,
but for whom they do not have contact information. SMILE
creates an identifier and an associated shared key for any
set of devices that are within Bluetooth range at a given
time. Users can subsequently exchange messages (encrypted
with the shared key) anonymously through a cloud-based,
untrusted mailbox associated with the encounter ID.

In SmokeScreen [29], devices periodically broadcast two
types of messages, clique signals (CSs) and opaque identifiers
(OIDs). CSs enable private presence sharing, announcing
the device’s presence to any nearby member of a mutually
trusting clique of devices (e.g., friends). The sender’s
identity can be determined from the signal only by clique
members, who share a secret. OIDs enable communication
with strangers. A trusted broker can resolve OIDs to the
identity of their sender, assuming that two or more devices
agree to mutually reveal their identities. In comparison,
EnCore supports anonymous communication with strangers
without requiring a trusted broker.

SPATE [48] uses physical encounters among mobile
devices to allow users to explicitly establish private
communication channels, so that they can communicate
and share data securely in the future. SPATE does not
address anonymity, does not support communication among
strangers who did not explicitly introduce their devices, and
does not provide a way to address devices by referring to a
shared context.

PIKE [22] is a key exchange protocol designed for secure
proximity-based communication among the participants of
an event. Keys are exchanged using an existing service like
Google Calendar or Facebook, which require knowledge of
the contact details for each participant. EnCore, on the
other hand, leverages encounters to exchange keys with
previously known and unknown participants, and without
explicit user action.

SDDR: Secure Device Discovery and Recognition
SDDR [47] builds on the encounter-based communication
style introduced by SMILE, adding selective and unilaterally
revocable linkability. The SDDR handshake protocol is
provably secure, non-interactive and energy-efficient. SDDR
attempts to form a pairwise encounter with each nearby
device, establishing a shared key in the process. SDDR can
also recognize specific users or users with specific attributes
if both peers in an encounter agree to be recognized by each
other, while remaining unlinkable by other devices. This
selective linkability can be revoked and reinstated efficiently
and unilaterally by each peer.

To prevent devices from being linked across encounters
by their link-layer addresses, SDDR changes the MAC
address every “epoch” (roughly every 15 minutes). However,
periodic address changes are not natively supported in
Bluetooth 2.1 and cause established connections to reset.
As described in Section 6, our SDDR implementation over
Bluetooth 4.0 maintains all of the security properties of
SDDR over Bluetooth 2.1, and preserves interaction with
legacy accessories and devices.

Privacy-preserving MAC protocols SlyFi [36] is a link
layer protocol for 802.11 networks that obfuscates packet
bits, including MAC address identifiers and management
information, in order to prevent adversaries from identifying
or tracking users in an application-independent manner.
EnCore addresses the complementary concern of enabling
anonymous, context-based communication based on
encounters. EnCore, however, additionally includes a
Bluetooth MAC address change protocol to prevent cross-
encounter linking. Bluetooth 4.0 [3] is a new protocol that
incorporates low-power, low-latency discovery and security
extensions relevant to EnCore. We discuss Bluetooth 4.0 in
Section 6.1.

Location privacy Several works investigate location
privacy for mobile devices [35, 37, 38, 41, 56]. Roughly
speaking, the following two classes of approaches have
been proposed. The first class proposes to send fake or
perturbed location data, or send location data at coarser
granularity [35, 38, 41, 44, 56]. This class of approach
essentially trades off utility with privacy. The second
class of approaches does not require data obfuscation,
but resorts to anonymity [37, 38, 40]. For example,
Koi [37] sends unperturbed locations to a cloud server;
however, the location is not linkable with a user’s identity
(assuming two non-colluding servers). In comparison with

these approaches, EnCore achieves location privacy without
relying on trusted, centralized infrastructure.

Device discovery Energy-efficient device discovery in
wireless networks has been studied extensively [25,33,39,45,
60]. EnCore currently uses a simple, static device discovery
scheme, but could easily incorporate the more sophisticated
protocols in the literature. Other work aims to enable users
to prove that they were in a particular location [46, 54].
EnCore addresses the orthogonal problem of allowing users
to prove that they were in the vicinity of certain other
devices. The Unmanaged Internet Architecture [34] (UIA)
provides zero-configuration naming and routing for personal
devices. While it shares with EnCore the goal of enabling
seamless communication among personal devices, UIA is
not concerned with the specific communication model and
privacy needs of mobile social applications.

3. ENCORE: CAPABILITIES AND
REQUIREMENTS

In this section, we describe EnCore’s capabilities in light of
the communication requirements of mobile social apps and
the privacy needs of users. EnCore provides its capabilities
without relying on a third-party provider that is entrusted
with users’ whereabouts, activities and social encounters.

3.1 Detecting nearby users and resources
A basic requirement of mobile social apps is the detection

of nearby resources and users. EnCore’s secure encounters
enable this capability using D2D communication. Detecting
nearby resources has several variants:

Discovering when a known friend is nearby Friends
can be members of certain online social network circles
(e.g., friends, family, colleagues), or specific users that have
previously paired their devices. For privacy reasons, a user
should be able to control discoverability by individuals or
circles manually, and based on the present time, location, or
activity. Moreover, a user’s device should be unlinkable by
all other devices.

Discovering relevant resources and nearby strangers
that match a profile The profile might include interests
(e.g., “tango”) or relationship status (e.g., “single male age
27 seeking female”). For privacy reasons, a user should be
able to control discoverability by individual profile attributes
manually, and based on the present time, location, or
activity. Moreover, an attribute should be visible only to
devices that advertise a matching attribute.

Keeping a record of (strangers’) devices encountered
This record is useful to communicate and share information
related to a shared experience, taking place in the present
(e.g., sharing recommendations for menu items while at a
restaurant) or in the past (e.g., sharing selected photos from
a joint tour bus ride). For privacy reasons, this record must
not contain personally identifying or linkable information.

3.2 Event-based communication/sharing
Mobile social apps enable communication among members

of a social event like a meeting or gathering. A key
abstraction in EnCore is an event, a set of encounters
relevant to a social event along with inferred context and
user annotations. Typically, an event includes a subset of
a device’s ongoing encounters at a given time, and a device

may be part of multiple concurrent events. For instance,
while at a restaurant, Alice’s device may participate in a
dinner event comprising encounters with each of the devices
present at her dinner party. Concurrently, her device may
be part of a restaurant event comprising encounters with
other guests at the restaurant. Both events are socially
meaningful, and may be used to share photos and notes
about the dinner with her party, and menu suggestions with
the other guests, respectively. Note that Alice’s device may
also encounter devices of people who pass by outside the
restaurant, which are not part of any event.

EnCore is able to infer certain types of events
automatically, and users can create named events manually
by annotating specific encounters. Events occur naturally
as users are presented with relevant encounter and context
information. For instance, moviegoers at a theatre might
wish to share movie recommendations on the spot, while
participants of a sightseeing tour may wish to share selected
photos and videos days later. Attendees at a conference
might wish to virtually carry on a conversation started in the
hallway, texting and sharing links long after the conference
is over. Supporting events has the following requirements:

Ad hoc event creation The ability to set up an event
without the inconvenience of having to pair mobile devices
with every attendee or enumerating every attendee by their
contact details. This capability lowers the bar for setting up
communication and sharing related to an ad hoc event or
meeting.

Event-based communication The ability to send,
receive, share, organize and search information and contacts
by referring to the time/location or name of the appropriate
event. This capability makes it easy to communicate with
people one has met on a particular occasion, without needing
to remember everyone’s name or contact details.

Furthermore, the platform must protect user’s privacy and
data confidentiality, leading to two additional requirements:

Privacy control To protect privacy, users must retain the
option to participate in an event with full contact details,
a permanent nickname (“Alice”), or under an unlinkable,
one-time pseudonym. The former may be appropriate for
a meeting with business partners at a conference, while the
latter are appropriate for sharing content related to a shared
activity with strangers.

Access control The ability to control access to the event
is critical for private event-based communication. An
event may be restricted to any subset of those physically
present during a specific event, and may optionally include
additional users who are invited by a member.

4. ENCORE DESIGN
In this section, we describe the services supported by the

EnCore platform. Figure 1 depicts the various components
of the EnCore architecture. EnCore uses the SDDR
protocol to form D2D encounters, and store these in
the EnCore database. The Event Generator component
groups, under user direction, related encounters into socially
relevant named events, and stores these in the database.
Users use applications to communicate with event peers.
Depending on the event specification and the type of content
shared, the Routing module decides how to forward event
invitations, content and notifications to the members of
an event. The information is sent using Conduits, which

Applications

Event
Generator

u
i
a

c
ti
o

n
s

SDDR Routing

Conduits

n
o

ti
fi
c
a

ti
o

n
s

e
n

c
o

u
n

te
rs

e
n

c
o

u
n

te
rs

e
v
e

n
ts

c
o

n
te

n
t

c
o

n
te

n
t

e
v
e

n
ts

c
o

n
te

n
t

address

Encounter and Event Database

c
o

m
m

u
n

ic
a

ti
o

n

o
v
e

r
s
e

rv
ic

e

b
e

a
c
o

n
s

Figure 1: EnCore Architecture

rely on an existing communication, storage or OSN service
to effect communication. Applications usually default to
specific conduits for particular event and data types, e.g.,
Dropbox for video sharing. Before describing each of these
components, we discuss EnCore’s security properties and
threat model.

4.1 EnCore security properties

4.1.1 Threat model
We assume that a subset of devices is controlled by

attackers who participate in the EnCore protocol as peers
and may also collude. Also, attackers can observe network
communication and data stored in the Cloud. However,
attackers cannot decrypt content without knowledge of the
encryption key or invert cryptographic hashes. Furthermore,
we assume that user devices are not compromised, i.e.,
attackers cannot learn honest users’ private keys or the
shared keys associated with encounters or events in which
no attacker was a participant. Finally, honest users do not
share event keys with non-members (users not part of an
event).

We assume that user devices, including the operating
system and any applications the user chooses to run, do
not divulge information identifying or linking the device
or user through EnCore conduits or other communication
channels. (The EnCore protocols themselves do not leak
identifiable information, down to the MAC layer.) Finally,
we rule out radio fingerprinting attacks, which can identify a
device by its unique RF signature [26]. Such attacks require
sophisticated, non-standard signal capture hardware, and
are outside our threat model.

4.1.2 Security properties
Under the assumptions stated above, EnCore provides the

following security properties:

Bluetooth device unlinkability Attackers cannot track
a legitimate user’s device across Bluetooth radio contacts,
unless the user’s device remains in Bluetooth contact with
some attacker’s device for a continuous period that is never
interrupted by more than two SDDR epoch changes.1

Encounter unlinkability/selective linkability
Attackers cannot link different encounters with a user’s

1Device unlinkability for Wi-Fi can be achieved using
existing work like SlyFi [36]

device, unless the user has explicitly linked their device
with an attacker’s device and has not revoked the link.

Communication unlinkability Attackers cannot link
communication or posts by a legitimate user in different
events, unless the user has explicitly included identifying
information, such as a nickname, in the posts.

Anonymity Attackers cannot learn the identity of a
legitimate user or user’s device with whom they share an
event, unless the user explicitly reveals this identity.

Confidentiality Attackers cannot learn the communication
content of events in which no attacker participates.

Authenticity Users can verify that the communication or
content received in an event originates from a member.

We highlight that EnCore’s threat model and security
properties are mostly inherited from SDDR [47]. In
principle, one could use a different platform, such as
SMILE [49] or SmokeScreen [29] to support EnCore’s
functionality. Minimally, EnCore expects the underlying
platform to discover nearby devices, form encounters and
provide pairwise shared keys with them. SDDR additionally
provides selective linkability and revocation, as well as
Bluetooth unlinkability.

4.2 Encounters
EnCore uses a modified version of the SDDR [47] protocol

for device discovery and for forming D2D encounters. Below
we give a brief overview of how SDDR forms encounters
and provides selective linkability. Further details, including
SDDR’s security guarantees and scalability, are available in
[47].

Each device periodically performs a discovery (also known
as an inquiry) to identify all nearby devices, collecting their
MAC addresses and beacon messages in the process. Every
device is also always discoverable, responding to incoming
inquiry messages with information on how the discoverer can
establish a connection (e.g., MAC address) and an additional
payload, referred to as the beacon. This response is sent
by the Bluetooth controller autonomously without requiring
the attention of the main processor. Therefore, devices must
only wake up to perform an inquiry. Otherwise, while simply
discoverable, only the Bluetooth controller must be active,
allowing the rest of the system to remain in a suspended
state (consuming almost no energy).

Once SDDR receives the beacon(s), it forms an encounter
with the remote device and computes a shared key. The
beacon contains a Diffie-Hellman (DH) [31] public key which
is used to compute this shared key.

While processing the beacon, SDDR additionally checks
if the device belongs to a known, selectively linkable user.
To support this, the beacon also includes a Bloom filter,
which represents a set of salted hashes of secrets shared
with the devices of linkable users. Two linkable devices
advertise the same set member, which guarantees a match
in the Bloom filters. The Bloom filters are padded to
achieve a uniform load. Moreover, the salt is changed in
every successive inquiry, which makes the probability of false
positives quickly approach zero with each additional round
in which the Bloom filters match. To a third (unlinked)
device, on the other hand, the Bloom filters look like
randomly changing sets of bits.

SDDR divides time into epochs (typically fifteen minutes
long), during which the MAC address and DH public/private

key pair remain constant. This allows the devices to track
each other during an epoch, but remain unlinkable across
epochs.

The original SDDR implementation used Bluetooth 2.1
to provide an efficient discovery and encounter formation
implementation. Specifically, it encoded the beacons in
the additional 240 bytes that the Bluetooth 2.1 Extended
Inquiry Response (EIR) feature allows a device to include
as part of the inquiry response. However, Bluetooth 2.1
does not support changing MAC addresses, which is required
by SDDR; otherwise, users could simply be tracked by
their MAC addresses regardless of the privacy provided by
SDDR. As a result, the original SDDR implementation reset
the Bluetooth controller with a new MAC address every
epoch, every fifteen minutes or so. While this provided the
necessary security guarantees, it also rendered the device
unable to maintain long-term connections with other paired
accessories such as headsets.

For use in EnCore, we migrated SDDR to Bluetooth 4.0,
which provides native support for randomized, ephemeral
MAC addresses. This feature enables EnCore to maintain
compatibility with legacy accessories. However, the
communication model supported by Bluetooth 4.0 is
different from Bluetooth 2.1, necessitating an entirely new
wire protocol and FEC-based message encoding scheme.
Our design and implementation of SDDR over Bluetooth
4.0 is described in Section 6.

4.3 Events
Events are socially meaningful sets of encounters. The

Event Generator creates events by selecting encounters that
are taking (or took) place concurrently and form a social
event meaningful to users. There are two methods for
generating events: relying on explicit user input from the
Context application, or using existing user annotations (e.g.,
the user’s calendar entries). Once an event is created, the
generator, using suitable conduits (Section 4.4), sends an
invitation to all participating encounter peers, containing
an event ID and a shared event key, which can be used
for communication among event members. For privacy
reasons, users are required to explicitly invite others for
events inferred from their private calendar entries.

EnCore provides several methods by which users can
create events: For small meetings, all participants tend
to interact in close proximity with one another, and thus
all devices form encounters with each other. Users can
manually select appropriate encounters, using cues such as
whether an encounter corresponds to a known user, or a
received signal strength indicator (RSSI), which helps to
distinguish between nearby and distant users.

For larger events and future events, it is inconvenient
or impossible for one user to select all participants from
the set of encounters they observe at the time of event
creation. If the event is managed, and has a list of
attendees, it is possible to bootstrap the EnCore event
similar to PIKE [22], using Facebook or another existing
registration system. However, unlike PIKE, EnCore can
also handle ad hoc events. For these events, the event
creator can specify a time period and geographic area, such
that any devices within the specified space-time region is
automatically invited to the event. This can be implemented
by having each event member forward invitations over their
encounters that meet the spatial and temporal constraints.

Evaluating such policies in a large scale deployment is part
of ongoing work.

In designing EnCore, we chose not to use protocol means
to disambiguate multiple EnCore events that correspond to
the same social event. Thus, users are free to create multiple
EnCore events for the same social event, or (somewhat more
commonly for large events), a few users may end up creating
their own EnCore event corresponding to the same social
event. Our experience is that event peers themselves resolve
this ambiguity by gravitating to one event, abandoning the
others without requiring an arbitration protocol. (This was
observed in our deployment as well, see section 7.2). Of
course, applications atop EnCore may choose to provide
their own arbitration protocol.

4.4 Communication
All application-level communication in EnCore occurs

among the members of an event. Two types of components
within EnCore are responsible for communication, Conduits
and the Router.

Conduits are adapters to existing communication, storage
and online social network services, and are used to convey
information between event participants. Conduits accept
messages or content and, depending on the type of conduit,
either a list of encounter IDs (the communication end-
points for pairwise message transport) or an event ID (the
rendezvous point for group communication and sharing).
They convert the encounter IDs or event ID into addresses
or names used by the underlying communication, storage,
or OSN service that the conduit relies on. To provide secure
communication among the members of an event, conduits
normally encrypt the communication using either the
shared encounter key(s) established during the handshake
protocols, or the shared event key distributed during the
event creation.

The Router component decides, based on the event
specification and the type of information shared, how
information is forwarded among event members. Three
types of information are routed: event invitations, content,
and notifications. If the conduit used for the event and
information type supports multicast or shared storage, then
the router delivers the information in one step, using the
event ID as an address and the event key to encrypt. If the
conduit supports pairwise communication, then the router
sends the information to each member with which the local
device shares an encounter, using the encounter IDs as
addresses and the associated shared keys to encrypt. If
not all pairs of event members share an encounter, then
the routers on each member device forward the information
to all of their local encounter peers that meet the event
membership specification and have not already received it.

4.5 Security guarantees
Building EnCore on SDDR guarantees the security

properties related to unlinkability. Since SDDR requires
periodic MAC address changes, devices are not linkable at
the Bluetooth layer unless the tracking device is present
whenever the SDDR device changes addresses. Similarly,
since SDDR ensures that the advertisements do not carry
identifying information (except to linked users), devices
remain unlinkable. The confidentiality and authenticity
guarantees are provided by ensuring that all communication
is encrypted and protected by a message authentication

Figure 2: Context Timeline view (User names were
changed for privacy)

code, using either an event key or an encounter key. Since
only encounter or event peers possess the same shared keys,
this ensures both confidentiality (event peers can decrypt)
and authenticity (only encounter or event peers can post).

5. USING EVENTS WITH CONTEXT
We have developed an Android application called Context

over EnCore. Context maintains a private record of
the user’s activities and social encounters, and allows
users to communicate, share, collaborate, organize and
search information and contacts using events. The design
of Context was shaped significantly by user feedback
during a series of testbed deployments within our institute
community between September, 2012 and September, 2013

Even though Context still lacks the feature wealth,
sleekness and visual polish of a commercial product, users
in our institute-internal deployment have generally found
Context useful, and have come up with creative uses for its
capabilities. We provide quantitative details of Context’s
usage in our deployment in Section 7.2, as well as qualitative
user feedback in Section 8.1. In the rest of this section, we
briefly describe the main functions provided by Context and
their value to the user: browsing the user’s timeline and
identifying socially relevant encounters, managing events,
posting and receiving information, and managing user
linkability.

5.1 Browsing the timeline
Figure 2 shows a screenshot of Context’s timeline view

for a hypothetical user Bob. Bob can navigate this view by
scrolling, zooming or searching by keyword or date.

The timeline view shows encounters, events and calendar
entries as horizontal bars spanning time intervals. For

linked encounters, the peer’s name is displayed. Anonymous
encounters show “Unknown” as the peer name. The height
and color of the encounter bar indicates signal strength and
is a rough proxy for proximity. This view scrapes the user’s
calendar and displays previously scheduled entries. Any
EnCore events are displayed in the events area. Events are
marked with pending invitations or notifications (if any).

Selecting any UI element reveals more information about,
and shows a menu of possible actions on, the element.
For example, selecting an event highlights the participating
encounters, allows the user to inspect or edit the event’s
metadata, invite more participants, or launch an application
to browse the event’s content. Selecting a location switches
to a map-based view.

This simple linear view provides remarkable functionality:
For instance, as shown by (1) on the Figure, by navigating
back to this view, Bob can remind himself that he was
with Alice at the table tennis championship before lunch
on September 10, and eventually they walked to lunch
together. The events pane shows that Bob was invited to
the associated event and has a pending notification.

The rectangles (2) and (3) show how social events, both
scheduled and impromptu, naturally line up vertically along
the timeline. (2) shows that Dave joined Bob and Alice for
lunch, and that there was someone else (unknown with high
signal strength) nearby. This may be a sufficient hint for
Bob to recall that Dave was with his guest at lunch. There
were other lower signal strength encounters with unlinked
users at lunch. Similarly, (3) shows a scheduled event, the
Reading Group, that has a calendar entry and an associated
EnCore event. Once again the vertical alignment of the
high signal strength encounters with Kelly and Jack serve
as reminder that they were at the reading group meeting.
The encounter with Amy has low signal strength and likely
is an artifact of her being in a nearby room but not at the
reading group meeting.

5.2 Creating events
Users create events by touching the“Create Event”button

and selecting a set of encounters to be included. If the
event was previously scheduled in the calendar, its metadata
(name, duration) is automatically imported; otherwise,
the user can adjust the default duration inferred from
the selected encounters, enter a name for the event, and
optionally add the event to the calendar. Once the user
confirms, the event is created and invitations are sent to
the selected encounters. To support events where some of
the users are not physically present (e.g. users attending an
event virtually), event members can additionally invite any
of their past encounters or known contacts to the event.

For more complex events or future events, the user
can specify temporal and spatial (e.g., within the current
building) constraints for included encounters. Future and
transitive encounters that meet these constraints are invited
automatically.

By default, the appropriate conduit to implement an
event is chosen automatically. When all participants are
linked encounters who provide Facebook account details
(as is the case in our deployment at users’ request), then
a conduit is chosen that maps the event to a private
Facebook event. Otherwise, a conduit is chosen that maps
the event to a folder in Dropbox. The Dropbox conduit
supports anonymous participants and provides the same

basic sharing functionality, albeit without the integration
and the sophisticated event presentation of Facebook.

These facilities make it easy to set up communication and
sharing among a socially meaningful group of users in an
ad hoc fashion. The event creator does not require contact
details of the participants, and can include anonymous users
via unlinked encounters.

5.3 Posting information
Context appears as a choice in Android’s Share menu.2

Therefore, any type of content can be selected (e.g., pictures
and videos from the Android gallery, audio from a recording
app, pin drops from a map app, text from a notes app)
and shared via Context. Within Context, the user simply
touches an event in which the content is to be posted.

As a convenient shortcut, users can post information
directly from within Context and select encounters with
whom the information should be shared, without creating
an event. Internally, Context creates an event with default
metadata to handle the posted information.

These facilities make it very convenient to send messages
and share content with nearby or previously encountered
users.

5.4 Receiving information
Notifications about incoming messages, posts or pending

event invitations are shown as icons with red flags on the
corresponding event, or on an encounter in the case of a
message sent directly to an encounter. For instance, in
Figure 2, there is a new post in the “Reading group” event,
and a pending invitation to the “Table tennis championship”
event. Notifications are also summarized in the notification
center shown as an earth icon at the top of the screen.
Touching it will scroll to the nearest event or encounter with
a pending notification. Preference settings allow users to
suppress notifications by type or source.

To respond to an event invitation, the user touches the
event, optionally views the event’s metadata, and then
accepts, declines or defers the invitation. To read incoming
messages or posts, the user selects the relevant event
or encounter. Touching an event launches an external
application (e.g., Facebook) to show the latest post in the
event.

These facilities enable users to prioritize, filter, browse
and navigate incoming information according to its context:
event, encounter, time and location.

5.5 Controlling linkability
Context allows users to control the information revealed

in an encounter in a variety of ways. The user can choose
to reveal a linkable nickname or their real identity to
selected peer devices. The linkable peers can be selected
based on existing relationships in an online social network
(e.g., Facebook) or a contact list, or by pairing devices
individually. Moreover, linkability can be controlled based
on the user’s present location or time. For instance, users
can choose to be linkable to colleagues only when in the
office and not be linkable by anyone at certain times.

Recall that a Facebook private event is used by default
for events among linkable encounters who provide Facebook

2Most Android content apps have a “Share” button, which
opens a menu of applications through which the selected
content can be shared.

details. User posts are linkable across such events. Users
can use a separate Facebook account under a pseudonym for
this purpose; in fact, all participants in our deployment use
test accounts separate from their main Facebook account.
To avoid linkability across events, the creator of an event
can choose to use a Dropbox conduit instead, and users
can decline invitations to Facebook-backed events if they
so choose.

These facilities enable users to effectively control their
privacy.

6. IMPLEMENTATION
In this section, we describe the implementation of EnCore

and Context.

6.1 SDDR over Bluetooth 4.0
We have implemented a modified version of SDDR on

the Android platform, using Bluetooth Low-Energy support
instead of Bluetooth 2.1. We use Samsung Galaxy Nexus
phones running Android 4.1.2 with the android-omap-tuna-
3.0-jb-mr0 kernel. We modified this kernel by patching in
Bluetooth 4.0 L2CAP communication support present in the
Linux 3.7.7 kernel, as well as a power-related bug fix in the
Bluetooth controller driver.

As described in [47], in order to provide selective
linkability, SDDR devices store an advertised set and a listen
set, each containing linkability values (or link values); if a
value in device A’s advertised set exists within device B’s
listen set, then B can detect A. Upon detection by the
underlying radio, the SDDR protocol exchanges a beacon
message containing a Diffie-Hellman (DH) [31] public key,
and a set digest structure containing salted hashes of the
advertised set values. Upon receiving a beacon from a
remote device, an SDDR peer computes a shared DH key
and checks to see if elements of its listen set are found in the
newly advertised set.

The EnCore implementation of SDDR utilizes the
broadcast feature of Bluetooth 4.0. Bluetooth 4.0 introduces
new roles for devices, two of which are advertisers
and scanners. Advertisers periodically broadcast small
messages, containing a 31-byte payload, to nearby scanners
who listen for messages. Unlike the exclusively pairwise
communication in Bluetooth 2.1, advertisers in Bluetooth
4.0 can broadcast their messages to all nearby devices [3].

SDDR exchanges a beacon, consisting of a 192-bit DH
public key and a Bloom filter containing the link values
present in the advertised set; however, this beacon cannot
fit into the 31-byte limit of Bluetooth 4.0 advertisement
messages. Instead, we model the advertisement channel as
a packet-erasure channel, i.e., packets are either received
correctly or not at all, and send the beacon message, in
segments, encoded using Reed-Solomon (RS) coding [53].
RS codes are optimal erasure-correction codes, meaning the
receiver can reconstruct the original K data symbols after
receiving any K of N total symbols.

Figure 3 illustrates our method for generating
advertisements from the beacon information. Each
advertisement contains an index to identify the RS and
Bloom filter segments. We divide both the public key and
the Bloom filter into segments, with each advertisement
containing a single RS and Bloom filter segment. In order
to produce the RS-coded segments, the coding matrix
(in the form of a Vandermonde identity matrix [51]) is

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

x11 x12 x13 x14

xM1 xM2 xM3 xM4

*

PK1

PK2

PK3

PK4

=

C1

C2

C3

C4

C5

CM

Coding Matrix

Public Key

Segments

RS Coded

Public Key

Segments

Index
RS Coded

Segment
Bloom Filter Segment

0 0 1 1 0 1 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 1 1 0

... ...

Bloom Filter

Advertisement

Figure 3: SDDR-4 beacon constructed from RS
coded DH public key and Bloom filter segments

multiplied by the vector containing all segments of the
public key. Note that the Bloom filter segments do not
require forward error correction since if the receiver misses
an advertisement, it can simply replace the segment
with all 1’s in the reconstructed Bloom filter. As more
advertisements arrive, the effective false positive rate of the
Bloom filter decreases.

The discovery protocol runs periodically (roughly every 15
seconds), acting as both an advertiser and scanner. Using
the public key and Bloom filter generated at the start of each
epoch, the device computes and starts to broadcast the next
advertisement (according to the current index). Devices also
scan to capture broadcasts from nearby devices, and report
the set of discovered devices to the higher EnCore layers.

Once enough advertisements are received, the handshake
protocol attempts to decode the remote device’s public key
and compute the shared key. Once decoded, the public key is
used to query the Bloom filter (which may only be partially
received) for all link values in the local listen set; as new
Bloom filter fragments are received, the result converges
to the true intersection as the number of false positives
decreases.

6.2 Conduits and router
EnCore currently supports the following conduits:

SMTP conduit The SMTP conduit allows users to securely
exchange e-mails with the participants of an event. The
SMTP conduit allows any email client on the device to send
a message to the email addresses associated with one or
more encounter peers. If an encounter is linkable and has
an associated email address, the message is simply sent to
that address. If the encounter is unlinkable, then a one-
time email address is derived from the encounter ID, and the
message is sent to that address. The current implementation
uses mailinator.com [12] for this purpose, which does not
require user registrations and creates mailboxes on-the-fly
as mail arrives for an address. The mail is public for all
who can guess an email address, but this does not affect
confidentiality since all EnCore mail is encrypted using an
encounter or event key. The Mailinator conduit is limited

by the the fact that Mailinator caches messages only for
a few hours, and applications need to periodically resend
messages to ensure persistence. Alternatively, one could
easily setup a similar one time email system that does not
delete messages.3

Dropbox conduit The Dropbox conduit converts an event
ID into a folder name on Dropbox, and stores all content
posted to the event into that folder, encrypted with the
shared event key.

Facebook conduit This conduit associates an EnCore
event with a private Facebook event. It requires that all
participants in the event are linkable and provide details
for a Facebook account. The event’s participants appear
in the Facebook event with the identity of the account
they provided. Textual posts, comments, likes and photos
are posted in the Facebook event in cleartext, to maintain
the flexibility and convenience of the Facebook interface.4

However, video and audio recording posted to the event are
uploaded using the Dropbox conduit (encrypted with the
shared event key), and a URL to that content is posted in
the Facebook event.

Using Facebook allowed us to leverage the familiarity of
users with its app. The Facebook conduit cannot support
unlinkable users, which was irrelevant in our deployment.
As part of ongoing work, we plan to recreate similar
functionality within Context with the ability to create events
amongst unlinkable users.

Router The current router implementation is limited to
forwarding information within events in which all members
share pairwise encounters. We are in the process of adding
transitive forwarding. There has not been much demand for
this feature so far, due to the relatively small size of our
deployment and the types of events users have requested.

7. EVALUATION
We have evaluated EnCore using microbenchmarks of

CPU usage and power consumption, and also via a series
of user studies. All of our experiments used Samsung
Galaxy Nexus devices, containing a 1.2 GHz dual-core ARM
Cortex-A9 processor. We begin with a description of the
microbenchmarks, and conclude with results from our latest
user study.

7.1 Microbenchmarks
Protocol computation time We have measured the
SDDR-4 handshake protocol computation time while
varying the number of link values in the listen and advertised
sets. We compare execution time to an implementation [30]
of the JL10 scheme [43] for Private Set Intersection (PSI).
Results are similar to the original SDDR protocol: For all
set sizes, SDDR-4 executes over three orders of magnitude
faster than standard PSI.

Energy consumption EnCore runs the SDDR protocol
permanently in the background on a mobile device, and
therefore power considerations have informed considerable
parts of its design. We have collected extensive power

3We implemented such a system and used it during one of
our initial deployments.
4Note that Facebook has access to cleartext posts; this can
be avoided by using the Dropbox conduit or a private OSN
platform like Persona [23] to share all information.

Avg. Power Energy
Operation (mW) (mWs) When
Idle 1.73 - -
Suspend/Wakeup 205.94 263.74 -
Bluetooth 2.1

Inquiry Scan 140.46 1698.36 Every 30s
Name Request 144.97 96.26 -

SDDR-4
Discovery 236.48 752.67 Every 13.5s
Advertisement 107.22 0.58 Every 700ms

Table 1: Power consumption for Bluetooth 2.1 and
SDDR-4 operations. Entries without a value do not
have well-defined durations.

traces of different parts of the EnCore protocol using the
BattOr [55] power monitor. The BattOr samples the voltage
and current across the battery terminals at a rate of 1 kHz,
and makes this data available via (its own) USB connection.
We collected this data for the SDDR-4 protocol variant, as
described in Section 6.1. Detailed energy results for the
original SDDR protocol can be found in [47].

Table 1 summarizes the energy consumed and the average
power required for each of the different SDDR operations.
The idle power consumption while the device is in airplane
mode (no radios are enabled) is a negligible 1.73 mW. Since
discoveries continually take place in our protocol, we include
the power and energy consumption from suspending and
waking up the device. As a point of comparison, we have
included energy consumed by Bluetooth 2.1 inquiry scans
and name requests.

Discoveries are the most expensive operations within
SDDR, in part due to the overhead of suspending and
waking up the device; for BT 4.0, this overhead makes up
∼35% of the energy consumption. BT 4.0 advertisements
consume very little energy (< 1mWs), since only the
Bluetooth controller (and not the main processor) must
run; in addition, the broadcast takes place within a few
milliseconds. Overall, the power consumption of SDDR-4
within EnCore is negligible, dominated by the overheads
of standard Android services like activity detection and
location determination (GPS). Power consumption increases
by one order of magnitude once the screen is powered on
and the user interacts with Context. Even with all features
enabled continuously and users performing their normal
activities, no user within our deployment had a device run
out of battery mid-day during the testing period.

7.2 Live deployment
Our latest EnCore field deployment began on September

9, 2013, with 35 volunteers in the Saarbrücken office of MPI-
SWS. The participants were staff members and researchers,
and were informed about the purpose of the experiment and
what data would be collected. Most of the participants (32
out of 35) were not directly involved in the project.

Deployment setup We provided each participant with a
Galaxy Nexus phone running EnCore with Context and
the Facebook app. All phones were configured with the
account details of a different Facebook test account with
a pseudonym. At users’ request all phones were selectively
linked with each other by default. Users were able to change
the linkability settings, configure their personal calendars for
display in Context, and change the pseudonym to their real
name if they wished to do so (30 of the 35 users did). None

Figure 4: Types of events and posts

� �

��������	
����������������	 ���
��	���������
������������	���������������	����������	������
����	
�������� ���������������	
��������������	�������������	������������	 ����������������	���

���������	
��

������������	

�����

��	�
��

�����	����������

Figure 5: Timelines of five actual events. Each point
shows the type of activity performed along with the
time elapsed since the specified start time of the
event

of the users modified the default linkability setting (i.e.,
link with all other users). This is not surprising since the
deployment was carried out among mutually trusting users
and linkability was limited to experimental devices only.

We requested users to carry the device, and encouraged
them to use Context to create events, communicate and
share content as they saw fit. On September 16, we installed
an audio recording and a note taking application on each of
the devices because several users requested it, in addition to
the default camera, gallery, calendar and map applications
already available on each device.

The phones ran EnCore, using the SDDR-4 protocol. The
phones executed discoveries every 13.5 seconds and changed
MAC addresses every 15 minutes.

Statistics from the deployment After the the first two
weeks of the deployment, we collected statistics for all the
events created, which we present below. The users’ activity
level was roughly bimodal. 17 users created fewer than
three events and made fewer than five posts, while 18 users
exceeded these numbers. Among the users not related to the
project, the maximum number of events created by a single
user was 12 (median 3) and the maximum number of posts
created by a single user were 30 (median 4).

Event usage After removing from consideration a number
of events that had been created by project members for
demonstration purposes, a total of 128 events remain. We
have divided these events into three categories based on their
names: research meetings (16%), social events (48%), and
unknown (36%). We classified an event as unknown if its
purpose was not obvious from its name. Figure 4 shows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

F
ra

c
ti
o

n
 o

f
e

v
e

n
ts

Number of participating members in an event

All events

Research

Social

Unknown

Figure 6: Distribution of event size

 0

 0.2

 0.4

 0.6

 0.8

 1

1 hr 4 hrs 16 hrs 2 days

F
ra

c
ti
o

n
 o

f
e

v
e

n
ts

Time (hours) (log scale)

All events

Research

Social

Unknown

Figure 7: Distribution of conversation durations

the distribution of event types and Figure 5 presents the
timelines of a selection of five actual events created during
the deployment.

Based on informal feedback from users and our own
observations, there was an interesting mix of expected and
creative uses of events. Events were created for research
gatherings, such as meetings, reading groups, etc., and
used to exchange meeting notes, audio recordings, followup
comments and links to related papers. The ‘research
meeting’ and the ‘reading group’ events in Figure 5 show the
activity timelines of two events in this category. Also, as seen
in Figure 6, these events tend to contain a moderate number
of participants, which is what we commonly observe for
project/group meetings and reading groups in our institute.

Almost half of the events were created for social or
informal gatherings, such as lunches, coffee breaks, sports
activities, bus rides, karaoke events, etc., and used to share
photos, videos and comments during and after the event.
The ‘karaoke’, ‘playing guitar’ and ‘lunch’ events in Figure 5
are typical examples. With the ‘karaoke’ event we also
observed an instance of users resolving multiple EnCore
events created for the same social event by gravitating to
one event (see Section 4.3). We observed that users stopped
posting to one of the two events created for karaoke and
continued their interactions on the other. Some creative
uses include creating events to invite nearby people for coffee
breaks, or to inform nearby people about leftover party food
using a picture of the food. The number of members in
social events ranges from 2 to 20 users (median 3), which is
expected given the size of our deployment (Figure 6).

Figure 5 also highlights that events can be created after
the associated event has ended, and that conversations tend
to extend beyond the event duration. The former can
be observed for the ‘Lunch’ event by comparing the time
when the EnCore event was created (circular dot with an
arrow) and the timespan of the actual social event (the first
horizontal bar from the top for each event).

Figure 7 shows the distribution of conversation durations
for different types of events. Even though most of the events
did not have conversations longer than five hours, there were
cases where users referred back to events they had attended
in the past and posted content to them long after the actual
event had finished.

Figure 4 shows the distribution of the types of posts
within events. Note that the audio recording application
was installed one week after the deployment had started;
the proportion of audio posts might have been higher had
it been installed from the beginning. A large portion of
photos were uploaded directly from Context, rather than via
the Facebook application, which suggests that users found
it convenient to refer to an event directly from Context’s
timeline.

Summary EnCore and Context provide a basis for
exploring secure ad hoc interactions. Both the analysis of
data from the deployment and personal user feedback show
that real users find the paradigm useful and found new ways
to collaborate and share with colleagues using Context.

8. DISCUSSION
In this section, we describe the qualitative feedback we

received from our users, and discuss the remaining risks and
challenges.

8.1 Qualitative user feedback
Quantitative performance evaluations are often

inadequate in capturing the utility of new functionality.
User engagement can be an important metric, and here
we describe the qualitative feedback we received from our
users, both during and after the test deployments. At the
end our our latest deployment, many of our users expressed
an interest in using the system on a permanent basis once
we have a version they can install on their primary devices.
We believe this is encouraging since it shows that users
(albeit highly technically proficient ones) find the system
useful. In the rest of this section, we discuss features
that users have requested. We believe feature requests are
illuminating. While they obviously point out shortcomings
in the existing system, they also point to innovation enabled
by, and creative use of, EnCore’s capabilities, some of which
were not anticipated by the design team.

Support for sharing audio recordings and import/export
of events to/from calendar was requested by users and rolled
out during the last deployment. Various requests were
related to encounter export, to make information about
nearby users available to other applications. For instance,
exporting a “Nearby” group into the Android address book,
which includes the contact details of currently nearby users,
if known.

Another feature requested was the ability to create
ephemeral pseudonyms as a way to control linkability (in
addition to the pairwise linkability offered by EnCore).
These pseudonyms allow other users to link their encounters
with a device under a pseudonym for a limited period and
location (e.g., while attending a conference). Users can
change (or remove) their pseudonym and can also choose to
stop receiving messages addressed to a pseudonym anytime.

A frequently requested feature is the ability to browse
the EnCore timeline, post content and manage events from
a desktop computer. Users have also requested the option

to thread recurrent or related events, and view posts and
comments within a thread in a linearized manner. Finally,
users asked that Context suggest events and content to post,
based on the users’ history, preference, and current context.
For instance, if Alice, Bob and Charlie have had frequent
meetings recently, then Context could automatically suggest
another instance of the event when it notices similar
circumstances (encounters, location, time). These feature
requests suggest that users find it useful to be able to explore
an encounter timeline, coupled with the ability to create
links, and to relate and recount events.

8.2 Risks and challenges
User privacy and security has informed every step of

EnCore’s design. Unlike virtually all existing mobile social
apps, EnCore does not require the user to reveal their
sensitive context data, which often combines location, social
contact and communication trace, to a provider. Moreover,
EnCore prevents Bluetooth device tracking and provides
strong security and privacy guarantees within its threat
model. However, privacy risks and usability challenges
remain.

EnCore database confidentiality The data logged by
EnCore resides on the mobile device, and is susceptible to
loss, theft, or subpoena. It is not clear what legal rights
regarding privacy and self-incrimination, if any, users can
assert with respect to data stored on their personal devices.
Encrypting the EnCore database protects the data in the
case of loss or theft, though it will not stop a court from
compelling the user to provide the decryption keys. The
risk can be somewhat reduced by configuring the database
to store a limited history. Since the usefulness of encounter
information likely diminishes over time, the resultant loss of
functionality may be acceptable.

Private profile matching Linking encounters based on
shared attributes is supported by EnCore, but currently not
fully exported by Context. A challenge in this regard is
how to prevent attacks where a malicious device advertises
attributes in order to learn as many attributes of nearby
users as possible. The problem can be partly mitigated
by ignoring devices that advertise too many attributes or
change their attributes too frequently, but a more general
defense is hard, unless attributes can be certified by an
external authority.

Reliably identifying socially relevant encounters
Identifying relevant encounters (e.g., the participants of
a shared event) was not a problem in our deployment.
The fact that all participants revealed their name or a
pseudonym while in the office, combined with the signal
strength indication, proved sufficient.

However, identifying socially relevant encounters in a
larger and denser environment with many unlinkable devices
is an open challenge. For instance, it is important to reliably
identify the attendees of a private, closed-door meeting
that takes place in an office building with EnCore devices
in adjacent rooms. We are currently experimenting with
an audio-based confirmation protocol, where devices have
to answer a (fast attenuating) challenge transmitted as
an audio chirp, in order to identify devices in the same
room. Another option would be to follow a non-interactive
approach similar to that of Sound of Silence [58], where each
device uploads a signature of their acoustic environment

to a cloud service that, by comparing signatures, identifies
nearby devices.

In other situations, like a crowded party, distinguishing
individual attendees is usually not necessary, because the
most likely types of interaction (e.g., sharing photos) are
directed to the group as a whole. In situations where users
wish to identify individuals within a crowded space (e.g.,
a dinner party at a busy restaurant), people tend to know
each other and have their devices linked already. If not,
they can resort to bumping devices via NFC or shake-to-
connect [28, 50]. In this case, no contact details would
be exchanged (unless desired), but the encounter would be
marked as “confirmed” on both devices.

Communication with strangers The limited deployment
within our institute has not yet allowed us to experiment
with communication among strangers, as it would occur,
for instance, in the sightseeing scenario described in the
introduction. This case, as well as other challenges
described above will require experience with deployments
at larger scale. Toward this end, we are developing
a version of EnCore that does not require rooting the
phone, which is currently a major hurdle for a larger
deployment. Nevertheless, we believe we have shown that
EnCore provides a robust foundation for building secure,
privacy-preserving mobile social applications that exploit
the opportunities afforded by D2D communication and
secure encounters.

9. CONCLUSION AND FUTURE WORK
We have described the design, implementation, and

evaluation of EnCore, a mobile platform for social
applications based on secure encounters. EnCore can
support a wide range of event-based communication
primitives for mobile social apps, with strong security and
privacy guarantees, without requiring a trusted provider,
and while integrating with existing communication, storage
and OSN services. As part of our evaluation, we have
conducted small-scale deployments of Context, an app for
event based communication, sharing and collaboration. User
experience was favorable: users were engaged, requested new
features, and used the app in interesting ways not envisioned
by the designers.

While our small-scale deployments have been invaluable
in developing the system, secure encounter-based
communication promises more than we have been able
to evaluate among a small set of mutually trusting,
technically savvy users. Evaluating EnCore’s primitives in
dense environments and among strangers requires larger
scale deployment onto a more heterogeneous population.
We are in the process of completing a version of EnCore
that can be installed on an unrooted phone, which will
be much easier to disseminate at scale. Our experience
catalogued in this paper gives us confidence that EnCore
and the secure encounter primitive will continue to prove
useful, and a larger userbase will yield compelling new ways
to communicate using EnCore.

10. REFERENCES

[1] AllJoyn. http://www.alljoyn.org. Last accessed:
September 2013.

[2] Android Beam. http://developer.android.com/guide/
topics/connectivity/nfc/nfc.html#p2p. Last accessed:
June 2013.

[3] Bluetooth Specification Core Version 4.0.
https://www.bluetooth.org/docman/handlers/
downloaddoc.ashx?doc id=229737. Last accessed:
March 2014.

[4] FireChat. https://itunes.apple.com/us/app/firechat/
id719829352?mt=8. Last accessed: March 2014.

[5] Foursquare. https://foursquare.com/. Last accessed:
June 2013.

[6] Friday: automated journal.
http://www.fridayed.com/. Last accessed: October
2013.

[7] Google fires engineer for violating privacy policies.
http://www.physorg.com/news203744839.html. Last
accessed: September 2012.

[8] Haggle. http://www.haggleproject.org. Last accessed:
September 2013.

[9] Highlight. http://highlig.ht/. Last accessed: December
2013.

[10] iOS 7 AirDrop. http://support.apple.com/kb/HT5887.
Last accessed: January 2014.

[11] Lokast. http://www.lokast.com. Last accessed:
September 2013.

[12] Mailinator: Free disposable email.
http://mailinator.com/. Last accessed: January 2014.

[13] Memoto: automatic lifelogging camera.
http://memoto.com/. Last accessed: September 2013.

[14] Near Field Communication – Interface and Protocol
(ISO/IEC 18092:2013).
http://www.iso.org/iso/home/store/catalogue ics/
catalogue detail ics.htm?csnumber=56692. Last
accessed: September 2013.

[15] Nintendo 3DS. http://www.nintendo.com/3ds. Last
accessed: September 2013.

[16] Secret. https://www.secret.ly/. Last accessed: March
2014.

[17] Sony PlayStation Vita.
http://us.playstation.com/psvita/. Last accessed:
September 2013.

[18] Tile. http://www.thetileapp.com/. Last accessed:
September 2013.

[19] Whisper. http://whisper.sh/. Last accessed: March
2014.

[20] Wi-Fi Direct.
http://www.wi-fi.org/discover-and-learn/wi-fi-direct.
Last accessed: September 2013.

[21] N. Aharony, W. Pan, C. Ip, I. Khayal, and
A. Pentland. Social fMRI: Investigating and shaping
social mechanisms in the real world. Pervasive Mob.
Comput., 7(6), Dec. 2011.

[22] W. Apolinarski, M. Handte, M. U. Iqbal, and P. J.
Marrón. Secure interaction with piggybacked
key-exchange. Pervasive Mob. Comput., 10, Feb. 2014.

[23] R. Baden, A. Bender, N. Spring, B. Bhattacharjee,
and D. Starin. Persona: an online social network with
user-defined privacy. In Proceedings of the ACM
SIGCOMM conference on Data communication,
SIGCOMM ’09, 2009.

http://www.alljoyn.org
http://developer.android.com/guide/topics/connectivity/nfc/nfc.html#p2p
http://developer.android.com/guide/topics/connectivity/nfc/nfc.html#p2p
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://itunes.apple.com/us/app/firechat/id719829352?mt=8
https://itunes.apple.com/us/app/firechat/id719829352?mt=8
https://foursquare.com/
http://www.fridayed.com/
http://www.physorg.com/news203744839.html
http://www.haggleproject.org
http://highlig.ht/
http://support.apple.com/kb/HT5887
http://www.lokast.com
http://mailinator.com/
http://memoto.com/
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=56692
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=56692
http://www.nintendo.com/3ds
https://www.secret.ly/
http://us.playstation.com/psvita/
http://www.thetileapp.com/
http://whisper.sh/
http://www.wi-fi.org/discover-and-learn/wi-fi-direct

[24] L. B. Baker and J. Finkle. Sony PlayStation suffers
massive data breach.
http://www.reuters.com/article/2011/04/26/us-sony-
stoldendata-idUSTRE73P6WB20110426. Last
accessed: September 2012.

[25] M. Bakht, M. Trower, and R. H. Kravets. Searchlight:
won’t you be my neighbor? In Proceedings of the 18th
annual international conference on Mobile computing
and networking, MobiCom ’12, 2012.

[26] V. Brik, S. Banerjee, M. Gruteser, and S. Oh. Wireless
device identification with radiometric signatures. In
Proceedings of the 14th ACM international conference
on Mobile computing and networking, MobiCom ’08,
2008.

[27] J. A. Calandrino, A. Kilzer, A. Narayanan, E. W.
Felten, and V. Shmatikov. ”you might also like: ”
privacy risks of collaborative filtering. In Proceedings
of the 2011 IEEE Symposium on Security and
Privacy, SP ’11, 2011.

[28] C. Castelluccia and P. Mutaf. Shake them up!: a
movement-based pairing protocol for CPU-constrained
devices. In Proceedings of the 3rd international
conference on Mobile systems, applications, and
services, MobiSys ’05, 2005.

[29] L. P. Cox, A. Dalton, and V. Marupadi. Smokescreen:
flexible privacy controls for presence-sharing. In
Proceedings of the 5th international conference on
Mobile systems, applications and services, MobiSys
’07, 2007.

[30] E. D. Cristofaro, Y. Lu, and G. Tsudik. Efficient
techniques for privacy-preserving sharing of sensitive
information. Cryptology ePrint Archive, Report
2011/113, 2011. http://eprint.iacr.org/.

[31] W. Diffie and M. Hellman. New Directions in
Cryptography. IEEE Transactions on Information
Theory, 22(6), nov 1976.

[32] B. Dodson, I. Vo, T. Purtell, A. Cannon, and M. Lam.
Musubi: disintermediated interactive social feeds for
mobile devices. In Proceedings of the 21st international
conference on World Wide Web, WWW ’12, 2012.

[33] P. Dutta and D. Culler. Practical asynchronous
neighbor discovery and rendezvous for mobile sensing
applications. In Proceedings of the 6th ACM
conference on Embedded network sensor systems,
SenSys ’08, 2008.

[34] B. Ford, J. Strauss, C. Lesniewski-Laas, S. Rhea,
F. Kaashoek, and R. Morris. Persistent personal
names for globally connected mobile devices. In
Proceedings of the 7th symposium on Operating
systems design and implementation, OSDI ’06, 2006.

[35] M. Goetz and S. Nath. Privacy-aware personalization
for mobile advertising. Technical report.

[36] B. Greenstein, D. McCoy, J. Pang, T. Kohno,
S. Seshan, and D. Wetherall. Improving wireless
privacy with an identifier-free link layer protocol. In
Proceedings of the 6th international conference on
Mobile systems, applications, and services, MobiSys
’08, 2008.

[37] S. Guha, M. Jain, and V. N. Padmanabhan. Koi: a
location-privacy platform for smartphone apps. In
Proceedings of the 9th USENIX conference on

Networked Systems Design and Implementation,
NSDI’12, 2012.

[38] C. A. Gunter, M. J. May, and S. G. Stubblebine. A
formal privacy system and its application to location
based services. In Proceedings of the 4th international
conference on Privacy Enhancing Technologies,
PET’04, 2005.

[39] B. Han and A. Srinivasan. ediscovery: Energy efficient
device discovery for mobile opportunistic
communications. In Proceedings of the 20th IEEE
International Conference on Network Protocols
(ICNP), ICNP ’12, 2012.

[40] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work,
J.-C. Herrera, A. M. Bayen, M. Annavaram, and
Q. Jacobson. Virtual trip lines for distributed
privacy-preserving traffic monitoring. In Proceedings of
the 6th international conference on Mobile systems,
applications, and services, MobiSys ’08, 2008.

[41] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall. These aren’t the droids you’re looking
for: retrofitting android to protect data from
imperious applications. In Proceedings of the 18th
ACM conference on Computer and communications
security, CCS ’11, 2011.

[42] P. Jappinen, I. Laakkonen, V. Latva, and
A. Hamalainen. Bluetooth device surveillance and its
implications. WSEAS Transactions on Information
Science and Applications, 1(4), Oct. 2004.

[43] S. Jarecki and N. Saxena. Authenticated key
agreement with key re-use in the short authenticated
strings model. In Proceedings of the 7th international
conference on Security and cryptography for networks,
SCN’10, 2010.

[44] P. Kalnis, G. Ghinita, K. Mouratidis, and
D. Papadias. Preventing location-based identity
inference in anonymous spatial queries. IEEE Trans.
on Knowl. and Data Eng., 19(12), Dec. 2007.

[45] A. Kandhalu, K. Lakshmanan, and R. R. Rajkumar.
U-connect: a low-latency energy-efficient asynchronous
neighbor discovery protocol. In Proceedings of the 9th
ACM/IEEE International Conference on Information
Processing in Sensor Networks, IPSN ’10, 2010.

[46] V. Lenders, E. Koukoumidis, P. Zhang, and
M. Martonosi. Location-based trust for mobile
user-generated content: applications, challenges and
implementations. In Proceedings of the 9th workshop
on Mobile computing systems and applications,
HotMobile ’08, 2008.

[47] M. Lentz, V. Erdelyi, P. Aditya, E. Shi, P. Druschel,
and B. Bhattacharjee. SDDR: Light-Weight
Cryptographic Discovery for Mobile Encounters.
http://www.cs.umd.edu/projects/encore.

[48] Y.-H. Lin, A. Studer, H.-C. Hsiao, J. M. McCune,
K.-H. Wang, M. Krohn, P.-L. Lin, A. Perrig, H.-M.
Sun, and B.-Y. Yang. Spate: small-group pki-less
authenticated trust establishment. In Proceedings of
the 7th international conference on Mobile systems,
applications, and services, MobiSys ’09, 2009.

[49] J. Manweiler, R. Scudellari, and L. P. Cox. Smile:
encounter-based trust for mobile social services. In
Proceedings of the 16th ACM conference on Computer
and communications security, CCS ’09, 2009.

http://www.reuters.com/article/2011/04/26/us-sony-stoldendata-idUSTRE73P6WB20110426
http://www.reuters.com/article/2011/04/26/us-sony-stoldendata-idUSTRE73P6WB20110426
http://eprint.iacr.org/
http://www.cs.umd.edu/projects/encore

[50] R. Mayrhofer and H. Gellersen. Shake well before use:
authentication based on accelerometer data. In
Proceedings of the 5th international conference on
Pervasive computing, PERVASIVE’07, 2007.

[51] J. S. Plank. A tutorial on reed-solomon coding for
fault-tolerance in raid-like systems. Software-Practice
& Experience, 27(9), Sept. 1997.

[52] F. Y. Rashid. Epsilon data breach highlights
cloud-computing security concerns.
http://www.eweek.com/c/a/Security/Epsilon-Data-
Breach-Highlights-Cloud-Computing-Security-
Concerns-637161/. Last accessed: September
2012.

[53] I. S. Reed and G. Solomon. Polynomial codes over
certain finite fields. Journal of the Society for
Industrial & Applied Mathematics, 8(2), jun 1960.

[54] S. Saroiu and A. Wolman. Enabling new mobile
applications with location proofs. In Proceedings of the
10th workshop on Mobile Computing Systems and
Applications, HotMobile ’09, 2009.

[55] A. Schulman, T. Schmid, P. Dutta, and N. Spring.
Demo: Phone power monitoring with BattOr. In In
the 17th ACM international conference on Mobile
computing and networking, MobiCom ’11, 2011.

[56] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec,
and J.-P. Hubaux. Quantifying location privacy. In
Proceedings of the 2011 IEEE Symposium on Security
and Privacy, SP ’11, 2011.

[57] J. Su, J. Scott, P. Hui, J. Crowcroft, E. De Lara,
C. Diot, A. Goel, M. H. Lim, and E. Upton. Haggle:
seamless networking for mobile applications. In
Proceedings of the 9th international conference on
Ubiquitous computing, UbiComp ’07, 2007.

[58] W.-T. Tan, M. Baker, B. Lee, and R. Samadani. The
sound of silence. In Proceedings of the 11th ACM
Conference on Embedded Networked Sensor Systems,
SenSys ’13, 2013.

[59] K. Thomas. Microsoft cloud data breach heralds
things to come.
http://www.pcworld.com/article/214775/microsoft
cloud data breach sign of future.html. Last accessed:
September 2012.

[60] W. Wang, V. Srinivasan, and M. Motani. Adaptive
contact probing mechanisms for delay tolerant
applications. In Proceedings of the 13th annual ACM
international conference on Mobile computing and
networking, MobiCom ’07, 2007.

 http://www.pcworld.com/article/214775/microsoft_cloud_data_breach_sign_of_future.html
 http://www.pcworld.com/article/214775/microsoft_cloud_data_breach_sign_of_future.html

	Introduction
	Related Work
	EnCore: Capabilities and Requirements
	Detecting nearby users and resources
	Event-based communication/sharing

	EnCore Design
	EnCore security properties
	Threat model
	Security properties

	Encounters
	Events
	Communication
	Security guarantees

	Using Events with Context
	Browsing the timeline
	Creating events
	Posting information
	Receiving information
	Controlling linkability

	Implementation
	SDDR over Bluetooth 4.0
	Conduits and router

	Evaluation
	Microbenchmarks
	Live deployment

	Discussion
	Qualitative user feedback
	Risks and challenges

	Conclusion and future work
	References

